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Foreword

The early to mid 1980s saw the commercial opening across Europe of public-access mobile
communications systems. These cellular systems all used analogue technology, but outside
of the Nordic countries no attempt was made to standardize the systems — so the technology
adopted differed from country to country. Unfortunately, one thing they did have in common
was a total absence of adequate security features, which made them open to abuse by criminals,
journalists and all manner of opportunists. User’s calls could be eavesdropped on the air using
readily available and comparatively inexpensive interception devices, and there were celebrated
cases of journalistic invasion of privacy. A well-known example was the “squidgy” tapes, where
mobile telephone calls between members of the British royal family were recorded. Mobile
telephone operators and their customers became very concerned.

The operators also had another problem with serious financial consequences. When a mobile
phone attempted to connect to a network the only check made on authenticity was to see that
the telephone number and the phone’s identity correctly corresponded. These numbers could
be intercepted on the air and programmed to new phones creating clones of the original. Clones
were used by criminals to run up huge charges for calls which had nothing to do with the
legitimate owner. Cloning became very widespread, with criminals placing their “cloning”
equipment in cars parked at airports to capture the numbers from business people announcing
their arrival back home to their families. It represented a serious financial problem for operators
who ended up covering the charges themselves. The problems caused by lack of security in
European analogue systems were a significant factor in accelerating the creation and adoption
of GSM.

GSM is a standard for digital mobile communications, designed originally for Europe
but now adopted all over the world. Being an international standard it brings economy of
scale and competition, and it enables users to roam across borders from one network to
another. Being digital it brings transmission efficiency and flexibility, and enables the use of
advanced cryptographic security. The security problems of the original analogue systems are
addressed in GSM by encryption on the air interface of user traffic, in particular voice calls,
and authentication by network operators of their customers on an individual basis whenever
they attempt to connect to a network, irrespective of where that network may be. From
both a technical and a regulatory perspective the use of cryptography in GSM was ground-
breaking. Initially manufacturers and operators feared it would add too much complexity to
the system, and security agencies were concerned that it may be abused by criminals and terror
organizations. The legitimate fears and concerns constrained what was possible, especially
with the encryption algorithm, which was designed against a philosophy of “minimum strength
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to provide adequate security”. Despite this, and the continuing efforts of organized hackers,
eavesdropping on the air of GSM calls protected using the original cipher has still to be
demonstrated in a real deployment, and with a stronger cipher already available in the wings,
any future success will be largely pointless. This doesn’t mean that GSM is free from security
weaknesses — the ability to attack it using false base stations is very real.

GSM is the first in an evolving family of technologies for mobile communications. The
second member of the family is 3G (or UMTS as it is often referred to in Europe) and the
third, and most recent, is LTE (EPS to give it its proper title which is used throughout the main
body of this book). With each technology evolution the security features have been enhanced
to address learning from its predecessor, as well as to accommodate any changes in system
architecture or services. The underlying GSM security architecture has proved to be extremely
robust, and consequently has remained largely unchanged with the evolving technology family.
It has also been adapted for use in other communications systems, including WLAN, IMS and
HTTP. It is characterized by authentication data and encryption key generation being confined
to a user’s home network authentication center and personal SIM, the two elements where all
user-specific static security data is held. Only dynamic and user session-specific security data
goes outside these domains.

3G sees the addition to the GSM security features of user authentication of the access
network — to complement user authentication by the network, integrity protection of signalling
and the prevention of authentication replay. Start and termination of ciphering is moved from
the base station further into the network. Of course the false base station attack is countered.
A new suite of cryptographic algorithms based on algorithms open to public scrutiny and
analysis is introduced, and changes of regulation governing the export of equipment with
cryptographic functionality make their adoption easier for most parts of the world.

LTE heralds the first technology in the family that is entirely packet-switched — so voice
security has to be addressed in an entirely different way from GSM and 3G. LTE is a much
flatter architecture, with fewer network elements, and is entirely IP-based. Functionality,
including security functionality, is migrated to the edge of the network, including encryption
functionality which is moved to the edge of the radio network, having been moved from
the base station to the radio network controller in the evolution from GSM to 3G. While
maintaining compatibility with the security architecture developed for GSM and evolved
for 3G, the security functionality has been significantly adapted, enhanced and extended to
accommodate the changes that LTE represents, as well as security enhancements motivated by
practical experience with 3G. Much of this plays back into 3G itself as new security challenges
arise with the advent of femto cells — low-cost end nodes in exposed environments that are not
necessarily under the control of the operator of the network to which they are attached.

The book takes the reader through the evolution of security across three generations of
mobile, focusing with clarity and rigor on the security of LTE. It is co-authored by a team who
continue to be at the heart of the working group in 3GPP responsible for defining the LTE
security standards. Their knowledge, expertise and enthusiasm for the subject shines through.

Professor Michael Walker
Chairman of the ETSI Board
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1

Overview of the Book

Mobile telecommunications systems have evolved in a stepwise manner. A new cellular radio
technology has been designed once per decade. Analogue radio technology was dominant in
the 1980s and paved the way for the phenomenal success of cellular systems. The dominant
second-generation system GSM was introduced in the early 1990s, while the most successful
third-generation system 3G — also known as UMTS, especially in Europe — was brought into
use in the first years of the first decade of the new millennium.

At the time of writing, the fourth generation of mobile telecommunications systems is about
to be introduced. Its new radio technology is best known under the acronym ‘LTE’ (Long Term
Evolution). The complete system is named ‘SAE/LTE’, where ‘SAE’ (System Architecture
Evolution) stands for the entire system, which allows combining access using the new, high-
bandwidth technology LTE with access using the legacy technologies such as GSM, 3G and
HRPD. The technical term for the SAE/LTE system is Evolved Packet System (EPS), and we
shall be using this term consistently in the book. The brand name of the new system has been
chosen to be LTE, and that is the reason why the title of the book is LTE Security.

With the pervasiveness of telecommunications in our everyday lives, telecommunications
security has also moved more and more to the forefront of attention. Security is needed
to ensure that the system is properly functioning and to prevent misuse. Security includes
measures such as encryption and authentication, which are required to guarantee the user’s
privacy as well as ensuring revenue for the mobile network operator.

The book will address the security architecture for EPS. This is based on elements of
the security architectures for GSM and 3G, but it needed a major redesign effort owing to
the significantly increased complexity, and new architectural and business requirements. The
book will present the requirements and their motivation and then explain in detail the security
mechanisms employed to meet these requirements.

To achieve global relevance, a communication system requires world-wide interoperability
that is easiest to achieve by means of standardization. The standardized part of the system
guarantees that the entities in the system are able to communicate with each other even
if they are controlled by different mobile network operators or manufactured by different
vendors. There are also many parts in the system where interoperability does not play a
role, such as the internal structure of the network entities. It is better not to standardize

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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2 LTE Security

wherever it is not necessary because then new technologies can be introduced more rapidly and
differentiation is possible among operators as well as among manufacturers, thus encouraging
healthy competition.

As an example in the area of security, communication between the mobile device and the
radio network is protected by encrypting the messages. It is important that we standardize
how the encryption is done and which encryption keys are used, otherwise the receiving end
could not do the reverse operation and recover the original content of the message. On the
other hand, both communicating parties have to store the encryption keys in such a way that
no outsider can get access to them. From the security point of view, it is important that this
be done properly but we do not have to standardize how it is done, thus leaving room for the
introduction of better protection techniques without the burden of standardizing them first.
The emphasis of our book is on the standardized parts of EPS security, but we include some
of the other aspects as well.

The authors feel that there will be interest in industry and academia in the technical details of
SAE/LTE security for quite some time to come. The specifications generated by standardization
bodies only describe how to implement the system (and this only to the extent required for
interoperability), but almost never inform readers about why things are done the way they
are. Furthermore, specifications tend to be readable only by a small group of experts and lack
the context of the broader picture. This book is meant to fill this gap by providing first-hand
information from insiders who participated in decisively shaping SAE/LTE security in the
relevant standardization body, 3GPP, and can therefore explain the rationale for the design
decisions in this area.

The book is based on versions of 3GPP specifications from March 2010 but corrections
approved by June 2010 were still taken into account. New features will surely be added into
these specifications in later versions and there will most probably also be further corrections
to the existing security functionality. For the obvious reason of timing, these additions cannot
be addressed in this book.

The book is intended for telecommunications engineers in research, development and techni-
cal sales and their managers as well as engineering students who are familiar with architectures
of mobile telecommunications systems and interested in the security aspects of these systems.
The book will also be of interest to security experts who are looking for examples of the use
of security mechanisms in practical systems. Both readers from industry and from academia
should be able to benefit from the book. The book is probably most beneficial to advanced
readers, with subchapters providing sufficient detail so that the book can also be useful as
a handbook for specialists. It can also be used as textbook material for an advanced course,
and especially the introductory parts of each chapter, when combined, give a nice overall
introduction to the subject.

The book is organized as follows. Chapter 2 gives the necessary background information on
cellular systems, relevant security concepts, standardization matters and so on. As explained
earlier, LTE security relies heavily on security concepts introduced for the predecessor systems.
Therefore, and also to make the book more self-contained, Chapters 3, 4 and 5 are devoted to
security in legacy systems, including GSM and 3G, and security aspects of cellular—WLAN
interworking.

Chapter 6 provides an overall picture of the EPS security architecture. The next four chap-
ters provide detailed information about the core functionalities in the security architecture.
Chapter 7 is devoted to authentication and key agreement which constitute the cornerstones for

http://freepdf-books.com
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Figure 1.1 Major dependencies among chapters

the whole security architecture. Chapter 8 shows how user data and signalling data is protected
in the system, including protecting confidentiality and integrity of the data. A very character-
istic feature in cellular communication is the possibility of handing over the communication
from one base station to another. Security for handovers and other mobility issues is han-
dled in Chapter 9. Another cornerstone of the security architecture is the set of cryptographic
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4 LTE Security

algorithms that are used in the protection mechanisms. The algorithms used in EPS security
are introduced in Chapter 10.

In the design of EPS, it has been taken into account already from the beginning how
interworking with access technologies that are not defined by 3GPP is arranged. Also, inter-
working with legacy 3GPP systems has been designed into the EPS system. These two areas
are discussed in detail in Chapter 11.

The EPS system is exclusively packet-based; there are no circuit-switched elements in it.
This implies, in particular, that voice services have to be provided on top of IP packets. The
security for such a solution is explained in Chapter 12.

Partially independently of the introduction of EPS, 3GPP has specified solutions that enable
the deployment of base stations covering very small areas, such as in private homes. This
type of base station may serve restricted sets of customers (e.g. people living in a house), but
open usage in hotspots or remote areas is also envisaged. These home base stations are also
planned for 3G access, not only for LTE access. Such a new type of base station may be placed
in a potentially vulnerable environment not controlled by the network operator and therefore
many new security measures are needed, compared to conventional base stations. These are
presented in detail in Chapter 13.

Finally, Chapter 14 contains a discussion of both near-term and far-term future challenges
in the area of securing mobile communications.

Many of the chapters depend on earlier ones, as can be seen from the above descriptions.
However, it is possible to read some chapters without reading first all of the preceding ones.
Also, if the reader has prior knowledge of GSM and 3G systems and their security features,
the first four chapters can be skipped. This kind of knowledge could have been obtained,
for example, by reading the book UMTS Security [Niemi and Nyberg 2003]. The major
dependencies among the chapters of the book are illustrated in Figure 1.1.
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2

Background

2.1 Evolution of Cellular Systems

Mobile communications were originally introduced for military applications. The concept of
a cellular network was taken into commercial use much later, near the beginning of the 1980s,
in the form of the Advanced Mobile Phone System (AMPS) in the USA and in the form of the
Nordic Mobile Telephone system (NMT) in northern Europe. These first-generation cellular
systems were based on analogue technologies. Simultaneous access by many users in the same
cell was provided by the Frequency Division Multiple Access (FDMA) technique. Handovers
between different cells were already possible in these systems and a typical use case was a
phone call from a car.

The second generation of mobile systems (2G) was introduced roughly a decade later, at the
beginning of the 1990s. The dominant 2G technology has been the Global System for Mobile
(GSM) communications, with more than three and a half billion users worldwide at the time
of writing. The second generation introduced digital information transmission on the radio
interface between the mobile phone and the base station. The multiple access technology is
Time Division Multiple Access (TDMA).

The second generation provided an increased capacity of the network (owing to more
efficient use of radio resources), better speech quality (from digital coding techniques) and a
natural possibility for communicating data. Furthermore, it was possible to use new types of
security feature, compared to analogue systems.

Again roughly one decade later, the third-generation technologies (3G) were introduced at
the beginning of the twenty-first century. Although GSM had become a phenomenal success
story already at that point, there were also other successful 2G systems, both in Asia and in
North America. One of the leading ideas for 3G was to ensure fully global roaming: to make it
possible for the user to use the mobile system services anywhere in the world. A collaborative
effort of standards bodies from Europe, Asia and North America developed the first truly
global cellular technologies in the 3rd Generation Partnership Project (3GPP). At the time of
writing, there are almost half a billion 3G subscriptions in the world.

The third generation provided a big increase in data rates, up to 2 megabits per second
(Mbps) in the first version of the system that was specified in Release 99 of 3GPP. The
multiple-access technology is Wideband Code Division Multiple Access (WCDMA).

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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Both GSM and 3G systems were divided into two different domains, based on the underlying
switching technology. The circuit-switched (CS) domain is mainly intended for carrying voice
and short messages while the packet-switched (PS) domain is mainly used for carrying data
traffic.

One more decade passed and the time was ripe for taking another major step forward. In
3GPP the development work was done under the names of ‘Long Term Evolution’ (LTE) of
radio technologies and ‘System Architecture Evolution’ (SAE). Both names emphasized the
evolutionary nature of this step, but the end result is in many respects a brand new system,
both from the radio perspective and from the system perspective. The new system is called
Evolved Packet System (EPS) and its most important component, the new radio network, is
called Evolved Universal Terrestrial Radio Access Network (E-UTRAN).

The EPS contains only a packet-switched domain. It offers a big increase in data rates, up
to more than 100 Mbps. The multiple-access technology is again based on FDMA, namely
Orthogonal Frequency Division Multiple Access (OFDMA) for the downlink traffic (from the
network to the terminal) and Single Carrier FDMA (SC-FDMA) for the uplink traffic (from
the terminal to the network).

2.1.1 Third-generation Network Architecture

In this section we give a brief overview of the 3GPP network architecture. A more thorough
description of the 3G architecture can be found elsewhere [Kaaranen ez al. 2005].

A simplified picture of the 3GPP Release 99 system is given in Figure 2.1.

The network model consists of three main parts, all of which are visible in Figure 2.1. The
part closest to the user is the terminal that is also called the User Equipment (UE). The UE
has a radio connection to the Radio Access Network (RAN), which itself is connected to the
Core Network (CN). The core network takes care of coordination of the whole system.

The core network contains the PS domain and the CS domain. The former is an evolution
of the GPRS domain of the GSM system and its most important network elements are the
Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node (GGSN). The
CS domain is an evolution from the original circuit-switched GSM network with the Mobile
Switching Centre (MSC) as its most important component.

MSC/
VLR GMSC

Figure 2.1 The 3G system
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In addition to the various network elements, the architecture defines also interfaces or, more
correctly, reference points between these elements. Furthermore, protocols define how different
elements are able to communicate over the interfaces. Protocols involving the UE are grouped
into two main strata: the Access Stratum (AS) contains protocols that are run between the
UE and the access network, while the Non-Access Stratum (NAS) contains protocols between
the UE and the core network. In addition to these two, there are many protocols that are run
between different network elements.

The core network is further divided into the home network and the serving network. The
home network contains all the static information about the subscribers, including the static
security information. The serving network handles the communication to the UE (via the
access network). If the user is roaming, then the home and the serving network are controlled
by different mobile network operators.

2.1.2  Important Elements of the 3G Architecture

The user equipment consists of two parts: the Mobile Equipment (ME) and the Universal
Subscriber Identity Module (USIM). The ME is typically a mobile device that contains the
radio functionality and all the protocols that are needed for communications with the network.
It also contains the user interface, including a display and a keypad. The USIM is an application
that is run inside a smart card called Universal Integrated Circuit Card (UICC) [TS31.101]. The
USIM contains all the operator-dependent data about the subscriber, including the permanent
security information.

There are two types of radio access network in the 3G system. The Universal Terrestrial
Radio Access Network (UTRAN) is based on WCDMA technology, and the GSM/EDGE
Radio Access Network (GERAN) is an evolution of GSM technology.

The radio access network contains two types of element. The base station (BS) is the
termination point of the radio interface on the network side, and it is called Node B in the case
of UTRAN and Base Transceiver Station (BTS) in GERAN. The base station is connected to
the controlling unit of the RAN, which is the Radio Network Controller (RNC) in UTRAN or
the Base Station Controller (BSC) of GERAN.

In the core network, the most important element in the circuit-switched domain is the
switching element MSC that is typically integrated with a Visitor Location Register (VLR)
that contains a database of the users currently in the location area controlled by the MSC.
The Gateway MSC (GMSC) takes care of connections to external networks, an example being
the Public Switched Telephone Network (PSTN). In the packet-switched domain, the role of
MSC/VLR is taken by the SGSN, while the GGSN takes care of connecting to IP services
within the operator network and to the outside world, such as the Internet.

The static subscriber information is maintained in the Home Location Register (HLR).
It is typically integrated with the Authentication Centre (AuC) that maintains the permanent
security information related to subscribers. The AuC also creates temporary authentication and
security data that can be used for security features in the serving network, such as authentication
of the subscriber and encryption of the user traffic.

In addition to the elements mentioned here and illustrated in Figure 2.1, there are many
other components in the 3G architecture, an example being the Short Message Service Centre
(SMSC) that supports storing and forwarding of short messages.
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2.1.3  Functions and Protocols in the 3GPP System

The main functionalities in the 3GPP system are:

¢ Communication Management (CM) for user connections, such as call handling and session
management;

® Mobility Management (MM) covering procedures related to user mobility, as well as im-
portant security features;

® Radio Resource Management (RRM) covering, for example, power control for radio con-
nections, control of handovers and system load.

The CM functions are located in the non-access stratum while RRM functions are located in
the access stratum. The MM functions are taken care of by both the core network and the radio
access network.

The division into user plane and control plane (also called signalling plane) defines an
important partition among the protocols. User-plane protocols deal, as the name indicates,
with the transport of user data and other directly user-related information, such as speech.
Control-plane protocols are needed to ensure correct system functionality by transferring
necessary control information between elements in the system.

In a telecommunication system, in addition to the user and control planes, there is also a
management plane that, for example, keeps all elements of the system in operation. Usually,
there is less need for standardization in the management plane than there is for the user plane
and the control plane.

The most important protocols for the Internet are Internet Protocol (IP), User Datagram
Protocol (UDP) and Transmission Control Protocol (TCP). In the wireless environment there
is a natural reason to favour UDP over TCP: fading and temporary loss of coverage make it
difficult to maintain reliable transmission of packets on a continuous basis. There is also a
3GPP specific protocol that is run on top of UDP/IP. This is the GPRS Tunnelling Protocol
(GTP). It has been optimized for data transfer in the backbone of the PS domain.

The interworking of the different types of protocol can be illustrated by a typical use case: a
user receiving a phone call. First the network pages for the user. Paging is an MM procedure;
the network has to know in which geographical area the user could be found. After the user
has successfully received the paging message, the radio connection is established by RRM
procedures. When the radio connection exists, an authentication procedure may follow, and
this belongs again to the MM. Next the actual call set-up (CM procedure) occurs during which
the user may be informed about who is calling. During the call there may be many further
signalling procedures, such as for handovers. At the end of the call, the call is first released by
a CM procedure and after that the radio connection is released by the RRM.

2.1.4 The EPS System
The goals of the EPS are [TS22.278]:

¢ higher data rates;
® Jower latency;
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high level of security;

enhanced quality of service (QoS);

support for different access systems with mobility and service continuity between them;
support for access system selection;

capabilities for interworking with legacy systems.

The main means to achieve these goals are:

® the new radio interface and the new RAN based on it (E-UTRAN);
¢ a flat IP-based architecture that has only two network elements on the user plane (evolved
NodeB and Serving Gateway).

Figure 2.2 (adapted from [TS23.401]) illustrates the EPS network architecture in a case where
the UE is not roaming into a different network than where it has its subscription. Note that the
legacy radio access networks UTRAN and GERAN are included in the system together with
the legacy core network element SGSN.

The new core network element is called Mobility Management Entity (MME). The HLR of
the original GSM and 3G architecture is extended to the Home Subscriber Server (HSS). The
core network element for user-plane handling is called Serving Gateway (S-GW). The PDN
Gateway (PDN GW) handles the traffic towards packet data networks. It is also possible that
S-GW and PDN GW are co-located. The core network of the EPS is called Evolved Packet
Core (EPC).

The architecture of E-UTRAN is depicted in Figure 2.3 (see also [TS36.300]). The base
station eNB is the only type of network element in E-UTRAN. On the other hand, there is an
interface between two eNBs facilitating fast handovers between different base stations.

2.2 Basic Security Concepts

It is not easy to define ‘security’ even though people tend to understand quite well what is
meant by it. Protection methods against malicious actions lie at the core of security. There is
also a clear distinction between security, on one hand, and fault-tolerance and robustness, on
the other.

HSS
T Séa
PCRF
—S12
s4 Gx Rx
Serving 3,5 PDN Operator's IP
Gateway I Gateway Services, e.g. IMS

Figure 2.2 The EPS architecture (non-roaming case). Adapted with permission from © 2010, 3GPP™
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MME / S-GW MME / S-GW

Figure 2.3 The E-UTRAN architecture

Many aspects of security are relevant for a communication system. There are physical
security aspects and information security aspects. The former include issues such as locked
rooms, safes and guards: all these are needed when operating a large-scale network. Another
property that belongs to the area of physical security is tamper-resistance. Smart cards play
a major role in the system we describe in this book, and tamper-resistance is a key property
of smart cards. Sometimes guaranteed tampering evidence is a sufficient protection method
against physical intrusion: if tampering can be detected quickly enough, corrupted elements
can be cut out of the network before too much damage is caused.

Biometric protection mechanisms are examples of methods between physical security and
information security. For example, checking of fingerprints assumes both sophisticated mea-
surement instruments and a sophisticated information system to support the use of these
instruments as access control devices.

In this book we concentrate mainly on aspects belonging to the broad category of information
security. In particular, we put focus on communication security. But physical security is also
important for EPS security and will be covered to some extent as well.

2.2.1 Information Security

In the context of information security, the following areas can be studied fairly independently
of each other:

o System security. An example is trying to ensure that the system does not contain any weak
parts. Attackers typically try to find a point weak enough to be broken.

® Application security. Banking over the Internet, for example, typically uses security mech-
anisms that are tailored to meet the application-specific requirements.

® Protocol security. Communicating parties are, for example, able to achieve security goals
by executing well-defined communication steps in a certain well-defined order.
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® Platform security. The network elements and mobile terminals depend on the correct func-
tionality of the operating system that controls them. Physical security, too, has an important
role in platform security.

® Security primitives. These are the basic building blocks on top of which all protection
mechanisms are built. Typical examples are cryptographic algorithms, but also items like a
protected memory can be seen as a security primitive (thus bringing physical security also
into the picture).

In this book we put the main emphasis on system security, protocol security and security
primitives. Platform security is covered only briefly, and application security is seen as more
or less orthogonal to the purposes of this book.

In the design of a practical security system there are always tight constraints. The cost of
implementing protection mechanisms must be balanced with the amount of risk mitigated
by these mechanisms. The usability of the system must not suffer because of security. These
trade-offs depend also on the intended use of the system: in a military system, for example,
trade-offs between security, cost and usability are done on a different basis from in a public or
a general-purpose communication system.

2.2.2  Design Principles

The design process of a security system contains typically the following phases:

® Threat analysis. The intention is to list all possible threats against the system, regardless of
the difficulty and cost of carrying out an attack to materialize a particular threat.

® Risk analysis. The weight of each threat is measured quantitatively or, at least, in relation
to other threats. Estimates are needed for both the probability of various attacks and the
potential gain for the attacker and/or damage to the attacked side caused by them.

® Requirements capture. Based on the earlier phases, it is now decided what kind of protection
is required for the system.

® Design phase. The actual protection mechanisms are designed in order to meet the require-
ments. Existing building blocks, such as security protocols or primitives, are identified,
possibly new mechanisms are created, and a security architecture is built. Here the con-
straints have to be taken into account, and it is possible that not all requirements can be met.
This may cause a need to re-visit earlier phases, especially the risk analysis.

® Security analysis. An evaluation of the results is carried out independently of the previous
phase. Usually, automatic verification tools can be used only for parts of a security analysis.
There are often holes in the security system that can be revealed only by using creative
methods.

® Reaction phase. While planning of the system management and operation can be seen as
part of the mechanism design phase, reaction to all unexpected security breaches cannot be
planned beforehand. In the reaction phase it is vital that the original design of the system
is flexible enough and allows enhancements; it is useful to have a certain amount of safety
margin in the mechanisms. These margins tend to be useful in cases where new attack
methodologies appear faster than expected.
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We have listed here only the phases that can be considered part of the design process. In
addition, implementation and testing are also important in building a secure system.

One factor that affects several phases is the fact that often the security system is part
of a much larger system that is under design at the same time. This has been the case for
EPS specification work also. An iterative approach is needed because the general system
architecture and requirements are changing in parallel to the security design. Although these
iterations seem to slow down the process, it is important that the security for the system be
designed at the same time as the system itself is designed. Trying to add security to an existing
completed system typically leads to impractical and inefficient solutions.

2.2.3 Communication Security Features

Although security as an abstract concept is hard to define, its ingredients or features are
typically easier to grasp in definitions. In the following we list the most important features in
communication security:

® Authenticity. In a classical scenario where parties A and B are communicating over some
channel, both typically want to begin with identifying each other. Authentication is the
process of verifying the identities.

® Confidentiality. In the same classical scenario, parties A and B may want to limit the intelli-
gibility of the communication just to the two parties themselves, to keep the communication
confidential.

o [ntegrity. If all messages sent by the party A are identical to the ones received by the party
B, and vice versa, then integrity of the communication has been preserved. Sometimes the
property that the message is indeed sent by A is called ‘proof-of-origin’, while the term
‘integrity’ is restricted to the property that the message is not altered on the way.

® Non-repudiation. It is often useful for the receiving party B to store a message received from
the sending party A. Now non-repudiation of the message means that A cannot later deny
having sent it.

® Availability. This is an underlying assumption for the classical scenario of A and B com-
municating with each other. The communication channel must be available for parties A
and B.

Typical attacks and attackers against these features are as follows:

¢ Authentication — an imposter tries to masquerade as one of the communicating parties.

¢ Confidentiality — an eavesdropper tries to get information about at least some parts of the
communication.

® Integrity — a third party tries to modify, insert or delete messages in the communication
channel.

* Non-repudiation — it may sometimes give a benefit for the sender of a certain message if he
can later deny sending of it. For example, the message may relate to a financial transaction,
or a commitment to buy or sell something.

® Availability — a Denial of Service (DoS) attack tries to prevent access to the communication
channel, at least for some of the communicating parties.
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The main emphasis in this book is on the first three features: authenticity, confidentiality
and integrity. The whole point of introducing LTE and EPS is to improve the availability of
the cellular access channel. The non-repudiation feature is still of less importance in EPS
networks; it is much more relevant for the application layer.

2.3 Basic Cryptographic Concepts

Cryptology is sometimes defined as the art and science of secret writing. The possibility to
apply cryptology for protecting the confidentiality of communications is obvious. Additionally,
it has been found that similar techniques can be successfully applied to provide many other
security features, such as for authentication.

Cryptology consists of two parts:

® cryptography — designing systems based on secret writing techniques;
® cryptanalysis — analysing cryptographic systems and trying to find weaknesses in them.

The twofold nature of cryptology reflects a more general characteristic in security. As explained
earlier, it is very difficult to find testing methods that can be applied to reliably assess whether
a designed system is secure. The reason for this is that the true test for a system begins when
it is deployed in real life. Then attackers may appear who use whatever ways they can find to
break the system. What makes the situation even more difficult is that these real-life attackers
typically try to hide their actions and methods as far as possible. Cryptanalysis (and security
analysis more widely) tries to anticipate what attackers might do and is constantly searching
for novel ways of attacking systems. In this manner, cryptanalysis (and security analysis)
contributes indirectly to achieving a better security level.

The role of cryptanalysis in modelling attackers is a complex issue. It is perfectly fine to find
weaknesses in systems that are still under design and not deployed in practice. This is because
then it is still easy and relatively cheap to take corrective action. However, when the system is
already in wide use the role of cryptanalysis may become controversial. A clever attack found
by a researcher may be reproduced by a real-life attacker who would not have invented it by
himself. In this case, the attack found by the researcher seems to cause a decrease in the level
of security rather than an increase.

One obvious solution to this dilemma is to keep the cryptanalytic result confidential until
corrective action has been done to remove any real-life vulnerabilities. After these vulner-
abilities have been removed, publishing the results helps to avoid similar vulnerabilities in
future implementations. Note that there are similar debates on how to handle vulnerabilities
discovered in, for example, operating systems and browsers. There seems to be no general
agreement on the appropriate handling of vulnerabilities in the security community.

Another solution to the problem is to be secretive even in the design phase. If real-life
attackers do not know what kind of cryptographic algorithms are in use in the real-life systems
it is difficult for them to apply any cryptanalytic results in their attacks. In fact, this approach
was widely used until the 1970s. Before that time, academic published results in cryptology
were scarce, and their potential relation to real-life systems was not known in public. The
big disadvantage of the secretive approach, sometimes called ‘security by obscurity’, is that
feedback from practical experience to academic research is completely missing, which slows
down progress on the academic side.
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As long as cryptography is used in closed and tightly controlled environments, such as
for military communications or protecting databases of financial institutions, there is no need
to open up the used systems to academic cryptanalysis. But the situation changes when
cryptographic applications are used in commercial systems involving consumers. First, there
could be potential attackers among the users of the system and, therefore, the design of the
system could leak out to the public through various reverse-engineering efforts. Second, it is
harder to build trust in the system among bona fide users if no information is given about
how the system has been secured. This trend towards usage of cryptology in more open
environments is one reason for the boom in public cryptologic research since the 1970s.

Another, perhaps bigger, reason was the introduction of novel, mathematically intriguing
cryptologic concepts, most notably the public key cryptography [Diffie and Hellman 1976].

2.3.1 Cryptographic Functions

Let us next present formal definitions of some central cryptographic notions.

e Plaintext space P is a subset of the set of all bit strings (denoted by {0,1}*); we assume
here, for simplicity, that everything is coded in binary.

e Cryptotext (or Ciphertext) space C is also a subset of {0,1}*.

® Key space K is also a subset of {0,1}*. Often K = {0,1}* where k is a fixed security
parameter.

® Encryption functionis E: P x K — C.

® Decryption functionis D : C x K — P.

® Cryptosystem consists of all of the above, i.e (P;C;K;E;D).

® Symmetric encryption is defined by D(E(p, k), k) = p.

® Asymmetric encryption is defined by D(E(p, k;), k;) = p, where keys k; and k, are not
identical, and moreover k, cannot be derived easily from k;.

Modern cryptography is based on mathematical functions that are non-trivial from the point
of view of computational complexity. This means that either the function as such is complex
to compute or the function can only be computed once a certain piece of information — a
key — is available. Randomness is another fundamental notion in modern cryptography. A
pseudorandom generator is an algorithm that takes a truly random bit string as an input (called
a ‘seed’) and expands it into a (much) longer bit string that is infeasible to be distinguished
from a truly random bit string of the same length.

One important function type is a one-way function. Roughly speaking, a function has the
one-way property if

® it is easy to compute f(x), if x is given; but
® for a given y, it is infeasible to find any x with f(x) = y.

A more accurate definition could be given using terminology from complexity theory [Menezes
et al. 1996], but we do not need it for the purposes of this book.

Another important function type is a trapdoor function. It is similar to the one-way function
with one important difference: if a certain piece of information (a secret key) is known then
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Table 2.1 Basic cryptographic function types — |

FUNCTION:
Easy (with public key) Easy with secret key
INVERSE:
Easy (with public key) Non-cryptographic function Digital signature
Easy with secret key Asymmetric encryption Symmetric encryption
Infeasible One-way function Message authentication code

it becomes easy to find x with f(x) = y, given y. Trapdoor functions are used in public key
cryptography, for example for digital signatures.

One of the simplest examples of a function used in practice as a one-way function is the
multiplication of natural numbers. Given two integers n and m it is easy to compute their
product nm but no efficient algorithm is known to compute the inverse operation, determining
factors of an integer when the integer becomes large enough. This is the case, in particular, if
the integer to be factored is a product of two large prime numbers.

The basic cryptographic function types are listed in Table 2.1. This categorization of the
function types should be seen as illustrative; the exact definitions of these function types can
be found elsewhere [Menezes et al. 1996].

We use the following notations in Table 2.1:

Easy (with public key): easy to compute (but possibly requiring knowledge of a public key);
Infeasible: infeasible to compute;

Easy with secret key: feasible to compute if and only if the secret key is known;
FUNCTION: given x, find f(x);

INVERSE: given y, find x such that f(x) = y.

In Table 2.2 we focus on the bottom right corner of Table 2.1, on keyless or symmetric key
algorithms. We have also added one more dimension which is often useful in practice: whether
the length (in bits) of x (and respectively of f(x)) is fixed or variable. Again, the table as such

Table 2.2 Basic cryptographic function types — II

FUNCTION/INVERSE:
Easy with secret
Easy with secret key/easy with
Easy/infeasible key/infeasible secret key
LENGTH OF
INPUT/OUTPUT:
Variable/fixed One-way hash Message (esoteric case)
function authentication code
Fixed/variable Pseudorandom Key stream generator (esoteric case)
generator for stream cipher
Fixed/fixed (and the One-way permutation Keyed one-way Block cipher
same) permutation
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does not give exact definitions of these cryptographic terms, and exact definitions are given
elsewhere [Menezes et al. 1996].

Some cases in the table are marked as esoteric: they are not used as widely as the others.
One-way permutation is a one-way function that is also a one-to-one (i.e. bijective) mapping.

2.3.2  Securing Systems with Cryptographic Methods

Using good cryptographic functions does not alone guarantee that a communication system
is secure. In addition to the issues with policies and configuration, the structure of the system
has to be carefully designed.

One basic principle of using cryptographic functions for securing a system is that the system
must remain secure even if the functions and the structure are made publicly available; that
is, providing ‘security by obscurity’ is not deemed acceptable (see section 2.2). Only the
randomly generated keys are assumed to be kept secret.

One issue in using cryptography is the management of secret keys. Most cryptographic
protection methods rely on the concept of a key and these keys themselves have to be protected;
whoever has access to the keys can also remove the protection. This leads to a ‘chicken-and-
egg’ situation: in order to be able to communicate securely we first have to communicate
securely certain pieces of information, the keys. Fortunately, it is easier to plan the distribution
and exchange of the keys than the communication of arbitrary information that is unpredictable
as regards volume, timing and so on. Still, the number of entities that need access to keys is
typically of the same order of magnitude as the number of entities in the whole system.

In the following subsections we take a brief look at the various cryptographic primitives
that can be used as building blocks for the basic security features listed in section 2.2.3. Let us
begin by listing the most popular cryptographic primitives for each communication security
feature:

authentication: challenge-response protocols;

confidentiality: encryption; (also called ciphering);

integrity: message authentication codes;

non-repudiation: digital signatures;

availability: client puzzles — this method is not, however, in wide use yet and we do not
explore it any further in this book.

2.3.3  Symmetric Encryption Methods

Symmetric encryption methods are divided into two main classes: block ciphers and stream
ciphers. In a block cipher, a fixed-length plaintext block is transformed into a cryptotext block
of the same length using a key (usually also of fixed length). Thus, for any fixed key the block
cipher is a bijection:

c=E(p,k);p=D(c, k) = D(E(p, k), k).

The dominant block cipher in the past was Data Encryption Standard (DES); its block length
is 64 bits and the key length is 56 bits. A newer general-purpose cipher, Advanced Encryption
Standard (AES), has a block length of 128 bits and a (minimum) key length of 128 bits.
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Usually a block cipher becomes stronger if it is iterated several times. In the design of block
ciphers, iteration is used also inside the block cipher. These iterations are called ‘rounds’. There
is a trade-off here, since adding more rounds increases both security and processing time.

There are a few other classical design principles. For example, each plaintext bit and each
key bit should affect each ciphertext bit (diffusion); and the relation between plaintext bits and
ciphertext bits should be as complex as possible (confusion).

As block ciphers operate with fixed size words, we encounter a practical problem: how
to encrypt messages longer than one block? A straightforward solution is called Electronic
Code Book (ECB) mode: a message is divided into blocks and each block is encrypted
independently. This mode has a major weakness: identical plaintext blocks result in identical
ciphertext blocks!

There exist several different modes that avoid this weakness by introducing additional
changing input, such as by using earlier created ciphertext or a counter. Special modes can
also be created for using a block cipher for purposes other than encryption, for example as a
one-way function or a pseudorandom generator.

Next we discuss stream ciphers. The idea of a stream cipher is based on a simple but yet
absolutely secure cipher called the one-time pad. Assume the key k is as long as the plaintext
p. Then we define ¢ = p xor k.

The one-time pad cannot be broken. Indeed, any ciphertext may be decrypted to any plaintext
(with some valid key). On the other hand, the one-time pad has one major weakness: secure
transport or storage of the key becomes as demanding a task as secure transport or storage of
the plaintext itself. But still it is advantageous that the transport or storage of the key can be
done in convenient time prior to the need of using the key.

In a stream cipher, the long random key of the one-time pad is replaced by a pseudorandom
sequence. In other words, we start with a fixed size key (a seed) and generate a mask bit stream
m (sometimes called a key stream) that is as long as the plaintext. Then ¢ = p xor m.

Usually there is an additional input (e.g. a counter value) which is used together with the key
as a seed. Then the same key can be used for encrypting several messages independently of
each other. This holds assuming that the additional input changes for every instance, as when
the counter value is increased for every new message. One main advantage of a stream cipher
is the fact that the mask bit stream can be generated in advance, even before the plaintext is
known. This helps in avoiding delays in the communication.

Another advantage is that the number of erroneous bits in the ciphered message introduced
by a noisy channel equals the number of erroneous bits in the recovered plaintext; whereas, for
a block cipher, one bit error in a ciphered block typically renders the entire block of recovered
plaintext unintelligible. This is a reason why stream ciphers are often used for channels with
relatively high bit error rates, such as radio channels.

2.3.4 Hash Functions

Now we take a closer look at a type of cryptographic function that does not require any key,
namely a hash function. A one-way hash function 4 has the properties:

® compression: h(x) has a fixed length (e.g. 160 bits) while x may be of any length;
® h(x) is easy to compute.
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For some purposes it is important that the hash function fulfils further conditions:

® 2nd-preimage resistance: for a given x, it is infeasible to find any other x( different from x
such that 4(x) = h(xy);
® collision resistance: it is infeasible to find any two distinct x and x( such that h(x) = h(xo).

It is possible to build a specific mode that converts a block cipher into a hash function, but
usually tailor-made hash functions require less computation than block ciphers, and they can
be implemented more efficiently. Two hash functions of this type are MDS5 (128-bit hash)
and SHA-1 (160-bit hash), but many collisions have been found for the former and there is
evidence that collisions can be generated for the latter as well. At the time of writing, the most
popular hash function is SHA-256 (256-bit hash) but there is also an ongoing competition,
run by the National Institute of Standards and Technology (NIST), for finding a new standard
hash function, called SHA-3 [NIST].

Hash functions are used in many ways in applications. One important use case is as a
message digest: a variable length message can have a unique fixed length representation. Of
course, the representation cannot be truly unique, but collision resistance implies that it is
infeasible to find two messages (of any length) with the same message digest.

It is also possible to design the computation of a hash function around a secret key. Then we
speak of message authentication codes (MACs). These keyed hash functions have typically a
somewhat shorter output than (keyless) hash functions. The reason for this is the following
generic attack against keyless hash functions. Anybody can compute a large table of inputs
and corresponding hash output values (also called message digests). If the length of the output
is n then it follows from the birthday paradox [Menezes et al. 1996] that approximately 2"/
hash outputs need to be computed before a collision is found.

A similar approach does not work for keyed hash functions as the key is known only to
authorised parties and the table of hash values is different for each possible secret key.

There are three different strategies in the design of a message authentication code: either
direct design, or use of a block cipher or keyless hash functions as building blocks. The HMAC
construction is an example of the third strategy. If & is the key and x is the input, then the MAC
value is obtained by double hashing:

HMAC(x, k) = h((k xor opad)|h((k xoripad)|x)),

where vertical bars are used to denote concatenation, and opad and ipad are just constant
values used for padding purposes. The result is often truncated to create a shorter MAC value
(e.g. by extracting the first 96 bits from a total of 160 bits).

The basic use case of message authentication codes in information security is to ensure
the integrity of a message: we append a MAC to each message transferred over an insecure
channel. If the receiving party knows the secret key then it can compute the MAC as well in
order to check that the message sent and the message received are indeed identical. Note that the
requirement of collision resistance is not crucial for the use of a keyed hash function as a MAC.

2.3.5 Public-key Cryptography and PKI

We now look at the basic notions of public key (asymmetric) cryptography; a deeper treatment
of the subject can be found elsewhere [Menezes et al. 1996]. The idea of public key encryption
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is simple: we use different keys for encryption and decryption and it is infeasible to derive the
decryption key from the encryption key.

If such encryption and decryption functions are available, then the encryption key can be
made public, so it is possible for one party to communicate with many other parties (who do
not need to mutually trust each other) using the same key. It is important to note that it is not
sufficient that the encryption key be made publicly available; in addition, authenticity of the
public key has to be guaranteed.

The setting is reversed for a digital signature. It is infeasible to derive the signing key (used
to compute the signature function key) from the verifying key (used to compute the inverse of
the signature function). The verifying key can be public, so many people can independently
verify the same signature. Usually it is actually the message digest that gets digitally signed.
As long as the used hash function is collision resistant, signing the message digest is equivalent
to signing the message itself.

Some main benefits of public-key cryptography are:

e casier key management for very large systems, especially those with many-to-many rela-
tionships;

¢ the possibility to use digital signatures, and as a consequence, the possibility for non-
repudiation;

¢ the possibility for any entity to authenticate another entity without online connection to any
central trusted third party (but typically an off-line connection to a trusted third party is
needed to enable entities to verify the public keys of other entities).

The dominant technique for guaranteeing authenticity of the public key is to use a public key
infrastructure (PKI). The central concept of a PKI is a certificate: user identity and public key
are signed by the Certification Authority (CA). It is assumed that it can be verified by other
means that the public key of the CA itself is authentic; for example it could be installed in
a computing device at the time of manufacture, or it could be downloaded in a physically
secured trusted environment.

The Registration Authority (RA) verifies the user identity, often physically, and delivers the
certificate to the correct user. Sometimes a user’s private key gets compromised (e.g. stolen),
and then the certificate must be revoked. This is often done by including revoked certificates
into a certificate revocation list (CRL) that is signed by the CA.

In principle, anybody with a certificate is able to create more certificates by signing identities
and public keys of others. Typically CAs are arranged in a hierarchical fashion, and each layer
in the hierarchy has a certificate signed by the immediate upper-layer CA except for the root
CA on the top of the hierarchy, which either has only a self-signed certificate or does not have
any certificate at all. Verifying a certificate of a leaf entity involves verifying all certificates of
the nodes between the leaf node and the root node. We speak then of ‘certificate chains’.

2.3.6  Cryptanalysis

Here we present the basic concepts of cryptanalysis. A classification of attackers can be done,
for instance, as follows.

® A passive attacker only monitors the communication and tries to break confidentiality.
® An active attacker also adds, deletes and modifies messages. He tries to break also other
security features in addition to confidentiality.
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The following attack models (against encryption) can be identified.

® Ciphertext only — the attacker sees only ciphertext and tries to find the key or at least the
corresponding plaintext.

® Known plaintext — the attacker knows also the plaintext and tries to find the decryption key.

® Chosen plaintext — the attacker can choose the plaintext and gets also the corresponding
ciphertext (and again tries to find the decryption key).

® Adaptive chosen plaintext — the plaintexts to be chosen may depend on previously observed
ciphertexts.

® Chosen ciphertext — the attacker chooses the ciphertext and gets the plaintext.

® Adaptive chosen ciphertext —the ciphertexts to be chosen may depend on previously observed
plaintexts.

Only the first two models are available for a passive attacker. Various chosen plaintext and
ciphertext scenarios can also be practical attack models. An example is the case where the
user has full access to a tamper-resistant cryptographic module and tries to discover the key
inside the module.

A similar classification of attack models applies for attacks against authentication and
integrity protection. The simplest attack type that applies even in the ciphertext only model is
exhaustive search of all keys. If we have a reasonable amount of ciphertext available, there is
typically only one key that decrypts the ciphertext into a meaningful plaintext.

The differential cryptanalysis method is an example of a modern method in the chosen
plaintext scenario. It is carried out by choosing a big number of pairs of plaintexts with
a pre-determined difference. Analysis is done by studying the corresponding differences in
the ciphertexts. Another method, requiring only the known plaintext scenario, that has been
applied successfully for many block ciphers and stream ciphers is the linear cryptanalysis
method. It is based on analysis of the correlation between plaintext and ciphertext bits.

Recently another attack model has gained a lot of popularity:

® Related key attack — the attacker is able to ask that the key be changed and in such a way
that the relation between the old key and the new key is pre-determined and chosen by the
attacker.

This attack scenario is very optimistic from the attacker’s point of view, because only under
special circumstances is there a real chance for the attacker to try to change keys somehow.
The related key scenario is often viewed as a theoretical tool that can be used in the analysis
of ciphers and their structures.

The following attack model takes a wider approach and it is often relevant in practical
settings:

® Side channel attack — the attacker is able to utilize information about the physical imple-
mentation of the cryptosystem.

For instance, the attacker could measure time and power consumption related to execution of
the cryptographic algorithm and deduce useful information about the key, possibly by using
statistical methods. The attacker may also be able to induce controlled faults in the execution
of the algorithm, such as by heat treatment or electric shocks.
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2.4 Introduction to LTE Standardization

By the end of the last century it had become evident in Japan that the regional second-generation
system PDC (Personal Digital Cellular) was no longer going to provide good enough service
for the huge market. Therefore, two Japanese standards organizations, the Association of
Radio Industries and Businesses [ARIB] and the Telecommunication Technology Committee
[TTC] were already in quite an advanced state in creating detailed specifications for a third-
generation technology, especially for the radio network part. In parallel with the Japanese
activities there were ongoing efforts in the European Telecommunications Standards Institute
[ETSI] to prepare the way for a third-generation cellular technology, called Universal Mobile
Telecommunications System (UMTS).

In 1998, five standards development organizations (SDOs) decided to combine their efforts
to accelerate the work and guarantee global interoperability. The organizations, ETSI from
Europe, ARIB and TTC from Japan, the Alliance for Telecommunications Industry Solutions
[ATIS] from North America, and the Telecommunications Technology Association [TTA]
from South Korea formed the 3rd Generation Partnership Project (3GPP). A little bit later, a
sixth partner, the China Communications Standards Association [CCSA], joined the project.
The six SDOs are the organizational partners of 3GPP. Each organizational partner has its own
individual members, including terminal and infrastructure manufacturers, mobile network
operators and telecommunications regulators.

The dream of getting all of the third-generation development work under one project did not,
however, become true. In the United States a lot of work had been done for a system called
¢dma2000® that had evolved from one of the North American second-generation cellular
systems. Driven by the Telecommunications Industry Association [TIA], another project was
started, called the 3GPP2. At the same time, the International Telecommunication Union
[ITU], a sub-organization of the United Nations, changed their original target of creating
one single International Mobile Telecommunications-2000 (IMT-2000) standard to creating a
family of third-generation standards instead.

The co-operation between the 3GPP partners quickly began to work very well, and a large
number of specifications were in a stable state at the end of 1999. In March 2000, the first
release, Release 1999 of the 3GPP specification set, was declared ‘frozen’. Nonetheless, after
that date many corrections were needed in most specifications, a process that is unavoidable in
a project of this scale. After Release 99, 3GPP continued by creating more releases: Release
4 was frozen in 2001, Release 5 in 2002, Release 6 in 2005 and Release 7 in 2007.

The first release that covers LTE and EPS is Release 8. It was frozen in 2008 and the most
recent release at the time of writing, Release 9, was frozen at end of 2009 with a few explicitly
stated exceptions.

As early as the first 3GPP release it was understood that the cycle of one year might
sometimes be too short to add significant features to each new release, so 3GPP stopped the
practice of naming releases after calendar years.

2.4.1 Working Procedures in 3GPP

The 3GPP formally is just a co-operation project between the partners, the regional
SDOs. Therefore, 3GPP produces specifications and they become standards only after each
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regional partner has approved them. The specification work in 3GPP follows a three-stage
model.

® Requirements for new services are defined in stage 1 specifications.

e Stage 2 specifications contain functional architectures that meet the requirements, including
description of functional entities and information flows between them.

® In stage 3 specifications, the functional entities are mapped to physical entities, and bit-level
descriptions of protocols between the entities are defined.

In addition to these specifications, there are also test specifications that are typically completed
some time later (as they are also needed later).

The 3GPP specification work is carried out in working groups. Above the working groups
there is another layer, called technical specification groups (TSGs), where the specifications
created in working groups are approved. There are four TSGs: Service and System Aspects
(SA), Core Network and Terminals (CT), Radio Access Networks (RAN) and GSM EDGE
Radio Access Networks (GERAN).

Typically different working groups carry out different stages for the same features. For
example, one working group (called SA Working Group 1) concentrates purely on requirements
(i.e. stage 1), another one (called SA WG2) creates system architecture specifications (i.e. stage
2), a third one (called CT WG1) creates stage 3 specifications for protocols between the core
network and terminal, and so on.

Specifying different stages requires somewhat different types of expertise and skills. This
is one reason for the approach of distributing specification work to several working groups.
Another reason is that the distributed approach allows more efficient use of time: stage 1
groups are able to start work on the next release at the same time as other working groups are
still busy with the previous release.

Figure 2.4 illustrates how work in different stages is typically scheduled. The time unit
in the figure is a quarter year. This follows from the fact that new specifications and change
requests to old specifications are approved in TSG plenary meetings which are arranged four
times a year. An indicative interval between two consecutive releases is 15 months in the
figure. This has roughly been the time interval between the recent 3GPP releases; the exact

Rel n Reln+1 Stage 1

Reln Rel n+1 Stage 2

Reln Reln+1 Stage 3

>
[ [ [ [ [ [ [ I [

Time (quarters)

Figure 2.4 Time distribution of work in releases and stages
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point of freezing a release is always decided case by case because the optimal timing depends
on many factors, some of which stem from the business environment.

As can be seen from Figure 2.4, it is often the case that a working group is doing a
significant amount of specification work for two different releases simultaneously. Indeed,
there are typically corrections needed to the previous release while work on the next release
has already started.

The figure also illustrates that the work in different stages for the same release occurs
partially in parallel. Indeed, stage 2 groups do not wait until stage 1 work has been completed,
and the same holds between stages 2 and 3. This overlap is useful because typically different
working groups need to consult each other in order to guarantee consistency between different
stages and specifications. However, it can also be seen from the same figure that there never is
a point in time where all stages would work full time for the same release.

The work in 3GPP is contribution driven; individual members send delegates to the working
group meetings in order to progress the specification work. Looking at it from another angle, if
no member has an interest in progressing work on a particular specification, that specification
is never completed. The higher layer body, the TSG, has to approve starting a new work item
in a working group. Later the TSG approves the specification resulting from the work item
and the change requests to it.

The change request procedure is a formal tool for handling corrections to approved spec-
ifications. The correction process is handled by approving each individual change request
separately. Each change is also documented explicitly and the documentation includes, in
addition to the change itself, a reason for the change, and a brief summary of the change.

In addition to technical specifications (TSs), working groups create also technical reports
(TRs). These are informative documents without normative status. Implementers could com-
pletely ignore these documents and still build equipment fully compliant with the 3GPP
specifications, and the resulting standards. Typically, technical reports are used for (at least)
two essentially different purposes:

¢ for carrying out feasibility studies of features and mechanisms that could later be specified
in normative documents (in case the results of the feasibility study are encouraging);

¢ for analyzing features and adding guidelines and background information that is useful for
implementation, deployment and/or operation purposes.

Technical reports of the first type are typically done before corresponding technical speci-
fications are created. Reports of the second type are rather written after the corresponding
specification, or at least a draft version, is available.

Technical reports intended for 3GPP internal use have a number of the form ‘xx.8xx’, while
TRs intended for wider distribution have a number of the form ‘xx.9xx’.

For security, both types of reports are useful. Often several different approaches could
be taken in securing a certain feature. A feasibility study is useful in making each of these
approaches explicit and describing them to a similar level of detail. This helps in comparing
these approaches with each other and assessing whether they really reach the security goals
that are claimed. Of course, similar reasons explain why feasibility studies are also useful for
non-security features. For the other type of report, there area specific reasons why they are
useful for security purposes.
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Analyses of how security features meet the requirements and how the chosen countermea-
sures address threats cannot be made obsolete by, for example, carrying out field trials and
pilots. For security features (e.g. a security protocol), the fact that it can be run efficiently in
practice is only a necessary condition for its adoption. It is not a sufficient condition because
even a more important condition is that the feature cannot be circumvented.

Guidelines, instructions and clarifications are of special importance in security because
specifications often leave some details to be decided during implementation, deployment or
operation. It is important that these decisions be made with the understanding of the purpose
and characteristic of the security mechanism in question. It is possible to completely undermine
a security feature by poor choices of how and when it is in use.

The technical specifications contain normative text using, special wording with reserved
words (see section 2.5.2). The normative text may still contain different optional elements:
functionalities that may be supported optionally. Sometimes there are also features that are
mandatory to support but still optional to use.

As mentioned above, the work in different groups on the same topic requires a fair amount
of coordination and communication between working groups. A typical instrument for such
purposes is a liaison statement that is sent from one working group to another. Similar liaisons
exist also between 3GPP and other organizations, such as the Open Mobile Alliance [OMA]
and the GSM Association [GSMA].

In Table 2.3 we show the division of 3GPP specifications into different series. From the
point of view of our book, the two security series 33 and 35, and the 23 series, the 24 series
and the 36 series, are the most important ones. All 3GPP technical specifications and technical
reports are publicly available [3GPP]. Some specifications of cryptographic algorithms in the
35 series need to pass export control first, which introduces a delay in their publication.

Table 2.3 Specification numbering in 3GPP series

Number of series Subject of series

21 Requirements

22 Service aspects (stage 1)

23 Technical realization (i.e. architectural aspects) (stage 2)
24 Signalling protocols (stage 3) (UE — network)

25 Radio aspects

26 Codecs

27 Data

28 Signalling protocols (Radio network — Core network)
29 Signalling protocols (intra-fixed network)

30 Programme management

31 USIM, IC Cards

32 O&M and Charging

33 Security aspects

34 UE and USIM test specifications

35 Security algorithms

36 LTE and LTE-Advanced radio technology

37 Multiple radio access technology aspects
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2.5 Notes on Terminology and Specification Language
2.5.1 Terminology

The reader may have noticed that key terms occurring in this book are sometimes used with
different meanings in specifications, technical journal papers, marketing announcements, or in
the media at large. Conversely, different terms are sometimes used for the same concept. This
section is intended to introduce the key terms as used in this book and clarify how these terms
may be used in other forms of publications. The list of terms below is ordered such that it makes
sense to read it from start to end. We provide a complete list of abbreviations in alphabetical
order towards the back of the book. All 3GPP abbreviations are gathered in [TS21.905]. An
arrow followed by an acronym (e.g. — E-UTRAN) indicates that an explanation appears
further down the list.

LTE: This book is entitled LTE Security. We chose this title as ‘LTE’ has
become a widely known brand name for the 3GPP-defined successor technology
of third-generation mobile systems. LTE stands for Long Term Evolution and
originally denoted a work item in 3GPP aimed at developing a successor to
the third-generation radio technology. Gradually it came to denote first the new
radio technology itself, then also encompassed the radio access network (— E-
UTRAN), and is now also used for the entire system succeeding third-generation
mobile systems (— SAE, — EPS) including also the evolved core network (—
EPC), as a quick search for the term LTE on the 3GPP home page [3GPP] will
reveal. Only few 3GPP specifications actually use the term LTE, apart from on
their cover page, and if they do the term refers to the radio part but never the entire
system. Security specifications do not use this term at all. We therefore use the
term LTE in the overview parts of the book, but not in the detailed technical parts,
so as to make it easier for the reader to use the specifications together with our
book without terminological confusion. ETSI has registered ‘LTE’ as a trademark
for the benefit of the 3GPP Partners.

E-UTRAN: E-UTRAN is the Evolved Universal Terrestrial Radio Access Net-
work using the LTE radio technology. The E-UTRAN consists of the network of
LTE base stations (eNB). The term E-UTRAN is widely used in the specifications
and in the detailed technical parts of this book.

SAE: System Architecture Evolution. The term has made a similar, though not
quite as successful, career as the term LTE. Like LTE, it originally denoted a work
item in 3GPP on Radio Access Technologies (— RAT). The aim was to develop a
“framework for an evolution or migration of the third generation mobile system to
a higher-data-rate, lower-latency, packet-optimized system that supports multiple
RATS’ [3GPP 2006]. Combined with LTE it became SAE/LTE, and now often
denotes the entire system, encompassing terminals, radio access networks and
core networks. It is not commonly used in 3GPP specifications where rather the
term — EPS is preferred. It has not become a trademark either. We therefore do
not use it in this book any further.

EPS: Evolved Packet System. EPS has the same meaning as SAE/LTE. The
term EPS is widely used in 3GPP specifications and in this book.
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EPC: Evolved Packet Core. EPC is the core network part of the EPS. The term
EPC is widely used in 3GPP specifications and in this book.

RAT: Radio Access Technology. When a terminal moves from a network using
one RAT to another network using a different RAT, one often speaks of inter-RAT
mobility.

RAN: Radio Access Network. It encompasses the base stations (i.e. eNBs in
E-UTRAN, NBs in —-UTRAN, and BTSs in —GERAN) and the base station
controllers (i.e. RNCs in UTRAN, and BSCs in GERAN). There are no base
station controllers in E-UTRAN.

UTRAN: Universal Terrestrial Radio Access Network. The third-generation
radio access network encompassing UMTS radio technology.

GERAN: GSM EDGE Radio Access Network. The second-generation radio
access network encompassing GSM radio technology and its enhancement, EDGE.

UE: User Equipment. There is a fine distinction between User Equipment and
Mobile Equipment (—ME), which is, however, important for security. The UE is
the combination of the ME and the — UICC.

ME: Mobile Equipment. The ME is the terminal device without the UICC.

UICC: Universal Integrated Circuit Card. The UICC is a smart card platform,
on which applications such as the — USIM reside.

USIM: Universal Subscriber Identity Module. This application on the UICC
holds the security parameters and functions that are used in authentication and key
agreement in 3G and EPS.

SIM: Subscriber Identity Module. In newer implementations it means a SIM
application on the UICC. In older implementations it means the SIM functionality
together with the smart card platform.

2.5.2 Specification Language

Clear rules for the use of verbal forms in specifications are essential so that the reader can
distinguish mandatory requirements from other provisions where there is a certain freedom of
choice. 3GPP therefore defined the use of a few key words. The most important key words are:
“shall” (meaning “is to”, “is required to”), “should” (meaning ““it is recommended that”, “ought
to”), and “may”’ (meaning “is permitted”, “is allowed”) — for more details see [TR21.801]. We

use this specification language in the detailed parts of this book.
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GSM Security

3.1 Principles of GSM Security

The goal of security design for the GSM system was that it had to be as good as that of wireline
systems. Additionally it was required that security mechanisms should not have a negative
impact on the usability of the system.

These goals were clearly reached, and it can be argued that GSM has even better security
than wireline systems. On the other hand, it is also clear that there is room for improvement in
GSM security. This is, of course, generally true for any system that has been in wide use for a
long time. Attack methods and equipment evolve over time, and there should be corresponding
improvements in protection methods. Some enhancements in GSM security have been made
over the years but the basic structures have remained.

It is always difficult to introduce radical changes into a system that is in wide use, and
there is a key learning point in this: security design for a new system should provide adequate
protection against contemporary attack techniques and include an additional security margin.

The most important security features in the GSM system are:

e subscriber authentication;
® encryption at the radio interface for confidentiality of communication;
® use of temporary identities for identity confidentiality.

All these features were carried over to the third-generation security architecture and later to
the EPS security architecture.

As GSM became more and more successful it also became a preferred target for fraudsters.
This drew attention to the shortcomings of GSM security. The properties of GSM security that
received most criticism are listed below.

e Active attacks are possible in principle. This refers to somebody who has obtained the
required equipment to masquerade as a legitimate network element towards the terminal
(Figure 3.1).

® Sensitive control data such as keys to be used for radio interface encryption may be sent
between different networks without protection.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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Figure 3.1 Active attack

* Some essential parts of the security architecture were kept confidential (e.g. the cryptographic
algorithms), which does not create trust in them in the long run.

® Keys used for the radio interface are short enough to eventually become vulnerable to a
exhaustive search attack where the attacker tries all the possible keys until one makes a
match.

All these limitations were known at the time when GSM security was designed. However, they
were left in because it was estimated that the severity of the threats did not justify the added
cost of addressing the limitations. At the time of designing the 3G security architecture around
a decade later, a similar comparison between cost and security led to the conclusion that these
limitations should be removed for 3G mobile networks.

In the following sections we take a brief look at the most important GSM security features.

3.2 The Role of the SIM

The GSM technology is still the dominant global cellular standard. GSM also contains the
world’s largest security system: at the time of writing, there are more than four billion actively
used security elements in this one single coherent system. The cornerstone of GSM security
is the Subscriber Identity Module (SIM) that contains the subscriber identity (IMSI) and
an associated 128-bit permanent key (Ki). As will be explained shortly, GSM subscriber
authentication is done by a cryptographic challenge—response protocol based on the permanent
key. There is also a key generation mechanism integrated with the authentication protocol.
Both of these cryptography-based mechanisms are implemented inside the SIM on a smart
card.

In the original GSM specifications and until Release 4 of 3GPP specifications, the physical
smart card itself was also called SIM, so the specifications use the term ‘a SIM card’. In
the more recent releases, the setting is such that the smart card itself is called Universal IC
Card (UICC) and SIM is an application running in the UICC. This setting allows for other
applications that may be run on the same platform.

The SIM is by far the most successful smart card ever. In 2009, volumes of delivered SIM
cards exceeded three billion, contributing to approximately 75% of the total smart card market
[EUROSMART]. Altogether, the total weight of SIM cards shipped so far equals the weight
of more than 400 blue whales [Vedder 2010]!

All smart cards share two fundamental properties that are the reason for the huge success
of these tiny devices. From a security point of view, the most important property is tamper-
resistance. It requires very sophisticated equipment to tamper with a smart card physically
in such a manner that it is possible to find out what is inside. Of course, the device can be
disassembled, but it is difficult to gather useful information during the process. Smart cards
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typically implement various physical protection mechanisms against less intrusive attacks,
such as shielding against viewing with an electron microscope.

The other main property of smart cards is portability. In the case of a SIM, this property
makes it possible for the GSM subscriber to move a SIM from one terminal device to another,
either temporarily or permanently. It also makes it possible to do so-called ‘plastic’ roaming —
to travel to another country with only a SIM card in the wallet, and rent or borrow a mobile
phone from the target country. The popularity of this option has nowadays decreased because
terminal devices are so small themselves and they often support many frequency bands.
Another portability use case related to this travel scenario is that the subscriber replaces his
normal SIM with a local pre-paid SIM in order to reduce roaming costs.

Although a SIM card is tamper-resistant, it is still possible to break into an individual card if
sophisticated enough machinery is used in a high-tech laboratory. However, the GSM security
architecture is built in such a way that it is easy to lock the broken card out of the system as
soon as it is observed that tampering may have happened. As a general rule, it is important
that systems utilizing small and cheap security elements like smart cards never include global
secrets in these devices. If there are only secrets that are applicable to one single device and a
single subscriber then the gain of breaking into the device is dramatically reduced.

One of the main motivations for breaking into a SIM card is a type of fraud called ‘SIM
cloning’. If the permanent key Ki of a subscriber leaks out it is possible to create ‘clones’
of the broken SIM card. Using these clones it is possible to make many calls simultaneously
while using the same subscription. Fortunately, this kind of attack is easily detectable from the
network side (one single subscriber is suddenly in many different locations at the same time),
and the broken SIM and its clones can be shut out of the network.

In an attack like SIM cloning the attacker typically is the owner of the SIM card himself.
In principle, it is also possible for an outsider to perform, for instance, a so-called ‘lunch time
attack’ against an innocent victim: if an attacker gets hold of the victim’s SIM card for a long
enough time, he can create a copy of the SIM. If the original SIM is destroyed in the tampering,
it does not bother the attacker; he can simply replace the original SIM by a copy. If the only
objective of the attacker is eavesdropping on calls made by the victim then the attack is difficult
to detect. On the other hand, if the attacker begins to make calls on behalf of the victim, the
network has much better chances to notice that something irregular is going on. Note here
that, assuming the attacker has a chance to make a ‘lunch-time attack’, there are many other,
easier ways to obtain the potential for eavesdropping, such as by using traditional ‘bugs’.

3.3 Mechanisms of GSM Security

We shall now discuss briefly the most important security features in GSM and GPRS.

3.3.1 Subscriber Authentication in GSM

There exists a permanent, shared secret key Ki for each subscriber. This parmanent key is
stored in two locations (Figure 3.2):

® in the subscriber’s SIM card;
e in the Authentication Centre.
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BTS

HLR/Auc |

Figure 3.2 GSM system

The key Ki is never moved from either of these two locations. Authentication of the subscriber
is done by checking that the subscriber has access to Ki. This can be achieved by challenging
the subscriber by sending a random 128-bit string RAND to the terminal. The terminal has to
respond by computing a one-way function with inputs of RAND and the key Ki, and returning
the 32-bit output SRES to the network. Inside the terminal, the computation of this one-way
function, denoted by A3, happens in the SIM card.

During the authentication procedure, a temporary session key Kc is generated as an output
of another one-way function A8. The input parameters for A8 are the same as for A3: Ki
and RAND. The session key Kc is subsequently used to encrypt communication on the radio
interface.

The serving network does not have direct access to the permanent key Ki, so it cannot
perform the authentication alone. Instead, all relevant parameters — the authentication triplet
(RAND, SRES, Kc) — are sent to the serving network element MSC/VLR (or SGSN in the
case of GPRS) from the Authentication Centre. The process of identification, authentication
and cipher key generation is depicted in Figure 3.3.

3.3.2 GSM Encryption

As explained above, a secret session key Kc is generated as a by-product of the authentication
procedure and used to encrypt all communication between the terminal and the base transceiver
station (BTS), called simply base station in the following, including phone calls and signalling.
When the next authentication occurs, the key Kc is also changed at the same time.

ME + SIM BTS + MSC/VLR IMSI, K
IMSI, K;

) ((«iﬂ)) HLR / AuC
——IMSl or TMS|—» ———IMSl——»
<«——RAND———  «—RAND, XRES, Kc—

K ——SRES——»
SRES = XRES ?
<«—Encrypted TMS|——

Figure 3.3 Identification and authentication of a subscriber
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Figure 3.4 GSM encryption

The GSM encryption algorithm is called A5, and Figure 3.4 describes its high-level structure.
More details about AS are given in section 3.4.

Figure 3.4 gives the parameter lengths in their original form. The length of the plain message
(similarly, length of key stream and encrypted message) has been made longer for GSM EDGE.
The key Kc is also longer in the case of the most recent version of the A5 algorithm, A5/4,
that was introduced in Release 9. The key for this algorithm is called Kc|,g and it has 128 bits
that are derived from the 3G keys CK and IK by a key derivation function.

3.3.3 GPRS Encryption

When the packet-switched domain of GSM — that is the General Packet Radio Service (GPRS) —
was designed there was a chance to move the termination point of encryption deeper into the
network, from the base station to the SGSN. This move implied also that the encryption
function is applied at a higher communication layer in GPRS. In (circuit-switched) GSM the
encryption is done at the physical layer while in GPRS the encryption is done at the Logical
Link Control (LLC) layer. The encryption algorithm structure is very similar to that of A5 but
there are a couple of differences also: instead of the frame number the 32-bit LLC counter
parameter is used as input, and the output pseudorandom key stream needs to be of variable
length. The encryption algorithm is called GEA (GPRS Encryption Algorithm) and is further
discussed in section 3.4.

3.3.4  Subscriber Identity Confidentiality

The permanent identity of the subscriber, the International Mobile Subscriber Identity (IMSI),
could in principle be tracked by eavesdroppers on the radio interface. For a description of
the structure of the IMSI, see Chapter 7. To protect against such an attack, the occasions of
sending the permanent identity are limited to necessary cases. Instead of always using the
IMSI for identification, another identity, the Temporary Mobile Subscriber Identity (TMSI),
is in use whenever it exists.
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There is a separate temporary identity, called the Packet TMSI (P-TMSI), in use for GPRS.
It is allocated independently of the TMSI by the packet core network element SGSN, but the
allocation follows the same principles as the allocation of the TMSI. A similar mechanism is
used also in both 3G and in EPS. It is described in more detail in sections 4.2 and 7.1.

3.4 GSM Cryptographic Algorithms

As explained earlier in this chapter, the SIM runs an authentication protocol based on the
permanent key Ki and derives also a 64-bit temporary key Kc. This latter key is used in the
radio interface encryption between the mobile terminal and the base station. The associated
cryptographic algorithms are called A3 (subscriber authentication), A8 (key generation) and
A5 (radio encryption).

The GSM system is modular in the sense that it is possible to replace any algorithm by
another, probably more modern, algorithm without affecting the rest of the security system,
as long as the algorithms share the same input—output structure. Therefore, the symbols A3,
A8 and A5 rather refer to families of algorithms than to individual algorithms. The internal
structures of the algorithms in a family may be totally different.

For the radio interface encryption, three different stream ciphers A5/1, A5/2 and A5/3 have
been standardized so far for 64-bit keys. In addition, the term A5/0 is used for the case where
no encryption is applied. In Release 9 of the 3GPP specifications, there is also a variant A5/4
that uses 128-bit keys. The introduction of A5/4 into the system is more cumbersome than the
introduction of a new 64-bit key variant because changing the length of temporary keys affects
all the interfaces in the system that carry these keys. Additionally, there is an impact on storing
these keys. In the roaming case, the key travels from the home network Authentication Centre
(AuC) first to the visited network, and inside the visited network from the core network to the
radio access network and finally, inside the radio access network, into the base station. Thus,
a large number of interfaces and network elements are affected by a change of the key length.

There exists a very efficient attack against the A5/2 algorithm [Barkan et al. 2003]. This
attack also constitutes a threat to the other algorithms because the key generation in GSM
is agnostic to the algorithm. This means an active attacker could try to fool the user to start
A5/2 ciphering with the same key that is valid with another A5 algorithm from the point of
view of the genuine network. As a countermeasure, 3GPP and the GSM Association (GSMA)
launched a process that removed A5/2 completely from mobile terminals.

The situation is even more fragmented for the algorithms A3 and A8. This is a consequence
of the fact that these algorithms need not be standardized. The algorithms A3 and A8 are
executed in two places, in the SIM card on the user side, and in the Authentication Centre on
the network side. Because both the SIM and the AuC are controlled by the same operator, it
is possible for each mobile network operator to use their own proprietary algorithms. On the
other hand, 3GPP has created, as an example, public algorithm specifications for A3 and A8
[TS55.205].

The history behind the AS algorithms reflects general developments of mass-market use of
cryptography. At the time when GSM was created, there were strict controls on the export
of any products that contained cryptography. These types of restriction were in use for most
countries, including the European countries that were heavily involved in the specification
work of GSM inside ETSI. Cryptography was included in the list of dual-use goods and was
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basically comparable to items like guns. Similar to many other technologies, cryptographic
protocols can be useful also for somebody with malicious intentions.

When the algorithm A5/1 was designed, one obvious requirement was that it had to comply
with the export restrictions to the countries in the target market. At that time the target market
was mainly seen as Europe in the original phases. As the success of GSM soon became
obvious, it turned out that another weaker algorithm was needed in order to get global export
licences for GSM terminals and network equipment. The algorithm A5/2 was designed for
that purpose. At the end of the 1990s, export restrictions were harmonized between many
countries and a multilateral export control regime was created under the name of ‘“Wassenaar
arrangement’ [Wassenaar]. At the end of 2009, 40 countries had endorsed the arrangement,
including Australia, Russia, Korea, Japan, the USA and many European countries. In many
ways, the creation of the Wassenaar arrangement meant also less strict controls. For example,
mass-market products like mobile phones were essentially exempted from obtaining export
licences.

The UMTS cryptographic algorithms were designed after liberalization of export control
restrictions. Therefore, it was possible to introduce 128-bit key encryption algorithm UEAL1
based on the block cipher KASUMI [TS35.202]. The algorithm A5/3 was created as a 64-bit
key adaptation of UEA1 [TS55.216].

The specifications of A5/1 and A5/2 are kept confidential and are provided only to parties
who need to know them for implementation or deployment purposes. However, both algorithms
need to be implemented in all GSM terminals (although not anymore for A5/2) and therefore
reverse engineering of the algorithms was naturally feasible. There are many cryptanalytic
results also against A5/1, and certain time—memory trade-offs are possible. There have been
several attempts to collect the vast amount of data that is needed for breaking A5/1. The most
recent results on this front have been published [Nohl and Paget 2009], and a GSM Association
press release [GSMA 2009] assessed the state of these types of attack study.

The KASUMI algorithm and UEAI have been publicly available from the beginning of
3G and there are also cryptanalytic results against them. An efficient attack on stand-alone
KASUMI has been found in a ‘related key’ and ‘chosen plaintext’ setting [Dunkelmann
et al. 2010] (see section 2.3.6 for discussion of cryptanalytic attack scenarios). This theoretical
attack gives valuable cryptanalytic information about KASUMI, but the related key scenario
does not apply to AS5/3 as used in the GSM.

The packet-switched domain of the GSM system is called GPRS (General Packet Radio
Service). The most notable difference between GPRS security and the original GSM security
is the following: the AS encryption algorithm that resides in the physical layer is replaced by
the GPRS encryption algorithm (GEA) and encryption is moved to the logical link layer of
the radio network. Compared to A5, the changes in the cryptographic algorithm input—output
structure are small but the change of layer is more important: the protection is extended further
into the network, from the mobile terminal all the way to the core network. So far, three
different stream ciphers, GEA1l, GEA2 and GEA3, have been standardized for 64-bit keys,
the last one being the only one with specifications publicly available [TS55.216]. The GEA3
algorithm uses the same KASUMI-based key stream generator as UEA1, and is therefore very
similar to A5/3. Similarly to A5/4, starting from Release 9 there is also the GEA4 algorithm
that uses 128-bit keys.
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Third-generation Security (UMTY)

4.1 Principles of Third-generation Security

The design work for 3G security was based on the practical experiences with GSM security and,
to a lesser extent, experiences with the security of other second-generation cellular systems.
Before 3GPP was created in 1998, there was a subgroup of the ETSI SMG 10 working group
that did preliminary work for UMTS security, but the actual design work was done in the
3GPP security working group SA3. Principles of 3G security, together with design objectives
for security work, have been documented [TS33.120].

