Introdu g \

(itHUub

A NON-TECHNICAL GUIDE

Brent Beer

Introducing GitHub
Second Edition
A Non-Technical Guide

Brent Beer

Introducing GitHub
by Brent Beer Copyright © 2018 Peter Bell, Brent Beer. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com/safari).
For more information, contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Editor: Virginia Wilson

Production Editor: Kristen Brown
Copyeditor: Rachel Head
Proofreader: Charles Roumeliotis
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery

[llustrator: Rebecca Demarest

November 2014: First Edition
December 2017: Second Edition
Revision History for the Second Edition
e 2017-11-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491981818 for release
details.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491981818

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing
GitHub, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher
and the author disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-49198181-8
[LSI]

Preface

GitHub is changing the way that software gets built. Conceived originally as a
way to make it easier for developers to contribute to open source projects,
GitHub is rapidly becoming the default platform for software development.
More than just a tool for storing source code, GitHub provides a range of
powerful tools for specifying, discussing, and reviewing software and other text-
based documents.

Who This Book Is For

If you are working with developers on a software project, this book is for you,
whether you are a:

¢ Business stakeholder who wants to have a sense of how your project is
going

e Product or project manager who needs to ensure that software is
delivered on time and within budget

e Designer who needs to deliver anything from mockups to HTML/CSS
for a project

e Copywriter who’s adding marketing copy or other content to a site or an
app

e Lawyer who’s reviewing the legal implications of a project or writing
the terms and conditions or privacy policy

e Team member who needs to review, comment on, and/or contribute to
the project

e Technical writer who’s making sure a project’s documentation is up to
date for all collaborators to help them get their jobs done

e Developer who is new to using GitHub and wants to learn how to
collaborate using GitHub in a team

If you need to view the progress of a piece of software while it’s being
developed, if you would like to be able to comment on the progress, and if you’d
like to have the option of contributing changes to the project, this book will
show you how to effectively collaborate with a software development team by
using GitHub.

Beyond Software

While GitHub is still primarily used to collaborate on the development of
software, it’s also a great way for a team to collaborate on a wide range of
projects. From the authoring of books (like this one) and the distribution of
models for 3D printing to the crafting of legislation, whenever you have a team
of people collaborating on a collection of documents, you should consider using

GitHub to manage the process. Our examples will assume that you’re working
on software because that is currently the most common use case, but this book is
the perfect guide to collaborating via GitHub on any kind of project.

Who This Book Is Not For

This book is designed to teach the core skills required to collaborate effectively
using GitHub. If you are already familiar with forking, cloning, and using
feature branches and pull requests for collaboration, you probably won’t learn
that much.

Equally, if you are looking for an in-depth introduction to the Git version control
system, this is not the book that you are looking for. This book covers just
enough Git to do the job of introducing GitHub, but it’s not a comprehensive
introduction to Git. For that you should read the excellent Version Control with
Git by Jon Loeliger and Matthew McCullough (O’Reilly).

How to Use This Book

This book has deliberately been made as concise as possible. You should be able
to read it pretty quickly. If you want to gain the confidence that comes from
really understanding what GitHub is about and how to use it, try to read the book
from start to finish.

However, I know that you’re busy. If you’re in a rush, start by skimming the first
chapter. Chapter 1 gives you a brief introduction to Git, GitHub, and some key
terms that you’ll need to understand to make sense of the rest of the book. Then
feel free to just jump into whatever chapters seem relevant. I’ve tried to write the
book so that each chapter runs you through specific workflows, so you should be
able to read just the chapter you need to complete a particular task.
Conventions Used in This Book

The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements and the names of branches.

Tip

This element signifies a tip or suggestion.

Note

Thin Alarm~Aant Atanifinn A xAarnmAannl nArA

http://shop.oreilly.com/product/0636920022862.do

L1115 elellelit S1g1iies d gelieidl Hute.

Warning

This element indicates a warning or caution.
O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
How to Contact Us

Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any
additional information. You can access this page at http://bit.ly/intro-github-Ze.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our

http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/intro-github-2e

website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
Acknowledgments

I’d first like to thank my wife Lindsay. Thank you for supporting my late nights
while working on this book and encouraging me to do the best job that I could.
You’'re the best wife, partner, and support anyone could ask for.

I’d also like to thank my parents. My mom for her constant encouragement for
reading, without which I may never have found a love for it. And my dad.
Without him letting me watch him work on our computer, entertaining me with
the Oscar the Grouch trash can utility on our Macintosh, and encouraging me to
learn how to program, I would not be in the field I am today.

Lastly, I want to thank Peter Bell. Peter, without the hard work you put into the
first edition and encouragement to do this second edition, this book wouldn’t
exist. Thank you!

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. Introduction

In this chapter I’ll start by introducing Git and GitHub. What are they, what is
the difference between them, and why would you want to use them? I’ll then
introduce some other common terms that you’ll often hear mentioned when
people are discussing GitHub. That way you’ll be able to understand and
participate in discussions about your projects more easily.

What Is Git?

Git is a version control system. A version control system is a piece of software
designed to keep track of the changes made to files over time. More specifically,
Git is a distributed version control system, which means that everyone working
with a project in Git has a copy of the full history of the project, not just the
current state of the files.

What Is GitHub?

GitHub is a platform where you can upload a copy of your Git repository (often
shortened to repo), hosted either on GitHub.com, by your company on a cloud
provider (like Azure, AWS, or IBM Bluemix), or on your company’s own
servers behind its firewall. But more than just uploading your Git repositories, it
allows you to collaborate much more easily with other people on your projects.
It does that by providing a centralized location to share the repository, a web-
based interface to view it, and features like forking, Pull Requests, Issues,
Projects, and GitHub Wikis that allow you to specify, discuss, and review
changes with your team more effectively.

Why Use Git?

Even if you’re working on your own, if you are editing text files, there are a
number of benefits to using Git, including the following:

The ability to undo changes
If you make a mistake, you can go back to a previous point in time to recover
an earlier version of your work.

A complete history of all the changes
If you ever want to see what your project looked like a day, week, month, or
year ago, you can check out a previous version of the project to see exactly
what the state of the files was back then.

Documentation of why changes were made

Often it’s hard to remember why a change was made. With commit messages
in Git, it’s easy to document for future reference why you’re making a
change.

The confidence to change anything
Because it’s easy to recover a previous version of your project, you can have
the confidence to make any changes you want. If they don’t work out, you
can always get back to an earlier version of your work.

Multiple streams of history
You can create different branches of history to experiment with different
changes to your content or to build out different features independently. You
can then merge those back into the main project history (master branch)
once they’re done, or delete them if they end up not working out.

Working on a team, you get an even wider range of benefits when using Git to
keep track of your changes. Some of the key benefits of Git when working with
a team are:

The ability to resolve conflicts
With Git, multiple people can work on the same file at the same time.
Usually Git will be able to merge the changes automatically. If it can’t, Git
will show you what the conflicts are and you will hopefully be able to easily
resolve them.

Independent streams of history
Different people working on the project can work on different branches,
allowing them to work on separate features independently and then merge
the features when they’re done.

Why Use GitHub?

GitHub is much more than just a place to store your Git repositories. It provides
a number of additional benefits, including the ability to do the following:

Document requirements
Using issues, you can either document bugs or specify new features that
you’d like to have your team develop.

Collaborate on independent streams of history
Using branches and pull requests, you can collaborate on different branches
or features.

Review work in progress
By looking at the list of pull requests, you can see all of the different features
that are currently being worked on; by clicking any given pull request you
can see the latest changes and all of the discussions about the changes, check
the status of an integration like a Continuous Integration (CI) server, or even
add your own review to approve changes before they are accepted.

See team progress
Skimming the pulse or looking through the commit history allows you to see
what the team has been working on.

Key Concepts

There are a number of key concepts that you’ll need to understand to work
effectively with Git and GitHub. Here is a list of some of the most common
terms, with a short description of each and an example of how they might be
used in conversation:

Commit
Whenever you save your changes in one or more files, you can create a new
commit in Git. A commit is like a snapshot of your entire repository at that
point in time, not just of one or two files. So naturally, after you change
those files, you will want to update the repository by taking a new snapshot.
Example usage: “Let’s commit these changes and push them up to GitHub.”

Commit message
Every time you make a commit, you need to supply a message that describes
why the change was made. That commit message is invaluable when trying
to understand later why a certain change was implemented. Example usage:
“Make sure to include Susan’s comment about the new SEC guidelines in the
commit message.”

Branch
A branch is an independent series of commits off to one side that you can use
to try out an experiment or create a new feature. Example usage: “Let’s
create a branch to implement the new search functionality.”

master branch
Whenever you create a new Git project, there is a default branch created

called master. This is the branch that your work should end up on
eventually, once it’s ready to push to production. Example usage:
“Remember never to commit directly to master.”

Feature (or topic) branch
Whenever you’re building a new piece of functionality, you’ll create a
branch to work on it. That is called a feature branch. Example usage:
“We’ve got way too many feature branches. Let’s focus on getting one or
two of these finished and into production.”

Release branch
If you have a manual QA process or have to support old versions of your
software for your customers, you might need a release branch as a place to
make any necessary fixes or updates. There is no technical difference
between a feature or release branch, but the distinction is useful when talking
about a project with your team. Example usage: “We’ve got to fix the
security bug on all of our supported release branches.”

Merge
A merge is a way to take completed work from one branch and incorporate it
into another branch. Most commonly you’ll merge a feature branch into the
master branch. Example usage: “Great job on the ‘my account’ feature.
Could you merge it into master so we can push it to production?”

Tag
A tag is a reference to a specific historic commit. Tags are most often used to
document production releases so you know exactly which versions of the
code went into production and when. Example usage: “Let’s tag this release
and push it to production.”

Checkout
Checking out enables you to go to a different version of the project’s history
and see the files as of that point in time. Most commonly you’ll check out a
branch to see all of the work that has been done on it, but any commit can be
something you check out. Example usage: “Could you check out the last

release tag? There’s a bug in production that I need you to replicate and
fix.”

Pull request

Originally, a pull request was used to request that someone else review the
work you’d completed on a branch and then merge it into master. Now, pull
requests are often used earlier in the process to start a discussion about a
possible feature. Example usage: “Go create a pull request for the new
voting feature so we can see what the rest of the team thinks about it.”

Issue
GitHub has a feature called Issues that can be used to discuss features, track
bugs, or both. Example usage: “You’re right, the login doesn’t work on an
iPhone. Could you create an issue on GitHub documenting the steps to
replicate the bug?”

Wiki
Originally developed by Ward Cunningham, wikis are a lightweight way of
creating web pages with simple links between them. GitHub projects often
use wikis for documentation. Example usage: “Could you add a page to the
wiki to explain how to configure the project to run on multiple servers?”

Clone
Often you’ll want to download a copy of a project from GitHub so you can
work on it locally. The process of copying the repository to your computer is
called cloning. Example usage: “Could you clone the repo, fix the bug, and
then push the fix back up to GitHub later tonight?”

Fork
Sometimes you don’t have the necessary permission to make changes
directly to a project. Perhaps it’s an open source project written by people
you don’t know, or a project written by another group at your company that
you don’t work with much. If you want to submit changes to such a project,
first you need to make a copy of the project under your user account on
GitHub. That process is called forking the repository. You can then clone it,
make changes, and submit them back to the original project using a pull
request. Example usage: “I’d love to see how you’d rewrite the home page
marketing copy. Fork the repo and submit a pull request with your proposed
changes.”

Don’t worry if all the terminology seems overwhelming at first. Once you start
working with some real projects, it’ll all make a lot more sense! In the next
chapter we’ll look at the various elements of a GitHub project and how you can

use them to get a sense of progress on a project.

Chapter 2. Viewing

In this chapter we’ll look at how you can view the state of a project to see what’s
going on, so you can find areas that could be improved or so you can be familiar
with the interface when you’re ready to contribute. We’ll use the popular
Bootstrap open source project as an example.

Introducing the Repository Page

Bootstrap is a repository that allows developers to quickly develop attractive
web applications. Go view the repository on GitHub. There is a lot of
information on the home page. Let’s start by reviewing some of the most
important elements on the page.

Take a look at Figure 2-1. One of the first things you see looking at the top left
of the page is that the project name is “bootstrap” and that it’s owned by a user
(or in this case an organization) called “twbs.” If you were to go to
https://github.com/twbs, you’d see a list of all of the repositories hosted by that
organization at GitHub. To the left of the organization name on the repository
page you’ll also see an icon that makes it clear that this is a public repository that
anyone can see. A lot of the projects you work on will have a closed lock icon
and the word “Private” at the end, signifying that they are private and can be
viewed only by people who have been explicitly given access.

In the upper-right corner of the page in Figure 2-1, you can see that at the time
the screenshot was taken, 7,065 people were watching the repository to get
notified every time new changes were made to it; 115,203 people had starred it
to mark it as one of their favorite repositories; and 53,899 people had forked the
repository, making their own copy on GitHub where they could make changes to
the code and share them with others if need be, or contribute back to this parent
repository.

http://getbootstrap.com/
https://github.com/twbs/bootstrap
https://github.com/twbs

o This repositony Pull requests Issues Marketplace Explora

. twhbs | bootstrap & Watch = 065 W Star 115,200 ¥ rRork 53,600

<» Code Issues 288 Pull requests 119 Projects 8 Insights -

The most popular HTML, C55, and JavaScript framework for developing responsive, mobile first projects on the web.
http:{jgetbootstrap.com

=1 boolsirap javasoript Himi jekyll-ste BLES cas-framework

i) 16,801 commits 38 branchas 42 releases 11 922 cantributors & MIT
I

Iranch: vi-dey ~ Hew pull request Croate nevw file Uplosd files Find file Clore of dewnload -
. patrickhlauke committed on GitHub Struciuie examples with appropriate "<main: ", "<headers> ", "<looler:" « Lates] commil dibacee 16 hours ags
B .github Rearrange all the docs to allow for a docs{major.minor setup 4 manths ago
B _dats Wall of Browser Bugs: Update table-cell border Chrome bug ref 15 days ago
B _includes Fix missing ".btn" class from "bd-search-docs-toggler . (#23842) 17 hours ago
M _layouts Update redirect.him 25 days ago
B _plugins rename plugin 4 manths ago
M assels dist E days agao
B build Use rallup to add owr copyright instead of a custom script 14 days ago
i dist dist a day agd
W docs/4.0 Structure examples with appropriate "<main> ", "<header>", " <footer> 16 hours agao
__ dist a8 day agd
I nugat Update Popper.js to 1.12.3 22 days ago
B =css fixes #23026 responsive state on navbar a day ago

.babelrc Create a bundled release of Bootsirap with Popper.js inside 14 days ago

editoreantig Update README.md. 2 years ago

Figure 2-1. The Bootstrap home page on GitHub

Under the repository name and the tabs, you can see a short description of the
repository and some topics that are related to it. Below that, you can see that
there have been a total of 16,801 changes to the repository (commits), 36
different streams of history are currently being developed (branches), 42
versions of the software have been recommended over time for people to use
(releases), and 922 people have written some part of the code (contributors).

You can also see that we’re currently viewing the v4-dev branch (this
repository’s default branch), that we’re in the root bootstrap folder, that the
latest commit on v4-dev was “Structure examples with appropriate "<main>",
"<header>", "<footer>",” and that the commit was made by GitHub user
“patrickhlauke”. As you look further down the figure, you can see the folders
(sometimes called directories) and files that are in the root (top-level) folder in

https://github.com/patrickhlauke

the project.
Viewing the README.md File

If there is a file in the root of a project named README.md, the contents of that
file will be displayed just below the list of folders and files on the repository
home page. This file provides an introduction to the project and additional
information that may be useful to collaborators, such as how to install the
software, how to run any automated tests, how to use the code, and how to make
contributions to the project.

These days, README files will often also include badges—images used to show
the current state of things like the automated test suite, to let you know the
current state of the repository. In Figure 2-2, which shows the status section
further down in the README.md file, you can see the versions of other projects
that Bootstrap depends on. This section also shows details on the state of the
dependencies (peerDependencies, devDependencies), package registries (meteor,
packagist, nuget), chat service (Slack), and the versions of browsers and
operating systems that Bootstrap should work for.

Status

TN N E o O O
mecreom VaoEDe] nooe e

u Firefox ﬁ Chrome La IE i. iPhone @ Safari

Figure 2-2. The status section of Bootstrap’s README.md file

Viewing the Commit History

Looking at the commit history is a great way to get a sense of the most recent
small units of work that have been completed on any given branch. Go to the
Bootstrap page on GitHub and click the “16,801 commits” link (the number of
commits will have changed by the time you do this). You’ll see a list of
commits, with the most recent first (see Figure 2-3).

https://github.com/twbs/bootstrap

Branch: wvd-dew =

Comemits on Sep 13, 2007
U Structure examples with appropriate “<mainz", " <header>", " <footers>" fr | sbacec o

patrickhlauke committed on GitHub 16 hours age +"

. Fix missing “.btn" class from "bd-search-docs-toggler”. (#23942) fr | 3esasca o3
XhemikosR committed on GitHub 17 hours age « i
dist | 7sdanss o
G o comenithed day sgo
EE fizes #23926 responsive state on navbar B | meche o
andrasgalanite commilted I digs age

Comimits an Sep 12, 2017

Fix malformed " <select>" in example fr | sedcias o3
patricihlauke committed on GitHUb 2 days ago

*1 |~‘ Merge pull request #23923 from meteorlky/patch-1 - B S76E3ER %
~ = lehanm-5 cammitted or GitHub 2 days aga
Merge branch 'va4-dey' into pateh-1 B ed2297d ¥
Ll JeRann-S cammitted on GitHub 2 days aga
Fix[docs): duplicate class in navbar docs L-: Bcehdid £
mrtearlxy committed 2 days ags "
£ Fix navbar IE (#23652) B ecchien | ©

I.. MartijnCuppens committed with XhmikosR 2 days ago "

Figure 2-3. A list of the recent commits to the project

Clicking any of the commits will show you the commit message, which should
explain why the change was made (see Figure 2-4). Below that you will see who
made the change; which branch it is on now; the pull request it was brought in
from, if any (#23899 in this case); and each file that was added, removed, or
modified as part of the commit, with content that was removed displaying in red
and content that was added displaying in green.

Structure examples with appropriate “<main>", "<header=", “<footer>"

Browse files
Structure exasples with appropriate " <main:”, " <header:” , " <footers’
¥ wd-dev [(#Z3E99]
ﬂ patrickhlauke committed on GitHub 16 hours ago 1 parent 3e546ca cossit d1b3odciEdbaalcfbfEfbeBSa3zlelinTebdcidl
Showing 15 changed filas with 410 additions and 378 daletions, Unified = Siplit
158 HEEE docs/4.9fexamples/albumy index. tml Wi L

<hady»

cdiv class="collapse bg-dark™ id="navbarteader”s
cdiv class="container”s
£div claki="row">
ediv elassncol-sm-H py-4%3
ohd classs®text-white®sAbouts/hdo
«p classe"text-suted”sédd some inforsation about the album below, the author, or any other backgrownd context. Make it
ofdiva
ediv claksm"col-sm-d py-4~»
il ¢lasan”tent-white ™ sContact e /hds
sul classelist-unstyled™s
«liwca href="g" classe"text-white*s>Follow on Twitter</as</1is
c1ira href="8" class="text-white"sLike on Facebook:/ard/1ix
e183ea hraf="0" class="text-white"3Emall mecfarcflis
efuls
- <headers
+ cdiv class="collapse bg-dark™ id="ravbarteader®s

* odiv class="contalnar™s

Figure 2-4. A recent commit in the repository
Viewing Pull Requests

Pull requests give you a sense of the current work in progress by showing you a
comparison of work being done on one branch that is proposed to merge with
another. Click the “Pull requests” tab along the top of the page and you’ll see a
list of open pull requests. These are the outstanding features or fixes that people
are currently working on (see Figure 2-5).

Code |sEpes 286 I Pull requests 120 Projects B Insights -

Filters = isprisopan Labels Milestones m

11120 Open « 7,844 Closed Author = Labels = Projects - Milestones = Reviews = Assignee ~ Sort -
M Update holder.js image data-src + create theme -~
#23948 ppened 12 minutes ago by RudSG + Review reguired

in Zero Columns - o E3 s

#23945 operid 18 hours Ago by supengibbs « Review reguired

N change yig mixin to an actual function .- (g}
#23943 ppened 30 howrs ago by giisbatje « Review reguied

1 Eight new popover placement -+ js [ZJ (]
#2294 opened 12 hours ago by MislsHol « Review reguired

i fix popover arraw computations and .armow position - va | (P
#23038 opened A day aga by wojtesk « Raview requined

i1 Forces the search box to stay inside the navbar - B2 [
#23935 opened a day ago by andresgalamte « Resiew requined

1 Moves theme variables outside the theme map ~ B B3
#23918 operned 3 days ago by andresgalante « Resiew required

i Changes active state color to make it different from hover -« EE K8

#2391 apaned 3 diya age by srdresgalinie « Reviaw meuied

N Accessibility fixes to dynamic tabs (" aria-selected’, remove dynamic tabs with dropdowns) (m]
v | accassmility [200d i

#23907 cpened 4 days ago by patrickhlauke « Review required

Figure 2-5. Open pull requests for Bootstrap

Click one of the pull requests, and you’ll see a page displaying a short title
describing the pull request and a longer description of it. There will be one or
more commits with the proposed changes, and there may be a number of
comments from people discussing the proposed changes (see Figure 2-6).

Accessibility fixes to dynamic tabs (" aria-selected ', remove
dynamic tabs with dropdowns)
patrickhlauke wants to merge 16 commils into twtscwi-dev frOM patrickhlaske;wi-gee-tshs-ally-fix

i Conversation 7 - Commits 18 [fiFkas changad 4 +B0 =122 EEN

E patrickhlauke commented 4 days ago Moember Hevsiemnrs

il o
» Fixes our current incorrect use of aria-expanded rather than the proper aria-selected (588 .F ta
https:/fwwailow3.org/TRMwWSal-arla-prectices/#abpanel] .
* Ramoves dynamic tabbed interfaces with dropdowns, &s theyre not good for usability and more

" - Assignoes
impartantly not a pattern that can be expressed/conveyed 1o assistive Lech i

Mo one assignad

Closes #23036
Labeds
[l pat270 and athers added some commits & days ago sccessibility
il Collapse.js presentDefault 3F ° [data-toggle="collapse™]” 1s an anchor_ .o o 2 _
' Use aria-selected instead of ardla-expanded [
' Charge tab.js to use aria-selected rather than aria-expanded
' &dd "aria-orientsticnevertical’ to vertical tab list 1 AGe Projects
' Remcve dynazic tabs with dropdowns wd Bela 2 {awalting triage)
' Fix pen-interactive code exemples o
Milaatone
B mileEtore

Lo l’ patrickhlauke reguested review from mdo and fat 4 days ego

Figure 2-6. A recent pull request

Looking at the pull requests is a great way to get a sense of what people are
working on now and the current state of those changes—whether bug fixes or
proposed features.

Viewing Issues

While pull requests give you a sense of the current bug fixes and features being
worked on, issues can give you a wider sense of the outstanding work that still
needs to be done on a repository. Pull requests are often linked to an issue, but
there will usually also be issues that nobody has started working on yet, so they
don’t yet have associated pull requests.

If you click the Issues tab at the top of the page, by default you’ll see a list of all
of the open issues (see Figure 2-7).

Code (T} Issuas 206 Pull requests 120 Projects & Insights =

Filters = isssUE i5;0060 Labels Milestones m

() 286 Open + 15,426 Closed Author - Labals - Projacts - Milestones - Assignea = Sort-

@ nav-tabs class active 2 times awaiting reply i [Da
¥23046 apered 15 hours aga by incubuy

@ Form inside Modal awaiting reply [E23

#23041 opaned 20 hows aga by rodrigebanocs

1 Different fieldset rendering with "form-group row” class between Chrome and Firefox
beomaer bisg | cas] v4
#23534 apered a day ago by covirksiman

bug: Dropmenu caret is wrapping in a strange way on the navbar B2 £
#73532 openad a day aga by andrasgalanie

bootstrap 3 demo errors B EEa) help wanted Ha

#23528 opened 2 days ago by peter-mumiond

dropdown-menu - background-color active error awsiting reply B2
#2350 opened 3 days ago by scadax

Modal backdrop displays over modal in fixed container B2 £

#2306 opened 3 days ago by Cronkan

Is this correct rendering collapsed menu on mobile? X E m]
#23815 openad 3 days apa by kolkoy

Look into using Travis build stages help wanted [ETIT] EX3
#23014 opened 3 days aga by XhmbmsR

Figure 2-7. Open issues for the repository

Click an issue and, similar to a pull request, you’ll see the title, description, and
any comments related to the issue. If any work has been done and pushed to
GitHub where the commit message references an issue, it’ll show up on the
Issues page so you can see what’s being done. In Figure 2-8 someone appears to
be having a problem with one of the Bootstrap features.

nav-tabs class active 2 times #22946 ==
incubux opened this issue 15 hours ago - 4 comments

% Incubux commented 15 howrs ago ? Mssigness

Mo oree assigresd
sorry, | found the error, was in boolstrap 4 beta, does not disable and activates the active class in the
naw-talbs corractly, then displays the contents of other tabs each one is selectad a new one, thanks
far your time

Labals
awniting reply
B

1IN0 it's already in our dev dist files, but please submit a live examgde in & CodePean |

Projects
Mane yet
T &a Johann-S added |awaiting reply 8 m labels 4 hours ago
Milestone
E Iworb commented an hour ago » edited = Mo milestone
well, I'va met this behaviour tea. It works well in jsfiddiefeodepen, but not in the project. | double Hotifications
checked about conflicts and found nothing and like topic author my problem is that 'active’ class was 4 Subscrite

not removed when tal switched. But It you try o switch tabs about 2-3 times for esch one - it
“repairs” it behaviour. | coul make a gif if you want to see what happening, but imo it won't halp to
determing where prablem is.

You're nod receiving nodifications
Iram this thread,

Figure 2-8. A recent issue
Viewing Projects

Issues and pull requests are great for individual work, but sometimes people
want to do longer-form project work at a project management level. That’s
exactly what GitHub projects are for. Click on the Projects tab to get a look at
any active projects being worked on inside of Bootstrap, and you’ll be taken to a
page like Figure 2-9.

Code Issups ZBB Pull requests 120 F‘rqicl:ts [} Insights -
), isiopen

6 Open + Z Closad Sort =

vd Beta 3 Mo description
Updated 23 days aga

wid. 3 Publish each component as it's own repository with Lerna.
Updated an Aug 8

Feature ideas Catch-all project board for organizing feature requests we receive from folks.
Updated an Aug 8

wdl, 2 Forms and component enhancements

Updated an Jul 15

wil.1 Grid system, utilities, and small new features

Upslated an Aug 8

vd Beta 2 No description

Upslated 4 days age

Figure 2-9. Bootstrap’s projects

If you click an individual project, you’ll be taken to its board, where you’ll see
the columns of work and the different cards (notes, issues, and pull requests) that
are in those columns (see Figure 2-10).

