


Hands-On Enterprise Automation with Python

Automate common administrative and security tasks
with Python

Bassem Aly



Packt)

BIRMINGHAM - MUMBAI




Hands-On Enterprise Automation
with Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Ron Kurien
Technical Editor: Manish D Shanbhag
Copy Editor: Safis Editing

Project Coordinator: Judie Jose
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Graphics: Tom Scaria

Production Coordinator: Aparna Bhagat

First published: June 2018
Production reference: 1270618

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-851-2

www . packtpub.com


http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.


https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content



PacktPub.com

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packtp
ub.com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.


http://www.PacktPub.com
http://www.packtpub.com

Contributors



About the author

Bassem Aly is an experienced SDN/NFYV solution consultant at Juniper
Networks and has been working in the telco industry for the last 9 years. He has
focused on designing and implementing next-generation solutions by leveraging
different automation and DevOps frameworks. Also, he has extensive experience
of architecting and deploying telco applications over OpenStack. He also
conducts corporate training on network automation and network
programmability using Python and Ansible.

I would like to thank my amazing wife, Sarah, and my fantastic daughter, Mariam. They've sacrificed many
nights and meals for this dream. I hope Mariam will read this book one day and understand why I spent so
much time on the computer instead of “chasing”. Thanks to my parents for their encouragement, which
made me who I am today. Finally, thanks to my mentor, Ashraf Albasti, who has helped me in countless
ways in my career.



About the reviewer

Jere Julian is a senior network automation engineer with nearly two decades of
automation experience currently focused on workflow simplification through
automation. The past few years have found him on the speaker circuit at DevOps
Days and Interop ITX, as well as regularly contributing to network computing.
He lives in NC with his wife and two boys and fights fire as a community
volunteer as opposed to the data center. He can be contacted on Twitter at
@julianje.



Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.


http://authors.packtpub.com

Table of Contents



Title Page
Copyright and Credits
Hands-0n Enterprise Automation with Python
Packt Upsell
Why subscribe?
PacktPub.com
Contributors
About the author
About the reviewer
Packt is searching for authors like you
Preface
wWho this book is for
What this book covers
To get the most out of this book
Download the example code files
Download the color images
Conventions used
Get in touch

Reviews

1. Setting Up Our Python Environment
An introduction to Python
Python versions
wWhy are there two active versions?
Should you only learn Python 3?

Does this mean I can't write code that runs on both Python 2 and Pyt
hon 3?



Python installation
Installing the PyCharm IDE

Setting up a Python project inside PyCharm
Exploring some nifty PyCharm features

Code debugging

Code refactoring

Installing packages from the GUI

Summary



2. common Libraries Used in Automation
Understanding Python packages
Package search paths
Common Python libraries
Network Python Libraries
System and cloud Python libraries
Accessing module source code
Visualizing Python code

Summary



3. Setting Up the Network Lab Environment
Technical requirements
When and why to automate the network
Why do we need automation?
Screen scraping versus API automation
Why use Python for network automation?
The future of network automation
Network lab setup
Getting ready &#x2013; installing EVE-NG
Installation on VMware Workstation
Installation over VMware ESXi
Installation over Red Hat KVM
Accessing EVE-NG
Installing EVE-NG client pack
Loading network images into EVE-NG
Building an enterprise network topology
Adding new nodes
Connecting nodes together

Summary



4. Using Python to Manage Network Devices
Technical requirements
Python and SSH
Paramiko module
Module installation
SSH to the network device
Netmiko module
Vendor support
Installation and verification
Using netmiko for SSH
Configuring devices using netmiko
Exception handling in netmiko
Device auto detect
Using the telnet protocol in Python
Push configuration using telnetlib
Handling IP addresses and networks with netaddr
Netaddr installation
Exploring netaddr methods
Sample use cases
Backup device configuration
Building the python script
Creating your own access terminal
Reading data from an Excel sheet
More use cases

Summary



S.

Extracting Useful Data from Network Devices

Technical requirements
Understanding parsers
Introduction to regular expressions
Creating a regular expression in Python
Configuration auditing using CiscoConfParse
CiscoConfParse library
Supported vendors
CiscoConfParse installation
Working with CiscoConfParse
Visualizing returned data with matplotLib
Matplotlib installation
Hands-on with matplotlib
Visualizing SNMP using matplotlib

Summary



6. Configuration Generator with Python and Jinja2
What is YAML?
YAML file formatting
Text editor tips
Building a golden configuration with Jinja2
Reading templates from the filesystem
Using Jinja2 loops and conditions

Summary



7. Parallel Execution of Python Script
How a computer executes your Python script

Python multiprocessing library
Getting started with multiprocessing
Intercommunication between processes

Summary



8. Preparing a Lab Environment

Getting the Linux operating system
Downloading Cent0S
Downloading Ubuntu

Creating an automation machine on a hypervisor
Creating a Linux machine over VMware ESXi
Creating a Linux machine over KVM

Getting started with Cobbler
Understanding how Cobbler works
Installing Cobbler on an automation server
Provisioning servers through Cobbler

Summary



9. Using the Subprocess Module
The popen() subprocess
Reading stdin, stdout, and stderr
The subprocess call suite

Summary



10. Running System Administration Tasks with Fabric
Technical requirements
What is Fabric?
Installation
Fabric operations
Using run operation
Using get operation
Using put operation
Using sudo operation
Using prompt operation
Using reboot operation
Executing your first Fabric file
More about the fab tool
Discover system health using Fabric
Other useful features in Fabric
Fabric roles
Fabric context managers

Summary



11. Generating System Reports and System Monitoring
Collecting data from Linux
Sending generated data through email
Using the time and date modules
Running the script on a regular basis
Managing users in Ansible
Linux systems
Microsoft Windows

Summary



12. Interacting with the Database
Installing MySQL on an automation server
Securing the installation
Verifying the database installation
Accessing the MySQL database from Python
Querying the database
Inserting records into the database

Summary



13. Ansible for System Administration
Ansible terminology
Installing Ansible on Linux
On RHEL and CentOS
Ubuntu
Using Ansible in ad hoc mode
How Ansible actually works
Creating your first playbook
Understanding Ansible conditions, handlers, and loops
Designing conditions
Creating loops in ansible
Trigger tasks with handlers
Working with Ansible facts
Working with the Ansible template

Summary



14. Creating and Managing VMware Virtual Machines

Setting up the environment

Generating a VMX file using Jinja2
Building the VMX template
Handling Microsoft Excel data
Generating VMX files

VMware Python clients
Installing PyVmomi
First steps with pyvmomi
Changing the virtual machine state
There's more

Using Ansible playbook to manage instances

Summary



15. Interacting with the OpenStack API
Understanding RESTful web services
Setting up the environment

Installing rdo-OpenStack package
On RHEL 7.4
On CentOS 7.4
Generating answer file
Editing answer file
Run the packstack
Access the OpenStack GUI
Sending requests to the OpenStack keystone
Creating instances from Python
Creating the image
Assigning a flavor
Creating the network and subnet
Launching the instance
Managing OpenStack instances from Ansible
Shade and Ansible installation
Building the Ansible playbook
Running the playbook

Summary



16. Automating AwS with Boto3

AWS Python modules
Boto3 installation

Managing AWS instances
Instance termination

Automating AWS S3 services
Creating buckets
Uploading a file to a bucket
Deleting a bucket

Summary



17. Using the Scapy Framework
Understanding Scapy
Installing Scapy
Unix-based systems
Installing in Debian and Ubuntu
Installing in Red Hat/CentO0S
Windows and macO0S X Support
Generating packets and network streams using Scapy
Capturing and replaying packets
Injecting data inside packets
Packet sniffing
Writing the packets to pcap

Summary



18. Building a Network Scanner Using Python
Understanding the network scanner
Building a network scanner with Python
Enhancing the code
Scanning the services
Sharing your code on GitHub
Creating an account on GitHub
Creating and pushing your code
Summary
Other Books You May Enjoy

Leave a review - let other readers know what you think



Preface

The book starts by covering the set up of a Python environment to perform
automation tasks, as well as the modules, libraries, and tools you will be using.

We'll explore examples of network automation tasks using simple Python
programs and Ansible. Next, we will walk you through automating
administration tasks with Python Fabric, where you will learn to perform server
configuration and administration along with system administration tasks such as
user management, database management, and process management. As you
progress through this book, you'll automate several testing services with Python
scripts and perform automation tasks on virtual machines and the cloud
infrastructure with Python. In the concluding chapters, you will cover Python-
based offensive security tools and learn to automate your security tasks.

By the end of this book, you will have mastered the skills of automating several
system administration tasks with Python.

0 You can visit the author's blog at the following link: nttps://basinaly.wordpress. con/.


https://basimaly.wordpress.com/

Who this book is for

Hands-On Enterprise Automation with Python is for system administrators and
DevOps engineers who are looking for an alternative to major automation
frameworks such as Puppet and Chef. Basic programming knowledge with
Python and Linux shell scripting is necessary.



What this book covers

chapter 1, Setting Up Python Environment, explores how to download and install
the Python interpreter along with the Python Integrated Development
Environment, called JetBrains PyCharm. The IDE provides you with smart
autocompletion, intelligent code analysis, powerful refactoring and integrates
with Git, virtualenv, Vagrant, and Docker. This will help you to write
professional and robust Python code.

chapter 2, Common Libraries Used in Automation, covers the Python libraries that
are available today and that are used for automation. We will categorize them
based on their usage (system, network, and cloud) and provide a simple
introduction. As you progress through the book, you will find yourself deep
diving into each of them and understanding their usage.

chapter 3, Setting up Your Network Lab Environment, discusses the merits of
network automation and how network operators use it today to automate the
current devices. We will explore popular libraries that are used today to automate
network nodes from Cisco, Juniper, and Arista. This chapter covers how to build
a networking lab to apply the Python script on. We will use an open source
network emulation tool called EVE-NG.

chapter 4, Using Python to Manage Network Devices, dives into managing
networking devices through telnet and SSH connections using netmiko,
paramiko, and telnetlib. We will learn how to write the Python code to access
switches and routers and execute commands on the terminal and then return the
output. We will also learn how to utilize different Python techniques to back up
and push configuration. The chapter ends with some use cases used today in
modern network environment.

chapter 5, Extracting Useful Data from Network Devices, explains how to use
different tools and techniques inside Python to extract useful data from returned
output and act upon it. Also, we will use a special library called CiscoConfParse
to audit the configuration. Then we will learn how to visualize data to generate
appealing graphs and reports with matplotlib.



chapter 6, Configuration Generator with Python and Jinja2, explains how to
generate a common configuration for a site with hundreds of network nodes. We
will learn how to write a template and use it to generate a golden configuration
with a templating language called Jinja2.

chapter 7, Parallel Execution of the Python Script, covers how to instantiate and
execute your Python code in parallel. This will allow us to finish the automation
workflow faster as long as it is not interdependent.

chapter 8, Preparing a Lab Environment, covers the installation process and
preparation for our lab environment. We will install our automation server either
in CentOS or Ubuntu over different hypervisors. Then we will learn how to
automate the operating system installation with Cobbler.

chapter 9, Using the Subprocess Module, explains how to send a command from a
Python script directly to the operating system shell and investigate the returning
output.

chapter 10, Running System Administration Tasks with Fabric, introduces Fabric,
which is a Python library for executing system administration tasks through
SSH. Also, it's used in large deployment of applications. We will learn how to
utilize and leverage this library to execute tasks on remote servers.

chapter 11, Generating System Reports, Managing Users, and System Monitoring,
explains that collecting data and generating recurring reports from the system is
an essential task for any system administrator, and automating this task will help
you to discover issues early and provide a solutions for them. In this chapter, we
will see some proven ways to automate data collection from servers and generate
formal reports. We will learn how to manage new and existing users using
Python and Ansible. Also, we will dive into monitoring the system KPI and logs
analysis. You can also schedule the monitoring scripts to run on a regular basis
and send the result to your mail inbox.

chapter 12, Interacting with the Database, states that if you're a database
administrator or database developer, then Python provides a wide range of
libraries and modules that cover managing and working on popular DBMSes
such as MySQL, Postgress, and Oracle. In this chapter, we will learn how to
interact with DBMSes using Python connectors.



chapter 13, Ansible for System Administration, explores one of the most powerful
tools in configuration management software. Ansible is very powerful when it
comes to system administration and can be used to make sure the configuration
is replicated exactly across hundreds or even thousands of servers at the same
time.

chapter 14, Creating and Managing VMWare Virtual Machines, explains how to
automate VM creation on a VMWare hypervisor. We will discover different
ways to create and manage virtual machines over ESXi using VMWare's official
binding library.

chapter 15, Interacting with Openstack API, explains that OpenStack was very
popular in creating private IaaS when it came to private cloud. We will use
Python modules such as requests to create REST calls and interact with
OpenStack services such as nova, cinder, and neutron, and create the required
resources over OpenStack. Later in the chapter, we will use Ansible playbooks
for the same workflow.

chapter 16, Automating AWS with Python and Boto3, covers how to automate
common AWS services such as EC2 and S3 using official Amazon binindgs
(BOTO3), which provides an easy-to-use API for services access.

chapter 17, Using the SCAPY Framework, introduces SCAPY, which is a powerful
Python tool used to build and craft packets and then send them on the wire. You
can build any type of network stream and send it on the wire. It can also help
you to capture network packets and replay them to the wire.

chapter 18, Building Network Scanner Using Python, provides a complete
example of building a network scanner using Python. You can scan a complete
subnet for different protocols and ports and generate a report for each scanned
host. Then, we will learn how to share the code with the open source community
(GitHub) by leveraging Git.



To get the most out of this book

The reader should be acquainted with the basic programming paradigm of
Python programming language and should have basic knowledge of Linux and
Linux shell scripting.



Download the example code files

You can download the example code files for this book from your account at www.
packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/su
pport and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/Packtpu
blishing/Hands-On-Enterprise-Automation-with-Python. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!


http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-with-Python
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http://www.packtpub.com/sites/default/fi

les/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf.


http://www.packtpub.com/sites/default/files/downloads/HandsOnEnterpriseAutomationwithPython_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "Some large packages such as matp1ot1ib Or django
have hundreds of modules inside them, and developers usually categorize the
related modules into a sub-directories."

A block of code is set as follows:

from netmiko import ConnectHandler
from devices import R1,SW1,SW2, SW3,Sw4

nodes = [R1,SW1, SW2, SW3, SW4]

for device in nodes:

net_connect = ConnectHandler(**device)

output = net_connect.send_command("show run")
print output

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

| hostname {{hostname}}

Any command-line input or output is written as follows:

| pip install jinja2

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example:

"Choose your platform from the Download page, and either the x86 or x64
version."

0 Warnings or important notes appear like this.

8 Tips and tricks appear like this.



Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please viSit www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com With a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.


http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.


https://www.packtpub.com/

Setting Up Our Python Environment

In this chapter, we will provide a brief introduction to the Python programming
language and the differences between the current versions. Python ships in two
active versions, and making a decision on which one to use during development
is important. In this chapter, we will download and install Python binaries into
the operating system.

At the end of the chapter, we will install one of the most advanced Integrated
Development Editors (IDEs) used by professional developers around the
world: PyCharm. PyCharm provides smart code completion, code inspections,
on-the-fly error highlighting and quick fixes, automated code refactoring, and
rich navigation capabilities, which we will go over throughout this book, as we
write and develop Python code.

The following topics will be covered in this chapter:

¢ An introduction to Python
e Installing the PyCharm IDE
e Exploring some nifty PyCharm features



An introduction to Python

Python is a high-level programming language that provides a friendly syntax; it
is easy to learn and use, for both beginner and expert programmers.

Python was originally developed by Guido van Rossum in 1991; it depends on a
mix of C, C++, and other Unix shell tools. Python is known as a language for
general purpose programming, and today it's used in many fields, such as
software development, web development, network automation, system
administration, and scientific fields. Thanks to its large number of modules
available for download, covering many fields, Python can cut development time
down to a minimum.

The Python syntax was designed to be readable; it has some similarities to the
English language, while the code construction itself is beautiful. Python core
developers provide 20 informational rules, called the Zen of Python, that
influenced the design of the Python language; most of them involve building
clean, organized, and readable code. The following are some of the rules:
Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

You can read more about the Zen of PythOI'l at https://www.python.org/dev/peps/pep-00
20/.


https://www.python.org/dev/peps/pep-0020/

Python versions

Python comes with two major versions: Python 2.x and Python 3.x. There are
subtle differences between the two versions; the most obvious is the way their
print functions treat multiple strings. Also, all new features will only be added to
3.x, while 2.x will receive security updates before full retirement. This won't be
an easy migration, as many applications are built on Python 2.x.



Why are there two active versions?

I will quote the reason from the official Python website:

""Guido van Rossum (the original creator of the Python language) decided to clean up Python 2.x properly, with less regard for backwards compatibility than is the case for new releases in the 2.x range.
The most drastic improvement is the better Unicode support (with all text strings being Unicode by default) as well as saner bytes/Unicode separation.

" ""Besides, several aspects of the core language (such as print and exec being statements, integers using floor division) have been adjusted to be easier for newcomers to learn and to be more consistent
with the rest of the language, and old cruft has been removed (for example, all classes are now new-style, "range()" returns a memory efficient iterable, not a list as in 2.x).""

You can read more about this tOpiC at https://wiki.python.org/moin/Python2orPython3.


https://wiki.python.org/moin/Python2orPython3

Should you only learn Python 3?

It depends. Learning Python 3 will future-proof your code, and you will use up-
to-date features from the developers. However, note that some third-party
modules and frameworks lack support for Python 3 and will continue to do so
for the near future, until they completely port their libraries to Python 3.

Also, note that some network vendors, such as Cisco, provide limited support for
Python 3.x, as most of the required features are already covered in Python 2.x
releases. For example, the following are the supported Python versions for Cisco
devices; you will see that all devices support 2.x, not 3.x:

WHICH VERSION OF PYTHON DOES YOUR DEVICE SUPPORT?

- cAT3650 | CAT3850 m Nexus K/SK | Nexus SK/6K

Python 2.7 I0S-XE 16.5.1 10S-XE 16.5.1 10S-XE 16.5.1 N3K NX-0S 6.0 N5K NX-0S 5.2 NX-0S 6.1
N9K NX-0S8 7.0 N6K NX-0S 6.0

Python 3.x N/A N/A 10S-XE 16.5.1

Source: https://developer.cisco.com/site/python/


https://developer.cisco.com/site/python/

Does this mean I can't write code that
runs on both Python 2 and Python 3?

No, you can, of course, write your code in Python 2.x and make it compatible
with both versions, but you will need to import a few libraries first, such as the

_ future__ module, to make it backward compatible. This module contains some
functions that tweak the Python 2.x behavior and make it exactly like Python
3.x. Take a look at the following examples to understand the differences between
the two versions:

#python 2 only
print "welcome to Enterprise Automation"

The following code is for Python 2 and 3:

# python 2 and 3
print("welcome to Enterprise Automation")

Now, if you need to print multiple strings, the Python 2 syntax will be as
follows:

# python 2, multiple strings
print "welcome", "to", "Enterprise", "Automation"

# python 3, multiple strings
print ("welcome", "to", "Enterprise", "Automation")

If you try to use parentheses to print multiple strings in Python 2, it will interpret
it as a tuple, which is wrong. For that reason, we will import the _ future__
module at the beginning of our code, to prevent that behavior and instruct
Python to print multiple strings.

The output will be as follows:



Python Console - DevNe y o

Django Console




Python installation

Whether you choose to go with a popular Python version (2.x) or build future-
proof code with Python 3.x, you will need to download the Python binaries from
the official website and install them in your operating system. Python provides
support for different platforms (Windows, Mac, Linux, Raspberry PI, and so on):

1. Go to nhttps://www.python.org/downloads/ and choose the latest version of either
2.x or 3.X:


https://www.python.org/downloads/

About  Downloads  Documentation  Commumty  Sucoess Stories ~ News

Download the [atest version for Mac 05 X

Doviload Python 36,5

Lookin for Pthom with  diferentOS? ython fo Windows,
LinuyUND, Hac 03, Other

Want o helptestdevelopment versions o Pthonf Pr-rleases

Lookin for Python .77 Seebelow or specifc eleases

D] ey
| [atest release | \

Release versig Release date Click for more

& Downlozd Relezse Notes

Python 27,45 Downloa d
Python 36,5 |atest release & Download Release Notes
Python 34,8 fUI' pylhun 3.x & Downlead Release Notes

Events




2. Choose your platform from the Download page, and either the x86 or x64
version:



Python 27,15

Release Date: 2016-05-01
| choose the

Python 21,1515 2 bugfix elease nthe Python 2115

Note:
Aitention macOS users:as of 7.1, alpython org macOS nstallers ship with & uilin copy of OpenSSL. Adciionally, there s & new additional nstaler variant for mac0S 10+ thet
Includes a bultin version of Tl Tk .6, See the Installer README for mora information,

Files Al supported
platforms wil be
Version Operating System  Description st here FlleSize  GPG

Gripped source tarball Source release A0%1f0900efabdes3342  14%3%  SIG

XZ compressed source tarbal Source release ablaedccdTRAG0DILAN3a0400d 12642436 SI6
mac0S 64-ditinstaller Mac 05X for0S X 109 and [ater 307T136316c3ecTabdcBbuTedss 23768240 SIG
Windows debug information files Windows dcslefGld4csidelocbeToldgone0ls 2501974  SIG
Windows debug nformation flesfor 64-0t bineries ~~ Windows 680bITabadsTO0echT50a04aseT200 25056214  SI6
Windows help file Windows TISTTTTRA0000520e734badee 6282177 SIG
Windows x86-64MS! instaler Windows for AMDG4/EMB4T o 0ffabdaB65200a3Tbol60361echcs 20246528  SIG
Windows xB6 MS| nstaller Windows (DeddcdhasddMencliebidaddtie 1930448 SIC




3. Install the package as usual. It's important to select the Add python to the
path option during the installation, in order to access Python from the
command line (in the case of Windows). Otherwise, Windows won't
recognize the Python commands and will throw an error:

15! Python 2715 (64-bit) Setup (=)

Customize Python 2.7.15 (64-bit)

679f213addd1

Bec7a8dc8bff5
Select the way you want features to be installed.
Click on the icons in the tree below to change the

1 be i 615cbe751480

way features will be installed. cbe7s1
Register Extensions B )e6b756a84a5
Tcl/Tk - ~
Documentation $8368b052beT
Utility Scripts .

R37b916b361e

_ | b1aebcoscas62

istalled  hard drive
Prepend C:\f =8 Entlrefeatmwill be installed on local hard drive
variable. Thig
plﬂh()ﬂ command pr X  Entire feature will be unavailable
fo This feature requires 0KB on your hard drive.
windows
Stories
| Disk Usage | | Advanced | [ <Back |[ Next> | [ cancel |

4. Verify that the installation is complete by opening the command line or
terminal in your operating system and typing python. This should access the
Python console and provide a verification that Python has successfully
installed on your system:

b B

ion 6.1.76811
osoft Corporation. All rights reserved.

m.| »

o

trater>python_ -
Z2.7.15ca@?%aJeald. fipr 30 2818, 16:3@:26> [MSC v.1588 64 hit (AN

» "copyright", “credits" or "license" for more information.



Installing the PyCharm IDE

PyCharm is a fully fledged IDE, used by many developers around the world to
write and develop Python code. The IDE is developed by the Jetbrains company
and provides rich code analysis and completion, syntax highlighting, unit testing,
code coverage, error discovery, and other Python linting operations.

Also, PyCharm Professional Edition supports Python web frameworks, such as
Django, web2py, and Flask, beside integrations with Docker and vagrant for
running a code over them. It provides amazing integration with multiple version
control systems, such as Git (and GitHub), CVS, and subversion.

In the next few steps, we will install PyCharm Community Edition:

1. Go to the PyCharm download page (https://www.jetbrains.com/pycharm/download/)
and choose your platform. Also, choose to download either the Community
Edition (free forever) or the Professional Edition (the Community version is
completely fine for running the codes in this book):

Choose either

P e Download PyCharm community of

platform professional

edition

Windows macOS Linux

Professional Community
Rl Full-featured IDE Lightweight IDE
Build: 181508737 for Python & Web for Python & Scientific
Released: May 31, 2018 development development

System requirements
DOWNLOAD DOWNLOAD
Installation Instructions

Previous versions Free trial Free, open-source

2. Install the software as usual, but make sure that you select the following
options:
e 32- or 64-bit launcher (depending on your operating system).
e Create Associations (this will make PyCharm the default application


https://www.jetbrains.com/pycharm/download/)

for Python files).
e Download and install JRE x86 by JetBrains:

| harm Community Edition Setu = [
PyC ity P

Installation Options
Configure your PyCharm Community Edition installation

Create Desktop Shortcut
[ 32 I};i—bit launcher

Create Associations

Dy

o Download and install JRE x86 by JetBrains

e v [ S—

3. Wait until PyCharm downloads the additional packages from the internet,
and installs it, then choose Run PyCharm Community Edition:

B PyCharm Community Edition Setup =] ® | ==
Installing
‘ Please wait while PyCharm Community Edition is being installed.

Downloading jre.tar.qz
1

43928kB (80%) of 55142kB @ 828.8kB/s (14 seconds remaining)

Cancel

4. Since this is a new and fresh installation, we won't import any settings from



PC| Complete Installation @

Import PyCharm settings from:

@ Do notimport settings

Select the desired UI theme (either the default or darcula, for dark mode).
You can install some additional plugins, such as Markdown and
BashSupport, which will make PyCharm recognize and support those
languages. When you finish, click on Start Using PyCharm:

& customize PyCharm
Ul Themes — Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

IdeaVim Markd:t)wn BashSupport

Editor Custom Languages Languages

Emulates Vim editor Markdown language support Bash language support

Recommended only if you are
= familiar with Vim.

Install and Enable Install Install

R Language Support

Languages

R language support

Install

New plugins can also be downloaded in Settings | Plugins

Skip Remaining and Set Defaults Back to Ul Themes Start using PyCharm



Setting up a Python project inside
PyCharm

Inside PyCharm, a Python project is a collection of Python files that you have
developed and Python modules that are either built in or were installed from a
third party. You will need to create a new project and save it to a specific
location inside your machine before starting to develop your code. Also, you will
need to choose the default interpreter for this project. By default, PyCharm will
scan the default location on the system and search for the Python interpreter. The
other option is to create a completely isolated environment, using Python
virtualenv. The basic problem with the virtualenv address is its package
dependencies. Let's assume that you're working on multiple different Python
projects, and one of them needs a specific version of x package. On the other
hand, one of the other projects needs a completely different version from the
same package. Notice that all installed Python packages go to
/usr/1lib/python2.7/site-packages, and you can't store different versions of the same
package. The virtualenv will solve this problem by creating an environment that
has its own installation directories and its own package; each time you work on
either of the two projects, PyCharm (with the help of virtuaienv) will activate the
corresponding environment to avoid any conflict between packages.

Follow these steps to set up the project:

1. Choose Create New Project:



@ O Welcome to PyCharm
DevNet

/media/bassim/DAT...ogleDrive/Scripts
List of all E

existing pyc h a

projects Version 2018.

Choose create
new project

3¢ Create New Project
= Open

¥ Check out from Version Control

%% Configure ~ Get Help ~

2. Choose the project settings:

‘@@ New Project
4 Pure Python i - - - -
&5 Dj 5| Location: \ /Users/babdelmageed/PycharmProjects/EnterpriseAutomatio!
jango
L Flask ~ Project Interpreter: Python 2.7 e
© Google App Engine
% Pyramid New environment using | #, Virtualenv C
Web2Py /Users/babdelmageed/PycharmProjects/EnterpriseAutomation/v. | ...
B Scientific
© Angular CLI # Python 2.7 jusr/local/bin/python2.7 S
Y AngularJs Inherit global site-packages

Foundation

E HTML5 Boilerplate
% React App © Existing interpreter

Make available to all projects

& React Native Interpreter: | Python 2.7 /ust/local/bin/python2.7

[ Twitter Bootstrap
4
Cancel Create

{» Web Starter Kit
1. Select the type of project; in our case, it will be Pure Python.
Choose the project's location on the local hard drive.

3. Choose the Project Interpreter. Either use the existing Python
installation in the default directory, or create a new virtual environment
tied specifically to that project.

4. Click on Create.

3. Create a new Python File inside the project:

N



& (] EnterpriseAutomation [~/PycharmProjects/EnterpriseAutomation]
B % ~ ige P

EnterpriseAutomation

= B Project ~ = | X~ 1
E Enterprise Autom —
A Illl External Libraries ;- Bash Script
= Ei! Scratches and Cor Cut ~Ax as Ccrip .
=» New Scratch File Fa
= Copy ~C N
c Path s Directory
opy - = - Python Package
Copy Relative Path NG G
= Paste AV = Python File 2
Find U ~F7 wm Jupyter Notebook
!n : sages w= HTML File
Find in Path... DT =
Repl in Path ~£rR ess Stylesheet
| =k actecmda is JavaScript File
nepee ofe.- s« TypeScript File

1. Right-click on the project name and select New.
2. Choose Python File from the menu, then choose a filename.

A new, blank file is opened, and you can write a Python code directly into it.
Try to import the _ future_ module, for example, and PyCharm will
automatically open a pop-up window with all possible completions available
as shown in the following screenshot:

5 Hello World.py

_ future__ :
vprint_function __future__

¢ CO_FUTURE_PRINT_FUNCTION  _ future__

~4d and ~ 1 will move caret down and up in the editor >>

4. Run your code:

onfigurations...

£ Edit C
e——...)

ello_W
= | £ 1= | [@ Hello_ World.py

1 ~/PycharmProjects/EnterpriseAut il

1. Enter the code that you wish to run.
2. Choose Edit Configuration to configure the runtime settings for the
Python file.

5. Configure new Python settings for running your file:



® 0 Run/Debug Configurations
+ d Name: Run Share

' python

& Run (Cnfiguiationl] Loos o

Single instance only

¥ Defaults Script path: ~ | |[Users/babdelmageed/PycharmProjects/EnterpriseAutomation/Hello_World.pyl Toe.

Parameters:

~ Environment

L3 Environment variables: PYTHONUNBUFFERED=1

o

Python interpreter: # python 2.7
Interpreter options:
Working directory: /Users/babdelmageed/PycharmProjects/EnterpriseAutomation
Add content roots to PYTHONPATH
Add source roots to PYTHONPATH
Emulate terminal in output console

Run with Python consale

v Before launch: Activate tool window

Show this page Activate tool window

Cancel Apply m

1. Click on the + sign to add a new configuration, and choose Python.
2. Choose the configuration name.
3. Choose the script path inside your project.
4. Click on OK.
Run the code:



() W el PP Ee o] ol Wk gy (o stulomalio)
ERIXTR VLR | RELRS ]

Erlrorsehulomallon el Wl

t& {F Mot » Sl bl Yoty
E EnterpiseAutomaton < °chiP s ot self

el Moy
) et s

v e, e

{1 Soatches and Consls

']
]
1
I
T
g
1
rd
1

FrOCESS TINISNA(

1. Click on the play button beside the configuration name.
2. PyCharm will execute the code inside the file specified in the
configuration, and will return the output to the terminal.



Exploring some nifty PyCharm
features

In this section, we will explore some of PyCharm's features. PyCharm has a
huge collection of tools out of the box, including an integrated debugger and test
runner, Python profiler, a built-in Terminal, integration with major VCS and
built-in database tools, remote development capabilities with remote interpreters,
an integrated SSH Terminal, and integration with Docker and Vagrant. For a list
of other features, please check the official site (https://www.jetbrains.com/pycharm/fea
tures/ )


https://www.jetbrains.com/pycharm/features/

Code debugging

Code debugging is a process that can help you to understand the cause of an
error, by providing an input to the code and walking through each line of the
code and seeing how it evaluates at the end. The Python language contains some
debugging tools to get insights from the code, starting with a simple print
function, assert command till a complete unit testing for the code. PyCharm
provides an easy way to debug the code and see the evaluated values.

To debug code in PyCharm (say, a nested for loop with if clauses), you need to
set a breakpoint on the line at which you want PyCharm to stop the program
execution. When PyCharm hits this line, it will pause the program and dump the
memory to see the contents of each variable:

Language = [ "pytt

Set breakpoint on which the
debugger wil stop and
valuate every thing before

for item in language:
for char in iten:
if char= o
print item
if Trye;
continue
print iten + char

Notice that the value of each variable is printed besides it, on the first iteration:



X Serpts - [EDropba!Scripts] -\ BasicExamples\Meswadapy - PyCharm 2016.32

Fle Edt View Navgete Code Refactor Run Tooks VCS Window Help

Scripts B Basichamples [ Meswadz py
g [ TedSMgy 58

g Meswedagy
| O e IO Ve Dot AT
5 | 1ava : N "("I__,‘c
g SessionsPenifpy Java ,  CPLUSPLUS ]

g Ciscalnventorypy
5§ Wy
: i g

for item in language:
for char in iten:

7 if char = "3"; //"
o [y Openstack APy * | g print iten ‘, Values are evaluated

g s dipatcherpy % | 66 if True: H Deside the arebl

§ @ KONy b7 continue \ itself

print item + char

Debug: ¢ SessionsPerlntf ¢ Meswada g Meswada

Debugger. 5 Console ¥ T &
5] Frames £ sbls

§ MeinThread B char= s a

= o Special Varibles

& <modules, Meswadapy67 i
] char={st]'d

e

<type st ' pythonazag, java, ‘cplusplus)

v Temingl /' % Version Control | 4 Run :;'-j:Debug %6000 % Python Consale

/,

 Meswada ¥

/-'" I ) Y

[ Youcan see a simpified \

View of variables and their
Values

Also, you can right-click on the breakpoint and add a specific condition for any
variable. If the variable is evaluated to a specific value, then a log message will




be printed:

Ofor host in hosts: host: 'y’

“scioks print (1+2)

Person Inspection return_name(host)
Test_Area.py:79 |
Enabled

set a condition that
once reaChed,
Condition: | host is 'y‘l " program will exit

Log message to console

Suspend () All () Thread

Evaluate and log:

[] Remove once hit

More {Ctrl+Shift+F8)

Generate a log
message once




Code refactoring

Refactoring the code is the process of changing the structure of a specific
variable name inside your code. For example, you may choose a name for your
variable and use it for a project that consists of multiple source files, then later
decide to rename the variable to something more descriptive. PyCharm provides
many refactoring techniques, to make sure that the code can be updated without
breaking the operation.

PyCharm does the following:

e The refactoring itself

e Scans every file inside the project and makes sure that the references to the
variables are updated

e If something can't be updated automatically, it will give you a warning and
open a menu, so you can decide what to do

e Saves the code before refactoring it, so you can revert it later

Let's look at an example. Assume that we have three Python files in our project,
called refactor_1.py, refactor_2.py, and refactor_3.py. The first file contains
important_funtion(x), which is also used in both refactor_2.py and refactor_3.py.

b refacto r 2 fe—

{ Important_function() import

et FETACTOr 1

st refactor_3




COpy the fOHOWng code in a refactor_1.py file:

def important_function(x):
print(x)

COpy the fOHOWng code in a refactor_2.py file:

from refactor_1 import important_function
important_function(2)

COpy the fOHOWng code in a refactor_3.py file:

from refactor_1 import important_function
important_function(10)

To perform the refactoring, you need to right-click on the method itself, select
Refactor | Rename, and enter the new name for the method:

Y

Copy Reference
| Paste
Paste from History...
Paste Simple
Column Selection Mode

Find Usages
Refactor Rename...

. Change Signature... a3
Folding

Move... F6
Copy... F5
Safe Delete... X

Go To
Generate..

Notice that a window opens at the bottom of the IDE, listing all references of
this function, the current value for each one, and which file will be affected after
the refactoring:

Find: Refactoring Preview
B Y Function to be renamed to another_function
f important_function(x)

References in code to function important_function (4 re!erences in ! ’IIeS’ Z usages

X @ @ refactor_2.py 1 usage

© 7 important_function(2)
& ™ @ refactor_3.py 1 usage

T @ 7 important_function(10)
= ¥

1+ |9

¥ H

Cancel Do Refactor

If you choose Do Refactor, all of the references will be updated with the new
name, and your code will not be broken.



Installing packages from the GUI

PyCharm can be used to install packages for existing interpreters (or the
virtualenv) using the GUI. Also, you can see a list of all installed packages, and
whether upgrades are available for them.

First, you need to go to File | Settings | Project | Project Interpreter:



r

b
0

» Appearance & Behayor

Keymap

* Editor
£
Pluging

» Version Control

7 Projoct: Enterprist Automation

Project ntepreter [y ssnleypo

Projeet Stucture

 Build, Execution, Deplojment

» Languages & Frameworks

 Tools

Install  new
package

Prefereces

Project: EnterpriseAutomation ) ProjectImterpratar = For curren! nrojet

Project tarpreter,  Pyfon 2711 jced i

Pﬁcw }
Dango .
Al § The current

P L nferpreter
0 eppscript !

g

:;Y'” e

gl packages
T
fabric

Idna
voke
[paddress
nefaddr
nemiko
paramlk
fip
pretiyiable
pyasn’ 042
pyeparser 1
pyserial k1
i ke
L] 0110
selenium 3120
seluptocls 110
st 110
tedfsm 041
whegl 0310
wealet 01

B 21
121
A
101
0740
14
115
202
146
13
»1!
100
1022
0749
AN
141
1004
LY

» (43
1
3
084
0110
320
» 3020
110
041

» (3
042

Laras(

Update s

available for
this package

Cancel "&(u"“( m



As shown in the preceding screenshot, PyCharm provides a list of installed
packages and their current versions. You can click on the + sign to add a new
package to the project interpreter, then enter the package initials into the search

@ ® Available Packages

A~ netmi

Description

Multi-vendor library to simplify Paramiko SSH connections to network devices
Version

211

Author
Kirk Byers

mailto:ktbyers@twb-tech.com

https:figithub.com/ktbyers/netmiko This Section

contains the

description and
GitHub link for
the package

Install specific
version.
Otherwise it

install the |latest

~ Specify version | 2.1.1 ¢
(4] Options

Install to user's site packages directory (/Users/babdelmageed/.local)

Install Package Manage Repositories

box:

You should see a list of available packages, containing a name and description
for each one. Also, you can specify a specific version to be installed on your
interpreter. Once you have clicked on Install Package, PyCharm will execute a
pip command on your system (and may ask you for a permission); then, it will
download the package onto the installation directory and execute the setup.py file.



Summary

In this chapter, you learned the differences between Python 2 and Python 3, and
how to decide which one to use, based on your needs. Also, you learned how to
install a Python interpreter and how to use PyCharm as an advanced editor to
write and manage your code's life cycle.

In the next chapter, we will discuss the Python package structure and the
common Python packages used in automation.



Common Libraries Used in
Automation

This chapter will walk you through how Python packages are structured and the
common libraries used today to automate the system and network infrastructure.
There's a long growing list of Python packages that cover network automation,
system administration, and managing public and private clouds.

Also, it's important to understand how to access the module source code and how
the small pieces inside the Python package are related to each other so we can
modify the code, add or remove features, and share the code again with the
community.

The following topics will be covered in this chapter:

e Understanding Python packages
e Common Python libraries
e Accessing module source code



Understanding Python packages

Python core code is actually small by design to maintain simplicity. Most
functionalities will be through adding third-party packages and modules.

Module is a Python file that contains functions, statements, and classes that will
be used inside your code. The first thing to do is import the module then start to
use its functions.

On other hand, a package collects related modules connected to each other and
puts them in a single hierarchy. Some large packages such as matplotlib OF django
have hundreds of modules inside them, and developers usually categorize the
related modules into a sub-directories. For example, the netmiko package contains
multiple sub-directories and each one contains modules to connect to network

devices from different vendors:

from netmiko.

of jusr/localfiib/pythol ™ € X T reme

~base_connection

= cisco_base_connection

/usr/local/lib/python2.

_textrsm usr/ local/ l1b/pythonZ. //s1te—-packages/netmiko
alod /usr/local/lib/python2.7/site-packages/netmiko
accedian /usr/local/lib/python2.7/site-packages/netmiko
alcatel /usr/local/lib/python2.7/site-packages/netmiko
arista /usr/local/lib/python2.7/site-packages/netmiko
aruba /usr/localW lib/python2.7/site-packages/netmiko
avaya /usr/local/lib/python2.7/site-packages/netmiko

7/site-packages/netmiko

brocade /usr/local/lib/python2.7/site-packages/netmiko
calix /usr/local/lib/python2.7/site—-packages/netmiko
checkpoint /usr/local/lib/python2.7/site-packages/netmiko
ciena /usr/local/lib/python2.7/site-packages/netmiko
cisco /usr/local/lib/python2.7/site-packages/netmiko

/usr/local/lib/python2.7/site-packages/netmi..

/usr/local/lib/python2.

AT TS h fenvidkhAan)

© £ Tiiem ST A
© Database Changes |Dat, space and some other keys will also close this lookup and be inserted into editor >>

Doing that gives the package maintainer the flexibility to add or remove features
from each module without breaking the global package operation.

coriant /usr/local/lib/python2.7/site-packages/netmiko
dell /usr/local/lib/python2.7/site-packages/netmiko
eltex /usr/local/lib/python2.7/site—-packages/netmiko
enterasys /usr/local/lib/python2.7/site-packages/netmiko

7/site-packages/netmiko

Tieitan manlbamac lnatmilna




Package search paths

Typically, Python searches for modules in some specific system paths. You can
print these paths by importing the sys module and printing the sys.path. This will
actually return the strings inside the pytHoneaTH environment variable and inside
the operating system; notice the result is just a normal Python list. You can add
more paths to the search scope using a list function such as insert().

However, it's better to install the packages in the default search paths so the code
won't break when you share it with other developers:

bassim:~$ python

Python 2.7.15rcl (default, Apr 15 2018, 21:51:34

[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

import sys

sys.path
[ '/usr/lib/python2.7"', '/usr/lib/python2.7/plat-x86 64-linux-gnu', '/usr/lib/python2.7/1lib-tk', '/usr/lib/python2.7/
lib-old', '/usr/lib/python2.7/1ib-dynload', '/home/bassim/.local/lib/python2.7/site-packages', '/usr/loca /
/dist-packages', '/usr/local/lib/python2.7/dist-packages/pycontrail-2.20b64-py2.7.egg', '/usr/lib/python2.7/dist-package

A simple package structure with a single module will be something like this:

. maddapx
| Sub-package-1

__init__.py

module.py .

’ Sub-package-2 __init__.py

__init__.py

modulel.py

module2.py

Python Package

The __init__file inside each package (in the global directory or in the sub-
directory) will tell the Python interpreter that this directory is a Python package,
and each file ending with .py will be a module file, which could be imported



inside your code. The second function of the init file is to execute any code
inside it once the package is imported. However, most developers leave it empty
and just use it to mark the directory as a Python package.



Common Python libraries

In the next sections, we will explore the common Python libraries used for
network, system, and cloud automation.



Network Python Libraries

Network environments nowadays contain multiple devices from many vendors,
and each device plays a different role. Design and automation frameworks for
network devices are essential to network engineers in order to automate repeated
tasks and enhance the way they usually do their job, while reducing human
errors. Large enterprises and service providers usually tend to design a workflow
that can automate different network tasks and improve network resiliency and
agility. The workflow contains a series of related tasks that together form a
process or a workflow that will be executed when there's a change needed on the
network.

Some of the tasks that could be performed by a network automation framework
without human intervention are:

Root cause analysis for the problem

Checking and updating the device operating system

Discovering the topology and relationships between nodes

Security audits and compliance reporting

Installing and withdrawing routes from the network device based on the
application needs

e Managing device configuration and rollback

Here are some Python libraries that are used to automate network devices:

N.e twork Description Link
Library
A multi-vendor library that
supports SSHing and Telnet for
. n rk ices and executes ://gi .
Netmiko etwork devic Zﬁﬁgimiﬁglthub com/ktbyer

commands on it. Support includes
Cisco, Arista, Juniper, HP, Ciena,
and many other vendors.



https://github.com/ktbyers/netmiko

NAPALM

A Python library that works as a
wrapper for the official Vendor
API. It provides abstraction
methods that connect to devices
from multiple vendors and extract
information from it while
returning the output in an
structured format. This can be
easily processed by software.

https://github.com/napalm
-automation/napalm

PyEZ

A Python library used to manage
and automate Juniper devices. It
can perform CRUD operation on
the device from the Python client.
Also, it can retrieve facts about
the device such as the
management IP, serial number,
and version. The returned output
will be in JSON or XML format.

https://github.com/Junipe
r/py-junos-eznc

infoblox-client

A Python client used to interact
with infoblox NIOS over the
interface, based on a REST called
WAPI.

https://github.com/infobl
oxopen/infoblox-client

A Cisco Nexus (some platforms
only) series API that exposes the

CLI through HTTP and HTTPS.
You can enter a show command

https://developer.cisco.c

NX-API in the provided sandbox portal om/docs/nx-0s/#!working-w
and it will be converted to an API | ~ PR
call to the device and will return
the output in JSON and XML
format.
A Python library that acts as a
wrapper around the Arista EOS
. eAPI and is USEd to configure https://github.com/arista
pyeapi -eosplus/pyeapi

Arista EOS devices. The library
supports eAPI calls over HTTP



https://github.com/napalm-automation/napalm
https://github.com/Juniper/py-junos-eznc
https://github.com/infobloxopen/infoblox-client
https://developer.cisco.com/docs/nx-os/#!working-with-nx-api-cli
https://github.com/arista-eosplus/pyeapi

and HTTPs.

netaddr

A Python library for working
with network addresses such as
IPv4, IPv6, and layer 2 addresses
(MAC addresses). It can iterate,
slice, sort, and summarize the IP
block.

https://github.com/drkjam
/netaddr

ciscoconfparse

A Python library that is able to
parse a Cisco IOS-style
configuration and returns the
output in a structured format. The
library also provides support for
device configuration based on
brace-delimited configurations
such as Juniper and F5.

https://github.com/mpenni
ng/ciscoconfparse

NSoT

A database for tracking the
inventory and metadata of
network devices. It provides a
frontend GUI based on Python
Django. The backend is based on
SQLite database where the data is
stored. Also, it provides the API
interface for the inventory using
pynsot bindings.

https://github.com/dropbo
x/nsot

Nornir

A new automation framework
based on Python and consumed
directly from Python code
without a need to have custom
DSL (Domain Specific
Language). The Python code is
called runbook and contains a set
of tasks that can run against the
devices stored in the inventory
(supports also Ansible inventory
format). The tasks can utilize
other libraries (such as

https://github.com/nornir
-automation/nornir



https://github.com/drkjam/netaddr
https://github.com/mpenning/ciscoconfparse
https://github.com/dropbox/nsot
https://github.com/nornir-automation/nornir

NAPALM) to get information or
configure the devices.




System and cloud Python libraries

Here are some of the python packages that can be used for both system and
cloud administration. Public cloud providers such as Amazon Web Services
(AWS) and Google tend to provide open and standard access to their resources
in order to be easily integrated with the organization DevOps model. Phases like
continuous integration, testing, and deployment require continuous access to
infrastructure (either virtualized or bare metal servers) in order to complete the
code life cycle. This can't be done manually and needs to be automated:

Library Description Link

Python standard

library to parse and https://github.com/python/cpython/
WOFk Wlth the INI blob/master/Lib/configparser.py

files.

ConfigParser

Paramiko is a Python
(2.7, 3.4+)
implementation of the _ _ _
Paramiko SSHv? pTOtOCOI, Ect)tps://glthub.com/paramlko/paraml
providing both client
and server
functionality.

A library providing
high-performance,

https://github.com/pandas-dev/pand
Pandas easy-to-use data as
structures and data
analysis tools.

Offifical Python
interface that
manages different
AWS operations, such
as creating EC2
instances and S3

boto3 https://github.com/boto/boto3



https://github.com/python/cpython/blob/master/Lib/configparser.py
https://github.com/paramiko/paramiko
https://github.com/pandas-dev/pandas
https://github.com/boto/boto3

storage.

google-api-python-
client

Google official API
client library for
Google Cloud
Platform.

https://github.com/google/google-a
pi-python-client

pyVvmomi

The official Python
SDK from VMWare
that manages ESXi
and vCenter.

https://github.com/vmware/pyvmomi

PyMYSQL

A pure python
MySQL driver to
work with MySQL
DBMS.

https://github.com/PyMySQL/PyMySQL

Psycopg

The PostgresSQL
adapter for python

which conforms to
DP-API 2.0 standard.

http://initd.org/psycopg/

Django

A high-level open
source web
framework based on
Python. The
framework follows
the MVT (Model,
View, and Template)
architecture design
for building web
applications without
the hassle of web
development and
common security
mistakes.

https://www.djangoproject.com/

Fabric

A simple Python tool
for executing
commands and
software deployments

https://github.com/fabric/fabric



https://github.com/google/google-api-python-client
https://github.com/vmware/pyvmomi
https://github.com/PyMySQL/PyMySQL
http://initd.org/psycopg/
https://www.djangoproject.com/
https://github.com/fabric/fabric

on remote devices
based on SSH.

A brilliant Python-
based packet
manipulation that is
able to handle a wide
range of protocols
and can build packets
with any combination
of network layers; it
can also send them on
the wire.

SCAPY

https://github.com/secdev/scapy

A python library used
to automate web-
browser tasks and
web-acceptance
testing. The library
Selenium works with Selenium https://pypi.org/project/selenium/
webdrivers for
Firefox, Chrome, and
Internet Explorer to
run tests on web
browsers.

You can find more of the python packages categorized into different areas at the
following link: https://github.com/vinta/awesome-python.


https://github.com/secdev/scapy
https://pypi.org/project/selenium/
https://github.com/vinta/awesome-python

Accessing module source code

You can access the source code of any module that you use in two ways. First,
go to the module page at github.com and view all the files, releases, commits, and
issues in one place, as in the following screenshot. I have read access to all
shared code via the netmiko module maintainer and can see a full list of commits
and file contents:


https://github.com/

E:I Join GitHub today Dismiss

GitHub is home to over 20 million developers working together to host
and review code, manage projects, and build software together.

Multi-vendor library to simplify Paramiko SSH connections to network devices

{D 1,645 commits ¥ 3 branches > 28 releases 42 73 contributors s MIT
Branch: develop v ' jues Find file
ktbyers Merge pull request #809 from brunopeter/develop .« Latest commit 2fbaef5 9 hours ago
B docs Test of documentation 2 years ago
i examples Merge pull request #8092 from brunopeter/develop 9 hours ago
B netmiko Minor extreme fix 9 hours ago
B tests Merge pull request #824 from nmisaki/develop 10 hours ago
E) .gitignore TOX integration 2 years ago
E .travisyml rebase 4 months ago
E COMMON_ISSUES.md Add additional comment to documentation 10 months ago
E) LICENSE Updating copyright year 2 years ago

The second method is to install the package itself in the Python site-package
directory using pip or PyCharm GUI. What pip actually does is it goes to GitHub
and downloads the module content and runs setup.py to install and register the
module. You can see the module files, but this time you have full read/write
access on all files and you can change the original code. For example, the
following code leverages the netmiko library to connect to a Cisco device and
execute the show arp command on it:

from netmiko import ConnectHandler

device = {"device_type": "cisco_ios",
"ip": "10.10.88.110",
"username": "admin",
"password": "access123"}

net_connect = ConnectHandler(**device)
output = net_connect.send_command("show arp")

If I want to see the netmiko source code, I can go either to site-packages where
the netmiko library installed and list all files or I can use Ctrl and left-click on
the module name in PyCharm. This will open the source code in a new tab:



n __future__ i

logging

log = logging.

log.

n netmiko.
netmiko.
netmiko.
netmiko.

1 netmiko.
netmiko.
netmiko.

n netmiko.

n netmiko.
netmiko.
netmiko.

1 netmiko.

NetmikoTimeoutErro

(logging.

ssh_dispatcher
ssh_dispatcher
ssh_dispatcher
ssh_dispatcher
ssh_dispatcher i
scp_handler
cisco.cisco_ios
ssh_exception
ssh_exception
ssh_autodetect
base_connection
scp_functions

unicode_literals

(__name__)

0)

ConnectHandler
t ssh_dispatcher
t redispatch

platforms

yrt FileTransfer
SCPConn
c InLineTransfer

init.py file of the
netmiko module

NetMikoTimeoutException
t NetMikoAuthenticationException

t SSHDetect
rt BaseConnection
file_transfer

= NetMikoTimeoutException

NetmikoAuthError = NetMikoAuthenticationException
Netmiko = ConnectHandler

__version

_all__ 'ConnectHandler',
'NetMikoTimeoutException',

12.1.1"

'ssh_dispatcher',

'NetmikoTimeoutError', 'NetmikoAuthError',

'SSHDetect',

CNTL_SHIFT_6 = chrfi30]]

'BaseConnection', 'Netmiko',

'platforms', 'SCPConn',
'NetMikoAuthenticationException',

'InLineTransfer',
'file_transfer')

'FileTransfer',

'redispatch’,




Visualizing Python code

Ever wondered how a Python custom module or class is manufactured? How
does the developer write the Python code and glue it together to create this nice
and amazing x module? What's going on under the hood?

Documentation is a good start, of course, but we all know that it's not usually
updated with every new step or detail that the developer added.

For example, we all know the powerful netmiko library created and maintained
by Kirk Byers (https://github.com/ktbyers/netmiko) that leverages another popular
SSH library called Paramiko (http://www.paramiko.org/). But we don't understand
the details and how the classes are related to each other. If you need to
understand the magic behind netmiko (or any other library) in order to process
the request and return the result, please follow the next steps (requires PyCharm
professional edition).

Code visualization and inspection in PyCharm is not supported in PyCharm community
edition and is only supported in the professional version.

Following are the steps you need to follow:

1. Go to the netmiko module source code inside the Python library location
folder (usually c:\python27\Lib\site-packages on Windows or
/usr/local/lib/pyhon2.7/dist-packages OI1 LiIlUX) and open the file from
PyCharm.

2. Right-click on the module name that appears in the address bar and choose
Diagrams | Show Diagram. Select Python class diagram from the pop-up
window:


https://github.com/ktbyers/netmiko
http://www.paramiko.org/

imp

log = loggin

log.addHandl

L ]
from netmiko

from netm

from netm

from netm

from netm P

from netmiko utException

from netmiko "nticatiunExceptian

NetmikoTimeo
NetmikoAuthE

__version__
_all_ - (s c : 'Fi " Will show the UML

Diagram for entire
module and

CNTL_SHIFT_6

3. PyCharm will start to build the dependency tree between all classes and
files in the netmiko module and then will show it in the same window. Note
this process may require some time depending on your computer memory.
Also, it's better to save the graph as an external image to view it:




Based on the resulting graph, you can see that Netmiko is supporting a lot of
vendors such as HP Comware, entrasys, Cisco ASA, Forcel0, Arista, Avaya, and
so on, and all of these classes are are inheriting from the
netmiko.cisco_base_connection.CicsoSSHConnection parent class (I think this is because
they use the same SSH style as Cisco). This in turn inherits from another big
parent class called netmiko.cisco_base_connection.BaseConnection.

Also, you can see that Juniper has its own class

(netmiko.juniper.juniper_ssh . JuniperSSH) that connects directly to the blg parent.
Finally, we connect to the parent of all parents in python: the object class
(remember everything in Python is an object in the end).

You can find a lot of interesting things such as an SCP transfer class and SNMP
class, and with each one you will find the methods and parameters used to
initialize the class.

So the connectrandier method is primarily used to check the device_type availability
in the vendor classes and, based on returned data, it will use the corresponding
SSH class:



future_ impol

import paramike TN o
import telnetlib SN

import time -

E (iew all photag
import socket

import re

import io

from os import path

from netmiko.netmiko globals

from netm

from netmiko LT . module(package)
from netmiko og 2 name

class \BaseConnecti,

this class inheriting from
netmiko.base_connection_BaseConnection

Another way to visualize your code is to see exactly which modules and
functions are being hit during code execution. This is called profiling and it
allows you to examine the functions during runtime.

First, you need to write your code as usual and then right-click on an empty
space and select profile instead of running the code as normal:



m netmiko import ConnectHandler

odevice

Copy Reference

net_connect = -
| = Paste

output = net_connect.

Paste from History...

t output Paste Simple

Column Selection Mode
Refactor
Felding

GoTo
Generate..

P Run 'profile_code'
[ 3 Debug 'profile_code’

Wait for the code to be executed. This time PyCharm will inspect each file that is
called from your code and generate the call graph for the execution so you can
easily know which files and functions are used and count the execution time for
each one:



compils =31
Totak ams 0
A

_complle «157
Tolak #8ms C.2%
Dure Ones £.0%

sompils w27

Torat 12me 0.1%

Dun Dm0 7%
i 'y

decimalpy 11
Totalz 12ms 015
Qi Smea s

fractions.py =1 Jntpy =t

Lok @b 2% Tetak 23ms 0, 0%
Dwc T CI Owe Tmedo%
rsa.oy A algesgy univpy W
Trish AIma0Es Tetak 30ma T Tatnt- YAma a7
Own: Smp O Owm: ImalN On s 0.7

serlalization.py =1 utils.oy = besepy = ssh_gss.py =1 signing.py =1

Totsl Bdms 5% Total 33ma D% Tolal 1Bma 0% Tetak 38e D 4% Tote' 14ma 01%
Gwn: Zms Lo% Oun: ZmADON  Own 5mIGoN own: Bma Q1% own: ama 0.
a F a 3
deskoypy = _inM_py = outh handlerpy ©1  ed28810key.py =1
Total: 82 0.5 Tola; 18ms .15 Totak d2me 0.4% Tolsh B = 7%
Own: e 0.0 O ImSO0%  Oan: Sms 0 e 2me 0
s f . A
‘transpari.py =1 _read_channel «23 «method ‘connact’ af |_socket.sacket' abjectss »1
Total: 3w 224 Total 9m £.3% otals A 6.4%
O F0ms0 7% Cwn: Oms 0.0% Own D £
3 i
utiiiespy ©  _infi_py 0 <time sisep>  xm read_channel xza mesh e
ot Ama 02N Tos 2R26mE 3% Tosat 8366 ms 2,65 Totalk 18ms 0.2 Torak 42ms 3 4%
Owa. Zma0N  Own BN D 9368 55 8N Owm e 0% Dwere: s 0.0%
base_ssnnection.py =1 _read_channel timing =2 _read_shannel_oxpeot =2 find_prompt 2 telnet login =1 oreate_sunnestion =1
Totak B8Fme. 7 54 Totai: 4318ma 44.2% Totak 208me 274 Totak AHima 4.2% Total 3517me 35,55 Total; #1ms 0.4%
Onn: 8ma 0.1 own: ome Do% un gme o Qune oma 0% Oun:  Oms 0% oW Oma 0
(s s i 3 L ) 3
elsze_base_sonnoction.py 1 _test_channel_read 1 read_until_prompt x2  send_sammand <1 sen_basa_prompt 1 apan “
Total: M 1% Totat: S35 £5.6% Totu: 208w 314 Tetat 830ems 9.5% Tousk 208mu E1% Tatat dhmm 04%
;. Zmanin Qun:  Oms 0% o omenos Own  omsoos Own:  Oma 0% Own: Gms 0.5
Y I3 . A A F A
nl0_sshpy =1 disalbile_paging =1 set_terminal_width <3 ni_ "
Total: 283ms 1.7% Totd 208ms 2.0% Totsk W2ms 1.0% Fatal &tms 0.4%
Dan o Own. omezon Dun. D o.0n Oun: Ome 0,75
[ A
_init_py =1 session_preparation «1 establish_connection x1
Total 263ms £ 7% Total: 8262ms 64.0% Total 2669ms 26.2%
w0 0.0% Qi Oms 0.0% Owm: Oms 005
ssh_dispatcher.py =1 i .
ot s 3.0% Totst B 00.2%
Own: Zime 02K Cam: Ome 0.0%
S A
_inil_py 1 ConnectHandisr 1
Total 337 1 4% Total AT 50 75
Oum: s 0.0% Cwni Ome Q0N

-

As you can see in the previous graph, our code in profile_code.py (bottom of the
graph) will call the connectHandier() function which in turn will execute __init__.py,
and execution will continue. On the graph's left side, you can see all files that it
touched during your code execution.



