


Introducing	GitHub

Second	Edition

A	Non-Technical	Guide

Brent	Beer



Introducing	GitHub

by	Brent	Beer	Copyright	©	2018	Peter	Bell,	Brent	Beer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com/safari).
For	more	information,	contact	our	corporate/institutional	sales	department:	800-
998-9938	or	corporate@oreilly.com.

Editor:	Virginia	Wilson

Production	Editor:	Kristen	Brown

Copyeditor:	Rachel	Head

Proofreader:	Charles	Roumeliotis

Indexer:	Ellen	Troutman-Zaig

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

November	2014:	First	Edition

December	2017:	Second	Edition

Revision	History	for	the	Second	Edition

2017-11-28:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491981818	for	release
details.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491981818


The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Introducing
GitHub,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher
and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or
reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-49198181-8

[LSI]



Preface

GitHub	is	changing	the	way	that	software	gets	built.	Conceived	originally	as	a
way	to	make	it	easier	for	developers	to	contribute	to	open	source	projects,
GitHub	is	rapidly	becoming	the	default	platform	for	software	development.
More	than	just	a	tool	for	storing	source	code,	GitHub	provides	a	range	of
powerful	tools	for	specifying,	discussing,	and	reviewing	software	and	other	text-
based	documents.



Who	This	Book	Is	For

If	you	are	working	with	developers	on	a	software	project,	this	book	is	for	you,
whether	you	are	a:

Business	stakeholder	who	wants	to	have	a	sense	of	how	your	project	is
going

Product	or	project	manager	who	needs	to	ensure	that	software	is
delivered	on	time	and	within	budget

Designer	who	needs	to	deliver	anything	from	mockups	to	HTML/CSS
for	a	project

Copywriter	who’s	adding	marketing	copy	or	other	content	to	a	site	or	an
app

Lawyer	who’s	reviewing	the	legal	implications	of	a	project	or	writing
the	terms	and	conditions	or	privacy	policy

Team	member	who	needs	to	review,	comment	on,	and/or	contribute	to
the	project

Technical	writer	who’s	making	sure	a	project’s	documentation	is	up	to
date	for	all	collaborators	to	help	them	get	their	jobs	done

Developer	who	is	new	to	using	GitHub	and	wants	to	learn	how	to
collaborate	using	GitHub	in	a	team

If	you	need	to	view	the	progress	of	a	piece	of	software	while	it’s	being
developed,	if	you	would	like	to	be	able	to	comment	on	the	progress,	and	if	you’d
like	to	have	the	option	of	contributing	changes	to	the	project,	this	book	will
show	you	how	to	effectively	collaborate	with	a	software	development	team	by
using	GitHub.
Beyond	Software

While	GitHub	is	still	primarily	used	to	collaborate	on	the	development	of
software,	it’s	also	a	great	way	for	a	team	to	collaborate	on	a	wide	range	of
projects.	From	the	authoring	of	books	(like	this	one)	and	the	distribution	of
models	for	3D	printing	to	the	crafting	of	legislation,	whenever	you	have	a	team
of	people	collaborating	on	a	collection	of	documents,	you	should	consider	using



GitHub	to	manage	the	process.	Our	examples	will	assume	that	you’re	working
on	software	because	that	is	currently	the	most	common	use	case,	but	this	book	is
the	perfect	guide	to	collaborating	via	GitHub	on	any	kind	of	project.



Who	This	Book	Is	Not	For

This	book	is	designed	to	teach	the	core	skills	required	to	collaborate	effectively
using	GitHub.	If	you	are	already	familiar	with	forking,	cloning,	and	using
feature	branches	and	pull	requests	for	collaboration,	you	probably	won’t	learn
that	much.

Equally,	if	you	are	looking	for	an	in-depth	introduction	to	the	Git	version	control
system,	this	is	not	the	book	that	you	are	looking	for.	This	book	covers	just
enough	Git	to	do	the	job	of	introducing	GitHub,	but	it’s	not	a	comprehensive
introduction	to	Git.	For	that	you	should	read	the	excellent	Version	Control	with
Git	by	Jon	Loeliger	and	Matthew	McCullough	(O’Reilly).
How	to	Use	This	Book

This	book	has	deliberately	been	made	as	concise	as	possible.	You	should	be	able
to	read	it	pretty	quickly.	If	you	want	to	gain	the	confidence	that	comes	from
really	understanding	what	GitHub	is	about	and	how	to	use	it,	try	to	read	the	book
from	start	to	finish.

However,	I	know	that	you’re	busy.	If	you’re	in	a	rush,	start	by	skimming	the	first
chapter.	Chapter	1	gives	you	a	brief	introduction	to	Git,	GitHub,	and	some	key
terms	that	you’ll	need	to	understand	to	make	sense	of	the	rest	of	the	book.	Then
feel	free	to	just	jump	into	whatever	chapters	seem	relevant.	I’ve	tried	to	write	the
book	so	that	each	chapter	runs	you	through	specific	workflows,	so	you	should	be
able	to	read	just	the	chapter	you	need	to	complete	a	particular	task.
Conventions	Used	in	This	Book

The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	and	the	names	of	branches.

Tip

This	element	signifies	a	tip	or	suggestion.
Note

This	element	signifies	a	general	note.

http://shop.oreilly.com/product/0636920022862.do


This	element	signifies	a	general	note.
Warning

This	element	indicates	a	warning	or	caution.
O’Reilly	Safari

Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and
reference	platform	for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,
interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including
O’Reilly	Media,	Harvard	Business	Review,	Prentice	Hall	Professional,	Addison-
Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Adobe,	Focal
Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.
How	to	Contact	Us

Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

There	is	a	web	page	for	this	book,	which	lists	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://bit.ly/intro-github-2e.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our

http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/intro-github-2e


website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia
Acknowledgments

I’d	first	like	to	thank	my	wife	Lindsay.	Thank	you	for	supporting	my	late	nights
while	working	on	this	book	and	encouraging	me	to	do	the	best	job	that	I	could.
You’re	the	best	wife,	partner,	and	support	anyone	could	ask	for.

I’d	also	like	to	thank	my	parents.	My	mom	for	her	constant	encouragement	for
reading,	without	which	I	may	never	have	found	a	love	for	it.	And	my	dad.
Without	him	letting	me	watch	him	work	on	our	computer,	entertaining	me	with
the	Oscar	the	Grouch	trash	can	utility	on	our	Macintosh,	and	encouraging	me	to
learn	how	to	program,	I	would	not	be	in	the	field	I	am	today.

Lastly,	I	want	to	thank	Peter	Bell.	Peter,	without	the	hard	work	you	put	into	the
first	edition	and	encouragement	to	do	this	second	edition,	this	book	wouldn’t
exist.	Thank	you!

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Chapter	1.	Introduction

In	this	chapter	I’ll	start	by	introducing	Git	and	GitHub.	What	are	they,	what	is
the	difference	between	them,	and	why	would	you	want	to	use	them?	I’ll	then
introduce	some	other	common	terms	that	you’ll	often	hear	mentioned	when
people	are	discussing	GitHub.	That	way	you’ll	be	able	to	understand	and
participate	in	discussions	about	your	projects	more	easily.
What	Is	Git?

Git	is	a	version	control	system.	A	version	control	system	is	a	piece	of	software
designed	to	keep	track	of	the	changes	made	to	files	over	time.	More	specifically,
Git	is	a	distributed	version	control	system,	which	means	that	everyone	working
with	a	project	in	Git	has	a	copy	of	the	full	history	of	the	project,	not	just	the
current	state	of	the	files.
What	Is	GitHub?

GitHub	is	a	platform	where	you	can	upload	a	copy	of	your	Git	repository	(often
shortened	to	repo),	hosted	either	on	GitHub.com,	by	your	company	on	a	cloud
provider	(like	Azure,	AWS,	or	IBM	Bluemix),	or	on	your	company’s	own
servers	behind	its	firewall.	But	more	than	just	uploading	your	Git	repositories,	it
allows	you	to	collaborate	much	more	easily	with	other	people	on	your	projects.
It	does	that	by	providing	a	centralized	location	to	share	the	repository,	a	web-
based	interface	to	view	it,	and	features	like	forking,	Pull	Requests,	Issues,
Projects,	and	GitHub	Wikis	that	allow	you	to	specify,	discuss,	and	review
changes	with	your	team	more	effectively.
Why	Use	Git?

Even	if	you’re	working	on	your	own,	if	you	are	editing	text	files,	there	are	a
number	of	benefits	to	using	Git,	including	the	following:

The	ability	to	undo	changes
If	you	make	a	mistake,	you	can	go	back	to	a	previous	point	in	time	to	recover
an	earlier	version	of	your	work.

A	complete	history	of	all	the	changes
If	you	ever	want	to	see	what	your	project	looked	like	a	day,	week,	month,	or
year	ago,	you	can	check	out	a	previous	version	of	the	project	to	see	exactly
what	the	state	of	the	files	was	back	then.

Documentation	of	why	changes	were	made



Often	it’s	hard	to	remember	why	a	change	was	made.	With	commit	messages
in	Git,	it’s	easy	to	document	for	future	reference	why	you’re	making	a
change.

The	confidence	to	change	anything
Because	it’s	easy	to	recover	a	previous	version	of	your	project,	you	can	have
the	confidence	to	make	any	changes	you	want.	If	they	don’t	work	out,	you
can	always	get	back	to	an	earlier	version	of	your	work.

Multiple	streams	of	history
You	can	create	different	branches	of	history	to	experiment	with	different
changes	to	your	content	or	to	build	out	different	features	independently.	You
can	then	merge	those	back	into	the	main	project	history	(master	branch)
once	they’re	done,	or	delete	them	if	they	end	up	not	working	out.

Working	on	a	team,	you	get	an	even	wider	range	of	benefits	when	using	Git	to
keep	track	of	your	changes.	Some	of	the	key	benefits	of	Git	when	working	with
a	team	are:

The	ability	to	resolve	conflicts
With	Git,	multiple	people	can	work	on	the	same	file	at	the	same	time.
Usually	Git	will	be	able	to	merge	the	changes	automatically.	If	it	can’t,	Git
will	show	you	what	the	conflicts	are	and	you	will	hopefully	be	able	to	easily
resolve	them.

Independent	streams	of	history
Different	people	working	on	the	project	can	work	on	different	branches,
allowing	them	to	work	on	separate	features	independently	and	then	merge
the	features	when	they’re	done.

Why	Use	GitHub?

GitHub	is	much	more	than	just	a	place	to	store	your	Git	repositories.	It	provides
a	number	of	additional	benefits,	including	the	ability	to	do	the	following:

Document	requirements
Using	issues,	you	can	either	document	bugs	or	specify	new	features	that
you’d	like	to	have	your	team	develop.

Collaborate	on	independent	streams	of	history
Using	branches	and	pull	requests,	you	can	collaborate	on	different	branches
or	features.



or	features.

Review	work	in	progress
By	looking	at	the	list	of	pull	requests,	you	can	see	all	of	the	different	features
that	are	currently	being	worked	on;	by	clicking	any	given	pull	request	you
can	see	the	latest	changes	and	all	of	the	discussions	about	the	changes,	check
the	status	of	an	integration	like	a	Continuous	Integration	(CI)	server,	or	even
add	your	own	review	to	approve	changes	before	they	are	accepted.

See	team	progress
Skimming	the	pulse	or	looking	through	the	commit	history	allows	you	to	see
what	the	team	has	been	working	on.

Key	Concepts

There	are	a	number	of	key	concepts	that	you’ll	need	to	understand	to	work
effectively	with	Git	and	GitHub.	Here	is	a	list	of	some	of	the	most	common
terms,	with	a	short	description	of	each	and	an	example	of	how	they	might	be
used	in	conversation:

Commit
Whenever	you	save	your	changes	in	one	or	more	files,	you	can	create	a	new
commit	in	Git.	A	commit	is	like	a	snapshot	of	your	entire	repository	at	that
point	in	time,	not	just	of	one	or	two	files.	So	naturally,	after	you	change
those	files,	you	will	want	to	update	the	repository	by	taking	a	new	snapshot.
Example	usage:	“Let’s	commit	these	changes	and	push	them	up	to	GitHub.”

Commit	message
Every	time	you	make	a	commit,	you	need	to	supply	a	message	that	describes
why	the	change	was	made.	That	commit	message	is	invaluable	when	trying
to	understand	later	why	a	certain	change	was	implemented.	Example	usage:
“Make	sure	to	include	Susan’s	comment	about	the	new	SEC	guidelines	in	the
commit	message.”

Branch
A	branch	is	an	independent	series	of	commits	off	to	one	side	that	you	can	use
to	try	out	an	experiment	or	create	a	new	feature.	Example	usage:	“Let’s
create	a	branch	to	implement	the	new	search	functionality.”

master	branch
Whenever	you	create	a	new	Git	project,	there	is	a	default	branch	created



called	master.	This	is	the	branch	that	your	work	should	end	up	on
eventually,	once	it’s	ready	to	push	to	production.	Example	usage:
“Remember	never	to	commit	directly	to	master.”

Feature	(or	topic)	branch
Whenever	you’re	building	a	new	piece	of	functionality,	you’ll	create	a
branch	to	work	on	it.	That	is	called	a	feature	branch.	Example	usage:
“We’ve	got	way	too	many	feature	branches.	Let’s	focus	on	getting	one	or
two	of	these	finished	and	into	production.”

Release	branch
If	you	have	a	manual	QA	process	or	have	to	support	old	versions	of	your
software	for	your	customers,	you	might	need	a	release	branch	as	a	place	to
make	any	necessary	fixes	or	updates.	There	is	no	technical	difference
between	a	feature	or	release	branch,	but	the	distinction	is	useful	when	talking
about	a	project	with	your	team.	Example	usage:	“We’ve	got	to	fix	the
security	bug	on	all	of	our	supported	release	branches.”

Merge
A	merge	is	a	way	to	take	completed	work	from	one	branch	and	incorporate	it
into	another	branch.	Most	commonly	you’ll	merge	a	feature	branch	into	the
master	branch.	Example	usage:	“Great	job	on	the	‘my	account’	feature.
Could	you	merge	it	into	master	so	we	can	push	it	to	production?”

Tag
A	tag	is	a	reference	to	a	specific	historic	commit.	Tags	are	most	often	used	to
document	production	releases	so	you	know	exactly	which	versions	of	the
code	went	into	production	and	when.	Example	usage:	“Let’s	tag	this	release
and	push	it	to	production.”

Checkout
Checking	out	enables	you	to	go	to	a	different	version	of	the	project’s	history
and	see	the	files	as	of	that	point	in	time.	Most	commonly	you’ll	check	out	a
branch	to	see	all	of	the	work	that	has	been	done	on	it,	but	any	commit	can	be
something	you	check	out.	Example	usage:	“Could	you	check	out	the	last
release	tag?	There’s	a	bug	in	production	that	I	need	you	to	replicate	and
fix.”

Pull	request



Originally,	a	pull	request	was	used	to	request	that	someone	else	review	the
work	you’d	completed	on	a	branch	and	then	merge	it	into	master.	Now,	pull
requests	are	often	used	earlier	in	the	process	to	start	a	discussion	about	a
possible	feature.	Example	usage:	“Go	create	a	pull	request	for	the	new
voting	feature	so	we	can	see	what	the	rest	of	the	team	thinks	about	it.”

Issue
GitHub	has	a	feature	called	Issues	that	can	be	used	to	discuss	features,	track
bugs,	or	both.	Example	usage:	“You’re	right,	the	login	doesn’t	work	on	an
iPhone.	Could	you	create	an	issue	on	GitHub	documenting	the	steps	to
replicate	the	bug?”

Wiki
Originally	developed	by	Ward	Cunningham,	wikis	are	a	lightweight	way	of
creating	web	pages	with	simple	links	between	them.	GitHub	projects	often
use	wikis	for	documentation.	Example	usage:	“Could	you	add	a	page	to	the
wiki	to	explain	how	to	configure	the	project	to	run	on	multiple	servers?”

Clone
Often	you’ll	want	to	download	a	copy	of	a	project	from	GitHub	so	you	can
work	on	it	locally.	The	process	of	copying	the	repository	to	your	computer	is
called	cloning.	Example	usage:	“Could	you	clone	the	repo,	fix	the	bug,	and
then	push	the	fix	back	up	to	GitHub	later	tonight?”

Fork
Sometimes	you	don’t	have	the	necessary	permission	to	make	changes
directly	to	a	project.	Perhaps	it’s	an	open	source	project	written	by	people
you	don’t	know,	or	a	project	written	by	another	group	at	your	company	that
you	don’t	work	with	much.	If	you	want	to	submit	changes	to	such	a	project,
first	you	need	to	make	a	copy	of	the	project	under	your	user	account	on
GitHub.	That	process	is	called	forking	the	repository.	You	can	then	clone	it,
make	changes,	and	submit	them	back	to	the	original	project	using	a	pull
request.	Example	usage:	“I’d	love	to	see	how	you’d	rewrite	the	home	page
marketing	copy.	Fork	the	repo	and	submit	a	pull	request	with	your	proposed
changes.”

Don’t	worry	if	all	the	terminology	seems	overwhelming	at	first.	Once	you	start
working	with	some	real	projects,	it’ll	all	make	a	lot	more	sense!	In	the	next
chapter	we’ll	look	at	the	various	elements	of	a	GitHub	project	and	how	you	can



use	them	to	get	a	sense	of	progress	on	a	project.



Chapter	2.	Viewing

In	this	chapter	we’ll	look	at	how	you	can	view	the	state	of	a	project	to	see	what’s
going	on,	so	you	can	find	areas	that	could	be	improved	or	so	you	can	be	familiar
with	the	interface	when	you’re	ready	to	contribute.	We’ll	use	the	popular
Bootstrap	open	source	project	as	an	example.
Introducing	the	Repository	Page

Bootstrap	is	a	repository	that	allows	developers	to	quickly	develop	attractive
web	applications.	Go	view	the	repository	on	GitHub.	There	is	a	lot	of
information	on	the	home	page.	Let’s	start	by	reviewing	some	of	the	most
important	elements	on	the	page.

Take	a	look	at	Figure	2-1.	One	of	the	first	things	you	see	looking	at	the	top	left
of	the	page	is	that	the	project	name	is	“bootstrap”	and	that	it’s	owned	by	a	user
(or	in	this	case	an	organization)	called	“twbs.”	If	you	were	to	go	to
https://github.com/twbs,	you’d	see	a	list	of	all	of	the	repositories	hosted	by	that
organization	at	GitHub.	To	the	left	of	the	organization	name	on	the	repository
page	you’ll	also	see	an	icon	that	makes	it	clear	that	this	is	a	public	repository	that
anyone	can	see.	A	lot	of	the	projects	you	work	on	will	have	a	closed	lock	icon
and	the	word	“Private”	at	the	end,	signifying	that	they	are	private	and	can	be
viewed	only	by	people	who	have	been	explicitly	given	access.

In	the	upper-right	corner	of	the	page	in	Figure	2-1,	you	can	see	that	at	the	time
the	screenshot	was	taken,	7,065	people	were	watching	the	repository	to	get
notified	every	time	new	changes	were	made	to	it;	115,203	people	had	starred	it
to	mark	it	as	one	of	their	favorite	repositories;	and	53,899	people	had	forked	the
repository,	making	their	own	copy	on	GitHub	where	they	could	make	changes	to
the	code	and	share	them	with	others	if	need	be,	or	contribute	back	to	this	parent
repository.

http://getbootstrap.com/
https://github.com/twbs/bootstrap
https://github.com/twbs


Figure	2-1.	The	Bootstrap	home	page	on	GitHub

Under	the	repository	name	and	the	tabs,	you	can	see	a	short	description	of	the
repository	and	some	topics	that	are	related	to	it.	Below	that,	you	can	see	that
there	have	been	a	total	of	16,801	changes	to	the	repository	(commits),	36
different	streams	of	history	are	currently	being	developed	(branches),	42
versions	of	the	software	have	been	recommended	over	time	for	people	to	use
(releases),	and	922	people	have	written	some	part	of	the	code	(contributors).

You	can	also	see	that	we’re	currently	viewing	the	v4-dev	branch	(this
repository’s	default	branch),	that	we’re	in	the	root	bootstrap	folder,	that	the
latest	commit	on	v4-dev	was	“Structure	examples	with	appropriate	`<main>`,
`<header>`,	`<footer>`,”	and	that	the	commit	was	made	by	GitHub	user
“patrickhlauke”.	As	you	look	further	down	the	figure,	you	can	see	the	folders
(sometimes	called	directories)	and	files	that	are	in	the	root	(top-level)	folder	in

https://github.com/patrickhlauke


the	project.
Viewing	the	README.md	File

If	there	is	a	file	in	the	root	of	a	project	named	README.md,	the	contents	of	that
file	will	be	displayed	just	below	the	list	of	folders	and	files	on	the	repository
home	page.	This	file	provides	an	introduction	to	the	project	and	additional
information	that	may	be	useful	to	collaborators,	such	as	how	to	install	the
software,	how	to	run	any	automated	tests,	how	to	use	the	code,	and	how	to	make
contributions	to	the	project.

These	days,	README	files	will	often	also	include	badges—images	used	to	show
the	current	state	of	things	like	the	automated	test	suite,	to	let	you	know	the
current	state	of	the	repository.	In	Figure	2-2,	which	shows	the	status	section
further	down	in	the	README.md	file,	you	can	see	the	versions	of	other	projects
that	Bootstrap	depends	on.	This	section	also	shows	details	on	the	state	of	the
dependencies	(peerDependencies,	devDependencies),	package	registries	(meteor,
packagist,	nuget),	chat	service	(Slack),	and	the	versions	of	browsers	and
operating	systems	that	Bootstrap	should	work	for.

Figure	2-2.	The	status	section	of	Bootstrap’s	README.md	file

Viewing	the	Commit	History

Looking	at	the	commit	history	is	a	great	way	to	get	a	sense	of	the	most	recent
small	units	of	work	that	have	been	completed	on	any	given	branch.	Go	to	the
Bootstrap	page	on	GitHub	and	click	the	“16,801	commits”	link	(the	number	of
commits	will	have	changed	by	the	time	you	do	this).	You’ll	see	a	list	of
commits,	with	the	most	recent	first	(see	Figure	2-3).

https://github.com/twbs/bootstrap


Figure	2-3.	A	list	of	the	recent	commits	to	the	project

Clicking	any	of	the	commits	will	show	you	the	commit	message,	which	should
explain	why	the	change	was	made	(see	Figure	2-4).	Below	that	you	will	see	who
made	the	change;	which	branch	it	is	on	now;	the	pull	request	it	was	brought	in
from,	if	any	(#23899	in	this	case);	and	each	file	that	was	added,	removed,	or
modified	as	part	of	the	commit,	with	content	that	was	removed	displaying	in	red
and	content	that	was	added	displaying	in	green.



Figure	2-4.	A	recent	commit	in	the	repository

Viewing	Pull	Requests

Pull	requests	give	you	a	sense	of	the	current	work	in	progress	by	showing	you	a
comparison	of	work	being	done	on	one	branch	that	is	proposed	to	merge	with
another.	Click	the	“Pull	requests”	tab	along	the	top	of	the	page	and	you’ll	see	a
list	of	open	pull	requests.	These	are	the	outstanding	features	or	fixes	that	people
are	currently	working	on	(see	Figure	2-5).



Figure	2-5.	Open	pull	requests	for	Bootstrap

Click	one	of	the	pull	requests,	and	you’ll	see	a	page	displaying	a	short	title
describing	the	pull	request	and	a	longer	description	of	it.	There	will	be	one	or
more	commits	with	the	proposed	changes,	and	there	may	be	a	number	of
comments	from	people	discussing	the	proposed	changes	(see	Figure	2-6).



Figure	2-6.	A	recent	pull	request

Looking	at	the	pull	requests	is	a	great	way	to	get	a	sense	of	what	people	are
working	on	now	and	the	current	state	of	those	changes—whether	bug	fixes	or
proposed	features.
Viewing	Issues

While	pull	requests	give	you	a	sense	of	the	current	bug	fixes	and	features	being
worked	on,	issues	can	give	you	a	wider	sense	of	the	outstanding	work	that	still
needs	to	be	done	on	a	repository.	Pull	requests	are	often	linked	to	an	issue,	but
there	will	usually	also	be	issues	that	nobody	has	started	working	on	yet,	so	they
don’t	yet	have	associated	pull	requests.

If	you	click	the	Issues	tab	at	the	top	of	the	page,	by	default	you’ll	see	a	list	of	all
of	the	open	issues	(see	Figure	2-7).



Figure	2-7.	Open	issues	for	the	repository

Click	an	issue	and,	similar	to	a	pull	request,	you’ll	see	the	title,	description,	and
any	comments	related	to	the	issue.	If	any	work	has	been	done	and	pushed	to
GitHub	where	the	commit	message	references	an	issue,	it’ll	show	up	on	the
Issues	page	so	you	can	see	what’s	being	done.	In	Figure	2-8	someone	appears	to
be	having	a	problem	with	one	of	the	Bootstrap	features.



