Activate Your Web Pages

@‘;’ i _F\
[

JavaScript

The Definitive Guide

O’REILLY" David Flanagan

9

Web Programming/JavaScript

JavaScript: The Definitive Guide

This book is a programmer’s
guide and comprehensive
reference to the core JavaScript
language and to the client-side
JavaScript APIs defined by web
browsers.

The sixth edition covers HTML5
and ECMAScript 5. Many chapters
have been completely rewritten
to bring them in line with today’s
best web development practices.
New chapters in this edition
document jQuery and server-
side JavaScript.

Recommended for experienced
programmers who want to learn
the programming language of the
Web, and for current JavaScript
programmers who want to
master it.

David Flanagan is also the author
of The Ruby Programming
Language, Java in a Nutshell, and
JavaScript Pocket Reference.

Previous programming experience is
recommended.

The Essential JavaScript Reference

Since 1996, JavaScript: The Definitive Guide has been the
bible for JavaScript programmers. With more than 500,000
copies in print, web developers are still raving about it:

“ Amust-have reference for expert JavaScript
programmers...well-organized and detailed.”

—Brendan Eich
creator of JavaScript, CT0 of Mozilla

“Imade a career of what | learned from JavaScript:
The Definitive Guide.”

—Andrew Hedges
Tapulous

“The Definitive Guide taught me JavaScript.”

—Tom Robinson
cofounder of 280 North, cocreator of Cappuccino

“Iknow which parts of JavaScript matter, based on how
crinkled the spine of my copy of The Definitive Guide is
in that section.”

—J. Chris Anderson
cofounder of CouchBase, Apache CouchDB committer,
and author of CouchDB: The Definitive Guide

“...an indispensable reference for all JavaScript
developers. If there’s something | need to know about
JavaScript, | trust The Definitive Guide will have the
right answer for me. It's that good.”
—ReyBango
Microsoft Client-Web Community Program Manager and jQuery Team member

US $49.99 CAN $57.99
ISBN: 978-0-596-80552-4

54999
AU DORI

780596"80552

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

JavaScript: The Definitive Guide

SIXTH EDITION

JavaScript: The Definitive Guide

David Flanagan

O’REILLY*

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

JavaScript: The Definitive Guide, Sixth Edition
by David Flanagan

Copyright © 2011 David Flanagan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Ellen Troutman Zaig
Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Proofreader: Teresa Elsey Interior Designer: David Futato

lllustrator: Robert Romano

Printing History:
August 1996: Beta Edition.
January 1997: Second Edition.
June 1998: Third Edition.
January 2002: Fourth Edition.
August 2006: Fifth Edition.
March 2011: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. JavaScript: The Definitive Guide, the image of a Javan rhinoceros, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80552-4
[LSI]
1302719886

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

This book is dedicated to all who teach peace
and resist violence.

Table of Contents

Preface ..ot xiii
1. Introduction to JavaScriptcovviiiiniii it i 1
1.1 Core JavaScript 4

1.2 Client-Side JavaScript 8

Partl. CoreJavaScript

2. LeXical STrUCTUN® ..vvtiiiie ittt ittt i i 21
2.1 Character Set 21

2.2 Comments 23

2.3 Literals 23

2.4 Identifiers and Reserved Words 23

2.5 Optional Semicolons 25

3. Types,Values,and Variablescccoiiriiiiiiiiiiiiiiirnninnnnnns 29
3.1 Numbers 31

3.2 Text 36

3.3 Boolean Values 40

3.4 null and undefined 41

3.5 The Global Object 42

3.6 Wrapper Objects 43

3.7 Immutable Primitive Values and Mutable Object References 44

3.8 Type Conversions 45

3.9 Variable Declaration 52

3.10 Variable Scope 53

4, Expressionsand Operatorsceeveeeneeneeneeneeneenernernarnnnes 57
4.1 Primary Expressions 57

4.2 Object and Array Initializers 58

4.3 Function Definition Expressions 59

vii

4.4 Property Access Expressions 60

4.5 Invocation Expressions 61
4.6 Object Creation Expressions 61
4.7 Operator Overview 62
4.8 Arithmetic Expressions 66
4.9 Relational Expressions 71
4.10 Logical Expressions 75
4.11 Assignment Expressions 77
4.12 Evaluation Expressions 79
4.13 Miscellaneous Operators 82
5. Statementsoiiiiiiiiiii 87
5.1 Expression Statements 88
5.2 Compound and Empty Statements 88
5.3 Declaration Statements 89
5.4 Conditionals 92
5.5 Loops 97
5.6 Jumps 102
5.7 Miscellaneous Statements 108
5.8 Summary of JavaScript Statements 112
1) - PP 115
6.1 Creating Objects 116
6.2 Querying and Setting Properties 120
6.3 Deleting Properties 124
6.4 Testing Properties 125
6.5 Enumerating Properties 126
6.6 Property Getters and Setters 128
6.7 Property Attributes 131
6.8 Object Attributes 135
6.9 Serializing Objects 138
6.10 Object Methods 138
R - 7 TP 141
7.1 Creating Arrays 141
7.2 Reading and Writing Array Elements 142
7.3 Sparse Arrays 144
7.4 Array Length 144
7.5 Adding and Deleting Array Elements 145
7.6 lIterating Arrays 146
7.7 Multidimensional Arrays 148
7.8 Array Methods 148
7.9 ECMAScript 5 Array Methods 153
7.10 Array Type 157

viii | Table of Contents

7.11 Array-Like Objects 158

7.12 Strings As Arrays 160

8. FUNCHioNS .. .oooet 163
8.1 Defining Functions 164

8.2 Invoking Functions 166

8.3 Function Arguments and Parameters 171

8.4 Functions As Values 176

8.5 Functions As Namespaces 178

8.6 Closures 180

8.7 Function Properties, Methods, and Constructor 186

8.8 Functional Programming 191

9. CassesandModulesccooviiiiiiiiiiiiiiiiiiiii 199
9.1 Classes and Prototypes 200

9.2 Classes and Constructors 201

9.3 Java-Style Classes in JavaScript 205

9.4 Augmenting Classes 208

9.5 Classes and Types 209

9.6 Object-Oriented Techniques in JavaScript 215

9.7 Subclasses 228

9.8 Classes in ECMAScript 5 238

9.9 Modules 246

10. Pattern Matching with Regular Expressionsccoviiiiiiinann, 251
10.1 Defining Regular Expressions 251

10.2 String Methods for Pattern Matching 259

10.3 The RegExp Object 261

11. JavaScript Subsetsand Extensionsccoiiiiiiiiiiiiiiiiiiinn., 265
11.1 JavaScript Subsets 266

11.2 Constants and Scoped Variables 269

11.3 Destructuring Assignment 271

11.4 Tteration 274

11.5 Shorthand Functions 282

11.6 Multiple Catch Clauses 283

11.7 E4X: ECMAScript for XML 283

12, Server-SideJavaScriptoviiriiiiiiii it it i 289
12.1 Scripting Java with Rhino 289

12.2 Asynchronous I/O with Node 296

Table of Contents | ix

Partll. Client-Side JavaScript

13. JavaScriptin Web Browserscccvviiiiiiiiiiiiiiiiiiiinineenennn, 307
13.1 Client-Side JavaScript 307

13.2 Embedding JavaScript in HTML 311

13.3 Execution of JavaScript Programs 317

13.4 Compatibility and Interoperability 325

13.5 Accessibility 332

13.6 Security 332

13.7 Client-Side Frameworks 338

14. TheWindow Objectcvivniriiiiiiii it it ci e ieaees EZY|
14.1 Timers 341

14.2 Browser Location and Navigation 343

14.3 Browsing History 345

14.4 Browser and Screen Information 346

14.5 Dialog Boxes 348

14.6 Error Handling 351

14.7 Document Elements As Window Properties 351

14.8 Multiple Windows and Frames 353

15, Scripting DOCUMENtSoveniri it ii i ii i ieeeeiareeaneennnns 361
15.1 Overview of the DOM 361

15.2 Selecting Document Elements 364

15.3 Document Structure and Traversal 371

15.4 Attributes 375

15.5 Element Content 378

15.6 Creating, Inserting, and Deleting Nodes 382

15.7 Example: Generating a Table of Contents 387

15.8 Document and Element Geometry and Scrolling 389

15.9 HTML Forms 396

15.10 Other Document Features 405

16, SCrPting (SS v uiiri ittt ittt ittt it ti ittt 413
16.1 Overview of CSS 414

16.2 Important CSS Properties 419

16.3 Scripting Inline Styles 431

16.4 Querying Computed Styles 435

16.5 Scripting CSS Classes 437

16.6 Scripting Stylesheets 440

17. Handling Eventsccuiiiiniiiiniiiiiiiiiiiienenareeneneennnns 445
17.1 Types of Events 447

X | Table of Contents

18.

19.

20.

21.

22,

17.2 Registering Event Handlers
17.3 Event Handler Invocation
17.4 Document Load Events
17.5 Mouse Events

17.6 Mousewheel Events

17.7 Drag and Drop Events

17.8 Text Events

17.9 Keyboard Events

Scripted HTTP oo

18.1 Using XMLHttpRequest
18.2 HTTP by <script>: JSONP
18.3 Comet with Server-Sent Events

ThejQueryLibrarycoovvviiiiiiiiiiiiiininnnns

19.1 jQuery Basics
19.2 jQuery Getters and Setters
19.3 Altering Document Structure
19.4 Handling Events with jQuery
19.5 Animated Effects
19.6 Ajax with jQuery
19.7 Utility Functions
19.8 jQuery Selectors and Selection Methods
19.9 Extending jQuery with Plug-ins
19.10 The jQuery UI Library

Client-Side Storagecovvvviiiiniininnenennn.

20.1 localStorage and sessionStorage

20.2 Cookies

20.3 IE userData Persistence

20.4 Application Storage and Offline Webapps

Scripted Media and Graphicscoonlel

21.1 Scripting Images

21.2 Scripting Audio and Video
21.3 SVG: Scalable Vector Graphics
21.4 Graphics in a <canvas>

HTMLSAPIS oo

22.1 Geolocation

22.2 History Management
22.3 Cross-Origin Messaging
22.4 Web Workers

456
460
465
467
471
474
481
484

................. 491

494
513
515

................. 523

524
531
537
540
551
558
571
574
582
585

.................. 587

589
593
599
601

.................. 613

613
615
622
630

................. 667

668
671
676
680

Table of Contents | xi

22.5 Typed Arrays and ArrayBuffers 687

22.6 Blobs 691
22.7 The Filesystem API 700
22.8 Client-Side Databases 705
22.9 Web Sockets 712

Partlll. Core JavaScript Reference

Core JavaScript Referencecovviniiiiiiiiiiiiiiiii it 719

PartIV. (Client-Side JavaScript Reference

xii | Table of Contents

Preface

This book covers the JavaScript language and the JavaScript APIs implemented by web
browsers. I wrote it for readers with at least some prior programming experience who
want to learn JavaScript and also for programmers who already use JavaScript but want
to take their understanding to a new level and really master the language and the web
platform. My goal with this book is to document the JavaScript language and platform
comprehensively and definitively. As a result, this is a large and detailed book. My hope,
however, is that it will reward careful study, and that the time you spend reading it will
be easily recouped in the form of higher programming productivity.

This book is divided into four parts. Part T covers the JavaScript language itself.
Part II covers client-side JavaScript: the JavaScript APIs defined by HTMLS and related
standards and implemented by web browsers. Part III is the reference section for the
core language, and Part IV is the reference for client-side JavaScript. Chapter 1 includes
an outline of the chapters in Parts I and II (see §1.1).

This sixth edition of the book covers both ECMAScript 5 (the latest version of the core
language) and HTMLS5 (the latest version of the web platform). You’ll find
ECMAScript 5 material throughout Part I. The new material on HTMLS5 is mostly in
the chapters at the end of Part II, but there is also some in other chapters as well.
Completely new chapters in this edition include Chapter 11, JavaScript Subsets and
Extensions; Chapter 12, Server-Side JavaScript; Chapter 19, The jQuery Library; and
Chapter 22, HTMLS5 APIs.

Readers of previous editions may notice that I have completely rewritten many of the
chapters in this book for the sixth edition. The core of Part [—the chapters covering
objects, arrays, functions, and classes—is all new and brings the book in line with
current programming styles and best practices. Similarly, key chapters of Part II, such
as those covering documents and events, have been completely rewritten to bring them
up-to-date.

Xiii

A Note About Piracy

If you are reading a digital version of this book that you (or your employer) did not pay
for (or borrow from someone who did) then you probably have an illegally pirated copy.
Writing the sixth edition of this book was a full-time job, and it took more than a year.
The only way I get paid for that time is when readers actually buy the book. And the
only way I can afford to work on a seventh edition is if I get paid for the sixth.

I do not condone piracy, but if you have a pirated copy, go ahead and read a couple of
chapters. 1 think that you’ll find that this is a valuable source of information about
JavaScript, better organized and of higher quality than what you can find freely (and
legally) available on the Web. If you agree that this is a valuable source of information,
then please pay for that value by purchasing a legal copy (either digital or print) of the
book. On the other hand, if you find that this book is no more valuable than the free
information on the web, then please discard your pirated copy and use those free
information sources.

Conventions Used in This Book

I use the following typographical conventions in this book:

Italic
Is used for emphasis and to indicate the first use of a term. Italic is also used for
email addresses, URLs and file names.

Constant width
Is used in all JavaScript code and CSS and HTML listings, and generally for any-
thing that you would type literally when programming.

Constant width italic
Is used for the names of function parameters, and generally as a placeholder to
indicate an item that should be replaced with an actual value in your program.

Example Code

The examples in this book are available online. You can find them linked from the
book’s catalog page at the publisher’s website:

http://oreilly.com/catalog/9780596805531/

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact O’Reilly
for permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

xiv | Preface

http://oreilly.com/catalog/9780596805531/

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

If you use the code from this book, I appreciate, but do not require, attribution. An
attribution usually includes the title, author, publisher, and ISBN. For example: “Java-
Script: The Definitive Guide, by David Flanagan (O’Reilly). Copyright 2011 David Fla-
nagan, 978-0-596-80552-4.”

For more details on the O’Reilly code reuse policy, see http://oreilly.com/publ/a/oreilly/
ask_tim/2001/codepolicy.html. If you feel your use of the examples falls outside of the
permission given above, feel free to contact O’Reilly at permissions@oreilly.com.

Errata and How to Contact Us

The publisher maintains a public list of errors found in this book. You can view the
list, and submit the errors you find, by visiting the book’s web page:

http://oreilly.com/catalog/9780596805531
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://lwww.oreilly.com
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people have helped me with the creation of this book. I’d like to thank my editor,
Mike Loukides, for trying to keep me on schedule and for his insightful comments.
Thanks also to my technical reviewers: Zachary Kessin, who reviewed many of the
chapters in Part I, and Raffaele Cecco, who reviewed Chapter 19 and the <canvas>
material in Chapter 21. The production team at O’Reilly has done their usual fine job:
Dan Fauxsmith managed the production process, Teresa Elsey was the production
editor, Rob Romano drew the figures, and Ellen Troutman Zaig created the index.

In this era of effortless electronic communication, it is impossible to keep track of all
those who influence and inform us. I’d like to thank everyone who has answered my
questions on the es5, w3c, and whatwg mailing lists, and everyone who has shared their
insightful ideas about JavaScript programming online. I'm sorry I can’t list you all by

Preface | xv

http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html
http://oreilly.com/pub/a/oreilly/ask_tim/2001/codepolicy.html
mailto:permissions@oreilly.com
http://oreilly.com/catalog/9780596805531
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

name, but it is a pleasure to work within such a vibrant community of JavaScript
programmers.

Editors, reviewers, and contributors to previous editions of this book have included:
Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis, Brendan FEich, Christian
Heilmann, Dan Shafer, Dave C. Mitchell, Deb Cameron, Douglas Crockford, Dr.
Tankred Hirschmann, Dylan Schiemann, Frank Willison, Geoff Stearns, Herman Ven-
ter, Jay Hodges, Jeff Yates, Joseph Kesselman, Ken Cooper, Larry Sullivan, Lynn Roll-
ins, Neil Berkman, Nick Thompson, Norris Boyd, Paula Ferguson, Peter-Paul Koch,
Philippe Le Hegaret, Richard Yaker, Sanders Kleinfeld, Scott Furman, Scott Issacs,
Shon Katzenberger, Terry Allen, Todd Ditchendorf, Vidur Apparao, and Waldemar
Horwat.

This edition of the book is substantially rewritten and kept me away from my family
for many late nights. My love to them and my thanks for putting up with my absences.

— David Flanagan (davidflanagan.com), March 2011

xvi | Preface

http://davidflanagan.com/

CHAPTER1
Introduction to JavaScript

JavaScript is the programming language of the Web. The overwhelming majority of
modern websites use JavaScript, and all modern web browsers—on desktops, game
consoles, tablets, and smart phones—include JavaScript interpreters, making Java-
Script the most ubiquitous programming language in history. JavaScript is part of the
triad of technologies that all Web developers must learn: HTML to specify the content
of web pages, CSS to specify the presentation of web pages, and JavaScript to specify
the behavior of web pages. This book will help you master the language.

If you are already familiar with other programming languages, it may help you to know
that JavaScript is a high-level, dynamic, untyped interpreted programming language
that is well-suited to object-oriented and functional programming styles. JavaScript
derives its syntax from Java, its first-class functions from Scheme, and its prototype-
based inheritance from Self. But you do not need to know any of those languages, or
be familiar with those terms, to use this book and learn JavaScript.

The name “JavaScript” is actually somewhat misleading. Except for a superficial syn-
tactic resemblance, JavaScript is completely different from the Java programming lan-
guage. And JavaScript has long since outgrown its scripting-language roots to become
arobust and efficient general-purpose language. The latest version of the language (see
the sidebar) defines new features for serious large-scale software development.

JavaScript: Names and Versions

JavaScript was created at Netscape in the early days of the Web, and technically, “Java-
Script” is a trademark licensed from Sun Microsystems (now Oracle) used to describe
Netscape’s (now Mozilla’s) implementation of the language. Netscape submitted the
language for standardization to ECMA—the European Computer Manufacturer’s As-
sociation—and because of trademark issues, the standardized version of the language
was stuck with the awkward name “ECMAScript.” For the same trademark reasons,
Microsoft’s version of the language is formally known as “JScript.” In practice, just
about everyone calls the language JavaScript. This book uses the name “ECMAScript”
only to refer to the language standard.

For the last decade, all web browsers have implemented version 3 of the ECMAScript
standard and there has really been no need to think about version numbers: the lan-
guage standard was stable and browser implementations of the language were, for the
most part, interoperable. Recently, an important new version of the language has been
defined as ECMAScript version 5 and, at the time of this writing, browsers are beginning
to implement it. This book covers all the new features of ECMAScript 5 as well as all
the long-standing features of ECMAScript 3. You’ll sometimes see these language ver-
sions abbreviated as ES3 and ES5, just as you’ll sometimes see the name JavaScript
abbreviated as JS.

When we’re speaking of the language itself, the only version numbers that are relevant
are ECMAScript versions 3 or 5. (Version 4 of ECMAScript was under development
for years, but proved to be too ambitious and was never released.) Sometimes, however,
you’ll also see a JavaScript version number, such as JavaScript 1.5 or JavaScript 1.8.
These are Mozilla’s version numbers: version 1.5 is basically ECMAScript 3, and later
versions include nonstandard language extensions (see Chapter 11). Finally, there are
also version numbers attached to particular JavaScript interpreters or “engines.” Goo-
gle calls its JavaScript interpreter V8, for example, and at the time of this writing the
current version of the V8 engine is 3.0.

To be useful, every language must have a platform or standard library or API of func-
tions for performing things like basic input and output. The core JavaScript language
defines a minimal API for working with text, arrays, dates, and regular expressions but
does not include any input or output functionality. Input and output (as well as more
sophisticated features, such as networking, storage, and graphics) are the responsibility
of the “host environment” within which JavaScript is embedded. Usually that host
environment is a web browser (though we’ll see two uses of JavaScript without a web
browser in Chapter 12). Part I of this book covers the language itself and its minimal
built-in APL. Part II explains how JavaScript is used in web browsers and covers the
sprawling browser-based APIs loosely known as “client-side JavaScript.”

Part 11 is the reference section for the core APIL. You can read about the JavaScript array
manipulation API by looking up “Array” in this part of the book, for example.
Part IV is the reference section for client-side JavaScript. You might look up “Canvas”

2 | Chapter1: Introduction to JavaScript

in this part of the book to read about the graphics API defined by the HTMLS5
<canvas> element, for example.

This book covers low-level fundamentals first, and then builds on those to more
advanced and higher-level abstractions. The chapters are intended to be read more or
less in order. But learning a new programming language is never a linear process, and
describing a language is not linear either: each language feature is related to other fea-
tures and this book is full of cross-references—sometimes backward and sometimes
forward to material you have notyet read. This chapter makes a quick first pass through
the core language and the client-side API, introducing key features that will make it
easier to understand the in-depth treatment in the chapters that follow.

Exploring JavaScript

When learning a new programming language, it’s important to try the examples in the
book, and then modify them and try them again to test your understanding of the
language. To do that, you need a JavaScript interpreter. Fortunately, every web browser
includes a JavaScript interpreter, and if you’re reading this book, you probably already
have more than one web browser installed on your computer.

We'll see later on in this chapter that you can embed JavaScript code within <script>
tags in HTML files, and when the browser loads the file, it will execute the code. For-
tunately, however, you don’t have to do that every time you want to try out simple
snippets of JavaScript code. Spurred on by the powerful and innovative Firebug exten-
sion for Firefox (pictured in Figure 1-1 and available for download from http://getfirebug
.com/), today’s web browsers all include web developer tools that are indispensable for
debugging, experimenting, and learning. You can usually find these tools in the Tools
menu of the browser under names like “Developer Tools” or “Web Console.”
(Firefox 4 includes a built-in “Web Console,” but at the time of this writing, the Firebug
extension is better.) Often, you can call up a console with a keystroke like F12 or Ctrl-
Shift-J. These console tools often appear as panes at the top or bottom of the browser
window, but some allow you to open them as separate windows (as pictured in Fig-
ure 1-1), which is often quite convenient.

A typical “developer tools” pane or window includes multiple tabs that allow you to
inspect things like HTML document structure, CSS styles, network requests, and so
on. One of the tabs is a “JavaScript console” that allows you to type in lines of JavaScript
code and try them out. This is a particularly easy way to play around with JavaScript,
and I recommend that you use it as you read this book.

There is a simple console API that is portably implemented by modern browsers. You
can use the function console.log() to display text on the console. This is often sur-
prisingly helpful while debugging, and some of the examples in this book (even in the
core language section) use console.log() to perform simple output. A similar but more
intrusive way to display output or debugging messages is by passing a string of text to
the alert() function, which displays it in a modal dialog box.

Introduction to JavaScript | 3

http://getfirebug.com/
http://getfirebug.com/

Eirebug =

HEE

<

& ~| console~ | HTML css Script DOM

2 Clear Persist Profile

=== var x = "hello world":

=22
"hello world"
=== var book = { topic:

=== book.topic

"JavaScript", fat: truel:

"Javascript”

=== book["fat"]

true

=== yar primes = [2, 3, 5, 7]!
>>> primes|primes.length-1]
7

== primes[0] + primes[1]

5

=== function factorial(n) {
console.logl factorial(6]);
24

120

720

undefined

var p = 1; for{v...le.log(factarial

et

Al Errors Warnings Info Debug Info

£

function factorial(n) {
var p = 1;
for{var 1 = 2; 1 <= n; i++)
p*=1i;
return p;

(S50

}

console.log(factorial(4));
console.log({factorial(5]));
console.log(factorial(6));

(51);

Run Clear Copy

Figure 1-1. The Firebug debugging console for Firefox

1.1 Core JavaScript

This section is a tour of the JavaScript language,

and also a tour of Part I of this book.

After this introductory chapter, we dive into JavaScript at the lowest level: Chapter 2,
Lexical Structure, explains things like JavaScript comments, semicolons, and the Uni-
code character set. Chapter 3, Types, Values, and Variables, starts to get more inter-
esting: it explains JavaScript variables and the values you can assign to those variables.
Here’s some sample code to illustrate the highlights of those two chapters:

// Anything following double slashes is an English-language comment.
// Read the comments carefully: they explain the JavaScript code.

// variable is a symbolic name for a value.
// Variables are declared with the var keyword:
var x;

// Values can be assigned to variables with an
X = 0; // Now the variable
X // => 0: A variable

// JavaScript supports several types of values
= 1; // Numbers.
0.01;
= "hello world";
'JavaScript’;
true;
false;

// Boolean values.

X X X X X X

// Declare a variable

named Xx.

sign
x has the value 0
evaluates to its value.

// Just one Number type for integers and reals.
// Strings of text in quotation marks.
// Single quote marks also delimit strings.

// The other Boolean value.

4 | Chapter1: Introduction to JavaScript

null; // Null is a special value that means "no value".
undefined; // Undefined is like null.

X
X

Two other very important types that JavaScript programs can manipulate are objects
and arrays. These are the subject of Chapter 6, Objects, and Chapter 7, Arrays, but they
are so important that you’ll see them many times before you reach those chapters.

// JavaScript's most important data type is the object.
// An object is a collection of name/value pairs, or a string to value map.

var book = { // Objects are enclosed in curly braces.
topic: "JavaScript", // The property "topic" has value "JavaScript".
fat: true // The property "fat" has value true.
}; // The curly brace marks the end of the object.
// Access the properties of an object with . or []:
book. topic // => "JavaScript"
book["fat"] // => true: another way to access property values.
book.author = "Flanagan"; // Create new properties by assignment.
book.contents = {}; // {} is an empty object with no properties.

// JavaScript also supports arrays (numerically indexed lists) of values:
var primes = [2, 3, 5, 7]; // An array of 4 values, delimited with [and].

primes[0] // => 2: the first element (index 0) of the array.
primes.length // => 4: how many elements in the array.
primes[primes.length-1] // => 7: the last element of the array.
primes[4] = 9; // Add a new element by assignment.
primes[4] = 11; // Or alter an existing element by assignment.
var empty = []; // [1 is an empty array with no elements.
empty.length // =>0
// Arrays and objects can hold other arrays and objects:
var points = [// An array with 2 elements.
{x:0, y:0}, // Each element is an object.

] {x:1, y:1}

)
var data = { // An object with 2 properties

triali: [[1,2], [3,4]], // The value of each property is an array.

trial2: [[2,3], [4,5]] // The elements of the arrays are arrays.
};

The syntax illustrated above for listing array elements within square braces or mapping
object property names to property values inside curly braces is known as an initializer
expression, and it is just one of the topics of Chapter 4, Expressions and Operators. An
expression is a phrase of JavaScript that can be evaluated to produce a value. The use
of . and [] to refer to the value of an object property or array element is an expression,
for example. You may have noticed in the code above that when an expression stands
alone on a line, the comment that follows it begins with an arrow (=>) and the value of
the expression. This is a convention that you’ll see throughout this book.

