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Abstract 

Privacy has always been a concern over the internet. A new wave of privacy networks 

struck the world in 2002 when the TOR Project was released to the public. The core principle of 

TOR, popularly known as the onion routing protocol, was developed by the ‘United States Naval 

Research Laboratory’ in the mid-1990s. It was further developed by ‘Defense Advanced 

Research Projects Agency’. The project that started as an attempt to create a secured 

communication network for the U.S. Intelligence was soon released as a general anonymous 

network. These anonymous networks are run with the help of volunteers that serve the physical 

need of the network, while the software fills up the gaps using encryption algorithms. 

Fundamentally, the volunteers along with the encryption algorithms are the network. Once a part 

of such a network, the identity, and activity of a user is invisible. The users remain completely 

anonymous over the network if they follow a few steps and rules. As of December 2017, there 

are more than 3 million TOR users as per the TOR Project’s website. Today, the anonymous web 

is used by people of all kinds. While, some just want to use it to make sure nobody could 

possibly spy on them, others are also using it to buy and sell things. Thus, functioning as a 

censorship-resistant peer-to-peer network. 

Through this thesis, we propose a novel approach to identifying traffic and without 

sacrificing the privacy of the Tor nodes or clients. We recorded traffic over our own Tor Exit and 

Middle nodes to train Decision Tree classifiers to identify and differentiate between different 

types of traffic. Our classifiers can accurately differentiate between regular internet and Tor 

traffic while can also be combined together for detailed classification. These classifiers can be 

used to selectively drop traffic on a Tor node, giving more control to the users while providing 

scope for censorship.  
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Introduction 

 The internet that most of the general population uses is also known as ‘surface web’ 

which is just a part of the ‘World Wide Web (www)’. This is the visible part of the world wide 

web which is indexed by most of the search engines and can be accessed using a regular web 

browser with basic settings. The surface web consists of all the websites we use regularly, like 

google.com, facebook.com and other websites specific to different products and services. But, 

there also exists a hidden internet which is known as deep web. It is known as the ‘hidden web’ 

because it cannot be accessed easily. It requires a special browser and special settings to be 

accessed. This hidden internet is part of the anonymous networks like TOR and I2P. A user has 

to be a part of such a network to be able to access the content available on such a network. 

Websites hosted on these networks are known as deep web websites and are intended to keep it's 

content private while keeping the identity of the user accessing it anonymously. Everything from 

news, marketplace, blogs, video streaming, and social media websites exist on the deep web.  

Research Problem 

There also exists a part of the deep web where illicit websites are hosted. Since such 

activities are carried out in the dark, this part of the deep web is known as the ‘Dark Net’. Dark 

Net websites are infamous for hosting all kinds of illegal contents. The websites range from 

drugs, arms and ammunitions marketplaces, leaked information websites and other kinds of 

illegal activities. It is getting easier for kids to purchase drugs over the darknet. Leaked 

information like credit card details and Social Security information is also sold freely over the 

network. One huge part of it belongs to websites hosting ‘child pornography’ websites. Since 

using a regular credit/debit card to purchase any of the products or services being sold on the 
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darknet can compromise the user’s and the website owner’s identity, these transactions are most 

often completed using cryptocurrencies.  

Since the traffic over the nodes remains encrypted, it is difficult to censor any type of 

content over the Tor network. This is especially of concern to the users hosting Exit Nodes. 

These users are very likely to receive DMCA notices from BitTorrent and other traffic carrying 

copyright content flowing through it. There is no system in place for a host to control the traffic 

flowing to their owned node. 

The research focuses on implementing a way to classify traffic without compromising the 

anonymity of the nodes, users or their traffic. Most techniques used try to find weaknesses in the 

Tor infrastructure to then exploit them. Through this research, we use a different approach by 

using Machine Learning to try and understand how the Tor network behaves with the different 

types of traffic flowing through it. This can be then compared to the activity of a node on the 

regular internet to try and develop and train algorithms that can differentiate between them. 

Review of Literature and Deficiencies 

The Federal Bureau of Investigation posted an article on their website in 2016 explaining 

Dark Net websites, what they are and what countermeasures are law enforcement authorities 

taking against them. Within this article, the organization explains how an international coalition 

of law enforcement agencies from five countries around the world named Five Eyes Law 

Enforcement Group (FELEG) are sharing intelligence to bust Dark Net related crimes (FBI, 

2016). However, a review of the literature reveals that there is much to be explored in this field. 