The major principles for 3G security are:

¢ it builds on those elements of 2G security that have proven to be both robust and needed;
¢ it addresses and corrects real and perceived weaknesses in 2G security;
® it adds new security features to address security needs of all new 3G services.

The first two principles were given priority in the beginning of the design work, whereas the
third principle became the most important for later releases of 3GPP where more and more
features have been added to the 3GPP system.

4.1.1 Elements of GSM Security Carried Over to 3G

Here we list the security features and design principles that were identified as worth retaining
in 3G systems. In most areas, further development was done for 3G security. The elements of
2G security considerably strengthened for 3G are as follows.

® Subscriber Authentication. This was extended to become mutual authentication between
subscribers and the system. Protocols and algorithms were also enhanced. Note that 3G
security uses the term “user authentication” rather than “subscriber authentication”.

® Radio interface encryption. Encryption was extended to cover more than just the radio
interface between the terminal and the base station. The strength of the encryption was
greatly enhanced by a much longer key size and a publicly verifiable algorithm design.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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® SIM as a removable and tamper-resistant security module. The SIM card was (gradually)
replaced by the UICC but its role as a cornerstone of the security architecture remained.
Functionality was greatly enhanced for the UICC and the USIM application inside it,
compared to the SIM. Related to this, the SIM application toolkit security features were
enhanced for the USIM application toolkit.

The elements of GSM security that were eventually seen as adequate also for the 3G environ-
ment more or less as they existed already in GSM were as follows.

® Subscriber identity confidentiality on the radio interface. The mechanism based on tempo-
rary identities provides protection only against passive attackers. Lots of effort was spent
on designing a protection also against active attackers, but in the end it turned out that a full
protection would require too costly investment. Note that 3G security uses the term “user
identity confidentiality” rather than “subscriber identity confidentiality”.

® Transparency for the user. For the most important security features, like the ones listed
above, the user does not have to do anything to get them into operation. The global and
pervasive presence of 3G systems emphasizes the importance of this principle.

4.1.2 Weaknesses in GSM Security

Following from the second main principle expressed earlier in this chapter, it was important to
explicitly list the weaknesses that were considered to be real at the time when design work for
3G security was started. Of course, in parallel with the 3G security design work, much effort
was devoted to mitigating these weaknesses also in the GSM environment.

At the time of writing, more than a decade after the work was started, it is interesting
to compare how well the 3G security systems address the listed weaknesses. Partly for that
reason, we include all items from the original list (see [TS33.120] for full formulations of
these items) in the following.

® Active attacks by ‘false networks’ are possible. The feature of mutual authentication, in
combination with the mandatory integrity protection for signalling, addresses this weakness.

¢ Encryption keys and credentials for authentication are transmitted adding “in cleartext” is
essential for understanding the text between and within networks. In order to address this
weakness, network domain security features were added to 3G systems but only in later
releases of the 3GPP specifications.

® Encryption does not extend far enough towards the network. In 3G the encryption is run
between the user equipment and the Radio Network Controller (RNC) entity.

¢ Encryption is not used in some networks. From the technical and specification points of
view, it would be easy to remove this weakness: just drop all unencrypted calls and sessions.
However, this is a regulatory rather than a technical matter, and at the time of writing there
still exist big networks that do not regularly use encryption.

® Data integrity is not provided. Protection for signalling data integrity was added from the
first release of 3GPP specifications.

¢ The International Mobile Equipment Identity (IMEI) is an unsecured identity and should
be treated as such. Adding an independent authentication system for mobile equipments, in
addition to the subscriber authentication system, would have been too costly. Therefore, the
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IMEI was kept as an unsecured identity from the network point of view. However, measures
to prevent tampering with the IMEI implementation on the mobile equipment itself have
been improved.

¢ Fraud and lawful interception were not considered in the design phase of GSM security.
This was changed for 3GPP work, as lawful interception specifications have been developed
in parallel with other specifications. Similarly, a fraud information gathering system and
support for immediate service termination were provided already in early releases of 3GPP.

® The home network does not know (nor control) whether and how the serving network
authenticates roaming subscribers. Mandatory integrity protection addresses the ‘whether’
part, since integrity protection cannot be started without keys, and obtaining keys requires
authentication. Some effort was spent on trying to address also the ‘how’ part, but in the
end it was decided that the ‘minimal trust’ principle does not justify introduction of a new
mechanism for this type of home control.

® There is no flexibility to upgrade security functionality over time. Certain elements to
support flexibility and future-proofing have been included in the 3G systems. For instance,
there is a secure negotiation mechanism for encryption algorithms, which enables effective
introduction of new algorithms and removal of deprecated ones. On the other hand, the
authentication and key agreement protocol is more or less hard-wired to the system; only
cryptographic algorithms used inside it may be upgraded.

Overall, it appears that the 2G weaknesses have been addressed well in 3G systems, but there
is room for improvement in some items. These lessons from the past have also been helping
in the design of the LTE and EPS security functions.

4.1.3 Higher Level Objectives

Apart from the fairly concrete design principles stemming from experiences with 2G systems,
there was also a list of principles and objectives that helped in meeting the third main
principle: securing all new 3G services. For instance, the 3G security was designed to ensure
the following.

All information related to a user is adequately protected.

Resources and services in the networks are adequately protected.

Standardized security features are available world-wide, and in particular there is at least
one encryption algorithm that can be exported world-wide.

e Security features are adequately standardized to support world-wide interoperability and
roaming.

Protection for 3G subscribers is better than that provided by fixed and mobile (including
GSM) systems (of that time).

® 3GPP security mechanisms can be extended as required by new threats and services.

4.2 Third-generation Security Mechanisms
4.2.1 Authentication and Key Agreement

The 3G authentication and key agreement protocol, UMTS AKA, was originally designed for
use in the circuit-switched and packet-switched domains of 3G. Variations of it have since
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been used in a range of other settings. In this chapter we describe UMTS AKA, and refer the
reader to the cited literature for other uses of AKA. These include:

® The Internet Engineering Task Force (IETF) specified HTTP Digest AKA in two versions
[RFC3310 and RFC4169]. HTTP Digest AKA uses the UMTS AKA functions to dynami-
cally generate passwords for HTTP Digest [RFC2617].

® 3GPP specified IMS AKA, which uses HTTP Digest AKA, embedded in SIP messages, to
set up IPsec associations between an IMS UE and a SIP proxy, the P-CSCF [TS33.203] —
see Chapter 12.

® 3GPP also uses HTTP Digest AKA in its Generic Bootstrapping Architecture (GBA) for
authentication between the UE and a key distribution server, the Bootstrapping Server
Function (BSF) [TS33.220].

® 3GPP enhanced UMTS AKA to EPS AKA for authentication across LTE — see Chapter 7.
The main enhancement consists in providing a binding of the agreed keys to the name of
the serving network.

e JETF specified EAP-AKA [RFC4187], which embeds the UMTS AKA functions in the
Extensible Authentication Protocol (EAP) framework [RFC3748]; in this way it makes
UMTS AKA functions usable over a range of link layer technologies, including WLAN.
EAP-AKA’ [RFC5448] extends EAP-AKA by providing a binding of the agreed keys to the
name of the access network.

3GPP uses EAP-AKA to provide authentication for subscribers connected across WLAN, and
similar access networks, to the Internet and 3GPP core networks — see section 11.2.

3GPP uses EAP-AKA'’ to provide authentication for subscribers connected across trusted
non-3GPP access networks to the Evolved Packet Core of EPS — see Chapter 11.

As we give a detailed description of the EPS AKA protocol in section 7.2, and the elements
of UMTS AKA adopted in EPS AKA are clearly distinguished there from the elements, which
are new to EPS AKA, we do not present UMTS AKA in this section in full detail. We rather
give an overview and discuss the significant enhancements that UMTS AKA provides over
the GSM authentication and key agreement protocol.

The 3GPP Security Working Group WG SA3, which designed the UMTS AKA protocol,
based its design on a threat and risk analysis of the GSM authentication and key agreement
protocol GSM AKA described in Chapter 3. Some of these weaknesses of GSM AKA have
already been discussed in Chapter 3. The threat and risk analysis showed that, while GSM
security is still adequate today to prevent widespread technical fraud, a determined attacker with
significant resources could attack GSM security using so-called false base stations, which are
not under the control of a licensed operator. False base stations were not considered a possibility
for an attacker when GSM was designed. We quote from a chapter written by Professor Michael
Walker [Hillebrand 2001], who was heavily involved in the design of GSM security:

One of the key assumptions when GSM security was designed was that the system would not be
subject to ‘active’ attacks, where the attacker could interfere with the operation of the system or
impersonate one or more entities in the system. This assumption was made because it was believed
such attacks, which would require the attacker to effectively have their own base station, would
be too expensive compared to other methods of attacking GSM as a whole (e.g. wiretapping the
fixed links or even just bugging the target).
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This view was clearly no longer tenable at the time 3G security was designed; so, protection
measures against attacks using false base stations had to be included as part of the 3G security
architecture.

3G security includes two such protection measures: integrity protection of signalling, and
prevention of replay of authentication messages. The combination of these two measures can
effectively mitigate false base station attacks.

Integrity protection is described in section 4.2.3 below. Replay of authentication messages
is prevented in UMTS AKA by including a sequence number controlled by the USIM in the
challenge sent to the mobile station, and protecting the challenge, together with the sequence
number, with a message authentication code. Adding this feature is the main enhancement of
UMTS AKA over GSM AKA.

Overview of UMTS AKA

In order to make this book self-contained we include a high-level description of UMTS AKA
here, which is similar to a description given elsewhere [Kaaranen et al. 2005]. The detailed
specification of the protocol can be found in clause 6.3 of [TS33.102].

There are three entities involved in the authentication mechanism of the UMTS system:

e the home network, sometimes called Home Environment (HE);
¢ the serving network (SN);
¢ the terminal, more specifically USIM (in a smart card, the UICC).

The basic idea is that the serving network checks the subscriber’s identity (as in GSM) by a
challenge-response technique, while the terminal checks that the SN has been authorized by
the home network to do so. The latter part is a new feature in UMTS (compared to GSM) and
it enables the terminal to check that it is connected to a legitimate network.

The mutual authentication protocol itself does not prevent the scenario where an attacker puts
up a false base station, but it guarantees (in combination with the other security mechanisms)
that the active attacker cannot get any real benefit out of the situation. The only possible gain
for the attacker is to be able to disturb the connection, but clearly no protocol methods exist
that can circumvent this type of attack completely. For instance, an attacker can implement a
malicious action of this kind by radio jamming.

The cornerstone of the authentication mechanism is a permanent key K that is shared
between the USIM of the user and the home network database. This is a permanent secret with
a length of 128 bits. The key K is never transferred out from the two locations. For instance,
the user has no knowledge of his permanent key.

Together with mutual authentication, keys for encryption and integrity are derived. These
are temporary keys with the same length of 128 bits as the permanent key K. New keys are
derived from K during every authentication event. It is a basic principle in cryptography to
limit the use of a permanent key to a minimum and instead derive temporary keys from it for
protection of bulk data.

We describe now the Authentication and Key Agreement (AKA) mechanism at a general
level. The authentication procedure can be started after the user has been identified in the
serving network. The identification occurs when the identity of the user (i.e. permanent
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identity IMSI or temporary identity TMSI) has been transmitted to the VLR or the SGSN.
Then the VLR or the SGSN sends an authentication data request to the Authentication Centre
(AuC) in the home network.

The AuC contains the permanent keys of the users and, based on the knowledge of the IMSI,
the AuC is able to generate authentication vectors for the user. The generation process consists
of executions of several cryptographic algorithms, which are described later in more detail.
The generated vectors are sent back to the VLR/SGSN in the authentication data response.
These control messages are carried by the MAP protocol.

In the serving network, one authentication vector is needed for each authentication instance;
that is, for each run of the authentication procedure. This means that the (potentially long-
distance) signalling between the SN and the AuC is not needed for every authentication event,
and it can in principle be done independently of the user actions after the initial registration.
Indeed, the VLR/SGSN may fetch new authentication vectors from the AuC well before the
number of stored vectors runs out.

The serving network (the VLR or the SGSN) sends a user authentication request to the
terminal. This message contains two parameters from the authentication vector, called RAND
and AUTN. These parameters are transferred to the USIM that exists inside a tamper-resistant
environment, the Universal IC card (UICC). The USIM contains the permanent key K, and
using it with the parameters RAND and AUTN as inputs, the USIM carries out a computation
that resembles the generation of authentication vectors in the AuC. This process also consists
of executions of several algorithms, as is the case in the corresponding AuC computation.

As a result of the computation, the USIM is able to verify whether the parameter AUTN
was indeed generated in the AuC, and, in the positive case, the computed parameter RES is
sent back to the VLR/SGSN in the user authentication response. Now the VLR/SGSN is able
to compare the user response RES with the expected response XRES which is part of the
authentication vector. When they match, the authentication has been successful.

The keys for radio access network encryption and integrity protection, namely CK and IK,
are created as a by-product in the authentication process. These temporary keys are included
in the authentication vector and, thus, are transferred from the AuC to the VLR/SGSN. These
keys are later transferred further to the RNC in the radio access network when the encryption
and integrity protection are started. On the other side, the USIM is able to compute CK and
IK as well after it has obtained RAND (and verified it through AUTN). These temporary keys
are subsequently transferred from the USIM to the mobile equipment where the encryption
and integrity protection algorithms are implemented.

Discussion of UMTS AKA

We discuss here briefly some of the properties and prerequisites of UMTS AKA. This discus-
sion is similar to one presented elsewhere [Horn and Howard 2000]. UMTS AKA relies on
the following prerequisites.

® Trust prerequisites. The user has to trust his home network in all respects concerning this
protocol. The serving network trusts the home network to send correct authentication vectors,
and not disclose them to unauthorized entities. As the home network delegates authentication
checking to the serving network, the former must place corresponding trust in the serving
network.
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® Prerequisites on interface security. It is assumed that the core network interfaces carrying
authentication data between the serving network and the home network, and between two
adjacent serving networks, are adequately secure. UMTS AKA can, however, be run securely
without additional assumptions on the security of the interface between the UE and the
serving network entities.

® Prerequisites on cryptographic functions. UMTS AKA makes use of symmetric key-based
cryptographic functions f1 to f5, f1* and f5*. All seven functions' are implemented in the
USIM and the AuC, respectively. Furthermore, there needs to be a random number generator
in the AuC. None of these cryptographic functions need to be standardized; they are all up
to agreements between operators and their AuC and UICC vendors. One such realization
of these functions is the set of algorithms provided by the specification of MILENAGE
[TS35.205].

UMTS AKA achieves the following protocol goals.

o Entity authentication. As for GSM AKA, the serving network obtains assurance that the user
with the claimed identity was involved in the current protocol run. On the other hand, the
user obtains the somewhat lesser assurance that the authentication challenge RAND, AUTN,
and consequently the keys CK and IK derived from RAND, were generated by the user’s
home environment and not used in a previous successful UMTS AKA run. Serving network
authentication is not achieved by UMTS AKA. The user only obtains assurance ‘that he is
connected to a serving network that is authorised by the user’s HE to provide him services;
this includes the guarantee that this authorisation is recent’ [TS33.102]. Serving network
authentication was not deemed necessary when 3G security was designed as there was an
assumption of mutual trust among all UMTS operators. This assumption was, however,
considered no longer valid for the entire lifetime of EPS; see the discussion on design
decisions for EPS in section 6.3. Consequently, for EPS, UMTS AKA was enhanced to also
provide serving network authentication — see section 7.2. A proposal to introduce serving
network authentication already for 3G can be found in the publication [Zhang and Fang
2005].

® Session key agreement. As a result of UMTS AKA, the ciphering key CK and the integrity
key IK are agreed between UE and VLR or SGSN. These keys are mutually implicitly
authenticated in the sense that the keys can only be held by the legitimate entities, under
the assumption that the entities and interfaces in the core network are secure, and the
authentication algorithms are secure.

o Session key freshness. This property is obtained by the fact that the session keys are derived
using RAND, and that RAND is guaranteed to be fresh by the use of the sequence number
in the message authentication code protecting RAND. Both the UE and the VLR or SGSN
have to trust the home environment for generating a new RAND for every protocol run. Due
to key freshness, a compromise of the session keys agreed in a previous UMTS AKA run
does not affect the session keys from the new UMTS AKA run.

o User identity confidentiality. The confidentiality of the user identity-related information on
the interface between the user and the server is provided in the same way as in GSM, by

! The same seven functions are used in an identical way with EPS AKA. Their use with EPS AKA is described in
detail in Chapter 7.
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using a temporary identity TMSI. This implies that an eavesdropper on the interface between
the user and the serving network cannot gain information on the user identity from reading
UMTS AKA messages. However, active attacks using so-called ‘IMSI catchers’ are still
possible. Prevention of active attacks was discussed at length in 3GPP, and it was concluded
that symmetric key techniques bore the risk of shutting out legitimate users during a crash
on the network side, and the cost of introducing a public key mechanism for this purpose
would be too high.

® Mitigation of pre-play attacks. A number of RAND, AUTN pairs may be obtained from the
network by an attacker at one point in time and used towards the user at some time later.
However, such an attacker cannot know the agreed keys. The mandatory use of the integrity
key IK rules out threats arising from this attack.

® Mitigation of compromise of authentication vectors. If authentication vectors stored in, or
sent to, the VLR or SGSN became known to an attacker he could impersonate the user towards
the compromised network, or he could impersonate any 3G network towards the user, using
the integrity key IK in local authentications. Furthermore, the attacker could eavesdrop on
sessions. But as soon as a new run of UMTS AKA has been performed successfully, the
attacker can no longer benefit from the compromised authentication vectors.

® Re-synchronization procedure. UMTS AKA provides a mechanism to re-synchronize the
sequence numbers used between USIM and Authentication Centre. While, in most cases,
a rejection of an authentication request by a USIM due to a sequence number being out of
range will be due to the VLR or SGSN using an outdated authentication vector it still has
in storage, the re-synchronization procedure of UMTS AKA even allows securely resetting
any sequence numbers held in the AuC to bring it into line with the sequence number held
in the USIM.

o Sequence number management. The generation and verification of sequence numbers in the
AuC and the USIM, respectively, need not be standardized in detail. However, the sequence
number management scheme needs to be carefully considered. Therefore, [TS33.102] pro-
vides an informative annex for guidance. The schemes described in this annex are resilient
against denial of service through accidental or malicious modification of authentication
vectors in the network and against out-of-order use of authentication vectors by network
entities. The selection of the scheme is important to ensure minimizing of re-synchronization
events when AKA is used for multiple purposes, such as IMS or GBA.

® Precomputation of authentication vectors in the AuC. This is possible as a UMTS AKA run
is not bound to any properties of the requesting entity (VLR or SGSN).

4.2.2 Ciphering Mechanism

Once the user and the network have authenticated each other they may begin secure commu-
nication. As described earlier, a cipher key CK is shared between the core network and the
terminal after a successful authentication event. Before encryption can begin, the communi-
cating parties have to agree on the encryption algorithm also. The encryption algorithms are
discussed in section 4.3.

The encryption/decryption takes place in the terminal and in the RNC on the network
side. This means that the cipher key CK has to be transferred from the core network to the
radio access network. This is done in a specific Radio Access Network Application Protocol
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Figure 4.1 Third-generation encryption. Reproduced from Niemi and Nyberg, UMTS Security, John
Wiley & Sons, Ltd. © 2003

(RANAP) message called Security Mode Command. After the RNC has obtained CK it can
switch on the encryption by sending an RRC Security Mode Command to the terminal.

The 3G encryption mechanism is based on a stream cipher as described in Figure 4.1. See
section 2.3 for details of the concept of a stream cipher.

The encryption occurs in either the Medium Access Control layer (MAC) or in the Radio
Link Control layer (RLC). In both cases, there is a counter that changes for each Protocol
Data Unit (PDU). In MAC this is Connection Frame Number (CFN) and in RLC a specific
RLC Sequence Number (RLC-SN). If these counters were used as such as input for the
mask generation, replay of messages could still occur since these counters wrap around very
quickly. This is why a longer counter called a Hyperframe Number (HFN) is introduced. It is
incremented whenever the short counter (CFN in MAC case and RLC-SN in RLC case) wraps
around. The combination of HFN and the shorter counter is called COUNT-C and is used as
an ever-changing input to the mask generation inside the encryption mechanism.

In principle, the longer counter HFN could also eventually wrap around. Fortunately, it is
reset to zero whenever a new key is generated during the authentication and key agreement
procedure. The authentication events are in practice frequent enough to rule out the possibility
of HFN wrap-around.

The radio bearer identity BEARER is also needed as an input to the encryption algorithm
since the counters for different radio bearers are maintained independently of each other.
If the input BEARER was not in use then this could again lead to a situation where the
same set of input parameters would be fed into the algorithm, and the same mask would be
produced more than once. Consequently, replay of messages could occur, and the messages
(this time in different radio bearers) encrypted with the same mask would be exposed to the
attacker.

The parameter DIRECTION indicates whether uplink or downlink traffic is encrypted. The
parameter LENGTH indicates the length of the data to be encrypted. Note that the value of
LENGTH affects only the number of bits in the mask bit stream; it does not have an effect on
the bits themselves in the generated stream.
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Figure 4.2 Third-generation integrity protection. Reproduced from Niemi and Nyberg, UMTS Security,
John Wiley & Sons, Ltd. © 2003

4.2.3 Integrity Protection Mechanism

The purpose of integrity protection is to authenticate individual control messages. It is impor-
tant to do this since the entity authentication procedure UMTS AKA gives assurance of the
identities of the communicating parties only at the time of the authentication. This leaves a
door open for the following attack: a man-in-the-middle acts as a simple relay and delivers all
messages in their correct form until the authentication procedure is completely executed. After
that, the man-in-the-middle may begin to manipulate messages freely. On the other hand, if
messages are protected individually, deliberate manipulation of messages can be observed and
false messages can be discarded.

The integrity protection is implemented at the RRC layer. Thus, it is used between the
terminal and the RNC, just as for encryption. The integrity key IK is generated during the
authentication and key agreement procedure, again similar to how the cipher key CK is
generated. Also, IK is transferred to the RNC together with CK in the Security Mode Command.

The integrity protection mechanism is based on the concept of a Message Authentication
Code: a one-way function that is controlled by the secret key IK. The function is denoted by
f9, and its output is called MAC-I: a 32-bit random-looking bit string. On the sending side, the
MAC-I is computed and appended to each RRC message. On the receiving side, the MAC-I
is also computed and it is checked that the result of the computation equals the bit string that
has been appended to the received message. Any change in any of the input parameters affects
the MAC-I in an unpredictable way.

The function f9 is depicted in Figure 4.2. Its inputs are IK, the RRC message itself,
a counter COUNT-I, direction bit (uplink/downlink) and a random number FRESH. The
parameter COUNT-I resembles the corresponding counter for encryption. Its most significant
part is a HFN that consists of 28 bits in this case where the four least significant bits contain
the RRC sequence number. COUNT-I protects against replay of earlier control messages: it
guarantees that the set of values for input parameters is different for each execution of the
integrity protection function 9.

The algorithms for 3G integrity protection are discussed in section 4.3.

The parameter FRESH is chosen by the RNC and transmitted to the UE. It is needed
to protect the network against a maliciously chosen start value for COUNT-I. Indeed, the
most significant part of HEN is stored in the USIM between connections. An attacker could
masquerade as the USIM and send a false value to the network forcing the start value of
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HFN to be too small. If the authentication procedure is not run then the old IK is taken
into use. This would create a chance for the attacker to replay RRC signalling messages from
earlier connections with recorded MAC-I values if the parameter FRESH was not involved. By
choosing FRESH randomly, the RNC is protected against this kind of replay attacks, which are
based on recording earlier connections. As already explained, it is the ever-increasing counter
COUNT-I that protects against replay attacks based on recording during the same connection
as FRESH stays constant over a single connection. From the terminal point of view, it is
still essential that the value COUNT-I never repeats itself even between different connections
because a false network could send an old FRESH value to the UE in order to try a replay
attack in the downlink direction.

Note that the radio bearer identity is not used as an input parameter to the integrity algorithm,
although it is an input parameter to the encryption algorithm. Because there are several parallel
radio bearers for the control plane also this seems to leave room for a possible replay of control
messages that were recorded within the same RRC connection but on a different radio bearer.
There is a historical reason for this state of affairs: at the time of freezing the requirements for
the integrity protection algorithm design work, the specification for UTRAN contained only
one signalling radio bearer.

Instead of changing the algorithm structure retrospectively, the following trick was intro-
duced into the integrity protection mechanism in order to remove the security hole. The radio
bearer identity is always appended to the message when the message authentication code is
calculated, although it is not transmitted with the message. Therefore, the radio bearer identity
has an effect to the MAC-I value, and we have protection also against replay attacks based on
recordings on different radio bearers.

Clearly, there are a few RRC control messages whose integrity cannot be protected by the
mechanism. Indeed, messages sent before the integrity key IK is in place cannot be protected.
A typical example is the RRC Connection Request message sent from the UE. There is a list
in [TS33.102] about messages that are not integrity protected.

4.2.4 Identity Confidentiality Mechanism

The permanent identity of the user in UMTS is the IMSI (as is the case also in GSM). However,
the identification of the user in UTRAN is in almost all cases done by temporary identities:
the TMSI in the circuit-switched domain or the P-TMSI in the packet-switched domain. This
implies that confidentiality of the user identity is protected almost always against passive
eavesdroppers. Initial registration is an exceptional case where a temporary identity cannot be
used since the network does not yet know the permanent identity of the user. After that it is in
principle possible to use temporary identities.

The mechanism works as follows. Assume the user has been identified in the serving
network by the IMSI already. Then the serving network (VLR or SGSN) allocates a temporary
identity (TMSI or P-TMSI) for the user and maintains the association between the permanent
identity and the temporary identity. The latter is only significant locally, and each VLR/SGSN
simply takes care that it does not allocate the same TMSI/P-TMSI to two different users
simultaneously. The allocated temporary identity is transferred to the user once the encryption
is turned on. This identity is then used in both uplink and downlink signalling until the network
allocates a new TMSI (or P-TMSI). Paging, location update, attach and detach are examples
of signalling procedures that use (P-)TMSIs.
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The allocation of a new temporary identity is acknowledged by the terminal, and, after that,
the old temporary identity is removed from the VLR (or SGSN). If the allocation acknowledge-
ment is not received by the VLR/SGSN it will keep both the old and new TMSIs and accept
either of them in uplink signalling. In downlink signalling, the IMSI must be used because
the network does not know which temporary identity is currently stored in the terminal. In
this case, the VLR/SGSN tells the terminal to delete any stored TMSI/P-TMSI and a new
re-allocation follows.

Still one problem remains: how does the serving network obtain the IMSI in the first place?
Since the temporary identity has a meaning only locally, the identity of the local area has to
be appended to it in order to obtain an unambiguous identity for the user. This means that the
Location Area Identity (LAI) is appended to the TMSI and the Routing Area Identity (RAI)
is appended to the P-TMSI.

If the UE arrives in a new area then the association between IMSI and (P-)TMSI can be
fetched from the old location area or routing area if the new area knows the address of the
old area (based on LAI or RAI). At the same time, unused authentication vectors may also be
transferred from the old VLR/SGSN to the new VLR/SGSN (if there are any). If the address
of the old area is not known, or a connection to the old area cannot be established, then the
IMSI must be requested from the UE.

There are some specific places, such as, airports, where lots of IMSIs may be transmitted over
the radio interface as people are switching on their mobile phones after the flight. This means
also that the identity of the people arriving can in principle be found when an eavesdropper
knows their IMSIs. On the other hand, tracking of people is usually also otherwise easier in
this kind of special place.

Altogether, the user identity confidentiality mechanism in UMTS does not give one hun-
dred per cent protection but it offers a relatively good protection level. Note that the protection
against an active attacker is not very good since the attacker may pretend to be a new serving
network to which the user has to reveal its permanent identity. The mutual authentication
mechanism does not help here since the user has to be identified before he/she can be authen-
ticated.

The details of handling of temporary identities can be found from [TS43.020] and
[TS23.060].

4.3 Third-generation Cryptographic Algorithms

The time when 3G security was designed coincided with an important watershed time for
commercial cryptography. As explained in Chapter 3, export control restrictions had been
greatly harmonized and also liberalized just a few years earlier. This gave the opportunity to
opt for strong cryptographic algorithms with a state-of-the-art key length.

The 3GPP document [TR33.901] lists the design criteria for 3G cryptographic algorithms.
Two important decisions had to be made in the beginning. First, it had to be decided whether to
aim for publicly available algorithms or secret algorithms (as was the case in GSM). Second,
it had to be decided for each algorithm whether it is obtained by

¢ selecting an already existing off-the-shelf algorithm (with adaptations to fit into the 3G
security architecture); or
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*® inviting submissions from cryptography experts and/or the security community at large for
a new algorithm; or
® commission a specific group of experts to carry out the design work in a task force project.

The first decision was easier to take: many aspects seemed to favour public algorithms over
secret ones. Maybe the most important fact was that trust in algorithms is much higher if they
are available for analysis by the whole cryptographic community. Another important point
that made the decision quite easy was the fact that, in cases where the algorithm needs to
be implemented in all 3G terminals, details of the algorithm would eventually be reverse-
engineered by some people and leaked to the public anyhow.

The second decision was made somewhat more difficult by another important concurrent
process in cryptography. The National Institute of Standards and Technology [NIST] had a
big competition ongoing for finding a new standard general-purpose encryption algorithm that
would, for example, replace the Data Encryption Standard (DES) algorithm in US govern-
mental use. The difficulty lay in the fact that, although the NIST competition for finding a new
Advanced Encryption Standard (AES) algorithm was in many ways very good for industrial
purposes, it was scheduled to be closed significantly later than when specifications for first
3G cryptographic algorithm were needed for implementations. Here it should be noted that,
after the political agreement was reached to establish 3GPP and aim for a truly global system,
extremely ambitious schedules were set for when the first release of the specifications had to
be available.

This issue with tight schedules had two effects. The most obvious candidate (i.e. AES) for
the ‘off-the-shelf selection’ option would not have been available in time. On the other hand,
it was evident that there was not enough time for any kind of 3GPP cryptography competition
that would run in parallel with the (at that time) ongoing NIST competition. Hence, the second
option of inviting submissions was not seen as viable at all. Also, the timing for going with the
‘off-the-shelf” option was not good at all. Of course, possibilities like choosing one of the AES
candidate algorithms or existing standard algorithms (e.g. from ETSI or FIPS) was considered
but no satisfactory solution was found. For these reasons, 3GPP chose the third option and
delegated the ETSI body Security Algorithms Group of Experts (SAGE), see [ETSI], to create
a task force for the design and evaluation work for the first 3G cryptographic algorithms.

As explained earlier in this chapter, cryptographic algorithms for AKA were left out of
scope of standardization. Therefore, the first two algorithms were needed for encryption and
integrity protection between UE and RNC. There were tight performance requirements for
both algorithms, and it was required that the chosen algorithms would perform well in both
hardware and software implementations.

4.3.1 KASUMI

The time schedule was tight also for the commissioned task force organized by ETSI SAGE.
Therefore, the task force did not start their design work from scratch but instead looked for a
suitable existing algorithm that could serve as a starting point for their work. Suggestions were
also welcome from experts in the industry. In this way, the design process actually contained
some elements of all three basic options.

The task force then chose the algorithm MISTY [Matsui 1997], designed in Japan, as starting
point for the design work. The main designer of MISTY, Mitsuru Matsui, also joined the task
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force. Several changes were made to MISTY (or, more specifically, MISTY 1), mainly for the
purpose of making the hardware implementations simpler or faster. The resulting algorithm
was given the name KASUMI, which is the Japanese word for mist.

The task force had its own evaluation and testing teams but, in addition, three different
academic expert groups were invited to carry out the evaluation of KASUMI. The report of
the task force project can be found in [TR33.908].

The KASUMI algorithm is a block cipher that uses a block size of 64 bits and a key size of
128 bits. Details of the algorithm can be found in [TS35.202]. KASUMI has a Feistel structure,
and it contains § rounds with very similar structures. The atomic nonlinear functions are called
S-boxes (S7 and Sg) and they can be implemented by a small amount of combinational logic.
In the S-box S7 (resp. So), the output of 7 bits (resp. 9 bits) is calculated by bit operations on
7 (resp. 9) input bits.

KASUMI was not designed to be used as a stand-alone block cipher but only as a building
block for the UMTS encryption and integrity algorithms.

4.3.2 UEAI and UIAI

The first 3G encryption algorithm UEA1 and the first 3G integrity protection algorithm UIA1
were designed by the task force of ETSI SAGE as special modes of operation of KASUMI. For
UEA1, a mode was needed that made a block cipher usable as a stream cipher. Two popular
modes for that purpose are ‘Counter Mode’ and ‘Output Feedback Mode’, and the task force
ended up with a new mode that is a combination of both of these modes. For UIA1, a mode
was needed that uses a block cipher for creating a message authentication code. Details of
the specifications of UEA1 and UIAI can be found in [TS35.201]. Test data is available in
[TS35.203] and [TS35.204] for implementation and conformance testing purposes. Niemi and
Nyberg have discussed KASUMI-based algorithms and the work of the task force [Niemi and
Nyberg 2003].

Because the algorithms UEA1 and UIA1, together with their core building block KASUMI,
were made publicly available, there have been cryptanalytic efforts on them. Several papers
have also been published on the subject, targeting typically either KASUMI or MISTY1,
but many results on MISTY1 are also applicable to KASUMI. A typical approach on doing
cryptanalysis against algorithms with an iterative structure is reducing the number of rounds
and trying to attack the resulting weakened version of the algorithm. At the time of writing,
there exist attacks that are faster than exhaustive search for a 6-round version of KASUMI
[Kiihn 2001; Dunkelmann and Keller 2008]). Very strong attacks have been found in the
related key attack and the chosen plaintext scenario [Dunkelmann et al. 2010]. See section
2.3.6 for more information about these attack models. Fortunately, related key attack scenarios
do not apply to the 3G security architecture and chosen plaintext attacks are hard to realize in
the UEA1 mode of operation.

4.3.3 SNOW3G, UEA2 and UIA2

Back in 2004, 3GPP decided that it was time to start specification work for another algorithm
set, in addition to the KASUMI-based algorithms UEA1 and UIA1. New attacks had been
introduced, called algebraic attacks, which were not taken into consideration when KASUMI
was designed. Still, there were no signs that algorithms in the KASUMI family would be
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broken soon. Nevertheless, it was seen that the dependence on one single algorithm creates a
kind of ‘single point of failure’. Furthermore, sometimes it has happened that the time interval
has been relatively short between first theoretical cryptanalytic results showing weaknesses in
an algorithm and practical attacks exploitable against the algorithm.

The design and specification work takes time, and implementation work followed by wide-
scale deployment adds to the delay. Especially when algorithms are implemented in hardware,
their introduction to products is a slow process. This fact further emphasized the need for a
proactive approach in introducing another algorithm set.

Sometimes breakthroughs in cryptanalysis lead to successfully breaking many algorithms
almost simultaneously. To minimize the chances that both 3G algorithm sets would be broken
in a relatively short time, it was required that the new algorithm set should be built on design
principles as different as possible from those used for KASUMI-based algorithms.

This point also ruled out the introduction of AES as the basis for the new algorithms, since
the atomic nonlinear functions inside both KASUMI and AES follow very similar design
principles. The same design options — i.e. ‘off-the-shelf’, ‘competition’ and ‘commission’
— were again considered, now without restrictions imposed by a tight time schedule. It was
felt that, after ruling out AES, the ‘off-the-shelf” method would not work well. Arranging a
3GPP-specific design competition was seen as too heavy a process, even if more time was
available than when the first algorithm set was designed. Good experiences with the special
task forces also encouraged choice of the third option again for the design process.

ETSI SAGE was delegated to form a special task force for the design and evaluation work. It
was also required that external experts would be used for independent evaluations. Furthermore,
it was decided to leave some time at the end for voluntary evaluation and cryptanalysis work
by experts in the industry and academia. The 3GPP document [TR35.919] contains a report
of the task force project.

Guided by the differentiation requirement, the special task force looked for a suitable
genuine stream cipher that could be used as a starting point for the work. Such an algorithm
was found in SNOW 2.0 [Ekdahl and Johansson 2002]. The first version of SNOW had been
submitted to the European NESSIE project (New European Schemes for Signatures, Integrity
and Encryption) that had been ongoing for some time with the goal of identifying appropriate
cryptographic algorithms for different purposes. Building on the feedback on the first version,
the designers created a new version, which had been subject to cryptanalysis for a couple of
years without showing any signs of weaknesses.

Similar to the case of KASUMI, some changes were made to SNOW 2.0 in order to adapt it
to the requirements of the 3G environment and thwart the newly discovered algebraic attacks.
SNOW 3G has indeed a classical stream cipher structure, producing a continuous key stream.
It is built on a Linear Feedback Shift Register (LFSR) and a Finite State Machine (FSM); see
Figure 4.3 for a graphical description of the SNOW 3G structure.

Each of the 16 cells in the LFSR are 32-bit words. The three registers R1, R2 and R3 of
the FSM also contain 32 bits each. The additive operations are bit-wise exclusive or (xor) and
addition modulo 232. The operations S; and S, are nonlinear substitutions (S-boxes) on the
registers. The S-box S; is taken directly from SNOW 2.0 and is originally part of the AES
round function. The S-box S, was designed to have a good resistance against algebraic attacks.
In the feedback function of the LFSR, contents of cells s1; and sy are multiplied by appropriate
constants, before applying the xor-function with each other and content of cell s,. Details of
the SNOW 3G algorithm can be found in [TS35.216].
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The SNOW 3G algorithm is used as the core component of both UEA2 and UIA2. The
construction of UEA?2 is fairly straightforward. Input parameters for the encryption function
are used to fill in initial values for the LFSR (using simple formulas), then SNOW 3G is
clocked, first as part of the initialization phase and, after that, producing as many key stream
words as needed to mask all of the plaintext. See [TS35.215] for a detailed description of
UEA2.

Application of SNOW 3G for integrity protection is more complicated. The structure of
UIAZ2 is given in Figure 4.4.

Similar to UEA2, the 16 cells are populated by input parameters of the integrity protection
mechanism, using simple formulas that can be found in [TS35.215]. Then SNOW 3G is used
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to create the bit strings P and Q, both of length 64 bits, and one 32-bit value OTP. Also this
phase is very similar to the generation of the (first 160 bits of the) key stream in UEA2. After a
certain padding, the message is transformed into a polynomial over the finite field GF(2%*) of
264 elements. The polynomial is evaluated in the secret point P, and the result is multiplied by
the other secret 64-bit value Q. Then truncation is applied to obtain 32 bits, which are finally
xor-ed with the third secret value OTP.

The design of UIA2 is based on the principle of universal hashing [Carter and Wegman
1979; Stinson 1992; Bierbrauer et al. 1993], and is similar to the Galois MAC construction
[McGrew and Viega 2004] with the important difference that fresh P and Q are generated for
each message. Further details of UIA2 and its design principles can be found in [TS35.215]
and [TR35.919].

4.3.4 MILENAGE

Although the 3G security architecture does not require standardization of the cryptographic
algorithms needed for authentication and key agreement protocol, a special task force very
similar to the one described in previous subsections was formed to create an informative
example algorithm set for that purpose. This set is called MILENAGE, and its specifications
can be found in [TS35.205], [TS35.206], [TS35.207] and [TS35.208]. The report of the task
force project is in [TR35.909].

The MILENAGE algorithms use a core function of a block cipher, in which both block size
and key size are 128 bits. For instance, the (basic form of) the AES algorithm can be used
as the core function. Niemi and Nyberg have discussed MILENAGE and its design process
[Niemi and Nyberg 2003].

4.3.5 Hash Functions

The hash functions are also needed for 3G security purposes. The network domain security
features, discussed in section 4.5, use hash functions for creating digital signatures, especially
in certificates. Another use of hash functions is in creating a message authentication code, in
particular for network domain security features. For the purposes of WLAN-3G interworking,
discussed in Chapter 5, a hash function is also used for key derivation.

A popular choice of algorithm for all of the above purposes is SHA-1. As explained in section
2.3, SHA-1 cannot now be assumed to be collision-resistant. This implies other choices of hash
functions, such as SHA-256, should be considered for those use cases of the hash function that
depend on the property of collision-resistance. Use for a digital signature certainly depends
on collision-resistance of the hash function, but, on the other hand, collision-resistance is not
crucial for use cases of message authentication code and key derivation. Therefore, SHA-1
can still be considered adequate for the latter purposes.

4.4 Interworking between GSM and 3G security

The radio interfaces of GSM and 3G are completely different, but still most terminals that
support 3G support also GSM. On the other hand, the 3G core network is a straight evolution
from that of GSM. This makes it easier to roam from one system to another, and furthermore,
even handovers between the two systems are possible. Since the security features of the
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two systems differ from each other, it is tricky to define how security is managed in the
interoperation cases.

When 3G was introduced, it was seen that a smooth transition was needed from a pure
GSM network into a mixed network with both wide coverage provided by GSM and hotspots
provided by 3G. In order to ensure that the transition is indeed smooth, it was decided that
access to UTRAN is possible with SIM cards, and the use of a USIM is not mandatory. Then
a user may switch to a 3G terminal without a need to change his or her smart card.

The disadvantage of enabling smooth transition was of course the fact that the new security
enhancements provided by USIM could not be assumed for every terminal accessing a 3G
network. When the SIM card is used to access UTRAN, there is no authentication of the
network and, furthermore, a SIM provides only 64 bits of key material (in the form of Kc) per
authentication. But for the integrity protection and encryption on the UTRAN side, two 128-bit
keys are needed. To solve this mismatch, the 64-bit key Kc is expanded into two 128-bit keys
by using specific conversion functions. However, it should be noted that the resulting security
level is comparable to that of GSM because the conversion functions make keys longer only
nominally.

Another interworking case is when a 3G subscriber with a proper USIM moves out of 3G
coverage. Then there is the opposite need to compress the longer 3G keys CK and IK into 64
bits in order to be able to use GSM encryption. Also in this process the security benefit of
longer keys vanishes and the user obtains the GSM security level, at least as regards encryption.

4.4.1 Interworking Scenarios

All possible interworking scenarios in a mixed GSM/3G environment are systematically
studied in [TR31.900]. There are five basic entities involved in these scenarios: the security
module, the terminal, the radio network, the serving core network and the home network. Each
of these entities could be classified into either 2G or 3G. Some of these entities may actually
be mixed cases, but from the security point of view it is simpler to try to define a clear-cut
division between 2G and 3G for each entity.

® The security module can be either a SIM card (= 2G case) or a UICC (= 3G case). It
is important to note that a UICC may contain a SIM application in addition to a USIM
application; when a SIM application is in use, we have a 2G case from a security point of view.

® The ME is classified as 2G if it only supports the GSM radio access network. Otherwise
the ME is 3G, it supports either UTRAN only or both GSM radio access and UMTS radio
access.

® The division for radio access networks is clear: GSM is the 2G case while UTRAN is the
3G case.

® The serving network VLR/SGSN is classified as 2G if it only supports GSM authentication or
it can only be attached to a GSM Base Station Subsystem (BSS). Otherwise, the VLR/SGSN
is 3G — i.e. it supports both the UMTS AKA and GSM AKA - and it can be attached to
both UTRAN and GSM BSS. Furthermore, a 3G serving network is assumed to support the
conversion functions.

e The HLR/AuC is 2G if it only supports authentication triplet generation for 2G subscriptions.
A 3G HLR/AuC supports authentication vector generation for 3G subscriptions, and it
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Figure 4.5 Main 2G-3G interworking cases. Reproduced from Niemi and Nyberg, UMTS Security,
John Wiley & Sons, Ltd. © 2003

also supports conversion functions to support GSM authentication. A 3G HLR/AuC may
additionally support pure triplet generation for 2G subscriptions.

Altogether, we have 32 different combinations of 2G/3G entities. If we additionally count the
SIM application in the UICC as a third possible case for the security module, we have 48
combinations. All combinations are listed and analysed in [TR31.900]. In this chapter, we
highlight only scenarios that differ essentially from each other. In Figure 4.5 we combine the
core network entities: we say that the core network is 3G if both the serving network and the
home network are 3G, otherwise we say the core network is 2G. Altogether, six essentially
different cases are depicted in the figure.

4.4.2 Cases with SIM

We have three essentially different cases where a SIM is used as an access module.

SIM and GSM BSS

If a SIM is used for accessing a GSM BSS, then we have a pure GSM case from the security
point of view. The security features are 2G authentication and 2G encryption.

SIM application and GSM BSS

A slight variant of the previous case is when a UICC is used in a 2G ME. The use of a 2G ME
implies that the radio access network must be a GSM BSS. We have exactly the same security
features executed as in the previous case: 2G authentication and 2G encryption. On the other
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hand, a SIM application is used in the UICC, which implies that conversion functions must be
available in the core network in order to be able to produce authentication triplets.

SIM and UTRAN

In this case, both the core network and the ME must be 3G, as they both support UTRAN.
The GSM encryption key Kc is expanded to CK and IK by the conversion functions, both in
the core network and in the ME. The special case of a SIM application in the UICC is similar
here. We have 2G authentication while encryption and integrity protection are provided by 3G
mechanisms but used with a 2G key, thus resulting in 2G level security for encryption.

4.4.3 Cases with USIM

There are, again, three essentially different cases when a USIM is used as the security module.
In all cases, both the ME and the home network must be 3G, since they must support a USIM.

USIM and GSM BSS, with 2G serving network

In this case the home network must produce authentication triplets with the help of conversion
functions, because the serving network only supports triplets. On the terminal side, the USIM
itself applies a conversion function to derive a GSM encryption key Kc. We have 2G authenti-
cation and 2G encryption. In order to address certain vulnerabilities [Meyer and Wetzel 2004a;
Meyer and Wetzel 2004b], 3G authentication should be performed as soon as the terminal with
the USIM attaches to a 3G serving network. An analysis of the two aforementioned papers
can be found in [3GPP 2005].

USIM and GSM BSS, with 3G serving network

In this case the authentication vectors can be used. Even if the radio access network is only 2G,
it is possible to run the UMTS AKA, as this protocol is transparent to the radio network. On
the other hand, keys CK and IK cannot be used. Thus, a conversion function has to be applied
both in the USIM and in the core network to generate a GSM encryption key Kc or Kcjag,
depending on the selected GSM encryption algorithm. Note that CK and IK are, however,
transferred to the ME in order to support potential future handovers to UTRAN. We have now
3G authentication but 2G encryption (in case of Kc_subscript_128 encryption key length is the
same as for 3G encryption).

Pure 3G case

In this case all elements are 3G, and the full set of UMTS security features is in use. Note
additionally that the converted GSM key Kc may be derived in order to support potential future
handovers to GSM BSS.

There are no technical restrictions that would prevent running GSM authentication also in
this case. Indeed, a USIM does not know whether the ME is connected to a UTRAN or to
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a GSM BSS. Therefore, in order to guarantee full 3G security, the ME has to abort GSM
authentication attempts when it is connected to UTRAN and contains a USIM.

Only in this case do we have all 3G security features: 3G authentication, 3G encryption and
3G integrity protection (with 128-bit keys).

4.4.4 Handovers between GSM and 3G

The procedures for handovers are somewhat different, depending on whether they are done
in the circuit-switched or the packet-switched domain. It is in principle easier to start sending
packets via a new cell; for a circuit-switched bit stream the transition from one cell to another
has to be planned more carefully. This difference is visible also in the case of inter-RAT (Radio
Access Technology) handovers. For both cases, all MSCs or SGSNs that support handover
from GSM to UMTS should support and use 3G authentication [3GPP 2005].

CS handovers from UTRAN to GSM BSS

The encryption algorithm must be changed during a handover from UTRAN to GSM BSS.
The 3G algorithm UEA is replaced by a GSM A5 algorithm. Also, the UTRAN key CK
is replaced by the converted Kc. The information about supported/allowed GSM algorithms
together with the key is transferred inside the system infrastructure before the handover can
take place. Naturally, integrity protection is stopped at handover to GSM BSS.

CS handovers from GSM BSS to UTRAN

If the handover is done from GSM BSS to UTRAN, then the encryption algorithm is changed
from A5 to UEA. Before the actual handover may happen, the GSM BSS requests the UE
to send information about its UTRAN security capabilities and security parameters, such as
information about CK and IK. This information is transferred inside the system infrastructure
to the target RNC before encryption and integrity protection can be started on the UTRAN side.

Intersystem change for PS services

There are a couple of notable differences between intersystem handovers for CS services and
corresponding intersystem changes for PS services. First, the GPRS encryption terminates in
the core network, so transfer of keys is somewhat simpler. Second, there is a difference in the
case where also the core network changes in addition to change of the radio network. If the
UE moves to the area of a new MSC/VLR, the old MSC/VLR still remains as the anchor point
for the call. On the other hand, if the UE moves to the area of a new SGSN, then this new
SGSN becomes also the anchor point for the connection.

4.5 Network Domain Security
4.5.1 Generic Security Domain Framework

With 3GPP Release 5, the need for confidentiality, integrity, authentication and anti-replay
protection for control plane traffic on core network interfaces was identified. Therefore, a
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general framework for security of IP-based protocols used in 3GPP and fixed broadband
networks was introduced. This framework is specified in [TS33.210], and is known under
the acronym NDS/IP as abbreviation of ‘Network Domain Security for IP-based protocols’.
Besides describing the network architecture and security mechanisms to be used for protection
of IP traffic between different security domains and between single network entities within one
security domain, it also contains a basic framework for cryptographic key management that
mandates support for pre-shared keys only. Later in Release 6 this specification was augmented
with a separate specification on Public Key Infrastructure (PKI) support in [TS33.310]. This
specification is often referred to as NDS/AF for ‘Network Domain Security / Authentication
Framework’.

In order to be compliant with the NDS/IP framework, a network needs to apply it for
control plane traffic only, while user plane traffic is not covered by NDS/IP in general. Still the
framework may also be applied to user plane traffic, either based on decision of the operator,
or even mandatorily if required by other 3GPP specifications. One example is the security of
user plane data for the eNB backhaul link as required by [TS33.401] — see Chapter 8.

NDS architecture

A basic concept for NDS is the notion of a security domain, which is defined as being a
part of or a complete network administrated by a single authority, and typically providing the
same level of security and the same type of security services to all elements and connections
contained within this domain. A security domain is normally confined to a single operator,
while any operator is free to subdivide their network into separate security domains. Different
security domains are connected by secure channels, which terminate in Security Gateways
(SEGs) at the borders of these security domains. The reference point for these secure channels
between security domains is called Za.

The above requirement implicitly disallows any direct connection between network elements
(NEs) located in different security domains. But the specification does not prevent an NE and
the related SEG to be co-located. The only restriction here is that such a co-located SEG
should only act on behalf of this one NE, and not as a general SEG at the border of a security
domain.

Additionally, it is often assumed implicitly that the connections between the NEs within
one security domain are secure, and thus do not need any explicit security measures in the
NDS/IP framework. This assumption is not always fulfilled, so NDS/IP provides also security
mechanisms for intra-domain connections using the reference point Zb. As SEGs are not
required within security domains, the Zb reference point may be used between NEs and SEGs,
but also directly between two different NEs of the same security domain. Anyway, NDS/IP is
clear on the fact that the application of cryptographic security to intra-domain connections is
up to operator policy.

Figure 4.6 shows the basic architecture of NDS/IP with the Za and Zb reference points. It can
be clearly seen that the underlying security model of this architecture is ‘hop-by-hop’ security
in a tunnel/hub-and-spoke model, where each pair of SEGs and their tunnel in between act as
hub and the connections to other network elements constitute the spokes.
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Figure 4.6 NDS/IP architecture

Security services provided by NDS/IP
The following security services are provided by NDS/IP:

¢ data integrity;

data origin authentication;

anti-replay protection;

confidentiality;

limited protection against traffic flow analysis (only when confidentiality is applied).

Note that confidentiality protection is optional. When confidentiality protection is used, there is
also limited protection against traffic flow analysis when tunnel mode (see later) is used. Then
only the IP addresses of the SEGs are visible, and the internal traffic sources and destinations
within the security domains are hidden.

Security gateways (SEGs)

The security gateways have a twofold task, as they terminate the secure connections over the
Za reference point, and act as policy enforcement point for the security policies bound to the
security domain. The mechanisms for the secure connection are detailed in the NDS/IP and
NDS/AF specifications and described further below, while the policies are out of scope of
standardization. Such policies depend a lot on the type of Za interface, be it intra-operator or
inter-operator, and, in the latter case, on the agreements between different operators. Mech-
anisms deployed for the enforcement of such policies may be simple packet filters or more
complex firewall rules, but also sophisticated content-related inspections, relating to network
signalling or even application-level content.
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Certificate profiles

If a PKI infrastructure is used for authentication, the format and content of the certificates has
to be standardized. In the realm of NDS/AF, only X.509 certificates [ITU X.509] are used with
the particular profiling in [RFC5280]. Clause 6 of NDS/AF [TS33.310] further profiles these
certificates for usage in 3GPP NDS/AF. This profiling reduces the variants to be implemented
and thus helps to keep 3GPP-conformant implementations simple, while still fully functional,
for 3GPP network purposes.

Support for TLS certificate infrastructure

While NDS/IP only specifies the usage of IKE and IPsec (see the next section), the specification
on NDS/AF [TS33.310] extends the definition of certificate profiles and interconnection/cross-
signing infrastructure to entities using Transport Layer Security (TLS). Connections secured
by TLS are not handled in NDS/IP [TS33.210], therefore no SEGs are defined for TLS usage
either. As there is no restriction on TLS client and server location, the roles of client and server
are only defined by the fact of who initiates the TLS handshake. Thus this TLS certificate
usage applies to both connections between entities within the same security domain and in
different security domains.

TLS is not specifically used in EPS procedures; but, for example, the security specification
for IMS [TS33.203] allows the usage of TLS between IMS CSCF elements and other SIP
proxies. For details on IMS the reader is referred to Chapter 12.

4.5.2  Security Mechanisms for NDS

The first releases of NDS/IP and NDS/AF were built on the set of IETF RFCs on the Security
Architecture for IP (IPsec) ([RFC2401] and following RFCs) from November 1998. The first
release of NDS/IP mandated only support for authentication and key agreement based on pre-
shared keys. For a detailed description of the key management used with IKEv1 and the features
related to the update to the new RFCs mentioned below the reader is pointed to the NDS/IP
specification [TS33.210]. As a new feature in Release 6, a PKI-based certificate infrastructure
was added with creation of the NDS/AF specification [TS33.310]. This was mainly done to
allow a flexible, yet simple, architecture for connection of two different security domains.

In December 2005, the IETF published a whole new series of RFCs ([RFC4301] and
following RFCs) on IPsec, which superseded the old set of RFCs. Accordingly, 3GPP now
references the new RFCs from Release 8 onwards, and implementations according to the
new RFCs are recommended. This also included introducing the new authentication and key
agreement protocol IKEv2 [RFC4306] into [TS33.210] and [TS33.310].

Usage of IPsec

In particular, references to [RFC2406] were updated to [RFC4303]. This new RFC enhanced
the Encapsulating Security Payload (ESP) packet format, and put the algorithm selection to
a separate RFC [RFC4305]. The latter RFC takes account of updated security requirements
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on algorithms, such as deprecating the single DES algorithm, no longer requiring MD5 as
algorithm mandatory to support, and introducing and recommending AES based algorithms.

In addition, Annex E of NDS/IP [TS33.210] gives an overview of influences on the ESP
packet format induced by the switch from [RFC2406] to [RFC4303].

Usage of IKE

The NDS/IP specification requires SEGs to implement both versions of the Internet Key
Exchange (IKE) protocol, to allow interworking with SEGs and NEs from older releases
supporting only IKEv1. But it encourages the usage of IKEv2 as it has certain security and
performance advantages over IKEv1. In addition, it allows that other 3GPP specifications may
impose more stringent requirements on IKE usage. This was done for example in [TS33.401],
where implementation of IKEv2 is mandated (see section 8.4.2). For a detailed description of
the message flows of IKEv2 including the information elements transferred, see [RFC4306].

Mechanisms on the Za reference point

The secure connection between two SEGs is implemented as two unidirectional IPsec Security
Associations (SAs). The specification does not require multiple SAs per direction as a single
SA per direction is sufficient to protect all traffic between SEGs.? As traffic over Za is not
originated and terminated in the SEGs, but only forwarded by the SEGs, the usage of ESP
in tunnel mode is mandatory. Application of a non-NULL ESP authentication transform is
mandatory, while for the ESP encryption transform also ESP_NULL is allowed. For details on
mandatory and optional algorithms the reader is referred directly to the NDS/IP specification
[TS33.210] as this specification is updated from time to time in line with the progress of
cryptanalytical work, which may render certain algorithms insecure in the future.
The establishment of a secure connection between SEGs is performed in two phases:

® The authenticity of the peers is mutually assured.
® The establishment of a secure transport channel is based on session key(s) established during
the authentication phase.

It should be noted that authorization to access the operator network based on the above-
mentioned authentication only provides a very simple access control method, meaning that
every element authenticated is also provided service. A more fine-grained access control is
not in scope of the NDS/IP specification. Thus the additional application of packet filter or
firewall functionality is to be considered if explicit authorization for access to the network or
single network elements is to be enforced.

21t should be noted that NDS/IP is specified for IP-based control plane traffic. Thus one SA per direc-
tion is seen as sufficient here. But if the same mechanisms are referenced for other kinds of traffic, multiple
SAs per direction may be appropriate, for example allowing different quality of service (QoS) levels. This ap-
plies to [TS33.401], for instance, which refers to NDS/IP for user and management plane traffic also — see
section 8.4.2.
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Depending on the usage of the Za reference point —i.e. if it is used between different operators
and authentication is based on PKI — an SEG has to validate the certificate of another SEG
signed by a root Certification Authority (CA) of another operator. The NDS/AF specification
[TS33.310] provides guidance on the establishment of a cross-signing infrastructure including
certificate issuing, renewal and revocation.

Mechanisms on the Zb reference point

Basically the same mechanisms as for the Za reference point are deployed. Differences stem
from the optional character of the reference point:

® The implementation of Zb in NEs is optional so as not to burden the implementation of all
NEs with additional functionality.

® The implementation and usage of ESP in transport mode (in addition to tunnel mode) is
allowed.

® Cross-signing of certificates is not necessary as, by definition, all NEs and SEGs belong to
the same security domain.

4.5.3 Application of NDS

During the first phase of introduction of NDS to 3GPP specifications, particular use cases
and scenarios were added to the NDS/IP specification [TS33.210] in normative annexes. The
following gives the application to GSM, UMTS and IMS security.

For future standardization work it is preferred to add such normative text to the 3GPP speci-
fication where the use case for NDS is specified, as done for example for EPS in [TS33.401] —
see Chapter 8. The definition of the mentioned reference points can be found in [TS23.002].

Control plane traffic in the GPRS and 3G core networks

For all control plane traffic carried over the Gn and Gp reference points (so-called GTP-C
messages, see [TS29.060]), Annex B of [TS33.210] gives the rules how NDS/IP has to be
applied. All GTP-C messages carried over Gp between different networks or over Gn between
different security domains of the same network have to be protected using the mechanisms
specified for the Za reference point.

User plane traffic carried in GTP-U messages is not subject to mandatory protection by
NDS/IP. Still the security policy of an operator may decide that NDS/IP is to be applied also to
GTP-U traffic. Easy discrimination between GTP-C and GTP-U traffic is possible from 3GPP
Release 4 onwards, as GTP-C uses a dedicated UDP port. Anyway, it is completely optional to
apply NDS/IP to a system that is compliant only to 3GPP Release 99 (but not to later releases).

Control plane traffic between core network and access network

Annex D of [TS33.210] mandates the usage of the NDS/IP Za reference point mechanisms
for all Tu control plane traffic using IP transport and traversing borders of security domains. In
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contrast to general NDS/IP deployment, for this traffic confidentiality protection is mandatory
on Za, thus disallowing the ESP encryption transform ESP_NULL. The reason is that Tu may
carry subscriber specific security keys, which are vital for end-user security.

Control plane traffic in IMS

Annex C of [TS33.210] defines for IMS that confidentiality and integrity protection for
SIP-signalling has to be provided in a hop-by-hop fashion. In the realm of NDS/IP this
applies to all signalling between IMS core network elements, both within the same security
domain (Zb interface) and between different security domains and IMS operator domains (Za
interface). When sensitive information is carried over Za interfaces (e.g. IMS session keys),
both encryption and integrity protection must be used. For more information on IMS, see
Chapter 12.
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3G—WLAN Interworking

This chapter has a close relationship with section in 11.2 on interworking with non-3GPP
networks. It is also helpful when reading the authentication procedures for home base stations
in section 13.4, but is not required for an understanding of other parts of the book. Therefore,
readers not interested in the topics dealt with in Chapters 5 and sections 11.2 and 13.4 may
safely skip this chapter.

This chapter is about security procedures for the case of a user accessing a 3GPP core
network via a WLAN radio access network. While the two preceding chapters on the security
of second- and third-generation mobile systems were meant to lay the foundations for un-
derstanding the security mechanisms applied when a user accesses the Evolved Packet Core
via an LTE access network, this chapter is intended to provide the foundations for the case
when a user accesses the Evolved Packet Core via an access network not defined in 3GPP
specifications, for example via a Wireless Local Area Network (WLAN) [IEEE 802.11], or a
WiMAX network [WiMAX], or a ¢dma2000® HRPD network defined in 3GPP2 specifications
[3GPP2].

5.1 Principles of 3G-WLAN Interworking
5.1.1 The General Idea

3GPP performed its work on interworking between WLANs and 3GPP networks, in short
3G-WLAN interworking, as part of its Release 6, around the year 2004. LTE was not even on
the horizon at that time, but it turned out that the same framework that is used for 3G—-WLAN
interworking could also be applied to the interworking of other types of access networks with
a 3GPP-defined core network, either a 3G core, or an Evolved Packet Core.

Around 2004, wireless LANs had already found widespread adoption, in particular on
laptop computers, but also on mobile phones. IP traffic from the laptop or the mobile phone
could be carried over the WLAN air interface to the WLAN access point, and from there over
fixed lines (e.g. DSL lines) further on into the Internet, or into external IP networks, such as IP
networks provided by 3G operators. Users could, in this way, use packet-based services such
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as the IMS (see Chapter 12) without using cellular radio technology. This seemed attractive to
users as the available bandwidth was much higher than for 2G or 3G cellular radio interfaces.
The support for seamless mobility, an advantage of cellular networks over WLAN, was not
always needed by users.

3G-WLAN interworking defines two mechanisms:

® direct IP access, which provides access to the WLAN and a locally connected IP network
(e.g. the Internet); and

® 3GPP IP access, which allows users to establish, via access to the WLAN, connectivity with
external IP networks, such as 3G operator networks, corporate intranets or the Internet via
the 3GPP system.

The reader may wonder what the role of 3GPP, largely responsible for cellular access and the
corresponding core networks, would be in this set-up as WLANSs and IP networks are available
independently of 3GPP technology. It turned out that there was a missing link in this set-up,
which 3GPP technology could fill: operators offering services always need to know who their
users are so that they can appropriately restrict service access to authorized users only and
charge them for the use of the service. In other words, a AAA infrastructure was required,
where AAA stands for ‘Authentication, Authorization and Accounting’. While the protocols
for AAA were available from IEEE specifications [IEEE 802.1X], and IETF specifications
(references given below), and corresponding products were in the market, the infrastructure for
distributing credentials for user authentication and user profiles for user authorization was not
available on a global scale. But SIMs were already ubiquitous in mobile phones, and USIMs
were also gaining traction fast. So, a technology was needed such that SIMs and USIMs, and
the user profiles available in GSM and 3G cellular networks, could fill the gap. This technology
is 3G-WLAN interworking.

The fact that an attractive use case appeared to be the use of laptops was accommodated in
two ways:

® by designing dedicated WLAN cards for laptops with integrated SIMs or USIMs;
® by defining so-called ‘split user equipments’.

While the former seems rather straightforward, the latter needs a bit of explanation. The idea
is that a user has both a laptop and a mobile phone. The laptop would terminate the WLAN
radio interface, and run the applications over IP, while the mobile phone would hold the SIM
or USIM. A local radio connection between the laptop and the mobile phone, possibly by
means of Bluetooth [Bluetooth], would allow a software module on the laptop to access the
SIM or USIM on the mobile phone. In doing so, the laptop would use a protocol originally
designed for the communication between a phone without (U)SIM built into a car and a mobile
phone, with a (U)SIM, for example in the driver’s pocket. The technical details of split user
equipments are not essential for the main purpose of this chapter. We therefore refer the reader
interested in these details to [TS33.234].

3G-WLAN interworking builds on a key technology called EAP, which we therefore
describe next.
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5.1.2 The EAP Framework

The Extensible Authentication Protocol (EAP) allows bringing together security mechanisms
from three different areas:

e credential infrastructures and domain-specific authentication protocols, such as (U)SIMs,
Authentication Centres, and AKA protocols defined by 3GPP;

* AAA protocols defined by the IETF;

¢ link layer-specific security protocols, such as those defined for WLAN by the IEEE in [[EEE
802.11i].

EAP is an authentication framework that supports multiple authentication methods, called
EAP methods. We only present the very basics of EAP required for our purposes here. EAP is
specified in [RFC3748], while the EAP key management framework is specified in [RFC5247].
EAP methods are defined in separate RFCs. The EAP methods relevant in the context of this
book are:

® EAP-SIM as specified in [RFC4186] — this method allows using SIMs and GSM authenti-
cation vectors and cryptographic functions within the framework of EAP;

® EAP-AKA as specified in [RFC4187] — this method allows using USIMs and UMTS authen-
tication vectors and cryptographic functions within the framework of EAP;

e FAP-AKA’ as specified in [RFC5448] — this method also allows using USIMs and UMTS
authentication vectors and cryptographic functions within the framework of EAP; in addition,
EAP-AKA’ provides a binding of derived keys to the access network identity. For more
details see section 11.2.

The EAP architectural model
The basic entities are, according to [RFC3748]:

® Authenticator — the end of the link initiating EAP authentication;
® Peer — the end of the link that responds to the authenticator;
® EAP server — the entity that terminates the EAP authentication method with the peer.

In all scenarios relevant in the context of this book, the authenticator operates in the so-called
pass-through mode and, hence, does not perform any EAP method-specific operations.

The EAP layering and forwarding model

Figure 5.1, which is based on [RFC3748], shows the forwarding of an EAP response packet
across the protocol layers at the peer, pass-through authenticator, and EAP server respectively.

One can see from the figure that the transport of EAP messages between the peer and the
authenticator differs from that between the authenticator and the EAP server. EAP messages
between the peer and the authenticator are typically carried directly on the link layer, in a way
specific to the particular link layer. This is the case for 3G—WLAN interworking with direct
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Figure 5.1 Forwarding of EAP response packet across protocol layers

IP access, as described in this chapter, where EAP messages are carried over WLAN using
a mechanism known as EAPOL (or ‘EAPoverLAN’ [IEEE 802.11i]). It is also the case for
trusted access to the Evolved Packet Core, as described in section 11.2, where EAP messages
are carried using a mechanism specific to, for example, cdma2000® HRPD or WiMAX.
But EAP messages between the peer and the authenticator may also be encapsulated within
a protected channel created by IKEv2 [RFC4306], the key management protocol for IPsec
security associations. This is the case for 3G-WLAN interworking with 3GPP IP access, as
described in this chapter, or for untrusted access to the Evolved Packet Core, as described in
section 11.2.

EAP messages between the authenticator and the EAP server are carried using AAA pro-
tocols such as RADIUS/EAP [RFC3579] and Diameter EAP Application [RFC4072]. This
implies that the authenticator includes the functionality of a AAA client.

According to [RFC3748], the EAP layer receives and transmits EAP messages via the
lower layer, implements duplicate detection and retransmission, and delivers and receives
EAP messages to and from the EAP peer and authenticator layers. EAP methods implement
the authentication algorithms and receive and transmit EAP messages via the EAP peer and
authenticator layers.

Mapping of EAP architectural entities to a 3GPP setting

In the scenarios covered in Chapter 5 and section11.2, the EAP architectural model is applied
as follows.

® Authenticator. There are two cases for the allocation of the authenticator: for 3G—-WLAN
interworking with direct IP access, and for trusted access to the Evolved Packet Core
the authenticator resides in the non-3GPP access network. In a WLAN, the authenticator
often coincides with the WLAN Access Point terminating the WLAN radio interface. For
3G-WLAN interworking with 3GPP IP access, and for untrusted access to the Evolved
Packet Core, the authenticator resides on the Packet Data Gateway (PDG) and the evolved
Packet Data Gateway (ePDG), respectively, which act as the responder in IKEv2.
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® Peer. The peer resides on the user equipment. It requires the use of SIM functionality for
the purposes of EAP-SIM, and USIM functionality for the purposes of EAP-AKA and
EAP-AKA'.

o FAP server. In all cases described in this book, the EAP server resides on the 3GPP AAA
server [TS23.234; TS23.402]. The 3GPP AAA server communicates with the HSS or HLR
as part of the EAP method execution to retrieve authentication vectors.

The role of link layer security

In general, authentication is not sufficient for ensuring secure communication. When the access
link is prone to eavesdropping or tampering, encryption and/or integrity protection is required.
The encryption and integrity keys need to be generated as part of the authentication and key
agreement protocol. All three EAP methods relevant in our context, EAP-SIM, EAP-AKA
and EAP-AKA', provide mutual authentication and key agreement. The agreed keys are called
Master Session Key (MSK) and Extended Master Session Key (EMSK) in EAP terminology
[RFC5247]. Both the peer and the EAP server derive both the MSK and the EMSK. On
the network side, while the EMSK remains in the EAP server, and is used in, for example,
[TS33.402] to derive mobile-IP-specific keys (see section 11.2), the MSK is sent by the EAP
server to the authenticator. For direct WLAN access, the WLAN-specific keys defined in
[IEEE 802.11i] are derived from MSK in the peer and the authenticator; [RFC5247] explains
the relationship of these keys with MSK.

When EAP is used in conjunction with IKEv2, the key MSK is used to compute the
parameter AUTH, which is part of the IKEv2 exchange (of which more later in this chapter),
but MSK plays no role in the derivation of the keys used to protect IP packets in the IPsec
tunnel set up by IKEv2 [RFC4306].

Use of EAP with IKEv2

IKE [RFC2409] and IKEv2 [RFC4306] are key exchange protocols for generating security
associations to be used, for example, with [Psec ESP (IP Encapsulating Security Payload,
[RFC4303]). The IKE mutual authentication is based on either shared keys or on certificates
on both sides. There are deployments, however, where neither of these two possibilities is well
suited: the use of shared keys does not scale, and the distribution of certificates to a large number
of users of a public service may also be difficult from an administrative point of view. Therefore,
version 2 of IKE offers another possibility for authentication, namely the use of an EAP method
for authenticating the client (the ‘initiator’ in IKEv2 terminology). This possibility adds more
flexibility by allowing the re-use of existing authentication infrastructures. It further allows
the separation of the IKEv2 termination point on the network side (the responder in IKEv2
terminology, e.g. a VPN gateway) from the backend authentication server. But IKEv2 still
requires certificates for the authentication of the responder.

While the distribution of certificates to the responders in a network may be considered
practically feasible, as they are not very numerous, the requirement to have a Public Key
Infrastructure may still be a burden in some usage scenarios. One may therefore wonder
whether responder authentication by certificates is required at all when the EAP method
provides mutual authentication and key agreement, as many EAP methods do. And, indeed,
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at the time of writing this book, efforts are under way at the IETF to remove the requirement
of responder authentication by certificates under certain conditions — see [draft-ietf-ipsecme-
eap-mutual-00].

When doing so one of the problems to be taken into account is the ‘lying authenticator’
problem: even if the EAP method provides mutual authentication and key agreement, and the
MSK is used to establish a secure link between the EAP peer and the authenticator, the EAP
peer will, in general, know after a successful EAP protocol run only that the authenticator is
some entity entrusted by the EAP server to receive the key MSK. The peer does not know from
the EAP protocol run to which authenticator it is connected. Consequently, the authenticator
could lie about its identity. There are scenarios where this may matter. For example, a user in
a 3G-WLAN interworking scenario may want to know whether he is connected to a WLAN
access point meant to provide direct IP access to the Internet, or an operator-controlled PDG
meant to provide 3GPP IP access to the operator’s network.

When EAP is used with IKEv2, and the responder, assuming the role of the authenticator,
is authenticated by a certificate binding the public key to the authenticator’s identity, the
authenticator cannot lie about its identity. So while, in principle, responder authentication by
certificates could be replaced by EAP mutual authentication, this would be admissible only in
scenarios where

¢ the lying authenticator problem did not matter; or

¢ the EAP server coincided with the authenticator/responder; or

¢ the EAP method also provided authentication of the authenticator (or a group of authentica-
tors) to the peer.

The third condition is fulfilled by EAP-AKA’ [RFC5448] in the sense that it authenticates the
group of authenticators identified by having the same ‘access network identifier’ to the peer,
but this condition is not fulfilled by EAP-AKA.

5.1.3  Overview of EAP-AKA

The most important example of an EAP method in the context of this book is EAP-AKA
[RFC4187], which is based on the use of the USIM. We therefore give an overview of EAP-
AKA here. As the focus of this book is LTE security, and SIMs are no longer allowed for
accessing LTE and the Evolved Packet Core, we only briefly address the case of EAP-SIM
further below.

EAP-AKA full authentication

EAP-AKA allows using USIMs, UMTS authentication vectors and UMTS cryptographic
functions within the framework of EAP. The USIM and the Authentication Centre perform
the same functions as in UMTS AKA (see section 4.2). The message flow and the message
formats differ, however, between UMTS AKA and EAP-AKA. Figure 5.2 shows the basic
message flow of a successful EAP-AKA full authentication.

1. The procedure starts with the authenticator requesting the peer’s identity. From this point
onwards the authenticator only passes EAP messages through.

http://freepdf-books.com



3G-WLAN Interworking 69

Peer Authenticator EAP Server

EAP-Request/Identity

1.

2. EAP-Response/ldentity

A 4

3. EAP-Request/AKA-Challenge

4. EAP-Response/AKA-Challenge

5. EAP-Success

Figure 5.2 EAP-AKA full authentication procedure

2. The peer replies with sending its identity. This identity may be a permanent identity or a
temporary identity (pseudonym).

3. The EAP server fetches UMTS authentication vectors and sends RAND and AUTN encoded
in the EAP-Request/AKA-Challenge message to the peer. The EAP server first derives a
master key MK from the user identity, and the keys CK and IK. From MK, the EAP
server then derives the keys MSK and EMSK (see section 5.1), as well as Transient EAP
Keys (TEKSs), the encryption key K_encr and the integrity key K_aut, for protecting the
EAP-AKA messages. For the details of EAP-AKA key derivation, see [RFC4187]. If the
EAP server supports user identity privacy it may also include a pseudonym protected
with this encryption key. The peer may use this pseudonym in the next full authentica-
tion.