Figure	2-8.	A	recent	issue

Viewing	Projects

Issues	and	pull	requests	are	great	for	individual	work,	but	sometimes	people
want	to	do	longer-form	project	work	at	a	project	management	level.	That’s
exactly	what	GitHub	projects	are	for.	Click	on	the	Projects	tab	to	get	a	look	at
any	active	projects	being	worked	on	inside	of	Bootstrap,	and	you’ll	be	taken	to	a
page	like	Figure	2-9.



Figure	2-9.	Bootstrap’s	projects

If	you	click	an	individual	project,	you’ll	be	taken	to	its	board,	where	you’ll	see
the	columns	of	work	and	the	different	cards	(notes,	issues,	and	pull	requests)	that
are	in	those	columns	(see	Figure	2-10).

Figure	2-10.	An	active	Bootstrap	project	board

Viewing	Insights



GitHub’s	Insights	tab	allows	you	to	get	a	sense	of	the	work	that	has	been	done
on	a	repository	over	a	longer	period	of	time.
Viewing	the	Pulse

The	pulse	is	a	great	way	to	get	a	sense	of	the	recent	activity	on	a	project.	This	is
the	page	displayed	by	default	when	you	click	the	Insights	tab.	Notice	in	the	top
right	of	Figure	2-11	that	you	can	customize	the	pulse	to	be	for	the	last	day,	three
days,	week,	or	month.

Figure	2-11.	The	pulse	for	Bootstrap

The	pulse	starts	with	an	overview	of	the	number	of	pull	requests	that	have	been
merged	(completed)	and	proposed	(added)	during	the	selected	time	period.	It
also	shows	how	many	issues	were	closed	and	opened.	It’s	important	to
understand	that	when	the	pulse	refers	to	the	number	of	active	pull	requests	and
issues,	this	is	not	the	outstanding	number	of	each	but	rather	the	number	of
requests	and	issues	that	have	been	started	or	finished	in	the	time	period	you
selected.	For	example,	at	the	time	of	writing,	Bootstrap	had	19	merged	and	11
proposed	pull	requests,	for	a	total	of	30	“active”	pull	requests	in	the	last	week,
but	it	had	a	total	of	92	open	pull	requests	(as	indicated	by	the	number	on	the
“Pull	requests”	tab	at	the	top	of	the	page).



The	next	paragraph	on	the	screen	is	a	concise	summary	of	recent	changes,	listing
the	number	of	authors,	commits	on	v4-dev,	total	commits	on	all	branches,	and
files	modified	on	the	v4-dev	branch.	It	then	gives	you	the	number	of	lines	of
content	that	have	been	added	or	removed,	although	it’s	important	to	realize	that
if	a	line	of	text	in	a	file	is	modified,	Git	will	treat	it	as	if	one	line	was	removed
and	another,	different	line	was	added	in	its	place.

To	the	right	is	a	bar	chart	showing	the	contributors	who	have	made	the	most
commits	during	the	specified	period.	Below	is	a	list	of	the	titles	of	the	merged
and	proposed	pull	requests,	followed	by	the	closed	and	then	opened	issues.	The
pulse	view	ends	with	a	list	of	“unresolved	conversations,”	which	is	a	list	of	all	of
the	issues	and	pull	requests	that	have	received	additional	comments	but	have	not
yet	been	closed.
The	Contributors	Graph

The	contributors	graph	(Figure	2-12)	shows	you	the	number	of	contributions
(commits,	additions,	or	deletions)	to	the	repository.	It	shows	a	graph	for	all	of
the	contributions,	followed	by	smaller	graphs	showing	the	contributions	by
individual	developers—from	the	most	to	the	least	prolific.

Figure	2-12.	The	contributors	graph	for	Bootstrap

The	default	commits	graph	shows	the	total	number	of	commits	that	have	been
made	to	the	v4-dev	branch.	It’s	important	to	realize	that	it	shows	only	the
commits	that	have	been	merged	into	the	v4-dev	branch.	If	you	have	someone	on



your	team	who	has	been	working	on	a	feature	branch	all	week	and	whose	work
has	not	yet	been	merged	in,	none	of	those	contributions	will	show	up	until	they
are	ready	for	release	and	have	been	merged	into	the	v4-dev	branch.

By	default,	the	time	period	for	the	graph	is	the	entire	lifetime	of	the	repository.	If
you’d	like	to	pick	a	shorter	interval,	just	click	the	starting	point	you’d	like	on	the
main	graph	and	then	drag	and	release	on	the	time	you’d	like	the	new	graph	to
end.	Figure	2-13	shows	the	results	of	doing	this	to	focus	on	the	commits	over	the
last	year	or	so.	You	can	see	that	the	main	graph	at	the	top	of	the	page	stays	the
same,	but	at	the	top	left	it	shows	the	time	period	we’re	focused	on	(November
30,	2016,	through	October	12,	2017).	The	commit	graphs	of	the	individual
contributors	show	the	number	of	commits	by	each	and	how	they	were	spread	out
over	that	time	period.

Figure	2-13.	Narrowing	the	interval	of	the	contributors	graph

There	is	no	standard	size	for	a	commit.	A	good	rule	of	thumb	is	that	if
developers	are	writing	code,	as	opposed	to	researching	a	problem	or	testing
something,	they	should	probably	be	committing	every	5	to	10	minutes.	However,
depending	on	the	team	you’re	working	with,	you	might	find	that	some
developers	create	fewer	commits	than	others,	even	if	they’re	doing	a	similar
amount	of	work.	If	that	is	the	case,	you	might	want	to	change	the	“contributions”
type	for	your	contributor	graphs	to	additions	or	deletions.	In	that	way,	you’ll	get
a	sense	of	the	number	of	lines	of	code	that	the	developers	have	added	to	or
removed	from	the	repository.	If	they	modify	a	line,	it	will	show	up	as	a	deletion



of	the	old	line	and	an	addition	of	the	new	one.
The	Community	Profile

Your	repository’s	community	profile	is	an	insight	into	the	way	your	repository
presents	itself	to	new	contributors,	as	well	as	those	looking	to	just	use	your
repository.	Take	a	look	at	Figure	2-14	to	see	how	the	Bootstrap	repository	is
doing	in	this	area.

Figure	2-14.	The	community	profile	for	Bootstrap

As	of	the	writing	of	this	book,	community	profiles	are	relatively	new,	so	this
means	that	not	every	repository	is	going	to	have	a	complete	checklist.	However,
their	importance	is	critical	to	fostering	a	safe	and	welcoming	community	in
addition	to	having	a	solid	open	source	initiative.	Similar	to	documentation	fixes
in	a	repository,	this	is	a	great	avenue	to	get	started	on	making	your	first
contribution	once	you	feel	comfortable	doing	so.
The	Commits	Graph

The	commits	graph	(Figure	2-15)	shows	the	number	of	commits	per	week	over
the	past	year,	giving	a	very	rough	indication	of	activity	and	how	it	has	varied
over	time.

The	first	reason	to	look	at	the	commits	graph	is	to	get	a	sense	of	how	many
commits	per	week	there	have	been	over	the	past	year.	It	starts	with	a	bar	graph



showing	one	bar	per	week	and	is	a	great	way	to	see	cyclical	or	long-term	trends.
Is	the	number	of	commits	in	your	repository	slowly	decreasing?	If	you	have
more	developers,	is	the	number	of	commits	consistently	increasing?	Are	most	of
your	commits	in	the	last	week	of	every	month,	or	are	there	seasonal	trends?	This
graph	can	give	you	good	insight	into	how	the	number	of	commits—which	is	a
very	rough	proxy	for	productivity—are	varying	over	time.

Figure	2-15.	The	commits	graph	for	Bootstrap

Below	the	bar	graph	is	a	line	graph	showing	the	average	number	of	commits	on
each	day	of	the	week	over	the	last	year.	This	graph	can	be	useful	for	getting	a
sense	of	the	cadence	over	the	course	of	an	average	week.	Are	people	not
committing	on	Mondays	because	of	too	many	meetings?	Are	they	making	most
of	their	commits	on	a	Thursday	ahead	of	your	Friday	“demo	days,”	or	are	they
working	too	much	on	the	weekend,	which	isn’t	good	for	long-term
sustainability?
The	Code	Frequency	Graph

The	code	frequency	graph	(Figure	2-16)	shows	you	the	number	of	lines	added	to
and	removed	from	your	repository	over	time	and	is	particularly	helpful	for
identifying	large	changes	to	your	code	base.

Often	when	developers	are	doing	a	big	refactoring,	they’ll	add	and	delete
hundreds	or	even	thousands	of	lines	of	code	per	commit,	whereas	in	the	usual



course	of	business,	a	commit	will	probably	contain	only	a	few	lines	of	added,
modified,	or	deleted	code.	When	such	a	refactoring	is	going	on,	the	number	of
commits	might	not	change	much,	but	the	number	of	lines	added	and	deleted	will
spike—so	if	you	want	to	get	a	sense	of	when	the	biggest	changes	happened	to
your	code	base,	you	should	start	by	having	a	look	at	the	code	frequency	graph.
For	example,	you	can	see	in	Figure	2-16	that	a	big	refactoring	was	done	in
February/March	of	2013.

Figure	2-16.	The	code	frequency	graph	for	Bootstrap

The	Dependency	Graph

The	Dependencies	tab	of	the	dependency	graph	page	is	a	great	place	for	you	to
get	a	well-formatted	overview	of	what	other	components	your	repository
depends	on.	This	is	important	because	you	may	want	to	contribute	a	patch	to
another	repository	your	repository	depends	on	to	add	some	functionality.	You
can	see	a	list	of	dependencies	for	GitHub’s	Linguist	repository	in	Figure	2-17.
This	page	is	especially	useful	when	you	want	to	be	informed	about	security
vulnerabilities,	which	GitHub	will	display	for	you.

If	you	use	a	private	repository	on	GitHub.com,	you	have	to	opt	in	and	choose	to
contribute	your	private	information	to	GitHub	and	the	community	as	a	whole	in
order	to	enrich	the	ecosystem	and	allow	others	to	see	how	useful	their
repositories	may	be.

https://github.com/github/linguist/network/dependencies


The	Dependents	tab	of	the	dependency	graph	page	is	useful	to	find	out	where
your	repository	is	being	used	and	what	packages	may	depend	on	it.	In	Figure	2-
18,	which	again	shows	GitHub’s	Linguist	repository,	you	can	see	that	a	few
applications	and	packages	depend	on	this	repository.

Figure	2-17.	The	dependencies	for	the	github/linguist	repository



Figure	2-18.	The	dependents	list	for	the	github/linguist	repository

Being	aware	of	what	repositories	or	packages	depend	on	your	code	is	important
for	beng	a	good	citizen	on	GitHub,	and	also	gives	you	a	good	idea	of	who	else
you	may	have	an	impact	on	when	you	make	any	updates	to	your	code.
The	Network	Graph

The	network	graph	(Figure	2-19)	shows	the	number	of	branches	and	commits	on
those	branches	throughout	a	repository’s	history.	It	also	shows	any	forks	that
contributors	have	created.	Because	Bootstrap	is	such	a	popular	project,	the
network	graph	shown	here	is	actually	of	the	GitHub	Desktop	repository.

https://github.com/desktop/desktop


Figure	2-19.	The	network	graph	of	the	desktop/desktop	repository

The	network	graph	is	useful	for	seeing	how	far	ahead	one	branch	may	be,	or
what	kind	of	work	someone	may	be	working	on	in	their	own	fork.	When	these
commits	make	their	way	back	into	the	original	repository’s	default	branch,	we’ll
see	them	come	in	with	an	arrow	and	a	merge	commit	if	they	were	done	via	a	pull
request.	We	can	also	mouse	over	these	commits	to	see	who	wrote	them	and	what
the	commit	message	was.
The	Forks	List

Though	not	a	traditional	graph	of	work,	the	forks	list	gives	you	an	idea	of	which
members	have	forked	this	repository.	If	there	is	an	unusual	number	of	forks,
you’ll	see	a	message	like	the	one	in	Figure	2-20,	displaying	only	a	partial	list.



Figure	2-20.	The	list	of	Bootstrap	forks

The	forks	list	shows	just	the	people	who	have	forked	the	repository	or	forks	of
forks.	These	people	aren’t	collaborators	on	the	original	parent	repository	and
therefore	needed	their	own	copy	of	the	repository	in	order	to	contribute	to	it
through	a	pull	request.	To	make	your	own	copy,	you	would	need	to	fork	the
repository.	This	action	and	workflow	is	covered	in	Chapter	4.
The	Traffic	Graph

One	additional	graph,	which	is	available	only	to	owners	and	collaborators	on	a
project,	is	the	traffic	graph,	shown	in	Figure	2-21.

The	traffic	graph	shows	you	the	number	of	Git	clones,	cloners,	views,	and
unique	visitors	over	time;	it	also	lists	the	sites	that	people	are	linking	from	and
highlights	the	most	popular	content	on	your	GitHub	project	site.	It	can	be	a	great
way	to	get	an	idea	of	the	popularity	of	open	source	projects.



Figure	2-21.	The	traffic	graph	of	the	github/scientist	repository

By	now	you	should	have	a	good	sense	of	how	to	get	up	to	speed	with	a
repository	by	looking	at	the	README	file,	commits,	pull	requests,	issues,
projects,	the	pulse,	and	the	GitHub	graphs.	In	the	next	chapter	we’ll	look	at	how
you	can	start	to	contribute	to	a	repository.



Chapter	3.	Creating	and	Editing

In	this	chapter	we’ll	look	at	how	you	can	create	and	work	with	your	first
repository.	Creating	this	repo	means	that	you’ll	always	have	access	to	the	code
and	the	additional	information	contained	in	pull	requests,	issues,	projects,	and
wikis.	We’ll	then	look	at	how	you	can	add,	edit,	rename,	or	delete	a	file	directly
on	GitHub.	We’ll	also	look	at	how	to	work	with	directories	on	GitHub,	and
finally	we’ll	discuss	what	to	do	when	you	want	to	make	multiple	changes	as	part
of	a	single	commit.	From	this	point	forward,	if	you	want	to	follow	along	you’ll
need	to	create	an	account	by	going	to	https://github.com/join.
Creating	a	Repository

To	create	a	new	project	on	GitHub,	click	the	+	sign	to	the	right	of	your	username
at	the	top	right	of	the	page.	Then	click	the	“New	repository”	option	in	the	drop-
down	list.	You’ll	see	the	new	repository	form,	as	shown	in	Figure	3-1.

Figure	3-1.	The	new	repository	form

The	first	thing	to	do	is	decide	whether	to	create	the	repository	under	your

https://github.com/join


username	or	under	an	organization.	You	can	see	in	Figure	3-2	a	list	of	the
possible	organizations	to	which	I	could	add	a	new	repository.	If	you	don’t	have
access	to	any	organizations,	just	leave	this	defaulted	to	your	username.
Remember,	you’ll	always	be	able	to	transfer	the	project	later	if	you	want	to.

Figure	3-2.	Selecting	who	should	own	the	new	repository

The	next	step	is	to	give	the	repository	a	name	and	description.	Names	should	be
comprised	of	letters,	numbers,	hyphens,	and/or	underscores.	Any	other
characters	will	be	replaced	with	a	hyphen.	The	description	is	a	nice	place	to	give
people	a	short	explanation	of	the	purpose	of	the	repository.



people	a	short	explanation	of	the	purpose	of	the	repository.

After	entering	the	name	and	description,	you	need	to	decide	whether	to	make	the
repository	private	or	not.	Public	repositories	can	be	viewed	by	anyone.	Private
repositories	can	be	viewed	only	by	people	that	you	specifically	invite	as
collaborators.	In	either	case,	the	project	can	be	modified	only	by	people	you	add
as	collaborators.

Generally,	if	your	code	is	commercially	sensitive,	you’ll	pay	the	few	dollars	a
month	to	be	able	to	keep	it	private.	If	it	isn’t,	you	can	just	create	a	public
repository,	and	it	won’t	cost	you	a	thing.	If	you	don’t	see	the	option	to	make	the
repository	private,	you’ll	need	to	upgrade	the	user	or	organization	you’re
creating	the	project	under	to	allow	it	to	host	private	repositories.

The	final	decision	you’ll	need	to	make	when	creating	a	new	repository	is
whether	or	not	to	initialize	it	with	a	README	file	by	checking	the	checkbox,	as
shown	in	Figure	3-3.

Figure	3-3.	Initializing	a	repository	with	a	README.md

Most	developers	will	not	check	the	box	to	initialize	the	repo.	They’ll	just	create
a	project	locally,	save	it	using	Git,	and	then	push	their	work	up	to	GitHub.
However,	if	you’re	not	a	developer,	you’ll	probably	want	to	initialize	the	project
with	a	README	as	it	allows	you	to	create	a	project	without	having	to	create	a
local	Git	repository	and	upload	it.	Then	your	developers	will	be	able	to	clone
(download)	the	repo	and	add	all	of	their	code.	Once	you’re	ready,	click	the
“Create	repository”	button,	and	the	new	repo	will	be	created.

If	you	initialize	the	repo	with	a	README,	it	will	create	a	project	and	take	you	to
a	screen	that	looks	something	like	Figure	3-4.	That	project	is	ready	for	your
developers	to	clone	and	start	committing	to.

If	you	don’t	initialize	your	repo,	you’ll	see	a	screen	like	Figure	3-5.	Notice	that
you	or	someone	on	your	team	is	going	to	have	to	upload	an	existing	Git



repository	before	anyone	will	be	able	to	clone	or	work	with	this	repository	or
click	on	the	links	for	README,	LICENSE,	or	.gitignore	near	the	top	of	the	page,
in	the	“Quick	setup”	section.	Clicking	one	of	those	links	will	bring	you	to	a	page
to	add	a	new	file.	So,	whether	you	already	created	the	README	or	clicked	one
of	those	links,	let’s	look	at	adding	a	new	file	next.

Figure	3-4.	A	new	project	initialized	with	a	README.md



Figure	3-5.	A	new	project	that	needs	a	repository	to	be	uploaded

Adding	a	File

As	you	can	see	in	Figure	3-6,	there	are	a	collection	of	buttons	on	the	right	side	of
the	screen	above	the	listing	of	files,	and	one	of	them	says	“Create	new	file.”

Figure	3-6.	The	“Create	new	file”	button

Click	this	button	and	you’ll	be	taken	to	the	screen	in	Figure	3-7.



Figure	3-7.	The	“Create	new	file”	screen

Toward	the	top	of	the	page	is	a	text	box	just	to	the	right	of	the	project	name,
where	you	can	enter	the	name	of	the	file	you	want	to	add	to	the	project.	Below
that	is	a	text	area	where	you	can	enter	the	content	you’d	like	to	put	in	the	file.
Scroll	down	the	page	when	you’re	done	naming	the	file	and	entering	the	content
and,	as	shown	in	Figure	3-8,	you’ll	see	a	couple	of	text	boxes	where	you	can
create	a	(required)	short	description	and	an	optional	extended	description	of	the
change	that	you’re	making.

Figure	3-8.	The	bottom	of	the	“Create	new	file”	screen

These	descriptions	will	be	saved	as	the	commit	message	for	your	commit.	If	you
don’t	enter	anything,	the	default	commit	message	will	be	“Create	(<filename>).”
Generally,	you’ll	want	to	enter	a	meaningful	commit	message	so	other	people
viewing	the	project	will	understand	what	you	did	and	why	you	did	it.	You	have



two	options	for	where	to	commit	this	change:	directly	to	the	master	branch	or
on	a	new	branch	to	propose	the	change	as	a	pull	request.	We’ll	see	how	to	start	a
pull	request	another	way	in	the	next	chapter,	but	this	“quick	pull	request”	flow
exists	for	immediately	starting	a	pull	request	from	your	edits.	For	now,	click	the
green	“Commit	new	file”	button,	and	your	new	file	will	be	added	to	the	project
and	your	commit	will	be	added	to	the	commit	history.	You	can	see	in	Figure	3-9
that	2017.md	has	been	added	to	the	list	of	files.

Figure	3-9.	The	project	home	page	after	adding	the	new	file

Editing	a	File

Sometimes	you	might	want	to	add	a	new	file	to	a	project	because	you’re	adding
whole	new	functionality,	but	most	of	the	time	you’ll	find	that	you’re	going	to
change	an	existing	file	to	expand	some	feature	or	fix	some	bug	in	existing	code.
Let’s	say	you	wanted	to	edit	README.md	to	let	people	know	how	to	contribute
to	the	project.	Starting	on	the	home	page	of	your	project,	if	you	click	the
README.md	filename,	it’ll	take	you	to	a	page	like	Figure	3-10.

Figure	3-10.	Viewing	the	README.md	file

In	Figure	3-10,	you	can	see	who	last	made	a	change	to	the	file,	how	long	ago	the



change	was	made,	the	first	line	of	the	commit	message,	and	how	many	people
have	contributed	content	to	the	file.	Above	the	display	of	the	content	are	a
number	of	buttons	and	icons.	The	option	we’re	going	to	use	right	now	is	to	edit
by	clicking	the	pencil	icon,	shown	in	Figure	3-11.	Clicking	that	icon	takes	you	to
the	screen	shown	in	Figure	3-12,	which	will	allow	you	to	change	the	content	of
the	file.

Figure	3-11.	Pencil	icon	to	edit	the	file

Figure	3-12.	Editing	the	README.md	file

As	with	the	screen	for	adding	a	file,	once	you’re	done	with	your	changes	to
explain	how	to	contribute	to	your	project,	scroll	down	the	page,	enter	a
meaningful	commit	message,	and	click	the	“Commit	changes”	button.	Once
you’ve	done	that,	you’ll	see	the	page	displaying	the	README.md	file	and	any
additional	content	you	added.	In	Figure	3-13	you	can	see	the	“How	to
contribute”	information	that	was	just	added	to	the	file.



Figure	3-13.	The	updated	contribution	instructions	in	README.md

Renaming	or	Moving	a	File

Often	you	will	want	to	rename	a	file,	or	move	it	from	one	folder	to	another.	As
far	as	Git	and	GitHub	are	concerned,	both	are	the	same	process:	you’re	changing
the	full	name	of	the	file,	and	optionally	including	the	name	of	its	folder.	In	this
section,	we’re	going	to	move	the	2017.md	file	we	just	created	to	a	folder	called
documentation	and	then	rename	it	chapter_1.md.

To	start,	go	to	the	home	page	(the	Code	tab	at	the	top	of	the	page)	of	the	repo,
and	then	click	the	2017.md	filename	to	go	to	the	view	page	for	2017.md.	Then
click	the	pencil	icon	to	edit	like	you	did	in	the	previous	section.	Doing	that	gets
you	to	a	screen	that	looks	like	Figure	3-14.

Figure	3-14.	The	edit	screen	for	2017.md



This	time,	instead	of	editing	the	content	of	the	file,	you’re	going	to	go	to	the	text
box	further	up	the	page	with	the	filename.	If	you	just	want	to	rename	the	file	but
keep	it	in	the	same	folder,	you	can	just	change	the	name	of	the	file.	If	you	want
to	put	this	file	in	another	folder	(whether	or	not	it	exists	already),	all	you	have	to
do	is	include	a	forward	slash	(/)	in	the	filename.	So	in	this	case,	you	just	need	to
type	documentation/chapter_1.md	into	the	filename	box.	As	you	can	see	in
Figure	3-15,	as	soon	as	you	enter	the	forward	slash,	GitHub	breaks	that	out	as	a
new	folder	in	the	interface.	If	you	later	wanted	to	move	the	file	up	a	folder,	you
could	just	start	by	typing	../	into	the	filename.

Figure	3-15.	Editing	the	folder	or	filename	for	a	file

If	you	misspell	the	folder	name,	just	click	the	“cancel”	button	shown	in	Figure	3-
15	to	start	over.	If	you’d	like	to	edit	the	content	of	the	file,	you	can	also	do	that
at	this	time.	Once	you’re	done	with	the	renaming	or	moving	of	a	file,	scroll
down	the	page	and	commit	the	change.	Figure	3-16	shows	the	renamed	and
edited	file,	now	in	the	/documentation	folder.

Figure	3-16.	The	renamed	and	edited	file	in	the	/documentation	folder

Working	with	Folders

It	is	important	to	understand	how	Git	thinks	about	folders—it	doesn’t!	Git	is
concerned	only	with	files.	As	far	as	it	is	concerned,	folders	are	simply	a	place	to
store	those	files.	Because	of	that,	there	is	no	way	to	add	a	folder	to	a	project
unless	it	includes	at	least	one	file.



Sometimes	this	is	a	problem.	For	example,	in	many	software	projects	there	needs
to	be	a	/build	folder	where	automatically	generated	files	will	be	saved	when
compiling	the	software.	With	some	systems,	if	you	don’t	have	such	a	folder,
you’ll	be	unable	to	use	the	project.
Creating	a	Folder

A	common	pattern	that	has	emerged	is	to	create	an	empty	file	called	.gitkeep	in
any	folder	that	you	need	to	create	but	that	doesn’t	really	need	to	have	any	files	in
it.	It	seems	a	bit	strange,	but	it	works	well	and	it	is	a	well-understood	convention
—so	if	you	ever	need	to	create	a	folder,	just	create	a	.gitkeep	file	(see	Figure	3-
17).