Faaure ideas Sshowmeru H
Utiities 1 Wickile & Teuch 1 J5 behaviers 4 Duild system 4
T Reguest « bring muted F1 vl = Touch gesiune support for (I Herizontal collagss @ Corsider impgrating Droal 1o
baskgrounds back canusel ¥174538 opored by vanisjonathen check for leaks In the J5
FiF245 apid by lassombie SPE oened by pediz Raaturs | +3) FPIAE pperid by EvTERET
| = contemea [taane | 1 R~ e
(I ligdial animations for v - some
xamplng 1 Check for broken links &
FiT2H opated by duries nonexistent fragmints as part af
Y does build
EE=a=m

#IA5E cpaned by cursbart
(@ Add aption to snable)dizabls =
animatics of Colapse on a per-

shomihide basis (@) Migrate away from Seuce Labs?
NIB127 cpmsid by wir #1754 openad by evnabert
ature | hss-pe LY i wite EET] B

(Tr Mot able 1o select Mav Tabs using) sowroemap references and CONs
space bar result i 403 rosponEes
F2HE7 ooened by sathianaihan 15063 apened by paiTickhiauke
sccemaiziity [ja) B tuils [ET] haip wasted [BT]

Figure 2-10. An active Bootstrap project board

Viewing Insights

GitHub’s Insights tab allows you to get a sense of the work that has been done
on a repository over a longer period of time.
Viewing the Pulse

The pulse is a great way to get a sense of the recent activity on a project. This is
the page displayed by default when you click the Insights tab. Notice in the top
right of Figure 2-11 that you can customize the pulse to be for the last day, three
days, week, or month.

Code Izsues 257 Pull requasts 92 Projects 8 |ula Insights
Pulse October 4, 2017 — October 11, 2017 raricd: 1 Wik -
Contributors
Community chenia:
Commits
L
Coda frequency 30 Active Pull Requests 63 Active lssues
Dependency graph x
19 En Az o
Metwork Merged Pull Requests Proposed Pull Requests Closed Issues Mew Issues

Forks :
Excluding merges, 8 authors have pushed 29

commits to va-dev and 48 commits to all
branches. On vd-dev, 28 files have changed
and there have been 1,013 additions and 797

deletions. i | EIN | .

i1 18 Pull requests merged by 6 people

F24324 Hound CI: Specity “lgnare_file” for stylelint, 17 hours age

F24531 Adds a barder radius 10 the mage when i's the only child of a card group & day ago

Figure 2-11. The pulse for Bootstrap

The pulse starts with an overview of the number of pull requests that have been
merged (completed) and proposed (added) during the selected time period. It
also shows how many issues were closed and opened. It’s important to
understand that when the pulse refers to the number of active pull requests and
issues, this is not the outstanding number of each but rather the number of
requests and issues that have been started or finished in the time period you
selected. For example, at the time of writing, Bootstrap had 19 merged and 11
proposed pull requests, for a total of 30 “active” pull requests in the last week,
but it had a total of 92 open pull requests (as indicated by the number on the
“Pull requests” tab at the top of the page).

The next paragraph on the screen is a concise summary of recent changes, listing
the number of authors, commits on v4-dev, total commits on all branches, and
files modified on the v4-dev branch. It then gives you the number of lines of
content that have been added or removed, although it’s important to realize that
if a line of text in a file is modified, Git will treat it as if one line was removed
and another, different line was added in its place.

To the right is a bar chart showing the contributors who have made the most
commits during the specified period. Below is a list of the titles of the merged
and proposed pull requests, followed by the closed and then opened issues. The
pulse view ends with a list of “unresolved conversations,” which is a list of all of
the issues and pull requests that have received additional comments but have not
yet been closed.

The Contributors Graph

The contributors graph (Figure 2-12) shows you the number of contributions
(commits, additions, or deletions) to the repository. It shows a graph for all of
the contributions, followed by smaller graphs showing the contributions by
individual developers—from the most to the least prolific.

Pulse Apr Qﬂl 20711 =0ct "]Er 2017 Cantributions: Commits =
Contributors
Contributions 1o vd-dey, excluding menge commils
Community
Commits
Code frequency
Dependency graph
MNatwark

Forks

B " B
6,268 commils FEGL7D Frraan 1,804 commits 53,252 ++ BE,704

Figure 2-12. The contributors graph for Bootstrap

The default commits graph shows the total number of commits that have been
made to the v4-dev branch. It’s important to realize that it shows only the
commits that have been merged into the v4-dev branch. If you have someone on

your team who has been working on a feature branch all week and whose work
has not yet been merged in, none of those contributions will show up until they
are ready for release and have been merged into the v4-dev branch.

By default, the time period for the graph is the entire lifetime of the repository. If
you’d like to pick a shorter interval, just click the starting point you’d like on the
main graph and then drag and release on the time you’d like the new graph to
end. Figure 2-13 shows the results of doing this to focus on the commits over the
last year or so. You can see that the main graph at the top of the page stays the
same, but at the top left it shows the time period we’re focused on (November
30, 2016, through October 12, 2017). The commit graphs of the individual
contributors show the number of commits by each and how they were spread out
over that time period.

Nov 30, 2016 - Oct 12, 2017 strutions: Comnte ~
Contributors
Contributions 1o vd-dev, excluding merge commits
Community
Commils
Code frequency
Dependency graph
Matwaork
Forks
A #1 2 e
ﬂ mda 4% Johann-5
838 commits 80363 121,088 = 1B commits E,141

Figure 2-13. Narrowing the interval of the contributors graph

There is no standard size for a commit. A good rule of thumb is that if
developers are writing code, as opposed to researching a problem or testing
something, they should probably be committing every 5 to 10 minutes. However,
depending on the team you’re working with, you might find that some
developers create fewer commits than others, even if they’re doing a similar
amount of work. If that is the case, you might want to change the “contributions”
type for your contributor graphs to additions or deletions. In that way, you’ll get
a sense of the number of lines of code that the developers have added to or
removed from the repository. If they modify a line, it will show up as a deletion

of the old line and an addition of the new one.
The Community Profile

Y our repository’s community profile is an insight into the way your repository
presents itself to new contributors, as well as those looking to just use your
repository. Take a look at Figure 2-14 to see how the Bootstrap repository is
doing in this area.

Pulse Community profile
Contributors
I Community Here's how this project compares to recarmmended community standards,

Commits
Checklist
Code freguancy

Depandency graph « Description

Matwaork
« README

Forks

Code of conduct What i 8 code of condust? | Proposs
+ Contributing
+ Licenge
+ |ssue template

What |s the community prodile?

Figure 2-14. The community profile for Bootstrap

As of the writing of this book, community profiles are relatively new, so this
means that not every repository is going to have a complete checklist. However,
their importance is critical to fostering a safe and welcoming community in
addition to having a solid open source initiative. Similar to documentation fixes
in a repository, this is a great avenue to get started on making your first
contribution once you feel comfortable doing so.

The Commits Graph

The commits graph (Figure 2-15) shows the number of commits per week over
the past year, giving a very rough indication of activity and how it has varied
over time.

The first reason to look at the commits graph is to get a sense of how many
commits per week there have been over the past year. It starts with a bar graph

showing one bar per week and is a great way to see cyclical or long-term trends.
Is the number of commits in your repository slowly decreasing? If you have
more developers, is the number of commits consistently increasing? Are most of
your commits in the last week of every month, or are there seasonal trends? This
graph can give you good insight into how the number of commits—which is a
very rough proxy for productivity—are varying over time.

Pulse

Contributors
Comrmunity
Commits

Code frequancy
Dependency graph
Metwaork

Forks

Figure 2-15. The commits graph for Bootstrap

Below the bar graph is a line graph showing the average number of commits on
each day of the week over the last year. This graph can be useful for getting a
sense of the cadence over the course of an average week. Are people not
committing on Mondays because of too many meetings? Are they making most
of their commits on a Thursday ahead of your Friday “demo days,” or are they
working too much on the weekend, which isn’t good for long-term
sustainability?

The Code Frequency Graph

The code frequency graph (Figure 2-16) shows you the number of lines added to
and removed from your repository over time and is particularly helpful for
identifying large changes to your code base.

Often when developers are doing a big refactoring, they’ll add and delete
hundreds or even thousands of lines of code per commit, whereas in the usual

course of business, a commit will probably contain only a few lines of added,
modified, or deleted code. When such a refactoring is going on, the number of
commits might not change much, but the number of lines added and deleted will
spike—so if you want to get a sense of when the biggest changes happened to
your code base, you should start by having a look at the code frequency graph.
For example, you can see in Figure 2-16 that a big refactoring was done in
February/March of 2013.

Pulsa
ontributors
Community
Commits

Code frequency

Dependancy graph

= ol

Figure 2-16. The code frequency graph for Bootstrap

The Dependency Graph

The Dependencies tab of the dependency graph page is a great place for you to
get a well-formatted overview of what other components your repository
depends on. This is important because you may want to contribute a patch to
another repository your repository depends on to add some functionality. You
can see a list of dependencies for GitHub’s Linguist repository in Figure 2-17.
This page is especially useful when you want to be informed about security
vulnerabilities, which GitHub will display for you.

If you use a private repository on GitHub.com, you have to opt in and choose to
contribute your private information to GitHub and the community as a whole in
order to enrich the ecosystem and allow others to see how useful their
repositories may be.

https://github.com/github/linguist/network/dependencies

The Dependents tab of the dependency graph page is useful to find out where
your repository is being used and what packages may depend on it. In Figure 2-
18, which again shows GitHub’s Linguist repository, you can see that a few
applications and packages depend on this repository.

Pulse Dependency graph

Contricutors
Dependencies Dependeants

Community
Trafflc Thesze dependencies have been defined in linguist's manifest files, such as github-linguist.gemspec and
raffi §
package.json
Commits
Code frequency ™ Dependencies defined in github-linguist.gemspec 13
Dapendency graph
> [brianmaria f charlack_holmes “ B.1.5
Metwaork
ian | r- i - B.2.1
Forks > Ji aitorikian | color-proximity "
¥ ! brianmario [escape_utils =» 1.1.8
] “ licensed =
¥ :}! banbalter | Foenses =3 H,0.8
¥ mime-iypes | mime-typas = 1.19
¥ ﬂ saattlerh | minitest s 5.8

Figure 2-17. The dependencies for the github/linguist repository

Pulse Dependency graph

Contributars

Dependencics Diependents
Community
Traffic Rapasitories that depend on github-linguist
Commits

El aza Repositories [0 23 Packages
Code fraquency

Dependency graph CA-CODE-Works | wrbanfootprint * 0 YO

e B Atsuyoshi-N | glita_markdawn_samgle *0 Yo

Forks
l terrchen [gitlab-ce-ee *0 YO
P slexruperez | MADBIke *o ¥
,":'_ SanthoshTillid | tillidinvoice *0 YO
ﬁ matthewpdias | chico-acm.com *0 ¥
n Embeddedindroid | gitlab-ce *0 ¥O
(" kmerz | gravelo *7 Yo

Figure 2-18. The dependents list for the github/linguist repository

Being aware of what repositories or packages depend on your code is important
for beng a good citizen on GitHub, and also gives you a good idea of who else
you may have an impact on when you make any updates to your code.

The Network Graph

The network graph (Figure 2-19) shows the number of branches and commits on
those branches throughout a repository’s history. It also shows any forks that
contributors have created. Because Bootstrap is such a popular project, the
network graph shown here is actually of the GitHub Desktop repository.

https://github.com/desktop/desktop

Pulz=

Contributors

Cammunity T ’ E
Commits 5 o

- -
i

Code frequency
Brandan Farster

e, oD acd an achual erafian
Dependancy graph

Metwork

i
4
E
]

Forks

i - iy

deaskiop

Keyboard shoricuts available 53

Figure 2-19. The network graph of the desktop/desktop repository

The network graph is useful for seeing how far ahead one branch may be, or
what kind of work someone may be working on in their own fork. When these
commits make their way back into the original repository’s default branch, we’ll
see them come in with an arrow and a merge commit if they were done via a pull
request. We can also mouse over these commits to see who wrote them and what
the commit message was.

The Forks List

Though not a traditional graph of work, the forks list gives you an idea of which
members have forked this repository. If there is an unusual number of forks,
you’ll see a message like the one in Figure 2-20, displaying only a partial list.

Pul - - . - . -
Fuless ‘Woah, this network is hugel We're showing only some of this natwork's repositories, *

Contributors

Community Bl twbs / bootstrap

Commils M G7ideas | bootstrap
- agan(| boatsirap

n aaronjorbin f bootstrap

Code Treguency

Dependency graph & saronsnow | bootstrap

h3 | Baotatrar
Metwork g a3 | oolstrap

E abdul | bootstrap

Forks B Abiodun | bootsirap

. acnithin § bootstrap
B adamramadhan | bootstrap
W adamzaninovich | bootstrap

E Adel-E | bootsirap

Figure 2-20. The list of Bootstrap forks

The forks list shows just the people who have forked the repository or forks of
forks. These people aren’t collaborators on the original parent repository and
therefore needed their own copy of the repository in order to contribute to it
through a pull request. To make your own copy, you would need to fork the
repository. This action and workflow is covered in Chapter 4.

The Traffic Graph

One additional graph, which is available only to owners and collaborators on a
project, is the traffic graph, shown in Figure 2-21.

The traffic graph shows you the number of Git clones, cloners, views, and
unique visitors over time; it also lists the sites that people are linking from and
highlights the most popular content on your GitHub project site. It can be a great
way to get an idea of the popularity of open source projects.

Pulse Git clanes
Contributors
Camminity |

} I\

Cammits

Coda fraquancy
| .
oann a0 oy

Dependency graph

BSE 237

Visitors

i | o
1 -

N AT TN/
N <

‘ i,

_,. o MO5 ioE WP WeE e Wong o i
1,570 4,644
Wiews Unique visitors

Figure 2-21. The traffic graph of the github/scientist repository

By now you should have a good sense of how to get up to speed with a
repository by looking at the README file, commits, pull requests, issues,
projects, the pulse, and the GitHub graphs. In the next chapter we’ll look at how
you can start to contribute to a repository.

Chapter 3. Creating and Editing

In this chapter we’ll look at how you can create and work with your first
repository. Creating this repo means that you’ll always have access to the code
and the additional information contained in pull requests, issues, projects, and
wikis. We’ll then look at how you can add, edit, rename, or delete a file directly
on GitHub. We’ll also look at how to work with directories on GitHub, and
finally we’ll discuss what to do when you want to make multiple changes as part
of a single commit. From this point forward, if you want to follow along you’ll
need to create an account by going to https://github.com/join.

Creating a Repository

To create a new project on GitHub, click the + sign to the right of your username
at the top right of the page. Then click the “New repository” option in the drop-
down list. You’ll see the new repository form, as shown in Figure 3-1.

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

E brntbeer = ||"
Great repository names ara short and memorable. Need inspiration? How about didactic-broccoli,

Description (ocpticnal)

© | | Public
: Aryone can See this repository. You choose who can commit,
Private
You choose who can see and commit 1o this repository,

Initialize this repository with a README

This will let you Immediately clone the repository to your computer. Skip this step if you're Importing an existing
repositony,

Add .gitignore: Hone = Add a license: Hong = G]

Create rapository

Figure 3-1. The new repository form

The first thing to do is decide whether to create the repository under your

https://github.com/join

username or under an organization. You can see in Figure 3-2 a list of the
possible organizations to which I could add a new repository. If you don’t have
access to any organizations, just leave this defaulted to your username.
Remember, you’ll always be able to transfer the project later if you want to.

Owner Repository name
T brntbeer ~ /
| Choose another owner ible. Need inspiration’

| T brntbeer

github
git (insufficient permission)
PHES (insufficient permission) who can commit.
atom (insufficient permission)

repository.
&'@ githubtraining
= @ githubschool (insufficient permission)

to your computer. Skip th
& CoderDojoGitHub

ﬁ" github-gaming ey @
9 government

awesome-government-stuff (insufficient

Figure 3-2. Selecting who should own the new repository

The next step is to give the repository a name and description. Names should be
comprised of letters, numbers, hyphens, and/or underscores. Any other
characters will be replaced with a hyphen. The description is a nice place to give
peoble a short explanation of the purpose of the repositorv.

r - - - - - - - - o - v

After entering the name and description, you need to decide whether to make the
repository private or not. Public repositories can be viewed by anyone. Private
repositories can be viewed only by people that you specifically invite as
collaborators. In either case, the project can be modified only by people you add
as collaborators.

Generally, if your code is commercially sensitive, you’ll pay the few dollars a
month to be able to keep it private. If it isn’t, you can just create a public
repository, and it won’t cost you a thing. If you don’t see the option to make the
repository private, you’ll need to upgrade the user or organization you’re
creating the project under to allow it to host private repositories.

The final decision you’ll need to make when creating a new repository is
whether or not to initialize it with a README file by checking the checkbox, as
shown in Figure 3-3.

Initialize this repository with a README
This will let you immediately clona the repository to your computer. Skip this step if you're importing an existing

repositany.

Add .gitignore: None = Add a license: None « 0

Figure 3-3. Initializing a repository with a README.md

Most developers will not check the box to initialize the repo. They’ll just create
a project locally, save it using Git, and then push their work up to GitHub.
However, if you’re not a developer, you’ll probably want to initialize the project
with a README as it allows you to create a project without having to create a
local Git repository and upload it. Then your developers will be able to clone
(download) the repo and add all of their code. Once you’re ready, click the
“Create repository” button, and the new repo will be created.

If you initialize the repo with a README, it will create a project and take you to
a screen that looks something like Figure 3-4. That project is ready for your
developers to clone and start committing to.

If you don’t initialize your repo, you’ll see a screen like Figure 3-5. Notice that
you or someone on your team is going to have to upload an existing Git

repository before anyone will be able to clone or work with this repository or
click on the links for README, LICENSE, or .gitignore near the top of the page,
in the “Quick setup” section. Clicking one of those links will bring you to a page
to add a new file. So, whether you already created the README or clicked one
of those links, let’s look at adding a new file next.

- brotbeer [new_project ©Urwatch= 1 &Swr 0 YFark 0
£ Code Izsues 0 Pull requests 0 Projects D Wiki Pulsas Graphs Settings
No description, website, or fopics provided. Edit
fudd topics
01 commit F 1 branch O releases 11 1 cantributar
Branch: mastar = MW pull raguest Craate néw file Upload files Fin Tile Clone or dewniload =
! Brratbear itial cammit Latesl codmmil B5e58a7 2 Minules 850
README.md Initial commit 2 minutes ago

= README.md

new_project

Figure 3-4. A new project initialized with a README.md

brntbeer | new_project O Unwatch= 1 St 0 k0

¥ Code Issues Pull raquests o Projects @ Wiki Pulsa Graphs Sattings

Quick setup — if you've done this kind of thing before

[H)Setupin Desitop ©r HTTPS | S5H git@githeb, com:brotbesr/nim_prajest, git [k
We recommend every repository inclede a README, LICENSE, and .gitignare.
...0F create a new repository on the command line
acho “# nes_project™ »» README.nd e
git init ns
git add README.md
git comit -nm "first commlt®
git remote add origin git@github.com:brntbeer/new_project.git
git push -u origin master
...or push an existing repository from the command line
[

Bit remote add origin git@glthub,com:brotbeer/new_project.git
git push -u origin master

..0r import code from another repository
You can initislize this repoaitory with code from & Subversion, NEI"GIJHEI. of TFS project.

Impart cade

Figure 3-5. A new project that needs a repository to be uploaded

Adding a File
As you can see in Figure 3-6, there are a collection of buttons on the right side of
the screen above the listing of files, and one of them says “Create new file.”

Craate naw file Uplead files v file

Figure 3-6. The “Create new file” button

Click this button and you’ll be taken to the screen in Figure 3-7.

- brntbeer [new_project ©Unwatch= 1 Star 0 YFork 0

€ Code |zsues O Pull regquests 0 Projects a Wiki Pulse Graphs Seltings
new_project | 2017.md of cance
€2 Edit nevw Tile D Prawiew Spaces = 2 = Ho wrap —

Thiz is the new file nesed after the year in which is wos crested for purposes of future book edition updstes,|

Figure 3-7. The “Create new file” screen

Toward the top of the page is a text box just to the right of the project name,
where you can enter the name of the file you want to add to the project. Below
that is a text area where you can enter the content you’d like to put in the file.
Scroll down the page when you’re done naming the file and entering the content
and, as shown in Figure 3-8, you’ll see a couple of text boxes where you can
create a (required) short description and an optional extended description of the
change that you’re making.

_:;?E Commit new file

Qo Commit directly 1o the saster branch,

Il Create a new branch for this commit and start a pull request. Learn more about pull requests

Figure 3-8. The bottom of the “Create new file” screen

These descriptions will be saved as the commit message for your commit. If you
don’t enter anything, the default commit message will be “Create (<filename>).”
Generally, you’ll want to enter a meaningful commit message so other people
viewing the project will understand what you did and why you did it. You have

two options for where to commit this change: directly to the master branch or
on a new branch to propose the change as a pull request. We’ll see how to start a
pull request another way in the next chapter, but this “quick pull request” flow
exists for immediately starting a pull request from your edits. For now, click the
green “Commit new file” button, and your new file will be added to the project
and your commit will be added to the commit history. You can see in Figure 3-9
that 2017.md has been added to the list of files.

D 2 commits ¥ 1 branch O releasas 11 1 cantributar
Branch: master = Maw pill regqust Create mew file Upload files Find file =0 bl b
’! bratbeer commitled an GitHul Create 2007 md Latest somimil 57cod8e & minule ago
2017.md Create 2017.md a minute ago
README.md mitial commit 37 rinutes

&5 g0

Figure 3-9. The project home page after adding the new file
Editing a File

Sometimes you might want to add a new file to a project because you’re adding
whole new functionality, but most of the time you’ll find that you’re going to
change an existing file to expand some feature or fix some bug in existing code.
Let’s say you wanted to edit README.md to let people know how to contribute
to the project. Starting on the home page of your project, if you click the
README.md filename, it’ll take you to a page like Figure 3-10.

L brotbeer [new_project ©Umwatsh= 1 kSt 0 YFek 0
43 Code Issues O Pull requasis 0 Prajects O Wik Pulsa Graghs Saottings
Branch: master = naw_project /| README.md Find file Copy path
1 bBratheer nitial cammil BSE5EaT an hour ago
1 cantributar
1 limes {1 aloc) 13 Aytes Row Blame Hstwy [# W

.
new_project

Figure 3-10. Viewing the README.md file

In Figure 3-10, you can see who last made a change to the file, how long ago the

change was made, the first line of the commit message, and how many people
have contributed content to the file. Above the display of the content are a
number of buttons and icons. The option we’re going to use right now is to edit
by clicking the pencil icon, shown in Figure 3-11. Clicking that icon takes you to
the screen shown in Figure 3-12, which will allow you to change the content of
the file.

Blame History [J + W

Figure 3-11. Pencil icon to edit the file

bratbeer / new_project & Urwateh = 1 S 0 YFerk 0
€3 Cade SEUES O Pull regquests 0 Prajects 0 Wik Pulze Graphs Seltings

new_project /| README.md B orcancel
<¥ Edit fila & Preview changes Spaces ¥ 2 B Salt wrap =

& nw_praject
o4 liow to contribute

- If yow don't know how, don't pandicl It"s covered in an additionsl chapter of this book.

- It's ieportast te hive a camersation when opesing a pull request. Deseribe your change amd why 5t should Be accested.

Figure 3-12. Editing the README.md file

As with the screen for adding a file, once you’re done with your changes to
explain how to contribute to your project, scroll down the page, enter a
meaningful commit message, and click the “Commit changes” button. Once
you’ve done that, you’ll see the page displaying the README.md file and any
additional content you added. In Figure 3-13 you can see the “How to
contribute” information that was just added to the file.

. brntbeer [new_project ©Umwatch~ 1 kS 0 YFork 0

€3 Cade IssUes O Pull regquests 0 Prajeclts O Wik Pulze Graphs Sellings
Brarch: master = new_project | README.md Find file Copy path
'l bratbeer Ugdate README. md eE6E345 just now

1 contributar

9 lines (7 sloc) = 315 Bytes Aaw | Blame History [#

new_project

How to contribute

= Fork this project
a I you don't know how, don’t panic! IUs covered in an additional chapter of this bock,
« Make your changes

= Submit a pull request
a [t's important to have a conversation when opening a pull request. Describe your change and why it should
be accapted.

Figure 3-13. The updated contribution instructions in README.md

Renaming or Moving a File

Often you will want to rename a file, or move it from one folder to another. As
far as Git and GitHub are concerned, both are the same process: you’re changing
the full name of the file, and optionally including the name of its folder. In this
section, we’re going to move the 2017.md file we just created to a folder called
documentation and then rename it chapter_1.md.

To start, go to the home page (the Code tab at the top of the page) of the repo,
and then click the 2017.md filename to go to the view page for 2017.md. Then
click the pencil icon to edit like you did in the previous section. Doing that gets
you to a screen that looks like Figure 3-14.

new_project / 2017md 2 orcancel

€2 Edit file & Preview changes Spaces 3 2 — Softwran 3

This is the new File named after the year 1n which 85 was created for purposes of Future book editice updates.

Figure 3-14. The edit screen for 2017.md

This time, instead of editing the content of the file, you’re going to go to the text
box further up the page with the filename. If you just want to rename the file but
keep it in the same folder, you can just change the name of the file. If you want
to put this file in another folder (whether or not it exists already), all you have to
do is include a forward slash (/) in the filename. So in this case, you just need to
type documentation/chapter_1.md into the filename box. As you can see in
Figure 3-15, as soon as you enter the forward slash, GitHub breaks that out as a
new folder in the interface. If you later wanted to move the file up a folder, you
could just start by typing ../ into the filename.

new_project [documentation /| chapter 1md B | or cance!

€2 Edit file & Preview changes Spaces 2 2 = Soft wrap 2

This is the new file nased after the year in which is was created for purposes of future bock edition wpdates.

Figure 3-15. Editing the folder or filename for a file

If you misspell the folder name, just click the “cancel” button shown in Figure 3-
15 to start over. If you’d like to edit the content of the file, you can also do that
at this time. Once you’re done with the renaming or moving of a file, scroll
down the page and commit the change. Figure 3-16 shows the renamed and
edited file, now in the /documentation folder.

master = néw_project | documentation [ehapter_1.md Find file Cogy path
"! bentbear Update and rename 2017.md 1o documenationichagter 1md BcBd32d just maw
1 contributo
3 lines {1 slag) &b Bytes Raw Blame Histoy [0 # B

This is the new file inside of the documentation directory.

Figure 3-16. The renamed and edited file in the /documentation folder

Working with Folders

It is important to understand how Git thinks about folders—it doesn’t! Git is
concerned only with files. As far as it is concerned, folders are simply a place to
store those files. Because of that, there is no way to add a folder to a project
unless it includes at least one file.

Sometimes this is a problem. For example, in many software projects there needs
to be a /build folder where automatically generated files will be saved when
compiling the software. With some systems, if you don’t have such a folder,
you’ll be unable to use the project.