4. The peer first hands the received RAND and AUTN to the USIM, which processes them
as for UMTS AKA. The peer obtains CK and IK from the USIM and performs the same
key derivations as the EAP server. The peer decrypts the encrypted parts of the EAP-
Request/AKA-Challenge message and checks the integrity of the message. The peer then
sends the AT_RES attribute, which includes RES, in the EAP-Response/AKA-Challenge
message to the EAP server.

5. The EAP server checks RES against XRES in the UMTS authentication vector it received
from the HSS/HLR, and then checks the integrity of the message. If the checks are successful
the EAP server sends an EAP-Success message to the peer. The AAA message, in which
the EAP-Success message is carried between the EAP server and the authenticator, may
also carry the key MSK. MSK is not forwarded by the authenticator to the peer as the peer
derived MSK in step 3.

The EAP-AKA full authentication procedure ends with step 5. It may be followed by a
procedure, such as a four-way handshake according to [IEEE 802.11i], to establish link layer
security using the key MSK shared between the peer and the authenticator.
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EAP-AKA fast re-authentication

The fast re-authentication procedure differs from a full authentication procedure in that it does
not consume a new UMTS authentication vector, nor does it involve the USIM. Authentication
and key derivation are based on the keys derived during the preceding full authentication
procedure. The same TEKSs are used while fresh keys MSK and EMSK are derived from MK.
Fast re-authentication identities, different from the permanent user identity, are used with this
procedure. The EAP-AKA fast re-authentication procedure has no equivalent in UMTS AKA;
but one could argue that EPS AKA has a somewhat similar feature in that EPS-AKA produces
the local master key Kasme, from which new session keys can be generated without involving
the USIM or consuming new authentication vectors (see Chapter 70).

EAP-AKA identities

The identities of the peer have the form of a Network Access Identifier (NAI), as defined
in [RFC4282]. A NAI is composed of a username and, optionally, a realm, and has the
form ‘username@realm’. The username uniquely identifies a user within a realm (when there
is a realm). [TS23.234] specifies that the NAI representing the permanent user identity in
EAP-AKA for 3G-WLAN interworking shall be derived from the user’s IMSI as defined in
[TS23.003]. A permanent user identity then takes the form

‘0<IMSI> @wlan.mnc<MNC>.mcc<MCC>.3gppnetwork.org’

Permanent user identities are only used in EAP-AKA full authentications. Temporary identi-
ties, also called ‘pseudonyms’, are used for the purpose of user identity privacy. They are only
used in EAP-AKA full authentications. Pseudonyms may be generated by the EAP server in
an implementation-dependent manner, as only the EAP server needs to be able to map the
pseudonym username to the permanent identity. 3GPP, however, specified a particular way of
generating pseudonyms from permanent user identities in [TS33.234] in order to allow for the
case where a user may be served by different servers within an operator’s network at different
points in time (e.g. for load-balancing purposes). The 3GPP-defined mechanism, which is
described in section 5.3, then allows all these servers to understand the pseudonyms. As we
have seen above, pseudonyms are sent by the EAP server to the peer in an encrypted part of
an EAP message. If they were not encrypted user identity privacy would be endangered.

Fast re-authentication identities are generated by the EAP server in a way similar to
pseudonyms.

In the following section, the principles laid out above are applied to securing the 3G-WLAN
interworking procedures for direct IP access and 3GPP IP access.

5.2 Security Mechanisms of 3G—=WLAN Interworking
5.2.1 Reference Model for 3G—-WLAN Interworking

We show a simplified reference model in Figure 5.3, which is taken from [TS23.234]. The
link from the box “WLAN Access Network’ directly to ‘Intranet/Internet’ refers to WLAN
direct IP access functionality. The shaded area refers to WLAN 3GPP IP access functionality.
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Figure 5.3 Simplified WLAN network model. Adapted with permission from © 2009, 3GPP™

The role of the 3GPP AAA server, which is used with both functionalities, has already been
partly explained in section 5.1, and will be detailed further in sections 5.2.2 and 5.2.3. 3GPP
packet-switched services are accessed via a Packet Data Gateway (PDG).

Regarding security, the PDG plays the role of IKEv2 responder in authentication and key
agreement, and it terminates the IPsec ESP tunnel from the user equipment. It may also filter out
unauthorized or unsolicited traffic with packet filtering functions. It further performs various
non-security related functions, such as routing, IP address handling, and quality-of-service
related functions; for details see clause 6 of [TS23.234].

Independence of direct IP access and 3GPP IP access

Direct IP access and 3GPP IP access are independent procedures. It seems obvious that direct
IP access can be used without 3GPP IP access if only access to the Internet, and not to an
operator-controlled IP network, is desired. But the converse is also true: 3GPP access can be
used without direct IP access. 3GPP IP access presupposes IP connectivity because IKEv2
used with 3GPP IP access is an [P-based protocol. But any method to establish IP connectivity
over the particular access network may be used; it is not necessary that direct IP access, as
defined in [TS33.234], be used in conjunction with 3GPP IP access.

5.2.2  Security Mechanisms of WLAN Direct IP Access

Both users with a SIM and users with a USIM may use direct IP access. We treat only the
case of successful USIM-based access authentication, which uses EAP-AKA, as it helps to
understand LTE security, the focus of this book. Indeed, SIM-based authentication is not
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allowed for LTE access. For WLAN direct IP access using EAP-SIM, we refer the reader to
[TS33.234]. We also limit ourselves to presenting the full authentication procedure as the fast
re-authentication procedure is very similar.

USIM-based access authentication

The authentication and key agreement procedure using an EAP-AKA full authentication can
be seen in Figure 5.4.

The role of the EAP server/backend authentication server from the general EAP model is
assumed here by the 3GPP AAA server in conjunction with the HLR or HSS. The authenticator
resides in the WLAN access network (WLAN AN). As mentioned before, the authenticator
is often realized as part of the WLAN access point. The peer is realized in the WLAN User
Equipment (WLAN UE).

The numbering of the steps in Figure 5.4 is the same as that in Figure 4 of [TS33.234]
so as to make it easier for the reader to compare the text explaining the figure here with the
somewhat more detailed text in the 3GPP specification. We do this even if it makes the figure
a little more complicated than necessary as, in many cases, the WLAN AN simply passes
the EAP messages through transparently without any further action on the EAP messages
themselves. The textual description in this book is shortened compared to [TS33.234] as not
all details presented there are essential for the understanding of the principles of 3G-WLAN
interworking.

1. A connection is established between the WLAN UE and the WLAN AN, using a wireless
LAN technology specific procedure (out of scope for 3GPP).

2. The authenticator in the WLAN AN sends an EAP-Request/Identity message to the WLAN
UE.

3. The WLAN UE sends an EAP-Response/Identity message containing an identity in NAI
format, either the permanent identity or a pseudonym.

4. The message is routed towards the proper 3GPP AAA server based on the realm part of
the NAL

5. The 3GPP AAA server receives the EAP-Response/Identity message, encapsulated in a
AAA message.

6. The 3GPP AAA server determines the IMSI from the identity received in step 5 and the
EAP method to be used. According to [TS24.234], if the 3GPP AAA server is not able
to map the user identity received in EAP-Response/Identity to a subscriber identity (e.g.
because of an obsolete pseudonym), but it recognizes the EAP method, the 3GPP AAA
server requests a new identity using the EAP method indicated by the WLAN UE. If this
EAP method is EAP-AKA, the 3GPP AAA server proceeds to step 7. If the 3GPP AAA
server is able to map the user identity received in EAP-Response/Identity to a subscriber
identity (IMSI), it checks whether it has an authentication vector for this IMSI. If not it
fetches one, or more, from the HSS/HLR.

7. The 3GPP AAA server requests the user identity again, using the EAP-Request/AKA
Identity message.

8. The WLAN AN forwards the EAP-Request/AKA Identity message to the WLAN UE.
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Figure 5.4 USIM-based authentication and authorization for direct IP access. Adapted with permission

from © 2010, 3GPP™

9. The WLAN UE responds with an identity that depends on the parameters contained in the

message received in step 8.

10. The WLAN AN forwards the EAP-Response/AKA Identity message to the 3GPP AAA
server. The identity received in this message will be used by the 3GPP AAA server in
the rest of the authentication process. If an inconsistency is found between the identities
received in steps 5 and 10, new authentication vectors need to be retrieved from the

HSS/HLR.
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11. The 3GPP AAA server checks that it has the WLAN access profile of the subscriber
available. If not, the profile is retrieved from HSS/HLR. The 3GPP AAA server verifies
that the subscriber is authorized to use the WLAN service.

12. The 3GPP AAA server derives keys as described in section 5.1.

13. The 3GPP AAA server sends an EAP-Request/AKA-Challenge message. The 3GPP AAA
server may also indicate that it wishes to protect the success result message at the end of
the process (if the outcome is successful), depending on the home operator’s policies.

14. The WLAN AN forwards the EAP-Request/AKA-Challenge message to the WLAN UE.

15. The WLAN UE processes the EAP-Request/AKA-Challenge message as described in
section 5.1.

16. The WLAN UE sends the EAP-Response/AKA-Challenge message to the WLAN AN.

17. The WLAN AN forwards the EAP-Response/AKA-Challenge packet to the 3GPP AAA
server.

18. The 3GPP AAA server processes the EAP-Response/AKA-Challenge message as de-
scribed in section 5.1.

19. Ifall checks in step 18 are successful, the 3GPP AAA server sends the EAP-Request/AKA-
Notification message if the 3GPP AAA server requested in step 13 to use protected
successful result indications.

20. The WLAN AN forwards the message to the WLAN UE.

21. The WLAN UE sends the EAP-Response/AKA-Notification.

22. The WLAN AN forwards the EAP-Response/AKA-Notification message to the 3GPP
AAA server.

23. The 3GPP AAA server sends the EAP-Success message to the WLAN AN optionally
including the key MSK (see section 5.1).

24. The WLAN AN forwards the EAP-Success message to the WLAN UE. Now the EAP-
AKA exchange has been successfully completed, and, if an MSK was sent in step 23, the
WLAN UE and the WLAN AN share keying material for protecting the WLAN access
network.

25. The 3GPP AAA Server registers the WLAN UE to the HSS/HLR if not done before. The
3GPP AAA Server also performs a session update, if needed; for details see [TS33.234].

If the EAP-AKA run terminates owing to a failure, the 3GPP AAA server informs the HSS/HLR
of this event.

5.2.3  Security Mechanisms of WLAN 3GPP IP Access

Both users with a SIM and users with a USIM may use WLAN 3GPP IP access. For the same
reasons as already mentioned for direct IP access, we treat only the case of a successful USIM-
based authentication for 3GPP IP access, which uses EAP-AKA. We also limit ourselves to pre-
senting the full authentication procedure as the fast re-authentication procedure is very similar.

USIM-based authentication for WLAN 3GPP IP access

For WLAN 3GPP IP access, an IPsec tunnel is established between the UE and the PDG,
spanning across the WLAN access network. Once established, the tunnel protects from any
vulnerabilities in the access network, so that the strengths and weaknesses of WLAN security
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Figure 5.5 USIM-based tunnel set-up, authentication and authorization for 3GPP IP access

become irrelevant for WLAN 3GPP IP access. For protecting IP packets between the UE and
the PDG, IPsec ESP [RFC4303] in tunnel mode is used. For setting up the corresponding
security association, IKEv2 combined with EAP-AKA is used. The combined IKEv2-EAP-
AKA procedure using an EAP-AKA full authentication for 3GPP IP access can be seen in
Figure 5.5.

The role of the EAP server/backend authentication server is assumed by the 3GPP AAA
server in conjunction with the HLR or HSS. The authenticator resides on the PDG. The peer
is again realized in the WLAN user equipment.

http://freepdf-books.com



76

LTE Security

The numbering of the steps in Figure 5.5 is the same as that in Figure 7A of [TS33.234]
so as to make it easier for the reader to compare the text explaining the figure here with the
somewhat more detailed text in [TS33.234].

1.

9a.
9b.

9c.

10.

The WLAN UE and the PDG exchange the first pair of messages, known as IKE_SA _INIT,
in which the PDG and the WLAN UE negotiate cryptographic algorithms, exchange
nonces and perform a Diffie—-Hellman exchange.

. The WLAN UE sends the user identity in the form required for EAP-AKA in this first

message of an IKE_AUTH exchange. In accordance with [RFC4306], the WLAN UE
omits the AUTH parameter in order to indicate to the PDG that it wants to use EAP over
IKEv2.

. The PDG sends an appropriate AAA message to the 3GPP AAA server, containing the

user identity. The PDG includes a parameter indicating that the authentication is being
performed for tunnel establishment. This will help the 3GPP AAA server to distinguish
between authentications for direct IP access and authentications for 3GPP IP access.
When Diameter is used, the messages between the PDG and the 3GPP AAA server are
specified in [TS29.234], which in turn relies on the Diameter EAP application specified
in [RFC4072].

. The 3GPP AAA server fetches the user profile and authentication vectors from the

HSS/HLR (if these parameters are not yet available in the 3GPP AAA server) and deter-
mines the EAP method (EAP-SIM or EAP-AKA) to be used.

. The 3GPP AAA server initiates the authentication challenge by sending an EAP-

Request/AKA-Challenge message, encapsulated in a AAA message, towards the PDG.
The user identity is not requested again as the user identity received in step 3 could not
have been modified or replaced by any intermediate node.

. The PDG sends its identity, a certificate, and an AUTH parameter to the WLAN UE. The

PDG generates this AUTH parameter by computing a digital signature over parameters
in the first message it sent to the WLAN UE (in step 1). The PDG also includes the
EAP-Request/AKA-Challenge message received in step 5.

. The WLAN UE verifies AUTH using the public key in the certificate received in step 6

and sends the EAP-Response/AKA-Challenge message towards the PDG.

. The PDG forwards the EAP-Response/AKA-Challenge message to the 3GPP AAA server,

encapsulated in a AAA message.

. When all checks are successful, the 3GPP AAA server sends the EAP-Success, encapsu-

lated in a AAA message, which also contains the key MSK.

The PDG sends an authorization request to the 3GPP AAA server.

The 3GPP AAA server checks, based on the user’s subscription, if the user is authorized
to establish the tunnel.

The 3GPP AAA server sends the authorization answer to the PDG. The 3GPP AAA server
includes the IMSI if it received only a pseudonym in step 9a. This provides the PDG with
the means to identify the user by a permanent identity across all runs of this procedure
with varying pseudonyms.

The PDG generates another two AUTH parameters by computing message authentication
codes over parameters in the two messages exchanged in step 1 using the shared key
MSK. Note that the PDG could defer the generation of these two AUTH parameters until
receiving the message in step 12.
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11. The PDG forwards an EAP-Success message to the WLAN UE over IKEv2.

12. The WLAN UE generates two AUTH parameters, using the locally derived MSK, in the
same way as the PDG in step 10, and then sends the AUTH parameter protecting the first
message from the UE to the PDG (sent in step 1).

13. The PDG verifies the AUTH parameter received in step 12 by comparing it with the
corresponding value computed in step 10. The PDG then sends the other AUTH parameter
computed in step 10 to the WLAN UE. The WLAN UE verifies the received AUTH
parameter by comparing it with the corresponding value computed in step 12.

14. The PDG deletes any old IKE SAs relating to the same WLAN access point name
(see [TS23.234]) and informs the WLAN UE of this deletion in an INFORMATIONAL
exchange (not shown in the figure).

5.3 Cryptographic Algorithms for 3G—-WLAN Interworking

As explained earlier in this chapter, several security mechanisms in 3G-WLAN interworking
are based on cryptographic algorithms.

Authentication of the subscriber is based on either USIM or SIM, and in each case the corre-
sponding algorithms, described in sections 4.3 and 3.4 respectively, apply also for 3G-WLAN
interworking. Additionally, both EAP-AKA and EAP-SIM bring extensions to the mechanisms
provided by USIM/SIM, and some of these extensions contain cryptographic components; see
[RFC4187] and [RFC4186] for details.

Protection of the user data and signalling data between the UE and the WLAN access
point also involves cryptographic algorithms. These protection mechanisms are out of scope
of 3GPP specifications but, for the sake of understanding the whole system, they have been
reviewed in an informative Annex A of [TS33.234].

For 3GPP IP access, the security mechanisms between the UE and the PDG are also based
on cryptography. The security tunnel between the UE and the PDG is based on IPsec ESP
and IKEv2, and the cryptographic algorithms that are available for these security protocols
are defined in the relevant IETF RFCs; see section 5.2 for references. In addition, 3GPP has
narrowed down the number of options by selecting specific profiles that must be supported in
3GPP-WLAN interworking; see clauses 6.5 and 6.6 of [TS33.234].

In the GSM and 3G systems (and similarly in EPS), the generation of the temporary identity
TMSI (or P-TMSI) has been left out of the 3GPP specifications. The reason for this is that there
are no interoperability issues around the generation of a TMSI. It is generated inside a single
network entity, and once it has been generated there is no need for any entity to know any more
how the generation actually happened. The only basic requirement is that temporary identities
should be unpredictable, and therefore chosen essentially at random or using a pseudorandom
generator.

Temporary identities are also in use for 3G-WLAN interworking but there the issue of
generating these identities is slightly more complicated. In this context, it is possible that the
temporary identity (e.g. pseudonym) is processed by a network entity that does not know the
relationship of the temporary identity to any permanent identity. For this reason, generation of
temporary identities is standardized, and it is also possible to reverse the process; that is, to find
the permanent identity IMSI based on the temporary identity and some auxiliary information
that is provided only to authorized network entities.
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A simple encryption mechanism is specified in clause 6.4 of [TS33.234] for this pur-
pose. To create the temporary identity, the IMSI is first coded as a bit string, and then
padded to obtain a 128-bit value. Then one single run of the AES algorithm [FIPS 197]
is applied to this value, using a specific key that is shared between WLAN AAA servers
in the same operator network. The encrypted 128-bit bit string is used as the temporary
identity.
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EPS Security Architecture

6.1 Overview and Relevant Specifications

The Evolved Packet System (EPS) brings two new major ingredients into the 3GPP environ-
ment: the radio network E-UTRAN with a new radio interface, and the flat IP-based core
network Evolved Packet Core (EPC). The security functions and mechanisms that are part
of GSM and 3G security architectures are mostly based on designs and principles that are
generic enough and usable in many other environments. But still both GSM and 3G security
architectures have a tight coupling with other functions and mechanisms in these systems;
security functions have been embedded into the overall architecture in an optimal and efficient
manner.

The design of the EPS security architecture follows the same principle of maximizing,
from a system point of view, the synergies between security functions and other functions. In
particular, this implies that:

® GSM and 3G security mechanisms offer a good basis for the EPS security architecture; but
® to a certain extent, each GSM or 3G mechanism, if reused, needs to be adapted from the
original context and embedded to the EPS architecture.

The EPS must also be able to interwork with legacy systems, so these adaptations have to be
done in a backward-compatible manner. In addition to adaptations from security functional-
ities already existing in legacy systems, many new extensions and enhancements have been
introduced in the EPS security architecture.

In the following, we show how major security features (further discussed in section 6.2) fit
into the EPS architecture. This is illustrated by Figure 6.1.

After the User Equipment (UE) has been identified, the Mobility Management Entity
(MME - described in Chapter 2) in the serving network fetches authentication data from
the home network. Next the MME triggers the authentication and key agreement protocol with
the UE. After this protocol has been successfully completed, the MME and the UE share a
secret key, Kasme, where the acronym ASME refers to Access Security Management Entity.
In the EPS, it is the MME that takes the role of the ASME.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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Figure 6.1 EPS security architecture

Now the MME and the UE are able to derive further keys from the Kasme. Two derived keys
are used for confidentiality and integrity protection of the signalling data between the MME
and the UE. This is represented in the figure by the arrow with ‘NAS protection’ (Non-Access
Stratum).

Another derived key is transported to the base station (eNB). Three more keys are sub-
sequently derived both in the base station and in the UE. Two of these keys are used for
confidentiality and integrity protection of the signalling data between the eNB and the UE —
see the arrow with ‘AS protection’ (Access Stratum). The third key is used for confidentiality
protection of the user plane data between the eNB and the UE — see the arrow with ‘UP
encryption’.

In addition to the protection of signalling and user plane data originated or terminated by the
UE, there is also confidentiality and integrity protection for the signalling and user data carried
over the interface between the base station and the core network (Evolved Packet Core, EPC).
The signalling data is transferred between the UE and the MME over the S1-MME interface
while the user data is transferred between the UE and the Serving Gateway (S-GW) over
the S1-U interface. If cryptographic protection is applied to the S1-interfaces the protection
mechanism used is IPsec. (More on the conditions for applying IPsec can be found in section
8.4.) The needed keys are not specific to the UE.

The X2 interface between two base stations is similarly protected by IPsec with keys that
are not specific to the UE in case cryptographic protection is applied.

Let us next take a look at how confidentiality and integrity protection mechanisms are
embedded in the protocol stack of EPS. In Figure 6.2, the relevant signalling plane protocols
are depicted.

The integrity protection and ciphering for Non-Access Stratum signalling is further ex-
plained in section 8.2. The integrity protection and ciphering for Access Stratum signalling
protects the messages of the Radio Resource Control protocol (RRC) see section 8.3. The
IPsec protection on the interface S1 (and similarly for the interface X2) is profiled as defined
in 3GPP specifications for Network Domain Security/IP layer (NDS/IP) see section 8.4.

Figure 6.3 provides an illustration of how user plane protection is provided.

http://freepdf-books.com



EPS Security Architecture 81

eNB m MME %FDD

NAS |¢+—Integrity & encryption —————— AS

PDCP |<-int. & encr.—
—IPsec—

Figure 6.2 EPS signalling plane protection

s

For both signalling and user data, the (optional) confidentiality protection between the UE
and the base station is embedded into the Packet Data Convergence Protocol (PDCP). Integrity
protection is not applied on user data between the UE and the base station. For X2 and S1
interfaces, cryptographic protection for user data is provided in a way similar to that for the
corresponding control plane interfaces, by means of the IPsec protocol.

6.1.1 Need for Security Standardization

The main purpose of this book is to explain how the standardized part of EPS security works.
To some extent we also discuss ingredients of the security that do not need to be standardized.
The fact that something need not be standardized does not make it less important from a
security point of view. For example, internal protection mechanisms inside network elements
or terminals are of utmost importance for guaranteeing the integrity of functions in these
elements, and therefore also in guaranteeing the correct and secure functioning of the overall
system. But, from the system interoperability point of view, it does not matter whether elements
in the system use similar or different internal protection mechanisms. What matters is that
the protection is there and each element should be protected in a way that is optimal for that
particular element.

For mechanisms that involve several elements, e.g. the terminal and the base station, inter-
operability is a key issue. The mechanism does not work unless both communicating parties
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Figure 6.3 EPS user plane protection
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are able to figure out what the other party is up to. For this purpose, standardizing the be-
haviour of the parties is indispensable. That said, there are also caveats regarding the need
for standardization in communications, which apply also more widely than only to security
protocols and mechanisms. If both communicating parties are always controlled by the same
administrative domain it is enough that the standardization happens inside that domain.

As an example, the communication between a client application and an application server
need not to be standardized when both client and server program are exclusively developed by
one single company. As another example, details of the communication between the UICC and
the operator backend do not need to be standardized because both communicating parties are
owned by the same operator. In particular, for security, those operations in the authentication
and key agreement protocol that are carried out exclusively at either end of the chain (i.e. in
the UICC or in the home operator backend) do not need to be standardized. This applies to the
choice of cryptographic algorithms and also to the management of sequence numbers.

Sometimes it is good to provide standards also for situations where interoperability does not
strictly necessitate standardized behaviour. The example of authentication and key agreement
also applies here: 3GPP has provided a standard choice for the cryptographic algorithms in
the form of the MILENAGE algorithms (see Chapter 4), and appropriate mechanisms for
sequence number management are provided in an informative annex of [TS33.102]. But in
these cases, the standard solution is provided only as a guideline or as a recommendation.
The purpose of this type of standard is to help companies in developing and deploying secure
solutions in a cost-efficient manner.

Itis auseful general principle to leave room for introducing better solutions without the delay
caused by standardizing these better solutions first. For security, having some heterogeneity
in security mechanisms has two effects. On the positive side, when only part of the system is
protected by a particular mechanism, the value for an attacker of breaking or circumventing
this mechanism becomes smaller. On the negative side, there are many more targets for an
attacker to work with and, inevitably, there are going to be some weak ones among the many
mechanisms, especially because some organisations may not have the skills or the resources
to develop and evaluate appropriately secure mechanisms.

There is another point worth mentioning in the context of how and when to standardize
a communication protocol. Sometimes it is enough that the behaviour of one side of the
communication is standardized. Especially in the case where there is some asymmetry between
the positions of the communicating parties, one of the parties could adjust its own actions based
on the predictability of actions from the side whose behaviour follows a standardized pattern.
An example could be, again, the communication between the terminal and the network: because
the network is in control of the proper operation of the whole system, it is enough that the
network knows:

® how the terminal would react to requests, inquiries and other messages from the network;
® which circumstances would trigger the terminal to initiate the communication from its side.

Indeed, some specifications of radio layer protocols in 3GPP follow these principles. Only
the UE actions are specified in detail while much more freedom is left on the network side
regarding when to invoke procedures and how to react on messages received from the UE side.

From a security point of view this kind of situation is problematic. A security protocol is
effective only when used in the right manner. It is not sufficient that the protocol is sound and
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provides the required security goal once it is run; this is not much of help if the protocol is
not run at all. Leaving too much freedom to one side of the communication does not help in
guaranteeing to the other side that all security measures are applied in situations where they
need to be applied. More specifically, the network side must not take certain actions, such
as initiating certain procedures, unless certain security procedures, such as start of signalling
integrity protection, have been successfully run first. Thus, sometimes security requires that
the behaviour of communicating parties is standardized to a greater extent than would be
needed for enabling the communication as such.

6.1.2 Relevant Non-security Specifications

When considering security for a hugely complex system such as the EPS, it is difficult to
state that some specifications would not be relevant from a security point of view. Indeed, any
functionality in the system could potentially be misused, so any functionality is also a potential
subject for security considerations. However, the three-stage model of 3GPP specifications (see
section 2.4) helps with this issue. Addressing security in an inclusive manner in specifications
for stages 1 and 2 is a much more attainable goal than adding security considerations into
every single stage 3 level specification. Because the stage 3 specifications are built on stage
2, addressing security exhaustively on the latter level ensures that security is also adequately
covered in stage 3 specifications.

The service requirements for EPS are captured in [TS22.278]. Clause 9 contains high-level
requirements for security and privacy. The service principles applied to the whole 3GPP
environment are covered in [TS22.101].

The system architecture of EPS is defined in [TS23.401]. This is a stage 2 level document
that gives the overall picture of the whole EPS: what entities are there, their functions, what
types of interface exist between different entities, what types of procedure are run over these
interfaces, and so on. Because security functions and security procedures are important special
cases, there are many references to security in [TS23.401].

The most important component of the EPS architecture is the LTE radio network, E-UTRAN.
The stage 2 description of E-UTRAN is given in [TS36.300]. This specification also describes
how home base stations fit into the overall architecture. Clause 14 of [TS36.300] is devoted to
security.

There are a big number (almost one hundred) of stage 3 specifications for EPS, and for
E-UTRAN in particular. Perhaps the most relevant of these are [TS24.301], which defines
the non-access stratum procedures, and [TS36.323] and [TS36.331], which define the most
relevant access-stratum protocols. The Packet Data Convergence Protocol (PDCP) is specified
in [TS36.323] while the Radio Resource Control protocol is specified in [TS36.331]. Refer
back to Figures 6.1 and 6.2 for the role of these procedures and protocols in the EPS security
architecture.

In order to get some feeling about the complexity of these specifications, it may be interesting
to note that, at the time of writing, the most recent versions of these specifications had the
following numbers of pages:

e stage 1 EPS requirements [TS22.278]: 25 pages
e stage 2 EPS architecture [TS23.401]: 254 pages
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stage 2 E-UTRAN architecture [TS36.300]: 178 pages
stage 3 NAS procedures [TS24.301]: 286 pages
stage 3 PDCP procedures [TS36.323]: 24 pages
stage 3 RRC procedures [TS36.331]: 233 pages.

In addition to E-UTRAN, there are many other access technologies that may be used by the
EPS. Some of these have their specifications maintained in 3GPP, like the GSM and 3G radio
technologies. But it is also possible to attach non-3GPP access technologies to the EPS. The
stage 2 architecture description of non-3GPP interworking aspects is given in [TS23.402].

6.1.3 Security Specifications for EPS

The main specification for EPS security is [TS33.401]. It contains the stage 2 description of
the EPS security architecture, including all EPS security features. It is also the most important
single reference for this book. Care has been taken to ensure that the security architecture
of [TS33.401] is fully aligned with the system architecture of [TS23.401]. The document
[TS33.401] contains also many security requirements. Similarly, care has been taken to ensure
that these requirements are aligned with service-related requirements of [TS22.278]. At the
time of writing, the most recent version of [TS33.401] contains 100 pages.

The specification [TS33.401] describes the security functions for access to the EPC via
E-UTRAN, and it also covers the security architecture for the cases where other 3GPP access
technologies (GERAN and UTRAN) have been attached to the EPC. The security aspects
of the cases where a non-3GPP access technology (e.g. CDMA) is attached to the EPC are
described in another stage 2 security specification, namely [TS33.402]. Again, care has been
taken to ensure that [TS33.402] is aligned with the corresponding system level description
[TS23.402].

The security architecture for home base stations is specified in [TS33.320]. This specification
addresses two cases, access via UTRAN (Home NodeB) and E-UTRAN (Home eNodeB).
The security architecture of [TS33.320] is aligned with the overall architecture for home base
stations. The latter is described in [TS25.467] for the case of UTRAN and in [TS36.300] for
the case of E-UTRAN.

The EPS security architecture obtains many important ingredients from earlier 3GPP secu-
rity specifications. The 3G authentication and key agreement protocol UMTS AKA, which is
the central building block in EPS AKA, is described in the 3G security architecture [TS33.102].
Similarly, the EPS user/subscriber identity confidentiality mechanism is the same as the one
described for 3G in [TS33.102]. The USIM application from 3G is usable as such for the
EPS. It is described in [TS31.102]. There are also specifications for cryptographic algorithms,
originally created for 3G but applicable also for EPS; these are covered in Chapter 10. Se-
curity functions for interfaces between two EPS network elements are also very similar to
corresponding functions in the case of 3G network elements. Therefore, specifications for
network domain security — [TS33.210] and [TS33.310] — are applicable to EPS as well. The
key derivation function for EPS purposes is based on the one defined originally for the Generic
Bootstrapping Architecture in [TS33.220]. This brief list of earlier specifications that have
been, at least to some extent, reused for the specifications of EPS security is not exhaustive;
other references are handled in specific sections in the remainder of this book.
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In the design process of EPS security, feasibility study reports were started for both LTE-
based security architecture and for non-3GPP interworking aspects. The first one, [TR33.821],
paved the way for [TS33.401], while [TS33.822] paved the way for [TS33.402]. Some time
later, aiming for Release 9, a similar approach was taken for home base station security:
[TR33.820] paved the way for [TS33.320].

In an optimal situation, a separate set of reports would have been created for analysis
purposes. However, creating the specifications themselves had an obvious priority and it
was decided that the technical report [TR33.821] would also serve the purposes of analysis
and guideline for EPS and E-UTRAN, documenting why each chosen mechanism addresses
certain threats and why some other mechanisms under consideration have been left out of the
specifications. A word of warning is needed here: because of the time pressure in finalizing
Release 8, and the relatively short time that was allowed for creating Release 9 specifications, it
was impossible to bring the technical reports fully in line with the contents of the corresponding
technical specifications. This kind of caveat was also included explicitly in both [TR33.821]
and [TS33.822].

6.2 Requirements and Features of EPS Security

As explained in the previous section, there are two sources of requirements for EPS security:
[TS22.278] and [TS33.401]. The former provides high-level and service-related requirements,
including security requirements, while the latter provides implementation and security re-
quirements derived from analysing the threats.

The high-level security requirements of [TS22.278] can be summarized as follows.

(H-1) EPS shall provide a high level of security.

(H-2) Any security lapse in one access technology must not compromise other
accesses.

(H-3) EPS should provide protection against threats and attacks.

(H-4) EPS shall support authenticity of information between the terminal and the
network.

(H-5) Appropriate traffic protection measures should be provided.
(H-6) EPS shall ensure that unauthorized users cannot establish communications
through the system.

The more service-related security requirements of [TS22.278] can be summarized as follows.

(S-1) EPS shall allow a network to hide its internal structure from the terminal.
(S-2) Security policies shall be under home operator control.

(S-3) Security solutions should not interfere with service delivery or handovers in
a way noticeable by end-users.

(S-4) EPS shall provide support for lawful interception.
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(S-5) Rel-99 (or newer) USIM is required for authentication of the user towards
EPS.

(S-6) USIM shall not be required for re-authentication in handovers (or other
changes) between EPS and other 3GPP systems, unless requested by the operator.

(S-7) EPS shall support IMS emergency calls.

The privacy-related requirements can be summarized as follows.

In
in

(P-1) EPS shall provide several appropriate levels of user privacy for communi-
cation, location, and identity.

(P-2) Communication contents, origin and destination shall be protected against
disclosure to unauthorized parties.

(P-3) EPS shall be able to hide user identities from unauthorized parties.
(P-4) EPS shall be able to hide user location from unauthorized parties, including

another party with which the user is communicating.

the following subsections we go through all standardized security features that are included
the EPS security architecture in order to meet the above requirements. For each feature,

there are also more detailed requirements associated with it.

6.

2.1 Threats against EPS

There are many security threats associated with communication in general. Most of these
are also of concern for EPS. In addition, there are EPS-specific threats that stem from the
particularities of the EPS architecture, trust model, characteristics of radio interface, and so
on. Security threats for EPS are included in [TR33.821]. We do not go through all of these
threats in this book. Instead, we just list here the broader categories of threats seen as relevant

to

EPS, and give examples of threats in each category.

Threats against user identity. These are already explicitly addressed by requirements P-1
and P-3 above.

Other threats against privacy. These are explicitly addressed by the privacy requirements
above.

Threats of UE tracking. Examples are tracking a user based on an IP address that could
potentially be linked to an IMSI or another identity, or tracking a user based on handover
signalling messages.

Threats related to handovers. An example is forcing a handover to a compromised base
station by a powerful signal.

Threats related to base stations and last-mile transport links. Examples are the threat
of injecting packets directly into the last-mile transport link, or the threat of physical
compromise of base stations in vulnerable locations.

Threats related to multicast or broadcast signalling. An example is broadcasting false system
information that would prevent proper functioning of the network.
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o Threats related to denial of service. Examples are radio jamming or launching a distributed
attack from many UEs towards certain parts of the network or DoS attacks against other
UEs.

® Threats of misusing network services. Examples are flooding the network from inside the
network by compromised elements, or from the outside from the Internet.

® Threats against the radio protocols. An example is faking or modifying the first radio
connection establishment messages from the UE side.

® Threats related to mobility management. An example is the threat of disclosure of sensitive
data about users’ locations.

® Threats against manipulation of control plane data. These are addressed by requirements
H-4, H-5 and H-6 above.

® Threats of unauthorized access to the network. These threats are already explicitly addressed
by the requirement H-6 above.

As can be seen from the list, several of the threats are already addressed by the high-level
requirements or privacy requirements listed above. Most of the other threats are addressed by
more specific requirements. However, there is one type of threat that is difficult to address
completely. This is the denial-of-service type of threat (DoS) against the network. Indeed, it
is extremely difficult to find logical countermeasures against radio jamming, for example. Of
course, it is difficult to launch a radio jamming attack without exposing oneself to the risk of
getting caught; the source of disturbing radio traffic can usually be located by physical means.
These types of physical means are out of scope of the EPS security architecture, but the idea
of radio jamming attack is useful in determining what type of logical DoS attacks are worth
protecting against.

The line of thinking is roughly as follows. If there is a logical DoS attack whose impact
is smaller than that of a radio jamming attack, then there is no point in adding specific
countermeasures against such an attack, even when the cost of such countermeasures would
be relatively small. An example of this type of attack could be flooding the radio waves by
fake requests for radio connection establishment. What is common in this attack and the radio
jamming attack is that the network recovers the normal functionality as soon as the attacker
either stops jamming or stops flooding the network with fake requests.

The guiding principle in finding protection against DoS attacks in the EPS context (and
more widely in other 3GPP contexts) has been to focus on DoS attacks that have a persistent
nature: there is a longer-standing negative impact on the network functions even after the
attacker has gone away after making its malicious actions.

6.2.2 EPS Security Features

This subsection lists the security features provided by EPS security architecture. Some of the
crucial security features came along with the security design for the LTE architecture. These
design decisions are explained in more detail in section 6.3. For most of these features, a more
detailed description of the feature is given in the remaining chapters of the book.

Confidentiality of the user and device identities

This feature addresses privacy requirements P-1 and P-3. The purpose of the feature is to
prevent eavesdroppers from getting information to identify the communicating parties. There
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are two different identities involved. The subscriber identity IMSI is stored in the UICC. The
device identity, which comes in two variants — International Mobile Equipment Identity (IMEI)
and the IMEI and Software Version number (IMEISV) — is stored in the ME, as explained in
Chapter 7. There are no straightforward ways of generally linking any of these identities to
the identity of the actual person. On the other hand, as a phone and a UICC are used for a long
time, a person may be identified by any of these identities during this time once the link to the
person has been established.

This feature is copied from 3G and GSM security. The details of the mechanism are
defined in [TS33.102]. It is also discussed in sections 3.3 and 4.2 of this book. For the device
confidentiality there are some enhancements created for EPS: the device identity is not sent to
the network before security measures for traffic protection have been activated.

Authentication between the UE and the network

This feature addresses the high-level requirements H-2, H-4 and H-6. The purpose of the feature
is to verify the identities of the communicating parties. This is a cornerstone of the correct
functioning of the whole system because, without authentication, it would be impossible to
securely connect users to each other. The feature provides also the possibility for the UE to
verify the identity of the network that it is connected to.

This feature is also mainly copied from the 3G security architecture — see [TS33.102] and
section 4.2. The authentication of subscribers is already present for GSM — see [TS43.020]
and section 3.3. There is an enhancement property in EPS authentication that provides means
for the UE to directly verify the serving network identity. 3G authentication only provides
assurance that the serving network is authorized by the home network to serve the user. This
enhancement partially addresses the requirement H-2.

There is another important security function tightly integrated with authentication: in addi-
tion to verifying identities of each other the terminal and the network also agree shared secret
keys that can be subsequently used for the features of confidentiality and integrity protection
of data. Chapter 7 is devoted to the feature of EPS Authentication and Key Agreement (EPS
AKA).

Confidentiality of user and signalling data

This feature addresses the high-level requirement H-5 and privacy requirements P-1 and P-2.
The purpose of the feature is to encrypt (another word is cipher) the digital communication
in order to make it incomprehensible to eavesdroppers, especially on the radio interface. A
similar feature exists in the 3G security architecture. However, the different system architecture
of EPS, compared to that of 3G, imposes differences also for this feature. Most notably, the
endpoint of the encryption on the network side (for user data and radio network signalling
data) is in the base station for EPS, while it is the radio network controller (RNC) in 3G. The
reason for this change is explained in section 6.3. Another big change is that an additional
confidentiality protection mechanism is introduced for signalling between the UE and the core
network. Similar to the situation with GSM and 3G, providing data confidentiality is optional
for the network operator. This feature is described in detail in Chapters 8 and 10.
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Integrity of signalling data

This feature addresses the high-level requirements H-4, H-5 and H-6. The purpose of this
feature is to verify the authenticity of each signalling message separately; that is, to ensure that
the signalling message is not modified in transit but instead received in exactly the same form in
which it has been sent. As in 3G, no integrity protection is provided for user data, for the same
reasons. In both cases, it was felt that the risk of successfully exploiting any modification of
encrypted user data sent over the air was relatively small, and the overhead added by integrity
protection would have been significant, especially for services with short packet sizes, such
as voice. Furthermore, the security gain provided by the ‘proof-of-origin’ part of integrity
protection (see Chapter 2) would have been relatively small unless integrity protection was
provided in true end-to-end fashion between the endpoints of the user data communication
(e.g. between two terminals). Supporting this would have required major extensions in the key
management.

Similar to the confidentiality feature above, certain changes have been necessary when
compared to the corresponding feature in 3G. This feature is also covered in Chapter 8 and 10.

Visibility and configurability of security

This feature is present already in both 3G and GSM. The purpose is to give the user some
options to benefit from information about the security features. For the visibility purpose,
there is a ciphering indicator in the UE that shows whether the feature of data confidentiality
is applied by the network or not. For the configurability purpose, the user has the option of
applying password (PIN) based access control to the UICC.

Platform security of the eNodeB

The importance of platform security for base stations (i.e. evolved NodeBs) is emphasized in
EPS for two reasons:

® eNodeB is a termination point for major EPS security mechanisms;
¢ ¢NodeBs are expected to be installed in more vulnerable locations than 3G base stations
when EPS is deployed.

Similar trends are also present in the most recent evolution of 3G technology. The High Speed
Packet Access (HSPA) architecture contains an option where RNC and node B functionalities
are in the same node. Also, the concept of home base station applies to both UTRAN and
E-UTRAN base stations. It is clear that base stations in people’s homes (for example) are in
a more vulnerable location than macro cell base stations controlled by the operator. In order
to address these issues, requirements on the secure implementation of eNodeBs are included
in [TS33.401]. They are described in more detail in section 6.4. For the case of home base
stations, there is a complete security specification in [TS33.320]. Home base station specific
security features are described in detail in Chapter 13.
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Lawful interception

This feature addresses the service requirement S-4. The purpose of the feature is to provide
access for law enforcement to the content of communications and related information, such as
identities of the communicating parties and times of the communications. Lawful interception
(LI) has a special role among the security features because it constrains the choice of the
other security mechanisms in the system. There is a certain contradiction between the service
requirement S-4 of providing lawful interception and the privacy requirements. In this sense,
the interception goes against the other security features and should rather be seen as a controlled
exception to the other security features.

The conditions under which the lawful interception can be activated by the law enforcement
side are out of scope of the 3GPP specifications. They are a matter of the legislation of the
country where the interception is to be done. A typical way is to require a court order before
the lawful interception can be started.

Lawful interception is one of the EPS security features that are present also for 3G and GSM.
The 3GPP specifications for lawful interception have been arranged in such a manner that,
for every new feature, the existing lawful interception specifications are extended to cover the
arrangements needed for providing lawful interception aspects for the new feature. This is a
handy practice from a referencing point of view. The stage 1 specification [TS33.106] contains
lawful interception requirements for all 3GPP features, the stage 2 specification [TS33.107]
contains the lawful interception architecture, and the stage 3 specification [TS33.108] contains
the bit-level description of the interface by which the needed information could be handed
over to the law enforcement side.

The LTE radio technology as such does not bring many new issues from the lawful inter-
ception point of view. The information that falls into the LI scope is still roughly the same as
for GSM and 3G.

Emergency calls

This is another feature that, in a certain sense, interferes with other security features. In some
countries, the legislation requires that emergency calls should be possible even in cases where
security measures mandatory for normal calls are not present. An example case is when there
is no UICC inserted in the terminal. The feature addresses the service requirement S-7. Special
arrangements done for emergency calls, and emergency sessions in general, are described in
sections 8.6 and 13.6.

Interworking security

This feature is rather an enabler for the other security features but that does not make it less
important than the other features. The purpose is to ensure that security holes do not appear in
situations where there is a change from one system to another, such as when moving from EPS
to 3G or vice versa. Equally important are situations inside EPS where coordination between
several network entities is needed, possibly being under different administrative domains, such
as handovers between two different operator networks. The features of data confidentiality and
data integrity are based on the existence of shared secret keys. In the interworking situations a
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big part of this feature is in key management, ensuring that the correct keys are in the correct
places at the correct time. Security for transitions and mobility inside EPS is described in
Chapter 9. The interworking security with other systems, including both other 3GPP systems
and non-3GPP systems, is described in Chapter 11.

Network domain security (NDS)

This feature is inherited from 3G. Its purpose is to protect the traffic between network elements.
Mutual authentication between the communicating parties, data confidentiality and integrity
are all ingredients of this feature. The details of the feature are described in [TS33.210] and
[TS33.310]; see also sections 4.5, 8.4 and 8.5 of this book.

IMS security for voice over LTE

The EPS is an IP packet-based system. This implies that the voice calls have to be provided
by some means other than what has been customary for GSM and 3G; that is, other than by
a circuit-switched solution. There is a ready-made solution for this issue already in Release
5 of 3GPP, namely the IP Multimedia Subsystem (IMS) which is based on the SIP protocol
[RFC3261]. The IMS is an overlay system that works for any access technology, including
LTE.

The fact that IMS is independent of the access technology has implications for security:
there have to be security features that guarantee correct functioning of IMS regardless of
the security functions that the access technology (potentially) provides. The 3GPP security
specification for IMS is [TS33.203]. Chapter 12 addresses the IMS-based security features for
voice over LTE.

6.2.3 How the Features Meet the Requirements

An important part of the design of any system is the comparison of the included features
against the requirements that guide the design. This is especially true for the design of a
security architecture because leaving any requirement unaddressed may potentially undermine
the whole purpose of the design, which is providing a secure system. It is also possible to
leave some requirements unaddressed but this should, of course, rather be a conscious decision
than an oversight. In the case of a security requirement, it may be that the requirement has
been added because of a remote threat that has minor consequences from the system point of
view. If only countermeasures can be found that would add significant complexity and cost to
the system, then it may be decided that the cost-optimal solution is to leave the requirement
unaddressed.

Table 6.1 summarizes how the security features listed in this chapter address the requirements
of [TS22.278]. The features are listed in the same order as above, ‘LI’ is lawful interception,
‘EC’ refers to emergency calls, ‘I/W’ to interworking security, and so on.

In the table a cell has been marked whenever the particular feature is relevant for meeting
the particular requirement. No distinction has been made on whether the feature addresses the
requirement completely or only partly. Some of these connections are also rather indirect. For
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Table 6.1 Requirements versus features

ID Data Data

conf. Auth. conf. int. Vis. eNB LI EC ’w NDS IMS
H-1 X X X X X X X X X
H-2 X X X
H-3 X X X X X X X X X
H-4 X X X
H-5 X X X X
H-6 X X X
S-1 X X
S-2 X X X
S-3 X X X X X X X X X X X
S-4 X X
S-5 X
S-6 X
S-7 X X
P-1 X X X
P-2 X X
P-3 X X
P-4 X X X

example, it is marked that network domain security (NDS) addresses the service requirement
S-1 of hiding the network internal structure from the terminal. The connection is quite indirect.
On the one hand, network domain security puts a security gateway on the border of one network
and therefore enables hiding of the network structure behind it from other networks. On the
other hand, network domain security protects also network internal interfaces and therefore
an eavesdropper on such an interface does not learn much from studying the traffic.

There are a couple of requirements that do not seem to be very well addressed based on
Table 6.1. The first such requirement is S-1, which we have just discussed. The main protection
against finding out the network internal structure is provided by the architecture of the system.
Using suitable practices for selecting addresses and identities for the network elements could
mitigate attempts at learning the network structure. The flat structure of the EPS network
makes this kind of hiding more difficult.

Another requirement that is addressed only indirectly is the privacy requirement P-4. The
network knows the location of terminals attached to it with rather good accuracy. Therefore,
there is an obvious danger of leaking this information somehow out to other users of the system
or to outsiders. Also in this case, the main protection comes from an appropriate design of
protocols and procedures in such way that information about one user’s whereabouts does
not affect content or context of procedures relating to other users, even in cases where two
users are communicating with each other. In addition, specific care is taken on protecting the
location-related information on its way from the base station further back to the network.

It is important to note here that there are a number of location-based services that are based
on the idea of providing the location of one user to another. Examples are finding friends in
the locality, monitoring children and fleet management. But these services are provided on the
application layer and are, presumably, dependent on the consent of the users involved.

http://freepdf-books.com



EPS Security Architecture 93

6.3 Design Decisions for EPS Security

The preceding section presented the requirements placed on EPS security and their reasons.
This section highlights a few of the major design decisions that 3GPP took when deciding
how to satisfy the requirements. These decisions led to the EPS security architecture being
quite different from the 3G security architecture.

The allocation of security functions to functional entities and protocol layers is a fundamental
task to be performed when designing a security architecture. Let us briefly recapitulate the
major elements of the 3G security architecture, as described in Chapter 4, and then explain
why the EPS security architecture had to be extended compared to the 3G security architecture.
As stated earlier, in view of the success of the 3G security architecture, 3GPP endeavoured to
deviate from it only where it was made necessary by differences in the overall EPS architecture
compared with the overall 3G architecture, and by differences in the security requirements
(due to, for example, changing business requirements or deployment scenarios).

Permanent security association

The 3G security architecture is anchored in a permanent security association between a USIM
application on a UICC in the UE and the Authentication Centre (AuC) in the Home Location
Register (HLR). The corresponding permanent key is never visible outside the security module
and the AuC. This permanent key is used in the Authentication and Key Agreement (AKA)
protocol. This principle of a permanent security association is kept in EPS.

Interfaces in UE and HSS/HLR

The interface between the ME on the one side and the UICC and the USIM on the other is fully
standardized to allow interoperability between MEs, produced by handset vendors, producing
ME:s, and UICCs with USIMs, produced by smart card vendors. The standardization of this
interface also ensures that the lifetimes of handsets and smart cards are completely decoupled,
which is an important business consideration. The picture is different on the HLR side: here
it was not felt necessary to standardize the interface between AuC and the (rest of) the HLR,
rather the AuC is considered part of the HLR. These principles are kept in EPS, with the
obvious modification that an HSS is used instead of an HLR.

Reuse of 3G USIMs

As we will see below, the authentication and key agreement protocol in EPS, called EPS
AKA, has evolved from UMTS AKA, which is used in 3G. Although the differences are not
very big, they exist and raise the valid question, discussed in 3GPP, whether special support
from an evolved USIM is needed, or desirable, for EPS AKA. The decision in 3GPP was that
EPS AKA must be designed in such a way that the reuse of USIMs as used in 3G handsets
(i.e. USIMs according to Release 99 specifications) is possible. There is an overwhelming
business case that can be made to support this decision: a very large number of 3G USIMs
have already been shipped to subscribers, and it would incur significant cost to operators if
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they had to exchange all these 3G USIMs for EPS-enabled ones before subscribers could enjoy
EPS services. Furthermore, when a 3G USIM can be reused for EPS then all a subscriber needs
to do for being able to use EPS is buy a new handset and insert his old 3G USIM (provided
the conditions of his subscription are compatible with it).

Nevertheless, security advantages of allocating certain security functions and keys to an
EPS-enabled USIM, and not the ME, were cited in the discussion in 3GPP; and indeed such
advantages exist. The main advantage is that certain cryptographic keys are not available in the
ME, but only in the more secure environment of the UICC, when the UE is in the deregistered
state. However, while in registered state, these keys must be available in the ME anyway, so
the advantage of storing them on the USIM is quite limited.

So, 3GPP had to trade off a clear business advantage against a moderate gain in security. The
3GPP decision was that, while the reuse of 3G USIMs had to be possible, EPS-enabled USIMs
were also specified. In this way, operators are given the possibility to perform the trade-off
between business requirements and security according to their particular requirements. We
also mention here that there are enhancements to the USIM for EPS that are not related to
security.

This approach is quite similar to the one taken in the introduction of 3G security. Although
the differences between GSM authentication and UMTS AKA are much more substantial than
the ones between UMTS AKA and EPS AKA, at the time of 3G standardization it was decided
to allow access to 3G radio access networks using 2G security modules (GSM SIMs).

No reuse of 2G SIMs in EPS

We have seen now that both 3G and EPS allow the reuse of the security modules of the
respective previous system generation. However, 3GPP decided that it was not allowed for
EPS to go back even two generations, so 3GPP forbade the reuse of GSM SIMs for access to
LTE radio networks.

Obviously, with GSM SIMs, only the GSM authentication and key agreement protocol is
possible; and the security disadvantages of GSM AKA over EPS AKA are quite significant.
On the other hand, the business case for reusing GSM SIMs for LTE radio access networks
is much weaker now than the business case for reusing GSM SIMs for 3G was ten years ago
(when 3G was introduced), because now significant numbers of USIMs are in the field.

Delegated authentication

In both GSM and 3G, it is the VLR (for the circuit-switched domain) and the SGSN (for
the packet-switched domain), respectively, not the HLR, that run the actual authentication
procedure with the UE. The VLR or the SGSN fetches authentication vectors from the HLR,
and, at some later time chosen at the discretion of the VLR or the SGSN, the VLR or the SGSN
sends an authentication request to the UE and checks the correctness of the response. The VLR
or the SGSN is also responsible for the distribution of the session keys to the endpoints of
protection. In this sense, the HLR delegates the control of authentication checking and session
key distribution to the VLR or the SGSN. This implies that, in the roaming case, the home
network delegates these tasks even to the visited network.
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3GPP decided to keep this principle also for EPS. This means that the MME requests
authentication vectors from the HSS, checks the authentication response and distributes session
keys to the endpoints of cryptographic protection. An advantage of this decision is that the
same model of interaction with the HSS as in 3G can be maintained and that the HSS need
not keep state during the run of an authentication protocol with the user. It also implies that
the EAP authentication framework (see section 5.1) does not apply.

This delegation of an important security task from the home network to the visited network
also implies a certain amount of trust of the home network in the visited network. Any risks
arising from the (unlikely) case that there should be a breach of this trust are mitigated in
EPS by a new feature enhancing the AKA protocol, namely cryptographic network separation
(discussed below).

Reuse of the fundamental elements of UMTS AKA

3GPP decided to build on UMTS AKA, which has served 3G security well and has stood up
to analysis for ten years now, and enhance it with additional functions only as far as needed.
It turned out that only one enhancement was considered necessary, namely cryptographic
network separation.

Cryptographic network separation and serving network authentication

This feature limits the effects of any security breach in a network to that network and prevents
a spillover of the effects of the breach to other networks. It therefore addresses requirement
H-2 from section 6.2. This is achieved by binding any EPS-related cryptographic keys, which
leave the HSS, to the identity of the serving network, to which the keys are delivered. It
also enables the UE to authenticate the serving network. In 3G, a UE cannot authenticate the
serving network but only ascertain that it communicates with a serving network authorized to
do so by the UE’s home network (see Chapter 4).

It should be mentioned that the principle of cryptographic network separation is strictly
adhered to only in authentication procedures. 3GPP decided that keys obtained by one serving
network may be forwarded to another serving network in mobility events (handover or idle
state mobility) and used there until the next authentication, which then requires new keys
bound to the new serving network. This decision is again a trade-off between security and
efficiency, in this case the efficiency that results from minimizing the impact on the AuC and
reducing delays in mobility events. A more detailed description of this feature can be found
in section 7.2.

Termination point for encryption and integrity protection extending from the UE

It is clear for every radio system that the air interface, as the most vulnerable part of the
system, needs to be protected by providing confidentiality and, depending on the type of data,
also integrity protection. So, as the UE is one endpoint of the air interface, it is clear that the
range of this protection extends from the UE. It is less obvious what the network endpoint
of this protection should be. This question was answered differently even for the different
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3GPP-defined mobile systems, and it turned out to be one of the most crucial security decisions
that 3GPP had to take.

In the circuit-switched service of GSM, encryption terminates right at the network termina-
tion of the air interface, at the Base Transceiver Station (BTS). The designers of 3G security
saw this as one of the weak points of GSM security because the BTS is often placed at an
exposed location, and the link to the Base Station Controller (BSC), the next node further up
in the network, is an often unprotected microwave link. Therefore, 3GPP decided in 1999 that
encryption (and integrity protection, which is not provided in GSM) should extend further back
into the network and terminate at the Radio Network Controller (RNC), which was considered
to be at a physically secure location and connected to the core network via a secure link.

In GPRS, the 2G packet-switched service, encryption extends even further into the network,
namely up to the SGSN. However, this was not done for security reasons, but rather for reasons
that had to do with particular characteristics of GPRS [Hillebrand 2001].

The difficulty the designers of EPS security were now facing stemmed from the fact that
one of the major overall design goals of EPS was to achieve a flat network hierarchy and
dispense with intermediate nodes like an RNC. This means that the Radio Resource Control
(RRC) protocol, which terminates in the RNC in 3G systems, now terminates in the eNB
in EPS; that is, again right at the edge of the air interface and at an exposed location. But
then the protection of RRC messages also has to terminate at the eNB. This is in seeming
contradiction to the decision by 3G security designers that such a termination point would
constitute a security weakness. The seeming contradiction was resolved in EPS by accepting
the priority of having a flat overall architecture, but at the same time acknowledging the
particular vulnerability of the eNB and putting (for the first time for a 3GPP-defined network
node) stringent platform security requirements on the eNB. These requirements are described
in more detail in section 6.4. Once it was established that the eNB would be physically secured
there was no fundamental objection any more to terminate also user plane security at the eNB.
This decision made protocol design significantly simpler.

On the other hand, Non-Access Stratum (NAS) signalling extends between the UE and
the MME, a controller in the core network. While it would have been possible to provide
protection for NAS signalling in a hop-by-hop fashion, with one hop extending between the
UE and the eNB, and a second hop extending between the eNB and the MME, it was decided
to provide protection for NAS signalling end-to-end between the UE and the MME. As NAS
signalling is required whenever a user registers to a network, or periodically re-registers, this
decision also helps to mitigate any potential remaining security risks of terminating protection
for RRC and user plane in the eNB. Furthermore, the NAS security context remains stored in
the UE and the MME while the UE is in idle state. This allows NAS signalling to be secured
even before the Access Stratum (AS) security extending between the UE and the eNB is set
up after the transition from idle state to connected state. However, the decision also comes at
a cost: as opposed to GSM and 3G, in EPS we now have different endpoints for protection
extending from the UE in the network, namely the eNB and the MME. This is one of the
reasons for the more elaborate key hierarchy in EPS compared to 3G.

New key hierarchy in EPS

In GSM and 3G, the key hierarchy is quite simple: there is a permanent key shared between
(U)SIM and AuC, and there are session keys Kc and (CK, IK) respectively, which are directly
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used with the encryption and integrity algorithms. As we will see in section 7.3 in more detail,
the key hierarchy in EPS is considerably more elaborate, which can be easily seen already
from a mere glance at the key hierarchy diagram in section 7.3. We only mention the main
reasons for this new key hierarchy here.

There is a local master key Kasmg at the core network level, which is distributed from the
HSS to the MME, and between MMEs, and is also generated in the ME. The introduction of
this key became necessary through the decision to reuse 3G USIMs, and hence obtain (CK, IK)
from the USIM, and the new requirement of cryptographic network separation, which implies
a binding of keys to the serving network identity, a property that is not fulfilled by (CK, IK).
The introduction of this local master key Kasme has another very desirable effect, namely that
it reduces the frequency with which authentication vectors need to be fetched from the HSS.
Kasme 1s not directly used in encryption and integrity algorithms, so it does not need to be
renewed as often as (CK, IK) in 3G. Kasumg is less exposed also because it is never transferred
to the radio access network — it remains in the core network.

There is another intermediate key at the radio access network level, called K¢ng, which is
distributed to the serving eNB from the MME. Its introduction was primarily motivated by the
fact that keys used for RRC control plane and user plane protection in the eNB are bound to
certain parameters specific to an individual eNB and that handovers between eNBs should not
necessarily involve the MME before the completion of the handover procedure (the so-called
X2 handover described in Chapter 9). Therefore, a new level of key hierarchy was required
for an intermediate key, which was for use at the eNB level, but was not yet bound to the
parameters specific to an individual eNB and hence could be used in handovers without MME
involvement. The details of how this is exactly done are tricky. A part of the complication
arises from another security requirement introduced to limit the consequences of a security
breach in an eNB, namely key separation in handovers, discussed below.

At the bottom of the key hierarchy, there are the keys directly used with the encryption or
integrity protection algorithms to protect the NAS, RRC, or user plane protocols.

Key separation in handovers

For efficiency reasons, there are handover preparations that do not involve the core network.
For these X2 handovers, the source eNB provides a key of type Kexp to the target eNB for use
after the handover. If the K.xg was handed over unchanged then the target eNB would know
which K¢npg was used by the source eNB. In order to prevent this, not the K.npg used at the
source eNB itself, but rather the image of a one-way function applied to Kng, is forwarded to
the next eNB. This ensures so-called backward key separation in handover.

But backward key separation solves only one part of the problem: for a fast-moving user,
there may be a whole chain of handovers, and, if the image of a one-way function applied to
Keng was forwarded to the next eNB in this chain of handovers, then all eNBs in that chain
would know the K.ng used further downstream in that chain, and one compromised eNB in
that chain would put all other downstream eNBs in the chain at risk (although, by the property
of backward key separation, not the eNBs upstream from it in the chain, the eNBs the UE
visited before the compromised eNB). In order to prevent this, the requirement of forward
key separation in handovers (also called ‘forward security’ in [TS33.401]) was introduced to
ensure that the MME provides a fresh key for the next hop immediately after handover if it
was not possible during the handover. Details can be found in Chapter 9.
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It should be noted here that the terms ‘forward key separation’, ‘backward key separation’
and ‘forward security’ used in this book and in 3GPP specifications are somewhat at odds
with similar terms used in other parts of the security literature. In particular, the term ‘perfect
forward secrecy’ [Menezes et al. 1996] denotes a property more akin to ‘backward key
separation’ as defined here.

Homogeneous security concept for heterogeneous access networks

EPS provides a framework for connecting heterogeneous access networks to a single core
network, the Evolved Packet Core (EPC). These include not only access networks defined
by 3GPP, namely GERAN, UTRAN and LTE, but also access networks defined by other
standardization bodies, such as cdmaZOOO® HRPD defined by [3GPP2] and WiMAX defined
by [WiMAX], and possibly many more to be defined in the future. Also, there is no requirement
to restrict access to the EPC only to wireless access networks.

As it would be technically difficult and inefficient to design different procedures for all these
different access networks, a framework had to be found that could accommodate the various
access technologies. For authentication, this framework is provided by EAP, the Extensible
Authentication Protocol [RFC3748]. EAP allows carrying authentication messages over a
variety of transports and, thus, makes authentication independent of the particular nature of
the access networks. For access networks that are deemed untrusted by the EPC, EAP is
combined with the use of IKEv2 [RFC4306] and IPsec ESP [RFC4303] to provide protection
against any potential weaknesses in the access network security. Details can be found in
Chapter 11.

6.4 Platform Security for Base Stations
6.4.1 General Security Considerations

[TS33.401] does not consider common security principles for all network element platforms,
but only handles features specific to the evolved NodeBs (eNBs). But it should be mentioned
here that common ‘good engineering practices’ for security design are necessary for all network
elements. This includes hardening of the elements (e.g. disabling of unused services and
network ports) and secure software (SW) design to avoid as much as possible vulnerabilities
caused by design or implementation flaws. If third-party software is used, such as open-source
SW and/or libraries provided with compilers, such SW must comply with the standards of
secure SW design.

6.4.2 Specification of Platform Security

As described in the preceding subsection, it was a design decision for EPS that the RRC control
and user plane security should terminate in the base station. Additionally, the EPS architecture
allows locating the eNB outside the security domain(s) of the mobile network operator, in
physically insecure locations. These two facts together create the situation, as opposed to
former solutions, that sensitive communication and configuration data is available at locations
outside conventional security domains. Thus, for the first time in 3GPP standardization, specific
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requirements for platform security are addressed in a related specification. Still, these new
requirements will not eliminate the need for, nor detract from the importance of, the good
engineering practices mentioned above.

As in EPS only the base stations can be placed in an exposed location, the remainder of this
section only handles platform security issues applicable to eNBs. All other network elements
used in EPS are still located within the security domain of the operator, and thus are not subject
to standardized platform security requirements.

6.4.3 Exposed Position and Threats

Attacks against base stations may happen locally or remotely. By performing a local attack
an attacker may, for example, get physical access to the base station and interfere with the
internal elements or use a direct connection to the base station antenna and network interfaces
to intercept or inject data. Remotely an attacker may manipulate a possibly insecure backhaul
link connection between a base station and the Security Gateway (SEG) of the operator
network or the direct connections between different base stations. Attacks from inside the
operator network via the backhaul link are not considered a threat for platform security, as for
EPS the assumption still holds that, from a standardization point of view, the security inside
the security domain of the operator is left to operator policies.

There may also be attacks on the physical implementation, such as by direct wire-tapping of
internal lines used for eavesdropping on data, or for injection of malicious SW or configuration
parameters. Such physical attacks require the physical presence of the intruder, at least during
the preparation of the attack.

An entirely different category of attacks relies on pure SW methods to alter the functionality
of the platform itself, either by causing the base station to malfunction resulting in denial-
of-service, or by targeting the attacks so that the attacker gains partial or full control of the
base station. These attacks may be performed locally or remotely. Mostly such attacks are
targeted to vulnerabilities within the platform SW (e.g. within the operating system), or the
communication protocol stacks, or the application layer SW. They may comprise addition or
modification of SW, or modification of operational parameters.

A third attack category focuses on the intentions of the attacker. In some cases the attacker
may want to get information without further interfering with the platform operations. Such
‘passive attacks’ may be hard to detect, as the platform functionality is not altered. Attacks of
this kind may be targeted at eavesdropping on long-term keys (e.g. keys used in authenticating
the base station), on medium-term user-specific keys (e.g. the intermediate key Kenxg and the
Next Hop parameter NH), or on short-term session keys used for protecting the backhaul and
air interfaces. Also, the user plane traffic is available in cleartext within the base station and
thus the confidentiality may be at stake. On the other hand, if the attacker wants to change
the behaviour of the platform (by, for example, pushing it to transmit with higher power than
configured by the management system), or to deny services to certain users, then such attacks
may also be detected based on the functional behaviour of the base station.

6.4.4 Security Requirements

The above-mentioned threats led to security requirements for the base station platforms as
specified in clause 5.3 of [TS33.401]. This clause states requirements on the platform and
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communications security of the base stations. While communications-related security require-
ments are handled in section 8.4, here we deal with the platform-related security requirements.
They are categorized as follows.

Base station setup and configuration

These requirements deal with the SW and the configuration data used within the base station.
All SW loaded into the base station, either locally in the factory or on-site, or remotely
via an Operations and Management (O&M) system, must be authorized for use in the base
station. The text in the specification does not explicitly state who the responsible authority
is, but both the manufacturer of the base station and the mobile network operator should be
considered here. Only the manufacturer can ensure the correct operation of the base station in
terms of its software, and on the other hand only the operator can determine the settings of
many operational configuration parameters like transmission frequencies and power levels. A
prerequisite for authorized SW installation is the integrity-protected transfer of the SW to the
base station, as otherwise any authorization does not make sense. Also confidentiality of the
SW transfer has to be ensured, so as to not disclose the SW to unauthorized third parties having
access to the network used for the backhaul link between the base station and the operator
network. To ensure that only authorized SW is loaded and executed in the base station, a
secure environment within the base station is required for enforcement. This is described
later.

Key management inside the base station

All keys used for providing confidentiality and integrity protection within the base station
shall be secured. Most keys are used only inside the base station; they shall never leave the
secure environment within the platform. This applies to long-term keys, such as the secrets
used for authenticating the base station to the operator network. Also, the session keys used for
securing subscriber-specific sessions must remain within the secure environment. This applies
to keys used for RRC signalling security and for the encryption and decryption of the user
plane data. Only when the specified operation of EPS requires the transfer of keys, such as the
Keng™ transferred in X2-handovers, are such keys allowed to leave the secure environment.
For securing such keys during transfer into and out of the secure environment, see below.

Handling of user and control plane data

All ciphering and deciphering of user and control plane data shall take place inside the
secure environment of the base station where also the related keys are stored. For the control
plane, also the control procedures, the message integrity checks, and the replay protection
procedures have to be executed within the secure environment. NAS signalling is not affected
by this requirement, as the base station forwards only protected NAS messages, without any
interpretation of them. The transfer of unencrypted user plane data within the base station
between the Uu and S1/X2 reference points is not explicitly mentioned in the specification,
but it is obvious that also this transport has to take place within the secure environment or has
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to be secured by other (e.g. cryptographical) means, otherwise the protection of user plane
traffic would be incomplete.

Secure environment

The text in clause 5.3 of [TS33.401] mentions the term ‘secure environment’ and describes
some of its features. Nevertheless it does not give a detailed description of a secure environment
and does not enforce certain mechanisms related to it, like secure boot. Instead it relies on a
state-of-the-art interpretation of the term and leaves the details to the implementer. Only some
properties are explicitly mentioned — the support of the secure environment given to the boot
process of the base station, the storage of sensitive data, and the functionality required for
cryptographic security functions.

Based on these properties, it is obvious that the secure environment must contain a root of
trust, which is either unalterable, or can only be changed by applying mechanisms with a high
security level. This root of trust is then used for SW integrity checking during SW download
and/or boot processes. The specification does not require that all of the base station SW must
be running within the secure environment. Using mechanisms as described by [TCG Mobile
Phone Work Group 2008] as an example, the secure environment may be used to measure all
SW loaded during the boot process, and enforce that only authorized SW be executed.

An additional difficulty with specifying a secure environment in a generic way is that an
attacker always looks for the weakest point in the implementation. As the specification did not
want to require a certain implementation of the base station platform, any manufacturer is free
to, for instance, do a partitioning of the functionality according to their own design, and to
use any SW as long as this SW fulfils the security requirements. Thus a general risk analysis
for the base station platform is not possible, so each manufacturer has to provide their own
security analysis of their respective security design.

Physically securing the base station is not explicitly mentioned in the specification. But
the requirements clearly do not only apply to SW-based attacks on the base station, but also
to any physical attack. This means that physical tampering with the base station platform
has to be prevented, be it for probing of circuits within the platform for eavesdropping, or
for unauthorized modification of SW and data. On the other hand, it is commercially not
viable to raise the physical security of the base stations above a certain level, as otherwise
both the capital expenditure for manufacturing as well as the operational expenditure for
maintenance would exceed acceptable levels for a network element deployed in huge numbers.
This leaves the manufacturer of the base station with the task to define suitable platform
security architectures and to assure their customers, the operators, of the security level of
their implementations and of conformance to the specifications. Requiring evaluation of such
architecture according to existing standards (e.g. Security Requirements for Cryptographic
Modules [ISO/IEC 19790], the internationalised version of FIPS Publication 140-2 [FIPS
140-2]) was discussed during standardization but was dismissed. Such standards are mainly
intended for specialized security subsystems, including crypto co-processors or modules, but
not for complete functional systems like base stations that comprise a secure environment
as a subsystem only. In addition, each new hardware or SW version would require a new
evaluation, which would also increase recurring costs and time delays beyond acceptable
ranges.
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Extensions for special types of base station

Clause 5.3 of [TS33.401] states that the security requirements are valid for all types of base
station. Specifications for specific base stations may not weaken these requirements, but only
have more stringent requirements. The first type of such a specific base station is the Home
eNodeB (HeNB). The security aspects of HeNBs are described in [TS33.320]. Within this
book, HeNBs are handled in Chapter 13.
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EPS Authentication and
Key Agreement

This chapter describes how users are identified and authenticated for network access in EPS.
Section 7.1 introduces the means to identify subscribers and terminals, and the mechanisms to
protect the related identities. Section 7.2 then provides a detailed presentation of EPS AKA,
the protocol used in EPS to authenticate subscribers and agree a local master key. Further keys
are then derived from this local master key to protect signalling and user traffic over various
interfaces between the UE and the network. The complete EPS key hierarchy resulting from
this derivation process is described in section 7.3. In addition to keys, other security-related
parameters need to be shared between two entities running a security protocol between them.
These parameters, together with the keys, form a security context, and the various security
contexts used in EPS are described in section 7.4.

7.1 Identification

We first describe the means to identify subscribers and terminals in EPS and explain the uses of
the corresponding identities. We then proceed to describe the identity confidentiality features,
which help to protect the user’s privacy. These identities are specified in [TS23.003].

User identification

GSM, 3G and EPS all use the same type of permanent subscriber identity, the International
Mobile Subscriber Identity (IMSI), to uniquely identify a subscriber. The IMSI is composed
of three parts:

® The Mobile Country Code (MCC) identifies the country of domicile of the mobile subscriber.

e The Mobile Network Code (MNC) identifies the home network of the mobile subscriber in
that country.

® The Mobile Subscriber Identification Number (MSIN) identifies the mobile subscriber within
a home network.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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The IMST is crucial for EPS security, as it is for GSM and 3G security, because the permanent
authentication key K used in EPS AKA, the Authentication and Key Agreement protocol
used in EPS, is identified by the IMSI. The permanent authentication key K is stored in the
Authentication Centre and in the USIM, but nowhere else.

There are a number of temporary identities associated with an IMSI in EPS, notably the
GUTI and the C-RNTI. The GUTI is allocated for the purposes of user identity confidentiality.
The C-RNTI [TS36.331] is used to identify a user equipment having a Radio Resource Control
(RRC) connection within a cell. The only use of the C-RNTI in security procedures is with
handover preparation (see section 9.4.4).

Terminal identification

GSM, 3G and EPS all use the same type of permanent terminal identity, the International
Mobile Equipment Identity (IMEI). In all systems, IMEI is sometimes accompanied by a
Software Version Number (SV) in which case the identity is called IMEISV. Because of
possible software upgrades in the terminal, the SV may change during its lifetime, while IMEI
remains the same.

7.1.1 User Identity Confidentiality

The EPS protects the confidentiality of the user identity against passive attacks in pretty much
the same way as do GSM and 3G. In each of these systems, the network assigns the user a
temporary identity sent in a message protected from eavesdropping. It is the purpose of this
temporary identity to provide an unambiguous identification of the UE that does not reveal the
user’s permanent identity — the IMSI. The temporary identity can be used by the network and
the UE to establish the permanent user identity during signalling between them.

The temporary user identity used in EPS is called Globally Unique Temporary UE Identity
(GUTYD). It s a bit different in structure from the TMSI used as a temporary user identity in the
circuit-switching domain of GSM and 3G, and the P-TMSI used as a temporary user identity
in the packet-switching domain of GSM and 3G.

The GUTI has two main components:

¢ the GUMMEI, which globally uniquely identifies the MME that allocated the GUTI;
¢ the M-TMSI, which uniquely identifies the UE within the MME that allocated the GUTI.

The GUMMEI (Globally Unique MME Identifier) is constructed from the MCC, the MNC
and the MME Identifier (MMEI).

For certain procedures, such as paging and service requests, a shortened version of the GUTI
is used, namely the S-TMSI. The S-TMSI consists of the M-TMSI and a part of the MMEI
The S-TMSI is to enable more efficient radio signalling procedures.