 The existing research on TOR revolves around the statistics leading to the concentration 

of services. Most drugs on the Dark Net is sold in the United States of America. The greatest 

number of sellers are also from the United States of America (Dolliver, 2015). A paper published 
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in the Journal of Computer Virology and Hacking Techniques in 2015 shows how a Botnet’s 

Command and Control servers can be hidden in the TOR network and used to control several 

thousand or even millions of bots in that botnet to execute click fraud, data mining, bitcoin 

mining or perform a DDOS attack (Kang, 2015). The TOR network also has mechanisms to ban 

an Exit Node if it is known to tamper information before relaying it to its subsequent node. It 

does by verifying the signature of response that every TOR server creates when it replies to a 

query. If the signature received is different, the TOR network automatically bans the Exit node 

and thus no traffic is relayed through that node (Wagner, Wagener, State, Dulaunoy, & Engel, 

2012). 

 There also exist research on deanonymizing traffic on the TOR network. A journal article 

explains how the HSDir (Hidden Services Directory) works and how it can be harvested to find 

more information about the various hidden services hosted on the TOR network (Biryukov, 

Pustogarov, & Weinmann, 2013). Privacy over the TOR network is also compromised when 

active plugins are active over a client machine or hidden server. Browser-based attacks can be 

carried out on such clients and server using HTML, Javascript and flash to expose their identity 

(Abbott, Lai, Lieberman, & Price, 2007).  
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Technical Background 

The Tor Network 

A conference paper submitted to the International Symposium on Privacy Enhancing 

Technologies Symposium explains the working of the TOR network. It is a kind of a mesh 

network consisting of volunteers serving as nodes. These nodes function as relay networks that is 

the fundamental way in which TOR functions (McCoy, Bauer, Grunwald, Kohno, & Sicker, 

2008). TOR is an intelligent network that makes use of its relay nodes and incredibly complex 

cryptography to make sure that the user’s identity remains anonymous. 

The network is made up of three kinds of nodes: Entry Node, Intermediate Node, and the 

Exit Node. When a user connects to the TOR network, the network protocol looks into its 

database of available TOR nodes and assigns a combination of Entry, Intermediate and Exit 

nodes for the connection (McCoy, Bauer, Grunwald, Kohno, & Sicker, 2008). These nodes can 

be located several thousand miles apart across the globe. The user is connected to the Entry Node 

whereas the website server or service he is trying to connect to or access is connected to the end 

of the Exit Node. The TOR network also makes sure that the user’s machine carries out secure 

key exchanges with all the three nodes. The key exchanges are executed in such a way that, the 

host has a unique key combination with each of the nodes (Abbott, Lai, Lieberman, & Price, 

2007). When the user is sending traffic to the web server, which is general inquiry for the content 

they are requesting for, the host machine encrypts the data with the Exit Node’s encryption key, 

followed by the Intermediate Node’s key and then finally with the Entry Node’s key. Thus, the 

data is now encrypted thrice with three different keys that not entirely known by any of the relay 

nodes (Abbott, Lai, Lieberman, & Price, 2007). A simple illustration can be used to explain this: 

 



TOR: Internet and Tor Traffic Classification Using Machine Learning  

 

 

Figure 1: Tor Architecture 

As can be seen above, each relay node has its own unique key which is exchanged with the host 

in a way that at any point in the connection, only the host machine has access to all the three 

keys. When the data that is encrypted thrice is sent over the network, it is first received by the 

Entry Node, which strips its key and forwards the packet to the Intermediate node, which then 

strips its key and forwards it to the exit node. The exit node on receiving the packet, strips its 

own key and forwards the data to the web server it is intended for (Abbott, Lai, Lieberman, & 

Price, 2007). When response data is traveling back from the web server to the host machine, the 

data is first received at the Exit Node, which encrypts the data using its key and forwards it to the 

Intermediate Node which encrypts the received data using its key and forwards it to the Entry 

Node, which encrypts it one last time using its unique key and forwards it to the host machine. 

Since the host machine has all the three keys available with it, it sequentially strips down all the 

three keys to reveal the data. As can be observed in the figure and explanation above, the data is 

always kept encrypted on all links in the network except one. The data flow between the Exit 
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Node and the web server occurs over an unsecured medium. This is where, the possibilities of 

potential attacks on the TOR network exists (McCoy, Bauer, Grunwald, Kohno, & Sicker, 2008). 