Summary

In this chapter, we explored some of most popular network, system, and cloud
packages provided in Python. Also, we learned how to access the module source
code and to visualize it for better understanding of the internal code. We looked
at the call flow for code while running. In the next chapter, we will start building
a lab environment and apply our code to it.



Setting Up the Network Lab
Environment

We now have a fair idea of how to write and develop Python scripts, the building
blocks to creating programs. We will now move on to understanding why
automation is an important topic in today's network, and then we will build our
network automation lab using one of the popular pieces of software, called EVE-
NG, which helps us to virtualize network devices.

We will cover the following topics in this chapter:

When and why to automate the network
Screen scraping versus API automation
Why to use Python for network automation
The future of network automation

Lab setup

Getting ready: installing EVE-NG
Building an enterprise network topology



Technical requirements

In this chapter, we will cover the EVE-NG installation steps and how to create
our lab environment. The installation will be done over VMware Workstation,
VMware ESXi, and finally Red Hat KVM, so you should be familiar with the
virtualization concept and have one of the hypervisors up and running prior to
lab setup.



When and why to automate the
network

Network automation is increasing all over the network world. However, it's
really important to understand when and why to automate your network. For
example, if you're an administrator of a few network devices (three or four
switches) and you don't execute so many tasks on them regularly, then you might
not need full automation for them. Actually, the time needed to write and
develop a script and test and troubleshoot it might be greater than the time to do
a simple task manually. On the other hand, if you're responsible for a big
enterprise network that contains multi-vendor platforms and you always execute
repetitive tasks, then it's highly recommended to have a script to automate it.



Why do we need automation?

There are several reasons for why automation is important for networks today:

e Lower costs: Using automation solutions (either developed in-house or
purchased from vendors) will reduce network operation complexity and the
time required to provision, configure, and operate network devices

¢ Business continuity: Automation will reduce human error during service
creation over current infrastructure, and hence, allow businesses to reduce
the service time to market (TTM)

o Business agility: Most network tasks are repeated and by automating them,
you will increase productivity and drive business innovation

e Correlation: Building a solid automation workflow allows the network and
systems administrators to perform root cause analysis faster and increases
the possibility of solving the problem by correlating multiple events
together



Screen scraping versus API
automation

For a long period of time, the CLI was the only access method available to
manage and operate network devices. Operators and administrators used to have
SSH and Telnet to access the network terminal for configuration and
troubleshooting. Python, or any programming language, has two approaches to
communicating with devices. The first one is to use SSH or telnet the same as
before and get the information, then process it. This method is called screen
scraping and requires libraries that will be able to establish a connection to the
device and execute a command directly on the terminal, and other libraries to
process the returned information to extract useful data from it. This method often
requires knowledge of additional parsing languages, such as regular expressions,
to match the data pattern from the output and extract useful data from it.

The second method is called an Application Programmable Interface (API)
and this method depends entirely on sending a structured request using REST or
SOAP protocols to the device and returning the output, also in structured format,
encoded in JSON or XML. The time needed for processing the returned data in
this method is quite small compared to the first method; however, the API
requires additional configuration on network devices to support it.



Why use Python for network
automation?

Python is a pretty well-structured and easy programming language available
today and targets many areas in technology, web and internet development, data
mining and visualization, desktop GUI, analysis, game building, and automation
testing; that's why it's called a general purpose language.

So, there are three reasons to choose Python:

e Readability and ease of use: When you develop using Python, you
actually find yourself writing in English. Many keywords and program
flows inside Python are structured to have readable statements. Also,
Python doesn't require ; or curly braces to start and end blocks, which gives
Python a shallow learning curve. Finally, Python has some optional rules,
called PEP 8, that tell Python developers how to format their program to
have readable code.

You can configure PyCharm to take care of these rules and check
whether your code violates them or not by going to Settings | Inspections
| PEP 8 coding style violation:



Settings [ ]

(r

\Q-PEP ‘ Editor ) Inspections For current project
Editor Profile: | me-inside-inspection Project n -
Inspections
Intentions @ )Y £ &

IVIISSEU LdIL LU __TTIL__ 01 SUPET Lidss
Missing or empty docstring
Missing type hinting for Function definition

Description

This inspection runs the pep8.py tool to check for violations of the

Namedtuple definition ¢ i
PEP 8 coding style guide.

No encoding specified for file

0Old-style class contains new-style class features
Overloads in regular Python files

Package requirements

PEP 8 coding style violation

PEP 8 naming convention violation
Problematic nesting of decorators

Property definitions

Raising a new style class

Raising a string exception

Reassignment of method's first argument [ ] Severity
Redeclared names without usage
Redundant parentheses Options

Shadowing built-ins

Shadowing names from outer scopes
Single quoted docstring

Statement has no effect

Too broad exception clauses

Trailing semicolon in statement
Trying to call a non-callable object
Tuple assignment balance is incorrect

[] pisable new inspections by default

OOOOOO00ssOO 80000000

m ‘ Cancel \ \ \ Help :

e Libraries: This is the real power of Python: libraries and packages. Python
has a wide range of libraries in many areas. Any Python developer can
easily develop a Python library and upload it online to make it available to
other developers. Libraries are uploaded to a website called PyPI (https://py
pi.python.org/pypi) and linked to a GitHub repository. When you want to
download the library to your PC, then you use a tool called pip to connect to
PyPI and download it locally. Network vendors such as Cisco, Juniper, and
Arista developed libraries to facilitate access to their platforms. Most
vendors are pushing to make their libraries easy to use and require
minimum installation and configuration steps to retrieve useful information
from devices.

e Powerful: Python tries to minimize the number of steps required to reach

the end result. For example, to print hello world using Java, you will need
this block of code:

However, in Python, the whole block is written in one line to print it, as shown


https://pypi.python.org/pypi

in the following screenshot:

(*hello world")

Combining all these reasons together leads to making Python the de facto
standard for automation and the first choice for vendors when it comes to
automating network devices.



The future of network automation

For a long period of time, network automation only meant developing a script
using a programming language such as Perl, TcL, or Python in order to execute
tasks on different network platforms. This approach is known as script-driven
network automation. But as the network becomes more complex and more
service-oriented, new types of automation were required and started to appear,
such as the following:

e Software-defined network automation: Network devices will have only a
forwarding plane, while the control plane is implemented and created using
an external software called an SDN controller. The benefit of this approach
is there will be a single point of contact for any network changes and the
SDN controller can accept those change requests from other software, such
as an external portal, through well-implemented northbound interfaces.

e High-level orchestration: This approach requires software called an
orchestrator that integrates with SDN controllers and enables the creation of
network service models using languages, such as YANG, that abstract the
service from the underlying devices that will run over it. Also, an
orchestrator can integrate with a Virtual Infrastructure Manager (VIM)
such as OpenStack and vCenter, in order to manage virtual machines as a
part of network service modeling.

¢ Policy-based networking: In this type of automation, you describe what
you want to have in the network and the system has all the details to figure
out how to implement it in the underlying devices. This allows software
engineers and developers to implement changes in the network and describe
their application's needs in declarative policies.



Network lab setup

Now, we will start building our networking lab on a popular platform called
EVE-NG. You could, of course, use a physical node to implement the topology,
but a virtualized environment gives us an isolated and sandboxed environment to
test many different configurations, plus the flexibility to add/remove nodes
to/from the topology with a few clicks. Also, we can have multiple snapshots to
our configuration so we can revert back to any scenario at any time.

EVE-NG (formerly known as UNetLab) is one of the most popular choices in
network emulation. It supports a wide range of virtualized nodes from different
vendors. There's another option, which is GNS3, but, as we will see during this
chapter and the next one, EVE-NG provides many features that make it a solid
choice for network modeling.

EVE-NG comes in three editions: Community, Pro, and Learning Center. We
will use the Community edition as it contains all the features that we will need
during this book.



Getting ready — installing EVE-NG

EVE-NG Community edition came with two options, OVA and ISO. The first
option is to use OVA, which gives you the minimum installation steps required,
given that you already have VMware Player/Workstation/Fusion, or VMware
ESXi, or Red Hat KVM. The second option is to install it directly over a bare
metal server without a hypervisor, this time using Ubuntu 16.06 LTS OS:

Hypervisor Installation Bare Metal Installation

The ISO option, however, requires some advanced skills in Linux to prepare the
machine itself and import the installation repositories into the operating system.

Oracle VirtualBox doesn't support the hardware acceleration needed by EVE-NG, so it's
better to install it either in VMware or KVM.

First, head to http://www.eve-ng.net/index.php/downloads/eve-ng t0 download the latest
version of EVE-NG, then import it into your hypervisor. I dedicated 8 GB of
memory and four vCPUs to the created machine, but you can add additional
resources to it. In the next section, we will see how to import the downloaded
image to hypervisors and configure each one.


http://www.eve-ng.net/index.php/downloads/eve-ng

Installation on VMware Workstation

In the following steps, we will import the downloaded EVE-NG OVA image into
VMware Workstation. OVA-based images contain files that describe the virtual
machine in terms of hard disk, CPU, and RAM values. You can later modify
these numbers after importing them:

1. Open VMware workstation and from File, choose Open to import the OVA.
2. After completing the import process, right-click on the newly created
machine and choose Edit Settings.

3. Increase the number of processors to 4 and the memory allocated to 8 GB
(again, you could add more if you have the resources but this setting will be
enough for our lab).

4. Make sure the Virtualize Intel VI-x/EPT or AMD-V/RVI checkbox is
enabled. This option instructs VMware workstation to pass the
virtualization flags to the guest OS (nested virtualization):

Virtual Machine Settings

Hardware  Options

3 Processors
Device Summary

0 Memory a.2c8 Mumber of processors: 4 ~
I [ Processors i I MNumber of cores per processor: | 1 ~
Hard Disk (5CSI) ke Total processor cores: 4
) CD/DVD (IDE) Auto detect

@Network Adapter  Custom (VMnet10)
@Network Adapter 2 Bridged (Automatic) e :
@Network Adapter 3 Bridged {Automatic) Preferred mode: | Automatic =

@Display 1 monitor Disable acceleration for binary translation
Virtualize Intel VT-x/EFT or AMD-V/RVI

|| virtualize CPU performance counters

Virtualization engine

) add... Remove

Cancel Help
Also, it's recommended to expand the hard disk by adding additional space to the



existing hard disk in order to have enough space to host multiple images from

vendors:

Hardware Qptions

Device Surmmary
W Memory 8GB
[l Procezanr 4

e Hard Disk (SCSI) 20 GB

"y CD/DVD (IDE) Auto detect
Netwnrk Adapter  Bridged (Automatic)
FEINetwork Adapter 2 Bridged (Automatic)
Netwnrk Adapter 3 Bridged (Automatic)
@Display 1 monitor

Disk file

EVE-ALFA-disk 1.vmdk

Capadty

Current size: 2.8 GB
System free: 122.7 GB
Maximum size: 20 GB

Disk information
Disk space is not preallocated for this hard disk.
Hard disk contents are stored in a single file.

F S P

S el M
ap...

ee Defragment

5 ; Expand increases only the size of a virtual disk. Sizes of | Expand...
b partitions and file systems are not affected. - |

add...

——
ace, Compact

Cancel Help Advanced...

oK Cancel Help

A message will appear after expanding the disk, indicating that the operation was
done successfully and you need to follow some procedures in the guest operating
system to merge the new space with the old one. Luckily for us, we don't need to
do that as EVE-NG will merge any new space found in the hard disk with the old

one during system boot:

Vhtware Workstation

The disk was successfully expanded. You must
repartition the disk and expand the file systems
from within the quest operating system.



Installation over VMware ESXi

VMware ESXi is a good example of a type 1 hypervisor that runs directly on the
system. Sometimes they're called bare-metal hypervisors, and they provide many
features compared to type 2 hypervisors, such as VMware workstation/Fusion or
VirtualBox:

1. Open the vSphere client and connect to your ESXi server
2. From the File menu, choose Deploy OVF Template
3. Enter the path for the downloaded OVA image and click Next:

i) Deploy OVF Template F=n o] @

Source
Sedect the source location,

Dieploy from a file or URL

\Dawnloads\EVE Community Edition.ova = | Browse, ..

Enter & URL ko downlasd and install the OVF package from the Inkermet, or
specify a location accessible from your computer, such as a local hard drive, a
netwaork share, or & COJDVD drive.

Help I < Bacl ‘ Mext = | Cancel |

4. Accept all the default settings suggested by the hypervisor till you land on
the final page, Ready to Complete, and click on Finish:



Deploy OWF Template o= =]
£/ Deplay p 2 B )

Ready to Complete
Are these the aptions you want to use?

SCrCE

OMF Terplate Detsis When wou click Finish, the deployment bask will be started.
Name and Location Deployment settings:
Digk Format COYF File Downloads\EVE Commurnity Edition,ova
Network Maoping Download size: 1368
Ready to Complete e s0.0c8
Mame: E¥E Community Edition
HastfiCluster: lncakhost,
Datastore: datastorel
Diisk, provisioning: Thick Provision Lazy Zeroed
Metwork Mapping: "Management 90 UD" to "Internet-2"

™ Power on after deployment

Help < Back | Finish I Cancel |

4

ESXi will start to deploy the image on the hypervisor, and later you can change
its settings and add more resources to it, as we did before in VMware
workstation.



Installation over Red Hat KVM

You need to convert the downloaded OVA image to QCOW2 format, which is
supported by KVM. Follow these steps to convert one format into another. We
will need a special utility called gemu-ing available inside the gemu-utiis package:

1. Untar the downloaded OVA to extract the VMDK file (the HDD of the
image):

tar -xvf EVE\ Community\ Edition.ova
EVE Community Edition.ovf
EVE Community Edition.vmdk

2. Install the gemu-utiis tools:

| sudo apt-get install qemu-utils

3. Now, convert the VMDK to QCOW?2. It may take a few minutes for the
conversion to be complete:

| gemu-img convert -0 gqcow2 EVE\ Community\ Edition.vmdk eve-ng.qcow
Finally, we have our own qcow2 file ready to be hosted inside the Red Hat KVM.
Open the KVM console and choose the Import existing disk image option from
the menu:

New VM

E Create a new virtual machine

= Step 1of4

Connection: QEMU/KVM

Choose how you would like to install the operating system
Local install media (ISO image or CDROM)
Network Install (HTTP, FTP, or NFS)
Network Boot (PXE)
©Import existing disk image

¥ Architecture options

Cancel Forward

Then, choose the path of the converted image and click on Forward:



Provide the existing storage path:

/media/bassim/DATA/ISO_Room/eve-ng.qcow2  Browse...

Choose an operating system type and version
OStype: Generic b

Version: Generic >

Cancel Back Forward



Accessing EVE-NG

After you import the image to the hypervisor and start it, you will be asked to
provide some information to complete the installation. First, you will be greeted
with the EVE logo as an indication that the machine has been successfully
imported over the hypervisor and it is ready to start the boot phase:

1. Provide the root password that will be used for SSHing to the EVE
machine. By default, it will be eve:

Roat Passuord
Type the Root Password:

l

2. Provide the hostname that will be used as a name inside Linux:



Eve-NG - Setup

Hostname
Tupe the short hostname for the
systenm:

leue—ng

Provide a domain name for the machine:

Eve-NG - Setup

BHS domain name
Type the DNS domain name for the
system:

lﬂutumation—uurkshop

Choose to configure networking with the static method. This will ensure the
IP address given will be persistent even after machine reboot:



Eve-NG6 - Setup

Use DHCE/Static IP Address
Use DHCP or Static [P Address for
the netuork adapter on Managenent
Netuwork?

5. Finally, provide the static IP address from a range that is reachable from
your network. This IP will be used to SSH to EVE and upload vendor
images to the repositories:

Eve-NG — Setup

Hanagement Network IP Address
Type the IP address for the
Managenent. Network:

llﬂ -10.88.100_

In order to access the EVE-NG GUI, you need to open a browser and go to
http://<server_ip>. Please note server_1p is what we used during the installation
steps:



2.0.3-86

Signin to start your session

admin

Mative console

The default username for the GUI is adnin and the password is eve, while the default username
for SSH is root and the password is what was provided during the installation steps.



Installing EVE-NG client pack

The client pack that comes with EVE-NG allows us to choose which application
is used when you telnet or SSH to the device (either PUTTY or SecureCRT) and
set up Wireshark for remote packet captures between links. Also, it facilitates
work on RDP- and VNC-based images. First, you need to download the client
pack to your PC from http://eve-ng.net/index.php/downloads/windows-client-side-pack,
then extract the file to c:\program Files\EVE-NG:

{5 Setup - EVE-NG-Win-Client-Pack

Information
Please read the following important infarmation before continuing.

When you are ready ta continue with Setup, click Mext.

elcome to EVE-NG Windows x64_32 Installer -

Installation Folder:
C:\Program Files\EYE-MNG |

If you choose ta install Wireshark and UlkraMC

s ||

D NOT change thier installation Falder

El
Next = I Cancel |

The extracted files contain many scripts written in Windows batch scripting
(.bat) to configure the machine that will be used to access EVE-NG. You will
find scripts that configure the default Telnet/SSH client and another one for

Wireshark and the VINC. The software sources are also available inside the
folder:


http://eve-ng.net/index.php/downloads/windows-client-side-pack

60:;“. v Computer » Local Disk (C:) = Program Fles » EVENG + v M| SearthE. E

Organize »  Indudeinfbrary »  Sharewith »  Hewfolder R ﬂﬂ @

N

~

Uninstall ik exe Py, Be U\traVNC_l_Z_lZ_XMS Ulravnc_trappet bat in7 bt ot reg.
efup.eve

088 Q

W7 64bit puttyreg w7 fabit ubravncreq  win? febit wiresharkreg  wieshar wrapperkat  Wiresharkwingd-2.2.5.81

Usedto

sefup
SecureCRT
as a default

Used to Used to Setup

sefup Putty Wireshark for
a5 a default EWTIVHERES
remotely

If you are using a Linux desktop such as Ubuntu or Fedora, then you could use this excellent
prOjeCt from GitHub to get the client pack: https://github.com/SmartFinn/eve-ng-integration.


https://github.com/SmartFinn/eve-ng-integration

Loading network images into EVE-
NG

All network images obtained from vendors should be uploaded to
/opt/unetlab/addons/qenu. EVE-NG support QEMU-based images and Dynamics
images, and also iOL (iOS On Linux).

When you get an image from a vendor, you should create a directory inside
/opt/unetlab/addons/qemu and upload the image to that directory; then, you should
execute this script to fix the permission of the uploaded image:

| 7opt/unetlab/wrappers/unl_wrapper -a fixpermission



Building an enterprise network
topology

In our base lab setup, we will simulate an enterprise network that has four
switches and one router that act as a gateway to outside networks. Here is the IP
schema that will be used for each node:

Node name IP
GW 10.10.88.110
Switch1 10.10.88.111
Switch?2 10.10.88.112
Switch3 10.10.88.113
Switch4 10.10.88.114

Our Python script (or Ansible playbook) will be hosted on an external Windows
PC that connects to the management of each device.



Adding new nodes

We will start by choosing the IOSv image that was already uploaded to EVE and
add four switches to the topology. Right-click on any empty space in the
topology and from the drop-down menu named Add a new object, choose to add

Add a new object

B Node

& Network

Edl Picture

O Custom Shape
A Text

a Node:

You should see two Cisco images colored blue as indication that they were
successfully added to the available images inside the EVE-NG library and
mapped to the corresponding template. Choose Cisco vIOS L2 to add Cisco

ADD A NEW NODE

Template
Nothing selected
This emulate

Cisco router

Cisco FirePower 6
Cisco vIOS
Cisco vIOS L2

Cisco vNAM

This will emulate
Cisco switch

Cisco vWLC

Cisco VWAAS

Cisco Prime Infra
Cisco Email Security Appliance (ESA)
Cisco Web Security Appliance (WSA)
Cisco XRv
Cisco XRv 9000
Citrix Netscaler
Dell SonicWall
Cumulus VX
ExtremeXOS
F5BIG-IP LTM VE

Fortinet FortiGate

switches:

Increase the Number of nodes to add to 4 and click OK:



ADD A NEW NODE

Template

Cisco viOS L2 i
Number of nodes to add Image

4 @ viosl2-15 -

Name/prefix

Switch

lcon

B3 Switch L3.png -

Now, you will see four switches added to the topology; repeat this again and add

HvIOs
——  —
I I
- P> - |
P L
MW Switch1 W Switch2
 — | re—
3 B
- = =
L. 4 1 ~
M switch3 M Switch4

the router, but this time choose Cisco vIOS:



Connecting nodes together

Now, start to connect the nodes with each other while the nodes are offline, and
repeat for each node till you finish connecting all of them inside the topology;

then, start the lab:
Ny
EI o
4

B Switchs B Switch?

The final view after adding IP addresses and some custom shapes to the topology
will be as follows:

10.10.88.110

| — t
g 8" 8 101088114
10.10.86.113 -—{.:- bl
!

» Switch3

Now, our topology is ready and should be loaded with basic configuration. I
used the following snippet as a configuration base for any Cisco-10S device that
enabled SSH and telnet and configured the username for access. Notice that
there are some parameters surrounded with ¢{ 33. We will discuss them in the
next chapter when we generate a golden configuration using a Jinja2 template
but, for now, replace them with hostname and the management IP address for each
device respectively:

hostname {{hostname}}
int gig0/0



no shutdown
ip address {{mgmt_ip}} 255.255.255.0

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none

enable password access123
username admin password access123
no ip domain-lookup

11dp run

ip domain-name EnterpriseAutomation.net

ip ssh version 2

ip scp server enable

crypto key generate rsa general-keys modulus 1024



Summary

In this chapter, we learned about the different types of network automation
available today and why we chose Python to be our primary tool in network
automation. Also, we learned how to install EVE-NG over different hypervisors
and platforms, how to provide the initial configuration, and how to add our
network images to the images catalog. Then, we added different nodes and
connected them together to create our network enterprise lab.

In the next chapter, we will start building our Python scripts that automate
different tasks in the topology using different Python libraries, such as telnetlib,
Netmiko, Paramiko, and Pexpect.



Using Python to Manage Network
Devices

Now we have a fair knowledge about how to use and install Python in different
operating systems and also how to build the network topology using the EVE-
NG. In this chapter, we will discover how to leverage many network automation
libraries, used today to automate various network tasks. Python can interact with
network devices on many layers.

First, it can handle low-level layers with socket programming and socket
modules, which serve as low-level networking interfaces between operating
systems that run Python and the network device. Also, Python modules provide
higher-level interaction through telnet, SSH, and API. In this chapter, we will
dive deep into how to use Python to establish remote connections and execute
commands on remote devices using telnet and SSH modules.

The following topics will be covered:

Using Python to telnet to devices

Python and SSH

Handling IP addresses and networks with netaddr
Network automation sample use cases



Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x

e PyCharm Community or Pro Edition

e EVE-NG topology; please refer to chapter 3, Setting up the Network Lab
Environment, for how to install and configure the emulator

You can find the full scripts developed in this chapter at the following GitHub
URL: https://github.com/TheNetworker/EnterpriseAutomation.git.


https://github.com/TheNetworker/EnterpriseAutomation.git

Python and SSH

Unlike telnet, SSH provides a secure channel to exchange data between client
and server. The tunnel created between the client and the device is encrypted
with different security mechanisms that make it hard for anyone to decrypt the
communication. The SSH protocol is the first choice for network engineers who
need to securely administrate network nodes.

Python can communicate with network devices using the SSH protocol by
utilizing a popular library called Paramiko that supports authentication, key
handling (DSA, RSA, ECDSA, and ED25519), and other SSH features such as
the proxy command and SFTP.



Paramiko module

The most widely used module for SSH in Python is called paramiko and, as the
GitHub official page says, the name Paramiko is a combination of the Esperanto
words for "paranoid" and "friend." The module itself is written and developed
using Python, though some core functions like crypto depend on the C language.
You can find out more about the contributors and module history at the official
GitHub link here: https://github.com/paramiko/paramiko.


https://github.com/paramiko/paramiko

Module installation

Open Windows cmd or Linux shell and execute the following command to
download the latest paramiko module from PyPI. It will download additional
dependency packages such as cyrptography, ipaddress, and six and install them on
your machine:

| pip install paramiko
bassim@me-inside:~$ pip install paramiko
Collecting paramiko
Using cached paramiko-2.4.0-py2.py3-none-any.whl
Collecting cryptography>=1.5 (from paramiko)
Using cached cryptography-2.1.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting pynacl>=1.0.1 (from paramiko)
Using cached PyNaCl-1.2.1-cp27-cp27mu-manylinuxl x86 64.whl
Collecting pyasnl>=0.1.7 (from paramiko)
Using cached pyasnl-0.4.2-py2.py3-none-any.whl
Collecting bcrypt>=3.1.3 (from paramiko)
Using cached bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting cffi>=1.7; platform_python_implementation != "PyPy" (from cryptography>=1.5->paramiko)
Downloading cffi-1.11.4-cp27-cp27mu-manylinuxl x86 64.whl (406kB)
100% | N | <0okB 1.2MB/s
Collecting enum34; python version < "3" (from cryptography>=1.5->paramiko)
Using cached enum34-1.1.6-py2-none-any.whl
Collecting idna>=2.1 (from cryptography>=1.5->paramiko)
Using cached idna-2.6-py2.py3-none-any.whl
Collecting asnlcrypto>=0.21.0 (from cryptography>=1.5->paramiko)
Using cached asnlcrypto-0.24.0-py2.py3-none-any.whl
Collecting six>=1.4.1 (from cryptography>=1.5->paramiko)
Using cached six-1.11.0-py2.py3-none-any.whl
Collecting ipaddress; python version < "3" (from cryptography>=1.5->paramiko)
Collecting pycparser (from cffi>=1.7; platform python implementation != "PyPy"->cryptography>=1.5->pa
ramiko)
Installing collected packages: pycparser, cffi, enum34, idna, asnlcrypto, six, ipaddress, cryptograph
y, pynacl, pyasnl, bcrypt, paramiko

You can verify that the installation is done successfully by entering the Python
shell and importing the paramiko module as shown in the following screenshot.
Python should import it successfully without printing any errors:

bassim@me-inside:~$ python
Python 2.7.14 (default, Sep 23 2017, 22:06:14)
[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import paramiko
>>>




SSH to the network device

As usual, in every Python module, we first need to import it into our Python
script, then we will create an SSH client by inheriting from sshciient(). After that,
we will configure the Paramiko to automatically add any unknown host-key and
trust the connection between you and the server. Then, we will use the connect
function and provide the remote host credentials:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import paramiko

import time

Channel = paramiko.SSHClient()
Channel.set_missing_host_key_policy(paramiko.AutoAddPolicy())
Channel.connect(hostname="10.10.88.112", username='admin', password='access123"',
look_for_keys=False,allow_agent=False)

shell = Channel.invoke_shell()
Autoaddpolicy() is one of the policies that can be used inside the set_missing_host_key_policy()
function. It's preferred and acceptable in a lab environment. However, we should use a more
restrictive policy in a production environment, such as warningpolicy() OF RejectPolicy().

Finally, the invoke_she11() will start the interactive shell session towards our SSH
server. You can provide additional parameters to it such as the terminal type,
width, and height.

Paramiko connect parameters:

® Look_ror_keys: By default, it's true, and it will force the Paramiko to use the
key-pair authentication where the user is using both private and public keys
to authenticate against the network device. In our case, we will set it to raise
as we will use password authentication.

® allow agent paramiko: It can connect to a local SSH agent OS. This is
necessary when working with keys; in this case, since authentication is
performed using a login/password, we will disable it.

The final step is to send a series of commands such as show ip int b and show arp to
the device terminal and get the output back to our Python shell:

shell.send("enable\n")
shell.send("access123\n")



shell.send("terminal length 0\n")
shell.send("show ip int b\n")
shell.send("show arp \n")
time.sleep(2)

print shell.recv(5000)
Channel.close()

The script output is:

Python Console - DevNet e
Dianga Console £

ion and IDS

% y third par
b pt as otherw

?

g

g

Ll nte P-A Status Protocol

rotoco
ENGilgabitEthernetd)! N Lgr] YES : up

oot ' up

erneto/3 - S up

thernetd/0 1 2 S \ ' up

Ethernet1/0 SS1gn¢ 8 E D up

up

up

up

UP

up

up

up

up

up

up

up

(min) y
10 5 ge. GigabitEthernet®/0

GigabitEthernet0/0

time on a remote device to force Python to wait some time till the device generates output and

8 It's preferable to use time.sieep() when you need to execute commands that will take a long
sends it back to python. Otherwise, python may return blank output to the user.



Netmiko module

The netmiko module is an enhanced version of paramiko and targets network
devices specifically. While paramiko is designed to handle SSH connections to a
device and to check whether the device is a server, printer, or network device,
Netmiko is designed with network devices in mind and handles SSH connections
more efficiently. Also, Netmiko supports a wide range of vendors and platforms.

Netmiko is considered a wrapper around paramiko and extends its features with
many additional enhancements, such as access to vendor-enabled modes directly
given the enable password, reading configuration from a file and pushing it to
devices, disabling paging during login, and sending the carriage return "\n" by
default after each command.



Vendor support

Netmiko supports many vendors and regularly adds new vendors to the
supported list. Following is a list of supported vendors categorized into three
groups: Regularly tested, Limited testing, and Experimental. You can find the list
on the module GitHub page at https://github.com/ktbyers/netmiko#supports.

The following screenshot shows the number of supported vendors under the

Regularly tested category:

Regularly tested

Arista vVEOS
Cisco ASA
Cisco I10S
Cisco I0S-XE
Cisco I0S-XR
Cisco NX-OS
Cisco SG300
HP Comware7
HP ProCurve
Juniper Junos
Linux

The following screenshot shows the number of supported vendors under the

Limited testing category:

Limited testing

Alcatel AOS6/A0S8
Avaya ERS

Avaya VSP

Brocade VDX
Brocade MLX/Netlron
Calix B6

Cisco WLC
Dell-Force10

Dell PowerConnect
Huawei

Mellanox

NetApp cDOT

Palo Alto PAN-OS
Pluribus

Ruckus ICX/Fastiron
Ubiquiti EdgeSwitch
Vyatta VyOS

The following screenshot shows the number of supported vendors under the


https://github.com/ktbyers/netmiko#supports

Experimental

A10

Accedian

Aruba

Ciena SAOS

Cisco Telepresence
Check Point GAIA
Coriant

Eltex

Enterasys

Extreme EXOS
Extreme Wing
F5LTM

Fortinet

MRV Communications OptiSwitch
Nokia/Alcatel SR-OS
QuantaMesh

Experimental category:



Installation and verification

To install netmiko, open the Windows cmd or Linux shell and execute the
following command to get the latest package from PyPI:

| pip install netmiko
bassim@me-inside:~$ pip install netmiko
Collecting netmiko

Downloading netmiko-2.0.1.tar.gz (68kB)

100% | NN | 71kB 450kB/s
Collecting paramiko>=2.0.0 (from netmiko)

Using cached paramiko-2.4.0-py2.py3-none-any.whl
Collecting scp>=0.10.0 (from netmiko)

Using cached scp-0.10.2-py2.py3-none-any.whl
Collecting pyyaml (from netmiko)

Collecting pyserial (from netmiko)

Using cached pyserial-3.4-py2.py3-none-any.whl
Collecting textfsm (from netmiko)

Downloading textfsm-0.3.2.tar.gz
Collecting cryptography>=1.5 (from paramiko>=2.0.0->netmiko)

Using cached cryptography-2.1.4-cp27-cp27mu-manylinuxl_x86 64.whl
Collecting pynacl>=1.0.1 (from paramiko>=2.0.0->netmiko)

Using cached PyNaCl-1.2.1-cp27-cp27mu-manylinuxl_x86_64.whl
Collecting pyasnl>=0.1.7 (from paramiko>=2.0.0->netmiko)

Using cached pyasnl-0.4.2-py2.py3-none-any.whl
Collecting bcrypt>=3.1.3 (from paramiko>=2.0.0->netmiko)

Using cached bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86_64.whl
Collecting cffi>=1.7; platform python implementation != "PyPy" (from cryptography>=1.5->param
iko>=2.0.0->netmiko)

Using cached cffi-1.11.4-cp27-cp27mu-manylinuxl x86 64.whl
Collecting enum34; python version < "3" (from cryptography>=1.5->paramiko>=2.0.0->netmiko)

Using cached enum34-1.1.6-py2-none-any.whl
Collecting idna>=2.1 (from cryptography>=1.5->paramiko>=2.0.0->netmiko)

Then import netmiko from the Python shell to make sure the module is correctly
installed into Python site-packages:

$python
>>>import netmiko



Using netmiko for SSH

Now it's time to utilize netmiko and see its power for SSHing to network devices
and executing commands. By default, netmiko handles many operations in the
background during session establishment, such as adding unknown SSH key
hosts, setting the terminal type, width, and height, and accessing enable mode
when required, then disabling paging by running a vendor-specific command.
You will need to define the devices first in dictionary format and provide five
mandatory keys:
R1 = {

'device_type': 'cisco_ios',

'ip': '10.10.88.110°',

'username': 'admin',

'password': 'access123',
'secret': 'access123',

}

The first parameter is device_type, and it is used to define the platform vendor in
order to execute the correct commands. Then, we need the ip address for SSH.
This parameter could be the device hostname if it's already been resolved by
your DNS, or jllSt the IP address. Then we pl‘OVidE the username, password, and
enable-mode password in secret. Notice you can use the getpass() module to hide
the passwords and only prompt them during the script execution.

same as provided in the previous example in order for netmiko to correctly parse the

9 While the keys order inside the variable is not important, the key's name should be exactly the
dictionary and to start to establish a connection to the device.

Next, we will import the connecthand1er function from the netmiko module and
give it the defined dictionary to start the connection. Since all our devices are
configured with an enable-mode password, we need to access the enable mode
by providing .enable() to the created connection. We will execute the command
on the router terminal by using .send_command(), which will execute the command
and return the device output to the variable:

from netmiko import ConnectHandler

connection = ConnectHandler (**R1)

connection.enable()

output = connection.send_command("show ip int b")
print output



The script output is:

Python Console - DevNet [ N J

Django Console - L
Interface IP-Address {? Method Status Protocol
up up

x administratively down
> administratively down
2 unassigned Y \ M administratively down
ICigabitEtherneto/4 unassigned / \ M administratively down
ENGigabitEthernetd/5 unassigned administratively down

v B &

Notice how the output is already cleaned from the device prompt and the
command that we executed on the device. By default, Netmiko replaces them
and generates a cleaned output, which could be processed by regular
expressions, as we will see in the next chapter.

If you need to disable this behavior and want to see the device prompt and
executed command in the returned output, then you need to provide additional
ﬂags to .send_command() functions:

output = connection.send_command("show ip int
b",strip_command=False, strip_prompt=False)

The strip_command=False and strip_prompt=False ﬂags tell netmiko to keep both the
prompt and command and not to replace them. They're true by default and you
can toggle them if you want:

Python Console - DevNet
Django Console E - 23
show ip int b
Interface IP-Address Method Status Protocol
GigabitEthernet@/0 10.1 o NVRAM up up
GigabitEthernet@/1 as YES NVRAM administratively down
GigabitEtherneta/2 YES NVRAM administratively down
i i unassigned YES NVRAM administratively down
unassigned YES NVRAM administratively down

unassigned NVRAM administratively down




Configuring devices using netmiko

Netmiko can be used to configure remote devices over SSH. It does that by
accessing config mode using the .config method and then applies the
configuration given in 1ist format. The list itself can be provided inside the
Python script or read from the file, then converted to a list using the readiines()
method:

from netmiko import ConnectHandler

sw2 = {
'device_type': 'cisco_ios',
'ip': '10.10.88.112°',
'username': 'admin',
'password': 'accessl123',
'secret': 'access123',

}

core_sw_config = ["int range gig0/1 - 2", "switchport trunk encapsulation dotiq",
"switchport mode trunk","switchport trunk allowed vlan 1,2"]

print "########## Connecting to Device {0} ############" . format (SW2['ip'])
net_connect = ConnectHandler (**SW2)
net_connect.enable()

print "***** Sending Configuration to Device *****"
net_connect.send_config_set(core_sw_config)

In the previous script, we did the same thing that we did before to connect to
SW2 and enter enable mode, but this time we leveraged another netmiko method
called send_config_set(), which takes the configuration in list format and accesses
device configuration mode and starts to apply it. We have a simple configuration
that modifies the gige/1 and giges/2 and applies trunk configuration on them. You
can check if the command executed successfully by running show run command
on the device; you should get output similar to the following:

interface GigabitEthernet0/1
switchport trunk allowed vlan 1,2
switchport trunk encapsulation dotlq
switchport mode trunk
media-type rj45
negotiation auto
1
interface GigabitEthernet0/2
switchport trunk allowed vlan 1,2
switchport trunk encapsulation dotlq
switchport mode trunk
media-type rj45
negotiation auto



Exception handling in netmiko

When we design our Python script, we assume that the device is up and running
and also that the user has provided the correct credentials, which is not always
the case. Sometimes there's a network connectivity issue between Python and the
remote device or the user enters the wrong credentials. Usually, python will
throw an exception if this happens and will exit, which is not the optimum
solution.

The exception handling module in netmiko, netmiko.ssh_exception, provides some
exception classes that can handle such situations. The first one is
AuthenticationException, and will catch the authentication errors in the remote
device. The second class is netmMikoTimeoutException, Which will catch timeouts or
any connectivity issues between netmiko and the device. What we will need to
do is wrap our ConnectHandler() method with the try-except clause and catch
timeout and authentication exceptions:

from netmiko import ConnectHandler
from netmiko.ssh_exception import AuthenticationException, NetMikoTimeoutException

device = {
'device_type': 'cisco_ios',
'ip': '10.10.88.112°',
'username': 'admin',
'password': 'access123',
'secret': 'access123',

print "########## Connecting to Device {0} ############" . format (device['ip'])
try:

net_connect = ConnectHandler(**device)

net_connect.enable()

print "***** show ip configuration of Device *****"
output = net_connect.send_command("show ip int b")
print output

net_connect.disconnect()

except NetMikoTimeoutException:
print "=========== SOMETHING WRONG HAPPEN WITH {0} ============"_ format(device['ip'])




except
print

except
print

AuthenticationException:

Exception as unknown_error:
============ SOMETHING UNKNOWN HAPPEN WITH {0}

————————— Authentication Failed with {0} ======



Device auto detect

Netmiko provides a mechanism that can guess the device type and detect it. It
uses a combination of SNMP discovery OIDS and executes several show
commands on the remote console to detect the router operating system and type,
based on the output string. Then netmiko will load the appropriate driver into the
ConnectHandler () class:

#!/usr/local/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from netmiko import SSHDetect, Netmiko

device = {
'device_type': 'autodetect',
'host': '10.10.88.110',
'username': 'admin',
'password': "access123",

}

detect_device = SSHDetect(**device)
device_type = detect_device.autodetect()
print(device_type)
print(detect_device.potential_matches)

device[ 'device_type'] = device_type
connection = Netmiko(**device)

In the previous script:

e The device_type inside the device dictionary will be autodetect, which will tell
netmiko t0 wait and not load the driver till the netmiko guesses it.

e Then we instruct the netmiko to perform device detection using the
ssHpetect () class. The class will connect to the device using SSH and will
execute some discovery commands to define the operating system type. The
returned result will be a dictionary, and the best match will be assigned to
the device_type variable using the autodetect() function.

¢ You can see all the matching results by printing the potential_matches.

e Now we can update the device dictionary and assign the new device_type t0
it.






Using the telnet protocol in Python

Telnet is one of the oldest protocols available in the TCP/IP stack. It is used
primarily to exchange data over an established connection between a server and
client. It uses TCP port 23 in the server for listening to the incoming connection
from the client.

In our case, we will create a Python script that acts as a telnet client, and other
routers and switches in the topology will act as the telnet server. Python comes
with a native support for telnet via a library called teinet1ib so we don't need to
install it.

After creating the client object by instantiating it from the Teinet() class,
available from the teinet1ib module, we can use the two important functions
available inside teinet1ib, which are read_unti1() (used to read the output) and
write() (used to write on the remote device). Both functions are used to interact
with the created channel, either by writing or reading the output returned from it.

Also, it's important to note that reading the channel using read_untii() will clear
the buffer and data won't be available for any further reading. So, if you read
important data and you will process and work on it later, then you need to save it
as a variable before you continue with your script.

Telnet data is sent in clear text format, so your credentials and password may be captured and
viewed by anyone performing a man-in-the-middle attack. Some service providers and
enterprises still use it and integrate it with VPNs and radius/tacacs protocols to provide
lightweight and secure access.

Follow the steps to understand the whole script:

1. We will import the teinet1ib module inside our Python script and define the
username and passwords in variables, as in the following code snippet:

import telnetlib

username = "admin"

password = "access123"
enable_password = "access123"

2. We will define a variable that establishes the connection with the remote



host. Note that we won't provide the username or password during
connection establishment; we will only provide the IP address of the remote
host:

cnx = telnetlib.Telnet(host="10.10.88.110") #here we're telnet to Gateway

Now we will provide the username for the telnet connection by reading the
returned output from the channel and searching for the username: keyword.
Then we write our admin username. The same process is used when we
need to enter the telnet password and enable password:

cnx.read_until("Username:")
cnx.write(username + "\n")
cnx.read_until("Password:")
cnx.write(password + "\n")
cnx.read_until(">")
cnx.write("en" + "\n")
cnx.read_until("Password:")
cnx.write(enable_password + "\n")

It's important to provide the exact keywords that appear in the console when you establish the
8 telnet connection or the connection, will enter an infinite loop. Then Python script will be
timed out with an error.

Finally, we will write the show ip interface brief command on the channel and
read till the router prompt # to get the output. This should get us the
interface configuration in the router:

cnx.read_until("#")
cnx.write("show ip int b" + "\n")
output = cnx.read_until("#")
print output

The full script is:

__author__ = "Bassim Aly"
__EMATIL__ = "basim.alyy@gmail.com"

telnetlib
username = "admin"
password = "access123"
enable_password = "access123"
ib.Telnet ="10.10.88.110"
t1l("Username:"
name + "\n"
until("Password:"
password + "\n"
t11(">"
+ "\n"
1L("Password:"
_password + "\n"
ngn
W how ip int b" + "\n"
output = cnx.read_until("#"
output

WO~ U R WN

The script output is:



Run

~ X % [E

telnetlib_1

16
<

&

6k ED

Interface

GigabitEthernet0/0
GigabitEthernet6/1
GigabitEtherneto/2

GigabitEtherneto/3
GigabitEthernet0/4
GigabitEtherneto/5
R1#

IP-Address
10.10.88.110
unassigned
unassigned
unassigned
unassigned
unassigned

Run - DevNet

)

administratively
administratively
administratively
administratively
administratively

Protocol
up

down
down
down
down
down

Notice that the output contains the executed command show ip int b, and the
router prompt "R1#" is returned and printed in the stdout. We could use built-in
string functions like repiace() to clean them from the output:

cleaned_output = output.replace("show ip int b","").replace("R1#","")
print cleaned_output

Run

e

w X % B

telnetlib_1

il
i

Eb =3 @

Interface

GigabitEthernet0/0
GigabitEthernet/1
GigabitEtherneto/2

GigabitEthernet0/3
GigabitEthernet0/4
GigabitEthernet0/5

IP-Address
10.10.88.110
unassigned
unassigned
unassigned
unassigned
unassigned

Run - DevNet

Method Status

ES NVRAM

NVRAM
NVRAM
NVRAM
NVRAM
NVRAM

up

administratively down
administratively down
administratively down
administratively down
administratively down

Protocol
up

down
down
down
down
down

As you noticed, we provided both the password and enable password as clear
text inside our script, which is considered a security issue. It's also not good
practice to hardcode the values inside your Python script. Later, in the next
section, we will hide the password and design a mechanism to provide
credentials during script runtime only.

Also, if you want to execute commands that span multiple pages in output like
show running config then you will need to disable paging first by sending terminal
length o after connecting to the device and before sending the command to it.



Push configuration using telnetlib

In previous section, we looked at a simplified operation of teinet1ib by executing
the show ip int brief. Now we need to utilize it to push VLAN configuration to the
four switches in our topology. We could create a VLAN list using the python
range() function and iterate over it to push the VLAN ID to the current switch.
Notice we defined the switch IP addresses as an item inside the list, and this list
will be our outer for loop. Also, I will use another built-in module called getpass
to hide the password from the console and only provide it when the script is
running:

#!1/usr/bin/python
import telnetlib
import getpass
import time

switch_ips = ["10.10.88.111", "10.10.88.112", "10.10.88.113", "10.10.88.114"]
username = raw_input("Please Enter your username:")

password = getpass.getpass('"Please Enter your Password:")

enable_password = getpass.getpass("Please Enter your Enable Password:")

for sw_ip in switch_ips:

print "\n#####HH##REHHSRA#SHE Working on Device " + sw_ip + " ###HHSRSHHHBRESHHTRR"
connection = telnetlib.Telnet(host=sw_ip.strip())
connection.read_until("Username:")

connection.write(username + "\n")
connection.read_until("Password:")

connection.write(password + "\n")

connection.read_until(">"

connection.write("enable" + "\n")
connection.read_until("Password:")
connection.write(enable_password + "\n")
connection.read_until("#")

connection.write("config terminal™ + "\n") # now i'm in config mode
vlans = range(300,400)

for vlan_id in vlans:

pl’lnt ll\n********* Addlng VLAN n + Str(Vlan_ld) + Mkkxx*k*kkkxxx%xI
connection.read_until("#")

connection.write("vlan " + str(vlan_id) + "\n")

time.sleep(1)

connection.write("exit" + "\n")

connection.read_until("#")

connection.close()

In our outermost for loop, we are iterating over the devices and then, inside each
iteration (each device), we're generating a vlan range from 300 to 400 and
pushing them to the current device.

The script output is:



bassim@me-inside:~$ /usr/bin/python2.7 /media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProje
ct/Chapter5_Using_Python_to_manage_network_devices/telnetlib_push_vlans.py
Please Enter your username:admin
Please Enter your Password:
Please Enter your Enable Password:
HHHHHHHH A Working on Device 10.10.88.111 ######H##HHHHHHHHHHH
% ok ok ok ok ok ok ok ok Addlng VLAN 300%****kkxkxkk*
Adding VLAN 3@Ltk*kkkkies

 Adding VLAN 302%k*xx %

wokrkkkk Adding VLAN 303%k¥kkkkkkx

¢ Adding VLAN 304t
¢ Adding VLAN 35ttt
Adding VLAN 306%%kkkkkkss
Adding VLAN 307x%xskksss

Adding VLAN 308tk

Also, you can check the output from the switch console itself (output is omitted):

SWl#show vlan

VLAN Name Status Ports

1 default active Gioe/1, Gie/2, Gie/3, Gil/o
Gil/1, Gil/2, Gil/3, Gi2/0
Gi2/1, Gi2/2, Gi2/3, Gi3/0
Gi3/1, Gi3/2, Gi3/3

300 VLANO300 active
301 VLANe301 active
302 VLANG302 active
303 VLANO303 active
304 VLANO304 active
305 VLANGO305 active
306 VLANO306 active
307 VLANO307 active
308 VLAN0O308 active
309 VLANO309 active
310 VLAN6O310 active
311 VLAN6311 active
312 VLANO312 active
313 VLANO313 active
314 VLAN0314 active
315 VLANO315 active
316 VLANO316 active

317 VLANO317 active



Handling IP addresses and networks
with netaddr

Working and manipulating IP addresses is one of the most important tasks for
network engineers. Python developers provide an amazing library that can
understand the IP addresses and work on them, called netaddr. For example,
assume you developed an application and part of it is to get the network and
broadcast address for 129.183.1.55/21. You can do that easily via two built-in
methods inside the modules called network and broadcast respectively:

net.network

129.183.0.

net.broadcast
129.183.0.0

In general, netaddr provides support for the following features:
Layer 3 addresses:

e [Pv4 and IPv6 addresses, subnets, masks, prefixes

e [terating, slicing, sorting, summarizing, and classifying IP networks

e Dealing with various range formats (CIDR, arbitrary ranges and globs,
nmap)

e Set-based operations (unions, intersections, and so on) over IP addresses

and subnets

Parsing a large variety of different formats and notations

Looking up IANA IP block information

Generating DNS reverse lookups

Supernetting and subnetting

Layer 2 addresses:

e Representation and manipulation MAC addresses and EUI-64 identifiers
¢ Looking up IEEE organisational information (OUI, IAB)
¢ Generating derived IPv6 addresses






Netaddr installation

The netaddr module can be installed using pip, as shown in the following
command:

| pip install netaddr

As a verification for successfully installing the module, you could open
PyCharm or the Python console and import the module after installation. If there
is no error produced, then the module installed successfully: python
>>>import netaddr



Exploring netaddr methods

The netaddr module provides two important methods to define the IP address and
work on it. The first one is called 1raddress() and it's used to define a single
classful IP address with the default subnet mask. The second method is
1pnetwork() and is used to define classless a IP address with CIDR.

Both methods take the IP address as a string and return an IP address or IP
network object for this string. There are many operations that could be executed
on the returned object. For example, we can check if the IP address is unicast,
multicast, loopback, private, public, or even valid or not valid. The output of the
previous operation is either true or raise, which can be used inside Python ir
conditions.

Also, the module supports comparison operations such as ==, <, and > to compare
two IP addresses, generating the subnets, and it is also possible to retrieve the list
of supernets that a given IP address or subnet belongs to. Finally, the netaddr
module can generate a full list of valid hosts (excluding the network IP and
network broadcast):

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"
from netaddr import IPNetwork, IPAddress
def check_ip_address(ipaddr):
ip_attributes = []
ipaddress = IPAddress(ipaddr)

if ipaddress.is_private():
ip_attributes.append("IP Address is Private")
else:

ip_attributes.append("IP Address is public")

if ipaddress.is_unicast():
ip_attributes.append("IP Address is unicast")
elif ipaddress.is_multicast():
ip_attributes.append("IP Address is multicast")
if ipaddress.is_loopback():
ip_attributes.append("IP Address is loopback")

return "\n".join(ip_attributes)
def operate_on_ip_network(ipnet):

net_attributes = []

net = IPNetwork(ipnet)

net_attributes.append("Network IP Address is " + str(net.network) + " and Netowrk Mask
is " + str(net.netmask))




net_attributes.append("The Broadcast is " + str(net.broadcast) )
net_attributes.append("IP Version is " + str(net.version) )
net_attributes.append("Information known about this network is " + str(net.info) )
net_attributes.append("The IPv6 representation is " + str(net.ipv6()))
net_attributes.append("The Network size is " + str(net.size))
net_attributes.append("Generating a list of ip addresses inside the subnet")

for ip in net:
net_attributes.append("\t" + str(ip))
return "\n".join(net_attributes)

ipaddr = raw_input("Please Enter the IP Address: ")
print check_ip_address(ipaddr)

ipnet = raw_input("Please Enter the IP Network: ")
print operate_on_ip_network(ipnet)

The preceding script first requests the IP address and IP network from the user,
using the raw_input() function, then will call two user methods, check_ip_address()
and operate_on_ip_network(), and pass the entered values to them. The first function,
check_ip_address(), wWill check the IP address entered and try to generate a report
about IP address attributes, such as whether it is a unicast IP, multicast, private,
or loopback, and will return the output to the user.

The second function operate_on_ip_network() takes the IP network and generates the
network ID, netmask, broadcast, version, information known about this network,
the IPv6 representation, and finally generates all IP addresses inside this subnet.

It's important to notice that net.info will work and generate useful information
only for public IP addresses, not private.

Notice we need to import the 1p network and 1p address from the netaddr module
before using them.

The script output is:



Python Console - DevNet [ X J
Django Console £ L

fllPlease Enter the IP Address:
IP Address is Private
IP Address is unicast
Please Enter the IP Network:

255:2555755.0

P nformation known about this network is {'IPv4': [{'date': '1992-12',
'designation': 'Level 3 Communications, Inc.',
'prefi
'status
'whois': 'w in.net'}]}
tation is ::ffff:8.8.8.8/120
Generating a list of ip addresses inside the subnet

8.8.8

8
8.

)

[o]
oo

) 0O

N ok, wNE O

o0 o
O o

o

)



Sample use cases

As our network becomes bigger and starts to contain many devices from
different vendors, we need to create modular Python script to automate various
tasks in it. In the following sections, we will explore three use cases, which
could be used to collect different information from our network and to lower the
time needed for troubleshooting a problem, or at least restore the network
configuration to its last known good state. This will allow network engineers to
focus more on getting their job done and will provide an automated workflow
for the business to handle network failure and restoration.



Backup device configuration

Backup device configuration is one of the most important tasks for any network
engineer. In this use case, we will design a sample python script that can be used
for different vendors and platforms in order to back up the device configuration.
We will leverage the netmiko library to do this task.

The result files should be formatted with the device IP address in them for easy
access or referencing later. For example, the result file for the SW1 backup
operation should be dev_10.10.88.111_.cfg.



Building the python script

We will start by defining our switches. We want to back up their configuration as
a text file and provide the credentials and access details separated by commas.
This will allow us to use the sp1it() function inside the python script to get the
data and use it inside the connectrandier function. Also, the file can be easily
exported and imported from a Microsoft Excel sheet or from any database.

The file structure is:

<device_ipaddress>, <username>, <password>, <enable_password>, <vendor>

88.110,admin,access123,access123,cisco
88.111,admin,access123,access123,Cisco
3.112,admin,access123,access123,Cisco

8.113,admin,access123,access123,Cisco
.114,admin,acce55123,accesleB,Ciscd

Now we will start building our Python script by importing the file inside it, using
the with open clause. We use the read1ines() on the file to have each line as an item
inside a list. We will create a for loop to iterate over each line and use the sp1it()
function to get the access details separated by commas and assign them to
variables:

from netmiko import ConnectHandler
from datetime import datetime

with
open("/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter5_Using_Py
as devices_file:

devices = devices_file.readlines()

for line in devices:
line = line.strip("\n")
ipaddr = line.split(",")[0]
username = line.split(",")[1]
password = line.split(",")[2]
enable_password = line.split(",")[3]

vendor = line.split(",")[4]
if vendor.lower() == "cisco":
device_type = "cisco_ios"

backup_command = "show running-config"

elif vendor.lower() == "juniper":
device_type = "juniper"




backup_command = "show configuration | display set"

As we need to create a modular and multi-vendor script, we need to have the if
clause check the vendor in each line and assign a correct device_type and
backup_command tO the current device.

Moving on, we are now ready to establish the SSH connection to the device and
execute the backup command on it using the .send_command() method available
inside the netmiko module:

print str(datetime.now()) + " Connecting to device {}" .format(ipaddr)

net_connect = ConnectHandler(device_type=device_type,
ip=ipaddr,
username=username,
password=password,
secret=enable_password)
net_connect.enable()
running_config = net_connect.send_command(backup_command)

print str(datetime.now()) + " Saving config from device {}" .format(ipaddr)

f = open( "dev_" + ipaddr + "_.cfg", "w")
f.write(running_config)

f.close()

print " "

In the last few statements, we opened a file for writing and made its name
contain the ipaddr variable collected from our text file.

The script output is:

Run - DevNet (X J
Run UC1_BackupDeviceConfig £~ I~

dev
ig from device 10.10.88.116

0 device 10.10.88.111
from device 10.10.88.

o device 10.10.88.112
from device 10.10.8

~ X % g

evice 10.10.88.113
from device 10.10.88.

device 10.10.88.114
from device 10.10.88.




Also, notice the backup configuration files are created in the project home
directory, and its name contains the IP address of each device:

bassim@me-inside: $ 1ls dev*

dev_10.10.88.110 .cfg dev 10.10.88.112 .cfg dev_10.10.88.114 .cfg
dev 10.10.88.111 .cfg dev 10.10.88.113 .cfg

bassim@me-inside: $

bassim@me-inside: $ more dev_10.10.88.110_.cfg

Building configuration...

Current configuration : 3994 bytes

]

version 15.6

service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption

1

hostname R1

1
boot-start-marker
boot-end-marker

]
|

enable password access123
]

aaa new-model
1

1
aaa authentication login default local

You can design a simple cron job on a Linux server or schedule a job on a Windows server,
which runs the previous python script at a specific time. For example, the script could run on
a daily basis at midnight and store the configuration in the 1atest directory so the team could
refer to it later.



Creating your own access terminal

In Python, and programming in general, you are the vendor! You can create any
code combination and procedures you like in order to serve your needs. In the
second use case, we will create our own terminal that accesses the router through
telnetlib. By writing a few words in the terminal, it will be translated too many
commands executed in the network device and return output, which could be just
printed in the standard output or saved in file:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import telnetlib

connection = telnetlib.Telnet(host="10.160.88.110")
connection.read_until("Username:")
connection.write("admin" + "\n")
connection.read_until("Password:")
connection.write("access123" + "\n")
connection.read_until(">"
connection.write("en" + "\n")
connection.read_until("Password:")
connection.write("access123" + "\n")
connection.read_until("#")
connection.write("terminal length 0" + "\n")
connection.read_until("#")
while True:

command = raw_input("#:")

if "health" in command.lower():

commands = ["show ip int b",

"show ip route",

"show clock",

"show banner motd"

]

elif "discover" in command.lower():
commands = ["show arp",
"show version | i uptime",
"show inventory",
]
else:
commands = [command]
for cmd in commands:
connection.write(cmd + "\n")
output = connection.read_until("#")
print output
print n n

First, we establish a telnet connection to the router and enter the user access
details till we reach enable mode. Then we create an infinite while loop that is



always true, and we expect a command from the user using the raw_input() built-in
function. When the user enters any command, the script will capture it and
execute it directly to the network device.