Figure	3-17.	Adding	a	.gitkeep	file	to	create	a	/build	folder

Renaming	a	Folder

You	might	have	guessed	that	just	as	you	can’t	create	a	folder	directly,	you	can’t
rename	it	directly	either.	If	you	want	to	move	a	single	file	from	one	folder	to
another,	you	can	do	that	by	renaming	it.	For	example,	if	I	wanted	to	move
chapter_1.md	from	/documentation	to	/new_docs,	I	could	just	go	to	the	view
page	for	the	chapter_1.md	file,	click	the	pencil	icon	to	edit	the	file,	and	at	the
start	of	the	filename	box	type	../	to	go	up	a	folder,	followed	by	new_docs	to
create	or	put	the	file	into	that	folder	instead.	However,	there	is	no	way	to	just
rename	a	folder	on	GitHub.	You’d	have	to	rename	each	of	the	files	in	the	folder
one	at	a	time	to	move	them	to	the	new	folder.
The	Limits	of	Editing	on	GitHub

We	have	just	run	into	one	of	the	limitations	of	editing	on	GitHub.	Originally
GitHub	was	designed	to	allow	developers	to	share	their	Git	repositories	with
each	other.	Developers	would	make	changes	to	their	projects	locally	on	their
laptops,	save	those	changes	in	Git,	and	then	push	the	results	to	GitHub.	Now	that
more	and	more	nontechnical	people	are	collaborating	via	GitHub,	it’s	possible	to
do	much	of	your	editing	right	on	the	site,	but	there	are	a	number	of	things	that
you	can’t	do	via	the	web-based	interface.



Currently,	GitHub	doesn’t	allow	you	to	rename	folders	or	to	make	changes	to
more	than	one	file	in	a	single	commit,	nor	does	it	give	you	the	power	of	Git	to
rewrite	history,	or	access	to	a	handful	of	other	workflows	and	commands	more
suitable	for	a	terminal	interface	or	desktop	application.	So,	collaboration	on
projects	often	requires	downloading	(cloning)	a	copy	of	the	repo,	making	some
changes,	and	pushing	them	back	up	to	GitHub.

If	you	want	to	learn	the	basics	of	working	with	Git	locally,	check	out	the
instructions	in	Chapter	8	for	getting	started	with	GitHub	on	the	desktop.	For
now,	though,	we’re	going	to	look	at	how	to	collaborate	effectively	with	others	or
with	your	team	using	GitHub.



Chapter	4.	Collaboration

In	this	chapter	we’ll	start	by	looking	at	how	to	collaborate	on	a	repository	that
you	don’t	have	permission	to	push	to	by	creating	a	fork	and	a	pull	request.	While
forks	are	a	good	way	to	accept	contributions	from	people	you	don’t	work	with
regularly,	they	are	a	bit	too	cumbersome	for	everyday	use	in	a	team	that	is
working	together	closely.	Because	of	this,	later	in	the	chapter	we’ll	look	at	how
to	collaborate	directly	on	a	single	repository	without	using	forks.	Lastly,	we’ll
take	some	time	to	look	more	deeply	into	collaborating	using	pull	requests	and
issues.
Contributing	via	a	Fork

If	you	want	to	contribute	directly	to	a	repository,	you	either	need	to	own	it	or
have	been	added	to	it	as	a	collaborator.	If	you	want	to	contribute	to	a	repository
that	you	don’t	own	and	are	not	a	collaborator	on,	you’ll	need	to	make	a	copy	of
it	on	GitHub	under	your	user	account.	That	process	is	called	forking.	Once
you’ve	forked	a	repository,	you’ll	be	able	to	make	any	changes	you	want	to	your
fork	(copy)	and	you’ll	be	able	to	request	that	your	changes	get	incorporated	into
the	original	repository	by	using	a	pull	request.	Let’s	go	through	that	process
now.

Go	to	https://github.com/pragmaticlearning/github-example.	Click	the	Fork
button	in	the	top-right	corner	of	the	page,	as	shown	in	Figure	4-1.

Figure	4-1.	The	Fork	button

When	you	click	the	Fork	button,	if	you	are	a	member	of	any	organizations,
you’ll	see	a	list	of	all	of	the	organizations	you’re	involved	with	as	well	as	your
username.	You’ll	be	asked	where	you	want	to	fork	the	repository	(as	shown	in
Figure	4-2).

https://github.com/pragmaticlearning/github-example


Figure	4-2.	Selecting	where	to	fork	a	repo

After	you	select	where	you	want	to	fork	the	repository,	or	if	you	are	not	a
member	of	any	organizations,	you’ll	be	taken	to	your	new	repository	page.	Once
you’ve	forked	the	repo,	you	can	make	any	changes	you	want	to	your	fork	(copy).
In	the	next	section	we’ll	look	at	how	you	can	add	a	new	file,	like	we	did	in
Chapter	3,	and	then	how	to	create	a	pull	request	to	try	to	get	your	change
incorporated	into	the	original	repository.
Adding	a	File

In	this	section	we’ll	look	at	how	to	add	a	new	file	to	a	repository.	As	a	reminder,
you	can	see	in	Figure	4-3	that	there	are	a	collection	of	buttons	on	the	right	side
of	the	screen	above	the	listing	of	files,	one	of	which	says	“Create	new	file.”

Figure	4-3.	The	“Create	new	file”	button

Click	this	button	and	you’ll	be	taken	to	the	same	new	file	screen	as	before,
shown	in	Figure	4-4.



Figure	4-4.	The	“Create	new	file”	screen

Toward	the	top	of	the	page	is	a	text	box	just	to	the	right	of	the	project	name,
where	you	can	enter	the	name	of	the	file	you	want	to	add	to	the	project.	Below
that	is	a	text	area	where	you	can	enter	the	content	you’d	like	to	put	in	the	file.
Scroll	down	the	page	when	you’re	done	naming	the	file	and	entering	the	content;
as	shown	in	Figure	4-5,	you’ll	see	a	couple	of	text	boxes	where	you	can	create	a
(required)	short	description	and	an	optional	extended	description	of	the	change
that	you’re	making.

Figure	4-5.	The	bottom	of	the	“Create	new	file”	screen

These	descriptions	will	be	saved	as	the	commit	message	for	your	commit.	If	you
don’t	enter	anything,	the	default	commit	message	will	be	“Create	(<filename>).”
As	mentioned	in	Chapter	3,	you’ll	want	to	enter	a	meaningful	commit	message
so	other	people	viewing	the	project	will	understand	what	you	did	and	why	you
did	it.	As	shown	in	Figure	4-5,	you	have	two	options	for	where	to	commit	this
change:	directly	to	the	master	branch	or	on	a	new	branch	to	propose	the	change



as	a	pull	request.	We’ll	start	a	pull	request	another	way	in	a	moment,	but	this
“quick	pull	request”	flow	exists	for	immediately	starting	a	pull	request	from	your
edits.	For	now,	click	the	green	“Commit	new	file”	button:	your	new	file	will	be
added	to	the	project	and	your	commit	will	be	added	to	the	commit	history.	You
can	see	in	Figure	4-6	that	first-file.md	has	been	added	to	the	list	of	files.

Figure	4-6.	The	project	home	page	after	adding	the	new	file

Creating	a	Pull	Request

You’ve	made	a	change	to	your	fork	of	the	project,	but	the	change	hasn’t
propagated	back	to	the	original	project	yet.	That	makes	sense.	Anyone	can	fork
any	public	project,	and	the	project	owner	wouldn’t	want	just	anyone	editing	all
of	their	files.	However,	sometimes	it’s	great	to	allow	other	people	to	propose
changes	to	a	project.	This	allows	a	large	number	of	people	to	easily	contribute	to
an	open	source	project	or	a	smaller	team	to	work	together	on	an	internal	project.
That	is	what	pull	requests	are	for.	Some	maintainers	send	pull	requests	to	their
own	repositories	for	the	sake	of	documenting	how	they’ve	developed	their
projects,	even	if	they’re	not	waiting	for	anyone	else’s	approval!	Many	more
approaches	to	maintaining,	contributing,	and	working	with	open	source	software
in	general	can	be	found	at	https://opensource.guide.

With	a	pull	request,	you	can	request	that	changes	you’ve	made	on	a	fork	be
incorporated	into	the	original	project.	Let’s	go	through	the	process	now.	As	you
can	see	in	Figure	4-7,	at	the	top	of	the	page	there’s	a	“Pull	requests”	tab.

https://opensource.guide/


Figure	4-7.	The	“Pull	requests”	tab	on	the	project	home	page

Click	the	“Pull	requests”	tab,	and	you’ll	see	a	screen	similar	to	Figure	4-8
showing	that	currently	you	don’t	have	any	outstanding	pull	requests.	Click	the
green	“New	pull	request”	button	at	the	top	right	of	the	screen.

Figure	4-8.	The	pull	requests	screen

When	you	click	the	button,	you’ll	see	a	screen	similar	to	Figure	4-9.



Figure	4-9.	The	“New	pull	request”	screen

One	of	the	first	things	you’ll	see	in	Figure	4-9	is	that	it	is	proposing	a	pull
request	between	pragmaticlearning:master	and	brntbeer:master.	Pull
requests	are	requests	to	incorporate	the	changes	from	one	branch	(stream	of
history)	into	another.	In	this	case,	GitHub	has	correctly	guessed	that	I	want	to
take	the	change	that	I	made	on	the	master	branch	on	my	fork	(the	new	file	I
added)	and	have	that	merged	back	into	the	master	branch	on	the	original	project
that	I	forked	from.	Note	that	the	branch	with	the	changes	that	you	want	merged
in	is	on	the	right,	and	the	target	branch	you’d	like	it	to	be	merged	into	is	on	the
left.

As	you	look	lower	down	in	Figure	4-9,	you’ll	also	see	that	it	provides	a
summary	of	the	changes	that	would	occur	if	that	pull	request	was	merged—I	did
indeed	make	one	commit	that	changed	a	single	file.	It	even	shows	in	green	the
new	content	that	would	be	added	to	first-file.md—this	is	often	called	the	diff	or
difference.	If	I	click	the	Split	or	Unified	button,	it	will	change	the	way	in	which
the	difference	that	is	being	proposed	is	rendered.	This	setting	is	“sticky,”
meaning	that	GitHub	will	remember	it	for	future	diff	renderings.

Once	you’ve	confirmed	that	the	proposed	pull	request	is	the	one	you	want	to



create,	the	next	step	is	to	click	the	large	green	“Create	pull	request”	button.
Doing	so	will	take	you	to	a	page	similar	to	Figure	4-10.

Figure	4-10.	The	“Create	pull	request”	screen

This	screen	is	your	chance	to	tell	the	story	and	start	a	conversation	about	why
your	changes	should	be	incorporated	into	the	other	project,	so	take	the	time	to
create	a	meaningful	title	and	description	of	the	changes	you’ve	made.	By	default
the	title	will	be	the	first	line	of	your	commit	message	for	your	most	recent
commit,	and	if	you’ve	made	more	than	one	commit	on	the	branch	you’re	trying
to	have	merged,	the	description	will	contain	a	bulleted	list	of	the	first	lines	of	all
of	the	commit	messages	that	are	part	of	the	pull	request.	That’s	a	fine	starting
point,	but	you’re	going	to	want	to	take	a	little	bit	of	time	to	describe	not	only
what	changes	you’ve	made,	but	why	you	made	them	and	why	they’d	be	a	good
addition	to	the	project.	Since	this	is	the	start	of	a	conversation,	it’s	often	best	to



@mention	(pronounced	“at-mention”)	the	maintainer	to	ensure	they	see	your
request,	and	to	let	them	know	if	you	still	have	some	changes	you’d	like	to	make
or	not.	If	you’re	lucky,	the	repository	you’re	contributing	to	will	have	made	use
of	an	issue	or	pull	request	template	to	fill	in	some	information	or	give	you	some
instructions	on	contributing.	For	more	information	about	these	templates,	please
see	the	GitHub	documentation.

You	may	also	notice	the	“Allow	edits	from	maintainers”	checkbox	below	the
description	section,	to	the	left	of	the	“Create	pull	request”	button.	This	allows
the	maintainers	to	make	changes	directly	on	your	branch.	This	may	sound	scary
at	first,	but	it	really	helps	the	maintainers,	and	you,	if	there	are	small	changes	to
be	made	before	accepting	your	changes.	Sometimes	there	may	be	simple	stylistic
changes	or	complicated	changes	that	are	easier	for	them	to	do	to	finish	the	pull
request.	If	you	don’t	select	this	option	here,	it	also	can	be	turned	on	or	off	from
the	pull	request	screen	after	the	pull	request	is	created.

Once	you’ve	finished	describing	your	pull	request,	click	the	“Create	pull
request”	button	and	you’ll	see	a	page	that	looks	like	Figure	4-11.

https://help.github.com/articles/creating-an-issue-template-for-your-repository/


Figure	4-11.	A	created	pull	request

There	are	a	couple	of	things	that	you	should	notice	in	Figure	4-11.	First,	notice
that	you’re	now	in	the	original	project,	under	pragmaticlearning.	This	makes
sense.	You	wanted	to	create	a	request	to	pull	your	work	into	that	project,	so	the
pull	request	is	part	of	that	project—not	your	fork.	You	can	see	that	“brntbeer
wants	to	merge	1	commit	into	pragmaticlearning:master	from
brntbeer:master,”	and	it	shows	you	the	pull	request	(title	and	description)
followed	by	the	commit	that	was	made.	Clicking	that	commit	displays	the	details
of	the	commit	in	a	review	workflow,	as	you	can	see	in	Figure	4-12.



Figure	4-12.	Viewing	the	commit	from	the	pull	request

Notice	that	the	commit	link	has	taken	you	to	the	“Files	changed”	tab	of	the	pull
request.	This	tab	is	where	you	can	see	all	of	your	proposed	edits	for	this	pull
request.	However,	in	this	situation	you	see	just	that	one	commit	because	that’s
what	you	clicked	on.	This	is	a	useful	review	workflow	when	you	want	to	jump
through	some	work	one	commit	at	a	time.	We’ll	cover	code	reviews	for	pull
requests	in	more	detail	later	in	this	chapter.

Going	back	to	the	pull	request	in	Figure	4-11,	you’ll	see	that	there	is	an	option	to
merge	the	pull	request.	That	option	is	visible	only	to	the	owner	of	the	project	or
to	anyone	the	owner	has	added	as	a	collaborator	with	“write”	or	“admin”
permission.	If	someone	without	those	permissions—for	example,	yourself—was
looking	at	the	page,	he	would	not	be	able	to	merge	the	pull	request.	To	illustrate,
in	Figure	4-13	I’ve	logged	in	as	another	user.	When	I	view	the	same	page,	I
don’t	get	the	option	to	merge	in	the	pull	request,	although	I	can	still	comment	on
it	if	I	want.



Figure	4-13.	Viewing	a	pull	request	without	being	able	to	merge	it

Often	there	will	be	a	discussion	before	a	pull	request	is	merged,	but	we’ll	look	at
that	more	later	in	this	chapter.	For	now	I’m	just	going	to	accept	the	pull	request
and	merge	it	in.	Clicking	the	“Merge	pull	request”	button	adds	a	text	box	where	I
get	the	option	to	customize	the	commit	message	for	merging	the	pull	request,	as
shown	in	Figure	4-14.



Figure	4-14.	Getting	ready	to	merge	a	pull	request

Once	I’ve	made	any	changes	I	want	to	the	merge	commit’s	message,	I	can	just
click	the	“Confirm	merge”	button	below	and	to	the	left.	The	pull	request	is	then
merged,	and	the	output	is	displayed,	as	in	Figure	4-15.



Figure	4-15.	Viewing	a	closed	(merged)	pull	request

Notice	that	you	can	still	see	the	pull	request	message	and	the	commit,	but	now
you	can	also	see	who	merged	in	the	pull	request	and	approximately	when	they
did	so.	I	also	have	the	ability	to	revert	this	pull	request	if	the	merge	was	done	in
error.	The	Revert	button	here	will	allow	me	to	open	a	new	pull	request	that	does
the	inverse	of	the	work	I	just	did.	Finally,	if	you	look	at	the	project	page	in
Figure	4-16,	you’ll	notice	a	couple	of	things.



Figure	4-16.	The	original	(pragmaticlearning)	project	after	merging	the	pull	request

First,	first-file.md	has	been	added	to	the	project.	Second,	there	are	10	commits
now	in	the	original	project.	Clicking	the	“10	commits”	link	shows	why	(see
Figure	4-17).

Figure	4-17.	The	project’s	commit	history



In	addition	to	the	eight	original	commits	in	the	project,	there	is	the	“Create	first-
file.md”	commit	that	was	made	on	my	fork	and	a	new	merge	commit	that
brought	the	work	into	the	original	project	when	I	merged	the	pull	request.	By
default,	whenever	you	merge	a	pull	request,	it	will	create	one	of	these	merge
commits	(it	is	possible	to	configure	the	repository	to	have	different	functionality,
but	we’ll	leave	that	as	an	advanced	topic	for	you	to	learn	about	later).	They	are
really	useful	because	the	commit	message,	which	you	can	edit	when	you	merge	a
pull	request,	allows	you	to	document	why	you	decided	to	include	the	work.
Note

If	you	ever	wanted	to	get	rid	of	all	of	the	work	you	merged	in	from	a	pull
request,	you	could	ask	one	of	your	developers	to	“revert	the	merge	commit	for
that	pull	request”	and	she’d	be	able	to	easily	remove	all	of	the	changes	that	got
merged	in.	If	you	have	permission	to	merge	the	pull	request,	you	will	also	have
the	ability	to	bring	in	the	changes	by	squashing	them	all	together	before
merging,	or	rebasing	before	merging.	These	are	more	advanced	workflows	that
we	won’t	be	covering	in	this	book.	If	you	are	interested	in	learning	more,	you
should	check	out	the	GitHub	learning	resources.
Committing	to	a	Branch

Figure	4-18.	GitHub	Flow,	a	basic	branching	collaboration	structure

Now	that	we’ve	seen	how	to	contribute	via	a	fork,	we’ll	look	at	a	more	common
team-based	workflow:	committing	directly	to	a	repository	that	you	have	access
to	push	code	directly	to.	To	some	people,	this	workflow	may	seem	like	a
combination	of	working	on	a	fork	as	well	as	working	on	your	own	repository,
with	one	exception:	feature	branching.	In	Git,	everything	is	committed	onto	a
branch,	and	the	branch	we’ve	done	all	of	our	commits	on	so	far	has	been
master.	An	alternative	to	committing	to	master	is	to	create	a	branch	that	is
often	named	after	what	you’re	working	on.	Sometimes	this	is	something	simple,
like	update-readme-with-contact-info,	and	other	times	it’s	named	directly

https://services.github.com/on-demand/resources


after	a	work	item	that’s	been	assigned	to	you	by	a	project	management	team,	like
15363-change-login-flow.

Besides	allowing	you	to	work	safely	and	experiment	on	changes	without
affecting	the	master	branch	(which	often	signifies	the	safe,	nonbuggy,	stable
code	base),	feature	branching	allows	you	to	start	a	pull	request	in	the	same
repository	you’re	in.	This	is	the	part	that	is	similar	to	the	forking	workflow.	An
example	of	the	type	of	workflow	you	will	be	using	is	shown	in	Figure	4-18;	it’s
called	the	GitHub	Flow.	Keep	this	image	in	mind	as	you	dive	in	and	experience
it	for	yourself.

I’ve	created	a	simple	single-repo-example	repository	under	the
pragmaticlearning	organization,	as	you	can	see	in	Figure	4-19.

Figure	4-19.	The	single-repo-example	repository

If	I	want	to	augment	the	README.md	file,	the	first	thing	I	should	to	do	is	create
a	branch.	That	way	I’ll	be	able	to	keep	my	changes	separate	while	I’m	working
on	them	and	can	open	my	pull	request	later.	To	do	that,	I	can	just	click	the
“Branch:	master”	drop-down,	which	lists	the	current	branches	in	the	project	and
provides	a	text	box	for	entering	the	name	of	an	existing	branch	or	the	new
branch	that	I	want	to	create	(see	Figure	4-20).

https://github.com/pragmaticlearning/single-repo-example
https://github.com/pragmaticlearning


Figure	4-20.	The	Branch	drop-down	list

If	I	create	an	update_readme	branch,	as	you	can	see	in	Figure	4-21,	GitHub
automatically	checks	out	that	new	branch.	You	can	see	this	both	on	the	Branch
pull-down	where	the	current	branch	is	displayed,	and	in	the	browser	URL	bar:
the	address	ends	with	tree/update_readme,	signifying	that	we’re	on	the
update_readme	branch.

Figure	4-21.	On	the	update_readme	branch

The	next	step	is	to	start	to	make	changes	on	the	update_readme	branch.	I’ll	edit
the	README.md	file	and	commit	the	changes	like	we’ve	done	a	few	times	up	to
this	point.	As	you	can	see	in	Figure	4-22,	I	have	only	one	commit	on	the	master



branch,	but	if	you	look	at	Figure	4-23,	where	I’ve	changed	the	branch	to
update_readme,	in	addition	to	the	initial	commit	you	can	also	see	the	new
commit	that	I	made	on	the	update_readme	branch.

Figure	4-22.	There’s	still	only	one	commit	on	the	master	branch

Figure	4-23.	But	there	are	two	commits	on	the	update_readme	branch

I	might	continue	to	work	on	the	branch	for	a	while,	getting	my	changes	just
right.	Once	I’m	ready	to	get	some	input,	I’ll	want	to	create	a	pull	request	to	start
a	conversation	about	my	proposed	changes.
Creating	a	Pull	Request	from	a	Branch

There	are	many	ways	to	create	a	pull	request,	but	as	in	the	previous	chapter,	I’ll
click	the	Pull	Request	tab	on	the	top	part	of	the	page	and	then	click	the	green
“New	pull	request”	button.	When	I	do	this,	as	you	can	see	in	Figure	4-24,	the
experience	is	slightly	different.	Now	GitHub	isn’t	sure	what	branches	I	want	to
create	a	pull	request	between,	so	I	have	to	tell	it.

On	the	left	you	can	see	“base:	master.”	That	is	perfect	as	it	means	that	if	I	create
a	pull	request,	once	it	is	accepted,	it	will	get	merged	into	the	master	branch,
which	is	exactly	what	I	want.	However,	I	do	need	to	click	the	“compare:	master”
drop-down	to	tell	GitHub	what	branch	I	want	to	create	a	pull	request	for,	as	you
can	see	in	Figure	4-25.	The	“compare:”	branch	is	the	one	that	I’d	like	people	to
consider	merging	into	master.



Figure	4-24.	Starting	to	create	a	pull	request	from	a	branch

Figure	4-25.	Selecting	the	branch	for	the	pull	request

Once	I’ve	selected	a	branch,	the	process	is	just	the	same	as	it	was	earlier	in	this
chapter	when	creating	a	pull	request	from	a	fork.	I	click	the	green	“Create	pull
request”	button,	enter	a	title	and	description	to	explain	the	reason	for	the	pull
request,	and	then	click	the	“Create	pull	request”	button.	This	creates	the	pull



request	shown	in	Figure	4-26.

Figure	4-26.	The	new	pull	request

Collaborating	on	Pull	Requests

Pull	requests	are	designed	to	start	a	conversation	about	a	proposed	change—
usually	either	a	new	feature	or	a	bug	fix.	Originally,	pull	requests	were	created
only	when	coding	was	completed	to	ask	someone	to	incorporate	a	completed	set
of	changes,	but	these	days	pull	requests	are	used	in	a	couple	of	different	ways.

If	you	have	a	change	that	you’re	confident	about,	you	can	still	create	a	new
branch,	make	all	your	changes,	and	wait	to	create	a	pull	request	until	you’re
done	with	the	work.	In	such	a	case,	the	purpose	of	the	pull	request	is	just	as	a
double-check	to	make	sure	that	the	rest	of	your	team	agrees	with	the	changes
you	made	before	the	changes	get	merged	into	master	and	pushed	to	production.

However,	there	is	another	way	to	use	pull	requests.	In	many	companies,
employees	will	often	create	pull	requests	for	features	that	they’d	like	to	discuss.
So,	if	you	have	an	idea	for	a	change	but	aren’t	sure	whether	it’s	a	good	idea,



consider	creating	a	branch	and	making	the	simplest	possible	start	on	the	work—
maybe	just	a	small	text	file	describing	it.	Once	you	have	a	commit	on	the	branch,
you	can	then	create	a	pull	request	to	kick	off	a	discussion	about	the	idea.
Involving	People	with	Pull	Requests

If	you’ve	created	a	pull	request	and	would	like	feedback	from	specific	people	on
a	team,	@mention	them.	To	do	this,	within	the	pull	request	itself	or	in	a
comment	on	the	pull	request,	type	@	and	then	type	in	the	GitHub	username.	If
the	person	is	the	owner	or	a	collaborator	on	the	repository,	the	username	will
autocomplete	as	you	start	to	type.	You	can	also	begin	typing	the	user’s	displayed
name	(which	can	be	set	in	your	public	profile).