One of the most common ways to form expressions in JavaScript is to use operators

like these:

// Operators act on values (the operands) to produce a new value.
// Arithmetic operators are the most common:
3+2 // => 5: addition

1.1 Core JavaScript | 5

3-2 // => 1: subtraction

3 %2 // => 6: multiplication

3 /2 // => 1.5: division

points[1].x - points[0].x // => 1: more complicated operands work, too

"3 o4 " // => "32": + adds numbers, concatenates strings

// JavaScript defines some shorthand arithmetic operators

var count = 0; // Define a variable

count++; // Increment the variable

count--; // Decrement the variable

count += 2; // Add 2: same as count = count + 2;

count *= 3; // Multiply by 3: same as count = count * 3;
count // => 6: variable names are expressions, too.

// Equality and relational operators test whether two values are equal,
// unequal, less than, greater than, and so on. They evaluate to true or false.

var x = 2, y = 3; // These = signs are assignment, not equality tests
X ==y // => false: equality

x =y // => true: inequality

X<y // => true: less-than

X <=y // => true: less-than or equal

X >y // => false: greater-than

X >=y // => false: greater-than or equal

"two" == "three" // => false: the two strings are different

"two" > "three" // => true: "tw" is alphabetically greater than "th"
false == (x > y) // => true: false is equal to false

// Logical operators combine or invert boolean values

(x ==2) & (y == 3) // => true: both comparisons are true. &% is AND
(x>3) || (y<3) // => false: neither comparison is true. || is OR
I(x ==y) // => true: ! inverts a boolean value

If the phrases of JavaScript are expressions, then the full sentences are statements, which
are the topic of Chapter 5, Statements. In the code above, the lines that end with
semicolons are statements. (In the code below, you’ll see multiline statements that do
not end with semicolons.) There is actually a lot of overlap between statements and
expressions. Roughly, an expression is something that computes a value but doesn’t
do anything: it doesn’t alter the program state in any way. Statements, on the other
hand, don’t have a value (or don’t have a value that we care about), but they do alter
the state. You've seen variable declarations and assignment statements above. The
other broad category of statement is control structures, such as conditionals and loops.
Examples are below, after we cover functions.

A function is a named and parametrized block of JavaScript code that you define once,
and can then invoke over and over again. Functions aren’t covered formally until
Chapter 8, Functions, but like objects and arrays, you’ll see them many times before
you get to that chapter. Here are some simple examples:

// Functions are parameterized blocks of JavaScript code that we can invoke.

function plusi(x) { // Define a function named "plusi" with parameter "x"
return x+1; // Return a value one larger than the value passed in
} // Functions are enclosed in curly braces

6 | Chapter1: Introduction to JavaScript

plusi(y) // => 4: y is 3, so this invocation returns 3+1

var square = function(x) { // Functions are values and can be assigned to vars

return x*x; // Compute the function's value
}; // Semicolon marks the end of the assignment.
square(plusi(y)) // => 16: invoke two functions in one expression

When we combine functions with objects, we get methods:

// When functions are assigned to the properties of an object, we call
// them "methods". All JavaScript objects have methods:

var a = []; // Create an empty array
a.push(1,2,3); // The push() method adds elements to an array
a.reverse(); // Another method: reverse the order of elements

// We can define our own methods, too. The "this" keyword refers to the object
// on which the method is defined: in this case, the points array from above.
points.dist = function() { // Define a method to compute distance between points

var pl = this[0]; // First element of array we're invoked on
var p2 = this[1]; // Second element of the "this" object

var a = p2.x-pl.x; // Difference in X coordinates

var b = p2.y-pl.y; // Difference in Y coordinates

return Math.sqrt(a*a + // The Pythagorean theorem
b*b); // Math.sqrt() computes the square root
b
points.dist() // => 1.414: distance between our 2 points
Now, as promised, here are some functions whose bodies demonstrate common Java-
Script control structure statements:

// JavaScript statements include conditionals and loops using the syntax
// of C, C++, Java, and other languages.

function abs(x) { // A function to compute the absolute value
if (x >=0) { // The if statement...
return x; // executes this code if the comparison is true.
// This is the end of the if clause.
else { // The optional else clause executes its code if
return -x; // the comparison is false.
} // Curly braces optional when 1 statement per clause.
} // Note return statements nested inside if/else.

function factorial(n) { // A function to compute factorials

var product = 1; // Start with a product of 1
while(n > 1) { // Repeat statements in {} while expr in () is true
product *= n; // Shortcut for product = product * n;
n--; // Shortcut for n =n - 1
} // End of loop
return product; // Return the product
}
factorial(4) /] => 24: 1%4*3%2

function factorial2(n) { // Another version using a different loop
var i, product = 1; // Start with 1
for(i=2; i <= n; i++) // Automatically increment i from 2 up to n
product *= ij; // Do this each time. {} not needed for 1-line loops
return product; // Return the factorial

1.1 Core JavaScript | 7

factorial2(s) /] => 120: 1%¥2%3*%4%5

JavaScript is an object-oriented language, but it is quite different than most. Chapter 9,
Classes and Modules, covers object-oriented programming in JavaScript in detail, with
lots of examples, and is one of the longest chapters in the book. Here is a very simple
example that demonstrates how to define a JavaScript class to represent 2D geometric
points. Objects that are instances of this class have a single method named r() that
computes the distance of the point from the origin:

// Define a constructor function to initialize a new Point object

function Point(x,y) { // By convention, constructors start with capitals
this.x = x; // this keyword is the new object being initialized
this.y = y; // Store function arguments as object properties

} // No return is necessary

// Use a constructor function with the keyword "new" to create instances
var p = new Point(1, 1); // The geometric point (1,1)

// Define methods for Point objects by assigning them to the prototype
// object associated with the constructor function.
Point.prototype.r = function() {
return Math.sqrt(// Return the square root of x2 + y2
this.x * this.x + // This is the Point object on which the method...
this.y * this.y // ...is invoked.

)s
b
// Now the Point object p (and all future Point objects) inherits the method r()
p-x() /] => 1.414...

Chapter 9 is really the climax of Part I, and the chapters that follow wrap up some loose
ends and bring our exploration of the core language to a close. Chapter 10, Pattern
Matching with Regular Expressions, explains the regular expression grammar and dem-
onstrates how to use these “regexps” for textual pattern matching. Chapter 11, Java-
Script Subsets and Extensions, covers subsets and extensions of core JavaScript. Finally,
before we plunge into client-side JavaScript in web browsers, Chapter 12, Server-Side
JavaScript, introduces two ways to use JavaScript outside of web browsers.

1.2 Client-Side JavaScript

Client-side JavaScript does not exhibit the nonlinear cross-reference problem nearly to
the extent that the core language does, and it is possible to learn how to use JavaScript
in web browsers in a fairly linear sequence. But you’re probably reading this book to
learn client-side JavaScript, and Part Il is a long way off, so this section is a quick sketch
of basic client-side programming techniques, followed by an in-depth example.

Chapter 13, JavaScript in Web Browsers, is the first chapter of Part Il and it explains in
detail how to put JavaScript to work in web browsers. The most important thing you’ll

8 | Chapter1: Introduction to JavaScript

learn in that chapter is that JavaScript code can be embedded within HTML files using
the <script> tag:

<html>

<head>

<script src="library.js"></script> <!-- include a library of JavaScript code -->
</head>

<body>

<p>This is a paragraph of HTML</p>

<script>

// And this is some client-side JavaScript code
// literally embedded within the HTML file
</script>

<p>Here is more HTML.</p>

</body>

</html>

Chapter 14, The Window Object, explains techniques for scripting the web browser and
covers some important global functions of client-side JavaScript. For example:
<script>
function moveon() {
// Display a modal dialog to ask the user a question
var answer = confirm("Ready to move on?");
// If they clicked the "OK" button, make the browser load a new page
if (answer) window.location = "http://google.com";

}

// Run the function defined above 1 minute (60,000 milliseconds) from now.
setTimeout(moveon, 60000);
</script>

Note that the client-side example code shown in this section comes in longer snippets
than the core language examples earlier in the chapter. These examples are not designed
to be typed into a Firebug (or similar) console window. Instead you can embed them
in an HTML file and try them out by loading them in your web browser. The code
above, for instance, works as a stand-alone HTML file.

Chapter 15, Scripting Documents, gets down to the real business of client-side Java-
Script, scripting HTML document content. It shows you how to select particular HTML
elements from within a document, how to set HTML attributes of those elements, how
to alter the content of those elements, and how to add new elements to the document.
This function demonstrates a number of these basic document searching and modifi-
cation techniques:

// Display a message in a special debugging output section of the document.

// If the document does not contain such a section, create one.

function debug(msg) {

// Find the debugging section of the document, looking at HTML id attributes
var log = document.getElementById("debuglog");

// If no element with the id "debuglog" exists, create one.

if (1log) {
log = document.createElement("div"); // Create a new <div> element
log.id = "debuglog"; // Set the HTML id attribute on it

1.2 Client-Side JavaScript | 9

log.innerHTML = "<h1>Debug Log</h1>"; // Define initial content
document.body.appendChild(log); // Add it at end of document

}

// Now wrap the message in its own <pre> and append it to the log
var pre = document.createElement("pre"); // Create a <pre> tag
var text = document.createTextNode(msg); // Wrap msg in a text node
pre.appendChild(text); // Add text to the <pre>
log.appendChild(pre); // Add <pre> to the log

}

Chapter 15 shows how JavaScript can script the HTML elements that define web con-
tent. Chapter 16, Scripting CSS, shows how you can use JavaScript with the CSS styles
that define the presentation of that content. This is often done with the style or
class attribute of HTML elements:

function hide(e, reflow) { // Hide the element e by scripting its style

if (reflow) { // If 2nd argument is true
e.style.display = "none" // hide element and use its space

}

else { // Otherwise

e.style.visibility = "hidden"; // make e invisible, but leave its space
}
}

function highlight(e) { // Highlight e by setting a CSS class
// Simply define or append to the HTML class attribute.
// This assumes that a CSS stylesheet already defines the "hilite" class
if (le.className) e.className = "hilite";
else e.className += " hilite";

}

JavaScript allows us to script the HTML content and CSS presentation of documents
in web browsers, but it also allows us to define behavior for those documents with
event handlers. An event handler is a JavaScript function that we register with the
browser and the browser invokes when some specified type of event occurs. The event
of interest might be a mouse click or a key press (or on a smart phone, it might be a
two-finger gesture of some sort). Or an event handler might be triggered when the
browser finishes loading a document, when the user resizes the browser window, or
when the user enters data into an HTML form element. Chapter 17, Handling Events,
explains how you can define and register event handlers and how the browser invokes
them when events occur.

The simplest way to define event handlers is with HTML attributes that begin with
“on”. The “onclick” handler is a particularly useful one when you’re writing simple
test programs. Suppose that you had typed in the debug() and hide() functions from
above and saved them in files named debug.js and hide.js. You could write a simple
HTML test file using <button> elements with onclick event handler attributes:

<script src="debug.js"></script>

<script src="hide.js"></script>

Hello

<button onclick="hide(this,true); debug('hide button 1');">Hide1</button>

10 | Chapter1: Introduction to JavaScript

<button onclick="hide(this); debug('hide button 2');">Hide2</button>
World

Here is some more client-side JavaScript code that uses events. It registers an event
handler for the very important “load” event, and it also demonstrates a more sophis-
ticated way of registering event handler functions for “click” events:

// The "load" event occurs when a document is fully loaded. Usually we

// need to wait for this event before we start running our JavaScript code.

window.onload = function() { // Run this function when the document loads

// Find all tags in the document
var images = document.getElementsByTagName("img");

// Loop through them, adding an event handler for "click" events to each
// so that clicking on the image hides it.
for(var i = 0; i < images.length; i++) {
var image = images[i];
if (image.addEventListener) // Another way to register a handler
image.addEventListener("click", hide, false);
else // For compatibility with IE8 and before
image.attachEvent("onclick", hide);

}

// This is the event handler function registered above
function hide(event) { event.target.style.visibility = "hidden"; }

};

Chapters 15, 16, and 17 explain how you can use JavaScript to script the content
(HTML), presentation (CSS), and behavior (event handling) of web pages. The APIs
described in those chapters are somewhat complex and, until recently, riddled with
browser incompatibilities. For these reasons, many or most client-side JavaScript pro-
grammers choose to use a client-side library or framework to simplify their basic pro-
gramming tasks. The most popular such library is jQuery, the subject of Chapter 19,
The jQuery Library. jQuery defines a clever and easy-to-use API for scripting document
content, presentation, and behavior. It has been thoroughly tested and works in all
major browsers, including old ones like IE6.

jQuery code is easy to identify because it makes frequent use of a function named
$(). Here is what the debug() function used previously looks like when rewritten to use
jQuery:
function debug(msg) {
var log = $("#debuglog"); // Find the element to display msg in.
if (log.length == 0) { // If it doesn't exist yet, create it...
log = $("<div id='debuglog'><h1>Debug Log</h1></div>");
log.appendTo(document.body); // and insert it at the end of the body.

log.append($("<pre/>").text(msg)); // Wrap msg in <pre> and append to log.
The four chapters of Part 1T described so far have all really been about web pages. Four

more chapters shift gears to focus on web applications. These chapters are not about
using web browsers to display documents with scriptable content, presentation, and

1.2 Client-Side JavaScript | 11

behavior. Instead, they’re about using web browsers as application platforms, and they
describe the APIs that modern browsers provide to support sophisticated client-side
web apps. Chapter 18, Scripted HTTP, explains how to make scripted HTTP requests
with JavaScript—a kind of networking API. Chapter 20, Client-Side Storage, describes
mechanisms for storing data—and even entire applications—on the client side for use
in future browsing sessions. Chapter 21, Scripted Media and Graphics, covers a client-
side API for drawing arbitrary graphics in an HTML <canvas> tag. And, finally, Chap-
ter 22, HTMLS5 APIs, covers an assortment of new web app APIs specified by or affiliated
with HTMLS5. Networking, storage, graphics: these are OS-type services being provided
by the web browser, defining a new cross-platform application environment. If you are
targeting browsers that support these new APIs, it is an exciting time to be a client-side
JavaScript programmer. There are no code samples from these final four chapters here,
but the extended example below uses some of these new APIs.

1.2.1 Example: A JavaScript Loan Calculator

This chapter ends with an extended example that puts many of these techniques to-
gether and shows what real-world client-side JavaScript (plus HTML and CSS) pro-
grams look like. Example 1-1 lists the code for the simple loan payment calculator
application pictured in Figure 1-2.

| | JavaScript Loan Calc...

€« [| A
Enter Loan Data: Loan Balance, Cumulative Equity, and Interest Payments
Amount of the loan () |100000
Annual mierest (%) |5 I:::: Eglilail:ce
Eepayment period (years): |3[]
Zipcode (to find lenders) I
Approximate Payments: | 0ajcylate
Ifonthly payment: $536.82
Total payment: $193255.78
Total interest: $93255.78
Sponsors: Apply for your loan with one of these fine lenders:

* DBanlk of Javascript
o HTMT Credit Union

Figure 1-2. A loan calculator web application

It is worth reading through Example 1-1 carefully. You shouldn’t expect to understand
everything, but the code is heavily commented and you should be able to at least get

12 | Chapter1: Introduction to JavaScript

the big-picture view of how it works. The example demonstrates a number of core
JavaScript language features, and also demonstrates important client-side JavaScript
techniques:

* How to find elements in a document.

* How to get user input from form input elements.

* How to set the HTML content of document elements.

* How to store data in the browser.

* How to make scripted HTTP requests.

* How to draw graphics with the <canvas> element.

Example 1-1. A loan calculator in JavaScript

<!DOCTYPE html>

<html>

<head>

<title>JavaScript Loan Calculator</title>

<style> /* This is a CSS style sheet: it adds style to the program output */

.output { font-weight: bold; } /* Calculated values in bold */
#payment { text-decoration: underline; } /* For element with id="payment" */
#tgraph { border: solid black 1px; } /* Chart has a simple border */

th, td { vertical-align: top; } /* Don't center table cells */
</style>

</head>

<body>

<I--

This is an HTML table with <input> elements that allow the user to enter data
and elements in which the program can display its results.
These elements have ids like "interest" and "years". These ids are used
in the JavaScript code that follows the table. Note that some of the input
elements define "onchange" or "onclick" event handlers. These specify strings
of JavaScript code to be executed when the user enters data or clicks.
-->
<table>

<tr><th>Enter Loan Data:</th>

<td></td>

<th>Loan Balance, Cumulative Equity, and Interest Payments</th></tr>
<tr><td>Amount of the loan ($):</td>

<td><input id="amount" onchange="calculate();"></td>

<td rowspan=8>

<canvas id="graph" width="400" height="250"></canvas></td></tr>

<tr><td>Annual interest (%):</td>

<td><input id="apr" onchange="calculate();"></td></tr>
<tr><td>Repayment period (years):</td>

<td><input id="years" onchange="calculate();"></td>
<tr><td>Zipcode (to find lenders):</td>

<td><input id="zipcode" onchange="calculate();"></td>
<tr><th>Approximate Payments:</th>

<td><button onclick="calculate();">Calculate</button></td></tr>
<tr><td>Monthly payment:</td>

<td>$</td></tr>
<tr><td>Total payment:</td>

<td>$</td></tr>

1.2 Client-Side JavaScript | 13

<tr><td>Total interest:</td>
<td>$</td></tr>
<tr><th>Sponsors:</th><td colspan=2>
Apply for your loan with one of these fine lenders:
<div id="lenders"></div></td></tr>
</table>

<!-- The rest of this example is JavaScript code in the <script> tag below -->
<!-- Normally, this script would go in the document <head> above but it -->
<!-- is easier to understand here, after you've seen its HTML context. -->
<script>

"use strict"; // Use ECMAScript 5 strict mode in browsers that support it

* This script defines the calculate() function called by the event handlers
* in HTML above. The function reads values from <input> elements, calculates
* loan payment information, displays the results in elements. It also
* saves the user's data, displays links to lenders, and draws a chart.
*/
function calculate() {

// Look up the input and output elements in the document

var amount = document.getElementById("amount");

var apr = document.getElementById("apr");

var years = document.getElementById("years");

var zipcode = document.getElementById("zipcode");

var payment = document.getElementById("payment");

var total = document.getElementById("total");

var totalinterest = document.getElementById("totalinterest");

// Get the user's input from the input elements. Assume it is all valid.
// Convert interest from a percentage to a decimal, and convert from

// an annual rate to a monthly rate. Convert payment period in years

// to the number of monthly payments.

var principal = parseFloat(amount.value);

var interest = parseFloat(apr.value) / 100 / 12;

var payments = parseFloat(years.value) * 12;

// Now compute the monthly payment figure.
var x = Math.pow(1 + interest, payments); // Math.pow() computes powers
var monthly = (principal*x*interest)/(x-1);

// If the result is a finite number, the user's input was good and

// we have meaningful results to display

if (isFinite(monthly)) {
// Fill in the output fields, rounding to 2 decimal places
payment.innerHTML = monthly.toFixed(2);
total.innerHTML = (monthly * payments).toFixed(2);
totalinterest.innerHTML = ((monthly*payments)-principal).toFixed(2);

// Save the user's input so we can restore it the next time they visit
save(amount.value, apr.value, years.value, zipcode.value);

// Advertise: find and display local lenders, but ignore network errors
try { // Catch any errors that occur within these curly braces
getLenders(amount.value, apr.value, years.value, zipcode.value);

14 | Chapter1: Introduction to JavaScript

catch(e) { /* And ignore those errors */ }

// Finally, chart loan balance, and interest and equity payments
chart(principal, interest, monthly, payments);

else {
// Result was Not-a-Number or infinite, which means the input was
// incomplete or invalid. Clear any previously displayed output.

payment.innerHTML = ""; // Erase the content of these elements
total.innerHTML = ""

totalinterest.innerHTML = "";

chart(); // With no arguments, clears the chart

}

// Save the user's input as properties of the localStorage object. Those
// properties will still be there when the user visits in the future
// This storage feature will not work in some browsers (Firefox, e.g.) if you
// run the example from a local file:// URL. It does work over HTTP, however.
function save(amount, apr, years, zipcode) {
if (window.localStorage) { // Only do this if the browser supports it

localStorage.loan_amount = amount;

localStorage.loan apr = apr;

localStorage.loan years = years;

localStorage.loan_zipcode = zipcode;

}

// Automatically attempt to restore input fields when the document first loads.
window.onload = function() {
// If the browser supports localStorage and we have some stored data
if (window.localStorage &3 localStorage.loan amount) {
document.getElementById("amount").value = localStorage.loan amount;
document.getElementById("apr").value = localStorage.loan apr;
document.getElementById("years").value = localStorage.loan_years;
document.getElementById("zipcode").value = localStorage.loan_zipcode;
}
b

// Pass the user's input to a server-side script which can (in theory) return
// a list of links to local lenders interested in making loans. This example
// does not actually include a working implementation of such a lender-finding
// service. But if the service existed, this function would work with it.
function getlenders(amount, apr, years, zipcode) {
// If the browser does not support the XMLHttpRequest object, do nothing
if (!window.XMLHttpRequest) return;

// Find the element to display the list of lenders in
var ad = document.getElementById("lenders");
if (lad) return; // Quit if no spot for output

1.2 Client-Side JavaScript

// Encode the user's input as query parameters in a URL
var url = "getlenders.php" + // Service url plus
"?amt=" + encodeURIComponent(amount) + // user data in query string
"8apr=" + encodeURIComponent(apr) +
"&yrs=" + encodeURIComponent(years) +
"&zip=" + encodeURIComponent(zipcode);

// Fetch the contents of that URL using the XMLHttpRequest object

var req = new XMLHttpRequest(); // Begin a new request
req.open("GET", url); // An HTTP GET request for the url
req.send(null); // Send the request with no body

// Before returning, register an event handler function that will be called
// at some later time when the HTTP server's response arrives. This kind of
// asynchronous programming is very common in client-side JavaScript.
req.onreadystatechange = function() {
if (req.readyState == 4 83 req.status == 200) {

// If we get here, we got a complete valid HTTP response

var response = req.responseText; // HTTP response as a string

var lenders = JSON.parse(response); // Parse it to a]S array

// Convert the array of lender objects to a string of HTML
var list = "";
for(var i = 0; i < lenders.length; i++) {
list += "" +
lenders[i].name + "";

}

// Display the HTML in the element from above.
ad.innerHTML = "" + list + "";

// Chart monthly loan balance, interest and equity in an HTML <canvas> element.
// If called with no arguments then just erase any previously drawn chart.
function chart(principal, interest, monthly, payments) {

var graph = document.getElementById("graph"); // Get the <canvas> tag
graph.width = graph.width; // Magic to clear and reset the canvas element

// If we're called with no arguments, or if this browser does not support
// graphics in a <canvas> element, then just return now.
if (arguments.length == 0 || !graph.getContext) return;

// Get the "context" object for the <canvas> that defines the drawing API
var g = graph.getContext("2d"); // All drawing is done with this object
var width = graph.width, height = graph.height; // Get canvas size

// These functions convert payment numbers and dollar amounts to pixels
function paymentToX(n) { return n * width/payments; }
function amountToY(a) { return height-(a * height/(monthly*payments*1.05));}

// Payments are a straight line from (0,0) to (payments, monthly*payments)

g.moveTo(paymentToX(0), amountToY(0)); // Start at lower left

g.lineTo(paymentToX(payments), // Draw to upper right
amountToY(monthly*payments));

16 | Chapter1: Introduction to JavaScript

g.lineTo(paymentToX(payments), amountToY(0)); // Down to lower right

g.closePath(); // And back to start
g.fillStyle = "#f88"; // Light red
g.fill(); // Fill the triangle
g.font = "bold 12px sans-serif"; // Define a font

g.fillText("Total Interest Payments", 20,20); // Draw text in legend

// Cumulative equity is non-linear and trickier to chart
var equity = 0;
g.beginPath(); // Begin a new shape
g.moveTo(paymentToX(0), amountToY(0)); // starting at lower-left
for(var p = 1; p <= payments; p++) {
// For each payment, figure out how much is interest
var thisMonthsInterest = (principal-equity)*interest;
equity += (monthly - thisMonthsInterest); // The rest goes to equity
g.lineTo(paymentToX(p),amountToY(equity)); // Line to this point

}

g.lineTo(paymentToX(payments), amountToY(0)); // Line back to X axis
g.closePath(); // And back to start point
g.fillStyle = "green"; // Now use green paint
g.fill(); // And fill area under curve
g.fillText("Total Equity", 20,35); // Label it in green

// Loop again, as above, but chart loan balance as a thick black line

var bal = principal;

g.beginPath();

g.moveTo(paymentToX(0),amountToY(bal));

for(var p = 1; p <= payments; p++) {
var thisMonthsInterest = bal*interest;
bal -= (monthly - thisMonthsInterest); // The rest goes to equity
g.lineTo(paymentToX(p),amountToY(bal)); // Draw line to this point

g.lineWidth = 3; // Use a thick line
g.stroke(); // Draw the balance curve
g.fillStyle = "black"; // Switch to black text
g.fillText("Loan Balance", 20,50); // Legend entry
// Now make yearly tick marks and year numbers on X axis
g.textAlign="center"; // Center text over ticks
var y = amountToY(0); // Y coordinate of X axis
for(var year=1; year*12 <= payments; year++) { // For each year
var x = paymentToX(year*12); // Compute tick position
g.fillRect(x-0.5,y-3,1,3); // Draw the tick

if (year == 1) g.fillText("Year", x, y-5); // Label the axis
if (year % 5 == 0 &% year*12 !== payments) // Number every 5 years
g.fillText(String(year), x, y-5);

}

// Mark payment amounts along the right edge

g.textAlign = "right"; // Right-justify text
g.textBaseline = "middle"; // Center it vertically

var ticks = [monthly*payments, principall; // The two points we'll mark
var rightEdge = paymentToX(payments); // X coordinate of Y axis
for(var i = 0; i < ticks.length; i++) { // For each of the 2 points

var y = amountToY(ticks[i]); // Compute Y position of tick

1.2 Client-Side JavaSaript | 17

g.fillRect(rightEdge-3, y-0.5, 3,1);
g.fillText(String(ticks[i].toFixed(0)),
rightEdge-5, y);
}
}
</script>
</body>
</html>

// Draw the tick mark
// And label it.

18 | Chapter1: Introduction to JavaScript

PART I
Core JavaScript

This part of the book, Chapters 2 though 12, documents the core JavaScript language
and is meant to be a JavaScript language reference. After you read through it once to
learn the language, you may find yourself referring back to it to refresh your memory
about some of the trickier points of JavaScript.