However, if the user enters health Or discover keywords then our terminal will be
smart enough to execute a series of commands to reflect the desired operation.
This should be extremely useful in case of network troubleshooting, and you can
extend it with any daily operation. Imagine that you need to troubleshoot OSPF
neighbourship problems between two routers. You just need to open your own
terminal python script that you already taught him few commands needed for
troubleshooting, and write something like tshoot_ospf. Once your script sees this
magic keyword it will launch a series of multiple commands that print the OSPF
neighborship status, interfaces of MTU, advertised network under OSPF, and so
on till you find the issue.

Script output:

Try the first command in our script by writing heaith in the prompt:

Run - DevNet > @

9 UTC Thu Feb 8 2018

As you can see, the script returns the output of multiple commands executed in
the device.

Now try the second supported command, discover:



Run - DevNet 0

ow version | 1 uptime
o

1.
SN: 9ZS9SCN2K7NIOOEFO2FYZ

This time the script returns the output of discover commands. In later chapters,
we can parse the returned output and extract the useful information from it.



Reading data from an Excel sheet

Network and IT engineers always use the excel sheet to store information about
the infrastructure such as IP addresses, the device vendor, and credentials.
Python support reading the information from an excel sheet and processes it so
you can use it later during the script.

In this use case, we will use the Excel Read (xlrd) module to read the
uca_devices.x1sx file which contains the hostname, IP, username, password, enable

password and vendor for our infrastructure and use this information to feed the
netmiko module.

The Excel sheet will be as shown in the following screenshot:

UC3_devices.xlsx - LibreOFfice Calc
File Edit View Insert Format Styles Sheet Data Tools Window Help

H-B5-EH-de88 £ 3B aa& QLY E-BH- LTy HO0F Q=0 BE-B8 B
Calibi -njr-aea &@-BE-s=s=5- J00w-%ern s == H-F-O =
F7 > & I=
A B 4 D E I |
' lhostname ‘19 ‘username Ipassword ‘secret vendor
2 |R1 10.10.88.110 admin access123 access123 cisco_ios
s lswi1 10.10.88.111 admin access123 access123 cisco_ios
o lsw2 10.10.88.112 admin access123 access123 cisco_ios
5 SW3 10.10.88.113 admin access123 access123 cisco_ios
o |SwW4 10.10.88.114 admin access123 access123 cisco_ios

First we will need to install the x1rd module, using pip as we will use it to read the
Microsoft excel sheet:

| pip install xlrd

The XLRD module read the excel workbook and convert the row and columns
into a matrix. For example, if you need to get the first item on the left, then you

will need to access row[0][0]. The next item on the right will be row[0][1] and
SO on.

Also, when xIrd reads the sheet, it will increase a special counter called nrows
(number of rows) by one each time it reads a row. Similarly, it will increase the
ncols (number of columns) by one each time it reads the columns so you can



know the size of your matrix via these two parameters:

UC3_devices.xlsx - LibreOffice Calc

ﬁ;gETE;EKTﬁv;ZETWE$@5~;a%?ﬁosﬂa RE-= @
Cailri -in-azadE-ssEse e el s =E B-F-H 8-

' |hostname ip username password secret vendor
tr[ R1 10.10.88.110  admin access123 access123 cisco_jos |
5 |SW1 10.10.88.111  admin access123 access123 cisco_jos
'+ |sw2 10.10.88.112  admin access123 access123 cisco_ios
;SWG 10.10.88.113  admin access123 access123 cisco_ios
s |SW4 10.10.88.114  admin access123 access123 cisco_ios

| |

i Workbook
91

You can provide the file path to xird using the open_workbook() function. Then you
can access your sheet that contains the data either by using sheet_by_index() or
sheet_by_name() functions. For our use case, our data is stored in the first sheet
(index=0), and the file path is stored under the chapter name. Then we will
iterate over the rows in the sheet and use the row() function to access a specific
row. The returned output is a list, and we can access any item in it using the
index.

Python script:

__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from netmiko import ConnectHandler

from netmiko.ssh_exception import AuthenticationException, NetMikoTimeoutException
import x1lrd

from pprint import pprint

workbook =
x1lrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Ct

sheet = workbook.sheet_by_index(0)

for index in range(1, sheet.nrows):
hostname = sheet.row(index)[0].value
ipaddr = sheet.row(index)[1].value
username = sheet.row(index)[2].value
password = sheet.row(index)[3].value
enable_password = sheet.row(index)[4].value




vendor = sheet.row(index)[5].value

device = {
'device_type': vendor,
'ip': ipaddr,
'username': username,
'password': password,
'secret': enable_password,

}
# pprint(device)

print "#######H### Connecting to Device {0} ############" . format (device['ip'])
try:

net_connect = ConnectHandler(**device)

net_connect.enable()

print "***** show ip configuration of Device *****"
output = net_connect.send_command("show ip int b")
print output

net_connect.disconnect()

except NetMikoTimeoutException:
print "=======SOMETHING WRONG HAPPEN WITH {0}=======".format(device['ip'])

except AuthenticationException:

print "=======Authentication Failed with {0}=======".format(device['ip'])

except Exception as unknown_error:
print "=======SOMETHING UNKNOWN HAPPEN WITH {@}======="



More use cases

Netmiko could be used to realize many network automation use cases. It could
be used for uploading, downloading files from remote devices during upgrade,
loading configuration from Jinja2 templates, accessing terminal servers,
accessing end devices, and many more. You can find a list of some useful use
cases at https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples:

Branch: master~ | pynet / presentations / dfwcug / examples / Create newfile =~ Uploadfiles Findfile History

H ktbyers Minor update

B case10_ssh_proxy

I case11_logging

I case12_telnet

I case13_term_server

B case14_secure_copy
I case15_netmiko_tools
BB case16_concurrency
8 case17_jinja2

B casel_simple_conn

I case2 using_dict

| case3_multiple_devices
I case4_show_commands
I case5_prompting

il case6_config_change
I case7_commit

8 case8_autodetect

B case9_ssh_keys

DFCWUG presentation update

More Netmiko examples for presentations
More Netmiko examples for presentations
More Netmiko examples for presentations
More Netmiko examples for presentations
Presentation updates

More content for presentation

More content for presentation

Updating presentation

Updating presentation

Updating presentation

DFCWUG presentation update

Minor update

DFCWUG presentation update

DFCWUG presentation update

DFCWUG presentation update

DFCWUG presentation update

Latest commit 3108bd5 on Apr 17

3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
3 months ago
2 months ago
3 months ago
3 months ago
3 months ago

3 months ago


https://github.com/ktbyers/pynet/tree/master/presentations/dfwcug/examples

Summary

In this chapter, we started our practical journey into the network automation
world with Python. We explored the different tools that are available in python to
establish a connection to remote nodes with telnet and SSH and executed
commands on them. Also, we learned how to handle IP addresses and network
subnets with the help of the netaddr module. Finally, we strengthened our
knowledge with two practical use cases.

In the next chapter, we will work on the returned output and start to extract
useful information from it.



Extracting Useful Data from Network
Devices

We have already seen in the previous chapter how to access a network device
using different methods and protocols, then execute commands on the remote
device to get an output back to Python. Now, it's time to extract some useful data
from this output.

In this chapter, you'll learn how to use different tools and libraries in Python to
extract useful data from returned output and act on it using regular expressions.
Also, we will use a special library called ciscoconfrarse to audit the configuration,
then we will learn how to visualize data to generate visually appealing graphs
and reports using the matpiotiib library.

We will cover the following topics in this chapter:

Understanding parsers

Introduction to regular expressions
Configuration auditing USiIlg Ciscoconfparse
Visualizing returned data with matplot1ib



Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x
e PyCharm Community or Pro edition
e EVE-NG lab

You can find the full scripts developed in this chapter at the following GitHub
URL:

https://github.com/TheNetworker/EnterpriseAutomation.git


https://github.com/TheNetworker/EnterpriseAutomation.git

Understanding parsers

In the previous chapter, we explored different ways to access network devices,
execute commands, and return output to our terminal. We now need to work on
the returned output and extract some useful information from it. Notice that,
from Python's point of view, the output is just a multiline string and Python
doesn't differentiate between IP address, interface name, or node hostname
because they're all strings. So, the first step is to design and develop our own
parser using Python to categorize and differentiate between items based on the
important information in the returned output.

After that, you can work on the parsed data and generate graphs that help to
visualize or even store them to persistent and external storage or databases.



Introduction to regular expressions

Regular expressions are a language used to match specific occurrences of strings
by following their pattern across the whole string. When a match is found, the
resulting matched string will be returned back to user and will be held inside a
structure in Python format, such as tupie, 1ist, Or dictionary. The following table
summarizes the most common patterns in regular expressions:

expression [ matches...

abc abe (that exact character sequence, but anywhere in the string)
~abe abe at the beginning of the string

abe$ abc at the end of the string

alb either of a and b

*abelabe$ the string abe at the beginning or at the end of the string
ab{2,4]c an a followed by two, three or four b’s followed by a ¢

ab{2,}c an a followed by at least two b’s followed by a ¢

ab®c an a followed by any number (zero or more) of b’s followed by a ¢
ab+c an a followed by one or more b’s followed by a ¢

ab7c an a followed by an optional b followed by a c; that is, either abc

or ac

an a followed by any single character (not newline) followed by a
€

a.c

a\.c a.c exactly
[abe] any one of a, b and ¢
[Aa]lbe either of Abc and abce

[abe]+ any (nonempty) string of a’s, b’s and c's (such as a, abba,
i

acbabcacaa)
[rabe]+ any (nonempty) string which does not contain any of a, b and ¢
) (such as defg)
\d\d any two decimal digits, such as 42; same as \d{2}
— a “word”: a nonempty sequence of alphanumeric characters and
e low lines (underscores), such as foo and 12bar8 and foo_1
" the strings 100 and mk optionally separated by any amount of
100\s*mk . ¥
white space (spaces, tabs, newlines)
sBiVh abe when followed by a word boundary (e.g. in abe! but not in
)
) abed)
perl\B perl when not followed by a word boundary (e.g. in perlert but not

in perl stuff)

Also, one of the important rules in regular expressions is you can write your own
regex and surround it with parentheses (), which is called the capturing group
and helps you to hold important data to reference it later using the capturing
group number:



line = '30 acd3.b2c6.aac9 FastEtherneto/1'

match = re.search('(\d+) +([0-9a-f.]+) +(\S+)', line)
print match.group(1)

print match.group(2)

PyCharm will automatically color strings written as reqular expressions and can help you to
0 check the validity of a regex before applying it to data. Make sure the Check RegExp intention
is enabled in the settings, as shown here:

Settings
CQ' inten 2) Editor ) Intentions
Appearance & Behavior = = @_ 3 Description
System Settings = 1S HILENUOT dUOWS YOU L0 Pldy Wit 1
HTTP Proxy . -tcn
Negate comparison
Reymap Replace string concatenation with format operator Before
Editor Specify type for reference in docstring
General Specify type for reference using annotation
Appearance splitif
Inspections e Toggle import alias

Transform conditional expression into if/else statement

Plugins Transform explicit iteration with 'yield' into ‘yield from’ expre

2 RegExp
Check RegExp After

B saL
Expand column list
Inject by Type
Qualify identifier
Quote identifier
Split string literal
Unqualify identifier
Unquote identifier

TypeScript JetBrains PyCharm

Powered by

m l Cancel | | Apply ‘ ‘ Help




Creating a regular expression in
Python

You can construct a regular expression in Python using the re module that is
natively shipped with the Python installation. There are several methods inside
this module, such as search(), sub(), split(), compile(), and finda11(), which will
return the result as a regex object. Here is a summary of the use of each function:

Function Name Usage

search() Search and match the first occurrence of the pattern.

Search and match all occurrences of the pattern and

findall() .
return the result as a list.

Search and match all occurrences of the pattern and

Finditer () .
return the result as an iterator.

Compile the regex into a pattern object that has methods
for various operations, such as searching for pattern
compile() matches or performing string substitutions. This is
extremely useful if you use the same regex pattern
multiple times inside your script.

sub() Used to replace matched pattern with another string.

split() Used to split on matched pattern and create a list.




Regular expressions are hard to read; for that reason, let's start simple and look
at some easy regular expressions at the most basic level.

The first step of working with the re module is to import it inside your Python
code

| import re

We will start to explore the most common function in the re module, which is
search(), and then we will explore finda11(). The search() function is suitable when
you need to find only one match in a string or when you write your regex pattern
to match the entire output and need to get the result with a method called
groups(), as we will see in the following examples.

The syntax of the re.search() function is as follows:

|match = re.search('regex pattern', 'string')

The first parameter, 'regex pattern', is the regular expression developed in order
to match a specific occurrence inside the 'string'. When a match is found, the
search() function returns a special match object, otherwise it will return none. Note
that search() will return the first occurrence only of the pattern and will ignore the
rest of them. Let's see a few examples of using the re module in Python:

Example 1: Searching for a specific IP address

import re
intf_ip = 'Gi0/0/0.911 10.200.101.242 YES NVRAM up up'
match = re.search('10.200.101.242"', intf_ip)

if match:
print match.group()

In this example, we can see the following:

e The re module is imported into our Python script.

e We have a string that corresponds to interface details and contains the
name, IP address, and status. This string could be hardcoded in the script or
generated from the network device using the Netmiko library.



e We passed this string to the search() function, along with our regular
expression, which is just the IP address.

e Then, the script checks whether there's a match object returned from the
previous operation; if so, it will print it.

The most basic method of testing for a match is via the re.match function, as we
did in the previous example. The match function takes a regular expression pattern
and a string value.

Notice we're only searching for a specific string inside the intf_ip parameter, not
every IP address pattern.

Example 1 output

Python Console - DevNet

Bassim Aly"
asim.alyy@gmail.com"

Gr E‘T.f_ip = 'Gi0/0/0.911 10.200.101.242 YES NVRAM up up'
. match = re.search('10.200.101.242', intf_1ip)

iAf matcht
match.group()

0.200.101.242

Example 2: Matching the IP address pattern

import re

intf_ip = '''6i0/0/0.705 10.103.17.5 YES NVRAM up

up

Gi0/0/0.900 86.121.75.31 YES NVRAM up up
Gi0/0/0.911 10.200.101.242 YES NVRAM up up
Gi0/0/0.7000 unassigned YES unset up up "'

match = re.search("\d+\.\d+\.\d+\.\d+", intf_ip)

if match:
print match.group()

In this example, we can see the following:

e The re module is imported into our Python script.

e We have a multi-line string that corresponds to the interface details and
contains the name, IP address, and status.

e We passed this string to the searcn() function along with our regular



expression, which is the IP address pattern constructed using both \d+,
which matches one or more digits, and \., which matches the occurrence of
the dot.

e Then, the script checks whether there's a match object returned from a
previous operation; if so, it will print it. Otherwise, the none object is
returned.

Example 2 output

Python Console - DevNet e
Django Console *- L
fel 10 -200.101.242

>>> re

... intf_ip = '''Gi0/0/0.705 10.103.47.5 YES NVRAM u

... Gie/0/0.900 86.121.75.31 YES NVRAM up up

.. G19/0/6.911 10.200.101.242 YES NVRAM up up
... Gi0/0/0.7000 unassigned YES unset up up '"'
... match = re.search("\d+\.\d+\.\d+\.\d+"., intf_ip)

if match:
match.group()

Hl o~ w X

&1 U

7

16,103,17.5

+ 3@

Notice the searcnh() function returns only the first matched occurrence of the
pattern, not all occurrences.

Example 3: Using groups() regular expressions

If you have a long output and you need to extract multiple strings from it, then
you could surround the extracted value with () and write your regex inside it.
This is called a capturing group and is used to catch a specific pattern within a
long string, as shown in the following snippet:

import re

log_msg = 'Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface GigabitEthernet®/0/4, changed
state to down'
match = re.search("(\w+\s\d+\s\S+):\s(\S+): Interface (\S+), changed state to (\S+)",
log_msg)
if match:

print match.groups()

In this example, we can see the following:

e The re module is imported into our Python script.
e We have a string that corresponds to an event that occurred in the router and
is stored in logging.



e We passed this string to the searcn() function along with our regular
expression. Notice that we enclosed the timestamp, event type, interface
name, and the new state of the capturing group and wrote our regex inside
it.

e Then, the script checks whether there's a match object returned from the
previous operation; if so, it will print it, but this time we used groups()
instead of group(), as we are capturing multiple strings.

Example 3 output

Python Console - DevNet [ N )
Django Console - T

o

w+\s\d+\s\S+):\s(\S+):\sInterface(\S+),\schanged state to (\S+)", log
match.groups()

> im| re
log_msg = 'Dec 20 12:11:47.417: % :

. match = re.search("(\w+\s\d+\s\S+):\s(\S+): Interface (\S+), changed state to (\S+)", log_|
if match:

l~w X

Y

B 8

match.groups()

ti:('Dec 20 12:11:47.417', '%LINK-3-UPDOWN', 'GilgabitEthernete/e/4', 'down')
3
+ B

Notice the returned data is in a structured format called a tuple. We could use
this output later to trigger an event and start, for example, a recovery procedure
on a redundant interface.

that could be referenced later or used to create a dictionary. In this case, we prefixed our
regex with »p<"nave"> as in the next example (Example 4 in the GitHub repository):

Example 4: Named group

8 We could enhance our previous code and use a named group to give each capture group a name

'Dec 20 12:11:47.417: %LINK-3-UPDOWN: Interface GigabitEthernet@/0/4, changed state to down'
.search(" TIMESTAMP>\w+ + +): EVENT>\S+): Interface INTF +), changed state to

match.groups

Example 5-1: Searching for multiple lines using re.search()

Assume we have multiple lines in the output and we need to check all of them
against the regex pattern. Remember that the search() function exits when it finds
the first pattern match. In that case, we have two solutions. The first one is to
feed each line to the search function by splitting the whole string on "\n", and the
second solution is to use the finda11() function. Let's explore the two solutions:



import re

show_ip_int_br_full = """

GigabitEthernet0/0/0 1160.1160.110.1 YES NVRAM up up
GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up up
GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up up
GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up up
GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up up
GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up up
GigabitEthernet0/1/0 unassigned YES unset up up
GigabitEtherneto/1/1 57.234.66.28 YES manual up up
GigabitEtherneto/1/2 10.10.99.70  YES manual up up
GigabitEthernet0/1/3 unassigned YES manual deleted down
GigabitEtherneto/1/4 192.168.200.1  YES manual up up
GigabitEthernet0/1/5 unassigned YES manual down down
GigabitEtherneto/1/6 10.20.20.1 YES manual down down
GigabitEthernet0/2/0 10.30.40.1 YES manual down down
GigabitEtherneto/2/1 57.20.20.1 YES manual down down

for line in show_ip_int_br_full.split("\n"):

match = re.search(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>\d+.\d+.\d+.\d+)", line)
if match:

intf_ip = match.groupdict()

if intf_ip["ip"].startswith("57"):

print "Subnet is configured on " + intf_ip["interface"] + " and ip is " +
intf_ip["ip"]

The preceding script will split the show ip interface brief output and search for a
specific pattern, which is the interface name and the IP address configured on it.
Based on the matched data, the script will continue to check each IP address and
validate it using start with 57, then the script will print the corresponding
interface and the full IP address.

Example 5-1 output

Python Console - DevNet

Django Console E - 2
win

. for line in show ip_int br full.split("\n"):
match = re.search(r"(?P<interface>\w+\d
if match:

intf_ip = match.groupdict()

if intf_ip["ip"].startswith("57"):

] "Subnet is confiqured on " + intf_ip["interface"] + " and ip is " + intf_ip["ip"]

s+(?P<ip>\d+.\d+.\d+.\d+)", line)

fllSubnet is configured on GigabitEthernet@/1/1 and ip is
gsubnet is configured on GigabitEthernet0/2/1 and ip is

If you're searching only for the first occurrence, you can optimize the script and only get the
first result by breaking the outer for loop upon locating the first match, but note that the
second match won't be located or printed.



Example 5-2: Searching for multiple lines using re.findall()

The finda11() function searches for all non-overlapping matches in the provided
string and returns a list of strings (unlike the search function, which returns the
match Object) that matched by regex pattern if there's no capturing group. If you
enclosed your regex with a capturing group, then finda11¢) will return a list of
tuples. In the following script, we have the same multi-line output and we will
use the rinda11() method to get all interfaces that are configured with an IP
address that starts with 57:

import re

from pprint import pprint

show_ip_int_br_full = """

GigabitEthernet0/0/0 1160.1160.110.1 YES NVRAM up up
GigabitEthernet0/0/1 107.107.107.1 YES NVRAM up up
GigabitEthernet0/0/2 108.108.108.1 YES NVRAM up up
GigabitEthernet0/0/3 109.109.109.1 YES NVRAM up up
GigabitEthernet0/0/4 unassigned YES NVRAM up up
GigabitEthernet0/0/5 10.131.71.1 YES NVRAM up up
GigabitEthernet0/0/6 10.37.102.225 YES NVRAM up up
GigabitEthernet0/1/0 unassigned YES unset up up
GigabitEtherneto/1/1 57.234.66.28 YES manual up up
GigabitEtherneto/1/2 10.10.99.70  YES manual up up
GigabitEthernet0/1/3 unassigned YES manual deleted down
GigabitEtherneto/1/4 192.168.200.1  YES manual up up
GigabitEthernet0/1/5 unassigned YES manual down down
GigabitEtherneto/1/6 10.20.20.1 YES manual down down
GigabitEthernet0/2/0 10.30.40.1 YES manual down down
GigabitEtherneto/2/1 57.20.20.1 YES manual down down
intf_ip = re.findall(r"(?P<interface>\w+\d\/\d\/\d)\s+(?P<ip>57.\d+.\d+.\d+)",
show_ip_int_br_full)

pprint(intf_ip)

Example 5-2 output:

Python Console - DevNet

- e

Django Console -

lell- - - GlgabitEthernet®/2/0 10.30.40.1 YES manual down down
... GigabitEthernet0/2/1 52022001 YES manual down down

"

full)

.. intf_ip = re.findall(r" ?P<i : 3 : ", show_ip_int_br_full)
. pprint(intf_1ip)

~N V¥ X

17
iy

[('GigabitEtherneto/1/1', '
('GigabitEtherneto/2/1", '

# W g

Notice this time we didn't have to write a for loop to check each line against the
regex pattern. This will be done automatically in the finda11() method.



Configuration auditing using
CiscoConfParse

Applying regular expressions on network configuration to get specific
information from the output requires us to write some complex expressions to
solve some complex use cases. In some cases, you just need to retrieve some
configuration or modify an existing one without going deeply into writing
regular expressions, and that was the reason for the birth of the ciscoconfrarse
library (https://github.Com/mpenning/ciscoconfparse).


https://github.com/mpenning/ciscoconfparse

CiscoConfParse library

As the official GitHub page says, the library examines an iOS-style config and
breaks it into a set of linked parent/child relationships. You can perform complex

queries on these relationships:
§|r|pennir1{_;@:sunami:fhome,fmpeuningfc(])f(is(ocﬂIIF;)ar‘i.e.f*iphin)M‘fo:’_" - . | =He |

Source: https://github.com/mpenning/ciscoconfparse

So, the first line of the configuration is considered the parent, while the
subsequent lines are considered the children of the parent. The ciscoconfparse
library builds the relationship between parent and child into an object so the end
user can easily retrieve the configuration of a specific parent without the need to
write complex expressions.

It's extremely important that your configuration file is well-formatted in order to build the
correct relationship between the parent and child.

The same concept also applies if you need to inject configuration into the file.
The library will search for the given parent and will insert the configuration just
under it and save it to the new file. This is helpful in case you need to run a
config audit job on multiple files and make sure they all have a consistent
configuration.


https://github.com/mpenning/ciscoconfparse

Supported vendors

As a rule of thumb, any file that has a tab-delimited configuration can be parsed
by ciscoconfrarse and it will build the parent and child relationship.

The following is the list of supported vendors:

e (isco IOS, Cisco Nexus, Cisco IOS-XR, Cisco IOS-XE, Aironet OS, Cisco
ASA, Cisco CatOS

Arista EOS

Brocade

HP switches

Forcel0 switches

Dell PowerConnect switches

Extreme Networks

Enterasys

ScreenOS

Also, starting from version 1.2.4, ciscoconfrarse can handle the curly braces
delimited configuration, which means it can handle the following vendors:

e Juniper Network's Junos OS
e Palo Alto Networks firewall configurations
e F5 Networks configurations



CiscoConfParse installation

ciscoconfrarse can be installed by using pip on the Windows command line or
Linux shell:

| pip install ciscoconfparse

bassim@me-inside:~$ pip install ciscoconfparse
Collecting ciscoconfparse

Downloading ciscoconfparse-1.3.1-py2-none-any.whl (85kB)

100 | NN | o2<B 183kB/s

Collecting colorama (from ciscoconfparse)

Using cached colorama-0.3.9-py2.py3-none-any.whl
Collecting ipaddr>=2.1.11 (from ciscoconfparse)

Downloading ipaddr-2.2.0.tar.gz
Collecting dnspython (from ciscoconfparse)

Downloading dnspython-1.15.0-py2.py3-none-any.whl (177kB)

loos | I | 154KB 263KB/s

Building wheels for collected packages: ipaddr

Running setup.py bdist wheel for ipaddr ... done

Stored in directory: /home/bassim/.cache/pip/wheels/3a/75/ef/8677a26e72d7fee90f46blcb9d8cfd
coffe9c738dfd22a54e5
Successfully built ipaddr
Installing collected packages: colorama, ipaddr, dnspython, ciscoconfparse
Successfully installed ciscoconfparse-1.3.1 colorama-0.3.9 dnspython-1.15.0 ipaddr-2.2.0
bassim@me-inside:~$

Notice that some additional dependencies are also installed, such as ipadar,
dnsPython, and colorama, which are used by CiscoConfParse.



Working with CiscoConfParse

The first example that we will work on is extracting the shutdown interfaces
from a sample Cisco configuration located in a file named cisco_config. txt.

ciscoconfparse CiscoConfParse
pprint pprint

orig_config = CiscoConfParse("media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt")

shutdown_intfs = orig_config.find_parents_w_child(pa spec=r"*interface" ildspec='shutdown'
pprint(shutdown_intfs

In this example, we can see the following:

e From the ciscoconfrarse module, we imported the ciscoconfrarse class. Also,
we imported the pprint module to print the output in readable format to fit
the Python console output.

e Then, we provided the config file full path to the ciscoconfrarse class.

e The final step is to use one of the built-in functions such as
find_parents_w_child() and provide two parameters. The first one is the parent
specification, which is searching for anything starting with the interface
keyword, while the child specification has the shutdown keyword.

As you can see, in three simple steps, we were able to get all interfaces that have
the shutdown keyword inside and output as a structured list.

Example 1 output



Python Console - DevNet
Django Console E - 23

. from pprint import pprint

DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter5 §

shutdown_1intfs = orig_config.find_parents_w_child(parentspec=r"*interface",childspec='shutdown")

. pprint(shutdown_intfs)

B[ 'interface GigabitEthernet3', 'interface GigabitEthernet4']

Example 2: Checking the existing of a specific feature

The second example will check whether the router keyword exists within the
configuration file as an indication of whether a routing protocol, such as ospr or
bgp iS enabled or not. If the module finds it, then the result will be True.
Otherwise, it will be raise. This can be achieved by a built-in function within a
module called has_1ine_with():

ciscoconfparse CiscoConfParse
pprint pprint
orig_config = "/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt"

check_router = orig_config.has_line_with(r"*router"
check_router

This method can be used to design a condition inside an ir statement, as we will
see in the next and final example.

Example 2 output

Python Console - DevNet
Django Console k- 0

iguration has a router

. ciscoconfparse im CiscoConfParse
. from pprint import pprint
. orig_config = CiscoConfParse(’ i im/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter5 §

. check router = orig config.has_line with(r"“~router"

. pprint(check router)

Example 3: Printing specific children from a parent:



CiscoConfParse
I 1t _import pprint
orig_config = "/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject
/Chapter5_Extract_useful_data_from_network_devices/Cisco_Config.txt"

orig_config.has_line_with(r"~router ospf"):
ospf_config = orig_config.find_all_children(r"~router ospf"
networks = []

line ospf_config:
'network’ line:
\ networks.append(line.split(" ")[2])

networks
In this example, we can see the following:

e From the ciscoconfrarse module, we imported the ciscoconfrarse class. Also,
we imported the pprint module to print the output in readable format to fit
the Python console output.

e Then, we provided the config file full path to the ciscoconfrarse class.

e We used one of the built-in functions, such as find_a11_children(), and
provided only the parent. This will instruct the ciscoconfrarse class to list all
configuration lines under this parent.

¢ Finally, we iterated over the returned output (remember, it's a list) and
checked whether the network keyword exists within the string. If yes, then
it will append it to the network list, which will be printed at the end.

Example 3 output:

Python Console - DevNet

N J
Django Console - L

if orig_config.has_line_with(r"Arouter ospf"):
ospf_config = orig_config.find_all_children(r"Arouter ospf”

.append(line.split(" "
networks

B '10.10.10.1', '172.16.35.1', '192.168.35.0']

There're many other functions available inside the ciscoconfrarse module that
could be used to easily extract data from the configuration file and return the
output in a structured format. Here is a list of other functions:

® find_lineage
® find_lines()

® find_all children()



find_blocks()
find_parent_w_children()
find_children_w_parent()
find_parent_wo_children()

find_children_wo_parent()



Visualizing returned data with
matplotLib

As an old saying goes, a picture is worth a thousand words. There's a lot of
information that could be extracted from the network, such as interface status,
interface counters, router updates, packets dropped, traffic volume, and more.
Visualizing this data and putting it into a graph will help you to see the big
picture of your network. Python has an excellent library called matplotlib (https:
//matplotlib.org/) that is used to generate graphs and customize them.

Matplotlib is capable of creating most kinds of charts, such as line graphs,
scatter plots, bar charts, pie charts, stack plots, 3D graphs, and geographic map
graphs.


https://matplotlib.org/

Matplotlib installation

We will start by first installing the library from PYpI using pip. Notice some
additional packages will be installed along with matplotlib, such as numpy and six:

| pip install matplotlib
bassim@me-inside:~$ pip install matplotlib
Collecting matplotlib
Downloading matplotlib-2.1.2-cp27-cp27mu-manylinuxl x86 64.whl (15.0MB)
100% | NN | 15.0MB 79KB/s
Collecting cycler>=0.10 (from matplotlib)
Downloading cycler-0.10.0-py2.py3-none-any.whl
Collecting numpy>=1.7.1 (from matplotlib)
Downloading numpy-1.14.1-cp27-cp27mu-manylinuxl x86 64.whl (12.1MB)
100% | N | 12.1MB 122kB/s
Collecting backports.functools-lru-cache (from matplotlib)
Downloading backports.functools lru cache-1.5-py2.py3-none-any.whl
Collecting subprocess32 (from matplotlib)
Downloading subprocess32-3.2.7.tar.gz (54kB)
1e0% | N | 61kB 248KB/s
Collecting pytz (from matplotlib)
Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)
100% | NN | 512kB 467KB/s
Collecting six>=1.10 (from matplotlib)
Using cached six-1.11.0-py2.py3-none-any.whl
Collecting python-dateutil>=2.1 (from matplotlib)
Using cached python dateutil-2.6.1-py2.py3-none-any.whl
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib)
Downloading pyparsing-2.2.0-py2.py3-none-any.whl (56kB)
100% | NN | 61<B 234kB/s
Building wheels for collected packages: subprocess32
Running setup.py bdist wheel for subprocess32 ... done
Stored in directory: /home/bassim/.cache/pip/wheels/7d/4c/a4/ce9ceb463daed1f4b95e670abd9afc

Now, try to import matplotlib and, if no errors are printed, then the module is
successfully imported:

bassim@me-inside:~$
bassim@me-inside:~$ python
Python 2.7.14 (default, Sep 23 2017, 22:06:14)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import matplotlib

>>>




Hands-on with matplotlib

We will start with simple examples to explore matplotlib's functionality. The first
thing we do usually is import matplot1ib into our Python script:

| import matplotlib.pyplot as plt

Notice we imported pypiot as a short name, pit, to be used inside our script. Now,
we will use the p1ot() method inside it to plot our data, which consists of two
lists. The first list represents the values of the x-axis while the second list
represents the values of the y-axis:

|plt.plot([e, 1, 2, 3, 4], [0, 18, 20, 30, 40])
Now, the values are dropped into the plot.

The last step is to show that plot as a window using the show() method:

| pLt.show()
Figure 1 b @

40

35 4

30 4

25

201

15 4

10 1

T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

A €> +Q/= B
8 You may need to install python-tk in Ubuntu in order to view the graph. Use apt install python-tk.

The resulted graph will show a line representing the input values of the x and y
axes. In the window, you can do the following:



Move the graph around with the cross icon
Resize the graph

Zoom into a specific area with the zoom icon
Reset to the original view with the home icon
Save the figure with the save icon

You can customize the generated figure by adding a title to it and labels to both
axes. Also, add a legend that explains the meaning of each line in case there are
multiple lines on the same graph:

import matplotlib.pyplot as plt

plt.plot([0, 1, 2, 3, 4], [0, 10, 20, 30, 40])
plt.xlabel("numbers")

plt.ylabel("numbers multiplied by ten")
plt.title("Generated Graph\nCheck it out")
plt.show()

Generated Graph
Check it out

40 -

35 A

30

25

20 A

15 4

numbers multiplied by ten

10 4

T
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
numbers

Notice that we usually don't hardcode the plotted values inside the Python script, but we will
get them externally from the network, as we will see in the next example.

Also, you can plot multiple datasets on the same figure. You can add another list
that represents data to the previous figure and matpiot1ib will draw it. Also, you
can add labels to differentiate between the datasets on the graph. The legend for
these labels will be printed on the graph using the 1egend() function:

import matplotlib.pyplot as plt

plt.plot([®, 1, 2, 3, 4], [0, 10, 20, 30, 40], label="First Line")
plt.plot([5, 6, 7, 8, 9], [50, 60, 70, 80, 90], label="Second Line")
plt.xlabel("numbers")

plt.ylabel("numbers multiplied by ten")

plt.title("Generated Graph\nCheck it out")

plt.legend()

plt.show()




numbers multiplied by ten

Generated Graph

Check it out
—— First Line
—— Second Line
80+
60 1
40 4
204
04
T T T
0 2 4 6

numbers




Visualizing SNMP using matplotlib

In this use case, we will utilize the pysnmp module to send SNMP cet requests to
our router, retrieve the input and output traffic rates for a specific interface, and
visualize the output using the matpiotiib library. The OIDs used are
.1.3.6.1.4.1.9.2.2.1.1.6 and .1.3.6.1.4.1.9.2.2.1.1.8, which represent the input and
output rates respectively:

from pysnmp.entity.rfc3413.oneliner import cmdgen
import time
import matplotlib.pyplot as plt

cmdGen = cmdgen.CommandGenerator ()

snmp_community = cmdgen.CommunityData('public')
snmp_ip = cmdgen.UdpTransportTarget(('10.10.88.110', 161))
snmp_oids = [".1.3.6.1.4.1.9.2.2.1.1.6.3",".1.3.6.1.4.1.9.2.2.1.1.8.3"]

slots = 0
input_rates = []
output_rates = []
while slots <= 50:
errorIndication, errorStatus, errorIndex, varBinds = cmdGen.getCmd(snmp_community,
snmp_ip, *snmp_oids)

input_rate = str(varBinds[0]).split("=")[1].strip()
output_rate = str(varBinds[1]).split("=")[1].strip()

input_rates.append(input_rate)
output_rates.append(output_rate)

time.sleep(6)
slots = slots + 1
print slots

time_range = range(0, slots)

print input_rates

print output_rates

# plt.figure()

plt.plot(time_range, input_rates, label="input rate")
plt.plot(time_range, output_rates, label="output rate")
plt.xlabel("time slot")

plt.ylabel("Traffic Measured in bps")
plt.title("Interface gig0/0/2 Traffic")

plt.legend()
plt.show()

In this example, we can see the following:

e We imported cndgen from the pysnmp module, which was used to create SNMP



ceT commands for the router. We also imported the matp1ot1ib module.

e Then, we used cndgen to define the transport channel properties between
Python and the router and provide the SNMP community.

e pysnmp Will start to send the SNMP GET requests with the provided OIDs
and return the output and errors (lf any) {0 errorindication, errorStatus,
errorIndex, and varsinds. We are interested in varsinds as it holds the actual
values for the input and output traffic rate.

e Note that varsinds will be in the form of <oid> = <value>, SO we extracted only
the value and added it to the corresponding list we created before.

e This operation will be repeated 100 times at 6-second intervals to collect
useful data.

¢ Finally, we provided the collected data to the p1t imported from matplotlib
and customized the graph by providing the xiabe1, yiabe1, title, and 1egends:

Script output:

Figure 1 [ ]

Interface gig0/0/2 Traffic

—— input rate
98000 1 output rate

Traffic Measured in bps
=
=1
@
]
e
8

164000

0 10 20 30 40 50
time slot

# €3 Q= B



Summary

In this chapter, we learned how to use different tools and techniques inside
Python to extract useful data from returned output and act upon it. Also, we used
a special library called ciscoconfrarse to audit the configuration and learned how
to visualize data to generate appealing graphs and reports.

In the next chapter, we will learn how to write a template and use it to generate
configurations with a Jinja2 templating language.



Configuration Generator with Python
and Jinja2

This chapter introduces you to the YAML format for representing data and
generating a configuration from the golden templates created by the Jinja2
language. We will use these two concepts in both Ansible and Python to create a
data model store for our configuration.

We will cover the following topics in this chapter:

e What is YAML?
¢ Building golden configuration templates with Jinja2



What is YAML?

YAML Ain’t Markup Language (YAML) is often called a data serialization
language. It was intended to be human-readable and organize data into a
structured format. Programming languages can understand the content of YAML
files (which usually have a .ym1 or .yam1 extension) and map them to built-in data
types. For example, when you consume a .yam file in your Python script, it will
automatically convert the content into either a dictionary ¢3 or list [1, SO you can
work and iterate over it.

YAML rules help to construct a readable file so it's important to understand them
in order to write a valid and well formatted YAML file.



YAML file formatting

There're a few rules to follow while developing YAML files. YAML uses
indentation (like Python), which builds the relationship of items with one
another:

1. So, the first rule when writing a YAML file is to make your indentation
consistent, using either whitespace or tabs, and don't mix them.

2. The second rule is to use a colon : when creating a dictionary with a key
and value (sometimes they're called associative arrays in yan1). The item to
the left of the colon is the key, while the item to the right of the colon is the
value.

3. The third rule is to use dashes "-» when grouping items inside a list. You
can mix dictionaries and lists inside the YAML file in order to effectively
describe your data. The left-hand side serves as a dictionary key, while the
right-hand side serves as a dictionary value. You can create any number of
levels to have structured data:

L1 Dictionary Key
© L2 Dictionary Key

a Level2 K
e Level2 [

YAML

Let's take an example and apply these rules to it:



SVATITES

vIOSL3_Template

gig0/o
10.10.88.110
255.255.2.55.0

- gigo/e
- gigo/1
- gige/2

2551.255.255.0

32770
vIOSL2 _Template

10.10.88.112
255.255.255.0

There are a number of things to look at it. Firstly, the file has one top level,
my_datacenter, Which serves as a top-level key and its values consists of all the
indented lines after it, which are cw, switch1, and switch2. Those items also serve as
keys and have values inside them, which are eve_port, device_template, hostname,
mgmt_int, mgmt_ip, and mgmt_subnet and which serve as Level 3 keys and Level 2
values at the same time.

The other thing to notice is enabled_ports, which is a key but has a value that
serves as a lists. We know this because the next level of indentation is a dash.

0 Notice that all interfaces are sibling elements because they have the same level of indentation.

Finally, it's not required to have a single or double quotation around strings.
Python will do that automatically when we load the file into it and it will also
determine the data type and location of each item based on indentation.

Now, let's develop a Python script that reads this YAML file and converts it into
dictionaries and lists using the yam1 module:

- ;Bésstm Aly"
basim.alyy@gmail.com"

yaml
pprint pprint

open(r'/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject

/Chapter nfiguration_generator_with_python_and_jinja2/yaml_example.yml', 'r' yaml_file:
yaml_d = yaml.load(yaml_file # This is to read the file content




In this example, we can see the following:

e We imported the yan1 module inside our Python script in order to handle the
YAML files. Also, we imported the pprint function to show the hierarchy of
nested dictionaries and lists.

e Then, we opened the yam1_exampie.ym1 file using the with clause and the open()
function as a yaml_file.

e Finally, we use the 10ad() function to load the file into the yam1_data variable.
At this stage, the Python interpreter will analyze the yam1 file's content and
build the relationships between items, then convert them to the standard
data type. The output can be shown at the console using the pprint()
function.

Script output

Python Console - DevNet

Top-Level Key

+HEB AL VY X

First Level keys
and Top-level
values

It's now fairly easy to access any information using standard Python methods.
For example, you can access the switch1 config by using my_datacenter followed by
the switch1 keys, as in the following code snippet:

pprint(yaml_data['my_datacenter']['switch1'])

{'device_template': 'vIOSL2_ Template',
'eve_port': 32769,
'hostname': 'Swi',
'mgmt_intf': 'gig@/0',
'mgmt_ip': '10.10.88.111',
'mgmt_subnet': '255.255.255.0'}

Also, you can iterate over the keys with a simple for loop and print the values of
any level:



for device in yaml_data['my_datacenter']:
print device

GW
switch2
switchi

As a best practice, it's recommended you keep the key names consistent and change only the
8 values while you describe your data. For example, the nhostname, mgnt_intf, and mgmt_ip items exist
on all devices with the same name, while they have different values in the .yan: file.



Text editor tips

Correct indentation is very important for YAML data. It's recommended to use
an advanced text editor such as, Sublime Text or Notepad++, as they have
options that convert the tabs to a specific number of whitespaces. At the same
time, you can choose the specific tab indentation size to be 2 or 4. So, your
editor will convert the tab to a static number of whitespaces whenever you click
on the Tab button. Finally, you can choose to display vertical lines at each
indentation to ensure that lines are indented the same amount.

Please note that Microsoft Windows Notepad doesn't have that option and this may result in a
formatting error in your YAML file.

The following is an example of an advanced editor called Sublime Text that can
be configured with the aforementioned options:

"unarchive xRV"

/root/xrv-k9-6.1.2.tar.gz
/opt/unetlab/addons/gemu/
no
upload file
yes

"unarchive vIOS"

/root/vios.tar.gz
/opt/unetlab/addons/gemu/
5 no
Vertical ] upload file
Lines : yes

Guide i ; i
unarchive centos server

/root/linux-centos-server-1707.tar.gz
/opt/unetlab/addons/gemu/
no Number of white

upload file spaces inserted
yes when click on TAB

"unarchive Linux VvRIN server"

The screenshot shows the vertical line guides that ensure that the sibling items
are at the same indentation level and number of spaces when you click on Tab.



Building a golden configuration with
Jinja2

Most network engineers have a text file that serves as a template for a specific
device configuration. This file contains sections of network configuration with
many values. When the network engineer wants to provision a new device or
change its configuration, they will basically replace specific values from this file
with another one to generate a new configuration.

Using Python and Ansible, later in this book we will automate this process
efficiently using the Jinja2 template language (http://jinja.pocoo.org). The core
concept of and driver for developing Jinja2 is to have a unified syntax across all
template files for specific network/system configurations and to separate the data
from the actual configuration. This allows us to use the same template multiple
times but with a different set of data. Also, as shown on the Jinja2 web page, it
has some unique features that make it stand out from the other template
languages.

The following are some of the features mentioned on the official website:

e Powerful automatic HTML escaping system for cross-site scripting
prevention.

e High performance with just-in-time compilation to Python bytecode. Jinja2
will translate your template sources on first load into Python bytecode for
the best runtime performance.

e Optional ahead-of-time compilation.

e FEasy to debug with a debug system that integrates template compile and
runtime errors into the standard Python traceback system.

¢ Configurable syntax: For instance, you can reconfigure Jinja2 to better fit
output formats, such as LaTeX or JavaScript.

e Template designer helpers: Jinja2 ships with a wide range of useful little
helpers that help solve common tasks in templates, such as breaking up
sequences of items into multiple columns.

Another important Jinja feature is template inheritance, with which we can


http://jinja.pocoo.org

create a base/parent template that defines a basic structure for our system or the
Day 0 initial configuration for all devices. This initial configuration will be the
base configuration and contains the common pieces such as usernames,
management subnet, default routes, and SNMP communities. The other child
templates extend the base template and inherit it.

0 The terms Jinja and Jinja2 are used interchangeably throughout this chapter.

Let's take a few examples of building templates before we deep dive into more
features provided by the Jinja2 language:

1. First, we need to make sure that Jinja2 is installed in your system by using
the following command:

| pip install jinja2

The package will be downloaded from PyPi and then will be installed on
the site packages.

2. Now, open your favorite text editor and write the following template, which
represents a simple Day 0 (initial) configuration for a Layer 2 switch that
configures the device hostname, some aaa parameters, default VL ANs that
should exist on each switch, and the management of IP addresses:

hostname {{ hostname }}

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent

vlan 10,20, 30, 40,50,60,70,80,90,100,200

int {{ mgmt_intf }}

no switchport

no shut

ip address {{ mgmt_ip }} {{ mgmt_subnet }}

8 Some text editors (such as Sublime Text and Notepad+ +) provide support for Jinja2 and can

do syntax highlighting and auto-completion for you, either by natively supporting it or
through extension.

Notice that in the previous template, the variables were written in double curly
braces {{ 33. So, when the Python script loads the template, it will replace those
variables with the desired values: #!/usr/bin/python



from jinja2 import Template
template = Template(™
hostname {{hostname}}

aaa new-model

aaa session-id unique

aaa authentication login default local

aaa authorization exec default local none
vtp mode transparent

vlan 10,20,30,40,50,60,70,80,90,100,200

int {{mgmt_intf}}
no switchport

no shut

ip address {{mgmt_ip}} {{mgmt_subnet}}

")

sw1 = {'hostname': 'switch1', 'mgmt_intf": 'gig0/0’, 'mgmt_ip": '10.10.88.111/,

'mgmt_subnet’: '255.255.255.0'}
print(template.render(sw1))

In this example, we can see the following:

e The first thing is we imported the Tempiate class from the jinja2 module. This
class will validate and parse the Jinja2 file.

e Then, we defined a variable, sw1, as a dictionary with keys that have names
equal to variables inside the template. The dictionary values will be the data

that renders the template.

e Finally, we used the render() method inside the template which takes sw1 as
an input to connect the Jinja2 template with the rendered values and prints

the configuration.

Script output



| Python Console - DevNet 'Y ]
| Django Console R~

. int {{mgmt intf1}}
. _no switchport
no shut
ip address {{mgmt i mgmt subnet

. swl = {'hostname': 'switchl', 'mgmt intf':'qiq0/0', 'mgmt ip':'10.10.88.111', 'mgmt subnet':'255.255.255.0'}
template.render(swi))

ostname switchl

aaa authentication login default local
3aa authorization exec default loczl none
vtp mode transparent

vlan 10,260,30,40,50,60,70,80,90,100,200

no s L
ip address 10.10.88.111 255.255.255.0

Now, let's enhance our script and use YAML to render the template instead of
hard-coding the values inside dictionaries. The concept is simple: we will model
the daye configuration for our lab inside the YAML file, then load this file into
our Python script using yam1.10ad() and use the output to feed the Jinja2 template,
which will result in generating the daye configuration files for each device:

=

dinja2 T late
YAML Data Python Script

First, we will extend the YAML file that we developed last time and add other
devices to it while keeping the hierarchy for each node the same: ---

dcl:

GW:



eve_port: 32773

device_template: vIOSL3_Template
hostname: R1

mgmt_intf: gig0/0

mgmt_ip: 10.10.88.110
mgmt_subnet: 255.255.255.0

switchl:

eve_port: 32769

device_template: vIOSL2_Template
hostname: SW1

mgmt_intf: gig0/0

mgmt_ip: 10.10.88.111
mgmt_subnet: 255.255.255.0

switch2:

eve_port: 32770

device_template: vIOSL2_Template
hostname: SW?2

mgmt_intf: gig0/0

mgmt_ip: 10.10.88.112
mgmt_subnet: 255.255.255.0

switch3:

eve_port: 32769

device_template: vIOSL2_Template
hostname: SW3

mgmt_intf: gig0/0

mgmt_ip: 10.10.88.113
mgmt_subnet: 255.255.255.0

switch4:

eve_port: 32770

device_template: vIOSL2_Template
hostname: SW4

mgmt_intf: gig0/0



mgmt_ip: 10.10.88.114
mgmt_subnet: 255.255.255.0

Following is the Python script:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import yaml
from jinja2 import Template

with
open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6é_Configur
'r') as yaml file:
yaml_data = yaml.load(yaml_file)

router_day0@_template = Template("""
hostname {{hostname}}
int {{mgmt_intf}}

no shutdown

ip add {{mgmt_ip}} {{mgmt_subnet}}

11ldp run

ip domain-name EnterpriseAutomation.net

ip ssh version 2

ip scp server enable

crypto key generate rsa general-keys modulus 1024

snmp-server community public RW

snmp-server trap link ietf

snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog

snmp-server manager

logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

nn ll)

switch_day0_template = Template("""
hostname {{hostname}}

aaa new-model

aaa session-id unique

aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent

vlan 10,20, 30, 40,50,60,70,80,90,100,200

int {{mgmt_intf}}



no switchport
no shut
ip address {{mgmt_ip}} {{mgmt_subnet}}

snmp-server community public RW

snmp-server trap link ietf

snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog

snmp-server manager

logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging

nn ll)

for device,config in yaml_data['dcl'].iteritems():
if config['device_template'] == "vIOSL2 Template":
device_template = switch_day0_template

elif config['device_template'] == "vIOSL3 Template":
device_template = router_day0O_template

print("rendering now device {0}" .format(device))
Day0_device_config = device_template.render(config)

print Day@_device_config
print "=" * 30

In this example, we can see the following:

e We imported the yam1 and sinja2z modules as usual

e Then, we instructed the script to load the yam1 file into the yami_data variable,
which will convert it into a series of dictionaries and lists

e Two templates for router and switch configuration are defined as
router_day0_template and switch_day0@_template I‘ESpECtiVGlY

e The ror loop will iterate over devices of dc1 and check the device_tempiate,
then will render configuration for each device

Script output

Following is the router configuration (output omitted):



Python Console - DevNet

Django Console

G

ndering now device GW
X
4 ame R1
2 |

no shutdow

ip add 10.10.88.110 255.255
L]

Lldp run

** > domain-name EnterpriseAutomation.net
#* i h version 2
.

3 ink ietf
mp-server enable traps snmp linkdown linkup
mp-server enable traps syslog
mp rver manager

loaaina historv debuaaina

Following is the switch 1 configuration (output omitted):

Python Console - DevNet
Django Console

ng now device switch2
hostname SW2

3aa new-model
aaa session-id unique
3aa authentication login default local
Wlaaa authorization exec default local none
vtp mode transparent
Wvian 10,20,30,40,50 ,70,80,90,100,200

int gig0/0
switchport
shut
addre 10.10.88.112

snmp-server community public RW
snmp-server trap link ietf

enable traps snmp 1i
snmp-server enable traps syslog
Snmp-server manager




Reading templates from the
filesystem

A common approach for Python developers is to move the static, hard-coded
values and templates outside the Python script and keep only the logic inside the
script. This approach keeps your program clean and scalable, while allowing
other team members who don't have much knowledge of Python to get the
desired output by changing the input, and Jinja2 is no exception to this approach.
You can use the rilesystemLoader() class inside the Jinja2 module to load the
template from the operating system directories. We will modify our code and
move both the router_dayo_template and switch_daye_template contents from the SCTipt
to text files, then load them into our script.

Python code

import yaml
from jinja2 import FileSystemLoader, Environment

with
open('/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6é_Configur
'r') as yaml file:
yaml_data = yaml.load(yaml_file)

template_dir =
"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Chapter6_Configuratior

template_env = Environment(loader=FileSystemLoader (template_dir),
trim_blocks=True,
1strip_blocks= True

)

for device,config in yaml_data['dcl'].iteritems():

if config['device_template'] == "vIOSL2 Template":
device_template = template_env.get_template("switch_dayl_ template.j2")
elif config['device_template'] == "vIOSL3_Template":

device_template = template_env.get_template("router_dayl template.j2")

print("rendering now device {0}" .format(device))
Day0_device_config = device_template.render(config)

print Day0@_device_config
print "=" * 30

In this example, instead of loading the rtemp1ate() class from the Jinja2 module as



we did before, we will import environment() and rilesystemLoader (), which are used
to read the Jinja2 file from the specific operating system directory by providing
them with tempiate_dir where our templates are stored. Then, we will use the
created template_env Object, along with the get_temp1ate() method, to get the
template name and render it with the configuration.

Make sure your template file has a . jz extension at the end. This will make PyCharm
9 recognize the text inside the file as a Jinja2 template and hence provide syntax highlighting
and better code completion.



Using Jinja2 loops and conditions

Loops and conditions in Jinja2 are used to enhance our template and add more
functionality to it. We will start by understanding how to add the for loop inside
the template in order to iterate over passed values from YAML. For example, we
may need to add a switch configuration under each interface, such as using the
switchport mode and configure the VLAN ID which will be configured under
the access port, or configure the allowed VLANSs range in the case of the trunk
ports.

On the other hand, we may need to enable some interfaces in the router and add
custom configurations to it, such as MTU, speed, and duplex. So, we will use the
for loop.

Notice that part of our script logic will now be moved from Python to the Jinja2
template. The Python script will just read the template, either externally from the
operating system or through the tempiate() class inside the script, then render the
template with the parsed values from the YAML file.

The basic structure of for loops inside Jinja2 is as follows:

{% for key, value in varl.iteritems() %}
configuration snippets
{% endfor %}

0 Notice the use of (x %} to define logic inside the JinjaZ2 file.

Also, iteritems() has the same function as iterating over the Python dictionary,
which is iterating over the key and value pairs. The loop will return both the key
and value for each element inside the var1 dictionary.

Also, we can have an if condition that validates a specific condition and, if it's
true, then the configuration snippets will be added to the rendered file. The basic
if structure will be as shown in the following snippet:

{% if enabled_ports %}

configuration snippet goes here and added to template if the condition is true
{% endif %}



dci:
GW:

eve_port:
device_template: vIOSL3_Template
hostname: R1

Now, we will modify our .yam1 file which describes the data center devices, and
add the interface configuration and enabled ports for each device:

32773

mgmt_intf: gig0/0
mgmt_ip: 10.10.88.110

mgmt_subnet:

255.255.255.0

enabled_ports:

- gigo/oe
- gigoe/1
- gigoe/2
switchil:
eve_port: 32769
device_template: vIOSL2 Template
hostname: SwWi
mgmt_intf: gig06/0
mgmt_ip: 10.10.88.111
mgmt_subnet: 255.255.255.0
interfaces:
gigo/1:

vlan: [1,10,20,200]
description: TO_DSw2_1
mode: trunk
gigo/2:

vlan: [1,10,20,200]
description: TO_DSW2_2
mode: trunk
gig0/3:

vlan: [1,10,20,200]
description: TO_ASW3
mode: trunk
gigl/o:

vlan: [1,10,20,200]
description: TO_ASw4
mode: trunk
enabled_ports:
- gigo/oe
- gig1/1
switch2:

eve_port: 32770

device_template: vIOSL2 Template
hostname: Sw2
mgmt_intf: gig06/0

mgmt_ip: 10.10.88.112

mgmt_subnet:

255.255.255.0

interfaces:
gigo/1:

vlan: [1,10,20,200]
description: TO_DSw1_1
mode: trunk
gigo/2:

vlan: [1,10,20,200]
description: TO_DSW1_2
mode: trunk

gig0/3:



vlan: [1,10,20,200]
description: TO_ASW3
mode: trunk
gigl/0:
vlan: [1,10,20,200]
description: TO_ASw4
mode: trunk
enabled_ports:
- gigo/oe
- gig1/1

switch3:
eve_port: 32769
device_template: vIOSL2 Template
hostname: SW3
mgmt_intf: gig06/0
mgmt_ip: 10.10.88.113
mgmt_subnet: 255.255.255.0
interfaces:
gigo/1:

vlan: [1,10,20,200]
description: TO_DSW1
mode: trunk
gigo/2:

vlan: [1,10,20,200]
description: TO_DSW2
mode: trunk
gigl/0:

vlan: 10
description: TO_Client1l
mode: access
gigl/1:

vlan: 20
description: TO_Client2
mode: access
enabled_ports:
- gigo/oe

switch4:
eve_port: 32770
device_template: vIOSL2 Template
hostname: Sw4
mgmt_intf: gig06/0
mgmt_ip: 10.10.88.114
mgmt_subnet: 255.255.255.0
interfaces:
gigo/1:

vlan: [1,10,20,200]
description: TO_DSW2
mode: trunk
gigo/2:

vlan: [1,10,20,200]
description: TO_DSW1
mode: trunk
gigl/0:

vlan: 10
description: TO_Client1l
mode: access
gigl/1:

vlan: 20
description: TO_Client2
mode: access
enabled_ports:
- gigo/oe



Notice, that we categorized the switch ports to either trunk port or access port, and also
added the vlans for each one.

According to the yam1 file, the incoming packets to the interface with switchport
access mode will be tagged with the VLAN. In case of the switchport mode
trunk, the incoming packets be allowed if it has a vlan ID belong to the
configured list.

Now, we will create two additional templates for devices Day 1 (operational)
configuration. The first template will be router_day1_temp1ate and the second will
be switch_day1_template, and both of them will inherit from the corresponding day0
template that we developed before:

router_dayl_template:

{% include 'router_day0@_template.j2' %}

{% if enabled_ports %}
{% for port in enabled_ports %}
interface {{ port }}
no switchport
no shutdown
mtu 1520
duplex auto
speed auto
{% endfor %}

{% endif %}

switch_day1_template:

{% include 'switch_day0@_template.j2' %}

{% if enabled_ports %}

{% for port in enabled_ports %}
interface {{ port }}

no switchport

no shutdown

mtu 1520

duplex auto

speed auto

{% endfor %}
{% endif %}

{% if interfaces %}
{% for intf,intf_config in interfaces.items() %}
interface {{ intf }}
description "{{intf_config['description']}}"
no shutdown
duplex full
{% if intf_config['mode'] %}




{% if intf_config['mode'] == "access" %}
switchport mode {{intf_config['mode']}}
switchport access vlan {{intf_config['vlan']}}

{% elif intf_config['mode'] == "trunk" %}

switchport {{intf_config['mode']}} encapsulation dotlq
switchport mode trunk

switchport trunk allowed vlan {{intf_config['vlan']|join(',"')}}

{% endif %}
{% endif %}
{% endfor %}
{% endif %}
0 Notice the use of the {% include <template_name.jz> %} tag, which refers to the day0 template of the

device.