If	you	wanted	to	get	feedback	from	me	on	some	work	you’d	been	doing,	you
might	create	a	comment	like	“hey	@brntbeer,	mind	looking	at	this	PR	and
letting	me	know	what	you	think?”	The	formality	of	the	language	will	depend	on
the	people	you’re	working	with,	but	pull	request	comments	are	often	written	in	a
fairly	informal	style.
Reviewing	Pull	Requests

If	you	want	to	see	what	people	are	working	on	within	a	repository,	go	to	the
home	page	and	click	the	“Pull	requests”	tab	at	the	top,	and	you’ll	see	a	list	of	all
of	the	currently	open	pull	requests.

On	most	projects	there	should	be	only	a	few	pull	requests	open	at	any	one	time.
A	good	rule	of	thumb	for	a	private	repository	is	that	you	shouldn’t	have	more
than	a	few	open	pull	requests	per	developer.	Generally,	the	fewer	pull	requests
you	have	open,	the	better,	as	it	is	more	valuable	to	keep	the	team	focused	on
finishing	up	existing	features	than	on	starting	new	ones.	Also,	pull	requests
should	be	for	small,	iterative	changes,	to	make	them	easier	to	review.	The	more
changes	that	go	into	a	branch,	the	longer	it	will	live	and	the	more	difficult	the
changes	will	be	to	review	properly.	These	“long-lived”	branches	aren’t	always
avoidable,	but	you	should	be	on	the	lookout	for	them.
Note

The	number	of	open	pull	requests	on	open	source	projects	will	typically	be	much
larger,	as	anyone	can	create	a	pull	request,	and	sometimes	it	takes	a	while	for	the
core	project	team	to	review,	accept,	and/or	close	them.

When	you	find	a	pull	request	that	you	want	to	review,	click	it	to	view	the	pull
request	detail	page.

https://github.com/settings/profile


request	detail	page.
Commenting	on	Pull	Requests

A	really	important	part	of	working	with	a	development	team	is	to	take	the	time
to	review	all	of	the	pull	requests	that	you	might	care	about.	Nothing	is	more
disheartening	than	to	work	on	a	feature	for	a	couple	of	days,	create	a	pull
request,	and	then	get	no	feedback	at	all.	Also	remember	that	by	default	anyone
can	merge	their	own	pull	request	into	master	so	long	as	they	have	write
permission,	so	make	sure	to	take	the	time	to	review	people’s	work	so	they	aren’t
tempted	to	merge	it	in	without	at	least	one	or	two	people	having	a	look	at	it.	Or,
if	you’d	like	this	not	to	be	the	case,	you	can	use	protected	branches	to	require
certain	approval	workflows.	We’ll	cover	some	of	these	options	in	Chapter	7.

Whenever	you	get	an	email	or	a	web	notification	that	you’ve	been	@mentioned
in	a	pull	request,	make	sure	to	take	the	time	to	check	it	out	as	soon	as	you	can
and	provide	some	useful	feedback.	Sometimes	useful	feedback	may	even	be	to
let	the	person	know	you’ll	give	it	a	good	review	soon.	Even	if	you’re	not	named
personally,	taking	a	little	bit	of	time	out	of	your	day	to	make	sure	that	you
review	any	outstanding	pull	requests	and	provide	your	thoughts	to	ensure
everyone	is	on	the	same	page	with	where	the	project	is	going	is	a	good	idea.

Commenting	on	pull	requests	is	pretty	simple.	Skim	down	the	pull	request	page,
go	to	the	comment	box,	type	in	your	feedback,	and	click	the	Comment	button.
Adding	Color	to	Comments

Especially	for	a	team	that	doesn’t	work	in	the	same	office	all	of	the	time,
commenting	on	pull	requests	is	often	one	of	the	more	frequent	ways	that	team
gets	to	interact.	Because	of	that,	it’s	often	a	good	idea	to	add	a	little	bit	of	fun	to
the	interactions.

GitHub	has	built-in	support	for	emoji.	Emoji	are	small	images	that	are	often	used
for	displaying	a	mood	or	emotion	graphically.	If	you	look	at	Figure	4-27,	you’ll
see	that	this	comment	has	the	:+1:	(I’m	in	support	of	this	feature)	emoji	and	the
:ship:	(let’s	merge	this	in	and	“ship”	it)	emoji.



Figure	4-27.	A	comment	with	some	emoji

Another	way	to	add	some	more	color	to	your	comments	on	GitHub	is	by	using
animated	GIFs.	While	emoji	are	subtle,	most	animated	GIFs	are	much	larger	and
more	striking—they’re	often	a	great	way	to	really	lighten	the	mood	or	show
strong	support	(or	disapproval)	for	a	change	or	a	comment.	To	add	an	animated
GIF	(or	any	other	image)	to	a	pull	request,	just	drag	and	drop	it	into	the
comment	box	and	it’ll	get	uploaded	automatically.
Contributing	to	Pull	Requests

Sometimes	you’ll	want	to	make	a	change	directly	to	a	pull	request.	Perhaps
someone	has	added	a	new	page	and	you’d	like	to	fix	up	the	marketing	copy,	the
legal	disclaimer,	or	even	the	CSS	to	make	it	display	better	in	your	favorite
browser.	It’s	easy	to	make	a	change	to	someone	else’s	pull	request.

The	process	is	the	same	as	for	editing	a	file,	which	we	covered	in	the	previous
chapter.	The	only	difference	is	that	you	must	be	on	the	correct	branch.	In	this
case	I’m	looking	at	the	update_readme	pull	request	for	adding	some	content	to
the	README.md	file,	as	you	can	see	in	Figure	4-28.

If	I	decided	that	it	would	be	great	if	the	file	contained	a	brief	description,	rather
than	just	commenting	that	the	README	was	missing	a	contributors	guide,	I
could	add	one.

To	make	the	change,	all	I	need	to	do	is	go	to	the	repository	home	page	and	select
the	update_readme	branch	from	the	drop-down	list	of	branches.	I	can	then	click
the	file	and	click	the	edit	icon,	and	I’ll	get	the	edit	screen,	as	you	can	see	in
Figure	4-29.



Figure	4-28.	The	update_readme	pull	request

Figure	4-29.	Editing	README.md	on	the	update_readme	branch

I	can	then	make	my	changes,	scroll	down	the	page,	and	enter	some	kind	of
commit	message,	as	shown	in	Figure	4-30.



Figure	4-30.	Adding	a	commit	message

Now	if	I	go	back	to	the	pull	request	page,	you	can	see	in	Figure	4-31	that	my
commit	has	been	added	to	the	pull	request.	Anyone	who	is	watching	the	pull
request	will	get	a	notification	that	it	has	been	updated	so	they	can	review	my
change	and	provide	their	feedback.

Figure	4-31.	The	new	commit	in	the	pull	request

Testing	a	Pull	Request



If	you	have	the	appropriate	permissions,	before	you	approve	a	pull	request	that
includes	substantive	code	changes	that	you	can’t	just	review	visually,	you’re
going	to	want	to	download	a	copy	of	the	repository	(clone	the	repo).	Then	check
out	the	branch	that	the	pull	request	relates	to,	run	the	automated	tests	to	make
sure	they’re	all	passing,	and	then	run	the	code	and	maybe	do	a	little	bit	of
manual	testing	just	to	make	sure	it	seems	solid.	We’ll	cover	cloning	repositories
in	Chapter	8.

If	you’re	not	a	developer,	you	could	leave	this	to	your	development	team,	but
you	do	want	to	make	sure	that	at	least	one	or	two	people	are	downloading	the
code,	running	the	test	suite,	and	maybe	doing	a	little	manual	testing	before
approving	a	pull	request.	Alternatively,	an	easier	and	best	practice	option	is	to
set	up	automated	testing	that	will	run	for	you	and	report	its	status	back	to	the	pull
request.	This,	as	well	as	required	reviews,	can	be	configured	inside	of	the
protected	branches	settings	of	a	repository,	which	will	be	talked	about	in
Chapter	7.
Merging	a	Pull	Request

When	you’re	ready	to	merge	a	pull	request,	just	click	the	large	green	“Merge
pull	request”	button,	as	shown	in	Figure	4-32.

Figure	4-32.	The	“Merge	pull	request”	button

When	you	do	so,	GitHub	will	ask	for	a	commit	message	(the	default	will	be	the
title	of	the	pull	request	and	an	indication	that	this	commit	came	in	from	a	pull
request	merge),	as	shown	in	Figure	4-33.	Once	you’ve	entered	that,	just	click	the
“Confirm	merge”	button	and	the	pull	request	will	get	merged	and	closed,	as
described	earlier	in	this	chapter.



Figure	4-33.	Closing	and	merging	a	pull	request

You	should	have	some	kind	of	policy	for	closing	pull	requests.	Many	teams	will
require	one	or	two	people	other	than	the	primary	author	of	the	pull	request	to
provide	a	:+1:	before	a	pull	request	is	merged.	Have	some	kind	of	process,	but
keep	it	as	lightweight	as	needed.	Remember,	you	can	always	revert	a	merge,	so
if	the	code	you’re	working	on	does	not	have	the	possibility	of	endangering
anyone’s	life,	it’s	generally	better	to	“move	fast	and	(occasionally)	break	things”
than	have	a	list	of	27	people	who	need	to	approve	every	single	pull	request
before	it	can	be	merged.	However,	as	mentioned	a	few	times	already,	if	there	are
strict	requirements	they	can	be	added	in	the	protected	branches	and	required
statuses.
Who	Should	Merge	a	Pull	Request?

One	question	that	often	comes	up	is	whether	a	pull	request	should	be	merged	by
the	person	who	created	the	pull	request	or	by	someone	else.		I	generally
recommend	that	pull	requests	be	merged	by	the	person	who	created	them.	Here’s
why.

Many	companies	have	the	rule	that	“the	person	who	created	a	pull	request	can’t
merge	it.”	The	reason	for	this	is	to	make	sure	that	someone	doesn’t	just	create	a
pull	request	and	merge	it	in	without	getting	any	feedback.	The	idea	is	good,	but	I
don’t	think	the	recommendation	is	ideal.

Most	of	the	time,	the	person	who	created	the	pull	request	is	the	person	who
knows	the	most	about	it.	As	such,	I	always	want	to	have	that	person	available
when	her	work	is	merged	in	just	in	case	it	breaks	something	unexpected.	One	of
the	easiest	ways	of	making	sure	that	she’s	around	is	to	ask	her	to	do	the	merge.
So	I’d	recommend	asking	people	to	merge	in	their	own	pull	requests,	but	making
it	clear	that	they	shouldn’t	do	so	until	they’ve	got	at	least	a	couple	of	:+1:s	from
the	rest	of	the	team,	or	any	other	required	workflows	and	statuses	have



happened.
Pull	Request	Notifications

If	you	create	a	pull	request,	comment	on	one,	commit	to	one,	or	are	@mentioned
in	one,	by	default	you’ll	be	subscribed	to	the	pull	request.	This	means	that
whenever	anyone	comments	on,	commits	to,	merges,	or	closes	the	pull	request,
you’ll	be	sent	a	notification.	You	can	see	on	the	right	side	of	Figure	4-34	that	I
am	currently	subscribed	to	this	pull	request.

Figure	4-34.	I’m	subscribed	to	this	pull	request

If	you’re	no	longer	interested	in	a	pull	request	that	you’ve	been	subscribed	to,
just	click	the	Unsubscribe	button	and	you’ll	stop	receiving	notifications.	You
will	get	re-subscribed	automatically	if	anyone	@mentions	you	again	in	the
comments.	If	you’re	not	subscribed	to	a	pull	request	that	you’d	like	to	keep	an
eye	on,	just	click	the	Subscribe	button,	as	shown	on	the	right	in	Figure	4-35,	and
you	will	start	getting	notifications	of	any	activity	on	that	pull	request.

Figure	4-35.	The	Subscribe	button	on	a	pull	request

Best	Practices	for	Pull	Requests

There	are	a	few	best	practices	that	are	worth	bearing	in	mind	when	working	with
pull	requests:

Create	pull	requests	for	everything
Anytime	you	want	to	fix	a	bug	or	add	a	new	feature,	make	sure	to	do	it	on	a
branch	and	then	create	a	pull	request	to	get	input	before	merging	your	work



into	master.

Make	the	titles	descriptive
Other	team	members	will	be	looking	at	the	pull	requests	to	get	a	sense	of
what’s	going	on.	The	title	should	give	them	a	good	idea	of	what	you’re
working	on.

Take	the	time	to	comment
Do	this	even	if	you’re	not	@mentioned.	It’ll	give	you	a	good	sense	of	what’s
going	on	with	the	project	and	will	improve	the	overall	quality	of	the	work.

@mention	key	people
If	you	want	feedback	from	marketing,	legal,	and	the	operations	team,
@mention	the	necessary	users	to	ensure	they	see	the	pull	request	and	make	it
more	likely	you	get	feedback.

Run	the	tests
Make	sure	that	at	least	one	developer	downloads	the	latest	changes	from	a
pull	request,	checks	out	the	appropriate	branch,	and	runs	your	automated
tests.	It	isn’t	enough	just	to	look	at	the	code	visually	for	nontrivial	changes.

Have	a	clear	policy	for	approving	pull	requests
Most	companies	require	that	one	or	two	people	other	than	the	primary	author
of	the	pull	request	review	and	provide	a	:+1:	before	the	pull	request	is
merged	in.

Up	to	this	point,	you’ve	had	an	overview	of	the	repository,	working	by	yourself,
and	working	with	others.	Most	of	the	actual	work	on	GitHub	is	conducted
around	pull	requests,	but	what	about	when	you	just	want	to	discuss	an	idea
before	it	becomes	work,	or	if	you	notice	a	bug	in	someone’s	software	and	you
want	to	talk	about	it?	That’s	where	GitHub	issues	come	in.	If	pull	requests	are
where	you	discuss	and	collaborate	around	code,	GitHub	issues	are	for	discussing
ideas	and	planning	before	a	pull	request	is	created.	Continue	on	to	the	next
chapter	to	find	out	more!



Chapter	5.	Project	Management

In	this	chapter,	we’ll	take	a	look	at	an	overview	of	project	management	with
GitHub	so	you	can	better	stay	involved	with	software	development	even	if
you’re	not	writing	code.	Project	management	on	GitHub	typically	starts	in	the
form	of	simple	task	items	that	need	to	be	worked	on	with	GitHub	Issues,
organizing	GitHub	issues	by	applying	labels	to	them	and	giving	them	deadlines
with	milestones.	Finally,	if	your	work	involves	project	managers	or	more	teams,
you	may	decide	to	collect	your	issues	and	pull	requests	onto	boards	with	GitHub
Projects.
GitHub	Issues

GitHub	Issues	provides	a	lightweight,	easy-to-use	tool	for	managing	outstanding
work—whether	it’s	bugs	that	need	to	be	fixed	or	new	features	that	need	to	be
built.	Generally,	when	starting	a	new	project,	someone	may	begin	by	managing
both	bugs	and	features	using	GitHub	Issues.	Later	they	may	move	to	another	tool
like	ZenHub,	Waffle.io,	or	JIRA	if	they	need	features	that	GitHub	Issues	does
not	provide.
Creating	a	New	Issue

To	create	a	new	issue,	you	can	start	by	clicking	the	Issues	tab	from	any
repository	to	visit	the	issues	page,	though	it	may	be	best	to	test	this	out	on	your
own	repository	first.	Once	there,	click	the	“New	issue”	button,	shown	in
Figure	5-1.



Figure	5-1.	The	Issues	tab

When	you	click	the	green	“New	issue”	button	on	the	right	side	of	the	screen,
you’ll	see	a	form	similar	to	Figure	5-2	for	entering	the	details	of	the	issue	you
want	to	document.

Figure	5-2.	The	“New	issue”	form

Enter	a	descriptive	title	that	will	quickly	give	people	a	sense	of	the	bug	or
feature	you	want	to	describe,	and	then	enter	a	more	comprehensive	description
below	in	the	comment	field,	@mentioning	any	teams	or	individuals	that	it	would
be	appropriate	to	start	a	conversation	with.	If	you	have	access	and	know	who
should	be	working	on	the	issue,	you	can	select	that	person	from	a	drop-down	list
of	collaborators	by	clicking	“Assignees,”	in	the	top-right	corner	of	the	screen.
Additionally,	you	can	select	a	milestone	if	you’re	assigning	issues	to	sprints	or
other	deadlines,	select	all	of	the	labels	that	apply,	and	even	assign	the	issue	to	a
project	if	you	know	of	one.	When	you’re	finished,	click	the	green	“Submit	new
issue”	button	at	the	bottom	of	the	page	to	create	the	issue.
Managing	Milestones	for	Issues

The	milestones	feature	of	Issues	is	often	used	to	assign	issues	to	a	particular
sprint	or	an	external	deadline,	like	“Sprint	week	34.”	To	add	a	new	milestone,
revisit	the	issues	page	of	your	repository	by	clicking	on	the	Issues	tab	at	the	top
of	the	page.	Then	click	the	Milestones	button	in	the	middle	of	the	screen,	to	the
right	of	the	issues	search	box	and	the	Labels	button.	On	the	righthand	side	of	the
milestones	page	you’ll	see	a	button	to	create	a	new	milestone,	as	you	can	see	in
Figure	5-3.



Figure	5-3.	The	milestones	page

Click	the	“New	milestone”	button	and	you’ll	see	a	form	similar	to	Figure	5-4
asking	you	for	a	title,	an	optional	description,	and	an	optional	due	date.

Figure	5-4.	Adding	a	new	milestone

Enter	at	least	a	title	and	click	the	“Create	milestone”	button	at	the	bottom	right
of	the	page;	you’ll	see	the	new	milestone	added	to	your	list	of	milestones,	as
shown	in	Figure	5-5.	You	can	now	edit	the	milestone,	close	it,	delete	it,	or
browse	a	list	of	the	issues	associated	with	the	milestone.



Figure	5-5.	The	new	milestone	created

Managing	Labels	for	Issues

You’ll	probably	also	want	to	create	some	custom	labels	for	your	project.	Click
the	Labels	button	in	the	upper-left	portion	of	the	screen	next	to	Milestones.	From
this	page,	shown	in	Figure	5-6,	you’ll	be	able	to	edit	titles	and	colors,	as	well	as
delete	and	create	new	labels.

To	delete	a	label,	click	Delete	on	the	right	side	of	that	label’s	row.	To	edit	a
label,	click	Edit;	the	view	will	change	to	allow	you	to	edit	both	the	text	and	the
color	for	the	label,	as	shown	in	Figure	5-7.

Figure	5-6.	The	labels	page



Figure	5-7.	Editing	a	label

If	you	want	to	add	a	new	label,	click	the	“New	label”	button	and	you’ll	see	a	text
box,	a	set	of	colors	to	choose	from,	and	a	“Create	label”	button,	as	shown	in
Figure	5-8.

Figure	5-8.	Creating	a	new	label

Commenting	on	Issues

As	with	pull	requests:

To	comment	on	an	issue,	just	visit	that	particular	issue,	scroll	down	to
the	comment	box,	enter	your	comment,	and	click	the	Comment	button.

Make	sure	to	take	a	little	time	every	day	to	see	if	there	are	any	new
issues	in	your	repository,	and	respond	to	any	@mentions	as	soon	as	you
can.	You	will	probably	receive	an	email	notification	or	web	notification
about	these	comments,	which	will	make	checking	issues	easier!

Feel	free	to	use	emoji	and	animated	GIFs	to	add	a	little	fun	to	the
process	of	collaboration.

Referencing	Issues	in	a	Commit

If	you	make	a	commit	that	either	relates	to	or	fixes	an	issue,	just	include	a	hash
symbol	(#)	followed	by	the	number	of	the	issue	in	the	commit	message,	and	the



commit	will	show	up	in	the	issue’s	history.	Prefix	the	issue	number	with	a	word
like	“closes,”	“fixes,”	or	“resolves”	if	the	commit	solves	the	issue,	and	when	that
commit	is	merged	into	your	default	branch	(usually	master),	the	issue	will	be
closed	automatically!
Best	Practices	for	Issues

Here	are	some	best	practices	to	consider	when	thinking	about	how	best	to	use
GitHub	Issues:

Create	descriptive	labels	like	“feature,”	“blocker,”	or	“docs”
This	will	make	it	easier	to	understand	what	the	issue	is	about.

Use	milestones	if	they	fit	your	workflow
If	you	have	either	external	deadlines	or	an	internal	cadence	based	around
something	like	sprints,	feel	free	to	use	milestones	to	assign	issues	to	delivery
dates.	If	you	don’t	use	date-based	deliveries,	consider	using	milestones
(without	dates)	to	group	like	pieces	of	work.	For	example,	you	could	have	a
milestone	for	“Complete	site	redesign”	and	another	one	for	“Launch
ecommerce	features.”

Don’t	be	afraid	to	reassign	issues	or	add	more	assignees
If	someone	can’t	complete	the	task	anymore,	someone	else	needs	to
complete	it,	or	maybe	it	requires	more	than	one	person	to	complete,	reassign
it	and	have	a	conversation	about	that	change	in	workflow.

Make	extensive	use	of	labels
In	addition	to	high-level	labels	to	distinguish	“bugs,”	“features,”	and	other
work,	you	can	use	labels	for	many	other	purposes.	Consider	adding	labels	to
track	the	status	of	work,	to	assign	the	work	to	different	groups	(“iOS,”
“server	side,”	“frontend,”	etc.),	and	even	for	tracking	other	interesting
information	like	the	severity	of	a	bug	or	the	business	objective	that	the	new
feature	is	designed	to	support.

GitHub	Projects

Using	GitHub	Projects	can	be	a	great	way	to	organize	your	work	into	clear
buckets	to	define	states.	You	can	create	project	boards	for	specific	feature	work,
comprehensive	roadmaps,	or	even	release	checklists.	With	project	boards,	you
have	the	flexibility	to	create	customized	workflows	that	suit	your	needs.	Project
boards	are	made	up	of	issues,	pull	requests,	and	notes	that	are	categorized	as



cards	in	columns	of	your	choosing.	Cards	can	be	moved	from	column	to	column
and	reordered	according	to	your	needs.

Projects	can	be	created	for	just	a	single	repository	or,	as	is	mentioned	in
Chapter	7,	across	multiple	repositories	within	a	single	organization	to	track
really	large	projects.	We’re	going	to	focus	on	creating	just	a	single	project	first
to	get	the	hang	of	things.
Creating	a	Project	Board

Anyone	with	read	access	to	a	repository	can	view	the	repository’s	project
boards.	To	create	a	project	board,	you	must	have	write	access	to	the	repository.
So,	when	it’s	your	own	repository	you’re	working	with,	this	of	course	means
you	can	create	a	project	and	add	cards,	issues,	or	pull	requests	to	it.	If	you	click
on	the	Projects	tab	at	the	top	of	the	page,	you	should	see	a	helpful	screen	like	in
Figure	5-9	to	get	you	started.	Go	ahead	and	click	the	“Create	a	project”	button.

Figure	5-9.	Empty	project	page

The	page	you	get	taken	to,	which	should	look	like	Figure	5-10,	is	similar	to	the
“New	milestone”	page,	and	it’s	just	as	easy	to	create	one.	Give	your	project	a
name	and	a	brief	description	to	get	started.



Figure	5-10.	The	“Create	a	new	project”	page

Creating	Columns	and	Adding	Cards

Now	that	there’s	a	project	board,	you	can	make	some	traditional	columns	to	start
putting	some	work	into.	To	begin,	click	the	“+	Add	column”	link.	You	will	see	a
page	similar	to	Figure	5-11	asking	you	to	add	a	title.	I’m	going	to	do	this	a	few
times	to	create	columns	named	“To	Do,”	“In	Progress,”	and	“Done.”	You	can
see	what	the	finished	product	looks	like	in	Figure	5-12.

Figure	5-11.	Create	a	column	to	start	adding	cards



Figure	5-12.	Traditional	project	board	columns

Now	that	there	are	columns	in	your	project	board,	you	have	two	ways	to	add
items:	you	can	add	notes	from	the	top	of	a	given	column	by	clicking	the	“+”,	or
add	issues	and	pull	requests	by	clicking	“+	Add	cards”	on	the	righthand	side	of
the	page.	You	should	explore	this	a	bit	to	get	familiar	with	both	options.	If	you
don’t	have	any	issues	or	pull	requests,	there	won’t	be	any	to	add	from	that	view.
Once	you’ve	added	some	cards,	you	can	move	them	from	one	column	to	another
by	clicking	and	dragging	them	around.	A	more	complete	board	with	some	cards
added	is	shown	in	Figure	5-13.

Figure	5-13.	A	project	board	with	some	cards	in	it

Closing,	Editing,	or	Deleting	Project	Boards

There	are	a	few	more	administrative	tasks	that	can	be	done	for	the	project	board



as	a	whole.	You	may	want	to	close	your	project	when	all	the	work	is	completed,
edit	the	description	or	title	if	it	changes,	or	even	delete	it	if	you	made	a	mistake
in	creating	it	in	the	first	place.

Closing	a	project	can	be	done	from	the	“Show	menu”	button	above	the	columns
on	the	right	side	of	the	screen.	Clicking	it	will	show	you	a	screen	like	Figure	5-
14,	and	from	there	you	can	select	“Close	project”	to	show	your	project	is
completed,	or	reopen	it	if	it	needs	to	be	revisited.