Creating a Folder

A common pattern that has emerged is to create an empty file called .gitkeep in
any folder that you need to create but that doesn’t really need to have any files in
it. It seems a bit strange, but it works well and it is a well-understood convention
—so0 if you ever need to create a folder, just create a .gitkeep file (see Figure 3-
17).

Eranch: master = new_project | build | Create new file Upload fles Find file History

PR brotbeer committed on GitHUB Creata gitkesp Latest commit 41Fa758 just naw

.gitkeap Creats .gitkes
Figure 3-17. Adding a .gitkeep file to create a /build folder

Renaming a Folder

You might have guessed that just as you can’t create a folder directly, you can’t
rename it directly either. If you want to move a single file from one folder to
another, you can do that by renaming it. For example, if I wanted to move
chapter_1.md from /documentation to /new_docs, I could just go to the view
page for the chapter_1.md file, click the pencil icon to edit the file, and at the
start of the filename box type ../ to go up a folder, followed by new_docs to
create or put the file into that folder instead. However, there is no way to just
rename a folder on GitHub. You’d have to rename each of the files in the folder
one at a time to move them to the new folder.

The Limits of Editing on GitHub

We have just run into one of the limitations of editing on GitHub. Originally
GitHub was designed to allow developers to share their Git repositories with
each other. Developers would make changes to their projects locally on their
laptops, save those changes in Git, and then push the results to GitHub. Now that
more and more nontechnical people are collaborating via GitHub, it’s possible to
do much of your editing right on the site, but there are a number of things that
you can’t do via the web-based interface.

Currently, GitHub doesn’t allow you to rename folders or to make changes to
more than one file in a single commit, nor does it give you the power of Git to
rewrite history, or access to a handful of other workflows and commands more
suitable for a terminal interface or desktop application. So, collaboration on
projects often requires downloading (cloning) a copy of the repo, making some
changes, and pushing them back up to GitHub.

If you want to learn the basics of working with Git locally, check out the
instructions in Chapter 8 for getting started with GitHub on the desktop. For
now, though, we’re going to look at how to collaborate effectively with others or
with your team using GitHub.

Chapter 4. Collaboration

In this chapter we’ll start by looking at how to collaborate on a repository that
you don’t have permission to push to by creating a fork and a pull request. While
forks are a good way to accept contributions from people you don’t work with
regularly, they are a bit too cumbersome for everyday use in a team that is
working together closely. Because of this, later in the chapter we’ll look at how
to collaborate directly on a single repository without using forks. Lastly, we’ll
take some time to look more deeply into collaborating using pull requests and
issues.

Contributing via a Fork

If you want to contribute directly to a repository, you either need to own it or
have been added to it as a collaborator. If you want to contribute to a repository
that you don’t own and are not a collaborator on, you’ll need to make a copy of
it on GitHub under your user account. That process is called forking. Once
you’ve forked a repository, you’ll be able to make any changes you want to your
fork (copy) and you’ll be able to request that your changes get incorporated into
the original repository by using a pull request. Let’s go through that process
now.

Go to https://github.com/pragmaticlearning/github-example. Click the Fork

button in the top-right corner of the page, as shown in Figure 4-1.

pragmaticlearning [github-example @ Wwatch~ 4 o Star 17 Wrork =13
Figure 4-1. The Fork button

When you click the Fork button, if you are a member of any organizations,
you’ll see a list of all of the organizations you’re involved with as well as your
username. You’ll be asked where you want to fork the repository (as shown in
Figure 4-2).

https://github.com/pragmaticlearning/github-example

B ° B) pegratcesmingipttub-ss L
= @ Gitub, inc. [US] hiips:ipithub.comipragrardesmingiaihub-essmle w @ad:

Where shauld we fark this repositary?

" hl
Fsarting.. Bgithab-ga.. Fgmareme.

KEEP
- v CALM
= 7 T A
a ® 9 w MAKE A

FLAN
Eedezuis Bpnhubpar... Egithub-Tie.

™ T

Figure 4-2. Selecting where to fork a repo

After you select where you want to fork the repository, or if you are not a
member of any organizations, you’ll be taken to your new repository page. Once
you’ve forked the repo, you can make any changes you want to your fork (copy).
In the next section we’ll look at how you can add a new file, like we did in
Chapter 3, and then how to create a pull request to try to get your change
incorporated into the original repository.

Adding a File

In this section we’ll look at how to add a new file to a repository. As a reminder,
you can see in Figure 4-3 that there are a collection of buttons on the right side
of the screen above the listing of files, one of which says “Create new file.”

Edit

B cammit b 2 branche O redea 2
masier = Mew pull request Create new fille | Uplbad fles Find file
Figure 4-3. The “Create new file” button

Click this button and you’ll be taken to the same new file screen as before,
shown in Figure 4-4.

bratbeer | github-example @ Unwatsh = 1 dStar 0 YFork 94
forked fr ngigiths

el from pragraticesrningigitrub-mxmmoln

€3 Cada Pull requests 0 Projecis 0 Wiki Puilga Graphs Saltings
github-example | first-file.md or cancel
<> Edit new fila @ Preview Spaces & 2 & MNowsp &

This is the ¢ontent for ay First file.|

Figure 4-4. The “Create new file” screen

Toward the top of the page is a text box just to the right of the project name,
where you can enter the name of the file you want to add to the project. Below
that is a text area where you can enter the content you’d like to put in the file.
Scroll down the page when you’re done naming the file and entering the content;
as shown in Figure 4-5, you’ll see a couple of text boxes where you can create a
(required) short description and an optional extended description of the change
that you’re making.

it E Commit new file

D <« Commit directly to the asstes Branch.

i Create a new branch for this commit and start a pull reguest, Learn mare abaut pull requests

m can:ul

Figure 4-5. The bottom of the “Create new file” screen

These descriptions will be saved as the commit message for your commit. If you
don’t enter anything, the default commit message will be “Create (<filename>).”
As mentioned in Chapter 3, you’ll want to enter a meaningful commit message
so other people viewing the project will understand what you did and why you
did it. As shown in Figure 4-5, you have two options for where to commit this
change: directly to the master branch or on a new branch to propose the change

as a pull request. We’ll start a pull request another way in a moment, but this
“quick pull request” flow exists for immediately starting a pull request from your
edits. For now, click the green “Commit new file” button: your new file will be
added to the project and your commit will be added to the commit history. You
can see in Figure 4-6 that first-file.md has been added to the list of files.

D 8 commits ¥ 2 branches "> O redeases 21 2 contributors

Aranch: MaEhar = Haw pull reguast Create mew T8e Uplaad files Find file

This branch is 1 commit ahead of pragmaticlearning:master Pull reguast Compara

rx brntbeer committed on GitHub Create first-fileomd Latest commit fabacle just now
README.md Tedling people how 1o contribute (o the praject 3 years ago
another-file Create ansthear-file 3 years ago
first-file.md Create first-file.md just now

naw_file.md Create mew fila.md 3 years ago
Figure 4-6. The project home page after adding the new file

Creating a Pull Request

You’ve made a change to your fork of the project, but the change hasn’t
propagated back to the original project yet. That makes sense. Anyone can fork
any public project, and the project owner wouldn’t want just anyone editing all
of their files. However, sometimes it’s great to allow other people to propose
changes to a project. This allows a large number of people to easily contribute to
an open source project or a smaller team to work together on an internal project.
That is what pull requests are for. Some maintainers send pull requests to their
own repositories for the sake of documenting how they’ve developed their
projects, even if they’re not waiting for anyone else’s approval! Many more
approaches to maintaining, contributing, and working with open source software
in general can be found at https://opensource.quide.

With a pull request, you can request that changes you’ve made on a fork be
incorporated into the original project. Let’s go through the process now. As you
can see in Figure 4-7, at the top of the page there’s a “Pull requests” tab.

https://opensource.guide/

4= Urrwaich = 1 o Star o W Fark

e e T T DT L

i Code Full requasts ©

Figure 4-7. The “Pull requests” tab on the project home page

Click the “Pull requests” tab, and you’ll see a screen similar to Figure 4-8
showing that currently you don’t have any outstanding pull requests. Click the
green “New pull request” button at the top right of the screen.

Code Il Pull requests @ Projects @ Wikl Pulze Graphs Settings

Filters - 50T i 0pen Labels Milestones Hew pull reguest

Welcome to Pull Requests!

Pull requests help you collaborate on code with other people. As pull requests are created, they'll appear here in a
searchable and filterable list. To get started, you should create a pull request.

" PraTip! Exclide yaur own issues with -authorbrntbesr.

Figure 4-8. The pull requests screen

When you click the button, you’ll see a screen similar to Figure 4-9.

Comparing changes

Choose two branches to see what's changed or to start a new pull request. f you need to, you can also compare across forks

iy | bas=e fork: pragmaticlearning /github-ex... = base: master = o head fork: brotbeer)github-example = COmpans: masier «

+ Able to merge. These branches can be automatically mergad

o 1 comrmit 1 file changed O commit comments 11 1 contributor

I Commits on Apr 03, 2017

W brntbeer Create first-file.nd
Showing 1 changed file with 1 addition and 0 deletions. Unified | Split
i1m First-File.md & | B View | [J
Th 5 th tent for my £ Fil

Mo commit comments for this range

Figure 4-9. The “New pull request” screen

One of the first things you’ll see in Figure 4-9 is that it is proposing a pull
request between pragmaticlearning:master and brntbeer:master. Pull
requests are requests to incorporate the changes from one branch (stream of
history) into another. In this case, GitHub has correctly guessed that I want to
take the change that I made on the master branch on my fork (the new file I
added) and have that merged back into the master branch on the original project
that I forked from. Note that the branch with the changes that you want merged

in is on the right, and the target branch you’d like it to be merged into is on the
left.

As you look lower down in Figure 4-9, you’ll also see that it provides a
summary of the changes that would occur if that pull request was merged—I did
indeed make one commit that changed a single file. It even shows in green the
new content that would be added to first-file.md—this is often called the diff or
difference. If 1 click the Split or Unified button, it will change the way in which
the difference that is being proposed is rendered. This setting is “sticky,”
meaning that GitHub will remember it for future diff renderings.

Once you’ve confirmed that the proposed pull request is the one you want to

create, the next step is to click the large green “Create pull request” button.
Doing so will take you to a page similar to Figure 4-10.

Open a pull request

Create a new pull request by comparing changes across two branches. If you need Lo, you can alss compare across farks

K] nase fark: pragmatickearningigithub-ax.. = bace: master = ... | bead fork: Bentbear/github-sxamplhe « COMODATR: MEsier =

« Able to merge. These branches can be automatically merged.

m Create first-file,md

Wirite Praview BB [{9 + o

T
r
4
n

@PeterBell please accept this pull reguest so readers can s2e how the full pull request process
wiarks from end to end!?

Artach files by dragging & drapping, selecting them, ar pasting from the clipboard.

Allow edits from maintainers, Learn more Create pull request

o 1 commit) 1 file changead 7 D commit comments 14 1 contributar

|'r'| Commits an Apr 03, 2017

! brrtbeer Create first-#11e.md
Showing 1 changed file with 1 addition and 0 deletions. Unified | Split
1. Firstefile.sd L+ Wiew [

+This 15 the content for my first file.

Figure 4-10. The “Create pull request” screen

This screen is your chance to tell the story and start a conversation about why
your changes should be incorporated into the other project, so take the time to
create a meaningful title and description of the changes you’ve made. By default
the title will be the first line of your commit message for your most recent
commit, and if you’ve made more than one commit on the branch you’re trying
to have merged, the description will contain a bulleted list of the first lines of all
of the commit messages that are part of the pull request. That’s a fine starting
point, but you’re going to want to take a little bit of time to describe not only
what changes you’ve made, but why you made them and why they’d be a good
addition to the project. Since this is the start of a conversation, it’s often best to

@mention (pronounced “at-mention”) the maintainer to ensure they see your
request, and to let them know if you still have some changes you’d like to make
or not. If you’re lucky, the repository you’re contributing to will have made use
of an issue or pull request template to fill in some information or give you some
instructions on contributing. For more information about these templates, please
see the GitHub documentation.

You may also notice the “Allow edits from maintainers” checkbox below the
description section, to the left of the “Create pull request” button. This allows
the maintainers to make changes directly on your branch. This may sound scary
at first, but it really helps the maintainers, and you, if there are small changes to
be made before accepting your changes. Sometimes there may be simple stylistic
changes or complicated changes that are easier for them to do to finish the pull
request. If you don’t select this option here, it also can be turned on or off from
the pull request screen after the pull request is created.

Once you’ve finished describing your pull request, click the “Create pull
request” button and you’ll see a page that looks like Figure 4-11.

https://help.github.com/articles/creating-an-issue-template-for-your-repository/

Create first-file.md #95 edit

m brntbeer wants to merge 1 commit into pragesticiearingisaster frOM brathesrisaster

L Canversation @ o Commits 1 (&} Files changed 1 +1-0m

! brntbeer commented 24 minutes 8go Callsharatar . ' Reviewers

Ko revlews—request ane

EPeterBell please accept this pull request so readers can See how the Tull pull request process
| :

works from end to end! Asalgness

Mo ana—assign yoursall
M create first-file.nd

Labels

&dd mare commits by pushing to the saster branch on bentbeergithub-example. Heng yal

o This branch has no conflicts with the base branch Projacts

Marging can be performed automatically. Meng yal
Mllastane
[EETGTRITUNES TEETRR R Yiou CanN 60 opan this in GitHub Deskiop or viaw command ling instnactions,
Wi ik o
. s g g Matifecations
! Write Preview M B [{ g+ 2 E¥s =@ R !
. o= Ui bscribe

¥ous'ng raceiving notifications

bpcauss you authored the thread

1 participant

attach files by drapging & dropping, seéacting them, or pasting from the clipboard, !
1 Styling with Markdown is supparted Close pull request m

. ProTip! Add comments to specific lines under Files changed.

B Lesck corvarsation

Allcre edits from maintainers,

Learn micne

Figure 4-11. A created pull request

There are a couple of things that you should notice in Figure 4-11. First, notice
that you’re now in the original project, under pragmaticlearning. This makes
sense. You wanted to create a request to pull your work into that project, so the
pull request is part of that project—not your fork. You can see that “brntbeer
wants to merge 1 commit into pragmaticlearning:master from
brntbeer:master,” and it shows you the pull request (title and description)
followed by the commit that was made. Clicking that commit displays the details
of the commit in a review workflow, as you can see in Figure 4-12.

Create first-file.md

m brotixeer wants to merge 1 commit into pragsaticlearning:saster fTOM Ertbesrsaster

(= Conversation 0 o= Cammits 1 E' Files changed 1

Changas from all commits = 1 file = +1-0m Unified Split m

Create first-file.md

T bratieer committed on GitHub 5 hours ago comml t FabacBceldfBASTENAIFIISCIFIE2a6C20636B6
1N first-file.md [+ N | Wiew [# ~

+This iz the content for my first file.

Figure 4-12. Viewing the commit from the pull request

Notice that the commit link has taken you to the “Files changed” tab of the pull
request. This tab is where you can see all of your proposed edits for this pull
request. However, in this situation you see just that one commit because that’s
what you clicked on. This is a useful review workflow when you want to jump
through some work one commit at a time. We’ll cover code reviews for pull
requests in more detail later in this chapter.

Going back to the pull request in Figure 4-11, you’ll see that there is an option to
merge the pull request. That option is visible only to the owner of the project or
to anyone the owner has added as a collaborator with “write” or “admin”
permission. If someone without those permissions—for example, yourself—was
looking at the page, he would not be able to merge the pull request. To illustrate,
in Figure 4-13 I’ve logged in as another user. When I view the same page, |
don’t get the option to merge in the pull request, although I can still comment on
it if I want.

Create first-file.md /957

m brntbeer wants to merge 1 commit inte prageaticlesraingisaster frOM sentheerisaster

[~ Carversation @ & Cammals 1 E!F'es changed 1 +1-0m

! brotbeer commentad 29 minutes ago Collaboratar o Aayidmiis
it

P TR

@PeterBell please accept this pull requeest 50 readaers can see how the full pull requast process
works fram end 1o end! Assignees
Mo ona assignad
M create first-file.nd

Labels

Mane yet
° This branch has no conflicts with the base branch

Only those with write access ta this repesitory can merge pull requests. Projects

Mane yet

F i i M= B £ <> = i e @
Q Write Freview R Milaatans

P milescrs

Motifications

44 Subseriba
Attach files by dragging & dropping, selecting them, or pasting from the clipboard. You're not receiing notidications
fram this threac
EN Styling with Markdown i supported m
1 participan
i} ProTip! Add comments to specific lines under Fites changed. !

Figure 4-13. Viewing a pull request without being able to merge it

Often there will be a discussion before a pull request is merged, but we’ll look at
that more later in this chapter. For now I’m just going to accept the pull request
and merge it in. Clicking the “Merge pull request” button adds a text box where I
get the option to customize the commit message for merging the pull request, as
shown in Figure 4-14.

Create first-file.md

AUCMONe COmmEcE oy Dushing 1o the sasTer orancn on urmuuﬂrni:hub—u:umpiu

a Merge pull request #3951 from brntbeer/master

Creata first=file,md

Figure 4-14. Getting ready to merge a pull request

Once I’ve made any changes I want to the merge commit’s message, I can just
click the “Confirm merge” button below and to the left. The pull request is then
merged, and the output is displayed, as in Figure 4-15.

Create first-file.md #9571

LN bentbear marged 1 commit into pregeaticlearaiagisaster from beatbeercmaster 10 seconds ago

& Conversation @ < Commits 1 [5} Files changed 1 +1-0m

u bratbeer commented 34 minules sgo Collaborator s Reviowers
No v inws—reguast ang
@PeterBall please accept this pull request So readers can See how the full pull request process

warks from end to endl Assignees

Mo ane—assign yourself

M create First-filesd
Lakbals
@ ! brotbesr menged commit 9512578 into prapsaticlearning:saster 10 seconds ago Rivart Rone yel
Projecis
E weite | Preview M Bi Kom ZEE @R | teww
Miflestane
Mo milestane
3 Matifications
Axtach files by dragging & dropping, selecting them, or pasting fram the clipbaard. s Unsubiseribe

5 th Marid ted m ¥ou'ne recefving notifications
tyling with Markdown is supparte .
e s e bescause you maodified the

epenjcloss stata

) ProTip! Add commants to specific lines under Files changed,
1 participant

EILWIL conwersation

Allow edits from maintainers.

Learn more

Figure 4-15. Viewing a closed (merged) pull request

Notice that you can still see the pull request message and the commit, but now
you can also see who merged in the pull request and approximately when they
did so. I also have the ability to revert this pull request if the merge was done in
error. The Revert button here will allow me to open a new pull request that does
the inverse of the work I just did. Finally, if you look at the project page in
Figure 4-16, you’ll notice a couple of things.

[/ pragmaticlearning / github-example G Unwatch~ & JeStar | 17 YFark 916
¥ Code Issuas 13 Pull requests 724 | Projects o Wiki Pulsa il Graphs

No description, website, or lopics provided,

5 10 commits ¥ 2 branches £ 0 raleases 41 2 contributors
Branch: masier = Hew pull request Create new file Upload files Find file Clane or download =
Mg brtbear committed on GitHub Marge pull request #5451 from brothearimastar - Latast commit 5312578 & minutes ago
| README.rmdd Telling peaple haw to contribute to the praject 3 years ago
| another-file Create anather-file 3 years ago
= first-file.md Craate first-fila.md 5 hours ago
= new_file.md Create new_file.md 3 years ago

Figure 4-16. The original (pragmaticlearning) project after merging the pull request

First, first-file.md has been added to the project. Second, there are 10 commits
now in the original project. Clicking the “10 commits” link shows why (see
Figure 4-17).

¢» Cade lszues 13 Pull requestis 724 || Progects @ Wikl Pulze Graphs
Branch: master

Cammits an Apr 3, 207

E Merge pull request #9571 from brntbeer/master - B asasm O
bratbear committed on GitMub 7 minubes aga

Create first-file.md {2 fabacac e
brntbeer committed on GitHub 5 hours ago a

Commits on Aug 22, 2074

E: Merge pull request #6 from miljoshG8/master - (2 cabacad)
PatarBall commmied on Aug 23, 2014

Create another-file 2 lezafiq L+

miljosh&BE committed on Aug 22, 3074

Commits an Jun 23, 2014

Merge pull request #2 from PeterBell/master - L Gemsim o
PaterBall committed on Jun 23, 2014

Telling peaple how to contribute to the project [disdiie €
PeterBell committed on Jun 23, 3014

Merge pull request #1 from PeterBell/master - f2 czeccas o
PeterBell commisted on Jun 23, 2014 i

Commits on Jun 22, 2014

E: Create new_file.md 2 osessTe 133
PaterBall comemied on Jum 22, 7074

. Update README.md fa coreem | €

Figure 4-17. The project’s commit history

In addition to the eight original commits in the project, there is the “Create first-
file.md” commit that was made on my fork and a new merge commit that
brought the work into the original project when I merged the pull request. By
default, whenever you merge a pull request, it will create one of these merge
commits (it is possible to configure the repository to have different functionality,
but we’ll leave that as an advanced topic for you to learn about later). They are
really useful because the commit message, which you can edit when you merge a
pull request, allows you to document why you decided to include the work.

Note

If you ever wanted to get rid of all of the work you merged in from a pull
request, you could ask one of your developers to “revert the merge commit for
that pull request” and she’d be able to easily remove all of the changes that got
merged in. If you have permission to merge the pull request, you will also have
the ability to bring in the changes by squashing them all together before
merging, or rebasing before merging. These are more advanced workflows that
we won’t be covering in this book. If you are interested in learning more, you
should check out the GitHub learning resources.

Committing to a Branch

sature wch ko “mastert Feege *Teature” Deanch inio ‘master”

Figure 4-18. GitHub Flow, a basic branching collaboration structure

Now that we’ve seen how to contribute via a fork, we’ll look at a more common
team-based workflow: committing directly to a repository that you have access
to push code directly to. To some people, this workflow may seem like a
combination of working on a fork as well as working on your own repository,
with one exception: feature branching. In Git, everything is committed onto a
branch, and the branch we’ve done all of our commits on so far has been
master. An alternative to committing to master is to create a branch that is
often named after what you’re working on. Sometimes this is something simple,
like update-readme-with-contact-1info, and other times it’s named directly

https://services.github.com/on-demand/resources

after a work item that’s been assigned to you by a project management team, like
15363-change-login-flow.

Besides allowing you to work safely and experiment on changes without
affecting the master branch (which often signifies the safe, nonbuggy, stable
code base), feature branching allows you to start a pull request in the same
repository you’re in. This is the part that is similar to the forking workflow. An
example of the type of workflow you will be using is shown in Figure 4-18; it’s
called the GitHub Flow. Keep this image in mind as you dive in and experience
it for yourself.

I’ve created a simple single-repo-example repository under the
pragmaticlearning organization, as you can see in Figure 4-19.

pragmaticlearning f single-repo-example @wWatch= 1 drStar 1 Yrork 90

<» Code Issues 25 Pull requests &8 Projects 0 Wiki Pulse Graphs
Na description, website, or topics provided,
D1 cammit ¥ 4 branchas 0 releases 1L 1 cantributar

Eranch: master = Hew pull reguest Createnew file | Uploadfiles Findfile |

i“ PeterBell Initial cammit Latest commit sassfat on Jun 22, 2074

README.md Initial commit 3 years ago

EE README.md

single-repo-example

Figure 4-19. The single-repo-example repository

If I want to augment the README.md file, the first thing I should to do is create
a branch. That way I’ll be able to keep my changes separate while I’'m working
on them and can open my pull request later. To do that, I can just click the
“Branch: master” drop-down, which lists the current branches in the project and
provides a text box for entering the name of an existing branch or the new
branch that I want to create (see Figure 4-20).

https://github.com/pragmaticlearning/single-repo-example
https://github.com/pragmaticlearning

[0 1 commit ¥ 1 ranch “» D relgases 41 1 contributor

Branch master = Mew pull reguest Create new file Upload files Find flle Clane or download -

Switch branchesfags

Latest commit 8855F81 on Jun 23, 2014

nitial commit 1 years ago

Granches Tags

single-repo-example

Figure 4-20. The Branch drop-down list

If I create an update_readme branch, as you can see in Figure 4-21, GitHub
automatically checks out that new branch. You can see this both on the Branch
pull-down where the current branch is displayed, and in the browser URL bar:
the address ends with tree/update_readme, signifying that we’re on the
update_readme branch.

® ° @ | () pragmaticiearnigisingle-rec: X

ix C | & GitHub, Inc, [US] hitps:/jgithubcom)pragmaticlearning/single-repo-sxample/treejupdate_readme

o This repository Pull requests |ssues Gist

Branch created.

pragmaticlearning | single-repo-example G Urmatch = 2

£ Code |3=uas 27 Pull regquests 28 Projects o Wik Pulse Graphs
No description or website provided,
introducting -gthuk mMna-githed Manage opics
B commit ¥ 2 branches "0 releasas
Aranch: updata_raadme = Maw pull Fasjuast

Crgata rera flla Upload filas
This branch is even with master.
al 5 "
& PeterBall Initlal commit Latast

README.md Initiad commit

Figure 4-21. On the update_readme branch

The next step is to start to make changes on the update_readme branch. I’'ll edit
the README.md file and commit the changes like we’ve done a few times up to

this point. As you can see in Figure 4-22, I have only one commit on the master

branch, but if you look at Figure 4-23, where I've changed the branch to
update_readme, in addition to the initial commit you can also see the new
commit that I made on the update_readme branch.

1 master =

Commits an Jun 23, 2014

£ Initial commit
PatarBall commiied an Jun 23, 2012

1 BESEFE2 £+]

Figure 4-22. There’s still only one commit on the master branch

e uipdate_ fepdms -

Commits an May 18, 2007

PB update README. md

rnthesr committed on Gitkub 12 seconds age

F aTAdBGE £

Commits an Jun 23, 20174

Y initial commit
PeterBall committed on Jun 23, 2074

B B55FAY L¥

Figure 4-23. But there are two commits on the update_readme branch

I might continue to work on the branch for a while, getting my changes just
right. Once I’m ready to get some input, I’ll want to create a pull request to start
a conversation about my proposed changes.

Creating a Pull Request from a Branch

There are many ways to create a pull request, but as in the previous chapter, I’1l
click the Pull Request tab on the top part of the page and then click the green
“New pull request” button. When I do this, as you can see in Figure 4-24, the
experience is slightly different. Now GitHub isn’t sure what branches I want to
create a pull request between, so I have to tell it.

On the left you can see “base: master.” That is perfect as it means that if I create
a pull request, once it is accepted, it will get merged into the master branch,
which is exactly what I want. However, I do need to click the “compare: master”
drop-down to tell GitHub what branch I want to create a pull request for, as you
can see in Figure 4-25. The “compare:” branch is the one that I’d like people to
consider merging into master.

Compare changes

Compare changes across branches, commits, tags, and more below, If you need to, you can alse compare across forks

A} base: masber * | ... Compane: master -

Choose different branches or forks above to discuss and review changes.

Compare and review just about anything

Branchas, tags, commit rangas, and time ranges. In the samea repository and across forks.