The MME may assign a GUTTI to the UE in an Attach Accept message or in a Tracking Area
Update Accept message. The MME may also assign a GUTI in a separate GUTI Reallocation
procedure [TS23.401]. In each case, the MME sends the GUTI only after the protection
for non-access stratum signalling has been enabled (see Chapter 8). If the network supports
signalling confidentiality then an attacker listening on the link between the MME and the
UE cannot read the GUTI, and so cannot associate the GUTI with the IMSI or an earlier
GUTI sent in a message by the UE. This mechanism protects the confidentiality of the user
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identity against passive attacks (eavesdropping). It also prevents tracking a user by observing
temporary identities consecutively assigned to the same user. If the network does not support
signalling confidentiality then the user identity confidentiality protection is weakened as well
because an eavesdropper can observe the relation between an IMSI sent over the air and a
GUTI allocated by the network, or between two consecutive GUTIs.

As for GSM and 3G, there is no user identity confidentiality protection against active attacks;
and the reason is again the same. In an active attack, an attacker would use a device known
as an ‘IMSI catcher’, which incorporates a false base station, for sending an Identity Request
message to the UE. The UE would then invariably respond with the IMSI. This Identity Request
procedure is needed to recover from cases where the network lost the association between the
temporary user identity and the IMSI, for example through a crash of the MME. Without such
a recovery mechanism, the user could be permanently locked out of the system. 3GPP again
discussed means to allow for recovery from such a situation while providing better protection
against active attacks, but the only effective means seemed to be the use by the UE of public
key certificates. For roaming cases, where the MME resides in another operator’s network, this
would assume the existence of a public key infrastructure spanning across all operators with
mutual roaming agreements. While this would be possible in theory, 3GPP felt that mandating
such an infrastructure would be too high a price to pay.

7.1.2  Terminal Identity Confidentiality

While the mechanism for protecting the user identity confidentiality in EPS is still pretty much
the same as it was in GSM and 3G, there is an improvement in EPS with respect to GSM
and 3G regarding the terminal identity confidentiality. In GSM and 3G it is possible that the
network requests the terminal identity at any time, even before the signalling protection has
been set up. Without signalling protection already set up, the UE would respond by sending
the terminal identity in the clear. As a user tends to use the same terminal for an extended
period of time, the terminal identity would also give strong hints regarding the user identity.
This is no longer possible in EPS. In EPS, the UE shall not send IMEI or IMEISV to the
network upon a network request before NAS security has been activated. (This does not apply
to unauthenticated emergency calls.)

In particular, the MME may request the terminal identity in the NAS Security Mode Com-
mand message, and the UE then includes the terminal identity IMEISV in the NAS Security
Mode Complete message, which is already ciphered (if the network supports confidentiality) —
see Chapter 8.

7.2 The EPS Authentication and Key Agreement Procedure

The EPS AKA procedure is a combination of the following procedures:

® a procedure to generate EPS authentication vectors (AVs) in the HSS upon request from the
MME, and to distribute them to the MME:;!

¢ a procedure to mutually authenticate and establish a new shared key between the serving
network and the UE;

® a procedure to distribute authentication data inside and between serving networks.

I Before the MME can request authentication vectors from the HSS, it needs to identify the UE — see section 7.1.
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These procedures are described in the following, where also the terms ‘EPS authentication
vector’ and ‘authentication data’ are explained. An overview of the EPS AKA procedure is
shown in Figure 7.1.

There is no self-contained description of the EPS AKA procedure in the main reference
for EPS security [TS33.401]. Rather, only the deltas to UMTS AKA are provided there. We
describe the EPS AKA procedure here in full, adapting and explaining relevant text from
[TS33.401] and [TS33.102].

An EPS AKA procedure needs to be run (apart from the case of emergency calls — see section
8.6) whenever the UE and the network want to communicate and do not share a security context.
Security contexts are described in section 7.4. EPS AKA may be run, according to the network
operator’s policy, to renew a security context.
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For understanding the differences between EPS AKA and UMTS AKA it is useful to
compare the roles played by the involved entities. The MME plays a role in EPS AKA
comparable to that of the VLR in UMTS AKA for circuit-switched 3G services and the SGSN
in UMTS AKA for packet-switched 3G services. The MME performs, however, additional
functions in EPS AKA, which have no equivalent in UMTS AKA. The ME and the HSS play
similar, but not identical, roles in both protocols. The USIM from UMTS AKA may be reused
for EPS AKA in an identical way, but optional EPS AKA-specific enhancements of the USIM
have also been defined.

7.2.1 Goals and Prerequisites of EPS AKA

The design criteria for EPS AKA are presented in section 6.3 of this book. The prerequisites for
EPS AKA, and the protocol goals achieved by EPS AKA, are quite similar to those for UMTS
AKA listed in section 4.2. The one, seemingly small, enhancement of EPS AKA compared to
UMTS AKA is that EPS AKA provides implicit serving network authentication, which UMTS
AKA does not. Implicit serving network authentication is achieved by binding an appropriate
key, Kasme, to the serving network identity and successfully using the key with the messages
following the authentication exchange. This seems straightforward, and indeed it does not
require any changes to the USIM. In the ME and in the HSS, a few changes are required,
however. As we will see below, one of these changes is due to the requirement that it must be
possible to use UMTS AKA and EPS AKA simultaneously in a single operator’s network, and
even in a single HSS/HLR and with the same Authentication Centre (AuC). This simultaneous
operation of UMTS AKA and EPS AKA is enabled by marking an authentication vector as
‘for EPS use’ or ‘for legacy uses’. This marking is achieved by setting a specific bit in the
Authentication Management Field (AMF), which is part of every authentication vector. More
information on the AMF can be found below.

There is an additional trust prerequisite on EPS AKA compared to UMTS AKA that relates
to the enhancement described in the previous paragraph, namely that the serving network
trusts the home network to verify the identity of a serving network requesting authentication
vectors and ensure that the serving network identity, to which the key Kasmge in an AV is
bound, matches the verified identity of the serving network, to which the AV is sent. If this
prerequisite was not fulfilled a serving network could obtain AVs with keys bound to the
identity of another serving network, which would render serving network authentication by
means of EPS AKA impossible.

On the other hand, the HSS need not trust the serving network in providing its correct
identity as the HSS can and does verify this identity; if the verification fails the request for
authentication vectors is denied.

There is also one additional cryptographic prerequisite: EPS AKA requires a key derivation
function, residing in the ME and the HSS, outside the USIM and the AuC respectively, for
deriving the local master key Kasmg — see below. As the key derivation resides in the ME, it
needs to be standardized; see section 7.3 for further details on Kgyr and the derivation of the
key hierarchy in general.

Both EPS AKA and UMTS AKA are based on the use of the same permanent secret
key K which is shared between the USIM and the Authentication Centre in the user’s Home
Subscriber Server (HSS). K never leaves the USIM and the AuC. In addition, for both protocols,
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the USIM and the HSS keep track of counters SQNys and SQNyg respectively to support
network authentication (the subscript MS stands for Mobile Station while the subscript HE
stands for Home Environment).2 The sequence number SQNgg is an individual counter for
each user, which is used in the AuC for the generation of authentication vectors; the sequence
number SQNys denotes the highest sequence number the USIM has accepted.

7.2.2  Distribution of EPS Authentication Vectors from HSS to MME

The MME invokes the procedure by requesting EPS authentication vectors from the HSS. The
Authentication Information Request shall include the IMSI, the serving network identity ‘SN
id’ of the requesting MME, and an indication that the authentication information is requested
for EPS. The SN id is required for the computation of Kagmg in the HSS.

Upon the receipt of the Authentication Information Request from the MME, the HSS may
have pre-computed authentication vectors available and retrieve them from the HSS database,
or it may compute them on demand. The HSS sends an Authentication Information Answer
back to the MME that contains an ordered array of n EPS authentication vectors AV(1 ... n).
If n > 1 the EPS authentication vectors are ordered based on sequence number.

[TS33.401] recommends n = 1, so that only one authentication vector is sent at a time,
because the need for frequently contacting the HSS for fresh AVs has been reduced in EPS
through the availability of the local master key Kasmg, which is not exposed in a way similar
to CK and IK in UMTS and, hence, does not need to be renewed very often. Based on the local
master key, and keys derived from it, an MME can offer secure services even when links to
the home environment are unavailable. Furthermore, pre-computed AVs are no longer usable
when the user moves to a different serving network owing to the binding of the local master
key Kasme to the serving network identity. However, pre-computation may still be useful
when the next request for authentication vectors is likely to be issued by an MME in the same
serving network, which may be the case, for example, for a user in his home network.

Each EPS authentication vector is good for one run of the authentication and key agreement
procedure between the MME and the USIM.

Generation of authentication vectors in the HSS

A UMTS authentication vector consists of a random number RAND, an expected response
XRES, a cipher key CK, an integrity key IK and an authentication token AUTN (see section
4.2), while an EPS authentication vector consists of a random number RAND, an expected
response XRES, a local master key Kasvg and an authentication token AUTN. Figure 7.2
shows the generation of a UMTS authentication vector by the AuC, and the generation of an
EPS authentication vector from this UMTS authentication vector by the HSS.

Both UMTS authentication vectors and EPS authentication vectors play a role in EPS AKA.
The AuC generates UMTS authentication vectors for EPS AKA in exactly the same format as
for UMTS AKA. The HSS part outside the AuC derives Kasme from the cipher and integrity
keys CK and IK.

21t should be noted that the term ‘Mobile Station” is no longer used in EPS. Nevertheless, we keep this notation
here so as to make it easier for the reader to compare the presentation in this book with the description of sequence
number handling in [TS33.102], which also applies to EPS AKA.
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17 Generate SQN
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SQN

AMF RAND
K
v V Vv v v v v Vv v v v v
1 f2 f3 f4 5
MAC XRES CK IK AK
SQN xor AK —» KDF l«— SN id
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AUTN := SQN xor AK || AMF || MAC

UMTS AV := RAND || XRES || CK || IK || AUTN

EPS AV := RAND || XRES || Kasue || AUTN

Figure 7.2 Generation of UMTS and EPS authentication vectors

The AuC starts with generating a fresh sequence number SQN and an unpredictable chal-
lenge RAND. For each user the HSS keeps track of the counter SQNyg.

The HSS has some flexibility in generating sequence numbers, but some requirements need
to be fulfilled by the mechanism used. According to [TS33.102], these requirements are:?

® The generation mechanism shall allow the re-synchronization procedure in the HE (i.e. in
the HSS) described in clause 6.3.5.

® When the SON exposes the identity and location of the user, the AK may be used as an
anonymity key to conceal it. This needs some explanation. When the SQN of a particular
user was predictable, and sufficiently different from the SQNs of other users in the area, it
could be used to identify the user when eavesdropping on authentication messages. Whether
there is a risk for the SQN to hint at a user’s identity depends on the SQN generation scheme
and needs to be decided by the operator. As it is always possible to use AK (there is a
detailed description below), this second requirement is actually not a requirement on the
SQN generation process itself, but a caveat on the use of SQNSs in authentication vectors.

3Italicized text is reproduced with permission from () 2010, 3GPP™.
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® The generation mechanism shall allow protection against wrap-around [of] the counter in
the USIM.

It depends on the method of generating sequence numbers how exactly SQNyg is used.
Example methods for generating fresh sequence numbers are given in informative Annex C.1
of [TS33.102]. One method is based on using SQNyg as a counter that is increased step by step,
while another method is time-based. Combinations of these two methods are also possible.
Furthermore, the SQN generation method can be chosen such that separate SQN spaces are
used for different domains in which AKA authentication vectors are used — EPS, or 3G CS, or
3G PS, or IMS. The use of this latter feature is one way of minimizing synchronization failures;
the handling of such failures is explained below. A full description of the SQN generation
methods here would, unfortunately, require an amount of space and detail beyond the scope of
this book. The interested reader is therefore referred to the referenced part of the specification.

An Authentication Management Field AMF is included in the authentication token of each
authentication vector. The role of the AMF is discussed a bit further below.

Upon request from the HSS, the AuC computes the following values, as described in
[TS33.102]:

* a message authentication code MAC = fl1g(SQN || RAND || AMF), where f1 is a message
authentication function;

¢ an expected response XRES = f2x (RAND), where f2 is a (possibly truncated) message
authentication function;

¢ a cipher key CK = f3x (RAND), where f3 is a key generating function;

® an integrity key IK = f4x (RAND), where f4 is a key generating function;

® an anonymity key AK = {5 (RAND), where f5 is a key generating function or f5 = 0.

Finally the authentication token AUTN = (SQN xor AK) || AMF || MAC is constructed.
If the operator decides that no concealment of SQN is needed, then they set f5 = 0 (AK = 0).
The following step is new for EPS compared to 3G. When the HSS receives the UMTS
authentication vector from the AuC, the HSS applies the key derivation function KDF to
CK, IK, SN id, and, for technical cryptographic reasons, (SQN xor AK). The result of the
application of KDF is the key Kasmge. CK and IK can then be deleted in the HSS. The keys
CK and IK used for computing EPS authentication vectors must never leave the HSS.

AMF usage for EPS AKA authentication vector identification

In earlier releases of the UMTS AKA specification, the use of the AMF was completely
proprietary. Annex F of [TS33.102] lists example uses of the AMF. They are:

¢ indicating the algorithm and key used to generate a particular authentication vector when
multiple algorithms and permanent keys are used,;

® change of parameters relating to SQN verification in the USIM;

e setting threshold values for key lifetimes.

However, not much use was made of the AMF in practice; and it turned out, on the other
hand, that the AMF was well suited to distinguish between authentication vectors for EPS use
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and those for legacy uses. 3GPP decided to use the most significant bit of the AMF for this
distinction and call it the ‘AMF separation bit’, and to reserve the seven next most significant
bits of the AMF for future standardization use, while leaving the remaining eight bits for
proprietary use. Annex H of [TS33.102] defines this usage of the bits in the AMF. Annex H
was introduced in Release 8, the 3GPP release where EPS was first specified.

The AuC shall set the AMF separation bit to ‘1’ in authentication vectors for EPS use, and
to ‘0’ otherwise.

Readers may ask why the SQNs could not be used, instead of the AMF, to distinguish AV for
EPS use from those for legacy uses. After all, as explained above, SQNs can be generated such
that separate SQN spaces are used for different usage domains of AVs. The answer is twofold:

e First and foremost, as we will see in section 7.2.3, it is the ME that must check whether
the type of radio access network it is connected to (E-UTRAN) corresponds to the type of
AV (‘for EPS use’) received from the network. But the ME cannot read the SQN if it is
concealed by AK. The USIM cannot perform this check as it has no idea about the network
connection. Furthermore, the USIM may be according to the Release 99 specifications and
have no EPS-specific functionality.

® Second, the SQN management scheme is proprietary, and 3GPP prefers to keep it this way.

Only the AuC can set bits in the AMF. Therefore, in order for the AuC to be able to correctly
set the AMF separation bit, the HSS must tell the AuC that the request for authentication
vectors is for EPS use. The example uses of the AMF listed above can still be realized using
the proprietary part of the AMF.

Lengths of authentication parameters

The lengths of authentication parameters are the same for EPS AKA as the ones specified for
UMTS AKA in clause 6.3.7 of [TS33.102]. In particular, the permanent key K, RAND, CK
and IK are all 128 bits long. It is true that Kagmg is 256 bits long, but it also has a key entropy
of only 128 bits as it is derived from K. It should be noted, however, that EPS is specified in
such a way that all keys can be extended to 256 bits of length if a need is seen in the future.

7.2.3  Mutual Authentication and Establishment of a Shared Key Between
the Serving Network and the UE

The purpose of this procedure is the authentication of the user and the establishment of a new
local master key Kasme between the MME and the UE, and, furthermore, the verification of
the freshness of the authentication vector and authentication of its origin (the user’s home
network) by the USIM. Kasme is used in subsequent procedures for deriving further keys for
the protection of the user plane, Radio Resource Control signalling, and Non-Access Stratum
signalling (see section 7.3).

Authentication requests

The MME invokes the procedure by selecting the next unused EPS authentication vector
from the ordered array of EPS authentication vectors in the MME database (if there is more

http://freepdf-books.com



112 LTE Security

than one). If the MME has no EPS AV it requests one from the HSS. The MME then sends
the random challenge RAND and the authentication token for network authentication AUTN
from the selected EPS authentication vector to the mobile equipment, which forwards it to the
USIM. The MME also generates a key set identifier eKSI and includes it in the Authentication
Request (see section 7.4).

Verification in the USIM

Upon receipt of RAND and AUTN, the USIM proceeds as shown in Figure 7.3, which is taken
from Figure 9 in [TS33.102].

According to [TS33.102], the USIM first computes the anonymity key AK = f5x (RAND)
and retrieves the sequence number SQN = (SQN xor AK) xor AK, where K is, as explained
before, the permanent secret key shared between USIM and AuC. Remember that if no
concealment is needed then f5x = 0 (AK = 0).

Next the USIM computes XMAC = flg (SQN || RAND || AMF) and verifies that it equals
the MAC included in AUTN.

RAND AUTN
l PN
Y N
ma 5 SQN xor AK AMF MAC
AK > xor
SQN
K
ry vyY VY y Y Y A y A
1 f2 3 f4
XMAC RES CK IK

Verify MAC = XMAC

Verify that SQN is in the correct range

Figure 7.3 User authentication function in the USIM. Adapted with permission from © 2010, 3GPP™
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Then the USIM verifies that the received sequence number SQN is in the correct range.
The mechanism for the SQN verification in the USIM has not been standardized, for the same
reason that the SQN generation in the HSS has not been standardized: both the USIM and the
HSS are under the control of the same stakeholder, the operator. But, for those who do not
want to specify their own mechanism, the informative Annex C.2 of [TS33.102] provides an
example mechanism.

The SQN verification mechanism does have to satisfy certain requirements.

® The fundamental requirement is that no SQN shall be used twice. Once the USIM has
successfully verified an AUTN it shall not accept another AUTN with the same SQN.

e It is additionally required according to [TS33.102] that the SQN verification mechanism
shall, to some extent, allow the out-of-order use of sequence numbers. Out-of-order use
of SQNs may occur, for example, when two different entities such as an MSC/VLR and
an SGSN each request a batch of authentication vectors from the HSS (e.g. with SQNs
1 to 5 in the first batch and 6 to 10 in the second batch) and then use the AVs from the
batches in AKA runs with the UE in an interleaved fashion. If the USIM simply kept track
of the highest SQN received in a successfully verified AUTN and rejected all lower SQNs
received later, then this would lead to so-called synchronization failures (a particular form
of authentication failures explained below) when SQNs were presented to the USIM out
of order. Therefore, the above-mentioned additional requirement was introduced to ensure
that the authentication failure rate due to synchronization failures remained sufficiently
low. For this purpose, the USIM must be able to store information relating to sequence
numbers received in past successful authentication events. 3GPP even specified a threshold
value for the out-of-order use of sequence numbers: if the received SQN is among the last
32 sequence numbers generated then it shall be accepted if it was not used in a previous
successful authentication. This could be achieved, for example, by using a suitable window
mechanism, but more sophisticated methods are available — see Annex C.2 of [TS33.102].

® However, a USIM may reject a time-based sequence number if it was generated too long
ago. This check, if applied, takes precedence over the requirement in the previous paragraph.

® The SQN verification mechanism may additionally check that an SQN is not accepted if the
jump from the last successfully received SQN is too big.

These various conditions on the SQN verification mechanism explain the formulation that the
USIM checks whether the SQN is ‘in the correct range’.

Authentication responses

If the sequence number is considered to be in the correct range, the USIM computes
RES = f2x (RAND) and sends it to the ME, which includes RES in an Authentication
Response message to the MME. The USIM also computes the cipher key CK = f3x (RAND)
and the integrity key IK = f4x (RAND). The USIM sends CK and IK to the ME. A USIM
may also support a key conversion function that converts the pair (CK, IK) into a GSM cipher
key Kec. If the USIM does support this function, it also sends the so-derived Kc to the ME. If
the ME supports 128-bit GSM encryption it also computes the GSM key Kcj,g from CK and
IK. For the use of these keys Kc and Kci,g, see section 4.4.
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Upon receipt of the Authentication Response message the MME checks whether the received
RES matches the expected response XRES from the selected authentication vector. If it does
then the authentication of the user has been successful.

Up to this point, there are no functional differences between UMTS AKA and EPS AKA
in the handling of authentication requests, verification in the USIM, and authentication
responses.

EPS AKA additionally requires, however, that an ME accessing E-UTRAN shall check
during authentication that the AMF separation bit is set to ‘1’. The ME ensures by performing
this check that the authentication vector used in the current authentication run was marked by
the AuC as ‘for EPS use’ indeed. This check is in turn a prerequisite for successful implicit
serving network authentication. When the ME receives (CK, IK) from the USIM, the ME
computes Kasme using the same key derivation function and the same input parameters as the
HSS. After this, CK and IK can be deleted in the ME.

Key storage on the USIM

In contrast to UMTS AKA, the ME does not request the USIM to store CK and IK resulting
from an EPS AKA run. The reason for this is that EPS AKA shall work with USIMs from
earlier 3GPP releases, and such a USIM may have already stored a pair (CK, IK) from a
previous UMTS AKA run. If this pair was overwritten with the pair (CK, IK) generated during
the recent EPS AKA run, this would lead to problems when EPS security context and UMTS
security context had to be held simultaneously (for the purposes of interworking between
E-UTRAN and 3G - see Chapter 11). It is only for EPS-enhanced USIMs that the ME
requests the USIM to store an appropriate subset of the EPS security context upon certain
events (see section 7.4).

Authentication failures

A detailed description of the behaviour of UE and MME upon an authentication failure,
together with the cause values, is given in clause 5 of [TS24.301]. We give an overview
here.

® MAC code failure. If the USIM determines that MAC differs from XMAGC, it indicates this to
the ME, which sends an Authentication Failure message back to the MME with an indication
of the cause.

® Synchronization failure. This occurs when the USIM determines the sequence number to
be not in the correct range. The behaviour of the USIM and the AuC in this case is the
same for UMTS AKA and EPS AKA and is described in clause 6.3 of [TS33.102]. The
USIM computes a parameter AUTS as shown in Figure 7.4, which is taken from Figure 10
in [TS33.102]. AUTS is included in an Authentication Failure message from the UE to the
MME. The MME forwards AUTS to the HSS requesting new authentication vectors. The
AMF used to calculate MAC-S is set to all zeros so that it does not need to be transmitted
back to the HSS. The HSS uses AUTS to synchronize SQNyg stored in the HSS with SQNys
contained in AUTS. The details of how the HSS handles AUTS can be found in clause 6.3.5
of [TS33.102]. The only caveat is that the HSS needs to tell the AuC again that the request
is related to EPS. The AuC cannot see this from the AMF as the AMF in AUTS is set to all
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Figure 7.4 Construction of the parameter AUTS. Adapted with permission from © 2010, 3GPP™

zeros. After a possible synchronization of SQNyg the HSS generates new AVs and sends
them to the MME.

® [ncorrect type of authentication vector. If the check of the AMF separation bit in the ME
fails, then the ME sends an Authentication Failure message back to the MME with an
indication of the cause.

® [nvalid authentication response. If the MME determines that XRES differs from RES then,
depending on the type of identity used, the MME may decide to initiate a new identification
and authentication procedure towards the UE, or it may send an Authentication Reject
message to the UE and abandon the procedure.

® Authentication failure reporting. For UMTS AKA, the VLR/SGSN shall report failed au-
thentications to the HLR — see clause 6.3.6 of [TS33.102]. This is no longer required for
EPS AKA as the usefulness of this reporting proved quite limited.

® Reuse and retransmission of (RAND, AUTN). The verification of the SQN by the USIM
will cause the USIM to reject an attempt by the MME to re-use an authentication vector
for establishing a particular key Kasme more than once. In general, the MME is therefore
allowed to use an authentication vector only once. There is one exception, however — see
clause 5.4.2.3 of [TS24.301]. In the event that the MME has sent out an Authentication
Request using a particular authentication vector and does not receive a response message
(Authentication Response or Authentication Failure) from the UE, it may re-transmit the
Authentication Request using the same authentication vector. However, as soon as a response
message arrives no further re-transmissions are allowed.

7.2.4  Distribution of Authentication Data Inside and
Between Serving Networks

When a user moves around, the MME serving the UE may change. When the UE then sends
an Attach Request, or a Tracking Area Update Request [TS23.401], the UE will, in general,
use its temporary identity, the GUTI, in order to protect the confidentiality of its permanent
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identity, the IMSI — see section 7.1. But the new MME is not able to make sense of the GUTI,
so it has only two choices: request the permanent identity from the UE and break identity
confidentiality in this way, or ask the old MME, which issued the GUTI, to translate the GUTI
to the user’s IMSI. The old MME will also send back authentication data to the new MME.
Exactly what kind of authentication data is allowed to be exchanged between old and new
MME depends on whether the two MME:s reside in the same or in different serving networks.

When the two MMEs reside in the same serving network then any EPS security context the
old MME may have (at most two — see section 7.4), and any unused EPS authentication vectors,
may be transferred. The new MME may use these transferred EPS authentication vectors as
they are bound to the correct serving network identity, so serving network authentication in a
new EPS AKA run using these authentication vectors will work fine.

When the two MME:s reside in different serving networks, then unused EPS authentication
vectors must not be transferred for the very reason that serving network authentication would
not succeed in a new EPS AKA run initiated by the new MME. But the transfer of the
current EPS security context, and hence its use between the UE and the new MME, is allowed,
depending on the security policy of the serving networks. From a procedural point of view, this
will not create any protocol failures with serving network authentication. However, readers may
wonder why this is allowed as the EPS security context was generated from EPS authentication
vectors bound to a particular serving network identity and is now used in a serving network
with a different identity. This decision by 3GPP is a result of the trade-off between complexity
and risk, which has been performed also in many other instances during the design of EPS
security. The reduction in complexity stems from the fact that the HSS need not be contacted,
and no new round of EPS AKA is needed. This is important especially in situations where,
due to the network topology, user movements may result in frequent changes between MMEs.
The risk, on the other hand, is mitigated by the following facts.

® An EPS security context is forwarded only to a new MME trusted for this purpose by the
old MME.

® As soon as EPS AKA is run another time, the serving network will be authenticated.

® EPS security would not be affected by any breach of security in a non-EPS network because
EPS security context is not transferred to non-EPS nodes, such as an SGSN.

A serving network operator who deems the remaining risk still too high may adopt a policy of
not forwarding EPS security context.

7.3 Key Hierarchy

As already explained in section 7.2, EPS AKA is an enhancement of UMTS AKA. This means
that the key agreement is similar in EPS and in UMTS. But this is only part of the picture: in
section 6.3 we discussed the reasons why the key agreement part of EPS AKA produces only
a single intermediate key Kasmg instead of a set of keys that would be subsequently used in
security mechanisms. The latter is the case for UMTS: ciphering key CK and integrity key IK
are generated during execution of the UMTS AKA procedure.

All cryptographic keys that are needed for various security mechanisms are derived from
the intermediate key Kasme which can be viewed as a ‘local master key’ for the subscriber,
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in contrast to the permanent master key K (for this subscriber). On the network side, the
intermediate local master key Kagmg is stored in the MME while the permanent master key K
is stored in the AuC. The advantages of using an intermediate key are twofold.

¢ It enables cryptographic key separation, which implies that each key is usable in one specific
situation (or context) only. Furthermore, knowing a key that is used in one context does not
help in trying to find out, or guess, what kind of key could possibly be usable in another
context.

¢ ]t also improves the system in terms of providing key freshness. That is, it is possible to more
often renew the keys used in security mechanisms, for example in ciphering. As already
explained in section 6.3, we do not have to run EPS AKA every time we want to renew keys
used for protecting the radio interface, so we do not have to involve the home network to
have fresh keys in place.

The obvious disadvantage of using intermediate keys is the added complexity: there are more
types of key in the system, all of which need to be computed, stored, protected, kept in sync, and
so on. Altogether, we have a typical security versus complexity trade-off situation. For EPS,
the security benefits of using an intermediate key outweigh the added complexity, whereas at
the design phase of 3G security, there was not enough justification for intermediate keys.

After the idea of using the intermediate key Kasmg was introduced in the design of EPS
security, it was quite natural to take a further step: another intermediate key Keng was added
that is stored in the base station eNB. Addition of K.ng makes it possible to renew keys for
protection of radio access without involving the MME. Furthermore, an appropriately modified
Keng can be handed over between base stations in a so-called X2-handover (see section 9.4)
without involving the MME. The keys used directly for protecting the RRC signalling and
the user data on the radio interface would not be suited for this purpose as they are bound
to particular cryptographic algorithms, which is not the case for K.np, and base stations may
apply different cryptographic algorithms.

Figure 7.5 shows the whole key hierarchy of EPS. The UMTS key hierarchy is a small
subset of this and consists of the two topmost layers only.

7.3.1 Key Derivations

InFigure 7.5, an arrow between two keys means that one key (the one to which the arrow points)
is derived from the other. In all cases, there are also additional input parameters that are needed
in the derivation. None of the additional parameters is assumed to be secret information. In
practice, a potential attacker may not know the correct values for these additional parameters,
but, to be on the safe side, it has to be assumed that the attacker is in a good position to make
educated guesses about these values.

There is one special arrow in the figure, namely the loop arrow pointing from the box
representing keys K.ng/NH to itself; the next subsection has an explanation of these keys. For
all other cases, each key is always derived from another key at a higher layer in the hierarchy.
The special case refers to a situation where an intermediate key K.np for one base station has
to be derived based on a key Keng or NH from another base station, without having access to
keys higher up in the hierarchy. This restriction occurs in certain handover situations between
eNodeBs where the MME is not involved. For details on the key handling in this situation, see
section 9.4.

http://freepdf-books.com



118 LTE Security

USIM / AuC K
Lo ]
UE / HSS
,_KASME

UE / MME

Knasenc Knasint
Kens / NH
UE/eNB *W
AN
Kuypenc Krrcint Krrcenc

Figure 7.5 EPS key hierarchy. Adapted with permission from © 2010, 3GPP™

The most important property of the key derivation is that it meets the requirement of being
one-way as described in section 2.3: starting from keys in lower layers of the key hierarchy it
is impossible in practice to compute keys in the higher layers.

The topmost key derivation from K to CK and IK is different from the rest in the sense that
details of it are not standardized. It is also the only key derivation that is also present in the 3G
system. This first key derivation step happens, on the user side, inside the USIM and, on the
network side, inside the AuC. Both USIM and AuC are controlled by the same operator and
this is the reason why it is not necessary to standardize this step. However, 3GPP specified
a set of algorithms called MILENAGE that may be used by operators — see section 4.3. For
the rest of the derivations the situation is different: on the user side, key derivations happen in
the ME, while on the network side, key derivation happens in the MME or the eNB, so it is
necessary to standardize these functions.

From an implementation point of view, it makes a lot of sense that all the key derivations
carried out in the UE share the same core cryptographic function. In fact, 3GPP has taken the
approach that all specified key derivation functions make use of the generic key derivation
function that is specified in [TS33.220]. In this generic key derivation function the core
cryptographic primitive is the HMAC-SHA-256 algorithm — see sections 2.3 and 4.3.

Figure 7.6 shows how key derivations are done on the network nodes. Respective derivations
need to be done also on the user side where all of them are carried out in the ME.

In the figure, ‘KDF’ denotes the generic key derivation function based on HMAC-SHA-256
and ‘Trunc’ denotes a simple truncation function that uses only the 128 least significant bits
of a 256-bit value and throws away the most significant half. Note here that there is an inbuilt
possibility in the EPS key hierarchy to take into use 256-bit keys for various security functions,
such as ciphering. However, at least for Releases 8 and 9 of EPS, security provided by 128-bit
keys is seen as adequate and the truncation is in use.
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Figure 7.6 EPS key derivations on network side. Adapted with permission from © 2010, 3GPP™

7.3.2  Purpose of the Keys in the Hierarchy

As already explained, the key hierarchy contains one root key (K), several intermediate keys
(CK, IK, Kasme, Kenp and NH) and several leaf keys (Knasencs Knasint, Krrcenes Krrcint and
Kupenc). Below we explain the purpose of all these keys and also briefly explain the input
parameters that are needed in derivation of each key.

¢ K is the subscriber-specific master key, stored in the USIM and the AuC. It is not derived
from any other key, but instead is a random 128-bit string.

¢ CK and IK are 128-bit keys derived from K, using additional input parameters, as described
in the previous section.

® Kasme is derived from CK and IK using two additional inputs. First, the serving network
identity SN id, consisting of the Mobile Country Code MCC and the Mobile Network Code
MNC, is used to tie the key to the network where it is supposed to be stored and used.
Second, the bit-wise sum of two additional parameters, SQN and AK from the EPS AKA
procedure, is used in order to more thoroughly use the variation of information available.
Note that, although AK is another key derived during the EPS AKA, the value (SQN xor
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AK) is part of the parameter AUTN that is sent in cleartext during EPS AKA, so it has to be
assumed to be known by a potential attacker. The purpose of Kasmg is to be a local master
key in the MME.

Keng is derived from Kagye and the additional input NAS uplink COUNT that is a counter
parameter. This additional parameter is needed to ensure that each new K¢ng derived from
Kasme differs from the ones derived earlier. The purpose of this key is to be a local master
key in an eNB.

Next Hop (NH) is another intermediate key that is needed in handover situations (see section
9.4). NH is derived from Kagsmg, using either the newly derived Keng as an additional input
for the initial NH derivation, or a previous NH as an additional input in case such an NH
already exists.

There is still another intermediate key needed in the process of deriving one Keng from
another. This is called Keng*, and it is derived from either Kenp or a freshly generated NH if
such a parameter exists. Additional parameters of physical cell id and downlink frequency
are used to tie the key to the local context. In handovers, Keng™ becomes the new Keng in
the target base station. The reason for introducing a separate key Keng ™ is to bring clarity for
the presentation of the key hierarchy in the specifications. An alternative would have been
to refer to ‘future Keng’, ‘potential new Keng’, ‘Kenp for target base station” and so on. but
all these formulations would have easily led to confusions.

Knasenc 18 a key that is used to encrypt NAS signalling traffic. It is derived from Kasmg
and two additional parameters. The first one is called algorithm type distinguisher and, in
the case of Knasenc, it has a value indicating that this key is used for NAS encryption. The
second one is the identifier of the encryption algorithm.

Similarly as above, Knasine is @ key that is used to protect the integrity of NAS signalling
traffic. It is derived from Kasmge and two additional parameters: the first one (algorithm type
distinguisher) indicates that the key is used for NAS integrity, and the second one is the
integrity algorithm identifier.

Kgrreene 18 a key that is used to encrypt RRC signalling traffic. It is derived from Keng and
two additional parameters: the first one (algorithm type distinguisher) indicates that this key
is used for RRC encryption, and the second one is the identifier of the encryption algorithm.
Similarly, Kggrcine is used to protect the integrity of RRC signalling traffic. It is derived from
Keng and two parameters: the first one indicates that this key is used for RRC integrity, and
the second one is the integrity algorithm identifier.

Finally, Kypenc s used to encrypt user plane traffic. This key is derived from Keng and two
parameters: the first one indicates that this key is used for UP encryption, and the second
one is the encryption algorithm identifier.

There are even more keys used in EPS for the purpose of interworking with other systems,
such as with 3G systems. For example, CK’ is a key derived from Kagyg and it is needed
after handover from EPS to 3G for encryption. These mapped keys are discussed in detail in
Chapter 11.

7.3.3  Cryptographic Key Separation

One purpose of the complex key hierarchy is to provide key separation. It means that all
keys are used in a single unique context for cryptographic protection of either user traffic or
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signalling traffic. Moreover, because all keys used for such protection are leafs in the hierarchy,
it is infeasible to derive a key used in one protection context from another key (or set of keys)
used in other contexts.

The intention is that attackers cannot find out any keys used in one context from keys used in
any other context. But if it happens anyway that some protection keys are leaked in whatsoever
manner to unauthorized parties, key separation prevents the leakage from expanding. Of course,
cryptographic key separation does not help if there is a leakage of higher layer keys, perhaps
because somebody has been able to get access to keys stored in MME. But, looking from
another point of view, if some unauthorized party has been able to get access to the very core
information stored in MME then, for example, protection of NAS signalling is less relevant for
that kind of attacker: all NAS signalling terminate in MME and it is therefore visible in cleartext.

There are also purely cryptographic reasons why key separation is a useful goal in any
circumstances; see section 2.3 for ‘related key attack’.

Tying of a key to a particular context requires that this particular context is somehow
affecting key derivation. Therefore, each of the additional parameters used in derivation of
the keys in the hierarchy is motivated from this angle. Let us look, for example, at the keys
Knasine and Krgreine- It is natural that the derivation of these two keys is similar because they
are used for similar purposes. Both keys have two additional parameters, one of which is
the same in both cases: the integrity algorithm. The other input parameter fixes explicitly that
Knasine is used for NAS integrity protection while Kggrcin is used for RRC integrity protection;
hence there is a difference in this second additional parameter. For these two keys there is of
course another difference: Knasin: is derived from Kasye while Krreine 1S derived from Keng.
This difference would already guarantee that these two derived keys are different in normal
operations, but it is difficult to claim that no active attack scenario would exist where there
would be a possibility to get either UE or network elements to derive Knasint and Krrcint
from the same key. On the other hand, there is no particular need to minimize the number of
input parameters to the ones that are absolutely necessary. Using the purpose of the key as
an explicit parameter in key derivation is therefore a handy countermeasure in preventing the
same key being used for two different purposes, either by accident, design flaw or as a result
of an active attack.

7.3.4 Key Renewal

As mentioned above, another benefit of the complex key hierarchy is that keys can be renewed
without affecting all other keys. When one key is changed, only the keys that are dependent on
it have to be changed; the others may remain the same. For example, Kenp can be re-derived
without changing Kasmg in the process. As a consequence of changing Keng, all keys derived
from Keng (€.2. Krrcene and Krreine) are changed as well.

There are several reasons why renewing keys is seen useful although, at a first glance, it
seems to add unnecessary complexity: one key is replaced by another one that is used for
exactly the same duties as the old one was. One reason is a cryptographic one: when a key
is changed, the task of the attacker to find or guess the key is ‘returned back to square one’.
Another reason follows from a generic security principle: we should minimize the need to
distribute the same secret to many elements. In the case of K, it is renewed whenever it is
derived for a new eNB, thus preventing two base stations from using the same key.
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However, not all keys that are leafs in the key hierarchy can typically be renewed without
renewing the whole key hierarchy. Indeed, the security architecture is built in such way that the
keys Knasint and Knasene can only be renewed without change in Kagmg if the used algorithm
is changed (which should probably be a very rare event). There are two reasons for this:

® The keys Knasint and Knasene and (their mother key) Kasyg are all held by the same entities
anyway: on the network side by the MME and on user side by the ME.

® The amount of NAS signalling is not so huge that there would be a real need for renewing
keys (without running AKA) from a purely cryptographic point of view either.

7.4 Security Contexts

When two parties engage in security-related communication, for example when running an
authentication protocol or exchanging encrypted data, they need an agreed set of security
parameters, such as cryptographic keys and algorithm identifiers, for the communication
to be successful. Such a set of security parameters is called a security context. There are
different types of security context depending on the type of communication, and the state the
communicating parties are in.

Note that entities may store security context data locally even when not engaged in com-
munication. The distinction between locally stored security context data and security context
shared between two communicating parties for the purpose of running a security protocol is
useful in principle, but it is a bit academic and not much adhered to in practice. As the potential
for confusion is low, we follow the common practice and speak only of security contexts.

Several different types of security context have been defined for EPS so as to have shorthand
notations available for the various sets of security parameters used in particular situations. Their
definitions are a bit tricky, and 3GPP took a while to get them right, but they are useful, and
the reader will encounter them throughout the book, so we will dwell on them a little here
to have a central place for security context definitions and explanations for reference. But it
is true that quite a few of the parameters mentioned in this section are explained only later,
notably in Chapters 8, 9 and 11.

As can be seen from the preceding section 7.3, where the EPS key hierarchy was presented,
EPS security is rooted in a permanent key K. The USIM and the Authentication Centre share
this key K and a set of AKA algorithms, such as MILENAGE as described in section 4.3. The
key K and the set of AKA algorithms are used for UMTS AKA run over GERAN or UTRAN,
and EPS AKA run over LTE. The notion of EPS security context, as defined by 3GPP, does not
include the key K nor identifiers of the AKA algorithms, but only keys and related parameters
particular to EPS — from Kasmg downwards in the EPS key hierarchy.

The following definitions draw heavily on clause 3 of [TS33.401].

EPS security context

This consists of the EPS NAS security context and, when it exists, the EPS AS security context.
The EPS NAS security context is used for protecting the non-access stratum of EPS between
the UE and the MME, and it may even exist when the UE is in deregistered state (see Chapter
9). The EPS AS security context is used for protecting the access stratum of EPS between
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the UE and the eNB, and it only exists when cryptographically protected radio bearers are
established and is otherwise void. For an EPS AS security context to exist the UE needs to be
in connected state.

EPS NAS security context

This context consists of Kasmg with the associated key set identifier eKSI (more on this
later), the UE security capabilities (see below), and the NAS uplink and downlink COUNT
values. These counters are relevant also for security as they are used as input parameters
to key derivations in certain state and mobility transitions (see Chapters 9 and 11) and, in
conjunction with integrity protection, for preventing message replay. Separate pairs of NAS
COUNT values are used for each EPS NAS security context. The EPS NAS security context
is called “full’ if it additionally contains the keys Knasint and Knasenc (‘NAS keys’ for short)
and the identifiers of the selected NAS integrity and encryption algorithms, otherwise it is
called ‘partial’. An EPS security context containing a full or partial EPS NAS security context
is also called full or partial, respectively. Note, however, that both Knasin and Knasgne can be
derived from the Kasme when the NAS integrity and encryption algorithms are known. Thus,
they need not necessarily be stored in the memory.

UE security capabilities

They are the set of identifiers corresponding to the ciphering and integrity algorithms imple-
mented in the UE. This includes capabilities for E-UTRAN, UTRAN and GERAN if these
access types are supported by the UE. A network node learns the UE security capabilities from
the UE, or from a neighbouring node (more on this in later chapters). The UE EPS security
capabilities are a subset of the supported UE security capabilities relating to algorithms used
in EPS.

EPS AS security context

This context consists of the cryptographic keys at AS level (i.e. between the UE and the eNB)
with their identifiers, the Next Hop parameter NH, the Next Hop Chaining Counter parameter
NCC used for next hop access key derivation (see section 9.4), the identifiers of the selected
AS level cryptographic algorithms for RRC integrity protection and ciphering of RRC and
user plane, and the counters used for replay protection.

Native versus mapped contexts

There are different types of EPS security context, namely ‘native’ and ‘mapped’. These types
point to the origin of the context: a native EPS security context is a context whose Kasmg was
created during a run of EPS AKA, while a mapped EPS security context is converted from a
UMTS security context when the UE moves to LTE from UTRAN or GERAN (see Chapter
11). A mapped EPS security context is always ‘full’, while a native EPS security context
may be full or partial. A partial native EPS security context is created by an EPS AKA run,
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for which no corresponding successful NAS Security Mode Command (SMC) procedure has
been run; in other words. a partial native EPS security context is always in state ‘non-current’,
as explained in the next subsection. After having been put into use by running a NAS SMC
procedure, a partial native EPS security context becomes full as the NAS security algorithms
and the NAS keys have been agreed between the UE and the MME.

Current versus non-current contexts

There are other states in which EPS security contexts can be, namely ‘current’ and ‘non-
current’. The current security context is the one that has been activated most recently. A
non-current security context is sitting on the side and waiting to replace the current one. As
mentioned in the previous paragraph, a partial native EPS security context is non-current, but
also a full native EPS security context can be non-current, namely when it has been pushed
aside by a mapped EPS security context in a handover from UTRAN or GERAN to EPS. A
mapped EPS security context never becomes non-current. The different handling of native and
mapped in this respect is explained by the fact that a native context is considered of higher
value as it originates from within the EPS itself. It may therefore be used later (again), while
a mapped context may be discarded when no longer used as a current context. The type of a
context does not change during its lifetime. The state of a context can change, but it can be
only in one state at a time.

Key identification

In E-UTRAN, the NAS Key Set Identifier eKSI identifies the key Kagme. It is the purpose
of the eKSI to signal which Kasme was used to derive the NAS keys, such as when the UE
sends a NAS message in moving from idle to connected state. The use of the eKSI ensures
key synchronization between the UE and the MME. The NAS Key Set Identifier information
element consists of a value of three bits and a type bit. The type indicates whether an EPS
security context is a native EPS security context or a mapped EPS security context (‘0’ denotes
native, and ‘1’ mapped). The eKSI is the EPS equivalent of the KSI in 3G. The KSI also takes
three-bit values, but has no different types. The KSI points to the set of two keys, CK and
IK. In mobility between E-UTRAN and UTRAN, the value of eKSI is mapped to KSI, and
vice versa (see section 11.1). The eKSI is allocated by the MME, and the eKSI is therefore
accompanied by the identity GUTI (see section 7.1). The GUTI tells the receiving MME at
which MME the security context of the UE currently resides. The UE can also signal that no
key is available by setting the eKSI value to ‘111°.

EPS security context storage

When the USIM is enhanced for EPS, a part of the EPS native security context is stored on the
USIM under certain conditions. When the USIM is not enhanced for EPS, the non-volatile part
of the ME memory takes on an equivalent role and stores that part of the EPS native security
context. The idea is that, in both cases, an EPS native security context shall be kept even when
the UE deregisters or is switched off. When the UE registers again and goes to connected
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state, the EPS native security context can be retrieved from storage and used to protect the
initial NAS message. By re-using the stored context, a new run of EPS AKA can be avoided.
A mapped context is never stored on the USIM. A mapped EPS security context is kept in a
transition to idle state, and, if available, is used to protect the initial NAS message when the
UE transitions back to connected state. A mapped EPS security context is deleted when the
UE deregisters (see the definition of current and non-current security context above).

EPS security context transfer

Parts of the EPS security context may be pushed down from the MME to a base station, or
may be transferred between equivalent EPS nodes (e.g. from one MME to another MME), or
from one base station to another one. (Of course, base stations get to see only EPS AS security
context data.) This is possible even when these nodes lie in different networks, providing
the operators’ security policies allow this — see section 7.2.4. EPS security context shall not,
however, be transferred to an entity outside the EPS. In particular, the Kasmg shall never be
transferred from the Evolved Packet Core (EPC) to an entity outside the EPC. In this way,
Kasme is not revealed to network entities handling technologies other than E-UTRAN.
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EPS Protection for Signalling and
User Data

Protecting communication over the air and inside the network is important so that confiden-
tiality of information can be assured and attacks on the communication channels can be more
easily mitigated. EPS has two layers of security for signalling: the first layer is between UE
and the base stations, and the second layer is between UE and the core network (see Chapter 6).
The user plane data packets are protected between UE and base stations and further in the
network in hop-by-hop manner. In this chapter, we describe in detail how the communication
between UE and network and inside the network is protected.

LTE has separate signalling and user planes. The signalling plane is further divided into
signalling between UE and base stations (i.e. Access Stratum, AS) and between UE and
core network (i.e. Non-Access Stratum, NAS). Signalling protection consists of ciphering
and integrity protection with replay protection; for the user plane (data) only ciphering is
provided, as explained in sections 8.1-8.3. We describe also how core network interface
protection mechanisms are used within EPS (in section 8.4), how certificate enrolment to the
base stations is handled (in section 8.5), and how emergency calls are handled (in section 8.6).

8.1 Security Algorithms Negotiation

Before the communication can be protected, both UE and the network need to agree on what
security algorithms to use. EPS supports multiple algorithms and includes two mandatory sets
of security algorithms [TS33.401], namely 128-EEA1 and 128-EIA1 based on SNOW 3G
[TS35.216], and 128-EEA2 and 128-EIA2 based on AES [FIPS 197], that all implementations
of UEs, eNBs and MMEs need to support. EPS can be extended to support more algorithms
in the future. See Chapter 10 for more information about AES and SNOW 3G and their usage
in EPS.

Algorithms are negotiated separately between UE and base stations (AS level) and between
UE and the core network (i.e. MME, NAS level). The network selects the algorithms based
on the UE security capabilities and the configured list of allowed security algorithms for the
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network entities (e.g. base stations and MMEs). The UE provides its security capabilities to
the network during the attachment procedure and when sending TAU Request messages after
intersystem handovers to E-UTRAN —see section 11.1.4. The security capabilities for AS level
signalling, NAS level signalling, and user plane data are the same, except that the user plane
data does not support integrity protection. However, it is possible to have different algorithms
for AS and NAS active at the same time. The configured list of allowed security algorithms in
the network can be used, for example, when an algorithm needs to be phased out. This list also
provides the operator with a means to express a preference of certain algorithms over others.

Messages cannot be protected before algorithms have been agreed and signalling protection
has been set up. The security capabilities that the UE has provided to the network are repeated
in an integrity protected response message from the network in order to protect against bidding
down attacks, where the attacker modifies the message carrying the UE security capabilities
from the UE to the network. If UE detects a mismatch between the security capabilities it sent
to the network and the ones it received from the network, the UE cancels the attach procedure.
It could be argued that it would be even better if the bidding down attack protection would
happen in both directions. The UE would then repeat the UE security capabilities again to the
network once the integrity protection has been set up so that the network could detect bidding
down attacks in case the UE failed to do so. However, EPS relies on and requires UEs to do the
checking, mainly because the added security achieved by doing the check also on the network
side does not justify the added complexity.

Two Security Mode Command procedures are used to indicate the selected algorithms and to
start ciphering and integrity protection with replay protection. One Security Mode Command
procedure exists for the AS and another one for the NAS level. The MME is responsible for
selecting the NAS level algorithms, and the base station is responsible for selecting the AS
level algorithms, including the user plane algorithm. It is not possible to change the AS level
algorithms using the AS Security Mode Command procedure. The NAS level algorithms can
be changed with the NAS Security Mode Command procedure, for example when the MME
changes and the target MME supports different algorithms from the source MME.

8.1.1 Mobility Management Entities

The operator configures MMEs with a list of allowed algorithms for NAS signalling in priority
order; one list for the integrity algorithms and one for the ciphering algorithms. During the
security setup the MME chooses one NAS ciphering and one NAS integrity algorithm based
on the configured lists and signals the decision to the UE in the NAS Security Mode Command
(NAS SMC) procedure.

When MME changes (i.e. in an inter-MME mobility scenario) and the target MME wants
to change the NAS algorithms, it uses the NAS Security Mode Command procedure as in
initial NAS level security set-up. The target MME also includes the UE security capabilities
for bidding down attack protection, similar to the initial set-up.

8.1.2 Base Stations

Similar to the MME configuration, each base station is also configured with a list of al-
lowed algorithms in priority order, one list for integrity protection algorithms and another for
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ciphering algorithms. Thus, the base station decides what algorithms are used with the UE
for AS signalling protection and for AS user plane data protection. The MME sends the UE
security capabilities to the base station along with other UE context information like the Kenp
key, from which the actual protection keys are derived. The base station uses the AS Security
Mode Command (AS SMC) procedure to indicate to the UE the selected algorithms and start
the protection.

When the base station changes during X2 and S1 handovers (see section 9.4), the target
base station can change the algorithms if the locally configured algorithm priority lists indicate
algorithms different from those currently used in the source base station. Algorithms can only
be changed upon handovers. In addition, during an intra-base station handover (e.g. when only
the cell changes but not the base station itself) the base stations are not required to support
changing of security algorithms.

In an X2 handover, the source base station provides the UE security capabilities and the
currently used security algorithms in the source cell to the target base station. The target base
station then checks whether the algorithms need to be changed and, if so, indicates the new
algorithms by including them in the handover command message sent to the UE via the source
base station [TS36.331]. In other words, the target base station creates the handover command
message, sends it to the source base station, which then sends it to the UE. In this way, the
UE knows the new algorithms before the actual handover happens and can configure security
for the communication with the target base station. In this way, the AS level signalling and
user plane data messages can be sent protected all the time, even when the algorithms are
changed.

There is a security threat that a compromised source base station may lie to the target base
station about the UE security capabilities. The source base station could, for example, remove
some algorithms from the UE security capabilities and thus force the target base station to
select a possibly weaker security algorithm. To mitigate this threat the target base station sends
the UE security capabilities received from the source base station to the MME in the path
switch message. The path switch message indicates to the core network that the base station
has been changed for this UE. The MME can then compare the UE security capabilities it has
in its memory with the UE security capabilities it received from the base station. If there is
any difference, the MME needs to react to this by, for example, raising an alarm and logging
the event. The standard does not require the network to cancel the handover, which would be
an obvious reaction when the algorithm is changed to a possible weaker algorithm owing to
the mismatch in the UE security capabilities. However, even if the UE security capabilities are
different the target base station may not have to change the used algorithms when the current
algorithms are listed in the UE security capabilities and also in the supported algorithms
priority ordered list of the base station. Thus, it is left for operator policy to decide what
happens when the source base station reports differing UE security capabilities compared to
the UE security capabilities stored in the MME.

In an S1 handover, the signalling between source and target base station goes through the
MME core network element. At this point also the MME may change, and in this case the
source MME sends the UE security capabilities to the target MME along with other UE context
information. The target MME then sends the UE security capabilities to the target base station.
So, the source base station does not provide the security algorithms, but the target MME does.
Thus, there is no need for the target base station to send the UE security capabilities back to
the MME as it does in the X2 handover case.
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8.2 NAS Signalling Protection
8.2.1 NAS Security Mode Command Procedure

In the NAS Security Mode Command procedure the MME sends the NAS Security Mode
Command message to the UE, and the UE responds with a NAS Security Mode Complete (or
NAS Security Mode Reject) message. The NAS Security Mode Command message contains
the security capabilities of the UE (reflected back to UE) and the selected algorithms for
NAS signalling protection. The message contains also a key set identifier eKSI that identifies
the correct key hierarchy (i.e. the root key Kasme) to be used for key derivations in the
UE. Thus, it also identifies the key used to integrity-protect the message. The NAS Security
Mode Command message is integrity-protected so that the UE can verify its integrity, but
not ciphered, as the UE does not yet know what algorithm and key to use for deciphering.
Since the network already knows which algorithms and keys have been selected, it can receive
ciphered messages, and thus the UE sends the NAS Security Mode Complete message both
integrity-protected and ciphered. The MME starts downlink NAS signalling ciphering after
successfully verifying the Security Mode Complete message. The MME starts uplink NAS
signalling deciphering after it has sent the NAS security mode command message.

For error cases the network needs to be prepared to receive unciphered messages after the
NAS Security Mode Command message has been sent. If the ME is not able to verify the
integrity of the NAS Security Mode Command message, it will reply with a NAS Security
Mode Reject message protected with the keys used before the NAS Security Mode Command
message, if any. However, during initial attachment there is no previous NAS Security Mode
Command and thus the reject message cannot be protected, as there is no active security context.

There is a difference between the uplink ciphering activation stage between AS and NAS
level Security Mode Command procedures (see below). On the AS level the uplink ciphering
starts only after the base station has received the Security Mode Complete message and at the
UE side when the UE has sent the Security Mode Complete message. But on the MME level the
NAS Security Mode Complete message is ciphered. In this way the UE can send its equipment
identifier, IMEISYV, confidentiality-protected to the network, provided that the network asked
for it in the NAS Security Mode Command message. This improves the user privacy, as the
permanent user equipment identifier is not sent in plain text over the air interface and thus
cannot be tracked. However, the MME then needs to differentiate between the ciphered NAS
Security Mode Complete message and unciphered error message.

See Figure 8.1 for the NAS Security Mode Command procedure. This also shows nonces
(NONCEyg and NONCEyyg) that are used in an intersystem mobility scenario. The usage of
these nonces is explained in section 11.1.

8.2.2 NAS Signalling Protection

Integrity and replay protection for NAS messages is part of the NAS protocol itself. A 128-bit
integrity algorithm is used with following input parameters: a 128-bit key Knasme, a 32-bit
COUNT, a DIRECTION bit that indicates upstream or downstream signalling, and a constant
value BEARER. The COUNT is constructed from the NAS sequence number (SQN) as
follows:

COUNT := 0x00 || NAS OVERFLOW | NAS SQN
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UE MME

B NAS Security Mode Command
" (eKSI, UE sec capabilities, ciphering alg.,
integrity alg., [IMEI request], [NONCE g,
NONCEwme], NAS-MAC)

NAS Security Mode Complete
([IMEI], NAS-MAC)

NAS Security Mode Reject

Figure 8.1 NAS Security Mode Command procedure

The leftmost 8 bits are all zero and the NAS OVERFLOW, a 16-bit value, is incremented
every time the 8-bit NAS SQN overflows. Thus, the effective COUNT value has 24 bits. Note
that there is no need to have a NAS level bearer identity as is the case in the AS level (see later
in this chapter), because there is only one NAS level connection between UE and the MME.
In other words, NAS signalling uses only one bearer with a constant bearer value. The value
BEARER was only included to maximize the similarity with the algorithms on the AS level.
The resulting NAS message authentication code (NAS-MAC) is 32-bits long. This full NAS-
MAC is appended to all NAS messages when integrity protection applies, except for the NAS
Service Request message, which uses only a 16-bit NAS-MAC owing to the space limitations
on this particular message. UE sends the NAS Service Request message, for example, when it
answers to paging from the MME or when uplink user data is to be sent in order to establish
the radio bearers. The message has to be short so that it can be sent efficiently through the
radio and to allow fast click-to-view user experience.

As a general rule, once the NAS level integrity and replay protection has been activated with
the NAS level Security Mode Command procedure, messages that are not integrity-protected
are discarded in the UE and the MME. Also, when the verification of integrity protection fails,
the receiver will discard the message. Additionally, only certain messages can be accepted
before integrity protection is activated. There are, however, some exceptions to this rule;
some exceptional messages are not discarded even if they are not integrity-protected or if
the integrity protection fails. All these exception cases are specified in [TS24.301]. Replay
protection ensures that the receiver accepts a message with a particular incoming NAS COUNT
value only once using the same NAS security context.

NAS level integrity and replay protection is active as long as the corresponding EPS
security context is available in the UE and the MME. For example, the Attach Request and
the Service Request messages are always integrity-protected if the EPS security context is
available.

Ciphering of NAS messages is also part of the NAS protocol. The NAS ciphering algorithm
uses the same input parameters as integrity protection, except for the key, which is Knasgnc
for ciphering, and the additional parameter LENGTH. LENGTH indicates the length of the
keystream that needs to be generated. This parameter does not affect the generated keystream
bitstream.
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8.3 AS Signalling and User Data Protection
8.3.1 AS Security Mode Command Procedure

The base station indicates the selected algorithms and start of security in the AS Security Mode
Command procedure. The base station sends the integrity-protected AS Security Command
Message to the UE, which then verifies the message authentication code. Then if the code
is correct the UE starts control plane signalling integrity and replay protection and prepares
to receive ciphered downlink control and user plane messages. The UE does not start uplink
ciphering before it has sent the AS Security Mode Complete message to the base station. This
is different from the NAS Security Mode Complete, which is ciphered to allow the UE to send
the device identifier, IMEISYV, to the network confidentiality-protected. There is no need to
provide confidential data to the network in the AS Security Mode Command message. Also,
error handling is easier if the base station can activate uplink ciphering after receiving the
AS Security Mode Complete message, as then the AS Security Mode Command procedure is
successful. If there have been any errors in the procedure on the UE side, it sends a failure
message instead (see [TS36.331] for more details). The AS security mode setup procedure is
described in Figure 8.2.

8.3.2 RRC Signalling and User Plane Protection

The AS level signalling protocol is called Radio Resource Control (RRC) protocol [TS36.331].
Both the user plane data and the RRC signalling are carried over the Packet Data Conver-
gence Protocol (PDCP) [TS36.323]. Furthermore, the security is implemented on the PDCP
layer and not on the RRC layer itself nor on the user plane above PDCP. In this way both
the signalling protection and user plane data protection can use the same constructs on the
PDCP level. This differs from the NAS signalling protection, which is part of the NAS
protocol itself. However, note here that on the NAS level no user plane data protection is
needed.

For AS level integrity and replay protection a 128-bit integrity algorithm is used with
the following input parameters: a 128-bit key Kgrrcint, @ 32-bit COUNT, a 5-bit BEARER
identity, and a DIRECTION bit that indicates upstream or downstream. There can be mul-
tiple radio bearers on the AS level — the possible values are described in [TS36.323]. The
different bearers may have different service characteristics. The 32-bit COUNT value input

UE E-UTRAN

AS Security Mode Command
(integrity alg., ciphering alg., MAC-I)

AS Security Mode Complete
(MAC-I)

AS Security Mode Reject

Figure 8.2 AS Security Mode Command procedure
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parameter corresponds to the 32-bit PDCP protocol sequence number PDCP COUNT. The
RRC integrity protection checksum (the message authentication code, MAC-I) is 32 bits long
[TS36.323].

The 5-bit BEARER identity is mapped from the RRC bearer identity. RRC has three
signalling radio bearers (SRBs), two for RRC control messages (SRBO and SRB1) and one
for carrying NAS messages (SRB2). Prior to the establishment of SRB2, NAS messages
are sent over SRB1. SRB2 is always protected. Messages are sent over SRB1 unprotected
before security activation, and protected thereafter. SRBO is not protected. RRC can configure
multiple data radio bearers (DRBs), which are all ciphered but not integrity-protected. NAS
signalling is also carried over the PDCP protocol between UE and the base station, so both the
AS level and NAS level protection is applied after the activation of AS and NAS level security
to the NAS messages. NAS messages that do not have a valid integrity protection checksum
on the AS level after the activation of security are not forwarded to the MME.

Every radio bearer has an independent COUNT variable for both uplink and downlink
directions. For SRBs the same COUNT variable is used as input for ciphering, replay protection
and integrity protection. The base station must take care that the same COUNT value is not
used twice with a given security key and radio bearer identity to avoid keystream repetition.
To avoid this reuse in large data transfer cases, for example, the base station can trigger an
intra-cell handover to get fresh keys and thus also fresh keystream.

To reduce the signalling message size, the 32-bit COUNT variable is formed based on the
PDCP sequence number (SQN) and an overflow counter called hyper frame number (HFN)
[TS36.323]. Only the sequence number is sent in the messages and the HFN is increased every
time the SQN overflows. The length of the SQN can be configured and the length of the HFN
is 32 bits minus the length of the SQN (i.e. 5 bits for signalling radio bearers and 7 bits with
short PDCP SQN or 12 bits with long PDCP SQN for data radio bearers).

AS level integrity and replay protection is verified both in the UE and in the base sta-
tion. If the verification fails, the message is discarded. However, on the UE side a specific
recovery procedure is triggered (see below; see also [TS36.331]) to allow coping with context
mismatches between the UE and the base station that cause the integrity protection to fail.
The procedure used for the recovery is called RRC connection re-establishment. This opens
a DoS attack possibility for the attacker, as it can send messages to the UE that contain false
integrity checksums in order to trigger the (in this case unnecessary) recovery procedure.
However, this attack is non-persistent, and no worse than jamming (refer to the discussion
in section 6.2.1 on when a potential DoS attack requires specific countermeasure). Thus
3GPP gave higher priority to the possibility to recover from this context mismatch deadlock
situation.

Similar to NAS signalling, certain RRC messages have to be accepted before the AS
security has been activated. But, for example, setting up bearers carrying user plane data
never happens before security is activated. Moreover, the UE only accepts handover messages
after security has been activated. Replay protection ensures that the receiver accepts messages
with a particular incoming PDCP COUNT value only once using the same AS security
context.

AS level ciphering algorithms use the same input parameters as AS level integrity algorithms,
except that the ciphering key Krrcenc 1S used instead of the integrity protection key and the
keystream LENGTH input parameter is required. LENGTH indicates how many keystream
blocks need to be generated.
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UE E-UTRAN

RRC Connection Re-establishment Request |

RRC Connection Re-establishment

RRC Connection Re-establishment Complete

Figure 8.3 RRC Connection Re-establishment Success. Adapted with permission from © 2010,
3GpPp™

8.3.3 RRC Connection Re-establishment

The RRC connection re-establishment (Figures 8.3 and 8.4) is initiated by the UE when there
are multiple physical layer problems, handover failures, or possibly integrity checksum errors.
The purpose of this procedure is to resume the SRB1 operation and to reactivate the security
but without changing security algorithms.

The RRC Connection Re-establishment Request message from UE to the base station
includes a security token parameter called shortMAC-I. This is generated by taking the 16
least significant bits of the integrity checksum (i.e. MAC-I) calculated with the RRC integrity
protection key used in the source cell in case of handovers or in the cell that triggered the
re-establishment procedure. The input bits of COUNT, BEARER and DIRECTION are all set
to binary ones. The integrity checksum is calculated over the cell identity of the target cell, the
physical cell identity of the cell the UE was connected prior to the failure, and the link layer
identity of the UE called C-RNTI [TS36.331; TS33.401]. The integrity algorithm used is the
same as in the source cell.

The base station sends a RRC Connection Re-establishment message including a Next hop
Chaining Count (NCC) parameter to the UE. The UE uses the NCC to synchronize the current
Keng key and further to derive the signalling and user plane (data) protection keys based on
the previously allocated security algorithms. At this point the UE starts integrity and replay
protection and ciphering for both sent and received messages.

This procedure requires that the source base station prepared the target cell in the target base
station (see Figure 9.5 in Chapter 9). Both the RRC Connection Re-establishment Request and
RRC Connection Re-establishment messages are sent over SRBO (signalling radio bearer 0),
but the RRC Connection Re-establishment Complete message is sent over SRB1 integrity-
protected with the same algorithms as in the source cell.

UE E-UTRAN

RRC Connection Re-establishment Request |

»

RRC Connection Re-establishment Reject

<

Figure 8.4 RRC Connection Re-establishment Reject. Adapted with permission from © 2010, 3GPP™
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Upon failure of the RRC connection re-establishment procedure, the UE moves to idle
state and may come back to connected state. This procedure includes also allocating a new
C-RNTT link layer identity. Going to idle state and back to connected state involves NAS level
signalling with the MME and fresh key delivery from the MME to the base station.

8.4 Security on Network Interfaces
8.4.1 Application of NDS to EPS

With the updates to the Network Domain Security (NDS) framework in Release 8, as de-
scribed in Chapter 4, the framework was ready to be used within EPS. Thus clause 11 of
[TS33.401] makes the application of NDS/IP [TS33.210] mandatory for all IP-based control
plane signalling. This requirement is more general than the requirements for 3G (see section
4.5.3) where only the Gn, Gp and Iu reference points are mentioned explicitly.

The reference to NDS/IP implies that the provisions in [TS33.210] apply only optionally
to interfaces that are inside one security domain. If the interfaces are, for example, physically
protected, then no cryptographic security based on IKE and IPsec is needed.

8.4.2  Security for Network Interfaces of Base Stations

In addition to the general reference to NDS/IP for all interfaces between network elements, the
specifications contain provisions for base stations owing to their potentially exposed location.
A description of this special environment is given in section 6.4 on platform security for base
stations. In many cases the base station location is such that the base station is not inside a
(normally physically secured) security domain of the operator. On the other hand, a separate
SEG for each base station is not a good solution either, as SEGs are defined for concentrated
traffic between security domains, and not for the huge numbers of base stations deployed with
a more mesh-like interconnection caused by the coexistence of S1 and X2 interfaces. Thus
the requirements on these connections resemble the Za reference point, but without requiring
a full SEG functionality at the endpoints.

The base station has connections to the EPC using the S1 reference point and to adjacent
base stations via the X2 reference point. Clause 5.3 of [TS33.401] states general security
requirements for these links. In particular, integrity, confidentiality and replay protection from
unauthorized parties has to be provided. If these links are not considered adequately secured
by other means (e.g. physical), then cryptographic means are necessary for the protection of
the interface traffic. Details are given in clause 11 of [TS33.401] for control plane data and
in clause 12 for user plane data. Clause 13 adds similar requirements for connections to the
management system.

What is common to the security of the different planes is the reference to mandatory
implementation of NDS/IP [TS33.210] with IPsec in tunnel mode and the reference to the
updated IP Encapsulating Security Payload (ESP) RFC [RFC4303]. Also implementation
of IKEv2-based authentication with certificates as specified and profiled in [TS33.310] is
mandatory for all planes.

Some requirements on the termination points of these secured connections are discussed in
section 6.4 on platform security for base stations. The discussion is mainly about the location
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inside the base station where the handling of integrity protection and ciphering for S1 and X2
purposes has to take place.

In contrast to the general NDS/IP requirements for the Za reference point, for all network
interfaces of the base station the termination point of the secured tunnel in the core network
may be in a SEG, but also other network elements are allowed for this task.

For S1 and X2 control and user plane connections transport mode IPsec is optionally allowed
to be implemented and used. This is in addition to the tunnel mode which is mandatory to be
implemented anyway.

8.5 Certificate Enrolment for Base Stations

The previous section explained how the backhaul link of base stations is secured by mechanisms
according to Network Domain Security (NDS). Authentication for the establishment of these
backhaul links is based on a Public Key Infrastructure (PKI), as specified in clauses 11, 12
and 13 of [TS33.401], which require IKEv2 certificates-based authentication according to
[TS33.310].

As the LTE base stations are network elements expected to be deployed in large numbers, and
as their authentication is based on operator-signed certificates, mechanisms for the automated
mass enrolment of base stations to the operator PKI were specified in clause 9 of [TS33.310].

8.5.1 Enrolment Scenario

The enrolment of the base stations to the operator PKI is necessary, as NDS security mech-
anisms require the authentication of network elements based on an operator-based PKI (and
not a vendor-based PKI). The following scenario is given as an example for the delivery of
base stations.

1. The operator orders a base station from the manufacturer and receives a confirmation
including the identity of the base station.

2. The manufacturer’s personnel installs the base station at the intended site and connects the
base station to the intended network, for example an operator virtual LAN.

3. The base station discovers its IP address via DHCP [RFC2131], and receives in the response
additional information about a contact address for enrolment.

4. The base station authenticates its vendor-provided identity to the Certification Authority
(CA) of the operator, and requests an operator-signed certificate. The CA generates the
certificate and sends it to the base station, possibly together with an operator-defined identity.

5. The base station installs this certificate and then uses this operator-signed certificate to
authenticate its identity to the Security Gateway (SEG) of the operator for operational
connection to the core network.

Note that the above scenario is not usually found in the deployment of HeNBs. Thus for
HeNBs enrolment to an operator PKI is not specified, but a vendor-provided device certificate
is used instead for authentication. This is described in Chapter 13.

The above-mentioned CA normally consists of two logical parts: the Registration Authority
(RA) and the Certification Authority (CA) proper. These are logical elements, and the exact
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functional split between both is not standardized, and may depend on the actual deployment
scenario. This separation also allows operating only one CA in a highly secure environment,
while there may be multiple RAs in front of the CA, depending on location, organizational
unit, specific task, and so on. The basic functions of these elements are as follows.

® Registration Authority. The RA is the front end and performs all communication with the
base station. It authenticates the base station, and formally checks the certificate request. In
addition, it may perform the authorization check if the base station is allowed to enrol to
the operator PKI, and it may assign an operator-defined identity to the base station. Also
the check of the proof-of-possession of the private key may be performed in the RA, while
some deployments may assign this task to be performed in the CA. After all checks are
performed successfully, the RA forwards the certificate request to the CA, and in the end
sends the generated certificate received from the CA to the base station.

o Certification Authority. The CA performs the actual generation of the certificate, based on
the certificate request sent from the base station and checked and possibly augmented or
modified by the RA. This is done using the private key of the CA, and thus the CA requires
an environment which guarantees the long-term security of this private key. Therefore quite
often a CA is operated as one central entity, serving many possible RAs for different purposes.

8.5.2 Enrolment Principles
Requirements for enrolment procedure

The main guideline for the specification of a base station enrolment procedure was to allow a
plug-and-play deployment of base stations with:

usage of an existing standardized protocol for certificate enrolment;

minimization of manual interaction;

no need for pre-provisioning of operator-specific data in factory;

no need for security-relevant provisioning on installation site;

authentication of a base station to the RA of the operator based on a vendor-signed base
station certificate;

secure provisioning of a base station certificate signed by the operator PKI;

® secure provisioning of an operator root certificate.

An extensive threat and risk analysis for the different possible solutions was carried out. As
part of this analysis, the following topics were discussed and resolved. Two solution variants
for the provisioning of operator root certificates (see below) were accepted in order to allow
for different trade-offs between risk and complexity depending on the deployment scenarios.

Selection of enrolment protocol

Clause 7.2 of [TS33.310] requires the support of the Certificate Management Protocol CMPv2
[RFC4210] for the life-cycle management of network element certificates. Therefore the
selection of CMPv2 also for base station enrolment was a natural choice.
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Communication channel between base station and RA

The enrolment is done end-to-end between the base station and the RA of the operator. The
CMPv?2 protocol provides means for proof of origin and integrity protection of the messages,
so no additional security tunnel for the communication is needed. As only public data is
transferred in a CMP protocol exchange, confidentiality protection is not necessary for the
communication either.

Authentication of base station by the operator network

The enrolment of the base station to the operator PKI is based on a vendor-provided base sta-
tion identity. The base station authenticates itself to the operator network during the enrolment
procedure using a vendor-provided public/private key pair installed in the base station before
enrolment, and a certificate on the base station identity and the public key signed by a vendor
CA. In the terminology of the CMPv2 specification, this enrolment is an in-band initialization
using an external identity certificate according to Appendix E.7 of [RFC4210].The authenti-
cating entity in the operator network (e.g. the RA) must be provided with the root certificate
of the vendor PKI to be able to authenticate the vendor-provided base station identity. This
provisioning of the vendor root certificate must occur before the enrolment procedure in a
trustworthy manner.

Proof of possession of the private key

The base station must provide the RA/CA with a proof of possession for the private key
which belongs to the public key to be certified. This is accomplished by usage of the
Proof-of-Possession information elements within the CMPv2 messages. This private/public
key pair may differ from the one used in authenticating the base station to the operator network.

Authorization of base station enrolment

Authorization of the enrolment for each base station is not in the scope of the specification
[TS33.310]. Nevertheless the RA has to be informed via management means of the vendor-
provided base station identities expected to be enrolled. This management data may include
the identity of the base station meant to be used in the operator infrastructure (which may
differ from the identity put into the base station in the factory) so that it can be provided to
the base station as part of the CMP protocol run. This identity may also be provided to the
base station after its installation, but before certificate enrolment — for example, in a DHCP
response sent when the base station first attaches to the network.

Provisioning of the operator root certificate

The authentication of the operator network by the base station during enrolment would require
a pre-provisioned operator root certificate in the base station. This, in turn, would require
provisioning of the operator root certificate in the factory (contradicting the third requirement
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from the bulleted list above), the installation of the operator root certificate on-site at installation
time (which would have some unwanted security implications), or some complex cross-signing
relations between vendors and operators (where the base station would be provided with a
vendor root certificate in the factory, and the operator root certificate would be cross-signed
by this vendor root certificate). Solutions with cross-signing were ruled out, as they would
not allow the authentication of single operators (as any cross-signed operator root certificate
would be accepted by the base station), and their added benefit would not outweigh the incurred
complexity of handling of the many trust relations necessary between a vendor and their many
customers. Thus only provisioning of the operator root certificate before or during the CMPv2
protocol run is specified. If there is no operator root certificate provisioned at all, the base
station shall assume the enrolment procedure to have failed.