Active plugins operate in ways different than regular programs. They can run in the background 

can report user activity without even the user noticing it. Most attacks on the TOR network are 

carried out using active plugins. One paper published with the International Workshop on 

Privacy describes a few such attacks. It mentions how to browse the internet anonymously; a 

user must be using an HTTP proxy like ‘Privoxy’ so that traffic would be diverted over TOR 

instead of the regular internet. This is because active plugins not always use the browser’s proxy 

to send data (Abbott, Lai, Lieberman, & Price, 2007). The article further goes on to explain the 

first attack which falls in the category of browser-based attacks. The attack is executed as 

follows: 

 

Figure 2: Tor Browser Based Attack 

The above figure can be held as a reference for the explanation. The attacker sets up a malicious 

exit node in the TOR network to modify the HTTP traffic. Since the exit node is connected to a 

web server, the attacker modifies all the packets from the server to the client by adding an 

Client Server

Entry 
Node

Exit Node
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Intermidiate 
Node

Encrypted Link
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Zombie 
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invisible ‘iframe’ with a unique cookie along with a referenced to a malicious web server owned 

by the attacker. When this frame is rendered by the client’s browser, if the flash plugin is still 

active on the browser, a flash movie starts playing in the background and the browser sends back 

the cookie previously received to the malicious web server. The attacker can then identify the 

user and the website visited using the combination of the unique cookie and the flash connection. 

In fact, this attack would work on all users connected to a website through the attacker owned 

exit node and a browser with flash enabled on it (Abbott, Lai, Lieberman, & Price, 2007). 

 A second attack is mentioned which can identify and locate hidden servers on the 

Network. The figure below can be used as a reference to better understand the attack: 

Client Server

Entry Node
Controlled

Exit Node
Controlled

Intermidiate 
Node

Encrypted Link

Unencrypted Link

Zombie 
Server

 

Figure 3: Setup to Identify Hidden Servers 

The attacker introduces an exit node in the TOR network along with a malicious web server.  

The attacker uses his client machine to connect to the website whose location is to be identified. 

Since TOR chooses a random path to create a connection, the attacker makes multiple attempts 

to connect to the website until the node owned by him is selected as the exit node for the 
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connection between the client and the website. This can be achieved since TOR treats every new 

query as a new connection and thus assigns a new path every other time. The attacker can verify 

that his node is working as the exit node for the connection by using traffic analysis. Once 

confirmed, the attacker can identify the location of the web server hosting the website using a 

predecessor attack (Abbott, Lai, Lieberman, & Price, 2007).  On carefully studying both these 

attacks, we can see that both of the attacks make use of the unencrypted link and the exit node 

which are the weakest links to attack considering the TOR architecture (McCoy, Bauer, 

Grunwald, Kohno, & Sicker, 2008) 

Machine Learning 

 Just like humans, machines can be trained in doing a task. Using artificial intelligence 

and computing, systems can be developed that can learn from the input given to them. These 

systems have the human-like the ability to improve with experience reaching a level where it can 

then predict outcomes of systems. There are various kinds of algorithms that can be used for 

machine learning. Which algorithm to use depends completely on what output is expected. A 

term called ‘Supervised Learning’ is often used. Supervised Learning is when the training data is 

a set of variables and both the input and the output object are to be specified. On the other hand, 

‘Unsupervised Learning’ is when we let the algorithm find a pattern in the dataset provided. 

Unlike supervised learning, unsupervised learning does not have any right or wrong answers, the 

outcome of the algorithm is just the detection of a pattern. (Bell, 2014). 

 Any machine learning project has four cycles: 1) Acquisition, 2) Prepare, 3) Process and 

4) Report. Data can be acquired from any source. When working with machine learning, the 

more the data, the better is the outcome. The collected data then must be prepared to be analyzed 

and once that is done, it is run through the algorithm and the outcome is studied. Though 
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‘Machine Learning’ sounds a lot like ‘Big Data’, they are very different from each other. While 

Big Data is used to analyze huge chunks of data to find patterns and statistics, Machine Learning 

starts with a question (Bell, 2014). The question is something that is to be investigated. It is a 

more customized approach towards a topic. Thus, there is no one machine learning solution that 

works for all the projects. It is not a super complex algorithm that can answer any question 

thrown at it. Rather, it is an algorithm that learns an extensive amount of data for a specific 

purpose and then predicts an outcome for an event. An important part of Machine Learning is 

Data Processing. Which large amounts of data, the processing power needed to run that data 

through the algorithm at the same time is a lot. For basic less processor intensive algorithms, a 

personal computer can be used. But, for large scale operations, a single processor is not efficient. 