This template will be rendered first and filled with passed values from YAML,
then the next parts will be filled.

Although it's not mandatory to follow the indentation rule when developing the template and

0 The Jinja2 language inherits many writing styles and features from the Python language.
inserting the tags, the author prefers to have it in a readable Jinja2 template.

Script output:

rendering now device GW
hostname R1
int gig0/0
no shutdown
ip add 10.10.88.110 255.255.255.0

11ldp run
ip domain-name EnterpriseAutomation.net
ip ssh version 2
ip scp server enable
crypto key generate rsa general-keys modulus 1024
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0

no switchport

no shutdown

mtu 1520

duplex auto

speed auto
interface gig0/1

no switchport

no shutdown

mtu 1520




duplex auto
speed auto
interface gig0/2
no switchport
no shutdown
mtu 1520
duplex auto
speed auto

rendering now device switchil
hostname Swi
aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10,20,30,40,50,60,70,80,90,100, 200
int gig0/0
no switchport
no shut
ip address 10.10.88.111 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
no switchport
no shutdown
mtu 1520
duplex auto
speed auto
interface gigl/1
no switchport
no shutdown
mtu 1520
duplex auto
speed auto
interface gig0/2
description "TO_DSw2_2"
no shutdown
duplex full
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 1,10,20,200
interface gig0/3
description "TO_ASwW3"
no shutdown
duplex full
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 1,10,20,200
interface gig0e/1
description "TO_DSw2_1"
no shutdown



duplex full

switchport trunk encapsulation dotlq
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200
interface gig1/0

description "TO_ASw4"

no shutdown

duplex full

switchport trunk encapsulation dotlq
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

<switch2 output omitted>

rendering now device switch3
hostname Sw3
aaa new-model
aaa session-id unique
aaa authentication login default local
aaa authorization exec default local none
vtp mode transparent
vlan 10, 20,30, 40,50, 60, 70,80, 90,100, 200
int gig0/0
no switchport
no shut
ip address 10.10.88.113 255.255.255.0
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp linkdown linkup
snmp-server enable traps syslog
snmp-server manager
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
interface gig0/0
no switchport
no shutdown
mtu 1520
duplex auto
speed auto
interface gig0/2
description "TO_DSw2"
no shutdown
duplex full
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 1,10,20,200
interface gigl/1
description "TO_Client2"
no shutdown
duplex full
switchport mode access
switchport access vlan 20
interface gig1/0
description "TO_Client1"
no shutdown



duplex full

switchport mode access

switchport access vlan 10
interface gig0e/1

description "TO_DSw1"

no shutdown

duplex full

switchport trunk encapsulation dotlq
switchport mode trunk

switchport trunk allowed vlan 1,10,20,200

<switch4 output omitted>



Summary

In this chapter, we learned about YAML and its formatting and how to work with
text editors. We also learned about Jinja2 and its configuration. Then, we
explored the ways in which we can use loops and conditions in Jinja2.

In the next chapter, we will learn how to instantiate and execute Python code in
parallel using multiprocessing.



Parallel Execution of Python Script

Python has become the de facto standard for network automation. Many network
engineers already use it on a daily basis to automate networking tasks, from
configuration, to operation, to troubleshooting network problems. In this chapter,
we will visit one of the advanced topics in Python: scratching the surface of
Python's multiprocessing nature and learning how to use it to accelerate script
execution time.

We will cover the following topics in this chapter:

e How Python code is executed in an OS
e The Python multiprocessing library



How a computer executes your
Python script

This is how your computer's operating system executes Python script:
1. When you type python <your_awesome_automation_script>.py in the shell, PythOIl

(which runs as a process) instructs your computer processor to schedule a
thread (which is the smallest unit of processing):

IR NN
Please | need a thread to run the script
“ =

Here You're

|
ll'

2. The allocated thread will start to execute your script, line by line. A thread
can do anything, including interacting with I/O devices, connecting to
routers, printing output, performing mathematical equations, and more.

3. Once the script hits the End of File (EOF), the thread will be terminated
and returned to the free pool, to be used by other processes. Then, the script
is terminated.

0 In Linux, you can use #strace -p <pid> to trace a specific thread execution.

The more threads that you assign to your script (and that are permitted by your
processor or OS), the faster your script will run. Actually, threads are sometimes
called workers or slaves.

I have a feeling that you have this little idea in your head: Why wouldn't we
assign a lot of threads, from all cores, to Python script, in order to get the job
done quickly?

The problem with assigning a lot of threads to one process without special
handling is the race condition. The operating systems will allocate memory to



your process (in this case, it's the Python process), to be used at runtime and
accessed by all threads—all of them at the same time. Now, imagine that one of
those threads reads some data before it's actually written by another thread! You
don't know the order in which the threads will attempt to access the shared data;
this is the race condition:

——Read X value—y Where's X2l

few ms

. —Write X Value-

—
Race Condition

One available solution is to make the thread acquire a lock. In fact, Python, by
default, is optimized to run as a single-threaded process, and has something
called Global Interpreter Lock (GIL). GIL does not allow multiple threads to
execute Python code at the same time, in order to prevent conflicts between
threads.

But, rather than having multiple threads, why don't we have multiple processes?

The beauty of multiple processes, as compared to multiple threads, is that you
don't have to be afraid of data corruption due to shared data. Each spawned
process will have its own allocated memory, which won't be accessed by other
Python processes. This allows us to execute parallel tasks at the same time:



—
— i
| Witing Info 10 Databatt e u

——a

Also, from Python's point of view, each process has its own GIL. So, there's no
resource conflict or race condition here.



Python multiprocessing library

The muitiprocessing module is Python's standard library that is shipped with
Python binaries, and it is available from Python 2.6. There's also the threading
module, which allows you to spawn multiple threads, but they all share the same
memory space. Multiprocessing comes with more advantages than threading.
One of them is isolated memory space for each process, and it can take
advantage of multiple CPUs and cores.



Getting started with multiprocessing

First, you need to import the module for your Python script:

| import multiprocessing as mp

Then, wrap your code with a Python function; this will allow the process to
target this function and mark it as a parallel execution.

Let's suppose that we have code that connects to the router and executes
commands on it using the netmiko library, and we want to connect to all of the
devices in parallel. This is a sample serial code that will connect to each device
and execute the passed command, and then continue with the second device, and
SO on:

from netmiko import ConnectHandler
from devices import R1, SW1, Sw2, SW3, Sw4

nodes = [R1, SW1, SW2, SW3, Sw4]

for device in nodes:

net_connect = ConnectHandler (**device)

output = net_connect.send_command("show run")
print output

The Python file devices.py is created on the same directory as our script, and it
contains the login details and credentials for each device in a dictionary format:

R1 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.110",
"port": 22,
"username": "admin",
"password": "access123",

}

SW1 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.111",
"port": 22,
"username": "admin",
"password": "access123",

}

SW2 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.112",
"port": 22,
"username": "admin",
"password": "access123",

}




SW3 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.113",
"port": 22,
"username": "admin",
"password": "access123",
}

Sw4 = {"device_type": "cisco_ios_ssh",
"ip": "10.10.88.114",
"port": 22,
"username": "admin",
"password": "access123",
}

Now, if we want to use the multiprocessing module instead, we need to redesign
the script and move the code to be under a function; then, we will assign a
number of processes equal to the number of devices (one process will connect to
one device and execute the command) and set the target of the process to execute
this function:

from netmiko import ConnectHandler

from devices import R1, SW1, Sw2, SW3, Sw4
import multiprocessing as mp

from datetime import datetime

nodes = [R1, SW1, SW2, SW3, Sw4]
def connect_to_dev(device):

net_connect = ConnectHandler(**device)
output = net_connect.send_command("show run")
print output

processes = []

start_time = datetime.now()

for device in nodes:

print("Adding Process to the list")
processes.append(mp.Process(target=connect_to_dev, args=[device]))

print("Spawning the Process")
for p in processes:
p.start()

print("Joining the finished process to the main truck")
for p in processes:

p-join()

end_time = datetime.now()
print("Script Execution tooks {}".format(end_time - start_time))

In the preceding example, the following applies:

e We imported a multiprocess module as mp. One of the most important



classes available inside the module is process, which takes our netmiko connect
function as a target argument. Also, it accepts passing an argument to the
target function.

e Then, we iterated over our nodes and created a process for each device and
appended that process to the processes list.

e The start() method, which is available in the module, is used to spawn and
then it starts the process execution.

e Finally, the script execution time is calculated by subtracting the script start
time from the script end time.

Behind the scenes, the main thread that executes the main script will start to fork
a number of processes equal to the number of devices. Each of them targets one
function that executes show run on all devices at the same time and stores the
output in a variable, without affecting each other.

This is a sample view of the processes inside Python:

DS

Now, when you execute the full code, one final thing needs to be done. You need
to join the forked process to the main thread/truck, in order to smoothly finish
the program's execution:

for p in processes:
p.join()



Thread 1

Fork [
Main Program Thread 2 Join Main Program

Thread N

Main Program Running

The join() method used in the preceding example has nothing to do with the original join(),
available as a string method; it's only used to join the process to the main thread.



Intercommunication between
processes

Sometimes, you will have a process that needs to pass or exchange information
with other processes during runtime. The multiprocessing module has a queue
class that implements a special list, within which a process can insert and
consume data. There are two methods available inside of this class: get() and
put(). The put() method is used to add data to the queue, whereas getting data from
the queue is done via the get() method. In the next example, we will use queue to
pass data from a subprocess to a parent process:

import multiprocessing

from netmiko import ConnectHandler

from devices import R1, SW1, SwW2, SW3, Sw4
from pprint import pprint

nodes = [R1, SW1, SW2, SW3, Sw4]

def connect_to_dev(device, mp_queue):

dev_id = device['ip']

return_data = {}

net_connect = ConnectHandler (**device)

output = net_connect.send_command("show run")
return_data[dev_id] = output

print("Adding the result to the multiprocess queue")

mp_queue.put(return_data)

mp_queue = multiprocessing.Queue()
processes = []

for device in nodes:
p = multiprocessing.Process(target=connect_to_dev, args=[device, mp_queue])
print("Adding Process to the list")
processes.append(p)
p.start()

for p in processes:
print("Joining the finished process to the main truck")

p-Jjoin()

results = []

for p in processes:

print("Moving the result from the queue to the results list")
results.append(mp_queue.get())

pprint(results)



In the preceding example, the following applies:

e We imported another class, called queue(), from the muitiprocess module, and
instantiated it into the mp_queue variable.

e Then, during the process creation, we appended this queue as an argument
side-by-side with the device, so every process will have access to the same
queue and be able to write data to it.

e The connect_to_dev() function connects to each device and executes the show
run command on the Terminal, then writes the output to the shared queue.

Note that we formatted the output as dictionary items, {ip:<command_output>}, before adding it to
the shared queue using mp_queue. put ().

e After the processes finished execution and joined the main (parent) process,
we used mp_queue.get() to retrieve the queue items in a results list, then used
pprint to prettyprint the output.



Summary

In this chapter, we learned about the Python multiprocessing library and how to
instantiate and execute Python code in parallel.

In the next chapter, we will learn how to prepare a lab environment and explore
automation options to speed up server deployment.



Preparing a Lab Environment

In this chapter, we will set a lab up by using two popular Linux distributions:
CentOS and Ubuntu. CentOS is a community-driven Linux operating system
that targets enterprise servers, and it's known for its compatibility with Red Hat
Enterprise Linux (RHEL). Ubuntu is another Linux distribution that is based
on the famous Debian operating system; it's currently developed by Canonical
Ltd., which provides it with commercial support.

We will also learn how to install both Linux distributions with a free and open
software called Cobbler, which will automatically boot the server with a Linux
image and customize it using the kickstart for CentOS and Anaconda for Debian-
based system.

The following topics will be covered in this chapter:

¢ Getting the Linux operating system
e Creating an automation machine on a hypervisor
e Getting started with Cobbler



Getting the Linux operating system

In the next sections, we are going to create two Linux machines, CentOS and
Ubuntu, on different hypervisors. The machines will serve as the automation

server in our environment.



Downloading CentOS

CentOS binaries can be downloaded through multiple methods. You can
download them directly from multiple FTP servers around the world, or you can
download them as torrents, from people who seed them. Also, CentOS is
available in two flavors:

e Minimal ISO: Provides the basic server, with essential packages
e Everything ISO: Provides the server and all available packages from the
main repositories

First, head to the CentOS project link (https://ww.centos.org/) and click on the Get
CentOS Now button, as shown in the following screenshot:

BOUT ~ COb Y~ DOC IN ~ HELP

The CentOS Project

Then, choose the minimal ISO image, and download it from any available
download site.

CentOS is available for multiple cloud providers, such as Google, Amazon, Azure, and Oracle
Cloud. You can flnd all Of the cloud images At nttps://cloud. centos.org/centos/7/images/.


https://www.centos.org/
https://cloud.centos.org/centos/7/images/

Downloading Ubuntu

Ubuntu is widely known for providing a good desktop experience to end users.
Canonical (the Ubuntu developers) work with many server vendors to certify
Ubuntu on different hardware. Canonical also provide a server version for
Ubuntu, which offers as many features as in 16.04, such as:

Support from Canonical until 2021

Ability to run on all major architectures—x86, x86-64, ARM v7, ARM64,
POWERS, and IBM s390x (LinuxONE)

Support for ZFS, a next generation volume management filesystem ideal
for servers and containers

LXD Linux container hypervisor enhancements, including QoS and
resource controls (CPU, memory, block I/0, and storage quota)
Installation snaps, for simple application installation and release
management.

First production release of DPDK—Iine speed kernel networking

Linux 4.4 kernel and systend service manager

Certification as a guest on AWS, Microsoft Azure, Joyent, IBM, Google
Cloud Platform, and Rackspace

Updates for Tomcat (v8), PostgreSQL (v9.5), Docker v (1.10), Puppet
(v3.8.5), QEMU (v2.5), Libvirt (v1.3.1), LXC (v2.0), MySQL (v5.6), and
more

You can download the Ubuntu LTS by bFOWSiDg tO https://www.ubuntu.com/download/s
erver and choosing Ubuntu 16.04 LTS:


https://www.ubuntu.com/download/server

Ubuntue Cloud | Server | Containers = Desktop | Core | loT | Support = Resources | Downloads

Downloads » Server *  ARM POWERS LinuxONE Provisioning

Download Ubuntu Server

Ubuntu Server 16.04.4 LTS

The long-term support version of Ubuntu Server, including the Mitaka release
of OpenStack and support guaranteed until April 2021 — 64-bit only.

Alternative downloads and torrents »

Ubuntu Server 16.04 release notes &



Creating an automation machine on a
hypervisor

After downloading the ISO files, we will create a Linux machine over VMware
ESXi and KVM hypervisors.



Creating a Linux machine over
VMware ESXi

We will use the VMware vSphere client to create a virtual machine. Log in to
one of the available ESXi servers using root credentials. First, you will need to
upload either the Ubuntu or CentOS ISO to the VMware data store. Then, follow
these steps to create the machine:

1. Right-click on the server name and choose New Virtual Machine:

@ = -wSphere Client _|of x|

File Edit ‘iew Inwentory Administration Plug-ins Help

a b:_% @ Horme: D[E'ﬂ Inventory D@ Inventory

4
& &
B B P e virtual Machine. Ctrl+h i, 5.5.0, 3248547
i 6 Mew Resource Pool.., Ctrl+0 aT_ Wirtual Machings - \ F!.ges.:ﬂJr‘n:E;_'nllﬂiiﬁF_ -:!—_Fier'FurjmanEE;_ k
H B Enter Maintenance Made
Il Rescan for Datastores..,
I PE = er that uses virtualization software, such Virtual Machines
! 2AlE s run virtual machines. Hosts provide the
“[EH  shut Down esources that virtual machines use and
"B Reboot s access to storage and network
I
£ Report Summary... _ _
/ J
] Regiott Pefoimarites. al machine 1o a host by creating a new
g a virtual appliance.
Open in Mew Window...  Chrl+Alt+N s — -
= add a virtual machine is to deploy a |
virtual appliance. A virtual appliance is a pre-built virtual I N
machine with an operating system and software already h S=
inetalled A new virtnial machine will need an nneratinn g o - Bt
< [ v||4 >
Recent Tasks Mame. Target or Status contains: - Clear x
Mame Target Skatus Details Initiated by Requested Start Ti,., = | Start Time Comr
< i
Tasks [roat
5

2. Choose a Custom installation, so that you will have more options during the

installation:



ok W

ﬂjﬂ Create Mew Wirtual Machine ;IEI&

Configuration
Select the configuration for the virbual machine

Configuration

Configur ation
Mame and Location

Storage  Typical

virtual Maching Wersion Create a new virtual machine with the most common devices and configuration options,
Guest Operating Syskem

CFUs * Custom

Memory Create a virtual machine with additional devices or specific configuration options.
Metwiork

SCSI Controller

Select a Disk

Ready to Complete

Help | < Back. | Next = I Cancel

A

Provide a name for the VM: AutomationServer.
Choose the machine version: 8.
Choose the data store on which the machine will be created.

Choose the guest operating system: either Ubuntu Linux (64-bit) or Red
Hat version 6/7:



ﬁi Create Mew Virtual Machine LIEI&

Guest Operating System Wirtual Machine Yersion: &
Specify the guest operating system to use with this wirtual machine

Configuration
Mamne and Location
torage " windows
Yirkual Machine Yersion

Guest Operating System:

Guest Operating System ' Linux

CPUs " Other

ernary :

Metwork Wersion:

SC5I Controller Ubunty Lin (64-bit)

Select a Disk

Ready ko Complete Identifying the guest operating system here allows the wizard to provide the appropriate defaulks for

the operating system installation,

Help | < Back | Mext = I Cancel |

Y

7. The VM specification shouldn't have less than 2 vCPU and 4 GB RAM, in
order to have efficient performance. Select them in the CPU and Memory
tabs respectively.

8. In the Network tab, select two interfaces with E1000 adapters. One of these
interfaces will connect to the internet, and the second interface will manage
the clients:



4 Create Mews Virtual Machine 8 | ﬁ

Network Yirtual Machine Yersion: &
which network connections will be used by the virtual machine?

Configuration Create Metwork Connections

Mame and Location

Storage Haa miany NICs do you want to connect? 2 -
Wirkual Machine Yersion

Guest Operating System Connect ab
CPUs Metwork Adapter Power On

Memaory.
Neforie MIC 1 [Internet | |eto00 =] M
] - v

SC5I Contraller MIC 2: |
Select a Disk
Ready to Complete

il If supported by this virtual machine version, more than 4 NICs can be added after the
wirtual machine is created, via its Edit Settings dialog.

Adapter choice can affect both networking performance and migration compatibility . Consult
the YMware KnowledgeBase for more information on choosing amaong the network adapters
suppatted For various guest operating swstems and hasts.,

Help | < Back | Mext = I Cancel |

4

9. Choose the default SCSI controller for the system. In my case, it will be
LSI logical parallel.
10. Select a Create a new virtual disk and provide 20 GB as the disk size for the
VM.

11. Now the virtual machine is ready, and you can start the Linux OS
installation. Associate the uploaded image to the CD/DVD drive, and make
sure that the Connect at power on option is selected:



@ AutornationServer - Virtual Machine Properties

Hardware lOptions ] Resources

[ Show &ll Devices add... Remove
Hardware SUMmImary

Bl Memory (edited) 4096 MB

@ crus 1

|;| Yideo card Yideo card

= YMCI device Restricted

@ 351 controller 0 LSI Logic Parallel

% CD/D¥D drive 1 (edited) [datastorel] ISO Ro...
&= Harddisk 1 Wirkual Disk,

Floppy drive 1 Client Device

E@ Network adapter 1 (edite..  Internet

B3 Network adapter 2 {edite..  networkl

MEE

Yirtual Machine Yersion: &
Device Status
-

v Conmect ak power on

Device Type
" Client Device

™ Host Dewice
| =

[+ Datastore 150 File
|[datast0rel] 150 Roomjubuntu-16,0- Browse, ..

Mode
~

el

Wirtual Device Mode
& |10E (1:0) COfoVD drive 1 |

Help

Once it starts running, you will be asked to choose a language:



) AutomationServer on localhostlocaldomain

File Wiews VA

DIy & B

W B @ W

Language

Amharic
Arabic
Asturianu
Benapyckas
EBArapCKm
Bengali
Tibetan
Bosanskl
Catald
Cestina
Dansk
Deutsch
Dzaongkha
ExAnULEN

Esperanta
Espafiol
Eesti
Euzkara
3l
Suomi

Francais
Gaeilge
Galego
Gujarati
nay
Hindi
Hruatski
Magyar
Bahasa Indonesia
Islenska
Italiano
BERE
Jobmymo
kazak
Khmer
FS " In
st=204
kurdi
Lao
LietuwiZkal
Latviski

MakeaoHCkn Tamil
Malavalam 5 evaRa
Harathi Thai
Burmese

MNepali

Mederlands

Norsk bokmal
Horsk nynorsk
Punjabi (Gurmukhi)
Polski

Portugués do Brasil
Fortugués

Romana

Py CCKMA
Samegillii
AR T
Sloventing
Slovenscina

Shoip

CPMcKW

Svenska

Tagalog
Tlrkge
Uughur
YEpalHChKa
TiBng wist
HSZ(RT 44
HIST(ZER)

Complete the CentOS/Ubuntu installation steps as usual.

=10] %]




Creating a Linux machine over KVM

We will use the virt-manager utility, available in KVM, to launch the desktop
administration for KVM. We will then create a new VM:

1. Here, we will choose the installation method as Local install media (ISO
image or CDROM):

New VM ®
m Create a new virtual machine

Connection: QEMU/KVM

Choose how you would like to install the operating system
O Local install media (ISO image or COROM)
Network Install (HTTP, FTP, or NFS)
Network Boot (PXE)
Import existing disk image

~ Architecture options

Architecture: x86_64 3

Cancel Forward

2. Then, we will click on Browse and choose the previously downloaded
image (CentOS or Ubuntu). You will notice that the KVM successfully

detects the OS type and version:

New VM
m Create a new virtual machine
— Step20of5

Locate your install media
Use CDROM or DVD

©Use ISO image:
~  Browse...

@ Automatically detect operating system based on install media

05 type: -
Version: -

Choose Storage Volume [ ]

_ Size: 539.08 GiB Free / 392.31 GiB In Use
 ctory Location: /media/bassim/DATA/ISO_Room
server-170321-14-17-08 | yolumes < & | %

ectory
Volumes

Cent05-6.9-x86_64-minimali.iso
CentOS-7-x86_64-Minimal-1708.is0
contrail-install-packages_3.2.0.0-19-ubuntu-14-04mit:
distribution.vtn-coordinator-6.5.1-bin.tar.bz2

® Browse Local Cancel Choose Volume

3. Then, we will choose the machine specifications in terms of CPUs,
memory, and storage:



New VM [ ]

m Create a new virtual machine

Choose Memory and CPU settings
Memory (RAM): 2048 - + MiB
Up to 15910 MiB available on the host
CPUs: 2l -+
Up to 8 available

Cancel Back Forward

4. Choose the appropriate storage space for your machine:

New VM o

m Create a new virtual machine

B Enable storage for this virtual machine
O Create a disk image For the virtual machine
o0 - + GiB
539.1 GiB available in the default location

Select or create custom storage

Cancel Back Forward

5. The final step is to choose a name, and then click on the Customize
Configuration before install option, in order to add an additional network
interface to the automation server. Then, click on Finish:

New VM ®

m Create a new virtual machine

Ready to begin the installation
Name: AutomationServer
0S: CentOS 7.0
Install: Local CDROM/ISO
Memory: 2048 MiB
CPUs: 2
Storage: 45.0 GiB .../DATA/ISO_Room/centos7.0.qcow2
@ Customize configuration before install

~ Network selection
Virtual network 'NAT_NW' : NAT to wlp61s0 »

Cancel Back Finish

Another window is open, which contains all of the specs for the machine. Click
on Add Hardware, then choose the Network:



AutomationServer on QEMU/KVM @

< Begin Installation & Cancel Installation

B Overview

{3 cPus

== Memory

i BootOptions
Ll Virtlo Disk 1

) IDECDROM 1

¥ Tablet

E Display Spice

B sound:iché

@ Console

& Channel gemu-ga
s Channel spice
H Video QXL

¥ controller USB
@ USB Redirector 1
d}. USB Redirector 2

Add Hardware

Virtual Network Interface
Network source: Virtual network 'NAT_NW': NAT to wlp61s0 b2
Device model: virtio ~
MAC address: 52:54:00:0d:73:5F

Remove

We will add another network interface to communicate with the clients. The first
network interface is using NAT to connect to the internet through the physical
[ ]

wireless NIC:

Add New Virtual Hardware
[l Storage

® Controller

Network source: Virtual network 'vmnet10': Isolated network, internal and host routing only ~

{4 Input MAC address: 52:54:00:71:02:f8
B Graphics

& Sound

# Serial

# Parallel

# Console

# Channel

@ USBHost Device
@ PClHost Device
B Video

™ Watchdog

i Filesystem

@ Smartcard

@ USB Redirection
O TPM

= RNG

@ Panic Notifier

Device model:  Hypervisor defaull  ~

Cancel Finish

Finally, click on Begin Installation on the main window so that the KVM will
start allocating the hard disk and attaching the ISO image to the virtual machine:



AutomationServer on QEMU/KVM

< Begin Installation & Cancel Installation

B Overview Virtual Network Interface
L3 cpPus Network source: Virtual network 'NAT_NW': NAT to wlp61s0 ~
8 Memory, ) Device model: virtio -
Boot Options
L irtio Disk 1 MAC address: 52:54:00:0d:73:5F
{4 IDECDROM 1
Creating Virtual Machine
NIC:71:02:f8 -, The virtual machine is now being created. Allocation of disk
& Tablet { 7 ) storage and retrieval of the installation images may take a

8 Display Spice =5 few minutes to complete.

B sound:iche

= Console Allocating 'AutomationServer.gcow2'
= Channel gemu-ga

= Channel spice

E video QXL

B Ccontroller use

§ usB Redirector 1

§ UsB Redirector2

Add Hardware Remove

Once it has finished, you will see the following screen:
AutomationServer on QEMU/KVM

File Virtual Machine View SendKey

o =
E tull o =

Install CentOS 7
Test this media & install CentO0S 7

Troubleshoot ing

> vmlinuz initrd=initrd.img inst.stageZ=hd:LABEL=CentOS\x207\x20xB6_64 rd.live
.check net.ifnames=0 biosdevname=0 quiet

Complete the CentOS/Ubuntu installation steps as usual.



Getting started with Cobbler

Cobbler is a piece of open source software, used for unattended network-based
installation. It leverages multiple tools, such as DHCP, FTP, PXE, and other
open source tools (we will explain them later), so that you will have a one-stop
shop for automating the OS installation. The target machine (bare metal or a
virtual machine) has to support booting from a network on its network interface
card (NIC). This function enables the machine to send a DHCP request that hits
the Cobbler server, which will take care of the rest.

You can read more about the project on its GitHub page (https://github.com/cobbler
/cobbler).


https://github.com/cobbler/cobbler

Understanding how Cobbler works

Cobbler depends on multiple tools to provide the Preboot eXecution
Environment (PXE) functionality to clients. First, it depends on the DHCP
service that receives the DHCP broadcast message from the client upon
powering on; then, it replies with an IP address, a subnet mask, the next server
(TFTP), and finally, the pxeLinux.e, which is the loader filename that the client is
requesting when it initially sends the DHCP message to the server.

The second tool is the TFTP server that hosts pxeLinux.e and different distribution
images.

The third tool is the template rendering utility. Cobbler uses cheetah, which is an
open source template engine developed in Python and has its own DSL (domain
specific language) format. We will use it to generate the kickstart files.

Kickstart files are used to automate the installation of Red Hat based
distributions, like CentOS, Red Hat, and Fedora. It also has limited support for
rendering the anaconda files used for installing Debian-based systems.

There are also additional tools. reposync is used to mirror an online repository
from the internet to a local directory inside of Cobbler, making it available to the
client. ipmitools remotely manages powering different server hardware on and off:

Webui(Django)

reposync

distros
profiles
y stems powertools

Objects DB Kickstart Templates

Cobbler




In the following topology, Cobbler is hosted on the automation server installed
previously, and will connect to a couple of servers. We will install Ubuntu and
Red Hat on them, through Cobbler. The automation server has another interface
that connects directly to the internet, in order to download some additional
packages that are required by Cobbler, as we will see in the next section:

®

Server2

Automation Server

Server IP Address

Automation Server (with cobbler
installed)

10.10.10.130

Serverl (CentOS Machine) IP from range 10.10.10.5-10.10.10.10

Server 2 (Ubuntu Machine) IP from range 10.10.10.5-10.10.10.10




Installing Cobbler on an automation
server

We will start by installing some essential packages, such as vim, tcpudump , wget,
and net-tools, on our automation server (either CentOS or Ubuntu). Then, we will
install the cobbier package from the epe1 repository. Please note that these
packages are not required for Cobbler, but we will use them to understand how
Cobbler really works.

For CentOS, use the following command:

| yum install vim vim-enhanced tcpdump net-tools wget git -y

For Ubuntu, use the following command:

| sudo apt install vim tcpdump net-tools wget git -y

Then, we need to disable the firewall. Cobbler doesn't play well with SELinux
policies, and it's recommended to disable it, especially if you are unfamiliar with
them. Also, we will disable iptables and rirewalld, Since we are in a lab, not
production.

For CentOS, use the following command:

# Disable firewalld service
systemctl disable firewalld
systemctl stop firewalld

# Disable IPTables service
systemctl disable iptables.service
systemctl stop iptables.service

# Set SELinux to permissive instead of enforcing
sed -i s/ASELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

For Ubuntu, use the following command:

# Disable ufw service
sudo ufw disable

# Disable IPTables service
sudo iptables-save > $HOME/BeforeCobbler. txt



sudo iptables -X

sudo iptables -t nat -F

sudo iptables -t nat -X

sudo iptables -t mangle -F

sudo iptables -t mangle -X

sudo iptables -P INPUT ACCEPT
sudo iptables -P FORWARD ACCEPT
sudo iptables -P OUTPUT ACCEPT

# Set SELinux to permissive instead of enforcing
sed -i s/ASELinux=.*$/SELinux=permissive/ /etc/seLinux/config
setenforce 0

Finally, reboot the automation server machine for the changes to take effect:

| reboot

Now, we will install the cobbier package. The software is available in the epe1
repository (but we need to install it first) in the case of CentOS. Ubuntu doesn't
have the software available in upstream repositories, so we will download the
source code and compile it on the platform.

For CentOS, use the following command:

# Download and Install EPEL Repo
yum install epel-release -y

# Install Cobbler
yum install cobbler -y

#Install cobbler Web UI and other dependencies
yum install cobbler-web dnsmasq fence-agents bind xinetd pykickstart -y

The current version of Cobbler, at the time of writing this book, is 2.8.2, which
was released on September 16, 2017. For Ubuntu, we will clone the latest
package from the GIT repository and build it from the source:

#install the dependencies as stated in (http://cobbler.github.io/manuals/2.8.0/2/1_-
_Prerequisites.html)

sudo apt-get install createrepo apache2 mkisofs libapache2-mod-wsgi mod_ssl python-
cheetah python-netaddr python-simplejson python-urlgrabber python-yaml rsync sysLinux
atftpd yum-utils make python-dev python-setuptools python-django -y

#Clone the cobbler 2.8 from the github to your server (require internet)
git clone https://github.com/cobbler/cobbler.git
cd cobbler

#Checkout the release28 (latest as the developing of this book)
git checkout release28

#Build the cobbler core package
make install




#Build cobbler web
make webtest

After successfully installing Cobbler on our machine, we will need to customize
it to change the default settings to adapt to our network environment. We will
need to change the following:

e Choose either the bind or dnsmasq module to manage DNS queries

e Choose either the isc or dnsmaasq module to serve incoming DHCP requests
from clients

e Configure the TFTP Cobbler IP address (it will usually be a static address in
Linux).

e Provide the DHCP range that serves the clients

e Restart the services to apply the configuration

Let's take a step-by-step look at the configuration:

1. Choose dnsmasq as the DNS server:

vim /etc/cobbler/modules.conf
[dns]

module = manage_dnsmasq

vim /etc/cobbler/settings
manage_dns: 1

restart_dns: 1

2. Choose dnsmasq for managing the DHCP service:

vim /etc/cobbler/modules.conf

[dhcp]

module = manage_dnsmasq
vim /etc/cobbler/settings
manage_dhcp: 1
restart_dhcp: 1

3. Configure the Cobbler IP address as the TFTP server:

vim /etc/cobbler/settings
server: 10.10.10.130
next_server: 10.10.10.130

vim /etc/xinetd.d/tftp
disable = no

Also, enable PXE boot loop prevention by setting the pxe_just_once t0 o:

pxe_just_once: 0



4. Add the client dhcp-range in the dnsmasq service template:

vim /etc/cobbler/dnsmasq.template
dhcp-range=10.160.10.5,10.10.10.10,255.255.255.0

Note the line that SAyS dhcp-option=66, $next_server. This means that Cobbler
will pass next_server, previously configured in the settings as the TFTP
boot server, to any clients requesting an IP address through the DHCP
service provided by dnsmasg.

5. Enable and restart the services:

systemctl enable cobblerd
systemctl enable httpd
systemctl enable dnsmasq

systemctl start cobblerd
systemctl start httpd
systemctl start dnsmasq



Provisioning servers through Cobbler

We are now a few steps away from having our first server up and running
through Cobbler. Basically, we need to tell Cobbler our clients' MAC addresses
and which operating systems they have:

1. Import the Linux ISO. Cobbler will automatically analyze the image and
create a profile for it:

cobbler import --arch=x86_64 --path=/mnt/cobbler_images --name=Cent0S-7-x86_64-
Minimal-1708

task started: 2018-03-28_132623_import

task started (id=Media import, time=Wed Mar 28 13:26:23 2018)

Found a candidate signature: breed=redhat, version=rhelé

Found a candidate signature: breed=redhat, version=rhel?7

Found a matching signature: breed=redhat, version=rhel?7

Adding distros from path /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-
1708-x86_64:

creating new distro: Cent0S-7-Minimal-1708-x86_64

trying symlink: /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-x86_64
-> /var/www/cobbler/links/Cent0S-7-Minimal-1708-x86_64

creating new profile: Cent0S-7-Minimal-1708-x86_64

associating repos

checking for rsync repo(s)

checking for rhn repo(s)

checking for yum repo(s)

starting descent into /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-
x86_64 for Cent0S-7-Minimal-1708-x86_64

processing repo at : /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-

X86_64
need to process repo/comps: /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-
1708-x86_64

looking for /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-
x86_64/repodata/*comps*.xml

Keeping repodata as-is :/var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-
1708-x86_64/repodata

*** TASK COMPLETE ***

9 You may need to mount the Linux ISO image before importing it to a mount point, by using

mount -0 loop /root/<image_iso> /mnt/cobbler_images/.

You can run the cobbier profile report command to check the created

profile:
cobbler profile report
Name : Cent0S-7-Minimal-1708-x86_64
TFTP Boot Files : {3
Comment :

DHCP Tag : default



Distribution : Cent0S-7-Minimal-1708-x86_64

Enable gPXE? : 0

Enable PXE Menu? 1

Fetchable Files : {3

Kernel Options : {3

Kernel Options (Post Install) : {}
Kickstart : /var/lib/cobbler/kickstarts/sample_end.ks
Kickstart Metadata : {3
Management Classes |
Management Parameters ! <<inherit>>
Name Servers |

Name Servers Search Path :[1]

owners : ['admin']

Parent Profile
Internal proxy

Red Hat Management Key ! <<inherit>>
Red Hat Management Server ! <<inherit>>
Repos |

Server Override ! <<inherit>>
Template Files : {3

Virt Auto Boot 1

Virt Bridge : xenbro

virt CPUs 1

virt Disk Driver Type Ioraw

Virt File Size(GB) : 5

virt Path :

Virt RAM (MB) ! 512

virt Type : kvm

You can see that the import command filled many fields automatically,
such as kickstart, RAM, operating system, and the initrd/kernel file locations.

2. Add any additional repositories to the profile (optional):

cobbler repo add --mirror=https://dl.fedoraproject.org/pub/epel/7/x86_64/ --
name=epel-local --priority=50 --arch=x86_64 --breed=yum

cobbler reposync

Now, edit the profile, and add the created repository to the list of
available repositories:

| cobbler profile edit --name=Cent0S-7-Minimal-1708-x86_64 --repos="epel-local"

3. Add a client MAC address and link it to the created profile:

cobbler system add --name=centos_client --profile=Cent0S-7-Minimal-1708-x86_64
--mac=00:0c:29:4c:71:7c --ip-address=10.10.10.5 --subnet=255.255.255.0 --
static=1 --hostname=centos-client --gateway=10.10.10.1 --name-servers=8.8.8.8
--interface=etho

The --nostname field corresponds to the local system name and configures the
client networking using the --ip-address, --subnet, and --gateway options. This will
make Cobbler generate a kickstart file with these options.



If you need to customize the server and add additional packages, configure
firewall, ntp, and configure partitions and hard disk layout then you can add
these settings to the kickstart file. Cobbler provide sample file under
/var/lib/cobbler/kickstarts/sample.ks, which you can copy to another folder and
provide in the --kickstart parameter in the previous command.

&

You can integrate Ansible inside the kickstart file by running Ansible in pull mode (instead the
default push mode). Ansible will download the playbook from an online GIT repository (such
as GitHub or GitLab) and will execute it after that.

4. Instruct Cobbler to generate the configuration files required to serve our

client and to update the internal database with the new information by using

the following commands:

#cobbler sync

task started: 2018-03-28_141922 sync

task started (id=Sync, time=Wed Mar 28 14:19:22 2018)

running pre-sync triggers

cleaning trees

removing: /var/www/cobbler/images/Cent0S-7-Minimal-1708-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server-x86_64
removing: /var/www/cobbler/images/Ubuntu_Server -hwe-x86_64
removing: /var/lib/tftpboot/pxeLinux.cfg/default

removing: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c
removing: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C
removing: /var/lib/tftpboot/grub/efidefault

removing: /var/lib/tftpboot/grub/grub-x86_64.efi

removing: /var/lib/tftpboot/grub/images

removing: /var/lib/tftpboot/grub/grub-x86.efi

removing: /var/lib/tftpboot/images/Cent0S-7-Minimal-1708-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-x86_64
removing: /var/lib/tftpboot/images/Ubuntu_Server-hwe-x86_64
removing: /var/lib/tftpboot/s390x/profile_list

copying bootloaders

trying hardlink /var/lib/cobbler/loaders/grub-x86_64.efi ->
/var/1lib/tftpboot/grub/grub-x86_64.efi

trying hardlink /var/lib/cobbler/loaders/grub-x86.efi ->
/var/1lib/tftpboot/grub/grub-x86.efi

copying distros to tftpboot

copying files for distro: Ubuntu_Server-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/Linux ->
/var/1lib/tftpboot/images/Ubuntu_Server-x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz ->
/var/1lib/tftpboot/images/Ubuntu_Server-x86_64/initrd.gz
copying files for distro: Ubuntu_Server-hwe-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-

netboot/ubuntu-installer/amd64/Linux -> /var/lib/tftpboot/images/Ubuntu_Server -

hwe -x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-
netboot/ubuntu-installer/amd64/initrd.gz ->
/var/1lib/tftpboot/images/Ubuntu_Server-hwe-x86_64/initrd.gz

copying files for distro: Cent0S-7-Minimal-1708-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-



x86_64/images/pxeboot/vmlinuz -> /var/lib/tftpboot/images/Cent0S-7-Minimal-
1708-x86_64/vmlinuz

trying hardlink /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-
x86_64/images/pxeboot/initrd.img -> /var/lib/tftpboot/images/Cent0S-7-Minimal-
1708-x86_64/initrd.img

copying images

generating PXE configuration files

generating: /var/lib/tftpboot/pxeLinux.cfg/01-00-0c-29-4c-71-7c

generating: /var/lib/tftpboot/grub/01-00-0C-29-4C-71-7C

generating PXE menu structure

copying files for distro: Ubuntu_Server-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/Linux ->
/var/www/cobbler/images/Ubuntu_Server-x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-
x86_64/install/netboot/ubuntu-installer/amd64/initrd.gz ->
/var/www/cobbler/images/Ubuntu_Server-x86_64/initrd.gz

Writing template files for Ubuntu_Server-x86_64

copying files for distro: Ubuntu_Server-hwe-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-
netboot/ubuntu-installer/amd64/Linux -> /var/www/cobbler/images/Ubuntu_Server -
hwe -x86_64/Linux

trying hardlink /var/www/cobbler/ks_mirror/Ubuntu_Server-x86_64/install/hwe-
netboot/ubuntu-installer/amd6é4/initrd.gz ->
/var/www/cobbler/images/Ubuntu_Server-hwe-x86_64/initrd.gz

Writing template files for Ubuntu_Server-hwe-x86_64

copying files for distro: Cent0S-7-Minimal-1708-x86_64

trying hardlink /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-
x86_64/images/pxeboot/vmlinuz -> /var/www/cobbler/images/Cent0S-7-Minimal-1708-
x86_64/vmlinuz

trying hardlink /var/www/cobbler/ks_mirror/Cent0S-7-x86_64-Minimal-1708-
x86_64/images/pxeboot/initrd.img -> /var/www/cobbler/images/Cent0S-7-Minimal-
1708-x86_64/initrd.img

Writing template files for Cent0S-7-Minimal-1708-x86_64

rendering DHCP files

rendering DNS files

rendering TFTPD files

generating /etc/xinetd.d/tftp

processing boot_files for distro: Ubuntu_Server-x86_64

processing boot_files for distro: Ubuntu_Server-hwe-x86_64

processing boot_files for distro: Cent0S-7-Minimal-1708-x86_64

cleaning link caches

running post-sync triggers

running python triggers from /var/lib/cobbler/triggers/sync/post/*

running python trigger cobbler.modules.sync_post_restart_services

running: service dnsmasq restart

received on stdout:

received on stderr: Redirecting to /bin/systemctl restart dnsmasq.service

running shell triggers from /var/lib/cobbler/triggers/sync/post/*
running python triggers from /var/lib/cobbler/triggers/change/*
running python trigger cobbler.modules.scm_track

running shell triggers from /var/lib/cobbler/triggers/change/*
*** TASK COMPLETE ***

Once you have started the CentOS client, you will notice that it goes to the PXE
process and sends a DHCP message over pxe_network. Cobbler will respond with
an IP address, a pxeLinuxo file, and the required image assigned to that MAC
address:



=1

il Cobbler_CentDS_Test on localhostlocaldormain

File iewr WhA
- @@ @R @

LIENT MAC ADDR: @88 aC 29 4C 71 7C GUID: 564D618D0-AB19-6E17-B5F8-321a5F4C717C
LIENT IP: 18.18.18.7 MASRK: 255.255.255.8 DHCPF IP: 18.168.16.138
ATEWAY IFP: 18.1@8.18. 138

(C) 1994-2818 H. Peter Anvin et al
A

PXELINUX 3.86 2818-6d4-81 Copuright
*PXE entry point found (we hope) at S9ES5:8186 via plan
HNDI code segrment at 9ES5 len BBDE

HDI data segrment at 98FF len 5968

etting cached packet 81 82 a3

v IP address seems to be BABABABT 168.18.18.7
ip=18.18.168.7:168.168.168.1368:18. 18. 18.138:255. 255.255.8

pxelinux.cfg-564d618d—-abl19-6el17-b5 "~
pxelinux.cfg-81-88-B8c-29-4c-71-7c u=.
Loading ~images-Centl5-7-Minimal-1788-=x86_64-vmlin.

After Cobbler finishes the CentOS installation, you will see the hostname
correctly configured in the machine:

i) Cobbler_CentOs Test on localhost.localdamain i ﬁ

File  ‘Wiew Wi

mnp G B &R DR

ent03 Linux 7 (Core)
Kernel 3.18.8-693.e17.xB6_64 on an xB6_64

entos-client login: _

You can go through the same steps for an Ubuntu machine.



Summary

In this chapter, you learned how to prepare a lab environment by installing two
Linux machines (CentOS and Ubuntu) over a hypervisor. We then explored
automation options, and sped up server deployment by installing Cobbler.

In the next chapter, you will learn how to send commands from a Python script
directly to an operating system shell and investigate the output returned.



Using the Subprocess Module

Running and spawning a new system process can be useful to system
administrators who want to automate specific operating system tasks or execute
a few commands within their scripts. Python provides many libraries to call
external system utilities, and it interacts with the data produced. The first library
that was created is the os module, which provides some useful tools to invoke
external processes, such as os.system, os.spwan, and os.popen*. It lacks some essential
functions, however, so Python developers have introduced a new library,
subprocess, which can spawn new processes, send and receive from the processes,
and handle error and return codes. Currently, the official Python documentation
recommends the subprocess module for accessing system commands, and Python
actually intends to replace the older modules with it.

The following topics will be covered in this chapter:

e The popen() Subprocess
L Reading stdin, stdout, and stderr
e The subprocess call suite



The popen() subprocess

The subprocess module implements only one class: popen(). The primary use of this
class is to spawn a new process on the system. This class can accept additional
arguments for the running process, along with additional arguments for popen()
itself:

Arguments Meaning

args A string, or a sequence of program arguments.

It is supplied as the buffering argument to the open()

bufsize function when creating the stdin/stdout/stderr pipe file
objects.
executable A replacement program to execute.
These specify the executed program's standard input,
z:g;?’r stdout, standard output, and standard error file handles,

respectively.

If true, the command will be executed through the shell
shell (the default is raise). In Linux, this means calling the
/bin/sh before running the child process.

cwd Sets the current directory before the child is executed.

env Defines the environmental variables for the new process.

Now, let us focus on args. The popen() command can take a Python list as an
input, with the first element treated as the command and the subsequent elements
as the command args, as shown in the following code snippet:

import subprocess
print(subprocess.Popen("ifconfig"))

Script output




Python Console - DevNet e
Django Console £

<subprocess.Popen object at @x7fb
docker@: flags=4163<UP,BROADCAST,
inet 172.17.0.1 netmask 2
inet6 fe80::42:doff:fe29:325¢ ixlen 64 scopeid 0x20<link>
ether 02:42:d0:29:32:54 X 0 (Ethernet)
RX packets 23 bytes 1854 3 KB)
RX errors © dropped 0

~ ¥ X

19
R

frame ©

i
G

0
TX packets 248 bytes 324 2.4 KB)

z ® carrier @ collisions ©
+

: flags=4099<UP,BROADCAST ,MULTICAST> mtu 1500
ether d4:81:d7:cb:b7:1e txqueuelen 1000 (Ethernet)

DY narlate A hutaes A A A RY

The Ol}[put returned from the command is printed directly to your Python

Terminal.

The ifconfig is a Linux utility used to return the network interface information. For Windows
users, you can get similar output by using the ipconfig command on cmd.

We can rewrite the preceding code and use a list instead of a string, as seen in
the following code snippet:

| print(subprocess.Popen(["ifconfig"]))

Using this approach allows you to add additional arguments to the main
command as list items:

print(subprocess.Popen(["sudo", "ifconfig", "enp66s0:0", "10.10.10.2", "netmask",
"255,255.255.0", "up"]))

enp60s0:0: flags=4099<UP, BROADCAST, MULTICAST> mtu 1500
inet 10.10.10.2 netmask 255.255.255.0 broadcast 10.10.10.255
ether d4:81:d7:cb:b7:1e txqueuelen 1000 (Ethernet)
device interrupt 16

Note that if you provide the previous command as a string not as a list, as we did in the first
0 example, the command will fail as shown in below screenshot. The subprocess ropen() expects
an executable name in each list element and not any other arguments.

Python Console - DevNet oo
Django Console -
< B )0 subprocess

v X

6] o
)

B 8

* %




On the other hand, if you want to use the string method instead of a list, you can
set the she11 argument to True. This will instruct popen() to append /bin/sh before
the command; hence, the command will be executed with all of the arguments
after it:

print(subprocess.Popen("sudo ifconfig enp60s0:0 10.10.10.2 netmask 255.255.255.0 up",
shell=True))

You can think about she11=True as you spawn a shell process and pass the
command with an argument to it. This could save you a few lines of code
through using sp1it(), in case you receive the command from an external system
and want to run it directly.

The default shell used by subprocess is /binssh. If you're using other shells, like tch or csh, you
can define them in the executabie argument. Also notice running the command as a shell can be
a security issue and allow security injection. A user who instructs your code to run the script
can add "; rm -rf +" and cause terrible things to happen.

Also, you can change the directory to a specific one before running the
command by using the cwd argument. This is useful when you need to list the
contents of the directory before operating on it:

import subprocess

print(subprocess.Popen(["cat", "interfaces"], cwd="/etc/network"))
Python Console - DevNet N ]

Django Console
Iell<subprocess.Popen object at 0x7fb97f86fe10>

# interfaces(5) file used by ifup(8) and ifdown(8)
pg:uto lo

iface lo inet loopback

address 10.10.88.1
netmask 255.255.255.0

Ansible has a similar flag called chair:. This argument will be used inside a playbook task to
change a directory before the execution.



Reading stdin, stdout, and stderr

The spawned processes can communicate with the operating system in three
channels:

1. Standard input (stdin)
2. Standard output (stdout)
3. Standard error (stderr)

In subprocess, popen() can interact with the three channels and redirect each
stream to an external file, or to a special value called r1re. An additional method,
called communicate(), is used to read from the stdout and write on the stdin. The
communicate() method can take input from the user and return both the standard
output and the standard error, as shown in the following code snippet:

import subprocess

p = subprocess.Popen(["ping", "8.8.8.8", "-c", "3"], stdin=subprocess.PIPE,
stdout=subprocess.PIPE)

stdout, stderr = p.communicate()

print("""==========The Standard Output is==========

{a""".format(stdout))

print("""==========The Standard Error is==========
{3""".format(stderr))

Django Console - L

=%

ard Output 1is
8) 56(84) by
icmp_seq=1 ttl=44 ti
: icmp_seq=2 ttl=44 time=3
: icmp_seq=3 ttl=44 time=38

- 8.8.8.8 ping statistics ---

BEY Y X

packets transmitted, 3 received, 0% packet loss, time 2002ms
Elrtt min/avg/max/mdev = 187.616/311.172/380.608/87.592 ms

Similarly, you can send data and write to the process using the input argument
inside communicate().

import subprocess

p = subprocess.Popen(["grep", "subprocess"], stdout=subprocess.PIPE,
stdin=subprocess.PIPE)

stdout, stderr = p.communicate(input=b"welcome to subprocess module\nthis line is a new
line and doesnot contain the require string")



print("""==========The Standard Output is==========
{3""".format(stdout))

print("""==========The Standard Error is==========
{a""".format(stderr))

In the script, we used the input argument inside communicate(),which will send the
data to the other child process, which will search for the subprocess keyword
using the grep command. The returned output will be stored inside the stdout
variable:

Python Console - DevNet L N J

Django Console % L
. stdout,stderr

wwn_

::i }t*””.form

won_

~-? }t”””.form

The Standard Output 1is
lcome to subprocess module

Another approach to validate the successful execution of the process is to use the
return code. When the command has successfully executed without errors, the
return code will be o; otherwise, it will be an integer value larger than e:

import subprocess

def ping_destination(ip):
p = subprocess.Popen(['ping', '-c', '3'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = p.communicate(input=ip)
if p.returncode == 0:
print("Host is alive")
return True, stdout
else:
print("Host is down")
return False, stderr

while True:
print(ping_destination(raw_input("Please enter the host:")))

The script will ask the user to enter an IP address, and will then call the
ping_destination() function, which will execute the ping command against the IP
address. The result of the ping command (either success Or failed) will return in the



standard output, and the communicate() function will populate the return code with
the result:

Python Console - DevNet oe
Django Console v
False, stderr

True:
print(ping_destination(raw_input("Please enter the host:"

lease enter the host:>?
st is alive

Ell(True, 'PING 8.8.8. 8.8.8.8) 56(84) bytes of data.\n64 bytes from 8.8.8.8: icmp_seg=1 t
FllPlease enter the host:>? HostNotExist
ffllHost 1s down

(False, 'ping: HostNotExist: Name or service not known\n')

Please enter the host:

First, we tested the Google DNS IP address. The host is alive, and the command
will be successfully executed with the return code =e. The function will return
True and print Host is alive. Second, we tested with the Hostnotexist string. The
function will return raise to the main program and print Host is down. Also, it will
print the command standard output returned to subprocess which is (name or

service not known).

You can use echo $» to check the return code (sometimes called the exit code) of the previously
executed command.



The subprocess call suite

The subprocess module provides another function that makes process spawning
a safer operation than using ropen(). The subprocess ca11() function waits for the
called command/program to finish reading the output. It supports the same
arguments as the popen() constructor, such as sheii, executable, and cwd, but this
time, your script will wait for the program to complete and populate the return
code without the need to communicate().

If you inspect the ca11() function, you will see that it's actually a wrapper around
the popen() class, but with a wait() function that waits until the end of the
command before returning the output:

(*popenargs, **kwargs).wait()

import subprocess
subprocess.call(["ifconfig", "docker®"], stdout=subprocess.PIPE, stderr=None,
shell=False)

If you want more protection for your code, you can use the check_cal1() function.
It's the same as ca11(), but adds another check to the return code. If it is equal to o
(meaning that the command has successfully executed), then the output will be
returned. Otherwise, it will raise an exception with the returned exit code. This
will allow you to handle the exception in your program flow:

import subprocess

try:
result = subprocess.check_call(["ping", "HostNotExist", "-c", "3"])
except subprocess.CalledProcessError:
print("Host is not found")
0 A downside of using the ca11¢) function is that you can't use communicate() to send the data to

process, like we did with popen().



Summary

In this chapter, we learned how to run and spawn new processes in the system,
and we learned about how these spawned processes communicate with the
operating system. We also discussed the subprocess module and the subprocess

call.

In the next chapter, we will see how to run and execute commands on remote
hosts.



Running System Administration
Tasks with Fabric

In the previous chapter, we used the subprocess module to run and spawn a system
process inside the machine that hosted our Python script, and to return the output
back to the Terminal. However, many automation tasks require access to remote
servers to execute commands, which is not easy to do using a sub-process. This
becomes a piece of cake with the use of another Python module: rabric. The
library makes connections to remote hosts and executes different tasks, such as
uploading and downloading files, running commands with specific user IDs, and
prompting users for input. The rabric Python module is a robust tool for
administrating dozens of Linux machines from a central point.

The following topics will be covered in this chapter:

e What is Fabric?
e Executing your first Fabric file
e Other useful Fabric features



Technical requirements

The following tools should be installed and available in your environment:

e Python 2.7.1x.

e PyCharm Community or Pro Edition.

e EVE-NG topology. Please refer to Chapter 8, Preparing a Lab
Environment, for how to install and configure system servers.

You can find the full scripts developed in this chapter at the following GitHub
URL: https://github.com/TheNetworker/EnterpriseAutomation.git.


https://github.com/TheNetworker/EnterpriseAutomation.git

What is Fabric?

Fabric (http://www.fabfile.org/) is a high-level Python library that is used to
connect to remote servers (through the paramiko library) and execute predefined
tasks on them. It runs a tool called fab on the machine that hosts the fabric
module. This tool will look for a fabfile.py file, located in the same directory that
you run the tool in. The rabfile.py file contains your tasks, defined as a Python
function that is called from the command line to start the execution on the
servers. The Fabric tasks themselves are just normal Python functions, but they
contain special methods that are used to execute commands on remote servers.
Also, at the beginning of fabfiie.py, you need to define some environmental
variables, such as the remote hosts, username, password, and any other variables
needed during execution:

env.hosts J
env.user

env.password I

def task1()

cScoH

def task2()

def task3()

FabFile.py

ceH.

I AutomationServer I



http://www.fabfile.org/

Installation

Fabric requires Python 2.5 to 2.7. You can install Fabric and all of its
dependencies using pip, Or you can use a system package manager, such as yum or
apt. In both cases, you will have the rab utility ready and executable from your
operating system.

To install fabric using pip, run the following command on your automation
server:

| pip install fabric

[root@AutomationServer ~]#
[root@AutomationServer ~]# pip install fabric
Collecting fabric
Downloading Fabric-1.14.0-py2-none-any.whl (92kB)
100% | I | 102kB 738KB/S
Collecting paramiko<3.0,>=1.10 (from fabric)
Downloading paramiko-2.4.1-py2.py3-none-any.whl (194kB)
1o00% | I | 104kB 1.4MB/s
Collecting pyasnl>=0.1.7 (from paramiko<3.0,>=1.10->fabric)
Downloading pyasnl-0.4.2-py2.py3-none-any.whl (71kB)
100% | I | 71KB 3.2MB/s
Collecting bcrypt>=3.1.3 (from paramiko<3.0,>=1.10->fabric)
Downloading bcrypt-3.1.4-cp27-cp27mu-manylinuxl x86 64.whl (57kB)
100% | N | 61kB 3.3MB/s
Collecting cryptography>=1.5 (from paramiko<3.0,>=1.10->fabric)
Downloading cryptography-2.2.2-cp27-cp27mu-manylinuxl x86 64.whl (2.2MB)
100% | I | 2. 2MB 353KB/s
Collecting pynacl>=1.0.1 (from paramiko<3.0,>=1.10->fabric)
Downloading PyNaCl-1.2.1-cp27-cp27mu-manylinuxl x86 64.whl (696kB)
1o0c | N | 70GkB 018KB/s
Requirement already satisfied (use --upgrade to upgrade): six>=1.4.1 in /usr/lib/python2.7/si
te-packages (from bcrypt>=3.1.3->paramiko<3.0,>=1.10->fabric)
Collecting cffi>=1.1 (from bcrypt>=3.1.3->paramiko<3.0,>=1.10->fabric)
Downloading cffi-1.11.5-cp27-cp27mu-manylinuxl x86 64.whl (407kB)
100+ | I | 00kB 1.4VB/s
Collecting enum34; python version < "3" (from cryptography>=1.5->paramiko<3.0,>=1.10->fabric)
Downloading enum34-1.1.6-py2-none-any.whl

Notice that Fabric requires paramiko, which is a popular Python library that is used
for establishing SSH connections.

You can validate the Fabric installation with two steps. First, make sure that you
have the rfab command available in your system: [root@AutomationServer ~]#
which fab

/usr/bin/fab

The second step for verification is to open Python and try to import the fabric
library. If there's no error thrown, then Fabric has successfully installed:
[root@AutomationServer ~]# python

Python 2.7.5 (default, Aug 4 2017, 00:39:18)



[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> from fabric.api import *

>>>



Fabric operations

There are many operations available in the fabric tool. These operations act as a
functions inside the tasks in fabfile (there will be more about tasks later), but the
following is a summary of the most important operations inside the fabric library.