EXAMPLE COMPARISONS
update_readme 6 days aga

mastar@{1day)... master 24 hours ago

Figure 4-24. Starting to create a pull request from a branch

Compare changes

Compare changes across branches, commits, tegs, and more balow, If you need to, you can also compare across forks.,

I base: master * | ... | compane: master =

Choose a head branch

| | | 1 discuss and review changes T

ipidata_rasdime

5

|

Compare and review just about anything
Branches, tags, commit ranges, and time ranges. In the same repository and across forks.
EXAMPLE COMPARISONS

update_readme & days ago

master@{1day}...master 24 haurs ago

Figure 4-25. Selecting the branch for the pull request

Once I've selected a branch, the process is just the same as it was earlier in this
chapter when creating a pull request from a fork. I click the green “Create pull
request” button, enter a title and description to explain the reason for the pull
request, and then click the “Create pull request” button. This creates the pull

request shown in Figure 4-26.

Update README.md it
m brathaar wanls to merge 1 commit it ssswer TIOM wpdate_reasse
I Comversation 0 < Commits 1 [5) Files changed 1 +1 -2 .
s bratixeer commenied 2 minutes ago Dwner Hevinwers
it! E
Suggestians
changed markdown formatting since the standard has changed B, petersell 7
! Update EEADME.md — ‘ Assignees

Ma ane—assign yoursell
Add more commits by pushing to the update_readse branch on pragmaticlearningysingle-repo-example.

Labels

° This branch has no conflicts with the base branch Mane yet
Marging can be parformad automatically
Projects
[SETS TR T TEE TR fou can alsa apan this in GitHub Deskiap of view command Bne instructions Wana pet
Milestane
" ll Write Preview M- B i bk o © = == - @ H Mo milestane
Maotilicatians

4= Unsubscrine

You're receiving notdicstions
bBeCauss you suthord the thread,

Attach files by dragging & dropping, selecting them, ar pasting from the clipboard.

1 participant
T Sylirg with Markdown is supporbed Close pull request m

Figure 4-26. The new pull request

Collaborating on Pull Requests

Pull requests are designed to start a conversation about a proposed change—
usually either a new feature or a bug fix. Originally, pull requests were created
only when coding was completed to ask someone to incorporate a completed set
of changes, but these days pull requests are used in a couple of different ways.

If you have a change that you’re confident about, you can still create a new
branch, make all your changes, and wait to create a pull request until you’re
done with the work. In such a case, the purpose of the pull request is just as a
double-check to make sure that the rest of your team agrees with the changes

you made before the changes get merged into master and pushed to production.

However, there is another way to use pull requests. In many companies,
employees will often create pull requests for features that they’d like to discuss.
So, if you have an idea for a change but aren’t sure whether it’s a good idea,

consider creating a branch and making the simplest possible start on the work—
maybe just a small text file describing it. Once you have a commit on the branch,
you can then create a pull request to kick off a discussion about the idea.
Involving People with Pull Requests

If you’ve created a pull request and would like feedback from specific people on
a team, @mention them. To do this, within the pull request itself or in a
comment on the pull request, type @ and then type in the GitHub username. If
the person is the owner or a collaborator on the repository, the username will
autocomplete as you start to type. You can also begin typing the user’s displayed
name (which can be set in your public profile).

If you wanted to get feedback from me on some work you’d been doing, you
might create a comment like “hey @brntbeer, mind looking at this PR and
letting me know what you think?” The formality of the language will depend on
the people you’re working with, but pull request comments are often written in a
fairly informal style.

Reviewing Pull Requests

If you want to see what people are working on within a repository, go to the
home page and click the “Pull requests” tab at the top, and you’ll see a list of all
of the currently open pull requests.

On most projects there should be only a few pull requests open at any one time.
A good rule of thumb for a private repository is that you shouldn’t have more
than a few open pull requests per developer. Generally, the fewer pull requests
you have open, the better, as it is more valuable to keep the team focused on
finishing up existing features than on starting new ones. Also, pull requests
should be for small, iterative changes, to make them easier to review. The more
changes that go into a branch, the longer it will live and the more difficult the
changes will be to review properly. These “long-lived” branches aren’t always
avoidable, but you should be on the lookout for them.

Note

The number of open pull requests on open source projects will typically be much
larger, as anyone can create a pull request, and sometimes it takes a while for the
core project team to review, accept, and/or close them.

When you find a pull request that you want to review, click it to view the pull
reauest detail nage.

https://github.com/settings/profile

TTAATTTT TTTTTT rToT -

Commenting on Pull Requests

A really important part of working with a development team is to take the time
to review all of the pull requests that you might care about. Nothing is more
disheartening than to work on a feature for a couple of days, create a pull
request, and then get no feedback at all. Also remember that by default anyone
can merge their own pull request into master so long as they have write
permission, so make sure to take the time to review people’s work so they aren’t
tempted to merge it in without at least one or two people having a look at it. Or,
if you’d like this not to be the case, you can use protected branches to require
certain approval workflows. We’ll cover some of these options in Chapter 7.

Whenever you get an email or a web notification that you’ve been @mentioned
in a pull request, make sure to take the time to check it out as soon as you can
and provide some useful feedback. Sometimes useful feedback may even be to
let the person know you’ll give it a good review soon. Even if you’re not named
personally, taking a little bit of time out of your day to make sure that you
review any outstanding pull requests and provide your thoughts to ensure
everyone is on the same page with where the project is going is a good idea.

Commenting on pull requests is pretty simple. Skim down the pull request page,
go to the comment box, type in your feedback, and click the Comment button.
Adding Color to Comments

Especially for a team that doesn’t work in the same office all of the time,
commenting on pull requests is often one of the more frequent ways that team
gets to interact. Because of that, it’s often a good idea to add a little bit of fun to
the interactions.

GitHub has built-in support for emoji. Emoji are small images that are often used
for displaying a mood or emotion graphically. If you look at Figure 4-27, you’ll
see that this comment has the :+1: (I’m in support of this feature) emoji and the
:ship: (let’s merge this in and “ship” it) emoji.

Q githubteacher commented just now

This is great! it's good to show how markdown should be written especially given the GitHub
Engineering blog post on standardizing markdown (https://githubengineering.com/a-formal-spec-
for-github-markdown/)

please T this!

Figure 4-27. A comment with some emoji

Another way to add some more color to your comments on GitHub is by using
animated GIFs. While emoji are subtle, most animated GIFs are much larger and
more striking—they’re often a great way to really lighten the mood or show
strong support (or disapproval) for a change or a comment. To add an animated
GIF (or any other image) to a pull request, just drag and drop it into the
comment box and it’ll get uploaded automatically.

Contributing to Pull Requests

Sometimes you’ll want to make a change directly to a pull request. Perhaps
someone has added a new page and you’d like to fix up the marketing copy, the
legal disclaimer, or even the CSS to make it display better in your favorite
browser. It’s easy to make a change to someone else’s pull request.

The process is the same as for editing a file, which we covered in the previous
chapter. The only difference is that you must be on the correct branch. In this
case I’m looking at the update_readme pull request for adding some content to
the README.md file, as you can see in Figure 4-28.

If I decided that it would be great if the file contained a brief description, rather
than just commenting that the README was missing a contributors guide, I
could add one.

To make the change, all I need to do is go to the repository home page and select
the update_readme branch from the drop-down list of branches. I can then click
the file and click the edit icon, and I’ll get the edit screen, as you can see in
Figure 4-29.

Update README.md #7127

brntbeer wants to merge 1 commit int0 master from update_readme

5 Conversation 1 < Commits 1 [Fi Files changed 1

! brntbeer commented 3 hours ago

changed markdown formatting since the standard has changed

B update README.nd -

Q githubteacher commentad 18 minutes ago

aT4adass

This is great! ., it's good to show how markdown should be written especially given the GitHub
Engineering blog post on standardizing markdown (https://githubengineering.com/a-formal-spec-

far-github-markdown/)

please I this!

@ githubstudent commented a minute ago

Could we update this to include some description of the project?

° This branch has no conflicts with the base branch

Only those with write access to this repository can merge pull reguests.

Figure 4-28. The update_readme pull request

single-repo-example [README.md 2 orcancal

£ Edit file G Preview changes Spaces = 2
Single Aepo Example

#F Description
This repe I8 uied for showing pecple how to contribute to o project as well 45 scee best practices

Figure 4-29. Editing README.md on the update_readme branch

Eoft wrap -

I can then make my changes, scroll down the page, and enter some kind of

commit message, as shown in Figure 4-30.

& Commit changes

just include & quick description on the readme

Q o Commit direcily to the update_resdes branch.

i Create a new branch for this commit and start a pull request. Learn more about pull requests.

Commit changes Cancel

Figure 4-30. Adding a commit message

Now if I go back to the pull request page, you can see in Figure 4-31 that my
commit has been added to the pull request. Anyone who is watching the pull
request will get a notification that it has been updated so they can review my
change and provide their feedback.

M update README.md - a7adaca

Q githubteacher commented an hour ago = & X

This is great! - it's good to show how markdown should be written especially given the GitHub
Engineering blog post on standardizing markdown (https:/fgithubengineering.com/a-formal-spec-
for-github-markdown/)

please 2 this!
@ githubstudent commented 37 minutes ago = & X

Could we update this to include some description of the project?

! just include a quick description on the readme S1d9edl

Add mare commits by pushing to the update_readme branch on pragmaticlearning/single-repo-example.

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request L ‘fou can also open this in GitHub Desktop or view command line instructions.

Figure 4-31. The new commit in the pull request

Testing a Pull Request

If you have the appropriate permissions, before you approve a pull request that
includes substantive code changes that you can’t just review visually, you’re
going to want to download a copy of the repository (clone the repo). Then check
out the branch that the pull request relates to, run the automated tests to make
sure they’re all passing, and then run the code and maybe do a little bit of
manual testing just to make sure it seems solid. We’ll cover cloning repositories
in Chapter 8.

If you’re not a developer, you could leave this to your development team, but
you do want to make sure that at least one or two people are downloading the
code, running the test suite, and maybe doing a little manual testing before
approving a pull request. Alternatively, an easier and best practice option is to
set up automated testing that will run for you and report its status back to the pull
request. This, as well as required reviews, can be configured inside of the
protected branches settings of a repository, which will be talked about in

Chapter 7.

Merging a Pull Request

When you’re ready to merge a pull request, just click the large green “Merge
pull request” button, as shown in Figure 4-32.

Add more commits by pushing to the update_readne branch on pragmaticlearning/single-repo-example.

° This branch has no conflicts with the base branch

Merging can be performed automatically.

You can also open this in GitHub Desktop or view command line instructions,

Figure 4-32. The “Merge pull request” button

When you do so, GitHub will ask for a commit message (the default will be the
title of the pull request and an indication that this commit came in from a pull
request merge), as shown in Figure 4-33. Once you’ve entered that, just click the
“Confirm merge” button and the pull request will get merged and closed, as
described earlier in this chapter.

Add mare commits by pushing to the update_readme branch on pragmaticlearning/single-repo-example.
F E‘!
itH Merge pull request #127 from pragmaticlearning/update_readme

Update README.md

Confirm merge Cancel

Figure 4-33. Closing and merging a pull request

You should have some kind of policy for closing pull requests. Many teams will
require one or two people other than the primary author of the pull request to
provide a :+1: before a pull request is merged. Have some kind of process, but
keep it as lightweight as needed. Remember, you can always revert a merge, so
if the code you’re working on does not have the possibility of endangering
anyone’s life, it’s generally better to “move fast and (occasionally) break things”
than have a list of 27 people who need to approve every single pull request
before it can be merged. However, as mentioned a few times already, if there are
strict requirements they can be added in the protected branches and required
statuses.

Who Should Merge a Pull Request?

One question that often comes up is whether a pull request should be merged by
the person who created the pull request or by someone else. I generally
recommend that pull requests be merged by the person who created them. Here’s
why.

Many companies have the rule that “the person who created a pull request can’t
merge it.” The reason for this is to make sure that someone doesn’t just create a
pull request and merge it in without getting any feedback. The idea is good, but I
don’t think the recommendation is ideal.

Most of the time, the person who created the pull request is the person who
knows the most about it. As such, I always want to have that person available
when her work is merged in just in case it breaks something unexpected. One of
the easiest ways of making sure that she’s around is to ask her to do the merge.
So I’d recommend asking people to merge in their own pull requests, but making
it clear that they shouldn’t do so until they’ve got at least a couple of :+1:s from
the rest of the team, or any other required workflows and statuses have

happened.
Pull Request Notifications

If you create a pull request, comment on one, commit to one, or are @mentioned
in one, by default you’ll be subscribed to the pull request. This means that
whenever anyone comments on, commits to, merges, or closes the pull request,
you’ll be sent a notification. You can see on the right side of Figure 4-34 that I
am currently subscribed to this pull request.

Mo milestone
@ githubstudent commented 2 hours ago
Haotificatians
Could we update this o include some description of the project? % Undubacribe
Youl're racaiving notificatians
B just include & quick description on the readss becauss you're subsoribed to this
thread
Ackd mere commits by pushing 1o the update_resdes branch an prag matickearning fsingle-rapa-example 3 participants

Figure 4-34. I’'m subscribed to this pull request

If you’re no longer interested in a pull request that you’ve been subscribed to,
just click the Unsubscribe button and you’ll stop receiving notifications. You
will get re-subscribed automatically if anyone @mentions you again in the
comments. If you’re not subscribed to a pull request that you’d like to keep an
eye on, just click the Subscribe button, as shown on the right in Figure 4-35, and
you will start getting notifications of any activity on that pull request.

Ho milestone

@ githubstudent commented 2 hours aga
Hat#ications

Could we update this to inclede some descriglion of the praject? i Subscribe
¥ou'ra ignaning this thresd.
'l just include a quick description om the readss
3 participants
Add mane commits by pushing ta the updts_readse branch on pragmaticlearmingsingle-repo-axamgla F!.n @

Figure 4-35. The Subscribe button on a pull request

Best Practices for Pull Requests

There are a few best practices that are worth bearing in mind when working with
pull requests:

Create pull requests for everything
Anytime you want to fix a bug or add a new feature, make sure to do it on a
branch and then create a pull request to get input before merging your work

into master.

Make the titles descriptive
Other team members will be looking at the pull requests to get a sense of
what’s going on. The title should give them a good idea of what you’re
working on.

Take the time to comment
Do this even if you’re not @mentioned. It’1l give you a good sense of what’s
going on with the project and will improve the overall quality of the work.

@mention key people
If you want feedback from marketing, legal, and the operations team,
@mention the necessary users to ensure they see the pull request and make it
more likely you get feedback.

Run the tests
Make sure that at least one developer downloads the latest changes from a
pull request, checks out the appropriate branch, and runs your automated
tests. It isn’t enough just to look at the code visually for nontrivial changes.

Have a clear policy for approving pull requests
Most companies require that one or two people other than the primary author
of the pull request review and provide a :+1: before the pull request is
merged in.

Up to this point, you’ve had an overview of the repository, working by yourself,
and working with others. Most of the actual work on GitHub is conducted
around pull requests, but what about when you just want to discuss an idea
before it becomes work, or if you notice a bug in someone’s software and you
want to talk about it? That’s where GitHub issues come in. If pull requests are
where you discuss and collaborate around code, GitHub issues are for discussing
ideas and planning before a pull request is created. Continue on to the next
chapter to find out more!

Chapter 5. Project Management

In this chapter, we’ll take a look at an overview of project management with
GitHub so you can better stay involved with software development even if
you’re not writing code. Project management on GitHub typically starts in the
form of simple task items that need to be worked on with GitHub Issues,
organizing GitHub issues by applying labels to them and giving them deadlines
with milestones. Finally, if your work involves project managers or more teams,
you may decide to collect your issues and pull requests onto boards with GitHub
Projects.

GitHub Issues

GitHub Issues provides a lightweight, easy-to-use tool for managing outstanding
work—whether it’s bugs that need to be fixed or new features that need to be
built. Generally, when starting a new project, someone may begin by managing
both bugs and features using GitHub Issues. Later they may move to another tool
like ZenHub, Waffle.io, or JIRA if they need features that GitHub Issues does
not provide.

Creating a New Issue

To create a new issue, you can start by clicking the Issues tab from any
repository to visit the issues page, though it may be best to test this out on your
own repository first. Once there, click the “New issue” button, shown in
Figure 5-1.

Code D Issues 0 Pull requests 0 Projects 0 Wiki Settings Insights -

Filters - istissua isiopan Labels Milestones W
@ 00pen « 0 Closed Authior - Labels = Projacts - Milgstonas - Assignee ~ Sort -

There aren't any open issues.

Use the links above to find what you’re looking for, or try & new search query. The Filters menu is also super helpful for
auickly finding Isswes most relevant to you.

Figure 5-1. The Issues tab

When you click the green “New issue” button on the right side of the screen,
you’ll see a form similar to Figure 5-2 for entering the details of the issue you
want to document.

FI | Assignees

Mo ang—assign yoursalf

i
4
n

Wirite: Preview s~ B i b 4

Labels

Festone

Wi milestane
#itach files by dragging & dropping, selecting them, or pasting from tha clipboard,

GD Styiing with Markdown is supparted
Figure 5-2. The “New issue” form

Enter a descriptive title that will quickly give people a sense of the bug or
feature you want to describe, and then enter a more comprehensive description
below in the comment field, @mentioning any teams or individuals that it would
be appropriate to start a conversation with. If you have access and know who
should be working on the issue, you can select that person from a drop-down list
of collaborators by clicking “Assignees,” in the top-right corner of the screen.
Additionally, you can select a milestone if you’re assigning issues to sprints or
other deadlines, select all of the labels that apply, and even assign the issue to a
project if you know of one. When you’re finished, click the green “Submit new
issue” button at the bottom of the page to create the issue.

Managing Milestones for Issues

The milestones feature of Issues is often used to assign issues to a particular
sprint or an external deadline, like “Sprint week 34.” To add a new milestone,
revisit the issues page of your repository by clicking on the Issues tab at the top
of the page. Then click the Milestones button in the middle of the screen, to the
right of the issues search box and the Labels button. On the righthand side of the
milestones page you’ll see a button to create a new milestone, as you can see in
Figure 5-3.

Code I_'Ejlssul:s 1 Pull requests 0 Projects O Wik Settings Insights

T 00pen + 0 Closed Sort -

You haven't created any Milestones.

Use Milestones to create collections of Issues and Pull Requests for a particular release or project.

Figure 5-3. The milestones page

Click the “New milestone” button and you’ll see a form similar to Figure 5-4
asking you for a title, an optional description, and an optional due date.

MNew milestone

Create a new mikestone (o help organize your issues and pull reguests. Learn more about mdestones and issues.

Titla Due Date (optional) clear

| O September @ & 27 O

Mon Tue Wed Thu Fri Sat Sun

Description
1123

48|67 | 8le|w

L n 3 M B 15| T

1 19 (20| 21 2@ 23 | 24

¥ 26 2|28 M 30

Figure 5-4. Adding a new milestone

Enter at least a title and click the “Create milestone” button at the bottom right
of the page; you’ll see the new milestone added to your list of milestones, as
shown in Figure 5-5. You can now edit the milestone, close it, delete it, or
browse a list of the issues associated with the milestone.

Labels Milastones Naw milestone

10pen ~ 0 Clasad Sart =
+-

Sprint week 34

o C |
Mo due date (D Last updated less than & minute aga 0% complete Qopen O closed

List of iterns that we are working on far sprint week 34 Bt Clm) e

Figure 5-5. The new milestone created

Managing Labels for Issues

You’ll probably also want to create some custom labels for your project. Click
the Labels button in the upper-left portion of the screen next to Milestones. From
this page, shown in Figure 5-6, you’ll be able to edit titles and colors, as well as
delete and create new labels.

To delete a label, click Delete on the right side of that label’s row. To edit a
label, click Edit; the view will change to allow you to edit both the text and the
color for the label, as shown in Figure 5-7.

Code D |s5ues 1 Pull requests 0 Projects 0 Wiki Setlings Insights -

lbminita m

7 labals Sort -

m 0 cpan igsuss & Edit X Dalela
2» duplicate ¥ cpen isswes & Edit X Delete
2 enhancement 1 open lssue & Edit X Deleto

O cpan issuss & Edit X Daleis
2 invalid [coen isswes & Edit X Delete

D cipen Issuwes # Edit X Deleto
2 wontfix [expan ississ & Edit % Dalkin

Figure 5-6. The labels page

m MI S m

7 labals Sort -
:hug B iccorer cancel
> duplicate 0 open ismes # Edn X Delete
T» enhancement 1 open Bsun # Edi X Delete

Figure 5-7. Editing a label

If you want to add a new label, click the “New label” button and you’ll see a text
box, a set of colors to choose from, and a “Create label” button, as shown in
Figure 5-8.

Lo B #szicer cancel

7 labels Sarl -

m 0 opn BsuRs & Edt X Delate
Figure 5-8. Creating a new label
Commenting on Issues

As with pull requests:

e To comment on an issue, just visit that particular issue, scroll down to
the comment box, enter your comment, and click the Comment button.

e Make sure to take a little time every day to see if there are any new
issues in your repository, and respond to any @mentions as soon as you
can. You will probably receive an email notification or web notification
about these comments, which will make checking issues easier!

e Feel free to use emoji and animated GIFs to add a little fun to the
process of collaboration.

Referencing Issues in a Commit

If you make a commit that either relates to or fixes an issue, just include a hash
symbol (#) followed by the number of the issue in the commit message, and the

commit will show up in the issue’s history. Prefix the issue number with a word
like “closes,” “fixes,” or “resolves” if the commit solves the issue, and when that
commit is merged into your default branch (usually master), the issue will be
closed automatically!

Best Practices for Issues

Here are some best practices to consider when thinking about how best to use
GitHub Issues:

Create descriptive labels like “feature,” “blocker,” or “docs”
This will make it easier to understand what the issue is about.

Use milestones if they fit your workflow
If you have either external deadlines or an internal cadence based around
something like sprints, feel free to use milestones to assign issues to delivery
dates. If you don’t use date-based deliveries, consider using milestones
(without dates) to group like pieces of work. For example, you could have a
milestone for “Complete site redesign” and another one for “Launch
ecommerce features.”

Don’t be afraid to reassign issues or add more assignees
If someone can’t complete the task anymore, someone else needs to
complete it, or maybe it requires more than one person to complete, reassign
it and have a conversation about that change in workflow.

Make extensive use of labels
In addition to high-level labels to distinguish “bugs,” “features,” and other
work, you can use labels for many other purposes. Consider adding labels to
track the status of work, to assign the work to different groups (“iOS,”
“server side,” “frontend,” etc.), and even for tracking other interesting
information like the severity of a bug or the business objective that the new
feature is designed to support.

GitHub Projects

Using GitHub Projects can be a great way to organize your work into clear
buckets to define states. You can create project boards for specific feature work,
comprehensive roadmaps, or even release checklists. With project boards, you
have the flexibility to create customized workflows that suit your needs. Project
boards are made up of issues, pull requests, and notes that are categorized as

cards in columns of your choosing. Cards can be moved from column to column
and reordered according to your needs.

Projects can be created for just a single repository or, as is mentioned in
Chapter 7, across multiple repositories within a single organization to track
really large projects. We’re going to focus on creating just a single project first
to get the hang of things.

Creating a Project Board

Anyone with read access to a repository can view the repository’s project
boards. To create a project board, you must have write access to the repository.
So, when it’s your own repository you’re working with, this of course means
you can create a project and add cards, issues, or pull requests to it. If you click
on the Projects tab at the top of the page, you should see a helpful screen like in
Figure 5-9 to get you started. Go ahead and click the “Create a project” button.

Caode Izsues 1 Pull regquests @ Praojects o Wik Settings nsights =

This Repository doesn't have any projects vet

Create a project
—— n
Drag, drop, and organize your work Track Issues, Pull Requests, and Notes

DOrag and drop cards on kanban-style boards Create Wotes to quickly add tasks or remindars
1o onganize yaur work and plan projects with Lo your praject. They can be canverted to
teammates. |=sues when you're ready.

Figure 5-9. Empty project page

The page you get taken to, which should look like Figure 5-10, is similar to the
“New milestone” page, and it’s just as easy to create one. Give your project a
name and a brief description to get started.

Create a new project

Name

Project Bumblebeas

Description

Collection of issues, ideas from cards, and actual work for projact “Bumblebes'|

Figure 5-10. The “Create a new project” page

Creating Columns and Adding Cards

Now that there’s a project board, you can make some traditional columns to start
putting some work into. To begin, click the “+ Add column” link. You will see a
page similar to Figure 5-11 asking you to add a title. I’'m going to do this a few
times to create columns named “To Do,” “In Progress,” and “Done.” You can
see what the finished product looks like in Figure 5-12.

Add a column

Column name

[ruud]

Create column

Figure 5-11. Create a column to start adding cards

Project Bumblebes

TaDo o F + In Progress 0 F + Done 0 F +

Figure 5-12. Traditional project board columns

Now that there are columns in your project board, you have two ways to add
items: you can add notes from the top of a given column by clicking the “+”, or
add issues and pull requests by clicking “+ Add cards” on the righthand side of
the page. You should explore this a bit to get familiar with both options. If you
don’t have any issues or pull requests, there won’t be any to add from that view.
Once you’ve added some cards, you can move them from one column to another
by clicking and dragging them around. A more complete board with some cards
added is shown in Figure 5-13.

Project Bumblebes

To Do 2 F + In Progress 1 s + Done 1 F +

finish some dacumentation far ki (I} First issue for practice purposes ~ Il mowe instructions to b
chapier 5 #2 opened by bmibeer contributing. md
anhancament I #1 opanad by bntbeer
by Eenitbeer £

clean wp REaDeE

Arjcied lry brntbeer

Figure 5-13. A project board with some cards in it

Closing, Editing, or Deleting Project Boards

There are a few more administrative tasks that can be done for the project board

as a whole. You may want to close your project when all the work is completed,
edit the description or title if it changes, or even delete it if you made a mistake
in creating it in the first place.

Closing a project can be done from the “Show menu” button above the columns
on the right side of the screen. Clicking it will show you a screen like Figure 5-
14, and from there you can select “Close project” to show your project is
completed, or reopen it if it needs to be revisited.

Insights =
Menu X
Add cards
Activity
Done 1 & + Close project
i1 move instructions to v Project details
contributing.md
#1 opened by bratheer Collection of issues, ideas from cards, and actual

work for project "Bumblebee"

Figure 5-14. Close a project to show that it’s done

Lastly, editing and deleting a project can be done from the settings icon that
looks like a gear on the far right of the screen, to the right of the Fullscreen
button. Clicking it will bring you to a screen like the one shown in Figure 5-15,
where you can change the title or description, or click the “Delete project”
button to delete the project. Don’t worry, you’ll be asked to confirm your choice
if you click this button!

As you become more and more comfortable with GitHub Projects, you may
want to create more boards, edit the column titles, and convert notes to issues by
clicking the drop-down arrow on them. Every action that you take on a project
board can be tracked, as seen in Figure 5-16, by going to “Show menu” and then
clicking on the Activity link.

Edit Project Bumblebee

Hame

Project Bumtlebes

Description

Collection of issues, ideas from cards, and actual work for project "Bumblebee”

Save project

Delete Project Bumblebee

Onee you delele a project, there is no going back. Please be cartain.