Figure	5-14.	Close	a	project	to	show	that	it’s	done

Lastly,	editing	and	deleting	a	project	can	be	done	from	the	settings	icon	that
looks	like	a	gear	on	the	far	right	of	the	screen,	to	the	right	of	the	Fullscreen
button.	Clicking	it	will	bring	you	to	a	screen	like	the	one	shown	in	Figure	5-15,
where	you	can	change	the	title	or	description,	or	click	the	“Delete	project”
button	to	delete	the	project.	Don’t	worry,	you’ll	be	asked	to	confirm	your	choice
if	you	click	this	button!

As	you	become	more	and	more	comfortable	with	GitHub	Projects,	you	may
want	to	create	more	boards,	edit	the	column	titles,	and	convert	notes	to	issues	by
clicking	the	drop-down	arrow	on	them.	Every	action	that	you	take	on	a	project
board	can	be	tracked,	as	seen	in	Figure	5-16,	by	going	to	“Show	menu”	and	then
clicking	on	the	Activity	link.



Figure	5-15.	Editing	or	deleting	a	project



Figure	5-16.	Viewing	the	activity	feed	of	a	project	board

As	of	the	writing	of	this	book,	GitHub	projects	are	still	pretty	new	and	changing
as	more	people	adopt	them	into	their	workflow.	So	don’t	forget	to	visit	your
project	boards	regularly	to	see	if	anything	has	changed!	



Chapter	6.	Publishing	Content

Providing	good	documentation	for	how	to	get	started	on	a	project,		troubleshoot
certain	problems,	and	share	ideas,	or	just	providing	a	better	landing	page	for
people	to	find	out	about	your	project,	can	be	just	as	important	as	the	code	itself.
It	can	help	new	developers	or	users	learn	how	to	fix	common	problems	and	how
to	contribute	back	to	build	a	stronger	ecosystem,	or	allow	you	to	find	new
contributors	for	your	project.	In	this	chapter	we’ll	be	taking	a	look	at	writing	and
maintaining	higher-level	documentation	on	GitHub	so	that	you	can	encourage
more	people	to	contribute	to	your	repository	or	more	effectively	use	your	code
and	applications.
Wikis

If	you’re	familiar	with	wikis,	continuing	to	use	them	is	a	great	way	to	have	some
additional	long-form	documentation.	Though	the	workflow	for	using	them	and
accepting	changes	to	them	is	different	from	any	other	contribution	workflow	on
GitHub	(you	can’t	use	pull	requests),	it’s	a	good	way	for	your	users	to	find	out
more	about	your	project	if	you	have	not	yet	created	a	GitHub	Pages	site.

A	wiki	is	a	very	simple	content	management	system	that	makes	it	easy	for	a
group	of	collaborators	to	build	a	set	of	interlinked	pages.	Typically,	GitHub’s
wikis	are	used	for	capturing	end	user	documentation,	developer	documentation,
or	both	so	that	all	of	the	information	relating	to	a	project	is	accessible	through
the	project’s	GitHub	page.
Getting	Started	with	a	Wiki

If	your	project	doesn’t	yet	have	a	wiki,	start	by	going	to	Settings	and	scrolling
down	to	the	Features	area,	as	shown	in	Figure	6-1.	Make	sure	that	the	Wikis
checkbox	is	selected.	This	is	also	a	chance	to	check	the	next	box	if	you’re	going
to	be	creating	a	public	project	and	want	to	limit	it	so	that	only	collaborators	on
the	project	are	able	to	update	the	documentation	on	the	wiki.



Figure	6-1.	Ensuring	that	wikis	are	enabled

Once	you’ve	ensured	that	you	have	wikis	enabled,	click	the	Wiki	tab	at	the	top
of	the	page.	If	you	haven’t	yet	added	any	content,	you’ll	see	a	page	like
Figure	6-2.

Figure	6-2.	The	default	wiki	page

Click	the	green	“Create	the	first	page”	button,	and	you’ll	see	a	page	similar	to
Figure	6-3.



Figure	6-3.	Creating	your	first	wiki	page

By	default	the	first	page	is	called	“Home,”	although	you	can	change	this	by
editing	the	title.	Then	you	can	enter	your	content	in	the	text	area.	You’ll	notice
that	there	are	a	number	of	buttons	above	the	text	area	for	styling,	but	this	is
deliberately	not	a	full,	in-place	WYSIWYG	(what-you-see-is-what-you-get)
editor.	Instead,	the	buttons	will	just	insert	the	appropriate	Markdown	into	the
text	area.	If	you	want	to	see	what	it’ll	look	like,	click	the	Preview	tab	above	the
formatting	buttons	and	you’ll	see	the	Markdown	rendered,	as	shown	in	Figure	6-
4.



Figure	6-4.	Previewing	your	new	wiki	page

If	you	click	the	“Edit	mode”	drop-down	list,	you	get	the	option	of	changing	to	a
range	of	different	selected	formatting	syntaxes,	as	you	can	see	in	Figure	6-5.
However,	I’d	recommend	using	Markdown	as	it’s	the	same	format	used	by	the
GitHub	team	and	is	used	in	other	areas	within	GitHub,	such	as	issues	and	pull
request	comments.

Figure	6-5.	Alternative	editing	formats



When	you’re	done	with	the	content,	enter	a	short	(optional)	description	in	the
“Edit	message”	text	box	to	describe	why	you	made	the	change,	and	click	the
“Save	page”	button.
Adding	and	Linking	to	a	Page	on	Your	Wiki

Anytime	you	want	to	add	a	new	page	to	your	wiki,	just	click	the	New	Page
button	at	the	top	right	of	any	wiki	page	and	it’ll	allow	you	to	add	a	page	to	the
site.	Once	you’ve	added	the	page,	it	will	appear	in	the	Pages	section	to	the	right
of	the	screen,	as	you	can	see	in	Figure	6-6.

Figure	6-6.	The	Pages	list	in	a	wiki

To	add	a	link	to	a	new	page	from	an	existing	page,	start	by	using	the	Pages	list	to
navigate	to	the	page	you	want	to	add	a	link	to.	Then	copy	the	URL	for	that	page
to	the	clipboard,	from	your	browser—you’ll	need	that	in	a	moment.	Next,	use
the	Pages	list	to	navigate	to	the	page	you	want	to	add	the	link	on.	Click	the	Edit
button	at	the	top	of	that	page,	to	the	right.	Go	to	the	place	in	the	content	area
where	you	want	to	add	the	link	and	click	the	link	button	in	the	top	bar	(it	looks
like	two	circles	linked	together).	Clicking	it	pops	up	a	dialog	box,	as	shown	in
Figure	6-7.



Figure	6-7.	The	Insert	Link	dialog	box

In	the	first	box,	type	whatever	you	want	the	link	text	to	be—ideally	something
that	describes	the	page	it’s	linking	to.	Then,	in	the	URL	text	box,	paste	the	URL
of	the	wiki	page	you	want	to	link	to	from	your	clipboard.

If	you’d	really	like	to	make	the	most	of	your	wiki	(or	issues	or	pull	requests),
make	sure	to	check	out	the	Mastering	Markdown	guide,	which	provides	a	really
good	introduction	to	GitHub-flavored	Markdown.
GitHub	Pages

If	you	want	to	create	a	more	customized	website	to	share	information	about
yourself,	your	organization,	or	your	project,	that’s	where	GitHub	Pages	comes
in.	GitHub	Pages	is	a	feature	that	allows	you	to	create	and	host	web	pages	right
on	GitHub	by	either	turning	that	rich	Markdown	documentation	into	a
beautifully	rendered	web	page	or	writing	HTML	and	CSS	yourself.
Creating	a	Website	for	Your	Project

Whenever	you	create	a	repository	on	GitHub,	you	have	the	option	of	using
GitHub	Pages	to	add	web	pages	for	promoting	or	describing	the	project.	There
are	typically	four	types	of	GitHub	pages	for	a	project:	you	can	create	a
marketing	site	to	describe	the	project	in	better	detail,	end	user	documentation	on
how	to	use	the	project,	developer	documentation	that	describes	how	the	project
works	in	deep	detail,	and	community	documentation	for	how	to	contribute	and
get	support	within	that	project’s	community.	To	get	started	with	GitHub	Pages	to
just	build	better	documentation	for	your	project,	click	Settings,	scroll	down	to
the	GitHub	Pages	area,	and	click	the	“Choose	a	theme”	button.	You’ll	see	a
screen	similar	to	Figure	6-8.

https://guides.github.com/features/mastering-markdown/


Figure	6-8.	The	GitHub	Pages	themes

When	you’re	happy	with	the	look	and	feel,	click	the	“Select	theme”	button
toward	the	top	right	of	the	page,	and	your	website	will	be	created.	That’s	all
there	is	to	it!	You	can	view	the	website	at
http://<organization_name>.github.io/<projectname>.	For	example,	I	just
created	a	web	page	for	the	simple-repo-example	project	under	the
pragmaticlearning	organization,	available	at
http://pragmaticlearning.github.io/single-repo-example/.

By	default,	when	you	create	a	GitHub	page	for	your	repository,	it	looks	at	the
files	and	folder	structure	based	on	the	master	branch.	Some	people	choose	to
render	their	Pages	site	from	their	docs/	folder	to	segregate	their	long-form
documentation	from	the	code	that	drives	the	project.	At	this	point,	you	just	have
README.md	and	no	docs/	folder,	so	that	will	be	what	ends	up	getting	rendered
in	your	example	website.	If	you	want	to	get	more	complex,	you	could	start
adding	files	like	index.html	and	some	CSS	files	for	styling	your	Pages	site.	I’ll

http://pragmaticlearning.github.io/single-repo-example/


save	that	as	an	exercise	for	the	reader,	but	an	example	can	be	found	in	the
facebook/react-native	repository.
Creating	a	Website	for	Yourself	or	Your	Organization

If	you	want	to	create	a	website	for	yourself	or	your	organization	using	GitHub
Pages,	you	need	to	create	a	project	named	“<username>.github.io”	or
“<organization_name>.github.io.”	For	example,	IBM	has	created	a	portal	for	its
website,	https://ibm.github.io,	at	https://github.com/IBM/ibm.github.io	by
following	this	exact	method.	Just	like	with	a	repository	GitHub	Pages	site,	you
can	choose	to	have	this	site	built	from	the	contents	in	the	master	branch,	the
docs/	folder	within	the	master	branch,	or	the	gh-pages	branch.

If	you	want	to	create	a	website	for	your	organization,	go	to	the	organization
home	page	and	click	the	New	button	on	the	righthand	side	of	the	screen,	above
the	Top	Languages	and	People	section.	Make	sure	to	make	the	repository	name
“<organization_name>.github.io,”	and	then	check	the	“Initialize	this	repository
with	a	README”	checkbox,	as	shown	in	Figure	6-9.

https://github.com/facebook/react-native/tree/gh-pages
https://ibm.github.io
https://github.com/IBM/ibm.github.io


Figure	6-9.	Creating	a	GitHub	Pages	repo	for	an	organization

If	you	create	such	a	project,	click	the	Settings	tab,	and	scroll	down	to	the	GitHub
Pages	section,	you’ll	see	that	it	shows	that	the	site	has	already	been	published	as
a	GitHub	Pages	website	(see	Figure	6-10).

Figure	6-10.	The	Settings	tab	for	a	GitHub	Pages	organization	site

If	you	know	HTML	and	CSS,	you	can	continue	to	build	your	website	here.
However,	if	you’d	like	to	make	it	a	bit	easier	to	build	a	website	without	just
HTML	and	CSS,	like	the	GitHub	Training	Team	has	done,	you	may	also	want	to
check	out	the	Jekyll	project.	Jekyll	allows	you	to	easily	structure	your	website
and	keep	some	of	those	pages	in	Markdown	so	it	remains	easier	to	update	them
and	make	changes.	Switching	to	Jekyll	or	having	a	more	robust	strategy	for	the
documentation	of	your	project	will	not	only	provide	a	place	for	people	to	find
out	about	your	project,	but	will	also	ensure	your	project	is	contributing	to	a

https://github.com/github/training-kit
https://jekyllrb.com


healthy	ecosystem	on	GitHub.	



Chapter	7.	Configuring	Repositories	and	Organizations

So	far	we’ve	looked	at	how	to	view,	edit,	and	collaborate	on	repositories.	In	this
chapter	we’re	going	to	take	a	step	back	and	go	through	the	process	of
configuring	a	GitHub	repository	for	a	new	project.
Warning

If	you’re	working	with	developers	on	a	contract	basis,	you’ll	want	to	create	the
repository	they	use	to	work	on.	Creating	the	repository	means	that	you’ll	always
have	access	to	the	code	and	the	additional	information	contained	in	pull	requests,
issues,	projects,	and	wikis.	Once	you’ve	created	it,	you	can	then	add	the
developers	as	collaborators	so	they’ll	have	access	to	the	repository—until	you
decide	to	revoke	it.	You	do	not	want	contract	developers	to	create	the	repository
for	you.	If	they	do,	they’ll	be	able	to	remove	you	from	the	repository	at	any	time.
Configuring	a	Repository

To	configure	a	repository,	start	by	clicking	the	Settings	tab	at	the	top	of	the	page.
By	default	you’ll	go	to	the	Options	menu	within	Settings,	as	shown	in	Figure	7-
1,	which	allows	you	to	configure	some	high-level	settings.

Figure	7-1.	The	Settings→Options	screen



The	first	available	setting	to	change	is	the	name	of	the	repository.	If	you	change
the	repo	name	in	the	text	box,	the	Rename	button	will	become	active,	allowing
you	to	change	the	name	of	the	project.	Don’t	worry	if	your	developers	are
already	connected	to	the	project.	They	won’t	have	to	change	anything	to	visit	the
project	online—anybody	using	the	old	name	or	URL	to	access	the	project	will	be
redirected	automatically.	However,	anyone	who	is	accessing	the	repository	from
the	command	line	or	from	a	graphical	user	interface	like	GitHub	Desktop	will
need	to	update	some	settings	to	point	their	local	copy	to	the	correct	URL.

On	the	Settings→Options	screen,	you	also	get	the	chance	to	configure	wikis	and
issues.	By	default,	new	repositories	have	wikis,	projects,	and	issues	enabled.	Just
uncheck	the	boxes	to	disable	them	if,	for	instance,	you	would	rather	use	GitHub
Pages	for	documentation	and	aren’t	looking	for	other	users	to	open	issues.	If	you
want	to	limit	the	wiki	on	a	public	project	so	that	only	collaborators	can	edit	the
content,	check	the	necessary	box.

As	you	go	further	down	the	Settings→Options	screen,	you’ll	see	some	additional
configuration	settings:	“Merge	button,”	“Temporary	interaction	limits,”	GitHub
Pages,	and	the	“Danger	zone.”	We	discussed	using	GitHub	Pages	in	Chapter	6,
so	let’s	take	a	look	at	the	other	sections.

As	shown	in	Figure	7-2,	the	“Merge	button”	section	has	additional	options	for
how	you	want	work	to	be	brought	in	from	pull	requests.	As	you	and	any	other
developers	working	on	your	project	are	likely	to	have	your	own	preferences	in
terms	of	workflows,	it	may	be	important	to	be	able	to	merge	this	work	in
different	ways.	Though	not	every	permutation	is	possible	in	the	web	interface,
you	can	allow	for	a	better	experience	for	common	workflows.	If	none	of	these
options	is	preferred	by	you	or	your	team,	you	may	have	to	set	up	additional
automation	or	perform	the	actions	yourself	on	the	command	line	to	finish	a
merge.



Figure	7-2.	Merge	button	options

Sometimes	when	a	conversation	in	an	issue	or	pull	request	starts	to	get	quite
heated,	a	maintainer	may	want	to	let	people	cool	down	for	a	while	until	a	good
resolution	can	be	thought	up.	That’s	exactly	why	the	“Temporary	interaction
limits”	section	exists.	It	limits	who	can	comment,	create	pull	requests,	or	create
issues	for	a	24-hour	window	and	will	automatically	release	the	lock	once	that
window	is	over.	This	is	similar	to	locking	an	issue	or	pull	request	for	comments,
but	applies	to	all	conversations	and	even	the	creation	of	new	ones	until	the	time
limit	is	up.	This	is	another	way	that	maintainers	can	help	manage	good	software
development	practices	for	everyone	involved	in	a	project,	regardless	of	whether
it’s	open	source	or	private.	Different	ways	to	configure	these	limits	can	be	seen
in	Figure	7-3.

Finally,	we	come	to	the	“Danger	zone.”	This	section	allows	you	to	change	the
accessibility	of	a	project	between	private	and	public.	It	also	gives	you	the	option
to	transfer	the	ownership	of	the	project	to	another	user	or	organization	and,	if
you	really	want,	to	delete	or	archive	the	repository.	Don’t	worry	about	hitting	the
“Delete	this	repository”	or	“Archive	this	repository”	button	accidentally.	If	you
click	either	of	them,	you’ll	be	asked	to	confirm	that	you	really	want	to	do	that,	as
shown	in	Figure	7-4.



Figure	7-3.	Temporary	interaction	limits

Figure	7-4.	The	“Delete	this	repository”	confirmation	pop-up

Adding	Collaborators

Once	you’ve	created	and	initialized	your	repository,	typically	the	next	step	is	to
add	any	collaborators.	If	you’ve	created	a	public	repository,	you	may	not	need	to



add	collaborators,	especially	if	you’re	just	working	with	people	occasionally.
Ask	them	to	fork	your	repository	and	send	you	a	pull	request	any	time	they	have
a	contribution	to	make.	However,	if	you	created	a	private	repository	or	you	have
people	who	will	be	working	on	your	code	regularly,	you	should	add	them	as
collaborators.

If	you’ve	added	the	repository	to	an	organization,	you	can	manage	access	using
teams,	which	we’ll	look	at	later	in	this	chapter.	However,	if	you	just	added	the
repository	to	your	personal	account,	you’ll	have	to	add	collaborators
individually.

To	add	collaborators,	click	the	Settings	tab	of	the	screen	and	then	click	the
Collaborators	link	on	the	left,	as	shown	in	Figure	7-5.	You	may	be	asked	for
your	password	just	to	confirm	that	it’s	you	making	the	changes.

Figure	7-5.	The	Settings→Collaborators	screen

To	add	collaborators,	you’ll	need	to	know	the	GitHub	usernames	of	the	people
you	want	to	work	with.	Start	typing	a	username,	and	the	name	will
autocomplete,	as	shown	in	Figure	7-6.	Select	the	autocompleted	name	and	then
click	the	“Add	collaborator”	button.



Figure	7-6.	Autocompletion	of	a	collaborator

Once	you’ve	invited	collaborators	and	they’ve	joined,	it’s	worth	taking	a	little
bit	of	time	to	go	through	the	other	configuration	options	to	see	if	there’s
anything	else	you	want	to	set	up.
Configuring	Branches

The	Branches	section	of	the	Settings	tab	is	where	you	can	configure	your	default
branch,	or	enable	some	branches	to	be	protected.	For	most	repositories,	master
is	the	default	branch.	As	discussed	in	other	chapters	and	shown	in	Figure	7-7,	the
default	branch	setting	controls	which	branch	a	pull	request	will	be	sent	to	by
default.	Generally	it’s	best	to	leave	this	option	alone,	but	if	your	development
team	really	wanted	to	create	a	new	default	branch	(for	example,	if	you	have	a
workflow	that	describes	pull	requests	needing	to	go	into	an	intermediate	branch
before	going	into	master	for	some	deployment	or	testing	purposes),	they	could
do	so	and	you	could	make	it	the	default	branch	here.

The	default	branch	is	used	for	features	like	auto-closing	of	issues	and	some
workflows	around	Continuous	Integration	(CI)	and	Continuous	Delivery	or
Deployment	(CD).	Usually,	when	you	have	a	commit	message	that	says



something	like	“closes	#10”	or	“fixed	#10,”	when	that	commit	is	merged	into	the
master	branch,	it	will	automatically	close	issue	#10.	However,	the	trigger	is
really	when	the	commit	gets	merged	into	the	default	branch,	so	if	you	wanted	to
have	a	default	branch	named	trunk	or	something	else,	you	could	do	that	if	you
really	wanted	to.

Figure	7-7.	The	Settings→Branches	screen

Besides	editing	the	default	branch,	on	this	screen	you	can	also	set	up	additional
branches	to	be	protected	so	that	they	cannot	be	deleted,	or	require	other	actions
to	happen	before	work	ends	up	in	those	branches.	Let’s	take	a	look	at	protected
branches	in	more	detail.
Protected	Branches

Protected	branches	are	a	way	to	enforce	and	ensure	that	certain	workflows
happen	within	your	repository	and	that	irrevocable	changes	are	not	made	to	the
designated	branches.	Common	reasons	for	protecting	a	branch	are	to	require	peer
review,	ensure	that	code	quality	is	high	or	all	your	tests	are	passing	by
integrating	with	third-party	services,	ensure	that	the	branch	cannot	be	deleted	or
overwritten,	and	more.	A	few	of	these	settings	can	be	seen	in	Figure	7-8.



Figure	7-8.	Branch	protection	options

Integrating	with	Other	Systems

Sometimes	you’ll	want	to	connect	GitHub	to	other	tools	that	fit	alongside	and
enhance	the	software	development	process.	These	tools	range	from	CI	servers
that	regularly	run	automated	tests	to	project	management	or	bug	tracking
software.	Let’s	look	at	some	ways	you	can	enhance	your	software	development
practices	by	expanding	beyond	GitHub.

One	option	is	the	GitHub	API.	Go	to	https://developer.github.com,	as	shown	in
Figure	7-9.	From	here,	there	are	actually	two	interfaces	to	the	GitHub	API:
GraphQL	and	REST.	They	both	allow	a	developer	to	access	data,	but	the	way	in
which	they	do	it	is	different.	If	you	click	through	to	either	of	these	pages	from
the	top	of	the	page,	you’ll	find	guides	to	help	you	learn	how	to	use	the	GitHub
API	to	extend	GitHub	to	do	pretty	much	any	custom	workflow	your	team	may
have.

https://developer.github.com


Figure	7-9.	The	GitHub	Developer	page

Though	it’s	a	pretty	advanced	topic,	the	API	allows	your	developers	to	query
and	change	almost	anything	they	want	in	a	repository	or	an	organization—but
sometimes	they’ll	just	want	to	be	notified	when	a	specific	action	occurs.	For
example,	they	might	want	an	internal	tool	or	some	personal	server	to	get	notified
every	time	someone	adds	a	new	issue	or	pushes	work	up	to	GitHub.	If	they	want
to	have	notifications	automatically	sent,	they	should	be	using	the	webhooks
option	that	can	be	configured	by	going	to	Settings→Webhooks,	as	shown	in
Figure	7-10.

Figure	7-10.	The	Settings→Webhooks	screen

Clicking	the	“Add	webhook”	button	toward	the	top-right	corner	of	the	screen
takes	you	to	the	“Add	webhook”	screen,	as	shown	in	Figure	7-11.



Figure	7-11.	The	“Add	webhook”	screen

This	screen	allows	you	to	tell	GitHub	to	send	a	notification	to	your	custom
server	or	application	every	time	a	particular	type	of	event	occurs.	You	need	to
provide	the	URL	that	your	software	will	be	listening	on,	the	kind	of	content	you
want	delivered,	an	optional	secret	(so	that	not	just	anyone	can	send	fake
information	to	that	URL),	and	what	kinds	of	events	you’d	like	to	have	the
software	be	notified	about.	If	you	or	your	developers	are	implementing	a	custom
integration,	you’ll	probably	know	how	the	webhook(s)	should	be	configured	and
what	events	to	select	from	the	“Let	me	select	individual	events”	option.	Even	if
you	don’t	have	any	webhooks	or	aren’t	going	to	be	building	them	yourself,
knowing	about	these	options	is	great	so	you	can	customize	your	workflows	as
you	grow	with	GitHub.

The	final	integration	option	is	one	that	developers	don’t	have	to	configure:
GitHub	Apps.	GitHub	Apps	are	applications	that	other	third-party	developers
have	already	created	and	that	exist	within	the	GitHub	Marketplace,	which	can	be
seen	in	Figure	7-12.



Figure	7-12.	GitHub	Marketplace

When	you	visit	https://github.com/marketplace,	there	are	many	categories	of
GitHub	Apps	you	or	your	developers	can	choose	from.	If	you	don’t	know	which
category	to	start	with,	my	suggestion	is	to	look	at	Continuous	Integration.	CI
apps	handle	automatically	running	the	tests	that	your	team	would	otherwise	have
to	run	manually,	and	they	will	report	the	status	back	to	the	pull	request	you	are
working	on	to	make	your	code	more	robust	and	code	review	easier.	Setting	these
up	typically	requires	some	additional	configuration	in	the	code	of	the	repository
itself,	but	your	team	will	thank	you	for	it.	You	can	see	some	examples	from	this
category	in	Figure	7-13.

Figure	7-13.	Some	GitHub	Apps	within	the	Continuous	Integration	category

Once	you	set	up	and	connect	one	of	these	GitHub	Apps	to	any	repository	you
have	administrative	access	to,	it	should	be	listed	on	the	repository’s

https://github.com/marketplace


Settings→“Integrations	&	services”	screen.	For	example,	if	you	were	to	add	the
Codecov	app,	you	would	see	something	similar	to	Figure	7-14.