Using run operation

The syntax for the run operation in Fabric is as follows:

run(command, shell=True, pty=True, combine_stderr=True, quiet=False, warn_only=False,
stdout=None, stderr=None)

This will execute the command on a remote host, while the she11 argument
controls whether a shell (such as /bin/sh) should be created before execution (the
same parameter also exists in the sub-process).

After the command execution, Fabric will populate .succeeded Or .failed,
depending on the command output. You can check whether the command
succeeded or failed by calling the following:

def run_ops():
output = run("hostname")



Using get operation

The syntax for the Fabric get operation is as follows:

| get (remote_path, local_path)

This will download the files from the remote host to the machine running the
fabfile, using either rsync or scp . This is commonly used when you need to gather
log files to the server, for example:

def get_ops():

try:
get("/var/log/messages","/root/")
except:

pass



Using put operation

The syntax for the Fabric put operation is as follows:

| put (local_path, remote_path, use_sudo=False, mirror_local_mode=False, mode=None)

This operation will upload the file from the machine running the fabfiie (local) to
the remote host. Using use_sudo Will solve the permissions issue when you upload
to the root directory. Also, you can keep the current file permissions on both the
local and remote server, or you can set new permissions:
def put_ops():
try:
put("/root/VeryImportantFile.txt","/root/")

except:
pass



Using sudo operation

The syntax for the Fabric sudo operation is as follows:

sudo(command, shell=True, pty=True, combine_stderr=True, user=None, quiet=False,
warn_only=False, stdout=None, stderr=None, group=None)

This operation can be considered another wrapper around the run() command.
However, the sudo operation will run the command with the root username by
default regardless of the username used to execute the fabfile. Also it contains a
user argument which could be used to run the command with a different
username. Also, the user argument executes the command with a specific UID,
while the group argument defines the GID:

def sudo_ops():
sudo("whoami") #it should print the root even if you use another account



Using prompt operation

The syntax for the Fabric prompt operation is as follows:

| prompt (text, key=None, default='', validate=None)

The user can provide a specific value for the task by using the prompt operation,
and the input will be stored inside of a variable and used by tasks. Please note
that you will be prompted for each host inside of the fabfile:

def prompt_ops():
prompt("please supply release name", default="7.4.1708")



Using reboot operation

The syntax for the Fabric reboot operation is as follows:

| reboot (wait=120)

This is a simple operation that reboots the host by default. Fabric will wait for
120 seconds before attempting to reconnect, but you can change this value to
another one by using the wait argument:

def reboot_ops():
reboot (wait=60, use_sudo=True)

For a full list of other supported operations, please check nttp://docs. fabfile.org/en
/1.14/api/core/operations.html. You can also check them directly from PyCharm, by
looking at all of the autocomplete functions that pop up when you type Ctrl +
spacebar. From fabric.operations import <ctrl+space> under fabric.operations:

rrun Tabric.operattons
#ssh paramiko
©_AttributeList fabric.operations
€ _AttributeString fabric.operations
i _execute fabric.operations
f _noop fabric.operations
i _prefix_commands fabric.operations
i _prefix_env_vars fabric.operations
i _pty_size fabric.utils
f _run_command fabric.operations
i _shell_escape fabric.operations
f _shell_wrap fabric.operations
i _sudo_prefix fabric.operations
i _sudo_prefix_argument fabric.operations
i abort fabric.utils
 apply_lcwd fabric.utils
i char_buffered fabric.context_managers
¢ closing contextlib
v connections fabric.state
f contextmanager contextlib
i default_channel fabric.state
v env fabric.state
ferror fabric.utils
i get fabric.operations
i glob glob
 handle_prompt_abort fabric.utils
i hide fabric.context_managers
 indent fabric.utils
i input_loop fabric.io
f local fabric.operations
i needs_host fabric.network
f open_shell fabric.operations
i output_loop fabric.1lo
i prompt fabric.operations
f put fabric.operations

v quiet_manager

i reboot

Did you know that Quick Documentation View (Ctrl+Q) works in completion lookups as well? >> 1t

fabric.operations
fabric.operations


http://docs.fabfile.org/en/1.14/api/core/operations.html

Executing your first Fabric file

We now know how the operation works, so we will put it inside fabfile and
create a full automation script that can work with remote machines. The first step
for raprile is to import the required classes. Most of them are located in fabric.api,
so we will globally import all of them to our Python script:

| from fabric.api import *

The next part is to define the remote machine IP addresses, usernames, and
passwords. In the case of our environment, we have two machines (besides the
automation server) that run Ubuntu 16.04 and CentOS 7.4, respectively, with the
following details:

Machin

achine IP Address Username Password
Type
[Iblﬂ]tu, 10.10.10.140 root access123
16.04
CEHtOS 74 10.10.10.193 root access123

We will include them inside the Python script, as shown in the following snippet:

env.hosts = [
'10.10.10.140', # ubuntu machine
'10.10.10.193', # Cent0S machine

]

env.user = "root"
env.password = "access123"

Notice that we use the variable called env, which is inherited from the
_Attributenict class. Inside of this variable, we can set the username and password
from the SSH connection. You can also use the SSH keys stored in your .ssh
directory by setting env.use_ssh_config=True; Fabric will use the keys to authenticate
the connection.



The last step is to define your tasks as a Python function. Tasks can use the
preceding operations to execute commands.

The following is the full script:

from fabric.api import *

env.hosts = [
'10.10.10.140', # ubuntu machine
'10.10.10.193', # Cent0S machine

]

env.user = "root"
env.password = "access123"

def detect_host_type():

output = run("uname -s"

if output.failed:

print("something wrong happen, please check the logs")
elif output.succeeded:

print("command executed successfully")

def list_all files_in_directory():
directory = prompt("please enter full path to the directory to list", default="/root")
sudo("cd {0} ; 1ls -htlr".format(directory))

def main_tasks():
detect_host_type()
list_all files_in_directory()

In the preceding example, the following applies:

e We defined two tasks. The first one will execute the uname -s command and
return the output, then verify whether the command executed successfully
or not. The task uses the run() operation to accomplish it.

e The second task will use two operations: prompt () and sudo(). The first
operation will ask the user to enter the full path to the directory, while the
second operation will list all of the content in the directory.

e The final task, main_tasks(), will actually group the preceding two methods
into one task, so that we can call it from the command line.

In order to run the script, we will upload the file to the automation server and use
the rapb utility to run it:

| fab -f </full/path/to/fabfile>.py <task_name>
The -r switch in the previous command is not mandatory if your filename is rabfile.py. If it is
8 not, you will need to provide the name to the rab utility. Also, rabfriie should be in the current
directory; otherwise, you will need to provide the full path.

Now we will run the fabfile by executing the following command:



| fab -f fabfile_first.py main_tasks

The first task will be executed, and will return the output to the Terminal:

[10.10.10.140]
[10.10.10.140]
[10.10.10.140]
[10.10.10.140]

run:
out:
out:

uname -s
Linux

command executed successfully

Executing task 'main_tasks'

Now, we will enter /var/10g/ to list the contents:

please
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10

.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10

.140]
.140]
.140]
.140]
.140]
.140]
.140]
.140]
.140]
.140]
.140]
.140]

out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:

total 1.7M
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

-rw-r--r--
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x

command executed successfully

2
2
2

WRNNRRR

root
root
root
root
root
root
root
root
root
root

root
root
root
utmp
adm

root
root
root
root
root

4.0K
4.0K
4.0K
0

31
57K
4.0K
4.0K
32K
4.0K

Dec
Dec
Feb
Feb
Feb
Feb
Apr
Apr
Apr
Apr

23:54
15:47
18:24
20:23
20:24
20:24
08:00
08:01
08:09
08:09

enter full path to the directory to list [/root] /var/log/
sudo: cd /var/log/ ; 1ls -htlr

1xd

sysstat
dist-upgrade
btmp

dmesg
bootstrap.log
fsck

apt

faillog
installer

The same applies if you need to list the configuration files under the network-
scripts directory in the CentOS machine:

please
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10
[10.10

.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10

.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]
.193]

out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:
out:

<output omitted for

total 232K

=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwW-r--r--.
=rwW-r--r--.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.
=rwXr-Xr-X.

brevity>

RPRRRRRRRRRRRR

root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root

1.9K
1.8K
1.6K
31K
19K
.3K
.8K
.7K
.3K
.0K
.1K
.4K
.1K

R WBANWNERO

enter full path to the directory to list [/root]
sudo: cd /etc/sysconfig/network-scripts/ ;

Apr 15
Apr 15
Apr 15

May
May
May
May
May
May
May
May
May
May

w W

WWWwwwwowow

/etc/sysconfig/network-scripts/

li

1ls -

2016
2016
2016
2017
2017
2017
2017
2017
2017
2017
2017
2017
2017

Finally, Fabric will disconnect from the two machines:

| [10.10.10.193] out:

htlr

ifup-TeamPort
ifup-Team
ifdown-TeamPort
network-functions-ipvé
network-functions
init.ipv6-global
ifup-wireless
ifup-tunnel
ifup-sit
ifup-routes
ifup-ppp
ifup-post
ifup-plusb



Done.
Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.



More about the fab tool

The rab tool itself supports many operations. It can be used to list the different
tasks inside rabrile. It can also set the fab environment during execution. For
example, you can define the host that will run the commands on it by using the -
H Or --hosts switches, without the need to specify it inside fabfile. This actually
sets the env.nosts variable inside rabrile during execution: fab -H srv1l,srv2

On the other hand, you can define the command that you want to run by using
the rab tool. This is something like Ansible ad hoc mode (we will discuss this in
detail in chapter 13, Ansible for System Administration): fab -H srv1,srv2 --
ifconfig -a

If you don't want to store the password in clear text inside of the fabfiie script,
then you have two options. The first one is to use the SSH identity file (private-
key) with the -i option, which loads the file during connection.

The other option is to force Fabric to prompt you for the session password before
connecting to the remote machine by using the -1 option.

0 Note that this option will overwrite the env.password parameter, if specified inside fabfize.

The -p switch will disable the known hosts and force Fabric not to load the
known_hosts file from the .ssh directory. You can make Fabric reject connections to
the hosts not defined in the known_hosts file with the -r or --reject-unknown-hosts
options.

Also, you can list all of the supported tasks inside of the fabfile by using -1 or --
1ist, providing the fabfile name to the rab tool. For example, applying that to the
previous script will generate the following output: # fab -f fabfile_first.py -1
Available commands:

detect_host_type
list_all_files_in_directory
main_tasks



You can see all of the available options and arguments for the ra» command line with the -n
SWitCh, Oor at nttp://docs. fabfile.org/en/1.14/usage/fab. html.


http://docs.fabfile.org/en/1.14/usage/fab.html

Discover system health using Fabric

In this use case, we will utilize Fabric to develop a script that executes multiple
commands on remote machines. The goal of the script is to gather two types of
output: the discovery command and the heaith command. The discovery command
gathers the uptime, hostname, kernel release, and both private and public IP
addresses, while the neaith command gathers the used memory, CPU utilization,
number of spawned processes, and disk usage. We will design rabfile so that we
can scale our script and add more commands to it:

#!1/usr/bin/python

__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint

env.hosts = [
'10.10.10.140', # Ubuntu Machine
'10.10.10.193', # Cent0S Machine

]

env.user = "root"
env.password = "access123"
def get_system_health():

discovery_commands = {
"uptime": "uptime | awk '{print $3,$4}'",

"hostname": "hostname",

"kernel_release": "uname -r",

"architecture": "uname -m",

"internal_ip": "hostname -I",

"external_ip": "curl -s ipecho.net/plain;echo",

}

health_commands = {

"used_memory": "free | awk '{print $3}' | grep -v free | head -n1",
"free_memory": "free | awk '{print $4}' | grep -v shared | head -n1",
"cpu_usr_percentage": "mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $43}'",
"number_of_process": "ps -A --no-headers | wc -1",

"logged_users": "who",

"top_load_average": "top -n 1 -b | grep 'load average:' | awk '{print $10 $11 $12}'",
"disk_usage": "df -h| egrep 'Filesystem|/dev/sda*|nvme*'"

}

tasks = [discovery_commands, health_commands]

for task in tasks:




for operation,command in task.iteritems():
print("
{0} ".format(operation))
output = run(command)

Notice that we created two dictionaries: discover_commands and health_commands. Each
one of them contains the Linux commands as a key-value pair. The key
represents the operation, while the value represents the actual Linux command.
Then, we created a tasks list to group both dictionaries.

Finally, we created a nested for loop. The outer loop is used to iterate over the
list items. The inner for loop is to iterate over the key-value pairs. Use the Fabric
run() operation to send the command to the remote hosts:

# fab -f fabfile_discoveryAndHealth.py get_system health
[10.10.10.140] Executing task 'get_system_health'

uptime
[10.10.10.140] run: uptime | awk '{print $3,$4}'
[10.10.10.140] out: 3:26, 2

[160.10.10.140] out:

kernel_release

[10.10.10.140] run: uname -r
[10.10.10.140] out: 4.4.0-116-generic
[160.10.10.140] out:

external_ip
[10.10.10.140] run: curl -s ipecho.net/plain;echo
[10.10.10.140] out: <Author_Masked_The_Output_For_Privacy>
[160.10.10.140] out:

hostname
[10.10.10.140] run: hostname
[10.10.10.140] out: ubuntu-machine
[160.10.10.140] out:

internal_ip
[10.10.10.140] run: hostname -I
[10.10.10.140] out: 10.10.10.140
[160.10.10.140] out:

architecture

[10.10.10.140] run: uname -m
[10.10.10.140] out: x86_64
[160.10.10.140] out:

disk_usage
[10.10.10.140] run: df -h| egrep 'Filesystem]|/dev/sda* |nvme*'

[10.10.10.140] out: Filesystem Size Used Avail Use% Mounted
on
[10.10.10.140] out: /dev/sdal 472M 58M 390M 13% /boot

[10.10.10.140] out:

used_memory
[10.10.10.140] run: free | awk '{print $3}' | grep -v free | head -ni
[10.10.10.140] out: 75416

[10.10.10.140] out:




logged_users

[10.10.10.140] run: who

[10.10.10.140] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.140] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[160.10.10.140] out:

top_load_average
[10.10.10.140] run: top -n 1 -b | grep 'load average:' | awk '{print $10 $11 $12}'
[10.10.10.140] out: 0.16,0.03,0.01

[16.10.10.140] out:

cpu_usr_percentage
[10.10.10.140] run: mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $4}'
[10.10.10.140] out: 0.02

[160.10.10.140] out:

number_of_process
[10.160.10.140] run: ps -A --no-headers | wc -1
[10.10.10.140] out: 131

[160.10.10.140] out:

free_memory
[10.10.10.140] run: free | awk '{print $4}' | grep -v shared | head -ni
[10.10.10.140] out: 5869268

[160.10.10.140] out:

The same task (get_system health) will also be executed on the second server, and
will return the output to the Terminal:

[10.10.10.193] Executing task 'get_system_health'
uptime
[10.10.10.193] run: uptime | awk '{print $3,$4}'
[10.10.10.193] out: 3:26, 2

[16.10.10.193] out:

kernel_release

[10.10.10.193] run: uname -r
[10.10.10.193] out: 3.10.0-693.e17.x86_64
[160.10.10.193] out:

external_ip
[10.10.10.193] run: curl -s ipecho.net/plain;echo
[10.10.10.193] out: <Author_Masked_The_Output_For_Privacy>
[16.10.10.193] out:

hostname

[10.10.10.193] run: hostname
[10.10.10.193] out: controller329
[160.10.10.193] out:

internal_ip
[10.10.10.193] run: hostname -I
[10.10.10.193] out: 10.10.10.193
[16.10.10.193] out:

architecture

[10.160.10.193] run: uname -m
[10.10.10.193] out: x86_64
[160.10.10.193] out:




disk_usage
[10.10.10.193] run: df -h| egrep 'Filesystem]|/dev/sda* |nvme*'
[10.10.10.193] out: Filesystem Size Used Avail Use% Mounted on
[10.10.10.193] out: /dev/sdal 488M 93M 360M 21% /boot
[160.10.10.193] out:

used_memory
[10.10.10.193] run: free | awk '{print $3}' | grep -v free | head -ni
[10.160.10.193] out: 287048
[160.10.10.193] out:

logged_users
[10.10.10.193] run: who
[10.10.10.193] out: root pts/0 2018-04-08 23:36 (10.10.10.130)
[10.10.10.193] out: root pts/1 2018-04-08 21:23 (10.10.10.1)
[160.10.10.193] out:

top_load_average
[10.10.10.193] run: top -n 1 -b | grep 'load average:' | awk '{print $10 $11 $12}'
[10.10.10.193] out: 0.00,0.01,0.02
[16.10.10.193] out:

cpu_usr_percentage
[10.10.10.193] run: mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $4}'
[10.10.10.193] out: 0.00
[160.10.10.193] out:

number_of_process
[10.10.10.193] run: ps -A --no-headers | wc -1
[10.10.10.193] out: 190
[160.10.10.193] out:

free_memory
[10.10.10.193] run: free | awk '{print $4}' | grep -v shared | head -ni1
[10.10.10.193] out: 32524912
[160.10.10.193] out:

Finally, the fabric module will terminate the established SSH session and
disconnect from the two machines after executing all of the tasks:

Disconnecting from 10.10.10.140... done.
Disconnecting from 10.10.10.193... done.

Note that we could redesign the previous script and make the discovery_commands
and health_commands @ Fabric task, then include them within get_system_health().
When we execute the rab command, we will call get_system_health(), which will
execute the other two functions; we will get the same output as before. The
following is a modified sample script:

#1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *
from fabric.context_managers import *
from pprint import pprint



env.hosts = [
'10.10.10.140', # Ubuntu Machine
'10.10.10.193', # Cent0S Machine

]

env.user = "root"
env.password = "access123"

def discovery_commands():
discovery_commands = {
"uptime": "uptime | awk '{print $3,%$4}'",

"hostname": "hostname",

"kernel_release": "uname -r",

"architecture": "uname -m",

"internal_ip": "hostname -I",

"external_ip": "curl -s ipecho.net/plain;echo",

3

for operation, command in discovery_commands.iteritems():
print("
{0} ".format(operation))

output = run(command)

def health_commands():
health_commands = {

"used_memory": "free | awk '{print $3}' | grep -v free | head -n1",
"free_memory": "free | awk '{print $4}' | grep -v shared | head -ni1",
"cpu_usr_percentage": "mpstat | grep -A 1 '%usr' | tail -n1 | awk '{print $43}'",
"number_of_process": "ps -A --no-headers | wc -1",

"logged_users": "who",

"top_load_average": "top -n 1 -b | grep 'load average:' | awk '{print $10 $11 $12}'",
"disk_usage": "df -h| egrep 'Filesystem|/dev/sda*|nvme*'"

3

for operation, command in health_commands.iteritems():

print("
{0} ".format(operation))

output = run(command)

def get_system_health():
discovery_commands()
health_commands()



Other useful features in Fabric

Fabric has other useful features, such as roles and context managers.



Fabric roles

Fabric can define roles for hosts, and run only the tasks to role members. For
example, we might have a bunch of database servers on which we need to
validate whether the MySql service is up, and other web servers on which we
need to validate whether the Apache service is up. We can group these hosts into
roles, and execute functions based on those roles:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from fabric.api import *

env.hosts = [
'10.10.10.140', # ubuntu machine
'10.10.10.193', # Cent0S machine
'10.10.10.130"',

]

env.roledefs = {
'webapps': ['10.10.10.140','10.10.10.193'],
'databases': ['10.10.10.130'],

}

env.user = "root"
env.password = "access123"

@roles('databases')
def validate_mysql():
output = run("systemctl status mariadb")

@roles('webapps')
def validate_apache():
output = run("systemctl status httpd")

In the preceding example, we used the Fabric decorator ro1es (imported from
fabric.api) when setting env.roledef. Then, we will assign either webapp or
databases roles to each server (think of the role assignment as tagging a server).
This will give us flexibility to execute the validate_mysql function on servers with
database role only:

# fab -f fabfile_roles.py validate_mysql:roles=databases

[10.10.10.130] Executing task 'validate_mysql'

[10.10.10.130] run: systemctl status mariadb
[10.10.10.130] out: e mariadb.service - MariaDB database server



[10.10.10.130] out: Loaded: loaded (/usr/lib/systemd/system/mariadb.service;
enabled; vendor preset: disabled)

[10.10.10.130] out: Active: active (running) since Sat 2018-04-07 19:47:35 EET; 1
day 2h ago

<output omitted>



Fabric context managers

In our first Fabric script, fabfile_first.py, we have a task that prompts the user for
the directory, then switches to it and prints its content. This is done by using ;,
which appends two Linux commands together. However, running the same won't
always work on other operating systems. That's where the Fabric context
manager comes into the picture.

The context manager maintains the directory state when executing commands. It
usually runs with Python by using with-statement, and, inside the block, you can
write any of the previous Fabric operations. Let's look at an example to explain
the idea:

from fabric.api import *
from fabric.context_managers import *

env.hosts = [
'10.10.10.140', # ubuntu machine
'10.10.10.193', # Cent0S machine

]

env.user = "root"
env.password = "access123"

def list_directory():
with cd("/var/log"):
run("1ls")

In the preceding example, first, we globally imported everything inside
fabric.context_managers; then, we used the cd context manager to switch to the
specific directory. We used the Fabric run() operation to execute the 1s on that
directory. This is the same as writing cd /var/1og ; 1s on the SSH session, but it
provides a more Pythonic way to develop your code.

The with statement can be nested. For example, we can rewrite the preceding
code with the following:
def list_directory_nested():
with cd("/var/"):

with cd("log"):
run("1ls")

Another useful context manager is the local change directory (LCD). This is



the same as the cd context manager in the previous example, but it works on the
local machine that runs rabfize. We can use it to change the context to a specific
directory (for example, to upload or download a file to/from the remote machine,
then change back to the execution directory automatically):

def uploading_file():

with lcd("/root/"):
put("VeryImportantFile.txt")

The prefix context manager will accept a command as input and execute it before
any other commands, inside the with block. For example, you can source a file or
a Python virtual env wrapper script before running each command to set up your
virtual environment:

def prefixing_commands():

with prefix("source ~/env/bin/activate"):
sudo('pip install wheel')

sudo("pip install -r requirements.txt")
sudo("python manage.py migrate")

This is actually equivalent to writing the following command in the Linux shell:

source ~/env/bin/activate && pip install wheel
source ~/env/bin/activate && pip install -r requirements.txt
source ~/env/bin/activate && python manage.py migrate

The final context manager is shell_env(new_path, behavior='append'), which can alter
the shell environmental variables for wrapped commands; so, any calls inside of
that block will take the modified path into consideration:

def change_shell_env():
with shell env(testi='vall', test2='val2',6K test3='val3'):
run("echo $testl") #This command run on remote host
run("echo $test2")
run("echo $test3")
local("echo $test1") #This command run on local host
0 Note that after the operation is done, Fabric will restore the old environments back to the

original one.



Summary

Fabric is a fantastic and powerful tool that automates tasks, usually in remote
machines. It integrates well with Python scripts, providing easy access to the
SSH suite. You can develop many fab files for different tasks and integrate them
together to create an automation workflow that includes deploying, restarting,
and stopping servers or processes.

In the next chapter, we will learn about collecting data and generating recurring
reports for system monitoring.



Generating System Reports and
System Monitoring

Collecting data and generating recurring system reports are essential tasks for
any system administrator, and automating these tasks can help us to discover
issues early on, in order to provide solutions for them. In this chapter, we will
see some proven methods for automating data collection from servers and
generating that data into formal reports. We will learn how to manage new and
existing users, using Python and Ansible. Also, we will dive into log analysis
and monitoring the system Key Performance Indicators (KPIs). You can
schedule the monitoring scripts to run on a regular basis.

The following topics will be covered in this chapter:

e Collecting data from Linux
e Managing users in Ansible



Collecting data from Linux

Native Linux commands provide useful data about the current system status and
health. However, each one of those Linux commands and utilities are focused on
getting data from only one aspect of the system. We need to leverage Python
modules to get those details back to the administrator and generate useful system
reports.

We will divide the reports into two parts. The first one is getting general
information about the system by using the piatform module, while the second part
is exploring the hardware resources in terms of the CPU and memory.

We will start by leveraging the piatform module, which is a built-in library inside
of Python. The piatform module contains many methods that can be used to get
details about the system that Python operates on:

import platform

system = platform.system()
print(system)

Python Console - DevNet o
Django Console - L

Running the same script on a Windows machine will result in different outputs,
reflecting the current system. So, when we run it on a Windows PC, we will get
windows as the output from the script:

Python 2.7.14 <(v2.7.14:84471935ed. Sep 16 2817, 28:19:38> [MSC v.1588 32 hit <(In
tel>] on win32

Type "help'. “copyright". "credits" or "license'" for more information.

>>> import platform

>>> print{platform.system(d>

Windows
>

Another useful function is uname(), which does the same job as the Linux
command (uname -a): retrieving the machine's hostname, architecture, and kernel,
but in a structured format, so that you can match any value by referring to its
index:

| import platform



from pprint import pprint
uname = platform.uname()
pprint(uname)

Python Console - DevNet

% O

Django Console

Ny 4.15.0

Ml '#21-Ubuntu SMP Tue Apr 24 06:16:15 UTC 2018',
M 'x86_64',

B 'x86 64')
ool

The first value is the system type, which we get using the systen() method, and
the second value is the hostname of the current machine.

You can explore and list all of the available functions inside the piatform module
by using autocomplete in PyCharm; you can check the documentation for each
function by pressing CTRL + Q:

f uname() platform
i system() platform
i version() platform
i _abspath(path, isabs, join, getcwd, normpath) platform
v _architecture_split platform
 _bed2str(bcd) platform
v _default_architecture platform
i _dist_try_harder(distname, version, id) platform
i _follow_symlinks(filepath) platform
v _ironpython_sys_version_parser platform
i _java_getprop(name, default) platform
v _libc_search platform
v _1sb_release_version platform
f _mac_ver_gestalt() platform

Did yau kiow Ehit Quick Dicdmentation View (Ctrts 3 dorks in completion lookups aswell? >>  ~* =777
The second part of designing our script is using the information made available
by the Linux files to explore the hardware configuration in the Linux machine.
Remember that the CPU, memory, and network information could be accessible
from under /proc/; we will read this information and access it using standard
open() function in Python. You can get more information about the available
resources by reading and exploring /proc/.

Script:

This is the first step for importing the p1atforn module. It's needed only for this
task:
#1/usr/bin/python

__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"



| import platform

This snippet contains the functions used in this exercise; we will design two
functions - check_feature() and get_value_from_string().

def check_feature(feature,string):
if feature in string.lower():
return True

else:

return False

def get_value_from_string(key,string):
value = "NONE"

for line in string.split("\n"):

if key in line:

value = line.split(":")[1].strip()
return value

Finally, the following is the main body of the Python script, which contains the
Python logic to get the required information:

cpu_features = []
with open('/proc/cpuinfo') as cpus:
cpu_data = cpus.read()
num_of_cpus = cpu_data.count("processor")
cpu_features.append("Number of Processors: {0}".format(num_of_cpus))
one_processor_data = cpu_data.split("processor")[1]
print one_processor_data
if check_feature("vmx",one_processor_data):
cpu_features.append("CPU Virtualization: enabled")
if check_feature("cpu_meltdown",one_processor_data):
cpu_features.append("Known Bugs: CPU Metldown ")
model_name = get_value_from_string("model name ", one_processor_data)
cpu_features.append("Model Name: {0}".format(model_name))

cpu_mhz = get_value_from_string("cpu MHz", one_processor_data)
cpu_features.append("CPU MHz: {0}".format((cpu_mhz)))

memory_features = []

with open('/proc/meminfo') as memory:

memory_data = memory.read()

total_memory = get_value_from_string("MemTotal", memory_data).replace(" kB","")
free_memory get_value_from_string("MemFree",memory_data).replace(" kB","")
swap_memory get_value_from_string("SwapTotal", memory_data).replace(" kB","")
total_memory_in_gb = "Total Memory in GB: {0}".format(int(total_memory)/1024)
free_memory_in_gb "Free Memory in GB: {0}".format(int(free_memory)/1024)
swap_memory_in_gb "SWAP Memory in GB: {0}".format(int(swap_memory)/1024)
memory_features = [total_memory_in_gb, free_memory_in_gb, swap_memory_in_gb]

This part is used to print the information obtained from the previous section:

prj_nt ( "::::::::::::System Information============" )

prlnt(ll nn

System Type: {0}
Hostname: {1}
Kernel Version: {2}
System Version: {3}



Machine Architecture: {4}

Python version: {5}

""" format(platform.system(),
platform.uname()[1],
platform.uname()[2],
platform.version(),
platform.machine(),
platform.python_version()))

prj_nt ( "::::::::::::Memory Information============" )
print("\n".join(memory_features))

In the preceding example, the following steps were performed:

1. First, we opened /proc/cpuinfo and read its contents, then stored the result in
cpu_data.

2. The number of processors inside the file could be found by counting the
keyword processor using the count() String function.

3. Then, we needed to get the options and features available for each
processor. For that, we got only one processor entry (since they're usually
identical to each other) and passed it the check_feature() function. This
method accepts the feature that we want to search in one argument, and the
other is the processor data, which will return rrue if the feature is available
in the processor data.

4. The processor data is available in key-value pairs. So, we designed the
get_value_from_string() Mmethod, which accepts the key name and will search
for its corresponding value by iterating over the processor data; then, we
will split on the : delimiter for every returned key value pair to get the value
only.

i

All of these values are added to the cpu_feature list using the append() method.

6. We then repeated the same operation with the memory information to get
the total, free, and swap memory.

7. Next, we used the platform's built-in methods, such as system(), uname(), and
python_version(), t0 get information about the system.

8. At the end, we printed the report that contains the preceding information.

The script output can be seen in the following screenshot:



Python Console - DevNet

% O
I-| €

Django Console

Ca

Pgsystem Type: Linux

> Hostname: me-1inside

% Kernel Version: 4.15.0-22-generic
BlSystem Version: #24-Ubuntu SMP Wed May 16 12:15:17 UTC 2018
fll'achine Architecture: x86_64

S Py thon ve n: 2.7.15rcl

&

[ 8 CPU Information====
& rocessors: 8

FCPU Virtualization: enabled

Known Bugs: CPU Metldown
Model Name: NONE

CPU MHz: 3512.935

= Memory Information=
Total Memory in GB: 15909

Free Memory in GB: 9055

SWAP Memory in GB: 2047

Another way to represent the generated data is to leverage the matpiot1ib library that we used
in cnapter 5, Extracting Useful Data for Network Devices, to visualize data over time.



Sending generated data through
email

The report generated in the previous section provides a good overview of the
resources currently on the system. However, we can tweak the script and extend
its functionality to send us an email with all of the details. This is very useful for
a Network Operation Center (NoC) team, which can receive emails from a
monitored system based on specific incidents (HDD failure, high CPU, or
dropped packets). Python has a built-in library called smtp1ib, where it leverages
the Simple Mail Transfer Protocol (SMTP) that is responsible for sending and
receiving emails from mail servers.

This requires that you have local email servers on your machine, or that you use
one of the free online email services, such as Gmail or Outlook. For this
example, we will log in to http://ww.gmail.com using the SMTP and send email
with our data.

Without further ado, we will modify our script and add the SMTP support to it.

We will import the required modules into Python. Again, smtplib and platform are
needed for this task:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import smtplib
imp ort platform

This is the part of the function that contains both the check_feature() and
get_value_from_string() functions:

def check_feature(feature,string):
if feature in string.lower():
return True

else:

return False

def get_value_from_string(key,string):
value = "NONE"
for line in string.split("\n"):



http://www.gmail.com

if key in line:
value = line.split(":")[1].strip()
return value

Finally, the main body of the Python script is as follows, containing the Python
logic to get the required information:

cpu_features = []

with open('/proc/cpuinfo') as cpus:
cpu_data = cpus.read()
num_of_cpus = cpu_data.count("processor")
cpu_features.append("Number of Processors: {0}".format(num_of_cpus))
one_processor_data = cpu_data.split("processor")[1]

if check_feature("vmx",one_processor_data):

cpu_features.append("CPU Virtualization: enabled")
if check_feature("cpu_meltdown",one_processor_data):
cpu_features.append("Known Bugs: CPU Metldown ")
model_name = get_value_from_string("model name ", one_processor_data)
cpu_features.append("Model Name: {0}".format(model_name))

cpu_mhz = get_value_from_string("cpu MHz",one_processor_data)
cpu_features.append("CPU MHz: {0}".format((cpu_mhz)))

memory_features = []

with open('/proc/meminfo') as memory:

memory_data = memory.read()
total_memory = get_value_from_string("MemTotal",6 memory_data).replace(" kB","")
free_memory get_value_from_string("MemFree",memory_data).replace(" kB","")
swap_memory get_value_from_string("SwapTotal", memory_data).replace(" kB","")
total_memory_in_gb = "Total Memory in GB: {0}".format(int(total_memory)/1024)
free_memory_in_gb "Free Memory in GB: {0}".format(int(free_memory)/1024)
swap_memory_in_gb "SWAP Memory in GB: {0}".format(int(swap_memory)/1024)
memory_features = [total_memory_in_gb, free_memory_in_gb, swap_memory_in_gb]

Data_Sent_in_Email = ""

Header = """From: PythonEnterpriseAutomationBot <basim.alyy@gmail.com>
To: To Administrator <basim.alyy@gmail.com>

Subject: Monitoring System Report

Data_Sent_in_Email += Header
Data_Sent_in_Email +="============System Information============

Data_Sent_in_Email +="""

System Type: {0}

Hostname: {1}

Kernel Version: {2}

System Version: {3}

Machine Architecture: {4}

Python version: {5}

" format(platform.system(),
platform.uname()[1],
platform.uname()[2],
platform.version(),
platform.machine(),
platform.python_version())

Data_Sent_in_Email +="============CPU Information============\n
Data_Sent_in_Email +="\n".join(cpu_features)




Data_Sent_in_Email +="\n============Memory Information============\n"
Data_Sent_in_Email +="\n".join(memory_features)

At the end, we need to populate the variables with some values to properly
connect to the gmai1 server:

fromaddr = 'yyyyyyyyyyy@gmail.com'
toaddrs = 'basim.alyy@gmail.com'
username = 'yyyyyyyyyyy@gmail.com'
password = "XXXXXXXXXX'

server = smtplib.SMTP('smtp.gmail.com:587")
server.ehlo()

server.starttls()

server.login(username, password)

server.sendmail(fromaddr, toaddrs, Data_Sent_in_Email)
server.quit()

In the preceding example, the following applies:

1.

5.

The first part is the same as the original example, but instead of printing the
data to the terminal, we add it to the pata_sent_in_email variable.

The neader variable represents the email header containing the sender's
address, the recipient's address, and the email's subject.

We use the swrp() class inside of the smtp1ib module to connect to the public
Gmail SMTP server and negotiate the TTLS connection. This is the default
method when connecting to Gmail servers. We hold the SMTP connection
in the server variable.

Now, we log in to the server by using the 10gin() method, and finally, we use
the sendmail() function to send the email. sendmai1() accepts three arguments:
the sender, the recipient, and the email body.

Finally, we close the connection with the server:

Script output



Googl

v

Gma

Inbox (6)
Starred
Sent Mail

Drafts

Morg

QBassim 4

H

g 0 i N “ Hore *

W Montoring System Report fior

PylhonEnlerpriseAutomationBol_

toTo, bec: me [+

System Type: Linux

Hostname: me-insice

Kemel Version: £.15.0-22-qeneric

System Version: #24-Ununtu SMP Wed May 16 12:15:17 UTC 2018
Machine Architecture: x86 64

Python version: 2.7.férc

Number of Processors: 8
CPU Virtualization: enabied
Known Bugs: CPU Metldown
Mode! Name: NONE

CPU MHz: 3663418

Total Memory in GB: 15909
Fre Memory n GB: 7661
SWAP Memory in GB: 2047

B i

e () B

J43PM (34 minutes ago)

o=
w [

=



Using the time and date modules

Great; so far, we have been able to send custom data generated from our servers
through email. However, there might be a difference in time between the
generated data and the email's delivery time, due to network congestion or a
failure in the mail system, or any other reason. So, we can't depend on the email
to correlate the delivery time with the actual event time.

For that reason, we will use the Python datetine module to follow the current time
on the monitored system. This module can format the time in many attributes,
such as year, month, day, hour, and minute.

Aside from that, the datetime instance from the datetime module is actually a
standalone object in Python (like int, string, boolean, and so on); hence, it has its
own attributes inside of Python.

To convert the datetime Object to a string, you can use the strftime() method,
which is available as an attribute inside of the created object. Also, it provides a
method for formatting the time by using the following directives:

Directive Meaning

%Y Returns the year, from 0001 to 9999
%m Returns the month number

%d Returns the day of the month

%H Returns the hour number, 0-23




%M Returns the minutes, 0-59

%S Returns the seconds,0-59

So, we will tweak our script and add the following snippet to the code: from
datetime import datetime

time_now = datetime.now()

time_now_string = time_now.strftime("% Y-%m-%d %H:%M:%S")
Data_Sent_in Email += "====Time Now is
{0}====\n".format(time_now_string)

First, we imported the datetime class from the datetime module. Then, we created
the time_now Object using the datetime class and the now() function, which returns the
current time on the running system. Finally, we used strftime(), with a directive,
to format the time in a specific format and convert it to a string for printing
(remember, the object has a datetime 0bject).

System Type: Linux

Hostname: me-inside

Kernel Version: 4.15.0-22-generic

System Version: #24-Ubuntu SMP Wed May 16 12:15:17 UTC 2018
Machine Architecture: x86_64

Python version: 2.7.15rc1

Number of Processors: 8
CPU Virtualization: enabled
Known Bugs: CPU Metldown
Model Name: NONE

CPU MHz: 2799.999

Total Memory in GB: 15909

Free Memory in GB: 8429
SWAP Memory in GB: 2047

The script's output is as follows: * " = forerd



Running the script on a regular basis

A final step in the script is to schedule the script to run at a time interval. This
can be daily, weekly, hourly, or at a specific time. This can be done using the cron
job on Linux systems. cron is used to schedule a repeated event, such as cleaning
up directories, backing up databases, rotating logs, or anything else you can
think of.

To view the current jobs scheduled, use the following command: crontab -1

To edit crontab, use the -e switch. If this is the first time you are running cron, you
will be prompted to use your favorite editor (nano or vi).

A typical crontab consists of five stars, each one representing a time entry:

Field Values

Minutes 0-59

Hours 0-23

Day of the month 1-31

Month 1-12

Day of the week 0-6 (Sunday - Saturday)




For example, if you need to schedule a job to run every Friday at 9:00 P.M. you
will use the following entry: 0 21 * * 5 /path/to/command

If you need to have a command every day at 12:00 A.M. (a backup, for
example), use the following cron job: 0 0 * * * /path/to/command

Also, you can schedule the cron to run at every specific interval. For example, if
you need to run a job every s minutes, use this cron job: */5 * * * *
/path/to/command

Back to our script; we can schedule it to run every day at 7:30 AM: 30 7 * * *
/usr/bin/python /root/Send_Email.py

Finally, remember to save the cron job before exiting.

It's better to provide a full command path to Linux, rather than a relative path, to avoid any
potential issues.



Managing users in Ansible

Now, we will discuss how to manage users in different systems.



Linux systems

Ansible provides powerful user management modules to manage different tasks
on a system. We have a chapter dedicated to discussing Ansible (chapter 13,
Ansible for System Administration), but in this chapter, we will explore its power
for managing user accounts across a company's infrastructure.

Sometimes, companies allow root access to all users, to get rid of the headache
of user management; this is not a good solution in terms of security and auditing.
It's the best practice to give the right permissions to the right users, and to revoke
them once users leave the company.

Ansible provides an unmatched way to manage users across multiple servers,
through either password or password-less (SSH key) access.

There are a few other things that need to be taken into consideration when
creating users in a Linux system. The user must have a shell (such as Bash, CSH,
ZSH, and so on) in order to log in to the server. Also, the user should have a
home directory (usually under /nome). Finally, the user must be in a group that
determines its privileges and permissions.

Our first example will be creating a user with an SSH key in the remote server,
using the ad hoc command. The key source is at the ansibie tower, while we
execute the command on a11 servers:

| ansible all -m copy -a "src=~/id_rsa dest=~/.ssh/id_rsa mode=0600"

The second example is creating a user using the Playbook:

- hosts: localhost
tasks:
- name: create a username
user:
name: bassem
password: "$crypted_value$"
groups:
- root

state: present
shell: /bin/bash
createhome: yes

home: /home/bassem




Let's look at the task's parameters:

e In our tasks, we use a user module that contains several parameters, such as
name, that set the username for the user.

e The second parameter is password, where we set the user's password, but in a
crypted format. You need to use the mkpasswa command, which prompts you
for the password and will generate the hash value.

® groups is a list of groups that the user belongs to; hence, the user will inherit
the permissions. You can use comma-separated values in this field.

® state iS used to tell Ansible whether the user will be created or deleted.

* You can define the user shell used for remote access in the she11 parameter.

® createhome and home are parameters used to specify the user's home location.

Another parameter is ssh_key_file, Which specifies the SSH filename. Also, the
ssh_key_passphrase will SpECify the passphrase for the SSH key



Microsoft Windows

Ansible provides the win_user module to manage local Windows user accounts.
This is very useful when creating users on active directory domains or Microsoft
SQL databases (mssq1), or when creating default accounts on normal PCs. The
following example will create a user called bassen and give it the password
access123. The difference here is that the password is given in plain text and not in
the crypted value, as in the Unix-based system:

- hosts: localhost

tasks:
- name: create user on windows machine
win_user:

name: bassem
password: 'access123'
password_never_expires: true
account_disabled: no
account_locked: no
password_expired: no
state: present
groups:
- Administrators
- Users

The password_never_expires parameter will prevent Windows from expiring the
password after a specific time; this is useful when creating admin and default
accounts. On the other hand, password_expired, if set to yes, will require the user to
enter a new password and change it upon first login.

The groups parameter will add the user from a listed value or comma-separated
list of groups. This will depend on the groups_action parameter, and could be add,

replace, OI remove.

Finally, the state will tell Ansible what should be done to the user. This
parameter could be present, absent, OI query.



Summary

In this chapter, we learned about collecting data and reports from Linux
machines and alerting through email using time and date modules. We also
learned how to manage users in Ansible.

In the next chapter, we will learn how to interact with DBMS using Python
connectors.



Interacting with the Database

In previous chapters, we generated several different reports, using many Python
utilities and tools. In this chapter, we will utilize Python libraries to connect to
external databases and submit the data we have generated. This data can then be
accessed by external applications to get information.

Python provides a wide range of libraries and modules that cover managing and
working on popular Database Management Systems (DBMSes), such as
MySQL, PostgreSQL, and Oracle. In this chapter, we will learn how to interact
with a DBMS and fill it with our own data.

The following topics will be covered in this chapter:

e Installing MySQL on an automation server
e Accessing the MySQL database from Python



Installing MySQL on an automation
server

The first thing that we need to do is set up a database. In the following steps, we
will cover how to install the MySQL database on our automation server, which
we created in chapter 8, Preparing a Lab Environment. Basically, you will need a
Linux-based machine (CentOS or Ubuntu) with an internet connection to
download the SQL packages. MySQL is an open source DBMS that uses a
relational database and the SQL language to interact with data. In CentOS 7,
MySQL is replaced with another, forked version, called MariaDB; both have the
same source code, with some enhancements in MariaDB.

Follow these steps to install MariaDB:

1. Use the yun package manager (or apt, in the case of Debian-based systems)
to download the mariadb-server package, as shown in the following snippet:

| yum install mariadb-server -y

2. Once the installation has completed successfully, start the mariadb daemon.
Also, we need to enable it at the operating system startup using the systemd
command:

systemctl enable mariadb ; systemctl start mariadb

Created symlink from /etc/systemd/system/multi-
user.target.wants/mariadb.service to /usr/lib/systemd/system/mariadb.service.

3. Validate the database status by running the following command, and make
sure that the output contains Active:active (running):

systemctl status mariadb

e mariadb.service - MariaDB database server

Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; vendor
preset: disabled)

Active: active (running) since Sat 2018-04-07 19:47:35 EET; 1min 34s ago






Securing the installation

The next, logical step after installation is securing it. MariaDB includes a
security script that changes the options inside the MySQL configuration files,
like creating the root password for accessing the database and allowing remote
access. Run the following commands to launch the script:

| mysql_secure_installation

The first prompt asks you to provide the root password. This root password is
not the Linux root username, but the root password for the MySQL database;
since this is a fresh installation, we have not set it yet, so we will simply press
Enter to go to the next step:

|Enter current password for root (enter for none): <PRESS_ENTER>

The script will suggest setting the password for the root. We will accept the
suggestion by pressing v and entering the new password:

Set root password? [Y/n] Y

New password:EnterpriseAutomation

Re-enter new password:EnterpriseAutomation

Password updated successfully!

Reloading privilege tables..
. Success!

The following prompts will suggest removing the anonymous users from
administrating and accessing the database, which is highly recommended:

Remove anonymous users? [Y/n] y
. Success!

You can run SQL commands from a remote machine to the database hosted in
your automation servers; this requires you to give a special privilege to root
users, so they can access the database remotely:

Disallow root login remotely? [Y/n] n
. skipping.

Finally, we will remove the testing database, which anyone can access, and
reload the privileges tables to ensure that all changes will take effect



immediately:

Remove test database and access to it? [Y/n] y
- Dropping test database...
. Success!
- Removing privileges on test database...
. Success!

Reload privilege tables now? [Y/n] y
. Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.

Thanks for using MariaDB!

We have finished securing the installation; now, let's validate it.



Verifying the database installation

The first step after MySQL installation is to validate it. We need to verify that
the mysq1d daemon has started and is listening to port 33zes. We will do that by
running the netstat command and grep on the listening port:

netstat -antup | grep -i 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 3094/mysqld

This means that the mysq1d service can accept incoming connections from any IP
over the port 33es.

If you have iptavies running on your machine, you need to add a rule to iveut a chain, in order
0 to allow remote hosts to connect to the MySQL database. Also, validate that seLinux has the
proper policies.

The second verification is through connecting to the database using the mysqiadmin
utility. This tool is included in MySQL clients and allows you to execute
commands remotely (or locally) on the MySQL database:

mysqladmin -u root -p ping
Enter password:EnterpriseAutomation

mysqld is alive

Switch Name Meaning

-u Specifies the username.

Makes MySQL prompt you with the username's
password.

Operation name to validate whether the MySQL

ping . .
database is alive or not.

The output indicates that the MySQL installation has completed successfully,
and we're ready to move to the next step.



Accessing the MySQL database from
Python

The Python developer creates the mysqLdb module, which provides a utility to
interact and manage the database from a Python script. This module can be
installed using Python's pip, or with an operating system package manager, such
dS yum OI apt.

To install the package, use the following command:

| yum install MySQL-python

Verify the installation as follows:

[root@AutomationServer ~]# python

Python 2.7.5 (default, Aug 4 2017, 00:39:18)

[6CC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb

>>>

Since the module has imported without any errors, we know that the Python
module has successfully installed.

We will now access the database through the console and create a simple
database called Testingpython, with one table inside it. We will then connect to it
from Python:

[root@AutomationServer ~]# mysql -u root -p

Enter password: EnterpriseAutomation

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 12
Server version: 5.5.56-MariaDB MariaDB Server

Copyright (c) 2000, 2017, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> CREATE DATABASE TestingPython;
Query OK, 1 row affected (0.00 sec)

In the preceding statements, we connected to the database using the MySQL
utility, then used the SQL create command to create a blank, new database.



You can verify the newly created database by using the following commands:

MariaDB [(none)]> SHOW DATABASES;

e +
| Database |
e +
| information_schema |
| TestingPython |
| mysql I

| performance_schema |

4 rows in set (0.00 sec)
It's not mandatory to write SQL commands in uppercase; however, it's a best practice, in
order to differentiate them from variables and other operations.

We need to switch to the new database:

MariaDB [(none)]> use TestingPython;
Database changed

Now, execute the following command to create a new table inside the database:

MariaDB [TestingPython]> CREATE TABLE TestTable (id INT PRIMARY KEY, fName VARCHAR(30),
1name VARCHAR(20), Title VARCHAR(10));
Query OK, 0 rows affected (0.00 sec)

When you're creating a table, you should specify the column type. For example,
fname is a string with a maximum of 30 characters, while id is an integer.

Verify the table creation as follows:

MariaDB [TestingPython]> SHOW TABLES;

e +
| Tables_in_TestingPython |
e +
| TestTable |
e +

1 row in set (0.00 sec)

MariaDB [TestingPython]> describe TestTable;

R . - +omeaa- . R . R - +
| Field | Type | Null | Key | Default | Extra |
R . - +omeaa- . R . R - +
| id | int(11) | NO | PRI | NULL | |
| fName | varchar(30) | YES | | NULL | |
| lname | varchar(20) | YES | | NULL | |
| Title | varchar(10) | YES | | NULL | |
R . - +omeaa- . R . R - +

4 rows in set (0.00 sec)




Querying the database

At this point, our database is ready for some Python script. Let's create a new
Python file and provide database parameters:

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sgl_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)
print sqgl_connection

The parameters provided (sqL_1p, sqL_userNAME, sqL_PAssworp, and squ_oe) are needed
to establish the connection and authenticate against the database on port s3es.

The following table mentions the parameters and their meaning;:

Parameter Meaning

Host The server IP address that has the mysq1
installation.

Lcer The username with administrative privileges
over the connected database.
The password created using the

passwd .
mysql_secure_installation scrlpt.

db The database name.

The output will be as follows:

| <_mysql.connection open to '10.10.10.130' at 1cfd43e>

The returned object indicates that the connection has successfully opened to the
database. Let's use this object to create the SQL cursor that is used to execute the
actual commands:



cursor = sql_connection.cursor()
cursor.execute("show tables")

You can have many cursors associated with a single connection, and any change
in one cursor will be immediately reported to other ones, as you have the same
connection opened.

The cursor has two main methods: execute() and fetch*().

The execute() method is used to send commands to the database and return the
query results, while the fetch+() method has three flavors:

Method Name Description

Fetches only one record from the output,

fetchone()
regardless of the number of returned rows.

Returns the number of records specified

fetchmany(num) L.
inside the method.

fetchall() Returns all records.

Since fetchall() is a generic method that fetches either one record or all records,
we will use it:

output = cursor.fetchall()
print(output)

# python mysql_simple.py
(('TestTable',),)



Inserting records into the database

The mysqLdo module allows us to insert records into the database using the same
cursor operation. Remember that the execute() method can be used for both
insertion and query. Without further ado, we will change our script a bit and
provide the following insert commands:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sgl_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)

employeel = {
"id": 1,
"fname": "Bassim",
"lname": "Aly",
"Title": "NW_ENG"

}
employee2 = {
"id": 2,
"fname": "Ahmed",
"lname": "Hany",
"Title": "DEVELOPER"
}
employee3 = {
"id": 3,
"fname": "Sara",
"lname": "Mosaad",
"Title": "QA_ENG"
}
employee4 = {
"id": 4,
"fname": "Aly",
"lname": "Mohamed",

"Title": "PILOT"
b

employees = [employeel,employee2,employee3, employee4d]
cursor = sql_connection.cursor()
for record in employees:

SQL_COMMAND = """INSERT INTO TestTable(id, fname, lname,Title) VALUES
({e}, "{13',"{23"','"{3}3")""".format(record['id'], record['fname'], record['lname'],record['T




print SQL_COMMAND

try:
cursor.execute(SQL_COMMAND)
sql_connection.commit ()
except:
sql_connection.rollback()

sgl_connection.close()
In the preceding example, the following applies:

e We defined four employee records as a dictionary. Each one has an id, fname,
1name, and title, in keys, with different values for each.
e Then, we grouped them using emp1oyees, which is a variable of the 1ist type.

e A ror loop was created to iterate over the employees list and, inside the loop,
we formatted the insert SQL command and used the execute() method to
push the data to the SQL database. Notice that it's not required to add a
semicolon (;) after the command inside the execute function, as it will be
added automatically.

e After each successful execution of the SQL command, the comnit() operation
will be used to force the database engine to commit the data; otherwise, the
connection will be rolled back.

e Finally, use the ciose() function to terminate the established SQL
connection.

Closing the database connection means that all the cursors are sent to Python garbage
collectors and will be unusable. Also, note that when you close the connection without
committing the changes, it will make the database engine immediately roll back all
transactions.

The script's output is as follows:

# python mysql_insert.py

INSERT INTO TestTable(id, fname,lname,Title) VALUES (1, 'Bassim', 'Aly', 'NW_ENG')
INSERT INTO TestTable(id, fname,lname,Title) VALUES (2, 'Ahmed', 'Hany', 'DEVELOPER')
INSERT INTO TestTable(id, fname,lname,Title) VALUES (3, 'Sara', 'Mosad',6 'QA_ENG')
INSERT INTO TestTable(id, fname,lname,Title) VALUES (4, 'Aly', 'Mohamed', 'PILOT')

You can query the database through the MySQL console to verify that the data
has been submitted to the database:

MariaDB [TestingPython]> select * from TestTable;
e T S I +
| id | fName | lname | Title |
e T S I +
| 1 | Bassim | Aly | NW_ENG |



| 2 | Ahmed | Hany | DEVELOPER |
| 3 | Sara | Mosaad | QA_ENG |
| 4 | Aly | Mohamed | PILOT |
e T S I +

Now, returning to our Python code, we can use the execute() function again; this
time, we use it to select all the data that we inserted inside the testTable:

import MySQLdb

SQL_IP ="10.10.10.130"
SQL_USERNAME="root"
SQL_PASSWORD="EnterpriseAutomation"
SQL_DB="TestingPython"

sgl_connection = MySQLdb.connect (SQL_IP, SQL_USERNAME, SQL_PASSWORD, SQL_DB)
# print sqgl_connection

cursor = sql_connection.cursor()
cursor.execute("select * from TestTable")

output = cursor.fetchall()
print(output)

The script's output is as follows:

python mysql _show_all.py

((1L, 'Bassim', 'Aly', 'NW_ENG'), (2L, 'Ahmed', 'Hany', 'DEVELOPER'), (3L, 'Sara',
'Mosaa d', '"QA_ENG'), (4L, 'Aly', 'Mohamed', 'PILOT'))

0 The . character after the id value in the previous example can be resolved by converting the

data to integer again (in Python), using the int() function.

Another useful attribute inside of the cursor is .rowcount. This attribute will
indicate how many rows are returned as a result of the last .execute() method.



Summary

In this chapter, we learned how to interact with a DBMS using Python
connectors. We installed a MySQL database on our automation server, and then
verified it. Then, we accessed the MySQL DB using a Python script, and
performed operations on it.

In the next chapter, we will learn how to use Ansible for system administration.



Ansible for System Administration

In this chapter, we will explore one of the popular automation frameworks used

by thousands of network and system engineers called Ansible, Ansible is used to
administrate servers and network devices over multiple transport protocols such
as SSH, Netconf, and API in order to deliver a reliable infrastructure.

We will start first by learning the terminologies used in ansible, how to construct
an inventory file that contains the infrastructure access details, Building a robust
Ansible playbook using features like conditions, loops, and template rendering.

Ansible belongs to the configuration management class of software; it is used to
manage the configuration life cycle on multiple different devices and servers,
making sure that the same steps are applied on all of them and help to create
Infrastructure as a code (IaaC) environment.

The following topics will be covered in this chapter:

Ansible and its terminology

Installing Ansible on Linux

Using Ansible in ad hoc mode

Create your first playbook

Understanding Ansible conditions, handlers, and loops
Working with Ansible facts

Working with the Ansible template



Ansible terminology

Ansible is an automation tool and a complete framework that provides an
abstraction layer based on Python tools. Originally, it was designed to handle
task automation. This task might be executed on a single server or on thousands
of servers and ansible will handle them without any problem; later, Ansible's
scope extended to network devices and cloud providers. Ansible follows the
concept of idempotency, wherein Ansible instructions can run the same task
multiple times and always give the same configuration on all devices at the end,
reaching a desired state with minimal changes. For example, if we run Ansible to
upload a file to a specific group of servers, then run it again, Ansible will first
validate if the file already exist in the remote destination as a result a previous
execution or not. if it exist, then the ansible won't upload it again. This feature
called idempotency.

Another aspect of Ansible is that it is agentless. Ansible doesn't require any
agents to be installed in the servers before it runs tasks. It leverages the SSH
connection and Python standard libraries to execute tasks on remote servers and
return the output to the Ansible server. Also, it doesn't create a database to store
remote machine information, but depends on a flat text file called inventory to
store all required server information, such as IP addresses, credentials, and
infrastructure categorization. The following is an example of a simple inventory
file: [all:children]

web-servers

db-servers

[web-servers]

web01 Ansible ssh _host=192.168.10.10

[db-servers]
db01 Ansible _ssh _host=192.168.10.11
db02 Ansible ssh_host=192.168.10.12

[all:vars]



Ansible_ssh_user=root
Ansible_ssh_pass=access123

[db-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[local]
127.0.0.1 Ansible_connection=local Ansible_python_interpreter="/usr/bin/python"

Notice that we group together servers that perform the same functions in our
infrastructure (such as database servers, in a group called [db-servers]; the same
goes for [web-servers]). Then, we define a special group, called [a11], that
combines both groups, in case we have a task targeted to all of our servers.

The keyword children, in [all:children], means that the entries inside the group are
also groups that contain hosts.

Ansible's ad hoc mode allows users to execute tasks directly from the Terminal,
towards the remote servers. Let's suppose that you want to update specific
packages on specific types of servers, such as databases or web backend servers,
to resolve a new bug. At the same time, you don't want to go all the way to
developing a complex playbook to execute a simple task. By leveraging the ad
hoc mode in Ansible, you can execute any command on the remote servers by
typing it on the Ansible host Terminal. Even some modules can be executed in
the Terminal; we will see that in the Using Ansible in ad hoc mode section.



Installing Ansible on Linux

The Ansible package is available on all major Linux distributions. In this
section, we will install it onto both Ubuntu and CentOS machines. The Ansible
2.5 release was used at the time of developing this book, and it provides support
for both Python 2.6 and Python 2.7. Also, starting from version 2.2, Ansible
provides a tech preview for Python 3.5+.



On RHEL and CentOS

You will need to have the EPEL repository installed and enabled before
installing Ansible. To do so, use the following command:

| sudo yum install epel-release

Then, proceed with the Ansible package installation, as shown in the following
command:

| sudo yum install Ansible



Ubuntu

First, make sure that your system is up to date, and add the Ansible channel.
Finally, install the Ansible package itself, as shown in the following snippet: $
sudo apt-get update $ sudo apt-get install software-properties-common $
sudo apt-add-repository ppa:Ansible/Ansible $ sudo apt-get update $ sudo
apt-get install Ansible

For more installation flavors, you can check the official Ansible website (http://d
ocs.Ansible.com/Ansible/latest/installation_guide/intro_installation.html?#installing-the-

control-machine).