Dalete project

Figure 5-15. Editing or deleting a project

< Activity X

@brntbeer moved clean up README to In
Progress
& minutes ago

Done 1 & +
! @brntbeer added move instructions to
i1 move instructions to v contributing.md to Done
contributing.md 7 minutes ago

#1 opened by brntbeer

E @brntbeer added First issue for practice
purposes to In Progress

7 minutes ago

! @brntbeer added finish some
documentation for chapter 5 to To Do

7 minutes ago

M @brntbeer added clean up README to To
Do

B minutes ago

! @brntbeer created the column Done
28 minutes ago

! @brntbeer created the column In Progress

28 minutes ago

Figure 5-16. Viewing the activity feed of a project board

As of the writing of this book, GitHub projects are still pretty new and changing
as more people adopt them into their workflow. So don’t forget to visit your
project boards regularly to see if anything has changed!

Chapter 6. Publishing Content

Providing good documentation for how to get started on a project, troubleshoot
certain problems, and share ideas, or just providing a better landing page for
people to find out about your project, can be just as important as the code itself.
It can help new developers or users learn how to fix common problems and how
to contribute back to build a stronger ecosystem, or allow you to find new
contributors for your project. In this chapter we’ll be taking a look at writing and
maintaining higher-level documentation on GitHub so that you can encourage
more people to contribute to your repository or more effectively use your code
and applications.

Wikis

If you’re familiar with wikis, continuing to use them is a great way to have some
additional long-form documentation. Though the workflow for using them and
accepting changes to them is different from any other contribution workflow on
GitHub (you can’t use pull requests), it’s a good way for your users to find out
more about your project if you have not yet created a GitHub Pages site.

A wiki is a very simple content management system that makes it easy for a
group of collaborators to build a set of interlinked pages. Typically, GitHub’s
wikis are used for capturing end user documentation, developer documentation,
or both so that all of the information relating to a project is accessible through
the project’s GitHub page.

Getting Started with a Wiki

If your project doesn’t yet have a wiki, start by going to Settings and scrolling
down to the Features area, as shown in Figure 6-1. Make sure that the Wikis
checkbox is selected. This is also a chance to check the next box if you’re going
to be creating a public project and want to limit it so that only collaborators on
the project are able to update the documentation on the wiki.

Code |zsues 30 Pull reguests 33 Projects 0 Wikl I}Settlngs Ingights =

Options SEttiﬁgS

Collaborators & teams .
Repository nama

Branches single-repo-axamphe Rename
‘Webhooks
Intagrations & services FEEtUFE’S
Deploy keys
B Wikis

GitHub Wikis is 2 simple way to ket olhers contribute coment. Any GitHub user can creaie and edit pages 1o use for
documentation, examples, support, or anything you wish,

Restrict editing to users in teams with push access anly
Public wikis will 52l be resdable by averyons.

B Issues
GitHub Issues adds Fghtweight issue tracking lightly integrated with your repeditary, Add Bsues ta milesiones, kabal
isfies, ard closs & relerancs BaUAs from COMME Messages.

B Projects
PFroject baards an GitHub help you arganize and prioritize your work. You can create projsct boards for specific feature
widk, camprelensive roadmaps, of even relesse checkliss

Figure 6-1. Ensuring that wikis are enabled

Once you’ve ensured that you have wikis enabled, click the Wiki tab at the top
of the page. If you haven’t yet added any content, you’ll see a page like
Figure 6-2.

L] pragmaticlearning / single-repo-example ©Umwateh= 1 A Star 0 YFerk | O

Code Issues O Pull requests 0 Projects O EE Wiki Settings Insights -

Welcome to the single-repo-example wiki!

Wikis provide a place in your repository to lay out the roadmap of your project, show the current status, and document
software better, together,

Craate the first pege

Figure 6-2. The default wiki page

Click the green “Create the first page” button, and you’ll see a page similar to
Figure 6-3.

Create new page

Home

Write Preview

b1 h2 b3 @ @ B || &> = E o = & Et mode: Markdosm E
Block Elemenis Paragraphs & Breaks To cresle o parsgraph, @mply creste & bleck of text 1kt is net separated by one ar more blank Fres. Bocks of
Span Elements Howdars et saparaiad by one or moee Blank lines will be parsed as paragraphs,
Misceflansous Blockguotes If you want to create a line break, end a line with Twa or mane spaces, then hit Return/Enter.
Ligts
Code Blecks

Horizontal Rules

Welcome to the Single Repo Exanple Wiki!
A Introduction

This wikl was created to:

- Demonstrate collaboration workflows

- Show Gitdub Pages
- Show wikis

Figure 6-3. Creating your first wiki page

By default the first page is called “Home,” although you can change this by
editing the title. Then you can enter your content in the text area. You’ll notice
that there are a number of buttons above the text area for styling, but this is
deliberately not a full, in-place WYSIWYG (what-you-see-is-what-you-get)
editor. Instead, the buttons will just insert the appropriate Markdown into the
text area. If you want to see what it’ll look like, click the Preview tab above the
formatting buttons and you’ll see the Markdown rendered, as shown in Figure 6-
4,

Create new page

Home

Wirite Praviaw

M h2 h3 & @ B ! € = E (= @ Editmeds Markoosn ¥
Blesk Elemants Paragraphs & Breaks To craaté & paragraph, simaly create 8 Dlock of 1axt that is nol separaiad by one or maora blank lines, Blocks of
Span Elemenbt Headers text separated by onie or more blanik lines wil be parsed as paragraphs.
Missellareous Bleckaguates 1T i ward 1o crasle & line break, &nd a line with 1wa or more spaces, then hil Return/Enber,
Lists
Cade Mocks

Harizontal Rules

Welcome to the Single Repo Example Wiki!

Introduction

This wiki was created to:

» Demonstrate collaboration workflows
* Show GitHub Pages
= Show wikis

Figure 6-4. Previewing your new wiki page

If you click the “Edit mode” drop-down list, you get the option of changing to a
range of different selected formatting syntaxes, as you can see in Figure 6-5.
However, I’d recommend using Markdown as it’s the same format used by the
GitHub team and is used in other areas within GitHub, such as issues and pull
request comments.

Create new page

Home

Write Proview

AgciiDos
Creale 5
W ohe ke @8 0o = E e @ e moe |
Meda'Wiki
Ovg-moda
Black Elpments Pasegraphs & Broaks Ta creain a paragraph, simply create § Pl soparated by ane or mane blank lnes. Blocks of
RDoc
Span Elamanms Headars fext separated by one or mane blank i Textile -agraphs.
Miscllanaaus Elockgustes A you waNE o craate & ling braak, and restructuredTast o nos, then hit RetueryEndar,
Ligts
Coda Blocks

Horizanial Hulas
Welcome to the Single Repo Example Wikil

Figure 6-5. Alternative editing formats

When you’re done with the content, enter a short (optional) description in the
“Edit message” text box to describe why you made the change, and click the
“Save page” button.

Adding and Linking to a Page on Your Wiki

Anytime you want to add a new page to your wiki, just click the New Page
button at the top right of any wiki page and it’ll allow you to add a page to the
site. Once you’ve added the page, it will appear in the Pages section to the right
of the screen, as you can see in Figure 6-6.

How to Contribute A v e |

Brent Baer adited this page just mow -1 revision

This page will describe how o contribute to this project ~ Pages £

Home

How to Confribute

Add & custom sidebar

Clane this wiki locally
32/ glthub. confpragrat: | [

¥ Elone in Desktop
Add a custom Tooler
Figure 6-6. The Pages list in a wiki

To add a link to a new page from an existing page, start by using the Pages list to
navigate to the page you want to add a link to. Then copy the URL for that page
to the clipboard, from your browser—you’ll need that in a moment. Next, use
the Pages list to navigate to the page you want to add the link on. Click the Edit
button at the top of that page, to the right. Go to the place in the content area
where you want to add the link and click the link button in the top bar (it looks
like two circles linked together). Clicking it pops up a dialog box, as shown in
Figure 6-7.

Insert Link

Link Text

QK Cancel

Figure 6-7. The Insert Link dialog box

In the first box, type whatever you want the link text to be—ideally something
that describes the page it’s linking to. Then, in the URL text box, paste the URL
of the wiki page you want to link to from your clipboard.

If you’d really like to make the most of your wiki (or issues or pull requests),
make sure to check out the Mastering Markdown guide, which provides a really
good introduction to GitHub-flavored Markdown.

GitHub Pages

If you want to create a more customized website to share information about
yourself, your organization, or your project, that’s where GitHub Pages comes
in. GitHub Pages is a feature that allows you to create and host web pages right
on GitHub by either turning that rich Markdown documentation into a
beautifully rendered web page or writing HTML and CSS yourself.

Creating a Website for Your Project

Whenever you create a repository on GitHub, you have the option of using
GitHub Pages to add web pages for promoting or describing the project. There
are typically four types of GitHub pages for a project: you can create a
marketing site to describe the project in better detail, end user documentation on
how to use the project, developer documentation that describes how the project
works in deep detail, and community documentation for how to contribute and
get support within that project’s community. To get started with GitHub Pages to
just build better documentation for your project, click Settings, scroll down to
the GitHub Pages area, and click the “Choose a theme” button. You’ll see a
screen similar to Figure 6-8.

https://guides.github.com/features/mastering-markdown/

Pull requests Issuas

Time = Leap Day
Machine —_— =

Cayman

Hide thumbnails m

Cayman theme

Cayman is a clean, responsive theme for GitHub Pages.

View on GitHub Download .zip Download .tar.gz

Text can be bold, iralic, or strikethredsh
Link to another page.
There shiould be whitespace between paragraphs,

There should be whitespace between paragraphs, We recommend including a README, or a file with
information about your project.

Header 1

Figure 6-8. The GitHub Pages themes

When you’re happy with the look and feel, click the “Select theme” button
toward the top right of the page, and your website will be created. That’s all
there is to it! You can view the website at
http://<organization_name>.github.io/<projectname>. For example, I just
created a web page for the simple-repo-example project under the
pragmaticlearning organization, available at
http://pragmaticlearning.github.io/single-repo-example/.

By default, when you create a GitHub page for your repository, it looks at the
files and folder structure based on the master branch. Some people choose to
render their Pages site from their docs/ folder to segregate their long-form
documentation from the code that drives the project. At this point, you just have
README.md and no docs/ folder, so that will be what ends up getting rendered
in your example website. If you want to get more complex, you could start
adding files like index.html and some CSS files for styling your Pages site. I’'ll

http://pragmaticlearning.github.io/single-repo-example/

save that as an exercise for the reader, but an example can be found in the
facebook/react-native repository.
Creating a Website for Yourself or Your Organization

If you want to create a website for yourself or your organization using GitHub
Pages, you need to create a project named “<username>.github.io” or
“<organization_name>.github.io.” For example, IBM has created a portal for its
website, https://ibm.github.io, at https://github.com/IBM/ibm.github.io by
following this exact method. Just like with a repository GitHub Pages site, you
can choose to have this site built from the contents in the master branch, the
docs/ folder within the master branch, or the gh-pages branch.

If you want to create a website for your organization, go to the organization
home page and click the New button on the righthand side of the screen, above
the Top Languages and People section. Make sure to make the repository name
“<organization_name>.github.io,” and then check the “Initialize this repository
with a README” checkbox, as shown in Figure 6-9.

Create a new repository

A repository contains all the files for your project, including the revision history,

Owner Repository name
pragmaticlearning~ [pragmaticlearning.github.io W
Great repositary names are short and memorable, Meed inspiration? How about urban-tribble,
Description joptional]
An organization GitHub Pages site
© [| Public
= Anyone can see this repository. You choose who can commit.
Private

You choose who can See and commil to this repositony.

Initialize this repository with a README
This will let you immediately clone the repository to your compater. Skip this step if you're importing an existing

repositary,

Add .gitignore: None = Add a license: None~ | ()

Create repository

https://github.com/facebook/react-native/tree/gh-pages
https://ibm.github.io
https://github.com/IBM/ibm.github.io

Figure 6-9. Creating a GitHub Pages repo for an organization

If you create such a project, click the Settings tab, and scroll down to the GitHub
Pages section, you’ll see that it shows that the site has already been published as
a GitHub Pages website (see Figure 6-10).

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

« Your site is published at https://pragmaticlearning.github.iof

Source
Your GitHub Pages site is currently being built from the master branch. Learn more.

User pages must be built from the master branch.

Theme Chooser
Select a theme to build your site with a Jekyll theme. Learn more.

Choose a theme

Custom domain
Custom doemains allow you to serve your site from a domain other than pragmaticlearning.github. io. Learn

maore.

Enforce HTTPS
— Required for your site because you are using the default domain [pragmaticlearning. github. io)

HTTPS provides a layer of encryption that prevents othera from snooping on or tampering with traffic to your site.
‘When HTTPS is enforced, your site will only be served over HTTPS. Learn mare,

Figure 6-10. The Settings tab for a GitHub Pages organization site

If you know HTML and CSS, you can continue to build your website here.
However, if you’d like to make it a bit easier to build a website without just
HTML and CSS, like the GitHub Training Team has done, you may also want to
check out the Jekyll project. Jekyll allows you to easily structure your website
and keep some of those pages in Markdown so it remains easier to update them
and make changes. Switching to Jekyll or having a more robust strategy for the
documentation of your project will not only provide a place for people to find
out about your project, but will also ensure your project is contributing to a

https://github.com/github/training-kit
https://jekyllrb.com

healthy ecosystem on GitHub.

Chapter 7. Configuring Repositories and Organizations

So far we’ve looked at how to view, edit, and collaborate on repositories. In this
chapter we’re going to take a step back and go through the process of
configuring a GitHub repository for a new project.

Warning

If you’re working with developers on a contract basis, you’ll want to create the
repository they use to work on. Creating the repository means that you’ll always
have access to the code and the additional information contained in pull requests,
issues, projects, and wikis. Once you’ve created it, you can then add the
developers as collaborators so they’ll have access to the repository—until you
decide to revoke it. You do not want contract developers to create the repository
for you. If they do, they’ll be able to remove you from the repository at any time.
Configuring a Repository

To configure a repository, start by clicking the Settings tab at the top of the page.
By default you’ll go to the Options menu within Settings, as shown in Figure 7-
1, which allows you to configure some high-level settings.

Code Issues @ Pull requests 0 Projects @ Wikl LF Settings In=ights =

| options Settings
Collaborators
Repasitory name

Branches i
singla-repository

‘Webhooks

nlegrations & serdices Features
Deploy keys
B Wikis
Gtk Wikis is 8 simple way 1o lat alhens contribule coment, Asy GiiHub user can cresls and edil pages to use lor

documentation, examples, suppart, or anything you wish,

B Restrict editing to collaborators anly
Public wikis will still be resdable by everyone

B |ssues
GilHuln Ieauas adis lightemighs tesun tracking tghtly integratad with your reansitory, Add issues 1o milksionas, labal
ssues, and chose & reference |ssues from commit messages.

B Projects
Praject basdds on GilHub halp vou organize ard priomlize your work, You can creale project beards for specilic festure
work, comprehansive readmaps, or even release checklists

Merge button

Figure 7-1. The Settings — Options screen

The first available setting to change is the name of the repository. If you change
the repo name in the text box, the Rename button will become active, allowing
you to change the name of the project. Don’t worry if your developers are
already connected to the project. They won’t have to change anything to visit the
project online—anybody using the old name or URL to access the project will be
redirected automatically. However, anyone who is accessing the repository from
the command line or from a graphical user interface like GitHub Desktop will
need to update some settings to point their local copy to the correct URL.

On the Settings — Options screen, you also get the chance to configure wikis and
issues. By default, new repositories have wikis, projects, and issues enabled. Just
uncheck the boxes to disable them if, for instance, you would rather use GitHub
Pages for documentation and aren’t looking for other users to open issues. If you
want to limit the wiki on a public project so that only collaborators can edit the
content, check the necessary box.

As you go further down the Settings — Options screen, you’ll see some additional
configuration settings: “Merge button,” “Temporary interaction limits,” GitHub
Pages, and the “Danger zone.” We discussed using GitHub Pages in Chapter 6,
so let’s take a look at the other sections.

As shown in Figure 7-2, the “Merge button” section has additional options for
how you want work to be brought in from pull requests. As you and any other
developers working on your project are likely to have your own preferences in
terms of workflows, it may be important to be able to merge this work in
different ways. Though not every permutation is possible in the web interface,
you can allow for a better experience for common workflows. If none of these
options is preferred by you or your team, you may have to set up additional
automation or perform the actions yourself on the command line to finish a
merge.

Merge button

When merging pull requests, you can allow any combination of merge commits, squashing, or rebasing. At
least one option must be enabled.,

Allow merge commits
Add all I"'_.QI'I'I“""i':'} fram the head branch to the base branch with a merge Comm t

Allow squash merging

Combine all commits from the head branch into a single commit in the base branch,

Allow rebase merging
Add all commits from the head branch onto the base branch individually.

Figure 7-2. Merge button options

Sometimes when a conversation in an issue or pull request starts to get quite
heated, a maintainer may want to let people cool down for a while until a good
resolution can be thought up. That’s exactly why the “Temporary interaction
limits” section exists. It limits who can comment, create pull requests, or create
issues for a 24-hour window and will automatically release the lock once that
window is over. This is similar to locking an issue or pull request for comments,
but applies to all conversations and even the creation of new ones until the time
limit is up. This is another way that maintainers can help manage good software
development practices for everyone involved in a project, regardless of whether
it’s open source or private. Different ways to configure these limits can be seen
in Figure 7-3.

Finally, we come to the “Danger zone.” This section allows you to change the
accessibility of a project between private and public. It also gives you the option
to transfer the ownership of the project to another user or organization and, if
you really want, to delete or archive the repository. Don’t worry about hitting the
“Delete this repository” or “Archive this repository” button accidentally. If you
click either of them, you’ll be asked to confirm that you really want to do that, as
shown in Figure 7-4.

Temporary interaction limits

Temporarily restrict which users can interact with your repository (comment, open issues, or create pull
requests) for a 24-hour period, This may be used to force a "cool-down® period during heated discussions.

Limit to existing users
Users that have recently created their account will be unable to interact with the repository.

Limit to prior contributors
Users that have not previously committed to the repository's master branch will be unable to interact with the
repository,

Limit to repository collaborators
Users that have not been granted push access will be unable to interact with the repository.

Figure 7-3. Temporary interaction limits

Are you ABSOLUTELY sure?

Unexpected bad things will happen if you don't read this!

This action CANNOT be undone. This will permanently delete
the brntheer/single-repository-2 repository, wiki, issues, and
comments, and remove all collaborator associations.

Please type in the name of the repository to confirm,

| understand the consequences, delete this repository

Figure 7-4. The “Delete this repository” confirmation pop-up

Adding Collaborators

Once you’ve created and initialized your repository, typically the next step is to
add any collaborators. If you’ve created a public repository, you may not need to

add collaborators, especially if you’re just working with people occasionally.
Ask them to fork your repository and send you a pull request any time they have
a contribution to make. However, if you created a private repository or you have
people who will be working on your code regularly, you should add them as
collaborators.

If you’ve added the repository to an organization, you can manage access using
teams, which we’ll look at later in this chapter. However, if you just added the
repository to your personal account, you’ll have to add collaborators
individually.

To add collaborators, click the Settings tab of the screen and then click the
Collaborators link on the left, as shown in Figure 7-5. You may be asked for
your password just to confirm that it’s you making the changes.

brntbeer | single-repository @ Umwateh= 1 & Swar 0 YFork 0
Code I=sues O Pull regquests 0 Projecis o Wik OSEI:I:ingS Ingights =
Options Collabarators Push Bccess 10 1he reposRcry
Collabarators
This repository doesn't have any collaborators yet. Lisa the form bedow to add a collaborator,
Branches
Wabhooks !
Search by username, full name or email address
Integrations & services You'll anly be able to find a GitHub user by their emall address I they've chasen 1o list it publicly. Otherwise, use thair
serrearme inebesd
Deploy keys

Figure 7-5. The Settings — Collaborators screen

To add collaborators, you’ll need to know the GitHub usernames of the people
you want to work with. Start typing a username, and the name will
autocomplete, as shown in Figure 7-6. Select the autocompleted name and then
click the “Add collaborator” button.

Collaborators Push access to the repository
This repository doesn't have any collaborators yet, Use the form below to add a collaborator.,

Search by username, full name or email address

You'll only be able to find a GitHub user by their email address if they've chosen to list it publicly. Otherwise, use their
username instead.

thedaniel

[| thedaniel Daniel Hengaveld

thedanielsun
E thedanielmatt Daniel Shryock
il TheDaniel32
L » :' TheDanielDanDaniel P - Sh B A
thedanielmachine

thedanielone

E thedanielventura Daniel Vantura

Figure 7-6. Autocompletion of a collaborator

Once you’ve invited collaborators and they’ve joined, it’s worth taking a little
bit of time to go through the other configuration options to see if there’s
anything else you want to set up.

Configuring Branches

The Branches section of the Settings tab is where you can configure your default
branch, or enable some branches to be protected. For most repositories, master
is the default branch. As discussed in other chapters and shown in Figure 7-7, the
default branch setting controls which branch a pull request will be sent to by
default. Generally it’s best to leave this option alone, but if your development
team really wanted to create a new default branch (for example, if you have a
workflow that describes pull requests needing to go into an intermediate branch
before going into master for some deployment or testing purposes), they could
do so and you could make it the default branch here.

The default branch is used for features like auto-closing of issues and some
workflows around Continuous Integration (CI) and Continuous Delivery or
Deployment (CD). Usually, when you have a commit message that says

something like “closes #10” or “fixed #10,” when that commit is merged into the

master branch, it will automatically close issue #10. However, the trigger is
really when the commit gets merged into the default branch, so if you wanted to

have a default branch named trunk or something else, you could do that if you

really wanted to.

Code |$5ues 3

Cptions
Collabarators & teams
Branches
|
Webhooks

ntegrations & services

Deploy kays

Pull requests 34 Projects 0 Wik £} Settings Insights -

Default branch

The default branch Is considered the "base” branch In your repasitory, against which all pull requests and
code commits are automatically made, unlass you spacify a different branch,

master =

Protected branches

Protect branches (o disable force pushing, prevent branches from being deleted, and optionally reguire status
checks before merging. Mew to protected branches? Learn more.

Choose a branch... =

Mo protected branches yet

Figure 7-7. The Settings — Branches screen

Besides editing the default branch, on this screen you can also set up additional
branches to be protected so that they cannot be deleted, or require other actions
to happen before work ends up in those branches. Let’s take a look at protected
branches in more detail.
Protected Branches

Protected branches are a way to enforce and ensure that certain workflows
happen within your repository and that irrevocable changes are not made to the
designated branches. Common reasons for protecting a branch are to require peer
review, ensure that code quality is high or all your tests are passing by
integrating with third-party services, ensure that the branch cannot be deleted or
overwritten, and more. A few of these settings can be seen in Figure 7-8.

Code Issues 30 Pull requests 34 Projects 0 Wikl £¥ Settings Insights =

Options Branch protection for master
Collaborators & teams
B Protect this branch
Branches Disables force-pushes to this branch and prevents it from being deleted.
Webhooks B Require pull request reviews before merging

‘When enablad, all commits must be made o 8 nen-protected branch and submitted via a pull reguest with at

Integrations & services least one approved review and no changes requested before it can be merged into master.

B Dismiss stale pull request approvals when new commits are pushed

Deploy keys N N PR i
ik ¢ Mew reviewable commils pushed to & branch will dismiss pull request review appadvals,

Require review from Code Owners
Require an approved resew In pull requests inchuding files with a designated coda cenar,

Restrict who can dismiss pull request reviews
Specify people ar teams allowed to dismiss pull reguest reviews.

Require status checks to pass before merging
Choose which status checks must pass bafare branches can be merged info master. When enabled, commils
muest first be pushed to another branch, then merged or pushed directly to master after status checics hae

passed

Restrict who can push v this branch
Specify pecple ar teams allowed fo push to this branch. Required status checks will still prevent these people
froem marging if tha chacks fall

B Include administrators
Enforce all configured restrictions for admanistratars.

Figure 7-8. Branch protection options

Integrating with Other Systems

Sometimes you’ll want to connect GitHub to other tools that fit alongside and
enhance the software development process. These tools range from CI servers
that regularly run automated tests to project management or bug tracking
software. Let’s look at some ways you can enhance your software development
practices by expanding beyond GitHub.

One option is the GitHub API. Go to https://developer.github.com, as shown in
Figure 7-9. From here, there are actually two interfaces to the GitHub API:
GraphQL and REST. They both allow a developer to access data, but the way in
which they do it is different. If you click through to either of these pages from
the top of the page, you’ll find guides to help you learn how to use the GitHub
API to extend GitHub to do pretty much any custom workflow your team may
have.

https://developer.github.com

GitHub Develope GraphQL APIv4 RESTAPIv3 Apps Blog Early Access Support

Build your app on GitHub's platform
1ere to start? We've put together some handy guides and reference

aocumentation you can use to start building.

Figure 7-9. The GitHub Developer page

Though it’s a pretty advanced topic, the API allows your developers to query
and change almost anything they want in a repository or an organization—but
sometimes they’ll just want to be notified when a specific action occurs. For
example, they might want an internal tool or some personal server to get notified
every time someone adds a new issue or pushes work up to GitHub. If they want
to have notifications automatically sent, they should be using the webhooks
option that can be configured by going to Settings — Webhooks, as shown in
Figure 7-10.

Code Issues O Pull requests @ Projects @ Wik ¥ Settings Insights =

Options Webhoolks Addd wenhaok

Collaborators
Webhooks allow external services o e natifled when certasn events happan within your repository. When the
Branches specified svents happen, we'll Send a POST request to each af the UALS you pravide. Learn more in aur
Wabhooks Guide,
| Webhooks
Integrations & services

Deplay kays
Figure 7-10. The Settings — Webhooks screen

Clicking the “Add webhook” button toward the top-right corner of the screen
takes you to the “Add webhook” screen, as shown in Figure 7-11.

Code Is5ues 0 Pull requests 0 Projects O Wik £ Settings nsights =

Qptions Webhooks | Add webhook
Collaborators We'll send & PosT request to the URL below with details of any subscribed events. You can also specify

which data format you'd like to receive [JSOM, z-ww-fors-urlencaded, 802). Mare infarmation can be found in

el aur developer documantation

Webhooks

Payload URL *
ntegrations & services
Deploy keys

Content type

apglication!x-waw-Tarm-urlencoded £

Secrat

Which events would you like to trigger this webhook?
© Just the push event,
Zend me everything

Let me select Individual events.

B Active
‘e will defiver event detals when this hook is triggered

Figure 7-11. The “Add webhook” screen

This screen allows you to tell GitHub to send a notification to your custom
server or application every time a particular type of event occurs. You need to
provide the URL that your software will be listening on, the kind of content you
want delivered, an optional secret (so that not just anyone can send fake
information to that URL), and what kinds of events you’d like to have the
software be notified about. If you or your developers are implementing a custom
integration, you’ll probably know how the webhook(s) should be configured and
what events to select from the “Let me select individual events” option. Even if
you don’t have any webhooks or aren’t going to be building them yourself,
knowing about these options is great so you can customize your workflows as
you grow with GitHub.