Thus, a cluster of machines is required to process the exorbitantly high volume of data. The 

machines on such a clustered are preferred to be on the same local network to avoid delays and 

lags in data transfers. When machines are used in a cluster, they process the data in different 

parts and then sync up their results. Thus, all the processing power is used in the most efficient 

way possible.  Another great way is to use ‘Cloud-Based Services’ provided by companies like 

Amazon and Rackspace. These services provide servers with variable processing power. They 

provide an option to increase or decrease the number of machines required to process a certain 

task. The only downside is that such a service might sometimes cost a lot (Bell, 2014). 

Measurement Instruments 

The experiment was conducted using multiple Tor nodes. Multiple instances of Exit and 

Middle nodes were hosted to collect data and analyze traffic. Each node was individually 

configured to only allow a certain type of traffic to flow through it. Certain Exit nodes were 
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hosted with the default ‘exit policies’ while others were implemented with ‘reduced exit policies’ 

to reduce the amount of ‘BitTorrent’ and ‘Copyrighted’ traffic from flowing over it.  

Procedure 

 The research was phased in two parts. In the first part, multiple nodes were set up on the 

Tor network to collect data. These devices would be set up as Relay or Exit. When a node is set 

up as a Relay, it is always selected as either Entry or Middle Node on the TOR network. 

Majority of the devices in the cluster were set up in an Exit Mode which gives them a chance to 

function as an Exit Node. Whenever one of the machines is selected as the exit node, we start 

sniffing on the node to inspect the outgoing packets. On analyzing the packets, the website being 

visited can be easily detected. These packets are then collected and added to a database which 

also consists of regular internet traffic generated on the same node. The traffic was then labeled 

to easily differentiate between them while we continue to process it before applying machine 

learning to it. The same methodology was applied to the traffic recorded on the ‘Middle Nodes’ 

 Data Analysis and Interpretation 

Data collected from the Tor Nodes were initially analyzed and filtered to avoid 

unnecessary information being added to the algorithm. Only the correct and required data was 

used to form a data set used to form an algorithm for Machine Learning. A ‘Thematic Analysis’ 

approach was used to identify, pinpoint and record patterns within the collected data. A 

‘Decision Tree Classifier’ was trained to differentiate traffic in each of the tested scenarios. The 

decision tree was then used to plot a graphical tree to easily understand how certain decisions 

were obtained to solve the problem. Rules were also generated from the same tree, which could 

be used to be implemented in traffic sorting programs for a particular application. 
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The Setup & Experiments 

Classifying Tor vs Surface-Net Traffic: 

The first part of the experiment was implemented by hosting a node on the internet and 

capturing traffic through it. We would further refer to ‘Internet’ as ‘Surface-Net’ to easily 

separate it from the ‘Tor Network’. For the next stage, multiple instances of Tor Exit Nodes were 

hosted on Ubuntu machines. Traffic from one such instance was with the default ‘Exit Policies’ 

was used during the experiment. The ‘nyx’ application was used to monitor the nodes, keep track 

of the flags obtained and observe the performance of the node. 

 

Figure 4: Setup for Classifying Tor vs Surface-Net Traffic 

 

Figure 5: Tor Exit Node Statistics 
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Figure 6: Tor Exit Node Flags and Uptime 

 

Figure 7: Tor Exit Node Traffic During Uptime 

 Wireshark was used to capture traffic over the nodes. The captured traffic was filtered 

and used to create a ‘Training Set’ along with a ‘Test Set’. ‘Jupyter Notebook’, which is part of 

the ‘Anaconda’ suite was used to create Python notebooks and run scripts. The necessary 

libraries were then imported and used to further process the data and create a decision tree 

algorithm for the required application. 
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Figure 8: Traffic Captured Over The Node 

Tor TCP vs UDP Traffic: 

The same setup was used for this experiment with a different approach. The traffic 

captured was only captured on the Exit Node to be categorized into TCP and UDP traffic.  