You can validate your installation by running ansibie --version to check the

bassim@me-inside:~$ ansible --version
ansible 2.5.1

config file = /etc/ansible/ansible.cfg

configured module search path = [u'/home/bassim/.ansible/plugins/modules’', u'/usr/sha
re/ansible/plugins/modules’]

ansible python module location = /usr/lib/python2.7/dist-packages/ansible

executable location = /usr/bin/ansible
python version = 2.7.14 (default, Sep 23 2017, 22:06:14) [GCC 7.2.0]

installed version:

0 The Ansible configuration files are usually stored in /etc/ansible, with the filename ansibie. crg.


http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html?#installing-the-control-machine

Using Ansible in ad hoc mode

Ansible ad hoc mode is used when you need to execute simple operations on
remote machines, without creating complex and persistent tasks. This is where a
user usually starts when they first work on Ansible, before performing advanced
tasks in a playbook.

Executing the ad-hoc command requires two things. First, you will need the host
or group from the inventory file; secondly, you will need the Ansible module
that you want to execute towards the target machine:

1. First, let's define our hosts and add the CentOS and Ubuntu machines in a
separate group:

[all:children]
centos-servers
ubuntu-servers

[centos-servers]
centos-machine®1 Ansible_ssh_host=10.10.10.193

[ubuntu-servers]
ubuntu-machine@1 Ansible_ssh_host=10.10.10.140

[all:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[centos-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[ubuntu-servers:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

[routers]
gateway ansible_ssh_host = 10.10.88.110 ansible_ssh_user=cisco
ansible_ssh_pass=cisco

[local]
127.0.0.1 Ansible_connection=local Ansible_python_interpreter="/usr/bin/python"

2. Save this file as nosts, under /root/ or your home directory in the
AutomationServer.

3. Then, run the ansibie command with the ping module:

| # Ansible -i hosts all -m ping



The -i argument will accept the inventory file that we added, while the -m
argument will specify the name of the Ansible module.

After running the command, you will get the following output, indicating a
failure in connecting to the remote machine: ubuntu-machine01 | FAILED! =>
{

"msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."

}

centos-machine01 | FAILED! => {

"msg": "Using a SSH password instead of a key is not possible because
Host Key checking is enabled and sshpass does not support this. Please add
this host's fingerprint to your known_hosts file to manage this host."

}

This happened because the remote machines are not inside of the known_nosts of
the Ansible server; it can be solved through two methods.

The first method is SSHing to them manually, which will add the host fingerprint
to the server. Or, you can completely disable host key checking in the Ansible
configuration, as shown in the following snippet: sed -i -e
's/#host_key_checking = False/host_key_checking = False/g'
/etc/Ansible/Ansible.cfg

sed -i -e 's/# StrictHostKeyChecking ask/ StrictHostKeyChecking no/g'
/etc/ssh/ssh_config

Rerun the ansiblie command, and you should get successful output from the three
machines: 127.0.0.1 | SUCCESS => {
"changed": false,

wemn

"ping": "pong"

}

ubuntu-machine01 | SUCCESS => {
"changed": false,

wemn

"ping": "pong"
}
centos-machine01 | SUCCESS => {



"changed": false,
"ping": l'pongl'
}

actually tries to log in to the device by using the SSH with provided credentials; if the login

0 The ping module in Ansible does not perform the ICMP operation against the device. It
succeeds, it will return the pong keyword to the Ansible host.

Another useful module is apt, or yun, which is used to manage the package on
either an Ubuntu or CentOS server. The following example will install the apache2
package on the Ubuntu machines: # Ansible -i hosts ubuntu-servers -m apt -a
"name=apache2 state=present"”

The state in the apt module can have the following values:

State Action

absent Removes the package from the system.

present Makes sure that the package is installed on the system.
latest Ensures that the package is in the latest version.

You can access the Ansible module documentation by running ansible-doc
<module_name>; you will see the full options, with examples, for the module.

The service module is used to manage operation and current status of the service.
You can change the service status to either started, restarted OI stopped in the state

option and ansible will run the appropriate command to change the status. In the
meantime, you can configure whether service is enabled at boot time or disabled
by COI'lfigUI‘iI'lg the enabled .



| #Ansible -i hosts centos-servers -m service -a "name=httpd state=stopped, enabled=no"

Also, you can restart the service by providing the service name, with the state set
as restarted: #Ansible -i hosts centos-servers -m service -a "'name=mariadb
state=restarted"

The other way to run Ansible in ad hoc mode is to pass the command directly to
Ansible, using not the built-in modules but the -a argument: #Ansible -i hosts all
-a "ifconfig"

You can even reboot the servers by running the reboot command; but this time,
we will only run it against the CentOS servers: #Ansible -i hosts centos-servers
-a "reboot"

Sometimes, you will need to run the command (or the module) using a different
user. This will be useful when you run a script on a remote server with specific
permissions assigned to a user different than the SSH user. In that case, we will
add the -u, --become, and --ask-become-pass (-k) switches. This will make Ansible run
the command with the provided username and prompt you for the user's
password: #Ansible -i hosts ubuntu-servers --become-user bassim --ask-
become-pass -a "cat /etc/sudoers™



How Ansible actually works

Ansible is basically written in Python, However it use it's own DSL (Domain
Specific Language). You can write using this DSL and ansible will convert it to
Python on remote machines to execute tasks. So, it first validates the task syntax
and copies the module from the Ansible host to the remote server, and then
executes it on the machine itself over SSH.

The result from the execution is returned back to the Ansible host in a json
format, so you can match any returned values by knowing its key:

SSH E E

db-servers

web-servers

SSH O

In the case of network devices where Python is installed on the Network
Operating System (NOS), Ansible uses either an API or netconf, if the network
device supports it (such as Juniper and Cisco Nexus); or, it just executes
commands using the paramiko exec_command() function, and returns the output to
the Ansible host. This can be done by using the raw module, as shown in the
following snippet:

# Ansible -i hosts routers -m raw -a "show arp"
gateway | SUCCESS | rc=0 >>

Sat Apr 21 01:33:58.391 CAIRO

Address Age Hardware Addr  State Type Interface

85.54.41.9 - 45ea.2258.d0a9 Interface ARPA TenGigE0/2/0/0
10.88.18.1 - deb7.428b.2814 Satellite ARPA TenGigE0/2/0/0
192.168.100.1 - 00a7.5a3b.4193 Interface ARPA GigabitEthernet100/0/0/9

192.168.100.2 02:08:03 fc5b.3937.0b00 Dynamic ARPA \



Creating your first playbook

Now the magic party can begin. An Ansible playbook is a set of commands
(called tasks) that need to be executed in order, and it describes the desired state
of the hosts after execution finishes. Think of a playbook as a manual that
contains a set of instructions for how to change the state of an infrastructure;
each instruction depends on many built-in Ansible modules to perform the tasks.
For example, you may have a playbook that is used to build web applications
that consist of SQL servers, to act as backend databases and nginx web servers.
The playbook will have a list of tasks to perform against each group of servers,
to change their states from no-exist tO present, OT tO Restarted OT Absent, if you want
to delete the web app.

The power of having the playbook, over the ad hoc commands is that you can
use it to configure and set up your infrastructure everywhere. The same
procedure used to create the dev environment will be used in the production
environment. A playbook is used to create the automation workflow that runs on

your infrastructure:
SSH
| yummodule |
| file module | |
| E E
db-servers

| sql module

web-servers

Db-servers tasks

apt module I

i

I nginx module ]

Web-servers tasks

|  Playbook |

Playbooks are written with YAML, which we discussed in chapter s,
Configuration Generator with Python and Jinja2. A playbook consists of
multiple plays, executed against a set of hosts that are defined in the inventory



file. The hosts will be converted to a Python 1ist, and each item inside the list
will be called a p1ay. In the preceding example, the db-servers tasks are some of
the plays, and are executed against the do-servers only. During playbook
execution, you can decide to run all of the plays in the file, only a specific play,
or tasks with specific tags, regardless of which play they belong to.

Now, let's look at our first playbook, to get the look and feel of it:

- hosts: centos-servers
remote_user: root

tasks:
- name: Install openssh
yum: pkg=openssh-server state=installed

- name: Start the openssh
service: name=sshd state=started enabled=yes

This is a simple playbook, with a single p1ay that contains two tasks:

1. Install openssh-server.
2. Start the sshd service after installation, and make sure that it's available at
the boot time.

Now, we need to apply this to a specific host (or a group of hosts). So, we set the
hosts tO be centos-servers, defined previously in the inventory file, and we also set
the remote_user to be the root, to ensure that the tasks after it will be executed with
root permissions.

The tasks will consist of the names and the Ansible modules. The name is used
to describe the task. It's not mandatory to provide names for your tasks, but it's
recommended, in case you need to start the execution from a specific task.

The second part is the Ansible module, which is mandatory. In our example, we
used the core module yun to install the openssh-server package onto the target
servers. The second task has the same structure, but this time, we will use
another core module, called service, to start and enable the sshd¢ daemon.

A final note is to watch the indentation for different components inside of
Ansible. For example, the names of the tasks should be on the same level, while
the tasks should align with the nosts on the same line.



Let's run the playbook in our automation server and check the output:

#Ansible-playbook -i hosts first_playbook.yaml

PLAY [centos-servers]

LR R R EREEEEEEEEEEREEEREEREEEEREEREEREEEEEEEEEREERERESRESREEEEESERER SRS EEEEESESESE]

TASK [Gathering Facts]

LR R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEREEREEREREREEEEEEESEEEEEEEEREREESESE]
ok: [centos-machine01]

TASK [Install openssh]

LR R R R R R R EEEEEEEEEREEEEEEEEEEEEEEEEEEREEREEREEREREEEEEEESEEEEEEEEREREESE]
ok: [centos-machine01]

TASK [Start the openssh]

LR R R R R R R R EEEEEEEEREEREEREEEEREREEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEE]

ok: [centos-machine01]

PLAY RECAP
LR R R R EEEEEEEEEEEEREEREEREEREEEEEEEEEEEEEEEEEEEREREESEEEEEEEEEEEEEEREEEEESEEEEEEEEE XX
centos-machine01 : ok=3 changed=0 unreachable=0 failed=0

You can see that the playbook is executed on centos-machineo1, and the tasks are
executed sequentially, as defined in the playbook.

YAML requires that you preserve the indentation level and don't mix between the tabs and
spaces; otherwise, it will give an error. Many text editors and IDEs will convert the tab to a
set of white spaces. An example of that option is shown in the following screenshot, in the
notepad+ + editor preferences:

Preferences X

Editing e —
New Document EIMeke language menu compact ruby A
Default Directory Available items Disabled items rne
Recent Files History B ) 3 smalltalk
1ab Haskell " sql
|::::] Inno Setup =
CMake tex
print (=) ®
Backup COBOL = verilog
Auto-Completion Gui<Cli - : vhd
Multi-Instance D xml
Delimiter PowerShell
Cloud R searchResult v
Search Engine isp
MISC. CoffeeScript [Juse default value
S Tabsize : 4
JavaScript o
Fortran (fixed form) = Replace by space




Understanding Ansible conditions,
handlers, and loops

In this part of the chapter, we will look at some of the advanced features in the
Ansible playbook.



Designing conditions

An Ansible playbook can execute tasks (or skip them) based on the results of
specific conditions inside the task—for example, when you want to install
packages on a specific family of operating systems (Debian or CentOS), or when
the operating system is a particular version, or even when the remote hosts are
virtual, not bare metal. This can be done by using the wnen clause inside of the
task.

Let's enhance the previous playbook and limit the openssh-server installation to
only CentOS based systems, so that it does not give an error when it hits an
Ubuntu server that uses the apt module, not yunm.

First, we will add the following two sections to our inventory file, to group the
CentOS and Ubuntu machines in the infra section:

[infra:children]
centos-servers
ubuntu-servers

[infra:vars]
Ansible_ssh_user=root
Ansible_ssh_pass=access123

Then, we will redesign the tasks inside of the playbook to have the when clause,
which limits task execution to only CentOS based machines. This should read as

if the remote machine is CentOS based, then I will execute the task; otherwise, skip.

- hosts: infra
remote_user: root

tasks:
- name: Install openssh
yum: pkg=openssh-server state=installed
when: Ansible_distribution == "Cent0S"

- name: Start the openssh
service: name=sshd state=started enabled=yes
when: Ansible_distribution == "Cent0S"

Let's run the playbook:

# Ansible-playbook -i hosts using_when.yaml



PLAY [infra]

LR EEEEEEEEEE SRS SRR EEEEEEEEE R EEEEEEEEEEEREEEREEEEEEEEEEEREEREEEREEREEREEEEESEEEEEEE XX

TASK [Gathering Facts]

LR EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEREEREEREEREREEREEREEEEESEREEEEEEEEEESEESSE]

ok: [centos-machine01]
ok: [ubuntu-machine01]

TASK [Install openssh]

LA EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEREEREEREREEEEEEEEESEREEREEEEEEEESEESSE]

skipping: [ubuntu-machine01]
ok: [centos-machine01]

TASK [Start the openssh]
khkhkhkhkhkhkhkhkhkhkhhkhkhkhhhhhkhhhkhkhhhkhkhkhhhhkhkhhkhhkhhhkhhkhkhhhkkhkhkhkhhkhkhkhhkhkhkhkhkhkkhkkkkk*x

skipping: [ubuntu-machine01]
ok: [centos-machine01]

PLAY RECAP
khkkhkhkhkhkhkhkhkkhkhhkhkhkhhkhkhkhkhhhkhhhhhhkhhhhkhkhhhkhkhhhhhkhhkhhkhkhhkhhkhhhhkkhkhhkhkhkhhhkhhkhkhkhhkkhkhkhkhkhkhkkhkkkk%
centos-machine01 : ok=3 changed=0 unreachable=0 failed=0
ubuntu-machine01 : ok=1 changed=0 unreachable=0 failed=0

Notice that the playbook first gathers the facts about the remote machines (we
will discuss that later in this chapter), and then checks the operating system. The
task will be skipped when it hits an ubuntu-machinee1, and it will run normally on
the CentOS.

You can also have multiple conditions that need to be true in order to run the
task. For example, you can have the following playbook, which validates two
things—first, that the machine is based on Debian, and second, that it is a virtual
machine, not a baremetal:

- hosts: infra
remote_user: root

tasks:
- name: Install openssh
apt: pkg=open-vm-tools state=installed
when:
- Ansible_distribution == "Debian"
- Ansible_system_vendor == "VMware, Inc.

Running this playbook will result in the following output:

# Ansible-playbook -i hosts using_when_1.yaml

PLAY [infra]

LR R R R EEEEEEEEEEEEREEREEEEEREEEEEEEEEEEEEE SRR R EREEEEEE S EEEEEEEEEEEREEEEEEE XXX

TASK [Gathering Facts]

LR R R R R R R R EEEEEEEREEEEEEEEEEEEEEEEEEREEREEREREREEEEEEESEEEEEEEEREEEESESE]

ok: [centos-machine01]
ok: [ubuntu-machine01]




TASK [Install openssh]

LR R R R R R R R EEEEEEEEREEEEEEEEEEEEEEEEEEREEREEREREEREEEEEEESEEEEEEEEEEEEESESE]
skipping: [centos-machine01]

ok: [ubuntu-machine01]

PLAY RECAP

LR R R R R R EEEEEEEREEEREEREEREEEEEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEREREEEEEEEEEEES
centos-machine01 : ok=1 changed=0 unreachable=0 failed=0
ubuntu-machine01 1 ok=2 changed=0 unreachable=0 failed=0

The Ansible when clause also accepts expressions. For example, you can check
whether a specific keyword exists in the returned output (that you saved using
the register flag), and, based on that, execute the task.

The following playbook will validate the OSPF neighbor status. The first task
will execute show ip ospf neighbor on the routers and register the output in a
variable called neignhbors. The next task will check for exstart or excrance in the
returned output; if found, it will print a message back to the console:

hosts: routers

tasks:
- name: "show the ospf neighbor status"
raw: show ip ospf neighbor
register: neighbors

- name: "Validate the Neighbors"
debug:
msg: "OSPF neighbors stuck"
when: ('EXSTART' in neighbors.stdout) or ('EXCHANGE' in neigbnors.stdout)

You can check the facts commonly used in the when clause at nttp://docs.Ansible.com

/Ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts.


http://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html#commonly-used-facts

Creating loops in ansible

Ansible provides many ways to repeat the same task inside a play, but with a
different value each time. For example, when you want to install multiple
packages on a server, you don't need to create a task for each package. Rather,
you can create a task that installs a package and provides a list of package names
to the task, and Ansible will iterate over them until it finishes the installation. To
accomplish this, we will need the with_itens flag inside of the task that contains a
list, and the variable {{ item 33, which serves as a placeholder for the items in the
list. The playbook will leverage the witn_itens flag to iterate over a set of
packages and provide them to the yun module, which requires the name and state
of the package:

- hosts: infra
remote_user: root

tasks:
- name: "Modifying Packages"
yum: name={{ item.name }} state={{ item.state }}
with_items:
- { name: python-keyring-5.0-1.el7.noarch, state: absent }
name: python-django, state: absent }
name: python-django-bash-completion, state: absent }
name: httpd, state: present }
name: httpd-tools, state: present }
- name: python-gpid, state: present }
when: Ansible_distribution == "Cent0S"

1 1 1 1
e Y acn e Raan Yatn)

You can hardcode the value of the state to be present; in that case, all of the
packages will be installed. However, in the previous case, with_itens will provide
the two elements to the yum module.

The playbook's output is as follows:



PLAY [Anfral koo ssohskokohordof ko ok ook ok ookt ot ook ok ok ok sk ok oo ok ok ok o s ot oo sk sk o oo o ok o o sk ot oo o o o o

TASK [Gathering Facts] ikikiksksrstriiirtssfiokksksobobokkokfoktopotdortototot ok okopo ok oksofobolordorkkokorok

ok: [centos-machine01]
ok: [ubuntu-machine01]

TASK [Modlfylng Packages] 3k 3k 3k 3k 3k 3k 5 sk 3k 5k 3k 3k 5k 3k 3k 3k ok 3k ok ok 3K 3K K 3K ok 3k %k 3k sk ok %k 5k 3k sk ok sk ok ok ok ok 5k 3k 3K 5k 3k 3K ok ok K 3k ok 3k %k ok 3k 3k ok ok ok sk ok Kok ok k k.
skipping: [ubuntu-machine@l] => (item={u'state': u'absent', u'name': u'python-keyring-5.0-1.
el7.noarch'})

skipping: [ubuntu-machine®@l] => (item={u'state': u'absent', u'name': u'python-django'})
skipping: [ubuntu-machine®@l] => (item={u'state': u'absent', u'name': u'python-django-bash-co
mpletion'})

skipping: [ubuntu-machine®l] => (item={u'state': u'present', u'name': u'httpd'})

skipping: [ubuntu-machine®l] => (item={u'state': u'present', u'name': u'httpd-tools'})
skipping: [ubuntu-machine®l] => (item={u'state': u'present', u'name': u'python-qpid'})

ok: [centos-machine®l] => (item={u'state': u'absent', u'name': u'python-keyring-5.0-1.el7.no
arch'})

ok: [centos-machine®l] => (item={u'state': u'absent', u'name': u'python-django'})

ok: [centos-machine0l] => (item={u'state': u'absent', u'name': u'python-django-bash-completi
on'})

changed: [centos-machine@l] => (item={u'state': u'present', u'name': u'httpd'})

ok: [centos-machine0l] => (item={u'state': u'present', u'name': u'httpd-tools'})

changed: [centos-machine@l] => (item={u'state': u'present', u'name': u'python-qpid‘'})

PLAY RECAP 3 okkok s sk sk ok ko ok sk ok o o ok oK ok kK o o ok KoK o ok oK ohoR 0o oK K Ko K oK oK KK 3 3 ok ok KKK R ook KK oK oK KoK K 33 oK KoK ok ok ok K ok ok ok koK
centos-machine@l : ok=2 changed=1 unreachable=0 failed=0
ubuntu-machine®l ;. ok=1 changed=0 unreachable=0 failed=0
mflve @vesse ¢«




Trigger tasks with handlers

Okay; you have installed and removed a series of packages in your system. You
have copied files to/from your server. And you have changed many things in the
server by using an Ansible playbook. Now, you need to restart a few other
services, or add some lines to the files, to complete the configuration of the
service. So, you should add a new task, right? Yes, that's correct. However,
Ansible provides another great option, called handlers, which will not
automatically execute when it hits (unlike tasks), but will rather be executed
only when it is called. This provides you with the flexibility to call them upon
the execution of tasks inside the play.

Handlers have the same alignment as the hosts and tasks, and are located at the
bottom of each play. When you need to call a handler, you use the notify flag
inside of the original task, to determine which handler will be executed; Ansible
will link them together.

Let's look at an example. We will write a playbook that installs and configures
the KVM on the CentOS servers. The KVM requires a few changes after
installation, such as loading the sysct1, enabling the kvm and se2.1q modules, and
loading the kvm at boot:

- hosts: centos-servers
remote_user: root

tasks:
- name: "Install KVM"
yum: name={{ item.name }} state={{ item.state }}
with_items:
- { name: gemu-kvm, state: installed }
- { name: libvirt, state: installed }
- { name: virt-install, state: installed }
- { name: bridge-utils, state: installed }

notify:
- load sysctl
- load kvm at boot
- enable kvm
handlers:

- name: load sysctl
command: sysctl -p

- name: enable kvm
command: "{{ item.name }}"




with_items:
- {name: modprobe -a kvm}
- {name: modprobe 8021q}
- {name: udevadm trigger}

- name: load kvm at boot
lineinfile: dest=/etc/modules state=present create=True line={{ item.name }}
with_items:
- {name: kvm}

Notice the usage of notify after the installation task. When the task runs, it will
notify three handlers in sequence, so that they will execute. The handlers will
run after the task has successfully executed. That means that if the task has failed
to run (for example, the kwwm package was not found, or there's no internet
connection to download it), there will be no changes to your system, and kvm will
not be enabled.

Another awesome feature of the handler is that it's only run when there's a
change in the task. For example, if you rerun the task, Ansible won't install the
kvm package since it's already installed; it won't call any handlers, as it doesn't
detect any changes in the system.

We will add a final note about two modules: 1ineinfile and command. The first
module is actually inserting or deleting lines from configuration files by using
regular expressions; we used it in order to insert the kvm into /etc/modules, t0
automatically boot the KVM when the machine starts. The second module,
command, is used to execute a shell command directly on the device and return the
output to the Ansible host.



Working with Ansible facts

Ansible is not only used to deploy and configure remote hosts. It can be used to
gather all kinds of information and facts about them. The facts collection can
take significant amount of time to collect everything from a busy system, but
will provide a full view of the target machine.

The facts that are gathered can be used inside the playbook later, to design a task
condition. For example, we used the when clause to limit the openssh installation to
only CentOS-based systems:

|when: Ansible_distribution == "Cent0S"

You can enable/disable fact gathering in the Ansible plays by configuring
gather_facts On the same level as hosts and tasks:
- hosts: centos-servers
gather_facts: yes

tasks:
<your tasks go here>

Another way to gather facts and print them in Ansible is to use the setup module
in the ad hoc mode. The returned results are in the form of nested dictionaries
and lists, to describe the remote target facts, such as the server architecture,
memory, networking settings, OS version, and so on:

| #Ansible -i hosts ubuntu-servers -m setup | less



ubuntu-machine®l | SUCCESS => {
"ansible facts": {

"ansible all ipv4 addresses": [
*16.10.10. 140"

1.

"ansible all ipv6 addresses": [
"fe80::20c:29ff:feef:a88c"

1,

"ansible apparmor": {

"status": "enabled"
1
"ansible architecture": "x86 64",
"ansible bios date": "09/17/2015",
"ansible_bios_version": "6.00",

"ansible cmdline": {
"BOOT_IMAGE": "/vmlinuz-4.4.0-116-generic",
"ro"; true,
"root": "/dev/mapper/ubuntu--machine--vg-root"
+s
"ansible date time": {
"date": "2018-04-26",

FdayE *26%,
"epoch": "1524699626",
"hour": "@1",

"is08601": "2018-04-25T723:40:26Z",
"i508601 _basic": "20180426T014026018841",
"is08601_basic_short": "20180426T014026",

You can get to a specific value from the facts by using either a dot notation or
square brackets. For example, to get the IPv4 address for etho, you can use either

Ansible_eth@["ipv4"]["address"] OI Ansible_eth@.ipv4.address.



Working with the Ansible template

The last piece of working with Ansible is understanding how it handles the
template. Ansible uses the Jinja2 template, which we discussed in chapter s,
Configuration Generator with Python and JinjaZ2. It fills the parameters with
either Ansible facts or the static values provided in the vars section, or even with
the result of a task stored using the register flag.

In the following example, we will build an Ansible playbook that gathers the
previous three cases. First, we define a variable called neader in the vars section,
holding a welcome message as a static value. Then, we enable the gather_facts
flag, to get all possible information from the target machine. Finally, we execute
the date command, to get the current date in the server and store the output in the
date_now variable:

- hosts: centos-servers
vars:
- Header: "Welcome to Server facts page generated from Ansible playbook"
gather_facts: yes
tasks:
- name: Getting the current date
command: date
register: date_now
- name: Setup webserver
yum: pkg=nginx state=installed
when: Ansible_distribution == "Cent0S"

notify:
- enable the service
- start the service

- name: Copying the index page
template: src=index.j2 dest=/usr/share/nginx/html/index.html

handlers:
- name: enable the service
service: name=nginx enabled=yes

- name: start the service
service: name=nginx state=started

The template module that was used in the preceding playbook will accept a
Jinja2 file named index.j2, located in the same directory of the playbook; it will
then provide all of the values for the jinj2 variables from the three sources we
discussed previously. Then, the rendered file will be stored in a path provided by
the dest option, inside the template module.



The content of index.j2 will be as follows. It will be a simple HTML page that
leverages the jinja2 language to generate a final HTML page:

<html>
<head><title>Hello world</title></head>
<body>

<font size="6" color="green">{{ Header }}</font>

<br>

<font size="5" color="#ff7f50">Facts about the server</font>
<br>

<b>Date Now is:</b> {{ date_now.stdout }}

<font size="4" color="#00008b">

<ul>
<1i>IPv4 Address: {{ Ansible_default_ipv4['address'] }}</1i>
<1i>IPv4 gateway: {{ Ansible_default_ipv4['gateway'] }}</1li>
<li>Hostname: {{ Ansible_hostname }}</1i>
<li>Total Memory: {{ Ansible_memtotal mb }}</1i>
<li>Operating System Family: {{ Ansible_os_family }}</1i>
<li>System Vendor: {{ Ansible_system_vendor }}</1i>

</ul>

</font>

</body>

</html>

Running this playbook will result in installing the nginx web server on the
CentOS machine, and adding an index.htm1 page to it. You can access the page by
using the browser:

Hello world x [

« c o © 1010.10.193 B e @ Ty
B

Welcome to Server facts page generated from ansible playbook

Date Now is: Thu Apr 26 03:12:18 EET 2018

IPv4 Address: 10.10.10.193

IPv4 gateway: 10.10.10.1
Hostname: controller329

Total Memory: 32173

Operating System Family: RedHat
System Vendor: VMware, Inc.

You can also utilize the template module to generate network device
configurations. The jinja2 templates used in chapter 6, Configuration Generator
with Python and Jinja2, which generated the daye and day1 configurations for the
router, can be reused inside of the Ansible playbook.


https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=322&action=edit#post_33

Summary

Ansible is a very powerful tool, used to automate IT infrastructure. It contains
many modules and libraries that cover almost everything in system and network
automation, making software deployment, package management, and
configuration management very easy. While Ansible can execute a single
module in ad hoc mode, the real power of Ansible is in writing and developing
playbooks.



Creating and Managing VMware
Virtual Machines

For a long long time, virtualization has been an important technology in the IT
industry as it provides an efficient way for hardware resources and allows us to
easily manage application life cycle inside the Virtual Machine (VM). In 2001,
VMware released the first version of the ESXi that could run directly over the
commodity off the shelf (COTS) server while converting it to a resource that
could be consumed by multiple separate virtual machines. In this chapter, we
will explore many options available to automate the building of virtual machine
thanks to Python and Ansible.

The following topics will be covered in this chapter:

Setting up the lab environment

Generating a VMX file using Jinja2

VMware Python clients

Using Ansible playbooks to manage instances



Setting up the environment

For this chapter, we will have VMware ESXi version 5.5 installed over a Cisco
UCS server and host a few virtual machines. We need to enable a few things in
our ESXi server in order to expose some external ports to the outside world:

1. The first thing is to enable both Shell and SSH access to the ESXi console.
Basically, ESXi allows you to manage it using the vSphere client (based on
C# for the versions before 5.5.x and based on HTML for version 6 and up).
Once we enable the Shell and SSH access, this will give us the ability to use
the CLI to manage virtual infrastructure and to perform tasks such as
creating, deleting, and customizing the virtual machine.

2. Access the ESXi vSphere client and go to Configuration, then choose
Security Profiles from the left tab, and finally click on Properties:



5 B |
File Edit Miew Inventory Administration Plug-ins Help

ETj Q Home b ] Tvertory b [l Tventary
g e

B D Iocalhost.|ocaldomain ¥Mware ESXi, 5.5.0, 3248547

(3etting Hated SUmmary ’.'u'irtua\ Mathines | Resore Allcat . Pefomanc Configuration &

Hatdware Security Profile
Heath Status Jervits e i
/0 Redirector (Active Directory Service)
Pracessors
anmpd
Hemory Netwotk Login Server (Active Directory Service)
Sorage bkd
Hetworking ypra
Shorane Adapters ESHiShel
Nekwork Adapters i ] o o ]
Local Secutity Authentication Server (fctive Directory Service)
Advanced Settings AP Daeman
Prawer Management yprobed
55H
Software Direct Cansale L1
Licensed Features _CIM S
Time Configuration Firewal Reftesn  Propet
i Incaming Cannections
i - WM serial port connected over ne.., 23,1024-65535 (TCP) 4
Auentiation Servies yiphere Web Aocess B0(TCF) Al
Yirtual Maching Startup/Shutdown yphers Clint 902 443{TCF) Al
Yirtual Maching 5 Location ipfam £999 (L0F) il
v Seury Prafile @ CIM Server 5958 (TCP) Al
Host Cache Configuration DR 546 1CH L0F) |
(M 427 (LOR,TCP) il
Syskem Resource Alocation BHCP Clit B(P) il
Agert M1 Settings M Serure Server 5989 (TCF) il
Advanced Sattings YSATND 8080 (TCP) Al
FC 902 (1CP) il
NS Client 53 LP) il
it (TR il
55H Server 22 (1CF) Al
{utgaing Connections
HER 31031, 44046 { TCP) il
S5H Clent 210 il
YSATND 8080 (TCP) Al
infam 6993 LIP) il
DHCP Client 83 (L0F) Al
DHCPys 547 (TCP 0P il

A pop-up window will be opened that contains a list of services, statuses,
and various options that can be applied:

3. Select SSH service and then click on Option. Another pop-up window will
be opened.



4. Choose the first option that reads Start automatically if any ports are open,
and stop when all ports are closed under the Startup Policy.
5. Also, click on Start under Service Commands and hit OK:

(£} Services Propetties O ﬂ
Remote Access
By default, remote clients are prevented from accessing services on this host, and local clients are prevented From
accessing services on remate hosts,
IUnless configured otherwise, dagmons will skart aukomatically,
Label Daemon j
snmpd Stopped
Metwark Login Server (Active Direc,,. Stopped
Ibtd Stopped
Vpxa Stopped
ES¥i Shell Running
x®0rg Stopped
Local Security Authentication Serv...  Stopped
MTF Daemon Stopped
vprobed Stopped fm
35H Running
Direct Console I Running j
Service Propetties
General
E,-' SEH (T3M-55H) Options &
Skatus
Running
Startup Palicy
¥ Start automatically iF any ports are open, and stop when all ports are closed
" Start and skop with host L]
™ start and stop manually Options. .. |
Taprvice Commands
Skop | Reskart |
Cancel ‘ Help ‘
| [0 4 | Cancel | Help |

Repeat the same steps again for the ESXi Shell service. This will ensure that
both services will be started once the ESXi server has started and will be opened
and ready to accept the connection. You can test both services, SSH to the ESXi
IP address and provide the root credentials as with SSH connection:



+ UCS-220-ESXI x
The time and date of this login have been sent to the system logs.

VMware offers supported, powerful system administration tools. Please
see www.vmware.com/go/sysadmintools for details.

The ESXi Shell can be disabled by an administrative user. See the
vSphere Security documentation for more information.
~ #



Generating a VMX file using Jinja2

The basic unit for a virtual machine (sometimes called a guest machine) is the
VMX file. This file contains all the settings needed to build the virtual machine
in terms of compute resources, allocated memory, HDD, and networking. Also,
it defines the operating system that runs over the machine so the VMware can
install some tools to manage the VM powering.

An additional file is needed: VMDAK. This file stores the actual contents of the
VM and acts as the hard disk for the VM partitions:

3| Virtual Machine |8

These files (VMX and VMDK) should be stored under the /vmfs/volumes/datastore1
directory in the ESXi Shell and should be inside a directory with the name of the
virtual machine.



Building the VMX template

We are now going to create the template file that we will use to build our virtual
machine in Python. Here's an example of the final running VMX file that we
need to generate with the help of Python and Jinja2: .encoding = "UTF-8"
vhv.enable = "TRUE"

config.version = "8"

virtualHW.version = "8"

vmci0.present = "TRUE"
hpetO.present = "TRUE"
displayName = "test_jinja2"

# Specs

memSize = "4096"
numvcpus = "1"
cpuid.coresPerSocket = "1"

# HDD

scsiO.present = "TRUE"
scsi0.virtualDev = "Isilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsi0:0.fileName = "test_jinja2.vmdk"
scsi0:0.present = "TRUE"

# Floppy
floppyO.present = "false"

# CDRom

ide1:0.present = "TRUE"

ide1:0.deviceType = "cdrom-image"

idel:0.fileName = "/vmfs/volumes/datastore1/ISO Room/CentOS-7-x86_64-
Minimal-1708.iso"



# Networking

ethernet0.virtualDev = "e1000"
ethernet0.networkName = "network1"
ethernet0.addressType = "generated"
ethernetO.present = "TRUE"

# VM Type
guestOS = "ubuntu-64"

# VMware Tools
toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"
toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

I added some comments inside the file to illustrate the functionality of each block. However, in
the actual file, you won't see these comments.

Let's analyze the file and understand the meaning of some fields:

® vhv.enable: When set to True, the ESXi server will expose the CPU host flags

to the guest CPU that allows the running of the VM inside the guest
machine (called nested virtualization).

® displayname: The name that will be registered in the ESXi and shown in the
vSphere client.

e nemsize: This defines the allocated RAM to the VM and should be provided

in megabytes.
® nunvcpus: This defines the number of physical CPUs allocated to the VM.

This flag is used with cpuid.corespersocket S0 it can define the total number of

vCPU allocated.

® scsio.virtualoev: The type of SCSI controller for the virtual hard drive. It can

be one of four values: BusLogic, LSI Logic parallel, LSI Logic SAS, or
VMware paravirtual.

® scsio:0.filename: This defines the name of the vmdk (in the same directory) that

will store the actual virtual machine settings.
® idei:0.filename: The image path that contains the installation binaries

packaged in ISO format. This will make the ESXi connect the ISO image in



the image CD-ROM (IDE device).

® ctherneto.networkName; This is the name of the virtual switch in ESXi that
should connect to VM NIC. You can add additional instances of this
parameter to reflect additional network interfaces.

Now we will build the Jinja2 template; you can review chapter 6, Configuration
Generator with Python and Jinja2, for the basics of templating using the Jinja2
language: .encoding = "UTF-8"

vhv.enable = "TRUE"

config.version = "8"

virtualHW.version = "8"

vmci0.present = "TRUE"
hpetO.present = "TRUE"
displayName = "{{vm_name} }"

# Specs

memSize = "{{ vm_memory_size }}"
numvcpus = "{{ vm_cpu }}"
cpuid.coresPerSocket = "{{cpu_per_socket} }"

# HDD

scsiO.present = "TRUE"

scsi0.virtualDev = "Isilogic"
scsi0:0.deviceType = "scsi-hardDisk"
scsiO:0.fileName = "{{vm_name}}.vimmdk"
scsi0:0.present = "TRUE"

# Floppy
floppyO.present = "false"

# CDRom

ide1:0.present = "TRUE"

ide1:0.deviceType = "cdrom-image"

ide1:0.fileName = "/vmfs/volumes/datastore1/ISO Room/{{vm_image}}"



# Networking

ethernetO.virtualDev = "e1000"
ethernetO.networkName = "{{vm_network1}}"
ethernetO.addressType = "generated"
ethernetO.present = "TRUE"

# VM Type
guestOS = "{{vm_guest_os}}" #centos-64 or ubuntu-64

# VMware Tools
toolScripts.afterPowerOn = "TRUE"
toolScripts.afterResume = "TRUE"
toolScripts.beforeSuspend = "TRUE"
toolScripts.beforePowerOff = "TRUE"
tools.remindInstall = "TRUE"
tools.syncTime = "FALSE"

Notice that we removed the static values for the relevant fields, such as
diplayName, memsize, and so on, and replaced them with double curly braces with
variable names inside them. During template rendering from Python, these fields
will be replaced with actual values to construct a valid VMX file.

Now, let's build the Python script that will render the file. Usually, we use the
YAML data serialization in conjunction with Jinja2 to fill in the data of the
template. But since we already explain the YAML concept in chapter s,
Configuration Generator with Python and Jinja2, we will get our data from
another data source, Microsoft Excel:


https://cdp.packtpub.com/hands_on_enterprise_automation_with_python/wp-admin/post.php?post=295&action=edit#post_33




Handling Microsoft Excel data

Python has some excellent libraries that can handle the data written in an Excel
sheet. We already used the Excel sheet in chapter 4, Using Python to Manage
Network Devices, when we needed to automate the netmiko configuration and read
the data that described the infrastructure of the Excel file. Now, we will start by
installing the Python xird library inside the Automation Server.

Use the following command to install xird:

| pip install xlrd
[root@AutomationServer ~]# pip install xlrd
Collecting x1lrd
Downloading xlrd-1.1.0-py2.py3-none-any.whl (108kB)
100% | N | 112kB 750kB/s
Installing collected packages: xlrd
Successfully installed xlrd-1.1.0
[root@AutomationServer ~1#

Follow the steps given below:

1. The XLRD module can open the Microsoft workbook and parse the
contents USiDg the open_workbook() method.

2. Then you can select the sheet that contains your data either by providing the
sheet index or the sheet name to the sheet_by_index() OI sheet_by_name()
methods respectively.

3. Finally, you can access the row data by providing the row number to the
row() function which converts the row data into a Python list:



BEo 0 : et Eed
KOME  NED  PAGELNOT  RORMLAS DA RN VEW  OFCET  ROUTRRY

WXk
0 devesalsr®

( D E F 6 H
1 hostname ip username password secret  global delay factor ™
2|R1 1010101 admin  access123 access123 of N
3SWL 1010102 admin  accessi23 access123 6 R
4 W2 1010103 admin  access123 access13 b op
5 W3 1010104 admin  access123 acoess123 bW
b W4 1010105  admin  access123 acoess123 b
TSW5 1010106  admin  accessI23 access23 b _

Workbook

Notice that nrows and nco1s are special variables which will be populated once you
open the sheet that counts the number of rows and number of columns inside the
sheet. You can iterate over with the for loop. The number always start from

Back to the virtual machine example. We will have the following data in the
Excel sheet, which reflects the virtual machine settings:



F16 v &L=

| A | B | ¢ | D | E e S G

1 |virtual machine name  memory phyCpu CorePerCpu Hardisk size operating system  vswitch

2 |python-vm1 4096 2 2 10 ubuntu-64 network1

3 |python-vm2 2048 2 2 20 centos-64 networ2

4 |python-vm3 3072 1] 2 20windows7-64 network3

5 |python-vm4 6144 2 3 15 centos-64 network1

6

7

To read the data into Python, we will use the following script:

import xlrd

workbook =
x1lrd.open_workbook(r"/media/bassim/DATA/GoogleDrive/Packt/EnterpriseAutomationProject/Ct
sheet = workbook.sheet_by_index(0)

print(sheet.nrows)

print(sheet.ncols)

print(int(sheet.row(1)[1].value))

for row in range(1, sheet.nrows):

vm_name = sheet.row(row)[0].value
vm_memory_size = int(sheet.row(row)[1].value)

vm_cpu = int(sheet.row(row)[2].value)

cpu_per_socket = int(sheet.row(row)[3].value)

vm_hdd_size = int(sheet.row(row)[4].value)

vm_guest_os = sheet.row(row)[5].value
vm_networkl = sheet.row(row)[6].value

In the previous script, we did the following:

1. We imported the x1rd module and provided the Excel file to the
open_workbook () method to read the Excel sheet and save that to the workbook
variable.

2. Then, we accessed the first sheet using the sheet_by_index() method and saved
the reference to the sheet variable.

3. Now we will iterate over the opened sheet and get each field using the row()
method. This will allow us to convert the row to a Python list. Since we
need only one value inside the row, we will use the list slice to access the
index. Remember that the list index always starts with zero. We will store
that value into the variable and we will use this variable to populate the
Jinja2 template in the next section.



Generating VMX files

The last part is to generate the VMX files from the Jinja2 template. We will read
the data from the Excel sheet and add it to the empty dictionary, vmx_data. This
dictionary will be passed later to the render() function inside the Jinja2 template.
The Python dictionary key will be the template variable name while the value
will be the substituted values that should be in the file. The final part in the script
is to open a file in writing mode inside the vmx_riles directory and write the data
into it for each VMX file:

from jinja2 import FileSystemLoader, Environment
import os
import xlrd

print("The script working directory is {}" .format(os.path.dirname(__file_ )))
script_dir = os.path.dirname(__file_ )

vmx_env = Environment(
loader=FileSystemLoader(script_dir),
trim_blocks=True,
1strip_blocks= True

)

workbook = xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index(0)

print("The number of rows inside the Excel sheet is {}" .format(sheet.nrows))
print("The number of columns inside the Excel sheet is {}" .format(sheet.ncols))

vmx_data = {3}

for row in range(1, sheet.nrows):

vm_name = sheet.row(row)[0].value
vm_memory_size = int(sheet.row(row)[1].value)

vm_cpu = int(sheet.row(row)[2].value)

cpu_per_socket = int(sheet.row(row)[3].value)

vm_hdd_size = int(sheet.row(row)[4].value)

vm_guest_os = sheet.row(row)[5].value
vm_networkl = sheet.row(row)[6].value

vmx_data["vm_name"] = vm_name
vmx_data["vm_memory_size"] = vm_memory_size
vmx_data["vm_cpu"] = vm_cpu
vmx_data["cpu_per_socket"] = cpu_per_socket
vmx_data["vm_hdd_size"] = vm_hdd_size
vmx_data["vm_guest_os"] = vm_guest_os

if vm_guest_os == "ubuntu-64":
vmx_data["vm_image"] = "ubuntu-16.04.4-server-amd64.iso"
elif vm_guest_os == "centos-64":

vmx_data["vm_image"] = "Cent0S-7-x86_64-Minimal-1708.1is0"




elif vm_guest_os == "windows7-64":
vmx_data["vm_image"] = "windows_7_ultimate_spl_ x86-x64_bg-en_IE10_ April 2013.iso"

vmx_data["vm_networkl"] = vm_networkl

vmx_data = vmx_env.get_template("vmx_template.j2").render(vmx_data)
with open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)), "w") as f:
print("writing Data of {} into directory".format(vm_name))
f.write(vmx_data)
vmx_data = {}

The script output is as follows:

Run - DevNet LN ]

Al

19
o

p
— /Chapter14 Creating_and_managing_VMWare_virtual_machines
= The number of rows inside the Excel sheet is 5
The number of columns inside the Excel sheet is 7
Writing Data of python-vml into directory

[

& 8

Writing Data of python-vm2 into directory
Writing Data of python-vm3 into directory
Writing Data of python-vm4 into directory

The files are stored under vmx_files and each one contains specific information for
the virtual machine as configured in the excel sheet:

EnterpriseA...ationProject Chapter14_C...al_machines m Q. fls=| =

python-vm1.vmx python-vm2.vmx python-vm3.vmx python-vm4.vmx

Now, we will use both paramiko and scp libraries to connect to the ESXi Shell and
upload these files under /vmfs/volumes/datastore1. To achieve that, we will first
create a function named upload_and_create_directory() that accepts vm name, hard disk
size, and VMX source file. paramiko will connect to the ESXi server and execute
the required commands which will create both the directory and VMDK under
/vmfs/volumes/datastoredl. Finally, we will use scpciient from the scp module to



upload the source files to the previously created directory and run the registry
command to add the machine to the vSphere client:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import paramiko
from scp import SCPClient
import time

def upload_and_create_directory(vm_name, hdd_size, source_file):

commands = ["mkdir /vmfs/volumes/datastorel/{0}".format(vm_name),
"vmkfstools -c {6}g -a lsilogic -d zeroedthick
/vmfs/volumes/datastorel/{1}/{1}.vmdk".format(hdd_size,

vm_name), ]

register_command = "vim-cmd solo/registervm
/vmfs/volumes/datastorel/{0}/{0}.vmx".format (vm_name)

ipaddr = "10.10.10.115"
username = "root"
password = "access123"

ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(ipaddr, username=username, password=password, look_for_keys=False,
allow_agent=False)

for cmd in commands:

try:
stdin, stdout, stderr = ssh.exec_command(cmd)
print " DEBUG: ... Executing the command on ESXi

server".format(str(stdout.readlines()))

except Exception as e:
print e
pass
print " DEBUG: **ERR....unable to execute command"
time.sleep(2)
with SCPClient(ssh.get_transport()) as scp:
scp.put(source_file, remote_path='/vmfs/volumes/datastorel/{0}'.format(vm_name))
ssh.exec_command(register_command)

ssh.close()

We need to define this function before we run theJinja2 template and generate
the VMX and call the function after we save the file to the vmx_files directory and
pass the required arguments to it.

The final code should be as follows:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import paramiko



from scp import SCPClient

import time

from jinja2 import FileSystemLoader, Environment
import os

import xlrd

def upload_and_create_directory(vm_name, hdd_size, source_file):

commands = ["mkdir /vmfs/volumes/datastorel/{0}".format(vm_name),
"vmkfstools -c {06}g -a lsilogic -d zeroedthick
/vmfs/volumes/datastorel/{1}/{1}.vmdk".format(hdd_size,

vm_name), ]

register_command = "vim-cmd solo/registervm
/vmfs/volumes/datastorel/{0}/{0}.vmx".format (vm_name)

ipaddr = "10.10.10.115"
username = "root"
password = "access123"

ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(ipaddr, username=username, password=password, look_for_keys=False,
allow_agent=False)

for cmd in commands:

try:
stdin, stdout, stderr = ssh.exec_command(cmd)
print " DEBUG: ... Executing the command on ESXi

server".format(str(stdout.readlines()))

except Exception as e:
print e
pass
print " DEBUG: **ERR....unable to execute command"
time.sleep(2)
with SCPClient(ssh.get_transport()) as scp:

print(" DEBUG: ... Uploading file to the datastore")
scp.put(source_file, remote_path='/vmfs/volumes/datastorel/{0}'.format(vm_name))
print(" DEBUG: ... Register the virtual machine {}".format(vm_name))

ssh.exec_command(register_command)
ssh.close()

print("The script working directory is {}" .format(os.path.dirname(__file_ )))
script_dir = os.path.dirname(__file_ )

vmx_env = Environment(
loader=FileSystemLoader(script_dir),
trim_blocks=True,
1strip_blocks= True

)

workbook = xlrd.open_workbook(os.path.join(script_dir,"vm_inventory.xlsx"))
sheet = workbook.sheet_by_index(0)

print("The number of rows inside the Excel sheet is {}" .format(sheet.nrows))
print("The number of columns inside the Excel sheet is {}" .format(sheet.ncols))

vmx_data = {}
for row in range(1, sheet.nrows):

vm_name = sheet.row(row)[0].value
vm_memory_size = int(sheet.row(row)[1].value)



vm_cpu = int(sheet.row(row)[2].value)
cpu_per_socket = int(sheet.row(row)[3].value)
vm_hdd_size = int(sheet.row(row)[4].value)
vm_guest_os = sheet.row(row)[5].value
vm_networkl = sheet.row(row)[6].value

vmx_data["vm_name"] = vm_name
vmx_data["vm_memory_size"] = vm_memory_size
vmx_data["vm_cpu"] = vm_cpu
vmx_data["cpu_per_socket"] = cpu_per_socket
vmx_data["vm_hdd_size"] = vm_hdd_size
vmx_data["vm_guest_os"] = vm_guest_os

if vm_guest_os == "ubuntu-64":
vmx_data["vm_image"] = "ubuntu-16.04.4-server-amd64.iso"
elif vm_guest_os == "centos-64":

vmx_data["vm_image"] = "Cent0S-7-x86_64-Minimal-1708.iso"

elif vm_guest_os == "windows7-64":
vmx_data["vm_image"] = "windows_7_ultimate_spl_ x86-x64_bg-en_IE10_ April_2013.iso"

vmx_data["vm_networkl"] = vm_networkl

vmx_data = vmx_env.get_template("vmx_template.j2").render(vmx_data)
with open(os.path.join(script_dir,"vmx_files/{}.vmx".format(vm_name)), "w") as f:
print("writing Data of {3} into directory".format(vm_name))
f.write(vmx_data)
print(" DEBUG:Communicating with ESXi server to upload and register the VM")
upload_and_create_directory(vm_name,
vm_hdd_size,
os.path.join(script_dir, "vmx_files","{}.vmx".format(vm_name)))
vmx_data = {}

The script output is as follows:

‘ Run - DevNet L]
| Run:  Generate_config #- 1

If you check the vSphere client after you run the script, you will find four
machines have been created with the name provided in the Excel sheet:



ST - vSphere Client
File Edit View Imentory Administration Plug-ins Help

Bl |&y vome b g mwentory b ] Inventory

ElE

G Aio-0s

(3 AutomationServer

G BNG-Automation

&1 Centos?

{1 Cisca Prime Metwork

(1 Cobhbler_CentOS_Test

{1 Cobbler_Ubuntu_Test

& eveng

1 NFV_POC_COMPUTE_02
{1 NFY_POC_CONTROLLER_01

{1 python-vmi

n et EnRee e

Getting Started QI

close tab [X]
What is a Virtual Machine?

A virtual machine is a software computer that, like a
physical computer, runs an operating system and
applications. An operating system installed on a virtual
machine is called a guest operating system.

Because every virtual machine is an isolated compuiing
environment, you can use virtual machines as deskiop or
workstation environments, as testing environments, or to

(1 python-vm4

3
G Ubuntul6 06

vl

1 WAE_ 6,43

consolidate server applications.

Virtual machines run on hosts. The same host can run
many virtual machines.

Basic Tasks
[» Power on the virtual machine

{§ Edit virtual machine settings

Also, you will find the virtual machine customized with settings such as CPUs,
Memory, and connected ISO room:

4 pythan-wm - Virtual Machine Properties

Hardware ]Options | Resources |

I Show Al Devices add... ‘ Remnove
Hardware Summar

Memory 4096 ME

CPLs 2 |

Video card Video card

WMCT device Restricted

CSLcontrollsr 0

LSLLonic Paralls]

COJOND drive 1

1 |
[datastorel] 150 Room{ubuntu-16.04.4-server-amdéd.jso ||

Hard disk 1
Metwork adapter 1

goufPp oo ®

Wirtual Disk.
netwarkl

-[0[x]

Yirtual Maching Yersion: §

—Device Status

r
¥ Connect at power an

— Device Type -

" Client Device

" Host Device
% Datastore 150 File

][datastorel] 150 Roomfubuntu-16.,0¢ Browse...

Mode
@il

Wirtual Device Node
¢ [1DE (1:0) COJOVD drive 1 |

Help

oK ]

Cancel ]

Y

You can complete your automation workflow in VMware by connecting the created virtual

machine to Cobbler. We covered it in chapter s, Preparing the System Lab Environment.

Cobbler will automate the operating system installation and customization either Windows,
CentOS, or Ubuntu. After that, you can use Ansible, which we covered in chapter 13, Ansible for
System Administration, to prepare the system in terms of security, configuration, and installed

&

packages, then deploy your application dfter that. This is a full-stack automation that covers



things such as virtual machine creation and getting your application up and running.



VMware Python clients

VMware products (ESXi and vCenter, which used to manage ESXi) support
receiving external API requests through the web service. You can execute the
same administration tasks you do on the vSphere client, such as creating a new
virtual machine, creating a new vSwitch, or even controlling the vm status, but
this time through the supported API that has bindings for many languages, such
as Python, Ruby, and Go.

vSphere has a special model for the inventory and everything inside it is an
object with specific values. You can access this model and see the actual values
for your infrastructure through the Managed Object Browser (MoB) which
gives you access to all object details. We will use the official Python bindings
from VMware (pyvmomi) to interact with this model and alter the values (or create
them) inside the inventory.

It's worth noting that the MoB can be accessed through the web browser by
gOng 1O http: //<ESXi_server_ip_or_domain>/mob,WhiCh will ask you to provide the root
username and password:

| Home |

Managed Object Type: ManagedObjectReference:Servicelnstance
Managed Object ID: ServiceInstance

Properties

NAME ‘ TYPE ‘ VALUE

capability Capability | capability
content | ServiceContent | content

serverClock dateTime | "2018-04-14T13:01:18.240839Z"

Methods

RETURN TYPE ‘ NAME
dateTime | CurrentTime

HostVMotionCompatibility[] | QueryVMotionCompatibility

ServiceContent | RetrieveServiceContent
ProductComponentInfo[] | RetrieveProductComponents

Event[] | ValidateMigration

You can click on any of the hyperlinks to see more details and access each leaf
inside each tree or context. For example, click on Content.about to see full



details about your server such as the exact version, build, and full name:

Home
Data Object Type: AboutInfo
Parent Managed Object ID: ServiceInstance
Property Path: content.about
Properties
NAME TYPE VALUE
apiType string | "HostAgent"
apiVersion string | "5.5"
build string | "3248547"
dynamicProperty | DynamicProperty[] | Unset
dynamicType string | Unset
fullName string | "VMware ESXi 5.5.0 build-3248547"
instanceUuid string | Unset
licenseProductName string | "VMware ESX Server"
licenseProductVersion string | "5.0"
localeBuild string | "000"
localeVersion string | "INTL"
name string | "VMware ESXi"
osType string | "vmnix-x86"
productLineld string | "embeddedEsx"
vendor string | "VMware, Inc."
version string | "5.5.0"

Notice how the table is structured. The first column contains the property name,
the second column is the data type of that property, and, finally, the third column

is the actual running value.



Installing PyVmomi

PyVmomi is available to download either though Python pip or as a system
package from different repos.

For Python installation, use the following command: pip install -U pyvmomi

[root@AutomationServer ~1# pip install pyvmomi
Collecting pyvmomi

Downloading pyvmomi-6.5.0.2017.5-1.tar.gz (252kB)

1oo% | N | 25GkB 1.3MB/s

Requirement already satisfied: requests>=2.3.0 in /usr/lib/python2.7/site-packages (from pyvm
omi)
Requirement already satisfied: six>=1.7.3 in /usr/lib/python2.7/site-packages (from pyvmomi)
Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python2.7/site-packages (from r
equests>=2.3.0->pyvmomi)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/lib/python2.7/site-packages (fro
m requests>=2.3.0->pyvmomi)
Requirement already satisfied: idna<2.7,>=2.5 in /usr/lib/python2.7/site-packages (from reque
sts>=2.3.0->pyvmomi)
Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/lib/python2.7/site-packages (fro
m requests>=2.3.0->pyvmomi)
Building wheels for collected packages: pyvmomi

Running setup.py bdist wheel for pyvmomi ... done
Stored in directory: /root/.cache/pip/wheels/5a/e2/d8/1a5692c5a3190b0dc406ea9613ad399943b2e
138462b21laebc

Successfully built pyvmomi

Installing collected packages: pyvmomi
Successfully installed pyvmomi-6.5.0.2017.5-1
[root@AutomationServer ~]#

Notice the version downloaded from pip is 6.5.2017.5-1, which correlates with the
vSphere release VMware vSphere 6.5, but this doesn't mean it won't work with
older releases of ESXi. For example, I have VMware vSphere 5.5, which works
flawlessly with the latest pyvmoni version.

For system installation: yum install pyvimomi -y

The Pyvmomi library uses dynamic types which means features such as Intelli-Sense and
autocomplete features in IDE do not work with it. You have to rely on documentation and
MoB to discover what classes or methods are needed to get the job done but, once you
discover the way it works, it will be pretty easy to work with.



First steps with pyvmomi

The first thing is you need to do is connect to ESXi MoB by providing the
username, password, and host IP, and start to navigate to the MoB to get the
required data. This can be done by using the smartconnectnosst () method:

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root", pwd='access123')

Note that there's another method called smartconnect() and you must provide the
SSL context to it when establishing a connection, otherwise the connection will
fail. However, you can use the following code snippet to request that the SSL
does not verify the certificate and to pass this context to smartconnect() in the
sslcContext argument:

import ssl

import requests

certificate = ssl.SSLContext(ssl.PROTOCOL_TLSv1)

certificate.verify_mode = ssl.CERT_NONE
requests.packages.urllib3.disable_warnings()

For the sake of beverity and to keep our code short, we will use the built-in

SmartConnectNoSSL().

Next, we will start exploring the MoB and get the full name and version of our
server in the about object. Remember, it's located under the content object, so we
need to access that too:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root", pwd='access123')

full name = ESXi_connection.content.about.fullName
version = ESXi_connection.content.about.version
print("Server Full name is {}".format(full_name))
print("ESXi version is {}".format(version))
Disconnect(ESXi_connection)

The output is as follows:



Python Console - DevNet > @
Django Console - L

Server Full name is VMware ESXi 5.5.0 build-3248547
i version is 5.5.0

Great. Now we understand how the API works. Let's get into some serious
scripts and retrieve some details about the deployed virtual machine in our ESXi.

The script is as follows:

#1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL
ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root", pwd='access123')

datacenter = ESXi_connection.content.rootFolder.childEntity[0@] #First Datacenter in the
ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside the
vmFolder

print virtual_machines

for machine in virtual_machines:
print(machine.name)
try:
guest_vcpu = machine.summary.config.numCpu
print(" The Guest vCPU is {}" .format(guest_vcpu))

guest_os = machine.summary.config.guestFullName
print(" The Guest Operating System is {}" .format(guest_os))

guest_mem = machine.summary.config.memorySizeMB
print(" The Guest Memory is {}" .format(guest_mem))

ipadd = machine.summary.guest.ipAddress
print(" The Guest IP Address is {}" .format(ipadd))

print "
except:
print(" Can't get the summary")

In the previous example, we did the following:

1. We established the API connection again to MoB by providing the
ESXi/vCenter credentials to the smartconnectnossL method.