Figure	7-14.	A	third-party	integration	installed	and	configured

“Deploy	keys”	is	the	last	menu	option	on	the	Settings	tab	for	a	GitHub
repository.	Clicking	the	link	displays	a	page	similar	to	Figure	7-15.

Figure	7-15.	Configuring	deploy	keys

In	addition	to	other	people	needing	access	to	your	repository,	sometimes	you’ll
want	to	provide	the	ability	for	other	software	to	connect	to	it.	For	example,	your
development	team	will	probably	create	an	automated	build	system	that	will
allow	them	to	just	click	a	button	to	deploy	the	latest	changes	from	GitHub	to
your	production	server.

If	they	do	that,	the	build	system	will	need	the	ability	to	access	the	repository.
There	are	a	number	of	ways	of	providing	that	access.	One	option	is	to	create	a
machine	account.	This	is	where	you	create	a	new	GitHub	user	just	for	your	build
machine	and	add	that	user	as	a	collaborator.	That’s	a	particularly	good	approach
if	your	build	system	needs	access	to	a	number	of	different	repositories.



Another	option	is	just	to	create	a	deploy	key.	A	deploy	key	is	a	Secure	Shell
(SSH)	key	that	is	created	to	allow	a	particular	piece	of	software	to	access	a
single	repository	on	GitHub.	Don’t	worry	about	this	too	much,	but	if	your
development	team	asks	you	to	set	up	a	deploy	key,	just	ask	them	to	email	you
the	public	SSH	key	and	to	give	you	a	name	for	the	key	(e.g.,	“build	server”);	you
can	then	use	that	information	to	fill	out	the	“Add	deploy	key”	screen,	as	shown
in	Figure	7-16.	In	a	few	situations	(like	merging	branches),	this	system	may	need
to	push	a	change	back	up	to	the	repository.	If	that’s	the	case,	be	sure	to	give	this
deploy	key	write	access	so	that	it	can	send	these	changes	back	up.

Figure	7-16.	Adding	a	deploy	key	to	a	GitHub	repo

Personal	Versus	Organizational

When	you	create	a	repository,	the	first	question	you	need	to	answer	is	whether
you	should	add	the	repository	to	your	personal	user	account	or	whether	you
should	add	it	to	an	organization	instead.

If	you	are	creating	a	personal	project,	you	probably	want	to	just	create	it	under
your	personal	GitHub	account.	However,	if	you’re	creating	a	project	that	you
know	you	will	want	to	be	owned	and/or	managed	by	an	entity	other	than
yourself—whether	a	whole	team	or	a	company—you	should	probably	create	an
organization	first	and	then	create	the	project	under	the	organization	so	you	can



easily	transfer	ownership	of	the	project	over	time.

This	isn’t	the	most	important	decision.	You	can	always	transfer	the	ownership	of
a	repository,	so	if	in	doubt,	feel	free	to	just	create	the	repo	under	your	user
account.	However,	if	you	know	that	you’re	going	to	be	building	a	project	for	an
organization,	you	might	want	to	create	the	organization	first.
Creating	an	Organization

You	can	create	an	organization	no	matter	where	you	are	on	the	site,	so	long	as
you	are	logged	in.	To	do	so,	click	the	+	sign	to	the	right	of	your	username	at	the
top	right	of	the	page,	and	from	the	drop-down	list	shown	in	Figure	7-17,	click
the	“New	organization”	option.	Though	the	options	you	see	may	be	slightly
different,	you	can	always	create	an	organization	or	a	new	repository.

Figure	7-17.	The	first	step	in	adding	a	new	organization

Clicking	this	option	will	take	you	to	a	page	similar	to	Figure	7-18	that	will	allow
you	to	create	a	new	organization.

Start	by	giving	the	organization	a	name	and	entering	the	email	address	for	the
billing	contact.	You’ll	then	want	to	select	a	plan.	If	all	of	your	projects	are
openly	accessible,	you	can	create	an	open	source	organization	for	free.	If	you
want	to	work	on	private	repositories	with	a	team	of	people,	you’ll	want	to	select
the	Team	plan	to	allow	them	to	better	coordinate	around	those	repositories.
Lastly,	if	you	want	more	business	features,	such	as	SAML	for	single	sign-on,	an
uptime	service-level	agreement,	and	guaranteed	support	response	time,	then	the
Business	plan	may	be	the	one	for	you.	If	you’re	interested	in	the	Business	plan
features	but	need	to	host	the	code	on	your	own	servers	behind	your	firewall,
following	the	link	at	the	bottom	to	contact	GitHub	about	the	GitHub	Enterprise
plan	would	be	best.

If	you	choose	to	create	an	organization	for	anything	other	than	public	code	(fully
open	source),	you’ll	be	asked	for	either	credit	card	or	PayPal	information	to
make	the	monthly	payments.



make	the	monthly	payments.

Figure	7-18.	Creating	a	new	organization	by	selecting	a	name,	billing	information,	and	plan	type

Once	you’ve	filled	in	the	fields	and	selected	a	plan,	the	next	thing	you’ll	want	to
do	is	invite	the	first	members,	who	will	have	the	role	of	owners	for	the
organization.	As	described	on	the	right	in	Figure	7-19,	these	members	will	have
administrative	privileges	over	all	of	the	organization’s	repositories	and	control
over	other	members’	actions	inside	the	organization	once	they	accept	the	invite.



Figure	7-19.	Inviting	owners	for	the	organization

Lastly,	you’ll	be	asked	a	few	questions	about	the	purpose	of	the	organization,
how	long	you	expect	it	to	be	used	for,	and	how	many	people	may	end	up	inside
of	it.	These	are	just	for	GitHub	to	have	a	better	idea	of	who	the	users	may	be	and
how	to	support	you.	You	can	skip	this	step	if	you’d	like!

Once	you’ve	created	an	organization,	the	next	thing	you’ll	want	to	do	is	double-
check	some	organizational	settings	and	create	some	teams.
Configuring	Your	Organization

As	an	organization	owner,	it’s	important	to	know	about	the	possible	organization
configurations.	If	you’re	going	to	be	managing	many	teams	of	developers	or	if



you’re	responsible	for	how	your	company’s	GitHub	presence	is	growing,	these
settings	can	make	your	growth	safer,	as	well	as	easier,	for	everyone	involved.
Organization	Profile

Configuring	an	organization	starts	by	clicking	the	Settings	tab	at	the	top	of	the
page.	By	default	you’ll	go	to	the	Profile	page	within	Settings,	as	shown	in
Figure	7-20,	which	allows	you	to	configure	some	high-level	settings.

Figure	7-20.	Give	others	an	idea	of	what	your	organization	is	about	by	filling	out	the	profile

The	first	couple	of	input	boxes	are	what	allow	others	to	know	who	you	are,
where	they	can	get	more	information,	and	maybe	where	your	company	is
located.	If	you	created	a	GitHub	Pages	site	in	Chapter	6,	the	URL	box	could	be	a
good	place	to	add	that	URL.

Further	down	on	the	Profile	page,	you’ll	see	information	about	the	GitHub
Developer	Program.	If	you	have	an	integration	with	GitHub	that	your	company
built,	you’ll	definitely	want	to	sign	up	here.	Below	that	is	a	familiar	section	from
the	repository	settings	earlier	in	this	chapter,	the	“Danger	zone.”	If	you	want	to



delete	your	organization,	or	change	the	name	due	to	an	error	or	company	name
change,	this	is	where	to	do	it.	As	the	name	suggests,	proceed	with	caution	when
taking	these	actions.	These	two	sections	are	presented	in	Figure	7-21.

Figure	7-21.	GitHub	Developer	Program	and	“Danger	zone”	sections

Member	Privileges

The	next	menu	option	within	Settings	is	for	configuring	the	default	behaviors	of
members	within	your	organization.	As	shown	in	Figure	7-22,	repository
creation,	deletion,	and	visibility	control	are	important	features	for	distributing
responsibility	within	your	organization.	Allowing	any	member	to	create	a
repository	belonging	to	the	organization	(and	also	delete	one,	for	example	if	it
was	created	in	error)	is	a	great	way	to	encourage	new	ideas.	You	may	also	want
the	developers	that	work	on	a	repository	to	be	able	to	decide	for	themselves
when	it’s	ready	to	be	shared	with	the	world,	and	when	to	change	the	visibility
from	private	to	public.	Alternatively,	these	requests	would	have	to	go	to	an
organization	owner,	which	may	be	more	secure	but	can	take	longer	and	seem
like	a	barrier.

At	the	bottom	of	the	“Member	privileges”	screen	are	the	default	permissions	for
each	individual	repository.	These	options,	shown	in	Figure	7-23,	allow	you	to
control	how	each	new	member	of	your	organization	will	interact	with	the
repositories	it	owns.	Because	these	are	the	defaults,	they	can	be	overwritten	by	a



team’s	settings	to	be	more	or	less	restrictive	depending	on	that	team	and
repository’s	needs.

Figure	7-22.	Member	privileges	for	repository	creation,	deletion,	and	privacy	changes



Figure	7-23.	Default	repository	permissions

Billing

Changing	or	reviewing	your	billing	is	done	from	the	Billing	screen,	the	overview
section	of	which	you	can	see	in	Figure	7-24.	As	your	organization	grows,	you
may	need	to	change	your	plan	from	Free	to	Team	or	Business,	or	you	may	need
additional	purchasing	add-ons	like	Git	LFS.	All	of	these	options	can	be	changed
and	edited	within	the	“Billing	overview”	section.

Figure	7-24.	Billing	overview

As	you	may	have	to	audit	your	billing,	this	work	could	be	assigned	to	one	or
more	users	within	the	organization	as	billing	managers.	This	specific	role	is	only
allowed	to	change	any	of	the	billing	details,	as	well	as	to	view	past	transactions
in	the	“Payment	history”	section.	These	two	sections	can	be	seen	in	Figure	7-25.



Figure	7-25.	Billing	managers	and	payment	history

Security

Setting	different	security	requirements,	like	two-factor	authentication	and,	if	you
are	on	the	Business	plan	on	GitHub.com,	enforcing	SAML	for	members,	is
important	for	a	healthy	organization.	These	settings	can	be	configured	on	the
Settings→Security	screen,	shown	in	Figure	7-26.

Figure	7-26.	Security	requirements

Audit	Log

It	can	be	important	at	times	to	track	down	when	certain	actions	took	place	and
who	took	them.	Imagine	a	user	reports	his	laptop	as	stolen	while	he’s	away	on	a
trip,	and	you	don’t	know	if	you	need	to	temporarily	remove	this	user	from	your
organization	until	he’s	reset	his	passwords.	If	you	looked	into	the	audit	logs	and
saw	access	to	the	account	coming	from	an	area	of	the	world	that	it	shouldn’t,	that
would	be	a	clear	sign	to	remove	that	member	from	your	organization	and
double-check	what	actions	had	been	taken	so	you	could	do	some	damage



control.	As	shown	in	Figure	7-27,	the	“Audit	log”	section	of	the	Settings	tab
allows	you	to	not	only	filter	by	certain	common	categories,	but	also	any	search
criteria	that	may	be	helpful	to	look	for,	like	a	username	or	repository	name.

Figure	7-27.	The	Settings→“Audit	log”	screen

Blocked	Users

Blocking	malicious	users	at	the	organization	level	is	a	good	way	to	ensure	those
users	will	no	longer	be	able	to	interact	with	your	organization’s	repositories,	or
even	watch	and	star	them.	This	should	not	necessarily	be	a	feature	used	to
counteract	a	heated	discussion,	as	it	is	a	severe	punishment.	You	should	instead
use	this	option	if	you	wish	to	block	someone	from	interacting	with	you	and	your
organization	completely,	for	your	own	or	your	members’	safety.	On	the
“Blocked	users”	screen,	you	can	review	who	is	already	blocked	and	an	overview
of	the	actions	they	are	restricted	from	(see	Figure	7-28).



Figure	7-28.	The	Settings→“Blocked	users”	screen

Webhooks

Organization	webhooks	are	similar	to	repository	webhooks	in	that	they	allow
certain	actions	to	be	taken	given	some	event,	but	at	an	organizational	level.
Using	the	previous	section	as	an	example,	you	may	want	to	notify	an	external
server	every	time	a	user	has	been	blocked	by	the	organization	in	order	to	take
additional	action.	You	might	also	want	notifications	to	be	sent	when	a	repository
changes	from	public	to	private,	or	when	membership	within	the	organization	has
changed.	There	are	a	lot	of	possibilities	to	expand	your	team	management	with
webhooks	at	the	organizational	level;	to	explore	these,	select	the	“Let	me	select
individual	events”	option	as	shown	in	Figure	7-29.



Figure	7-29.	Adding	organization	webhooks

Third-Party	Access	and	Installed	GitHub	Apps

When	members	of	your	organization	integrate	and	interact	with	third-party
software	on	GitHub,	they	may	have	to	sign	in	to	those	applications	and	authorize
them	to	access	certain	data	from	GitHub.	Sometimes,	these	applications	need
organization-level	information	that,	as	an	owner	of	your	organization,	you	want
to	have	control	over.	Controlling	these	requests	and	viewing	any	pending	ones	is
done	via	the	Settings→“Third-party	access”	screen,	seen	in	Figure	7-30.



Figure	7-30.	Viewing	third-party	access	restrictions	and	pending	requests

As	an	organization	owner,	if	you’ve	purchased	any	applications	from	the
Marketplace	(as	discussed	in	“Integrating	with	Other	Systems”),	those	items	will
appear	on	the	Installed	GitHub	Apps	screen.
Repository	Topics

Repository	topics,	which	help	people	discover	your	repositories	and	know	what
software	topics	a	repository	may	cover,	can	be	managed	all	at	once	from	the
Settings→“Repository	topics”	screen,	shown	in	Figure	7-31.	Adding	topics	to
your	repositories	can	be	important	for	attracting	new	developers	and	making	it
easier	for	your	current	developers	to	find	repositories	within	your	organization.



Figure	7-31.	Organization-owned	repositories	and	their	topics

Projects

We	talked	about	GitHub	Projects	at	the	repository	level	back	in	Chapter	5,	but
sometimes	the	projects	you’re	working	on	span	across	multiple	repositories.
Tracking	the	work	across	those	repositories	can	be	made	more	efficient	by
having	an	organization-wide	project	and	collecting	issues	and	pull	requests	from
multiple	locations.	To	allow	this,	you	need	to	enable	the	settings	on	the	Projects
screen,	shown	in	Figure	7-32.	If	you	want	to	disable	GitHub	Projects	for	all	of
your	repositories,	you	can	also	do	so	from	this	screen.



Figure	7-32.	Enabling	organization-wide	projects

Managing	Members	and	Teams

If	you	create	a	repository	under	your	user	account,	you	can	just	add	collaborators
directly	to	a	project.	However,	if	you	create	a	repository	under	an	organization
and	want	to	allow	other	people	to	access	it,	either	they’ll	have	to	be	members	of
your	organization	(see	“Member	Privileges”	for	details	on	setting	permissions)
or	you’ll	have	to	create	teams.

By	default,	when	you	create	an	organization,	GitHub	will	assign	you	to	a	role
called	“owners.”	Owners	have	complete	administrative	access	to	the
organization.	These	people	will	help	with	managing	the	organization’s	settings,
and	by	default	will	have	administrative	access	to	all	of	the	repositories	owned	by
the	organization	without	needing	to	be	given	further	permissions	within	a	team
or	by	any	other	means.	“Members,”	on	the	other	hand,	is	a	permission	title	for
everyone	else	who	belongs	to	the	organization.	This	shouldn’t	be	confused	with
the	role	of	an	outside	collaborator,	who	is	someone	who	was	added	to	a	single
repository	owned	by	the	organization.	While	members	typically	have	default
permission	to	read	and	view	all	repositories	owned	by	the	organization	(public
and	private),	it	is	usually	a	best	practice	to	create	a	new	team	to	handle



organizational	structure	and	control	over	who	can	write	to	the	organization’s
repositories.	If	you’d	like	to	only	invite	members,	you	can	do	so	by	clicking	the
“Invite	member”	button	within	the	People	tab	on	the	organization	page,	as
shown	in	Figure	7-33.

Figure	7-33.	Inviting	members	to	your	organization

After	you’ve	invited	the	new	member,	you’ll	see	a	screen	similar	to	Figure	7-34
where	you	can	then	decide	if	this	new	member	should	be	an	owner	or	add	them
to	some	teams	if	you	have	teams	already.	This	makes	it	quick	and	easy	to	grow
your	organization	once	you	have	teams	set	up.

If	you	don’t	have	teams	in	your	organization	yet,	you’ll	want	to	create	some	to
more	easily	handle	permissions	for	individual	repositories	when	adding
members.	When	creating	the	team	names,	you	may	want	to	start	with	traditional
teams	like	“engineering,”	“design,”	“product-design,”	“frontend-engineers,”	or
“platform-engineering.”	Once	you	have	these	teams	set	up,	you	may	want	to
create	additional	ad	hoc	teams	like	“senior-developers”	for	the	more	senior
developers,	“infrastructure”	for	the	people	knowledgeable	about	your	operations
or	infrastructure,	“github-experts”	for	people	who	can	assist	with	Git	and	GitHub
questions,	or	even	“code-review”	to	make	it	easy	for	that	team	to	review	code	in
the	repository.	If	I’m	working	within	a	larger	company,	I	might	also	create	teams
for	business	units	or	functions	like	marketing	and	legal.	Besides	handling



permissions,	these	teams	make	it	easy	to	bring	relevant	people	into	appropriate
discussions	by	@mentioning	the	team.	The	@mention	format	is	slightly	different
for	teams	than	it	is	for	an	individual:	the	format	it	follows	is
@<organization>/<team_name>.

Figure	7-34.	Adding	a	new	member	to	some	existing	teams

To	create	a	team,	go	to	the	organization’s	home	page	and	click	the	Teams	tab	at
the	top	of	the	page,	highlighted	in	Figure	7-35.



Figure	7-35.	Locating	the	Teams	tab	on	the	organization’s	home	page

When	you	visit	the	Teams	page	for	the	first	time,	you	should	see	a	screen	similar
to	Figure	7-36	to	help	you	get	started	on	creating	teams,	because	you	haven’t
created	one	yet.	Once	you	have	created	some	teams	it	will	show	a	list	of	all	of
the	teams	within	your	organization,	each	with	a	row	of	small	profile	pictures
showing	some	or	all	members	of	the	team,	depending	on	its	size,	and	any	nested
child	teams.	An	example	of	a	Teams	page	with	teams	is	shown	in	Figure	7-37.

Figure	7-36.	Bare	Teams	page



Figure	7-37.	Viewing	the	existing	teams	within	the	organization

To	create	a	new	team,	click	the	green	“New	team”	button	at	the	bottom	of	the
content	area	if	this	is	your	first	team,	or	on	the	right	side	of	the	page	above	the
team	listing	if	this	is	for	an	additional	team.	Afterwards,	you	should	see	a	screen
similar	to	Figure	7-38.

Figure	7-38.	Adding	a	new	team	to	an	organization



Give	your	team	a	name.	If	you’re	just	working	with	a	couple	of	developers	on	a
single	project,	it	might	be	something	as	simple	as	“developers.”	If	you	are	part	of
a	larger	organization,	the	name	could	be	“engineering”	for	your	entire
engineering	department,	or	it	could	be	the	name	of	the	project	team:	“mobile-
devs,”	“api,”	“designers,”	etc.

You	can	add	an	optional	description	if	the	intent	of	the	team	might	not	be
obvious	to	members	of	your	organization.	Additionally,	this	description	can
make	it	easier	to	@mention	the	team	if	someone	starts	typing	some	words	from
the	description	instead	of	the	name	itself.	For	a	smaller,	focused	team	belonging
to	a	larger	hierarchical	component	of	your	company,	like	an	“api”	team	that’s
part	of	the	larger	“engineering”	team,	you	may	want	to	select	a	parent	team	to
nest	this	child	team	under.	Child	teams	inherit	the	parent’s	access	permissions,
simplifying	permissions	management	for	large	groups:	you	can	be	very	broad	at
the	high	level	and	give	more	granular	access	to	more	restrictive	repositories	to
lower	child	teams.	Members	of	child	teams	also	receive	notifications	when	the
parent	team	is	@mentioned,	simplifying	communication	with	multiple	groups	of
people.	When	you’ve	finished,	click	the	“Create	team”	button.

Once	you’ve	created	a	team,	the	next	step	is	to	add	members	to	the	team.	To	do
this,	click	the	“Add	a	member”	button	on	the	team	page.	As	shown	in	Figure	7-
39,	just	start	to	enter	the	GitHub	username	or	the	name	the	user	has	displayed	on
their	profile	for	each	person	you	want	to	add	to	the	team,	and	the	name	should
autocomplete	as	you’re	typing.	Usernames	will	be	easier	for	GitHub	to
autocomplete,	as	they	are	fully	unique.	If	the	people	you	want	to	add	to	this	team
are	not	members	of	the	organization	yet,	this	will	also	invite	them	to	the
organization.	Once	they	accept	the	invite,	they	will	be	members	of	the
organization	as	well	as	being	on	the	team.



Figure	7-39.	Adding	a	user	to	a	team

Next,	you	will	want	to	give	the	team	some	repositories	to	work	with	so	you	can
have	more	granular	access	for	your	members.	To	add	repositories	to	the	team,
click	the	Repositories	tab	on	the	team	page.	Once	there,	press	the	“Add
repository”	button	to	see	a	screen	similar	to	Figure	7-40.	Again,	you	can	start
typing	the	name	of	the	repository	within	the	organization	to	add	to	the	team	and
it	will	autocomplete.

Figure	7-40.	Adding	repositories	to	a	team

Once	a	team	has	a	repository,	you	may	want	to	change	the	permissions	for	how
that	team	interacts	with	it.	You	can	see	some	of	the	different	permission	options
in	Figure	7-41.



Figure	7-41.	Editing	team	permissions	for	a	repository

Changing	these	permissions	is	what	will	enable	you	to	have	more	fine-grained
access	for	the	members	within	your	organization.	If	this	team	just	needs	to
consume	and	read	code,	review	code	in	a	pull	request,	or	leave	comments	and
feedback,	perhaps	“read”	permission	is	sufficient.	If	they	are	contributing	to	the
repository	by	writing	and	pushing	code	in	addition	to	reading	from	it,	they’ll
need	“write”	access.	Finally,	if	you	want	them	to	not	only	be	able	to	read	and
write	the	code	but	also	configure	the	integrations,	invite	outside	collaborators,	or
control	some	of	the	code	review	for	the	repository,	perhaps	“admin”	is	the
correct	permission	level.

If	you	ever	need	to	edit	a	team’s	name,	description,	visibility,	or	parent	team,	or
delete	it	altogether,	that’s	done	from	the	Settings	tab.	Click	the	Settings	tab	at	the
top	of	the	team	page	and	you’ll	see	a	screen	similar	to	Figure	7-42.



Figure	7-42.	The	team	Settings	page

If	you	want	to	delete	the	team,	click	the	“Delete	this	team”	button	at	the	bottom
of	the	page.	You’ll	be	asked	whether	you’re	sure.	Just	click	OK,	and	the	team
will	be	deleted.

As	well	as	deleting	teams,	you	may	want	to	remove	a	member	from	a	team,	or
from	the	organization.	Removing	someone	from	a	single	team	is	best	done	from
the	team	page	itself.	Visit	the	individual	team	page	by	clicking	the	team	name	in
the	organization’s	list	of	teams.	On	the	Members	tab	of	the	team	page,	select	the
checkboxes	next	to	the	members	you	wish	to	remove	and	click	the	drop-down	at
the	top	of	the	member	list,	as	shown	in	Figure	7-43.	This	batch	user	management
option	will	allow	you	to	change	the	selected	members’	role	to	team	maintainers
or	remove	them	from	the	team	completely.	Once	you	select	“Remove	from
team,”	you’ll	be	given	a	warning	about	those	members	losing	their	forks,	as	well
as	a	summary	of	all	the	users	you’re	removing.	Press	“Remove	members”	to
confirm.



Figure	7-43.	Selecting	a	member	to	remove	from	the	team

Removing	a	member	from	the	organization	completely	can	be	done	by	selecting
the	individual	user	on	the	People	tab,	or	in	a	similar	bulk-edit	fashion	like	when
removing	members	from	a	team.	You	can	see	an	example	of	this	in	Figure	7-44.
Additionally,	if	you	want	to	keep	the	member	as	an	outside	collaborator	who	can
work	on	only	the	repositories	she	has	explicit	permissions	to	access,	you	can	do
that	here	as	well.

Figure	7-44.	Selecting	a	member	to	remove	from	the	organization

Congratulations!	If	you’ve	gotten	this	far	in	the	book,	you	should	be	ready	to	do
almost	anything	with	a	GitHub	repo.	You	should	be	able	to	view	the	state	of	a
project,	edit	the	files	in	a	project,	collaborate	with	your	team,	and	create	and



configure	a	new	repository.	In	the	next	chapter,	we’re	going	to	look	at	how	you
can	use	GitHub	Desktop	and	the	Atom	text	editor	to	download	a	copy	of	a
GitHub	repository	and	make	some	simple	changes	to	it	on	your	laptop,	to	take
your	software	development	experience	a	step	further.