 

 

Figure 9: Setup for TCP vs UDP Classification 

As can be seen in the following graphs, the volume of UDP traffic is significantly higher 

than the TCP traffic, thus the same number of captured TCP and UDP packets were then used to 

create a ‘Training Set’ and ‘Test Set’. As before, a Python notebook was used to import and 

process the data to create a decision algorithm. 
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Figure 10: TCP Traffic Through Exit Node 

 

Figure 11: UDP Traffic Through Exit Node 

Resolving the Location from IP addresses on Tor 

Another possible requirement could be to identify the location of the nodes connected to 

our node. This can be done for both security and statistical reasons. The node can be attacked to 

gain access, to be then used as a botnet for malicious activity.  

 

Figure 12: Setup for Resolving Location from IP Addresses 
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The packets were captured using Wireshark and imported into a Jupyter notebook to be 

processed with the help of ‘GeoIP2’ database. 

 

Figure 13: Traffic Captured on the Intermediate Node 

Identifying Port-scan attacks on Tor node:  

One common form of threat to all nodes on the internet is port-scans. These are in fact the 

first step in most major attack strategies. Tor nodes are also vulnerable to port scans. The 

question was to identify whether a port scan was carried out by a regular host on the internet or a 

node on the Tor network. The dataset was collected by capturing traffic from both a regular 

internet connection and that through the Tor network. The host was first used to carry out a port 

scan attack on our controlled Tor node through the internet and then the experiment was repeated 

by connecting the host to the Tor network (proxy chains) to carry out the same attack. 

 

Figure 14: Setup for Identifying Port-Scan Attacks on Tor Node 
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Figure 15: Running ‘NMap’ Scan from A Host on the Internet 

 

Figure 16: Running ‘NMap’ Scan from a Host on Tor Network 

Packets were captured in both cases using Wireshark. The ‘Training Set’ and ‘Test Set’ were 

created by using packets from both stages of the experiment. A Python notebook was then used 

to process the data and create an algorithm to classify the scans.  

 

Figure 17: Captured Traffic on the Tor Node 
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The Results 

Classifying Tor vs Surface-Net Traffic: 

Ten thousand packets of the Tor and Surface-Net traffic were used to form the Training 

Set, whereas two-thousand packets of each were used to form the Test Set. The Attributes 

filtered attributes used were ‘Source IP’, ‘Source Port’, ‘Destination IP’, ‘Destination Port’, 

‘Packet Length’, ‘Protocol’ and ‘Network (Surface-Net/Tor)’. For ‘Network’, 0 represents the 

Tor network and 1 represents Surface-Net traffic. The decimal points in the IP addresses were 

removed to avoid processing errors in the algorithm. Twenty-thousand (ten-thousand each of 

Surface-net and Tor) packets were used in the ‘Training-Set’, while two-thousand packets 

(thousand each of Surface-net and Tor) were used in the ‘Test-Set’. 

 

Figure 18: Training Set for Classifying Tor vs Surface-Net Traffic 

 

Figure 19: Test Set for Classifying Tor vs Surface-Net Traffic 
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 The ‘pandas’ library in Python was used for the manipulation and analysis of the data set. 

The ‘sklearn’ library was used for the machine learning while using the ‘DecisionTreeClassifier’ 

for performing binary classification on the dataset. The decision tree was converted in a 

graphical form using the ‘graphviz’ library. The original tree obtained has a depth of five, but the 

more important rules can also be seen at much lower levels. Important rules were extracted based 

on their individual classification ability.  

 

 

Figure 20: Decision Tree for Classifying Tor vs Surface-Net Traffic  

 

Figure 21: Important Rules for Classifying Tor vs Surface-Net Traffic 
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As can be seen below, the tree obtained for the experiment yields an accuracy of 99.85%. Out of 

the 200 packets tested, 199 packets were predicted accurately. 

 

Figure 22: Accuracy of the Decision Tree Algorithm for Classifying Tor vs Surface-Net Traffic 

Top Rules Obtained: 

1. When ‘Source’ <= 81364160, ‘Destination Port’ <= 48769 and Source Port <=56890, 

2056 out of 2064 connections are to the ‘Surface-net’. This rule gives us an accuracy of 

99.61% and applies to roughly 10 % of the dataset 

2. When ‘Source’ > 995696512 and ‘Destination Port’ <= 58884.5, 5796 out of 5800 

connections are to the ‘Tor network’. This rule gives us an accuracy of 99.93% and 

applies to roughly 29 % of the dataset 

3. When 1672304640 < ‘Source’ < 1761521920 and ‘Source Port’ <= 108.5, 4779 out of 

4784 connections are to the ‘Surface-net’. This rule gives us an accuracy of  99.89 and 

applies to roughly 24 % of the dataset 

Decision Tree Without Using IP Addresses: 