Provisioning of operator root certificate during CMP run

This is the plug-and-play solution without any operator-specific pre-provisioning and security-
relevant interaction on installation site. The base station extracts the operator root certificate
from the CMP response message from the RA/CA. As there may be multiple certificates in
the CMP response, the selection of the operator root certificate is done based on the following
two criteria: (a) the certificate is a self-signed certificate (only root certificates are self-signed),
and (b) the newly generated base station certificate can be validated by this root certificate,
possibly via a chain of intermediate certificates also contained in the CMP response. The risk
of not performing an authentication of the operator network at this time was seen as tolerable,
as it is still enforced that only allowed base stations may enrol with the operator network.
As a base station needs the cooperation of core network elements to be able to establish a
connection with the UE, and only a base station with a certificate of the intended operator may
connect to their network, a base station with a wrong certificate may never impersonate the
intended operator network towards the UE. In addition, architectural provisions below the IP
layer may reduce such risks, such as the deployment of virtual LANs.

Provisioning of operator root certificate before CMP run

This means that the operator root certificate is provisioned to the base station either in the
factory or by service personnel on installation site. Both variants violate one of the requirements
given above; that is, the operator-independent delivery of base stations from the factory, or by
having the need to perform security-relevant actions at installation site. On the other hand, this
allows the authentication of the operator network during enrolment if the operator is willing
to accept the higher complexity of the delivery process or the additional trust into the manual
installation procedure. If the base station is provisioned with the operator root certificate
before the start of the enrolment procedure, it must use this root certificate for authenticating
the RA/CA during enrolment.

Renewal of base station key pair or operator certificate

During the lifetime of a base station, the operator may choose to renew the private/public key
pair of the base station, or he may issue certificates with a lifetime shorter than the expected
device lifetime. In both cases, the key update message exchange specified in the CMPv2
protocol suite is used. The main difference to the initial enrolment of the base station is that,
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in this case, the base station authenticates itself to the RA/CA based on the (old) operator
certificate, and not the vendor certificate. This implies that all authentications performed
during the renewal process are based on the operator root certificate.

Vendor base station certificate

After successful initial enrolment of the base station, the vendor base station certificate is no
longer needed according to the specification in [TS33.310]. It is left to vendor policy whether
the vendor-provided certificate and the private key are deleted after initial operator enrolment,
or whether they are kept to allow a return to the pristine state of the base station. Starting from
this pristine state, the base station could then be enrolled to another operator’s network. Also
a completely new enrolment to the same operator’s network could be performed, if needed.

8.5.3 Enrolment Architecture

The enrolment architecture is depicted in Figure 8.5. On the left, the communication between
base station and RA/CA using the CMPv2 protocol is shown. On the right, the subsequent
usage of the operator-provided base station certificate for establishing the security on the
backhaul link to the operator network is given. This is not part of the enrolment proper, but
shows that different paths to the operator network are used for enrolment, on the one hand,
and later usage of the enrolled base station certificate, on the other hand.

It is a precondition for a successful enrolment of the base station that the RA/CA has the
vendor root certificate available, as it is used during authentication of the vendor-provided
base station identity. The base station authenticates to the RA using the vendor-signed base
station certificate and the vendor-generated private key. After enrolment the base station only
uses the operator-provided certificate for connecting to the operator network, protected by

RA/CA SEG "
Operator root certificate
A is pre-installed

Vendor root certificate
is pre-installed

CMPv2

The base station obtains the IPsec

operator-signed certificate on
its own public key from RA/
CA using CMPv2

Enrolled base station
certificate is used in
IKEv2/IPsec

Vendor-signed certificate of Base Station
base station public key is pre-
installed

Figure 8.5 Overview of security architecture for base station enrolment. Adapted with permission from
© 2010, 3GPP™
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an SEG. Consequently, the SEG is not provisioned with a vendor root certificate, which, in
turn, ensures that a base station with only a vendor certificate never can gain access to the
core network of the operator that lies behind the SEG. The same considerations apply to X2
connections to other eNBs.

Figure 8.5 does not show the necessary security safeguards against attacks on the RA/CA
from the outside. This is left to operator decision as it has no influence on the end-to-end CMPv?2
interface between base station and RA/CA. Similarly, the exact separation of functionality
between RA and CA is not covered in the CMPv2 specification and in [TS33.310] either. There
is no need to standardize such a function split as, again, there is no impact on the CMPv2
interface. Instead the operator may choose this split according to their PKI infrastructure, and
their particular security policies. An example architecture could be that the RA is located in
a demilitarized zone, and then communicates with the CA located within the operator core
network. A further function split of the RA is also possible where the demilitarized zone only
contains an RA front end and the authorization task of the RA is performed within the operator
core network.

8.5.4 CMPv2 Protocol and Certificate Profiles

The complete profile of CMPv2 [RFC4210] for usage in base station enrolment and key update
is specified in clause 9.5 of [TS33.310]. It contains all requirements and preconditions, the
exact definitions, which message fields are mandatory to use for each message, which entity
has to sign certain messages, and how the proof-of-possession fields are to be handled. The
profile also refers to the RFC on Certificate Request Message Format (CRMF) [RFC4211],
which defines the content of certificate request messages used in CMP, and to the RFC on
Internet usage of X.509 certificates [RFC5280].

The following gives an overview of the required message types, and some operational issues
to be considered.

Supported CMPv2 messages

Based on the enrolment principles given in section 8.5.2, the CMPv2 profile only includes
certificate initialization request and key update functions. Revocation processing, requests for
additional certificates, PKCS#10 requests and CRL fetches are not part of the CMPv2 profile.
Thus only the following CMPv2 PKI message bodies are required.

o [nitialization Request (ir). This request allows the initialization of a base station with a
certificate from the operator PKI based on a certificate from an external (i.e. vendor) PKI.

e [nitialization Response (ip). This response to the base station contains the generated base
station certificate, the operator root certificate (if provided during CMP run), the RA/CA
certificate(s) and any intermediate certificates.

® Key Update Request (kur). This request is similar to ir, with the main difference that the
request is signed with a private key whose related public key is certified by the same PKI as
the new certificate will be, that is by the operator PKI.

® Key Update Response (kup). This response is similar to ip. It is a response to a kur message.

o Certificate confirm (certconf). With this message the base station signals to the RA/CA that
it accepts the newly generated certificate.
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® Confirmation (pkiconf). This response is the final (empty) response in the CMP message
exchange.

Certificate and key usage in RA/CA

The RA/CA uses digital signatures for two different purposes:

® signing of base station certificates;
® signing of CMPv2 PKI messages.

The same private key could be used to sign certificates and messages, but this would require
setting key usage extensions for both use cases for the same certificate. This may open up
possibilities for misuse, as the part of the RA/CA responsible for signing messages may
be tricked into signing a certificate instead. Such signing would not undergo the complete
process of certificate generation. Thus, according to good PKI practices, it is recommended
that separate private keys and certificates be used for signing certificates and CMPv2 messages.

Certificate profiles

The profiles of the different certificates used in the CMP messages and for verification of
signatures are specified in clause 9.4 of [TS33.310]. They are specified based on the existing
certificate profiles in clause 6 of [TS33.310].

To allow easy handling of the enrolment of eNBs from different vendors at the same
RA/CA, the subject name format for the vendor-provided base station identity is clearly
specified. In addition, the inclusion of a distribution point for certificate revocation information
(CRL distribution point) is not mandatory in vendor-provided certificates, as the interface for
distribution of such information is not in scope of the specification.

8.5.5 CMPv2 Transport

Transport of CMPv2 messages between the base station and RA/CA is done using HTTP, in
accordance with [draft-ietf-pkix-cmp-transport-protocols-07]. Implementation of HTTPS is
mandatory while its usage is optional.

As the CMPv2 profile given in section 8.5.4 contains only message exchanges originating
from the base station, support for RA/CA-initiated HTTP requests (i.e. announcements) is not
required.

8.5.6 Example Enrolment Procedure

Figure 8.6 shows the message flow for a successful initial enrolment of a base station to the
operator PKI.

A short explanation of the figure is given below, but for a more extensive description see
Annex G of [TS33.310].

e Step 1. The base station discovers the RA/CA address.

e Steps 2—4. The base station generates the new private/public key pair if the latter is not
pre-provisioned. The Initialization Request (ir) is generated containing the new public key,
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Base Station

1. Discover RA/CA address

2. Generate private/public key pair

3. Sign Initialization Request (ir)

4. Initialization Request (ir)——————»»

RA/CA

5. Authenticate Initialization Request (ir)

6. Generate base station certificate

7. Sign Initialization Response (ip)

«— 8. Initialization Response (ip)

9. Authenticate Initialization Response (ip)

10. Sign Certificate confirm (certconf)

11. Certificate confirm (certconf) ———»»

12. Authenticate Certificate confirm
(certconf)

13. Sign Confirmation (pkiconf)

<——14. Confirmation (pkiconf)

15. Authenticate Confirmation (pkiconf)

Figure 8.6 Example message flow for initial base station enrolment. Reproduced with permission from

© 2010, 3GPP™

the suggested base station identity, if known, and the proof-of-possession field generated
by applying a digital signature with the new private key. The ir message is signed using
the vendor-provided private key. Its own vendor-signed certificate and any intermediate
certificates are included in the extraCerts field of the PKIMessage carrying the ir. The signed

PKIMessage is sent to the RA/CA.
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¢ Steps 5-8. The RA/CA verifies the digital signature on the ir message and the proof of
possession of the private key. The RA/CA generates the certificate for the base station
with an identity according to operator policy and signs it with the RA/CA private key for
certificate signing. The certificate is included into an Initialization Response (ip). The ip
message is signed with the RA/CA private key for signing CMP messages. The RA/CA
certificate(s) and the operator root certificate and any certificates necessary in the trust chain
are included in the PKIMessage. The signed ir message is sent to the base station.

® Step 9. If the operator root certificate is not pre-provisioned to the base station, the base station
extracts the operator root certificate from the PKIMessage. The base station authenticates the
PKIMessage using the RA/CA certificate and installs the base station certificate on success.

e Steps 10-12. The base station creates and signs the Certificate Confirm (certconf) message
and sends it to the RA/CA. The RA/CA authenticates the Certificate Confirm message.

o Steps 13-15. The RA/CA creates and signs a Confirmation message (pkiconf) and sends it
to the base station. The base station authenticates the pkiconf message.

8.6 Emergency Call Handling

Although protection is typically independent of the protected content, so that all data is pro-
tected in similar manner, there is one notable exception: emergency calls and IMS emergency
sessions. Regulations on emergency calls vary between different countries, such as whether
unauthenticated emergency calls are permitted or not. Regulations of some countries require
that it is possible to always make an emergency call with user equipment, even when there is
no valid SIM or USIM inserted.

If there is no USIM in the UE then there is no way to authenticate the user in LTE.
Furthermore, there is no key agreement and, consequently, neither confidentiality nor integrity
protection is possible. All this implies that emergency calls become an attractive target for
attackers. It is vital that the system guarantees that it is not possible to use it for anything else
but emergency calls when the UE is unauthenticated.

A specific state, called limited service state, is used to describe situations in which a UE
cannot obtain normal service [TS23.122]. An idle UE without a valid USIM enters limited
service state. There are also situations where a UE that contains a valid USIM would enter
limited service state, such as when there are no cells available from the selected PLMN. In
the latter case, the UE tries automatically to re-select a PLMN but this could fail for normal
service, for example in roaming situations. No other services than emergency services are
provided for a UE that is in limited service state.

Specific functions for emergency call handling have been added to EPS in Release 9,
whereas in Release 8 only normal procedures are available for emergency purposes. A voice
solution for EPS is provided by IMS (see Chapter 12). In IMS, IMS emergency sessions are
used for emergency calls [TS23.167]. On the bearer level, there are specific emergency bearers
that support IMS emergency sessions. These bearers are available for normally attached UEs,
and in addition to UEs in limited service state when the local regulation requires support for
unauthenticated emergency calls. Altogether, there are four different ways in which a network
may provide support for emergency bearers.

® Support is available only for normally attached UEs, with valid subscription and authenti-
cated by the network. There is no support for UEs in limited service state.
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® Support is provided only for authenticated UEs, with valid IMSI and subscription, but the
UE may be in limited service state owing to being in a location where it is restricted from
service.

e Support is provided only for UEs that have a valid IMSI but authentication may be skipped
or it can fail.

® Support is provided to all UEs, even UEs without a USIM or without an IMSI. If there is no
IMSI the IMEI may be used to identify the UE for emergency call purposes.

For all emergency bearer services, the MME uses a specific emergency APN to derive the
correct PDN gateway for emergency purposes. Note that this gateway is always in the visited
network in case of roaming UEs. The motivation for this arrangement is clear: it is also the
local Public Safety Answering Point (PSAP) that is typically in a better position to handle the
emergency situation than a faraway PSAP.

The PDN connection that is associated with the emergency APN is totally dedicated to
IMS emergency sessions and no other services are allowed. In particular, the PDN GW blocks
all traffic associated with this APN that is not to or from an IMS network entity providing
emergency services.

On the IMS system, there is a specific Call Session Control Function (CSCF) devoted to
emergency sessions, called Emergency CSCF (E-CSCF) [TS23.167]. One of its duties is to
handle the communication towards a PSAP. The Proxy CSCSF (P-CSCF) has also a key role in
handling emergency sessions. Among other duties, the P-CSCF ensures that only registrations
for emergency purposes are accepted from emergency PDN connections. Moreover, the P-
CSCF blocks all non-emergency session requests that are related to an emergency registration.

All of the above special arrangements guarantee, when taken together, that it is not possible
to misuse emergency support to make normal but still unauthenticated calls:

* UE in limited service state can only use emergency bearers.

* Emergency bearers are limited to an emergency APN and a specific emergency-aware PDN
gateway.

¢ This specific PDN gateway allows only traffic to/from IMS entities that handle emergency
services.

® The P-CSCF on the IMS side checks that all IMS traffic to/from the specific PDN GW
is indeed for emergency purposes, and selects a suitable Emergency CSCF for the further
handling of the requests, including finding an appropriate PSAP for the session.

For the case of non-3GPP access to the EPC, Release 9 specifications support handover of
an emergency session from E-UTRAN to HRPD (see section 11.2). The reverse direction is
not supported, though. The E-UTRAN also provides an indication to the HRPD side about
whether the UE has been authenticated in E-UTRAN or not [TS23.402]. The local regulations
affect the handling of unauthenticated emergency sessions for the HRPD, similarly as for
E-UTRAN.

8.6.1 Emergency Calls with NAS and AS Security Contexts in Place

Here we consider the case where the UE and the MME share a NAS security context that can
be used to protect an emergency bearer.
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In the most typical cases the UE making an emergency call can indeed be successfully
authenticated in EPS during the establishment of the emergency call, and the NAS Security
Mode Command procedure can be run, or a previously established NAS security context
already exists when the emergency call is set up. In both cases, keys are available for ciphering
and integrity protection purposes and can be applied normally, on both AS and NAS levels. If
an integrity check fails afterwards then the handling of this situation is the same as in the case
of non-emergency calls: signalling messages with a wrong message authentication code will
be discarded and eventually the call can terminate.

But, even when a NAS security context already exists, the MME may decide, according to its
authentication policy, to initiate an EPS AKA run at any time. As explained above, depending
on its policy, the network may allow an emergency call to go forward when authentication
fails. This case is handled in section 8.6.3.

8.6.2 Emergency Calls without NAS and AS Security Contexts

We next look at the case where UE cannot be authenticated in EPS during the emergency
call set-up, and there is no previously established NAS security context. Then there are no
established keys available, so there cannot be any ciphering or integrity protection, neither on
the AS level nor on the NAS level. However, as, for normal service, integrity protection of AS
and NAS signalling is mandatory; it turned out to be procedurally easier to define a ‘dummy’
integrity protection function for emergency services rather than define an exceptional case of
not sending a NAS security mode command at all. This ‘dummy’ function is called NULL
Integrity Algorithm and denoted by EIAO. It simply adds a constant message authentication
code of 32 zeros to every message. This null integrity protection function is only allowed for
UEs that are in limited service state and not successfully authenticated in EPS. Similarly, a
NULL Encryption Algorithm EEAOQ has been defined for emergency calls in limited service
state.

8.6.3 Continuation of the Emergency Call when Authentication Fails

As already mentioned above, there is a possibility that an emergency call is allowed to proceed
even when AKA was run but it ended in failure, either during the set-up of an emergency call
or while the emergency call already is in progress. Now we have two different scenarios: either

® UE and MME already share a security context from a previous (successful) AKA run; or
e there is no such shared security context.

In the first case, both UE and the MME may continue using the existing EPS security context
after the failed AKA. For this case, it is worth noting the contrast to a failed integrity check.
Both AKA and integrity check perform authentication: the AKA for entity authentication
and integrity check for message authentication (see section 2.3). However, the emergency
call proceeds even when the authentication (by means of EPS AKA) fails while the call can
terminate if an integrity check fails.

When there is no shared security context, the MME sends a NAS SMC message with null
ciphering algorithm EEAO and null integrity algorithm EIAO chosen.

http://freepdf-books.com



9

Security in Intra-LTE State
Transitions and Mobility

This chapter describes security for state transitions and mobility inside LTE. These include
registering to the network, moving to ECM-CONNECTED state, intra-LTE handovers, moving
to idle state, idle state mobility, and de-registering from the network.

The two layers of LTE security and the key management requirements are reflected in the
security of state transitions and mobility scenarios. The first layer security between the UE
and the base stations, called AS security layer, is set up only when user plane data needs
to be exchanged, but the second layer security between UE and the core network, called
NAS security layer, is set up all the time when the UE is registered to the network. An EPS
NAS security context of type native (see section 7.4) remains stored in the UE and the MME
while the UE is not registered to the network and is used when the UE re-registers to the
network.

The second layer (NAS) is used to bootstrap the first layer (AS) security when the UE
needs to send or receive data. The first layer security is refreshed with the help of the second
layer security between the UE and the core network. Running EPS AKA and a Security Mode
Command procedure refreshes the second layer security itself that is, the EPS NAS security
context.

Before the security has been set up between the base station and the UE there cannot be
any handovers or user plane data transfers. When the UE is in ECM-IDLE state and needs to
send a NAS message to the network, a Radio Resource Control (RRC) connection between
the UE and the base station is established and both enter RRC_CONNECTED state. The base
station needs to transfer the received NAS message to the MME and thus establishes an S1
connection with it. As aresult, when the MME receives the NAS message, both the UE and the
MME enter ECM-CONNECTED state. For faster transfer to the ECM-CONNECTED state,
the connection initiation signalling on the RRC protocol stack will piggyback the UE-initiated
NAS signalling messages (i.e. Service Request, TAU Request, Attach Request, or Detach
Request).

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1

http://freepdf-books.com



148 LTE Security

9.1 Transitions to and from Registered State
9.1.1 Registration

When the UE initially registers to the network, the EPS Authentication and Key Agreement
(AKA) protocol is run, as described in Chapter 7. As a result, both the UE and the MME
share an intermediate key called Kasme. This key is the root for the E-UTRAN key hierarchy
(section 7.3). The MME runs the NAS level Security Mode Command procedure (section
8.2) to activate the NAS keys and security algorithms. The NAS protocol specific uplink and
downlink message counters belonging to the NAS level security context, called NAS uplink
COUNT and NAS downlink COUNT, are set to zero. The NAS level security context exists
all the time while the UE is in registered state.

When an AS security context is established the NAS uplink COUNT value is used as a
parameter to derive the K.np key delivered to the serving base station. This ensures that the
Keng is always fresh as there is always NAS level signalling and thus also NAS uplink COUNT
increments.!

When the UE registers to the network and already has a native EPS security context in the
non-volatile memory of the ME or in the USIM (see below), it will use this context to integrity-
protect the NAS level Attach Request message. The MME receiving the Attach Request may
have this EPS security context of the UE already in the memory. If not, it needs to fetch it
from the old MME or run EPS AKA. If the old and the new MME support different security
algorithms, the NAS level keys need to be re-derived. Thus, the new MME sends a NAS
security mode command with the new security algorithm identifiers and protects the message
with the re-derived NAS keys.

If there is no NAS SMC procedure before the AS SMC procedure, the K.np is derived
based on the NAS uplink COUNT in the Attach Request. Otherwise, the MME and the UE
will use the start value of NAS uplink COUNT from the latest NAS Security Mode Complete
message to derive the Keng as it is the latest NAS uplink message from the UE. This means
that the MME cannot send the security context to the serving eNB before it knows which NAS
uplink COUNT to use for deriving the K¢ng. See section 7.3 for more information about key
hierarchies and key derivations and section 9.7 for more about concurrent security procedures.

9.1.2 Deregistration

There are different cases in which the UE enters deregistered state. The UE can itself deregister
from the network, for example if it is switched off. The network can also initiate deregistration,
perhaps because some procedure failed. For more information about the reasons when the
network initiates deregistration, see [TS24.301].

The EPS security context handling varies depending on whether the UE goes power-off
or not and whether the EPS security context is full and native or not — see section 7.4. The
mapped or partial EPS security contexts are not stored in the UE or network when UE goes to
deregistered state, but the full native EPS security context generally is. There are exceptions
to this, such as when the network rejects the attachment request of the UE. In this case, all
security context data are removed from the UE and the MME.

'However, there is an anomalous use of NAS uplink COUNT when Kenp is derived in UTRAN-to-E-UTRAN
handover — see section 11.1 in this book.
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The UE stores the full native EPS security context to the USIM if the USIM supports
storage of EPS security context; otherwise the UE stores the full native EPS security context
into non-volatile memory on the ME. The latter case allows using existing USIMs used in 3G
networks (i.e. Release 99 USIMs), but does not prohibit updating the USIMs to newer versions
that support EPS-specific security context parameter storage.

9.2 Transitions Between Idle and Connected States

In this section we describe security context management on transitions to and from ECM-
CONNECTED and RRC_CONNECTED state. UE moves to RRC_CONNECTED and ECM-
CONNECTED state when it needs to send or receive data to or from the network. When there
is no need to send any data, UE is moved to idle state. In idle state, the UE does not share any
security context with the base station, only with the MME.

9.2.1 Connection Initiation

Service Requests and TAU Requests with the active flag set initiate the establishment of an AS
security context between the UE and the base station based on the existing security context the
UE shares with the MME. The NAS security is used to bootstrap the AS security. The Knp
key is used to further derive RRC and UP protection keys in the base station and the UE. The
Keng itself is derived based on the Kasyg and the NAS uplink COUNT value of the message
that caused the MME to send the security context to the base station. So, the MME derives
the K.np and sends it along with the UE security capabilities to the serving base station. The
base station selects the AS security algorithms (see section 8.1) and sends the AS level security
mode command to the UE. The UE replies with the AS security mode complete message (see
section 8.3).

The MME will also derive an initial Next Hop (NH) key parameter, but does not send it to
the base station in the initial security context setup because the Kcnp is already in the message
and only one key and related NCC value is sent each time. The NH is like another K¢ng and
has an associated NCC value. The NH key is created in an iterative fashion from Kasyg and
the previous NH value, and the NCC indicates the number of iterations. The K.np is used as
the initial NH value. An NH is never sent to the base station without NCC and thus they are
denoted as an {NH, NCC} pair. These pairs are used in the handover key management for
creating fresh keys in the base stations (see section 9.4).

Note that, from the security perspective, it is not useful to send also a freshly generated
{NH, NCC} pair in the initial security context setup as one key only is required and there
is no preceding base station that could have gained knowledge of the Kc.np in a horizontal
X2-handover (see section 9.4).

9.2.2 Back to Idle State

The UE enters the idle state when its signalling connection to the MME has been released or
broken. The release or failure is explicitly indicated by the base station to the UE or detected
by the UE itself. At this point, the base station discards all AS level security context parameters
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related to the UE. The MME also discards the AS security context related {NH, NCC} pair
when the UE enters the idle state. The UE discards the AS level security context and the {NH,
NCC} pair.

If the current EPS security context is native (a result of EPS AKA), and not mapped (a
result of intersystem handover from UTRAN or GERAN), the UE also updates the relevant
EPS NAS security context parameters. The parameters are updated on the USIM if the USIM
supports EPS security context parameter storage, otherwise on the non-volatile memory.

9.3 Idle State Mobility

In this section we describe idle state mobility inside LTE. For intersystem idle state mobility
(e.g. between UMTS and LTE), refer to Chapter 11. Idle state mobility happens when the UE
moves and the network broadcasted Tracking Area Identifier (TAI) changes [TS24.301]. At
this point, if the TAI is not included in the list of TAIs assigned to the UE during a previous
Attach procedure or Tracking Area Update (TAU) procedure, the UE needs to initiate the TAU
procedure by sending a NAS level TAU Request message to the network.

In idle state the UE is not connected with any base station, but it listens periodically to the
broadcasted system information messages from the network. These broadcasts also include
the TAL If the network needs to reach the UE while in idle state (e.g. due to incoming user
plane data), it broadcasts a UE-specific message to the tracking area(s) in which the UE is
registered (this is called paging). The UE receives and recognizes the message as it contains
its identity and responds to the network by initiating a transfer from idle state to connected
state with a Service Request message [TS24.301]. In this way, the network is able to reach the
UE even though it does not have an actual connection with the UE through a base station in
idle state. Thus, the the location accuracy of the UE in idle state is per list of tracking areas.
Of course, the UE can also send the Service Request message when it needs to move to the
connected state itself (e.g. when it has user plane data to send to the network).

If the UE moves and the broadcast TAI changes to a value not included in the list of
TAIs assigned to the UE during a previous Attach procedure or TAU procedure, the UE needs to
inform the network that it is now in a different tracking area by sending a NAS level TAU
Request message. The network responds with a TAU Accept message (Figure 9.1). The
TAU procedure is always UE-initiated, and there are multiple reasons why the UE sends
a TAU Request message. The two main reasons are the idle state mobility and the periodic

UE MME

Tracking Area Update Request
(GUTI, eKSl)

Tracking Area Update Response
([Inew GUTI])

Tracking Area Update Complete

Figure 9.1 Tracking area update procedure
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MMEn MMEo

GUTI || Complete TAU Message

IMSI “ Authentication Data

Figure 9.2 Distributing authentication data within one serving domain. Adapted with permission from
© 2010, 3GPP™

TAU procedure. The periodic TAU procedure is needed to assure the network that the UE is
still registered and has not moved out of coverage. If the UE is no longer registered, the MME
can free resources and release the bearers of the UE.

As the TAU messages are protected, the TAU procedure also serves as a periodic local
authentication procedure in idle state. However, the periodic TAU procedure does not replace
the periodic running of EPS AKA, which is run more seldom. The EPS AKA leads to a
refresh of the key hierarchy and ensures the continued presence of the USIM, which the TAU
procedure does not.

Note that, in order to send the TAU Request message, the UE needs to enter connected state
on the radio level — that is, RRC_.CONNECTED. Also, the TAU Request itself transfers the
UE and the MME into connected state from the NAS protocol point of view — that is, ECM-
CONNECTED state. The UE and the base station run the connection initiation procedure to
create the Signalling Radio Bearer SRB1 and enter RRC_CONNECTED state. UE uses the
SRBI1 to send the TAU Request message to the base station.

Multiple operators may share the same base stations. Thus, one base station can have
connections to multiple MMEs owned by different operators, and for load balancing and
redundancy reasons also to multiple MMEs owned by the same operator. For this reason the
UE sends the network allocated Globally Unique Temporary Identity (GUTI) that contains
the Public Land Mobile Network (PLMN) identity and the MME identity [TS23.122] to the
base station [TS36.331]. The PLMN identity is basically the operator’s network identifier.
The base station then routes the NAS level message to the right MME based on the GUTT it
received from the UE.

The UE integrity-protects the TAU Request message, but does not cipher it. The reason
is that the MME receiving the TAU Request message needs to know the identity of the old
MME from the GUTI, and it cannot decipher the message without the context of the UE that
resides in the old MME.? Since the UE sends its temporary identity GUTI in the TAU Request
message, an adversary may try to track the UE based on this identity. However, the network
can allocate a fresh temporary identity and provide it to the UE in the TAU Accept message,
which is always both ciphered and integrity-protected. In this case the UE responds with a
TAU Complete message to acknowledge the new GUTL.

Along with the current temporary identity GUTI, the UE also inserts the current EPS security
context related key set identifier eKSI into the TAU Request message. Based on these two
parameters, GUTI and eKSI, the network is able to find the right old MME (MMEo, Figure
9.2) and the right security context that can be used to verify the integrity checksum of the TAU

2 Partial ciphering of the message was not considered applicable.
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Request message. The old MME sends the authentication data of the UE including the current
EPS security context to the new MME (MMEn, Figure 9.2), which then sends a TAU Accept
message to the UE. For more information on authentication data exchanged between MMEs
see section 7.2.4. If the new MME receives a response from the old MME that the user could
not be authenticated, it initiates an EPS AKA.

The old MME and the new MME may support different security algorithms. If the new
MME wants to change the NAS level security algorithms, it needs to initiate a NAS level
Security Mode Command procedure before responding with a TAU Accept message protected
with the new security algorithms.

If the UE has pending data to be sent to the network and it needs to send the TAU Request
at the same time (e.g. due to the tracking area change or a needed periodic TAU procedure), it
can set an active flag in the TAU Request as true. In this way, the UE does not need to send
a separate Service Request message in addition to the TAU Request message. As a result, the
MME will send AS security context data to the base station, and the base station will establish
the AS security with the UE and set up the user plane.

9.4 Handover

In this section we first take a look at the handover key management requirements and mecha-
nisms background. Then we identify the mechanisms that are used in LTE key management.
Readers who want to read only about the LTE handover key management mechanisms may
skip the first two subsections and jump directly to section 9.4.3.

9.4.1 Handover Key Management Requirements Background

There are multiple definitions for key management. The Internet RFC 4949 defines it as
follows: ‘The process of handling keying material during its life cycle in a cryptographic
system; and the supervision and control of that process’ [RFC4949]. NIST defines it as: ‘The
activities involving the handling of cryptographic keys and other related security parameters
(e.g., IVs[i.e. Initialization Vectors], counters) during the entire life cycle of the keys, including
their generation, storage, distribution, entry and use, deletion or destruction, and archiving’
[FIPS 140-2]. The Open System Interconnection Reference Model (OSI/RM) describes it in
the following way: ‘The generation, storage, distribution, deletion, archiving and application
of keys in accordance with a security policy’ [ISO 7498-2]. Here we use the term ‘key
management’ to mean the mechanisms and rules for creating, distributing, deriving and using
cryptographical keys resulting from an authentication procedure, and we limit it to the scope
of mobile networks.

There are multiple documents listing requirements for key management for mobile networks
in general. For example, the Internet Engineering Task Force (IETF) has created a best current
practice document [RFC4962] that describes requirements or guidance for authentication,
authorization and Accounting (AAA) [Sklavos et al. 2007] key management [RFC2903].
IETF has also criteria for evaluating AAA protocols for network access [RFC2989]. Also, both
WLAN [IEEE 802.11] and WiMAX [IEEE 802.16] and [WiMAX], follow similar guidelines
in their specifications. The 3rd Generation Partnership Project (3GPP) has defined general
security requirements and architectures for the cellular networks like GSM, UMTS and LTE
[TS21.133; TS33.102; TR33.821 TS33.401; TS33.402]. The different standardization bodies
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have separate requirements documents and settings, but, at a high level, the key management
security requirements are similar for mobile networks. The common requirement is to have
cryptographically separate keys (see below).

The main threat for handover key management is key compromise, such as when an attacker
attacks a base station to retrieve the keys. To mitigate this threat, key separation is required
at many levels. Keys A and B are separate if key B cannot be derived from key A, and key
A cannot be derived from key B. For the key derivation, a Key Derivation Function (KDF) is
used, which must be a one-way function (e.g. a hash function like SHA256).

Partial key separation is achieved if the requirement holds only in one direction, but not in
the other — when backward or forward key separation applies, but not both. For the definitions,
see section 6.3.

The following security properties of the handover key management are fulfilled by the LTE
key management:

® key separation between access network technologies;

® key separation between base stations;

¢ key separation between UEs;

¢ key separation between algorithms;

key separation between control and user planes (i.e. signalling messages and user data);
key separation between integrity protection and ciphering;

keystream separation between bearers and stream directions;

keystream (when using a stream cipher) always fresh, i.e. the same key stream must not be
used twice to cipher the data.

In addition to these, implementation-specific security requirements are included, such as for
base station security hardening purposes. LTE is the first 3GPP radio access technology that
puts implementation requirements on base stations. At a high level, the requirements mean
that the key derivations, integrity protection, deciphering and ciphering must happen inside a
secure environment. However, the requirements do not enforce any specific mechanisms.

GSM does not follow forward or backward key separation principles as the same key is
transferred between the base stations. UMTS bypasses this requirement by introducing a
middle network element above the base stations called the Radio Network Controller (RNC)
that terminates the signalling and data protection. The RNC is typically in a physically secure
place, which makes it more resistant to physical attacks. As in GSM, the RNCs transfer the
same keys to the target RNC. LTE does not have an RNC, and signalling and data protection
termination happens in the base stations. However, LTE supports both backward and, with a
well-defined limitation, forward key separation.

9.4.2 Handover Keying Mechanisms Background

User authentication is needed when the mobile terminal (MT) attaches to the network.? Then,
as a result of the authentication and successful authorization for network access, the MT and

3 In this section we use the terms MT and base station in a broader and network technology independent sense to
mean a wireless terminal and a wireless receiver that communicates with the MT via a wireless link and with the
network via wireless or wired link.
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the network share a key that is used to protect the communication with the network. When
the MT is in a state that corresponds to what is called ‘connected state’ in LTE, also the
MT and the base station share a key. When the MT changes the base station in the network
as a result of mobility, the new base station also needs to share a key with the MT. There
are multiple ways to deliver the base station specific keys efficiently to the new base station
before or during handover. Public key-based methods are traditionally not considered because
asymmetric cryptographical operations (like decrypting and signing with a secret key of the
public key pair) are considered computationally too heavy for mobile devices and radios, in
which handovers are very time critical.

Delegated authentication

Delegated authentication means that the Authentication Server, like Home Subscriber Server
(HSS) in EPS, delegates the authentication authority to a local authentication agent, which
may be a local AAA server or signalling gateway close to the MT like the MME in E-
UTRAN. Typically this happens deriving a key from the root key that can be distributed to the
access network Key Distributor (KD). This is a common approach in many mobile network
key management frameworks as the mobility happens mostly inside the access network or
between the access networks, and there is no need to go back to the authentication server.

Key request

Key request is the simplest form of key delivery to the base station. The base station sends
a key request to the KD when the MT hands over to it. The KD creates a fresh base station
specific key and delivers it to the new base station. A modified mechanism can be used for
cases where the handover signalling goes through a centralized element providing the KD
functionality (e.g. a WLAN switch or the MME in EPS). In this case, the source base station
sends a key request to the KD along with other mobility signalling, but the KD then sends a
fresh key to the target base station, instead of to the source base station. LTE uses this modified
key request scheme in S1 handovers and a normal key request mechanism in X2 handovers,
except that in X2 handovers the fresh key is used in the next handover and not in the current
handover (see section 9.4.3).

Pre-distribution

In a pre-distribution (or pre-emptive keying) scenario [draft-irtf-aaaarch-handoff-04; Mishra
et al. 2003; Mishra et al. 2004; Kassab et al. 2005] the KD derives base station specific session
keys and distributes them to a number of base stations when the MT has successfully attached
to the access network. The specific base stations, and the number of them included in the
pre-distribution scheme, can vary [Mishra et al. 2004]. This scenario makes the handover
faster as the key is already in the target base station, provided that it was in the distribution
group of the pre-distribution algorithm. The main disadvantage of a pre-distribution scheme
is that it increases signalling between the KD and multiple base stations. Also, the KD needs
to pre-distribute the keys to multiple neighbouring base stations, but the MT may never visit
the neighbouring base stations the keys were pre-distributed to. A modified pre-distribution
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scheme is where the base station sends keys to the neighbouring base stations for preparing
them for a possible handover. LTE does not apply pre-distribution as such, because the source
base station does not prepare multiple target base stations. However, the X2 handover prepares
the target base station by sending the key to it before the actual radio break. In this way the
key distribution part happens before the time-critical handover break and thus makes the LTE
handovers very efficient as in pre-distribution in general.

Optimistic access

Aura and Roe describe a method they call optimistic access [Aura and Roe 2005], in which the
network delivers a ticket to the MT. The MT then uses the ticket as a temporary authentication
key to get access before the normal authentication procedure is finished with the target base
station. This resembles ticket-based methods like Kerberos [Miller et al. 1987; Neuman and
Ts’0 1994] protocol. Ohba and Dutta describe a kerberized handover keying method, in which
they also send a ticket to the target base station [Ohba et al. 2007]. Kamarova and Riguidel
[Komarova and Riguidel 2007] continue with the same mechanism and use the tickets for fast
inter-system roaming and also let the home network provide multiple tickets to multiple visited
networks at the same time for the MT. This mechanism increases over-the-air signalling and
is not well suited for LTE and thus not applied.

Pre-authentication

Pack and Choi introduced a pre-authentication mechanism where the MT authenticates to
multiple base stations through a single base station [Pack and Choi 2002a; Pack and Choi
2002b; draft-ietf-pana-preauth-07; draft-ietf-hokey-preauth-ps-09; Dirk Balfanz Smetters
et al. 2002]. In this way the MT can pre-establish shared keys with multiple neighbouring base
stations. This makes the next handover fast as the keys are already established. However, the
MT may have to run pre-authentication with multiple base stations as it is not certain to which
base station the MT is handed over next. It increases signalling over-the-air (battery life) and
between base stations. Pre-authentication sits well with intersystem handovers, as the source
and target systems may not support the same key management or authentication mechanisms.
In EPS, a form of this mechanism is applied to handovers between LTE and cdma2000 HRPD
access. These two access types are sufficiently different so that the more efficient key mapping
techniques applied to handovers between LTE and GSM or 3G systems cannot be used.

Session keys context

Session Keys Context (SKC) [Forsberg 2007] is a way to distribute keys to the base stations.
SKC contains multiple session keys separately encrypted for each and every base station. The
SKC is created in the KD, for a number of base stations and sent to the base station that
the MT is currently attached to. When the MT moves, the SKC is transferred between the
base stations. Transferring the SKC between base stations may use, for example, the context
transfer protocol [RFC4067], or inter-access point protocol [IEEE 802.11F]. Each base station
gets the session key from the SKC and creates encryption and integrity protection keys
from it.
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Table 9.1 Example SKC rows for three base stations

Base station identity Encrypted key (SK) Message authentication code (MAC)

IDgs; Esassi {SKmr-nsi1 } MACsa-gs1 {IDgs; || Esa-ssi {SKnrxnsi }}
IDgs» Esa-s2{SKmrx-ps2 } MACsa-gs2{IDgs> || Esa-ss2{SKmrx-Bs2 } }
IDgs3 Esa-Bs3{SKmrxns3 } MACsa-5s3{IDgs3 || Esa-ps3{SKmrxns3 } }

The session keys are encrypted and accompanied by base station identity information.
The encrypted session key and base station identity information are signed using a Security
Association (SA) between the KD and the base station. Each base station that receives this
context finds its own encrypted SK based on its identity. Table 9.1 shows an example context
row in an SKC. The row is integrity-protected with a message authentication code, such as
keyed HMAC [RFC2104].

Each of the keys is derived from the root key and the target base station identifier as in
formula (9.1):

SKymrx—Bsi = KDF(root key||IDgs; || TIDyrx) .1

The IDgg; is the access point identity. SKC assumes that the base station identity is available
for the MT when attaching to it so that the MT can use formula (9.1) to derive the key from
the root key that is holds. In this way the key management with SKC is simple, and the
base station identity is also authenticated. The last parameter is temporary identity of the MT
(TIDMTx) in the access network. It is assumed that the temporary identity of the ME does not
change between consecutive attachments/handovers to the same base station. Also, if all the
input parameters to the keystream generation are reset while attached to the base station (e.g.
sequence numbers) the key must be refreshed.

Mlustrative key derivation function parameters for deriving integrity protection and cipher-
ing keys are given in formulas (9.2) and (9.3) below, where the parameters A and B are
constants that make the keys different. Additionally, the selected integrity protection and ci-
phering algorithms should be bound to the keys as KDF input parameters (not shown in the
equations).

K = KDF(SKyiry-psi [ TLinkIDyrr« || A) 9.2

Kene = KDF(SKyyry-psi I TLinkIDyrr | [B) 9.3)

The SKC mechanism was proposed to the 3GPP security working group as a candidate
mechanism at an early stage of LTE security standardization but, after intensive discussions,
it was not selected. One reason was the complexity of determining the right group of base
stations to be included in the SKC, and another was the lack of a base station identity on the
air interface in LTE.

All these key management methods have different properties and are suitable for different
mobile network architectures and deployments. Forsberg extensively compares key request,
pre-distribution and pre-authentication key management methods [Forsberg 2007]. See also
the LTE handover key management analysis with SKC [Forsberg 2010].
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Figure 9.3 Evolved Packet System (EPS)

9.4.3 LTE Key Handling in Handover

In LTE there are two types of handover, X2 and S1, named after the interfaces over which
the main handover signalling is transported (Figure 9.3). In an X2 handover, the handover
preparation happens between source and target base station through a direct interface between
the base stations — the X2 interface. In an S1 handover, the signalling is sent via the MME.

One of the major differences between X2 and S1 handover types is that the MME is informed
of the path switching before the break in S1 handovers and after the break in X2 handovers.
Path switching is a location update procedure from the target base station to the MME. So, in
S1 handovers the MME can provide fresh keying material to the target base station before the
UE receives the command by the source base station to hand over to the target base station.
There is no need to send a path switch message in the S1 handover, as the MME already knows
the target base station identity and location.

From a security perspective, these two handovers are different as the MME can provide
fresh keying material for the target base station before the break (Figure 9.4), but in an X2
handover the MME can provide fresh keying material only after the handover in the path
switch acknowledgement message for use in the next handover.

Fresh keying material is derived in the MME and the UE based on the Next Hop (NH) key
and the local master key Kasmg. The key derivation steps are illustrated below showing that
NH is computed in an iterative fashion. A more precise formula including length fields and
constants is given in Annex A of [TS33.401].

NHy = Kexg_o = KDF(Ksqu. NAS uplink COUNT) 9.4)
NH; = KDF(KxspE, Kens-0) 9.5)
NHycct+1 = KDF(K gy, NHyce) 9.6)

When AS security is set up, the initial Keng.o is derived from the Kasvg and the current NAS
uplink COUNT. At the same time the initial NH; is also derived. For the initial NH; an NH
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Figure 9.4 Key handling in LTE

Chaining Count value (NCC) is initialized to 1 as the initial K.np.o is assumed to have NCC
value equal to 0.

The NCC is a 3-bit key index (values from 0 to 7) for the NH and is sent to the UE in the
handover command signalling. It never decreases from the UE perspective, as the UE cannot
go backwards in the chain of deriving the NH values and does not store the old NH values. So,
if the NCC that the UE receives in the handover command is greater than the NCC value for
the current K.np in use, the UE will do vertical key derivation (Figure 9.4), after synchronizing
the {NH, NCC} parameter corresponding to the received NCC. Otherwise, the UE will do
horizontal key derivation. Thus, the vertical key derivation in Figure 9.4 happens when the NH
is used, and horizontal key derivation when the current Kenp is used as the basis for the Keng ™,
which is then used in the target base station to create integrity protection and ciphering keys.

Further NH values are then derived from the previous NH and Kasymg as in formula (9.6).
Thus, for each S1 handover and path switch signalling for X2 handovers, the MME provides a
fresh {NH, NCC} pair to the target base station. In X2 handovers, the fresh {NH, NCC} pair
can be used only for the next X2 handover, if available in the base station. In S1 handovers,
the target base station uses the fresh NH to derive a new Keng, as in formula (9.8) below.

Backward and forward key separation

LTE provides backward key separation, where the source base station uses a one-way function
as a key derivation function to get the target base station specific key Keng*. In other words,
the target base station cannot derive or deduce any keys the UE used with the source base
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station. Thus, the backward key separation happens after one hop. The two different possible
key derivation steps are shown in formulas (9.7) and (9.8). The two parameters included in
the key derivation are the Physical Cell Id (PCI) and a frequency-related parameter called
EARFCN-DL.

Horizontal : Kexg* = KDF(Keyp PCI, EARFCN-DL) 9.7)
Vertical : Kengs = KDF(NHycc, PCI, EARFCN-DL) 9.8)

Formula (9.7) is for cases when the source base station does not have a {NH, NNC} pair
available. This happens after an S1 handover if the following handover is an X2 handover, as
the source base station does not have an {NH, NCC} pair available, or for an X2 handover
after an initial context set-up. It also happens after an intra-base station handover, where path
switch is not required (i.e. the path to the base station does not change) and, hence, a fresh
{NH, NCC} cannot be provided to the base station with the path switch signalling. But then,
for an intra-base station handover, the attack scenario that motivates key separation does not
apply as no key is propagated from one base station to another.

Formula (9.8) shows the case where the source base station has an {NH, NCC} pair available
(X2 handover), or the target base station has an {NH, NCC} available (S1 handover) and can
use it to derive a fresh Keng™. Note that, in the S1 handover case, the MME derives the
fresh {NH, NCC} pair and provides it directly for the target base station. Thus, the source
base station does not know the Kcng* in the S1 handover case. This is one-hop forward key
separation, where the source base station does not know the target base station key after a
single handover. Two-hop forward key separation happens in X2 handovers as the source base
station knows the {NH, NCC} pair and thus also the Keng*, but after the second hop this
particular source base station does not know the next K.ng* any more as it does not know the
respective {NH, NCC} provided in the path switch signalling after the X2 handover.

9.4.4 Multiple Target Cell Preparations

In LTE the source base station may prepare multiple target cells in the target base station for
a possible handover failure when the UE cannot connect to the cell that was first selected. In
the handover failure case the UE either selects the original source cell again or another cell
and tries to connect to it.

As can be noted from formulas (9.7) and (9.8), the Keng ™ is different for each target cell,
because the cells have different identities and frequencies. Figure 9.5 illustrates the different
keys. It also shows that, even if the UE would fail handovers to multiple different target eNBs
and return back to the originating cell and base station multiple times, the different target base
stations have separate keys. Note that each base station may serve even 32 different cells, but
for each of the cells a separate Keng™ is needed because the key is bound to the cell identity
and frequency.

The handover failure signalling procedure is called RRC Connection Re-establishment and
a token called shortMAC-I is used to authenticate the UE to the target cell. The signalling in
this procedure is not protected; that is, the messages are sent in the signalling radio bearer O
(SRBO0), which is not ciphered or integrity-protected. Thus, the token is used. See section 8.3
for further details of RRC Connection Re-establishment procedure and the token generation.
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Figure 9.5 Separate keys for different target cells

9.5 Key Change on the Fly

Key change on the fly is needed to get new keys into use when AS security has already been
activated. Thus, the new keys are taken into use on the fly, while sending and receiving data.
There are two cases for running the key change on-the-fly procedure, namely K.np rekeying
and Kenp refresh. In both cases, the RRC and UP protection keys are refreshed. Also NAS
level keys can be changed, but this happens with the NAS level security mode command
procedure and is thus different from the AS level (i.e. RRC and UP keys) key change on-the-
fly procedure.

9.5.1 K.y Rekeying

Kenp rekeying happens when the whole key hierarchy has been renewed in the MME, either by
activating the (partial) EPS security context generated in an EPS AKA run or by reactivating
a native EPS security context after handover from UTRAN or GERAN to LTE (see Chapter
11). The MME creates a new Keng in a way similar to the procedure when AS security is set
up (see section 9.2), using the key Kasme and the NAS uplink COUNT from the NAS Security
Mode Complete message from the UE to the MME. In other words, the MME has to run a
NAS level Security Mode Command procedure to change the NAS keys before sending the
new AS security context with a fresh Kcnp to the serving base station. In this way, the new
Kasme and NAS keys become the current EPS NAS security context before the key change
on-the-fly procedure is triggered in the base station.

When the base station receives the UE Context Modification request from the MME, it
initiates the key change on-the-fly procedure with the UE. This procedure is based on intra-
cell handover, and the same key derivation steps apply here as in the normal handover case.
The intra-cell handover command includes an indication of key change on-the-fly procedure
and thus the UE knows that it needs to re-derive the K.nxp based on the new current Kasymg key.

9.5.2 K.np Refresh

The Keng refresh procedure happens locally in the base station and the UE. It is based on
intra-cell handover signalling. The same Kagmg is still in use, and no new NAS keys are
derived. Only the RRC and UP keys are refreshed based on normal horizontal key derivation
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(Figure 9.4), namely chaining the current K¢ng. The Keng refresh procedure is needed when
the sequence number COUNT is about to be reused, such as due to COUNT wrap-around in a
bearer that used the same bearer id when the keys derived from this K.xg were taken into use.
If Keng refresh did not occur the keystream used to cipher the messages would be repeated,
which is a serious security flaw.

During Keng refresh, the UE gets the intra-cell handover command and notices that the
current EPS NAS security context has not changed; that is, the current K.ng was derived from
the same Kasmg key as the current NAS keys. Thus, the UE uses the current K.ng with the
horizontal key derivation procedure.

9.5.3 NAS Key Rekeying

NAS level rekeying happens with the NAS Security Mode Command procedure as normally.
The MME must initiate an EPS AKA and run the NAS Security Mode Command procedure
well before the NAS uplink or downlink COUNT value overflows. This ensures that the
keystream never repeats.

After EPS AKA, or when reactivating a native EPS security context after handover to LTE,
the NAS level rekeying must happen before the MME sends the new Kcxg to the base station
to initiate K.np rekeying.

9.6 Periodic Local Authentication Procedure

In some cases, the bulk data transfer — the user plane (UP) packets — may not be ciphered,
perhaps because local regulations do not allow ciphering of the radio interface. However, the
RRC signalling is still integrity-protected and can thus be used to locally authenticate the UE
that is sending the UP packets.

The base station initiates the local authentication procedure (Figure 9.6), and sends the
uplink and downlink PDCP COUNT variables of the UP bearers to the UE in the Counter
Check message. UE compares the values with its own and sends the differing values to the
base station in the Counter Check Response message. If the base station receives a counter
check response that does not contain any COUNT values, the procedure ends and the base
station knows that there has not been any packet injection or deletion attacks on the link with
the link layer identity of the UE and radio configuration.

The PDCP COUNT consists of a hyper frame number (HFN) and sequence number (SQN).
The SQN is visible in every data packet on the link and is increasing. The HFN is increased
when the SQN overflows (i.e. the SQN value reaches its maximum and starts from zero again).
So, an attacker, if able to inject packets on the unciphered link, may send UP packets so that
the HFN overflows and the SQN value becomes (roughly) the same as it was before the attack.
In this way the base station and UE would not notice problems in the SQN but still have
differing HEN values in the memory. Since the UP is not protected, the HFN is not used as
an input parameter for deciphering. So, if the UE includes PDCP COUNT values, it means
that the UE has different PDCP COUNT values, or more precisely different HFN values, in
memory from the base station.

The base station may release the connection with the UE if this local authentication proce-
dure reveals differing PDCP COUNT values from the UE. The base station may also report
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to the MME or an Operations and Management (O&M) server for further data analysis and
logging.

Normally, the user plane packets are ciphered and meaningful packet injection is much
harder as the attacker does not know the ciphering keys and thus deciphering on the base
station or UE results in random data and not protocol-specific headers. However, if base
station and UE do not do any validity checks on the packet contents, it may cause some harm
or problems on the implementations. Only integrity protection preserves the packet integrity.
Even though in LTE the user plane ciphering is bound to the packet sequence numbers (i.e. the
32-bit PDCP COUNT), there is no guarantee that the receiver, when deciphering the packet,
is assured that the packet contents have not been changed. However, binding the ciphering to
the sequence numbers makes it much harder to replay packets, and thus packet injection with
correct sequence number and some valid content after deciphering is considered hard as it
would require information about the ciphering key.

9.7 Concurrent Run of Security Procedures

There are many security and mobility related procedures that both the base station and the MME
can initiate, and this may happen concurrently. Whether this is a design or implementation
problem does not matter if concurrency rules for the procedures help to avoid errors and
reduce complexity in implementations. For example, we know that after EPS AKA there is a
new key Kasme in the MME, but the NAS keys are still based on the old key Kasmg. Thus,
the MME needs to initiate a NAS Security Mode Command procedure. However, when this
occurs during a service request procedure and at the same time the MME sends the K.np to
the base station, there is a race condition between the AS and NAS level signalling procedures
as the UE may derive the K.np based on the old or the new key Kasyme, dependent on whether
the UE receives the AS level Security Mode Command before or after the NAS level Security
Mode Command. Next, we describe the ten concurrency rules listed in [TS33.401].

1. The first rule states that the MME must not initiate any procedure that includes sending
a new Kenp to the base station during an ongoing NAS level security mode command
procedure. The reason is that, otherwise, the UE and MME may derive the new K¢ng from
the different root keys. Note that the new K.nxpg will be taken into use with either the AS

UE E-UTRAN

Counter Check

Counter Check Response

Optionally Release Connection (or Report to
MME or O&M Server)

Figure 9.6 eNB Periodic Local Authentication Procedure. Reproduced with permission from © 2010,
3GPP™
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level security mode command procedure or with the key change on the fly procedure, but
not with inter-cell handovers.

2. Similarly, the second rule states that, if there is a procedure ongoing that includes sending
anew Kcnp to the base station, the MME must not initiate a NAS security mode command
procedure. This rule is similar to the first one, and is required to make sure that the UE
and MME derive the K.nxp from the same root key.

3. The third rule is also about deriving the Kenp from the right {NH, NCC} pair or Keng key
during handovers. If the MME has an ongoing NAS security mode command procedure,
the {NH, NCC} pair sent to the target base station during handovers must still be based on
the old Kasme root key. The reason is that, at the AS level, the K.np based on the old root
key Kasme is still used. Only after the MME has sent the new Kenp to the base station, and
the base station has successfully taken it into use, the MME can send fresh {NH, NCC}
pairs based on the new Kagmg root key.

4. This is the counterpart rule to the third rule and is for the UE. The UE must continue to use
the AS level parameters based on the old root key Kasme, even if the UE has received the
NAS security mode command message. Only after the base station has successfully run
the RRC Connection Re-configuration procedure for taking the new Kcng from the new
Kasme root key into use, the UE must use the fresh AS level parameters for handovers
and discard the old AS parameters.

5. The fifth rule says that while there is an ongoing inter-base station handover procedure,
the base station shall reject any S1 UE Context Modification procedures from the MME
(i.e. the procedure that delivers a new Kng based on a new Kagyg). This is simply to
avoid key synchronization problems. Also, the base station must not initiate any new
handover procedures before the current RRC Connection Re-configuration procedure is
finished.

6. The sixth rule is similar to rule five, but is for the MME. It says that the MME must
not proceed with an inter-MME handover or inter-RAT handover signalling while there
is an ongoing NAS security mode command procedure. The reason is that the NAS level
security context changes as a result of the NAS security mode command procedure. In the
inter-MME handover procedure, the source MME sends the NAS level security context
to the target MME. Thus, during the NAS security mode command procedure the NAS
level security context is not well defined. Similar problems would occur in an inter-RAT
handover.

7. Similarly to rule six, the MME must not continue with inter-MME handover signalling
before it has finished an ongoing S1 UE Context Modification procedure. The reason is
the AS level parameter synchronization among the base station, the UE and the MME. If
during this synchronization the source MME sent new or old NAS level security context,
including the {NH, NCC} pair, to the target MME, the target MME might send different
KasmEe root key based parameters to the target base station from what UE and the base
station are currently using.

8. Rule eight describes the case when the MME has taken new NAS keys into use based
on the new Kagmge root key but has not yet initiated the S1 UE Context Modification
procedure to synchronize the new Kcng with the base station and the UE. If at this point
there is an inter-MME handover, the source MME must send both the old and the new
Kasme root key security contexts with corresponding key set identifier (eKSI) to the target
MME.
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9. Asaresponse to rule eight, the target MME needs to know what to do with the two Kasme
during inter-MME handover. Rule nine says that the target MME must use the new Kasme
root key based NAS level security context for NAS protection, but the old Kasymg root key
based parameters for the AS level operations. Then the target MME must at some point
initiate the S1 UE Context Modification procedure to synchronize the new K¢ng based on
the new Kasmg root key with the base station and the UE.

10. During inter-MME mobility, the source MME must not send any NAS messages to the
UE after it has sent the UE context to the target MME. Only if the handover is cancelled
or fails, the source MME can start sending NAS messages to the UE.

These rules are self-evident after the right situations or concurrency cases have been identified.
However, it is not easy to come up with a complete list of possible error cases and concurrent
run of procedures. These ten rules help to understand the possible race conditions and error
cases better, but also provide guidance on how to implement the system to better avoid them.
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EPS Cryptographic Algorithms

In this chapter we discuss in detail the cryptographic algorithms that are used in EPS. One
principle that has been used in the design of EPS security is that of algorithm agility: the
system should be flexible in the sense that new algorithms can be introduced and outdated
ones can be removed, both without major hassle. Therefore, it is expected that in the future
new algorithms would appear in EPS but they are potentially not even invented at the time of
writing and hence naturally not yet discussed in this chapter. The need for better algorithm
agility has stemmed from experiences with 2G and 3G systems where new algorithms have
been introduced and one algorithm (A5/2) has also been removed from the 3GPP system.

On the other hand, we are here discussing standardized algorithms. A general principle
for any standardized mechanisms (including non-security related ones) is that options should
only be introduced if they serve a clear benefit for the system as a whole. If the difference
between one option and another is more like a matter of taste, or if the benefit of each option
over the others materializes only in a small minority of all circumstances, options should
not be introduced because they complicate the system, add development cost, and put the
interoperability at risk. Hence, the number of different algorithms should be kept small and
introduction or removal of algorithms should be done only after it is clear that such action
adds value to the system as a whole.

As explained in Chapter 2, cryptographic algorithms — at least the ones that are usable for
mass-market products — share the same (from a deployment point of view, nasty) characteristic
that they can be broken. Sometimes it can even be the case that theoretical breaks are followed
fairly rapidly by practical exploitations. This is the reason why we need to have options in
the choice of algorithms: in case one algorithm breaks, we still have others standing. Another
consequence of this kind of reasoning is that the design of the algorithms in use should differ
from each other as much as possible. Then it is less likely that even a major breakthrough in
cryptanalysis would affect many of them.

Cryptographic algorithms are needed for both AS and NAS level protection, and the same
algorithms may be used for both purposes. In principle, completely different algorithm sets
could have been specified for these two purposes. One advantage of such an approach would
have been, once again, greater diversity of the algorithms and, consequently, a smaller effect of
a single broken algorithm. However, the big disadvantage would have been that, especially on
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the UE side, independent implementations would have been needed, one set for AS protection
and another set for NAS protection, consuming double the implementation effort.

Note that the message authentication code is denoted by MAC-I for AS level integrity
protection in both [TS33.401] and [TS24.301], while message authentication code for NAS
level protection is denoted by NAS-MAC in [TS33.401] and simply by MAC in [TS24.301].
Throughout this chapter we use the abbreviation MAC for both AS level and NAS level
integrity protection.

10.1 Null Algorithms

Although protection of communications is needed, in some circumstances it is not possible
to provide cryptographic protection. One such situation is an unauthenticated emergency call,
as discussed in section 8.6. It is always tricky to take care of exceptional situations where
protection is lifted: there have to be guarantees that the exception of no protection does not, by
accident or intentionally, spill over to cases where protection could have been provided. For
this reason, it is typically better to design systems so that the case of no protection is explicitly
triggered by actions of some of the communicating parties. In other words, the protection
needs to be explicitly turned ‘off” instead of just not turning it ‘on’. Of course, this kind of
explicit triggering of no protection does not alone guarantee that the triggering is done only in
appropriate situations, other measures are needed also.

It is now easier to understand why a concept of ‘Null algorithm’ makes sense. Because the
start of no-protection has to be done explicitly, it is simplest from the system point of view to
use procedures for starting no-protection similar to those that are used for starting protection.
Bear in mind here that the start of protection needs to be done explicitly as well, mainly for
synchronization reasons. Thus, instead of choosing a proper algorithm to be put in place in
order to start protection, we choose a Null algorithm to be put in place to start no-protection.

The flip side of the coin is that the concept of ‘Null algorithm’ may be confusing to some
people who are not familiar with security issues. Indeed, a Null algorithm is not a cryptographic
algorithm; in fact it is not really an algorithm at all. Whereas the question of whether a Null
algorithm should be called an algorithm or something else may be interesting from a semantic
point of view, the important fact is that the use of the Null algorithm provides no protection.

There are a couple of different ways in which a Null algorithm may be realized. One obvious
choice is that the Null algorithm does not do anything. This is the option that has been chosen
for the Null ciphering algorithm in EPS; mathematically speaking it is an identity function:
ciphertext is identical to plaintext. It is also called EPS encryption algorithm number 0 (EEAO).
In Annex B of [TS33.401] the Null algorithm is described slightly differently: instead of doing
nothing, it uses a keystream of all zeros. Because the ciphertext is obtained by a bitwise xor
operation from the plaintext and the keystream (see section 2.3.3), this also results in the
ciphertext being equal to the plaintext.

Another way of realizing a Null algorithm is to do some very simple operation, just in order
to make it explicit that a Null algorithm has indeed been in use. This is the option that has
been chosen for the Null integrity algorithm in EPS: regardless of the message content or key
or any other parameter, a 32-bit string of all zeros is appended to the message as the result of
applying the Null integrity algorithm. The reasoning behind choosing this option for integrity
rather than the other option of doing nothing is similar to the reasoning described earlier in for
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Null algorithms in general: (a) it becomes explicit that no integrity protection is intended to
be provided; and (b) from a procedural point of view, the protected case and the non-protected
case become as similar as possible.

A couple of remarks are needed here. Regarding (a), note that a MAC of all zeros may
occur also in the case of a proper integrity algorithm but only for one message out of 232 (on
average). Regarding (b), all processing of integrity check values (MAC or expected MAC) is
quite similar when using the Null algorithm or proper algorithms. On the sending side, a MAC
of all zeros is appended to a message in the same way in which a (proper) MAC is appended
to a message when using a proper integrity algorithm. On the receiving side, as an example, if
a message that requires a MAC to be included is received without any MAC, then it is simply
discarded even when a Null integrity algorithm is in use.

10.2 Ciphering Algorithms

The encryption mechanisms used in EPS are very similar to those used in 3G. There are many
differences between EPS and 3G in how keys are generated and managed but, once the correct
key is in place, the usage of the key is very similar in these systems. This is fortunate in the
sense that it allows terminals to use some internal components for both LTE and 3G. Bear in
mind that it would be quite natural to support both 3G and LTE in the same terminal, similar
to the way in which most 3G terminals support also GSM.

In EPS there are independent instances of confidentiality protection mechanisms, one on the
AS level and another on the NAS level. However, both mechanisms are very similar to each
other; and, with regard to the encryption algorithm itself, there is no difference: an algorithm
suitable for the AS level is also suitable for the NAS level, and vice versa.

It was clear from the start of EPS security design that a sufficient amount of cryptographic
diversity would be useful. Therefore, it was decided that two ciphering algorithms would be
supported from the start of EPS. In addition, these two algorithms should be as different from
each other as possible, in order to minimize the chance that both would be broken by the same
breakthrough in cryptanalysis.

From what has been written so far in this section it would be easy to draw the conclusion that
the same set of algorithms that is in use for 3G would also be a good choice for EPS. However,
starting a completely new system always presents the possibility of seeking new approaches
and even better solutions than those that would be most natural from a legacy system point of
view.

The history of the selection process for the 3G ciphering algorithms is explained in Chapter
4. The two 3G algorithms are, at the time of writing, UEA1 based on KASUMI and UEA2
based on SNOW 3G. It is notable that the leading general-purpose algorithm AES [FIPS 197]
is not among the two. The reasons for this were explained in section 4.3. In short, AES was
not ready yet when KASUMI-based UEA1 was chosen, while SNOW 3G-based UEA2 was
the preferred choice as the base algorithm, over AES, because its design was more different
from that of KASUMI.

It was expected that LTE terminals would probably need to support AES anyway, for various
application layer protection purposes. Therefore, choosing AES as a ciphering algorithm for
EPS would probably also offer some re-usability benefits, although of a type different from
those offered by choosing 3G algorithms also for LTE.
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Altogether, designers of the EPS security architecture faced a kind of positive problem:
there were three good choices available for the algorithms while only two were needed in the
beginning. Referring back to the different design strategies that were discussed in section 4.3,
it was seen that the strategy of choosing an off-the-shelf algorithm was a better choice for
EPS than the other two more complicated strategies: inviting submissions and commissioning
a design task force.

Although there were also many other potential off-the-shelf algorithms than the three
mentioned above, the selection was restricted soon to these three, mainly because of the re-
usability aspect. Taking into account the requirement of cryptographic diversity, it seemed
natural to include SNOW 3G into the final two. Between the other two, a decision was finally
made to choose AES over KASUMI as the base for the other algorithm that would be supported
from the beginning. Because of the general principle of avoiding unnecessary options in the
standardized system, the number of mandatory algorithms was limited to two.

For the case of SNOW 3G, the specification work needed to adapt it to EPS security
architecture was minimal, and was carried out by references to the existing 3G specifications.
The algorithm is called 128-EEA1, to explicitly denote that the algorithm uses a 128-bit key
and to distinguish it from a possible future 256-bit version of this algorithm. Note that 3GPP
has decided that, if at some point in the future 128-bit keys are no longer seen as long enough,
it is better to double the key size instead of introducing, for example, 192-bit keys.

For AES, the situation was slightly more complicated. Several modes of operations for
AES had already been defined in NIST specifications but, for obvious reasons, none of them
had been produced for this particular purpose. However, it was soon found that there were
already existing modes of operation that could be adapted to the EPS environment. The
tasks of choosing the most appropriate existing mode of operation and creating the necessary
specifications was, once again, delegated to the ETSI SAGE group. Since the needed effort
was much smaller than in the earlier design projects, no special task force was established.
Also, instead of creating stand-alone specifications, the needed definitions were appended to
[TS33.401]: Annex B contains extensions needed to existing NIST standards and Annex C
contains the necessary new test data.

The Counter mode [NIST800-38A 2001] was chosen for the EPS purposes. The needed
adaptation was simple. The initial 128-bit counter value was defined to contain the ciphering
algorithm input parameters COUNT, BEARER and DIRECTION in the most significant
part while the least significant part was defined to be all zeros. Then the counter would be
incremented by the normal integer addition as long as new keystream blocks of 128 bits
would be needed.

The EPS algorithm based on AES in Counter mode is called 128-EEA2.

10.3 Integrity Algorithms

Many of the facts explained for the background of EPS ciphering algorithms also apply to
integrity algorithms. The integrity protection mechanisms are similar in both 3G and LTE,
although there are big differences in key management. Each integrity algorithm applies as such
to both AS level and NAS level protection. In order to have a good security margin against
progress in cryptanalysis, two different algorithms are in place from the beginning of EPS.
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From an implementation point of view, especially for terminals, it would be good to have
algorithms that are usable also for some other purposes.

There is a typical practice of using the same core cryptographic functions for both ciphering
and integrity purposes. This practice is also mainly due to re-usability benefits, and there are
no cryptographic reasons behind it. However, no heavy arguments were found that would have
spoken against such a practice, so it was decided that the two integrity algorithms that are
supported from the start are based on AES and SNOW 3G.

As was the case for ciphering, UIA2 could be adapted in a straightforward manner from 3G
specifications. The algorithm is called 128-EIA 1. Again, the numerical value of 128 refers to
the possibility that a 256-bit version is needed in later releases.

For AES, similar to the case of ciphering, some more adaptation work was needed, and it was
carried out by ETSI SAGE. The Cipher-based MAC (CMAC) mode was chosen [NIST800-38B
2005]. The additional definitions can be found in Annex B of [TS33.401] and the necessary
new test data is in Annex C of the same specification. Similar to ciphering, the input parameters
needed for EPS integrity protection are mapped to the CMAC initialization parameters, using
all zeros for filling in the rest of the parameters.

The new EPS algorithm based on AES in CMAC mode is called 128-EIA2.

10.4 Key Derivation Algorithms

As explained in earlier chapters, the EPS key hierarchy is significantly more complex than
that of 3G or GSM. One consequence is that there has to be a standardized way to derive keys
from each other. From the security point of view, it is crucial that the derivation is one-way: it
should not be possible to use physically less protected keys on the lower layers of the hierarchy
to get information about the physically more protected keys that are higher up in the hierarchy.
In addition, two keys derived from the same key should be independent. Note here that the
difference in the physical protection refers rather to the network side; on the UE side there are
fewer differences.

Although 3G access security did not require defining a standardized Key Derivation Function
(KDF), it has been needed for other 3GPP features. Most notably, the Generic Bootstrapping
Architecture (GBA) ([TS33.220; Holtmanns et al. 2008] includes the derivation of new keys
as one of its core features. EPS key derivation re-uses the standard key derivation function
of GBA. The core of the KDF is the cryptographic hash function SHA-256 [FIPS 180-2]. It
is used in the keyed HMAC mode [RFC2104], where the key for HMAC is the ‘mother’ key
from which the lower layer key is derived. The other input parameter for HMAC is called the
‘message’, a name motivated by the primary use of HMAC for message integrity purposes. In
the case of 3GPP key derivation, the message is a bit string S with a clearly defined structure:

S = FC||PO||LO||P1||L1||P2||L2]|...||Pn||Ln
Here || denotes the concatenation operation. The parameter FC is a single octet that is used
to differentiate between various purposes that the KDF is used for in the 3GPP system. The

parameters PO, P1, P2, ..., Pn are the additional input parameters that are needed in the key
derivation. The parameter Li is a two-octet encoding of the length of the parameter Pi (counted
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in octets). Using length values explicitly as part of the input guarantees that the string S can
be unambiguosly parsed.

Annex A of [TS33.401] contains descriptions of all the instances of the KDF that are needed
for EPS purposes. For instance, it is explained in section 7.3 that, for the case of deriving Kcng
from Kasme, the only additional input parameter is the NAS uplink COUNT value. For this
key derivation purpose FC = 0x11 and PO = NAS uplink COUNT value. The length of NAS
uplink COUNT is 4 octets, so LO = 0x00 0x04.

As a slightly more complex example, let us take a look at the derivation of the RRC
encryption algorithm key Kgrrcene from Keng. It would appear that the only additional input
parameter required was the algorithm identifier, as explained in section 7.3. It was decided,
however, to use the same FC for all key derivations leading to a leaf key in the key hierarchy.
Therefore, a further additional input parameter is needed to separate these leaf keys from each
other. Now FC = 0x 05 for all these key derivations while, for example, PO = 0x03 as coding
for ‘algorithm type distinguisher’ in the case of RRC encryption key. P1 is the parameter for
algorithm identity. Both the algorithm type distinguisher and the algorithm identity are single
octets long, so LO = L1= 0xO01. The algorithm identifiers have been defined in clause 5
of [TS33.401]. For example, using AES as the encryption algorithm corresponds to value
P1 = 0x02 (in clause 5 of [TS33.401], the binary representation 0010 is given).
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Interworking Security Between
EPS and Other Systems

In this chapter, we describe how the EPC can interwork with other 3GPP access technologies
like GERAN and UTRAN, but also how EPC supports interworking with non-3GPP access
technologies like cdma2000® HRPD, WiMAX and WLAN. Interworking is important as LTE
allows different deployment options for the operators. Clients supporting multiple-access
technologies, including LTE, need to have continuous access to the network for good user
experience. For example, a client using 3G data may enter an LTE hotspot and thus be handed
over to it for a higher data throughput.

We start by describing the interworking with GSM and 3G in section 11.1 and move then
to the non-3GPP interworking part in section 11.2.

11.1 Interworking with GSM and 3G Networks

Here we describe intersystem idle state mobility and handovers between 3G or GSM and EPS.
This is particularly interesting as there are multiple cases for handling the security context
depending on the originating system and mobility mode (handover or idle state mobility). Refer
to section 7.4 for detailed definitions relating to security contexts. A process called mapping of
security contexts from 3G or GSM to EPS, and vice versa, is applied in intersystem mobility.
This mapping means that a 3G or GSM originated security context is used to derive an
EPS security context, and vice versa. In handovers, the mapping of security contexts is always
applied for efficiency reasons even if a native security context (one created by an authentication
in the respective system) is available in the target system. In idle state procedures, existing
security context in the target system is used if available.

Security context mapping satisfies the security requirement of backward key separation.
Backward key separation means that the target system cannot derive the keys used in the
source system. This requirement is realized by deriving new ciphering and integrity protection
keys for 3G from the existing Kasme during EPS to 3G or GSM mobility. In the other direction,
from 3G or GSM to EPS, it is the MME, which does the mapping and thus the backward key
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separation does not hold. Also, the security context mapping does not provide forward key
separation; that is, the source system knows the mapped keys used in the target system.
When an intersystem mobility event results in the use of mapped keys it is therefore advisable
to establish native security context soon after the event in order to minimize the trust required
of the target system in the source system. But even if there is unconditional trust between
the systems, as when they are part of the same trust domain of an operator, when moving
from 3G or GSM to EPS it is recommended in the specifications to establish a native EPS
security context as soon as possible because native EPS security is considered stronger for
the reasons explained in Chapter 7. In practice this is, of course, up to the operator’s security
policy resulting from his risk analysis. After a handover from 3G or GSM to EPS, an EPS AKA
authentication can be run, and all keys in the key hierarchy can be renewed, even while the UE
is in connected state, by using the key change on-the-fly procedure as described in Chapter 9.

Idle state signalling reduction

EPS specifies Idle state Signalling Reduction (ISR) [TS23.401], which implies that the UE can
be registered simultaneously with multiple systems using different Radio Access Technologies
(RATSs). With ISR the UE can be registered in E-UTRAN and UTRAN or GERAN at the same
time while in idle state and listen to paging messages from the RAT where it is currently
camping. While re-selecting cells between these RATs the UE does not need to send any
location update signalling messages provided that the respective routing or tracking areas do
not change. As a result, the idle state signalling is reduced if the UE switches back and forth
between E-UTRAN and UTRAN or GERAN. On the other hand, the network pages the UE on
both technologies when the UE receives incoming data, as the network does not know which
RAT the UE is actually listening to (see Figure J.4-1 Downlink data transfer with ISR active
in [TS23.401]). When ISR is switched on the UE can also go to connected state in one of the
systems while remaining registered in the other system.

The ISR is activated when the network responds to a Tracking Area Update (TAU) Request
or Routing Area Update (RAU) Request with a TAU Accept or RAU Accept message that
indicates ISR activation. When the ISR is activated and the UE has multiple temporary
identities available, it sets a ‘“Temporary Identity used in Next update’ (TIN) parameter value
to ‘RAT-related TMSI’. This means that the UE will use the RAT-specific temporary identity
when it sends a RAU Request or TAU Request message to the network. For example, with
a TAU Request the UE will use a Globally Unique Temporary Identity (GUTI) and with the
RAU Request a P-TMSI. Table 11.1 (see also [TS23.401], Table 4.3.5.6-1) shows how UE
sets the TIN value when receiving Attach Accept, TAU Accept, or RAU Accept.