2. Then, we accessed the data center object by accessing the content then
rootrolder Objects and finally chiidentity. The returned object was an iterable



so we accessed the first element (the first data center) since we had only
one ESXi in the lab. You could iterate over all data centers to get a list of all
virtual machines in all registered data centers.

3. The virtual machines can be accessed via the vmrolder and the childentity.
Again, remember the returned output is iteratable and represents the virtual
machine list stored inside the virtual_machines variable:

Home

Managed Object Type: ManagedObjectReference:Folder
Managed Object ID: ha-folder-vm

Properties
. alarmActionsEnabled boolean | Unset
availableField CustomFieldDef[]

childentity] = ManagedObjectReference:ManagedEntity[]

111 (NFV_POC_CONTROLLER_01)
119 (NFV_POC_COMPUTE_02)
121 (eve-ng)

123 (BNG-Automation)

124 (WAE_6.4.9)

125 (NsO)

131 (AutomationServer)

132 (Cobbler_Ubuntu_Test)
133 (Cobbler_CentOS_Test)
135 (Cent0OS7)

136 (Ubuntul6.06)

138 (AI0-0S)

152 (python-vm1)

153 (python-vm2)

154 (python-vm3)

155 (python-vm4)

77 (v_CSR-PE1)

4. We iterated over the virtual_machines object and we query the CPU, Memory,
Full name, and IP address of each element (for each virtual machine). These
elements are located under each virtual machine tree in the summary and config
leafs. Here is an example of our automationserver settings:



Parent Manag

Data Object Type: VirtualMachineConfigSummary

o b
Property Path:{summary.config

Properties
NAME TYPE VALUE
annotation string "
cpuReservation int | 0
dynamicProperty DynamicProperty[] | Unset
dynamicType string Unset
ftinfo | FaultToleranceConfigInfo Unset
[guestFuiiNamd string | "Ubuntu Linux (64-bit)"
guestld string "ubuntu64Guest"
installBootRequired boolean Unset
instanceUuid string | "523b23be-7100-c891-959a-0d5b0b1f7cad"
managedBy ManagedByInfo Unset
memoryReservation int | 0
int | 4096
string "AutomationServer"
pumced int | 1
numEthernetCards int | 2
numVirtualDisks int | 1
product VAppProductInfo | Unset
template boolean | false
uuid string | "564de65b-1c66-be66-b11d-7472aa3428a6"
vmPathName string "[datastore1] AutomationServer/AutomationServer.vmx"

The script output is as follows:




Python Console - DevNet

vCPU 1is 2
Operating Sy
Memory is

t0S 4/5/6/7 (64-bit)

t Memory
IP Add

Operating System 1is ft Windows 7 (64-bit)
Memory

Operating System is Cent0S 4/5/6/7 (64-bit)
Memory

Note that the python-vm machines that we created early at the beginning of the chapter are
printed in the last screenshot. You can use PyVmomi as a validation tool that integrates with
your automation workflow to validate whether machines are up and running and to make

decisions based on the returned output.



Changing the virtual machine state

This time we will use the pyvmoni bindings to change the virtual machine state.
This will be done by checking the virtual machine name as we did before; then,
we will navigate to another tree in MoB and get the runtime status. Finally, we
will apply either the poweron() or roweroff() function on the machine depending on
its current status. This will switch the machine state from on to off and vice versa.

The script is as follows:

#!1/usr/bin/python

__author__ = "Bassim Aly"

_ _EMAIL__ = "basim.alyy@gmail.com"

from pyVim.connect import SmartConnect, Disconnect, SmartConnectNoSSL

ESXi_connection = SmartConnectNoSSL(host="10.10.10.115", user="root", pwd='access123')

datacenter = ESXi_connection.content.rootFolder.childEntity[0@] #First Datacenter in the
ESXi\

virtual_machines = datacenter.vmFolder.childEntity #Access the child inside the
vmFolder

for machine in virtual_machines:

try:
powerstate = machine.summary.runtime.powerState
if "python-vm" in machine.name and powerstate == "poweredOff":
print(machine.name)
print(" The Guest Power state is {}".format(powerstate))

machine.PowerOn()
print("**Powered On the virtual machine**")

elif "python-vm" in machine.name and powerstate == "poweredOn":
print(machine.name)
print(" The Guest Power state is {}".format(powerstate))

machine.PowerOff()

print("**Powered Off the virtual machine**")
except:

print(" Can't execute the task")

Disconnect (ESXi_connection)

The script output is as follows:



Python Console - DevNet

Django Console
[elpy thon-vml

The Guest Power state is p
wered On the virtual machin

X

> & thon-vm2

5 The Guest Power te is p

- “Powered On the virtual machine

i python-vm3

w The Guest Power state is poweredOff

Powered On the virtual machine
python-vm4
The Guest Power state is poweredOff

+ % ®

**Powered On the virtual machin

Also, you can validate the virtual machine statue from the vSphere client and

check the hosts that start with python-vm*, changing their power state from
poweredoff tO poweredon:

G AI0-05

(3 AutomationServer

51 BMiE-Aukomation

51 Centos?

51 Cisco Prime Mebwork

51 Cobbler_CenbdS_Test

51 Cobbler_Ubuntu_Test

51 eve-ng

51 MFY_POC_COMPUTE_O2
51 MFY_POC_CONTROLLER_01

[ [mvthian-mi |

=

python-wms
i python-vm3
15 python-vmd

Getting Started Nl

What is a Virtual Machine?

A virtual machine is a software computer that, like a
physical computer, runs an operating system and
applications. An operating system installed on a virtual
machine is called a guest operating system.

Because every virtual machine is an isolated computing
environment, you can use virtual machines as desktop or
workstation environments, as testing environments, or to
consolidate server applications.

Virtual



There's more

You can find many useful scripts based on the pyvmomi bindings (in different
languages) in the official VMware l‘EpOSitOI‘Y at GitHub (https://github.com/vmware/
pyvmomi-community-samples/t ree/master/samples). The SCFiptS are pFOVidEd by numerous
contributors who use the tools and test them on a daily basis. Most of the scripts
provide room to enter your configuration (such as ESXi IP address and
credentials) without modifying the script source code by providing it as
arguments.


https://github.com/vmware/pyvmomi-community-samples/tree/master/samples

Using Ansible playbook to manage
instances

In the last part of VMware automation, we will utilize the Ansible tool to
administrate the VMware infrastructure. Ansible ships with more than 20
VMware modules (http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules
.html#vmware), Which can execute many tasks such as managing data centers,
clusters, and virtual machines. In older Ansible versions, Ansible used the
pysphere module (which is not official; the author of the module has not
maintained it since 2013) to automate the tasks. However, the newer version now
supports the pyvmomi bindings.

VMware vRealize Automation (vRA), which allows for complete workflow integration

0 Ansible also supports the VMware SDN product (NSX). Ansible Tower can be accessed from
between different tools.

The following is the Ansible Playbook: - name: Provision New VM
hosts: localhost

connection: local

vars:

- VM_NAME: DevOps

- ESXi_HOST: 10.10.10.115
- USERNAME: root

- PASSWORD: access123
tasks:

- name: current time
command: date +%D
register: current_time

- name: Check for vSphere access parameters
fail: msg="Must set vsphere_login and vsphere_password in a Vault
when: (USERNAME is not defined) or (PASSWORD is not defined)

"

- name: debug vCenter hostname
debug: msg="vcenter_hostname ="'{{ ESXi_HOST }}"


http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#vmware

- name: debug the time
debug: msg="Time is = '{{ current_time }}

- name: "Provision the VM"
vmware_guest:

hostname: "{{ ESXi_HOST }}"
username: "{{ USERNAME }}"
password: "{{ PASSWORD }}"
datacenter: ha-datacenter
validate certs: False

name: "{{ VM_NAME }}"
folder: /

guest_id: centos64Guest

state: poweredon

force: yes

disk:

- size_gb: 100

type: thin

datastore: datastorel

networks:

- name: network1
device_type: e1000

# mac: ba:ba:ba:ba:01:02
# wake _on_lan: True

- name: network?2
device_type: e1000

hardware:

memory_mb: 4096
num_cpus: 4
num_cpu_cores_per_socket: 2
hotadd_cpu: True
hotremove_cpu: True



hotadd_memory: True
scsi: Isilogic

cdrom:

type: "iso"

iso_path: "[datastorel] ISO Room/CentOS-7-x86_64-Minimal-1708.is0"
register: result

In the previous playbook, we can see the following:

e The first part of the playbook was to define the ESXi host IP and credentials
in the vars section and to use them later in tasks.

e Then we wrote a simple validation to fail the playbook if the username or
password was not provided.

L Then, we used the vmware_guest module pl‘OVidEd by ansible (https://docs.ansib
le.com/ansible/z.4/vmware_guest_module.html) to pFOViSiOH the virtual machine.
Inside this task, we provided the required information, such as disk size and
hardware in term of CPU and memory. Notice that we defined the state of
the virtual machine as poweredon so ansible will power on the virtual machine
after creating it.

e Disks, networks, hardware, and CD-ROMs are all keys inside the
vmware_guest Module used to describe the virtualized hardware specs needed
for spawning the new VM over the VMware ESXi.

Run the playbook using the following command: # ansible-playbook
esxi_create_vm.yml -vv

The following is the screenshot of the Playbook output:


https://docs.ansible.com/ansible/2.4/vmware_guest_module.html

TASK [Provision the VUM] kkkskokskskksokskorokofokdkok kokokokskofkkoRdokok dokok otk koot fokokokoskok kokokok ok rokofkokokstok ook ok ok ok
task
{ true instance {
{} false

state
false

true
}
META: ran handlers
META: ran handlers

PLAY RECAP  kokokskokokoskokokok koo o sk ook ok ok sk ok s sk sk oo o sk ko ok ok ok ok ok sk ok o sk ok sk ks o sk ook ok ok ok ook o sk sk e ok sk s ok ok ko sk ok sk ok ok sk ok ok ok

: ok=5 unreachable=0 failed=0

You can validate the virtual machine creation and binding with the CentOS ISO
file in the vSphere client:

File Edit View Inwentory Administration Plug-ins Help

@ | _3 Home [ gF] Inwentory [ Eﬂ Inventory
o &8 G0EE RS @
E e 144} DewOps on lacalhastlacaldamain _ [0 x| -
3 AutomationServer File Wiew Wh b
Qo | g n[) @B & BB S 8

[ Cisca Prime Network
1 Cobbler_CentOS_Test

achines

G HFY_POC_COMPUTE I
G WFY_POC_CONTROLLE
& M50

E1 pythan-vml

& python-vmz

& python-vm3 Cent0S 7
& python-vm4

&1 Ubuntuls.os
& w_CSR-PEL Install CentOS 7

) WAE6.4.9 Test this media & install CentOS 7

Troubleshoot ing

You can also change the state of the existing virtual machine and choose from
poweredon, poweredoff, restarted, absent, suspended, shutdownguest, and rebootguest by

changing the value in state inside the playbook.



Summary

VMware products are used widely inside IT infrastructure to provide virtualized
environments for running applications and workloads. At the same time,
VMware also provides API bindings in many languages that can be used to
automate administration tasks. In the next chapter, we will explore another
virtualization framework called OpenStack that relies on the KVM hypervisor
from Red Hat.



Interacting with the OpenStack API

For a long time, IT infrastructure depended on commercial software (from
vendors such as VMWare, Microsoft, and Citrix) to provide virtual environments
for running workloads and managing resources (such as computing, storage, and
networking). However, IT industry is moving to cloud era and engineers are
migrating workloads and applications to the cloud (either public or private), and
that requires a new framework that is able to manage all application resources,
providing an open and robust API interface to interact with external calls from
other applications.

OpenStack provides an open access and integration to manage all of your
computing, storage, and networking resources, avoiding a vendor lock-in when
you're building your cloud. It can control a large pool of compute nodes, storage
arrays, and networking devices, regardless of the vendor for each resource and
provide a seamless integration between all resources. The core idea of
OpenStack is to abstract all configuration applied on the underlay infrastructure
into a project which is responsible for managing the resource. so you will find a
project that manage the compute resources (called Nova) , another project that
provide networking to the instances (neutron) and a projects to interact with
different storage type (Swift and Cinder).

You can find a full list of the current OpenStack projects in this link

https://www.OpenStack.org/software/project-navigator/

Also OpenStack provide unified API access to the application developer and
system administrators to orchestrate the resource creation.

In this chapter, we will explore the new and open world of OpenStack, and will
learn how we can leverage Python and Ansible to interact with it.

The following topics will be covered in this chapter:

e Understanding RESTful web services
e Setting up the environment


https://www.openstack.org/software/project-navigator/

e Sending requests to OpenStack
¢ Creating workloads from Python
e Managing OpenStack instances using Ansible



Understanding RESTful web services

Representational State Transfer (REST) depends on HTTP protocol to
transfer messages between the client and server. HTTP was originally designed
to deliver HTML pages from web servers (servers) to browsers (clients), when
requested. The pages represent a set of resources that the user wants to access,
and are requested by Universal Resource Identifiers (URISs).

An HTTP request typically contains a method that indicates the type of operation
that needs to be executed on the resource. For example, when visiting a website

from your browser, you can see (in the following screenshot) that the method is

» Ethernet II, Src: Dell cb:b7:1e (d4:81:d7:cb:b7:1e), Dst: HuaweiTe 31:5e:11 (98:e7:f5:31:5e:11)
» Internet Protocol Version 4, Src: 192.168.1.99, Dst: 104.20.104.11
» Transmission Control Protocol, Src Port: 49984, Dst Port: 88, Seq: 473, Ack: 1582, Len: 360
v rtext Transfer Protocol
- GET /files//Downloads/8678545300.]jpg HTTP}l.I\r\nl
st masTawy T com T T — -
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:60.8) Gecko/20100101 Firefox/60.0\r\n
Accept: */*\r\n
Accept-Language: en-GB,en;qg=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Referer: http://www.masrawy.com/\r\n

Connection: keep-alive\r\n

\r\n

[Full request URI: http://www.masrawy.com/files//Downloads/8678545300.]pg]
[HTTP request 2/4]

[Prev request in frame: 315]

GET. [Response in frame: 824]

The following are the most common HTTP methods, and their usage:

HTTP Method |Action

GET The client will ask the server to retrieve the resource.

POST The client will instruct the server to create a new resource.

PUT The client will ask the server to modify/update the resource.




DELETE The client will ask the server to delete the resource.

The application developer can expose certain resources of his application, to be
consumed by the clients in the outside world. The transport protocol that carries
the requests from the clients to servers and returns the responses back is HTTP.
It is responsible for securing the communication and encoding the packet with
the appropriate data encoding mechanism that is accepted by the server, and it is
a stateless communication across both of them.

On the other hand, the packet payloads are usually encoded in either XML or
JSON, to represent the structure of the request handled by the server and how the
client prefers the response back.

There are many companies around the world that provide public access to their
data for developers, in real time. For example, the Twitter API (https://developer.t
witter.com/) provides a data fetch in real time, allowing other developers to
consume the data in third-party applications like ads, searches, and marketing.
The same goes for blg names like Google (https://developers.google.com/apis-explore
r/#p/discovery/vl/), LinkedIn (https://developer.linkedin.com/), and Facebook (https:/

/developers.facebook. Com/).

Public access to APIs is usually limited to a specific number of requests, either per hour of
per day, for a single application, in order to not overwhelm the public resources.

Python provides a large set of tools and libraries to consume the APIs, encode
the messages, and parse the responses. For example, Python has a requests
package that can format and send HTTP requests to external resources. Also, it
has tools to parse the responses in a JSON format and convert them to the
standard dictionary in Python.

Python also has many frameworks that can expose your resources to the external
world. pjango and ri1ask are among the best, serving as full stack frameworks.


https://developer.twitter.com/
https://developers.google.com/apis-explorer/#p/discovery/v1/
https://developer.linkedin.com/
https://developers.facebook.com/

Setting up the environment

OpenStack is a free and open source project, used with Infrastructure as a
Service (IaaS), that can control your hardware resources in terms of CPU,
memory, and storage and provide an open framework for many vendors to build
and integrate plugins.

To set up our lab, I will use the latest openstack-rdo release (at the time of writing),
Queens, and install it onto CentOS 7.4.1708. The installation steps are pretty
straightforward, and can be found at https://www.rdoproject.org/install/packstack/.

Our environment consists of a machine that has 100 GB storage, 12 vCPU, and
32 GB of RAM, This server will contains the OpenStack controller, the compute
and neutron roles on the same server. The OpenStack server is connected to the
same switch that has our automation server and in same subnet. Note that this is
not always the case in a production environment, but you need to make sure that
your server that runs Python code can reach the OpenStack.

The lab topology is as follows:

Automation Server Openstack Server

10.10.10.130 10.10.10.150

LAN Network


https://www.rdoproject.org/install/packstack/

Installing rdo-OpenStack package

The steps for installing rdo-OpenStack on RHEL 7.4 and CentOS are as follows:



On RHEL 7.4

First, make sure that your system is up to date, and then install the rdo-reiease.rpm
from the website to get the latest version. Finally, install the openstack-packstack
package that will automate the OpenStack installation, as shown in the following
snippet:

$ sudo yum install -y https://www.rdoproject.org/repos/rdo-release.rpm

$ sudo yum update -y

$ sudo yum install -y OpenStack-packstack



On CentOS 7.4

First, make sure that your system is up to date, and then install the rdoproject to
get the latest version. Finally, install the centos-release-openstack-queens package
that will automate the OpenStack installation, as shown in the following snippet:

$ sudo yum install -y centos-release-OpenStack-queens $ sudo yum update -y

$ sudo yum install -y OpenStack-packstack



Generating answer file

Now, you will need to generate the answer file that contains the deployment
parameters. Most of these parameters are fine on their defaults, but we will

change a few things:

| # packstack --gen-answer-file=/root/EnterpriseAutomation



Editing answer file

Edit the enterpriseautomtion file with your favorite editor, and change the
following:

CONFIG_DEFAULT_PASSWORD=access123

CONFIG_CEILOMETER_INSTALL=n

CONFIG_AODH_INSTALL=n

CONFIG_KEYSTONE_ADMIN_PW=access123
CONFIG_PROVISION_DEMO=n

The ceLtometer and aoon are an optional projects within OpenStack ecosystem and
could be ignored in lab environment.

Also we setup a kevstone password that used to generate temp token for accessing
the resource using API and used also to access the OpenStack GUI



Run the packstack

Save the file and run the installation through the packstack:

| # packstack answer-file=EnterpriseAutomation

This command will download the packages from the Queens repository and
install the OpenStack services, then start them. After the installation has
completed successfully, the following message will be printed on the console:

**** Installation completed successfully ******

Additional information:

* Time synchronization installation was skipped. Please note that unsynchronized time
on server instances might be problem for some OpenStack components.

* File /root/keystonerc_admin has been created on OpenStack client host 10.10.10.150.
To use the command line tools you need to source the file.

* To access the OpenStack Dashboard browse to http://10.10.10.150/dashboard .
Please, find your login credentials stored in the keystonerc_admin in your home
directory.

* The installation log file is available at: /var/tmp/packstack/20180410-155124-
CMpsKR/OpenStack-setup.log

* The generated manifests are available at: /var/tmp/packstack/20180410-155124-
CMpskR/manifests




Access the OpenStack GUI

You can now access the OpenStack GUI using nttp://<server_ip_address>/dashboard.
The credentials will be admin and access123 (depending on what you wrote in
CONFIG_KEYSTONE_ADMIN_Pw in the previous steps):

openstack.

Login

Our cloud is now up and running, ready to receive requests.



Sending requests to the OpenStack
keystone

OpenStack contains collections of services that work together to manage the
virtual machine create, read, update, and delete (CRUD) operations. Each
service can expose its resources to be consumed by external requests. For
example, the nova service is responsible for spawning the virtual machine and
acts as a hypervisor layer (though it's not a hypervisor itself, it can control other
hypervisors, like KVM and vSphere). Another service is giance, responsible for
hosting the instance images in either an ISO or qcow?2 format. The neutron service
is responsible for providing networking services to spawned instances and
ensures that the instances located on different tenants (projects) are isolated from
each other, while instances on the same tenants can reach each others through an
overlays network (VXLAN or GRE).

In order to access the APIs of each of the preceding services, you will need to
have an authenticated token that is used for a specific period of time. That's the
role of the keystone, which provides an identity service and manages the roles and
permissions of each user.

First, we need to install the Python bindings on our automation server. These
bindings contain python code used to access each service and authenticate the
request with the token generated from KEYSTONE. Also bindings contains
supported operation for each project (like create/delete/update/list):

yum install -y gcc openssl-devel python-pip python-wheel
pip install python-novaclient

pip install python-neutronclient

pip install python-keystoneclient

pip install python-glanceclient

pip install python-cinderclient

pip install python-heatclient

pip install python-OpenStackclient

0 Note that the Python client name is python-<service_name>client

You can download into your site's global packages or the Python virtualenv
environment. Then, you will need OpenStack admin privileges, which can be



found in the following path, inside the OpenStack server:

cat /root/keystonerc_admin

unset OS_SERVICE_TOKEN

export OS_USERNAME=admin

export OS_PASSWORD='access123'

export OS_AUTH_URL=http://10.10.10.150:5000/Vv3
export PS1='[\u@\h \W(keystone_admin)]\$ '

export OS_PROJECT_NAME=admin

export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_DOMAIN_NAME=Default
export OS_IDENTITY_API_VERSION=3

Notice that we will use the keystone version 3 in both the os_auth_urL and
0S_IDENTITY_API_VERSION parameters when we communicate with the OpenStack
keystone service. Most of the Python clients are compatible with older versions,
but require you to change your script a little bit. Other parameters are also
required during token generation, so make sure that you have access to the
keystonerc_admin file. Also the access credentials can be found in os_usernave and
os_passworp in the same file

our Python script will be as follows:

from keystoneauthl.identity import v3
from keystoneauthl import session

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="access123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")
sess = session.Session(auth=auth, verify=False)
print(sess)

In the preceding example, the following applies:

® python-keystoneclient made a request to the keystone API using the vs class
(which reflects the keystone API version). This class is available inside of
keystoneaythl.identity.

e Then, we supplied the full credentials taken from the keystonerc_admin file to
the auth variable.

e Finally, we established the session, using the session manager inside of the
keystone client. Notice that we set verify to False, Since we don't use the
certificate to generate the token. Otherwise, you can supply the certificate
path.

e The token generated can be used with any service, and it will last for one



hour, then expire. Also, if you change the user role, the token will expire
immediately, without waiting for an hour.

/etc/keystone/keystone. conf file, which never expires. However, this is not recommended in a

8 OpenStack administrators can configure the adnin_token field inside the
production environment, for security reasons.

If you don't want to store the credentials inside the Python script, you can store
them in the ini file and load them using the configparser module. First, create a
creds.ini file in the automation server, and give it appropriate Linux permissions,
so it can only be opened with your own account:

#vim /root/creds.ini

[os_creds]
auth_url="http://10.10.10.150:5000/v3"
username="admin"

password="access123"
project_name="admin"
user_domain_name="Default"
project_domain_name="Default"

The modified script is as follows:

from keystoneauthl.identity import v3

from keystoneauthl import session

import ConfigParser

config = ConfigParser.ConfigParser()

config.read("/root/creds.ini")

auth = v3.Password(auth_url=config.get("os_creds", "auth_url"),
username=config.get("os_creds", "username"),
password=config.get("os_creds", "password"),
project_name=config.get("os_creds","project_name"),
user_domain_name=config.get("os_creds", "user_domain_name"),
project_domain_name=config.get("os_creds", "project_domain_name"))

sess = session.Session(auth=auth, verify=False)

print(sess)

The configparser module will parse the creds.ini file and look at the os_creds section
inside the file. Then, it will get the value in front of each parameter by using the
get() method.

The config.get() method will accept two arguments. The first argument is the
section name inside the .ini file, and the second is the parameter name. The
method will return the value associated with the parameter.

This method should provide additional security to your cloud credentials.



Another valid method to secure your file is to load the keystonerc_admin file into
the environmental variables using the Linux source command, and read the
credentials using the environ() method inside of the os module.



Creating instances from Python

To get instance up and running, OpenStack instances require three components.
The boot image, which is provided by giance, the network ports, which provided
by neutron, and finally, the compute flavor that defines the number of CPUs,
amount of RAM that will be allocated to the instance and disk size. The flavor is
provided by nova project.



Creating the image

We will start by downloading a cirros image to the automation server. cirros is a
lightweight, Linux-based image, used by many OpenStack developers and
testers around the world to validate the functionality of OpenStack services:

| #cd /root/ ; wget http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

Then, we will upload the image to the OpenStack image repository using
glanceclient. NOtice that we need to have the keystone token and the session
parameter first, in order to communicate with giance, otherwise, giance won't
accept any API requests from us.

The script will be as follows:

from keystoneauthl.identity import v3

from keystoneauthl import session

from glanceclient import client as gclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",

password="access123",

project_name="admin",

user_domain_name="Default",
project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

#Upload the image to the Glance
glance = gclient.Client('2', session=sess)

image = glance.images.create(name="CirrosImage",
container_format="'bare',
disk_format="'qcow2',

)

glance.images.upload(image.id, open('/root/cirros-0.4.0-x86_64-disk.img', 'rb'))

In the preceding example, the following applies:

e Since we are communicating with giance (the image hosting project), we
will import the ciient from the installed gianceciient module.
e The same keystone scripts used to generate the sess that holds the keystone



token.

e We created the glance parameter that initializes the client manager with
glance and provide the version (version 2 ) and the generated token.

¢ You can see all supported API versions by accessing the OpenStack GUI |
API Access tab as in below screenshot. notice also the supported version
for each project.



= :
WOtz

AP Arpess

Camoie
Volimes
hetwork

et Stoe

AP Acoess

y Dipleng 1 ems
seniee
ety
Couometon
Ortstalion
Objat Stoe
Compute
e
limer?
ol
Pl
Image

Nelwork

Service Endpoint

o Openstack API Version
A
SO ot
0 AT B R A et
T o e
Rt

A A TS0
ARt

10 1040508772 lcement

dadne

@ View Crecenels  Downoad Operdtzck RC Fle



e The glance client manager is designed to operate on the glance OpenStack
service. the manager is instructed to create an image with a name cirrostmage
and disk type is in gcow2 format.

¢ Finally, we will open the downloaded image as a binary, using the 'rv' flag,
and will upload it to the created image. Now, giance will import the image to
the newly created file in the image repository.

You can validate that the operation was successful in two ways:

1. If no error is printed back after executing giance.images.upload(), it means that
the request is correctly formatted and has been accepted by the OpenStack
glance API.

2. Run the giance.images.1ist() . The returned output will be a generate which
you can iterate over it to see more details about the uploaded image:

print(" Image Details ")
for image in glance.images.list(name="CirrosImage"):
pprint(image)

{u'checksum': u'443b7623e27ecf03dc9e0lee93f67afe’,
u'container_format': u'bare',

u'created_at': u'2018-04-11T7T03:11:582",
u'disk_format': u'qcow2',

u'file': u'/v2/images/3c2614b0-e53c-4bel-b99d-bbd9cel14b287/file"’,
u'id': u'3c2614b0-e53c-4bel-b99d-bbd9cel14b287",
u'min_disk': O,

u'min_ram': 0,

u'name': u'CirrosImage',

u'owner': u'8922dc52984041af8fe22061aaedcd13’,
u'protected': False,

u'schema': u'/v2/schemas/image’,

u'size': 12716032,

u'status': u'active',

u'tags': [],

u'updated_at': u'2018-04-11T703:11:58Z",
u'virtual_size': None,

u'visibility': u'shared'}




Assigning a flavor

Flavors are used to determine the CPU, memory, and storage size of the instance.
OpenStack comes with a predefined set of flavors, with different sizes that range
from tiny to extra large. For the cirros image, we will use the small flavor, which
has 2 GB RAM, 1 vCPU, and 20 GB storage. Access to flavors doesn't have a
standalone API client; rather, it's a part of the nova client.

You can see all available built-in flavors at OpenStack GUI | Admin | Flavors:

Flavors

+ Create Fl

Displaying 5 items

O  Flavor Name VCPUs RAM Root Disk Ephemeral Disk Swap Disk RX/TX factor ID Public Metadata

O milarge 4 8GB 80GB 0GB omMB 1.0 4 Yes No
0O mi.medium 2 4GB 40GB 0GB omMB 1.0 3 Yes No
0O  mismall 1 2GB 20GB 0GB omMB 1.0 2 Yes No
O mitiny 1 512MB  1GB 0GB omMB 1.0 1 Yes No
O mi.xlarge 8 16GB 160GB 0GB omMB 1.0 5 Yes No

The script will be as follows:

from keystoneauthl.identity import v3
from keystoneauthl import session

from novaclient import client as nclient
from pprint import pprint

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="access123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)

nova = nclient.Client(2.1, session=sess)

instance_flavor = nova.flavors.find(name="m1.small")

print(" Flavor Details ")
pprint(instance_flavor)

In the preceding script, the following applies:



Since we will communicate with nova (the compute service) to retrieve the
flavor, we will import the novaclient module as nclient.

The same keystone script is used to generate the sess that holds the keystone
token.

We created the nova parameter that initialized the client manager with the
nova and provide the version to the client (version 2.1) and the generated
token.

Finally, we used the nova.f1avors.find() method to locate the desired flavor,
which is m1.sma11. The name has to match the name in OpenStack exactly,
otherwise it will throw an error.



Creating the network and subnet

Creating the network for the instance requires two things: the network itself, and
associating subnet with it. First, we need to supply the network properties, such
as the ML2 driver (Flat, VLAN, VxLAN, and so on), the segmentation ID that
differentiates between the networks running on the same interface, the MTU, and
the physical interface, if the instance traffic needs to traverse external networks.
Second, we need to provide the subnet properties, such as the network CIDR, the
gateway IP, The IPAM parameters (DHCP/DNS server if defined), and which
network ID is associated with the subnet as in below screenshot:

Openstack Network

10.10.10.0/24

172.16.128 .0/24

Subnet 1

......

rrrrr

Now we will develop a Python script to interact with the neutron project and
create a network with a subnet

from keystoneauthl.identity import v3
from keystoneauthl import session
import neutronclient.neutron.client as neuclient

auth = v3.Password(auth_url="http://10.10.10.150:5000/v3",
username="admin",
password="access123",
project_name="admin",
user_domain_name="Default",
project_domain_name="Default")

sess = session.Session(auth=auth, verify=False)




neutron = neuclient.Client(2, session=sess)
# Create Network

body_network = {'name': 'python_network',
'admin_state_up': True,
#'port_security_enabled': False,
'shared': True,
# 'provider:network_type': 'vlan|vxlan',
# 'provider:segmentation_id': 29
# 'provider:physical_network': None,
# 'mtu': 1450,
}
neutron.create_network({'network':body_network})
network_id = neutron.list_networks(name="python_network")["networks"][0]["id"]

# Create Subnet

body_subnet = {
"subnets": [
{
"name" :"python_network_subnet",
"network_id":network_id,
"enable_dhcp":True,
"cidr": "172.16.128.0/24",
"gateway_ip": "172.16.128.1",
"allocation_pools": [
{
"start": "172.16.128.10",
"end": "172.16.128.100"
}
1,
"ip_version": 4,
}
1
}

neutron.create_subnet(body=body_subnet)

In the preceding script, the following applies:

e Since we will communicate with neutron (the network service) to create both
the network and associated subnet, we will import the neutronclient module
as the neuclient.

e The same keystone script is used to generate the sess that holds the keystone
token used later to access neutron resource.

e We will create the neutron parameter that initializes the client manager with
neutron and provide the version to it (version 2) and the generated token.

e Then, we created two Python dictionaries, body_network and body_subnet which
hold the message bodies for the network and subnet respectively. Note that
the dictionary keys are static and can't be changed, while the values could
be changed and usually provided from external portal system or Excel
sheet, depending on your deployment. Also, I commented on the parts that



are not necessary during network creation, such as provider:physical_network
and provider:network_type, since our cirros image won't communicate with the
provider network (networks defined outside OpenStack domains) but
provided here for reference.

Finally the subnet and the network associated together by getting first the
network_id through the 1ist_networks() method and access the id and providing
it as a value to network_id key inside the body_subnet variable.



Launching the instance

The final part is to glue everything together. We have the boot image, the
instance flavor, and the network that connects the machine with the other
instances. We're ready to launch the instance using the nova client (remember that
nova is responsible for the virtual machine life cycle and the CRUD operations on
the VM):

print("= Launch The Instance ")

image_name = glance.images.get(image.id)

networkl = neutron.list_networks(name="python_network")
instance_nics = [{'net-id': networkl["networks"][0]["id"]}]

server nova.servers.create(name = "python-instance",
image image_name. id,
flavor = instance_flavor.id,
nics = instance_nics, )
status = server.status
while status == 'BUILD':
print("Sleeping 5 seconds till the server status is changed")
time.sleep(5)
instance = nova.servers.get(server.id)
status = instance.status
print(status)
print("Current Status is: {0}".format(status))

In the preceding script, we used the nova.servers.create() method and passed all of
the information required to spawn the instance(instance name, operating system,
flavor and networks). Additionally, we implemented a polling mechanism that
polls the nova service for the server current status. If the server is still in suzLp
phase, then the script will sleeps for five seconds then poll again. The loop will
exit when the server status is changes to either actve or rarLure and will prints the
server status at the end.

The script's output is as follows:

Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Sleeping 5 seconds till the server status is changed
Current Status is: ACTIVE

Also, you can check the instance from the OpenStack GUI | Compute | Instances:



SEopenstack. D adrin -

Project / Compute / Instances

Instances

Displaying 1 item

Instance Image
Name Name
python-nstan | Ciroslmag
ce e

Displaying 1 item

Praject v
APl Access
Comptte v
Overview
Images
Key Pairs
\olumes >
Network >
Cbject Stare
Adrin y

Identity >

Instance ID =~

IP Address Flavor

172.16.128.20 -

Key
Pair

Status

Active

Filter & Launch Instance
Availability Power Time since 3
Zone Task State created SEHnS
nova Nene  Running 5 minutes Create Snapshot



Managing OpenStack instances from
Ansible

Ansible provides modules that can manage the OpenStack instance life cycle,
just like we did using APIs. You can find the full list of supported modules at ntt

p://docs.ansible.com/ansible/latest/modules/1list_of_cloud_modules.html#0OpenStack.

All OpenStack modules rely on the Python library called shade (https://pypi.python
.org/pypi/shade), which provides a wrapper around OpenStack clients.

Once you have installed shade on the automation server, you will have access to
the os-* modules that can manipulate the OpenStack configuration, such as
os_image (to handle OpenStack images), os_network (to create the network), os_subnet
(to create and associate the subnet with the created network), os_nova_fiavor (to
create flavors, given the RAM, CPU, and disk), and finally, the os_server module
(to bring up the OpenStack instance).


http://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#openstack
https://pypi.python.org/pypi/shade

Shade and Ansible installation

In the automation server, use the Python pip to download and install shade, with
all dependencies: pip install shade

After installation, you will have shade under the normal site-packages in Python,
but we will use Ansible instead.

Also, you will need to install Ansible in the automation server, if you haven't
done it in previous chapters: # yum install ansible -y

Verify that Ansible has installed successfully by querying the Ansible version
from the command line:

[root@AutomationServer ~]# ansible --version
ansible 2.5.0
config file = /etc/ansible/ansible.cfg
configured module search path = [u'/root/.ansible/plugins/modules’,
u'/usr/share/ansible/plugins/modules’]
ansible python module location = /usr/lib/python2.7/site-packages/ansible
executable location = /usr/bin/ansible
python version = 2.7.5 (default, Aug 4 2017, 00:39:18) [GCC 4.8.5 20150623 (Red Hat
4.8.5-16)]




Building the Ansible playbook

As we saw in chapter 13, Ansible for Administration, depends on a YAML file to
contain everything you will need to execute against hosts in the inventory. In this
case, we will instruct the playbook to establish a local connection to the shade
library on the automation server, and provide the playbook with the
keystonerc_admin credentials that help shade to send requests to our OpenStack
server.

The playbook script is as follows: ---

- hosts: localhost

vars:

os_server: '10.10.10.150'

gather_facts: yes

connection: local

environment:

OS_USERNAME: admin
OS_PASSWORD: access123
OS_AUTH_URL: http://{{ os_server }}:5000/v3
OS_TENANT_NAME: admin
OS_REGION_NAME: RegionOne
OS_USER_DOMAIN_ NAME: Default
OS_PROJECT _DOMAIN_NAME: Default

tasks:

- name: "Upload the Cirros Image"
0s_image:

name: Cirros_Image

container_ format: bare

disk_format: qcow?2

state: present

filename: /root/cirros-0.4.0-x86_64-disk.img
ignore_errors: yes

- name: "CREATE CIRROS_FLAVOR"



os_nova_flavor:

state: present

name: CIRROS _FLAVOR
ram: 2048

vcpus: 4

disk: 35

ignore_errors: yes

- name: "Create the Cirros Network"
os_network:

state: present

name: Cirros_network

external: True

shared: True

register: Cirros_network
ignore_errors: yes

- name: "Create Subnet for The network Cirros_network"
0s_subnet:

state: present

network_name: "{{ Cirros_network.id } }"
name: Cirros_network_subnet

ip_version: 4

cidr: 10.10.128.0/18

gateway_ip: 10.10.128.1

enable_dhcp: yes

dns_nameservers:

-8.8.8.8

register: Cirros_network_subnet
ignore_errors: yes

"

- name: "Create Cirros Machine on Compute
0S_server:

state: present

name: ansible instance



image: Cirros_Image
flavor: CIRROS_FLAVOR
security_groups: default
nics:

- net-name: Cirros_network
ignore_errors: yes

In the playbook, we make use of the os_* modules to upload the image to the
OpenStack giance server, create a new flavor (and not using this built-in), and
create the network with the subnet associated; then, we glue everything together
in os_server, which communicates with the nova server to spawn the machine.

Please note that the hosts will be the localhost (or the machine name that hosts
the shade library), while we added the OpenStack keystone credentials in the
environmental variables.



Running the playbook

Upload the playbook to the automation server and execute the following
command to run it:

| ansible-playbook os_playbook.yml

The playbook's output will be as follows:

[WARNING]: No inventory was parsed, only implicit localhost is available

[WARNING]: provided hosts list is empty, only localhost is available. Note that the
implicit localhost does not match 'all'

PLAY [localhost]

LR R R R R R R R EEEEEEEEEREEREEREEREESEEEEEEEEEEEEEEREREESEESEEEE BB EEEEEEEEEREREREEEEE X5 EEE

TASK [Gathering Facts]

LR R R E R EEEEEEEEEREEEREEREEEEEEEEREEEEEEEEEERERERESRESREEEEESERER SRS EEEEESEESE]

ok: [localhost]

TASK [Upload the Cirros Image]

LR R R R R R R R R R EEEEEEEEEREREEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEERE]
changed: [localhost]
TASK [CREATE CIRROS_FLAVOR]

khkhhhhkhhhhhhkhkhkhkkhkkhkhkhkhhhhhhhhhhhhhkhkkkkkhkhkhkhkhhhhhhhhhhhkkkkkkkkkkk*

ok: [localhost]

TASK [Create the Cirros Network]

EE R R R R R R R R EEEEEEEREEREEREEREESREREEEEEEEEEEEEEEREREEEEEEEEEEE R
changed: [localhost]

TASK [Create Subnet for The network Cirros_network]
khkhhhhhhhhhkhkhkkhkkhkkkhkkhhhhhhhhhhhhkhkkkkkkk*

changed: [localhost]

TASK [Create Cirros Machine on Compute]
khkhkhhhhhhhhkhhkhkkkhkkhkhkkhhhhhhhhhhhhhkhkkkkkkkkkhkkhhhkhkk*

changed: [localhost]

PLAY RECAP
LR R R R R R R E R EEEEREEEREEEEREEREEEEREEEEEEEEEEEEEEREEREEEEEE S EEEEEEEEREREREEEEEEEEEEEEEEXS
localhost : ok=6 changed=4 unreachable=0 failed=0

You can access the OpenStack GUI to validate that the instance was created
from the Ansible playbook:



i .
DStk 2

P )
Kori/ Campute | rstames
il ¥
peie NSIANGES
G v
Hipenises

Host Apregles Dkl 12

Proeethame =+ Fite

[ Proget oot Name mage Name P Address  Flavor Sals  Task i RS Rofens
e oreated

Fars =
7 i il st
Images "
Wi ) Uiy T
ek~ )
S )

ety )

Cires mage

1A

(/RROS FLAVOR

M Nog Runng Omnes Sl




Summary

Nowadays, the IT industry is trying to avoid vendor lock-in by moving to the
open source world whenever possible. OpenStack provides a window into this
world; many large organizations and telecom operators are considering moving
their workloads to OpenStack, to build their private clouds in its data center.
They can then build their own tools to interact with the open source APIs
provided by OpenStack.

In the next chapter, we will explore another (paid) public Amazon cloud, and
will learn how we can leverage Python to automate instance creation.



Automating AWS with Boto3

In previous chapters, we explored how to automate the OpenStack and VMware
private clouds using Python. We will continue on our cloud automation journey
by automating one of the most popular public clouds: Amazon Web Services
(AWS). In this chapter, we will explore how to create Amazon Elastic Compute
Cloud (EC2) and Amazon Simple Storage Systems (S3) using Python script.

We will cover the following topics in this chapter:

e AWS Python modules
e Managing AWS instances
e Automating AWS S3 services



AWS Python modules

Amazon EC?2 is a scalable computing system that is used to provide
virtualization layers for hosting different virtual machines (such as the nova-
compute project in the OpenStack ecosystem). It can communicate with other
services, such as S3, Route 53, and AMI, in order to instantiate instances.
Basically, you can think of EC2 as an abstraction layer above other hypervisors
that are set over the virtual infrastructure manager (such as KVM and VMware).
EC2 will receive the incoming API calls then will translate them into suitable
calls for each hypervisor.

The Amazon Machine Image (AMI) is a packaged image system that contains
the operating system and packages needed to start a virtual machine (like Glance
in OpenStack). You can create your own AMI from existing virtual machines
and use it when you need to replicate those machines on other infrastructures, or
you can simply choose from publicly available AMIs on the internet or on the
Amazon Marketplace. We will need to get the AMI ID from the Amazon web
console and add it to our Python script.

AWS dESigHEd an SDK called Boto3 (https://github.com/boto/botoS) that allows
Python developers to have scripts and software that interact and consume the
APIs of different services, like Amazon EC2 and Amazon S3. The library was
written to provide native support for Python 2.6.5, 2.7+, and 3.3.

The major Boto3 features are described in the official documentation at nttps://bo
to3.readthedocs.io/en/latest/guide/new.html, and below are some important features:

Resources: A high-level, object-oriented interface.

Collections: A tool to iterate and manipulate groups of resources.

Clients: A low-level service connection.

Paginators: Automatic paging of responses.

Waiters: A way to suspend execution until a certain state has been reached
or a failure occurs. Each AWS resource has a waiter name that could be
accessed USiDg <resource_name>.waiter_names.


https://github.com/boto/boto3
https://boto3.readthedocs.io/en/latest/guide/new.html

Boto3 installation

A few things are needed before connecting to AWS:

1.

First, you will need an Amazon admin account that has privileges to create,
modify, and delete from the infrastructure.

Secondly, install the botos Python modules that are used to interact with
AWS. You can create a user dedicated to sending API requests by going to
the AWS Identity and Access Management (IAM) console and adding a
new user. You should see the Programmatic access option, available under
the Access Type section.

Now, you will need to assign a policy that allows full access across the
Amazon services, such as EC2 and S3. Do that by clicking on Attach
existing policy to user and attaching AmazonEC2FullAccess and
AmazonS3FullAccess policies to the username.

At the end, click on Create user to add the user with the configured options
and policies.

0 You can sign up for a free tier account on AWS, which will give you access to many services

offered by Amazon for up to 12 months. Free access can be acquired at

https://aws.amazon.com/free/.

When using Python script to manage AWS, the access key ID is used to send
API requests and get the responses back from the API server. We won't use the
username or the password for sending requests, as they're easily captured by
others. This information is obtained by downloading the text file that appears
after creating the username. It's important to keep this file in a safe place and
provide a proper Linux permission for it, for opening and reading file content.

Another method is to create a .aws directory under your home user directory and
place two files under it: credentials and config. The first file will have both the
access key ID and the secret access ID.

~/.aws/credentials dppedrs dS fOllOVVS:

[default]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPXRfiCYEXAMPLEKEY


https://aws.amazon.com/free/

The second file will hold user-specific configurations, such as the preferred data
center (zone) that will host the created virtual machines. (This is like the
availability zone option in OpenStack.) In the following example, we are
specifying that we want to host our machines in the us-west-2 data center.

The config file, ~/.aws/config, looks like the following:

[default]
region=us-west-2

Now, installing notos requires using the usual pip command to get the latest botos
version:

| pip install boto3

bassim:~$ pip install boto3
Collecting boto3
Downloading ://files.pythonhosted.org/packages/b8/29/f35b0a055014296bf4188043e2cclfd4
caf41a085991765598842232c2f5/boto3-1.7.26-py2.py3-none-any.whl (128kB
100% | [N | 133k5 351kB/s
Collecting jmespath<l1.0.0,>=0.7.1 (from boto3
Downloading tps://files.pythonhosted.org/packages/b7/31/05¢8d001f7f87f0f07289a5fc0fc3832
e9a57f2dbd4d3b0fee70e0d51365/ jmespath-0.9.3-py2.py3-none-any.whl
Collecting botocore<1.11.6,>=1.160.26 (from boto3
Downloading ://files.pythonhosted.org/packages/87/c5/7ed94b700d305341346bb55408ca8501
325840bcdc371628cff10d7bab8d/botocore-1.10.26-py2.py3-none-any.whl (4.2MB
100% | I | < .2VB 324KB/s
Collecting s3transfer<0.2.0,>=0.1.10 (from boto3
Downloading ://files.pythonhosted.org/packages/d7/14/2a0004d487464d120c9fb85313a75cd3
d71a7506955be458eebfel9abbld/s3transfer-0.1.13-py2.py3-none-any.whl (59kB
100% | I | 61kB 363kB/s
Collecting docutils>=0.10 (from botocore<l.11.0,>=1.10.26->boto3
Downloading ://files.pythonhosted.org/packages/50/09/c53398e0005b11f7ffb27b7aa720c617
aba53bed4fb4f4f3f06b9b5c60f28/docutils-0.14-py2-none-any.whl (543kB
100% | [N | 552kt 391kB/s
Requirement already satisfied: python-dateutil<3.0.0,>=2.1; python version >= "2.7" in ./.lo
cal/lib/python2.7/site-packages (from botocore<l.11.0,>=1.10.26->boto3) (2.6
Collecting futures<4.0.0,>=2.2.0; python version == "2.6" or python version == "2.7" (from s
3transfer<0.2.0,>=0.1.10->boto3
Downloading ://files.pythonhosted.org/packages/2d/99/b2c4e9d5a30f6471e410a146232b4118
e697fa3ffcO6d6ab5efde8d4debdd/ futures-3.2.0-py2-none-any.whl

To verify that the module has successfully installed, import botos in the Python
console, and you shouldn't see any import errors reported:
bassim:~$ python

Python 2.7.15rcl (default, Apr 15 2018, 21:51:34
[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import boto3
>>>




Managing AWS instances

Now, we're ready to create our first virtual machine using vbotos. As we have
discussed, we need the AMI that we will instantiate an instance from. Think of
an AMI as a Python class; creating an instance will create an object from it. We
will use the Amazon Linux AMI, which is a special Linux operating system
maintained by Amazon and used for deploying Linux machines without any
extra Charges. You can find a full AMI ID, per I‘EgiOI’l, at https://aws.amazon.com/amaz

on-linux-ami/.

Amazon Linux AMI IDs

The latest Amazon Linux AMI 2017.09.1 was released on 2018-01-17.

HVM (55D) HVM PV PV HVM (NAT) HVM (Graphics)
Region EBS-Backed Instance Store EBS-Backed Instance Store EBS-Backed EBS-Backed
64-bit 64-bit 64-bit 64-bit 64-bit 64-bit
Us East
S ami-97785hed ami-f6795a8c ami-c87053b2 ami-a4795ade ami-8d7655f7 AWS Marketplace
. Virginia
US East
Ohi ami-f63b1193 ami-ca3b11af n/a n/a ami-fc3b1199 n/a
io
US West
- ami-f2d3638a ami-74d8680c  ami-31d86849 ami-08d66670 ami-35d6664d  AWS Marketplace
regon
US West
. . ami-824c4dee2 ami-aadfddca ami-d8494bbs ami-bc4edcdc ami-394e4c59 AWS Marketplace
N. California
Canada
ami-a954dicd ami-2f4ecbdb n/a n/a ami-2b4acfaf n/a
Central
EU
p— ami-d834abal ami-072eb17e ami-e539a69c ami-d535aaac ami-a136a9d8 AWS Marketplace
relan
EU

ami-403e2524 ami-b3312ad7 n/a n/a ami-87312ae3 n/a

import boto3

ec2 = boto3.resource('ec2')

instance = ec2.create_instances(ImageId='ami-824c4ee2', MinCount=1, MaxCount=1,
InstanceType='m5.xlarge',

Placement={'AvailabilityZone': 'us-west-2'},

)

print(instance[0])

In the preceding example, the following applies:

1. We imported the botoz module that we installed previously.
2. Then, we specified a resource type that we wanted to interact with, which is


https://aws.amazon.com/amazon-linux-ami/

EC2, and assigned that to the ec2 object.

3. Now, we are eligible to use the create_instance() method and provide it with
instance parameters, such as imagero and nstancetype (like flavor in
OpenStack, which determines the instance specs in terms of computing and
memory), and where we should create this instance in the availabilityzone.

4. wmincount and maxcount determine how far EC2 can go when scaling our
instances. For example, when a high CPU has occurred on one of the
instances, EC2 will deploy another instance automatically, to share the
loads and keep the service in a healthy state.

5. Finally, we printed the instance ID to be used in the next script.

The output is as follows:

Python Console - DevNet o ©
Django Console #He L

[l - 0281k3nd 129175220

carefully, in order to not be overcharged from choosing the wrong type: nttps://aus.amazon. consecz/1
nstance-types/

0 You“can check all valid Amazon EC2 instance types at the following link; please read them


https://aws.amazon.com/ec2/instance-types/

Instance termination

The printed ID is used in CRUD operations to manage or terminate the instance
later. For example, we can terminate the instance by using the terminate() method
also provided to the ec2 resource created earlier:

import boto3

ec2 = boto3.resource('ec2')

instance_id = "i-0a81k3nd129175220"

instance = ec2.Instance(instance_id)
instance.terminate()

Notice that we hardcoded instance_id in the preceding code (which is not always
the case when you need to create a dynamic Python script that can be used in
different environments). We can use other input methods that are available in
Python, such as raw_input(), to take the input from the user or query the available
instances in our accounts and make Python prompt us on which instances need
to be terminated. Another use case is to create a Python script that checks the last
login time or the resource consumption in our instance; if they exceed a specific
value, we will terminate the instance. This is useful in a lab environment, where
you don't want to be charged for consuming additional resources with a
malicious or a poorly designed software.



Automating AWS S3 services

The AWS Simple Storage Systems (S3) provides a safe and highly scalable
object storage service. You can use this service to store any amount of data and
restore it from anywhere. The system provides you with a versioning option, so
you can roll back to any previous version of the files. Additionally, it provides
the REST web services API, so you can access it from external applications.

When data comes to S3, S3 will create an object for it, and these objects will be
stored inside suckets (think of them like folders). You can provide a sophisticated
user permission for each created bucket, and can also control its visibility
(public, shared, or private). The bucket access can be either a policy or an
Access Control List (ACL).

The bucket is also stored with metadata that describes the object in key-value
pairs, which you can create and set by HTTP rost methods. Metadata can include
the object's name, size, and date, or any other customized key-values that you
want. The user account has a limit of 100 buckets, but there's no limit on the size
of the object hosted inside each bucket.



Creating buckets

The first logical thing to do, when interacting with an AWS S3 service, is create
a bucket that can be used to store files. In that case, we will provide the sz to the
boto3.resource() . That will tell the botos to start the initialization process and will
load required commands to interact with the S3 API system:

import boto3
s3_resource = boto3.resource("s3")

bucket = s3_resource.create_bucket(Bucket="my_first_bucket", CreateBucketConfiguration=

{

'LocationConstraint': 'us-west-2'})
print(bucket)

In the preceding example, the following applies:

1. We imported the botoz module that we installed previously.

2. Then, we specified a resource type that we wanted to interact with, which is
s3, and assigned that to the s3_resource Object.

3. Now, we can use the create_bucket() method inside the resource and provide
it with the required parameter to create buckets, such as sucket, where we
can specify its name. Remember, the bucket name must be unique and
cannot have been used previously. The second parameter is the
createBucketConfiguration dictionary, where we set the data center location for
the created bucket.



Uploading a file to a bucket

Now, we need to make use of the created bucket and upload a file to it.
Remember, the file representation inside the bucket is an object. So, botos
provides some methods that contain the object as a part of it. We will start by
using put_object(). This method will upload a file to the created bucket and store
it as an object:

import boto3
s3_resource = boto3.resource("s3")
bucket = s3_resource.Bucket("my_first_bucket")

with open('~/test_file.txt', 'rb') as uploaded_data:

bucket.put_object(Body=uploaded_data)

In the preceding example, the following applies:

1.
2.

We imported the botos module that we installed previously.

Then, we specified a resource type that we wanted to interact with, which is
s3, and assigned that to the s3_resource Object.

We accessed my_first_bucket through the sucket() method and assigned the
returned value to the bucket variable.

Then, we opened a file using the with clause and named it uploaded_data.
Notice that we opened the file as a binary data, using the rv flag.

Finally, we uploaded the binary data to our bucket using the put_object()
method provided within the bucket space.



Deleting a bucket

To complete the CRUD operation for the bucket, the last thing we need to do is
remove the bucket. This happens through calling the deiete() method on our
bucket variable, given that it already exists and we are referencing it by name, in
the same manner that we created it and uploaded data to it. However, delete()
may fail when the bucket is not empty. So, we will use the
bucket_objects.all().delete() method to get all of the objects inside the bucket, then
apply the delete() operation on them, and finally, delete the bucket:

import boto3

s3_resource = boto3.resource("s3")

bucket = s3_resource.Bucket("my_first_bucket")

bucket.objects.all().delete()
bucket.delete()



Summary

In this chapter, we learned how to install the Amazon Elastic Compute Cloud
(EC2), and we learned about Boto3 and its installation. We also learned how to
automate AWS S3 services.

In the next chapter, we will learn about the SCAPY framework, which is a
powerful Python tool used to build and craft packets and send them on the wire.



Using the Scapy Framework

Scapy is powerful Python tool used to build and craft the packets then send them
on the wire. You can build any type of network stream and send it on the wire. It
can help you to test your network using different packet streams and manipulate
the response returned from the source.

We will cover the following topics in this chapter:

Understanding the Scapy framework

Installing Scapy

Generating packets and network streams using Scapy
Capturing and replaying packets



Understanding Scapy

Scapy (https://scapy.net) is one of the powerful Python tools that is used to
capture, sniff, analyze, and manipulate network packets. It can also build a
packet structure of layered protocols and inject a wiuthib stream into the
network. You can use it to build a wide number of protocols on top of each other
and set the details of each field inside the protocol, or, better, let Scapy do its
magic and choose the appropriate values so that each one can have a valid frame.
Scapy will try to use the default values for packets if not overridden by users.
The following values will be set automatically for each stream:

The IP source is chosen according to the destination and routing table
The checksum is automatically computed

The source Mac is chosen according to the output interface

The Ethernet type and IP protocol are determined by the upper layer

Scapy can be programmed to inject a frame into a stream and to resend it. You
can, for example, inject a 802.1q VLAN ID into a stream and resend it to
execute attacks or analysis on the network. Also, you can visualize the
conversation between two endpoints and graph it using craphviz and 1magemagick
modules.

Scapy has its own Domain-Specific Language (DSL) that enables the user to
describe the packet that he wants to build or manipulate and to receive the
answer in the same structure. This works and integrates very well with Python
built-in data types, such as lists and dictionaries. We will see in examples that
the received packets from the network are actually a Python list, and we can
iterate the normal list functions over them.


https://scapy.net

Installing Scapy

Scapy supports both Python 2.7.x and 3.4+, starting from Scapy version 2.x.
However, for versions lower than 2.3.3, Scapy needs Python 2.5 and 2.7, or 3.4+
for versions after that. Since we already installed that latest Python version, it
should be fine to run the latest version of Scapy without a problem.

Also, Scapy has an older version (1.x), which is deprecated and doesn't provide
support for Python 3 and works only on Python 2.4.



Unix-based systems

To get the latest and greatest version, you need to use python pip:

| pip install scapy
The output should look something like the following screenshot:

[root@AutomationServer ~]# pip install scapy
Collecting scapy
Downloading https://files.pythonhosted.org/packages/68/01/b9943984447e7ea678948e90c1729b78

161c2bb3eef908430638ec3f7296/scapy-2.4.0.tar.gz (3.1MB)
100% | | 3. 1MB 256KB/s

Building wheels for collected packages: scapy

Running setup.py bdist wheel for scapy ... done
Stored in directory: /root/.cache/pip/wheels/cf/03/88/296bf69feelf9ec7a87e122da52253b65f30
67f6ea8719b473

Successfully built scapy
Installing collected packages: scapy
Successfully installed scapy-2.4.0
available

via
[root@AutomationServer ~]#

To verify that Scapy is installed successfully, access the Python console and try
to import the scapy module into it. If no import error is reported back to the
console then the installation completed successfully:

[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux2

Type "help", "copyright", "credits"” or "license" for more information.
>>> import scapy
>>>

Some additional packages are required to visualize the conversation and to
capture the packets. Use the following commands depending on your platform to
install the additional packages:



Installing in Debian and Ubuntu

Run the following command to install additional packages:

sudo apt-get install tcpdump graphviz imagemagick python-gnuplot python-
cryptography python-pyx



Installing in Red Hat/CentOS

Run the following command to install additional packages:

‘ yum install tcpdump graphviz imagemagick python-gnuplot python-crypto python-
pyx -y
You may need to install epe1 repository on a CentOS-based system and update the system if
you don't find any of the preceding packages available in the main repository.