Chapter 2, Lexical Structure

Chapter 3, Types, Values, and Variables
Chapter 4, Expressions and Operators
Chapter 5, Statements

Chapter 6, Objects

Chapter 7, Arrays

Chapter 8, Functions

Chapter 9, Classes and Modules

Chapter 10, Pattern Matching with Regular Expressions
Chapter 11, JavaScript Subsets and Extensions
Chapter 12, Server-Side JavaScript

CHAPTER 2
Lexical Structure

The lexical structure of a programming language is the set of elementary rules that
specifies how you write programs in that language. It is the lowest-level syntax of a
language; it specifies such things as what variable names look like, the delimiter char-
acters for comments, and how one program statement is separated from the next. This
short chapter documents the lexical structure of JavaScript.

2.1 Character Set

JavaScript programs are written using the Unicode character set. Unicode is a superset
of ASCII and Latin-1 and supports virtually every written language currently used on
the planet. ECMAScript 3 requires JavaScript implementations to support Unicode
version 2.1 or later, and ECMAScript 5 requires implementations to support
Unicode 3 or later. See the sidebar in §3.2 for more about Unicode and JavaScript.

2.1.1 Case Sensitivity

JavaScript is a case-sensitive language. This means that language keywords, variables,
function names, and other identifiers must always be typed with a consistent capitali-
zation of letters. The while keyword, for example, must be typed “while,” not “While”
or “WHILE.” Similarly, online, Online, OnLine, and ONLINE are four distinct variable
names.

Note, however, that HTML is not case-sensitive (although XHTML is). Because of its
close association with client-side JavaScript, this difference can be confusing. Many
client-side JavaScript objects and properties have the same names as the HTML tags
and attributes they represent. While these tags and attribute names can be typed in any
case in HTML, in JavaScript they typically must be all lowercase. For example, the
HTML onclick event handler attribute is sometimes specified as onClick in HTML, but
it must be specified as onclick in JavaScript code (or in XHTML documents).

21

2.1.2 Whitespace, Line Breaks, and Format Control Characters

JavaScript ignores spaces that appear between tokens in programs. For the most part,
JavaScript also ignores line breaks (but see §2.5 for an exception). Because you can use
spaces and newlines freely in your programs, you can format and indent your programs
in a neat and consistent way that makes the code easy to read and understand.

In addition to the regular space character (\u0020), JavaScript also recognizes the fol-
lowing characters as whitespace: tab (\u0009), vertical tab (\uoooB), form feed
(\uoooC), nonbreaking space (\uooAo), byte order mark (\uFEFF), and any character in
Unicode category Zs. JavaScript recognizes the following characters as line terminators:
line feed (\u000A), carriage return (\uoooD), line separator (\u2028), and paragraph sep-
arator (\u2029). A carriage return, line feed sequence is treated as a single line
terminator.

Unicode format control characters (category Cf), such as RIGHT-TO-LEFT MARK
(\u200F) and LEFT-TO-RIGHT MARK (\u200E), control the visual presentation of the
text they occur in. They are important for the proper display of some non-English
languages and are allowed in JavaScript comments, string literals, and regular expres-
sion literals, but not in the identifiers (e.g., variable names) of a JavaScript program.
As aspecial case,ZERO WIDTH JOINER (\u200D) and ZERO WIDTH NON-JOINER
(\u200C) are allowed in identifiers, but not as the first character. As noted above, the
byte order mark format control character (\uFEFF) is treated as a space character.

2.1.3 Unicode Escape Sequences

Some computer hardware and software can not display or input the full set of Unicode
characters. To support programmers using this older technology, JavaScript defines
special sequences of six ASCII characters to represent any 16-bit Unicode codepoint.
These Unicode escapes begin with the characters \u and are followed by exactly four
hexadecimal digits (using uppercase or lowercase letters A—F). Unicode escapes may
appear in JavaScript string literals, regular expression literals, and in identifiers (but
not in language keywords). The Unicode escape for the character é, for example, is
\u0oE9, and the following two JavaScript strings are identical:

"café" === "caf\uooe9" // => true

Unicode escapes may also appear in comments, but since comments are ignored, they
are treated as ASCII characters in that context and not interpreted as Unicode.

2.1.4 Normalization

Unicode allows more than one way of encoding the same character. The string “é”, for
example, can be encoded as the single Unicode character \u0oE9 or as a regular ASCII
e followed by the acute accent combining mark \u0301. These two encodings may look
exactly the same when displayed by a text editor, but they have different binary en-
codings and are considered different by the computer. The Unicode standard defines
the preferred encoding for all characters and specifies a normalization procedure to

22 | Chapter2: Lexical Structure

convert text to a canonical form suitable for comparisons. JavaScript assumes that the
source code it is interpreting has already been normalized and makes no attempt to
normalize identifiers, strings, or regular expressions itself.

2.2 Comments

JavaScript supports two styles of comments. Any text between a // and the end of a
line is treated as a comment and is ignored by JavaScript. Any text between the char-
acters /* and */ is also treated as a comment; these comments may span multiple lines
but may not be nested. The following lines of code are all legal JavaScript comments:

// This is a single-line comment.
/* This is also a comment */ // and here is another comment.
J*

* This is yet another comment.

* It has multiple lines.

*/

2.3 Literals

A literal is a data value that appears directly in a program. The following are all literals:

12 // The number twelve

1.2 // The number one point two

"hello world" // A string of text

'Hi' // Another string

true // A Boolean value

false // The other Boolean value

/javascript/gi // A "regular expression" literal (for pattern matching)
null // Absence of an object

Complete details on numeric and string literals appear in Chapter 3. Regular expression
literals are covered in Chapter 10. More complex expressions (see §4.2) can serve as
array and object literals. For example:

{ x:1, y:2 } // An object initializer
[1,2,3,4,5] // An array initializer

2.4 Identifiers and Reserved Words

An identifier is simply a name. In JavaScript, identifiers are used to name variables and
functions and to provide labels for certain loops in JavaScript code. A JavaScript iden-
tifier must begin with a letter, an underscore (), or a dollar sign ($). Subsequent char-
acters can be letters, digits, underscores, or dollar signs. (Digits are not allowed as the
first character so that JavaScript can easily distinguish identifiers from numbers.) These
are all legal identifiers:

i

my variable name

v13

2.4 |dentifiers and Reserved Words | 23

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

_dummy
$str

For portability and ease of editing, it is common to use only ASCII letters and digits in
identifiers. Note, however, that JavaScript allows identifiers to contain letters and digits
from the entire Unicode character set. (Technically, the ECMAScript standard also
allows Unicode characters from the obscure categories Mn, Mc, and Pc to appear in
identifiers after the first character.) This allows programmers to use variable names
from non-English languages and also to use mathematical symbols:

var si = true;
var m = 3.14;

Like any language, JavaScript reserves certain identifiers for use by the language itself.
These “reserved words” cannot be used as regular identifiers. They are listed below.

2.4.1 Reserved Words

JavaScript reserves a number of identifiers as the keywords of the language itself. You
cannot use these words as identifiers in your programs:

break delete function return typeof
case do if switch var
catch else in this void
continue false instanceof throw while
debugger finally new true with
default for null try

JavaScript also reserves certain keywords that are not currently used by the language
but which might be used in future versions. ECMAScript 5 reserves the following
words:

class const enum export extends import super
In addition, the following words, which are legal in ordinary JavaScript code, are re-
served in strict mode:

implements let private public yield
interface package protected static

Strict mode also imposes restrictions on the use of the following identifiers. They are

not fully reserved, but they are not allowed as variable, function, or parameter names:
arguments eval

ECMAScript 3 reserved all the keywords of the Java language, and although this has

been relaxed in ECMAScript 5, you should still avoid all of these identifiers if you plan
to run your code under an ECMAScript 3 implementation of JavaScript:

abstract double goto native static
boolean enum implements package super

byte export import private synchronized
char extends int protected throws

class final interface public transient
const float long short volatile

24 | Chapter2: Lexical Structure

JavaScript predefines a number of global variables and functions, and you should avoid
using their names for your own variables and functions:

arguments encodeURT Infinity Number RegExp
Array encodeURIComponent isFinite Object String
Boolean Error isNaN parseFloat SyntaxError
Date eval JSON parselnt TypeError
decodeURI EvalError Math RangeError undefined
decodeURIComponent Function NaN ReferenceError URIError

Keep in mind that JavaScript implementations may define other global variables and
functions, and each specific JavaScript embedding (client-side, server-side, etc.) will
have its own list of global properties. See the Window object in Part IV for a list of the
global variables and functions defined by client-side JavaScript.

2.5 Optional Semicolons

Like many programming languages, JavaScript uses the semicolon (;) to separate state-
ments (see Chapter 5) from each other. This is important to make the meaning of your
code clear: without a separator, the end of one statement might appear to be the be-
ginning of the next, or vice versa. In JavaScript, you can usually omit the semicolon
between two statements if those statements are written on separate lines. (You can also
omit a semicolon at the end of a program or if the next token in the program is a closing
curly brace }.) Many JavaScript programmers (and the code in this book) use semico-
lons to explicitly mark the ends of statements, even where they are not required.
Another style is to omit semicolons whenever possible, using them only in the few
situations that require them. Whichever style you choose, there are a few details you
should understand about optional semicolons in JavaScript.

Consider the following code. Since the two statements appear on separate lines, the
first semicolon could be omitted:

Written as follows, however, the first semicolon is required:
a=3;b=4;

Note that JavaScript does not treat every line break as a semicolon: it usually treats line
breaks as semicolons only if it can’t parse the code without the semicolons. More for-
mally (and with two exceptions described below), JavaScript treats a line break as a
semicolon if the next nonspace character cannot be interpreted as a continuation of the
current statement. Consider the following code:

var a
a

3
console.log(a)

2.5 Optional Semicolons | 25

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

JavaScript interprets this code like this:

var a; a = 3; console.log(a);

JavaScript does treat the first line break as a semicolon because it cannot parse the code
var a a without a semicolon. The second a could stand alone as the statement a;, but
JavaScript does not treat the second line break as a semicolon because it can continue
parsing the longer statement a = 3;.

These statement termination rules lead to some surprising cases. This code looks like
two separate statements separated with a newline:

var y = x + f
(a+b).toString()

But the parentheses on the second line of code can be interpreted as a function invo-
cation of f from the first line, and JavaScript interprets the code like this:

var y = x + f(a+b).toString();

More likely than not, this is not the interpretation intended by the author of the code.
In order to work as two separate statements, an explicit semicolon is required in this
case.

In general, if a statement begins with (, [, /, +, or -, there is a chance that it could be
interpreted as a continuation of the statement before. Statements beginning with /, +,
and - are quite rare in practice, but statements beginning with (and [are not uncom-
mon at all, at least in some styles of JavaScript programming. Some programmers like
to put a defensive semicolon at the beginning of any such statement so that it will
continue to work correctly even if the statement before it is modified and a previously
terminating semicolon removed:

var x = 0 // Semicolon omitted here
; [x,x+1,x+2].forEach(console.log) // Defensive ; keeps this statement separate

There are two exceptions to the general rule that JavaScript interprets line breaks as
semicolons when it cannot parse the second line as a continuation of the statement on
the first line. The first exception involves the return, break, and continue statements
(see Chapter 5). These statements often stand alone, but they are sometimes followed
by an identifier or expression. If a line break appears after any of these words (before
any other tokens), JavaScript will always interpret that line break as a semicolon. For
example, if you write:

return
true;

26 | Chapter2: Lexical Structure

JavaScript assumes you meant:

return; true;

However, you probably meant:

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

return true;

What this means is that you must not insert a line break between return, break or
continue and the expression that follows the keyword. If you do insert a line break,
your code is likely to fail in a nonobvious way that is difficult to debug.

The second exception involves the ++ and -- operators (§4.8). These operators can be
prefix operators that appear before an expression or postfix operators that appear after
an expression. If you want to use either of these operators as postfix operators, they
must appear on the same line as the expression they apply to. Otherwise, the line break
will be treated as a semicolon, and the ++ or - - will be parsed as a prefix operator applied
to the code that follows. Consider this code, for example:

X
++

y

It is parsed as x; ++y;, not as x++; y.

2.5 Optional Semicolons | 27

CHAPTER 3
Types, Values, and Variables

Computer programs work by manipulating values, such as the number 3.14 or the text
“Hello World.” The kinds of values that can be represented and manipulated in a
programming language are known as types, and one of the most fundamental charac-
teristics of a programming language is the set of types it supports. When a program
needs to retain a value for future use, it assigns the value to (or “stores” the value in) a
variable. A variable defines a symbolic name for a value and allows the value to be
referred to by name. The way that variables work is another fundamental characteristic
of any programming language. This chapter explains types, values, and variables in
JavaScript. These introductory paragraphs provide an overview, and you may find it
helpful to refer to §1.1 while you read them. The sections that follow cover these topics
in depth.

JavaScript types can be divided into two categories: primitive types and object types.
JavaScript’s primitive types include numbers, strings of text (known as strings), and
Boolean truth values (known as booleans). A significant portion of this chapter is dedi-
cated to a detailed explanation of the numeric (§3.1) and string (§3.2) types in Java-
Script. Booleans are covered in §3.3.

The special JavaScript values null and undefined are primitive values, but they are not
numbers, strings, or booleans. Each value is typically considered to be the sole member
of its own special type. §3.4 has more about null and undefined.

Any JavaScript value that is not a number, a string, a boolean, or null or undefined is
an object. An object (that is, a member of the type object) is a collection of properties
where each property has a name and a value (either a primitive value, such as a number
or string, or an object). One very special object, the global object, is covered in §3.5,
but more general and more detailed coverage of objects is in Chapter 6.

An ordinary JavaScript object is an unordered collection of named values. The language
also defines a special kind of object, known as an array, that represents an ordered
collection of numbered values. The JavaScript language includes special syntax for
working with arrays, and arrays have some special behavior that distinguishes them
from ordinary objects. Arrays are the subject of Chapter 7.

29

JavaScript defines another special kind of object, known as a function. A function is an
object that has executable code associated with it. A function may be invoked to run
that executable code and return a computed value. Like arrays, functions behave dif-
ferently from other kinds of objects, and JavaScript defines a special language syntax
for working with them. The most important thing about functions in JavaScript is that
they are true values and that JavaScript programs can treat them like regular objects.
Functions are covered in Chapter 8.

Functions that are written to be used (with the new operator) to initialize a newly created
object are known as constructors. Each constructor defines a class of objects—the set
of objects initialized by that constructor. Classes can be thought of as subtypes of the
object type. In addition to the Array and Function classes, core JavaScript defines three
other useful classes. The Date class defines objects that represent dates. The RegExp
class defines objects that represent regular expressions (a powerful pattern-matching
tool described in Chapter 10). And the Error class defines objects that represent syntax
and runtime errors that can occur in a JavaScript program. You can define your own
classes of objects by defining appropriate constructor functions. This is explained in
Chapter 9.

The JavaScript interpreter performs automatic garbage collection for memory manage-
ment. This means that a program can create objects as needed, and the programmer
never needs to worry about destruction or deallocation of those objects. When an object
is no longer reachable—when a program no longer has any way to refer to it—the
interpreter knows it can never be used again and automatically reclaims the memory it
was occupying.

JavaScript is an object-oriented language. Loosely, this means that rather than having
globally defined functions to operate on values of various types, the types themselves
define methods for working with values. To sort the elements of an array a, for example,
we don’t pass a to a sort() function. Instead, we invoke the sort() method of a:

a.sort(); // The object-oriented version of sort(a).

Method definition is covered in Chapter 9. Technically, it is only JavaScript objects
that have methods. But numbers, strings, and boolean values behave as if they had
methods (§3.6 explains how this works). In JavaScript, null and undefined are the only
values that methods cannot be invoked on.

JavaScript’s types can be divided into primitive types and object types. And they can
be divided into types with methods and types without. They can also be categorized as
mutable and immutable types. A value of a mutable type can change. Objects and arrays
are mutable: a JavaScript program can change the values of object properties and array
elements. Numbers, booleans, null, and undefined are immutable—it doesn’t even
make sense to talk about changing the value of a number, for example. Strings can be
thought of as arrays of characters, and you might expect them to be mutable. In Java-
Script, however, strings are immutable: you can access the text at any index of a string,

30 | Chapter3: Types, Values, and Variables

but JavaScript provides no way to alter the text of an existing string. The differences
between mutable and immutable values are explored further in §3.7.

JavaScript converts values liberally from one type to another. If a program expects a
string, for example, and you give it a number, it will automatically convert the number
to a string for you. If you use a nonboolean value where a boolean is expected, JavaScript
will convert accordingly. The rules for value conversion are explained in §3.8. Java-
Script’s liberal value conversion rules affect its definition of equality, and the == equality
operator performs type conversions as described in §3.8.1.

JavaScript variables are untyped: you can assign a value of any type to a variable, and
you can later assign a value of a different type to the same variable. Variables are
declared with the var keyword. JavaScript uses lexical scoping. Variables declared out-
side of a function are global variables and are visible everywhere in a JavaScript program.
Variables declared inside a function have function scope and are visible only to code
that §ppears inside that function. Variable declaration and scope are covered in §3.9
and 83.10.

3.1 Numbers

Unlike many languages, JavaScript does not make a distinction between integer values
and floating-point values. All numbers in JavaScript are represented as floating-point
values. JavaScript represents numbers using the 64-bit floating-point format defined
by the IEEE 754 standard,! which means it can represent numbers as large as
+1.7976931348623157 x 10°%8 and as small as +5 x 107324,

The JavaScript number format allows you to exactly represent all integers between
-9007199254740992 (-233) and 9007199254740992 (23), inclusive. If you use integer
values larger than this, you may lose precision in the trailing digits. Note, however, that
certain operations in JavaScript (such as array indexing and the bitwise operators de-
scribed in Chapter 4) are performed with 32-bit integers.

When a number appears directly in a JavaScript program, it’s called a numeric literal.
JavaScript supports numeric literals in several formats, as described in the following
sections. Note that any numeric literal can be preceded by a minus sign (-) to make the
number negative. Technically, however, - is the unary negation operator (see Chap-
ter 4) and is not part of the numeric literal syntax.

1. This format should be familiar to Java programmers as the format of the double type. It is also the
double format used in almost all modern implementations of C and C++.

3.1 Numbers | 31

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

3.1.1 Integer Literals

In a JavaScript program, a base-10 integer is written as a sequence of digits. For
example:
0

3
10000000

In addition to base-10 integer literals, JavaScript recognizes hexadecimal (base-16) val-
ues. A hexadecimal literal begins with “0x” or “0X”, followed by a string of hexadecimal
digits. A hexadecimal digit is one of the digits 0 through 9 or the letters a (or A) through
f (or F), which represent values 10 through 15. Here are examples of hexadecimal in-
teger literals:

oxff // 15%16 + 15 = 255 (base 10)
OXCAFE911

Although the ECMAScript standard does not support them, some implementations of
JavaScript allow you to specify integer literals in octal (base-8) format. An octal literal
begins with the digit 0 and is followed by a sequence of digits, each between 0 and 7.
For example:

0377 // 3*64 + 7*%8 + 7 = 255 (base 10)
Since some implementations support octal literals and some do not, you should never
write an integer literal with a leading zero; you cannot know in this case whether an

implementation will interpret it as an octal or decimal value. In the strict mode of
ECMAScript 5 (§5.7.3), octal literals are explicitly forbidden.

3.1.2 Floating-Point Literals

Floating-point literals can have a decimal point; they use the traditional syntax for real
numbers. A real value is represented as the integral part of the number, followed by a
decimal point and the fractional part of the number.

Floating-point literals may also be represented using exponential notation: a real num-
ber followed by the letter e (or E), followed by an optional plus or minus sign, followed
by an integer exponent. This notation represents the real number multiplied by 10 to
the power of the exponent.
More succinctly, the syntax is:

[digits][.digits][(E|e)[(+]-)]digits]

For example:

3.14

2345.789

.333333333333333333

6.02e23 // 6.02 x 10%

1.4738223E-32 // 1.4738223 x 10732

32 | Chapter3: Types, Values, and Variables

3.1.3 Arithmeticin JavaScript

JavaScript programs work with numbers using the arithmetic operators that the lan-
guage provides. These include + for addition, - for subtraction, * for multiplica-
tion, / for division, and % for modulo (remainder after division). Full details on these
and other operators can be found in Chapter 4.

In addition to these basic arithmetic operators, JavaScript supports more complex
mathematical operations through a set of functions and constants defined as properties
of the Math object:

Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value

Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number x where 0 <= x < 1.0
Math.PI // m: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // The square root of 3

Math.pow(3, 1/3) // The cube root of 3

Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10

Math.log(100)/Math.LN10 // Base 10 logarithm of 100
Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed

See the Math object in the reference section for complete details on all the mathematical
functions supported by JavaScript.

Arithmetic in JavaScript does not raise errors in cases of overflow, underflow, or divi-
sion by zero. When the result of a numeric operation is larger than the largest repre-
sentable number (overflow), the resultis a special infinity value, which JavaScript prints
as Infinity. Similarly, when a negative value becomes larger than the largest repre-
sentable negative number, the result is negative infinity, printed as -Infinity. The in-
finite values behave as you would expect: adding, subtracting, multiplying, or dividing
them by anything results in an infinite value (possibly with the sign reversed).

Underflow occurs when the result of a numeric operation is closer to zero than the
smallest representable number. In this case, JavaScript returns 0. If underflow occurs
from a negative number, JavaScript returns a special value known as “negative zero.”
This value is almost completely indistinguishable from regular zero and JavaScript
programmers rarely need to detect it.

Division by zero is not an error in JavaScript: it simply returns infinity or negative
infinity. There is one exception, however: zero divided by zero does not have a well-
defined value, and the result of this operation is the special not-a-number value, printed
as NaN. NaN also arises if you attempt to divide infinity by infinity, or take the square

3.1 Numbers | 33

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

root of a negative number or use arithmetic operators with non-numeric operands that
cannot be converted to numbers.

JavaScript predefines global variables Infinity and NaN to hold the positive infinity and
not-a-number value. In ECMAScript 3, these are read/write values and can be changed.
ECMAScript 5 corrects this and makes the values read-only. The Number object defines
alternatives that are read-only even in ECMAScript 3. Here are some examples:

Infinity // A read/write variable initialized to Infinity.
Number .POSITIVE INFINITY // Same value, read-only.

1/0 // This is also the same value.

Number .MAX_VALUE + 1 // This also evaluates to Infinity.

Number .NEGATIVE INFINITY // These expressions are negative infinity.
-Infinity

-1/0

-Number .MAX VALUE - 1

NaN // A read/write variable initialized to NaN.
Numbexr . NaN // A read-only property holding the same value.
0/0 // Evaluates to NaN.

Number .MIN_VALUE/2 // Underflow: evaluates to 0

-Number .MIN_VALUE/2 // Negative zero

-1/Infinity // Also negative 0

-0

The not-a-number value has one unusual feature in JavaScript: it does not compare
equal to any other value, including itself. This means that you can’t write x == NaN to
determine whether the value of a variable x is NaN. Instead, you should write x != x.
That expression will be true if, and only if, x is NaN. The function isNaN() is similar. It
returns true if its argument is NaN, or if that argument is a non-numeric value such as
a string or an object. The related function isFinite() returns true if its argument is a
number other than NaN, Infinity, or -Infinity.

The negative zero value is also somewhat unusual. It compares equal (even using Java-
Script’s strict equality test) to positive zero, which means that the two values are almost
indistinguishable, except when used as a divisor:

var zero = 0; // Regular zero

var negz = -0; // Negative zero

zero === negz // => true: zero and negative zero are equal
1/zero === 1/negz // => false: infinity and -infinity are not equal

3.1.4 Binary Floating-Point and Rounding Errors

There are infinitely many real numbers, but only a finite number of them
(18437736874454810627, to be exact) can be represented exactly by the JavaScript
floating-point format. This means that when you’re working with real numbers in
JavaScript, the representation of the number will often be an approximation of the
actual number.

34 | Chapter3: Types, Values, and Variables

The TEEE-754 floating-point representation used by JavaScript (and just about every
other modern programming language) is a binary representation, which can exactly
represent fractions like 1/2, 1/8, and 1/1024. Unfortunately, the fractions we use most
commonly (especially when performing financial calculations) are decimal fractions
1/10, 1/100, and so on. Binary floating-point representations cannot exactly represent
numbers as simple as 0.1.

JavaScript numbers have plenty of precision and can approximate 0.1 very closely. But
the fact that this number cannot be represented exactly can lead to problems. Consider
this code:

// thirty cents minus 20 cents

. // twenty cents minus 10 cents

X ==y // => false: the two values are not the same!
// => false: .3-.2 is not equal to .1

// => true: .2-.1 is equal to .1

<
QU
=
x
n
NoWw
!
= N
<

<
QU
=
<
n
-

Because of rounding error, the difference between the approximations of .3 and .2 is
not exactly the same as the difference between the approximations of .2 and .1. It is
important to understand that this problem is not specific to JavaScript: it affects any
programming language that uses binary floating-point numbers. Also, note that the
values x and y in the code above are very close to each other and to the correct value.
The computed values are adequate for almost any purpose: the problem arises when
we attempt to compare values for equality.

A future version of JavaScript may support a decimal numeric type that avoids these
rounding issues. Until then you might want to perform critical financial calculations
using scaled integers. For example, you might manipulate monetary values as integer
cents rather than fractional dollars.

3.1.5 Dates and Times

Core JavaScript includes a Date() constructor for creating objects that represent dates
and times. These Date objects have methods that provide an API for simple date com-
putations. Date objects are not a fundamental type like numbers are. This section
presents a quick tutorial on working with dates. Full details can be found in the refer-
ence section:

var then = new Date(2010, 0, 1); // The 1st day of the 1st month of 2010

var later = new Date(2010, 0, 1, // Same day, at 5:10:30pm, local time
17, 10, 30);

var now = new Date(); // The current date and time

var elapsed = now - then; // Date subtraction: interval in milliseconds
later.getFullYear() // => 2010

later.getMonth() // => 0: zero-based months

later.getDate() // => 1: one-based days

later.getDay() // => 5: day of week. 0 is Sunday 5 is Friday.
later.getHours() // => 17: 5pm, local time

later.getUTCHours() // hours in UTC time; depends on timezone

3.1 Numbers | 35

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

later.toString() // => "Fri Jan 01 2010 17:10:30 GMT-0800 (PST)"
later.toUTCString() // => "Sat, 02 Jan 2010 01:10:30 GMT"
later.tolocaleDateString() // => "01/01/2010"

later.tolocaleTimeString() // => "05:10:30 PM"

later.toISOString() // => "2010-01-02T01:10:30.000Z"; ES5 only

3.2 Text

A string is an immutable ordered sequence of 16-bit values, each of which typically
represents a Unicode character—strings are JavaScript’s type for representing text. The
length of a string is the number of 16-bit values it contains. JavaScript’s strings (and its
arrays) use zero-based indexing: the first 16-bit value is at position 0, the second at
position 1 and so on. The empty string is the string of length 0. JavaScript does not have
a special type that represents a single element of a string. To represent a single 16-bit
value, simply use a string that has a length of 1.