ISR can be deactivated upon a number of conditions, for example through timer expiry.
Whenever the ISR is not active the TIN is set to be the currently used temporary identity
allocated in the currently used RAT (i.e. GUTI in E-UTRAN and P-TMSI in UTRAN). When
the TIN has values of ‘GUTI’ or ‘P-TMSI’, it means that the corresponding temporary identity
is used in the next TAU or RAU Request message. If the TIN value is ‘GUTLD’, the GUTI is
mapped to a P-TMSI and P-TMSI signature in the RAU Request message. GUTI is used as is in
the TAU Request. If the TIN value is ‘P-TMST’, the P-TMSI is used without any modification
in a RAU Request while a GUTI mapped from a P-TMSI is used in TAU Requests. Table 11.2
(see also [TS23.401], Table 4.3.5.6-2) shows how UE sets the temporary identity in the Attach
Request, TAU Request, or RAU Request messages depending on the currently set TIN value.
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Table 11.1 Setting of the TIN in the UE

Message received by UE Current UE TIN value New UE TIN value

E-UTRAN Attach Accept Any value GUTI

(never indicates ‘ISR Activated’)

GERAN/UTRAN Attach Accept Any value P-TMSI

(never indicates ‘ISR Activated’)

TAU Accept Any value GUTI

TAU Accept GUTI GUTI

(indicates ‘ISR Activated’) P-TMSI or RAT-related RAT-related TMSI
TMSI

RAU Accept Any value P-TMSI

RAU Accept P-TMSI P-TMSI

(indicates ‘ISR Activated’) GUTI or RAT-related TMSI RAT-related TMSI

For more details, see the informative Annex J in [TS23.401] and the next two subsections
on cases when the UE may include two GUTI or P-TMSI values into a message.

11.1.1 Routing Area Update Procedure in UTRAN

When the UE is moving in idle state into a UMTS routing area from an EPS tracking area,' and
is not registered on the UMTS side, it needs to send a RAU Request message over UTRAN.
When a UE is already registered in UMTS it needs to send a RAU Request when the routing
area changes, or periodic RAU Requests when remaining in the same routing area. There are
two cases for the UE to select the UMTS security context for protecting the RAU procedure:
using an existing UMTS security context, or obtaining the UMTS context through a mapping
from the EPS security context in the MME (see section 7.4 for more information about security
contexts).

Table 11.2 Temporary identity of the UE in Attach/TAU/RAU Request messages

Message of the UE TIN: P-TMSI TIN: GUTI TIN: RAT-related TMSI
TAU Request GUTI mapped from GUTI GUTI

P-TMSI/RAI
RAU Request P-TMSI/RAI P-TMSI/RAI mapped  P-TMSI/RAI

from GUTI

E-UTRAN Attach GUTI mapped from GUTI GUTI
Request P-TMSI/RAI
GERAN/UTRAN P-TMSI/RAI P-TMSI/RAI mapped ~ P-TMSI/RAI
Attach Request from GUTI

1 UMTS Routing Area and EPS Tracking Area are similar concepts. They both allow the network to find the UE
when an incoming call needs to be delivered by paging it in a defined area.
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UMTS Routing Area Update with existing UMTS security context

When a UE needs to send a Routing Area Update Request in one of the above-mentioned
cases, the UE uses an existing UMTS security context to protect the RAU procedure if the
temporary identity used in the RAU Request — according to Table 11.2 — is a P-TMSI that is
not mapped. This is the case when ISR is activated and the TIN indicates ‘RAT related TMSI’,
or when ISR is deactivated and the TIN indicates ‘P-TMST’.

Along with the temporary identity P-TMSI, the UE includes the Key Set Identifier (KSI)
into the RAU Request to allow the SGSN to identify the keys. The previous SGSN may have
assigned a P-TMSI signature to the UE earlier. If it was allocated, the UE will include it into
the RAU Request so that it can be used to authenticate the RAU Request. If the SGSN does
not have the corresponding security context indicated with the KSI and P-TMSI, it fetches
it from the old SGSN indicated in the P-TMSI/RAL If this is unsuccessful the SGSN runs a
UMTS AKA authentication.

UMTS Routing Area Update with mapped UMTS security context

This case occurs if the temporary identity used in the RAU Request — according to Table 11.2 —
is a P-TMSI that is mapped from a GUTIL. When a UE in idle state moves from an E-UTRAN
tracking area to a UTRAN routing area with ISR deactivated, it always uses a UMTS security
context mapped from the EPS security context to protect the RAU procedure. The value of the
EPS Key Set Identifier (eKSI) associated with the current EPS security context is mapped to
the UTRAN KSI information field of the RAU Request.

The UE will create a so-called NAS-token (see more below), based on the NAS integrity
protection key in the EPS security context, and include it into the P-TMSI signature field of
the RAU Request. In this way, when the SGSN requests the UE security context from the
MME, the MME can authenticate the request based on the EPS security context of the UE. If
the MME can verify the NAS-token it creates a mapped UMTS security context by mapping it
from the EPS security context and transfers it to the new SGSN. This mapped UMTS security
context includes the UE security capabilities and ciphering and integrity keys CK’ and IK’
derived from Kagme, and the KSI mapped from the eKSI corresponding to Kasme. The MME
has the UTRAN and GERAN security capabilities as the UE provided them along with the EPS
security capabilities for the MME while registering in EPS (see section 11.1.2 in EPS below).

The NAS-token is created based on the NAS integrity protection key and the NAS uplink
COUNT. CK’ and IK’ are derived from the Kasymg using the same NAS uplink COUNT value.
For the exact formulas see Annex A of [TS33.401]. The current NAS uplink COUNT value in
the UE and in the MME may be different owing to lost or pending uplink NAS messages. For
this reason, the MME will calculate the NAS-token with a range of NAS uplink COUNT values
and compare the bits with the received P-TMSI signature.? If match is found the NAS-token is
verified and the MME identifies the NAS uplink COUNT value that was used to calculate the
NAS-token and marks it as used. Based on this NAS uplink COUNT value, the MME will also
derive the CK’ and IK'. Thus, the same NAS-token cannot be used twice in the MME, unless
the NAS-token is retransmitted (perhaps because of a lost message during the same mobility
event).

2 The NAS-token is actually truncated to at least 16 bits and included into the P-TMSI signature field. The P-TMSI
signature field is longer than 16 bits, but a part of the remaining bits is used for other purposes [TS24.301].
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The UE stores the CK’, IK’ and KSI on the USIM as the new UMTS security context. This
is a mapped UMTS security context as it was derived from the EPS security context in the
MME. UE also computes a Kc from CK’ and IK’ using the conversion function c3 specified
in [TS33.102] and updates the Kc value in the ME and the USIM. This is necessary as any
previously stored Kc was calculated from a previous UMTS security context CK and IK and
thus is not synchronized with CK’ and IK’. The GPRS Ciphering Key Sequence Number
(CKSN) is set to the KSI. Operators wanting to create fresh keys and a native UMTS security
context can always run UMTS AKA on the UTRAN side, perhaps next time when the UE
changes from idle to connected mode.

The RAU procedure in GERAN using a GSM security context mapped from the EPS
security context in the UE and the MME is similar to the RAU procedure in UTRAN using
a UMTS security context mapped from the EPS security context in the UE and the MME,
except that the UE and the SGSN will derive the cipher key Kc or K¢i2g [TS33.102] from
CK’ and IK' transferred from the MME to the SGSN, and use the GERAN specific security
algorithms. An SGSN that supports interworking between E-UTRAN and GERAN must be
able to handle UMTS security contexts. Thus, the MME provides the same security context to
the new SGSN as it provides for the SGSN supporting interworking between E-UTRAN and
UTRAN described above.

11.1.2  Tracking Area Update Procedure in EPS

When the UE is moving in idle state into a new EPS tracking area from a UTRAN routing area,
and is not registered on the EPS side to that tracking area, it needs to send a Tracking Area
Update (TAU) Request message to the MME. (To be precise: for sending the TAU Request the
UE has to move to connected state. The UE may fall back to idle state after the completion
of the TAU procedure.) There are two cases for the UE to choose the security context for
protecting the TAU Request message: the UE can use a current EPS security context (either
native or previously mapped EPS security context) if it is available in the UE, or map the
current UMTS security context to an EPS security context.

Moving in idle state into an EPS tracking area from an UTRAN routing area is not the only
case when a UE sends a TAU Request. When a UE is already registered in EPS it needs to send
a TAU Request when the tracking area changes, or periodic TAU Requests when remaining in
a tracking area.

EPS specifies a flag in the TAU Request called ‘active flag’. When this flag is set, the MME
will create an AS security context for the UE, including Keng, and send it to the serving base
station. As a result, the UE and the base station establish AS level security with the AS level
security mode command (see section 8.3), and can start sending and receiving user plane data.

EPS Tracking Area Update with current EPS security context

The UE uses a current EPS security context to protect the TAU procedure if the temporary
identity used in the TAU Request — according to Table 11.2 — is a GUTI that is not mapped.
This is the normal case for TAU procedures inside E-UTRAN. It is also used when ISR is
activated, and the tracking area changes compared to the currently registered tracking area
with the UE (meaning that the UE needs to send a TAU Request, even if the ISR is activated).
This case has already been described in section 9.3 on idle state mobility.
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UE includes its GUTI and eKSI into the TAU Request message. The UE will only integrity-
protect the TAU Request message, so that if the MME changes, the new MME is able to find out
what the old MME identity is based on the GUTI as it cannot decipher the message without the
security context. If the old MME does not have the security context of the UE and keys indexed
with the eKSI, or the integrity protection validation fails, the new MME will run EPS AKA.

Since the EPS supports multiple algorithms, it may be that the new MME supports different
algorithms from the old MME, and thus the NAS level security algorithms need to be changed.
To do this, the MME will run the NAS Security Mode Command procedure as described in
section 8.2 before sending the TAU Accept message to the UE protected with the new NAS
keys and NAS algorithms.

EPS Tracking Area Update with mapped EPS security context

If the TIN value in the UE is set to ‘P-TMSI’ — according to Table 11.2 — the UE includes a
GUTI mapped from a P-TMSI and the old Routing Area Identifier (RAI) in the TAU Request
along with the KSI that identifies the keys in the UMTS security context. If the SGSN allocated
a P-TMSI signature it is also included into the message.

If the UE has a current EPS security context, it will additionally include the GUTI (and
eKSI) that is associated with this context as an additional GUTI information element. This
GUTTI is then different from the GUTI mapped from the P-TMSI. The UE then also integrity-
protects the TAU Request with the keys and algorithms in the current EPS security context,
but does not cipher it. The new MME can then fetch the current EPS security context from
its own memory if the EPS security context indicated by the additional GUTI and the eKSI is
still available.

If the UE does not have a current EPS security context, it will not integrity-protect nor
cipher the TAU Request message.

If the new MME does not have the current EPS security context indicated by the received
eKSI, or the TAU Request was received without integrity protection, the new MME will
request the UMTS security context from the old SGSN and convert the security context to
a mapped EPS security context. The MME finds the old SGSN on the basis of the GUTI
mapped from a P-TMSI, and the old SGSN identifies the UMTS security context using the
GPRS ciphering key sequence number that was sent along by the UE together with the mapped
GUTI. This mapped EPS security context then becomes the current EPS security context. The
next paragraph explains how the mapped EPS security context is created.

The UE always includes a 32-bit NONCEyg into the TAU Request message. The nonce is
used only when a mapped EPS security context needs to be created. But as the UE cannot
know when it sends the TAU Request whether this will be the case, it always includes the
NONCEgg. A nonce is, by definition, a number used only once. In this case, NONCEyg even
has to be a random number. (For more information about the randomness requirements on
NONCEgg, see Annex A in [TS33.401)).

When creating the mapped EPS security context from the CK || IK received from the
SGSN, the MME will also create a nonce, called NONCEyyg (which has to satisfy similar
randomness requirements as for NONCEyg), and use both nonces to derive a fresh mapped
K’ asme. The reason for using the nonces for creating the K'asyvE is that the same CK || IK
may be delivered to the new MME in idle state mobility procedures repeatedly, for example
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when the UE moves back and forth between UTRAN and E-UTRAN several times, and no
new keys CK and IK are created on the UMTS side during this period. If now the mapped
K’ asme was created only from CK and IK, without further fresh input the same mapped K’ asmg
would be created each time, and consequently also the same NAS encryption and integrity
keys (see Chapter 8). This would violate the security requirement that the same keys with the
same sequence numbers (COUNT values) must not be used twice as they are used as input
values for integrity protection and ciphering. But when the mapped EPS Security context is
created, the respective NAS uplink and downlink COUNT values are set to start values. For
this reason, the K'ssmg must be always fresh and thus the use of the nonces is required. The
new MME will take the new current EPS security context into use with the NAS security mode
command procedure (see section 8.2), and include both of the nonces into the NAS Security
Mode Command message. The MME includes the NONCEyg so that the UE can verify that
its own NONCEyg was not modified while sent to the MME. Then the UE is also able to
derive the fresh K'asmE by using the nonces as input values to the key derivation function.
Annex A in [TS33.401] shows the exact key derivation parameters and formulas. As normally,
the MME may also change the algorithms at the same time (e.g. if the new MME supports
different algorithms from the old MME).

This description applies also to idle state mobility from GERAN to E-UTRAN as the
requirement is that the source SGSN shares a UMTS security context with the UE.

11.1.3 Handover from EPS to 3G or GSM

Here we describe the key management during handovers from EPS to 3G or GSM. Note that,
before the handover can happen, both the NAS and AS security must be set up on the EPS side.
In other words, the base station cannot send handover commands without AS security being
active. This protects against attacks where the attacker sends unprotected commands to hand
over to other less secure RATs before the UE and base station have set up AS level security.

‘When the EPS network decides to do a handover to UTRAN/GERAN, it will create UMTS
keys and send them to the target SGSN along with UE security capabilities and the KSI. The
target system will then create handover command parameters, including security algorithms
for use in the target system, that are delivered to the MME and finally to the serving base
station in E-UTRAN that commands the UE to do handover to UTRAN.

We now first explain the handover to UTRAN. We then explain the (small) differences from
the case of handover to GERAN.

As already mentioned above, in handovers always mapped keys are used in the target system
for efficiency reasons, irrespective of the availability of security contexts in the target system.
Both the UE and the MME need to create fresh UMTS keys CK’ and IK’ from the current
Kasme. The KSI identifying CK’ and IK’ equals the value of eKSI identifying the current
Kasme. To ensure key freshness, the UE and the MME use the current NAS downlink COUNT
value as input parameter to the CK’ and IK’ derivation and then increase its value. In this way,
the same NAS downlink COUNT value is never used twice to derive CK’ and IK’ with the same
KasmEe. To ensure that both the MME and the UE use the same NAS downlink COUNT value,
the MME includes four least significant bits of the current 32-bit NAS downlink COUNT value
into the message delivered to the eNB that commands the UE to do handover to UTRAN. The
eNB forwards these bits to the UE. The UE will then synchronize its NAS downlink COUNT
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value with the one used by the MME, perhaps by increasing the NAS downlink COUNT value
until the four least significant bits match. The UE also checks that the same NAS downlink
COUNT value is not used twice to derive the CK’ and IK’ with the same K gye. Note that the
NAS downlink and uplink COUNT values must never decrease in the UE or MME.

Along with the CK’ and IK’, the MME provides also UE security capabilities to the target
SGSN. The target system then decides what algorithms to use.

The new mapped UMTS security context replaces all the stored values in the USIM, in the
ME, and in the target SGSN. In this way, the mapped context remains available to both UE and
SGSN after the UE has gone to idle state. Note further that the KSI mapped from eKSI may be
identical to a previously established KSI. It is therefore important that previously stored key
and KSI values be overwritten in all places where they may have been stored so as to avoid
future key synchronization problems between UE and SGSN. As in the idle state mobility case
described in section 11.1.1, the UE also derives Kc from the CK’ and IK’ and stores it on the
USIM, together with the CKSN set to KSI.

If the handover fails, the new mapped UMTS security context is deleted. If the target SGSN
had a security context with the same KSI as the new mapped security context, the SGSN will
delete it. This is needed to avoid possible security context synchronization problems.

This description applies also for handovers from E-UTRAN to GERAN as the requirement
is that the target SGSN shares a UMTS security context with the UE. However, the UE and
SGSN will derive Kc from the CK’ and IK’, and K¢ when the new encryption algorithm
requires a longer key. Also, the target SGSN and UE assign the eKSI value associated with
the CK’ and IK’ to the GPRS CKSN associated with the GPRS Kc or K.j25. The UE updates
also Kc on the USIM.

11.1.4 Handover from 3G or GSM to EPS

In handover from UTRAN or GERAN to EPS, the mapped EPS security context is always used
in the target system after handover. Only after the handover can the EPS take an available native
EPS security context into use if it decides to do so by running a Security Mode Command
procedure or run EPS AKA to create a fresh native EPS security context.

The source system SGSN delivers the CK, IK and KSI to the target MME. If the user has
only a GSM subscription, and hence the security context in the SGSN was derived from a
SIM instead of a USIM, the SGSN delivers a Kc to the target MME, which then aborts the
procedure. Remember that the user is allowed to access UMTS, but not EPS, when using a
GSM subscription. To make the system more efficient, the source RNC may check whether
the UE was authenticated with UMTS AKA (see more details in [TS33.401]). If the UE was
not authenticated with UMTS AKA, the source RNC may decide not to perform a handover to
E-UTRAN. (Actually, it does not make much sense for the RNC to go ahead with the handover
to E-UTRAN at this point as the MME will block it anyway.) Additionally, the source RNC
may choose another target system for the UE for the handover.

The target MME uses the CK and IK along with a NONCEpyg to create a fresh mapped
K’ ssme. The MME creates the NONCE g to make sure that the K’ agumg is fresh as the same
CK and IK may be delivered to the MME repeatedly, such as during handover procedures
when the UE is moving back and forth between UTRAN and E-UTRAN. NONCEpg will
satisfy the same randomness requirements as the nonces used in idle state mobility procedures.

http://freepdf-books.com



Interworking Security Between EPS and Other Systems 179

The Keng is derived from the K’ ssvE and sent to the target base station (i.e. eNB). As usual,
the Kcnp derivation parameters include the NAS uplink COUNT value. However, in the case
of handover from UTRAN to E-UTRAN the specifications state that the NAS uplink COUNT
value used in the K.np derivation has to be 23 — 1, while the NAS uplink COUNT value used
in the NAS protocol as a message counter is set to zero after handover as it should be with a
fresh key K'asmg and, hence, fresh NAS encryption and integrity keys. The rationale is that
3GPP discovered a particular scenario where the same K.ng would be derived twice, leading
to a keystream repetition and potential security vulnerability. 3GPP decided to address this
vulnerability even if it seemed quite difficult to exploit it.

The scenario is as follows. Assume that a UE is handed over to E-UTRAN, and a Kcng 1S
derived from the K'ssmg using a NAS uplink COUNT value of zero. Assume further that no
TAU Request is sent after the handover, due to ISR being on, and no other NAS message is
sent on the uplink, so the NAS uplink COUNT remains at zero. Then the UE goes to idle state.
When the UE comes back to connected state and sends a Service Request, then this request
uses the current NAS uplink COUNT value, which is zero. But according to the general rule
for deriving Knp, described in section 7.3, the current NAS uplink COUNT value has to be
used in the K.np derivation. As the Kasyvg has not changed, this results in the derivation of
the same K.np as the one created after the handover. The next Service Request will increase
the NAS uplink COUNT, so the problem cannot occur again, and the use of the value 23? —
1 in the K¢np derivation right after handover solves the problem as in the NAS signalling the
NAS uplink and downlink COUNT values are used as 24-bit values and the most significant
eight bits are always set to zero [TS24.301]. Thus, the NAS uplink or downlink COUNT value
never reaches 32-bit maximum value (232 - 1).

Note that the KSI is marked as KSIggsn when stored in the eKSI information element in
EPS. In this way, the EPS can distinguish between KSIs allocated by an MME and KSIs
coming from the SGSN as both network entities may have assigned the same value (KSI is
only three bits, but eKSI uses a fourth bit to distinguish between KSIsgsn and KSIasmg — see
section 7.4). This works as the newly mapped EPS security context overwrites any existing
current mapped EPS security context. Note that, in the other handover direction, the mapped
UMTS security context overwrites the current UMTS security context to, for example, avoid
the KSI overlap.

The target MME selects the NAS security algorithms and indicates them to the target base
station (eNB), together with KSIsgsn, UE security capabilities and the NONCE . The target
base station then selects the AS level security algorithms and includes all these parameters
into the handover command message. The handover command message is then delivered to
the source system, which sends it to the UE. When the UE receives the handover command it
will activate the AS and NAS level security for the EPS side. Similarly, when the target eNB
receives the handover complete message from the UE, it activates the AS level security. The
target MME activates the NAS level security when it receives the Handover Notify message
from the target eNB.

The source system SGSN sends the UE security capabilities to the target MME. The UE
security capabilities, including the UE EPS security capabilities, were sent by the UE to the
SGSN via the UE Network Capability information element, which includes also UE EPS
security capabilities, in Attach Request and RAU Request. It is possible that an SGSN of a
previous release does not forward the UE EPS security capabilities to the MME. When the
MME does not receive UE EPS security capabilities from the SGSN, the MME will assume
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that the default set of EPS security algorithms, which is the set of algorithms defined for 3GPP
Release 8, is supported by the UE (and will set the UE EPS security capabilities in the mapped
EPS NAS security context according to this default set).

To protect against bidding down attacks from the source system, the UE includes its security
capabilities in the following TAU Request message after the handover so that the MME can
check them and change the NAS and AS security algorithms if needed. It is possible that UE
does not send the TAU Request within a certain period, perhaps because the tracking area does
not change and ISR is on, but this can only happen when the UE previously registered with
the MME, and the MME should then still have the UE EPS security capabilities from that
previous registration. If the MME has already deleted that context, then at most bidding down
to the default set of capabilities is possible.

If the handover fails, the target MME deletes the new mapped EPS security context to avoid
possible security context synchronization problems.

If the tracking area changes, the UE sends a TAU Request (also in the case the UE was not
at all registered in the EPS before) protected with the mapped EPS security context. If the
UE has a native EPS security context, it will include a GUTI into the message, either in the
Old GUTI information element or in the Additional GUTI information element. The UE will
include also an eKSI that is a KSIasmg (i.€. key set identifier for a native EPS security context).
In this way the MME is able to search the native EPS security context from its memory and
activate it, if available, on the NAS level after completion of the handover procedure. The
MME sends the new Kcnpg derived from the native EPS security context to the target eNB.
The target eNB uses the key change on-the-fly procedure to activate the new keys on AS level,
as described in section 9.5. In this way, the EPS does not have to run EPS AKA for getting
forward key separation from the source system keys. However, if the UE does not have a
native EPS security context, it is strongly recommended to run an EPS AKA and perform a
key change on-the-fly of the entire key hierarchy as soon as possible after the handover. The
reason is that the security target is to always have separate keys in the EPS.

This description applies also for handovers from GERAN to E-UTRAN as the requirement
is that the source SGSN shares a UMTS security context with the UE.

11.2 Interworking with Non-3GPP Networks

This section has a close relationship with Chapter 5 on 3G—-WLAN interworking. The reader
interested in this section is advised to first have a look at the principles of 3G-WLAN
interworking laid out in section 5.1 as they will be re-used here. The procedures here are also
quite similar to the security mechanisms described in section 5.2, but they will be described
in detail as there are some significant differences that would be difficult to explain with only
a wholesale reference to section 5.2.

11.2.1 Principles of Interworking with Non-3GPP Networks
Scope

While Chapter 5 dealt with the security for accessing a third-generation core network via a
non-3GPP access network, using the example of WLAN, this chapter deals with the security
for accessing the Evolved Packet Core (EPC) via a non-3GPP access network. A non-3GPP
access technology is a technology not defined by 3GPP; that is, any access technology other
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than E-UTRAN (LTE), UTRAN (3G) or GERAN (2G). The security procedures for non-3GPP
access to the EPC specified in [TS33.402] are not specific for any particular non-3GPP access
technology, but, for one particular access technology, namely cdma2000® HRPD [TS33.402]
provides a mapping of the procedures to the network entities. This reflects the fact that access
to the EPC via a cdma2000® HRPD access network represents probably the most important
use case at the time of writing this book. It permits operators using the cdma2000® technology
in their second- or third-generation networks to smoothly migrate to LTE. The cdma2000®
access technology as such is specified in [C.S0024-A v2.0] and is widely used in the Americas
and parts of Asia. Other access technologies explicitly mentioned in the 3GPP specifications
[TS23.402] and [TS24.302] are WiMAX (Worldwide Interoperability for Microwave Access)
[WiMAX], WLAN and Ethernet.

The present treatment differs somewhat in scope from the preceding section 11.1 on inter-
working with GSM and 3G networks, because the latter dealt only with the security aspects
of movements between different types of network while this section deals also with situations
where the user remains stationary. Furthermore, user movements in non-3GPP access to the
EPC, considered in the context of the present section, are supported in such a way that the
EPC network remains the same; in contrast, in the context of section 11.1, the type of core
network would, in general, also change for a moving user.

Trusted versus untrusted access networks

A crucial concept in the context of non-3GPP access to the EPC is the distinction between
trusted and untrusted access networks. The intuitive meaning of ‘trusted access network’ is
that both the security measures anyway present in the access network and the security of the
links between the access network and the EPC are good enough from the EPC operator’s
point of view. Consequently, for trusted access networks, no additional security measures
need to be defined to protect the communication between the terminal and the EPC, while
for untrusted access networks such additional measures are needed. Therefore, the procedures
vary substantially depending on the trust status of the access network.

The 3GPP specifications do not give precise criteria when an access network should be
considered trusted or not. The reason for this is that specifications are meant to capture the
technical behaviour of a system, while the question whether somebody trusts in something
goes beyond technology, and has to do also with organizational, commercial and legal consid-
erations. Consequently [TS23.402] states:

Whether a Non-3GPP IP access network is Trusted or Untrusted is not a characteristic of the
access network.?

It is therefore up to operators and users whether they consider an access network as trusted
or not. In most practical cases, a user’s home operator will take the decision for the user,
and the user’s terminal will learn of the trust status of the access network by configuration
or by an explicit indication in a protected signalling message sent during 3GPP-based access
authentication — see clause 6.2.3 of [TS24.302]. The explicit indication takes precedence over
the data configured in the terminal in case of conflict as it is likely to be more up to date. The
home operator may be assisted in this decision by information received from a visited operator
in roaming situations.

3 Extract reproduced with permission from © 2010, 3GPP™,
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When an access network is untrusted, an IPsec tunnel must be established between the
User Equipment and a node in the EPC, called the evolved Packet Data Gateway (ePDG). All
traffic, apart from the initial signalling for setting up the tunnel, must then travel across the
access network inside this secure tunnel. In this way, the security level of the communication
between the user equipment and the EPC becomes independent of the security properties of
the access network, and the overall security level is high even if the access network provides
no security at all. When the access network is trusted there is no need to use an ePDG and a
secured tunnel between the UE and the ePDG. As we will see later, however, even for trusted
access networks, IPsec protection is required between the UE and the Home Agent in certain
cases for protecting Mobile IPv6 signalling.

In the view of the authors, in practical deployments cdma2000® HRPD access networks
would often be considered as trusted, while public WLAN hotspots with no air interface
protection would be candidates for the status ‘untrusted’.

Mobility concepts for non-3GPP access to the EPC

When users are attached via a 3GPP-defined access network — E-UTRAN, UTRAN or GERAN
— their mobility is supported using mobility mechanisms specific to these access networks.
Examples are the mechanisms for handover in E-UTRAN described in Chapter 9. For non-
3GPP access to the EPC, these mechanisms are not available, and mobility mechanisms specific
to these non-3GPP access networks (not specified as part of the Evolved Packet System) and IP
mobility mechanisms are used instead. There are three such IP mobility mechanisms relevant
here:

® Proxy Mobile IP (PMIP) [RFC5213];
® Mobile IPv4 (MIPv4) in Foreign Agent mode [RFC3344];
e Dual Stack Mobile IPv6 (DSMIPv6) [RFC5555].

It is specified in [TS23.402] how these mechanisms are used in the context of non-3GPP
access to the EPC. As this book focuses on security, and many other sources are available to
find more information on these IP mobility mechanisms, we do not attempt to describe here
how they work in any detail.

The use of these IP mobility mechanisms depends on the trust status of the non-3GPP access
network as follows (for details see [TS23.402]).

® PMIP. The salient property of PMIP is that the UE is unaware of any IP mobility handling
and therefore assumes itself to be connected to its home network all the time. The handling
of mobility is performed on behalf of the UE by a so-called Mobile Access Gateway (MAG).
Its counterpart on the core network side is the Local Mobility Anchor (LMA). When PMIP
is used with a trusted access network, the MAG resides in the non-3GPP access network;
when PMIP is used with an untrusted access network, the MAG resides on the ePDG. In
both cases, the LMA resides on a gateway in the EPC. ([TS23.402] also treats a case where
a MAG resides in a Serving GW, but this case is not further described in this chapter as it is
not particular to non-3GPP access to the EPC.)
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® MIPv4. This is used only with trusted access networks. The Mobile Node resides on the UE,
the Foreign Agent resides in the non-3GPP access network, and the Home Agent resides on
a gateway in the EPC.

® DSMIPv6. This can be used with both trusted and untrusted access networks. The Mobile
Node resides on the UE, and the Home Agent resides on a gateway in the EPC. There is no
Foreign Agent.

The security procedures relating to these mobility mechanisms are described in section 11.2.4.

The EAP framework

The EAP framework was described in Chapter 5. 3GPP decided to apply the EAP framework
for authentication and key agreement for non-3GPP access to the EPC for the same reasons it
had already decided to use the EAP framework for 3G-WLAN interworking. These reasons are
that the EAP framework provides a means for using the same authentication and key agreement
method across different types of access networks and generating and distributing keys in a
uniform manner. An important reason is also that possibly existing credential infrastructures
can be re-used. The only aspect that is specific to the type of access network is the way in
which the transport of EAP messages is supported.

The peer resides on the UE, and the EAP server resides on the 3GPP AAA server. The
allocation of the authenticator varies with the scenarios as we will see below.

EAP methods used with non-3GPP access to the EPC

The following two EAP methods are allowed to be used for non-3GPP access to the EPC:

* EAP-AKA as specified in [RFC4187];
e EAP-AKA' as specified in [RFC5448].

Both the UE and the 3GPP AAA server must implement both EAP-AKA and EAP-AKA'.
The same USIM may be used for both EAP-AKA and EAP-AKA'. The use of a USIM is
required only if the terminal supports also 3GPP access capabilities. Note that the USIM
always resides, by definition, on a smart card, the UICC. If the terminal does not support
3GPP access capabilities, 3GPP does not require that a UICC be present, and 3GPP does not
specify where the credentials used with EAP-AKA and EAP-AKA’ reside. But the mobile
terminal must support equivalent functionality as provided by a USIM also in the latter case
for the two aforementioned EAP methods to work. This rule was introduced so as to ease the
re-use of terminal types in legacy environments where UICCs have not been used.

In contrast to 3G-WLAN interworking, EAP-SIM is no longer allowed. This is in line with
the general decision to deny access to the Evolved Packet System based on a SIM (see also
Chapter 6).

Overview of EAP-AKA’

An overview of EAP-AKA has already been given in Chapter 5. Here we explain the additional
features of EAP-AKA' not present in EAP-AKA.
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Both EAP-AKA’ and EAP-AKA allow using USIMs (or equivalent functionality) and
UMTS authentication vectors and UMTS cryptographic functions, as described in sections 4.2
and 7.2, within the framework of EAP. In addition, EAP-AKA’ provides a binding of derived
keys to the access network identity. The relationship between EAP-AKA and EAP-AKA' is
therefore quite similar to that between UMTS AKA (Chapter 4) and EPS AKA (Chapter 7).

The differences between EAP-AKA and EAP-AKA' are as follows.

For each EAP-AKA'’ full authentication, UMTS authentication vectors, including the keys

CK and IK, are generated. However, the keys CK and IK are not directly used in EAP-

AKA'. Rather, a further key pair (CK’, IK') is derived from (CK, IK) by including the access

network identity in the derivation. This provides the desired binding of the keys to the access

network identity.

¢ Any further EAP keys are then derived from (CK’, IK’) rather than from (CK, IK).

e The way in which the keys of type MSK, EMSK, and the TEK keys K_aut and K_encr are
computed is also substantially different compared to EAP-AKA.

® The key derivation function is based on the hash function SHA-256 rather than the weaker
SHA-1 (see section 2.3).

® In order to allow both sides to unequivocally derive the same keys, the access network
identity (called ‘access network name’ in [RFC5448]) is sent from the EAP server to the
EAP peer in an appropriate attribute carried in the EAP-Request/AKA’-Challenge message.
The access network identity must be constructed as defined, for each access network type
separately, in [TS24.302].

e The EAP peer and the EAP server can find out about their mutual support for EAP-AKA’
by using the normal EAP method negotiation procedures, based on the different EAP type
codes associated with each EAP method. As we will see in this chapter further below, 3GPP
specifies under which conditions EAP-AKA and EAP-AKA' respectively are to be applied.
The 3GPP AAA server enforces the use of the correct EAP method on the core network
side.

e EAP-AKA'’ provides a means for preventing bidding down to EAP-AKA. This is necessary

as the security properties of EAP-AKA’ are stronger, and hence a bidding down to EAP-

AKA would unnecessarily weaken security in situations where both sides, peer and server,

would be able to support the stronger method, but would allow falling back to the weaker

method if otherwise communication was not possible.

EAP-AKA’ may be used for full authentications or fast re-authentications, just like EAP-
AKA. EAP-AKA' also uses pseudonyms and re-authentication identities in the same way as
EAP-AKA.

We now discuss the advantages of being able to bind the key MSK to the access network
identity. Assuming the link between the peer and the authenticator to be protected by keys
derived from MSK, the key binding can eliminate some forms of the ‘lying authenticator’
problem, which has already been mentioned in section 5.1. The AAA procedures between the
authenticator and the EAP server may be assumed to provide strong authentication so that
the authenticator cannot lie about its identity to the EAP server. This enables the EAP server
to ensure that a key MSK bound to a particular access network identity is delivered only to
an authenticator associated with this access network identity. The EAP server then informs
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the EAP peer about this access network identity in the EAP message EAP-Request/AKA'-
Challenge, which is integrity-protected with the key K_aut. Therefore, the authenticator can
no longer lie to the peer about the access network identity, with which it is associated. This
prevents in particular an attack mentioned in [RFC5448]:

A roaming partner, R, might claim that it is the home network H in an effort to lure peers to
connect to itself. Such an attack would be beneficial for the roaming partner if it can attract more
users, and damaging for the users if their access costs in R are higher than those in other alternative
networks, such as H.

Note that for EAP-AKA such an attack would be, in principle, possible. Whether this attack
constitutes a risk depends on the circumstances.

The benefits obtained from the key binding to the access network identity depend on the
granularity, with which ‘access network identity’ is defined. The access network identity
could identify an individual authenticator in an access network, or all authenticators in an
access network (as the name suggests), or even refer only to the access technology. The latter
approach was chosen by 3GPP2 and WiMAX for the cdma2000® HRPD and WiMAX access
technologies. 3GPP also specified general access network identities for Ethernet and WLAN in
[TS24.302] for potential future use. This approach prevents breaches in one access technology
to spill over to another access technology, while breaches inside each technology may still
occur. More fine-grained definitions would be possible in the future if desired.

The precautions to be taken with the authentication vectors are the same as for the case of
EPS AKA. Anybody getting hold of the keys CK and IK can also compute all the keys derived
from them and, consequently, perform the key binding to the access network identity and
impersonate any authenticator. It is therefore crucial for the security of EAP-AKA' that the
keys CK and IK never leave the 3GPP HSS. Authentication vectors for use with EAP-AKA’
must therefore have the AMF separation bit set to ‘1°, and the terminal side must check this,
just as for authentication vectors used with EPS AKA (see Chapter 7).

The development of EAP-AKA' is a nice example of a smooth cooperation between two
standardization organizations, 3GPP and the IETFE. While 3GPP first discovered the need for
an extension of EAP-AKA providing a binding of keys to the access network identity, people
at the IETF then took up this requirement and produced [RFC5448] in time for 3GPP Release
8, in constant discussion with the relevant Working Groups in 3GPP, WG SA3 and WG CT1.

Conditions for applying EAP-AKA and EAP-AKA/’, respectively

The conditions are slightly complicated and relate to the trust status of the access network and
the IP mobility scheme used.

® Trusted access networks. As a general rule, EAP-AKA’ must be used with trusted access
networks. The procedure described in section 11.2.2 always applies when PMIP (with
the MAG in the non-3GPP access network) or MIPv4 are used as mobility schemes. The
authenticator then resides in the non-3GPP access network, and there is no protected tunnel
to the EPC; it therefore is a good idea to benefit from the EAP-AKA’ property of binding
keys to the access network identity. There is, however, an exception from the general rule
when DSMIPv6 is used as described below in this chapter.

http://freepdf-books.com



186 LTE Security

® Untrusted access networks. For untrusted access networks, the establishment of an IPsec
tunnel between the UE and the ePDG is required, as described in section 11.2.3. This IPsec
tunnel is established via IKEv2, in a manner quite similar to 3GPP IP access in 3G-WLAN
interworking (see section 5.2). The UE, which is the IKEv2 initiator, is authenticated using
EAP-AKA inside IKEv2. One may wonder why EAP-AKA' is not used here. Indeed, the use
of EAP-AKA’ would be perfectly possible for this purpose. But EAP-AKA’ would provide
no security advantage over EAP-AKA in this case because IKEv2 mandates the use of
certificates for responder authentication (i.e. authentication of the ePDG to the UE); and this
certificate-based authentication also guarantees a binding of the IPsec security association
used to protect the message in the tunnel to the identity in the certificate. 3GPP opted for
maximum commonality with the case of 3GPP IP access and therefore decided in favour
of using EAP-AKA here. But, as reported in Chapter 5, efforts are under way in the IETF
to remove the requirement of certificate-based authentication from IKEv2. Removing this
requirement without adding further protocol elements would, however, be only possible with
EAP-AKA'.

Prior to tunnel establishment, access authentication may be required to gain IP connectivity
over the untrusted access network. This access authentication may, or may not, involve the
3GPP AAA server and is independent of the EAP-AKA run inside IKEv2. We quote from
[TS33.402]:

This additional access authentication and key agreement is not required for the security of the
Evolved Packet Core. However, it may be required for the security of the untrusted non-3GPP
access network. Any authentication and key agreement procedure deemed appropriate by the
access network provider, including EAP-AKA', may be used.*

In particular, the access authentication need not even be an EAP method.

As mentioned earlier, DSMIPv6 can be used with both trusted and untrusted access networks.
The use of DSMIPv6 requires the establishment of an IPsec tunnel between the UE and
the PDN GW, which acts as the Home Agent, to protect the Mobile IP signalling. Again,
IKEv2, with EAP-AKA for authenticating the UE to the network and certificate-based network
authentication, is used for this purpose. Note that the PDN GW and the ePDG are two different
functional entities, and, when using DSMIPv6 over untrusted access, there are two IPsec
tunnels whereby the tunnel between the UE and the PDN GW runs inside the tunnel between
the UE and the ePDG. When DSMIPv6 is used over trusted access, there is only one tunnel,
the one between the UE and the PDN GW.

Similar to the case of untrusted access, access authentication may be additionally required to
gain IP connectivity over the trusted access network. As only the Mobile IP signalling, and not
all traffic, is protected by the IPsec tunnel in this case, 3GPP recommends using EAP-AKA’
for access authentication, as described in section 11.2.2. But it is also possible to use some
other strong authentication method, documented in a standard covering the non-3GPP access
network, if the following conditions are fulfilled [TS33.402].

1. The trusted access network authenticates the UE and provides a secure link for the data to
be transferred from the UE to the trusted access network.

4 Extract reproduced with permission from © 2010, 3GPP™,
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2. The trusted access network protects against source IP address spoofing.

3. The trusted access network and the PDN GW have a secure link between them to transfer
the user data.

4. The trusted access network and the EPC need to co-ordinate when the UE detaches from
the trusted access network in order to ensure that the IP address that was assigned to the
UE is not used by another UE without the EPC being aware of the change. If such an IP
address change happened the PDN GW would have to remove the CoA address binding for
the old UE.

This sounds a bit complicated, and needs more explanation. The idea underlying these four
conditions is that origin authentication of IP packets from the UE can be achieved using a
form of IP address binding to the IMSI as follows. Condition 2 ensures that a user cannot
illegally use somebody else’s IP address, and conditions 1 and 3 ensure that no attacker can
alter the IP address while the IP packet is in transit from the UE to the PDN GW. So, these
three conditions together ensure that packets with the same source IP address always originate
from the same user, at least as long as this user is assigned that IP address.

But how can the operator of the EPC know which user is behind that I[P address? The
required binding of the source IP address to an IMSI is provided by IKEv2 with EAP-AKA
authentication between the UE and the PDN GW because the authenticated user identity is a
NAI based on the IMSI. Condition 4 takes care of the additional problem that an IP address
may be reassigned by the access network without the EPC noticing. If this happened the EPC
would wrongly belief that the new user, to which the IP address was reassigned, had the IMSI
that in fact belongs to the old user previously authenticated by means of EAP-AKA.

Condition 4 may not be easy to fulfil in practice as it asks for a coordination of IP address
assignment in the access network with functions in the core network. Examples of how
condition 4 may be achieved are mentioned in [TS33.402]. One example is a coordination of
timers for IP address reallocation in the access network with timers for Mobile IP binding
expiry or IKE Dead Peer Detection in the PDN GW. Another example is the use of a gateway
control session defined in the context of the policy control (PCC) mechanism; for details see
[TS33.402].

All in all, the conditions listed above ensure that the EPC can verify that a certain IP packet
originates from an authenticated user with a particular IMSI. But as it is easy to get things
wrong with this kind of coordination, the specification [TS33.402] cautions that EAP-AKA’
should be used if there is any doubt about the four conditions above being fulfilled in practice.

11.2.2 Authentication and Key Agreement for Trusted Access

This chapter presents the procedure using EAP-AKA’ for trusted access networks. The precise
conditions, under which this procedure applies, were explained in the preceding Chapter
11.2.1. The procedure is depicted in Figure 11.1.

The numbering of the steps in Figure 11.1 is the same as that in Figure 6.2-1 of [TS33.402],
to make it easier for the reader to compare the text explaining the figure here with the text
in the 3GPP specification. Figure 6.2-1 of [TS33.402] shows an additional network element,
a AAA proxy, but as such a proxy takes no active role in the procedure and simply passes
all messages through we have omitted the proxy in our figure. The textual description in this
book is shortened in some places compared to [TS33.402] as not all details presented there are

http://freepdf-books.com



188 LTE Security

3GPP
Non-3GPP AAA
UE HSS
Access Network Server
| 1. Connection establishment |
| 2. EAP-Request/Identity
3. EAP-Response/ldentity | 4.45. AAA
" [EAP-Response/identity]
6. AAA
_ [EAP-Request/AKA’-Identity]
| 7. EAP-Request/AKA’-Identity
8. EAP-Response/AKA’-ldentity 9. AAA
[EAP-Response/AKA’-Identity]
10.
11.
13. AAA 12.
_[EAP-Request/AKA’-Challenge]
| 14. EAP-Request/AKA’-Challenge
L]
16. EAP-Response/AKA’- 17. AAA
Challenge . | [EAP-Response/AKA’-Challenge]
19. AAA [18
| |[EAP-Request/AKA’-Notif.]
| 20. EAP-Request/AKA™-Notif. <
21. EAP-Response/AKA’-Notif. 22. AAA ,
P [EAP-Response/AKA’-Notif.] _
23. AAA o
A[EAP-Success]
24. EAP-Success
25.

Figure 11.1 EAP AKA authentication for trusted non-3GPP access

essential for the understanding of authentication for trusted access networks. It is expanded in
other places so as to explain the rationale for certain steps.

We limit ourselves to presenting the full authentication procedure as the fast re-
authentication procedure is very similar. (See section 5.2 for a high-level explanation of
how the fast re-authentication differs from the full authentication.)

1. A link layer connection is established between the UE and the authenticator in the non-

3GPP access network. This establishment procedure is specific to the access technology,
such as cdma2000® HRPD.
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2. The authenticator in the non-3GPP access network starts the EAP procedure by sending the
EAP-Request/Identity message to the UE. According to the EAP framework, this message
is not specific to EAP-AKA'.

3. The UE sends the EAP-Response/Identity message, which is not specific to EAP-AKA’
either. The identity included by the UE is either a pseudonym received in a previous protocol
run, or it is derived from the IMSI. In either case, the identity includes a leading digit hinting
that the UE supports EAP-AKA’ [TS23.003].

4. The authenticator encapsulates the EAP Response/Identity message in a suitable AAA
message, using the DIAMETER protocol, and forwards it towards the 3GPP AAA server.
The AAA message also includes the access network identity. For a discussion of the access
network identity, see section 11.2.1.

5. The 3GPP AAA server receives the AAA message. When it includes a pseudonym the
server derives the IMSI from it. If this fails, the server goes to step 6. For the security
of EAP-AKA' it is important that the 3GPP AAA server can authenticate the origin of
this message at least to the extent that it can verify whether the sender of the message —
the authenticator — is indeed authorized to use the included access network identity. If the
authenticator could lie about the access network identity, the binding of keys to this identity
would be no longer meaningful. As mentioned in section 11.2.1, for the most important
access technologies the access network identity just refers to the access network type; for
example it equals the string ‘HRPD’ or “‘WIMAX’. This means that the 3GPP AAA server
must at least be able to verify (for the purposes of EAP-AKA’) whether the authenticator
resides in an access network of type ‘HRPD’ or “‘WIMAX’.

Steps 6 to 9, are optional. They contain a message exchange for the 3GPP AAA server
obtaining the user identity in messages specific to EAP-AKA’. [RFC5448] on EAP-AKA’
strongly recommends using these steps in a general setting. They serve two purposes. First,
intermediate nodes between the authenticator and the 3GPP AAA server may, in general,
modify the identity sent as part of the EAP-Response/Identity message in step 4, while they
never do that for EAP method-specific messages. However, when the intermediate nodes are
all under operator control it can be ensured by configuration that this does not happen. Second,
the 3GPP AAA server may have been unable to recognize a pseudonym sent by the UE in steps
3 and 4, in which case the server would request the UE to send the permanent identity. But
when a pseudonym is constructed by encrypting the IMSI with a long-term key, as described
in section 5.1, it is unlikely to happen that the server cannot recognize it. So, if it can be ruled
out with sufficient probability that the 3GPP AAA server can correctly process the identity
received in step 5, then the server can be configured to skip steps 6 to 9.

6. This consists in the 3GPP AAA server sending the EAP-Request/AKA’-Identity message
encapsulated in a AAA message.

7. The authenticator retrieves the EAP-Request/AKA’-Identity message from the AAA mes-
sage and forwards it to the UE.

8. The UE responds with the type of identity requested in the EAP-Request/AKA’-Identity
message.

9. The authenticator encapsulates the EAP-Response/AKA’-Identity message in an AAA
message and forwards it to the 3GPP AAA server. The AAA message again includes the
access network identity in the same way as in step 4. The 3GPP AAA server then performs
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the same checks on the access network identity as in step 5. The server uses the received
user identity in the remaining protocol steps.

10. The 3GPP AAA server knows from the origin of the AAA message, and the information
elements contained in the AAA message ([TS29.273]), that the current protocol run is for
trusted access, and hence EAP-AKA’ must be used. As stated earlier, all UEs accessing
the EPC must support EAP-AKA'. So, if the user identity received in steps 5 or 9 does
not contain the hint that the UE supports EAP-AKA’ there must be an error case, and the
server abandons the procedure. Otherwise, the server sends a request for an authentication
vector to the HSS, together with the user’s IMSI and the access network identity. The HSS
sees from the inclusion of the latter that this is a request for EAP-AKA’ and performs the
transformation of the keys CK and IK to the keys CK’ and IK’, as described in section
11.2.1. Note that the specification allows the 3GPP AAA server to fetch an entire batch of
authentication vectors in one go, and then the server could have a suitable authentication
vector already locally available at the beginning of step 10, and would not need to contact
the HSS. But the gain in performance and reliability of doing so is limited as the 3GPP
AAA server and the HSS both reside in the home network and can be assumed to have a fast
and reliable link between them. Furthermore, when the 3GPP AAA server always requests
only one new authentication vector and then consumes it immediately, the likelihood for
synchronization errors in the USIM (see Chapter 4) is minimized irrespective of the
sequence number management scheme.

11. The 3GPP AAA server fetches the user profile from the HSS if not yet available. The user
profile tells the server that the user is authorized to access the EPC.

12. The 3GPP AAA server derives the keys MSK and EMSK and the TEK keys — see
[RFC5448] and sections 5.1 and 11.2.1. In the context of the procedures described in this
book, EMSK is used only to derive a root key for the purposes of Mobile IPv4 (see section
11.2.4).

13. The 3GPP AAA server encapsulates the EAP-Request/AKA’-Challenge message, which
includes the access network identity and, optionally, an attribute indicating the trust status
of the access network, in a AAA message and sends it to the authenticator.

14. The authenticator retrieves the EAP-Request/AKA’-Challenge message from the AAA
message and forwards it to the UE.

15. The UE processes the received message according to the rules for EAP-AKA'. In particular,
the UE must check whether the authentication vector is allowed to be used with EAP-
AKA’ — whether the AMF separation bit (Chapter 7 and section 11.2.1) is set to ‘1°.
Furthermore, the UE compares the access network identity in the received message with
the locally observed one in all cases where [TS24.302] specifies how to construct an
access network identity from local observations, such as on a link layer broadcast channel.
[RFC5448] contains detailed rules how to perform the comparison. These rules are made
such that defining more fine-grained access network identities in the future would be
backwards compatible, so legacy UEs not understanding the more fine-grained access
network identities would still be able to perform the comparison successfully. The UE —
or the human user — may use the network name as a basis for an authorization decision.
For example, the UE may compare the network name against a list of preferred or barred
network names. If any of these checks does not succeed the UE abandons the procedure.

The UE also derives the keys MSK and EMSK and the TEK keys at this point.

16. The UE sends the EAP-Response/AKA’-Challenge message to the authenticator.
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17. The authenticator encapsulates the EAP-Response/AKA’-Challenge message in a AAA
message and forwards it to the 3GPP AAA server.

18. The 3GPP AAA server performs the checks on the response required by EAP-AKA'; that
is, it uses the key K_aut to check the message integrity, and compares the RES received
from the UE with the XRES received from the HSS.

Steps 19 to 22 are conditional. They are only peformed if the 3GPP AAA Server and the
UE have indicated in steps 13 and 16, respectively, that they want to use protected result
indications. Otherwise the procedure continues from step 23 onwards.

19. This step consists in the 3GPP AAA server sending the EAP-Request/AKA’-otification
message encapsulated in a AAA message.

20. The authenticator retrieves the EAP-Request/AKA’-Notification message from the AAA
message and forwards it to the UE.

21. The UE sends the EAP Response/AKA’-Notification message.

22. The authenticator encapsulates the EAP-Response/AKA’-Notification message in a AAA
message and forwards it to the 3GPP AAA server.

23. The 3GPP AAA server sends the EAP-Success message encapsulated in a AAA message.
The latter also contains the key MSK.

24. The authenticator retrieves the EAP-Success message from the AAA message and for-
wards it to the UE. The authenticator stores the MSK and does not forward it to the UE;
but, as the UE has already derived the MSK in step 15, UE and authenticator now share
the MSK. The authenticator and the UE use the MSK according to the security procedures
specific to the non-3GPP access technology. For example, they use MSK to derive further
keys, which are then used to protect the radio access link.

25. The 3GPP AAA server registers the user with the HSS and maintains session state.

11.2.3 Authentication and Key Agreement for Untrusted Access

This section presents the procedure using IKEv2 with EAP-AKA for untrusted non-3GPP
access networks. The precise conditions under which this procedure applies were explained
in section 11.2.1. The procedure is depicted in Figure 11.2.

The numbering of the steps in Figure 11.2 is the same as that in Figure 8.2.2-1 of [TS33.402],
to make it easier for the reader to compare the text explaining the figure here with the text in
the 3GPP specification. The numbering seems a little odd in places as, apparently, some steps
were added to the figure later. The textual description in this book is shortened in some places
compared to [TS33.402] as not all details presented there are essential for the understanding
of authentication for trusted access networks. It is expanded in other places so as to explain the
rationale for certain steps. We limit ourselves to presenting the full authentication procedure
as the fast re-authentication procedure is very similar.

The procedural steps are almost identical to those for 3GPP IP access in 3G-WLAN
interworking, as described in section 5.2.

1. The UE and the ePDG exchange the first pair of messages, known as IKE_SA_INIT, in
which the ePDG and the UE negotiate cryptographic algorithms, exchange nonces and
perform a Diffie-Hellman exchange.
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Figure 11.2 IKEv2 with EAP AKA authentication for untrusted non-3GPP access

2. The UE sends the user identity in the form required for EAP-AKA in this first message
of an IKE_AUTH exchange. In accordance with [RFC4306], the UE omits the AUTH
parameter in order to indicate to the ePDG that it wants to use EAP over IKEv2.

3. The ePDG sends an appropriate AAA message to the 3GPP AAA Server, containing the

user identity.

4. The 3GPP AAA Server sees from the information elements contained in the AAA mes-
sage ([TS29.273]) that this is a request for authentication and authorization in the context
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8a.

of untrusted access to the EPC, and not trusted access to the EPC, or 3G-WLAN inter-
working. As the 3GPP AAA Server trusts the sender (the ePDG) to include the correct
information elements, the server knows that EAP-AKA must be applied. The 3GPP AAA
Server then deduces the IMSI from the received user identity and fetches a fresh au-
thentication vector and the user profile from the HSS (unless already available). The
authentication vector has the AMF separation bit set to ‘0’ as it must be for EAP-AKA.
The user profile tells the server that the user is authorized to access the EPC.

. The 3GPP AAA server encapsulates the EAP-Request/AKA-Challenge message ina AAA

message and sends it to the ePDG. The user identity is not requested again by using the
EAP-AKA-specific identity request/response messages as the user identity received in
step 3 could not have been modified or replaced by any intermediate node.

The ePDG sends its identity, a certificate, and an AUTH parameter to the UE. The ePDG
generates this AUTH parameter by computing a digital signature over parameters in the
first message it sent to the UE (in step 1). The ePDG also includes the EAP-Request/AKA-
Challenge message received in step 5.

The UE verifies AUTH using the public key in the certificate received in step 6 and sends
the EAP-Response/AKA-Challenge message towards the ePDG.

The ePDG forwards the EAP-Response/AKA-Challenge message to the 3GPP AAA
Server, encapsulated in a AAA message.

The 3GPP AAA server performs the checks on the response required by EAP-AKA (i.e. it
uses the key K_aut to check the message integrity), and compares the RES received from
the UE with the XRES received from the HSS. At this point the UE is authenticated from
an EAP point of view.

Steps 8b to 8e are conditional. They are used only if dynamic IP mobility selection (IPMS) is
applied embedded in the EAP-AKA run. IPMS consists essentially in selecting one of the IP
mobility schemes, PMIP, MIPv4, or DSMIPv6, that may be used with non-3GPP access to the
EPC as described in section 11.2.1. For details on the IPMS, see [TS24.302]. Step 8b consists
in the 3GPP AAA server sending the EAP-Request/AKA-Notification message including the
selected mobility mode, encapsulated in a AAA message. Steps 8c, 8d and 8e, consist in the
forwarding of this message by the ePDG to the UE, and the corresponding response from the
UE, forwarded by the ePDG to the 3GPP AAA server.

9.

10.

11.
12.

13.

The 3GPP AAA server sends the EAP-Success message to the ePDG, encapsulated in a
AAA message. The latter also contains the key MSK.

The ePDG generates two additional AUTH parameters by computing message authenti-
cation codes over parameters in the two messages exchanged in step 1 using the shared
key MSK. Note that the ePDG could defer the generation of these two AUTH parameters
until receiving the message in step 12.

The ePDG forwards the EAP-Success message to the UE over IKEv2.

The UE generates two AUTH parameters in the same way as the ePDG in step 10 and
then sends the AUTH parameter protecting the first message from the UE to the ePDG
(sent in step 1).

This includes also step 14. The ePDG verifies the AUTH parameter received in step 12
by comparing it with the corresponding value computed in step 10. At this point the UE
is authenticated also from an IKEv2 point of view.

http://freepdf-books.com



194 LTE Security

14. The ePDG then sends the other AUTH parameter it computed in step 10 to the UE. The
UE verifies the received AUTH parameter by comparing it with the corresponding value
computed in step 12.

15. The ePDG deletes any old IKE SAs relating to the same Access Point Name ([TS23.402])
and informs the UE of this deletion in an informational exchange (not shown in the figure).

Handling of IPsec tunnels in case of UE mobility

IPsec was originally designed without mobility in mind. In order to allow for terminal mo-
bility while keeping the IPsec tunnel alive, the IETF developed MOBIKE [RFC4555]. With
MOBIKE, the terminal (the initiator in IKE terms) may change its IP address while maintain-
ing the IPsec tunnel and inform the responder of the new IP address. But MOBIKE still has to
assume that the same, stationary, responder is used.

The procedures for untrusted non-3GPP access to the Evolved Packet Core take advantage
of MOBIKE using the following rules.

® When the UE moves from a source access where the UE is connected to an ePDG to a target
access that involves the same ePDG, the UE uses MOBIKE.

® When the UE moves from a source access where the UE is connected to an ePDG to a target
access that involves a different ePDG, the UE establishes a new IPsec tunnel with the new
ePDG using the procedures described in this subsection.

® When the UE is connected to the EPS without being connected to an ePDG and then moves
to a target access which involves the UE and an ePDG, the UE establishes a new IPsec tunnel
with the new ePDG again using the procedures described in this subsection.

11.2.4  Security for Mobile IP Signalling

This subsection has three parts, corresponding to the three variants of Mobile IP used with
non-3GPP access to the EPC: Proxy Mobile IP, Mobile IPv4, and Dual Stack Mobile IPv6.

Each of these Mobile IP variants has its own way of securing the mobility signalling. In
each case, the main threat is that Binding Updates may be tampered with by an attacker. A
Binding Update is sent by the Mobile IP client (Mobile Node or MAG) to the Home Agent
(HA) to inform the latter about the client’s new IP address (the so-called care-of-address),
under which the client can be reached. The HA then knows to where it must forward incoming
IP packets, destined to the client’s home address. If such tampering with Binding Updates
was possible an attacker could register a wrong care-of-address with the HA, and the client
would be unreachable until the next Binding Update. Binding Updates therefore need to be at
least integrity-protected. Confidentiality protection is not possible with all Mobile IP variants.
It may be desirable, however, for protecting the client’s privacy. As always, cryptographic
integrity protection requires two elements:

¢ the availability of cryptographic keys;
® an integrity protection mechanism using the keys.

It is advantageous to derive the cryptographic root keys required for the purposes of Mobile IP
from other keys present in the system anyway, such as an authentication key available in the
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Mobile Node. The process of deriving root keys for one use case of cryptography from other
security parameters already present for other purposes is often referred to as ‘bootstrapping’
the security of that use case. Here we describe how this bootstrapping is performed in our
setting.

The integrity protection mechanisms used by the three Mobile IP variants in the context
of non-3GPP access to the EPC are quite different: PMIP and DSMIPv6 rely on IPsec while
MIPv4 uses a mechanism specific to MIPv4. IPsec used with PMIP and DSMIPv6 can provide
confidentiality, if desired, while the MIPv4-specific mechanism cannot provide confidentiality.

We now look at the three Mobile IP variants one by one.

Proxy Mobile IP

The MAG is a network node, and not a user terminal. This makes life easy as far as key
distribution is concerned because the number of network nodes is quite small compared to
the number of terminals and users. While network operators have so far shied away from
distributing public key certificates to potentially hundreds of millions of their customers’
terminals, they do not see a major problem with supplying certificates to network nodes.

The PMIP signalling messages are exchanged between the MAG, either the authenticator
in a trusted access network or an ePDG in the case of an untrusted access network, and the
PMIP Home Agent (LMA) — either the Serving GW or the PDN GW (see section 11.2.1).
So, the task to be solved is the distribution of keys to these nodes, and to implement an
integrity protection mechanism in these nodes. Fortunately, when it comes to protecting IP-
based signalling traffic between network nodes, 3GPP has a panacea called Network Domain
Security (NDS/IP) — see section 4.5. Consequently, [TS33.402] requires the use of NDS/IP
for protecting PMIP signalling. NDS/IP implies that cryptographic protection need not be
used if the traffic between the two nodes in question travels entirely inside one security
domain. However, when the traffic crosses security domain boundaries, the use of IPsec with
integrity protection (message authentication) becomes mandatory. The use of confidentiality
protection is optional. Protection may be provided either by a chain of security associations in
a hop-by-hop fashion, or directly end-to-end.

There is another threat to consider in the context of PMIP: not only may an attacker modify
signalling messages between the MAG and the LMA, but the MAG may be compromised
itself. If this happens then, of course, the security of PMIP is entirely broken for all users
that may be potentially served by this MAG. (They need not even be actually served by it
at the time of the attack as the compromised MAG can anyway send false Binding Updates
on their behalf.) 3GPP discussed whether more elaborate protection schemes, involving the
UE, would be required to contain the damage potentially caused by a compromised MAG,
but finally concluded that the use of NDS/IP was sufficient as the MAGs reside on nodes in
a trusted access network. UE involvement would anyhow have defeated the main purpose of
PMIP, namely to leave the UE unaffected by the mobility scheme.

PMIP is further based on the assumption that a MAG can securely identify which user is
attached to the access network served by the MAG. If access authentication was weak then an
attacker could impersonate a user in the access network. If this happened a MAG would report
in good faith to the LMA that a certain user was present in the access network, while in fact the
attacker was present. But, fortunately, when the MAG resides in a trusted non-3GPP access,
the use of EAP-AKA' is required (see section 11.2.1), thus providing strong authentication.
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Similarly, when the MAG resides on the ePDG strong authentication is provided by EAP-AKA
with IKEv2.

Mobile IPv4

In the context of the EPC, MIPv4 is used only with trusted non-3GPP access networks and
always comes with EAP-AKA’ access authentication according to the procedure described
in section 11.2.2. The integrity protection of MIPv4 signalling messages uses a mechanism
specific to MIPv4, the so-called authentication extensions as defined in [RFC3344]. In our
context, two such extensions are used:

¢ the mandatory MN-HA authentication extension, applied between the Mobile Node (MN)
and the Home Agent;

® the optional MN-FA authentication extension, applied between the Mobile Node and the
Foreign Agent (FA).

In our setting, the MN resides on the UE, the HA resides on the PDN GW, and the FA
resides in the trusted access network. The FA need not coincide with the authenticator in that
trusted access network. Both authentication extensions contain message authentication codes
computed over suitable parts of the protected messages using the MN-HA key and MN-FA
key, respectively. We now describe how these two keys are generated and distributed.

MIPv4 key generation

We only explain the principles and refer to [TS33.402] for the key generation formulas and the
handling of special cases, such as dynamic HA assignment, and EAP-AKA' re-authentication.
The key generation proceeds in the following steps.

e As aresult of EAP-AKA’ access authentication, the UE and the 3GPP AAA server share

the key EMSK.

The UE and the 3GPP AAA server derive a Mobile IP Root Key (MIP-RK) from the EMSK.

The MIP-RK never leaves the 3GPP AAA server.

The UE and the 3GPP AAA server derive a Foreign Agent Root Key (FA-RK) from the

MIP-RK. The 3GPP AAA server sends the FA-RK to the authenticator.

The UE and the 3GPP AAA server derive the MN-HA key from the MIP-RK. The 3GPP

AAA server sends the MN-HA key to the PDN GW.

The UE and the authenticator derive the MN-FA key from the FA-RK. The authenticator

sends the MN-FA key to the FA.

® No keys are sent to the UE as they are derived in the UE locally. No keys derived in the UE
leave the UE.

MIPv4 message protection
The MIPv4 message protection is described with the help of Figure 11.3. It proceeds in the
following steps.

1. During EAP-AKA’ access authentication (see section 11.2.2) the key EMSK is generated
in the UE and the 3GPP AAA server. The UE and the 3GPP AAA server then derive the
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keys MIP-RK and FA-RK as described above. The 3GPP AAA server sends FA-RK to the
authenticator.

2. The UE sends a Registration Request (RRQ) message to the FA [TS23.402]. The UE
includes the MN-HA authentication extension and optionally the MN-FA authentication
extension.

3. The FA processes the RRQ message according to [RFC3344] and, in particular, validates
the MN-FA authentication extension if present, using the MN-FA key it obtained from the
authenticator. The FA then forwards the RRQ message to the PDN GW. The RRQ message
is protected between the FA and the PDN GW using NDS/IP; that is, 3GPP does not make
use of the Foreign—Home Authentication Extension defined in [RFC3344].

4. The PDN GW contacts the 3GPP AAA server to learn whether the UE has been authenti-
cated and authorized and obtain the MN-HA key.

5. The PDN GW validates the MN-HA authentication extension. If the check is successful
the PDN GW sends a Registration Reply (RRP) to the UE through the FA. As in step 3, the
RRP message is protected between the PDN GW and the FA using NDS/IP.

6. The FA processes the RRP message according to [RFC3344] and then forwards it to the
UE. The FA includes an MN-FA authentication extension if the FA received an MN-FA
authentication extension in the RRQ message.

7. The UE validates the MN-FA authentication extension, if present, and the MN-HA authen-
tication extension.

Dual Stack Mobile IPv6

In our setting, the Mobile Node resides on the UE and the Home Agent resides on the PDN
GW. There is no Foreign Agent in DSMIPv6. An IPsec tunnel is set up between the UE and
the PDN GW (acting as a Home Agent) using IKEv2 with EAP-AKA for the purpose of

3GPP
UE Trusted non- PDN AAA
3GPP Access GW Server
. 1. Access Authentication . | . 1- Access Authentication
2. MIPv4 Registration Request
[MN-HA ext + MN-FA ext] .| 3. MIPv4 Registration Request
"1 [MN-HA ext] -
Tl 4. AAA
5. MIPv4 Registration Reply LnteractlorL
6. MIPv4 Registration Reply [MN-HA ext] - o
| [MN-HA ext + MN-FA ext]

7.

Figure 11.3 Message protection for mobile IPv4 with foreign agent
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protecting the Mobile IP signalling between these entities. As required by IKEv2, the PDN
GW is authenticated using a public key certificate. While the purpose of this tunnel set-up
is different from tunnel set-up for untrusted access shown in section 11.2.3, the information
flow is almost identical. As in the case of tunnel set-up for untrusted access, an EAP-AKA
full authentication procedure and an EAP-AKA fast re-authentication procedure may be used.
Corresponding information flows and their textual descriptions can be found in [TS33.402].
Once the IPsec tunnel is established, the UE and the PDN GW can securely exchange DSMIPv6
signalling messages sent through this tunnel.

There is one additional security consideration to be taken into account. It needs to be ensured
that the UE can only send Binding Updates for its own Home Address and not for other Home
Addresses of other Mobile Nodes through this tunnel. This is achieved by binding the Home
Address to the IPsec security association as follows. The PDN GW allocates a Home Network
Prefix during the IKEv2 run and sends it to the UE. The UE then auto-configures a Home
Address from the IPv6 prefix received from the HA. This Home Address is then bound to the
IPsec security association.

11.2.5 Mobility between 3GPP and non-3GPP Access Networks

The preceding sections 11.2.1 to 11.2.4 dealt with the security procedures applied when ac-
cessing the Evolved Packet Core via a non-3GPP access network. These procedures would also
apply while the User Equipment was stationary. Here we deal with the additional procedures
that apply when the UE moves between E-UTRAN and a non-3GPP access network in idle
state or connected state.

For a UE moving between E-UTRAN and a non-3GPP access network while in connected
state (i.e. a UE performing handover), 3GPP defines two types of procedure:

* handover without optimizations between E-UTRAN and a general non-3GPP access;
® handover with optimizations between E-UTRAN and a cdma2000® HRPD access.

The description of the information flows for these two types of procedure takes more than
forty pages in clauses 8 and 9 of [TS23.402] and considers the many different combinations
of interfaces that may occur. To provide a level of detail similar to this description would be
far beyond the reach of this book, and would give little insight on the security aspects. We
therefore limit ourselves to describing the new security concept used in these procedures.

For the sake of completeness, we mention that [TS23.402] also contains a brief clause on
general principles for optimized network-controlled dual radio handover between E-UTRAN
and Mobile WiMAX. That clause does not, however, contain any description of detailed
procedures.

The security procedures are embedded in the descriptions of the overall handover procedures
in [TS23.402]. For the case of handover without optimizations, there is nothing new in terms
of security. When the UE moves to the target access network the UE first attaches to that access
network and then performs the security procedures defined for that access network. So, when
the UE moves, for example, from a non-3GPP access network to E-UTRAN the UE attaches
to E-UTRAN, performs EPS AKA as described in Chapter 7, and establishes confidentiality
and integrity protection as described in Chapter 8.
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In Chapter 9 on mobility between two E-UTRAN access networks the central concept is
security context transfer between the source and the target network. In section 11.1 on mobility
between an E-UTRAN access network and a GSM or 3G access network the central concept
is security context mapping from the source to the target network. The use of either concept
obviates the need for another round of authentication and key agreement in the target network
and therefore enhances performance. Neither security context transfer nor security context
mapping are, however, applicable to mobility between a 3GPP access and a non-3GPP access
network because the security architectures of the involved network are too different.

In the general case, nothing much can be done to improve performance from a security point
of view. For the case of handover with optimizations between E-UTRAN and a cdma2000®
HRPD access, however, the concept of pre-registration can be used to improve handover
performance. Pre-registration includes pre-authentication. The concept is particularly useful
for single-radio terminals that can attach only to one radio access technology at a time. We
explain the idea of pre-registration in the following.

Pre-registration

The basic idea of pre-registration is that a UE can register in the target network, using
procedures specific to the target network, while still being attached to the source network.
The UE communicates with the target network through a series of tunnels spanning across
the source network to a defined exit point in the source network, and further on to the target
network. For E-UTRAN access, this exit point towards a cdma2000® HRPD access network
is the MME. The MME communicates with the HRPD Serving Gateway (HS-GW) in the
HRPD access network.

Once pre-registration has been completed the actual handover phase can start. The handover
messages are tunnelled across the source access network using the same series of tunnels
that was established in the pre-registration phase, thereby speeding up the handover phase
significantly. Only later in the handover procedure, namely when the UE receives the Handover
Command message, does the UE have to attach to the target network; the UE can remain
attached to the source network, and send and receive data there, while the registration and part
of the handover procedure are already ongoing.

For illustration, we show a simplified Figure 11.4 of a pre-registration procedure in a
trusted cdma2000® HRPD access network being performed while the UE is still attached to
E-UTRAN, and explain the steps in the procedure.

1. The UE is attached to E-UTRAN and registered with the MME. It may be in idle state or
connected state.

2. Based on a radio layer trigger, the UE decides to initiate a pre-registration procedure with
the target HRPD access. The pre-registration procedure allows the UE to establish and
maintain a dormant session in the target HRPD access while attached to the E-UTRAN.

3. Registration to the HRPD is achieved by exchanging a series of HRPD messages between
the UE and the HRPD Access Network. The HRPD signalling that is tunnelled transparently
over the E-UTRAN and EPC creates an HRPD session context between the UE and the
HRPD Access Network.

http://freepdf-books.com



200 LTE Security

HRPD 3GPP
Access Network / AAA
UE E-UTRAN MME HS-GW Server

| 1. UE registered with MME |

2. UE decides to pre-
register with HRPD

% 3. HRPD Relldio Session Establilshment Signalling
N V|

4. EAP-AKA’ |access authentication
% N
N VN V|
¥ 5. HRPD IPISession Establishrrﬂent Signalling N
N V|

Figure 11.4 Pre-registration procedure

4. The UE, HS-GW and 3GPP AAA server exchange EAP-AKA' signalling to authenticate
the UE on the HRPD system, in accordance with the procedure described in section 11.2.2
on trusted access.

5. The UE and HS-GW exchange signalling to establish context to support the bearer traffic
environment in use over the E-UTRAN.
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Security for Voice over LTE

Voice has historically been the first application of mobile communication networks, and the
success of GSM has been primarily based on voice. While it is true that data applications
have considerably gained in importance over the years, voice is still a major source of revenue
for mobile operators. It is expected that voice will remain an important application even in
the era of LTE, so there has been a lot of discussion about the best way to provide voice in
an LTE environment. Owing to this importance, we include this chapter on security of voice
over LTE in this book although, as we will show in the following, the corresponding security
mechanisms are largely orthogonal to the LTE security mechanisms discussed in the rest of
the book.

The nature of this chapter is therefore somewhat different from the rest of the book in that
it describes all the relevant mechanisms, but does not go to a similar level of detail. It includes
the necessary references for readers who want to delve into this subject more deeply.

In section 12.1 we briefly introduce the methods standardized by 3GPP for providing voice
over LTE. Then in section 12.2 we discuss the security mechanisms used with these methods.

12.1 Methods for Providing Voice over LTE

There are two standardized methods for providing voice over LTE:

® IMS over LTE. IMS is a largely access-independent service control architecture that enables
various types of multimedia services using IP connectivity.

o Circuit Switched Fallback (CSFB). This provides voice service by fallback from LTE to the
circuit-switched infrastructure offered in UTRAN, GERAN or a 3GPP2-defined network.

These two methods are complemented by the following feature:

e Single Radio Voice Call Continuity (SRVCC). This provides a means to hand over a call
between IMS over LTE and the circuit-switched domain of UTRAN, GERAN or a 3GPP2-
defined network.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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12.1.1 IMS over LTE
What is IMS?

IMS stands for Internet-protocol Multimedia Subsystem. It is a subsystem or a domain within
amobile communications system. IMS may be used for providing voice services over different
network technologies offering IP connectivity. In particular, it can be used for providing voice
services over LTE.

IMS is a huge knowledge area in itself and it is far beyond the scope of this book to attempt
to give an overview. Therefore, this section introduces the key IMS concepts (in case the reader
does not know them already). A detailed insight into IMS is given in other books [Poikselkd and
Mayer 2009; Gonzalo Camarillo and Garcia-Martin 2008]. The former provides the following
definition of IMS:

IMS is a global, access-independent and standard-based IP connectivity and service control
architecture that enables various types of multimedia services to end-users using common Internet-
based protocols.

We discuss below some of the key words in this definition.

® The access-independence of IMS means that, in principle, IMS services and procedures
may be provided and executed over different access technologies in the same way. So, in
principle, there should be nothing particular to IMS over LTE compared to IMS over other
access network types, such as over DSL-type. And, to a large extent, this is indeed true. There
are, however, some dependencies of IMS on the access technology. These dependencies are
partly due to the inevitable influence of the nature of the bearers available from the access
technology on the service that can be provided over those bearers. But they are also partly due
to the fact that IMS has grown out of the originally disjoint efforts of several standardization
organizations, each with their own legacy environments. These efforts were then unified in
the so-called ‘Common IMS’ defined from 3GPP Release 7 onwards. The second reason
applies, in particular, to security as we will see in section 12.2.1.