Chapter	8.	Downloading	and	Working	Offline

You	may	never	need	to	clone	(download)	a	copy	of	a	repository	at	all.	As	we’ve
seen	in	this	book,	you	can	use	the	GitHub	web	interface	to	view	the	state	of	a
project,	edit	content,	collaborate	with	your	team,	and	set	up	and	configure	a
repository.	However,	sometimes	it’s	necessary	to	clone	a	repository.	In	this
chapter	we’ll	look	at	why	you	might	want	to	clone	a	repo	and	how	you	would	do
so	using	GitHub	Desktop.	If	you’re	running	Linux,	though	there	are	web
interfaces	out	there,	you’ll	probably	be	better	off	just	installing	Git	directly	and
learning	the	command-line	interface	for	working	with	Git	repositories—but
that’s	outside	of	the	scope	of	this	book.
Why	Clone	a	Repository?

There	are	a	number	of	reasons	why	you	might	decide	to	clone	a	repository.
Some	of	the	most	common	ones	include	the	following:

Creating	a	backup
When	you	clone	a	repository,	it	creates	a	full	copy	of	the	project—including
all	branches,	tags,	and	history—on	your	computer.	Sometimes	it’s	worth
cloning	a	repository	and	pulling	the	changes	down	regularly	just	to	know	that
you	have	a	full	copy	of	the	project	safely	on	your	machine.	This	does	not
grab	any	GitHub-specific	items	like	issues	or	pull	requests,	however.

Editing	in	an	IDE	or	text	editor
The	web-based	interface	isn’t	as	powerful	as	editing	in	an	IDE	(integrated
development	environment)	or	your	favorite	text	editor,	so	if	you’re	editing
content	all	day,	you’re	going	to	want	to	do	that	locally	on	your	machine.

Editing	offline
You	can’t	edit	directly	on	GitHub	unless	you	have	an	Internet	connection,	so
if	you	want	to	be	able	to	keep	working	on	your	project	whether	or	not	you’re
connected,	you’re	going	to	want	to	clone	your	repo	and	work	on	it	locally.

Editing	multiple	files
One	of	the	current	key	limitations	when	editing	on	GitHub	directly	is	that
there	is	no	way	to	group	a	set	of	related	changes	and	make	them	as	a	single
commit.

Running	the	code
Sometimes	you’ll	want	to	be	able	to	run	the	code	locally	to	test	exactly	how



it	works.

Running	the	tests
If	you	have	automated	tests	for	a	project,	you	may	want	to	be	able	to	run
those	tests	locally	to	confirm	that	recent	changes	haven’t	broken	the
software.

If	you	need	to	do	any	of	the	preceding	things,	you’ll	need	to	either	install	the	Git
version	control	system	directly	onto	your	computer	or	install	a	GUI	(graphical
user	interface)	that	makes	it	easier	for	you	to	use	Git	to	perform	common
operations.

A	number	of	different	applications	are	available	that	provide	GUIs	for	working
with	your	Git	repositories.	In	this	chapter,	we’re	going	to	cover	the	GUI
provided	by	GitHub:	GitHub	Desktop.
GitHub	Desktop

GitHub’s	native	client	is	completely	open	source—if	you	or	your	developers
ever	want	to	be	involved	with	the	community,	you	should	check	out	the
repository	for	this	application.	On	the	repository	page,	you’ll	find	additional
install	instructions	as	well	as	ways	to	contribute	and	report	bugs.	However,	the
traditional	way	to	get	a	copy	of	GitHub	Desktop	is	to	go	to
https://desktop.github.com.	You	should	see	a	screen	similar	to	Figure	8-1.

https://github.com/desktop/desktop
https://desktop.github.com


Figure	8-1.	The	GitHub	Desktop	web	page

Click	the	“Download	for	macOS”	or	“Download	for	Windows”	link	to	get
started.	This	will	download	either	a	ZIP	file	(macOS	version)	or	a	setup	installer
(Windows)	to	the	location	on	your	computer	that	your	browser	typically
downloads	files	to—usually	your	Downloads	folder.	If	you	have	the	ZIP	file,
just	double-click	it	and	it	should	expand	to	a	file	called	GitHub	Desktop	for	you
to	work	with.	On	Windows	you’ll	just	have	a	file	called	GitHubDesktopSetup
that	will	take	care	of	everything	for	you	by	bringing	you	through	an	install
wizard.	An	example	of	what	these	files	should	look	like	in	either	operating
system	is	shown	in	Figure	8-2.



Figure	8-2.	The	GitHub	Desktop	ZIP	file	and	application	file

Drag	the	GitHub	Desktop	file	into	your	Applications	folder	for	long-term
keeping	if	you’re	installing	on	macOS.	Regardless	of	your	operating	system,
double-clicking	either	the	GitHub	Desktop	file	in	your	Applications	folder	or	the
GitHubDesktopSetup	in	your	Downloads	folder	will	start	the	GitHub	Desktop
installation	and	setup	process.	You	should	see	a	screen	similar	to	Figure	8-3
welcoming	you	to	GitHub	Desktop.

Figure	8-3.	Welcome	to	GitHub	Desktop

Unless	your	company	has	a	GitHub	Enterprise	setup	and	you’re	going	through
this	setup	specifically	for	that,	it	would	be	best	to	first	sign	into	GitHub.com	by
clicking	the	“Sign	into	GitHub.com”	link.	If	you	later	need	to	sign	into	GitHub
Enterprise,	you’ll	be	able	to	do	that	as	well.	If	you	have	enabled	two-factor
authentication	to	make	your	account	more	secure,	you’ll	be	asked	to	enter	the
code	that	either	was	texted	to	your	mobile	phone	or	is	available	in	the	two-factor
authentication	app	you	set	up.

Once	you’ve	done	this,	you	should	see	a	screen	similar	to	Figure	8-4.



Click	the	“Sign	in”	button,	and	you’ll	be	prompted	for	some	information	to
configure	Git.	In	the	first	text	box,	enter	the	name	you	want	to	be	known	by,	and
in	the	second,	enter	the	email	address	you’d	like	your	commits	to	be	associated
with.	Usually	you’ll	enter	your	full	name	into	the	first	text	box	and	the	same
email	address	you	use	for	your	GitHub	account	in	the	second	one,	as	I’ve	done
in	Figure	8-5.

Figure	8-4.	Sign	into	your	GitHub	account



Figure	8-5.	Configuring	your	Git	settings

Click	the	Continue	button	and	you’ll	be	taken	to	a	screen	that	allows	you	to
create	a	new	repository,	add	an	existing	repository	you	have	on	your	computer,
or	clone	a	repository	from	GitHub.	As	you	have	more	repositories	that	you	work
with	locally,	you’ll	see	different	repositories	here;	for	now,	you	should	see	a
blank	screen	that	looks	like	Figure	8-6.



Figure	8-6.	The	home	screen	for	GitHub	Desktop

Now	that	you’ve	installed	GitHub	Desktop,	go	to	a	repository	that	you’d	like	to
clone	(download)	and	that	you	own	or	are	a	collaborator	on.	You	can	clone	any
public	repo,	but	you	won’t	be	able	to	push	your	changes	back	up	to	GitHub
unless	you’re	either	an	owner,	a	collaborator,	or	have	sufficient	write
permissions	within	the	organization	if	it	belongs	to	one.	I’m	going	to	reuse	the
repository	I	created	back	in	Chapter	3	to	continue	where	we	left	off.

If	you	look	at	the	right	side	of	the	page	above	the	file	list,	you	should	see	the
“Clone	or	download”	button	that,	when	pressed,	will	give	you	two	options:
“Open	in	Desktop”	or	“Download	ZIP”	as	shown	in	Figure	8-7.	Go	ahead	and
press	“Open	in	Desktop”	to	get	this	repository	onto	your	computer.

When	you	click	“Open	in	Desktop,”	GitHub	Desktop	will	open	up	and	present
you	with	some	options	for	where	to	save	this	repository	and	what	the	URL	of	the
repository	is	on	GitHub.	This	information	will	be	prefilled	for	you	and	should
look	similar	to	Figure	8-8.	It	may	be	best	to	keep	those	defaults	for	now;	if	you
later	decide	to	move	this	folder	to	a	different	location,	you	will	just	have	to	let
GitHub	Desktop	know	where	you’ve	moved	it	to.



Figure	8-7.	Clone	or	download	options	in	a	repository

Figure	8-8.	Confirming	where	to	clone	the	repository

Once	the	repo	has	been	successfully	cloned,	you	should	see	a	screen	similar	to
Figure	8-9.



Figure	8-9.	Viewing	a	repo	in	GitHub	Desktop

If	at	any	time	you	want	to	switch	to	a	different	repository	you	have	a	copy	of
locally,	you	can	do	so	from	the	drop-down	in	the	upper-left	corner.	For	now,
let’s	take	a	look	at	some	of	the	other	areas	of	GitHub	Desktop	before	we	start
making	changes	to	push	back	to	GitHub.
Viewing	Changes

There	are	two	tabs	on	the	home	screen	of	a	repository	in	GitHub	Desktop:
Changes	and	History.	You’ll	notice	that	initially	there’s	not	much	to	see,	but
that’s	because	you	haven’t	actually	changed	any	files	yet.	This	will	change	in
just	a	bit	as	you	start	editing	files.	If	you	click	History,	it	will	show	you	a	list	of
commits	on	your	current	branch,	as	shown	in	Figure	8-10.



Figure	8-10.	The	History	view

If	you	click	the	middle	drop-down	menu	that	mentions	the	current	branch	you’re
on,	you’ll	see	a	screen	similar	to	Figure	8-11.

Figure	8-11.	The	branch	list

If	you	clicked	History	earlier	and	didn’t	see	some	changes	you	expected,	you
may	have	needed	to	switch	to	a	new	branch—maybe	that	work	was	only	on	a
different	branch	and	hadn’t	yet	been	merged	into	where	you	were	looking.	This
branch	view	shows	a	list	of	all	of	the	branches	that	you’ve	created	locally	and	all
of	the	other	branches	that	are	on	GitHub,	and	clicking	on	one	will	switch	you	to
it.	Finally,	to	view	the	repository	settings,	you	need	to	click	on	the	Repository
drop-down	in	the	menu	bar	and	select	Repository	Settings,	as	shown	in	Figure	8-
12.



Figure	8-12.	Finding	the	repository	settings

Once	you	click	on	Repository	Settings	a	small	box	will	appear	with	two	tabs,
Remote	and	Ignored	Files,	as	shown	in	Figure	8-13.



Figure	8-13.	Files	ignored	by	this	repository

The	Remote	here	is	just	in	case	you	need	to	change	where	your	repository	is	on
GitHub	(because	you	renamed	it	or	transferred	it).	The	Ignored	Files	tab	is	for
files	you	don’t	want	Git	to	pay	attention	to	and	track	changes	of.	These	could	be
personal	note	files,	IDE	configurations,	executable	files,	log	files,	really
anything!	Lots	of	different	coding	languages	and	IDEs	often	have	standard	files
they	wish	to	ignore;	you	can	see	examples	of	these	at
https://github.com/github/gitignore.	You	may	also	see	this	populated	already	if
the	repository	you	cloned	was	not	brand	new.

Hopefully,	now	you	have	enough	familiarity	with	the	interface	to	know	how	to
clone	a	repository	and	where	certain	functionality	is	should	you	need	to	do	so
using	the	GitHub	Desktop	application.	The	next	section	will	take	you	a	step
further	in	actually	editing	some	additional	content	with	a	more	realistic
workflow.
GitHub	Desktop	and	Atom

To	really	use	GitHub	Desktop	to	its	full	potential,	you	need	to	start	changing
files	with	a	text	editor.	You	may	have	your	preference	of	text	editor,	but	to
continue	we’re	going	to	be	using	Atom,	GitHub’s	open	source	text	editor.	To	get
started	with	Atom,	download	it	from	the	Atom	website,	which	should	look
similar	to	Figure	8-14.

https://github.com/github/gitignore
https://atom.io


Figure	8-14.	The	Atom	text	editor’s	home	page

We’re	just	going	to	use	it	to	familiarize	you	with	workflows	in	GitHub	Desktop
for	now,	but	Atom	itself	has	Git	and	GitHub	functionality	built	into	it.
Additionally,	this	functionality	and	its	appearance	is	similar	to	that	of	GitHub
Desktop	because	it’s	built	with	the	same	underlying	technology,	which	is	called
Electron.	If	you	ever	have	a	website	that	you	need	to	have	a	desktop	version	of,
you	may	want	to	check	out	https://electron.atom.io.

Getting	started	with	Atom	is	similar	to	GitHub	Desktop,	though	you	don’t	have
to	go	through	a	sign-in	and	setup	process.	Start	by	clicking	the	“Download	For
Mac”	or	“Download	Windows	64-bit	Installer”	link	on	the	home	page.	Just	like
with	GitHub	Desktop,	this	will	download	a	ZIP	file	for	Mac	or	a	setup	file	for
Windows.	In	Windows,	once	you	click	this	setup	file	everything	is	taken	care	of.
On	a	Mac,	you	will	need	to	double-click	the	ZIP	file,	and	then	you	should	move
the	application	that’s	contained	within	into	your	Applications	folder	and	double-
click	that	file	to	open	and	install	Atom.	Once	this	finishes	on	either	operating
system,	you	should	see	a	welcome	screen	with	some	information	just	like
Figure	8-15.

https://electron.atom.io


Figure	8-15.	Welcome	to	Atom

This	book	won’t	be	going	through	and	explaining	how	to	use	Atom,	with	its
seemingly	limitless	extensibility.	However,	a	lot	can	be	learned	by	going
through	the	Welcome	Guide	you	see	in	Figure	8-15.	If	you	ever	need	to	get	back
to	it,	you	can	always	find	it	in	the	Help	menu.
Creating	a	Branch	and	Editing	Files

To	make	a	new	commit	using	GitHub	Desktop,	you	will	want	to	start	by	creating
a	new	branch.	Creating	a	branch	before	you	edit	any	files	and	make	any	commits
is	not	only	required	for	making	a	pull	request,	it’s	also	a	best	practice.	In
Figure	8-16	you	can	see	that	to	do	so	I	need	to	select	New	Branch	from	the
Branch	menu,	and	then	in	Figure	8-17	I’m	creating	the	branch	and	naming	it
updating-documentation.



Figure	8-16.	The	menu	option	to	create	a	new	branch

Figure	8-17.	Creating	a	new	branch

If	you	look	at	the	middle	drop-down	menu	on	your	screen,	you	should	see	that
you’re	on	the	branch	you	just	created.	Now	you	need	to	add	or	edit	some
content.	To	do	that,	you	need	to	open	Atom.	GitHub	Desktop	makes	that	easy	to



do	right	from	the	Repository	menu,	as	seen	in	Figure	8-18.

Figure	8-18.	Open	your	current	repository	directly	in	Atom

Let’s	walk	through	an	example	together.	Once	Atom	opens,	we’re	going	to
update	the	repository’s	documentation	a	little	bit,	just	like	was	hinted	at	in	the
branch	name.	Though	we	could	make	changes	to	the	repository	in	the	web
editor,	the	changes	we’ll	make	are	not	possible	to	do	in	a	single	step.	We	want	to
create	a	new	file	and	edit	README.md	to	point	to	that	new	file.	I’d	have	to	do
this	in	at	least	two	steps	in	the	web	editor,	and	I	might	not	even	have	a
connection	to	the	internet	when	I’m	doing	changes	like	this.

The	first	thing	we	should	do	is	to	create	a	new	file	for	our	contributing
guidelines.	Though	these	are	in	README.md,	GitHub	will	link	to	the
contributing	guidelines	in	every	pull	request	sent	to	this	repository	if	we	add
these	guidelines	to	a	file	called	CONTRIBUTING.md.	As	you	can	see	in
Figure	8-19,	the	first	step	is	to	create	the	new	file	by	right-clicking	the	project
name	in	the	left	panel	(the	tree	view).	This	creates	the	new	file	at	the	top	level	of
the	repository	and	not	in	any	folder.	When	you	select	New	File,	you	should	see	a
dialog	box	like	the	one	in	Figure	8-20	asking	you	to	name	the	file.	Name	it
CONTRIBUTING.md—be	careful	not	to	forget	the	file	extension	if	you	want
your	content	to	highlight	and	render	appropriately!	If	you	do	forget	the	file
extension,	you	can	always	right-click	the	file	and	select	“Rename”	to	rename	it.



Figure	8-19.	Right-click	in	the	tree	view	to	create	a	new	file

Figure	8-20.	Name	the	file	CONTRIBUTING.md

Once	the	new	file	is	created,	we	need	to	change	the	section	“How	to	contribute”
in	README.md	to	point	to	this	new	file	using	basic	Markdown	formatting,
which	you	can	see	in	Figure	8-21.



Figure	8-21.	Markdown	link	to	CONTRIBUTING.md

To	finish	out	the	feature—and	this	is	the	part	that	can’t	be	done	in	the	web
browser	as	easily	without	already	having	a	commit—copy	and	paste	the	original
contributing	steps	into	CONTRIBUTING.md,	as	seen	in	Figure	8-22.	Once	this	is
there,	make	sure	both	files	are	saved	before	switching	back	to	looking	at	GitHub
Desktop	to	make	the	commit.

Figure	8-22.	Content	copied	into	CONTRIBUTING.md

Creating	a	Commit

Now	that	the	files	have	been	edited,	let’s	create	a	commit	to	record	in	the	history
that	these	changes	have	happened.	The	reason	we	want	these	changes	to	be
recorded	together	is	because	they	are	the	same	logical	unit	of	work.	There	are
many	preferences	when	making	commits	in	the	software	development
community,	and	this	is	only	a	rule	of	thumb,	but	it	can	make	it	easier	for	others
to	follow	our	work.	If	we	switch	back	to	the	GitHub	Desktop	application	we
should	see	that	it	has	already	detected	our	changes,	like	in	Figure	8-23.

One	important	thing	to	notice	in	Figure	8-23	is	that	both	files	that	have	been
edited	are	checked	in	the	Changes	tab.	If	one	of	them	were	to	be	unselected,	then
that	file	would	not	be	committed.	This	can	be	useful	when	you	are	editing
multiple	files	at	once	but	are	not	yet	ready	to	make	a	commit	on	one	of	them.
Similarly,	when	you	click	on	either	file	to	view	the	changes	in	that	file,	you	can
see	the	diff	of	the	changes,	just	like	when	you	view	a	pull	request.



Figure	8-23.	GitHub	Desktop	has	detected	the	changes

Just	like	in	the	workflow	outlined	at	the	beginning	of	Chapter	3,	we	need	to
write	a	commit	message	to	record	this	change.	An	example	commit	message	can
be	seen	in	Figure	8-24.	Notice	that	just	like	before,	you	do	not	need	to	include
anything	in	the	“description”	part	of	the	commit	message,	though	it	may	be
useful	for	complicated	changes.

Figure	8-24.	Sample	commit	message

Now	that	we	have	some	changes	to	discuss,	we	need	to	push	our	changes	up	to



Now	that	we	have	some	changes	to	discuss,	we	need	to	push	our	changes	up	to
GitHub	to	open	a	pull	request.
Creating	a	Pull	Request	from	GitHub	Desktop

There	are	a	few	ways	to	create	a	pull	request,	but	one	step	is	required	before	we
can	begin.	So	far	the	work	we’ve	created,	the	files	we’ve	edited,	and	the	changes
we’ve	committed	only	exist	locally	on	our	computers.	We	need	to	send	them	up
to	GitHub	so	others	can	work	on	them,	but	also	so	we	can	create	the	pull	request.
Previously,	we	were	already	working	in	the	web	browser,	so	there	was	no	need
to	push	these	changes	up	to	GitHub.

Whenever	you	need	to	send	work	to	GitHub,	or	grab	some	work	a	collaborator
has	sent	to	the	repository,	you	can	do	this	from	the	rightmost	menu,	which
should	look	similar	to	Figure	8-25.	When	you	work	on	a	branch	that	starts	out
just	on	your	computer	first,	like	we’ve	been	doing	here,	that	menu	will	appear	as
it	does	in	Figure	8-25.	Afterwards,	you’ll	see	a	syncing	option	that	will	send	any
changes	you’ve	made	on	your	computer	or	receive	any	changes	that	have	been
pushed	up	to	GitHub	onto	that	branch.

Figure	8-25.	The	menu	option	for	publishing	your	changes

Though	pushing	our	changes	is	important,	we	have	yet	to	start	our	conversation
about	these	changes	in	a	pull	request.	This	can	be	done	from	the	GitHub	Desktop
Branch	menu,	as	seen	in	Figure	8-26.	Choosing	the	Create	Pull	Request	option
will	open	a	browser	window	to	the	repository	with	a	new	pull	request	started.	If
you	wanted	to,	you	could	also	have	done	this	manually	from	the	repository	home
page	in	a	browser	window.



Figure	8-26.	The	menu	option	to	start	a	pull	request

Just	like	we	did	at	the	beginning	of	Chapter	4,	we	need	to	fill	in	some
information	to	start	our	pull	request.	I’ve	filled	in	some	sample	information	in
Figure	8-27.



Figure	8-27.	Start	the	pull	request	by	starting	the	conversation

If	this	was	a	more	serious	repository	with	collaborators,	I	might	go	through	some
proper	code	review	and	wait	for	some	integration	tests	to	run.	However,	this	is
just	my	own	sample	repository,	so	I’m	going	to	merge	the	changes	as	soon	as	the
pull	request	is	created.

The	last	part	of	this	workflow	is	to	ensure	all	of	the	work	that	has	been	done	on
GitHub	is	brought	down	to	your	computer.	The	easiest	way	to	do	this	is	to
switch	back	to	the	master	branch	from	the	middle	menu,	which	displays	the
current	branch,	and	make	sure	you	fetch	your	changes.	Once	you’ve	done	this,
you’ll	see	a	notification	of	how	many	changes	there	are	on	the	server	that	you
need	to	pull	in;	as	you	can	see	in	Figure	8-28,	there	are	two	changes.	After	these
changes	are	pulled	in,	the	History	tab	should	show	those	changes	in	its	log.

Figure	8-28.	Pull	changes	from	GitHub	to	ensure	your	master	branch	is	up	to	date

At	this	point,	you	have	all	the	tools	you	need	available	to	you	for	continued
software	development	and	expanding	your	workflows	and	collaboration	even
further!	



Chapter	9.	Next	Steps

We’ve	covered	a	lot	of	ground	in	this	book.	We	started	by	looking	at	how	to
view	a	project	and	then	moved	through	the	process	of	forking	a	project,	making
edits	and	offering	them	back,	and	then	collaborating	on	a	single	repository,	all
with	pull	requests.	We	looked	at	how	to	create	and	configure	a	new	repository,
as	well	as	an	organization,	and	how	to	use	the	GitHub	Desktop	client	to
download	and	work	on	repositories	locally.

For	many	people,	this	is	all	you’ll	need	to	know.	The	important	next	step	is	to
practice	until	the	skills	become	second	nature	and	collaborating	via	GitHub
becomes	a	natural	way	for	you	to	work	with	teams	of	people	on	text-based	files
—whether	source	code	or	other	projects.

There	are	some	things	that	can	only	or	best	be	done	on	the	command	line.	You
may	never	need	to	make	the	jump	to	the	command	line,	but	if	you’re	working	on
projects	in	Git	all	day,	every	day,	it	makes	sense	to	learn	how	to	use	Git	from	the
command	line.	Jon	Loeliger	and	Matthew	McCullough	have	created	a	great	book
called	Version	Control	with	Git	(O’Reilly),	which	would	be	an	excellent	next
step	if	you	wanted	to	learn	more	about	using	Git	from	the	command	line.

GitHub	also	provides	a	number	of	resources	for	learning	more	about	both	Git
and	GitHub.	For	more	information,	go	to	https://services.github.com.

GitHub	is	going	to	become	an	increasingly	important	part	of	the	workflow	of
many	companies.	This	is	a	great	time	to	get	familiar	with	it.	Best	of	luck	with	the
journey!