Characters, Codepoints, and JavaScript Strings

JavaScript uses the UTF-16 encoding of the Unicode character set, and JavaScript
strings are sequences of unsigned 16-bit values. The most commonly used Unicode
characters (those from the “basic multilingual plane”) have codepoints that fit in
16 bits and can be represented by a single element of a string. Unicode characters whose
codepoints do not fit in 16 bits are encoded following the rules of UTF-16 as a sequence
(known as a “surrogate pair”) of two 16-bit values. This means that a JavaScript string
of length 2 (two 16-bit values) might represent only a single Unicode character:

var p = "n"; // m is 1 character with 16-bit codepoint 0x03cO

var e = "e"; // e is 1 character with 17-bit codepoint 0x1d452

p.length // => 1: p consists of 1 16-bit element
e.length // => 2: UTF-16 encoding of e is 2 16-bit values: "\ud835\udc52"

The various string-manipulation methods defined by JavaScript operate on 16-bit val-
ues, not on characters. They do not treat surrogate pairs specially, perform no normal-
ization of the string, and do not even ensure that a string is well-formed UTF-16.

3.2.1 String Literals

To include a string literally in a JavaScript program, simply enclose the characters of
the string within a matched pair of single or double quotes (' or "). Double-quote
characters may be contained within strings delimited by single-quote characters, and
single-quote characters may be contained within strings delimited by double quotes.
Here are examples of string literals:

nn

// The empty string: it has zero characters

'testing’

"3.14"

"name="myform"'

"Wouldn't you prefer 0'Reilly's book?"

"This string\nhas two lines"

"m is the ratio of a circle's circumference to its diameter"

36 | Chapter3: Types, Values, and Variables

In ECMAScript 3, string literals must be written on a single line. In ECMAScript 5,
however, you can break a string literal across multiple lines by ending each line but the
last with a backslash (\). Neither the backslash nor the line terminator that follow it
are part of the string literal. If you need to include a newline character in a string literal,
use the character sequence \n (documented below):

"two\nlines" // A string representing 2 lines written on one line

"one\ // A one-line string written on 3 lines. ECMAScript 5 only.

long\

line"
Note that when you use single quotes to delimit your strings, you must be careful with
English contractions and possessives, such as can’t and O’Reilly’s. Since the apostrophe
is the same as the single-quote character, you must use the backslash character (\) to
“escape” any apostrophes that appear in single-quoted strings (escapes are explained
in the next section).

In client-side JavaScript programming, JavaScript code may contain strings of HTML
code, and HTML code may contain strings of JavaScript code. Like JavaScript, HTML
uses either single or double quotes to delimit its strings. Thus, when combining Java-
Script and HTML, it is a good idea to use one style of quotes for JavaScript and the
other style for HTML. In the following example, the string “Thank you” is single-
quoted within a JavaScript expression, which is then double-quoted within an
HTML event-handler attribute:

<button onclick="alert('Thank you')">Click Me</button>

3.2.2 Escape Sequences in String Literals

The backslash character (\) has a special purpose in JavaScript strings. Combined with
the character that follows it, it represents a character that is not otherwise representable
within the string. For example, \n is an escape sequence that represents a newline
character.

Another example, mentioned above, is the \ ' escape, which represents the single quote
(or apostrophe) character. This escape sequence is useful when you need to include an
apostrophe in a string literal that is contained within single quotes. You can see why
these are called escape sequences: the backslash allows you to escape from the usual
interpretation of the single-quote character. Instead of using it to mark the end of the
string, you use it as an apostrophe:

'You\'re right, it can\'t be a quote'

Table 3-1 lists the JavaScript escape sequences and the characters they represent. Two
escape sequences are generic and can be used to represent any character by specifying
its Latin-1 or Unicode character code as a hexadecimal number. For example, the se-
quence \xA9 represents the copyright symbol, which has the Latin-1 encoding given by
the hexadecimal number A9. Similarly, the \u escape represents an arbitrary Unicode
character specified by four hexadecimal digits; \u03co represents the character ,
for example.

3.2 Text | 37

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Table 3-1. JavaScript escape sequences

Sequence Character represented

\o The NUL character (\uoooo)

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Newline (\uoooA)

\v Vertical tab (\uoooB)

\f Form feed (\uoooC)

\r Carriage return (\uoooD)

\" Double quote (\u0022)

\' Apostrophe or single quote (\u0027)
\\ Backslash (\uoo5C)

\x XX The Latin-1 character specified by the two hexadecimal digits XX

\uXXxx The Unicode character specified by the four hexadecimal digits XXXX

If the \ character precedes any character other than those shown in Table 3-1, the
backslash is simply ignored (although future versions of the language may, of course,
define new escape sequences). For example, \# is the same as #. Finally, as noted above,
ECMAScript 5 allows a backslash before a line break to break a string literal across
multiple lines.

3.2.3 Working with Strings

One of the built-in features of JavaScript is the ability to concatenate strings. If you use
the + operator with numbers, it adds them. But if you use this operator on strings, it
joins them by appending the second to the first. For example:

msg = "Hello, " + "world"; // Produces the string "Hello, world"

greeting = "Welcome to my blog," + + name;

To determine the length of a string—the number of 16-bit values it contains—use the
length property of the string. Determine the length of a string s like this:
s.length

In addition to this length property, there are a number of methods you can invoke on
strings (as always, see the reference section for complete details):

var s = "hello, world" // Start with some text.

s.charAt(0) // => "h": the first character.
s.charAt(s.length-1) // => "d": the last character.
s.substring(1,4) // => "ell": the 2nd, 3rd and 4th characters.
s.slice(1,4) // => "ell": same thing

s.slice(-3) // => "rld": last 3 characters
s.index0f("1") // => 2: position of first letter 1.
s.lastIndex0f("1") // => 10: position of last letter 1.
s.index0f("1", 3) // => 3: position of first "1" at or after 3

38 | Chapter3: Types, Values, and Variables

s.split(", ") // => ["hello", "world"] split into substrings
s.replace("h", "H") // => "Hello, world": replaces all instances
s.toUpperCase() // => "HELLO, WORLD"

Remember that strings are immutable in JavaScript. Methods like replace() and
toUpperCase() return new strings: they do not modify the string on which they are
invoked.

In ECMAScript 5, strings can be treated like read-only arrays, and you can access in-
dividual characters (16-bit values) from a string using square brackets instead of the
charAt() method:

s = "hello, world";

s[o] // = "h"

s[s.length-1] // => "d"
Mozilla-based web browsers such as Firefox have allowed strings to be indexed in this
way for a long time. Most modern browsers (with the notable exception of IE) followed
Moxzilla’s lead even before this feature was standardized in ECMAScript 5.

3.2.4 Pattern Matching

JavaScript defines a RegExp() constructor for creating objects that represent textual
patterns. These patterns are described with regular expressions, and JavaScript adopts
Perl’s syntax for regular expressions. Both strings and RegExp objects have methods
for performing pattern matching and search-and-replace operations using regular
expressions.

RegExps are not one of the fundamental types of JavaScript. Like Dates, they are simply
a specialized kind of object, with a useful API. The regular expression grammar is com-
plex and the API is nontrivial. They are documented in detail in Chapter 10. Because
RegExps are powerful and commonly used for text processing, however, this section
provides a brief overview.

Although RegExps are not one of the fundamental data types in the language, they do
have a literal syntax and can be encoded directly into JavaScript programs. Text be-
tween a pair of slashes constitutes a regular expression literal. The second slash in the
pair can also be followed by one or more letters, which modify the meaning of the
pattern. For example:

/AHTML/ // Match the letters H T M L at the start of a string

/[1-9][0-9]*/ // Match a non-zero digit, followed by any # of digits
/\bjavascript\b/i // Match "javascript" as a word, case-insensitive

RegExp objects define a number of useful methods, and strings also have methods that
accept RegExp arguments. For example:

var text = "testing: 1, 2, 3"; // Sample text

var pattern = /\d+/g // Matches all instances of one or more digits
pattern.test(text) // => true: a match exists
text.search(pattern) // => 9: position of first match
text.match(pattern) [/ => ["1", "2", "3"]: array of all matches

3.2 Text | 39

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

text.replace(pattern, "#"); // => "testing: #, #, #"
text.split(/\D+/); // =>["","1","2","3"]: split on non-digits

3.3 Boolean Values

A boolean value represents truth or falsehood, on or off, yes or no. There are only two
possible values of this type. The reserved words true and false evaluate to these
two values.

Boolean values are generally the result of comparisons you make in your JavaScript
programs. For example:

a==4

This code tests to see whether the value of the variable a is equal to the number 4. If it
is, the result of this comparison is the boolean value true. If a is not equal to 4, the result
of the comparison is false.

Boolean values are commonly used in JavaScript control structures. For example, the
if/else statement in JavaScript performs one action if a boolean value is true and
another action if the value is false. You usually combine a comparison that creates a
boolean value directly with a statement that uses it. The result looks like this:
if (a == 4)
b=>b+1;
else
a=a+1;

This code checks whether a equals 4. If so, it adds 1 to b; otherwise, it adds 1 to a.

As we’ll discuss in §3.8, any JavaScript value can be converted to a boolean value. The
following values convert to, and therefore work like, false:

undefined

null

0

-0

NaN

nn

// the empty string

All other values, including all objects (and arrays) convert to, and work like, true.
false, and the six values that convert to it, are sometimes called falsy values, and all
other values are called truthy. Any time JavaScript expects a boolean value, a falsy value
works like false and a truthy value works like true.

As an example, suppose that the variable o either holds an object or the value null. You
can test explicitly to see if 0 is non-null with an if statement like this:

if (o !== null) ...
The not-equal operator !== compares o to null and evaluates to either true or false.

But you can omit the comparison and instead rely on the fact that null is falsy and
objects are truthy:

40 | Chapter3: Types, Values, and Variables

if (o) ...

In the first case, the body of the if will be executed only if o is not null. The second
case is less strict: it will execute the body of the if only if o is not false or any falsy
value (such as null or undefined). Which if statement is appropriate for your program
really depends on what values you expect to be assigned to o. If you need to distinguish
null from 0 and "", then you should use an explicit comparison.

Boolean values have a toString() method that you can use to convert them to the strings
“true” or “false”, but they do not have any other useful methods. Despite the trivial
API, there are three important boolean operators.

The && operator performs the Boolean AND operation. It evaluates to a truthy value if
and only if both of its operands are truthy; it evaluates to a falsy value otherwise. The
| | operator is the Boolean OR operation: it evaluates to a truthy value if either one (or
both) of its operands is truthy and evaluates to a falsy value if both operands are falsy.
Finally, the unary ! operator performs the Boolean NOT operation: it evaluates to
true if its operand is falsy and evaluates to false if its operand is truthy. For example:

if ((x==08y==0) || !(z==0)) {
// x and y are both zero or z is non-zero
}

Full details on these operators are in §4.10.

3.4 null and undefined

null is a language keyword that evaluates to a special value that is usually used to
indicate the absence of a value. Using the typeof operator on null returns the string
“object”, indicating that null can be thought of as a special object value that indicates
“no object”. In practice, however, null is typically regarded as the sole member of its
own type, and it can be used to indicate “no value” for numbers and strings as well as
objects. Most programming languages have an equivalent to JavaScript’s null: you may
be familiar with it as null or nil.

JavaScript also has a second value that indicates absence of value. The undefined value
represents a deeper kind of absence. It is the value of variables that have not been
initialized and the value you get when you query the value of an object property or array
element that does not exist. The undefined value is also returned by functions that have
no return value, and the value of function parameters for which no argument is sup-
plied. undefined is a predefined global variable (not a language keyword like null) that
is initialized to the undefined value. In ECMAScript 3, undefined is a read/write vari-
able, and it can be set to any value. This error is corrected in ECMAScript 5 and
undefined is read-only in that version of the language. If you apply the typeof operator
to the undefined value, it returns “undefined”, indicating that this value is the sole
member of a special type.

3.4 null and undefined | 41

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Despite these differences, null and undefined both indicate an absence of value and
can often be used interchangeably. The equality operator == considers them to be equal.
(Use the strict equality operator === to distinguish them.) Both are falsy values—they
behave like false when a boolean value is required. Neither null nor undefined have
any properties or methods. In fact, using . or [] to access a property or method of these
values causes a TypeError.

You might consider undefined to represent a system-level, unexpected, or error-like
absence of value and null to represent program-level, normal, or expected absence of
value. If you need to assign one of these values to a variable or property or pass one of
these values to a function, null is almost always the right choice.

3.5 The Global Object

The sections above have explained JavaScript’s primitive types and values. Object
types—objects, arrays, and functions—are covered in chapters of their own later in this
book. But there is one very important object value that we must cover now. The global
object is a regular JavaScript object that serves a very important purpose: the properties
of this object are the globally defined symbols that are available to a JavaScript program.
When the JavaScript interpreter starts (or whenever a web browser loads a new page),
it creates a new global object and gives it an initial set of properties that define:

* global properties like undefined, Infinity, and NaN
» global functions like isNaN(), parseInt() (§3.8.2), and eval() (§4.12).

* constructor functions like Date(), RegExp(), String(), Object(), and Array()
§3.8.2)

+ global objects like Math and JSON (§6.9)

The initial properties of the global object are not reserved words, but they deserve to
be treated as if they are. §2.4.1 lists each of these properties. This chapter has already
described some of these global properties. Most of the others will be covered elsewhere
in this book. And you can look them all up by name in the core JavaScript reference
section, or look up the global object itself under the name “Global”. For client-side
JavaScript, the Window object defines other globals that you can look up in the client-
side reference section.

In top-level code—JavaScript code that is not part of a function—you can use the
JavaScript keyword this to refer to the global object:

var global = this; // Define a global variable to refer to the global object

In client-side JavaScript, the Window object serves as the global object for all JavaScript
code contained in the browser window it represents. This global Window object has a
self-referential window property that can be used instead of this to refer to the global
object. The Window object defines the core global properties, but it also defines quite
a few other globals that are specific to web browsers and client-side JavaScript.

42 | Chapter3: Types, Values, and Variables

When first created, the global object defines all of JavaScript’s predefined global values.
But this special object also holds program-defined globals as well. If your code declares
a global variable, that variable is a property of the global object. §3.10.2 explains this
in more detail.

3.6 Wrapper Objects

JavaScript objects are composite values: they are a collection of properties or named
values. We refer to the value of a property using the . notation. When the value of a
property is a function, we call it a method. To invoke the method m of an object o, we
write 0.m().

We’ve also seen that strings have properties and methods:

var s = "hello world!"; // A string
var word = s.substring(s.index0f(" ")+1, s.length); // Use string properties

Strings are not objects, though, so why do they have properties? Whenever you try to
refer to a property of a string s, JavaScript converts the string value to an object as if by
calling new String(s). This object inherits (see §6.2.2) string methods and is used to
resolve the property reference. Once the property has been resolved, the newly created
object is discarded. (Implementations are not required to actually create and discard
this transient object: they must behave as if they do, however.)

Numbers and booleans have methods for the same reason that strings do: a temporary
object is created using the Number() or Boolean() constructor, and the method is re-
solved using that temporary object. There are not wrapper objects for the null and
undefined values: any attempt to access a property of one of these values causes a
TypeError.

Consider the following code and think about what happens when it is executed:

var s = "test"; // Start with a string value.
s.len = 4; // Set a property on it.
var t = s.len; // Now query the property.

When you run this code, the value of t is undefined. The second line of code creates a
temporary String object, sets its len property to 4, and then discards that object. The
third line creates a new String object from the original (unmodified) string value and
then tries to read the len property. This property does not exist, and the expression
evaluates to undefined. This code demonstrates that strings, numbers, and boolean
values behave like objects when you try to read the value of a property (or method)
from them. But if you attempt to set the value of a property, that attempt is silently
ignored: the change is made on a temporary object and does not persist.

The temporary objects created when you access a property of a string, number, or
boolean are known as wrapper objects, and it may occasionally be necessary to distin-
guish a string value from a String object or a number or boolean value from a Number
or Boolean object. Usually, however, wrapper objects can be considered an

3.6 Wrapper Objects | 43

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

implementation detail and you don’t have to think about them. You just need to know
that string, number, and boolean values differ from objects in that their properties are
read-only and that you can’t define new properties on them.

Note that it is possible (but almost never necessary or useful) to explicitly create wrap-
per objects, by invoking the String(), Number (), or Boolean() constructors:

var s = "test", n =1, b = true; // A string, number, and boolean value.

var S = new String(s); // A String object
var N = new Number(n); // A Number object
var B = new Boolean(b); // A Boolean object

JavaScript converts wrapper objects into the wrapped primitive value as necessary, so
the objects S, N, and B above usually, but not always, behave just like the values s, n,
and b. The == equality operator treats a value and its wrapper object as equal, but you
can distinguish them with the === strict equality operator. The typeof operator will also
show you the difference between a primitive value and its wrapper object.

3.7 Immutable Primitive Values and Mutable Object
References

There is a fundamental difference in JavaScript between primitive values (undefined,
null, booleans, numbers, and strings) and objects (including arrays and functions).
Primitives are immutable: there is no way to change (or “mutate”) a primitive value.
This is obvious for numbers and booleans—it doesn’t even make sense to change the
value of a number. It is not so obvious for strings, however. Since strings are like arrays
of characters, you might expect to be able to alter the character at any specified index.
In fact, JavaScript does not allow this, and all string methods that appear to return a
modified string are, in fact, returning a new string value. For example:
var s = "hello"; // Start with some lowercase text

s.toUpperCase(); // Returns "HELLO", but doesn't alter s
s // => "hello": the original string has not changed

Primitives are also compared by value: two values are the same only if they have the
same value. This sounds circular for numbers, booleans, null, and undefined: there is
no other way that they could be compared. Again, however, it is not so obvious for
strings. If two distinct string values are compared, JavaScript treats them as equal if,
and only if, they have the same length and if the character at each index is the same.

Objects are different than primitives. First, they are mutable—their values can change:

var o = { x:1 }; // Start with an object

0.X = 2; // Mutate it by changing the value of a property
0.y = 3; // Mutate it again by adding a new property

var a = [1,2,3] // Arrays are also mutable

a[o] = o; // Change the value of an array element

a[3] = 4; // Add a new array element

44 | Chapter3: Types, Values, and Variables

Objects are not compared by value: two objects are not equal even if they have the same
properties and values. And two arrays are not equal even if they have the same elements
in the same order:

var o = {x:1}, p = {x:1}; // Two objects with the same properties

0 ===p // => false: distinct objects are never equal
var a = [], b = []; // Two distinct, empty arrays

a===>b // => false: distinct arrays are never equal

Objects are sometimes called reference types to distinguish them from JavaScript’s
primitive types. Using this terminology, object values are references, and we say that
objects are compared by reference: two object values are the same if and only if they
refer to the same underlying object.

var a = []; // The variable a refers to an empty array.

var b = a; // Now b refers to the same array.
b[1; // Mutate the array referred to by variable b.
a

0] =
[0] // => 1: the change is also visible through variable a.

===b // => true: a and b refer to the same object, so they are equal.

As you can see from the code above, assigning an object (or array) to a variable simply
assigns the reference: it does not create a new copy of the object. If you want to make
a new copy of an object or array, you must explicitly copy the properties of the object

or the elements of the array. This example demonstrates using a for loop (§85.5.3):

var a = ['a','b",'c']; // An array we want to copy
var b = []; // A distinct array we'll copy into
for(var i = 0; i < a.length; i++) { // For each index of a[]

b[i] = a[i]; // Copy an element of a into b

Similarly, if we want to compare two distinct objects or arrays, we must compare their
properties or elements. This code defines a function to compare two arrays:

function equalArrays(a,b) {
if (a.length != b.length) return false; // Different-size arrays not equal

for(var i = 0; i < a.length; i++) // Loop through all elements
if (a[i] !'== b[i]) return false; // If any differ, arrays not equal
return true; // Otherwise they are equal

3.8 Type Conversions

JavaScript is very flexible about the types of values it requires. We’ve seen this for
booleans: when JavaScript expects a boolean value, you may supply a value of any type,
and JavaScript will convert it as needed. Some values (“truthy” values) convert to
true and others (“falsy” values) convert to false. The same is true for other types: if
JavaScript wants a string, it will convert whatever value you give it to a string. If Java-
Script wants a number, it will try to convert the value you give it to a number (or to
NaN if it cannot perform a meaningful conversion). Some examples:

10 + " objects"” // => "10 objects". Number 10 converts to a string
okt // => 28: both strings convert to numbers

3.8 Type Conversions | 45

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

n,n n,n

var n = 1 - "x"; // => NaN: string "x can't convert to a number
n+ " objects" // => "NaN objects": NaN converts to string "NaN"

Table 3-2 summarizes how values convert from one type to another in JavaScript. Bold
entries in the table highlight conversions that you may find surprising. Empty cells
indicate that no conversion is necessary and none is performed.

Table 3-2. JavaScript type conversions

Value Converted to:

String Number Boolean Object
undefined "undefined" NaN false throws TypeError
null "null" 0 false throws TypeError
true "true" 1 new Boolean(true)
false "false" 0 new Boolean(false)
"" (empty string) 0 false new String("")
"1.2" (nonempty, numeric) 1.2 true new String("1.2")
"one" (nonempty, non-numeric) NaN true new String("one"
0 "0" false new Number (0)
-0 "o" false new Number(-0)
NaN "NaN" false new Number (NaN)
Infinity "Infinity" true new Number(Infinity)
-Infinity "-Infinity" true new Number(-Infinity)
1 (finite, non-zero) 1" true new Number (1)
{} (any object) see§3.8.3 see§3.83 true
[] (empty array) " 0 true
[9] (1 numeric elt) "9" 9 true
['a"] (any other array) usejoin() method ~ NaN true
function(){} (any function) see§3.8.3 NaN true

The primitive-to-primitive conversions shown in the table are relatively
straightforward. Conversion to boolean was already discussed in §3.3. Conversion to
strings is well-defined for all primitive values. Conversion to numbers is just a little
trickier. Strings that can be parsed as numbers convert to those numbers. Leading and
trailing spaces are allowed, but any leading or trailing nonspace characters that are not
part of a numeric literal cause the string-to-number conversion to produce NaN. Some
numeric conversions may seem surprising: true converts to 1, and false and the empty
string "" convert to 0.

Primitive-to-object conversions are straightforward: primitive values convert to their
wrapper object (§3.6) as if by calling the String(), Number (), or Boolean() constructor.

46 | Chapter3: Types, Values, and Variables

The exceptions are null and undefined: any attempt to use these values where an object
is expected raises a TypeError exception rather than performing a conversion.

Object-to-primitive conversion is somewhat more complicated, and it is the subject of
§3.8.3.

3.8.1 Conversions and Equality

Because JavaScript can convert values flexibly, its == equality operator is also flexible
with its notion of equality. All of the following comparisons are true, for example:

null == undefined // These two values are treated as equal.

"0" == 0 // String converts to a number before comparing.
0 == false // Boolean converts to number before comparing.
"0" == false // Both operands convert to numbers before comparing.

§4.9.1 explains exactly what conversions are performed by the == operator in order to
determine whether two values should be considered equal, and it also describes the
strict equality operator === that does not perform conversions when testing for equality.

Keep in mind that convertibility of one value to another does not imply equality of
those two values. If undefined is used where a boolean value is expected, for example,
it will convert to false. But this does not mean that undefined == false. JavaScript
operators and statements expect values of various types, and perform conversions to
those types. The if statement converts undefined to false, but the == operator never
attempts to convert its operands to booleans.

3.8.2 Explicit Conversions

Although JavaScript performs many type conversions automatically, you may some-
times need to perform an explicit conversion, or you may prefer to make the conversions
explicit to keep your code clearer.

The simplest way to perform an explicit type conversion is to use the Boolean(),
Number (), String(), or Object() functions. We’ve already seen these functions as con-
structors for wrapper objects (in §3.6). When invoked without the new operator, how-

ever, they work as conversion functions and perform the conversions summarized in
Table 3-2:

Number ("3") /] => 3

String(false) // => "false" Or use false.toString()
Boolean([]) // => true

Object(3) // => new Number(3)

Note that any value other than null or undefined has a toString() method and the
result of this method is usually the same as that returned by the String() function. Also
note that Table 3-2 shows a TypeError if you attempt to convert null or undefined to
an object. The Object() function does not throw an exception in this case: instead it
simply returns a newly created empty object.

3.8 Type Conversions | 47

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Certain JavaScript operators perform implicit type conversions, and are sometimes
used for the purposes of type conversion. If one operand of the + operator is a string,
it converts the other one to a string. The unary + operator converts its operand to a
number. And the unary ! operator converts its operand to a boolean and negates it.
These facts lead to the following type conversion idioms that you may see in some code:

X+ "" // Same as String(x)
+X // Same as Number(x). You may also see x-0
1x // Same as Boolean(x). Note double !

Formatting and parsing numbers are common tasks in computer programs and Java-
Script has specialized functions and methods that provide more precise control over
number-to-string and string-to-number conversions.