The final integration option is one that developers don’t have to configure:
GitHub Apps. GitHub Apps are applications that other third-party developers
have already created and that exist within the GitHub Marketplace, which can be
seen in Figure 7-12.

GitHub Marketplace

Figure 7-12. GitHub Marketplace

When you visit https://github.com/marketplace, there are many categories of
GitHub Apps you or your developers can choose from. If you don’t know which
category to start with, my suggestion is to look at Continuous Integration. CI
apps handle automatically running the tests that your team would otherwise have
to run manually, and they will report the status back to the pull request you are
working on to make your code more robust and code review easier. Setting these
up typically requires some additional configuration in the code of the repository
itself, but your team will thank you for it. You can see some examples from this
category in Figure 7-13.

— g ¥
Marketplacn o o .o oo
Continuous Integration o
= . T
o
Search Marketplace Automatically build and test your code as you push it to GitHub, preventing bugs

from being deployed to production.

- Travis Cl CircleCl
Categories f i " .
E &' et arsd deplay with confidence Autamatically build, 1e21, and deplay

Code quality yoaur praject in minutes

Coxle review

AppVayor ’ Parcy
Conlirucus integration ‘,.') Cloud sarvice for buliding, testing and i Contiruous visual testing ard reviews
dapioying Windows apps for wed apps

Depardenscy manapgament

Figure 7-13. Some GitHub Apps within the Continuous Integration category

Once you set up and connect one of these GitHub Apps to any repository you
have administrative access to, it should be listed on the repository’s

https://github.com/marketplace

Settings — “Integrations & services” screen. For example, if you were to add the
Codecov app, you would see something similar to Figure 7-14.

Code Issuas O Pull requesis 0 Projects 0 Wiki £ Settings Insights -

Options Installed GitHub Apps

Lollaborators
GitHub Apps augment and extend your workflows on GitHul with commercial, open source, and homegrown

Branches toals,

‘Webhooks i
Codacav Configure

Integrations & services

Deploy keys

Services Add service =

Services are pre-built integrations that perform certain actions when events ooour on GitHub.

Figure 7-14. A third-party integration installed and configured

“Deploy keys” is the last menu option on the Settings tab for a GitHub
repository. Clicking the link displays a page similar to Figure 7-15.

Code s5URS 30 Pull requests 34 Projects 0 Wiki £} Settings nsights =

Options DEp[D‘!.l" key's Achd chaplory ey

Collaborators & teams
There are no deploy keys for this repository

Branches
Webhooks
Integrations & services

Deploy keys

Figure 7-15. Configuring deploy keys

In addition to other people needing access to your repository, sometimes you’ll
want to provide the ability for other software to connect to it. For example, your
development team will probably create an automated build system that will
allow them to just click a button to deploy the latest changes from GitHub to
your production server.

If they do that, the build system will need the ability to access the repository.
There are a number of ways of providing that access. One option is to create a
machine account. This is where you create a new GitHub user just for your build
machine and add that user as a collaborator. That’s a particularly good approach
if your build system needs access to a number of different repositories.

Another option is just to create a deploy key. A deploy key is a Secure Shell
(SSH) key that is created to allow a particular piece of software to access a
single repository on GitHub. Don’t worry about this too much, but if your
development team asks you to set up a deploy key, just ask them to email you
the public SSH key and to give you a name for the key (e.g., “build server”); you
can then use that information to fill out the “Add deploy key” screen, as shown
in Figure 7-16. In a few situations (like merging branches), this system may need
to push a change back up to the repository. If that’s the case, be sure to give this
deploy key write access so that it can send these changes back up.

Code s5uas 30 Full requests 34 Projects @ Wiki L Settings nsights =

Options DEplDY kE‘j,l'S Actd daploy key
Collaborators & teams
There are na degloy keys for this repositary
Branches
Title
Wabhooks
|
Integrations & services =
Key
Deploy keys
Allow write access
Can this key be used to push to this reposiory? Deploy keys abways have pull access.

Figure 7-16. Adding a deploy key to a GitHub repo

Personal Versus Organizational

When you create a repository, the first question you need to answer is whether
you should add the repository to your personal user account or whether you
should add it to an organization instead.

If you are creating a personal project, you probably want to just create it under
your personal GitHub account. However, if you’re creating a project that you
know you will want to be owned and/or managed by an entity other than
yourself—whether a whole team or a company—you should probably create an
organization first and then create the project under the organization so you can

easily transfer ownership of the project over time.

This isn’t the most important decision. You can always transfer the ownership of
a repository, so if in doubt, feel free to just create the repo under your user
account. However, if you know that you’re going to be building a project for an
organization, you might want to create the organization first.

Creating an Organization

You can create an organization no matter where you are on the site, so long as
you are logged in. To do so, click the + sign to the right of your username at the
top right of the page, and from the drop-down list shown in Figure 7-17, click
the “New organization” option. Though the options you see may be slightly
different, you can always create an organization or a new repository.

Pull requests |ssues Marketplace Gist

Hew repositary

Import regository

Overview Repositaries 185 Stars 184 Followars 621
Mew glst
Mew arganization
Pinned repositories order updated AL YU PN TEpesTories
= githubftraining-kit = github/backup-utils

Figure 7-17. The first step in adding a new organization

Clicking this option will take you to a page similar to Figure 7-18 that will allow
you to create a new organization.

Start by giving the organization a name and entering the email address for the
billing contact. You’ll then want to select a plan. If all of your projects are
openly accessible, you can create an open source organization for free. If you
want to work on private repositories with a team of people, you’ll want to select
the Team plan to allow them to better coordinate around those repositories.
Lastly, if you want more business features, such as SAML for single sign-on, an
uptime service-level agreement, and guaranteed support response time, then the
Business plan may be the one for you. If you’re interested in the Business plan
features but need to host the code on your own servers behind your firewall,
following the link at the bottom to contact GitHub about the GitHub Enterprise
plan would be best.

If you choose to create an organization for anything other than public code (fully
open source), you’ll be asked for either credit card or PayPal information to

B [N [B _

make tne montnly payments.

Sign up your team

Step 1:
Set up the organization

Organization accounts allow your
team to plan, build, review, and ship
software — all while tracking bugs
and discussing ideas.

Create an organization account

Organization name

The organizetion account will live at https://github.com/

Billing email

Receipts will be sant hera

Choose your plan

Thie credit card and plan you choose will be
$D billed to the organization — not brntbeer
[your user account],

O Free
Unlimited users and public repositories

Team $9
Starts at 526 | month which includes your first B users. PEF USEr
e ; P manth
Unlimited public repositories !
Unlimited private repositories
Business $21
ncludes everything in the Team plan, plus: DEr USEr
| manth

SAML based single sign-on (S50)
99.95% Guaranteed uptime SLA
245 email support with < 8 hour response time

Need help getting started or on-premises hosting? Contact us.
Figure 7-18. Creating a new organization by selecting a name, billing information, and plan type

Once you’ve filled in the fields and selected a plan, the next thing you’ll want to
do is invite the first members, who will have the role of owners for the
organization. As described on the right in Figure 7-19, these members will have
administrative privileges over all of the organization’s repositories and control
over other members’ actions inside the organization once they accept the invite.

Invite organization members

Step 1: ﬁ Step 2:
Set up the organization Invite members

Search by username, full name or email address
Organization members

+ See all repositories (3

beardofedu Invited X .
+ Create repositories
Matt Desmond

+ Qrganize into teams
ﬂ hollenberry Invited ® + Review code
Eric Hollanbserry « Communicate via @mentions

brianamarie Invited x A5 an arganization owner, you'll

Briana Swift have complete access to all of
the organization's repositories
and have contral of what

m members have access using

fine-grained parmissions.

You'll also be able to change
billing info and cancel
organization plans.

Learn more

Members will raceive their invitation via
email. They can also visit
https:figithu :l.tl:lm.'im":l-tl:l-glthub to
accept the invitation right away.

Figure 7-19. Inviting owners for the organization

Lastly, you’ll be asked a few questions about the purpose of the organization,
how long you expect it to be used for, and how many people may end up inside
of it. These are just for GitHub to have a better idea of who the users may be and
how to support you. You can skip this step if you’d like!

Once you’ve created an organization, the next thing you’ll want to do is double-
check some organizational settings and create some teams.
Configuring Your Organization

As an organization owner, it’s important to know about the possible organization
configurations. If you’re going to be managing many teams of developers or if

you’re responsible for how your company’s GitHub presence is growing, these
settings can make your growth safer, as well as easier, for everyone involved.
Organization Profile

Configuring an organization starts by clicking the Settings tab at the top of the
page. By default you’ll go to the Profile page within Settings, as shown in
Figure 7-20, which allows you to configure some high-level settings.

Repositories People 2 Teams @ Projects 0 L Sattings

Organization setlings

Organization profile
Profile

Organization display name Profile picture

Mamber privisges Intraducing GitHub
Billing
Email {will be public)

SBCurity

Audit log

Introducing

GitHub

Upload new picture

Description

Blocked users . : "
s gk A sample organization craated during the creation of the seconc

Webhooks
URL

Third-party accas £ 2 :
et e s httpsy{bit.lyintro-github

Installed GitHub Apps .
Location

Reposilary lopics

Projects

Developer settings

QAuth Apps

Billing email [Private)

brent.beerE@gmail.com

Gravatar emall (Private)

GitHub Apps

GitHub Developer Program

Figure 7-20. Give others an idea of what your organization is about by filling out the profile

The first couple of input boxes are what allow others to know who you are,
where they can get more information, and maybe where your company is
located. If you created a GitHub Pages site in Chapter 6, the URL box could be a
good place to add that URL.

Further down on the Profile page, you’ll see information about the GitHub
Developer Program. If you have an integration with GitHub that your company
built, you’ll definitely want to sign up here. Below that is a familiar section from
the repository settings earlier in this chapter, the “Danger zone.” If you want to

delete your organization, or change the name due to an error or company name
change, this is where to do it. As the name suggests, proceed with caution when
taking these actions. These two sections are presented in Figure 7-21.

GitHub Developer Program

Building an application, service, or tool that integrates with GitHub? Join the GitHub Developer Program,
or read more about it at our Developer site.

Check aut the Developer site for guides, our AP reference, and other resources for building applications that integrate with
GitHub, Make sure your contact information is up-to-date below. Thanks for being a member!

Rename organization

: it . . Rename organization
Renaming your organization can have unintended side effects.

Delete this organization

R ! Delete this organization
Once deleted, it will be gone forever, Please be certain,

Figure 7-21. GitHub Developer Program and “Danger zone” sections

Member Privileges

The next menu option within Settings is for configuring the default behaviors of
members within your organization. As shown in Figure 7-22, repository
creation, deletion, and visibility control are important features for distributing
responsibility within your organization. Allowing any member to create a
repository belonging to the organization (and also delete one, for example if it
was created in error) is a great way to encourage new ideas. You may also want
the developers that work on a repository to be able to decide for themselves
when it’s ready to be shared with the world, and when to change the visibility
from private to public. Alternatively, these requests would have to go to an
organization owner, which may be more secure but can take longer and seem
like a barrier.

At the bottom of the “Member privileges” screen are the default permissions for
each individual repository. These options, shown in Figure 7-23, allow you to
control how each new member of your organization will interact with the
repositories it owns. Because these are the defaults, they can be overwritten by a

team’s settings to be more or less restrictive depending on that team and
repository’s needs.

|| Repositaries Paopla 2 ¥ Teams 0 1" Projects @ £+ Settings

Organization settings
Profile

Member privileges
Billing

Securily

Audit log

Blocked users
‘Webhooks
Thiird-party accass
Instalied GitHub Apps
Repository topics

Projects

Develaper settings
QaAuth Apps

GitHub Apps

Repository creation

Qutside collaboralars can néver creale repositories.

B Allow mambers to create repositories for this organization
Alkrwing your crganization's membars 10 craats Mpostars lats them sharm and work on projects mone apendy, I anakiled,
mazmibers will be able bo creste publio and private repasitorkes.

Save

Repository deletion

B Allow members to delete or transfer repositories for this organization
IF enablad, mambsemn with admin parmissions for the repesitany will be sble 1o delebe ar translar pablic and private
repositaries, If dissbled, only organization owners can delete o tansher repositonies.

Save

Repository visibility change

B Allow members to change repositery visibilities for this organizathon
If enabled, membans with admin permissions o the repeditany will be sble 1o changs repasitary vielbiity rom public 16
private. I disabded, only organization cwnars can change mpasitary visibilies

Save

Default repository permission

Figure 7-22. Member privileges for repository creation, deletion, and privacy changes

Default repository permission

Choose the default permission level for organization members. The default repository permission only applies

to organization members, not to outside collaborators.,

Admin

Members will be able to clone, pull, push, and add new collaborators to all repaositories,

Write

Members will be able to clone, pull, and push all repositories.

O Read

Members will be able to clone and pull all repositories.

MNone

Members will only be able to clone and pull public repositories. To give 8 member additional access, you'll need to add them
to teams or make them collaborators on individual repasitories,

Save

Figure 7-23. Default repository permissions
Billing
Changing or reviewing your billing is done from the Billing screen, the overview
section of which you can see in Figure 7-24. As your organization grows, you
may need to change your plan from Free to Team or Business, or you may need

additional purchasing add-ons like Git LFS. All of these options can be changed
and edited within the “Billing overview” section.

Repasitaries Paople 2 Tearms 0 Prajects 0 £ Settings
Organization setlings Bi”ir‘lg UVEWiEW
Profile
Plan Free plan, unlimited public repositories
Member privileges
Billing Get unlimited private repositories for teams m
Starting at $28 | month which includes your first & usens,

= £0 | mordh for each additicnsl ugsr
Security

Audit bog
Git LFS Data 50 per month for 0 data packs = Learn mare about Git LFS Purchasi manm

Blocked users

‘Wehhooks
Markatpl
ks ¥ou have not purchased any apps from the Marketplace.

ADDS
Third-party sccess
natalled GitHub Apps Payment =1 No payment method on file. =1 Add payment methcd
Repository topics

Coupon You don't have an active coupon. 7 Redeem a coupan

Projects
Figure 7-24. Billing overview

As you may have to audit your billing, this work could be assigned to one or
more users within the organization as billing managers. This specific role is only
allowed to change any of the billing details, as well as to view past transactions
in the “Payment history” section. These two sections can be seen in Figure 7-25.

Billing managers Add a billing manager

,ﬁ. Matt Desmond | Pending confirmation Re-send Invitation [/ Cancel

Receipts are sent to tha billing managers for this organization, and brent.bear@gmail.com. #

Payment history
You have not made any payments.

Amounts shown in USD

Figure 7-25. Billing managers and payment history

Security

Setting different security requirements, like two-factor authentication and, if you
are on the Business plan on GitHub.com, enforcing SAML for members, is
important for a healthy organization. These settings can be configured on the
Settings — Security screen, shown in Figure 7-26.

Repositories People 2 Teams @ Projects @ 1} Sattings

Organization settings Two-factor authentication

Profila
Requiring an additional authentication method adds another level of security for your arganization,

Member privileges
Require two-factor authentication for everyone in the Introducing GitHub organization.
Billirg Mambars, billing menagers, and cutside collaborators wha do not have twe-Tacior authentscation enabiled for the
) persenal sccount will be removed fram the erganization and will receive an emal notifying themn asbout the change.
Security
Sawe
Audit log
Figure 7-26. Security requirements

It can be important at times to track down when certain actions took place and
who took them. Imagine a user reports his laptop as stolen while he’s away on a
trip, and you don’t know if you need to temporarily remove this user from your
organization until he’s reset his passwords. If you looked into the audit logs and
saw access to the account coming from an area of the world that it shouldn’t, that
would be a clear sign to remove that member from your organization and
double-check what actions had been taken so you could do some damage

control. As shown in Figure 7-27, the “Audit log” section of the Settings tab
allows you to not only filter by certain common categories, but also any search
criteria that may be helpful to look for, like a username or repository name.

Repositorias People 2 Teams 0 Projects @ £ Sattings
Organization sattings Audit |0g
Prafile
Filters - il
Member privileges
B vasterday's activity
Billing
AL Ovganization menbarship
Security
(&) Team managamssi :
i i mvitathom
Audit log £ Repositary managament nvitation to the Intraducing GitHub arganization
Mmnutes ag
Blocked users 2 .
Webhooks - ember
= Iwiten oearoorenu oo Introducing GitHub arganization

Third-part -, .
I P et Unknown location | 13 minutes ego

Installed GitHub Apps

. orntbear - profile_plcture.update
Peposttory topics m Updated profile picture for intro-to-github

Unknown lecation | 2 hours 8
Prajacts ' 4 M a0

Figure 7-27. The Settings — “Audit log” screen

Blocked Users

Blocking malicious users at the organization level is a good way to ensure those
users will no longer be able to interact with your organization’s repositories, or
even watch and star them. This should not necessarily be a feature used to
counteract a heated discussion, as it is a severe punishment. You should instead
use this option if you wish to block someone from interacting with you and your
organization completely, for your own or your members’ safety. On the
“Blocked users” screen, you can review who is already blocked and an overview
of the actions they are restricted from (see Figure 7-28).

Repositories 0 People 3 Teams 0 Projects 0 £} Settings

Organization settings Block a user

Profile
Blocking a user prevents the following on all your repositories:

Member privileges g :
Bmber privileges X opening or commenting on issues or pull requests

¥ starring, forking, or watching

illing . o B

¥ adding or editing wiki pages
Security

Search by username, full name or email address @
Audit log

Blocked users

‘Webhooks

Blocked users
Thard-party acoess
nstalled GitHub A)
o Yau have not blocked any users.
Repository topics
Projects Warn me whan a blocked user is a prior contributer to a repository

On reposiorias you haven'T contributed to val, we'l wanm you wisen B user you'e Blocked has préviously made contribitions,
Deweloper settings
Dauth Apps

GitHub Apps

Figure 7-28. The Settings — “Blocked users” screen

Webhooks

Organization webhooks are similar to repository webhooks in that they allow
certain actions to be taken given some event, but at an organizational level.
Using the previous section as an example, you may want to notify an external
server every time a user has been blocked by the organization in order to take
additional action. You might also want notifications to be sent when a repository
changes from public to private, or when membership within the organization has
changed. There are a lot of possibilities to expand your team management with
webhooks at the organizational level; to explore these, select the “Let me select
individual events” option as shown in Figure 7-29.

Repositarias 0 People 3

Organization settings
Profila

Member privileges
Billing

Sacurity

Audit log

Blocked uzars
‘Webhooks
Third-party access
Instalbed GitHub Apgs
Repasitory toplcs

Projects

Developer settings
CAuth Apps

GitHub Apps

Teams 0 Projects @ £} Settings

‘Webhooks | Add webhook
‘We'll sand a FosT reguest to the URL below with details of any subscribed events. You can also specify

which data format youd llke 1o recalve [JSON, k-wesd- Fors-urlencoded, &f2). More informatian can be found In
our developer dacumentation.

Payload URL *

Contant type

applicationx-waw-form-urlencoded =

Secret

Which events would you like to trigger this webhook?
Just the push event.
© Send me everything.

Let me select individual events,

Active
‘e will dediver event detalls whaen this hook |s triggered.

Figure 7-29. Adding organization webhooks

Third-Party Access and Installed GitHub Apps

When members of your organization integrate and interact with third-party
software on GitHub, they may have to sign in to those applications and authorize
them to access certain data from GitHub. Sometimes, these applications need
organization-level information that, as an owner of your organization, you want
to have control over. Controlling these requests and viewing any pending ones is
done via the Settings — “Third-party access” screen, seen in Figure 7-30.

Repasitories 3 Pesple 3 Tearms 0 Projects 0 ﬂSﬂ!ings

Organization settings Third=party application access policy
Prafile Policy: Access restricted «
Member privilages Only approved applications can access data in this organization. Applications owned by Intre-to-github

always have access

Billing

Remove restrictions
Security
Audit log No pending requests

As members request access for spacific applications, thosa requests will be listed here for your approval

Blocked users Yau can start by browsing youwr own authorized applcations.

Webhooks
& When suthorized, applications can sct on behalf of organization members. Your accass policy
Third-party access determines which applications can access data in your organization. Read mone abaut thind-party
BCCAES BNd Organzations,
nstalled GitHub Apps

Repository topics

Projects
Developer satiings

QaLth Apps

GltHub Apps
Figure 7-30. Viewing third-party access restrictions and pending requests

As an organization owner, if you’ve purchased any applications from the
Marketplace (as discussed in “Integrating with Other Systems”), those items will
appear on the Installed GitHub Apps screen.

Repository Topics

Repository topics, which help people discover your repositories and know what
software topics a repository may cover, can be managed all at once from the
Settings — “Repository topics” screen, shown in Figure 7-31. Adding topics to
your repositories can be important for attracting new developers and making it
easier for your current developers to find repositories within your organization.

Repaositaries 3 People 3 Teams 0 Projects 0 l}ﬁc't!irbgs

Organization settings Introducing GitHub repositories you contribute to

Profile
ntro-to-github [example-for-desktop-and-atom

heember privileges A placehalder repository to interact with GitHub for Desktop and Atom

Billing epmphs = ghid = amom = lgaming =
Security
Audit lag ntro-to-github | intro-to-github.github.io

Placeholder for the book website as an example
Blocked users
exampls « github-pages w pages «
Webhooks

nstalled GitHub Apps
Repository topics

Projects

Developer sattings
DAuth Apps

GitHub Apps
Figure 7-31. Organization-owned repositories and their topics

Projects

We talked about GitHub Projects at the repository level back in Chapter 5, but
sometimes the projects you’re working on span across multiple repositories.
Tracking the work across those repositories can be made more efficient by
having an organization-wide project and collecting issues and pull requests from
multiple locations. To allow this, you need to enable the settings on the Projects
screen, shown in Figure 7-32. If you want to disable GitHub Projects for all of
your repositories, you can also do so from this screen.

Repositarias 3 Paaple 3 Taams 0 Projecis o ﬂSEt!ings

Organization settings ijects
Profile
Project boards on GitHulr help you organize and prioritize your work. You can create project boards for specific

Member privileges feature work, comprehensive roadmaps, or even release checklists
gillin & Enable projects for the organization

8 This allgws mbars 1 creats projects for this ifre-to-githul organizetion. You can acd ssues Trom ey iebn-to-githib-
e cwnad repasitory. This does not affect projects in intro-to-github-owned repositonas in any way.
BCUTITY

e & Enable projects for all repositories
Aldit log This allows membars 1o craate projecis in all rapasitanss in the Infro-ta-github organization. This affects avary projgct at the

repasitory level in the imtro-to-github organization. You can still disable projects for a specific repositany in repositany

Blocked usars setlings
‘Webhooks
Wehhook Save

Third-party acoess
nstalled GitHub Apps
Repository topics

Projects

Devaloper sattings
DAuth Apps

GitHub Apps
Figure 7-32. Enabling organization-wide projects

Managing Members and Teams

If you create a repository under your user account, you can just add collaborators
directly to a project. However, if you create a repository under an organization
and want to allow other people to access it, either they’ll have to be members of
your organization (see “Member Privileges” for details on setting permissions)
or you’ll have to create teams.

By default, when you create an organization, GitHub will assign you to a role
called “owners.” Owners have complete administrative access to the
organization. These people will help with managing the organization’s settings,
and by default will have administrative access to all of the repositories owned by
the organization without needing to be given further permissions within a team
or by any other means. “Members,” on the other hand, is a permission title for
everyone else who belongs to the organization. This shouldn’t be confused with
the role of an outside collaborator, who is someone who was added to a single
repository owned by the organization. While members typically have default
permission to read and view all repositories owned by the organization (public
and private), it is usually a best practice to create a new team to handle

organizational structure and control over who can write to the organization’s
repositories. If you’d like to only invite members, you can do so by clicking the
“Invite member” button within the People tab on the organization page, as
shown in Figure 7-33.

2

Invite members to Introducing GitHub

| L jomien

H jonico Johannas Hicalal
. jonlcoce

ﬁ JonicoBER Jon

L Jonicodd

: Jonicon Joni Kontusaim

-~ ponico22 Joso Luls Yana

Figure 7-33. Inviting members to your organization

After you’ve invited the new member, you’ll see a screen similar to Figure 7-34
where you can then decide if this new member should be an owner or add them

to some teams if you have teams already. This makes it quick and easy to grow

your organization once you have teams set up.

If you don’t have teams in your organization yet, you’ll want to create some to
more easily handle permissions for individual repositories when adding
members. When creating the team names, you may want to start with traditional
teams like “engineering,” “design,” “product-design,” “frontend-engineers,” or
“platform-engineering.” Once you have these teams set up, you may want to
create additional ad hoc teams like “senior-developers” for the more senior
developers, “infrastructure” for the people knowledgeable about your operations
or infrastructure, “github-experts” for people who can assist with Git and GitHub
questions, or even “code-review” to make it easy for that team to review code in
the repository. If I'm working within a larger company, I might also create teams
for business units or functions like marketing and legal. Besides handling

permissions, these teams make it easy to bring relevant people into appropriate
discussions by @mentioning the team. The @mention format is slightly different
for teams than it is for an individual: the format it follows is
@<organization>/<team_name>.

Repositories 3 i1 People & Teams & Projects o Sattings

Invite Johannes Nicolai to Introducing GitHub

Give them an appropriate role in the organization and add them to
same teams to give access to repositories.

0 Member
Members can 528 all other membsars, and can ba granted access 1o
repasitories, They can also creale new teams and reposilories.

Owner
Dwmers have full administrative fights te the arganization and have complebe
aocass o all repositories and teams

Optionally, you can also add Johannes Nicolai to some teams,

Taams Mambars Rapasicrias

B code-review
main team responsable far code review

database-review

cade review specifically for database Z o
managemant wark

engineearing

AN gf the membars of our enginearing 2 0
fmam

B infrastructure
Site reliability, overall infrasfructure, 1 o

operations

2 support
help desk, customar sUccass, ampathy

Figure 7-34. Adding a new member to some existing teams

To create a team, go to the organization’s home page and click the Teams tab at
the top of the page, highlighted in Figure 7-35.

Introducing GitHub

[Repasitorias Peopde 3 Teams O Proje

B brnthes

il b

Figure 7-35. Locating the Teams tab on the organization’s home page

When you visit the Teams page for the first time, you should see a screen similar
to Figure 7-36 to help you get started on creating teams, because you haven’t
created one yet. Once you have created some teams it will show a list of all of
the teams within your organization, each with a row of small profile pictures
showing some or all members of the team, depending on its size, and any nested
child teams. An example of a Teams page with teams is shown in Figure 7-37.

Repasitories 3 People 3 E'|Taam5 0 Projects O Settings

Seamless communication with teams

Teams are a great way for groups of people to communicate and work on code
together. Take a look at why they're great.