Windows and macOS X Support

Scapy is built and design to run on linux-based system. However it also can run
on other operating systems. You can install and port it on both windows ported
on both Windows and macOS, with some limitations on each platform. For a
Windows-based system, you basically need to remove the WinPcap driver and
use the Npcap driver instead (don't install both versions at the same time to avoid
any conflict issues). You can read more about Windows installation at nttp://scapy

.readthedocs.io/en/latest/installation.html#windows.

For macOS X, you will need to install some python bindings and use the libdnet
and libpcap libraries. Full installation steps are available at nttp://scapy.readthedocs

.io/en/latest/installation.html#mac-os-x.


http://scapy.readthedocs.io/en/latest/installation.html#windows
http://scapy.readthedocs.io/en/latest/installation.html#mac-os-x

Generating packets and network
streams using Scapy

As we mentioned before, Scapy has its own DSL language, which is integrated
with python. Also, you can access the Scapy console directly and start to send
and receive packets directly from the Linux shell:

| sudo scapy
The output of the preceding command is as follows:

[root@AutomatlonServer 1# sudo scapy
ING: Cannot read wireshark manuf database
INFO: Can't import matplotlib. Won't be able to plot.
INFO Can't import PyX. Won't be able to use psdump() or pdfdump().
NG: No route found for IPv6 destination :: (no default route?)
: IPython not available. Using standard Python shell instead.
AutoCompletion, History are disabled.

aSPY//YASa
apyyyyCY//////////YCa

sY//////YSpcs scpCY//Pp Welcome to Scapy

|
|
ayp ayyyyyyysCP//Pp syY//C | Version 2.4.0
AYASAYYYYYYYY///Ps cY//S |
pCCCCY//p cSSps y//Y | https://github.com/secdev/scapy
SPPPP///a pP///AC//Y |
A//A cyP////C | Have fun!
p///Ac sC///a |
P////YCpc A//A | We are in France, we say Skappee.
sccccep///pSP///p p//Y | OK? Merci.
sY/////////y caa S//P | -- Sebastien Chabal
cayCyayP//Ya pY/Ya |
sY/PsY////YCc aC//Yp
sc sccaCY//PCypaapyCP//YSs
spCPY//////YPSps

ccaacs

Notice there are a couple of warning messages about some missing optional
packages, such as matplotlib and pyx, but this should be fine and won't affect the
Scapy core functions.

We can start first by checking the supported protocols inside scapy. Run the 1s()
function to list all supported protocols:

|>>> 1s()

The output is quite lengthy and will span multiple pages if posted here, so you
can take a quick look on the Terminal instead to check it.

Now let's develop hello world application and run it using SCAPY. The program
will send a simple ICMP packet to server's gateway. I installed a Wireshark and



configured it to listen to a network interface that will receive a stream from the

automation server (which hosts Scapy).

Now, on the Scapy terminal, execute the following code:

| >>> send(IP(dst="10.10.10.1")/ICMP()/"Welcome to Enterprise Automation Course")

Return to Wireshark, and you should see the communication:

A Ll e Coneton J_Dm
Hle ot View Go Capture Anthe Snfitcs Telephony Wieless Tocls Help
B46[ BREQesEfiz 20441
|_1|itmp B | Eosin, | +
Mo, |Tine e Destnaton Protocel | Length|Info
* 165 20:56:26, 920085 10.10.10,130 108,10, 100 8L Echo (ping) request 1d:040000, seq=0/0, tt1=64 (reply in L66)
166 20:56:26, 900020 10.10.00.1 WAL I0P 8L Echo (ping) reply  idsB00N, seqsdd, ttle128 (renuest in 165)

# Frane 1651 61 bytes on wire (648 bits), 81 bytes captured (648 bits) en Interface 0
# Ethernet 11, Srct Vmaare 34:28:36 (00:0c:29:34:28:36), Dst: Viware 2e:d5:h9 (00:0c:29:2e:d5:h9)
# Internet Protocol Yerston 4, Src: 10,10.10,130, Ost: 10.10.10.1
- Internet Control essage Protecel
Type: § (Echo (ping) request)

Mastooloodedoo 30kl DR ||
Gl oot ST e T el e
B0 TG N456e T E5TLTOTIEOTAES 20 e toFnt erprise fﬁ)
AT AGFodel 7469 ef e 0436f 7273 Automsti on Cours
| 65 3

kDR ENK BRBHBMSER ) L

Let's analyze the command that Scapy executes:

¢ Send: This is a built-in function in Scapy Domain Specific Language
(DSL) that instructs Scapy to send a single packet (and doesn't listen for

any response back; it just sends one packet and exits).

e IP: Now, inside this class, we will start building packet layers. Starting with
the IP layer, we need to specify the destination host that will receive the
packet (in that case, we use the dst argument to specify the destination).
Note also that we can specify the source IP in the src argument; however,
Scapy will consult the host routing table and find the suitable source IP and
put it in the packet. You can provide additional parameters, such as time to



live (TTL), and Scapy will override the default one.

e /: Although it looks like the normal division operator used in Python, it's
used in Scapy DSL to differentiate between packet layers and stack them
over each other.

e ICMP(): A built-in class used to create an ICMP packet with a default
value. One of the values that could be provided to the function is the ICMP
type, which determines the message type: echo, echo reply, unreachable, and so
on.

¢ Welcome to Enterprise Automation Course: If a string is injected into
the ICMP payload. Scapy will automatically convert it to a suitable format.

Note that we didn't specify the Ethernet layer in the stack and didn't provide any
mac addresses (either source or destination). This is again filled by default in
scapy to create a valid frame. It will automatically check the host ARP table and
find the mac address for the source interface (and destination also, if it exists),
them format then into an Ethernet frame.

A final thing to note before moving on to the next example is that you can use
the same 1s() function we used before to list all supported protocols to get the
default values for each protocol, then set it to any other value when we call the
protocol:

>>> 1s(IP)

version : BitField (4 bits) (4)
ihl : BitField (4 bits) (None)
tos : XByteField (0)
len : ShortField (None)
id : ShortField (1)
flags : FlagsField (3 bits) (<Flag 0 ()>)
frag : BitField (13 bits) (0)

e i B : ByteField = (64)
proto : ByteEnumField (0)
chksum : XShortField (None)
src : SourcelIPField (None)
dst : DestIPField (None)

([

options : PacketListField
>>>

Let's now do something more complex (and evil!). Assume we have two routers
that form VRRP relationships between each other, and we need to to break this
relationship to become the new master, or at least create a flapping issue in the
network, as in the following topology:



Priority 224 ﬂ r Priority 192

10.10.10.1

.

s Send VRRP
Announcement

Priority 254

SCAPY server

Enterprise
Network

2 Eig

Recall that routers configured to run VRRP join to multicast address (255.6.0.18)
in order to receive the advertisements from other routers. The destination MAC
address for the VRRP packet should contain the VRRP group number in last two
numbers. Also it contains the router priority used in election process between
routers. We will build a Scapy script that sends a VRRP announcement with a
higher priority than is configured in the network. This will cause our Scapy
server to be elected as the new master:

from scapy.layers.inet import *
from scapy.layers.vrrp import VRRP

vrrp_packet =
Ether(src="00:00:5e:00:01:01",dst="01:00:5e:00:00:30")/IP(src="10.10.10.130",
dst="224.0.0.18")/VRRP(priority=254, addrlist=["10.10.10.1"])
sendp(vrrp_packet, inter=2, loop=1)

In this example:

¢ First we imported some needed layers that we stacked over each other from
the scapy.1ayers module. For example, the inet module contains the layers
IP() , Ether(), ARP(), IcMP(), and so on.

e Also, we will need the VRRP layers, which could be imported from

scapy.layers.vrrp.

e Second, we will build a VRRP packet and store it in the vrrp_packet variable.
This packet contains the VRRP group number in the mac address inside
ethernet frame . The multicast address will be inside the IP layer. Also we
will configure a higher priority number inside the VRRP layer. That way we



will have a valid VRRP announcement and router will accept it. We

provided each layer with information such as the destination mac address

(VRRP MAC + Group number) and the multicast IP (225.0.0.18).
e Finally, we used the sendp() function and provided it with a crafted
vrrp_packet. The sendp() function will send a packet at layer 2, unlike the

send() function, which we used in the previous example to send packets, but

at layer 3. The sendp() function won't try to resolve the hostname like the

send() function and will only operate at layer 2. Also, since we need to send

this announcement continuously, we configured both 100p and inter
arguments to send announcements every 2 seconds.

The script output is:

& Canturng o Loce s Connecton 4

File Edt View Go Capture Pnabze Sdtistics Teleohany Wreless Touls Help

-|0jx

140 \BRERe28T}5ERAAE
i Eressin... |+
H, ‘Time ‘Suurce ‘Destination ‘Pmtocul ‘Length‘lnfu l
15 23:59:02, 885537 10.10.12.130 224,0.0.18 YRRP 6@ Announcement (v2)
16 23:59:04, 090085 10.10.12.132 224,0.0.18 YRRP 6 Arnouncement (v2)
19 23:5%:06, 04504 10.10.12.130 224,0,0.18 YRRP 6 Arnouncement (v2)
22 2335908, 098045 10.10.12.130 24,0018 YRRP 6 Announcement (v2)
277 23:59:18.100357  10.10.12.130 24,0018 YRRP 6 Announcement (v2)
31 23:59:12, 145590 10.10.12.130 224,0.0.18 YRRP 6 Announcement (12)
36 23:59:14. 10757 10.10.12.130 224,0.0.18 YRRP 6 frnouncement (12)

~Type: 104 (BEB00)

Yirtual Rtr 10: 1
fddr Count: 1

fver Int: 1

Pading: A00oanance

4 Internet Protocol Yersion 4, Src: 18.10.18.138, Dst: 24.0.0.18
-+ Yirtual Router Redundancy Protocel
® dersion 2, Packet type 1 [Advertisement)

-~ Ruth Type: o Authentication ()

Checksum: Bxecfd [correct]
[ Checksum Status: Good]

-~ Priority: 254 (Hen-default backup priovity)

¥ Frame 13: 60 bytes on wire (480 bits), 60 bytes captured (488 bits) on interface 0

= Ethernet IT, Src: TETF-VRRP-VRID @1 (09:00:5e:00:00:80), Ost: TPudmcast 30 (01:00:52:00:00:30)
¥ Destingtion: IPudmcast 30 (01:00:5e:00:00:30)
*-Seurce: TETF-VRRP-VRID 01 (00:00:5e:00:01:01)

»

O T T R R
DL MmO RORfTA) cAchlalalaRlcand
b @uzana ﬁ 010081 cc 70 Pa 0a 01 2R 20

i

2f



&

You can combine this attack with ARP poisoning and VLAN hopping attacks so you can
change the mac address in the layer 2, switch to the Scapy server MAC address, and perform
a man in the middle (MITM) attack.

Scapy also contains some classes that perform scan. For example, you can

execute an ARP scan on the network range by using arping() and specifying the

IP address in regex format inside it. Scapy will send an ARP request to all hosts
on these subnets and inspect the reply:

from scapy.layers.inet import *

arping("10.10.10.*")

Aol Byes Connection 4
File Edit iew Go Capture Bnabze Statistics Telephony Wireless Tools Help

Wl A

S THEEEEE

Hlalkd

¥ =

|,--.|arp ﬂi * | Expression... | +
i, ‘Time ‘Source IDestination ‘Prutucol ‘Length‘lnfo :J

G48A 22:33:10,928426  Vmware 34:28:45 Broadeast kRP &0 liho has 10.10,10.37 Tell 10.12,10.130

G4BT 22:33:10,928899  Vmware 34128145 Broadeast ARP &0 liho has 10.10,10.47 Tell 10.12.10.130

G4BR 22:33:10,929350  Vmware 34128135 Broadeast ERP #0 liho has 10,10.10.57 Tell 10.18.10.130

5489 22:33:10,929837  Vmware 34128145 Broadeast kRp &0 liho has 10.10.10.67 Tell 19.18,10.130

5490 22:33:10,930281  Vmware 34:28:35 Broadeast kRP &2 liho has 10,10,10.77 Tell 10.12,10.130

5491 22:33:10,930754  Vmware 34128135 Broadeast ERP &0 liho has 10.10.10.87 Tell 10.12.10.130

5492 22:33:10,931201  Vmware 34:28:35 Broadeast ERP &0 liho has 10,109,109 Tell 10.18.10.130

5453 22:33:10.931684  Vmware 34:28:a0 Broadeast ARP &0 liho has 10.10.10.182 Tell 12.10.10.130

G494 22:33:10,932127  Vmware 34128145 Broadeast kRP &0 liho has 10.10,10.117 Tell 10,10.10.130

5450 22:33:10. 932598 Vmware 34:28:a0 Broadeast ARF &0 liho has 10.10,10.122 Tell 10,10.10.130

5496 22:33:10,933046  Vmware 34128135 Broadeast kRP f0 liho has 10,10,10.137 Tell 10,10,10.130

5457 22:33:10,933532  Vmware 34128140 Broadeast ARF 60 liho has 10.10,10.147 Tell 10,10.10.130

5456 22:33:10.933988  Vmware 34:28:1a0 Broadeast ARP £ liho has 10,10,10.157 Tell 10,10.10.130

5499 22:33:10,934453  Vmware 34128135 Broadeast ERP £ liho has 10.10.10.167 Tell 10,10.10.130 -

5500 22:33:10.934907  Ymuare 34:28:a0 Broadeast ARP £ liho has 10,10,10,172 Tell 10,10.10.130

5501 22:33:10.935350  ‘Vmware 34:28:a0 Broadeast ARP &0 liho has 10.10,10.182 Tell 10.10.10.130

5502 22:33:10,935849 Mmware 34:28:a0 Broadeast ARP 80 liho has 10.10,10.192 Tell 10,10.10.130

5503 22:33:10.9362%  Vmware 34:28:a0 Broadeast ARF &0 liho has 10.10,10.287 Tell 10,10.10.130

5503 22:33:10.937035  Vmware 34:28:a0 Broadeast ARP £ liho has 10,10,10.217 Tell 10,10,10.130

550A 22:33:10.937615  Vmware 34:28:a0 Broadeast ARF £ liho has 10.10,10.222 Tell 10,10.10.130

5507 22:33:10.938177  Vmware 34:28:1a0 Broadeast ARP 62 liho has 10,10,10.237 Tell 10,10.10.130

5508 22:33:10.938761  Vmware 34:28:a0 Broadeast ARF 60 liho has 10.10.10.242 Tell 10.12.10.130 j

The script output is:

irootéAutomationServer ~j# python ping arp.py

Begin emission:
Finished sending 256 packets.

*

Received 1 packets, got 1 answers, remaining 255 packets

00:0c:29:2e:d5:b9 10.10.10.1
[root@AutomationServer ~]#

According to received packets, only one host is responding back to SCAPY
meaning it's only host on the scanned subnet. The host mac and IP addresses are



listed in the reply also



Capturing and replaying packets

Scapy has the ability to listen to the network interface and capture all incoming
packets on it. It can write it on a pcap file in the same way that tcpdump works, but
Scapy provides additional functions that can read and replay a pcap file, in the
network again.

Starting with a simple packet replay, we will instruct Scapy to read a normal pcap
file captured from the network (either using tcpdump or Scapy itself) and send it
again to the network. This is very useful if we need to test the behavior of the
network if a specific traffic pattern travels through it. For example, we may have
a network firewall configured to block FTP communication. We can test the
functionality of the firewall by hitting it with FTP data replayed from Scapy.

In this example, we have the FTP captured pcap file and we need to replay it to
the network:
from scapy.layers.inet import *

from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump format

for pkt in pkts:
pprint(pkt.show())

The pcapreader () will take the pcap file as an input and analyze it to get each packet
alone and add it as an item inside the pkts list. Now we can iterate over the list
and show each packet content.

The script output is:



[rootéAutomationServer »i# python rea&Ihg*pki.py
###[ Ethernet ]###

dst = 00:0c:29:34:28:a6
src = 00:0c:29:2e:d5:b9
type = IPv4
###[ IP |###
version 4
iht =5
tos = 0x0
len = 195
id = 27000
flags = DF
frag =0
tl = 128
proto = tecp
chksum = 0x0
src = 10.10.10.1
dst = 10.10.10.130
\options \
#i#] TCP |###
sport ftp
dport = 45380

Also, you can get specific layer information via the get_1ayer() function that

accesses packet layers. For example, if we were interested in getting the raw data

without the header so we can build the transmitted file, we could use the
following script to get the required data in hex then convert it to ASCII later:

from scapy.layers.inet import *
from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump format

ftp_data = b""
for pkt in pkts:
try:
ftp_data += pkt.get_layer(Raw).load
except:
pass

Notice that we have to surround the get_1ayer() method with a try-except clause
as some layers don't contain the raw data (such as FTP control messages). Scapy
will throw the error and the script will exit. Also, we can rewrite the script as an

if clause that will add content to ftp_data only if the packet has the raw layer in it.

To avoid any errors while reading the pcap file, make sure you save (or export) your pcap file as
Wireshark/tcpdump format, as shown here, and not the default format:



[Header (Default Style) |>

BA0 ~] Expression.. | +

h| info E
220-Filezilla Server @.9.6@ beta

4 Request: USER python_test

PS5 Response: 331 Password required for python_test

2 Request: PASS access123

1 Response: 230 Logged on

F2 Request: SYST

b8 Response: 215 UNIX emulated by Filezilla

P2 Request: PASY

3 Response: 227 Entering Passive Mode (1@,1@,1@,1,222,27)

f9 Request: RETR run.sh

i5 Response: 15@ Opening data channel for file download from server of “/run.sh®

P6 Response: 226 Successfully transferred “/run.sh™ _']

terface @
_'J 12:0c:29:34:28:56)

- @@ @

File name: |I1p_dakapcapng

Save as lype:

Wireshark/tcpdump/. mamndpw[ d’rngz, dmp.”.cap.g2." cap.”
I Compress with ¢ Modiied tcpdump - peap (* dmp.gz".dmp;" cap.gz;".cap:".peap.gz.” peap)
ey NoKia tepdump - peap .dmp. g2 dmp ", c2p. g2 ", c2p:
RedHat 6.1 tepdump - peap [".dmp.gz* dmp.” ¢
SuSE 6.3 tepdump - peap [dmp.gz;" dmp;*.cap.g2;" cap;" peap.gz;" peap)
InfoVista Sview captuie [* Svw.gz." Svw)
Endace ERF capture [“edg alfl
HP-UX nettl trace [ trc1.g2;" tre1.” tre0.g2; " rc0]
Microsoft Netion 1. [".cap.g2.”.cap)
Microsoft NetMon 2.# [ cap.gz;”.cap)
Snitter (DOS) (* sy gz:" sye.” e gz fde,” tre.gz;”
Net<iay, Sniffer [Windows) 1.1 [".cap.gz.".cap)

il porveioms) 200 [ ooz oo sopt o capl
etwork Instruments Observer [*.bir.gz." btr)
Nowell LANalyzer [“tr].g2." 1)
Sun snoop (*.cap.gz;".cap;”. snoop.gz,” snaap)
Wisual Networks traffic capture (* %)
K12 text file [".txt gz bet)

oft Commmivi

000C 0@ Bc 29 34 28 ab @0
0010 00 c3 5a 46 40 00 82
0020 9a 82 @@ 15 b de b7
0030 @1 @4 29 4c 20 00 el
0p40 de d8 32 32 3@ 2d 45
0050 53 65 72 76 65 72 20
opAe 74 61 @d @a 32 32 30
0070 62 79 20 54 69 6d 20
oose 6d 2e 6b 6 73 73 65

"enc.gz” enc".cap.gz.”.cap)

I
— Zw




Injecting data inside packets

We can manipulate the packet and change its contents before replaying it back to
the network. Since our packets are actually stored as items inside the list, we can
iterate over those items and replace specific information. For example, we can
change mac addresses, IP addresses, or add additional layers to each packet or
for specific packets matching a condition. However, we should note that
manipulating packets in specific layers such as the IP and TCP and changing the
content will result in an invalid checksum for the whole layer and the receiver
may drop the packet for that reason.

Scapy has an amazing feature (yes I know, I keep saying amazing many times
but Scapy really is an awesome tool). It will automatically calculate the
checksum for us based on the new content if we delete the original one in the
pcap file.

So, we will modify the previous script and change a few packet parameters, then
rebuild the checksum before sending the packets to the network:

from scapy.layers.inet import *
from pprint import pprint
pkts = PcapReader("/root/ftp_data.pcap") #should be in wireshark-tcpdump format

p_out =[]

for pkt in pkts:
new_pkt = pkt.payload

try:
new_pkt[IP].src "10.10.88.100"
new_pkt[IP].dst "10.10.88.1"
del (new_pkt[IP].chksum)
del (new_pkt[TCP].chksum)
except:
pass

pprint(new_pkt.show())
p_out.append(new_pkt)
send(PacketList(p_out), iface="etho")

In the previous script:

e We used the pcapreader () class to read the content of the FTP pcap file and



store the packets in a pkts variable.

e Then we iterated over the packet and assigned the payload tonew_pkt S0 we
could manipulate the content.

e Remember, the packet itself is considered as an object from the class. We
can access the src and dst members and set them to any desired values.
Here, we set the destination to the gateway and the source to a different
value than the original packet.

e Setting a new IP value will invalidate the checksum, so we deleted both the
IP and TCP checksum using the de1 keyword. Scapy will recalculate them
again based on the new packet contents.

o Finally, we appended the new_pkt to the empty p_out list and sent it using the
send() function. Notice that we can specify the exit interface in the send
function or just leave it and Scapy will consult the host routing table; it will
get the correct exit interface per packet.

The script output is:

[root@AutomationServer ~]# python manipulate_packets.py
##t[ IP |###
version 4

ihl 5
tos 0x0
b = Checksum is deleted and will b
i is deleted an e
#?_ags szﬂ@@ : a whensendingdiepack%
frag 0 P
ttl 128
roto tc ~~ ]
ghksum Noﬁe ;New IP Adresses J
src 10.10.88.100 =
dst 10.10.88.1
\options \
#it [ TCP 1###
sport ftp
dport 45380
seq 2298262710
ack 1884773834
dataofs 8
reserved 0
flags PA
window 260
chksum None
urgptr 0
options [('NOP', None), ('NOP', Nonme), ( 'Timestamp', (40372295, 265470205))]

Also, if we still run the Wireshark in the gateway, we will notice that Wireshark
captures the ftp packet stream with the checksum value set after recalculation:



| Fle Edit View Go Capure Anabyze Stafistics Telephony Wireless Tools Help

AW Fi==

Amge[ihRERes8TI5(5/044E

!ll\fm B | eesin., | +

Mo, Tine Souree Destination Protacol | Length | Info
58@ 02:19:26,160188 12,1088, 108 10.10,88,1 FTR 209 Response: 220-FileZilla Server 0.9.60 heta

¥ Frame 580: 203 bytes on wire (1672 bits), 209 bytes captured (1672 bits) on Interface @
& Ethernet 1T, Src: Mware 34:78:36 (00:8c:29:34:28:a6), Dst: \ware JexdS:bd (00:0c:29:2e:d5:h9)
# Destination: ymare Ze:d3:08 (00:0c:29:2e:05:09)

B Source: mare 34:281a6 (00:0c:29:30:28:06)

*Type: IPvd (@vDR00)

= Internet Protocol Yersion 4, Src: 10.10.88.109, Dst: 10.10.88.1

0000 ... = Yersion: 4

“ien, 0101 = Header Length: 28 bytes [5)

& Differentiated Services Field: Qxdd (DCP: (5@, ECN: Hot-ECT)

- Tetal Length: 195

- Mentification: Q978 (27200)

# Flags: @xdgad, Don't fragment

- Time to live: 128

- Protocel: TCP (6

} Header checksum: Gxceda [validstion disablzn]

- [Header checksum stztus: Unvertfied]

- Source: 10.1.88.100

- Destingtion: 10.10.88.1

# Transmissien Centrel Pretocol, Src Ports 21, Dst Port: 45380, Seq: 1, Ack: 1, Len: 143
o File Transfer Protocol (FTP)

& 200-Filefilla Server 0.9.60 betaln
- 210-written by Tim Kosse (tim kosseffilerilla-project.org)in
- 220 Please wisit https://filerilla-project.orgfin
- \fiaein

- [Current werking directory: ]

50
i
{70
(il
2292
fdad
i
fdcd

53R 71 7665 72 10 30
AR GRNNUT
7920 54 53 &d 20 &b 6f
Ze fh AT 73 73 65 40 66
MRS T
30 20 50 6c 65 6l 73 6
AHTOT A6
W07 6 GaBS 63 T

2639 2e 30 38 20 62 66
716974 74 65 fe 20 A2
TR NREH G
69 B¢ 65 7a 6% fc oc Al
Qe B 726719 0332 32
20 76 69 73 68 74 10 68
69 Bc 63 7a 6% fe Ac Al
e b 72672 B3l 12

server 0 .9.68 be
ta 220-4 ritten b
y Tim o sse (tim
Jossef 1lerills
-project Lorg) 2
0 Plesse visith
ttps:/ff ilezills
-project org/+

010 00 C3 6975 40 00 98 06 NGRg 0a 0a 56 64 0o 02 inp U X0 4
000 SE L0015 bL 44 88 fc bAB6 TAS7Sd ca 8018 XD ooph] o
G0 OLe+SRCIcO D0 Lol QB 0a OLER BB ATOF 2 P b
0040 ca fd 323230 24 46 69 6c 65 53 69 Ec e 6L 20 200-FL lezilla

4

9 7 Header checkun (i checkum), 2 bytes

| Padets: 1035 il 1 0.1%) | ol Defak



Packet sniffing

Scapy has a built-in packet capture function called sniff(). By default, it will
monitor all interfaces and capture all packets if you don't specify any filters or a
certain interface:

from scapy.all import *
from pprint import pprint

print("Begin capturing all packets from all interfaces. send ctrl+c to terminate and
print summary")
pkts = sniff()

pprint(pkts.summary())

The script output is:

[root@AutomationServer ~]# python sniff_all.py

~CEther / IPv6 / UDP fe80::clec:5f5d:9e9b:c874:dhcpv6_client > ff02::1:2:dhcpv6_server / DHC
P6_Solicit / DHCP60ptElapsedTime / DHCP60ptClientId / DHCP60ptIA NA / DHCP60ptClientFQDN / D
HCP60ptVendorClass / DHCP60ptOptReq

Ether / ARP who has 10.10.10.130 says 10.10.10.1 / Padding

Ether / ARP is at 00:0c:29:34:28:a6 says 10.10.10.130

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / IPv6 / UDP fe80::clec:5f5d:9e9b:c874:dhcpv6_client > ff02::1:2:dhcpv6_server / DHCP6
_Solicit / DHCP60ptElapsedTime / DHCP60ptClientId / DHCP60ptIA_NA / DHCP60ptClientFQDN / DHC
P60ptVendorClass / DHCP6OptOptReq

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request O / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / IP / TCP 10.10.10.1:49250 > 10.10.10.130:ssh PA / Raw

Ether / IP / TCP 10.10.10.130:ssh > 10.10.10.1:49250 A

You can of course provide filters and specific interfaces to monitor whether the
condition is matched. For example, in the preceding output we can see a mix of
ICMP, TCP, SSH, and DHCP traffic hitting all interfaces. If we're interested only
in getting ICMP traffic on ethO, then we can provide the filter and iface
arguments to sniff the function, and it will only filter all traffic and record only
the ICMP:

from scapy.all import *
from pprint import pprint

print("Begin capturing all packets from all interfaces. send ctrl+c to terminate and
print summary")
pkts = sniff(iface="etho", filter="icmp")

pprint(pkts.summary())

The script output is:



[root@AutomationServer ~1# python sniff icmp eth@.py

Begin capturing all packets from all interfaces. send ctrl+c to terminate and print summary
~CEther / IP / ICMP 10.10.10.1 > 10.10.10.130 echo-request © / Raw

Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw

Ether / / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
Ether / / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw
Ether / / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
Ether / IP / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 / Raw
Ether / / ICMP 10.10.10.1 > 10.10.10.130 echo-request 0 / Raw
Ether / / ICMP 10.10.10.130 > 10.10.10.1 echo-reply 0 /
None

Raw

Notice how we capture only the ICMP communications on ethO interfaces, and
all other packets are discarded due to the filter applied on them. The iface value
accepts a single interface that we used in the script or a list of interfaces to
monitor them.

One of the advanced features of sniff is stop_fiiter, which is a Python function
applied to each packet to determine if we have to stop the capture after that
packet. For example, if we set stop_filter = lambda x: x.haslayer(Tcp) then we will
stop the capture once we hit a packet with a TCP layer. Also, the store option
allows us to store the packets in the memory (which is by default enabled) or
discard them after applying a specific function on each packet. This is a great
feature if you're getting real-time traffic from the wire to SCAPY and don't want
to write them to memory, if you set the store argument to false inside the sniff
function, then SCAPY will apply any custom function you developed before (to
get some information from packet for example or re-send them to different
destination..etc) then won't store the original packet in the memory and will
discard it. This will save some memory resources during sniffing.



Writing the packets to pcap

Finally, we can write our sniffed packets to a standard pcap file and open it with
Wireshark as usual. This happens via a simple wrpcap() function that writes the
list of packets to a pcap file. The wrpcap() function accepts two arguments—the
first one is the full path to a file location, and the second is the packet list
captured before using the sniff() function:

from scapy.all import *

print("Begin capturing all packets from all interfaces. send ctrl+c to terminate and
print summary")

pkts = sniff(iface="eth0", filter="icmp")

wrpcap("/root/icmp_packets_ethO.pcap", pkts)



Summary

In this chapter, we learned how to leverage the Scapy framework to build any
type of packet containing any network layer and populated it with our values.
Also, we saw how to capture packets on the interface and replay them.



Building a Network Scanner Using
Python

In this chapter, we will build a network scanner that can identify the live hosts on
the network and we will also expand it to include guessing the running operating
system on each host and opened/closed ports. Usually, gathering this information
requires multiple tools and some Linux ninja skills to get the required
information but, using Python, we can build our own network scanner code that
includes any tools and we can get a customized output.

The following topics will be covered in this chapter:

¢ Understanding the network scanner
¢ Building a network scanner with Python
e Sharing your code on GitHub



Understanding the network scanner

A network scanner is used to scan a provided range of network IDs in both layer
2 and layer 3. It can send requests and analyze responses for hundreds of
thousands of computers. Also, you can expand its functionality to show some
shared resources, via Samba and NetBIOS protocols, and the content of
unprotected data on servers running sharing protocols. Another usage for the
network scanner in penetration testing is when a white hat hacker tries to
simulate an attack on network resources to find vulnerabilities and to evaluate
company security. The final goal of the penetration test is to generate a report
with all of the weaknesses in the target system so the origin point can reinforce
and enhance security policies against the potential real attack.



Building a network scanner with
Python

Python tools provide many native modules and support for working with sockets
and TCP/IP in general. Additionally, Python can use the existing third-party
commands available on the system to initiate the required scan and return the
result. This can be done using the subprocess module that we discussed before, in ¢
hapter 9, Using the Subprocess Module. A simple example is using Nmap to scan
a subnet, as in the following code:

import subprocess

from netaddr import IPNetwork

network = "192.168.1.0/24"

p = subprocess.Popen(["sudo", "nmap", "-sP", network], stdout=subprocess.PIPE)

for line in p.stdout:
print(line)

In this example, we can see the following:

e At the beginning, we imported the subprocess module to be used in our script.

e Then, we defined the network that we want to scan with the network
parameter. Notice that we used the CIDR notation, but we could use the
subnet mask instead and convert that to CIDR notation using the Python
netaddr module.

e The popen() class inside subprocess is used to create an object that will send a
regular Nmap command and scan the network. Notice that we added some
flags, -sp, to tweak the Nmap operation and redirected the output to a
special pipe created by subprocess.pIpE.

¢ Finally, we iterated over the created pipe and printed each line.

The script output is as follows:



i

Python Console - DevNet
Django Console *- L

o

Starting Nmap 7.60 ( ) at 2018-05-28 17:22 EET
Nmap scan report for _gateway (192.168.1.1)

ost is up (0.010s Llatency).

805w w X

MAC Address: 98:E7 | (Huawel Technologies)

®

E

Nmap scan report for 192.168.1.2

+ %

Host is up (0.26s latency)

MAC Address: FC:19:E(Sansung Electronics)

Nmap scan report for 192.168.1.3
Access to network ports on Linux requires root access, or your account must belong to a
sudoers group in order to avoid any problems in the script. Also, the nnap package should be
installed on the system prior to running the Python code.

This is a simple Python script and we can use the Nmap tool directly instead of
using it inside Python. However, wrapping the Nmap (or any other system
command) with Python code gives us the flexibility of tailoring the output and
customizing it in any way. In the next section, we will enhance our script and
add more functionality to it.



Enhancing the code

Although the output of Nmap gives us an overview of the live hosts on the
scanned network, we can enhance it and have a better output view. For example,
I need to know the total number of hosts at the beginning of the output, then the
IP address, MAC address, and MAC vendor for each one, but in tabular form, so
I can easily locate any host and all of the information associated with it.

For that reason, I will design a function and name it nmap_report(). This function
will take the standard output generated from the subprocess pipe and will extract
the required information and format it in table format:

def nmap_report(data):

mac_flag = ""

ip_flag = ""

Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
number_of_hosts = data.count("Host is up ")

for line in data.split("\n"):
if "MAC Address:" in line:

mac = line.split("(")[0].replace("MAC Address: ", "")
vendor = line.split("(")[1].replace(")", "")
mac_flag = "ready"

elif "Nmap scan report for" in line:
ip = re.search(r"Nmap scan report for (.*)", line).groups()[0]
ip_flag = "ready"

if mac_flag == "ready" and ip_flag == "ready":
Host_Table.add_row([ip, mac, vendor])

mac_flag = ""

ip_flag = ""

print("Number of Live Hosts is {}".format(number_of_hosts))
print Host_Table

Starting with the easiest part, we can get the number of live hosts by counting
the Host is up occurrences in the passed output and assigning this to the
number_of_hosts parameter.

Secondly, Python has a nice module called prettytable which can create a text
table and handle the cell sizing according to data inside it. The module accepts
the table headers as a list and uses the add_row() function to add rows to the
created table. So, the first thing is to import this module (after installing it, if it's
not already installed). In our example, we will pass a list of three items (1p, vac,



vendor) to the prettytable class (imported from the prettytabie module) to create the
table headers.

Now, to fill up this table, we will split the output on \n (carriage return). The split
result will be a list, that we can iterate over to grab specific information such as
MAC address and IP address. We used a few splitting and replace hacks to
extract the MAC address alone. Also, we used the regular expression search
function to get the IP address portion (or the hostname if DNS is enabled) from
the output.

Finally, we added this information to the created rost_tabie and continued to
iterate over the next line.

Following is the full script:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

import subprocess

from netaddr import IPNetwork, AddrFormatError
from prettytable import PrettyTable

import re

def nmap_report(data):

mac_flag = ""

ip_flag = ""

Host_Table = PrettyTable(["IP", "MAC", "Vendor"])
number_of_hosts = data.count("Host is up ")

for line in data.split("\n"):

if "MAC Address:" in line:

mac = line.split("(")[0].replace("MAC Address: ", "")

vendor = line.split("(")[1].replace(")", "")

mac_flag = "ready"

elif "Nmap scan report for" in line:

ip = re.search(r"Nmap scan report for (.*)", line).groups()[0]
ip_flag = "ready"

if mac_flag == "ready" and ip_flag == "ready":
Host_Table.add_row([ip, mac, vendor])

mac_flag = ""

ip_flag = ""

print("Number of Live Hosts is {}".format(number_of_hosts))
print Host_Table

network = "192.168.1.0/24"
try:

IPNetwork(network)
p = subprocess.Popen(["sudo", "nmap", "-sP", network], stdout=subprocess.PIPE)




nmap_report(p.stdout.read())
except AddrFormatError:
print("Please Enter a valid network IP address in x.x.x.x/y format")

Notice we also added a pre-check to the subprocess command using the
netaddr.IPNetwork() class. This class will validate whether the network is correctly
formatted before executing the subprocess command, otherwise the class will raise
an exception which should be handled by the addrrormaterror exception class and
will print a customized error message to user.

The script output is:

Python Console - DevNet o]
Django Console -

&

'-sP' ﬂ?tw&r%uliEGUUtEEUDpFEﬁESSLPIPEl

+ & & B ow X

e e G g O T
D Ao~ W

Now, if we change the network to an incorrect value (either the subnet mask is
wrong or the network ID is not valid), the 1pnetwork() class will throw an
exception and this error message will be printed:

|netw0rk = "192.168.300.0/24"

Python Console - DevNet

% O
-

Django Console

Please Enter a valid network IP address in x.x.x.x/y format




Scanning the services

Running services on a host machine typically open a port in the operating system
and start listening to it in order to accept incoming TCP communication and start
the three-way handshake. In Nmap, you can send an SYN packet on a specific
port and, if the host responds with SYN-ACK, then the service is running and
listening to the port.

Let's test the HTTP port, for example in googie.com, using nmap:

|nmap -p 80 www.google.com
bassim:~$ nmap -p 80 www.google.com
Nmap 7.60 ://nmap.org at 2018-05-28 23:18 EET

Nmap scan report for www.google.com (172.217.19.36
i .058s latency).

w age fOr www.google.com (not scanned): 2a00:1450:4006:802::200
N 172.217.19.36: ham02s11-in-f36.1e100.net
PORT ATE SERVICE
80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.31 seconds
bassim:~$

We can use the same concept to discover the running services on the router. For
example, the router that runs the BGP daemon will listen to port 179 for
open/update/keep alive/notification messages. If you want to monitor the router,
then the SNMP service should be enabled and should listen to incoming SNMP
get/set messages. The MPLS LDP will usually listen to es6 for establishing a
relationship with other neighbors. Here is a list of common services running on
the router and their listening ports:

Service Listening port

FTP 21

SSH 22



https://www.google.com/

TELNET 23
SMTP 25
HTTP 80
HTTPS 443
SNMP 161
BGP 179
LDP 646
RPCBIND 111
NETCONF 830
XNM-CLEAR-TEXT 3221

We can create a dictionary with all of these ports and scan them using subprocess
and Nmap. Then we use the returned output to create our table, which lists the



open and closed ports for each scan. Also, with some additional logic, we can try
to correlate information to guess the operating system type of the device
function. For example, if the device is listening to port 179 (BGP port), then the
device is most likely a network gateway and, if it listens to ss9 or ess, then the
device is running an LDAP application and could be the company active
directory. This will help us to create the proper attack against the device during
the pen testing.

Without further ado, let's quickly put our idea and notes in the following script:

#!1/usr/bin/python
__author__ = "Bassim Aly"
_ _EMAIL__ = "basim.alyy@gmail.com"

from prettytable import PrettyTable
import subprocess
import re

def get_port_status(port, data):
port_status = re.findall(r"{0@}/tcp (\S+) .*".format(port), data)[0]
return port_status

Router_Table PrettyTable(["IP Address", "Opened Services"])

router_ports {"FTP": 21,
"SSH": 22,

"TELNET": 23,

"SMTP": 25,

"HTTP": 80,

"HTTPS": 443,

"SNMP": 161,

"BGP": 179,

"LDP": 646,

"RPCBIND": 111,
"NETCONF": 830,
"XNM-CLEAR-TEXT": 3221}

live_hosts = ["10.10.10.1", "10.10.10.2", "10.10.10.65"]

services_status = {}
for ip in live_hosts:

for service, port in router_ports.iteritems():

p = subprocess.Popen(["sudo", "nmap", "-p", str(port), ip], stdout=subprocess.PIPE)
port_status = get_port_status(port, p.stdout.read())

services_status[service] = port_status

services_status_joined = "\n".join("{} : {}".format(key, value) for key, value in
services_status.iteritems())

Router_Table.add_row([ip, services_status_joined])

print Router_Table

In this example, we can see the following:



e We developed a function named get_port_status() to take the Nmap port
scanning result and to search for the port status (open, closed, filtered, and
so on) using the regular expression inside the finda11() function. It returns
the port status result.

e Then, we added services ports mapped to the service name inside the
router_ports dictionary, so we could access any port value using the
corresponding service name (dictionary key). Also, we defined the router
hosts' IP addresses inside the 1ive hosts list. Note that we can use the nmap
with the -sp flag to get the live hosts, as we did before in a previous script.

e Now, we can iterate over each IP address in the 1ive_nosts list and execute
the Nmap to scan each port in the router_ports dictionary. This requires a
nested for loop, so for each device we iterate over a list of ports and so on.
The result will be added to the services_status dictionary—the service name
is a dictionary key while the port status is the dictionary value.

¢ Finally, we will add the result to router_table created using the prettytable
module to get a nice-looking table.

The script output is as follows:

Python Console - DevNet o
| Django Console - L

IP Address Opened Services

: closed
: closed
> : closed
SMTP : open
TELNET : open
BGP : closed
XNM-CLEAR-TEXT : closed
SSH : open
HTTPS : closed
10.10.10.2 NETCONF : filtered
FTP : filtered
RPCBIND : filtered
HTTP : open
LDP : filtered
SNMP : filtered
SMTP : open
TELNET : filtered
BGP : filtered
XNM-CLEAR-TEXT : filtered
SSH : closed
HTTPS : open
10.10.10.65 NETCONF : closed
FTP : closed




Sharing your code on GitHub

GitHub is a place where you can share your code and collaborate with others on
a common project using Git. Git is a source version control platform invented
and created by Linus Trovalds, who started Linux but had a problem maintaining
Linux development with a large number of developers contributing to it. He
created a de-centralized version control where anyone could get the entire code
(called cloning or forking), make changes, then push them back to the central
repository to be merged with other developers' code. Git became the preferred
method for many developers to work together on projects. You can learn how to
code in Git interactively with this 15-minute course offered by GitHub: nttps://tr
y.github.1io.

GitHub is the website that hosts those projects, which is versioned using Git. It's
like a developer social media platform, where you can track the code
development, write a wiki, or raise an issue/bug report and get developer
feedback on it. People on the same project can discuss the project progress and
share code together to build a better and faster software. Also, some companies
consider your code and repositories—shared in your account at GitHub—as an
online resume that measures your skills and how you code in languages of
interest.


https://try.github.io

Creating an account on GitHub

The first thing to do before sharing your code or downloading other codes is to
create your account.

Head to https://github.com/join?source=header-home and choose a username,
password, and email address, then click on the green Create an account button.

The second thing to do is to choose your plan. By default, the free plan is fine as
it gives you unlimited public repositories and you can push any code developed
in any languages you like. However, the free plan doesn't make your repository
private and allows others to search for and download it. It's not a deal breaker if
you're not working on secret or commercial projects in your company, however
you need to make sure that you don't share any sensitive information, such as
passwords, tokens, or public IP addresses in the code.


https://github.com/join?source=header-home

Creating and pushing your code

Now we're ready to share the code with others. The first thing after creating your
GitHub account is to create a repository to host your files. Usually, you create
one repository per project (not per file) and it contains project assets and files
related to each other.

Click on the + icon in the top-right, just beside your profile picture, to create a
new repository:

Pull requests Issues Marketplace Explore L + - ﬁv

————
New repository

B tivit Di sit
(i) Cistor damainsson Gitfiub x rowse activity iscover repositories r——

Pages gain support for HTTPS
Custom domains on GitHub Pages gain New gist

StppeRtionHITPS. E opencontrail-ci-admin pushed to Junipericontrail-ansible- New organization

View new brozadcasts 1 commit to master

I 3783406 re-order definitions for k8s
& TheNetworker ~

You will be redirected to a new page where you can enter your repository name.
Notice that you can choose any you like, but it shouldn't conflict with other
repository in your profile. Also, you will be give a unique URL for this repo so
anyone can access it. You can set the repo settings, such as whether it is public or
private (only for paid plans), and if you want to initialize it with a README
file. This file is written using markdown text formatting that includes
information about your project, and steps for other developers to follow if they
use your project.

Finally, you will have an option to add a .gitignore file where you tell Git to
ignore tracking a certain type of file in your directory, such as logs, pyc, compiled
files, video, and so on:



Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name
& TheNetworker~ / My_Great_Project v
Great repository names are short and memorable. Need inspiration? How about upgraded-potato.

Description (optional)

o [0 | Public
“#= Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add .gitignore: None ~ Add a license: None > ()

Create repository

In the end, your repo is created and you will be given a unique URL for it. Note
this URL down as we will use it later when pushing files to it:

TheNetworker / My_Great_Project @ Unwatch~> 1 o Star 0 g 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Quick setup — if you've done this kind of thing before
or| HTTPS SSH https://github.com/TheNetworker/My_Great_Project.git @_

We recommend every repository include a README, LICENSE, and .gitignore.

Now it's time to share your code. I will use the integrated Git functionality inside
PyCharm to do the job although you can do the same steps in CLI. Also, there
are many other GUI tools available (including one from GitHub itself) that can
manage your GIT repo. I highly recommend that you do the Git training
provided by GitHub (https://try.github.io) before following these steps:

1. Goto VCS | Import into Version Control | Create Git Repository:


https://try.github.io/

Local History »

V(S Operations Popup... Alt+
47 Commit... Chrl+K
% Update Project... Ctrl+T

ate Project..
Refresh File Status
%+ Show Local Changes as UML Ctrl+Alt+Shift+D
Git »
# Create Patch...
Apply Patch...
Apply Patch from Clipboard...
&, Shelve Changes...
Checkout from Version Control

»
Importinto Version Control » Importinto CVS...
Browse VICS Repository » Create Git Repository...
»

Sync Settings Import into Subversion...
Create Mercurial Repository
® Share Project on GitHub

2. Choose the folder where your project files are stored locally:

Create Git Repository
Select directory where the new Git repository will be created.

B X O||E Hide path
tionProject/Chapter18_building_network_scanner_with_python|ifi]
My CV-B
My Wallpapers-Very Selective-B
Network Notes
OneNote
Packt
EnterpriseAutomationProject
.idea

Chapter10_Running_system_administration_tasks_with_
Chapter11_Generating_System_Reports
Chapter12_Interacting_with_database
Chapter13_Ansible_for_system_administration
Chapter14_Creating_and_managing_VMWare_virtual_mz
Chapter15_Interacting_with_openstack_API
Chapter16_Automating_AWS_with_python_and_BOTO3
Chapter17_using_SCAPY_framework

Chapter18 building network scanner with python

Drag and drop & file into the space above to quickly locate itin the tree

“ Cancel Help

This will create a local Git repo in the folder.

3. Highlight all files that need to be tracked in the sidebar and right-click on
them, then choose Git | Add:



New 4

6 Cut Ctrl+X
= Copy Ctrl+C
Copy Paths Ctrl+Shift+C
Copy Relative Paths Ctrl+Alt+Shift+C
= Paste Cerl+V
7 Jump to Source
Inspect Code...
Refactor 3
Clean Python Compiled Files
Add to Favorites »
Delete... Delete Commit File
P Run 'scan_using_subprocess' Ctrl+Shifc+F10 Add

4 Debug 'scan_using_subprocess'

¥% Run 'scan_using_subprocess' with Coverage

&p Profile 'scan_using_subprocess'

= Concurrency Diagram For 'scan_using_subprocess'

# Create 'scan_using_subprocess'...
Show in Files

Openin terminal ryf
Local History » 5 Revert... Ctri+Alt+Z

Repository »
(5 Synchronize selected files
File Path Ctrl+Alt+F12

% Deployment »

® Create Gist...
PyCharm uses file color code to indicate the type of file tracked in Git. When the files are not

8 tracked, it will color them red and when the files are added to Git, it will color them green.

This allows you to easily know file status without running commands.

4. Define the remote repository in GitHub that will be mapped to the local
repository by going to VCS | Git | Remotes:



5. Enter the repo name and the URL you noted down when we created the
repo; click OK twice to exit the window:

Name WL +

[media/bassim/DATA/GoogleDrive/Packt EnterpriseAutomationProject/Chaptert8,building_nefwork scanner with_python

AutomationSeripts
GitLaPublicAutoma Define Remote n /media/bssim/DATA/GoogleDrivPacktnterpriseAutomatonProjecChaper18 bullding network_scamner Wi python € it

Name: My Credt Project

URL: it gt comTheNeworery_

sniffiicmp_ethﬂ.py “ Cancel \ .
6. The final step is to commit your code. Go to VCS | Git | Commit and from

the opened popup window, select your tracked files, enter a descriptive
message in the Commit Message section, and instead of hitting Commit,



click on the small arrow beside it and choose Commit and Push. A dialog
box might be opened telling you that your Git user Name Is Not Defined.
Just enter your name and email and make sure the Set properties globally
box is ticked and hit Set and Commit:

Commit Changes

++ O & 0 — b & &3 = Changelist: Default Git
B | /media/bassim/DATA/GoogleDrive
Packt/EnterpriseAutomationProject/Chapter18_building_network_scanner_with_python = files
¥ i scan_for_routers.py [ Amend commit
» scan_using_subprocess.py
= scan_using_subprocess_report.py
[ #= Scripts/AutomationScripts
[] Unversioned Files & f

Author:  Basim <basim.alyy@gmail.com>

[ sign-off commit
Before Commit

New: 3 of 19 Modified:0of 16 Unversioned: 0 of 6 [ Reformat code

[} Rearrange code

[] Optimize imports

[] Perform code analysis

Check TODO (Show All) Configure
[ Cleanup

Commit Message =
Creating a great project and push it to GitHub for Enterprise Automation

Book

After Commit
Upload Files to:

(none) - )l

~ Diff

o ¥ % f'Side-by-sideviewer | Do not ignore |Highlight lines 7; &2

Your version

__author__ =
__EMATIL__ =

prettytable import PrettyTable
subprocess
t re

bwo~NOUVb WNE

def get_port_status(port,data):

[connic_ - IECCERERE

The PyCharm gives you an option to push to Gerrit for code review. If
you have one, you can also share your files in it. Otherwise, click on
Push.

A notification message will appear telling you the push completed
successfully:

@ Push successful
/media/bassim/DATA/GoogleDrive/Packt/Enterprise
AutomationProject/Chapter18_building_network_sca ~

2} Event Log 5 3: Python Console

You can refresh your GitHub repo URL from the browser and you will
see all your files stored in it:



L] TheNetworker / My_Great_Project ® Unwatch~ 1 + Star 0 YFork 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings
No description, website, or topics provided. Edit
Add topics
O 1 commit ¥ 1 branch © 0 releases 42 1 contributor
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥
..ér TheNetworker Creating a great project and push it to GitHub for Enterprise Automat... - Latest commit a4a6f76 3 minutes ago
[£) scan_for_routers.py Creating a great project and push it to GitHub for Enterprise Automat... 3 minutes ago
[£ scan_using_subprocess.py Creating a great project and push it to GitHub for Enterprise Automat. 3 minutes ago
[E) scan_using_subprocess_report.py Creating a great project and push it to GitHub for Enterprise Automat... 3 minutes ago
Help people interested in this repository understand your project by adding a README. Add a README

Now, whenever you make any change in the code inside the tracked files and
commit, the changes will be tracked and added to the versioning system and will
be available in GitHub for other users to download and comment on.



Summary

In this chapter, we built our network scanner, which can be used during
authorized penetration testing, and learned how to scan different services and
applications running on the device to detect their type. Also, we shared our code
to GitHub so that we could keep different versions of our code and also allow
other developers to use our shared code and enhance it, then share it again with
others.



Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering

Python Networking

Mastering Python Networking
Eric Chou

ISBN: 978-1-784397-00-5

Review all the fundamentals of Python and the TCP/IP suite

Use Python to execute commands when the device does not support the API
or programmatic interaction with the device

Implement automation techniques by integrating Python with Cisco,
Juniper, and Arista eAPI

Integrate Ansible using Python to control Cisco, Juniper, and Arista
networks

Achieve network security with Python

Build Flask-based web-service APIs with Python

Construct a Python-based migration plan from a legacy to scalable SDN-
based network.


https://www.packtpub.com/networking-and-servers/mastering-python-networking

Abhishek Ratan

Practical Network
Automation

Practical Network Automation
Abhishek Ratan

ISBN: 978-1-78829-946-6

e Get the detailed analysis of Network automation

e Trigger automations through available data factors

e Improve data center robustness and security through specific access and
data digging

e Get an Access to APIs from Excel for dynamic reporting

e Set up a communication with SSH-based devices using netmiko

e Make full use of practical use cases and best practices to get accustomed
with the various aspects of network automation


https://www.packtpub.com/networking-and-servers/practical-network-automation

L.eave a review - let other readers
know what you think

Please share your thoughts on this book with others by leaving a review on the
site that you bought it from. If you purchased the book from Amazon, please
leave us an honest review on this book's Amazon page. This is vital so that other
potential readers can see and use your unbiased opinion to make purchasing
decisions, we can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked with Packt
to create. It will only take a few minutes of your time, but is valuable to other
potential customers, our authors, and Packt. Thank you!



	Title Page
	Copyright and Credits
	Hands-On Enterprise Automation with Python

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews


	Setting Up Our Python Environment
	An introduction to Python
	Python versions
	Why are there two active versions?
	Should you only learn Python 3?
	Does this mean I can't write code that runs on both Python 2 and Python 3?

	Python installation

	Installing the PyCharm IDE
	Setting up a Python project inside PyCharm

	Exploring some nifty PyCharm features
	Code debugging
	Code refactoring
	Installing packages from the GUI

	Summary

	Common Libraries Used in Automation
	Understanding Python packages
	Package search paths

	Common Python libraries
	Network Python Libraries
	System and cloud Python libraries

	Accessing module source code
	Visualizing Python code

	Summary

	Setting Up the Network Lab Environment
	Technical requirements
	When and why to automate the network
	Why do we need automation?

	Screen scraping versus API automation
	Why use Python for network automation?
	The future of network automation
	Network lab setup
	Getting ready &#x2013; installing EVE-NG
	Installation on VMware Workstation
	Installation over VMware ESXi
	Installation over Red Hat KVM
	Accessing EVE-NG
	Installing EVE-NG client pack
	Loading network images into EVE-NG

	Building an enterprise network topology
	Adding new nodes
	Connecting nodes together

	Summary

	Using Python to Manage Network Devices
	Technical requirements
	Python and SSH
	Paramiko module
	Module installation
	SSH to the network device

	Netmiko module
	Vendor support
	Installation and verification
	Using netmiko for SSH
	Configuring devices using netmiko
	Exception handling in netmiko
	Device auto detect


	Using the telnet protocol in Python
	Push configuration using telnetlib

	Handling IP addresses and networks with netaddr
	Netaddr installation
	Exploring netaddr methods

	Sample use cases
	Backup device configuration
	Building the python script

	Creating your own access terminal
	Reading data from an Excel sheet
	More use cases

	Summary

	Extracting Useful Data from Network Devices
	Technical requirements
	Understanding parsers
	Introduction to regular expressions
	Creating a regular expression in Python

	Configuration auditing using CiscoConfParse
	CiscoConfParse library
	Supported vendors
	CiscoConfParse installation
	Working with CiscoConfParse

	Visualizing returned data with matplotLib
	Matplotlib installation
	Hands-on with matplotlib
	Visualizing SNMP using matplotlib

	Summary

	Configuration Generator with Python and Jinja2
	What is YAML?
	YAML file formatting
	Text editor tips


	Building a golden configuration with Jinja2
	Reading templates from the filesystem
	Using Jinja2 loops and conditions

	Summary

	Parallel Execution of Python Script
	How a computer executes your Python script
	Python multiprocessing library
	Getting started with multiprocessing
	Intercommunication between processes

	Summary

	Preparing a Lab Environment
	Getting the Linux operating system
	Downloading CentOS
	Downloading Ubuntu

	Creating an automation machine on a hypervisor
	Creating a Linux machine over VMware ESXi
	Creating a Linux machine over KVM

	Getting started with Cobbler
	Understanding how Cobbler works
	Installing Cobbler on an automation server
	Provisioning servers through Cobbler

	Summary

	Using the Subprocess Module
	The popen() subprocess
	Reading stdin, stdout, and stderr
	The subprocess call suite
	Summary

	Running System Administration Tasks with Fabric
	Technical requirements
	What is Fabric?
	Installation
	Fabric operations
	Using run operation
	Using get operation
	Using put operation
	Using sudo operation
	Using prompt operation
	Using reboot operation


	Executing your first Fabric file
	More about the fab tool
	Discover system health using Fabric

	Other useful features in Fabric
	Fabric roles
	Fabric context managers

	Summary

	Generating System Reports and System Monitoring
	Collecting data from Linux
	Sending generated data through email
	Using the time and date modules
	Running the script on a regular basis

	Managing users in Ansible
	Linux systems
	Microsoft Windows

	Summary

	Interacting with the Database
	Installing MySQL on an automation server
	Securing the installation
	Verifying the database installation

	Accessing the MySQL database from Python
	Querying the database
	Inserting records into the database

	Summary

	Ansible for System Administration
	Ansible terminology
	Installing Ansible on Linux
	On RHEL and CentOS
	Ubuntu

	Using Ansible in ad hoc mode
	How Ansible actually works

	Creating your first playbook
	Understanding Ansible conditions, handlers, and loops
	Designing conditions
	Creating loops in ansible
	Trigger tasks with handlers

	Working with Ansible facts
	Working with the Ansible template
	Summary

	Creating and Managing VMware Virtual Machines
	Setting up the environment
	Generating a VMX file using Jinja2
	Building the VMX template
	Handling Microsoft Excel data
	Generating VMX files

	VMware Python clients
	Installing PyVmomi
	First steps with pyvmomi
	Changing the virtual machine state
	There's more

	Using Ansible playbook to manage instances
	Summary

	Interacting with the OpenStack API
	Understanding RESTful web services
	Setting up the environment
	Installing rdo-OpenStack package
	On RHEL 7.4
	On CentOS 7.4

	Generating answer file
	Editing answer file
	Run the packstack
	Access the OpenStack GUI

	Sending requests to the OpenStack keystone
	Creating instances from Python
	Creating the image
	Assigning a flavor
	Creating the network and subnet
	Launching the instance

	Managing OpenStack instances from Ansible
	Shade and Ansible installation
	Building the Ansible playbook
	Running the playbook


	Summary

	Automating AWS with Boto3
	AWS Python modules
	Boto3 installation

	Managing AWS instances
	Instance termination

	Automating AWS S3 services
	Creating buckets
	Uploading a file to a bucket
	Deleting a bucket

	Summary

	Using the Scapy Framework
	Understanding Scapy
	Installing Scapy
	Unix-based systems
	Installing in Debian and Ubuntu
	Installing in Red Hat/CentOS

	Windows and macOS X Support

	Generating packets and network streams using Scapy
	Capturing and replaying packets
	Injecting data inside packets
	Packet sniffing
	Writing the packets to pcap

	Summary

	Building a Network Scanner Using Python
	Understanding the network scanner
	Building a network scanner with Python
	Enhancing the code
	Scanning the services

	Sharing your code on GitHub
	Creating an account on GitHub
	Creating and pushing your code

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think