The toString() method defined by the Number class accepts an optional argument
that specifies a radix, or base, for the conversion. If you do not specify the argument,
the conversion is done in base 10. However, you can also convert numbers in other
bases (between 2 and 36). For example:

var n = 17;

binary string = n.toString(2); // Evaluates to "10001"

octal string = "0" + n.toString(8); // Evaluates to "021"
hex_string = "0x" + n.toString(16); // Evaluates to "ox11"

When working with financial or scientific data, you may want to convert numbers to
strings in ways that give you control over the number of decimal places or the number
of significant digits in the output, or you may want to control whether exponential
notation is used. The Number class defines three methods for these kinds of number-
to-string conversions. toFixed() converts a number to a string with a specified number
of digits after the decimal point. It never uses exponential notation. toExponential()
converts a number to a string using exponential notation, with one digit before the
decimal point and a specified number of digits after the decimal point (which means
that the number of significant digits is one larger than the value you specify). toPreci
sion() converts a number to a string with the number of significant digits you specify.
It uses exponential notation if the number of significant digits is not large enough to
display the entire integer portion of the number. Note that all three methods round the
trailing digits or pad with zeros as appropriate. Consider the following examples:

var n = 123456.789;

.toFixed(0); // "123457"
.toFixed(2); // "123456.79"
.toFixed(5); // "123456.78900"

n
n
n
n.toExponential(1); // "1.2e+5"
n.toExponential(3); // "1.235e+5"
n.toPrecision(4); // "1.235e+5"
n.toPrecision(7); // "123456.8"
n.toPrecision(10); // "123456.7890"

If you pass a string to the Number () conversion function, it attempts to parse that string
as an integer or floating-point literal. That function only works for base-10 integers,
and does not allow trailing characters that are not part of the literal. The parseInt()

48 | Chapter3: Types, Values, and Variables

and parseFloat() functions (these are global functions, not methods of any class) are
more flexible. parseInt() parses only integers, while parseFloat() parses both integers
and floating-point numbers. If a string begins with “0x” or “0X”, parseInt() interprets
it as a hexadecimal number.? Both parseInt() and parseFloat() skip leading white-
space, parse as many numeric characters as they can, and ignore anything that follows.
If the first nonspace character is not part of a valid numeric literal, they return NaN:

parselnt("3 blind mice") /=3
parseFloat(" 3.14 meters") // => 3.14

parseInt("-12.34") /] => -12

parseInt("oxFF") // => 255

parseInt("oxff") // => 255

parseInt("-0XFF") // => -255

parseFloat(".1") // => 0.1

parseInt("0.1") // =>0

parseInt(".1") // => NaN: integers can't start with "."
parseFloat("$72.47"); // => NaN: numbers can't start with "$"

parseInt() accepts an optional second argument specifying the radix (base) of the
number to be parsed. Legal values are between 2 and 36. For example:

parseInt("11", 2); /] =>3 (1%2 + 1)
parseInt("ff", 16); // => 255 (15*%16 + 15)
parseInt("zz", 36); // => 1295 (35*%36 + 35)
parseInt("077", 8); /] => 63 (7*8 + 7)
parseInt("077", 10); // => 77 (7%10 + 7)

3.8.3 Object to Primitive Conversions

Object-to-boolean conversions are trivial: all objects (including arrays and functions)
convert to true. This is so even for wrapper objects: new Boolean(false) is an object
rather than a primitive value, and so it converts to true.

Object-to-string and object-to-number conversions are performed by invoking a meth-
od of the object to be converted. This is complicated by the fact that JavaScript objects
have two different methods that perform conversions, and it is also complicated by
some special cases described below. Note that the string and number conversion rules
described here apply only to native objects. Host objects (defined by web browsers, for
example) can convert to numbers and strings according to their own algorithms.

All objects inherit two conversion methods. The first is called toString(), and its job
is to return a string representation of the object. The default toString() method does
not return a very interesting value (though we’ll find it useful in Example 6-4):

({x:1, y:2}).toString() // => "[object Object]"

2. In ECMAScript 3, parseInt() may parse a string that begins with “0” (but not “0x” or “0X”) as an octal
number or as a decimal number. Because the behavior is unspecified, you should never use parseInt()
to parse numbers with leading zeros, unless you explicitly specify the radix to be used! In ECMAScript 5,
parseInt() only parses octal numbers if you explicitly pass 8 as the second argument.

3.8 Type Conversions | 49

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Many classes define more specific versions of the toString() method. The toString()
method of the Array class, for example, converts each array element to a string and
joins the resulting strings together with commas in between. The toString() method
of the Function class returns an implementation-defined representation of a function.
In practice, implementations usually convert user-defined functions to strings of Java-
Script source code. The Date class defines a toString() method that returns a human-
readable (and JavaScript-parsable) date and time string. The RegExp class defines a
toString() method that converts RegExp objects to a string that looks like a RegExp
literal:

[1,2,3].toString() /] =>"1,2,3"
(function(x) { f(x); }).toString() // => "function(x) {\n f(x);\n}"
/\d+/g.toString() /1 => "/\\d+/g"

new Date(2010,0,1).toString() // => "Fri Jan 01 2010 00:00:00 GMT-0800 (PST)"

The other object conversion function is called value0f(). The job of this method is less
well-defined: it is supposed to convert an object to a primitive value that represents the
object, if any such primitive value exists. Objects are compound values, and most ob-
jects cannot really be represented by a single primitive value, so the default value0f()
method simply returns the object itself rather than returning a primitive. Wrapper
classes define valueOf() methods that return the wrapped primitive value. Arrays,
functions, and regular expressions simply inherit the default method. Calling
valueOf() for instances of these types simply returns the object itself. The Date class
defines a valueOf() method that returns the date in its internal representation: the
number of milliseconds since January 1, 1970:

var d = new Date(2010, 0, 1); // January 1st, 2010, (Pacific time)
d.valueOf() // => 1262332800000

With the toString() and value0f() methods explained, we can now cover object-to-
string and object-to-number conversions. Do note, however, that there are some special
cases in which JavaScript performs a different object-to-primitive conversion. These
special cases are covered at the end of this section.

To convert an object to a string, JavaScript takes these steps:

* If the object has a toString() method, JavaScript calls it. If it returns a primitive
value, JavaScript converts that value to a string (if it is not already a string) and
returns the result of that conversion. Note that primitive-to-string conversions are
all well-defined in Table 3-2.

* IftheobjecthasnotoString() method, orif that method does not return a primitive
value, then JavaScript looks for a value0f() method. If the method exists, Java-
Script calls it. If the return value is a primitive, JavaScript converts that value to a
string (if it is not already) and returns the converted value.

* Otherwise, JavaScript cannot obtain a primitive value from either toString() or
valueOf(), so it throws a TypeError.

50 | Chapter3: Types, Values, and Variables

To convert an object to a number, JavaScript does the same thing, but it tries the
valueOf() method first:

* If the object has a valueOf() method that returns a primitive value, JavaScript con-
verts (if necessary) that primitive value to a number and returns the result.

e Otherwise, if the object has a toString() method that returns a primitive value,
JavaScript converts and returns the value.

* Otherwise, JavaScript throws a TypeError.

The details of this object-to-number conversion explain why an empty array converts
to the number 0 and why an array with a single element may also convert to a number.
Arrays inherit the default value0f() method that returns an object rather than a prim-
itive value, so array-to-number conversion relies on the toString() method. Empty
arrays convert to the empty string. And the empty string converts to the number 0. An
array with a single element converts to the same string that that one element does. If
an array contains a single number, that number is converted to a string, and then back
to a number.

The + operator in JavaScript performs numeric addition and string concatenation. If
either of its operands is an object, JavaScript converts the object using a special object-
to-primitive conversion rather than the object-to-number conversion used by the other
arithmetic operators. The == equality operator is similar. If asked to compare an object
with a primitive value, it converts the object using the object-to-primitive conversion.

The object-to-primitive conversion used by + and == includes a special case for Date
objects. The Date class is the only predefined core JavaScript type that defines mean-
ingful conversions to both strings and numbers. The object-to-primitive conversion is
basically an object-to-number conversion (valueof() first) for all objects that are not
dates, and an object-to-string conversion (toString() first) for Date objects. The con-
version is not exactly the same as those explained above, however: the primitive value
returned by valueOf() or toString() is used directly without being forced to a number
or string.

The < operator and the other relational operators perform object-to-primitive conver-
sions like == does, but without the special case for Date objects: any object is converted
by trying value0f() first and then toString(). Whatever primitive value is obtained is
used directly, without being further converted to a number or string.

+, ==, |=and the relational operators are the only ones that perform this special kind of
string-to-primitive conversions. Other operators convert more explicitly to a specified
type and do not have any special case for Date objects. The - operator, for example,
converts its operands to numbers. The following code demonstrates the behavior of
+, -, ==, and > with Date objects:

var now = new Date(); // Create a Date object
typeof (now + 1) // => "string": + converts dates to strings
typeof (now - 1) // => "number": - uses object-to-number conversion

3.8 Type Conversions | 51

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

now == now.toString() // => true: implicit and explicit string conversions
now > (now -1) // => true: > converts a Date to a number

3.9 Variable Declaration

Before you use a variable in a JavaScript program, you should declare it. Variables are
declared with the var keyword, like this:

var i;
var sum;

You can also declare multiple variables with the same var keyword:

var i, sum;

And you can combine variable declaration with variable initialization:

var message = "hello";

var i =0, j=0, k =0;
If you don’t specify an initial value for a variable with the var statement, the variable
is declared, but its value is undefined until your code stores a value into it.

Note that the var statement can also appear as part of the for and for/in loops (intro-
duced in Chapter 5), allowing you to succinctly declare the loop variable as part of the
loop syntax itself. For example:

for(var i = 0; i < 10; i++) console.log(i);

for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);

for(var p in o) console.log(p);
If you’re used to statically typed languages such as C or Java, you will have noticed that
there is no type associated with JavaScript’s variable declarations. A JavaScript variable
can hold a value of any type. For example, it is perfectly legal in JavaScript to assign a
number to a variable and then later assign a string to that variable:

var i = 10;
i= "ten";

3.9.1 Repeated and Omitted Declarations

It is legal and harmless to declare a variable more than once with the var statement. If
the repeated declaration has an initializer, it acts as if it were simply an assignment
statement.

If you attempt to read the value of an undeclared variable, JavaScript generates an error.
In ECMAScript 5 strict mode (§85.7.3), it is also an error to assign a value to an unde-
clared variable. Historically, however, and in non-strict mode, if you assign a value to
an undeclared variable, JavaScript actually creates that variable as a property of the
global object, and it works much like (but not exactly the same as, see §3.10.2) a prop-
erly declared global variable. This means that you can get away with leaving your global
variables undeclared. This is a bad habit and a source of bugs, however, and you should
always declare your variables with var.

52 | Chapter3: Types, Values, and Variables

3.10 Variable Scope

The scope of a variable is the region of your program source code in which it is defined.
A global variable has global scope; it is defined everywhere in your JavaScript code. On
the other hand, variables declared within a function are defined only within the body
of the function. They are local variables and have local scope. Function parameters also
count as local variables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence over a global variable
with the same name. If you declare a local variable or function parameter with the same
name as a global variable, you effectively hide the global variable:

var scope = "global"; // Declare a global variable
function checkscope() {
var scope = "local"; // Declare a local variable with the same name
return scope; // Return the local value, not the global one
}
checkscope() // => "local"

Although you can get away with not using the var statement when you write code in
the global scope, you must always use var to declare local variables. Consider what
happens if you don’t:

scope = "global"; // Declare a global variable, even without var.

function checkscope2() {
scope = "local"; // Oops! We just changed the global variable.
myscope = "local"; // This implicitly declares a new global variable.
return [scope, myscope]; // Return two values.

}

checkscope2() // => ["local", "local"]: has side effects!

scope // => "local": global variable has changed.

myscope // => "local": global namespace cluttered up.

Function definitions can be nested. Each function has its own local scope, so it is pos-
sible to have several nested layers of local scope. For example:

var scope = "global scope"; // A global variable
function checkscope() {
var scope = "local scope"; // A local variable

function nested() {
var scope = "nested scope"; // A nested scope of local variables
return scope; // Return the value in scope here

return nested();

checkscope() // => "nested scope"

3.10.1 Function Scope and Hoisting

In some C-like programming languages, each block of code within curly braces has its
own scope, and variables are not visible outside of the block in which they are declared.
This is called block scope, and JavaScript does not have it. Instead, JavaScript uses

3.10 Variable Scope | 53

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

function scope: variables are visible within the function in which they are defined and
within any functions that are nested within that function.

In the following code, the variables i, j, and k are declared in different spots, but all
have the same scope—all three are defined throughout the body of the function:

function test(o) {

var i = 0; // i is defined throughout function
if (typeof o == "object") {
var j = 0; // j is defined everywhere, not just block
for(var k=0; k < 10; k++) { // k is defined everywhere, not just loop
console.log(k); // print numbers 0 through 9
}
console.log(k); // k is still defined: prints 10
}
console.log(j); // j is defined, but may not be initialized

}

JavaScript’s function scope means that all variables declared within a function are visi-
ble throughout the body of the function. Curiously, this means that variables are even
visible before they are declared. This feature of JavaScript is informally known as hoist-
ing: JavaScript code behaves as if all variable declarations in a function (but not any
associated assignments) are “hoisted” to the top of the function. Consider the following
code:
var scope = "global";
function f() {
console.log(scope); // Prints "undefined", not "global"
var scope = "local"; // Variable initialized here, but defined everywhere
console.log(scope); // Prints "local"

}

You might think that the first line of the function would print “global”, because the
var statement declaring the local variable has not yet been executed. Because of the
rules of function scope, however, this is not what happens. The local variable is defined
throughout the body of the function, which means the global variable by the same name
is hidden throughout the function. Although the local variable is defined throughout,
itis not actually initialized until the var statement is executed. Thus, the function above
is equivalent to the following, in which the variable declaration is “hoisted” to the top
and the variable initialization is left where it is:

function f() {

var scope; // Local variable is declared at the top of the function
console.log(scope); // It exists here, but still has "undefined" value
scope = "local"; // Now we initialize it and give it a value

console.log(scope); // And here it has the value we expect

}

In programming languages with block scope, it is generally good programming practice
to declare variables as close as possible to where they are used and with the narrowest
possible scope. Since JavaScript does not have block scope, some programmers make
a point of declaring all their variables at the top of the function, rather than trying to

54 | Chapter3: Types, Values, and Variables

declare them closer to the point at which they are used. This technique makes their
source code accurately reflect the true scope of the variables.

3.10.2 Variables As Properties

When you declare a global JavaScript variable, what you are actually doing is defining
a property of the global object (§3.5). If you use var to declare the variable, the property
that is created is nonconfigurable (see §6.7), which means that it cannot be deleted
with the delete operator. We’ve already noted that if you’re not using strict mode and
you assign a value to an undeclared variable, JavaScript automatically creates a global
variable for you. Variables created in this way are regular, configurable properties of
the global object and they can be deleted:

var truevar = 1; // A properly declared global variable, nondeletable.
fakevar = 2; // Creates a deletable property of the global object.
this.fakevar2 = 3; // This does the same thing.

delete truevar // => false: variable not deleted

delete fakevar // => true: variable deleted

delete this.fakevar2 // => true: variable deleted

JavaScript global variables are properties of the global object, and this is mandated by
the ECMAScript specification. There is no such requirement for local variables, but
you can imagine local variables as the properties of an object associated with each
function invocation. The ECMAScript 3 specification referred to this object as the “call
object,” and the ECMAScript 5 specification callsita “declarative environment record.”
JavaScript allows us to refer to the global object with the this keyword, but it does not
give us any way to refer to the object in which local variables are stored. The precise
nature of these objects that hold local variables is an implementation detail that need
not concern us. The notion that these local variable objects exist, however, is an im-
portant one, and it is developed further in the next section.

3.10.3 The Scope Chain

JavaScript is a lexically scoped language: the scope of a variable can be thought of as
the set of source code lines for which the variable is defined. Global variables are defined
throughout the program. Local variables are defined throughout the function in which
they are declared, and also within any functions nested within that function.

If we think of local variables as properties of some kind of implementation-defined
object, then there is another way to think about variable scope. Every chunk of Java-
Script code (global code or functions) has a scope chain associated with it. This scope
chain is a list or chain of objects that defines the variables that are “in scope” for that
code. When JavaScript needs to look up the value of a variable x (a process called
variable resolution), it starts by looking at the first object in the chain. If that object has
a property named x, the value of that property is used. If the first object does not have
a property named x, JavaScript continues the search with the next object in the chain.
If the second object does not have a property named x, the search moves on to the next

3.10 Variable Scope | 55

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

object, and so on. If x is not a property of any of the objects in the scope chain, then
x is not in scope for that code, and a ReferenceError occurs.

In top-level JavaScript code (i.e., code not contained within any function definitions),
the scope chain consists of a single object, the global object. In a non-nested function,
the scope chain consists of two objects. The first is the object that defines the function’s
parameters and local variables, and the second is the global object. In a nested function,
the scope chain has three or more objects. It is important to understand how this chain
of objects is created. When a function is defined, it stores the scope chain then in effect.
When that function is invoked, it creates a new object to store its local variables, and
adds that new object to the stored scope chain to create a new, longer, chain that
represents the scope for that function invocation. This becomes more interesting for
nested functions because each time the outer function is called, the inner function is
defined again. Since the scope chain differs on each invocation of the outer function,
the inner function will be subtly different each time it is defined—the code of the inner
function will be identical on each invocation of the outer function, but the scope chain
associated with that code will be different.

This notion of a scope chain is helpful for understanding the with statement (§5.7.1)
and is crucial for understanding closures (§8.6).

56 | Chapter3: Types, Values, and Variables

CHAPTER 4
Expressions and Operators

An expression is a phrase of JavaScript that a JavaScript interpreter can evaluate to
produce a value. A constant embedded literally in your program is a very simple kind
of expression. A variable name is also a simple expression that evaluates to whatever
value has been assigned to that variable. Complex expressions are built from simpler
expressions. An array access expression, for example, consists of one expression that
evaluates to an array followed by an open square bracket, an expression that evaluates
to an integer, and a close square bracket. This new, more complex expression evaluates
to the value stored at the specified index of the specified array. Similarly, a function
invocation expression consists of one expression that evaluates to a function object and
zero or more additional expressions that are used as the arguments to the function.

The most common way to build a complex expression out of simpler expressions is
with an operator. An operator combines the values of its operands (usually two of them)
in some way and evaluates to a new value. The multiplication operator * is a simple
example. The expression x * y evaluates to the product of the values of the expressions
x and y. For simplicity, we sometimes say that an operator returns a value rather than
“evaluates to” a value.

This chapter documents all of JavaScript’s operators, and it also explains expressions
(such as array indexing and function invocation) that do not use operators. If you al-
ready know another programming language that uses C-style syntax, you’ll find that
the syntax of most of JavaScript’s expressions and operators is already familiar to you.

4.1 Primary Expressions

The simplest expressions, known as primary expressions, are those that stand alone—
they do not include any simpler expressions. Primary expressions in JavaScript are
constant or literal values, certain language keywords, and variable references.

57

Literals are constant values that are embedded directly in your program. They look like
these:
1.23 // A number literal

"hello" // A string literal
/pattern/ // A regular expression literal

JavaScript syntax for number literals was covered in §3.1. String literals were docu-
mented in §3.2. The regular expression literal syntax was introduced in §3.2.4 and will
be documented in detail in Chapter 10.

Some of JavaScript’s reserved words are primary expressions:

true // Evalutes to the boolean true value
false // Evaluates to the boolean false value
null // Evaluates to the null value

this // Evaluates to the "current" object

We learned about true, false, and null in §3.3 and §3.4. Unlike the other keywords,
this isnota constant—it evaluates to different values in different places in the program.
The this keyword is used in object-oriented programming. Within the body of a meth-
od, this evaluates to the object on which the method was invoked. See §4.5, Chap-
ter 8 (especially §8.2.2), and Chapter 9 for more on this.

Finally, the third type of primary expression is the bare variable reference:

i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
undefined // undefined is a global variable, not a keyword like null.

When any identifier appears by itself in a program, JavaScript assumes it is a variable
and looks up its value. If no variable with that name exists, the expression evaluates to
the undefined value. In the strict mode of ECMAScript 5, however, an attempt to eval-
uate a nonexistent variable throws a ReferenceError instead.

4.2 Object and Array Initializers

Object and array initializers are expressions whose value is a newly created object or
array. These initializer expressions are sometimes called “object literals” and “array
literals.” Unlike true literals, however, they are not primary expressions, because they
include a number of subexpressions that specify property and element values. Array
initializers have a slightly simpler syntax, and we’ll begin with those.

An array initializer is a comma-separated list of expressions contained within square
brackets. The value of an array initializer is a newly created array. The elements of this
new array are initialized to the values of the comma-separated expressions:

[] // An empty array: no expressions inside brackets means no elements
[1+2,3+4] // A 2-element array. First element is 3, second is 7

The element expressions in an array initializer can themselves be array initializers,
which means that these expressions can create nested arrays:

58 | Chapter4: Expressionsand Operators

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

The element expressions in an array initializer are evaluated each time the array ini-
tializer is evaluated. This means that the value of an array initializer expression may be
different each time it is evaluated.

Undefined elements can be included in an array literal by simply omitting a value be-
tween commas. For example, the following array contains five elements, including three
undefined elements:

var sparseArray = [1,,,,5];

A single trailing comma is allowed after the last expression in an array initializer and
does not create an undefined element.

Object initializer expressions are like array initializer expressions, but the square brack-
ets are replaced by curly brackets, and each subexpression is prefixed with a property
name and a colon:

var p = { x:2.3, y:-1.2 }; // An object with 2 properties

var q = {}; // An empty object with no properties
g.x = 2.3; q.y = -1.2; // Now q has the same properties as p

Object literals can be nested. For example:

var rectangle = { upperLeft: { x: 2, y: 2 },
lowerRight: { x: 4, y: 5} };

The expressions in an object initializer are evaluated each time the object initializer is
evaluated, and they need not have constant values: they can be arbitrary JavaScript
expressions. Also, the property names in object literals may be strings rather than iden-
tifiers (this is useful to specify property names that are reserved words or are otherwise
not legal identifiers):

var side = 1;

var square = { "upperLeft": { x: p.x, y: p.y },

'lowerRight': { x: p.x + side, y: p.y + side}};

We'll see object and array initializers again in Chapters 6 and 7.

4.3 Function Definition Expressions

A function definition expression defines a JavaScript function, and the value of such
an expression is the newly defined function. In a sense, a function definition expression
is a “function literal” in the same way that an object initializer is an “object literal.” A
function definition expression typically consists of the keyword function followed by
a comma-separated list of zero or more identifiers (the parameter names) in parentheses
and a block of JavaScript code (the function body) in curly braces. For example:

// This function returns the square of the value passed to it.
var square = function(x) { return x * x; }

4.3 Function Definition Expressions | 59

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

A function definition expression can also include a name for the function. Functions
can also be defined using a function statement rather than a function expression. Com-
plete details on function definition are in Chapter 8.

4.4 Property Access Expressions

A property access expression evaluates to the value of an object property or an array
element. JavaScript defines two syntaxes for property access:

expression . identifier
expression [expression]

The first style of property access is an expression followed by a period and an identifier.
The expression specifies the object, and the identifier specifies the name of the desired
property. The second style of property access follows the first expression (the object or
array) with another expression in square brackets. This second expression specifies the
name of the desired property of the index of the desired array element. Here are some
concrete examples:

var o = {x:1,y:{z:3}}; // An example object

var a = [0,4,[5,6]]; // An example array that contains the object
0.X // => 1: property x of expression o

0.y.z // => 3: property z of expression o.y

o["x"] // => 1: property x of object o

a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[o].x // => 1: property x of expression a[0]

With either type of property access expression, the expression before the . or [is first
evaluated. If the value is null or undefined, the expression throws a TypeError, since
these are the two JavaScript values that cannot have properties. If the value is not an
object (or array), it is converted to one (see §3.6). If the object expression is followed
by a dot and an identifier, the value of the property named by that identifier is looked
up and becomes the overall value of the expression. If the object expression is followed
by another expression in square brackets, that second expression is evaluated and con-
verted to a string. The overall value of the expression is then the value of the property
named by that string. In either case, if the named property does not exist, then the value
of the property access expression is undefined.

The .identifier syntax is the simpler of the two property access options, but notice
that it can only be used when the property you want to access has a name that is a legal
identifier, and when you know then name when you write the program. If the property
name is a reserved word or includes spaces or punctuation characters, or when it is a
number (for arrays), you must use the square bracket notation. Square brackets are also
used when the property name is not static but is itself the result of a computation (see
86.2.1 for an example).

Objects and their properties are covered in detail in Chapter 6, and arrays and their
elements are covered in Chapter 7.

60 | Chapter4: Expressionsand Operators

4.5 Invocation Expressions

An invocation expression is JavaScript’s syntax for calling (or executing) a function or
method. It starts with a function expression that identifies the function to be called.
The function expression is followed by an open parenthesis, a comma-separated list of
zero or more argument expressions, and a close parenthesis. Some examples:

f(0) // f is the function expression; 0 is the argument expression.
Math.max(x,y,z) // Math.max is the function; x, y and z are the arguments.
a.sort() // a.sort is the function; there are no arguments.

When an invocation expression is evaluated, the function expression is evaluated first,
and then the argument expressions are evaluated to produce a list of argument values.
If the value of the function expression is not a callable object, a TypeError is thrown.
(All functions are callable. Host objects may also be callable even if they are not func-
tions. This distinction is explored in §8.7.7.) Next, the argument values are assigned,
in order, to the parameter names specified when the function was defined, and then
the body of the function is executed. If the function uses a return statement to return
avalue, then that value becomes the value of the invocation expression. Otherwise, the
value of the invocation expression is undefined. Complete details on function invoca-
tion, including an explanation of what happens when the number of argument expres-
sions does not match the number of parameters in the function definition, are in
Chapter 8.

Every invocation expression includes a pair of parentheses and an expression before
the open parenthesis. If that expression is a property access expression, then the invo-
cation is known as a method invocation. In method invocations, the object or array that
is the subject of the property access becomes the value of the this parameter while the
body of the function is being executed. This enables an object-oriented programming
paradigm in which functions (known by their OO name, “methods”) operate on the
object of which they are part. See Chapter 9 for details.

Invocation expressions that are not method invocations normally use the global object
as the value of the this keyword. In ECMAScript 5, however, functions that are defined
in strict mode are invoked with undefined as their this value rather than the global
object. See §5.7.3 for more on strict mode.

4.6 Object Creation Expressions

An object creation expression creates a new object and invokes a function (called a
constructor) to initialize the properties of that object. Object creation expressions are
like invocation expressions except that they are prefixed with the keyword new:

new Object()
new Point(2,3)

4.6 Object Creation Expressions | 61

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If no arguments are passed to the constructor function in an object creation expression,
the empty pair of parentheses can be omitted:

new Object
new Date

When an object creation expression is evaluated, JavaScript first creates a new empty
object, just like the one created by the object initializer {}. Next, it invokes the specified
function with the specified arguments, passing the new object as the value of the
this keyword. The function can then use this to initialize the properties of the newly
created object. Functions written for use as constructors do not return a value, and the
value of the object creation expression is the newly created and initialized object. If a
constructor does return an object value, that value becomes the value of the object
creation expression and the newly created object is discarded.

Constructors are explained in more detail in Chapter 9.

4.7 Operator Overview

Operators are used for JavaScript’s arithmetic expressions, comparison expressions,
logical expressions, assignment expressions, and more. Table 4-1 summarizes the op-
erators and serves as a convenient reference.

Note that most operators are represented by punctuation characters such as + and =.
Some, however, are represented by keywords such as delete and instanceof. Keyword
operators are regular operators, just like those expressed with punctuation; they simply
have a less succinct syntax.

Table 4-1 is organized by operator precedence. The operators listed first have higher
precedence than those listed last. Operators separated by a horizontal line have different
precedence levels. The column labeled A gives the operator associativity, which can be
L (left-to-right) or R (right-to-left), and the column N specifies the number of operands.
The column labeled Types lists the expected types of the operands and (after the -
symbol) the result type for the operator. The subsections that follow the table explain
the concepts of precedence, associativity, and operand type. The operators themselves
are individually documented following that discussion.