 Since IP Addresses can change from node to node, it is also important to test the 

condition where IP addresses do no matter. Using the same dataset used above, we created 

another dataset without the ‘Source IP Addresses’ and the ‘Destination IP Addresses’. Doing so 

will give us an idea of how well a Machine Learning algorithm can classify generic information 

from any node. 
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Figure 23: Decision Tree for Classifying Tor vs Surface-Net Traffic (Without IP Addresses) 

 

Figure 24: Important Rules for Classifying Tor vs Surface-Net Traffic (Without IP Addresses) 

The Decision Tree generated is wider than the one with IP Addresses. This gives us an indication 

that the tree would have fewer significant rules than before. On careful observing, we only find 

two significant rules on the left side of the tree. Also, this tree has an accuracy of 86 % which is 

acceptable but about 14 % less than before.  

 

Figure 25: Accuracy of the Decision Tree Algorithm for Classifying Tor vs Surface-Net Traffic 

(Without IP Addresses) 
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Top Rules (Without Using IP Addresses): 

1. When ‘Length’ <= 113.5 and ‘Destination Port’ <= 813.5 and ‘Source Port’ <= 48791, 

2286 out of 2378 connections are to the ‘Tor network’. This rule gives us an accuracy of 

96 % and applies to roughly 12 % of the dataset 

2. When ‘Length’ > 166.5 and ‘Destination Port’ > 813.5, 3063 out of 3066 connections are 

to the ‘Surface-net’. This rule gives us an accuracy of 99.9 % and applies to roughly 15% 

of the dataset 

Tor TCP vs UDP Traffic: 

The same approach could be used to check if a machine learning algorithm can identify 

TCP and UDP traffic through the Tor node. Most video streaming services use UDP and creating 

a rule that can identify such traffic along with a combination of other rules would be useful in 

accurately identifying traffic. Though only knowing if certain traffic is TCP or UDP is not of 

much use, combining the information with other information obtained using machine learning 

can be advantageous.  

 

Figure 26: Training Set for Classifying TCP vs UDP Traffic 
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Figure 27: Test Set for Classifying TCP vs UDP Traffic 

 

Figure 28: Decision Tree for Classifying TCP vs UDP Traffic 

As with the previous experiment, we can obtain important rules in as low as the third level of the 

tree. What can be observed with both these experiments is that the lower the depth at which a 

rule occurs, the more packets it applies to. Thus, if a rule occurs at depth of two would apply to 

more packets than a rule at occurs at depth five. Along with creating a Decision Tree, it is also 

important to evaluate rules that can be significant. Another important part of the process of 

evaluating the rules by depth is to understand the effect of a rule. A rule might be able to narrow 

down the result, but it is also important to consider how much the rule narrows down the result. 

Thus, the tree should be carefully evaluated to only extract the most important and significant 

rules, thus optimizing the performance of the algorithm. 
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Figure 29: Important Rules for Classifying TCP vs UDP Traffic 

Our machine learning algorithm was able to attain an accuracy of 99.05%. Out of the total of 

2000 packets tested, 1997 packets were correctly predicted.  

 

Figure 30: Accuracy of the Algorithm for Classifying TCP vs UDP Traffic 

Top Rules: 

3. When ‘Source’ <= 1292142720 and ‘Destination’ > 23108472, 71121 out of 71156 

connections use ‘TCP’. This rule gives us an accuracy of 99.9% and applies to roughly 

36% of the dataset 

4. When ‘Source’ > 1292142720, ‘Length’ <= 81.5 and ‘Destination’ <= 1292187648, 3038 

out of 3133 connections use ‘UDP’. This rule gives us an accuracy of 96.96% and applies 

to roughly 1.5% of the dataset 

5. When ‘Source’ > 1292142720 and ‘Length’ > 548.5, 6814 out of 6816 connections use 

‘TCP’. This rule gives us an accuracy of  99.97 and applies to roughly 3.5% of the dataset 

Decision Tree Without Using IP Addresses: 
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 The following Decision Tree was realized after eliminating the IP addresses from the 

dataset. As discussed earlier, IP addresses can change from node to node. 