L& =
TiT kﬂlj I;g
Flexible repository access Request to join teams Team mentions
You can add repositaries 1o your Members can quickly reguest to join Uae team @mentions (ex.
teams with more flaxible levels of any team, An owner or team @githubydesign for the entire team)
access (Admin, Wrile, Read]. maintainer can approve the reguest, in any comment, issue, or pull

request.

m L'Jarn bl

Figure 7-36. Bare Teams page

Repositories 3 People 4 T:ams 5 Projects 0 Settings

Mew team
Select all Visibility = Members -
code-review 4
e !.. 3 members 1team -~
miain ieam respensable for code revies
database-review
code review specifically for database u. 2 mambers 0 teams
management wark
engineering =
4 9 ; ﬂﬁ' 2 membears: 1team -~
All of the mambers of our anginaering team .
infrastructure y
mamibar 0 teams
Site relisbiity, overall infrastruchore, operations
M LR !u 2 membaers 0 teams
Felp desk, custamer suctess, ampalby -

Figure 7-37. Viewing the existing teams within the organization

To create a new team, click the green “New team” button at the bottom of the
content area if this is your first team, or on the right side of the page above the
team listing if this is for an additional team. Afterwards, you should see a screen
similar to Figure 7-38.

Reposilories 3 People 3 [Teams o Projects 0 Settings
Create new team

Team nama
engineering '
Meriticn 1his team in corversalicrs as @intro-to-githubfengineering.
Description
All of the members of our engineering team
Parent team
Select parent team
Team visibility
D Vizible Recommended
A visibbs team can be seen and @mentioned by every member af this
orgarization.

Secret
A secret tRam can anly be seen by iis membars.

Figure 7-38. Adding a new team to an organization

Give your team a name. If you’re just working with a couple of developers on a
single project, it might be something as simple as “developers.” If you are part of
a larger organization, the name could be “engineering” for your entire
engineering department, or it could be the name of the project team: “mobile-
devs,” “api,” “designers,” etc.

You can add an optional description if the intent of the team might not be
obvious to members of your organization. Additionally, this description can
make it easier to @mention the team if someone starts typing some words from
the description instead of the name itself. For a smaller, focused team belonging
to a larger hierarchical component of your company, like an “api” team that’s
part of the larger “engineering” team, you may want to select a parent team to
nest this child team under. Child teams inherit the parent’s access permissions,
simplifying permissions management for large groups: you can be very broad at
the high level and give more granular access to more restrictive repositories to
lower child teams. Members of child teams also receive notifications when the
parent team is @mentioned, simplifying communication with multiple groups of
people. When you’ve finished, click the “Create team” button.

Once you’ve created a team, the next step is to add members to the team. To do
this, click the “Add a member” button on the team page. As shown in Figure 7-
39, just start to enter the GitHub username or the name the user has displayed on
their profile for each person you want to add to the team, and the name should
autocomplete as you’re typing. Usernames will be easier for GitHub to
autocomplete, as they are fully unique. If the people you want to add to this team
are not members of the organization yet, this will also invite them to the
organization. Once they accept the invite, they will be members of the
organization as well as being on the team.

11

Add members to engineering

1 desmond

b= desmond Desmond Foo
Mot a member of this arganization

¥ beardofedu Matt Desmond

:T: desmond8§ Desmand
Mal & membar al this anganicalion

. desmendwill desmond
Mot & memibar of this anganization

B

i dasmond-mm Dasmand

Figure 7-39. Adding a user to a team

Next, you will want to give the team some repositories to work with so you can
have more granular access for your members. To add repositories to the team,
click the Repositories tab on the team page. Once there, press the “Add
repository” button to see a screen similar to Figure 7-40. Again, you can start
typing the name of the repository within the organization to add to the team and
it will autocomplete.

Add repository to engineering

-github | example-for-desktop-and-atom A

itary 1o interact with GitHub for Deskicg

Figure 7-40. Adding repositories to a team

Once a team has a repository, you may want to change the permissions for how
that team interacts with it. You can see some of the different permission options
in Figure 7-41.

Membars 2 Taams 1 L] Repositories 1 Sattings

Select all

intro-to-github/example-for-desktop-and-atom @ Read -
updated 13 days ago
Parmission hewel
Admin
Team members can read, clone, push, and
sdld collabarators 16 this repastory,
Wirite
Team members can read, clone, and push to
ihiR repoaitony,
& 2047 Gitkub, Ine Tarms Prvacy Securily Stalus Halp [Bl
* Read

Team members can read and clone this
POEOTY,

Figure 7-41. Editing team permissions for a repository

Changing these permissions is what will enable you to have more fine-grained
access for the members within your organization. If this team just needs to
consume and read code, review code in a pull request, or leave comments and
feedback, perhaps “read” permission is sufficient. If they are contributing to the
repository by writing and pushing code in addition to reading from it, they’ll
need “write” access. Finally, if you want them to not only be able to read and
write the code but also configure the integrations, invite outside collaborators, or
control some of the code review for the repository, perhaps “admin” is the
correct permission level.

If you ever need to edit a team’s name, description, visibility, or parent team, or
delete it altogether, that’s done from the Settings tab. Click the Settings tab at the
top of the team page and you’ll see a screen similar to Figure 7-42.

Membars 2 Teams 1 Repasitories 1 £ Settings

Edit team

Team name

engineering

Changing 1he 1aam namn wil braak past @mantans
Description

All of the members of our engineering team

Farent team

Select parent team -

Team visibility

D Visible Recormmended

& visible 1eam can be seen and @mentioned by every mambaer al 1his

Secret
A secrat team can anly be seen by s members

Figure 7-42. The team Settings page

If you want to delete the team, click the “Delete this team” button at the bottom
of the page. You’ll be asked whether you’re sure. Just click OK, and the team
will be deleted.

As well as deleting teams, you may want to remove a member from a team, or
from the organization. Removing someone from a single team is best done from
the team page itself. Visit the individual team page by clicking the team name in
the organization’s list of teams. On the Members tab of the team page, select the
checkboxes next to the members you wish to remove and click the drop-down at
the top of the member list, as shown in Figure 7-43. This batch user management
option will allow you to change the selected members’ role to team maintainers
or remove them from the team completely. Once you select “Remove from
team,” you’ll be given a warning about those members losing their forks, as well
as a summary of all the users you’re removing. Press “Remove members” to
confirm.

11 Members 3 Teams 1 Repositories 1 Settings

a 4 maenber selecied.,, = Role =

Change role...
e nibeer MWaintainer

Vitor Monlt@iro bitoiu

] ﬂ Matt Desmond beardofadu

Figure 7-43. Selecting a member to remove from the team

Removing a member from the organization completely can be done by selecting
the individual user on the People tab, or in a similar bulk-edit fashion like when
removing members from a team. You can see an example of this in Figure 7-44.
Additionally, if you want to keep the member as an outside collaborator who can
work on only the repositories she has explicit permissions to access, you can do
that here as well.

Repasitories 3 A People 4 Teams § Projacts 0 Settings

B 1 member selected.., = 3 pending Invitations 2FA = Rala =
Change role...
ZFh v & Private Member 1 1eam -
Convert to cutside collaboratar
Remaove fram ﬂrgﬂli.:ﬂtlﬂn
Witor Montelr
“ itar Montelro TEA v B Private Mambar 3 teams =
bitoiu

Brent Beer
! [— il £ Private - Onvner 5 teams -
it} mbeer

Eric Hollenberr
e Hollenberry TFh o & Private Mambar 1 team -
hallenbarry

Figure 7-44. Selecting a member to remove from the organization

Congratulations! If you’ve gotten this far in the book, you should be ready to do
almost anything with a GitHub repo. You should be able to view the state of a
project, edit the files in a project, collaborate with your team, and create and

configure a new repository. In the next chapter, we’re going to look at how you
can use GitHub Desktop and the Atom text editor to download a copy of a
GitHub repository and make some simple changes to it on your laptop, to take
your software development experience a step further.

Chapter 8. Downloading and Working Offline

You may never need to clone (download) a copy of a repository at all. As we’ve
seen in this book, you can use the GitHub web interface to view the state of a
project, edit content, collaborate with your team, and set up and configure a
repository. However, sometimes it’s necessary to clone a repository. In this
chapter we’ll look at why you might want to clone a repo and how you would do
so using GitHub Desktop. If you’re running Linux, though there are web
interfaces out there, you’ll probably be better off just installing Git directly and
learning the command-line interface for working with Git repositories—but
that’s outside of the scope of this book.

Why Clone a Repository?

There are a number of reasons why you might decide to clone a repository.
Some of the most common ones include the following:

Creating a backup
When you clone a repository, it creates a full copy of the project—including
all branches, tags, and history—on your computer. Sometimes it’s worth
cloning a repository and pulling the changes down regularly just to know that
you have a full copy of the project safely on your machine. This does not
grab any GitHub-specific items like issues or pull requests, however.

Editing in an IDE or text editor
The web-based interface isn’t as powerful as editing in an IDE (integrated
development environment) or your favorite text editor, so if you’re editing
content all day, you’re going to want to do that locally on your machine.

Editing offline
You can’t edit directly on GitHub unless you have an Internet connection, so
if you want to be able to keep working on your project whether or not you’re
connected, you’re going to want to clone your repo and work on it locally.

Editing multiple files
One of the current key limitations when editing on GitHub directly is that
there is no way to group a set of related changes and make them as a single
commit.

Running the code
Sometimes you’ll want to be able to run the code locally to test exactly how

it works.

Running the tests
If you have automated tests for a project, you may want to be able to run
those tests locally to confirm that recent changes haven’t broken the
software.

If you need to do any of the preceding things, you’ll need to either install the Git
version control system directly onto your computer or install a GUI (graphical
user interface) that makes it easier for you to use Git to perform common
operations.

A number of different applications are available that provide GUIs for working
with your Git repositories. In this chapter, we’re going to cover the GUI
provided by GitHub: GitHub Desktop.

GitHub Desktop

GitHub’s native client is completely open source—if you or your developers
ever want to be involved with the community, you should check out the
repository for this application. On the repository page, you’ll find additional
install instructions as well as ways to contribute and report bugs. However, the
traditional way to get a copy of GitHub Desktop is to go to
https://desktop.github.com. You should see a screen similar to Figure 8-1.

https://github.com/desktop/desktop
https://desktop.github.com

Overview Releaze Note:

The new native

Extend your GitHub workflow beyond your browser with our Desktop Beta, completely redesigned
with Electron. Get a unified cross-platform experience that's completely open source and ready

to customize.

Download for macOS

Download for W

By downloading, you agrea to tha

Figure 8-1. The GitHub Desktop web page

Click the “Download for macOS” or “Download for Windows” link to get
started. This will download either a ZIP file (macOS version) or a setup installer
(Windows) to the location on your computer that your browser typically
downloads files to—usually your Downloads folder. If you have the ZIP file,
just double-click it and it should expand to a file called GitHub Desktop for you
to work with. On Windows you’ll just have a file called GitHubDesktopSetup
that will take care of everything for you by bringing you through an install
wizard. An example of what these files should look like in either operating
system is shown in Figure 8-2.

e [] & Downloads

i n 1m &~ | B~
Favorites Tocay Date Modified w Slze Kird Date Added
™ iClowd Dirive P GitHubDesktop.zip Today, 12:05 PM

5 P 67.3MB ZIP archive Today, 12:10 PM
= GitHub Deskiop Aug 17, 2017, 633 AM 162.1 MB

Today, 12:16 PM

12} brtbees
D AirDrop

v Applications
=] Desktop
[Documants
© Downioads
r-: Bax Sync

Figure 8-2. The GitHub Desktop ZIP file and application file

Drag the GitHub Desktop file into your Applications folder for long-term
keeping if you’re installing on macOS. Regardless of your operating system,
double-clicking either the GitHub Desktop file in your Applications folder or the
GitHubDesktopSetup in your Downloads folder will start the GitHub Desktop
installation and setup process. You should see a screen similar to Figure 8-3
welcoming you to GitHub Desktop.

Welcome to
GitHub Desktop

GitHub Desktop is & seamless way to contribute to projects
on GitHub and GltHub Enterprise. Slgn in below to get
started with your existing projects.

MNew to GitHub? Create your free account.

Sign into GitHub.com

Sign into GitHub Enterprise

Skip this step

Figure 8-3. Welcome to GitHub Desktop

Unless your company has a GitHub Enterprise setup and you’re going through
this setup specifically for that, it would be best to first sign into GitHub.com by
clicking the “Sign into GitHub.com” link. If you later need to sign into GitHub
Enterprise, you’ll be able to do that as well. If you have enabled two-factor
authentication to make your account more secure, you’ll be asked to enter the
code that either was texted to your mobile phone or is available in the two-factor
authentication app you set up.

Once you’ve done this, you should see a screen similar to Figure 8-4.

Click the “Sign in” button, and you’ll be prompted for some information to
configure Git. In the first text box, enter the name you want to be known by, and
in the second, enter the email address you’d like your commits to be associated
with. Usually you’ll enter your full name into the first text box and the same
email address you use for your GitHub account in the second one, as I’ve done
in Figure 8-5.

LI

Sign in to GitHub.com

Usernarme of emall address

brntbeer

m Cancel Forgot password

Sign im using your browser [£

Figure 8-4. Sign into your GitHub account

Configure Git

This is used to identify the commits you create. Anyone will
be able to see this information if you publish commits.
Name

Brent Beer

Email

beent. bearn@Fgmail.com

== Do more things
==
#8l 2 minutes ago by Habot
Fix all the things
30 minutis Agoe By Brant Bear

== Add some things
=

an hour ags by Hubat

Figure 8-5. Configuring your Git settings

Click the Continue button and you’ll be taken to a screen that allows you to
create a new repository, add an existing repository you have on your computer,
or clone a repository from GitHub. As you have more repositories that you work
with locally, you’ll see different repositories here; for now, you should see a
blank screen that looks like Figure 8-6.

aee

El Select a Hlpu:ll!ll:ry

Mo Repositories Found

+ o (3
Create A rew progect and publish it Add an existing progect on Your compabar Cleme an axisting projest Tram GitHuD o
ba GitHub and publish it 16 GitHub el computer
Create New Rapasitory Add a Local Repository Clene a Repository

Alternatively, you can drag and drog a local repositery here 16 add L.

Figure 8-6. The home screen for GitHub Desktop

Now that you’ve installed GitHub Desktop, go to a repository that you’d like to
clone (download) and that you own or are a collaborator on. You can clone any
public repo, but you won’t be able to push your changes back up to GitHub
unless you’re either an owner, a collaborator, or have sufficient write
permissions within the organization if it belongs to one. I’'m going to reuse the
repository I created back in Chapter 3 to continue where we left off.

If you look at the right side of the page above the file list, you should see the
“Clone or download” button that, when pressed, will give you two options:
“Open in Desktop” or “Download ZIP” as shown in Figure 8-7. Go ahead and
press “Open in Desktop” to get this repository onto your computer.

When you click “Open in Desktop,” GitHub Desktop will open up and present
you with some options for where to save this repository and what the URL of the
repository is on GitHub. This information will be prefilled for you and should
look similar to Figure 8-8. It may be best to keep those defaults for now; if you
later decide to move this folder to a different location, you will just have to let
GitHub Desktop know where you’ve moved it to.

[brntheer | new_project @uUnwatch= 1 JkStar | b Yrork O

i Code 1) laswes 0 11 Pull requests o I Projects 0 Wiki L} Settings Ingights =
No description, website, or topics provided. Edit
Add tapics

f B commits 1 branch 0 releases 12 1 contributor
Branch; master = Merw pull request Create new file Uplaad files Find file Clame or download -
B bentbeer committed an GitHub Create gitkeep Clone with SSH @ Usa HTTPS
. Use an S5H key ard passphrage from account.
| build Craate .gltkesep
; s pilt@githul . com: brntbeer/mew_project.pit E.
| documentation Updata and raname 2017.md to documentation/chapter_1.md
&) README.md Update README.md Open in Desktop Download ZIE

= README.md

Figure 8-7. Clone or download options in a repository

Clone a repository

Erter a repasitory UAL ar GitHub username and repasitary (e.g., hubot/ cool-repa)

[https:jigithub.com/brrbeesinew praiect git |

Local Path
JUsarsibratbearDocuments GitHub/new_praject

Figure 8-8. Confirming where to clone the repository

Once the repo has been successfully cloned, you should see a screen similar to
Figure 8-9.

= Fetchi origin
= st .

¥ mastar
Charges History

O changed files

ke bo opsen this reposiory in Finder?

®

Figure 8-9. Viewing a repo in GitHub Desktop

If at any time you want to switch to a different repository you have a copy of
locally, you can do so from the drop-down in the upper-left corner. For now,

let’s take a look at some of the other areas of GitHub Desktop before we start
making changes to push back to GitHub.

Viewing Changes

There are two tabs on the home screen of a repository in GitHub Desktop:
Changes and History. You’ll notice that initially there’s not much to see, but
that’s because you haven’t actually changed any files yet. This will change in
just a bit as you start editing files. If you click History, it will show you a list of
commits on your current branch, as shown in Figure 8-10.

L -
= nrw_project

= Fatch crigin

Changes Histary

Update README.md

Croste gitkesn M Breer Boer -0 £888340 [T) 1 changed Se
T gl 15, 2017 by Brart Buer
README.md
Updena and resame 70T7md 1o d_. 1

X Apel B8, 207 by Brant Baer

Undaie AEADME.md
L Fepedl T3, PONT By Nrank Baer

Creste 207.md
E kel 17, 20T By Brart Boer

Iritial commit
Apel 17, 207 by Brark Baer

T PR

-

-1 +1,0 88

=& Mew_sroject =

e _project

+

+5% Fow to contribute

+= Fark this project

+ = IT you den't Kndw how, Sen't panic! It's cowered in an additlen
al chapter of this book.

+= Make your charges

+ Ssbait & pull regquest

+ - It"s impartant to have 8 cosversstion when cpening & pull regee
st Duscribe your change mnd why it should be accepted.

Figure 8-10. The History view

If you click the middle drop-down menu that mentions the current branch you’re
on, you’ll see a screen similar to Figure 8-11.

P Casreedit Branch
master

Defaidt Branch

' masier
Cahar Branches

¥ originfHEAD

Figure 8-11. The branch list

If you clicked History earlier and didn’t see some changes you expected, you
may have needed to switch to a new branch—maybe that work was only on a
different branch and hadn’t yet been merged into where you were looking. This
branch view shows a list of all of the branches that you’ve created locally and all
of the other branches that are on GitHub, and clicking on one will switch you to
it. Finally, to view the repository settings, you need to click on the Repository
drop-down in the menu bar and select Repository Settings, as shown in Figure 8-
12.

@ GitHubDesktop File Edit View [Ioiaal Branch Window Help
g_ 0

Fetch origin
I':I new_project - i

View on GitHub ~ "CHG |
Open in Terminal Lot
Show in Finder {+3F "'“

Open in Atom TH®A @ -1 +1,8 &0

u Update and rename 2017.md to d... Repository Settings... 1 —# new_project @e

Changes History

Create .gitkeep
e Apeil 18, 2017 by Brent Beer

April 18, 2017 by Brent Beer 1 +% new_project
Update README.md i
pda 8
TBE April 17, 2017 by Brent Beer 3+ How to contrib
4+ Fork this proje
Create 2017.md 5 + = If you don't
April 17, 2017 by Brent Beer al chapter of this
& +- Make your chang
u Initial commit 7+ Submit a pull r
April 17, 2017 by Brent Beer g + - It's importan

st. Describe your
Figure 8-12. Finding the repository settings

Once you click on Repository Settings a small box will appear with two tabs,
Remote and Ignored Files, as shown in Figure 8-13.

Repository Settings

Remote Ignored Files

The .gitignore file contrals which files are tracked by Git and which are
ignored. Check out git-scm.com for more information about the file
format, or simply ignore a file by right clicking on it in the uncommitted
changes view,

Ignored files

Figure 8-13. Files ignored by this repository

The Remote here is just in case you need to change where your repository is on
GitHub (because you renamed it or transferred it). The Ignored Files tab is for
files you don’t want Git to pay attention to and track changes of. These could be
personal note files, IDE configurations, executable files, log files, really
anything! Lots of different coding languages and IDEs often have standard files
they wish to ignore; you can see examples of these at
https://github.com/github/gitignore. You may also see this populated already if
the repository you cloned was not brand new.

Hopefully, now you have enough familiarity with the interface to know how to
clone a repository and where certain functionality is should you need to do so
using the GitHub Desktop application. The next section will take you a step
further in actually editing some additional content with a more realistic
workflow.

GitHub Desktop and Atom

To really use GitHub Desktop to its full potential, you need to start changing
files with a text editor. You may have your preference of text editor, but to
continue we’re going to be using Atom, GitHub’s open source text editor. To get
started with Atom, download it from the Atom website, which should look
similar to Figure 8-14.

https://github.com/github/gitignore
https://atom.io

Packages Themes Documentafion Blog Dscuss

& ATOM

A hackable text editor
for the 21st Century

GitHub Tor

ALom
Download For Mac

For macDS 108 or laer
Falessa noles - Diher platbonms - Beta releanes

Figure 8-14. The Atom text editor’s home page

We’re just going to use it to familiarize you with workflows in GitHub Desktop
for now, but Atom itself has Git and GitHub functionality built into it.
Additionally, this functionality and its appearance is similar to that of GitHub
Desktop because it’s built with the same underlying technology, which is called
Electron. If you ever have a website that you need to have a desktop version of,
you may want to check out https://electron.atom.io.

Getting started with Atom is similar to GitHub Desktop, though you don’t have
to go through a sign-in and setup process. Start by clicking the “Download For
Mac” or “Download Windows 64-bit Installer” link on the home page. Just like
with GitHub Desktop, this will download a ZIP file for Mac or a setup file for
Windows. In Windows, once you click this setup file everything is taken care of.
On a Mac, you will need to double-click the ZIP file, and then you should move
the application that’s contained within into your Applications folder and double-
click that file to open and install Atom. Once this finishes on either operating
system, you should see a welcome screen with some information just like

Figure 8-15.

https://electron.atom.io

Get to know Atom!

en a Project

th Git and GitHuk

1ll @ Package

158 3 Theme

senize the Styling

Fe bt Seript

4dd & Snippat

Eeyboard Shortcuts

Figure 8-15. Welcome to Atom

This book won’t be going through and explaining how to use Atom, with its
seemingly limitless extensibility. However, a lot can be learned by going
through the Welcome Guide you see in Figure 8-15. If you ever need to get back
to it, you can always find it in the Help menu.

Creating a Branch and Editing Files

To make a new commit using GitHub Desktop, you will want to start by creating
a new branch. Creating a branch before you edit any files and make any commits
is not only required for making a pull request, it’s also a best practice. In

Figure 8-16 you can see that to do so I need to select New Branch from the
Branch menu, and then in Figure 8-17 I’m creating the branch and naming it
updating-documentation.

@ GitHubDesktop File Edit View Repository JECLl Window Help

L | nch...

= mEw_project

Lipdate From Default Branch

Changes History
R~ R Merge Into Current Branch...
Crests gitkesp R arent Beer -0 pGOB3
I April 18, 2017 oy Brers Beer Compare on GitHub G®C
README.md Create Pull Request ¥p P10
! Update and renamse 2007.md ta d... 4 1 p ¥ neW_project @e
L April 18, 2017 kry Brecs Do +# ned_project

+
+8F Hoa D0 cOALritate
+- Fork this praject

Create 2017.md # = IT you don"t wecw how, don't panic! It's cowered im
T Apri 17, 2017 by Brent Boer ol chapter of this book,
+— Make your changes

Initial commit +- Submit & pull reguest
. Aprl 17, 2017y Brent Beer s + - It's important to have a conversation when opening ¢
61, Describe your cRange and why i1 should be accepted,

Update AEADME.md
Tl Aped 17, 2017 by Brect Base

R N

-

Figure 8-16. The menu option to create a new branch

Create a Branch

Mame

updating-documentation|

Your new branch will be based on your currently checked out
branch (master). master is the default branch for your
repository.

Create Branch

Figure 8-17. Creating a new branch

If you look at the middle drop-down menu on your screen, you should see that
you’re on the branch you just created. Now you need to add or edit some
content. To do that, you need to open Atom. GitHub Desktop makes that easy to

do right from the Repository menu, as seen in Figure 8-18.

& GitHub Desktop File Edit View RGEGE(Cw@ Branch Window Help

| N N Push ¥P
Pull {+ 3P
1 Current Repasitary 2o (SUFT Publish branch
H new_project * ¢ Remove " Bublich thiz beanch to Gitt
Changes Histary View on GitHub WG
Open in Terminal i
o angeciies Show in Finder {r38F

Open in Atom {HEA

Repository Settings...

Figure 8-18. Open your current repository directly in Atom

Let’s walk through an example together. Once Atom opens, we’re going to
update the repository’s documentation a little bit, just like was hinted at in the
branch name. Though we could make changes to the repository in the web
editor, the changes we’ll make are not possible to do in a single step. We want to
create a new file and edit README.md to point to that new file. I’d have to do
this in at least two steps in the web editor, and I might not even have a
connection to the internet when I’'m doing changes like this.

The first thing we should do is to create a new file for our contributing
guidelines. Though these are in README.md, GitHub will link to the
contributing guidelines in every pull request sent to this repository if we add
these guidelines to a file called CONTRIBUTING.md. As you can see in

Figure 8-19, the first step is to create the new file by right-clicking the project
name in the left panel (the tree view). This creates the new file at the top level of
the repository and not in any folder. When you select New File, you should see a
dialog box like the one in Figure 8-20 asking you to name the file. Name it
CONTRIBUTING.md—-be careful not to forget the file extension if you want
your content to highlight and render appropriately! If you do forget the file
extension, you can always right-click the file and select “Rename” to rename it.

Project EE README.md

B MEW_pn

UL New Folder

>
Rename

Duplicate - O

Delete - M your cha
Copy
Cut
Paste

- Submit a pull e
- It's important to have a

Add Project Folder
Remove Project Folder

Copy Full Path

Copy Project Path
Open In New Window
Search in Directory

Show in Finder

Split Up
Split Down
Split Left
Split Right
Close Pane

Figure 8-19. Right-click in the tree view to create a new file

[README.mad + Enter the path for the new file
CONTRIBUTING. md

Figure 8-20. Name the file CONTRIBUTING.md

Once the new file is created, we need to change the section “How to contribute”
in README.md to point to this new file using basic Markdown formatting,
which you can see in Figure 8-21.

[E5 README.md D CONTRIBUTING.md

Figure 8-21. Markdown link to CONTRIBUTING.md

To finish out the feature—and this is the part that can’t be done in the web
browser as easily without already having a commit—copy and paste the original
contributing steps into CONTRIBUTING.md, as seen in Figure 8-22. Once this is
there, make sure both files are saved before switching back to looking at GitHub
Desktop to make the commit.

2} CONTRIBLITING. md

Figure 8-22. Content copied into CONTRIBUTING.md

Creating a Commit

Now that the files have been edited, let’s create a commit to record in the history
that these changes have happened. The reason we want these changes to be
recorded together is because they are the same logical unit of work. There are
many preferences when making commits in the software development
community, and this is only a rule of thumb, but it can make it easier for others
to follow our work. If we switch back to the GitHub Desktop application we
should see that it has already detected our changes, like in Figure 8-23.