® IMS is standards-based in contrast to proprietary Voice-over-IP solutions present in the
market today. IMS can be deployed globally based on the Common IMS specifications,
which provide a global standard.

® The IMS multimedia services suite enables voice, together with supplementary services
known from traditional telephony services such as communication barring or call forwarding,
as well as video, presence, group management, conferencing, messaging, and other services.

* IMS enables these services through its service control architecture, which provides users with
ameans to set up sessions between them and exchange media using the Internet Protocol (IP).

¢ The signalling protocol used for setting up sessions in IMS is the Session Initiation Protocol
(SIP) in conjunction with the Session Description Protocol (SDP), as defined by the Internet
Engineering Task Force [IETF]. The SIP core specification can be found in [RFC3261],
and SDP is specified in [RFC4566]. Most of the effort spent by 3GPP on IMS security was
related to securing SIP signalling in IMS.

IMS functional entities

For a full description of the IMS architecture and its functional entities, we again refer the
reader to one of the books cited above. The relevant 3GPP specification describing the IMS
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Figure 12.1 Partial view of the IMS architecture

architecture is [TS23.228]. We shall describe a few key functional entities that are essential
for the understanding of IMS security, the UE, the P-CSCF/IMS-ALG, the IMS Access GW,
the S-CSCEF, and the HSS. The relationships among these functional entities are depicted in
Figure 12.1. The dotted lines in the figure show signalling paths while the continuous lines
show media paths.

® IMS UE (IMS User Equipment). This contains an IMS client and, in general, the user’s
security credentials. It communicates with the P-CSCF and the IMS Access GW over the
IP-Connectivity Access Network, such as 3GPP, xDSL, cdma2000~ or packet cable access
networks.

® P-CSCF / IMS-ALG (Proxy Call Session Control Function / IMS Application Level Gate-
way). A P-CSCF is always present in the IMS architecture, but a P-CSCF does not always
include IMS-ALG functionality. The P-CSCF is the first contact point for IMS UEs in the
IMS. This means that all SIP signalling traffic from and to an IMS UE will be sent through
the P-CSCF. Depending on the signalling security mechanism applied, the P-CSCF is the
termination point for confidentiality and integrity protection of signalling traffic towards the
user. The P-CSCF may act as an IMS-ALG, for example in support of end-to-access edge
IMS media plane security (see section 12.2.1). The P-CSCF / IMS-ALG acts as a controller
of the IMS Access GW in the media path. The general functions of an IMS-ALG and its
interaction with the IMS Access GW are described in [TS23.228] and [TS23.334], while the
particular functions related to IMS media plane security are described in [TS33.328] and
[TS24.229].

® IMS Access GW (IMS Access Gateway). This need not be present in the media path. When it
is present it may support end-to-access edge IMS media plane security (see section 12.2.1).
The same references as for the IMS-ALG apply.

® S-CSCF (Serving Call Session Control Function). This handles the registrations of sub-
scribers to the IMS, makes routing decisions, maintains session states, and stores user
profiles. A user is able to initiate and receive services only after a successful registration
with the S-CSCF. The S-CSCF forwards and receives SIP signalling messages to and from
entities in other networks (rightmost arrow in Figure 12.1). It is responsible for handling
subscriber authentication during registrations and, for certain security mechanisms, the dis-
tribution of session keys for signalling security. For this purpose, it fetches authentication
information and service profiles from the HSS.
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® HSS (Home Subscriber Server). The HSS is a database storing all data relevant to subscription
and service use. In particular, the HSS stores the security credentials tied to the private user
identities and computes authentication information from the credentials upon request from
the S-CSCF.

12.1.2  Circuit Switched Fallback (CSFB)

According to the 3GPP specification [TS23.272], CS fallback in EPS enables the provisioning
of voice and other CS-domain services by re-using the circuit-switched infrastructure when
the UE is served by E-UTRAN. A CS fallback-enabled terminal connected to E-UTRAN may
use GERAN, or UTRAN, or a 3GPP2-defined 1xRTT network, to connect to the CS domain
for originating and terminating voice services. This function is only available when E-UTRAN
coverage is overlapped by either GERAN, or UTRAN, or 1XRTT coverage. In other words,
voice service is not provided via LTE, only via 2G or 3G networks.

For CSFB to work, it needs to be supported by signalling in EPS. In particular, the UE
needs to be registered in the CS domain once it attaches to LTE. This is achieved through an
interaction between the MME and the MSC/VLR in the CS domain. When the UE originates
a call it first switches over to the CS domain; when there is an incoming call for the UE the
CS domain tells the MME to initiate paging for the UE over LTE. Upon receiving the paging
message, the UE then switches over to the CS domain and attaches to it to receive the call.

For GERAN and UTRAN, the reader is referred to Chapters 3 and 4 of this book. References
for 3GPP2-defined networks can be found in [TS23.272], and, more generally, under [3GPP2].

12.1.3 Single Radio Voice Call Continuity (SRVCC)

Single Radio Voice Call Continuity is designed to ensure that a call started using IMS over
LTE or IMS over the 3G High Speed Packet Access (HSPA) can continue even when the radio
conditions become inadequate for the call to proceed with IMS over LTE or HSPA. This may
be the case, for example, when the user moves out of LTE or HSPA coverage, or the quality of
service has become inadequate. When this happens, and the user is within coverage of another
radio network offering circuit-switched services, the SRVCC makes it possible for the call to
continue in the circuit-switched domain of that other radio network. The call remains anchored
in an IMS application server, the Service Centralization and Continuity Application Server
(SCC AS) while the user is being served by the circuit-switched domain.

SRVCC currently supports the following types of handover for voice calls from IMS over
a packet domain to a circuit-switched domain:

e from LTE to UTRAN;

e from LTE to GERAN;

e from LTE to 3GPP2 1xCS;
e from HSPA to UTRAN;

¢ from HSPA to GERAN.

SRVCC in the converse directions to the ones in the above list has not been defined in the
first 3GPP release specifying SRVCC because it is assumed that the typical situation will be
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to have wide coverage for UTRAN, GERAN or 3GPP2 1xCS, while, at least initially, LTE
and HSPA may be more likely to be provided in limited geographical areas. However, efforts
are under way to enhance SRVCC in later releases (see Chapter 14). We will only treat the
SRVCC handovers from LTE to UTRAN or GERAN in this book.

For SRVCC handovers from LTE to UTRAN or GERAN, a Mobile Switching Centre (MSC)
server enhanced for SRVCC is required in the target circuit-switched domain. The enhanced
MSC server communicates with the MME and the SCC AS.

The term SRVCC refers to ‘single radio’ because typical terminals cannot connect to more
than one of the radio networks in the above list at a time. This makes the task of ensuring the
continuity of a voice call more difficult as the handover has to be performed in a very short
time so that the user experience is not negatively impacted. In order to improve the efficiency
of such handovers, procedures for mapping security contexts from the MME to the enhanced
MSC server have been defined for SRVCC. These procedures are presented in section 12.2.3.

SRVCC may also involve the handover of packet-switched non-voice services to the packet-
switched domain of the target network. For this type of handover from LTE to UTRAN or
GERAN, the security procedures described in section 11.1 apply.

SRVCC is defined in [TS23.216]. The IMS service continuity aspects and the SCC AS are
defined in [TS23.237] and [TS23.292]. The 3GPP2-specific aspects are defined in [X.S0042-0
v1.0].

For the sake of completeness we mention that there is also a dual radio VCC, which applies
when a terminal can connect to source and target radio network simultaneously. This is often the
case when one of the radio technologies is UTRAN or GERAN (over which circuit-switched
services would be provided), or LTE (over which IMS-based services would be provided), and
the other is WLAN (over which IMS-based services would be provided).

12.2 Security Mechanisms for Voice over LTE

In this section we address the security aspects of the three methods for providing voice over
LTE briefly described in section 12.1.

12.2.1 Security for IMS over LTE

We first give a brief overview of IMS security and then explain which of the mechanisms
defined by 3GPP for IMS security apply to IMS over LTE.

One book [Poikselkéd and Mayer 2009] describes the IMS signalling security procedures in
some detail, but there presently is no book describing IMS media plane security mechanisms,
so the reader is referred to [TS33.328].

IMS signalling security

For many years, IMS security, as defined by 3GPP, was solely concerned with securing SIP
signalling in IMS. IMS signalling security provides subscriber authentication as well as in-
tegrity and confidentiality of signalling messages in registration and session set-up procedures.
In particular, IMS signalling security ensures that only authorised subscribers have access to
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IMS resources and can set up multimedia sessions, and that charges are attributed to the right
subscribers.

IMS signalling security is provided in a hop-by-hop fashion. The difficult part is securing
the first hop from the IMS UE to the P-CSCF because of the key management involving a
large number of subscribers. The 3GPP specification that defines the IMS access signalling
security mechanisms is [TS33.203] whose first version was approved in 2002. IMS signalling
sent between IMS core network nodes is secured using Network Domain Security as described
in section 4.5 of this book.

Subscriber authentication in IMS registrations

In order to cater for the different needs of the various IMS deployment scenarios, and the
legacy of the terminals and networks that use IMS, the IMS signalling security specification
[TS33.203] offers a variety of subscriber authentication mechanisms. We distinguish three
types of IMS subscriber authentication mechanisms in [TS33.203]:

o SIP-layer authentication;
e access-network bundled authentication;
¢ trusted-node authentication.

SIP layer authentication
[TS33.203] specifies two SIP-layer authentication mechanisms:

e IMS AKA;
e SIP Digest.

SIP Digest is based on HTTP Digest, while IMS AKA is based on an extension of HTTP
Digest called HTTP Digest AKA. We therefore first briefly describe HTTP Digest and its
extension.

HTTP Digest. The ‘Digest Access Authentication Scheme’ for HTTP defined in [RFC2617]
is often simply referred to as ‘HTTP Digest’. HTTP Digest uses the username and a password
shared between the user and an HTTP server as authentication credentials. The password has
to be distributed by administrative means before authentication can start. HTTP Digest is
based on a simple challenge—response paradigm. The server sends a challenge in the form of
a nonce value. (A nonce is a number used only once.) A valid response by the user contains a
checksum of the username, the password, the given nonce value, the HTTP method, and the
requested URL. In this way, the password is never sent in the clear.

HTTP Digest AKA. For 3G networks, subscriber credentials are contained in the USIM,
which, by definition, resides on a smart card, the UICC. The USIM is used in the UMTS AKA
protocol to authenticate the subscriber (see Chapter 4). This form of credential is stronger than
a mere username/password combination. This observation motivated work extending HTTP
Digest by combining it in a particular way with UMTS AKA. This work resulted in HTTP
Digest AKA [RFC3310]. The main advantage of HTTP Digest AKA over plain HTTP Digest
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is that the former provides a one-time password for HTTP Digest. This is achieved as follows.
As we know from Chapter4, in UMTS AKA the VLR or SGSN retrieves an authentication
vector from the Authentication Centre in the HLR and then sends a challenge RAND, AUTN
to the UE. The USIM generates a response RES and session keys CK and IK, and sends them
to the ME. The ME stores the session keys and sends the response RES back to the VLR
or SGSN. In HTTP Digest AKA, it is the HTTP server that fetches authentication vectors
and sends the challenges. The appropriately encoded parameters RAND, AUTN are used in
HTTP Digest AKA as the nonce required by the HTTP Digest scheme. HTTP Digest AKA
uses the parameter RES as the password required by the HTTP Digest scheme. Because every
authentication run generates a different RAND and, hence, a different parameter RES, HTTP
Digest AKA indeed produces a one-time password for HTTP Digest. Note also that [RFC3310]
consistently refers to the ISIM, and does not mention the USIM,; the relationship between the
two terms is discussed further below in this section.

HTTP Digest AKA was later enhanced to HTTP Digest AKAv2 (see [RFC4169]) in order
to counter certain man-in-the-middle attacks in tunnelled authentication scenarios. HTTP
Digest AKA and HTTP Digest AKAv2 differ in the way the HTTP Digest response is created:
HTTP Digest AKAv2 computes the password from RES, CK and IK using a pseudorandom
function.

SIP Digest. [RFC3261] describes the modifications and clarifications required to apply the
HTTP Digest authentication scheme to SIP. The SIP scheme usage is almost completely
identical to that for HTTP described in [RFC2617]. We refer the reader interested in the
differences to [RFC3261]. Starting from [RFC3261], 3GPP specified in [TS33.203] how to
apply the HTTP Digest authentication scheme to the usage of SIP in IMS. 3GPP called the
resulting scheme ‘SIP Digest’. Like HTTP Digest, SIP Digest uses username and password as
authentication credentials. In SIP Digest, the S-CSCF takes the role of the server challenging
the user. The S-CSCF retrieves the password from the HSS when a subscriber registers to the
S-CSCF. The IMPI (IP Multimedia Private Identity), which can be seen as the equivalent in
IMS of the IMSI in GSM, 3G or EPS, is used as the username. An IMSI can be converted into
an IMPI in a canonical way [TS23.003]. The challenge and response are carried in specific
headers of the messages in the IMS registration procedure.

IMS AKA. The IMS Authentication and Key Agreement scheme IMS AKA is specified in
[TS33.203]. The subscriber authentication part of IMS AKA is an application of HTTP Digest
AKA to the usage of SIP in IMS. HTTP Digest AKAv2 is not required for the purpose of
IMS as the attack scenarios motivating the creation of HTTP Digest AKAv2 do not apply.
The IMS AKA authentication credentials are the functional equivalent of a USIM. They may
be derived from a USIM, or may be a separate replica of USIM functions and/or data. When
IMS is accessed over a 3GPP-defined network, the IMS AKA authentication credentials must
reside on a UICC. When they reside on a UICC they are, according to [TS33.203], called
ISIM (IP Multimedia Services Identity Module). For a more precise definition of ISIM and a
warning about a slightly inconsistent use of the term ‘ISIM’ across 3GPP specifications, we
refer the reader to clause 8 of [TS33.203], as well as to the definition of an ISIM application
on a UICC in [TS31.103]. When IMS is accessed over a non-3GPP-defined network the IMS
AKA authentication credentials need not reside on a smart card. In IMS AKA the S-CSCF
takes the role of the server challenging the user. The S-CSCF retrieves authentication vectors
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from the HSS when a subscriber registers to the S-CSCF. The IMPI (possibly converted
from an IMSI), which is included in the ISIM (possibly derived from a USIM), is used as the
username. The challenge and response are carried in specific headers of the messages in the IMS
registration procedure. IMS AKA also has a key agreement part which is used for creating IPsec
security associations (see further below in this chapter). An information flow for a successful
registration of an unregistered subscriber using IMS AKA is shown later in this chapter.

Applicability of IMS AKA and SIP Digest. 3GPP allows the use of SIP Digest only when
IMS is accessed over access networks that are not defined in 3GPP specifications [TS33.203].
Correspondingly, 3GPP decided that UICC-based credentials are required for subscriber au-
thentication when accessing IMS over 3GPP-defined access networks. The reason for this
decision was that 3GPP wanted to ensure that the credentials for access-level authentication
and IMS-level authentication had the same strength. Only two of the IMS subscriber authenti-
cation mechanisms presented in this chapter offer UICC-based credentials: GIBA (see below)
and IMS AKA. GIBA allows the use of a SIM or USIM, but is defined only for IMS access
over GERAN or UTRAN. Therefore, the only subscriber authentication mechanism defined
by 3GPP that is applicable to IMS access over LTE is IMS AKA. We can note, though, that the
specification of IMS AKA in [TS33.203] does not mention LTE or EPS explicitly; but then it
does not really have to do this as IMS is access-independent. We would further point to the
fact that the S-CSCF needs to retrieve UMTS authentication vectors, not EPS authentication
vectors, from the HSS even when IMS is accessed over LTE. Therefore, when receiving a
request from an S-CSCF, an HSS used also for EPS needs to instruct the Authentication Cen-
tre to generate authentication vectors with the AMF separation bit set to ‘0’ (see section 7.2).
An Authentication Centre in the HSS used for EPS is always capable of generating UMTS
authentication vectors.

Access-network bundled authentication

In access-network bundled authentication, IMS subscriber authentication is coupled to the
authentication in the access network over which IMS is carried. 3GPP has defined two
such bundled authentication mechanisms: GPRS-IMS-Bundled Authentication (GIBA) and
NASS-IMS-Bundled Authentication (NBA). Both schemes are specific to the access network
technologies that gave them their names: GIBA applies only when IMS is accessed over GPRS
(Chapter 3) or the 3G packet domain (Chapter4). NBA applies only when IMS is accessed
over a Network Access Subsystem (NASS) defined by ETSI TISPAN [ETSI ES 282 004],
which is an xXDSL-based access network.

For both GIBA and NBA, the idea is to bind the IP address to the private IMS user identity,
the IMPI. The idea exploits the fact that, in access authentication, the dynamically allocated IP
address is bound to the identifier used at the access level — the IMSI in the case of GPRS and
the Line Identifier in the case of NBA. Furthermore, the access level identifier is assumed to
have a long-term binding to the IMPI in the HSS. No access-network bundled authentication
mechanism has been standardized for LTE. Therefore these mechanisms are not considered
any further in this book.

Trusted-node authentication

Trusted-node authentication allows a subscriber to gain access to IMS based on successful
access-level authentication being provided by a trusted node in the network which provides an

http://freepdf-books.com



Security for Voice over LTE 209

interworking function towards the IMS. In practice this is achieved by having this trusted node
take on the role of both the UE and the P-CSCF from an IMS perspective. One example of
such a scenario is the MSC Server enhanced for IMS Centralized Services (ICS) as described
in [TS 23.292]. Trusted-node authentication is not relevant for IMS over LTE; we therefore
do not consider it any further in this book.

Confidentiality and integrity protection for SIP signalling in IMS

3GPP defines two mechanisms in [TS33.203] for providing confidentiality and integrity pro-
tection for SIP signalling between the UE and the P-CSCF, namely IPsec ESP and Transport
Layer Security (TLS). We briefly describe their use in IMS in the following.

For the sake of completeness, we mention that [TS33.203] defines two further mechanisms
providing a limited form of SIP message origin authentication, namely an IP address check
mechanism performed in the P-CSCEF, and SIP Digest proxy-authentication performed in the
S-CSCF. While these methods have their merits in particular environments, neither of them
provides confidentiality nor full integrity protection. As 3GPP ruled out the use of these
methods with 3GPP-defined access networks, in particular with LTE, we do not dwell on them
any further in this book. The reader interested in the strengths and boundary conditions for
the use of these two mechanisms compared to IPsec and TLS is referred to the discussion in
Annex Q of [TS33.203].

IPsec. 1Psec is a very well-known mechanism, and many security textbooks are available
describing it. We therefore do not explain IPsec any further here. The usual means for setting
up an IPsec security association is the Internet Key Exchange protocol IKE [RFC2409],
or its successor, IKEv2 [RFC4306]. However, the use of IKE or IKEv2 is not mandated;
it is allowed to use other means for setting up IPsec security associations. This is what
3GPP does: it uses the keys (CK, IK) agreed by means of IMS AKA as the ciphering and
integrity keys required for IPsec Encapsulating Security Payload (ESP), possibly after a
suitable key expansion (depending on the cryptographic algorithm). Note that [TS33.203]
refers to the version of IPsec ESP defined in [RFC2406], not the updated version of IPsec
ESP in [RFC4303]. The other parameters required for setting up IPsec security associations,
including Security Parameter Index (SPI), cryptographic algorithms, IP addresses and ports,
are either established by means of the SIP Security Mechanism Agreement protocol, also
known as Sip-Sec-Agree protocol (see below), or set to pre-determined values. For the details
of the establishment of IPsec security associations by means of IMS AKA the reader is referred
to the specification [TS33.203] or the book [Poikselkd and Mayer 2009].

3GPP took the decision to use IMS AKA in conjunction with IPsec ESP in 2002. TLS
was not considered a viable alternative at the time as TLS requires TCP as the transport
protocol; so SIP over UDP, whose support was considered essential by 3GPP, could not be
protected by TLS. Note that the work on Datagram TLS (DTLS) [RFC4347], which provides
Transport Layer Security over UDP, was completed by the IETF only in 2006. An extension
to SIP Digest providing better integrity protection than SIP Digest was also considered at
the time, but discarded largely because it was unable to provide confidentiality, which was
already known at the time to become a requirement in 3GPP Release 6. In the context of the
work on Common IMS in Release 7, 3GPP discussed (starting in the year 2005) an extension
to the confidentiality and integrity protection mechanism for SIP signalling to accommodate
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scenarios with Network Address Translation (NAT), which do not usually occur with cellular
access networks, but are common with fixed access networks. During these discussions, the
continued use of IMS AKA as a subscriber authentication mechanism was not contentious,
but (D)TLS was proposed by some as an alternative confidentiality and integrity protection
mechanism. 3GPP finally decided to stick with IPsec, and enhance it with UDP encapsulation
to enable NAT traversal, mainly for the reason to have the same type of solution for the cases
with and without NAT, not because there would have been any security concerns with the
alternative.

TLS. TLS also is a very well-known mechanism, and many security textbooks are available
describing it. We therefore do not explain TLS any further here. The introduction of TLS as
an additional mechanism for confidentiality and integrity protection of SIP signalling over
non-3GPP access networks was motivated by the following observation. Terminals in a non-
3GPP environment often do not have the functional equivalent of a USIM, whether residing
on a UICC or not. They therefore have to rely on other types of authentication credentials.
For this reason, 3GPP introduced SIP Digest as a subscriber authentication mechanism, as
explained above. 3GPP defined the use of TLS for confidentiality and integrity protection for
SIP signalling in conjunction with SIP Digest. The set-up of IPsec security associations in
IMS is not possible with SIP Digest because this set-up, described in the previous paragraph,
is tightly coupled with IMS AKA, which requires the use of the functional equivalent of
a USIM. Therefore, IPsec for IMS access signalling protection is not a feasible alternative
in many environments. TLS is used with server authentication by means of server certifi-
cates where the TLS server is the P-CSCF; client authentication is provided by SIP Digest,
not TLS.

Sip-Sec-Agree. The SIP Security Mechanism Agreement protocol is defined in [RFC3329]. It
allows negotiating the security mechanisms used between a Session Initiation Protocol (SIP)
user agent and its next-hop SIP entity. The mechanisms that can be negotiated according to
Sip-Sec-Agree are: Digest, TLS, IPsec with IKE, IPsec with manual keying, and IPsec-3GPP
(i.e. IPsec with IMS AKA as described above). In the context of the 3GPP IMS authentication
the Sip-Sec-Agree mechanism is used to negotiate the security mechanisms applied between
the UE and the P-CSCF. Only TLS and IPsec-3GPP are supported in 3GPP. Note that the Digest
mechanism that can be negotiated by means of Sip-Sec-Agree has to be run between the UE and
the next-hop SIP entity, which in IMS would be the P-CSCF, while SIP Digest, as described for
IMS above, is run between the UE and the S-CSCF. The Sip-Sec-Agree protocol is integrated
into the initial registration procedure as shown in the information flow for IMS AKA below.

Applicability of IPsec and TLS in IMS. 3GPP specifications strictly tie the choice between
IPsec and TLS to the choice of the subscriber authentication mechanism: IPsec is always
used in conjunction with IMS AKA, and TLS is always used in conjunction with SIP Digest.
For access to IMS over a 3GPP-defined network, an ISIM — in the sense of [TS33.203], i.e.
possibly derived from a USIM - is required for the reasons explained above. This implies
that, according to the 3GPP IMS specifications, IMS AKA with IPsec shall be used for SIP
signalling security when accessing IMS over LTE. The same remark as in the discussion
of IMS AKA above applies, namely that LTE is not explicitly mentioned in the 3GPP IMS
security specifications.
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Figure 12.2 Successful registration of an unregistered subscriber using IMS AKA

Information flow for a successful registration with IMS AKA

Figure 12.2 shows the information flow for a successful registration of an unregistered sub-
scriber using IMS AKA. This information flow is explained in brief to demonstrate the similar-
ities and differences between UMTS AKA, EPS AKA and IMS AKA. The stage 2 specification
can be found in [TS33.203]; the stage 3 specifications can be found in [TS24.229] for the mes-
sages between the UE and the S-CSCEF, and in [TS29.228] and [TS29.229] for the messages

between the S-CSCF and

the HSS.

1. The UE sends a REGISTER request including the IMPI and the appropriate Sip-Sec-Agree

header.

2. The P-CSCF processes the Sip-Sec-Agree header according to [RFC3329], strips it off,
and forwards the message to the S-CSCEF. (To be more precise: the message is sent via an
intermediate node called I-CSCF, which first contacts the HSS to find a suitable S-CSCF.
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A description of the I-CSCF is omitted in this chapter as it does not play an important role

in the security procedures. The interested reader is referred to [TS23.228].)

. The S-CSCF requests authentication vectors from the HSS.

4. The HSS returns authentication vectors of the form (RAND, XRES, CK, IK, AUTN)
known from UMTS AKA - see section 4.2 and Figure 7.2.

5. The S-CSCF sends a so-called 401 Unauthorized message [RFC3261] to the P-CSCF
containing the Authentication Challenge (RAND, AUTN) and also the keys (CK, IK).

6. The P-CSCF creates IPsec security associations (SAs) from CK, IK, the Security Parameter
Index, and parameters received in message 1 and to be sent in message 7 (IP addresses
and ports, cryptographic algorithms).

7. The P-CSCF forwards the 401 Unauthorized message with (RAND, AUTN), but it does
not forward the keys (CK, IK). The P-CSCF also includes the appropriate Sip-Sec-Agree
header.

8. The UE sends RAND and AUTN to the USIM or ISIM and gets RES, CK, and IK back.
The UE creates IPsec SAs in the same way as the P-CSCF did in step 6. The UE computes
the Digest-Response over RAND and further parameters using RES as the password as
described for HTTP Digest AKA earlier in this chapter.

9. The UE sends another REGISTER request to the P-CSCF. This request includes the
Digest-Response and the appropriate Sip-Sec-Agree headers. The request is protected by
an [Psec SA created in step 8.

10. The P-CSCEF strips off the Sip-Sec-Agree headers and forwards the message to the S-
CSCF. Note that the message is discarded if it cannot be successfully processed by IPsec
at the P-CSCF using the appropriate IPsec SA created in step 6.

11. The S-CSCF computes the Digest-Response in the same way as the UE did in step 8 using
XRES as the password and checks whether it matches the Digest-Response received in
message 10. If it does the UE is successfully authenticated.

12. The S-CSCF registers the subscriber with the HSS.

13. The HSS returns the subscriber profile to the S-CSCF.

14. The S-CSCEF checks the subscriber’s authorization using the received profile. If this check
is successful the S-CSCF sends a so-called 200 OK message [RFC3261] to the P-CSCF
indicating the success of the registration.

15. The P-CSCEF forwards the 200 OK message to the UE.

(98]

IMS media plane security

The primary motivation for IMS media plane security was protecting the confidentiality of
the IMS media in transit, for example in order to prevent eavesdropping on voice calls.
In addition, IMS media integrity protection is supported. At the time of writing this book,
3GPP has specified IMS media plane security only for real-time services in IMS that use the
Real-Time Transport protocol RTP [RFC3550]. These real-time services include voice. The
specification defining the IMS media plane security mechanisms is [TS33.328], which was
approved by 3GPP in late 2009. The detailed protocol work on IMS media plane security was
still not fully completed at the time of writing.

For confidentiality protection, 3GPP originally relied on the security of the underlying bearer
networks, provided either by cryptographic means, such as link layer protection in cellular
access networks, or by assumed inherent physical properties of, for example, xDSL access
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links. But with the more widespread adoption of the Common IMS applicable to all sorts of
access network types (e.g. unencrypted public WLAN hotspots), a uniform protection method
for media realized above the transport layer seemed desirable. This led to the definition of the
end-to-access edge security mechanism where IMS media plane traffic is secured between the
IMS UE and the IMS Access GW at the edge of the access network. Furthermore, uninterrupted
end-to-end security between terminals gained in importance. This led to the definition of IMS
media plane end-to-end security mechanisms.

End-to-end media plane security comes in two variants, which differ in the key establishment
protocols and cater to different use cases. All the mechanisms defined by 3GPP for IMS media
plane security so far can be implemented when accessing IMS over LTE. As opposed to the
case of IMS signalling security, there are no restrictions on the use of any of these IMS media
plane security mechanisms in the context of IMS access over LTE in 3GPP specifications. But
the need for end-to-access edge security when accessing IMS over LTE may be considered not
all too pressing, given that LTE provides strong access security at the link layer, both between
the UE and the base station (see section 8.3) and between the base station and the edge of
the core network (see section 8.4). Still, if a uniform handling of all traffic, irrespective of the
access network type, is desired then end-to-access edge media plane security may be applied
also to IMS access over LTE.

12.2.2  Security for Circuit Switched Fallback

When Circuit Switched Fallback is used, voice services are not provided over LTE but over the
circuit-switched domains of GERAN, UTRAN or 3GPP2 1xRTT. Therefore, voice services
using CSFB are of no concern to LTE security; and the security mechanisms applied to voice
services are those generally applied to GERAN (Chapter 3), UTRAN (Chapter 4) or 3GPP2
IXRTT. The signalling in the EPS required to support CSFB is protected by the LTE security
mechanisms that are the main subject of this book.

12.2.3  Security for Single Radio Voice Call Continuity

Here we describe the security mechanisms for SRVCC handover from LTE to UTRAN
or GERAN. The corresponding security mechanisms for SRVCC handover from HSPA to
UTRAN or GERAN are not handled as they are not in the scope of this book. The interested
reader can find them in [TS33.102].

For SRVCC handover from LTE to UTRAN or GERAN, a security context mapping from
the MME to an MSC server enhanced for SRVCC is provided in order to improve the efficiency
of the handover. The main task is the mapping of the keys in use before and after the handover.
Before the handover, the UE and the MME share the current EPS security context containing the
key Kasme (see Chapter 7). The idea is therefore to use the key Kasvg and further parameters,
to derive the keys required in the target network. The derived keys are then transferred from
the MME to the MSC server enhanced for SRVCC as part of the SRVCC handover procedure.

As the keys used in UTRAN and GERAN are different, we treat the two cases separately.

SRVCC handover from LTE to UTRAN

The UTRAN target network requires a cipher key CK and an integrity key IK, as described in
Chapter 4. In order to distinguish the keys derived in the SRVCC procedure from other keys
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(CK, IK) possibly already present in the UE and the VLR from a previous visit to UTRAN, the
keys derived for SRVCC carry the subscript ‘SRVCC’ for the purposes of the description. The
keys CKsrvee and IKgryce are obtained by applying a specific key derivation function KDF
to the key Kasme in the current EPS security context and a freshness parameter. The freshness
parameter was chosen to be the current value of the NAS downlink COUNT (see Chapter 8).
It is to ensure that two different SRVCC handovers do not result in the same keys CKgsrycc
and IKgrycc in the target network. The key derivation for SRVCC is specified in Annex A
of [TS33.401]. It uses a framework for key derivation common to various 3GPP features (see
section 10.4). This framework also ensures that the derived keys are only usable for SRVCC
purposes.

After key derivation, the MME increases the value of the NAS downlink COUNT by 1 in
order to ensure continued freshness of this parameter.

The MME also sends the four least significant bits of the NAS downlink COUNT to the
eNB, which forwards them to the UE in the Handover Command. This is done so as to allow for
synchronization of the NAS downlink COUNT values used by the MME and the UE. The NAS
downlink COUNT values could be out of synch, perhaps due to a NAS message sent by the
MME down to the UE, which caused the MME to increase the NAS downlink COUNT value,
but got lost and was never received by the UE, so that the UE did not increase the NAS downlink
COUNT value correspondingly. The algorithm for synchronizing the NAS downlink COUNT
values in the UE is implementation-specific. Once this task has been performed successfully
in the UE, the UE updates the NAS downlink COUNT value accordingly.

SRVCC handover from LTE to GERAN

The GERAN target network requires a cipher key of type Kc (64 bits) or Kcig (128 bits) used
with algorithms A5/1, A5/3 or A5/4, respectively (see section 3.4). It depends on the ciphering
algorithm selected by the Base Station Subsystem (BSS) in the target network which of the two
types of keys is required. The keys Kc and Kc1,g are derived in a two-step procedure. The first
step consists in deriving CKsrycc and IKsrycce from Kagyg in the UE and the MME in exactly
the same way as described above for LTE to UTRAN SRVCC handover, and transferring them
from the MME to the enhanced MSC server. In the second step, the key conversion function
c3, known from UTRAN to GERAN interworking (see section 4.4), is applied to the keys
CKsrvee and IKsryee in the UE and the enhanced MSC server to obtain Kc; and the key
derivation function KDF defined in Annex B.5 of [TS33.102] is applied to the keys CKgsrvce
and IKsrycc in the UE and the enhanced MSC server to obtain Kcog.
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Security for Home Base Station
Deployment

To allow for a more efficient usage of the available spectrum, and to allow customer specific
deployments (e.g. closed subscriber groups managed by the hosting party of the base station),
an extension to UTRAN was specified for base stations serving very small cells. Their coverage
is comparable to a WLAN access point and they are deployed similarly within customer
premises. These ‘femto’ base stations serving ‘femto cells’ are called Home NodeB, as they
are a home version of macro NodeBs. Similarly, an extension to E-UTRAN was specified
with femto base stations called Home eNodeB. The service requirements for both types
of home base station are specified in [TS22.220]. The technical report [TR23.830] handles
architectural aspects of home base stations. The normative text derived from this report
is not contained in a separate document, but distributed over the applicable EPS-related
specifications.

Support of the standardization work in 3GPP comes from the Femto Forum [FF], a non-
profit organization to promote femto cell deployment worldwide within the residential and
small and medium enterprise markets. It is comprised of mobile operators, telecoms hardware
and software vendors, content providers and others. The Femto Forum is not a standards-
defining organization but works in the forefront of standardization, gathering and harmonizing
requirements from the stakeholders.

As the definition of the security features for Home NodeBs happened in parallel with the
definition of EPS in 3GPP, the security for both types of home base stations was specified in
a common specification in 3GPP Release 9 [TS33.320]. As the security measures for home
base station deployment are more governed by the deployment scenario in customer premises,
and less so by the actual radio and core network technology, there are only a few differences
between the security for 3G Home NodeBs and for EPS Home eNodeBs.

This chapter always refers to the deployment of home base stations in EPS — that is, the
Home eNodeB (HeNB) — but the differences to Home NodeBs (HNB) are mentioned where
applicable.

LTE Security Dan Forsberg, Giinther Horn, Wolf-Dietrich Moeller and Valtteri Niemi
© 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-66103-1
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Figure 13.1 Deployment scenario and architecture for HeNBs

13.1 Security Architecture, Threats and Requirements
13.1.1 Scenario

The concept of HeNBs was introduced to provide small-area or indoor coverage for mobile
communications based on the radio technology that is also used in the macro range. This
allows using the same user equipment for global and local access. The HeNB is located within
the customer premises and connected to the operator core network via the existing broadband
access line, such as DSL or broadband cable. Figure 13.1 gives an overview of the deployment
architecture.

The following paragraphs give short descriptions of the elements shown in Figure 13.1, and
their roles in HeNB deployment.

Home eNodeB. The HeNB is a base station located on the customer premises and radiating
in licensed spectrum. As the licensed spectrum is owned by the operator, and the regulator
holds the operator responsible for the usage of this spectrum, the HeNB is subject to the same
regulatory requirements as any other base station. As a consequence of this responsibility,
the deployment of a HeNB by a customer is based on a contract with the mobile operator. In
addition, specific security requirements exist that do not allow the customer to have full control
over the HeNB. Consequently, certain configuration settings may be managed by the operator
only. In the context of HeNBs the customer is called Hosting Party (HP) to differentiate this
customer from an ordinary subscriber of mobile networks.

User Equipment (UE). The user equipment is an ordinary UE as used for macro cells in EPS.

All EPS-capable UEs are also aware of the special HeNB functionality of Closed Subscriber
Groups (CSGs), which is described further below and in section 13.6. This is different from
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3G networks, where CSG-unaware UEs have to be served as well, so the HNB architecture is
required to have a separate treatment for such legacy UEs.

Backhaul Link. The backhaul link is the link between the HeNB and the security gateway
(see below). It carries the S1 traffic, and also the management traffic when routed via the
security gateway. The backhaul link, and possibly also the link to the management system,
extends across the public Internet in the general case. It is assumed that the hosting party has
an existing broadband connection to the Internet, such as via DSL or broadband cable. As this
connection is routed through the public domain, it is seen as insecure, and many of the HeNB
security features address the threats related to a connection over an insecure network.

Security Gateway (SeGW). The security gateway is the door to the operator core network for
all traffic originating and terminating in the HeNB. It is the only additional mandatory network
element introduced owing to the security requirements. The acronym SeGW was intentionally
chosen to be different from the SEG as used in NDS/IP [TS33.210]. While the SEG connects
two different security domains, the SeGW connects an ‘outlying’ element belonging logically
to the same security domain as the core network of the operator it is connected to. The specific
functionality of the security gateway used for macro base stations (eNBs) is outlined in section
8.4, while the SeGW used for HeNBs is described in section 13.4.

HeNB Management System (HeMS). The HeNB management system is responsible for
the management of the HeNB. As a HeMS must be able to manage HeNBs of different
manufacturers, the so-called Type 1 interface between management system and HeNB has been
specified in [TS32.591] and [TS32.593] to allow for vendor interoperability. This specification
builds heavily on the management protocol for Customer Premises Equipment (CPE) specified
by the Broadband Forum [BBF] in [BBF TR-069]. Depending on the operator’s decision, the
HeMS may be located within the operator core network or accessible directly on the public
Internet. The latter scenario was included to allow the usage of an existing management
infrastructure for home equipment (e.g. for residential gateways and/or DSL routers) to be
used also for HeNBs. To cater for the special enrolment and registration needs of a HeNB,
which may be bought and connected by the hosting party and not by the operator, the HeMS
was logically split into an initial and a serving HeMS. This allows provisioning the HeNB
with a factory default configuration containing the address of the initial HeMS only, which
is not necessarily an operator-specific address. In addition, the initial HeMS may check and
modify the SW and configuration of the HeNB before it connects to the serving network. Thus
a location of the initial HeMS in the public Internet may be advantageous, even if the serving
HeMS is located in the operator core network. Details are described in section 13.5.

MME and S-GW. The Mobility Management Entity (MME) and the Serving Gateway (S-GW)
are the same network elements as specified for EPS in the preceding chapters of this book.
Also the interfaces between a HeNB and these network elements are the same S1-MME and
S1-U interfaces as defined for macro base stations.

HeNB Gateway (HeNB-GW). The HeNB gateway is specified in [TS36.300] and is an optional

element in the EPS architecture. This is a deviation from 3G networks, where the HNB Gateway
is a mandatory element, which hides the specific features of HNBs and the Iuh interface
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[TS25.467] from other core network elements. It is the task of the HeNB-GW to relieve the
MME from keeping track of huge numbers of HeNBs, as the MME was more designed to
cater to a limited number of eNBs only. As the HeNB-GW is optional, and has the same S1
interface on both sides, both HeNB and MME are unaware if a HeNB-GW is deployed. This
means that a HeNB sees the HeNB-GW as MME, and the MME sees all HeNBs connected to
a HeNB-GW as one big eNB. For the realm of security features there is no difference if the
HeNB is connected via the S1 interface to a HeENB-GW or an MME, as the secure channel is
terminated at the border of the operator core network in the SeGW.

AAA Server. The Authentication, Authorization and Accounting (AAA) server is optional to
support. It is used for two optional mechanisms, first for communicating with the HLR/HSS
if hosting party authentication is deployed, and second if access authorization for HeNBs is
controlled by a AAA server.

OCSP Responder. The Online Certificate Status Protocol (OCSP) server is optionally deployed
if the operator uses a certificate revocation infrastructure for SeGW certificates. It may either
communicate with the SeGW and the HeMS, if in-band signalling of certificate validity status
is used, or directly with the HeNB. In the latter case no communications security is needed
despite the fact that this communication goes via the insecure link, as OCSP response messages
are protected by a signature. OCSP is specified in [RFC2560].

X2 interface. This interface is intentionally missing from Figure 13.1, as the Release 9
specifications do not foresee a direct interface between HeNBs. This may change in future
releases, in particular when HeNB deployment in enterprise scenarios is considered, where
handover between HeNBs and procedures for interference mitigation based on principles of
self-organizing networks (SONs) may be of greater importance.

Closed Subscriber Group (CSG). The HeNB is intended as a wireless access point operated
by a customer, so the possibility to restrict the general access to the HeNB was specified.
Three access modes for HeNBs are defined, namely the closed mode (giving access to a
CSG only), the open mode (giving access to all subscribers of an operator and their roaming
partners) and the hybrid mode as mixture of the other two. The HP of the HeNB can manage
the membership of the CSG of his HeNB within certain limits set by the operator. Section 13.6
gives an overview of the security-related features of CSG management.

13.1.2 Threats and Risks

This subsection discusses the reasons for HeNB-specific security measures and gives an
overview of the threats and risks discussed during the development of the security specification
for HeNBs.

The threat and risk analysis is contained in a technical report [TR33.820] which was started
before the normative standardization work began. The normative specification [TS33.320]
only contains the requirements deduced from the threat and risk analysis. This is handled in
the section 13.1.3.

The list below summarizes the reasons why HeNB-specific security is seen as necessary.
The HeNB is a Network Element (NE) under the responsibility of an operator, but is not
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located in the security domain of the operator as opposed to other NEs. Thus the following
new issues arise.

® The link to the core network (e.g. DSL and the Internet) is not secured by operator admin-
istrative means.

® The HeNB provides termination of the air-link encryption, thus user and RRC signalling
data are available in cleartext in the NE on the customer premises.

® The NE located on the customer premises has direct access to the core network through the
secure tunnel, once it is authenticated.

¢ Experience with, for example, set-top boxes implementing digital rights management shows
that the HeNB may be prone to intense offline examination by attackers.

® Once vulnerabilities are discovered, exploits may be easily available from the Internet to a
fraudulent HP, and may be applied, for example, to the Ethernet port of the HeNB within
the local hosting party Ethernet.

As the HeNB is a consumer-like device, the following features make it more prone to attacks.

® The deployment numbers and thus the distribution are much larger and more widespread
than for any current NE.

® The price tag must be much lower than for current commercial operator NEs deployed in
smaller numbers, thus not allowing expensive security features.

On the other hand, the mobile operator has the following interests and obligations.

* The HeNB operates in licensed spectrum, contrary to WLAN for instance, so the operator
is liable for any violation of regulations (geo-location, transmit power, frequency etc.).

® The operator must prohibit disturbances to their and other networks.

¢ The operator must ensure integrity, privacy and lawful interception also for UEs connected
over HeNBs.

Keeping the above issues in mind, [TR33.820] puts the threats and risks into six main groups,
which are given below.

1. Compromise of HeNB credentials
® Credentials may be disclosed by local physical or remote algorithmic attacks, allowing
cloning of the credentials for a multitude of devices, or for misuse of the credentials for
other purposes.
2. Physical attacks on a HeNB
® The device may be tampered with to compromise its integrity, such as to get access to
cleartext data transferred between air link and backhaul link.
® Faked or cloned credentials may be inserted in the device, leading to otherwise unautho-
rized devices being admitted to the core network.
¢ Fraudulent software and/or false configuration data may be inserted by, for example,
physical access to non-volatile memory.
3. Configuration attacks on a HeNB
¢ Unsuitable or outdated SW versions may be loaded.
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® The radio management may be misconfigured.
® Access control lists may be altered, if enforced within the HeNB.
4. Protocol attacks on a HeNB
* A man-in-the-middle attack may be carried out on the backhaul link by manipulating,
inserting or dropping messages to the HeNB.
® Denial-of-service (DoS) attacks on the HeNB may be carried out by sending faked
messages to the HeNB.
¢ If vulnerabilities of the protocols used on the backhaul link are discovered, these may be
exploited for attacks.
¢ External time messages and O&M traffic may be disturbed.
5. Attacks on the core network, including HeNB location-based attacks
¢ A faked HeNB may attach to the core network and attack it subsequently, perhaps by
trying DoS attacks or exploits on core NEs.
¢ Traffic from other sites may be tunnelled into the core network.
® A false location may be reported to the core network, giving rise to the network config-
uring the HeNB with wrong parameters.
6. User data and identity privacy attacks
® As RRC signalling, S1 signalling terminating in the HeNB, and user plane traffic is
available in cleartext in the HeNB, eavesdropping on user data and revealing user identities
is possible.
¢ A faked or manipulated HeNB may masquerade as a valid HeNB to attract other users,
such as members of other closed subscriber groups normally not using this HeNB.

13.1.3 Requirements

The technical report [TR33.820] gives a list of 32 single security requirements on the HeNB,
derived from the particular threats against HeNBs described in the previous subsection. For
better readability the following list combines them under their related main topic:

® authentication — mutual authentication for backhaul link and O&M, strong enough crypto-
graphic mechanisms, unique identities for authentication, protected storage for authentica-
tion credentials;

® backhaul link and management traffic — integrity protection mandatory, confidentiality pro-
tection mandatory for management and optional for backhaul link, authorization needed for
connection to core network;

® software integrity, data confidentiality and integrity for the HeNB — secure boot, authorized
software only, hardening of the device, validation of device integrity, secure data storage
and secured operations on sensitive data;

® user privacy — IMSI hiding in device and over the air, confidentiality of signalling and user
plane data;

® operation and management security — addressed separately for operator and user data with
related access control, ultimate operator control for many data;

® denial-of-service protection of network — restriction of the number of connections per HeNB
to the network, only allow validated HeNBs into the core network;

® closed subscriber group management and enforcement — done by HP under control by
operator, access control enforced in core network;
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® Jocation and time — locking of HeNB to geo-location possible, reliable location information
shall be gathered and transferred by the HeNB, time information for the HeNB must be
reliable.

Not all of these requirements could be fulfilled during the development of the normative
specification [TS33.320] on HNB and HeNB security. To give some examples:

¢ As there is no single reliable location information available in all possible locations, the
specification only recommends using the most adequate combination of methods for each
deployment.

o IMSI transfer over the air may not be avoidable, as the resolution of temporary identities of
many users passing by the HeNB location and trying to connect may put too high a burden
on the core network.

In addition to the above-mentioned requirements coming from HeNB deployment, the general
security architecture specification for EPS [TS33.401] sets security requirements for eNBs,
which are also valid for HeNBs. These requirements are described in section 6.4.

Clause 4.4 of [TS33.320] gives an extensive list of requirements on the operation and on the
different network elements involved. They are not repeated here as all of them are considered
in the security architecture and procedures, and thus are handled later in this chapter.

13.1.4 Security Architecture

The security architecture is derived from the requirements and with the intention to deviate
as little as possible from existing 3GPP security architectures in Network Domain Security
(NDS), covered in section 4.5, and the application of NDS to EPS in [TS33.401], covered in
section 8.4. Figure 13.2 repeats the architecture given in Figure 13.1, but with the main area
for HeNB-specific security measures highlighted.

Requirements and measures for local security in the network element are given only for the
HeNB. Here the device integrity has to be ensured by different measures, to give the basis for
the local security features mentioned in section 13.2.

The two bold lines in Figure 13.2 indicate the secure communication paths, the upper one
to a HeMS accessible on the public Internet, the lower one to the SeGW, providing secure
access to the core network for signalling and user plane traffic, and for management traffic
if the HeMS is located within the operator network. Both require mutual authentication to
be performed, based on a HeNB device certificate and on a network-side (SeGW or HeMS)
certificate, before the communication paths are opened.

The Security Gateway (SeGW) performs HeNB authentication and access control, supported
optionally by the AAA server in case of hosting party authentication and of access authorization
by the AAA server.

The OCSP responder optionally provides the HeNB with certificate validity information, if
the operator configures the HeNB to use such service. Usage of this feature is recommended,
and, according to a note in the specification, this validity check may become mandatory in
future releases.
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Figure 13.2 Main area for security measures in HeNB architecture

Figure 13.2 does not show the Hosting Party (HP), as it is a role only and not a network
element. To distinguish the party having the physical control over the HeNB and managing
some features (e.g. the membership of subscribers in the CSG of the HeNB) from other
customers/subscribers of the operator, the term ‘hosting party’ was coined. The HP will also
have a contract with the operator about the deployment of the HeNB, except in cases where
no separate HP is involved and the operator has direct control over the HeNB.

13.2 Security Features

This section describes the various security features used for securing the HeNB ecosystem.
The following sections then describe the procedures to implement these features. Detailed
references and technical descriptions of the features are also left to the sections describing the
procedures.

13.2.1 Authentication

The device identity of the HeNB is seen as the primary identity that is authenticated by the
operator network. Thus this identity necessarily is a globally unique identity. This HeNB
unique identity is specified in [TS23.003] on ‘Addressing, Numbering and Identification’ to
allow a general usage of this identity within EPS. The format of this identity is a Fully Qualified
Domain Name which facilitates the use of the name in X.509 certificates according to NDS/AF
[TS33.310].

As a Public Key Infrastructure (PKI) was chosen as the basis for device authentication,
each HeNB device has to be provided with a private/public key pair, and a certificate binding
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the identity and other properties to the public key. The device certificate will be issued by the
operator, manufacturer or vendor of the HeNB, or by another party trusted by the operator. The
issuing of the device certificate must in all cases be authorized by the manufacturer or vendor,
as the certificate is used to assure the device integrity of the HeNB — see the description of
autonomous validation in section 13.3. The choice to use a device certificate not provided by
the operator was selected to not oblige the operator to deploy a huge PKI for the expected
mass rollout of HeNBs.

Similarly the SeGW has to be provided with a private/public key pair and the associ-
ated certificate by the operator. This can be done within the existing NDS/IP and NDS/AF
infrastructure available to many operators.

The device authentication comes in two forms: mutual authentication between the HeNB
and the SeGW, or between the HeNB and the HeMS. It is explained later under which
circumstances which form of device authentication is applied.

Both sides of the authentication procedure may use certificate validity information to check
the revocation status of the identity certificates and the certificates in the chain up to and
including the root certificate.

Two authentication mechanisms are specified for the device authentication: IKEv2 for
establishing an IPsec tunnel to the SeGW, and the TLS handshake for establishing a TLS
tunnel to the HeMS.

Certain deployment scenarios require the separate authentication of the Hosting Party (HP).
This authentication is optional and is always preceded by a (successful) device authentication.
This sequence of authentications is called combined (device and HP) authentication.

The HP authentication uses the AKA mechanism and is, hence, based on a permanent
shared secret stored in the USIM and the HLR/HSS. For carrying this authentication within
the same protocol as the device authentication, EAP-AKA together with the feature of multiple
authentications in IKEv2 is used.

EAP-AKA provides mutual authentication between the operator network and the HP Module
(HPM) containing the HP identity and secret. There were two main reasons why the device
authentication is mandatory, even when HP authentication is used.

¢ First, the requirements for device integrity are bound tightly to the Trusted Environment
(see later), which also holds the secret (private key) used for certificate-based device au-
thentication. The definition of autonomous validation explicitly uses this fact, so the device
authentication is necessary to ascertain the successful device integrity validation to the
network.

® Second, the HPM is a removable token and thus not physically bound to the HeNB. On the
contrary, the specification explicitly allows transferring HPMs to other HeNB devices, to
allow an HP to swap devices for the same HP.

13.2.2  Local Security

The local security comprises secure storage of data and secure execution of software (SW).
For a mandatory implementation of the HeNB these features are concentrated in a Trusted
Environment (TrE) within the HeNB device. If optional HP authentication (as part of combined
authentication) is used, a second trusted environment in the form of the HPM is introduced,
realized as UICC. These secure environments are independent of each other.
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Trusted environment and secure execution

The TrE is the logical entity within the HeNB that is responsible for securing a root of trust
used for the secure boot of the HeNB. The term ‘logical entity’ implies that its implementation
need not be physically separated from the rest of the HeNB, but still the implementations of
all functions in this logical entity must be physically bound to the HeNB device. The TrE
will first perform a self-check based on a root of trust, and then verify further SW modules.
Once all SW modules necessary for the trusted operation of the HeNB have been successfully
started, the HeNB has successfully passed the local device integrity check and is enabled for
further operation. See section 13.3.1 for a more detailed description.

A second task of the TrE is the secure storage of sensitive parameters used during operation
of the HeNB. In addition, all sensitive functions used for the device authentication described in
the previous subsection must be executed within the TrE. This refers mainly to all operations
involving the private key of the HeNB, as this secret will never leave the TrE.

The network, represented by SeGW or HeMS, will be assured that the above-mentioned
secure boot has happened, and that in consequence the HeNB has passed the local device
integrity check. This verification result can be communicated to the network either explicitly or
implicitly. The combination of the above-mentioned properties of the TrE, namely performing
the integrity check and providing the sensitive functions for the device authentication, leads
to an elegant implicit form of communicating the successful device verification. The TrE is
in control of the private key used for authentication, so it can also enforce that authentication
may happen only under certain conditions. Therefore it is specified that the TrE will perform
the functions necessary for authentication and involving the private key only after a successful
device integrity check. Then the network is assured after successful authentication that only an
integrity-checked device could have performed this authentication successfully. This feature
is called ‘autonomous validation’, as all action for the validation is performed autonomously
within the HeNB, and the network can implicitly validate the integrity status of the HeNB.
For this reason, no explicit communication about the verification result was specified.

Hosting Party Module

The Hosting Party Module (HPM) is specified to be a Universal Integrated Circuit Card
(UICC) [ETSI TS 102 221]. It thus provides secure storage for the shared secret and a secure
environment for the execution of the sensitive functions using the shared secret for EAP-AKA
authentication.

The HPM is bound to the HP by organizational measures of the operator.

Physical Security

Physical security is required to avoid easy local access to stored secrets, sensitive configuration
parameters and SW. In particular, the root of trust within the TrE must be physically secured
as otherwise the whole local security of the HeNB device cannot be guaranteed. For the HeNB
device the design and implementation of physical security features is left to the manufacturer.
It is up to the manufacturer to assure the operator of a secure design of the HeNB. Evaluation
according to some externally specified standards was not seen as adequate. The same arguments
as given in section 6.4 for macro base stations apply, with the additional restriction that the
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HeNB is a consumer device with a much lower price tag than the commercial macro base
station.
For the HPM, the physical security is given by the fact that it is a UICC.

13.2.3 Communications Security

For communications security two mechanisms are specified:

® [Psec with Encapsulating Security Payload (ESP) in tunnel mode for the backhaul link to
the SeGW;
® TLS for the management traffic to an HeMS accessible on the public Internet.

13.2.4  Location Verification and Time Synchronization

The geo-location of the HeNB is checked by the HeMS before the HeNB is allowed to radiate.
This avoids operation of a HeNB in an area where the operator is not allowed to operate base
stations, or where the operator does not allow the hosting party to operate the HeNB. See
section 13.5.8 for details of geo-location checking.

The availability of the correct time in the HeNB is important for checking certificate expiry
time. For this purpose, time synchronization messages are sent from a time server. The transfer
of these messages has to be protected. Furthermore, the time server must provide a reliable
time signal. Support for protecting time synchronization messages by sending them via the
secure backhaul link is mandatory, but optionally also other communication paths may be
used provided that time server and transmission are secured. To allow the HeNB the validation
of certificate expiry also with missing or faulty local clock, the HeNB must save the time
when it is powered down in non-volatile secured memory, and use this time at power-up, if no
continuous time is available.

13.3 Security Procedures Internal to the Home Base Station

This section deals with the security related procedures that are executed locally within the
HeNB. Security procedures involving the network elements SeGW and HeMS are described
in the subsequent sections.

13.3.1 Secure Boot and Device Integrity Check

As described in section 13.2, the HeNB contains a Trusted Environment (TrE) with a built-in
root of trust. On power-up of the HeNB, first the TrE itself is checked for integrity using the
root of trust. This secure boot process for the TrE itself ensures that only successfully verified
software (SW) components are loaded or started. Once the TrE has been started successfully,
it proceeds to verify other SW components of the HeNB (e.g. the operating system and further
programs) that are necessary for the trusted operation of the HeNB.

The above-mentioned verification process consists of the comparison of measurement
values (e.g. hash values) over the SW component to be loaded with the associated trusted
reference values stored in secured memory. If the values match, then the verification was
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successful. Normally these reference values will be hashes over the SW components to be
loaded, but also hashes over data (e.g. configuration parameters) included in the downloaded
SW package are possible.

The device integrity check has been performed successfully once all SW components
necessary for the trusted operation of the HeNB have been verified and started.

To be able to perform the verification of the SW components, the downloaded SW package
must contain the associated trusted reference values. These have to be stored in secured mem-
ory after the downloaded SW package was verified according to the procedures described in
section 13.5.7 on SW download. This secured memory must be protected against unautho-
rized modifications as the validity of the device integrity check completely depends on the
trustworthiness of the reference values.

13.3.2  Removal of Hosting Party Module

The Hosting Party Module (HPM) provides secure storage of the credentials used for hosting
party authentication. Critical security functions for support of the EAP-AKA authentication
are performed in the HPM. Thus it is ensured that the HPM is available to the HeNB at the
time of a combined device-hosting party authentication (see section 13.4.5).

To avoid misuse of the hosting party credentials to be used during a second authentication
within some other device while the current HeNB is still operating, the HeNB must monitor
the availability of the HPM during subsequent operation. If the HeNB discovers the removal
of the HPM, the HeNB must shut down its air interface and disconnect from the operator’s
core network according to clause 4.4.2 of [TS33.320].

To bring the HeNB back into operation, the HeNB must establish a new connection to the
SeGW. If hosting party authentication has to be performed, this requires the insertion of the
same or another HPM into the HeNB.

13.3.3 Loss of Backhaul Link

To prevent uncontrolled transmission of the HeNB in case of loss of the connection to the core
network, the HeNB must implement a mechanism to shut down the air interface within a certain
time period after being disconnected. The usage of this mechanism and the configuration of
the time period is up to operator policy.

13.3.4 Secure Time Base

On establishment of the secure backhaul link to the SeGW, the HeNB has to validate the
certificate of the SeGW. This includes the check of the expiry times of the SeGW certificate,
which must be based on the current time. Thus a time source must be available. Similarly,
when a TLS tunnel to the HeMS is established the validity of the HeMS certificate has to be
checked.

The only mandatorily supported communication with the time server goes via the backhaul
link (see section 13.4.8). Therefore a secure external time may not yet be available to the
HeNB when the secure backhaul link is being established. Thus the HeNB needs an internal
time source at start-up. Even if it can be expected that many HeNBs will be equipped with a
continuously running local clock, the specification does not mandate such a clock. The reason
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is that, for low-cost devices, such a clock could be left out, and that even with a continuous
clock some clock fault (e.g. a flat battery) should not prevent the HeNB from connecting
to the operator network. Thus the specification provides a solution requiring only a secure
non-volatile storage within the HeNB. It is required for every HeNB to save the current time
in the TrE when it is powered down. On subsequent power-up, the HeNB may use this last
saved time directly, if it has no continuous clock.!

If there is a continuous clock available, then the HeNB will compare the last saved time
and the continuous time, and may continue counting with the time of the continuous clock
if it is later than the last saved time. This comparison was introduced because, after a fault,
local clocks often start on power-up at some fixed point in time, such as the UNIX epoch at
1970-01-01 as specified in section 4.15 of [IEEE Std 1003.1], and a time so far in the past will
probably exceed the validity period of all certificates and prevent a successful connection to
the operator network.

After establishment of the backhaul connection, a re-synchronization of the local clock is
mandatory. This is necessary not only for the HeNBs without continuous clocks, but also caters
for a possible drift in time for continuous clocks. The procedure for time synchronization is
described in section 13.4.8.

13.3.5 Handling of Internal Transient Data

The HeNB terminates the air-link security and the backhaul-link security to the core network.
As only NAS messages are end-to-end protected between UE and MME, all radio level
signalling and all user plane traffic is available in cleartext during transfer inside the HeNB.
According to a requirement on the HeNB in clause 4.4.2 of [TS33.320], this traffic has to
be protected against unauthorized access. This means that the modules handling the security
of both air and backhaul link must be located in a protected area of the HeNB and that the
transfer of data between these endpoints has to be performed securely. This may be achieved
either by putting both endpoints into the same secure area, or by deploying a protected (e.g.
encrypted) link between both endpoints even when both are inside the HeNB device.

13.4 Security Procedures between Home Base Station and
Security Gateway

13.4.1 Device Integrity Validation

A prerequisite for any connection establishment between HeNB and operator network is the
successful device integrity validation of the HeNB by the network. This validation is based on
the secure boot of the HeNB and a device integrity check, which are both described in section
13.3. The validation itself is done implicitly by the network, as successful authentication can be
performed only if secure boot and device integrity check succeeded (see below). As no active
collaboration of the network is needed, this validation is termed ‘autonomous validation’.

! This feature may require the operator to also take care of the start time (‘not valid before’) of the validity period
of the network side certificate. This must allow HeNBs to connect to the network even if they have, for example, a
‘last saved time’ from manufacturing only, and were not connected for quite some time.
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The dependency of authentication on device validation is enforced by the Trusted Envi-
ronment (TrE) of the HeNB. The access to the private key used for device authentication is
only given based on a positive device integrity result. As device authentication is also part of
the combined authentication described later in section 13.4.4, this arrangement ensures the
correct behaviour of the HeNB for both device authentication and combined authentication. In
addition, there is the same dependency between authentication and device validation for any
separate secure connection to the management system described in section 13.5, as the client
authentication in TLS also needs to make use of the private key secured by the TrE.

13.4.2 Device Authentication

The mutual authentication of the HeNB device and the Security Gateway (SeGW) is mandatory
according to clause 4.4 of [TS33.320]. The use of digital signature-based authentication with
certificates according to [RFC4306] for this purpose is specified in clause 7.2 of [TS33.320].

The HeNB will authenticate itself to the SeGW with its permanent and unique identity that
is described in section 13.2. The identity of the SeGW is not specified by 3GPP, but it is under
control of the operator. The identity needs to be contained in the subjectAltName field of the
SeGW certificate, which is signed by a Certificate Authority (CA) trusted by the operator. The
format of the SeGW identity is a Fully Qualified Domain Name (FQDN) [RFC1912] if DNS
is available, otherwise it is simply an IP address.

The authentication procedure is based on a private key and a certificate, in both HeNB and
SeGW. As the private keys have to be kept confidential, they must be securely provided to and
stored in both elements. In addition, both sides must have access to a root certificate against
which the element certificate of the other side is to be validated. These root certificates are
public and thus not subject to any confidentiality requirements; but as they constitute the trust
anchors for certificate validation, unauthorized exchange has to be prevented.

The provisioning of the HeNB with the required data is described in section 13.5.

The provisioning methods and security requirements for the SeGW are not specified in 3GPP.
As the SeGW is located at the border of the core network and seen as part of the core network,
it is left to the operator security policy how the private key for the SeGW authentication and
the root certificate for validation of HeNB certificates are provided and stored.

The details of the mutual device authentication are specified in clause 7.2 of [TS33.320].

Figure 13.3, which is adapted from Figure A.1 of [TS33.320], gives an example flow
diagram for the certificate-based authentication. Details of the description of the payloads
in the messages are taken from [RFC4306]. This diagram takes into account that both sides
request certificates from the other side, and assumes that the HeNB requests configuration
data from the network side. The following text describes the single steps in more detail.

1. The HeNB is securely booted with the help of the TrE. The following steps are executed
only if the device integrity validation succeeds.

2. Toinitiate the IKEv2-based authentication, the HeNB sends an IKE_SA_INIT Request to the
SeGW. The connection is set up to the SeGW identity which was provisioned to the HeNB
either by initial vendor provisioning or by management (e.g. from the initial HeMS —
see section 13.5). HDR is the IKE header. The SAil payload states the cryptographic
algorithms the initiator supports for the IKE_SA. The KEi payload sends the initiators
Diffie-Hellman value. Ni is the initiators nonce.
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| 1. Device start-up |

2. IKE_SA_INIT Request
HDR, SAi1, KEi, Ni

3. IKE_SA_INIT Response
HDR, SAr1, KEr, Nr, CERTREQ

R —

——————————

4. IKE_AUTH Request
HDR, SK{IDi=FQDN, AUTH, CERTREQ, CERT, ——»|
CP(CFG_REQUEST), SAi2, TSi, TSr}

5. Verify HeNBs certificate

6. IKE_AUTH Response
- HDR, SK{IDr, AUTH, CERT,
CP(CFG_REPLY), SAr2, TSi, TSr}

7. Verify SeGW'’s certificate ‘

8. Delete old IKE SA
(if existing)
[

Figure 13.3 Certificate-based authentication with device integrity validation. Adapted with permission
from © 2010, 3GPP™

3. The SeGW sends an IKE_SA_INIT Response, requesting a certificate from the HeNB. The
responder chooses a cryptographic suite from the initiators offered choices and expresses
that choice in the SArl payload, completes the Diffie-Hellman exchange with the KEr
payload, and sends its nonce in the Nr payload. In addition, it requests a certificate from
the HeNB.

4. The HeNB sends its identity in the IDi payload in this first message of the IKE_AUTH
phase. This identity is identical to the one provided in the HeNB certificate. The HeNB
sends the AUTH payload and its own certificate, and also requests a certificate from the
SeGW. As all sensitive functions used for device authentication are to be performed within
the TrE (as specified in clauses 5.1.2 and 7.2.2 of [TS33.320]), the computation of the
AUTH parameter authenticating the first IKE_SA_INIT message is performed within the
HeNBs TrE. If the HeNB is configured to check the validity of the SeGW certificate (see
section 13.4.4), it may add an OCSP request to the IKE message. Alternatively the HeNB
may retrieve the SeGW certificate status information from the OCSP responder later (in
step 7). A configuration payload CP(CFG_REQUEST) is carried in this message if the
H(e)NB’s remote IP address should be configured dynamically. The Security Association
Payload SAi2 is used to negotiate attributes of the security association established by the
messages in steps 4 and 6 — for the tricky details see [RFC4306]. The TSi and TSr payloads
contain the proposed traffic selectors. The notation SK {...} indicates that these payloads
are encrypted and integrity protected.

5. On receipt of this message the SeGW may optionally select a user profile based on the
HeNBs identity presented in the IDi payload. The SeGW checks the correctness of the
AUTH received from the HeNB and calculates the AUTH parameter which authenticates
the second IKE_SA_INIT message. The SeGW verifies the certificate received from the
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HeNB against the vendor root certificate stored within SeGW. The SeGW may check the
validity of the certificates using CRL or OCSP if configured to do so.

6. The SeGW sends its identity in the IDr payload, the AUTH parameter and its certificate
to the HeNB together with the rest of the IKEv2 parameters, and the IKEv2 negotiation
terminates. If the request received in step 4 contained an OCSP request, or if the SeGW is
configured to provide its certificate revocation status to the HeNB in an IKEv2 message, the
SeGW retrieves SeGW certificate status information from the OCSP server, or uses a valid
cached response if one is available. The Remote IP address is assigned in the configuration
payload (CFG_REPLY), if the HeNB requested it by sending CFG_REQUEST in step 4.
The traffic selectors for traffic to be sent on that SA are specified in the TSi and TSr
payloads, which may be a subset of what the initiator proposed in the message in step 4.
The payload SAr2 contains the offer accepted by the responder.

7. The HeNB verifies the SeGW certificate using its stored operator root certificate. This root
certificate must be secured against unauthorized exchange, so it has to be stored within
the TrE of the HeNB. Also the signature verification process has to be performed within
the TrE. The HeNB checks that the SeGW identity as contained in the SeGW certificate
equals the SeGW identity as used for connection establishment in step 2. The HeNB checks
the validity of the SeGW certificates using the OCSP response if configured to do so. The
HeNB checks the correctness of the AUTH parameter received from the SeGW.

8. If the SeGW detects that an old IKE SA for that HeNB already exists, it will delete the
IKE SA and start with the HeNB an INFORMATIONAL exchange with a Delete payload
in order to delete the old IKE SA in HeNB (not shown in the figure).

After successful completion of this procedure the IKE security association (IKE_SA) and a
first CHILD_SA are established, and further CHILD_SAs for IPsec tunnels may be created.
This is described in section 13.4.7.

In case any of the steps given here failed, a working backhaul link between HeNB and
operator network cannot be initiated. The current specification for Release 9 does not give any
standardized remediation for this case. Thus it is implementation and configuration dependent,
for example if a separate connection (not through the SeGW) to the HeMS is established to
try remediation of the device by management means, or if a visible indication is given to the
customer on the HeNB device to prompt him to contact customer care.

13.4.3 IKEv2 and Certificate Profiling

The profiles for IKEv2 and the related certificates follow as closely as possible the 3GPP spec-
ifications on Network Domain Security (NDS). These specifications on NDS/IP [TS33.210]
and NDS/AF (Authentication Framework) [TS33.310] are handled in sections 4.5 and 8.4.
Additional profiling is, however, necessary to adapt the profiles to the particular environment
of HeNBs. One big difference is that IKEv1 is not allowed for HeNB connections, so only the
IKEv2-related parts of the NDS specifications are valid. The reason for this difference is that
HeNB and SeWG were defined for 3GPP Release 9 and, hence, no legacy systems supporting
only IKEv1 had to be taken into account.

The IKEv2 profile is given in clause 5.4.2 of [TS33.210]. It states the mandatory algo-
rithms to be supported for IKE_SA_INIT exchange and IKE_AUTH exchange. In addition
[TS33.320] explicitly excludes the usage of pre-shared keys for the IKE_AUTH exchange. For
the certificate-based authentication the following additional rules are given.
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® RSA signatures for authentication will be supported.

® The HeNB will include its identity into the IDi payload of the IKE_AUTH Request, to
allow the SeGW policy checks based on HeNB identity before any certificate handling is
done in SeGW. Usage of this unauthenticated identity does not constitute a security risk, as
[RFC4306] anyway requires the cross-check of IDi with the identity carried in the certificate
after certificate validation.

o Certificate requests and certificates (including any certificate chains up to the root certificate)
must be sent by both sides within the IKEv2 exchange. These certificates shall all be of type
X.509 Certificate — Signature’ (type 4 as specified in [RFC4306]).

For certificate profiles of the X.509 certificates, the HeNB security specification references the
relevant clauses of [TS33.310]. For all certificates that are not root certificates (i.e. HeNB and
SeGW certificates), and for all certificates up in the chain to the root certificate, clause 6.1.3
of this specification about Security Gateway (SEG) certificates is referenced. This clause in
turn references clause 6.1.1, which is valid for all certificates used in [TS33.310].

For the HeNB certificates the following additional rules are given.

® The certificate must be signed by a CA that is authorized by the operator, such as a CA
of the manufacturer or the vendor. This is a deviation from the rules in [TS33.310], where
all certificates are signed directly by the operator CA. This deviation is necessary as the
HeNB device certificate is installed into the HeNB by the manufacturer, and the specification
should not impose any need to exchange this certificate during the whole lifetime of the
HeNB. In addition, the operator is not the only party taking responsibility for the HeNB, as
the manufacturer stands for the device integrity of the HeNB when signing and providing
the certificate. Thus in many cases the manufacturer will sign the HeNB certificates using
their own CA, but also a (e.g. commercial) third-party CA can be involved here if it is trusted
by both the manufacturer and the operator.

® The HeNB certificate must carry an identity in FQDN format in the subjectAltName field of
the X.509 certificate [ITU X.509]. This clarification is necessary as TR-069 [BBF TR-069]
allows other formats for the HeNB identity.

® The HeNB certificate may carry information about the location of a revocation information
server of the manufacturer or vendor of the device. When the revocation information is
provided in the form of a Certificate Revocation List (CRL), the CRL distribution point
as specified in [TS33.310] shall be given in the certificate. If an OCSP server is deployed
for online retrieval of certificate status information, the OCSP server information (AIA
extension) as specified in [RFC5280] and [RFC2560] shall be given.

* One requirement on the HeNB certificate is not stated explicitly, but can be deduced from the
usage scenario of the HeNB certificates. Basically the certificate must be unalterable once
stored within the TrE. As there is no certificate renewal procedure specified, normally the
certificate must be valid for the complete expected lifetime of the HeNB and the expiration
time (‘not valid after’) has to be set accordingly. If the manufacturer provides a proprietary
method for renewal of the HeNB certificate, an authorization mechanism must be included,
as only authorized parties shall be able to perform this renewal.

For the SeGW certificate, only one rule is given in the specification in addition to the provisions
of clause 6.1.3 of [TS33.310]:
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® The operator may populate the certificate with an OCSP server information as specified in
[RFC2560]. If configured to do so, the HeNB may use this information to request certificate
validity status information from the OCSP server.

For the CA certificates used for validation of the HeNB and SeGW certificates, the requirements
in clause 6.1.4b of [TS33.310] for CAs issuing certificates for network elements are referenced,
and not the requirements for SEG CAs where SEG is defined as for NDS/IP — see section 4.5.
This was done as connections between different security domains and thus interconnection
CAs are not required.

The validity periods of the root certificates are not specified and are a matter of policies of
the bodies operating the CAs. For the CAs used in the certificate chain of SeGW certificates,
most probably any existing PKI policies of the operator will be deployed. Replacement of
certificates in network elements is common practice in operator networks. A secure replace-
ment procedure for the operator root certificate in the HeNB is not specified in [TS33.320],
but may be implemented by management procedures. For the certificate chain used for vali-
dating HeNB certificates, the situation is different because the HeNB device certificates are
lifetime certificates. No example policies for the PKI infrastructure on the manufacturer side
are mentioned in the specifications, but two different approaches are given in the following.

¢ Ifthe CAs have a conservative approach, meaning that they are not allowed to sign certificates
with a later expiration time than that contained in their own current certificate, then also the
root certificate and all intermediate certificates must have an expiration time which exceeds
or at least equals the expected lifetime of the HeNBs.

* A more open approach is possible, if the CA signing the HeNB certificates is allowed to
issue certificates with longer lifetime than contained in its own certificate or, if it is not the
root CA, in any of the certificates in the chain to the root certificate. In this case there is no
strong requirement on the expiry time of these certificates. Given normal validation policies,
the earliest expiry time in the chain of certificates will anyway limit the HeNB certificate
lifetime. But if at a later point in time new certificates are issued with longer lifetime, then
also the actual validity of the HeNB certificate is extended at most up to the expiry time
of the HeNB certificate itself. This procedure implies two hard conditions, namely that any
new root certificate must be provided to the entity checking the HeNB certificate, and that
any new certificate for the CA having signed the HeNB certificate must certify the same
subject name and private/public key pair as with the old certificate.

Based on the described certificate profiles, it is clear that the CA infrastructure for NDS and
the one for HeNB backhaul link differ from each other. While NDS assumes a common CA
for both sides of the authentication, or at least specific interconnection CAs when bridging two
security domains, for HeNB purposes the approach of two entirely separated PKIs was chosen.
Reasons for this decision are given in section 13.1. Thus the following CA infrastructure is
envisaged.