 

Figure 31: Decision Tree for Classifying TCP vs UDP Traffic (Without IP Addresses) 

 

Figure 32: Important Rules for Classifying TCP vs UDP Traffic (Without IP Addresses) 

We also obtain an accuracy of 97 %, which is just 2% less than before. But, since there are no IP 

addresses involved, it is a more generic rule than before. 

 

Figure 33: Accuracy of the Algorithm for Classifying TCP vs UDP Traffic (Without IP 

Addresses) 
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Top Rules (Without using IP Addresses): 

1. When 81.5 < ‘Length’ < 549.5 and ‘Destination Port’ <= 110.5, 45817 out of 45817 

connections use ‘UDP’. This rule gives us an accuracy of 100 % and applies to roughly 

23% of the dataset 

2. When 81.5 < ‘Length’ < 549.5, ‘Destination Port’ > 290.5 and ‘Source Port’ < 4519, 

5532 out of 5536 connections use ‘UDP’. This rule gives us an accuracy of 99.9 % and 

applies to roughly 2 % of the dataset 

3. When 549.5 < ‘Length’ < 1440.5, ‘Destination Port’ <= 290.5 and ‘Source Port’ < 4519, 

37578 out of 37580 connections use ‘UDP’. This rule gives us an accuracy of 99.9 % and 

applies to roughly 18 % of the dataset 

Warnings Received While Hosting Tor Exit Node: 

1. Numerous complaints from REN-ISAC (Research and Education Network, Information 

Sharing and Coordination) which comprises mainly of about 2000 universities, some not-

for-profit, and public sector research labs 

2. Reports of scanning/hacking attempts on the Financial Security Institute (FSI) of Korea: 

 

Figure 34: E-mail from the Financial Institute of Korea 
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3. Complaints of ‘Phone-Home’ operations of malware on other computers using the hosted 

Tor Exit Node to route their traffic 

4. Fourteen notifications of distinct malware phone-home activity in a single day 

5. Forty-eight notifications of malware phone-home activity in a week 

6. About forty-three Digital Millennium Copyright Act (DMCA) violations in a week 

7. Other scanning/hacking attempt reports from multiple sources including at least one 

university 

8. Around one-third of all the reports over a span of one and a half week involved the Exit 

Node 

Resolving the Location from IP addresses on Tor 

Knowing where the traffic on a Tor node is coming from is always an advantage. Tor nodes are 

regularly under attacks from hackers trying to convert them into a botnet. These hackers often try 

using multiple machines to carry out the attack. Attacks can often originate from a certain 

location in the world. In such a case, knowing the location of the origin of certain packets can be 

useful in blocking attacks. If an attack is observed to be coming from a certain country, state or 

city, it can be efficiently blocked while maintaining service to other parts of the world. 

One way of achieving this is by using the GeoIP2 database and comparing the incoming traffic to 

it. The traffic used below was captured on a Tor node using Wireshark and then imported into a 

Python notebook for processing. The source IP addresses were compared to the GeoIP2 database 

to find the ‘Source Continent’, ‘Source Country’, ‘Source Latitude’ and ‘Source Longitude’. 

These obtained attributes can also be then used to train a machine learning algorithm for a 

specific application. 
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Figure 35: Captured Packets Used for Identifying Location 

 

Figure 36: Location Details of the Source IP Addresses 

 

Figure 37: World Map Representing the Countries with the Highest Number of Connections 

The figure above shows a world map with the countries with the highest number of connections 

to the node. The highest number of connections to the node is from Germany followed by the 

United States of America. The number of connections from Germany does not show up on the 



TOR: Internet and Tor Traffic Classification Using Machine Learning  

 

above map because of the text being larger than the size of the country represented on the map. 

Below is the list of the top five countries with the highest connections to the node. 

Country Count 

Germany 53860 

United States 25880 

Ukraine 13073 

Netherlands 1711 

France 1487 

Figure 38: Top Five Countries with the Highest Number of Connections to the Node 

The above can be compared with the list of countries with the highest number of Tor users 

published on the Tor Metrics website. We can see that all the countries in our list are also on the 

list of the top-ten countries published by Tor Metrics. 