Brent	Beer
Amsterdam
September	2017

http://shop.oreilly.com/product/0636920022862.do
https://services.github.com


Index
Symbols

@mention,	Creating	a	Pull	Request

A

animated	GIFs,	adding	to	comments,	Adding	Color	to	Comments

Atom	text	editor,	using	with	GitHub	Desktop,	GitHub	Desktop	and	Atom-
Creating	a	Pull	Request	from	GitHub	Desktop

audit	log,	configuring	for	organizations,	Audit	Log

B

billing	(for	organizations),	Billing

Blocked	users	setting,	Blocked	Users

branches,	Why	Use	Git?

branch	list	in	GitHub	Desktop,	Viewing	Changes

committing	to	a	branch,	Committing	to	a	Branch-Committing	to	a	Branch

configuring,	Configuring	Branches

protected	branches,	Protected	Branches

creating	and	editing	files	using	GitHub	Desktop	and	Atom,	Creating	a	Branch
and	Editing	Files-Creating	a	Commit

creating	pull	request	from,	Creating	a	Pull	Request	from	a	Branch-
Collaborating	on	Pull	Requests

defined,	Key	Concepts

number	of,	Introducing	the	Repository	Page

number	of	changes	on	long-lived	branches,	Reviewing	Pull	Requests



bug	fixes,	Viewing	Pull	Requests

C

cards,	adding	to	project	boards,	Creating	Columns	and	Adding	Cards

checkouts,	Key	Concepts

cloning,	Key	Concepts

reasons	for,	Why	Clone	a	Repository?

using	GitHub	Desktop,	GitHub	Desktop

code	frequency	graph,	The	Code	Frequency	Graph

collaboration,	Collaboration-Best	Practices	for	Pull	Requests

adding	a	file,	Adding	a	File

adding	collaborators	to	repositories,	Adding	Collaborators-Adding
Collaborators

committing	to	a	branch,	Committing	to	a	Branch-Committing	to	a	Branch

contributing	via	a	fork,	Contributing	via	a	Fork

creating	a	pull	request,	Creating	a	Pull	Request-Creating	a	Pull	Request

creating	a	pull	request	from	a	branch,	Creating	a	Pull	Request	from	a	Branch-
Collaborating	on	Pull	Requests

on	pull	requests,	Collaborating	on	Pull	Requests-Best	Practices	for	Pull
Requests

adding	color	to	comments,	Adding	Color	to	Comments

best	practices,	Best	Practices	for	Pull	Requests

commenting,	Commenting	on	Pull	Requests

contributing	to	pull	requests,	Contributing	to	Pull	Requests



deciding	who	should	merge	the	request,	Who	Should	Merge	a	Pull
Request?

involving	people,	Involving	People	with	Pull	Requests

merging	a	pull	request,	Merging	a	Pull	Request

notifications,	Pull	Request	Notifications

reviewing	pull	requests,	Reviewing	Pull	Requests

testing	a	pull	request,	Testing	a	Pull	Request

columns,	creating	on	project	boards,	Creating	Columns	and	Adding	Cards

comments

on	issues,	Commenting	on	Issues

on	pull	requests,	Commenting	on	Pull	Requests

adding	color	to,	Adding	Color	to	Comments

commit	messages,	Why	Use	Git?,	Key	Concepts

adding	a	new	file,	Adding	a	File

for	new	file	added,	Adding	a	File

in	pull	requests,	Creating	a	Pull	Request

viewing,	Viewing	the	Commit	History

commits,	Key	Concepts

adding	a	new	file,	Adding	a	File

creating	from	GitHub	Desktop,	Creating	a	Commit

graph	of,	The	Contributors	Graph,	The	Commits	Graph

number	of,	Introducing	the	Repository	Page



project	commit	history,	viewing	from	a	pull	request,	Creating	a	Pull	Request

referencing	issues	in,	Referencing	Issues	in	a	Commit

viewing	for	current	branch	in	GitHub	Desktop,	Viewing	Changes

viewing	from	a	pull	request,	Creating	a	Pull	Request

viewing	history	of,	Viewing	the	Commit	History-Viewing	Pull	Requests

community	profile,	The	Community	Profile

conflicts,	ability	to	resolve,	Why	Use	Git?

continuous	integration	and	delivery,	Configuring	Branches

(see	also	integration)

Deploy	keys	option,	Integrating	with	Other	Systems

GitHub	Apps	within	Continuous	Integration	category,	Integrating	with	Other
Systems

contract	developers,	creating	repository	for,	Configuring	Repositories	and
Organizations

contributors,	Introducing	the	Repository	Page

graph	of,	The	Contributors	Graph

CSS,	adding	for	styling	Pages	site,	Creating	a	Website	for	Your	Project

D

Danger	zone,	Configuring	a	Repository

for	changes	to	organizations,	Organization	Profile

dependencies

dependency	graph,	The	Dependency	Graph



state	of,	information	on,	Viewing	the	README.md	File

Deploy	keys	option,	Integrating	with	Other	Systems

diff	(difference),	Creating	a	Pull	Request

directories	(see	folders)

distributed	version	control	systems,	What	Is	Git?

documentation

of	changes,	with	commit	messages,	Why	Use	Git?

using	GitHub	Pages,	GitHub	Pages-Creating	a	Website	for	Yourself	or	Your
Organization

creating	a	website	for	your	project,	Creating	a	Website	for	Your	Project

creating	a	website	for	yourself	or	your	organization,	Creating	a	Website	for
Yourself	or	Your	Organization

wikis,	Wikis-Adding	and	Linking	to	a	Page	on	Your	Wiki

downloading	repositories	and	working	offline	(see	cloning;	GitHub	Desktop)

E

editing	on	GitHub,	limitations	of,	The	Limits	of	Editing	on	GitHub

emoji,	adding	to	comments,	Adding	Color	to	Comments

F

feature	branches,	Key	Concepts

files

adding,	Adding	a	File,	Adding	a	File

adding	empty	file	to	create	a	folder,	Creating	a	Folder



editing,	Editing	a	File-Renaming	or	Moving	a	File

"Files	changed"	tab	of	pull	request,	Creating	a	Pull	Request

renaming	or	moving,	Renaming	or	Moving	a	File

folders,	Introducing	the	Repository	Page

creating,	Creating	a	Folder

Git's	concept	of,	Working	with	Folders

putting	edited	file	in	different	folder,	Renaming	or	Moving	a	File

renaming,	Renaming	a	Folder

forking,	Key	Concepts

contributing	via	a	fork,	Contributing	via	a	Fork

forks	list,	The	Forks	List

G

GIFs,	animated,	adding	to	comments,	Adding	Color	to	Comments

Git

benefits	of	using,	Why	Use	Git?

configuring	in	GitHub	Desktop,	GitHub	Desktop

defined,	What	Is	Git?

folders,	Working	with	Folders

key	concepts,	Key	Concepts

learning	resources,	Next	Steps

using	on	Linux,	Downloading	and	Working	Offline



GitHub

about,	What	Is	GitHub?

benefits	of	using,	Why	Use	GitHub?

key	concepts,	Key	Concepts

learning	resources,	Creating	a	Pull	Request,	Next	Steps

limits	of	editing	on,	The	Limits	of	Editing	on	GitHub

GitHub	API,	Integrating	with	Other	Systems

GitHub	Apps,	Integrating	with	Other	Systems

installed,	and	third-party	access	for	organizations,	Third-Party	Access	and
Installed	GitHub	Apps

third-party	integration	installed	and	configured,	Integrating	with	Other
Systems

GitHub	Desktop,	GitHub	Desktop-Viewing	Changes

using	with	Atom	text	editor,	GitHub	Desktop	and	Atom-Creating	a	Pull
Request	from	GitHub	Desktop

creating	a	branch	and	editing	files,	Creating	a	Branch	and	Editing	Files-
Creating	a	Commit

creating	a	commit,	Creating	a	Commit

creating	pull	request,	Creating	a	Pull	Request	from	GitHub	Desktop

viewing	changes,	Viewing	Changes-Viewing	Changes

GitHub	Developer	Program,	Organization	Profile

GitHub	Marketplace,	Integrating	with	Other	Systems

GitHub	Pages,	GitHub	Pages-Creating	a	Website	for	Yourself	or	Your



Organization

creating	a	website	for	your	project,	Creating	a	Website	for	Your	Project

creating	a	website	for	yourself	or	your	organization,	Creating	a	Website	for
Yourself	or	Your	Organization

H

history

full	history	of	a	project	with	Git,	What	Is	Git?

multiple	streams	of,	Why	Use	Git?

I

ignored	files	in	GitHub	Desktop,	Viewing	Changes

Insights	feature

viewing,	Viewing	Insights-The	Traffic	Graph

code	frequency	graph,	The	Code	Frequency	Graph

commits	graph,	The	Commits	Graph

community	profile,	The	Community	Profile

contributors	graph,	The	Contributors	Graph

dependency	graph,	The	Dependency	Graph

forks	list,	The	Forks	List

network	graph,	The	Network	Graph

pulse	page,	Viewing	the	Pulse

traffic	graph,	The	Traffic	Graph

integration,	Integrating	with	Other	Systems-Personal	Versus	Organizational



Deploy	keys	option,	Integrating	with	Other	Systems

using	GitHub	API,	Integrating	with	Other	Systems

using	GitHub	Apps	and	GitHub	Marketplace,	Integrating	with	Other	Systems

using	webhooks,	Integrating	with	Other	Systems

interaction	limits,	temporary,	Configuring	a	Repository

Issues	feature,	Key	Concepts,	GitHub	Issues-Best	Practices	for	Issues

auto-closing	of	issues,	Configuring	Branches

best	practices	for	issues,	Best	Practices	for	Issues

commenting	on	issues,	Commenting	on	Issues

configuring,	Configuring	a	Repository

creating	an	issue,	Creating	a	New	Issue

managing	labels	for	issues,	Managing	Labels	for	Issues

managing	milestones	for	issues,	Managing	Milestones	for	Issues

referencing	issues	in	a	commit,	Referencing	Issues	in	a	Commit

viewing,	Viewing	Issues-Viewing	Projects

J

Jekyll	project,	Creating	a	Website	for	Yourself	or	Your	Organization

L

labels,	managing	for	issues,	Managing	Labels	for	Issues-Commenting	on	Issues

M

maintainers

@mention	for	pull	requests,	Creating	a	Pull	Request



allowing	edits	from,	Creating	a	Pull	Request

Markdown,	Getting	Started	with	a	Wiki

master	branch,	Why	Use	Git?

as	default	branch,	Configuring	Branches

commits	to,	Committing	to	a	Branch

defined,	Key	Concepts

keeping	up	to	date	on	GitHub	Desktop,	Creating	a	Pull	Request	from	GitHub
Desktop

Mastering	Markdown	guide,	Adding	and	Linking	to	a	Page	on	Your	Wiki

member	privileges	for	organizations,	Member	Privileges

members	and	teams,	managing	for	organizations,	Managing	Members	and
Teams-Managing	Members	and	Teams

adding	a	new	team,	Managing	Members	and	Teams

adding	members	to	teams,	Managing	Members	and	Teams

adding	new	member	to	existing	teams,	Managing	Members	and	Teams

adding	repositories	to	a	team,	Managing	Members	and	Teams

creating	teams,	Managing	Members	and	Teams

editing	team	permissions	for	a	repository,	Managing	Members	and	Teams

editing	team's	name,	description,	visibility,	parent	team	or	deleting	a	team,
Managing	Members	and	Teams

inviting	members,	Managing	Members	and	Teams

removing	a	member	from	a	team,	Managing	Members	and	Teams

removing	a	member	from	an	organization,	Managing	Members	and	Teams



merges,	Key	Concepts

Merge	button	options,	configuring,	Configuring	a	Repository

merging	a	pull	request,	Creating	a	Pull	Request,	Merging	a	Pull	Request

deciding	who	should	merge	the	request,	Who	Should	Merge	a	Pull
Request?

reverting	merge	commit	for	a	pull	request,	Creating	a	Pull	Request

milestones,	managing	for	issues,	Managing	Milestones	for	Issues

N

network	graph,	The	Network	Graph

new	features	requests,	Viewing	Pull	Requests

notifications

on	pull	requests,	Pull	Request	Notifications

sending	via	webhooks,	Integrating	with	Other	Systems

O

open	source	projects

forking	the	repository,	Key	Concepts

number	of	open	pull	requests	on,	Reviewing	Pull	Requests

organizations

configuring	in	GitHub,	Configuring	Your	Organization-Managing	Members
and	Teams

audit	log,	Audit	Log

billing,	Billing



blocked	users,	Blocked	Users

member	privileges,	Member	Privileges

organization	profile,	Organization	Profile

projects,	Projects

repository	topics,	Repository	Topics

third-party	access	and	installed	GitHub	Apps,	Third-Party	Access	and
Installed	GitHub	Apps

webhooks,	Webhooks

creating	a	project	website	for,	Creating	a	Website	for	Yourself	or	Your
Organization

creating	in	GitHub,	Creating	an	Organization-Creating	an	Organization

managing	members	and	teams,	Managing	Members	and	Teams-Managing
Members	and	Teams

personal	vs.	organizational	repositories,	Personal	Versus	Organizational

owners

of	organizations,	Managing	Members	and	Teams

transferring	ownership	of	projects,	Configuring	a	Repository

P

package	registries,	Viewing	the	README.md	File

pages	(see	GitHub	Pages)

personal	vs.	organizational	repositories,	Personal	Versus	Organizational

private	vs.	public	repositories,	Creating	a	Repository,	Configuring	a	Repository

allowing	organization	members	to	change,	Member	Privileges



profiles	(organization),	Organization	Profile

project	management,	Project	Management-Best	Practices	for	Issues

Issues	feature,	GitHub	Issues-Best	Practices	for	Issues

best	practices	for	issues,	Best	Practices	for	Issues

commenting	on	issues,	Commenting	on	Issues

creating	a	new	issue,	Creating	a	New	Issue

managing	labels	for	issues,	Managing	Labels	for	Issues

managing	milestones	for	issues,	Managing	Milestones	for	Issues

referencing	issues	in	a	commit,	Referencing	Issues	in	a	Commit

projects,	GitHub	Projects-Closing,	Editing,	or	Deleting	Project	Boards

adding	a	file,	Adding	a	File

closing,	editing,	or	deleting	project	boards,	Closing,	Editing,	or	Deleting
Project	Boards

commit	history,	Creating	a	Pull	Request

creating	a	project	board,	Creating	a	Project	Board

creating	a	website	for,	Creating	a	Website	for	Your	Project

creating	columns	and	adding	cards,	Creating	Columns	and	Adding	Cards-
Closing,	Editing,	or	Deleting	Project	Boards

number	of	open	pull	requests	on,	Reviewing	Pull	Requests

organization-wide,	enabling,	Projects

viewing	project	page,	Viewing	Projects-Viewing	Insights

protected	branches,	Protected	Branches



pull	requests,	Key	Concepts

collaborating	on,	Collaborating	on	Pull	Requests-Best	Practices	for	Pull
Requests

adding	color	to	comments,	Adding	Color	to	Comments

best	practices,	Best	Practices	for	Pull	Requests

commenting,	Commenting	on	Pull	Requests

contributing	to	pull	requests,	Contributing	to	Pull	Requests

deciding	who	should	merge	the	request,	Who	Should	Merge	a	Pull
Request?

involving	people,	Involving	People	with	Pull	Requests

merging	a	pull	request,	Merging	a	Pull	Request

notifications,	Pull	Request	Notifications

reviewing	pull	requests,	Reviewing	Pull	Requests

testing	a	pull	request,	Testing	a	Pull	Request

creating,	Creating	a	Pull	Request-Creating	a	Pull	Request

creating	from	a	branch,	Creating	a	Pull	Request	from	a	Branch-Collaborating
on	Pull	Requests

creating	from	GitHub	Desktop,	Creating	a	Pull	Request	from	GitHub	Desktop

default	branch	for	sending	to,	Configuring	Branches

viewing,	Viewing	Pull	Requests-Viewing	Pull	Requests

pulse	page,	Viewing	the	Pulse

R

README.md	file,	Viewing	the	README.md	File



editing,	Editing	a	File-Renaming	or	Moving	a	File

initializing	the	repository	with,	Creating	a	Repository

release	branches,	Key	Concepts

releases,	Introducing	the	Repository	Page

renaming	files,	Renaming	or	Moving	a	File

repositories,	What	Is	GitHub?

adding	collaborators,	Adding	Collaborators-Adding	Collaborators

adding	to	organizational	teams,	Managing	Members	and	Teams

blocked	users	for	organizational	repos,	Blocked	Users

cloning,	Downloading	and	Working	Offline

reasons	for,	Why	Clone	a	Repository?

configuring,	Configuring	Repositories	and	Organizations-Adding
Collaborators

Danger	zone,	Configuring	a	Repository

Merge	button,	Configuring	a	Repository

temporary	interaction	limits,	Configuring	a	Repository

configuring	branches,	Configuring	Branches

creating,	Creating	a	Repository-Adding	a	File

creating	a	website	for,	Creating	a	Website	for	Your	Project

creating	GitHub	Pages	repo	for	an	organization,	Creating	a	Website	for
Yourself	or	Your	Organization

editing	team	permissions	for	organization	repositories,	Managing	Members



and	Teams

for	organizations

creation,	deletion,	and	visibility	control	permissions,	Member	Privileges

default	permissions,	Member	Privileges

projects	spanning	multiple	repositories,	Projects

topics,	Repository	Topics

forking,	Contributing	via	a	Fork

integrating	with	other	systems,	Integrating	with	Other	Systems-Personal
Versus	Organizational

introduction	to,	Bootstrap	repository,	Introducing	the	Repository	Page

personal	vs.	organizational,	Personal	Versus	Organizational

S

security,	configuring	for	organizations,	Security

subscriptions	to	pull	requests,	Pull	Request	Notifications

T

tags,	Key	Concepts

teams

adding	a	new	team	to	an	organization,	Managing	Members	and	Teams

adding	members	to,	Managing	Members	and	Teams

adding	new	member	to	existing	teams,	Managing	Members	and	Teams

adding	repositories	to,	Managing	Members	and	Teams

creating	for	organizations,	Managing	Members	and	Teams



editing	name,	description,	visibility,	parent	team,	or	deleting	a	team,
Managing	Members	and	Teams

editing	team	permissions	for	a	repository,	Managing	Members	and	Teams

key	benefits	of	Git	for,	Why	Use	Git?

removing	members	from,	Managing	Members	and	Teams

Teams	page,	Managing	Members	and	Teams

templates	(for	pull	requests	or	issues),	Creating	a	Pull	Request

temporary	interaction	limits,	Configuring	a	Repository

testing

information	on,	in	README	file,	Viewing	the	README.md	File

of	pull	requests,	Testing	a	Pull	Request

third-party	access	options	for	organizations,	Third-Party	Access	and	Installed
GitHub	Apps

topic	branches,	Key	Concepts

(see	also	feature	branches)

repository	topics	for	organizations,	Repository	Topics

traffic	graph,	The	Traffic	Graph

V

version	control	systems,	What	Is	Git?

viewing	projects,	Viewing-The	Traffic	Graph

commit	history,	Viewing	the	Commit	History-Viewing	Pull	Requests

Insights	feature,	Viewing	Insights-The	Traffic	Graph



code	frequency	graph,	The	Code	Frequency	Graph

commits	graph,	The	Commits	Graph

community	profile,	The	Community	Profile

contributors	graph,	The	Contributors	Graph

dependency	graph,	The	Dependency	Graph

forks	list,	The	Forks	List

network	graph,	The	Network	Graph

pulse,	Viewing	the	Pulse

traffic	graph,	The	Traffic	Graph

issues,	Viewing	Issues-Viewing	Projects

project	page,	Viewing	Projects-Viewing	Insights

pull	requests,	Viewing	Pull	Requests-Viewing	Pull	Requests

README.md	file,	Viewing	the	README.md	File

repository	page,	Introducing	the	Repository	Page

W

Webhooks	option,	Integrating	with	Other	Systems

for	organizations,	Webhooks

websites,	creating	(see	GitHub	Pages)

wikis,	Key	Concepts,	Wikis-Adding	and	Linking	to	a	Page	on	Your	Wiki

adding	and	linking	to	a	page	on,	Adding	and	Linking	to	a	Page	on	Your	Wiki

configuring,	Configuring	a	Repository

getting	started	with,	Getting	Started	with	a	Wiki-Getting	Started	with	a	Wiki



creating	a	page,	Getting	Started	with	a	Wiki

default	wiki	page,	Getting	Started	with	a	Wiki

enabling	wikis,	Getting	Started	with	a	Wiki



About	the	Author

Brent	Beer	has	used	Git	and	GitHub	for	over	five	years	through	university
classes,	contributions	to	open	source	projects,	and	professionally	as	a	web
developer.	He	previously	worked	on	the	GitHub	Training	Team,	where	he	taught
the	world	to	use	Git	and	GitHub	to	their	full	potential,	and	now	works	as	a
solutions	engineer	for	GitHub	to	help	bring	Git	and	GitHub	to	developers	inside
their	companies	across	the	world.



Colophon

The	animal	on	the	cover	of	Introducing	GitHub	is	a	bare-tailed	woolly	opossum
(Caluromys	philander),	an	arboreal	species	of	marsupial	also	known	as	the
white-eared	opossum.	This	species	is	restricted	to	moist	forests,	and	can	be
found	in	Brazil,	Bolivia,	French	Guiana,	Guyana,	Suriname,	Trinidad	and
Tobago,	and	Venezuela.	With	its	prehensile	tail—which	allows	it	to	climb,
balance,	and	grasp	objects—the	white-eared	opossum	is	rarely,	if	ever,	found	on
the	ground	and	seldom	found	in	the	understory.

Ranging	in	weight	from	140	to	390	grams,	the	female	bare-tailed	woolly
opossum	is	typically	smaller	than	males.	It	generally	has	soft	and	thick	fur,
which	differs	depending	on	the	animal’s	habitat	and	location.	It	has	a	reddish-
brown	back	with	gray	gradations	along	its	flanks	and	a	yellow-orange	belly.	It
has	a	gray	head	with	distinct	dark	brown	stripes	that	run	down	the	bridge	of	its
muzzle	and	out	from	the	dark	brown	eye	rings	to	the	nose.	About	a	quarter	of	its
tail	has	fur;	the	rest	is	furless	and	cream	to	dark	gray	or	brown	in	color	with
brown	or	white	spots.

The	mating	ritual	of	the	bare-tailed	woolly	opossum	is	a	bit	of	a	mystery.
Generally,	individuals	are	solitary	except	when	males	court	females.	White-
eared	opossums	have	up	to	three	litters	per	year,	depending	on	resource
availability.	Females	can	have	up	to	seven	young	at	one	time,	averaging	around
four	young	per	litter	in	the	wild;	this,	too,	depends	on	resource	availability.	Bare-
tailed	woolly	opossums	have	short	gestation	periods	(24	days)	and	extended
periods	of	parental	care	(up	to	120	days	of	pouch	time	and	30–45	days	in	the
mother’s	nest).	Leaving	the	mother’s	nest	is	an	important	behavior,	as
demonstrated	in	captivity	when	young	who	have	not	been	removed	cannibalize
their	mother.

The	bare-tailed	woolly	opossum	is	not	listed	as	a	species	of	concern,	which	is
credited	to	its	small	size	and	adaptability	to	various	types	of	neotropical	forest.
This	could	change	as	deforestation	of	neotropical	regions	continues.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	Meyers	Kleines	Lexicon.	The	cover	fonts	are	URW

http://animals.oreilly.com


Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading
font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.


	Preface
	Who This Book Is For
	Beyond Software
	Who This Book Is Not For
	How to Use This Book
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	1. Introduction
	What Is Git?
	What Is GitHub?
	Why Use Git?
	Why Use GitHub?
	Key Concepts

	2. Viewing
	Introducing the Repository Page
	Viewing the README.md File
	Viewing the Commit History
	Viewing Pull Requests
	Viewing Issues
	Viewing Projects
	Viewing Insights
	Viewing the Pulse
	The Contributors Graph
	The Community Profile
	The Commits Graph
	The Code Frequency Graph
	The Dependency Graph
	The Network Graph
	The Forks List
	The Traffic Graph


	3. Creating and Editing
	Creating a Repository
	Adding a File
	Editing a File
	Renaming or Moving a File
	Working with Folders
	Creating a Folder
	Renaming a Folder

	The Limits of Editing on GitHub

	4. Collaboration
	Contributing via a Fork
	Adding a File
	Creating a Pull Request
	Committing to a Branch
	Creating a Pull Request from a Branch
	Collaborating on Pull Requests
	Involving People with Pull Requests
	Reviewing Pull Requests
	Commenting on Pull Requests
	Adding Color to Comments
	Contributing to Pull Requests
	Testing a Pull Request
	Merging a Pull Request
	Who Should Merge a Pull Request?
	Pull Request Notifications
	Best Practices for Pull Requests


	5. Project Management
	GitHub Issues
	Creating a New Issue
	Managing Milestones for Issues
	Managing Labels for Issues
	Commenting on Issues
	Referencing Issues in a Commit
	Best Practices for Issues

	GitHub Projects
	Creating a Project Board
	Creating Columns and Adding Cards
	Closing, Editing, or Deleting Project Boards


	6. Publishing Content
	Wikis
	Getting Started with a Wiki
	Adding and Linking to a Page on Your Wiki

	GitHub Pages
	Creating a Website for Your Project
	Creating a Website for Yourself or Your Organization


	7. Configuring Repositories and Organizations
	Configuring a Repository
	Adding Collaborators
	Configuring Branches
	Protected Branches

	Integrating with Other Systems
	Personal Versus Organizational
	Creating an Organization
	Configuring Your Organization
	Organization Profile
	Member Privileges
	Billing
	Security
	Audit Log
	Blocked Users
	Webhooks
	Third-Party Access and Installed GitHub Apps
	Repository Topics
	Projects

	Managing Members and Teams

	8. Downloading and Working Offline
	Why Clone a Repository?
	GitHub Desktop
	Viewing Changes

	GitHub Desktop and Atom
	Creating a Branch and Editing Files
	Creating a Commit
	Creating a Pull Request from GitHub Desktop


	9. Next Steps
	Index