Table 4-1. JavaScript operators

Operator Operation A N Types

++ Pre- or post-increment R 1 Ival-num

-- Pre- or post-decrement R 1 Ival-num

- Negate number R 1 num-num
+ Convert to number R 1 num—num
~ Invert bits R 1 int—int

! Invert boolean value R 1 bool-hool

62 | Chapter4: Expressionsand Operators

Operator Operation A N Types e
delete Remove a property R 1 Ival=bool %
typeof Determine type of operand R 1 anyostr ;“"‘
void Return undefined value R 1 any-undef £
* /% Multiply, divide, remainder L 2 num,num-num

+ - Add, subtract L 2 numnum-num

+ Concatenate strings L 2 strstrostr

<< Shift left L 2 intint—int

>> Shift right with sign extension L 2 intint—int

>>> Shift right with zero extension L 2 intint—int

<, <=>,>= Compare in numeric order L 2 num,num—bool

<, <=, 0= Compare in alphabetic order L 2 strstr—bool

instanceof Test object class L 2 objfunc—=bool

in Test whether property exists L 2 strobj—bool

== Test for equality L 2 anyany—bool

1= Test for inequality L 2 anyany—hool

=== Test for strict equality L 2 anyany—hool

l== Test for strict inequality L 2 anyany—bool

& Compute bitwise AND L 2 intint—int

A Compute bitwise XOR L 2 intint—int

| Compute bitwise OR L 2 intint>int

&& Compute logical AND L 2 anyany—any

| Compute logical OR L 2 anyany—any

?2: Choose 2nd or 3rd operand R 3 boolany,any—any

= Assign to a variable or property R 2 Ivalany—any

*= [=,%=,+=, Operateandassign R 2 Ivalany—any

= 8=, 7=, | =

<<=, 002, 550=

s Discard 1st operand, returnsecond L 2 any,any—any

4.7.1 Number of Operands

Operators can be categorized based on the number of operands they expect (their
arity). Most JavaScript operators, like the * multiplication operator, are binary opera-
tors that combine two expressions into a single, more complex expression. That is, they
expect two operands. JavaScript also supports a number of unary operators, which
convert a single expression into a single, more complex expression. The - operator in

4.7 Operator Overview | 63

the expression -x is a unary operator that performs the operation of negation on the
operand x. Finally, JavaScript supports one ternary operator, the conditional opera-
tor ?:, which combines three expressions into a single expression.

4.7.2 Operand and Result Type

Some operators work on values of any type, but most expect their operands to be of a
specific type, and most operators return (or evaluate to) a value of a specific type. The
Types column in Table 4-1 specifies operand types (before the arrow) and result type
(after the arrow) for the operators.

JavaScript operators usually convert the type (see §3.8) of their operands as needed.
The multiplication operator * expects numeric operands, but the expression "3" *
"5" is legal because JavaScript can convert the operands to numbers. The value of this
expression is the number 15, not the string “15”, of course. Remember also that every
JavaScript value is either “truthy” or “falsy,” so operators that expect boolean operands
will work with an operand of any type.

Some operators behave differently depending on the type of the operands used with
them. Most notably, the + operator adds numeric operands but concatenates string
operands. Similarly, the comparison operators such as < perform comparison in nu-
merical or alphabetical order depending on the type of the operands. The descriptions
of individual operators explain their type-dependencies and specify what type conver-
sions they perform.

4.7.3 Lvalues

Notice that the assignment operators and a few of the other operators listed in
Table 4-1 expect an operand of type 1val. lvalue is a historical term that means “an
expression that can legally appear on the left side of an assignment expression.” In
JavaScript, variables, properties of objects, and elements of arrays are lvalues. The
ECMAScript specification allows built-in functions to return lvalues but does not define
any functions that behave that way.

4.7.4 Operator Side Effects

Evaluating a simple expression like 2 * 3 never affects the state of your program, and
any future computation your program performs will be unaffected by that evaluation.
Some expressions, however, have side effects, and their evaluation may affect the result
of future evaluations. The assignment operators are the most obvious example: if you
assign a value to a variable or property, that changes the value of any expression that
uses that variable or property. The ++ and -- increment and decrement operators are
similar, since they perform an implicit assignment. The delete operator also has side
effects: deleting a property is like (but not the same as) assigning undefined to the

property.

64 | Chapter4: Expressionsand Operators

No other JavaScript operators have side effects, but function invocation and object
creation expressions will have side effects if any of the operators used in the function
or constructor body have side effects.

4.7.5 Operator Precedence

The operators listed in Table 4-1 are arranged in order from high precedence to low
precedence, with horizontal lines separating groups of operators at the same precedence
level. Operator precedence controls the order in which operations are performed. Op-
erators with higher precedence (nearer the top of the table) are performed before those
with lower precedence (nearer to the bottom).

Consider the following expression:
W = X + y*z;

The multiplication operator * has a higher precedence than the addition operator +, so
the multiplication is performed before the addition. Furthermore, the assignment op-
erator = has the lowest precedence, so the assignment is performed after all the opera-
tions on the right side are completed.

Operator precedence can be overridden with the explicit use of parentheses. To force
the addition in the previous example to be performed first, write:

W= y)h;

Note that property access and invocation expressions have higher precedence than any
of the operators listed in Table 4-1. Consider this expression:

typeof my.functions[x](y)

Although typeof is one of the highest-priority operators, the typeof operation is per-
formed on the result of the two property accesses and the function invocation.

In practice, if you are at all unsure about the precedence of your operators, the simplest
thing to do is to use parentheses to make the evaluation order explicit. The rules that
are important to know are these: multiplication and division are performed before ad-
dition and subtraction, and assignment has very low precedence and is almost always
performed last.

4.7.6 Operator Associativity

In Table 4-1, the column labeled A specifies the associativity of the operator. A value
of L specifies left-to-right associativity, and a value of R specifies right-to-left associa-
tivity. The associativity of an operator specifies the order in which operations of the
same precedence are performed. Left-to-right associativity means that operations are
performed from left to right. For example, the subtraction operator has left-to-right
associativity, so:

W=X-Yy-12z;

4.7 Operator Overview | 65

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

is the same as:
w=((x-y)-2);

On the other hand, the following expressions:
X = -y

W=X-=Y=12;
q = atb:c?d:e?f:g;

are equivalent to:

x=~(-y)w=(x=(y=2);9-=

a?b:(c?d:(e?f:g));
because the unary, assignment, and ternary conditional operators have right-to-left
associativity.

4.7.7 Order of Evaluation

Operator precedence and associativity specify the order in which operations are
performed in a complex expression, but they do not specify the order in which the
subexpressions are evaluated. JavaScript always evaluates expressions in strictly left-
to-right order. In the expression w=x+y*z, for example, the subexpression w is evaluated
first, followed by x, y, and z. Then the values of y and z are multiplied, added to the
value of x, and assigned to the variable or property specified by expression w. Adding
parentheses to the expressions can change the relative order of the multiplication, ad-
dition, and assignment, but not the left-to-right order of evaluation.

Order of evaluation only makes a difference if any of the expressions being evaluated
has side effects that affect the value of another expression. If expression x increments
a variable that is used by expression z, then the fact that x is evaluated before z is
important.

4.8 Arithmetic Expressions

This section covers the operators that perform arithmetic or other numerical manipu-
lations on their operands. The multiplication, division, and subtraction operators are
straightforward and are covered first. The addition operator gets a subsection of its
own because it can also perform string concatenation and has some unusual type con-
version rules. The unary operators and the bitwise operators are also covered in sub-
sections of their own.

The basic arithmetic operators are * (multiplication), / (division), % (modulo: remainder
after division), + (addition), and - (subtraction). As noted, we’ll discuss the + operator
in a section of its own. The other basic four operators simply evaluate their operands,
convert the values to numbers if necessary, and then compute the product, quotient,
remainder, or difference between the values. Non-numeric operands that cannot con-
vert to numbers convert to the NaN value. If either operand is (or converts to) NaN, the
result of the operation is also NaN.

66 | Chapterd4: Expressionsand Operators

The / operator divides its first operand by its second. If you are used to programming
languages that distinguish between integer and floating-point numbers, you might ex-
pect to get an integer result when you divide one integer by another. In JavaScript,
however, all numbers are floating-point, so all division operations have floating-point
results: 5/2 evaluates to 2.5, not 2. Division by zero yields positive or negative infinity,
while 0/0 evaluates to NaN: neither of these cases raises an error.

The % operator computes the first operand modulo the second operand. In other words,
it returns the remainder after whole-number division of the first operand by the second
operand. The sign of the result is the same as the sign of the first operand. For example,
5 % 2 evaluates to 1 and -5 % 2 evaluates to -1.

While the modulo operator is typically used with integer operands, it also works for
floating-point values. For example, 6.5 % 2.1 evaluates to 0.2.

4.8.1 The + Operator

The binary + operator adds numeric operands or concatenates string operands:

1+2 /] =>3
"hello" + " " + "there" // => "hello there"
II1II + "2" // => II12II

When the values of both operands are numbers, or are both strings, then it is obvious
what the + operator does. In any other case, however, type conversion is necessary, and
the operation to be performed depends on the conversion performed. The conversions
rules for + give priority to string concatenation: if either of the operands is a string or
an object that converts to a string, the other operand is converted to a string and con-
catenation is performed. Addition is performed only if neither operand is string-like.

Technically, the + operator behaves like this:

* If either of its operand values is an object, it converts it to a primitive using the
object-to-primitive algorithm described in §3.8.3: Date objects are converted by
their toString() method, and all other objects are converted via value0f(), if that
method returns a primitive value. Most objects do not have a useful value0f()
method, however, so they are converted via toString() as well.

* After object-to-primitive conversion, if either operand is a string, the other is con-
verted to a string and concatenation is performed.

* Otherwise, both operands are converted to numbers (or to NaN) and addition is
performed.

Here are some examples:

1+2 // => 3: addition

"1t 2" // => "12": concatenation

"1" + 2 // => "12": concatenation after number-to-string

1+ {} // => "1[object Object]": concatenation after object-to-string

true + true // => 2: addition after boolean-to-number

4.8 Arithmetic Expressions | 67

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

2 + null // => 2: addition after null converts to 0
2 + undefined // => NaN: addition after undefined converts to NaN

Finally, it is important to note that when the + operator is used with strings and num-
bers, it may not be associative. That is, the result may depend on the order in which
operations are performed. For example:

1+ 2+ " blind mice"; // => "3 blind mice"
1+ (2 + " blind mice"); // => "12 blind mice"

The first line has no parentheses, and the + operator has left-to-right associativity, so
the two numbers are added first, and their sum is concatenated with the string. In the
second line, parentheses alter this order of operations: the number 2 is concatenated
with the string to produce a new string. Then the number 1 is concatenated with the
new string to produce the final result.

4.8.2 Unary Arithmetic Operators

Unary operators modify the value of a single operand to produce a new value. In Java-
Script, the unary operators all have high precedence and are all right-associative. The
arithmetic unary operators described in this section (+, -, ++, and --) all convert their
single operand to a number, if necessary. Note that the punctuation characters +
and - are used as both unary and binary operators.

The unary arithmetic operators are the following:

Unary plus (+)
The unary plus operator converts its operand to a number (or to NaN) and returns
that converted value. When used with an operand that is already a number, it
doesn’t do anything.

Unary minus (-)
When - is used as a unary operator, it converts its operand to a number, if necessary,
and then changes the sign of the result.

Increment (++)
The ++ operator increments (i.e., adds 1 to) its single operand, which must be an
Ivalue (a variable, an element of an array, or a property of an object). The operator
converts its operand to a number, adds 1 to that number, and assigns the incre-
mented value back into the variable, element, or property.

The return value of the ++ operator depends on its position relative to the operand.
When used before the operand, where it is known as the pre-increment operator,
it increments the operand and evaluates to the incremented value of that
operand. When used after the operand, where it is known as the post-increment
operator, it increments its operand but evaluates to the unincremented value of that
operand. Consider the difference between these two lines of code:

var i = 1, j = ++i; // i and j are both 2
1,]

var 1 =1, j = i++; //1iis 2, jis1

68 | Chapter4: Expressionsand Operators

Note that the expression ++x is not always the same as x=x+1. The ++ operator never
performs string concatenation: it always converts its operand to a number and
increments it. If x is the string “1”, ++x is the number 2, but x+1 is the string “11”.

Also note that, because of JavaScript’s automatic semicolon insertion, you cannot
insert a line break between the post-increment operator and the operand that pre-
cedes it. If you do so, JavaScript will treat the operand as a complete statement by
itself and insert a semicolon before it.

This operator, in both its pre- and post-increment forms, is most commonly used
to increment a counter that controls a for loop (§5.5.3).

Decrement (--)

The -- operator expects an lvalue operand. It converts the value of the operand to
a number, subtracts 1, and assigns the decremented value back to the operand.
Like the ++ operator, the return value of -- depends on its position relative to the
operand. When used before the operand, it decrements and returns the decremen-
ted value. When used after the operand, it decrements the operand but returns the
undecremented value. When used after its operand, no line break is allowed be-
tween the operand and the operator.

4.8.3 Bitwise Operators

The bitwise operators perform low-level manipulation of the bits in the binary repre-
sentation of numbers. Although they do not perform traditional arithmetic operations,
they are categorized as arithmetic operators here because they operate on numeric
operands and return a numeric value. These operators are not commonly used in Java-
Script programming, and if you are not familiar with the binary representation of dec-
imal integers, you can probably skip this section. Four of these operators perform Boo-
lean algebra on the individual bits of the operands, behaving as if each bit in each
operand were a boolean value (1=true, O=false). The other three bitwise operators are
used to shift bits left and right.

The bitwise operators expect integer operands and behave as if those values were rep-
resented as 32-bit integers rather than 64-bit floating-point values. These operators
convert their operands to numbers, if necessary, and then coerce the numeric values to
32-bit integers by dropping any fractional part and any bits beyond the 32nd. The shift
operators require a right-side operand between 0 and 31. After converting this operand
to an unsigned 32-bit integer, they drop any bits beyond the 5th, which yields a number
in the appropriate range. Surprisingly, NaN, Infinity, and -Infinity all convert to O
when used as operands of these bitwise operators.

Bitwise AND (&)
The & operator performs a Boolean AND operation on each bit of its integer argu-
ments. A bit is set in the result only if the corresponding bit is set in both operands.
For example, 0x1234 & 0x00FF evaluates to 0x0034.

4.8 Arithmetic Expressions | 69

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

Bitwise OR (|)
The | operator performs a Boolean OR operation on each bit of its integer argu-
ments. A bit is set in the result if the corresponding bit is set in one or both of the
operands. For example, 0x1234 | 0x00FF evaluates to 0x12FF.

Bitwise XOR (*)
The * operator performs a Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one is true or operand two is
true, but not both. A bit is set in this operation’s result if a corresponding bit is set
in one (but not both) of the two operands. For example, 0xFF00 » 0xFOF0 evaluates
to 0OXOFFO.

Bitwise NOT (~)
The ~ operator is a unary operator that appears before its single integer operand.
It operates by reversing all bits in the operand. Because of the way signed integers
are represented in JavaScript, applying the ~ operator to a value is equivalent to
changing its sign and subtracting 1. For example ~0x0F evaluates to 0xFFFFFFFO,
or -16.

Shift left (<<)
The << operator moves all bits in its first operand to the left by the number of places
specified in the second operand, which should be an integer between 0 and 31. For
example, in the operation a << 1, the first bit (the ones bit) of a becomes the second
bit (the twos bit), the second bit of a becomes the third, etc. A zero is used for the
new first bit, and the value of the 32nd bit is lost. Shifting a value left by one position
is equivalent to multiplying by 2, shifting two positions is equivalent to multiplying
by 4, and so on. For example, 7 << 2 evaluates to 28.

Shift right with sign (>>)
The >> operator moves all bits in its first operand to the right by the number of
places specified in the second operand (an integer between 0 and 31). Bits that are
shifted off the right are lost. The bits filled in on the left depend on the sign bit of
the original operand, in order to preserve the sign of the result. If the first operand
is positive, the result has zeros placed in the high bits; if the first operand is negative,
the result has ones placed in the high bits. Shifting a value right one place is equiv-
alent to dividing by 2 (discarding the remainder), shifting right two places is equiv-
alent to integer division by 4, and so on. For example, 7 >> 1 evaluates to 3, and
-7 >> 1 evaluates to -4.

Shift right with zero fill (>>>)
The >>> operator is just like the >> operator, except that the bits shifted in on the
left are always zero, regardless of the sign of the first operand. For example, -1 >>
4 evaluates to -1, but -1 >>> 4 evaluates to OXOFFFFFFF.

70 | Chapter4: Expressionsand Operators

4.9 Relational Expressions

This section describes JavaScript’s relational operators. These operators test for a re-
lationship (such as “equals,” “less than,” or “property of”) between two values and
return true or false depending on whether that relationship exists. Relational expres-
sions always evaluate to a boolean value, and that value is often used to control the
flow of program execution in if, while, and for statements (see Chapter 5). The
subsections that follow document the equality and inequality operators, the compari-
son operators, and JavaScript’s other two relational operators, in and instanceof.

4.9.1 Equality and Inequality Operators

The == and === operators check whether two values are the same, using two different
definitions of sameness. Both operators accept operands of any type, and both return
true if their operands are the same and false if they are different. The === operator is
known as the strict equality operator (or sometimes the identity operator), and it checks
whether its two operands are “identical” using a strict definition of sameness. The ==
operator is known as the equality operator; it checks whether its two operands are
“equal” using a more relaxed definition of sameness that allows type conversions.

JavaScript supports =, ==, and === operators. Be sure you understand the differences
between these assignment, equality, and strict equality operators, and be careful to use
the correct one when coding! Although it is tempting to read all three operators
“equals,” it may help to reduce confusion if you read “gets or is assigned” for =, “is
equal to” for ==, and “is strictly equal to” for ===.

The != and !== operators test for the exact opposite of the == and === operators.
The !=inequality operator returns false if two values are equal to each other according
to == and returns true otherwise. The !== operator returns false if two values are strictly
equal to each other and returns true otherwise. As you'll see in §4.10, the ! operator
computes the Boolean NOT operation. This makes it easy to remember that !=
and !== stand for “not equal to” and “not strictly equal to.”

As mentioned in §3.7, JavaScript objects are compared by reference, not by value. An
object is equal to itself, but not to any other object. If two distinct objects have the same
number of properties, with the same names and values, they are still not equal. Two
arrays that have the same elements in the same order are not equal to each other.

The strict equality operator === evaluates its operands, and then compares the two
values as follows, performing no type conversion:

¢ If the two values have different types, they are not equal.

* If both values are null or both values are undefined, they are equal.

* If both values are the boolean value true or both are the boolean value false, they
are equal.

4.9 Relational Expressions | 71

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If one or both values is NaN, they are not equal. The NaN value is never equal to any
other value, including itself! To check whether a value x is NaN, use x !== x. NaN is
the only value of x for which this expression will be true.

If both values are numbers and have the same value, they are equal. If one value is
0 and the other is -0, they are also equal.

If both values are strings and contain exactly the same 16-bit values (see the sidebar
in §3.2) in the same positions, they are equal. If the strings differ in length or
content, they are not equal. Two strings may have the same meaning and the same
visual appearance, but still be encoded using different sequences of 16-bit values.
JavaScript performs no Unicode normalization, and a pair of strings like this
are not considered equal to the === or to the == operators. See
String.localeCompare() in Part III for another way to compare strings.

If both values refer to the same object, array, or function, they are equal. If they
refer to different objects they are not equal, even if both objects have identical
properties.

The equality operator == is like the strict equality operator, but it is less strict. If the
values of the two operands are not the same type, it attempts some type conversions
and tries the comparison again:

If the two values have the same type, test them for strict equality as described above.
If they are strictly equal, they are equal. If they are not strictly equal, they are not
equal.

If the two values do not have the same type, the == operator may still consider them
equal. Use the following rules and type conversions to check for equality:

—1If one value is null and the other is undefined, they are equal.

—If one value is a number and the other is a string, convert the string to a number
and try the comparison again, using the converted value.

— If either value is true, convert it to 1 and try the comparison again. If either value
is false, convert it to 0 and try the comparison again.

—If one value is an object and the other is a number or string, convert the object
to a primitive using the algorithm described in §3.8.3 and try the comparison
again. An object is converted to a primitive value by either its toString() method
or its valueOf() method. The built-in classes of core JavaScript attempt
valueOf() conversion before toString() conversion, except for the Date class,
which performs toString() conversion. Objects that are not part of core Java-
Script may convert themselves to primitive values in an implementation-defined
way.

— Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

"1" == true

72 | Chapter4: Expressionsand Operators

This expression evaluates to true, indicating that these very different-looking values
are in fact equal. The boolean value true is first converted to the number 1, and the
comparison is done again. Next, the string "1" is converted to the number 1. Since both
values are now the same, the comparison returns true.

4.9.2 Comparison Operators

The comparison operators test the relative order (numerical or alphabetics) of their two
operands:

Less than (<)
The < operator evaluates to true if its first operand is less than its second operand;
otherwise it evaluates to false.

Greater than (>)
The > operator evaluates to true if its first operand is greater than its second op-
erand; otherwise it evaluates to false.

Less than or equal (<=)
The <= operator evaluates to true if its first operand is less than or equal to its
second operand; otherwise it evaluates to false.

Greater than or equal (>=)
The >= operator evaluates to true if its first operand is greater than or equal to its
second operand; otherwise it evaluates to false.

The operands of these comparison operators may be of any type. Comparison can be
performed only on numbers and strings, however, so operands that are not numbers
or strings are converted. Comparison and conversion occur as follows:

* Ifeither operand evaluates to an object, that object is converted to a primitive value
as described at the end of §3.8.3: if its value0f () method returns a primitive value,
that value is used. Otherwise, the return value of its toString() method is used.

* If, after any required object-to-primitive conversion, both operands are strings, the
two strings are compared, using alphabetical order, where “alphabetical order” is
defined by the numerical order of the 16-bit Unicode values that make up the
strings.

* If, after object-to-primitive conversion, at least one operand is not a string, both
operands are converted to numbers and compared numerically. 0 and -0 are con-
sidered equal. Infinity is larger than any number other than itself, and
-Infinity is smaller than any number other than itself. If either operand is (or
converts to) NaN, then the comparison operator always returns false.

Remember that JavaScript strings are sequences of 16-bit integer values, and that string
comparison is just a numerical comparison of the values in the two strings. The nu-
merical encoding order defined by Unicode may not match the traditional collation
order used in any particular language or locale. Note in particular that string compar-
ison is case-sensitive, and all capital ASCII letters are “less than” all lowercase ASCII

4.9 Relational Expressions | 73

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

letters. This rule can cause confusing results if you do not expect it. For example, ac-
cording to the < operator, the string “Zoo” comes before the string “aardvark”.

For a more robust string-comparison algorithm, see the String.localeCompare() meth-
od, which also takes locale-specific definitions of alphabetical order into account. For
case-insensitive comparisons, you must first convert the strings to all lowercase or all
uppercase using String.tolLowerCase() or String.toUpperCase().

Both the + operator and the comparison operators behave differently for numeric and
string operands. + favors strings: it performs concatenation if either operand is a string.
The comparison operators favor numbers and only perform string comparison if both
operands are strings:

1+ 2 // Addition. Result is 3.

1"+ "M // Concatenation. Result is "12".

1"+ 2 // Concatenation. 2 is converted to "2". Result is "12".

11 < 3 // Numeric comparison. Result is false.

"11" < "3" // String comparison. Result is true.

"11" < 3 // Numeric comparison. "11" converted to 11. Result is false.

"one" < 3 // Numeric comparison. "one" converted to NaN. Result is false.

Finally, note that the <= (less than or equal) and »>= (greater than or equal) operators do
not rely on the equality or strict equality operators for determining whether two values
are “equal.” Instead, the less-than-or-equal operator is simply defined as “not greater
than,” and the greater-than-or-equal operator is defined as “not less than.” The one
exception occurs when either operand is (or converts to) NaN, in which case all four
comparison operators return false.

4.9.3 The in Operator

The in operator expects a left-side operand that is or can be converted to a string. It
expects a right-side operand that is an object. It evaluates to true if the left-side value
is the name of a property of the right-side object. For example:

var point = { x:1, y:1 }; // Define an object

"x" in point // => true: object has property named "x"
"z" in point // => false: object has no "z" property.
"toString" in point // => true: object inherits toString method
var data = [7,8,9]; // An array with elements 0, 1, and 2

"0" in data // => true: array has an element "0"

1 in data // => true: numbers are converted to strings
3 in data // => false: no element 3

4.9.4 The instanceof Operator

The instanceof operator expects a left-side operand that is an object and a right-side
operand that identifies a class of objects. The operator evaluates to true if the left-side
object is an instance of the right-side class and evaluates to false otherwise. Chap-
ter 9 explains that, in JavaScript, classes of objects are defined by the constructor

74 | Chapter4: Expressionsand Operators

function that initializes them. Thus, the right-side operand of instanceof should be a
function. Here are examples:

var d = new Date(); // Create a new object with the Date() constructor

d instanceof Date; // Evaluates to true; d was created with Date()

d instanceof Object; // Evaluates to true; all objects are instances of Object

d instanceof Number; // Evaluates to false; d is not a Number object

var a = [1, 2, 3]; // Create an array with array literal syntax

a instanceof Array; // Evaluates to true; a is an array

a instanceof Object; // Evaluates to true; all arrays are objects

a instanceof RegExp; // Evaluates to false; arrays are not regular expressions

Note that all objects are instances of Object. instanceof considers the “superclasses”
when deciding whether an object is an instance of a class. If the left-side operand of
instanceof is not an object, instanceof returns false. If the right-hand side is not a
function, it throws a TypeError.

In order to understand how the instanceof operator works, you must understand the
“prototype chain.” This is JavaScript’s inheritance mechanism, and it is described in
§86.2.2. To evaluate the expression o instanceof f, JavaScript evaluates f.prototype,
and then looks for that value in the prototype chain of o. If it finds it, then o is an
instance of f (or of a superclass of f) and the operator returns true. If f.prototype is not
one of the values in the prototype chain of o, then o is not an instance of f and
instanceof returns false.

4.10 Logical Expressions

The logical operators 83, ||, and ! perform Boolean algebra and are often used in con-
junction with the relational operators to combine two relational expressions into one
more complex expression. These operators are described in the subsections that follow.
In order to fully understand them, you may want to review the concept of “truthy” and
“falsy” values introduced in §3.3.

4.10.1 Logical AND (&&)

The 8& operator can be understood at three different levels. At the simplest level, when
used with boolean operands, 8& performs the Boolean AND operation on the two val-
ues: it returns true if and only if both its first operand and its second operand are
true. If one or both of these operands is false, it returns false.