One important thing to notice in Figure 8-23 is that both files that have been
edited are checked in the Changes tab. If one of them were to be unselected, then
that file would not be committed. This can be useful when you are editing
multiple files at once but are not yet ready to make a commit on one of them.
Similarly, when you click on either file to view the changes in that file, you can
see the diff of the changes, just like when you view a pull request.

5 Publish branch

L FN_projact Y updsting-documamatian

Charngas w Higaany DONTRBUTING. md -
] 2 changed fils B -8,0 +1,6
+#F How to contribute
B CONTRIBUTING.md]

+= Fork this project

B README.md + = If yow don't Gnow how, don't panic! It"s covered in an afditional chapuer of this Book.

+= Make your changes

+= Submit a pull request

' It's isportast ©e hawe a coaversation when openlng a pull resuest. Describe your change and why it
sheuld be accepted.

Commit to updating-docsmentatl

Figure 8-23. GitHub Desktop has detected the changes

Just like in the workflow outlined at the beginning of Chapter 3, we need to
write a commit message to record this change. An example commit message can
be seen in Figure 8-24. Notice that just like before, you do not need to include
anything in the “description” part of the commit message, though it may be
useful for complicated changes.

H move instructions to contributing.md

| did this all in one step instead of two because it is logically the same
change.

Commit to updating-documentation

Figure 8-24. Sample commit message

Nonw that we have enme chanoec tn dieriice we need tn niich nnir chanoec 111 tn

4L YU YVY CLAGAL VY O 11Ul V O UL Mllullb\—u LA u;u»uuu, AA A A e L 2 lJUU11 L bll\—ll—lbbu utl LA
GitHub to open a pull request.
Creating a Pull Request from GitHub Desktop

There are a few ways to create a pull request, but one step is required before we
can begin. So far the work we’ve created, the files we’ve edited, and the changes
we’ve committed only exist locally on our computers. We need to send them up
to GitHub so others can work on them, but also so we can create the pull request.
Previously, we were already working in the web browser, so there was no need
to push these changes up to GitHub.

Whenever you need to send work to GitHub, or grab some work a collaborator
has sent to the repository, you can do this from the rightmost menu, which
should look similar to Figure 8-25. When you work on a branch that starts out
just on your computer first, like we’ve been doing here, that menu will appear as
it does in Figure 8-25. Afterwards, you’ll see a syncing option that will send any
changes you’ve made on your computer or receive any changes that have been
pushed up to GitHub onto that branch.

s Current Branch) If'uhl_lsh_hranch

-

'P updating-documentation ¥ Publish this branch to GitHub

Figure 8-25. The menu option for publishing your changes

Though pushing our changes is important, we have yet to start our conversation
about these changes in a pull request. This can be done from the GitHub Desktop
Branch menu, as seen in Figure 8-26. Choosing the Create Pull Request option
will open a browser window to the repository with a new pull request started. If
you wanted to, you could also have done this manually from the repository home
page in a browser window.

GitHubDesktop File Edit View Repository BEC el Window Help
L Mew Branch... 3N
Renami...
7 Cur = Fetch origin
1 naw_praject Delete... o f
Changes History Update From Default Branch

Merge Into Current Branch...

Compare on GitHub {+IC

O changed files

Figure 8-26. The menu option to start a pull request

Just like we did at the beginning of Chapter 4, we need to fill in some
information to start our pull request. I've filled in some sample information in
Figure 8-27.

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks,
U1 base:master= .. compare: updating-documentation= . Able to merge, These branches can be automatically merged
H move instructions to contributing, md Ry

Mo rewinws—requast ane
Write Preview M-Bf Hae® EZET wOR

Assigheas

I did this all in ane step instead of two because it is logically the sarme changs. Ha bne—aetign yourssl

Labels

Mane yet

Projects

Mane yet

Attach files b diry B dropping, sehecti O ting From the clipbaard,
Attach files by dragging & drepping, selecting them, or pasting from the clipboard D

B Saylirsg with Marksown is supported Create pull request Wa milestang

o= 1 pommit (=} 2 files changed [0 sommil comments 13 1 contributor

|r| Commits an Sep 04, 2017

B Brntbeer sove bnstructions to centributing.sd —

Figure 8-27. Start the pull request by starting the conversation

If this was a more serious repository with collaborators, I might go through some
proper code review and wait for some integration tests to run. However, this is
just my own sample repository, so I’'m going to merge the changes as soon as the
pull request is created.

The last part of this workflow is to ensure all of the work that has been done on
GitHub is brought down to your computer. The easiest way to do this is to
switch back to the master branch from the middle menu, which displays the
current branch, and make sure you fetch your changes. Once you’ve done this,
you’ll see a notification of how many changes there are on the server that you
need to pull in; as you can see in Figure 8-28, there are two changes. After these
changes are pulled in, the History tab should show those changes in its log.

| e

El n;w._p.ru]l.;ct.

Changes Histary Create .gitkeep

[! Craate .gitkeap P Brent Beer 0= 12768 [T changed file
April 18, 2017 by Brent Beer

build).gitkeep +H
T Update ard rename 3017.md to documentation/chaper_1.md
L 18, 2017 by Brant B

T Update README.md

Create 2017.md

Aprll 17, 3017 Iy Bront Beer

T Initial commit
1 April 17, POT7 vy Brani B

Figure 8-28. Pull changes from GitHub to ensure your master branch is up to date

At this point, you have all the tools you need available to you for continued
software development and expanding your workflows and collaboration even
further!

Chapter 9. Next Steps

We’ve covered a lot of ground in this book. We started by looking at how to
view a project and then moved through the process of forking a project, making
edits and offering them back, and then collaborating on a single repository, all
with pull requests. We looked at how to create and configure a new repository,
as well as an organization, and how to use the GitHub Desktop client to
download and work on repositories locally.

For many people, this is all you’ll need to know. The important next step is to
practice until the skills become second nature and collaborating via GitHub
becomes a natural way for you to work with teams of people on text-based files
—whether source code or other projects.

There are some things that can only or best be done on the command line. You
may never need to make the jump to the command line, but if you’re working on
projects in Git all day, every day, it makes sense to learn how to use Git from the
command line. Jon Loeliger and Matthew McCullough have created a great book
called Version Control with Git (O’Reilly), which would be an excellent next
step if you wanted to learn more about using Git from the command line.

GitHub also provides a number of resources for learning more about both Git
and GitHub. For more information, go to https://services.github.com.

GitHub is going to become an increasingly important part of the workflow of
many companies. This is a great time to get familiar with it. Best of luck with the
journey!

Brent Beer
Amsterdam
September 2017

http://shop.oreilly.com/product/0636920022862.do
https://services.github.com

Index
Symbols

@mention, Creating a Pull Request
A
animated GIFs, adding to comments, Adding Color to Comments

Atom text editor, using with GitHub Desktop, GitHub Desktop and Atom-
Creating a Pull Request from GitHub Desktop

audit log, configuring for organizations, Audit Log
B
billing (for organizations), Billing
Blocked users setting, Blocked Users
branches, Why Use Git?
» branch list in GitHub Desktop, Viewing Changes
m committing to a branch, Committing to a Branch-Committing to a Branch
» configuring, Configuring Branches
o protected branches, Protected Branches

m creating and editing files using GitHub Desktop and Atom, Creating a Branch
and Editing Files-Creating a Commit

m creating pull request from, Creating a Pull Request from a Branch-
Collaborating on Pull Requests

m defined, Key Concepts
= number of, Introducing the Repository Page

= number of changes on long-lived branches, Reviewing Pull Requests

bug fixes, Viewing Pull Requests

C

cards, adding to project boards, Creating Columns and Adding Cards
checkouts, Key Concepts

cloning, Key Concepts

m reasons for, Why Clone a Repository?

» using GitHub Desktop, GitHub Desktop

code frequency graph, The Code Frequency Graph

collaboration, Collaboration-Best Practices for Pull Requests

m adding a file, Adding a File

» adding collaborators to repositories, Adding Collaborators-Adding
Collaborators

= committing to a branch, Committing to a Branch-Committing to a Branch
m contributing via a fork, Contributing via a Fork
m creating a pull request, Creating a Pull Request-Creating a Pull Request

m creating a pull request from a branch, Creating a Pull Request from a Branch-
Collaborating on Pull Requests

m on pull requests, Collaborating on Pull Requests-Best Practices for Pull
Requests

o adding color to comments, Adding Color to Comments
o best practices, Best Practices for Pull Requests
o commenting, Commenting on Pull Requests

o contributing to pull requests, Contributing to Pull Requests

o

deciding who should merge the request, Who Should Merge a Pull
Request?

involving people, Involving People with Pull Requests
merging a pull request, Merging a Pull Request
notifications, Pull Request Notifications

reviewing pull requests, Reviewing Pull Requests

testing a pull request, Testing a Pull Request

columns, creating on project boards, Creating Columns and Adding Cards

comments

= on issues, Commenting on Issues

= on pull requests, Commenting on Pull Requests

e}

adding color to, Adding Color to Comments

commit messages, Why Use Git?, Key Concepts

» adding a new file, Adding a File

» for new file added, Adding a File

= in pull requests, Creating a Pull Request

m viewing, Viewing the Commit History

commits, Key Concepts

adding a new file, Adding a File
creating from GitHub Desktop, Creating a Commit
graph of, The Contributors Graph, The Commits Graph

number of, Introducing the Repository Page

m project commit history, viewing from a pull request, Creating a Pull Request

referencing issues in, Referencing Issues in a Commit

viewing for current branch in GitHub Desktop, Viewing Changes

» viewing from a pull request, Creating a Pull Request

m viewing history of, Viewing the Commit History-Viewing Pull Requests
community profile, The Community Profile

conflicts, ability to resolve, Why Use Git?

continuous integration and delivery, Configuring Branches

= (see also integration)

m Deploy keys option, Integrating with Other Systems

» GitHub Apps within Continuous Integration category, Integrating with Other
Systems

contract developers, creating repository for, Configuring Repositories and
Organizations

contributors, Introducing the Repository Page

m graph of, The Contributors Graph

CSS, adding for styling Pages site, Creating a Website for Your Project
D

Danger zone, Configuring a Repository
» for changes to organizations, Organization Profile
dependencies

m dependency graph, The Dependency Graph

m state of, information on, Viewing the README.md File
Deploy keys option, Integrating with Other Systems

diff (difference), Creating a Pull Request

directories (see folders)

distributed version control systems, What Is Git?
documentation

m of changes, with commit messages, Why Use Git?

m using GitHub Pages, GitHub Pages-Creating a Website for Yourself or Your
Organization

o creating a website for your project, Creating a Website for Your Project

o creating a website for yourself or your organization, Creating a Website for
Yourself or Your Organization

m wikis, Wikis-Adding and Linking to a Page on Your Wiki

downloading repositories and working offline (see cloning; GitHub Desktop)
E

editing on GitHub, limitations of, The Limits of Editing on GitHub

emoji, adding to comments, Adding Color to Comments

F

feature branches, Key Concepts

files

» adding, Adding a File, Adding a File

» adding empty file to create a folder, Creating a Folder

m editing, Editing a File-Renaming or Moving a File

m "Files changed" tab of pull request, Creating a Pull Request

® renaming or moving, Renaming or Moving a File

folders, Introducing the Repository Page

m creating, Creating a Folder

m Git's concept of, Working with Folders

» putting edited file in different folder, Renaming or Moving a File
» renaming, Renaming a Folder

forking, Key Concepts

m contributing via a fork, Contributing via a Fork

m forks list, The Forks List

G

GIFs, animated, adding to comments, Adding Color to Comments
Git

m benefits of using, Why Use Git?

m configuring in GitHub Desktop, GitHub Desktop

m defined, What Is Git?

m folders, Working with Folders

= key concepts, Key Concepts

m]earning resources, Next Steps

m using on Linux, Downloading and Working Offline

GitHub

m about, What Is GitHub?

m benefits of using, Why Use GitHub?

= key concepts, Key Concepts

m learning resources, Creating a Pull Request, Next Steps
m limits of editing on, The Limits of Editing on GitHub
GitHub API, Integrating with Other Systems

GitHub Apps, Integrating with Other Systems

= installed, and third-party access for organizations, Third-Party Access and
Installed GitHub Apps

m third-party integration installed and configured, Integrating with Other
Systems

GitHub Desktop, GitHub Desktop-Viewing Changes

» using with Atom text editor, GitHub Desktop and Atom-Creating a Pull
Request from GitHub Desktop

o creating a branch and editing files, Creating a Branch and Editing Files-
Creating a Commit

o creating a commit, Creating a Commit

o creating pull request, Creating a Pull Request from GitHub Desktop
m viewing changes, Viewing Changes-Viewing Changes
GitHub Developer Program, Organization Profile
GitHub Marketplace, Integrating with Other Systems

GitHub Pages, GitHub Pages-Creating a Website for Yourself or Your

Organization
m creating a website for your project, Creating a Website for Your Project

m creating a website for yourself or your organization, Creating a Website for
Yourself or Your Organization

H

history

m full history of a project with Git, What Is Git?

= multiple streams of, Why Use Git?

I

ignored files in GitHub Desktop, Viewing Changes
Insights feature

m viewing, Viewing Insights-The Traffic Graph

o

code frequency graph, The Code Frequency Graph
o commits graph, The Commits Graph

o community profile, The Community Profile

o contributors graph, The Contributors Graph

o dependency graph, The Dependency Graph

o forks list, The Forks List

o network graph, The Network Graph

o pulse page, Viewing the Pulse

o traffic graph, The Traffic Graph

integration, Integrating with Other Systems-Personal Versus Organizational

» Deploy keys option, Integrating with Other Systems

m using GitHub API, Integrating with Other Systems

m using GitHub Apps and GitHub Marketplace, Integrating with Other Systems
m using webhooks, Integrating with Other Systems

interaction limits, temporary, Configuring a Repository

Issues feature, Key Concepts, GitHub Issues-Best Practices for Issues

m auto-closing of issues, Configuring Branches

best practices for issues, Best Practices for Issues

= commenting on issues, Commenting on Issues

m configuring, Configuring a Repository

m creating an issue, Creating a New Issue

» managing labels for issues, Managing Labels for Issues

» managing milestones for issues, Managing Milestones for Issues

» referencing issues in a commit, Referencing Issues in a Commit

m viewing, Viewing Issues-Viewing Projects

J

Jekyll project, Creating a Website for Yourself or Your Organization
L

labels, managing for issues, Managing Labels for Issues-Commenting on Issues
M

maintainers

» @mention for pull requests, Creating a Pull Request

allowing edits from, Creating a Pull Request

Markdown, Getting Started with a Wiki

master branch, Why Use Git?

as default branch, Configuring Branches
commits to, Committing to a Branch
defined, Key Concepts

keeping up to date on GitHub Desktop, Creating a Pull Request from GitHub
Desktop

Mastering Markdown guide, Adding and Linking to a Page on Your Wiki

member privileges for organizations, Member Privileges

members and teams, managing for organizations, Managing Members and

Teams-Managing Members and Teams

adding a new team, Managing Members and Teams

adding members to teams, Managing Members and Teams

adding new member to existing teams, Managing Members and Teams
adding repositories to a team, Managing Members and Teams

creating teams, Managing Members and Teams

editing team permissions for a repository, Managing Members and Teams

editing team's name, description, visibility, parent team or deleting a team,
Managing Members and Teams

inviting members, Managing Members and Teams
removing a member from a team, Managing Members and Teams

removing a member from an organization, Managing Members and Teams

merges, Key Concepts
= Merge button options, configuring, Configuring a Repository
» merging a pull request, Creating a Pull Request, Merging a Pull Request

o deciding who should merge the request, Who Should Merge a Pull
Request?

m reverting merge commit for a pull request, Creating a Pull Request
milestones, managing for issues, Managing Milestones for Issues
N

network graph, The Network Graph

new features requests, Viewing Pull Requests

notifications

» on pull requests, Pull Request Notifications

» sending via webhooks, Integrating with Other Systems

0]

open source projects

» forking the repository, Key Concepts

= number of open pull requests on, Reviewing Pull Requests
organizations

m configuring in GitHub, Configuring Your Organization-Managing Members
and Teams

o audit log, Audit Log

o billing, Billing

o blocked users, Blocked Users

o member privileges, Member Privileges

o organization profile, Organization Profile
o projects, Projects

o repository topics, Repository Topics

o third-party access and installed GitHub Apps, Third-Party Access and
Installed GitHub Apps

o webhooks, Webhooks

m creating a project website for, Creating a Website for Yourself or Your
Organization

m creating in GitHub, Creating an Organization-Creating an Organization

» managing members and teams, Managing Members and Teams-Managing
Members and Teams

m personal vs. organizational repositories, Personal Versus Organizational
owners

m of organizations, Managing Members and Teams

» transferring ownership of projects, Configuring a Repository

P

package registries, Viewing the README.md File

pages (see GitHub Pages)

personal vs. organizational repositories, Personal Versus Organizational
private vs. public repositories, Creating a Repository, Configuring a Repository

» allowing organization members to change, Member Privileges

profiles (organization), Organization Profile

project management, Project Management-Best Practices for Issues

Issues feature, GitHub Issues-Best Practices for Issues

o best practices for issues, Best Practices for Issues

o commenting on issues, Commenting on Issues

o creating a new issue, Creating a New Issue

o managing labels for issues, Managing Labels for Issues

o managing milestones for issues, Managing Milestones for Issues

o referencing issues in a commit, Referencing Issues in a Commit

projects, GitHub Projects-Closing, Editing, or Deleting Project Boards

adding a file, Adding a File

closing, editing, or deleting project boards, Closing, Editing, or Deleting
Project Boards

commit history, Creating a Pull Request
creating a project board, Creating a Project Board
creating a website for, Creating a Website for Your Project

creating columns and adding cards, Creating Columns and Adding Cards-
Closing, Editing, or Deleting Project Boards

number of open pull requests on, Reviewing Pull Requests

organization-wide, enabling, Projects

= viewing project page, Viewing Projects-Viewing Insights

protected branches, Protected Branches

pull requests, Key Concepts

collaborating on, Collaborating on Pull Requests-Best Practices for Pull
Requests

o adding color to comments, Adding Color to Comments

o best practices, Best Practices for Pull Requests

o commenting, Commenting on Pull Requests

o contributing to pull requests, Contributing to Pull Requests

o deciding who should merge the request, Who Should Merge a Pull
Request?

o involving people, Involving People with Pull Requests
o merging a pull request, Merging a Pull Request

o notifications, Pull Request Notifications

o reviewing pull requests, Reviewing Pull Requests

o testing a pull request, Testing a Pull Request

creating, Creating a Pull Request-Creating a Pull Request

creating from a branch, Creating a Pull Request from a Branch-Collaborating
on Pull Requests

creating from GitHub Desktop, Creating a Pull Request from GitHub Desktop
default branch for sending to, Configuring Branches

viewing, Viewing Pull Requests-Viewing Pull Requests

pulse page, Viewing the Pulse

R

README.md file, Viewing the README.md File

editing, Editing a File-Renaming or Moving a File

initializing the repository with, Creating a Repository

release branches, Key Concepts

releases, Introducing the Repository Page

renaming files, Renaming or Moving a File

repositories, What Is GitHub?

adding collaborators, Adding Collaborators-Adding Collaborators
adding to organizational teams, Managing Members and Teams
blocked users for organizational repos, Blocked Users

cloning, Downloading and Working Offline

o reasons for, Why Clone a Repository?

configuring, Configuring Repositories and Organizations-Adding
Collaborators

o Danger zone, Configuring a Repository

o Merge button, Configuring a Repository

o temporary interaction limits, Configuring a Repository
configuring branches, Configuring Branches

creating, Creating a Repository-Adding a File

creating a website for, Creating a Website for Your Project

creating GitHub Pages repo for an organization, Creating a Website for
Yourself or Your Organization

editing team permissions for organization repositories, Managing Members

and Teams
m for organizations
o creation, deletion, and visibility control permissions, Member Privileges
o default permissions, Member Privileges
o projects spanning multiple repositories, Projects
o topics, Repository Topics
» forking, Contributing via a Fork

» integrating with other systems, Integrating with Other Systems-Personal
Versus Organizational

= introduction to, Bootstrap repository, Introducing the Repository Page

personal vs. organizational, Personal Versus Organizational

S

security, configuring for organizations, Security

subscriptions to pull requests, Pull Request Notifications

T

tags, Key Concepts

teams

» adding a new team to an organization, Managing Members and Teams
» adding members to, Managing Members and Teams

» adding new member to existing teams, Managing Members and Teams
» adding repositories to, Managing Members and Teams

m creating for organizations, Managing Members and Teams

m editing name, description, visibility, parent team, or deleting a team,
Managing Members and Teams

m editing team permissions for a repository, Managing Members and Teams
m key benefits of Git for, Why Use Git?

» removing members from, Managing Members and Teams

m Teams page, Managing Members and Teams

templates (for pull requests or issues), Creating a Pull Request

temporary interaction limits, Configuring a Repository

testing

= information on, in README file, Viewing the README.md File

m of pull requests, Testing a Pull Request

third-party access options for organizations, Third-Party Access and Installed
GitHub Apps

topic branches, Key Concepts

m (see also feature branches)

m repository topics for organizations, Repository Topics

traffic graph, The Traffic Graph

\Y

version control systems, What Is Git?

viewing projects, Viewing-The Traffic Graph

m commit history, Viewing the Commit History-Viewing Pull Requests

m Insights feature, Viewing Insights-The Traffic Graph

e}

e}

code frequency graph, The Code Frequency Graph
commits graph, The Commits Graph

community profile, The Community Profile
contributors graph, The Contributors Graph
dependency graph, The Dependency Graph

forks list, The Forks List

network graph, The Network Graph

pulse, Viewing the Pulse

traffic graph, The Traffic Graph

m issues, Viewing Issues-Viewing Projects

= project page, Viewing Projects-Viewing Insights

m pull requests, Viewing Pull Requests-Viewing Pull Requests

» README.md file, Viewing the README.md File

m repository page, Introducing the Repository Page

W

Webhooks option, Integrating with Other Systems

= for organizations, Webhooks

websites, creating (see GitHub Pages)

wikis, Key Concepts, Wikis-Adding and Linking to a Page on Your Wiki

» adding and linking to a page on, Adding and Linking to a Page on Your Wiki

» configuring, Configuring a Repository

m getting started with, Getting Started with a Wiki-Getting Started with a Wiki

o creating a page, Getting Started with a Wiki
o default wiki page, Getting Started with a Wiki

o enabling wikis, Getting Started with a Wiki

About the Author

Brent Beer has used Git and GitHub for over five years through university
classes, contributions to open source projects, and professionally as a web
developer. He previously worked on the GitHub Training Team, where he taught
the world to use Git and GitHub to their full potential, and now works as a
solutions engineer for GitHub to help bring Git and GitHub to developers inside
their companies across the world.

Colophon

The animal on the cover of Introducing GitHub is a bare-tailed woolly opossum
(Caluromys philander), an arboreal species of marsupial also known as the
white-eared opossum. This species is restricted to moist forests, and can be
found in Brazil, Bolivia, French Guiana, Guyana, Suriname, Trinidad and
Tobago, and Venezuela. With its prehensile tail—which allows it to climb,
balance, and grasp objects—the white-eared opossum is rarely, if ever, found on
the ground and seldom found in the understory.

Ranging in weight from 140 to 390 grams, the female bare-tailed woolly
opossum is typically smaller than males. It generally has soft and thick fur,
which differs depending on the animal’s habitat and location. It has a reddish-
brown back with gray gradations along its flanks and a yellow-orange belly. It
has a gray head with distinct dark brown stripes that run down the bridge of its
muzzle and out from the dark brown eye rings to the nose. About a quarter of its
tail has fur; the rest is furless and cream to dark gray or brown in color with
brown or white spots.

The mating ritual of the bare-tailed woolly opossum is a bit of a mystery.
Generally, individuals are solitary except when males court females. White-
eared opossums have up to three litters per year, depending on resource
availability. Females can have up to seven young at one time, averaging around
four young per litter in the wild; this, too, depends on resource availability. Bare-
tailed woolly opossums have short gestation periods (24 days) and extended
periods of parental care (up to 120 days of pouch time and 3045 days in the
mother’s nest). Leaving the mother’s nest is an important behavior, as
demonstrated in captivity when young who have not been removed cannibalize
their mother.

The bare-tailed woolly opossum is not listed as a species of concern, which is
credited to its small size and adaptability to various types of neotropical forest.
This could change as deforestation of neotropical regions continues.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW

http://animals.oreilly.com

Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	Preface
	Who This Book Is For
	Beyond Software
	Who This Book Is Not For
	How to Use This Book
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	1. Introduction
	What Is Git?
	What Is GitHub?
	Why Use Git?
	Why Use GitHub?
	Key Concepts

	2. Viewing
	Introducing the Repository Page
	Viewing the README.md File
	Viewing the Commit History
	Viewing Pull Requests
	Viewing Issues
	Viewing Projects
	Viewing Insights
	Viewing the Pulse
	The Contributors Graph
	The Community Profile
	The Commits Graph
	The Code Frequency Graph
	The Dependency Graph
	The Network Graph
	The Forks List
	The Traffic Graph

	3. Creating and Editing
	Creating a Repository
	Adding a File
	Editing a File
	Renaming or Moving a File
	Working with Folders
	Creating a Folder
	Renaming a Folder

	The Limits of Editing on GitHub

	4. Collaboration
	Contributing via a Fork
	Adding a File
	Creating a Pull Request
	Committing to a Branch
	Creating a Pull Request from a Branch
	Collaborating on Pull Requests
	Involving People with Pull Requests
	Reviewing Pull Requests
	Commenting on Pull Requests
	Adding Color to Comments
	Contributing to Pull Requests
	Testing a Pull Request
	Merging a Pull Request
	Who Should Merge a Pull Request?
	Pull Request Notifications
	Best Practices for Pull Requests

	5. Project Management
	GitHub Issues
	Creating a New Issue
	Managing Milestones for Issues
	Managing Labels for Issues
	Commenting on Issues
	Referencing Issues in a Commit
	Best Practices for Issues

	GitHub Projects
	Creating a Project Board
	Creating Columns and Adding Cards
	Closing, Editing, or Deleting Project Boards

	6. Publishing Content
	Wikis
	Getting Started with a Wiki
	Adding and Linking to a Page on Your Wiki

	GitHub Pages
	Creating a Website for Your Project
	Creating a Website for Yourself or Your Organization

	7. Configuring Repositories and Organizations
	Configuring a Repository
	Adding Collaborators
	Configuring Branches
	Protected Branches

	Integrating with Other Systems
	Personal Versus Organizational
	Creating an Organization
	Configuring Your Organization
	Organization Profile
	Member Privileges
	Billing
	Security
	Audit Log
	Blocked Users
	Webhooks
	Third-Party Access and Installed GitHub Apps
	Repository Topics
	Projects

	Managing Members and Teams

	8. Downloading and Working Offline
	Why Clone a Repository?
	GitHub Desktop
	Viewing Changes

	GitHub Desktop and Atom
	Creating a Branch and Editing Files
	Creating a Commit
	Creating a Pull Request from GitHub Desktop

	9. Next Steps
	Index