 

Figure 39: List of Countries with Highest Tor Users According to Tor Metrics 

Identifying Port-scan attacks on Tor node:  

Port scan attacks are generally the first steps in any attack strategy. A port scan attempt 

on a system should never be ignored and always be taken seriously. Generally, the IP addresses 

of the machines from which the port scans are attempted can be blacklisted for security. To avoid 

this, modern attacks methodologies initiate port scan attacks over the Tor network. This also 

allows the attacker to use multiple Tor connections to carry out the attack. The experiment was 
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focused on identifying a Nmap scan originating from the Tor network and comparing it to one 

originating from the internet. Machine learning was used in this case to identify and differentiate 

between the two. A Nmap attack originating from the Tor network would require special 

attention since in most cases, it is an attempt to take control over the node and turn it into a 

‘zombie node’ or use it in the form of a ‘botnet’. 

For this experiment, we eliminated the ‘Source IP Address’ and ‘Destination IP Address’ 

attributes to since the attack can potentially originate from any IP address, but would be intended 

towards our controlled node. The used attributes were ‘Packet Length’, ‘Source Port’, 

‘Destination Port’, ‘Flags’ and ‘Stream Index’. 

 

 

Figure 40: Training Set for Classifying Regular Port-Scan vs Port-Scan from a Tor Node 

 

Figure 41: Test Set for Classifying Regular Port-Scan vs Port-Scan from a Tor Node 
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Figure 42: Decision Tree for Classifying Regular Port-Scan vs Port-Scan from a Tor Node 

The above figure is the Decision Tree generated with a depth of five. As we can see, the tree 

spreads wide, but the important rules are close to the root. The figure below shows two important 

rules occurring at a depth of two and three. We can also clearly see that the decision tree is quite 

literally dividing traffic into two parts with more rules for ‘NmapOnTor’ on the left and regular 

‘Nmap’ on the right.  

 

Figure 43: Important Rules for Classifying Regular Port-Scan vs Port-Scan from a Tor Node 

 

Figure 44: Accuracy of the Algorithm for Classifying Regular Port-Scan vs Port-Scan from a Tor 

Node 
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Top Rules: 

1. When ‘Stream Index’ <= 4.5 and ‘Source Port’ <= 52672, 1286 out of 1312 connections 

are NMap scans from a ‘Tor node’. This rule gives us an accuracy of 98 % and applies to 

roughly 33 % of the dataset 

2. When ‘Stream Index’ > 34.5, 1200 out of 1200 connections are NMap scan from a 

machine on the ‘Surface-net’. This rule gives us an accuracy of 100 % and applies to 

roughly 30 % of the dataset 
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Conclusion 

Identifying traffic over the Internet has been part of network security practices for a long 

time. Tor, which focuses on a client’s privacy is tricky to deal with. Identification of the type of 

traffic is important though if we want to maintain the security of our systems. Tor is now not 

only used as a tool of privacy but also to successfully carry out complicated attacks while 

maintaining anonymity. Another requirement of knowing the type of traffic is applicable to 

individuals that want to support the Tor Project and hosting ‘Exit Nodes’ on the network. As can 

be seen from our experiments, a Tor exit node is highly susceptible to getting DMCA notices, 

unknowingly getting involved in a hacking attempt, or warnings for other illicit traffic being 

relayed through their node. Though Tor is completely legal, and the individual is not liable for 

the traffic relayed through the node, it might be difficult to prove that the traffic was only relayed 

through the node and did not originate there. 

A solution was proposed where multiple Tor nodes were hosted and the traffic flowing 

through them was compared to regular internet activity using Machine Learning. The aim of the 

experiments conducted was to check if Machine Learning can identify and differentiate between 

activities over the internet to that on the Tor network. We found that it was possible to 

implement Decision Trees to classify different types of traffic efficiently. In all our experiment, 

we were successfully able to classify traffic with an accuracy of more than ninety-five percent. 

Though these rules can be implemented individually, they become more powerful when 

combined with each other. An algorithm with all the rules that we generated can be used to 

identify four parameters of a packet at the same time. Thus, we can not only identify certain 

packets to be originating from the Tor network but also know that it is part of a TCP, which is an 

‘NMAP’ scan while also knowing the location of the hosts they are originating from. Combining 
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rules in such a way would allow us to customize our filter to segregate traffic efficiently. 

Firewalls can be created using these rules to block certain type of Tor traffic while allowing 

uninterrupted service to other users. All this can be done without sacrificing the privacy of users 

over the network. More importantly, we concluded that Machine Learning can be an efficient 

tool for security over the Tor network and more such stackable algorithms can be created to 

make Tor more flexible. 
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