88 is often used as a conjunction to join two relational expressions:

X ==108 y == // true if, and only if x and y are both 0

Relational expressions always evaluate to true or false, so when used like this, the
8& operator itself returns true or false. Relational operators have higher precedence
than &3 (and | |), so expressions like these can safely be written without parentheses.

But &8 does not require that its operands be boolean values. Recall that all JavaScript
values are either “truthy” or “falsy.” (See §3.3 for details. The falsy values are false,

4.10 Logical Expressions | 75

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

null, undefined, 0, -0, NaN, and "". All other values, including all objects, are truthy.)
The second level at which 88 can be understood is as a Boolean AND operator for truthy
and falsy values. If both operands are truthy, the operator returns a truthy value. Oth-
erwise, one or both operands must be falsy, and the operator returns a falsy value. In
JavaScript, any expression or statement that expects a boolean value will work with a
truthy or falsy value, so the fact that & does not always return true or false does not
cause practical problems.

Notice that the description above says that the operator returns “a truthy value” or “a
falsy value,” but does not specify what that value is. For that, we need to describe 88
at the third and final level. This operator starts by evaluating its first operand, the
expression on its left. If the value on the left is falsy, the value of the entire expression
must also be falsy, so 8% simply returns the value on the left and does not even evaluate
the expression on the right.

On the other hand, if the value on the left is truthy, then the overall value of the ex-
pression depends on the value on the right-hand side. If the value on the right is truthy,
then the overall value must be truthy, and if the value on the right is falsy, then the
overall value must be falsy. So when the value on the left is truthy, the &3 operator
evaluates and returns the value on the right:

var o= { x : 1 };

var p = null;

o &% o.x // => 1: o is truthy, so return value of o.x

p && p.x // => null: p is falsy, so return it and don't evaluate p.x

[t is important to understand that & may or may not evaluate its right-side operand.
In the code above, the variable p is set to null, and the expression p.x would, if
evaluated, cause a TypeError. But the code uses &8 in an idiomatic way so that p.x is
evaluated only if p is truthy—not null or undefined.

The behavior of 8& is sometimes called “short circuiting,” and you may sometimes see
code that purposely exploits this behavior to conditionally execute code. For example,
the following two lines of JavaScript code have equivalent effects:

if (a == b) stop(); // Invoke stop() only if a ==
(a == b) & stop(); // This does the same thing

In general, you must be careful whenever you write an expression with side effects
(assignments, increments, decrements, or function invocations) on the right-hand side
of 8&. Whether those side effects occur depends on the value of the left-hand side.

Despite the somewhat complex way that this operator actually works, it is most com-
monly used as a simple Boolean algebra operator that works on truthy and falsy values.

4.10.2 Logical OR (||)

The || operator performs the Boolean OR operation on its two operands. If one or both
operands is truthy, it returns a truthy value. If both operands are falsy, it returns a falsy
value.

76 | Chapter4: Expressionsand Operators

Although the || operator is most often used simply as a Boolean OR operator, it, like
the && operator, has more complex behavior. It starts by evaluating its first operand,
the expression on its left. If the value of this first operand is truthys, it returns that truthy
value. Otherwise, it evaluates its second operand, the expression on its right, and re-
turns the value of that expression.

As with the 88 operator, you should avoid right-side operands that include side effects,
unless you purposely want to use the fact that the right-side expression may not be
evaluated.

An idiomatic usage of this operator is to select the first truthy value in a set of
alternatives:
// If max _width is defined, use that. Otherwise look for a value in

// the preferences object. If that is not defined use a hard-coded constant.
var max = max_width || preferences.max width || 500;

This idiom is often used in function bodies to supply default values for parameters:

// Copy the properties of o to p, and return p

function copy(o, p) {
p=rp Il {}; // If no object passed for p, use a newly created object.
// function body goes here

}
4.10.3 Logical NOT (!)

The ! operator is a unary operator; it is placed before a single operand. Its purpose is
to invert the boolean value of its operand. For example, if x is truthy !x evaluates to
false. If x is falsy, then !x is true.

Unlike the &3 and | | operators, the ! operator converts its operand to a boolean value
(using the rules described in Chapter 3) before inverting the converted value. This
means that ! always returns true or false, and that you can convert any value x to its
equivalent boolean value by applying this operator twice: ! Ix (see §3.8.2).

As a unary operator, ! has high precedence and binds tightly. If you want to invert the
value of an expression like p 8& g, you need to use parentheses: ! (p &% q). It is worth
noting two theorems of Boolean algebra here that we can express using JavaScript
syntax:

// These two equalities hold for any values of p and q

I(p && q) === Ip || !q
I(p || q) === !p & !q

4.11 Assignment Expressions

JavaScript uses the = operator to assign a value to a variable or property. For example:

i=o0 // Set the variable i to 0.
0.x =1 // Set the property x of object o to 1.

4.11 Assignment Expressions | 77

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The = operator expects its left-side operand to be an lvalue: a variable or object property
(or array element). It expects its right-side operand to be an arbitrary value of any type.
The value of an assignment expression is the value of the right-side operand. As a side
effect, the = operator assigns the value on the right to the variable or property on the
left so that future references to the variable or property evaluate to the value.

Although assignment expressions are usually quite simple, you may sometimes see the
value of an assignment expression used as part of a larger expression. For example, you
can assign and test a value in the same expression with code like this:

(a=b) ==
If you do this, be sure you are clear on the difference between the = and == operators!

Note that = has very low precedence and parentheses are usually necessary when the
value of an assignment is to be used in a larger expression.

The assignment operator has right-to-left associativity, which means that when
multiple assignment operators appear in an expression, they are evaluated from right
to left. Thus, you can write code like this to assign a single value to multiple variables:

i=j=k=0; // Initialize 3 variables to 0
J

4.11.1 Assignment with Operation

Besides the normal = assignment operator, JavaScript supports a number of other as-
signment operators that provide shortcuts by combining assignment with some other
operation. For example, the += operator performs addition and assignment. The fol-
lowing expression:

total += sales_tax

is equivalent to this one:
total = total + sales_tax

As you might expect, the += operator works for numbers or strings. For numeric oper-
ands, it performs addition and assignment; for string operands, it performs concate-
nation and assignment.

Similar operators include -=, *=, &=, and so on. Table 4-2 lists them all.

Table 4-2. Assignment operators

Operator Example Equivalent

+= a+=b a=a+b
-= a-=b a=a-b
= a=b a=a*b
/= al/=b a=al/b
%= a%b a=a%b
<<= a<=b a=a<«b

78 | Chapter4: Expressionsand Operators

Operator Example Equivalent

>>= a>=b a=a>»hb
>>>= a>»>=b a=a>>>b
&= ad& b a=aé&b
|= al=b a=al|b
A= a’*=b a=a"b

In most cases, the expression:
aop=>b
where op is an operator, is equivalent to the expression:
a=aophb
In the first line, the expression a is evaluated once. In the second it is evaluated twice.

The two cases will differ only if a includes side effects such as a function call or an
increment operator. The following two assignments, for example, are not the same:

data[i++] *= 2;
data[i++] = data[i++] * 2;

4.12 Evaluation Expressions

Like many interpreted languages, JavaScript has the ability to interpret strings of Java-
Script source code, evaluating them to produce a value. JavaScript does this with the
global function eval():

eval("3+2") // =>5
Dynamic evaluation of strings of source code is a powerful language feature that is

almost never necessary in practice. If you find yourself using eval(), you should think
carefully about whether you really need to use it.

The subsections below explain the basic use of eval() and then explain two restricted
versions of it that have less impact on the optimizer.

Is eval() a Function or an Operator?

eval() is a function, but it is included in this chapter on expressions because it really
should have been an operator. The earliest versions of the language defined an eval()
function, and ever since then language designers and interpreter writers have been
placing restrictions on it that make it more and more operator-like. Modern JavaScript
interpreters perform a lot of code analysis and optimization. The problem with
eval() is that the code it evaluates is, in general, unanalyzable. Generally speaking, if
a function calls eval(), the interpreter cannot optimize that function. The problem with
defining eval() as a function is that it can be given other names:

var f
var g

eval;
3

4.12 Evaluation Expressions | 79

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

If this is allowed, then the interpreter can’t safely optimize any function that calls g().
This issue could have been avoided if eval was an operator (and a reserved word). We’ll
learn below (in §4.12.2 and §4.12.3) about restrictions placed on eval() to make it
more operator-like.

4.12.1 eval()

eval() expects one argument. If you pass any value other than a string, it simply returns
that value. If you pass a string, it attempts to parse the string as JavaScript code, throw-
ing a SyntaxError if it fails. If it successfully parses the string, then it evaluates the code
and returns the value of the last expression or statement in the string or undefined if
the last expression or statement had no value. If the string throws an exception, the
eval() propagates that expression.

The key thing about eval() (when invoked like this) is that it uses the variable envi-
ronment of the code that calls it. That is, it looks up the values of variables and defines
new variables and functions in the same way that local code does. If a function defines
a local variable x and then calls eval("x"), it will obtain the value of the local variable.
Ifit calls eval("x=1"), it changes the value of the local variable. And if the function calls
eval("var y = 3;"), it has declared a new local variable y. Similarly a function can
declare a local function with code like this:

eval("function f() { return x+1; }");

If you call eval() from top-level code, it operates on global variables and global func-
tions, of course.

Note that the string of code you pass to eval() must make syntactic sense on its own—
you cannot use it to paste code fragments into a function. It makes no sense to write
eval("return;"), for example, because return is only legal within functions, and the
fact that the evaluated string uses the same variable environment as the calling function
does not make it part of that function. If your string would make sense as a standalone
script (even a very short one like x=0), it is legal to pass to eval(). Otherwise eval()
will throw a SyntaxError.

4.12.2 Global eval()

It is the ability of eval() to change local variables that is so problematic to JavaScript
optimizers. As a workaround, however, interpreters simply do less optimization on any
function that calls eval(). But what should a JavaScript interpreter do, however, if a
script defines an alias for eval() and then calls that function by another name? In order
to simplify the job of JavaScript implementors, the ECMAScript 3 standard declared
that interpreters did not have to allow this. If the eval() function was invoked by any
name other than “eval”, it was allowed to throw an EvalError.

In practice, most implementors did something else. When invoked by any other name,
eval() would evaluate the string as if it were top-level global code. The evaluated code
might define new global variables or global functions, and it might set global variables,

80 | Chapter4: Expressionsand Operators

but it could not use or modify any variables local to the calling function, and would
not, therefore, interfere with local optimizations.

ECMAScript 5 deprecates EvalError and standardizes the de facto behavior of eval().
A “direct eval” is a call to the eval() function with an expression that uses the exact,
unqualified name “eval” (which is beginning to feel like a reserved word). Direct calls
to eval() use the variable environment of the calling context. Any other call—an
indirect call—uses the global object as its variable environment and cannot read, write,
or define local variables or functions. The following code demonstrates:

var geval = eval; // Using another name does a global eval
var x = "global", y = "global"; // Two global variables
function f() { // This function does a local eval
var x = "local"; // Define a local variable
eval("x += 'changed';"); // Direct eval sets local variable
return x; // Return changed local variable
function g() { // This function does a global eval
var y = "local"; // A local variable
geval("y += 'changed';"); // Indirect eval sets global variable
return y; // Return unchanged local variable

}
console.log(f(), x); // Local variable changed: prints "localchanged global":
console.log(g(), y); // Global variable changed: prints "local globalchanged":

Notice that the ability to do a global eval is not just an accommodation to the needs of
the optimizer, it is actually a tremendously useful feature: it allows you to execute
strings of code as if they were independent, top-level scripts. As noted at the beginning
of this section, it is rare to truly need to evaluate a string of code. But if you do find it
necessary, you are more likely to want to do a global eval than a local eval.

Before IE9, IE differs from other browsers: it does not do a global eval when eval() is
invoked by a different name. (It doesn’t throw an EvalError either: it simply does a local
eval.) But IE does define a global function named execScript() that executes its string
argument as if it were a top-level script. (Unlike eval(), however, execScript() always
returns null.)

4.12.3 Strict eval()

ECMAScript 5 strict mode (see §5.7.3) imposes further restrictions on the behavior of
the eval() function and even on the use of the identifier “eval”. When eval() is called
from strict mode code, or when the string of code to be evaluated itself begins with a
“use strict” directive, then eval() does a local eval with a private variable environment.
This means that in strict mode, evaluated code can query and set local variables, but it
cannot define new variables or functions in the local scope.

Furthermore, strict mode makes eval() even more operator-like by effectively making
“eval” into a reserved word. You are not allowed to overwrite the eval() function with
a new value. And you are not allowed to declare a variable, function, function param-
eter, or catch block parameter with the name “eval”.

4.12 Evaluation Expressions | 81

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

4.13 Miscellaneous Operators

JavaScript supports a number of other miscellaneous operators, described in the fol-
lowing sections.

4.13.1 The Conditional Operator (?:)

The conditional operator is the only ternary operator (three operands) in JavaScript
and is sometimes actually called the ternary operator. This operator is sometimes writ-
ten ?:, although it does not appear quite that way in code. Because this operator has
three operands, the first goes before the ?, the second goes between the ? and the :,
and the third goes after the :. It is used like this:

X>07?Xx: -X // The absolute value of x

The operands of the conditional operator may be of any type. The first operand is
evaluated and interpreted as a boolean. If the value of the first operand is truthy, then
the second operand is evaluated, and its value is returned. Otherwise, if the first operand
is falsy, then the third operand is evaluated and its value is returned. Only one of the
second and third operands is evaluated, never both.

While you can achieve similar results using the if statement (§5.4.1), the ?: operator
often provides a handy shortcut. Here is a typical usage, which checks to be sure that
a variable is defined (and has a meaningful, truthy value) and uses it if so or provides
a default value if not:

greeting = "hello " + (username ? username : "there");

This is equivalent to, but more compact than, the following if statement:

greeting = "hello ";
if (username)

greeting += username;
else

greeting += "there";

4.13.2 The typeof Operator

typeof is a unary operator that is placed before its single operand, which can be of any
type. Its value is a string that specifies the type of the operand. The following table
specifies the value of the typeof operator for any JavaScript value:

X typeof x
undefined "undefined"
null "object"
trueorfalse "boolean”
any number or NaN "number"
any string "string"

82 | Chapter4: Expressionsand Operators

X typeof x
any function "function"
any nonfunction native object ~ "object"

"o

any host object An implementation-defined string, but not “undefined”, “boolean”, “number”, or “string”.

You might use the typeof operator in an expression like this:

nin

(typeof value == "string") ? "'" + value + : value

The typeof operator is also useful when used with the switch statement (§5.4.3). Note
that you can place parentheses around the operand to typeof, which makes typeof look
like the name of a function rather than an operator keyword:

typeof(i)

Note that typeof returns “object” if the operand value is null. If you want to distinguish
null from objects, you’ll have to explicitly test for this special-case value. typeof may
return a string other than “object” for host objects. In practice, however, most host
objects in client-side JavaScript have a type of “object”.

Because typeof evaluates to “object” for all object and array values other than functions,
itis useful only to distinguish objects from other, primitive types. In order to distinguish
one class of object from another, you must use other techniques, such as the
instanceof operator (see §4.9.4), the class attribute (see §6.8.2), or the constructor
property (see §86.8.1 and §9.2.2).

Although functions in JavaScript are a kind of object, the typeof operator considers
functions to be sufficiently different that they have their own return value. JavaScript
makes a subtle distinction between functions and “callable objects.” All functions are
callable, but it is possible to have a callable object—that can be invoked just like a
function—that is not a true function. The ECMAScript 3 spec says that the typeof
operator returns “function” for all native object that are callable. The ECMAScript 5
specification extends this to require that typeof return “function” for all callable ob-
jects, whether native objects or host objects. Most browser vendors use native Java-
Script function objects for the methods of their host objects. Microsoft, however, has
always used non-native callable objects for their client-side methods, and before IE 9
the typeof operator returns “object” for them, even though they behave like functions.
In IE9 these client-side methods are now true native function objects. See §8.7.7 for
more on the distinction between true functions and callable objects.

4.13 Miscellaneous Operators | 83

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

4.13.3 The delete Operator

delete is a unary operator that attempts to delete the object property or array element
specified as its operand.' Like the assignment, increment, and decrement operators,
delete is typically used for its property deletion side effect, and not for the value it
returns. Some examples:

var o = { x: 1, y: 2}; // Start with an object

delete o.x; // Delete one of its properties

"x" in o // => false: the property does not exist anymore
var a = [1,2,3]; // Start with an array

delete a[2]; // Delete the last element of the array
a.length // => 2: array only has two elements now

Note that a deleted property or array element is not merely set to the undefined value.
When a property is deleted, the property ceases to exist. Attempting to read a non-
existent property returns undefined, but you can test for the actual existence of a prop-
erty with the in operator (§4.9.3).

delete expects its operand to be an Ivalue. If it is not an lvalue, the operator takes no
action and returns true. Otherwise, delete attempts to delete the specified lvalue.
delete returns true if it successfully deletes the specified lvalue. Not all properties can
be deleted, however: some built-in core and client-side properties are immune from
deletion, and user-defined variables declared with the var statement cannot be deleted.
Functions defined with the function statement and declared function parameters can-
not be deleted either.

In ECMAScript 5 strict mode, delete raises a SyntaxError if its operand is an unqualified
identifier such as a variable, function, or function parameter: it only works when the
operand is a property access expression (§4.4). Strict mode also specifies that delete
raises a TypeError if asked to delete any nonconfigurable property (see §6.7). Outside
of strict mode, no exception occurs in these cases and delete simply returns false to
indicate that the operand could not be deleted.

Here are some example uses of the delete operator:

var o = {x:1, y:2}; // Define a variable; initialize it to an object

delete o0.x; // Delete one of the object properties; returns true
typeof o.x; // Property does not exist; returns "undefined"
delete o.x; // Delete a nonexistent property; returns true
delete o; // Can't delete a declared variable; returns false.
// Would raise an exception in strict mode.
delete 1; // Argument is not an lvalue: returns true
this.x = 1; // Define a property of the a global object without var
delete x; // Try to delete it: returns true in non-strict mode

1. If you are a C++ programmer, note that the delete keyword in JavaScript is nothing like the delete
keyword in C++. In JavaScript, memory deallocation is handled automatically by garbage collection, and
you never have to worry about explicitly freeing up memory. Thus, there is no need for a C++-style
delete to delete entire objects.

84 | Chapter4: Expressionsand Operators

// Exception in strict mode. Use 'delete this.x' instead
X; // Runtime error: x is not defined

We'll see the delete operator again in §6.3.

4.13.4 The void Operator

void is a unary operator that appears before its single operand, which may be of any
type. This operator is unusual and infrequently used: it evaluates its operand, then
discards the value and returns undefined. Since the operand value is discarded, using
the void operator makes sense only if the operand has side effects.

The most common use for this operator is in a client-side javascript: URL, where it
allows you to evaluate an expression for its side effects without the browser displaying
the value of the evaluated expression. For example, you might use the void operator in
an HTML <a> tag as follows:

Open New Window

This HTML could be more cleanly written using an onclick event handler rather than
ajavascript: URL, of course, and the void operator would not be necessary in that case.

4.13.5 The Comma Operator (,)

The comma operator is a binary operator whose operands may be of any type. It eval-
uates its left operand, evaluates its right operand, and then returns the value of the right
operand. Thus, the following line:

i=0, j=1, k=2;

evaluates to 2 and is basically equivalent to:
i=0;j=1;k=2;

The left-hand expression is always evaluated, but its value is discarded, which means
that it only makes sense to use the comma operator when the left-hand expression has
side effects. The only situation in which the comma operator is commonly used is with
a for loop (85.5.3) that has multiple loop variables:

// The first comma below is part of the syntax of the var statement

// The second comma is the comma operator: it lets us squeeze 2

// expressions (i++ and j--) into a statement (the for loop) that expects 1.

for(var i=0,j=10; i < j; i++,j--)

console.log(i+j);

4.13 Miscellaneous Operators | 85

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

CHAPTER5
Statements

Chapter 4 described expressions as JavaScript phrases. By that analogy, statements are
JavaScript sentences or commands. Just as English sentences are terminated and
separated from each other with periods, JavaScript statements are terminated with
semicolons (§2.5). Expressions are evaluated to produce a value, but statements are
executed to make something happen.

One way to “make something happen” is to evaluate an expression that has side effects.
Expressions with side effects, such as assignments and function invocations, can stand
alone as statements, and when used this way they are known as expression state-
ments. A similar category of statements are the declaration statements that declare new
variables and define new functions.

JavaScript programs are nothing more than a sequence of statements to execute. By
default, the JavaScript interpreter executes these statements one after another in the
order they are written. Another way to “make something happen” is to alter this default
order of execution, and JavaScript has a number of statements or control structures that
do just this:

* Conditionals are statements like 1f and switch that make the JavaScript interpreter
execute or skip other statements depending on the value of an expression.

* Loops are statements like while and for that execute other statements repetitively.

* Jumps are statements like break, return, and throw that cause the interpreter to
jump to another part of the program.

The sections that follow describe the various statements in JavaScript and explain their
syntax. Table 5-1, at the end of the chapter, summarizes the syntax. A JavaScript pro-
gram is simply a sequence of statements, separated from one another with semicolons,
so once you are familiar with the statements of JavaScript, you can begin writing Java-
Script programs.

87

5.1 Expression Statements

The simplest kinds of statements in JavaScript are expressions that have side effects.
(But see §5.7.3 for an important expression statement without side effects.) This sort
of statement was shown in Chapter 4. Assignment statements are one major category
of expression statements. For example:

"

greeting = "Hello
i*=3;

+ name;

The increment and decrement operators, ++ and --, are related to assignment state-
ments. These have the side effect of changing a variable value, just as if an assignment
had been performed:

counter++;

The delete operator has the important side effect of deleting an object property. Thus,
it is almost always used as a statement, rather than as part of a larger expression:

delete o.x;

Function calls are another major category of expression statements. For example:

alert(greeting);
window.close();

These client-side function calls are expressions, but they have side effects that affect
the web browser and are used here as statements. If a function does not have any side
effects, there is no sense in calling it, unless it is part of a larger expression or an as-
signment statement. For example, you wouldn’t just compute a cosine and discard
the result:

Math.cos(x);

But you might well compute the value and assign it to a variable for future use:

cx = Math.cos(x);

Note that each line of code in each of these examples is terminated with a semicolon.

5.2 Compound and Empty Statements

Just as the comma operator (8§4.13.5) combines multiple expressions into a single
expression, a statement block combines multiple statements into a single compound
statement. A statement block is simply a sequence of statements enclosed within curly
braces. Thus, the following lines act as a single statement and can be used anywhere
that JavaScript expects a single statement:

X = Math.PI;
cx = Math.cos(x);
console.log("cos(m) =

+ CX);

88 | Chapter5: Statements

There are a few things to note about this statement block. First, it does not end with a
semicolon. The primitive statements within the block end in semicolons, but the block
itself does not. Second, the lines inside the block are indented relative to the curly braces
that enclose them. This is optional, but it makes the code easier to read and understand.
Finally, recall that JavaScript does not have block scope and variables declared within
a statement block are not private to the block (see §3.10.1 for details).

Combining statements into larger statement blocks is extremely common in JavaScript
programming. Just as expressions often contain subexpressions, many JavaScript state-
ments contain substatements. Formally, JavaScript syntax usually allows a single sub-
statement. For example, the while loop syntax includes a single statement that serves
as the body of the loop. Using a statement block, you can place any number of state-
ments within this single allowed substatement.

A compound statement allows you to use multiple statements where JavaScript syntax
expects a single statement. The empty statement is the opposite: it allows you to include
no statements where one is expected. The empty statement looks like this:

The JavaScript interpreter takes no action when it executes an empty statement. The
empty statement is occasionally useful when you want to create a loop that has an
empty body. Consider the following for loop (for loops will be covered in §5.5.3):

// Initialize an array a

for(i = 0; i < a.length; a[i++] = 0) ;
In this loop, all the work is done by the expression a[i++] = 0, and no loop body is

necessary. JavaScript syntax requires a statement as a loop body, however, so an empty
statement—just a bare semicolon—is used.

Note that the accidental inclusion of a semicolon after the right parenthesis of a for
loop, while loop, or if statement can cause frustrating bugs that are difficult to detect.
For example, the following code probably does not do what the author intended:
if ((@a ==0) || (b ==0)); // Oops! This line does nothing...
o = null; // and this line is always executed.
When you intentionally use the empty statement, it is a good idea to comment your
code in a way that makes it clear that you are doing it on purpose. For example:

for(i = 0; i < a.length; a[i++] = 0) /* empty */ ;

5.3 Declaration Statements

The var and function are declaration statements—they declare or define variables and
functions. These statements define identifiers (variable and function names) that can
be used elsewhere in your program and assign values to those identifiers. Declaration
statements don’t do much themselves, but by creating variables and functions they, in
an important sense, define the meaning of the other statements in your program.

5.3 Declaration Statements | 89

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

The subsections that follow explain the var statement and the function statement, but
do not cover variables and functions comprehensively. See §3.9.and §3.10 for more on
variables. And see Chapter 8 for complete details on functions.

5.3.1 var

The var statement declares a variable or variables. Here’s the syntax:
var name_1 [= value 1] [,..., name_n [= value n]]
The var keyword is followed by a comma-separated list of variables to declare; each

variable in the list may optionally have an initializer expression that specifies its initial
value. For example:

var i; // One simple variable
var j = 0; // One var, one value
var p, q; // Two variables
var greeting = "hello" + name; // A complex initializer
var x = 2.34, y = Math.cos(0.75), r, theta; // Many variables
var x = 2, y = x*x; // Second var uses the first
var x = 2, // Multiple variables...
f = function(x) { return x*x }, // each on its own line
y = f(x);

If a var statement appears within the body of a function, it defines local variables,
scoped to that function. When var is used in top-level code, it declares global variables,
visible throughout the JavaScript program. As noted in §3.10.2, global variables are
properties of the global object. Unlike other global properties, however, properties
created with var cannot be deleted.

If no initializer is specified for a variable with the var statement, the variable’s initial
value is undefined. As described in §3.10.1, variables are defined throughout the script
or function in which they are declared—their declaration is “hoisted” up to the start
of the script or function. Initialization, however, occurs at the location of the var state-
ment, and the value of the variable is undefined before that point in the code.

Note that the var statement can also appear as part of the for and for/in loops. (These
variables are hoisted, just like variables declared outside of a loop.) Here are examples
repeated from §3.9:

for(var i = 0; i < 10; i++) console.log(i);

for(var i = 0, j=10; i < 10; i++,j--) console.log(i*j);

for(var i in o) console.log(i);

Note that it is harmless to declare the same variable multiple times.

90 | Chapter5: Statements

5.3.2 function

The function keyword is used to define functions. We saw it in function definition
expressions in §4.3. It can also be used in statement form. Consider the following two
functions:

var f = function(x) { return x+1; } // Expression assigned to a variable
function f(x) { return x+1; } // Statement includes variable name

A function declaration statement has the following syntax:

function funcname([arg1 [, arg2 [..., argn]]]) {
statements
}

funcname is an identifier that names the function being declared. The function name is
followed by a comma-separated list of parameter names in parentheses. These identi-
fiers can be used within the body of the function to refer to the argument values passed
when the function is invoked.

The body of the function is composed of any number of JavaScript statements, con-
tained within curly braces. These statements are not executed when the function is
defined. Instead, they are associated with the new function object for execution when
the function is invoked. Note that the curly braces are a required part of the function
statement. Unlike statement blocks used with while loops and other statements, a
function body requires curly braces, even if the body consists of only a single statement.

Here are some more examples of function declarations:

function hypotenuse(x, y) {
return Math.sqrt(x*x + y*y); // return is documented in the next section

}

function factorial(n) { // A recursive function
if (n <= 1) return 1;
return n * factorial(n - 1);

}

Function declaration statements may appear in top-level JavaScript code, or they may
be nested within other functions. When nested, however, function declarations may
only appear at the top level of the function they are nested within. That is, function
definitions may not appear within if statements, while loops, or any other statements.
Because of this restriction on where function declarations may appear, the ECMAScript
specification does not categorize function declarations as true statements. Some Java-
Script implementations do allow function declarations to appear anywhere a statement
can appear, but different implementations handle the details differently and placing
function declarations within other statements is nonportable.

Function declaration statements differ from function definition expressions in that they
include a function name. Both forms create a new function object, but the function
declaration statement also declares the function name as a variable and assigns the
function object to it. Like variables declared with var, functions defined with function

5.3 Declaration Statements | 91

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

definition statements are implicitly “hoisted” to the top of the containing script or
function, so that they are visible throughout the script or function. With var, only the
variable declaration is hoisted—the variable initialization code remains where you
placed it. With function declaration statements, however, both the function name and
the function body are hoisted: all functions in a script or all nested functions in a func-
tion are declared before any other code is run. This means that you can invoke a Java-
Script function before you declare it.

Like the var statement, function declaration statements create variables that cannot be
deleted. These variables are not read-only, however, and their value can be overwritten.

5.4 Conditionals

Conditional statements execute or skip other statements depending on the value of a
specified expression. These statements are the decision points of your code, and they
are also sometimes known as “branches.” If you imagine a JavaScript interpreter fol-
lowing a path through your code, the conditional statements are the places where the
code branches into two or more paths and the interpreter must choose which path to
follow.

The subsections below explain JavaScript’s basic conditional, the if/else statement,
and also cover switch, a more complicated multiway branch statement.

54.1 if

The if statement is the fundamental control statement that allows JavaScript to make
decisions, or, more precisely, to execute statements conditionally. This statement has
two forms. The first is:
if (expression)
statement

In this form, expression is evaluated. If the resulting value is truthy, statement is exe-
cuted. If expression is falsy, statement is not executed. (See §3.3 for a definition of
truthy and falsy values.) For example:

if (username == null) // If username is null or undefined,
username = "John Doe"; // define it

Or similarly:

nn

// If username is null, undefined, false, 0,
if (lusername) username = "John Doe";

, or NaN, give it a new value

Note that the parentheses around the expression are a required part of the syntax for
the if statement.

JavaScript syntax requires a single statement after the if keyword and parenthesized
expression, but you can use a statement block to combine multiple statements into
one. So the if statement might also look like this:

92 | Chapter5: Statements

if (laddress) {
address = "";
message = "Please specify a mailing address.";

}

The second form of the if statement introduces an else clause that is executed when
expression is false. Its syntax is:
if (expression)
statement1

else
statement2

This form of the statement executes statement1 if expression is truthy and executes
statement?2 if expression is falsy. For example:
if (n==1)
console.log("You have 1 new message.");

else

console.log("You have " + n + " new messages.");

When you have nested if statements with else clauses, some caution is required to
ensure that the else clause goes with the appropriate if statement. Consider the fol-
lowing lines:

i=j=1;
k = 2;
if (i == j)
if (§7== k)

console.log("i equals k");
else
console.log("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syntax
of the outer if statement. Unfortunately, it is not clear (except from the hint given by
the indentation) which if the else goes with. And in this example, the indentation is
wrong, because a JavaScript interpreter actually interprets the previous example as:
if (i ==73){
if (j ==Kk
console.log("i equals k");
else

console.log("i doesn't equal j"); // 00PS!
}

The rule in JavaScript (as in most programming languages) is that by default an else
clause is part of the nearest if statement. To make this example less ambiguous and
easier to read, understand, maintain, and debug, you should use curly braces:
if (i == 3J) {
if (3 ==Kk {
console.log("i equals k");
}

else { // What a difference the location of a curly brace makes!

5.4 Conditionals | 93

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

console.log("i doesn't equal j");

}

Although it is not the style used in this book, many programmers make a habit of
enclosing the bodies of if and else statements (as well as other compound statements,
such as while loops) within curly braces, even when the body consists of only a single
statement. Doing so consistently can prevent the sort of problem just shown.

5.4.2 elseif

The if/else statement evaluates an expression and executes one of two pieces of code,
depending on the outcome. But what about when you need to execute one of many
pieces of code? One way to do this is with an else if statement. else if is not really
a JavaScript statement, but simply a frequently used programming idiom that results
when repeated if/else statements are used:

if (n==1) {
// Execute code block #1

}
else if (n == 2) {
// Execute code block #2

}
else if (n == 3) {
// Execute code block #3

}
else {

// If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where each
following if is part of the else clause of the previous statement. Using the else ifidiom
is preferable to, and more legible than, writing these statements out in their syntactically
equivalent, fully nested form:
if (n==1) {
// Execute code block #1

}
else {
if (n==2) {
// Execute code block #2
}
else {
if (n ==3) {
// Execute code block #3
}
else {
// If all else fails, execute block #4
}
}
}

94 | Chapter5: Statements

5.4.3 switch

An if statement causes a branch in the flow of a program’s execution, and you can use
the else if idiom to perform a multiway branch. This is not the best solution, however,
when all of the branches depend on the value of the same expression. In this case, it is
wasteful to repeatedly evaluate that expression in multiple if statements.

The switch statement handles exactly this situation. The switch keyword is followed
by an expression in parentheses and a block of code in curly braces:

switch(expression) {
statements
}

However, the full syntax of a switch statement is more complex than this. Various
locations in the block of code are labeled with the case keyword followed by an ex-
pression and a colon. case is like a labeled statement, except that instead of giving the
labeled statement a name, it associates an expression with the statement. When a
switch executes, it computes the value of expression and then looks for a case label
whose expression evaluates to the same value (where sameness is determined by the
=== operator). If it finds one, it starts executing the block of code at the statement labeled
by the case. If it does not find a case with a matching value, it looks for a statement
labeled default:. If there is no default: label, the switch statement skips the block of
code altogether.

switch is a confusing statement to explain; its operation becomes much clearer with an
example. The following switch statement is equivalent to the repeated if/else state-
ments shown in the previous section:

switch(n) {

case 1: // Start here if n ==
// Execute code block #1.
break;

// Stop here

case 2: // Start here if n ==
// Execute code block #2.
break; // Stop here

case 3: // Start here if n ==
// Execute code block #3.
break; // Stop here

default: // If all else fails...
// Execute code block #4.
break; // stop here

}

Note the break keyword used at the end of each case in the code above. The break
statement, described later in this chapter, causes the interpreter to jump to the end (or
“break out”) of the switch statement and continue with the statement that follows it.
The case clauses in a switch statement specify only the starting point of the desired
code; they do not specify any ending point. In the absence of break statements, a
switch statement begins executing its block of code at the case label that matches the

5.4 Conditionals | 95

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

value of its expression and continues executing statements until it reaches the end of
the block. On rare occasions, it is useful to write code like this that “falls through” from
one case label to the next, but 99 percent of the time you should be careful to end every
case with a break statement. (When using switch inside a function, however, you may
use a return statement instead of a break statement. Both serve to terminate the
switch statement and prevent execution from falling through to the next case.)

Here is a more realistic example of the switch statement; it converts a value to a string
in a way that depends on the type of the value:

function convert(x) {
switch(typeof x) {

case 'number': // Convert the number to a hexadecimal integer
return x.toString(16);

case 'string': // Return the string enclosed in quotes
return "o+ x 4 M

default: // Convert any other type in the usual way

return String(x);

}

Note that in the two previous examples, the case keywords are followed by number
and string literals, respectively. This is how the switch statement is most often used in
practice, but note that the ECMAScript standard allows each case to be followed by an
arbitrary expression.

The switch statement first evaluates the expression that follows the switch keyword
and then evaluates the case expressions, in the order in which they appear, until it finds
avalue that matches.! The matching case is determined using the === identity operator,
not the == equality operator, so the expressions must match without any type
conversion.

Because not all of the case expressions are evaluated each time the switch statement is
executed, you should avoid using case expressions that contain side effects such as
function calls or assignments. The safest course is simply to limit your case expressions
to constant expressions.

As explained earlier, if none of the case expressions match the switch expression, the
switch statement begins executing its body at the statement labeled default:. If there
is no default: label, the switch statement skips its body altogether. Note that in the
examples above, the default: label appears at the end of the switch body, following all
the case labels. This is a logical and common place for it, but it can actually appear
anywhere within the body of the statement.

1. The fact that the case expressions are evaluated at run-time makes the JavaScript switch statement much
different from (and less efficient than) the switch statement of C, C++, and Java. In those languages, the
case expressions must be compile-time constants of the same type, and switch statements can often
compile down to highly efficient jump tables.

96 | Chapter5: Statements

5.5 Loops

To understand conditional statements, we imagined the JavaScript interpreter follow-
ing a branching path through your source code. The looping statements are those that
bend that path back upon itself to repeat portions of your code. JavaScript has four
looping statements: while, do/while, for, and for/in. The subsections below explain
each in turn. One common use for loops is to iterate over the elements of an array.
§7.6 discusses this kind of loop in detail and covers special looping methods defined
by the Array class.

5.5.1 while

Just as the if statement is JavaScript’s basic conditional, the while statement is Java-
Script’s basic loop. It has the following syntax:

while (expression)
statement

To execute a while statement, the interpreter first evaluates expression. If the value of
the expression is falsy, then the interpreter skips over the statement that serves as the
loop body and moves on to the next statement in the program. If, on the other hand,
the expression is truthy, the interpreter executes the statement and repeats, jumping
back to the top of the loop and evaluating expression again. Another way to say this is
that the interpreter executes statement repeatedly while the expression is truthy. Note
that you can create an infinite loop with the syntax while(true).

Usually, you do not want JavaScript to perform exactly the same operation over and
over again. In almost every loop, one or more variables change with each iteration of
the loop. Since the variables change, the actions performed by executing statement may
differ each time through the loop. Furthermore, if the changing variable or variables
are involved in expression, the value of the expression may be different each time
through the loop. This is important; otherwise, an expression that starts off truthy
would never change, and the loop would never end! Here is an example of a while loop
that prints the numbers from 0 to 9:

var count = 0;

while (count < 10) {

console.log(count);
count++;

}

As you can see, the variable count starts off at 0 and is incremented each time the body
of the loop runs. Once the loop has executed 10 times, the expression becomes false
(i.e., the variable count is no longer less than 10), the while statement finishes, and the
interpreter can move on to the next statement in the program. Many loops have a
counter variable like count. The variable names i, j, and k are commonly used as loop
counters, though you should use more descriptive names if it makes your code easier
to understand.

5.5 Loops | 97

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.5.2 do/while

The do/while loop is like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is always
executed at least once. The syntax is:

do

statement
while (expression);

The do/while loop is less commonly used than its while cousin—in practice, it is some-
what uncommon to be certain that you want a loop to execute at least once. Here’s an
example of a do/while loop:

function printArray(a) {
var len = a.length, i = 0;

if (len == 0)
console.log("Empty Array");
else {
do {

console.log(a[i]);
} while (++i < len);

}

There are a couple of syntactic differences between the do/while loop and the ordinary
while loop. First, the do loop requires both the do keyword (to mark the beginning of
the loop) and the while keyword (to mark the end and introduce the loop condition).
Also, the do loop must always be terminated with a semicolon. The while loop doesn’t
need a semicolon if the loop body is enclosed in curly braces.

5.5.3 for

The for statement provides a looping construct that is often more convenient than the
while statement. The for statement simplifies loops that follow a common pattern.
Most loops have a counter variable of some kind. This variable is initialized before the
loop starts and is tested before each iteration of the loop. Finally, the counter variable
isincremented or otherwise updated at the end of the loop body, just before the variable
is tested again. In this kind of loop, the initialization, the test, and the update are the
three crucial manipulations of a loop variable. The for statement encodes each of these
three manipulations as an expression and makes those expressions an explicit part
of the loop syntax:
for(initialize ; test ; increment)

statement
initialize, test, and increment are three expressions (separated by semicolons) that
are responsible for initializing, testing, and incrementing the loop variable. Putting
them all in the first line of the loop makes it easy to understand what a for loop is doing
and prevents mistakes such as forgetting to initialize or increment the loop variable.

98 | Chapter5: Statements

The simplest way to explain how a for loop works is to show the equivalentwhile loop?:
initialize;
while(test) {
statement
increment;

}

In other words, the initialize expression is evaluated once, before the loop begins.
To be useful, this expression must have side effects (usually an assignment). JavaScript
also allows initialize to be a var variable declaration statement so that you can declare
and initialize a loop counter at the same time. The test expression is evaluated before
each iteration and controls whether the body of the loop is executed. If test evaluates
to a truthy value, the statement that is the body of the loop is executed. Finally, the
increment expression is evaluated. Again, this must be an expression with side effects
in order to be useful. Generally, either it is an assignment expression, or it uses the ++
or -- operators.

We can print the numbers from 0 to 9 with a for loop like the following. Contrast it
with the equivalent while loop shown in the previous section:

for(var count = 0; count < 10; count++)
console.log(count);

Loops can become a lot more complex than this simple example, of course, and some-
times multiple variables change with each iteration of the loop. This situation is the
only place that the comma operator is commonly used in JavaScript; it provides a way
to combine multiple initialization and increment expressions into a single expression
suitable for use in a for loop:

var 1i,j;

for(i =0, j =10; i< 10 ; i++, j--)

sum += i * j;

In all our loop examples so far, the loop variable has been numeric. This is quite com-
mon but is not necessary. The following code uses a for loop to traverse a linked list
data structure and return the last object in the list (i.e., the first object that does not
have a next property):

function tail(o) { // Return the tail of linked list o
for(; o.next; o = o.next) /* empty */ ; // Traverse while o.next is truthy
return o;

}

Note that the code above has no initialize expression. Any of the three expressions
may be omitted from a for loop, but the two semicolons are required. If you omit the
test expression, the loop repeats forever, and for(;;) is another way of writing an
infinite loop, like while(true).

2. When we consider the continue statement in §5.6.3, we’ll see that thiswhile loop is not an exact equivalent
of the for loop.

5.5 Loops | 99

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.5.4 for/in

The for/in statement uses the for keyword, but it is a completely different kind of loop
than the regular for loop. A for/in loop looks like this:

for (variable in object)
statement

variable typically names a variable, but it may be any expression that evaluates to an
Ivalue (§4.7.3) or a var statement that declares a single variable—it must be something
suitable as the left side of an assignment expression. object is an expression that eval-
uates to an object. As usual, statement is the statement or statement block that serves
as the body of the loop.

It is easy to use a regular for loop to iterate through the elements of an array:

for(var i = 0; i < a.length; i++) // Assign array indexes to variable i
console.log(a[i]); // Print the value of each array element

The for/in loop makes it easy to do the same for the properties of an object:

for(var p in o) // Assign property names of o to variable p
console.log(o[p]); // Print the value of each property

To execute a for/in statement, the JavaScript interpreter first evaluates the object ex-
pression. If it evaluates to null or undefined, the interpreter skips the loop and moves
on to the next statement.? If the expression evaluates to a primitive value, that value is
converted to its equivalent wrapper object (§3.6). Otherwise, the expression is already
an object. The interpreter now executes the body of the loop once for each enumerable
property of the object. Before each iteration, however, the interpreter evaluates the
variable expression and assigns the name of the property (a string value) to it.

Note that the variable in the for/in loop may be an arbitrary expression, as long as it
evaluates to something suitable for the left side of an assignment. This expression is
evaluated each time through the loop, which means that it may evaluate differently
each time. For example, you can use code like the following to copy the names of all
object properties into an array:

var o = {x:1, y:2, z:3};

var a = [], i = 0;

for(a[i++] in o) /* empty */;
JavaScript arrays are simply a specialized kind of object and array indexes are object
properties that can be enumerated with a for/in loop. For example, following the code
above with this line enumerates the array indexes 0, 1, and 2:

for(i in a) console.log(i);

The for/in loop does not actually enumerate all properties of an object, only the enu-
merable properties (see §6.7). The various built-in methods defined by core JavaScript
are not enumerable. All objects have a toString() method, for example, but the

3. ECMAScript 3 implementations may instead throw a TypeError in this case.

100 | Chapter5: Statements

for/inloop does not enumerate this toString property. In addition to built-in methods,
many other properties of the built-in objects are nonenumerable. All properties and
methods defined by your code are enumerable, however. (But in ECMAScript 5, you
can make them nonenumerable using techniques explained in §6.7.) User-defined in-
herited properties (see §6.2.2) are also enumerated by the for/in loop.

If the body of a for/in loop deletes a property that has not yet been enumerated, that
property will not be enumerated. If the body of the loop defines new properties on the
object, those properties will generally not be enumerated. (Some implementations may
enumerate inherited properties that are added after the loop begins, however.)

5.5.4.1 Property enumeration order

The ECMAScript specification does not specify the order in which the for/in loop
enumerates the properties of an object. In practice, however, JavaScript implementa-
tions from all major browser vendors enumerate the properties of simple objects in the
order in which they were defined, with older properties enumerated first. If an object
was created as an object literal, its enumeration order is the same order that the prop-
erties appear in the literal. There are sites and libraries on the Web that rely on this
enumeration order, and browser vendors are unlikely to change it.

The paragraph above specifies an interoperable property enumeration order for
“simple” objects. Enumeration order becomes implementation dependent (and non-
interoperable) if:

* The object inherits enumerable properties;
* the object has properties that are integer array indexes;
* you have used delete to delete existing properties of the object; or

* you have used Object.defineProperty() (§6.7) or similar methods to alter property
attributes of the object.

Typically (but not in all implementations), inherited properties (see §6.2.2) are enum-
erated after all the noninherited “own” properties of an object, but are also enumerated
in the order in which they were defined. If an object inherits properties from more than
one “prototype” (see §6.1.3)—i.e., if it has more than one object in its “prototype
chain”—then the properties of each prototype object in the chain are enumerated in
creation order before enumerating the properties of the next object. Some (but not all)
implementations enumerate array properties in numeric order rather than creation or-
der, but they revert to creation order if the array is given other non-numeric properties
as well or if the array is sparse (i.e., if some array indexes are missing).

5.5 Loops | 101

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

5.6 Jumps

Another category of JavaScript statements are jump statements. As the name implies,
these cause the JavaScript interpreter to jump to a new location in the source code. The
break statement makes the interpreter jump to the end of a loop or other statement.
continue makes the interpreter skip the rest of the body of a loop and jump back to the
top of a loop to begin a new iteration. JavaScript allows statements to be named, or
labeled, and the break and continue can identify the target loop or other statement label.

The return statement makes the interpreter jump from a function invocation back to
the code that invoked it and also supplies the value for the invocation. The throw state-
ment raises, or “throws,” an exception and is designed to work with the try/catch/
finally statement, which establishes a block of exception handling code. This is a
complicated kind of jump statement: when an exception is thrown, the interpreter
jumps to the nearest enclosing exception handler, which may be in the same function
or up the call stack in an invoking function.

Details of each of these jump statements are in the sections that follow.

5.6.1 Labeled Statements

Any statement may be labeled by preceding it with an identifier and a colon:

identifier: statement

By labeling a statement, you give it a name that you can use to refer to it elsewhere in
your program. You can label any statement, although it is only useful to label statements
that have bodies, such as loops and conditionals. By giving a loop a name, you can use
break and continue statements inside the body of the loop to exit the loop or to jump
directly to the top of the loop to begin the next iteration. break and continue are the
only JavaScript statements that use statement labels; they are covered later in this

chapter. Here is an example of a labeled while loop and a continue statement that uses
the label.

mainloop: while(token != null) {
// Code omitted...
continue mainloop; // Jump to the next iteration of the named loop
// More code omitted...

}

The identifier you use to label a statement can be any legal JavaScript identifier that
is not a reserved word. The namespace for labels is different than the namespace for
variables and functions, so you can use the same identifier as a statement label and as
a variable or function name. Statement labels are defined only within the statement to
which they apply (and within its substatements, of course). A statement may not have
the same label as a statement that contains it, but two statements may have the same
label as long as neither one is nested within the other. Labeled statements may them-
selves be labeled. Effectively, this means that any statement may have multiple labels.

102 | Chapter5: Statements

5.6.2 break

The break statement, used alone, causes the innermost enclosing loop or switch state-
ment to exit immediately. Its syntax is simple:

break;

Because it causes a loop or switch to exit, this form of the break statement is legal only
if it appears inside one of these statements.

You’ve already seen examples of the break statement within a switch statement. In
loops, it is typically used to exit prematurely when, for whatever reason, there is no
longer any need to complete the loop. When a loop has complex termination condi-
tions, it is often easier to implement some of these conditions with break statements
rather than trying to express them all in a single loop expression. The following code
searches the elements of an array for a particular value. The loop terminates in the
normal way when it reaches the end of the array; it terminates with a break statement
if it finds what it is looking for in the array:

for(var i = 0; i < a.length; i++) {

if (a[i] == target) break;
}

JavaScript also allows the break keyword to be followed by a statement label (just the
identifier, with no colon):

break labelname;

When break is used with a label, it jumps to the end of, or terminates, the enclosing
statement that has the specified label. It is a syntax error to use break in this form if
there is no enclosing statement with the specified label. With this form of the break
statement, the named statement need not be a loop or switch: break can “break out of”
any enclosing statement. This statement can even be a statement block grouped within
curly braces for the sole purpose of naming the block with a label.

A newline is not allowed between the break keyword and the labelname. This is a result
of JavaScript’s automatic insertion of omitted semicolons: if you put a line terminator
between the break keyword and the label that follows, JavaScript assumes you meant
to use the simple, unlabeled form of the statement and treats the line terminator as a
semicolon. (See §2.5.)

You need the labeled form of the break statement when you want to break out of a
statement that is not the nearest enclosing loop or a switch. The following code
demonstrates:

var matrix = getData(); // Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
var sum = 0, success = false;
// Start with a labeled statement that we can break out of if errors occur
compute_sum: if (matrix) {
for(var x = 0; x < matrix.length; x++) {
var row = matrix[x];
if (!row) break compute sum;

5.6 Jumps | 103

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

for(var y = 0; y < row.length; y++) {
var cell = row[y];
if (isNaN(cell)) break compute_sum;
sum += cell;

}
}

success = true;

// The break statements jump here. If we arrive here with success == false
// then there was something wrong with the matrix we were given.
// Otherwise sum contains the sum of all cells of the matrix.

Finally, note that a break statement, with or without a label, can not transfer control
across function boundaries. You cannot label a function definition statement, for ex-
ample, and then use that label inside the function.

5.6.3 continue

The continue statement is similar to the break statement. Instead of exiting a loop,
however, continue restarts a loop at the next iteration. The continue statement’s syntax
is just as simple as the break statement’s:

continue;

The continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled forms, can be used only
within the body of a loop. Using it anywhere else causes a syntax error.

When the continue statement is executed, the current iteration of the enclosing loop is
terminated, and the next iteration begins. This means different things for different types
of loops:

* Inawhileloop, the specified expression at the beginning of the loop is tested again,
and if it’s true, the loop body is executed starting from the top.

* In a do/while loop, execution skips to the bottom of the loop, where the loop
condition is tested again before restarting the loop at the top.

* In a for loop, the increment expression is evaluated, and the test expression is
tested again to determine if another iteration should be done.

* Ina for/in loop, the loop starts over with the next property name being assigned
to the specified variable.

Note the difference in behavior of the continue statement in the while and for loops:
a while loop returns directly to its condition, but a for loop first evaluates its
increment expression and then returns to its condition. Earlier we considered the be-
havior of the for loop in terms of an “equivalent” while loop. Because the continue
statement behaves differently for these two loops, however, it is not actually possible
to perfectly simulate a for loop with a while loop alone.

104 | Chapter5: Statements

The following example shows an unlabeled continue statement being used to skip the
rest of the current iteration of a loop when an error occurs:
for(i = 0; i < data.length; i++) {
if (!data[i]) continue; // Can't proceed with undefined data
total += data[i];
}

Like the break statement, the continue statement can be used in its labeled form within
nested loops, when the loop to be restarted is not the immediately enclosing loop. Also,
like the break statement, line breaks are not allowed between the continue statement
and its 1abelname.

5.6.4 return

Recall that function invocations are expressions and that all expressions have values.
A return statement within a function specifies the value of invocations of that function.
Here’s the syntax of the return statement:

return expression;

A return statement may appear only within the body of a function. It is a syntax error
for it to appear anywhere else. When the return statement is executed, the function
that contains it returns the value of expression to its caller. For example:

function square(x) { return x*x; } // A function that has a return statement
square(2) // This invocation evaluates to 4

With no return statement, a function invocation simply executes each of the statements
in the function body in turn until it reaches the end of the function, and then returns
to its caller. In this case, the invocation expression evaluates to undefined. The
return statement often appears as the last statement in a function, but it need not be
last: a function returns to its caller when a return statement is executed, even if there
are other statements remaining in the function body.

The return statement can also be used without an expression to make the function
return undefined to its caller. For example:
function display_object(o) {
// Return immediately if the argument is null or undefined.
if (lo) return;
// Rest of function goes here...

}

Because of JavaScript’s automatic semicolon insertion §2.5), you cannot include a line
break between the return keyword and the expression that follows it.

5.6.5 throw

An exception is a signal that indicates that some sort of exceptional condition or error
has occurred. To throw an exception is to signal such an error or exceptional condition.
To catch an exception is to handle it—to take whatever actions are necessary or

5.6 Jumps | 105

mn
(=]
=
m
[
=
<
[
w
Pa)
=.
=1
-

appropriate to recover from the exception. In JavaScript, exceptions are thrown when-
ever a runtime error occurs and whenever the program explicitly throws one using the
throw statement. Exceptions are caught with the try/catch/finally statement, which
is described in the next section.

The throw