¢ For the HeNBs the root CA logically lies with the manufacturer of the device. It is a decision
of the manufacturer either to deploy their own root CA, and to sign all HeNB certificates
locally, or to rely on the service of a trusted third party. The latter approach may use a
third-party CA either as root CA only while the manufacturer deploys their own signing
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CA, or for signing for all single HeNB certificates. The root CA (and all intermediate CAs
that may be there) must be trusted by all operators who allow HeNBs of this manufacturer
to have access to their core networks. This also implies that the HeNB manufacturer must
provide any operator deploying their HeNBs with the trust anchor used for signing the HeNB
certificates.

® For the SeGW root CA the PKI deployment resembles more the ordinary NDS usage. The
operator may issue SeGW certificates just like certificates for any other network element
within their own network. The root certificate of the operator must be provisioned to all
HeNBs. This provisioning is described in section 13.5.

13.4.4  Certificate Processing

Certificate processing during IKEv2 authentication is profiled for HeNB and SeGW in the
following way.

¢ Certificate validating entities are required to only have the related root certificate available
locally. All other certificates in the certificate chain including the end entity certificates must
be provided by the end entities whose certificates are to be validated.

¢ Certificate chains sent to the other entity shall have a maximum path length of four certifi-
cates, to limit the processing requirements and the amount of data transferred.

e Certificate validity times (‘not valid before’ and ‘not valid after’) must be checked, and
invalid certificates must be rejected.

¢ Certificate revocation checking is performed based on local policy. The mechanisms used
and the requirements on support and usage are different for HeNB and SeGW, and are
described below.

Revocation status check in HeNB

To ease the implementation of the mass-deployed HeNB, only the Online Certificate Status
Protocol (OCSP) mechanism [RFC2560] is specified for the HeNB. Usage of OCSP is optional,
while support for the protocol in HeNBs is strongly recommended. This should ease the
migration path for operators intending to introduce mandatory certificate validation at a later
time even with a potentially huge number of already deployed HeNBs. To further reduce
the implementation requirements on the HeNB, usage of in-band signalling of certificate
revocation status in IKEv2 according to [RFC4806] is made optional. This in-band signalling
avoids a separate connection from the HeNB to an OCSP server, and the operator does not
have to deploy an OCSP server in the public Internet.

Revocation status check in SeGW

For validation of HeNB certificate status, the SeGW may use two different mechanisms: one
is OCSP as used by the HeNB, and the other is the revocation by Certificate Revocation Lists
(CRLs), the latter being the standardized way in NDS/AF. Implementation for at least one of
the two mechanisms is mandatory in SeGW, while usage is at the discretion of the operator.
Input for certificate revocation may come from both the operator and the manufacturer, as
both may have reasons to revoke a certificate. These reasons may be, for example, that the
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manufacturer finds out that some series of HeNBs have newly discovered flaws in the integrity
protection, and thus the certificate is no longer valid for usage with autonomous validation, or
the operator may deem only certain series of HeNBs as valid to access their core network.

Based on this dual input for revocation, either both parties operate their own revocation
server, which are both queried by the SeGW, or the manufacturer provides their revocation
lists to the operator, who combines them with their own revocation lists. [TS33.320] explicitly
states that the manufacturer is obliged to provide such revocation data, if the operator uses
certificate status checking at all.

13.4.5 Combined Device-Hosting Party Authentication

The mutual authentication of the HeNB device and the Security Gateway (SeGW) is mandatory
according to clause 4.4 of [TS33.320]. The same clause gives the option to also authenticate
a Hosting Party (HP) to the network. This HP authentication is performed in addition to and
following the mutual device authentication, described in section 13.4.2. It uses the feature
of IKEV2 to provide authentication of the initiator by means of an EAP method. The EAP
method used for this purpose is EAP-AKA, which is described in Chapter 5. Section 5.2.3
describes for the case of 3G-WLAN interworking how EAP-AKA is used in the context of
IKEv2. Both authentications, EAP-AKA and certificate-based authentication, are embedded
into the multiple authentication procedure specified for IKEv2 in [RFC4739]. EAP-AKA’
would provide no security advantage over EAP-AKA for this purpose because IKEv2 mandates
the use of certificates for responder (SeGW) authentication — see the similar case for untrusted
access network discussed in section 11.2.1.

The reasons why HP authentication is not used as a standalone solution, but always combined
with device authentication, are given in section 13.2.

The AKA functions used to support the EAP-AKA authentication must be provided by the
Hosting Party Module (HPM), which is described in section 13.3. The storage of the secrets
used for this authentication, and the calculation of the authentication parameters, must take
place within the HPM.

As can be seen from Figure 13.4, the HP authentication requires a AAA server as an
additional network element as compared to device authentication according to section 13.4.2,
and the involvement of the HLR/HSS. The setting is similar to the architecture needed for
3GPP IP access in 3G-WLAN interworking specified in [TS33.234] and described in section
5.2.3, and, if already deployed, could be reused. A difference to the case of 3G-WLAN
interworking is that the HP identity is not an ordinary subscriber identity used, for example,
in a UE, but an identity used for a network element. On the other hand, if the HLR/HSS
infrastructure is to be reused, the HP must have an entry there like any other subscriber. But
to avoid misuse of the HP identity, this entry should be clearly differentiated in the subscriber
profile from ordinary UE subscriptions.

Figure 13.4, adapted from Figure A.2 in [TS33.320], gives a message flow diagram for the
combined (device and HP) mutual authentication, which is explained in more detail below. As
with Figure 13.3, the diagram takes into account that both sides request certificates from the
other side.

1. This and steps 2 to 7 resemble the execution of the mutual device authentication as
described in section 13.4.2 and Figure 13.3. In steps 3 and 4, both sides have to state

http://freepdf-books.com



Security for Home Base Station Deployment

235

HeNB

1. Device start-up

2. IKE_SA_INIT Request

HDR, SAi1, KEi, Ni

3. IKE_SA_INIT Response
« HDR, SAr1, KEr, Nr, CERTREQ,
N(MULTIPLE_AUTH_SUPPORTED)

4. IKE_AUTH Request

HDR, SK{IDi=FQDN, AUTH,

- SAi2, TSi, TSr, CERTREQ, CERT, »

N(MULTIPLE_AUTH_SUPPORTED),
N(ANOTHER_AUTH_FOLLOWS)}

SeGW

AAA-
Server

HSS

e

5. Verify HeNB’s certificate

6. IKE_AUTH Response

HDR SK({IDr, AUTH, CERT}

7. Verify SeGW'’s certificate

lt—

8. IKE_AUTH Request

HDR, SK{IDi=NAl)}

12. IKE_AUTH Response
HDR SK{EAP-Request/

AKA-Challenge (RAND, AUTN)}

13. Verify AKA parameters

14. IKE_AUTH Request

AKA-Challenge (RES)}

18. Calculate AUTH
parameters using local MSK

—>

HDR SK{EAP-Response/—»

9. Access-Request
(Identity(NAI))

11. Access-Challenge

¢ [EAP-Request/AKA- —]

Challenge](RAND, AUTN)

—»

15. Access-Request
——[EAP-Response/AKA—]
Challenge](RES)

16. Access-Accept

< ) o
17. IKE_AUTH Response (MSK, [TiA] EAP-Success]
HDR SK{EAP-Success}
19. IKE_AUTH Request
HDR SK{AUTH}
20. Calculate AUTH

parameters using MSK

21.IKE_AUTH Response

[ HDR SK{AUTH, SAr2, TSi, TSr} |

22. Delete old IKE_SA

10. AV retrieval
if needed

Figure 13.4 Device and hosting party identity-based authentication. Adapted with permission from ©

2010, 3GPP™

http://freepdf-books.com



236 LTE Security

their support for multiple authentications and the HeNB indicates in step 4 that a second
authentication will follow after the device authentication. The indication of ‘multiple au-
thentications supported’ in step 3 could be interpreted by the HeNB that HP authentication
is wanted by the SeGW. But such interpretations are not specified in any way, and de-
pend solely on the policies given to SeGW and HeNB. The exchange of some SA-related
parameters sent in step 6 of section 13.4.2 is postponed to step 21.

8. In this and steps 9 and 10, the HeNB starts the second authentication by sending its HP
identity to the SeGW in the IDi payload. The SeGW forwards this identity to the AAA
Server in an Access Request message. The AAA Server fetches authentication vectors for
this identity from HSS/HLR together with subscription data if needed.

11. In this and steps 12 to 15, the AAA Server performs the EAP-AKA authentication with
the HeNB via the SeGW. The SeGW acting as IKEv2 responder inserts the EAP messages
into the IKEv2 messages. Within the HeNB the AKA functions are performed within
the HPM holding the shared secret key. It is expected that an ordinary UICC with USIM
similar to a subscriber UICC can be used as HPM.

16. When all checks are successful, the AAA Server sends the Authentication Answer includ-
ing an EAP Success message and the MSK generated from EAP-AKA procedure to the
SeGW.

17. The EAP Success message is forwarded to the HeNB over IKEv2.

18. In this and step 19, the HeNB calculates the AUTH parameters for authentication of the
IKE_SA_INIT phase messages using the locally generated MSK. The AUTH parameter
sent by SeGW in step 17 is checked.

20. In this and step 21, the SeGW calculates the AUTH parameters for authentication of the
IKE_SA_INIT phase messages using the MSK received in step 16. The SeGW checks the
correctness of the AUTH parameter received from the HeNB in step 19. The message sent
to HeNB terminates the IKEv2 negotiation and contains all remaining parameters from
step 6 of the device mutual authentication, which were not sent in step 6 of the current
procedure.

22. If the SeGW detects that an old IKE SA for that HeNB already exists, it deletes the IKE
SA and starts with the HeNB an INFORMATIONAL exchange with a Delete payload in
order to delete the old IKE SA in HeNB (not shown in the figure).

13.4.6 Authorization and Access Control

The simplest deployment model of HeNBs does not need any explicit authorization and
access control for access to the operator core network. To allow successful execution of the
certificate-based device authentication, the operator has to provide all SeGWs with the root
CA certificate(s) of the HeNBs. This provisioning of the root certificate(s) by the operator
is the prerequisite of implicit access control. This form of access control admits all devices
to the operator network that successfully pass device authentication; and only HeNBs with
certificates rooted in the provisioned root certificate(s) can do that. Implicit access control
ascertains that each HeNB having access to the network comes from a manufacturer accredited
by the operator, and that the HeNB conforms to the integrity rules set up by the manufacturer
and operator.

The authorization scheme described above requires that the root CAs only sign HeNB device
certificates. If also other certificates besides HeNB device certificates may be issued under
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the same root CA, then the mere validation against the root certificate is not sufficient. One
solution for this problem is to restrict access to HeNB identities that are verified by certificates
signed by an intermediate CA exclusively used for device certificates. Other solutions that take
information elements of the certificates (e.g. subject names) also into account are described
below.

If there is no certificate revocation handling, this access control scheme is static. This
means that the access rights last until the expiry of the HeNB certificate or until any of the
certificates in the chain to the root certificate expires, whichever happens first. To allow also
the barring of single devices or complete series of HeNBs, perhaps if some devices were
found vulnerable or compromised, a revocation infrastructure may be deployed. Alternatively,
blacklists or whitelists may be used (see below). Details of an envisaged architecture of an
optional revocation infrastructure are given in section 13.4.4.

A more fine-grained access control may be desirable for the following reasons.

1. The operator does not want to admit all products of a certain manufacturer to their network,
but wants to restrict the access to accredited types or series only. The criteria used may be,
for example, the feature set of the HeNB or the management capabilities in their network.

2. Some manufacturers may share a common third party root CA for HeNB device certificates,
but the operator may want to allow access for HeNBs of certain manufacturers only. The
differentiating criterion here may be the manufacturer ID that is part of the device identity.

3. The operator may have commercial or business reasons to admit only certain HeNBs to
their network. For example, only HeNB devices explicitly registered with or provided by
the operator are admitted. In addition, a HeNB device may be bound to a specific HeNB
subscription, and only devices with such subscriptions are allowed. This access control
may be extended if the operator provides separate Hosting Party (HP) subscriptions, and
wants to bind single HeNB device identities to specific HP identities.

4. The operator wants a separate control over allowed devices, based for example on data gath-
ered by the management system about possible irregularities, or for commercial reasons,
such as to block certain hosting parties out temporarily or indefinitely.

Such fine-grained access control is mentioned in clause 7.5 of [TS33.320], but no specific
method (e.g. blacklisting or whitelisting) is specified. Also the location of the involved logical
entities is not given. Naturally the SeGW is the access enforcement point, but the location
of the access decision point may be within the SeGW, in a separate AAA server, or in the
management system.

There may be concerns about the usage of an external AAA server, as the interfaces
between SeGWs and such servers are not well specified, and vary considerably. Clause 7.5
of [TS33.320] mentions the possibility to use the standardized OCSP protocol [RFC2560] for
this purpose. As in OCSP a separate request is sent to the OCSP server for each certificate to
be validated, the OCSP server may be enhanced with AAA functionality to additionally look
up a blacklist or a whitelist. In cases of denied access the OCSP server may respond with a
‘certificate invalid’ message. This is not the intended purpose of the OCSP protocol, which
should only report the revocation status of certificates. Therefore, this solution may only be
deployed in a proprietary manner. Also, OCSP servers with this extended functionality may
not be available.
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13.4.7 IPsec Tunnel Establishment

As aresult of the authentication by means of IKEv?2 as described in sections 13.4.2 and 13.4.5,
at least one IPsec tunnel is established between HeNB and SeGW. The profiling of this [Psec
tunnel is done in accordance with clause 5.3 of the NDS/IP specification [TS33.210]. The
mandated security protocol is the Encapsulating Security Payload (ESP) [RFC4303] in the
tunnel mode.

All traffic between HeNB and SeGW is carried through this tunnel — signalling, user plane
and management plane traffic. For management traffic a second option for a secure tunnel
exists, which is described in section 13.5.

The NDS/IP specification is referenced also for the list of supported ESP authentication
transforms and ESP encryption transforms. This means according to clause 5.3.3 of NDS/IP
that for encryption the algorithms ESP_NULL, TripleDES-CBC [RFC2451] and AES-CBC
with 128-bit keys [RFC3602] must be supported. For integrity protection, clause 5.3.4 of
NDS/IP states that the ESP_.NULL, ESP_.HMAC_MD5 and ESP_HMAC_SHA-1 transforms
must be supported.

The HeNB is normally located in the home network of the HP, with access to the Internet
via a broadband connection. Thus most probably there will be Network Address/Port Trans-
lators (NATs/NAPTSs) and firewalls in the home network and the access network. Support
for such environments is mandated in clause 7.2.4 of [TS33.320] by requiring the support
of mechanisms for detection of NAT [RFC3947], UDP encapsulation for NAT Traversal and
HeNB-initiated NAT keep-alive [RFC3948], and Dead Peer Detection.

13.4.8 Time Synchronization

In the context of HeNB security, reliable time information is required for the checking of
certificate validity times. Every certificate has a ‘not valid before’ and ‘not valid after’ entry,
which have to be checked on every usage of the certificate. Therefore the HeNB requires a
secure time base, which is described in section 13.3.4.

This local clock must be synchronized with a reliable external clock periodically. The
specification requires a maximum time interval of 48 hours between synchronizations, when
the HeNB is connected to the network. Local reception of time signals, such as from a Global
Navigation Satellite System (GNSS), was not seen as sufficient for standardization purposes
as there may be locations for HeNBs where such reception is not possible. Also such signals
may be disturbed or faked quite easily, given that GNSS test kits are commercially available
at reasonable prices.

Based on these considerations, 3GPP decided that the provisioning of the HeNB with time
synchronization messages over the secure backhaul link is mandatory to implement. The
Network Time Protocol (NTP) [RFC1305] would be a candidate, but the exact protocol is not
specified in the HeNB security specification.

The selected approach has a twofold advantage:

® Regardless of which time protocol is used, the operator has full control over the time
messages. This applies to both cases when either the operator deploys a time server, or if
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they have access to a reliable time source from elsewhere, and feed the messages into the
backhaul links to the HeNBs under their control.

® There is no need to specify the usage of specific security mechanisms for the time protocol
itself.

Disadvantages of the approach were not seen, as the latency of the time synchronization
messages was not seen to be increased significantly by the handling within the IPsec stack,
as compared to the latencies introduced by transmission over the subscriber access line, even
if QoS mechanisms are used. Also the increase in required bandwidth on the subscriber line
and the additional processing capacity required in the SeGW for handling the IPsec packet
overhead were not seen as significant.

In addition to the reception of time synchronization signals over the backhaul link, the HeNB
may also receive time synchronization signals from other time servers. [TS33.320] gives here
the general requirement that the time server and the communication must be secured.

One special error case for clock synchronization is also mentioned in this specification. It
may happen that by mistake the HeNB receives time messages with a time value far in the
future. If this error is not corrected before power-down of the HeNB, this time will be stored and
used on next power-up. If this time is beyond the validity of the SeGW certificate, connecting
to the SeGW is not possible. No standardized solution is given for this error case in Release 9
of 3GPP, but it is expected that it will be handled together with extended management features
in future releases.

13.5 Security Aspects of Home Base Station Management
13.5.1 Management Architecture

As described in section 13.1, HeNBs (and HNBs as their UMTS counterparts) are the first
mobile network elements deployed in customer premises. Thus for the first time in 3GPP
specifications the security for management of a network element is specified in such detail.
Driven by the expected mass deployment of HeNBs, the management interface should be
completely specified to allow unlimited interworking between HeNBs and HeNB management
systems (HeMS) of different vendors.

The security architecture for HeNB management builds on the 3GPP specifications on HeNB
management. The requirements are given in [TS32.591], and the architecture and procedures
in [TS32.593]. These specifications describe the ‘Type 1 Interface’ which is defined as the
interface between network element management operations systems and the network element.
The basic management procedures are taken from the Broadband Forum [BBF] specification
TR-069 [BBF TR-069]. This protocol allows the online communication between HeMS and
HeNB, and specifies commands and data formats to be used. In addition, the usage of file
transfer mechanisms is specified for the download of software and bulk configuration data
and the upload of, for example, performance measurement data. The data model used for the
managed information elements is specified in [TS32.592]. The content of this specification
is based on the comparable specification for HNBs [TS32.582], amended by EPS-specific
elements. These data models are heavily based on BBF specifications with the general data
model in [BBF TR-098] and the HNB-specific data model in [BBF TR-196]. The 3GPP
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Figure 13.5 Management architecture for HeNB and HeMS

working group TSG SA WG5 on Telecom Management is in charge of the communication
between 3GPP and BBF on these data models.

Figure 13.5 shows the basic management architecture for HeNBs. The HeMS may be located
within the operator network or in the public Internet. If the HeMS is located in the operator
domain, the management traffic is routed through the SeGW, as traffic from the Internet shall
never access the operator security domain directly. If the HeMS is located in the public Internet
then a direct connection between HeNB and HeMS is foreseen.

The security for the management traffic is specified in clauses 8.3 and 8.4 of [TS33.320].
Depending on the location of the HeMS, different security mechanisms are required. In
addition, it has to be considered that the HeMS may be distributed; for example, the TR-069
manager (called TR-069 Auto-Configuration Server — ACS — by BBF) and the file server might
be physically separated. This may be the case if an existing file server infrastructure that is
accessible on the public Internet and is used for support of existing home gateways or DSL
routers is to be reused for HeNBs.

HeMS in operator domain. When the HeMS is located within the operator security domain,
the management traffic is tunnelled through the same IPsec tunnel that is used for signalling
and user plane traffic between HeNB and core network. This is described in the preceding
section 13.4. In addition, the operator may optionally deploy the security mechanisms specified
for access to an HeMS accessible on the public Internet, if end-to-end security is required
between HeNB and HeMS.

HeMS accessible on public Internet. When the HeMS is accessible on the public Internet, the
HeNB has to establish a secure tunnel to this HeMS for the management traffic. Such secure
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tunnel using TLS is specified as optional in TR-069, but [TS33.320] requires the usage of TLS
(e.g. HTTPS [RFC2818] or FTPS [RFC4217]) as mandatory.

Figure 13.6 shows an example management architecture with distributed HeMS and the
mandatory security mechanisms for this deployment. It shows the basic types of connections
that can be used in this configuration. The management traffic between TR-069 agent in
HeNB and TR-069 manager in HeMS is secured by the IPsec tunnel between HeNB and
SeGW. According to operator policies, the interface between SeGW and HeMS and other
network internal interfaces may be secured using the Zb interface for elements in the same
security domain, and using a sequence of Zb and Za interfaces for elements in different security
domains (see section 4.5 on Network Domain Security). But this is not required for HeNB
security. For SW Download or any other file transfer, the HeNB has to establish a TLS tunnel
with the file manager in HeMS before any data may be downloaded or uploaded.

The management architecture for HeNBs defined by 3GPP comprises two different kinds
of management systems. They are described in detail in the following.

Initial HeMS. The initial HeMS is specified as the first management contact point for the
HeNB after first power-up, or after a reset of the HeNB to factory default values. The access
URL of this initial HeMS may be hard-coded into the HeNB, or provisioned at the factory. The
3GPP specifications do not specify if the initial HeMS is owned or operated by the operator,
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by the HeNB manufacturer or vendor or by a third party. This is to allow for a flexible
enrolment procedure of HeNBs to operator networks, without necessitating the provisioning
of operator-specific parameters into the HeNB for all HeNBs at time of production or delivery
from factory. Because of this it is also expected that an initial HeMS is more likely to be
accessible on the public Internet, as otherwise also a SeGW address must be pre-provided in
the HeNB.

The initial HeMS provides the HeNB with operational addresses and parameters for later
operation in a specific operator network. The selection of the addresses and parameters may
be based on the geo-location as reported by the HeNB or on the globally unique identity of the
HeNB. Also a first software download may be done if the initial HeMS detects an outdated or
inappropriate version on the HeNB. With respect to security mechanisms, the general security
requirements for HeMSs apply also to the initial HeMS. If the initial HeMS is located in the
operator network behind a SeGW, this SeGW is called ‘initial SeGW’, and the address of
this SeGW must also be pre-provisioned to the HeNB. The term ‘initial SeGW’ is a logical
name used in management, and does not require a SeGW that is physically separated from the
SeGW used for (for example) S1 interface data or for the connections to the serving HeMS.

Serving HeMS. The serving HeMS is the management system that takes care of the everyday
management of the HeNB. It is more likely to be located within the operator network than
the initial HeMS, as the management tasks are closely related to the actual operation of the
mobile network. This is in contrast to the tasks of the initial HeMS, which is restricted to
the task of initially provisioning the HeNB for one operator network. Based on the HeNB
management specification [TS32.593], the HeNB has to register with the serving HeMS
when first connecting to the network. Later on, the serving HeMS performs configuration
management and SW updates and is the receiver of performance measurement data collected
by the HeNB. If the serving HeMS is located in the operator network, then the SeGW used for
the management traffic is called ‘serving SeGW’. This requires neither a physically separated
SeGW nor a separate [Psec tunnel for management traffic.

The distinction of initial and serving HeMS is primarily logical, thus there is no need to
deploy two HeMSs if the particular deployment scenario of an operator does not require
separate entities.

Figure 13.7 gives a possible architecture for HeNB deployment with the initial HeMS
accessible on the public Internet and the serving HeMS on the operator network. On first
power-up the HeNB connects to the initial HeMS and is configured with the FQDN of the
operator SeGW and the (inner) FQDN of the serving HeMS. The FQDNs may be replaced by
IP addresses, if no DNS is available for resolving domain names. All this happens via a TLS
tunnel. Then the HeNB disconnects from the initial HeMS, establishes the secure backhaul
tunnel as described in section 13.4, and then connects to the serving HeMS in the operator
network.

The paths for the S1 interface are also given in this figure, to show that the management
data is not handled differently from user and signalling data, when seen from the point of
view of the backhaul link. Naturally a separation according to the type of traffic may be done
on the backhaul link, if for example QoS mechanisms are applied there. If separate Security
Associations (SAs) are deployed for traffic separation, all these SAs are derived as child SAs
from the same IKE SA.
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Figure 13.7 Example deployment of initial and serving HeMS

13.5.2 Management and Provisioning during Manufacturing

For the whole concept of HeNB security to work the manufacturer has to pre-provision some
data into the HeNB. The data described here are independent from the target operator network,

where the HeNB will later be connected to.
As the authentication of HeNBs to both the operator network and the HeMS accessible

on the public Internet is based on manufacturer-provided certificates, the manufacturer has to

provide a private/public key pair and a related certificate to the HeNB device.

The private key has to be provided to and stored securely within the Trusted Environment
(TrE) of the HeNB. The best security level is typically achieved if the private key is generated
within the element itself inside the TrE, and the private key never leaves the TrE. The device
certificate is public and thus not subject to specific security requirements. If somebody tampers
with the certificate, then it can no longer be verified. For HeNBs the exact method of key

generation is not specified in [TS33.320]. It is left to the manufacturer to either generate the
private key internally in the TrE or to generate it externally and provide it to the TrE later
on. If external generation is used, the process of key-pair generation and provisioning of the
private key must be performed in a secure environment. As the private key is only used for
authentication and tunnel establishment, and without any need for possible later key recovery,

there is no need to keep a copy of the private key with the manufacturer.
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For generation of the HeNB certificate, the manufacturer either has to deploy their own
Certification Authority (CA), or has to send the certificate signing request to a third party CA
which is trusted by the manufacturer and all possible customers of the manufacturer. This sign-
ing request normally carries the public key, a list of intended certificate attributes including the
device identity and validity period, and some proof-of-possession of the associated private key
(e.g. a signature with the private key over some data). If the manufacturer provides certificate
revocation information online by CRL or OCSP server, the associated server information has
to be included into the request. The validity time should include the complete expected lifetime
of the HeNB, as a renewal of this manufacturer-provided device certificate is not envisaged
in the specification. The resulting certificate has to be stored in the HeNB. For the certificate
profile, see section 13.5.6.

For authentication to the initial HeMS, a root certificate for validation of the certificate used
by the network side has to be provided. This is either the root certificate for the TLS server
certificate if an initial HeMS accessible on the public Internet is contacted via a mutually
authenticated TLS tunnel, or a root certificate for the validation of the SeGW certificate in
front of the initial HeMS. This root certificate is not confidential, but it must be secured against
unauthorized replacement as it is the root of trust for authentication of the network side.

Section 13.5.7 describes the secure software download specified for SW updates of the
HeNB. To allow the validation of such SW downloads within the HeNB, a root certificate for
the validation of the signed data object must be provisioned to the HeNB. If the root of trust
for the SW download lies with the manufacturer of the HeNB, a certificate of a CA acting
as a root for SW signing must be provisioned to the HeNB. This certificate must be stored
securely, as any modification can only be possible by authorized access to the HeNB.

13.5.3  Preparation for Operator-specific Deployment

The following data have to be provided to the HeNB before registration at the serving HeMS
and ordinary operation in the operator network. The provisioning of the data requires authorized
access to the HeNB, as the root certificates provided are the root of trust for authentication of
the operator network, and thus must be secured against unauthorized modification.

The minimum set of operator specific data needed for registration with the operator network
depends on the architecture used by the operator.

® When the serving HeMS is accessible on the public Internet, only the FQDN of the HeMS
and the root certificate for validation of the HeMS certificate are necessary.

¢ For the deployment scenario where all communication of the HeNB with the operator
network is routed through the SeGW, the FQDN of the serving SeGW and the root certificate
for validation of the SeGW certificate are necessary. In addition, the operator network internal
FQDN for connecting to the HeMS must be available. A root certificate for validating the
HeMS identity is only necessary if the operator uses the optional end-to-end TLS tunnel
within the IPsec tunnel.

The operator may decide to base the secure SW download on an operator-provided signature
in the signed data object as part of the SW download package (see section 13.5.7). In this case
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the HeNB must be provisioned with the root certificate of the operator which is to be used to
validate the signed data object.

When a HeNB is branded for a specific operator, all data mentioned above in this subsection
may be provided at the operator premises before delivery to the HP or by the manufacturer
together with the data described in the previous subchapter. With an unbranded HeNB, the
most viable method is the use of an operator-independent initial HeMS. The FQDN of this
HeMS may be pre-provisioned according to the previous subsection, and the operator-specific
data are configured by the initial HeMS, based for example on the globally unique identity of
the HeNB authenticated by the HeMS and/or based on the geo-location of the HeNB.

Provisioning at customer care points of the operator is also possible if a local management
interface is supported by the HeNB. Furthermore, a distribution of these data by removable
storage media is possible, such as by a UICC used for Hosting Party authentication. Such
local management is not part of the 3GPP specifications and the security measures for such
vendor-proprietary procedures are not handled by 3GPP. In particular, the provisioning of
these data by removable media would require additional security measures as root certificates
are required to be inserted into the HeNB by authorized access only and must be securely
stored within the TrE of the HeNB.

13.5.4 Relationships between HeNB Manufacturer and Operator

To enable authentication of the HeNB to the operator network, some interactions between the
HeNB manufacturer and the mobile operator are necessary. The decision to base the HeNB
device authentication on a manufacturer-provided certificate has the consequence that the
manufacturer has a responsibility for the HeNB for its complete deployment time. This relates
to the integrity and validity of the HeNB certificate, but also to the integrity protection and
validation of the HeNB device itself, as the device integrity validation is closely bound to
authentication in the concept of autonomous validation as described in section 13.3.

The first relationship between the manufacturer and the operator is of organizational nature,
and refers to the trust of the latter into the former. If any CA involved in the signing of the
HeNB certificate is not operated by the manufacturer, the operator must also trust the CA
which signed the HeNB device certificate and the CA chain up to the root CA.

With respect to the root certificate used for the validation of the HeNB device certificates,
it is required that the currently valid root certificate has to be handed to each operator who
allows HeNBs of this particular manufacturer to authenticate to their network.

The expiry time of the root certificate must be sufficiently far in the future to allow the
validation of all certificates issued during the expected deployment time of the HeNB device.
However, if the root certificate is about to expire, a renewed certificate is to be distributed.
Such renewal must be done in such a manner that the public key and the subject name of the
CA issuing the device certificate stays the same, as otherwise older device certificates could
no longer be validated.

With respect to the certificates of individual devices, the manufacturer is obliged to provide
the operator with revocation information, in case the operator wants to establish revocation
lists. Such manufacturer-generated revocation information may be necessary, for example,
if some HeNB devices or types are prone to be compromised or even already found to be
compromised. This compromise refers to both disclosure of the private key, which would
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allow cloning of the HeNB identity, and to weaknesses in device integrity protection, which
would lead to failures of the autonomous validation mechanism.

13.5.5 Security Management in Operator Network

For the deployment of the security mechanisms described in this chapter, some management
operations in the operator network are necessary.

As the network must authenticate the identity of the HeNBs, the network elements per-
forming this authentication must be provided with the root certificate(s) for validation of the
HeNB certificates. This applies to the SeGW, and also to the HeMS in case the HeMS uses
TLS. These root certificate(s) are received from the HeNB manufacturer(s), as described in
the previous subsection.

If the operator deploys a certificate revocation infrastructure for SeGW certificates, they have
to operate an OCSP server. This OCSP server must be provided with a certificate signed by the
operator root CA. This should be the same root CA as used for validating the SeGW certificates,
as otherwise the HeNB would have to be provided with two different root certificates of the
same operator.

If the operator uses authorization and access control (see section 13.4.6), then the related
access control lists (e.g. blacklists or whitelists) have to be managed. Procedures for the
management of such lists are out of scope of [TS33.320].

13.5.6  Protection of Management Traffic

The security for all connections carrying management traffic between HeNB and HeMS is
specified in clause 8.3 of [TS33.320], based on the requirements given in clause 4.4.6. This
clause reads that the HeMS link shall provide integrity, confidentiality and replay protection
of the transmitted data. The required security mechanisms are not different between initial
and serving HeMS and initial and serving SeGWs, so all the text in this subsection applies to
all scenarios. The requirements also equally apply to the transfer of the TR-069 management
protocol data and any file transfers.

It is a general requirement for the communication between HeNB and HeMS that both
entities must be mutually authenticated and that a secure communication channel be established
between them. For management traffic through the SeGW (see below), the SeGW is the
authentication partner on networks side instead of the HeMS.

Management traffic scenarios

Clause 8.3 of [TS33.320] gives the security requirements for the two different connection
scenarios, i.e. for the HeMS accessible on the operator network and on the public Internet.
The main features for both scenarios are given below.

Management traffic via SeGW

If the HeMS is located within the operator network, all management traffic will be sent through
an IPsec tunnel that terminates in the SeGW at the border of the operator network. The most
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common deployment will be that this tunnel is the same tunnel that also carries S1 signalling
and user plane traffic (see the example in Figure 13.7). But a tunnel to a separate SeGW for
management is also allowed by the specification. In all cases, the description of this tunnel and
its establishment using mutual authentication follow the generic procedures given in section
13.4 for the secure connection to SeGW. This deployment scenario is described in section
13.5.1 on management architecture.

Management traffic between HeNB and HeMS accessible on public Internet

If the HeMS is accessible on the public Internet, then the IPsec tunnel to the SeGW cannot
be used to secure the management traffic. Instead security mechanisms as given by [BBF
TR-069] are used. It is required to establish a TLS connection between HeNB and HeMS
based on mutual authentication using entity certificates. All procedures for this establishment
are specified to be as close as possible to the NDS/AF specification [TS33.310] and the
procedures for tunnel establishment to the SeGW described in section 13.4. We have also here
the precondition of a successful device validation as described in section 13.4.1. Furthermore,
all sensitive functions needed for the TLS handshake (e.g. cryptographic calculations using
the private key) have to be executed within the TrE. The rules for certificate processing and
validation are equivalent to the rules given for IKEv2 in section 13.4.4. In-band transport for
certificate revocation status information may be optionally deployed for TLS according to
[RFC4366] in a similar fashion as for IKEv2.

It should be noted that [TS33.320] in Release 9 does not specify a method to use HP
authentication in conjunction with TLS tunnel establishment. Thus even if the operator requires
the combined authentication as described in section 13.4.5 for connection to the SeGW, for
access to an HeMS in the public Internet it is only possible to authenticate the HeNB device
identity to the HeMS. As the deployment of HP authentication normally implies that also
the HeMS should authenticate the HP, in this case only an HeMS accessible on the operator
network via the SeGW should be deployed.

TLS certificate profiles

The TLS entity certificates are specified for HeNBs according to [TS33.310] and the additional
profiling as given for IKEv2 in section 13.4.3.

In particular, the profile for the HeNB TLS certificate was chosen to allow the reuse of
the X.509 certificate used for device authentication. The only extension is that the globally
unique identity (FQDN) of the HeNB shall also be contained in the common name field
of the certificate. The reason is that many HTTPS implementations use this field for entity
name validation even if this violates the recommendation to use the subjectAltName field in
[RFC2818]. This field is in addition to the subjectAltName field as needed for IKEv2 and does
not prevent the usage of the same certificate in IKEv2.

The profile for the TLS CA certificate deviates from the specification in [TS33.310] only
in the requirement that the issuer does not have to be an interconnection CA. This stems
from the different deployment scenarios, where [TS33.310] assumes an inter-security-domain
scenario, while the usage of TLS for HeNB management traffic is meant to connect two
‘outlying’ entities which are under control of the same operator.
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TR-069 profiling

In the context of [TS33.320], a profiling of the security requirements given in [BBF TR-
069] was necessary. The two main reasons were that some requirements referred to outdated
security specifications (e.g. SSLv3), and that the usage of the HeNB as a radio device operating
in licensed spectrum is under regulatory control and requires higher security than ordinary
consumer devices. The details are given in the following.

® Owing to the increased security requirements of HeNBs as opposed to common consumer
devices within customer premises, the use of TLS to transport management traffic is manda-
tory when the HeMS is accessible on the public Internet. This is more stringent than the
optional usage of TLS in TR-069.

® The above requirement also rules out the ACS connection request carried over HTTP as
specified in section 3.2.2 of TR-069 and the connection request via NAT gateway as specified
in annex G of TR-069, when the HeMS would like to send this from the public Internet,
as TR-069 forbids HTTPS for this request. This is not a severe restriction compared to
TR-069, as the support of this feature in the HeMS is not mandated. In addition, if the ACS
connection request is needed for a particular deployment, the network configuration with
the HeMS accessible on the operator network can be deployed.

e SSL 3.0 [draft-freier-ssl-version3-02] and TLS 1.0 [RFC2246] must not be used as they are
outdated.

e Atleast TLS 1.1 [RFC4346] must be supported and TLS 1.2 [RFC5246] should be supported.
Ideally only TLS 1.2 would have been specified, as it contains the most up-to-date list of
algorithms, but TLS 1.1 was allowed also, as implementations of TLS 1.2 are not yet
widely deployed. If possible by any means, TLS 1.2 should be implemented. Even with TLS
1.1 allowed, the list of allowed and mandated cipher suites is taken from TLS 1.2. Thus
TLS_RSA_WITH_AES_128_CBC_SHA is mandatory to be supported, and the support of
RSA_WITH_RC4_128_SHA is not mandatory. Also the usage of RC4-based cipher suites is
discouraged.

¢ As the design decision in 3GPP was to use PKI-based authentication for HeNB devices, and
not to mandate any shared key infrastructure, shared-secret-based authentication between
HeNB and HeMS is disallowed. Only certificate-based authentication is allowed. This
is intentionally specified contrary to the current version of TR-069 Issue 1 Amendment
2 [BBF TR-069]. This profiling also means that the digest authentication for the ACS
connection request carried over HTTP as specified in TR-069 and the password-based
signature verification of the connection request via NAT gateway as specified in annex G of
TR-069 is not used in the context of [TS33.320]. As mutual authentication is required, the
above decision includes that TL.S must support client-side authentication with certificates in
addition to the server-side authentication commonly used with TLS.

® The HeNB may not have accurate absolute time when being powered up, as it may use the
‘last-saved time’ stored at the point in time of the last power-down (see section 13.4.8).
On the other hand, the current time is needed for the validation of certificates during TLS
tunnel establishment. The specification requires the use of such ‘inaccurate local time’ for
certificate validation, which is (intentionally) contrary to section 3.3 of the current version
of [BBF TR-069].
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Signatures
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Figure 13.8 Signed package format
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13.5.7 Software Download

The general security requirements for eNBs given in clause 5.3.2 of [TS33.401] require that SW
download be integrity- and confidentiality-protected, and that the SW be authorized. Similar
requirements specifically for HeNBs are given in clause 4.4.2 of [TS33.320]. In addition, the
requirements on communication security given in clause 4.4.6 of [TS33.320] apply, which
were described in the previous subsection.

The communications security with integrity and confidentiality protection is provided by
the secure channel for file transfer described in the previous subsection. In addition, clause
8.4 of [TS33.320] gives measures for integrity protection and authorization of the downloaded
SW package itself.

For integrity protection and authorization control the downloaded SW must be signed. The
HeNB must verify the signature after download and install the downloaded SW on success
only.

Annex E of [BBF TR-069] specifies a signed package format, which combines SW modules
to be loaded and the related installation commands into one package, and adds one or more
signatures to the package for proof of origin and integrity protection. Figure 13.8 shows the
outline of this signed package.

The signature part contains one PKCS#7 signed data object according to the Cryptographic
Message Syntax (CMS) specified in [RFC2315]. The only hash algorithm specified is SHA-1
[RFC3174]. The signature algorithm is specified to be RSA.

The PKCS#7 signed data object contains external signatures, which means that the signed
data object does not contain the signed data itself. The signature is taken over the header and
command list, while the SW modules are not included. To still get an integrity protection of
the complete package, certain commands acting on the SW modules, such as extract and add
commands, contain the hash value of the SW module they act upon. This indirectly protects
all SW modules that are handled by commands in the command list, and requires that on
execution of a particular command the hash of the related SW module has to be verified.

The standard allows multiple signatures so that the data can be signed by different parties.
It is specified that one valid signature is sufficient to validate the package, even if multiple
signatures are contained in the signed data object. This allows basing different signatures on
different root certificates, for example one root certificate of the manufacturer and one of the
operator. One operator may decide to leave the manufacturer root certificate in the HeNB,
and distribute the new SW versions as signed by the manufacturer. Another operator may
prefer to validate the SW against their own root certificate. Then such an operator first checks
the manufacturer signature and then signs the package a second time with their own signing
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authority based on their own root certificate. This would even allow the operator to change the
SW and any parameters loaded with the SW specifically for their own usage.

For usage of the signed package format in the context of HeNB deployment, the following
requirements in addition to TR-069 are given in clause 8.4 of [TS33.320].

® Root for signatures. At least one of the signatures in the signature part of the signed package
must be from a signing authority with a certificate issued by an operator-trusted CA. This
trust is automatically given if an operator root certificate is used. With, for example, a
manufacturer root certificate the operator must trust the manufacturer and their root CA.
But such a trust relation would not really extend the trust relation of the operator to the
manufacturer, as the operator has to trust the manufacturer’s root CA anyway for device
authentication of the HeNB.

¢ Validation in the Trusted Environment. The TrE of the HeNB must perform the signature and
certificate validation based on an operator-trusted root certificate, which shall be securely
stored within the TrE.

o SW reference values in signed package. The reference values used by the TrE to secure the
boot procedure will also be contained in the signed package. The usage of these values is
described in section 13.3 on security procedures internal to the home base station.

13.5.8 Location Verification

A prerequisite for the operation of a HeNB is the provisioning of the HeNB with correct
operational parameters, such as frequency range and allowed transmit power levels. Some
of these parameters are necessary to ensure correct operation (e.g. to avoid interference with
macro-cells or other HeNBs), while others may depend on regulatory requirements (e.g.
restriction of an operator coverage to certain areas or countries). As these parameters depend
on the geo-location of the HeNB and the macro-cell coverage, the operators require assurance
of the HeNB location.

As the customer may move the HeNB and may connect it to the Internet (and thus to the
SeGW or HeMS) at any location he wants to, the operator cannot rely solely on administrative
data for location determination, such as the intended location as given in a HeNB hosting party
contract. Thus an online location verification has to take place, both to supply the HeNB with
the correct intended configuration parameters, and to allow the radio transmission to be turned
on.

Clause 8.1 of [TS33.320] requires that the location verification be performed within the
HeMS, and introduces the term ‘verifying node’ for this function. The S1 signalling protocol
does not contain any location information data elements, and only the TR-069 management
protocol is able to transfer location-related data. Thus only the HeMS is able to verify the
geo-location of the HeNB. Therefore the following text refers to the HeMS as verifying node.

[TS33.320] specifies four methods for determining the HeNB location, which are described
in the following. All of them rely on messages from the HeNB itself, and not on measurements
taken by other elements.
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Public IP address

This method uses the public (Internet) IP address of the HeNB to determine the location of the
HeNB based on the geographical assignment of IP addresses. The HeNB will determine its
IP address and send it as location information to the verifying node. This is no problem if the
HeNB is directly connected to the Internet, but normally the HeNB may have one or even more
NAT devices within the connection to the Internet, and thus only knows the private address
assigned to it. The specification [TS33.320] mentions the public IP address of the broadband
access device, which may be the IP address of the HeNB itself if the HeNB is integrated with
the broadband access device. But even the IP address of the broadband access device may not
be the public IP address, if there is another NAT device at the border of the broadband access
provider network.
Based on the above considerations, this method has the following restrictions.

¢ [t has the precondition that the HeNB can determine its public IP address if located behind a
NAT, for example by using a STUN server [RFC3489] reporting the public IP address back
to the HeNB.

® The public IP address may allow only a very rough estimate of the actual location. For
example, the public IP address may be assigned to an Internet service provider with country-
wide coverage.

® The hosting party may actively try to simulate a location by, for instance, proxying the
connection from a remotely connected HeNB via his own home based network (i.e. the
network at the customer premises) to the operator network.

IP address or location identifier provided by broadband access provider

In some access networks the broadband access provider may provide the location of a certain
subscriber to other entities. Annex B of [TS33.320] gives the example of an access network
according to the TISPAN Network Attachment Sub-System (NASS) specifications [ETSI
ES 282 004]. For this network architecture a Connectivity Session Location and Repository
Function (CLF) is defined, which can be queried using the e2 interface [ETSI ES 283 035] for
access line identifier and geo-location of a subscriber based on the IP address used within the
NASS. The verifying node may then verify the data in the e2 response against the contracted
data, i.e. the line identifier and/or the geo-location of the HP.
This method has the following prerequisites and limitations.

® The HeNB can determine its IP address within the access network. If the HeNB is connected
via a NAT device to the access network, the HeNB may need similar mechanisms for the
determination of the IP address as for the method with public IP address described above.

® The access network must be able to provide location information to other entities.

® The mobile operator has a contract with the broadband access provider, if the access network
is not under control of the mobile operator themselves.

¢ The mobile operator must have online access to some repository in the access network, such
as to the CLF via e2 interface in case of NASS.

o [f the hosting party provides the HeNB with a faked IP address, perhaps by spoofing STUN
responses, the HeNB may report this faked address.
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® The proxying attack described above for the method with public IP address may be applied
also in this case.

Measurement of surrounding macro-cells

The HeNB measures the coverage of surrounding macro-cells and sends this information to
the verifying node. Based on the knowledge of the macro-cell locations, the verifying node
determines the location of the HeNB.

This method has quite a high probability to yield correct location information, as it may
be hard for an attacker to simulate an environment of certain macro-cells as expected at
the contracted location. The main disadvantage of this method is that many HeNBs will be
deployed in places where no macro-cell coverage is given, for example within buildings or in
remote areas.

Geo-coordinates from a GNSS

Global Navigation Satellite Systems (GNSS) may be used to determine the geo-coordinates
of the HeNB location. By, for example, using an embedded Global Positioning System (GPS)
receiver, the HeNB is able to measure its geographical longitude and latitude. This is sent to
the verifying node for comparison with the contracted location.

Theoretically this method yields exact location data with an accuracy much better than
needed by the verifying node. But still this method has limitations.

® Reception of GNSS signals is often disturbed or impossible within buildings or in under-
ground locations.

® Commercially available GNSS test kits which are available at reasonable prices may simulate
any geo-location by overriding the signal received from the satellites.

® Even if GNSS reception is possible, it may take many minutes until the GNSS receiver is
synchronized to the satellites and provides a result. This may be too long a waiting time for
the customer after power-up.

Location measurement without cooperation of the HeNB

The following two external methods were discussed, where the HeNB is not actively involved
in the measurement.

® Measurement of the location of the HeNB by adjacent base stations would work only if
the HeNB is near enough to a macro-cell base station to be receivable. In addition, such
measurement would be possible only after the HeNB starts radiating, while the specification
requires that the location may be determined before the HeNB may start radiating.

® The public IP address of the HeNB is determined from the source IP address of the man-
agement connection by an operator network element, such as the SeGW or the HeMS. This
method fails for any connection via the SeGW, as the SeGW has no interface to the HeMS to
report on identity and source IP address of the HeNB, and the HeMS only knows the inner
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IP address, by which the HeNB communicates with the HeMS through the IPsec tunnel. In
addition this method has the same pitfalls as the method with public IP address reported by
the HeNB described above as first method.

From the reasons given above, neither method was seen as suitable to be included into the
specification.

Requirements on location verification

Different deployment scenarios and HeNB configurations will influence the availability, accu-
racy and reliability of these types of location information. Thus no single method was specified
as mandatory, but at least one of the methods must be deployed. The selection of the method
is left to operator policy. In addition, the following requirements on location verification are
given in clause 8.1.6 of [TS33.320]. Many of them stem from the fact that none of the methods
is really reliable, and that the selection and combination of the methods will depend a lot on
actual location and use case of the HeNB and on the contract with the hosting party.

® The verifying node must be able to request one or more of the four types of location
information listed above from the HeNB. This allows the operator to selectively define
the method for the particular HeNB. In addition the HeNB may provide such information
automatically.

® The verifying node must be configurable with policies for location verification, including
type and frequency of the requests.

® The verifying node must be able to use ancillary information such as geo-coordinates of
surrounding macro-cells, postal address of HeNB as claimed by the hosting party, IP address
location information, and so on.

® L ocation verification by the verifying node must be possible both before and after switching
on the HeNB radio.

® Possible actions of the verifying node shall be to raise an alarm, to permit the HeNB to
radiate or to prevent the HeNB from radiating.

¢ A HeNB must be configurable for how it reacts when ordered to cease radiating. Either it
stops radiating immediately, or it waits until any calls in progress have been completed. In
no circumstances are new calls allowed to be established after such an order.

13.6 Closed Subscriber Groups and Emergency Call Handling

HeNBs may operate in one of the three access modes: closed, hybrid or open (see section
13.1.1). A HeNB operating in the closed or hybrid access mode broadcasts on the radio
interface a specific Closed Subscriber Group Identification (CSG-ID) assigned to the Hosting
Party (HP). Only members of this specific CSG may camp on a HeNB operating in closed
mode. In hybrid mode, UEs who are not members of the broadcasted CSG are allowed to camp
on the HeNB, but the members of the particular CSG may have privileges regarding QoS, the
number of allowed connections, and so on.

This section gives an overview of the security-related features of CSG handling, and then
covers the complications for emergency call handling caused by HeNBs operating in closed
mode.
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13.6.1 UE Access Control to HeNBs

Many HeNBs may broadcast the same CSG-ID, but for each HeNB only one CSG-ID is possi-
ble. [TS22.220] specifies the general service requirements applicable to UE access control by
means of CSGs. The detailed requirements on CSGs are given in clause 4.3.1 of [TR23.830],
while the related normative consequences are included in the EPS specifications where ap-
plicable. The membership of a specific CSG is managed by the HP of the HeNB together
with the mobile network operator. This happens under ultimate control of the operator, as the
membership status needs to be reflected in various core network nodes and also updated on
the UICC of the subscriber.

Any EPS-capable UE is aware of the feature of CSGs. This means that any UE compliant
to Release 8 and higher at least understands the indication of the HeNB that it is operated in
closed mode. If the UE is capable of CSG handling, it will interpret the CSG-ID and may try
to camp on this HeNB if allowed to. A UE not capable of CSG handling will not at all try
to camp on a HeNB allowing access to CSG members only, except for emergency calls (see
section 13.6.2).

The lists of CSG-IDs allowed for a certain subscriber are held within UE and HLR/HSS
as part of the subscription profile. The ME or the USIM within UE holds a list of CSG-IDs
and human-readable CSG names where the UE may camp on. If the UE receives one of the
allowed CSG-IDs, the UE may try to camp on the related HeNB. The enforcement of access
control to a HeNB is performed in the MME during UE attach (clause 5.3.2 of [TS23.401]).

This handling of CSGs for HeNBs differs from the handling for HNBs, as in 3G non-CSG
aware UEs may also camp on a HNB. This case requires different procedures which are not
necessary in EPS.

With respect to CSG access control, the H(e)NB security specification [TS33.320] only
quotes the other specifications that the MME shall perform the CSG access control and in
addition references the stage 3 specification [TS24.301] which defines the NAS protocol.

13.6.2 Emergency Calls

For home base stations in general, the same requirements and procedures exist for emergency
access to the EPS as for macro base stations given in [TS33.401]. These are described in
section 8.6.

Contrary to macro-cells, HeNBs may operate in closed mode, so allowing only members
of a CSG to camp on this HeNB. Still UEs not belonging to the particular CSG of the HeNB
must be able to make emergency calls or IMS emergency sessions. Any ‘normal’ call of such
UE will be blocked by the network.
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Future Challenges

So far in this book we have described LTE security as it has been defined by 3GPP up to
March 2010, for 3GPP Releases 8 and 9. In this chapter we present our views on likely future
developments in LTE security and beyond. Section 14.1 describes activities already under
discussion in 3GPP standardization that may bear fruit in the near term, in 3GPP Releases
10 or 11. Section 14.2 covers studies and research activities that may have an impact on the
security of LTE and potential successor systems in the longer run.

14.1 Near-term Outlook

At the time of writing this book, 3GPP is working on enhancements for LTE, especially
regarding the radio aspects. This activity is known by the name ‘LTE-Advanced’ (LTE-A).
The key features of LTE-A include, in particular, enhanced peak data rates to support advanced
services and applications (100 Mbps for high mobility and 1 Gbps for low mobility). More
information on LTE-A can be found from the 3GPP website [3GPP]. Probably the most
important feature in LTE-A that will have an impact on LTE security is the work on relay
node architectures. This work aims to introduce a relay node between the user equipment
and the base station. Apart from LTE-A, other important developments with potential security
impact lie in the areas of interworking of 3GPP networks and fixed broadband networks, voice
over LTE, machine-type communication, and home base stations. We will address all these
developments in turn. We would like to caution, though, that all this is work in progress and
subject to change.

Security for relay node architectures
Relaying is seen by 3GPP [TR36.912] as:

. a tool to improve e.g. the coverage of high data rates, group mobility, temporary network
deployment, the cell-edge throughput and/or to provide coverage in new areas. The relay node
(RN) is wirelessly connected to a Donor cell of a Donor eNB via the Un interface, and UEs
connect to the RN via the Uu interface.'

!Extract reproduced with permission from © 2010, 3GPP™,
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UE RN Donor eNB

Figure 14.1 Relay nodes in LTE

Figure 14.1, which has been adapted from Figure 9.1-1 in [TR36.912], shows the position of
the new functional element, the relay node, in relation to the User Equipment (UE), the Donor
base station (eNB) and the Evolved Packet Core (EPC) already extensively dealt with in the
preceding chapters of this book.

3GPP has completed a study on ‘Relay architectures for E-UTRA’ and selected one archi-
tecture as the basis for future work [TS36.806]. One goal of this work is to maximize the
commonality between the Uu interface and the Un interface. The following properties of the
selected architecture, which exhibit the dual role played by an RN, are worth noting here as
they may be security-relevant.

Relay node in the role of a base station
An RN appears to a UE as an eNB as defined in 3GPP Release 8. The UE does not experience
any differences between an architecture with relay nodes and one without relay nodes. When
the UE attaches to the network the UE communicates with an MME serving the UE; the S1
signalling traffic between the RN and the MME serving the UE is carried over the Un interface
via the Donor eNB. It is particularly worth noting that the S1 signalling traffic is carried over
Un in a Data Radio Bearer (DRB) as, from a radio interface point of view, it is user data.
This creates the following security problem. It is clear that S1 signalling traffic needs to be
integrity-protected as explained in section 8.4. But, for the Uu interface in EPS according to
3GPP Release 8, user data — and hence the traffic carried in DRBs — is only confidentiality-
protected, not integrity protected. This means that the protection mechanisms available on the
Uu interface cannot be copied one-to-one to the Un interface as then the S1 signalling traffic
would not be integrity-protected. One option would be changing the protection mechanisms
at the PDCP layer on the Un interface with respect to the Uu interface so as to also provide
integrity protection for (at least some) DRBs; but this would go against the goal stated above of
maximizing the commonality between the two interfaces. Another option would be protecting
the IP traffic sent over the Un interface at the IP layer, by means of IPsec. Remember that
IPsec is also used to protect S1 signalling traffic in the Release 8 architecture. If IPsec was
adopted it would then have to be decided further how IP layer protection would work together
with PDCP layer protection.

Relay node in the role of a user equipment

When the RN is started up, a connection over the Un interface is to be established in a way
similar to how a connection over the Uu interface between the UE and the base station is set
up in Release 8. This means that the RN acts in the role of a user equipment, and it implies that
the RN contains a USIM (or at least equivalent functionality). In the RN start-up procedure,
the RN communicates with an MME serving the RN (that may be different from the MME
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serving the UE); in this case, the S1 signalling traffic is exchanged between the Donor eNB
and the MME serving the RN, which means it is not carried over the Un interface.

For the RN start-up procedure, the protection mechanisms afforded by the Uu interface
seem adequate for the Un interface as well, but the role of the USIM may require additional
considerations as the assumptions on the environment, in which a USIM is used, are quite
different from those on the use of a USIM in a user equipment. After all, a USIM in an RN
is much more easily accessible by unauthorized persons than a USIM in a UE controlled
by a human user; it could, hence, possibly be removed by an attacker and inserted into
another RN, or even a UE. Potential related threats and countermeasures therefore need careful
study.

Platform security

The degree of exposure of a relay node to physical attacks is likely to be somewhere in between
that of a home base station and a macro base station. This suggests that the degree of platform
security that the relay node needs to provide could also lie somewhere in between that of the
other two types of base station, but details are for further study.

Multi-hop relay node architectures

A multi-hop relay node architecture is one where traffic between a UE and a Donor eNB
is forwarded across several relay nodes in a multi-hop fashion. Such architectures currently
seem not to be high on 3GPP’s priority list, but they would certainly pose challenging security
problems, notably in the area of key management.

Security for interworking of 3GPP networks and fixed broadband networks

In February 2010, a workshop on Fixed Mobile Convergence (FMC) was held that was
jointly organized by 3GPP and the Broadband Forum [BBF]. The workshop discussed how
the interworking between mobile networks, defined by 3GPP, and fixed broadband networks,
defined by the BBF, could be improved. The presentations to this workshop, some of which
also addressed security aspects, can be found under [3GPP and BBF 2010]. 3GPP and the
BBF agreed to work in their respective organizations to address various aspects. These include
basic connectivity, host-based mobility and network-based mobility for untrusted accesses,
network discovery and selection functions, IP address allocation, authentication, policy, and
quality of service (QoS). This work is assumed to be performed on top of the Release 9
baseline architecture that is specified in [TS23.402]. The corresponding security architecture
is specified in [TS33.402] and is described in section 11.2 of this book. Work will start
with applying the procedures for untrusted access (section 11.2.3) to fixed broadband access
networks, while trusted access (section 11.2.2) to fixed broadband access networks will be
considered at a later phase.

Security aspects discussed at the workshop included the observation that, in fixed broadband
networks, typically only the access line is authenticated while, in 3GPP networks, it is the user
who is authenticated — a fact that may create problems for a unified service delivery. Another
presentation to the workshop raised the question whether 3GPP credentials (i.e. USIMSs) could
be also used for authentication in fixed broadband networks.
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The work — especially the security work — is in its infancy at the time of completing this
book, and the potential impact on 3GPP and BBF security specifications is therefore difficult
to assess.

Security for voice over LTE

Chapter 12 describes three methods for providing voice services over LTE: IMS, CSFB and
SRVCC. Improvements with at least some impact on security are considered in all three areas.

IMS over LTE

For SIP signalling security in IMS, no developments affecting IMS over LTE are discernible.
For IMS media security, it seems likely that support for non-real-time media (e.g. messaging)
will be added to the specifications. There are also discussions on security enhancements for
conferencing and deferred delivery, such as when using voice mail boxes.

Circuit Switched Fallback (CSFB)
From a security perspective, only minor adjustments are discernible aiming to improve perfor-
mance by measures such as reducing the frequency of authentication and TMSI reallocation.

Single Radio Voice Call Continuity (SRVCC)

In section 12.1.3, the types of handovers supported by SRVCC in 3GPP Release 9 are listed.
They include handovers from LTE or HSPA to UTRAN or GERAN. At the time of completing
this book, a study is under way in 3GPP on SRVCC support for handovers in the reverse
direction, namely from UTRAN or GERAN to LTE or HSPA. If 3GPP decides to go ahead
with this SRVCC enhancement, then security work analogous to that described in section 12.2.3
will be required; that is, the corresponding security context mappings will have to be defined.

Security for machine-type communication

Machine-Type Communication (MTC) is characterized by the fact that terminals are not
attended by humans. It has attracted tremendous interest recently owing to the significant
potential for growth inherent in the envisaged applications that include smart metering, fleet
management, surveillance, remote control, patient monitoring in healthcare, and many others.
It is expected that many of these MTC applications could greatly benefit from using cellular
communication rather than, for example, fixed line communication.

On the other hand, the tremendous success of GSM and its successor systems has been almost
exclusively based on mobile communication between humans. It is therefore understandable
that the current cellular networks are optimized for human-to-human communication and less
so for MTC. Consequently, 3GPP has started work on network improvements for MTC in order
to prepare the ground for realizing the full growth potential of MTC over 3GPP networks.
This work is intended to cover all 3GPP networks including LTE.

As security procedures represent an important part of the overall effort required in setting
up a connection between a terminal and the network, it is quite natural to also study the
possibility of optimizing security procedures for MTC. At the time of writing, the security
work has, however, barely started, and it is therefore too early to predict which security features
may be affected.
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Security for home base stations

With the finalization of Release 9 work on Home eNodeBs (HeNBs), also all security features
for the deployment of a small ‘femto’ base station in the home environment were provided.
This solution technically allows any EPS-capable user equipment to camp on a HeNB, and
then to communicate with the ‘rest of the world’ via the operator network.

On an architectural level, extensions of this basic architecture are discussed, not only to
enhance the benefits for the user operating a HeNB within his home, but also to widen the usage
scenarios for HeNBs into areas outside the deployment of single HeNBs for private homes or
small enterprises. In addition, extensions planned for macro eNBs may also be applicable to
HeNBs, but with the need for adaptation to this particular environment.

Many of these future features are discussed in the Femto Forum [FF], a non-profit organi-
zation of stakeholders in the ‘femto cell’ area — see the introduction to Chapter 13.

There have been no decisions on any of the possible extensions to the HeNB architecture
described in the following paragraphs up to now, and the necessary new security features or
security enhancements have not yet been discussed in standardization either. Consequently,
the mentioned possible influences on security may change during future standardization work.

Enterprise femto

While the standardization in Release 9 allowed the sharing of one CSG by multiple HeNBs,
the main deployment scenario seen was the home environment with one HeNB per CSG only.
Usage of multiple HeNBs is seen as an important use case for small and medium enterprises.
In this case all HeNBs belong to the same CSG and are managed by the enterprise as hosting
party. Different services are envisaged ranging from using LIPA — see next paragraph — for
access to the enterprise IP network to the integration of enterprise PBX functionality with the
connectivity of the UEs being allowed to camp on the enterprise HeNBs. These features are
foreseen for Releases 10 or 11.

Security aspects will relate, for example, to the access of UEs camping on the enterprise
HeNBs to the enterprise network. Preliminary assessments showed that a future solution should
encompass both (a) allowing access to the enterprise network based on CSG membership only,
and (b) enforcing a separate access control by the enterprise. The integration of PBX and public
telephony functions may raise security issues as well, depending on the solution(s) specified
in future releases.

Local IP Access (LIPA) and Selective IP Traffic Offload (SIPTO)

LIPA is defined in [TS22.220] as follows:

H(e)NB Local IP Access to the home based network provides access for a directly connected (i.e.
using H(e)NB radio access) IP capable UE to other IP capable devices in the home.>

2 Extract reproduced with permission from (©) 2010, 3GPP™.,
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Such IP traffic is diverted from the HeNB directly to the home network of the hosting party,
without being tunnelled through the backhaul link. It is envisaged that all members of the
HeNB Closed Subscriber Group (CSG) shall have access to the home network.

Apart from LIPA being already specified in stage 1 service requirements, all architectural
specifications are expected for Releases 10 and 11. A possible security issue may be that the
access control to the home network is coupled to the CSG membership. As the enforcement
of CSG-based access control is performed by the operator, the hosting party would not have
sole control over its home based network (i.e. the network in the customer premises). Another
security issue may arise from the fact that traffic from a UE to the Internet is carried through
the home based network in cleartext, so the hosting party of a HeNB operating in open or
hybrid mode can eavesdrop on user data of any UE camping on this HeNB.

The Work Item Description in [3GPP 2009] states on SIPTO:

Due to the fact that 3GPP radio access technologies enable data transfer at higher data rates, the
3GPP operator community shows strong interest to offload selected IP traffic not only for the
Home (e)NodeB Subsystem but also for the macro layer network, i.e. offload selected IP traffic
from the cellular infrastructure and save transmission costs.

It is too early to say at the time of writing what the security impact would be.

New cryptographic algorithms

It was explained in Chapter 10 that Release 8 includes two pairs of cryptographic algorithms
for encryption and integrity protection: SNOW 3G-based UEA1 and UIAI, and AES-based
UEAZ2 and UIAZ2. In addition to export control regulations [Wassenaar], there exist also import
control requirements, especially in China. Mainly for this purpose, design work has been
started for a third algorithm pair, UEA3 and UIA3. This work item is carried out by ETSI
SAGE, together with Chinese cryptography experts.

14.2 Far-term Outlook

In the very beginning of this book it was explained that a new kind of cellular system and
associated radio interface have been created approximately once every ten years. Based on
this pattern it would be tempting to predict that another major redesign would happen around
the year 2020. If we assume that 3GPP creates a new release of specifications every 18
months, then that would imply that Release 16 might, once again, contain specifications for
a completely new system. In the previous section we listed many enhancements of LTE and
EPS that are expected to happen in Releases 10 and 11. Some of these enhancements may well
be still under specification even after Release 11; but even if that is the case there is still a gap
of at least a couple of releases before the new revolutionary release would appear.

Since this book is about security, it is not worthwhile speculating what the exact extension
features are that are going to appear after Release 11. What is certain is that most of them
will need security of some sort. The 3GPP security features are usually specified in such a
manner that they are future-proof at least to some extent, so there is a good chance they could
be applied somewhat more widely than just to those particular features they are originally
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intended for. On the other hand, new features in mobile systems are typically intended to
enable some new use cases. Then it tends to be so that, together with new use cases, new ways
to misuse the system appear as well. Therefore, it is a safe bet to predict that each new release
will also involve extensions to security specifications.

Key lengths of cryptographic algorithms are an area where speculative predictions and
educated guesses are common. As explained in earlier chapters, EPS has been prepared for
introducing 256-bit keys in all security mechanisms. According to some estimates [Smart
2009; Barker et al. 2007], the generic cryptographic strength provided by 128-bit keys will
be adequate until around the year 2030. If we assume that LTE is going to be in use as long
as GSM (i.e. definitely more than 20 years), this extension capability will be needed at some
point but probably not very soon.

Cryptographic algorithms themselves constitute another area where advances may be
needed. Algorithms sometimes get broken and it is relatively easy to introduce new algo-
rithms into the EPS system. Hence, it is likely that, during the lifetime of LTE, new algorithms
will be introduced even before the longer keys are needed. One constant source of speculation
around cryptography is the potential effect of quantum computing. For secret key cryptogra-
phy the effect of quantum computing would not be as drastic as for some of the most popular
public-key algorithms. It has been estimated [Smart 2009] that 256-bit keys would provide
protection also against attacks by quantum computing into the ‘foreseeable future’.

Privacy has been a rising trend for several years, emphasized by huge amounts of data that
is cumulatively collected in the Internet. Lots of this data is about ordinary people; a big part
is even contributed by the people themselves via social networks and user-generated content.
Mobile systems necessarily need to have lots of data about their users; the systems cannot
operate unless whereabouts of the terminals are known. A certain amount of user-related data
is also logged because of lawful interception. Mobile systems constitute a good platform for
location-based services and other context-aware services. For these reasons, it is probable
that some mechanisms to enhance protection of user data and other personally identifiable
information would be introduced into mobile systems and these may have an effect also on
LTE and EPS.

One area of privacy that has been discussed already several times in this book is the feature of
identity confidentiality. As explained earlier, the current protection mechanism by temporary
identities is vulnerable to active attacks. Protection against these would probably require
introduction of public key technology into the access security. The cost of such mechanisms
has so far prohibited their introduction but it is conceivable that during the lifetime of LTE
the situation may change, partly due to new privacy requirements and partly due to increased
processing power that makes it faster to carry out complex public-key operations.

Another factor on location and identity privacy is the fact that modern terminals support
many different radio technologies, most of which are not defined by 3GPP. This implies that
protection mechanisms that are applied to only a subset of these technologies have only a
limited effect on identity privacy; users may still be tracked based on those technologies
that do not have a good protection. Issues like this emphasize the need for further work on
interworking with non-3GPP networks.

Let us now take another look at the prediction above that a new major system redesign will
appear at some point in the future. It could be argued that the creation of a new radio interface
does not necessarily imply that the whole system needs to be changed. The support of many
different access technologies is already a core feature of EPS. Therefore, it may happen that a
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new radio interface is created, either in 3GPP or somewhere else, and EPC is simply adapted
to support that technology as well.

Another line of study is cognitive radio. The leading idea in it is to optimize the use of
radio frequencies and technologies dynamically and locally. The terminal senses its radio
surroundings and uses the radio technology that is most suitable for both the environment and
the current communication task. From a security point of view this raises some new challenges.
Although all possible radio technologies have their own protection mechanisms, combining
them in this dynamic manner is not a trivial task.

Convergence of Internet technologies and mobile communication technologies drives to
a direction where a full-blown redesign of the cellular system is not anymore needed, at
least not independently of the Internet. The future Internet would certainly contain mobility
built in as a core property. One consequence could be that differences between the roles of
mobile network operators and Internet service providers become more blurred. There are also
potential efficiency gains around Cloud Computing; many tasks on the network side could be
carried out wherever it is optimal to do so. Therefore, the functional split inside the network
would become much more dynamic than is the case today. This kind of evolution provides
also challenges to security, since more and more legacy security features have to be supported
in a single system simultaneously. We have also a more heterogeneous set of terminals in the
system, provisioned with many different kinds of credentials.

Some of the large-scale security issues with the Internet, such as distributed DoS attacks, bot-
nets and spam, stem from the fact that sending data is easy and cheap while it is more costly to
process the data on the receiving end. One possible architectural solution to the problem of un-
wanted traffic that plagues the Internet is to align more to the ‘publish-and-subscribe’ paradigm
instead of the ‘send-and-receive’ paradigm. It is probably not an overstatement to claim that
security and privacy issues will have a major impact on the shape of the future Internet.

We will certainly have an extremely heterogeneous terminal base when the vision of prac-
tically everything being connected to everything via the Internet comes about [ITU 2005].
This kind of system obviously provides lots of possibilities for attacks also. New security and
privacy mechanisms will certainly be needed on the way.

Still another avenue stems from the fact that many communication needs are local and
there is no need to be connected to the other side of the world. The wide-area coverage and
connectivity to the Internet could be complemented by various ad-hoc types of network, such
as for car-to-car communication or for communication needs at mass events. There are lots of
security challenges in such settings; one possibility to solve them is to use the security features
provided by wide-area mobile systems and extend them to the ad-hoc networks, but this may
not be feasible in many cases owing to the lack of a centralized infrastructure.

We have listed several different avenues that the evolution of EPS networks could take. What
is common to all these directions is that the concepts of security, trust and privacy have major
roles to play. To be able to continue the success stories of mobile networks and communications,
continuous evolution of the security concepts is a necessary requirement. Properties like
flexibility, agility and usability provide key ingredients on the way towards this goal.
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3G 3rd Generation, often also used for the 3rd Generation System defined by
3GPP also known as UMTS

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

A3 GSM authentication algorithm

AS GSM encryption algorithm

A8 GSM key generation algorithm

AAA Authentication, Authorization and Accounting

ACS Auto-Configuration Server

AES Advanced Encryption Standard

AK Anonymity Key

AKA Authentication and Key Agreement

AMF Authentication and key Management Field

AMPS Advanced Mobile Phone System

AN Access Network

APN Access Point Name

ARIB Association of Radio Industries and Businesses

AS Access Stratum

AS Application Server

ASME Access Security Management Entity

ATIS Alliance for Telecommunications Industry Solutions

AuC Authentication Centre

AUTN Authentication Token

AV Authentication Vector

BBF Broadband Forum

BS Base Station

BSC Base Station Controller

BSF Bootstrapping Server Function

BSS Base Station Subsystem

BTS Base Transceiver Station

CA Certification Authority

CBC Cipher-Block Chaining
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Abbreviations

CCSA
CFN
CK
CKSN
CLF
CM
CMAC
CMP
CMS
CPE
CRL
CRMF
C-RNTI
CS
CSCF
CSFB
CSG
CSG-ID
CT
DES
DHCP
DNS
DoS
DRB
DSL
DSMIPv6
DTLS
EAP
EAPOL
EARFCN-DL
ECB
E-CSCF
EDGE
EEA
EIA
eKSI
EMSK
eNB
EPC
ePDG
EPS
ESP
ETSI
E-UTRAN
FA
FDMA

China Communications Standards Association
Connection Frame Number

Ciphering Key in 3G

GPRS CK Sequence Number
Connectivity session Location and repository Function
Communication Management
Cipher-based MAC

Certificate Management Protocol
Cryptographic Message Syntax
Customer Premises Equipment
Certificate Revocation List

Certificate Request Message Format
Cell Radio Network Temporary Identity
Circuit Switched

Call Session Control Function

Circuit Switched Fallback

Closed Subscriber Group

CSG Identification

Core network and Terminals

Data Encryption Standard

Dynamic Host Configuration Protocol
Domain Name System

Denial of Service

Data Radio Bearer

Digital Subscriber Line

Dual Stack Mobile IPv6

Datagram TLS

Extensible Authentication Protocol

EAP over Local Area Network
E-UTRA Absolute Radio Frequency Channel Number-Down Link
Electronic Code Book

Emergency CSCF

Enhanced Data rates for GSM Evolution
EPS Encryption Algorithm

EPS Integrity Algorithm

Key Set Identifier in EPS

Extended Master Session Key

evolved NodeB

Evolved Packet Core

evolved Packet Data Gateway

Evolved Packet System

Encapsulating Security Payload
European Telecommunications Standards Institute
Evolved UTRAN

Foreign Agent

Frequency Division Multiple Access
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FIPS
FQDN
FSM
FTP
FTPS
GBA
GEA
GERAN
GGSN
GIBA
GMSC
GNSS
GPRS
GPS
GSM
GSMA
GTP
GUMMEI
GUTI
GW
H(e)NB
HA

HE
HeMS
HeNB
HeNB-GW
HFN
HLR
HMAC

HNB
HP
HPM
HRPD
HS-GW
HSPA
HSS
HTTP
HTTPS
ICS

1D

IDi

IDr

1IE

1IEC
IEEE

Federal Information Processing Standard
Fully Qualified Domain Name

Finite State Machine

File Transfer Protocol

FTP over TLS

Generic Bootstrapping Architecture
GPRS Encryption Algorithm
GSM/Edge Radio Access Network
Gateway GPRS Support Node
GPRS-IMS-Bundled Authentication
Gateway MSC

Global Navigation Satellite System
General Packet Radio Service

Global Positioning System

Global System for Mobile communications
GSM Association

GPRS Tunnelling Protocol

Globally Unique MMEI

Globally Unique Temporary UE Identity

Gateway

HNB and/or HeNB

Home Agent

Home Environment

HeNB Management System
Home eNodeB

HeNB Gateway

Hyper Frame Number
Home Location Register

Keyed-Hashing for Message Authentication (also Keyed-Hash Message

Authentication Code)

Home NodeB
Hosting Party
HP Module

High Rate Packet Data
HRPD Serving Gateway
High Speed Packet Access
Home Subscriber Server
Hypertext Transfer Protocol
HTTP over TLS

IMS Centralized Services

Identity

Identification - Initiator

Identification - Responder

Information Element

International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
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Abbreviations

IETF
IK
IKE
IMEI
IMEISV
IMPI
IMS
IMS-ALG
IMSI
IMT
1P
IPsec
ISIM
ISO
ISR
ITU
KasmE
ke

KD
KDF
Keng
KSI
LAI
LAN
LFSR
LI
LIPA
LLC
LMA
LTE
LTE-A
MAC
MAC
MAC-I
MAG
MAP
MCC
MD5
ME
MIPv4
MM
MME
MMEI
MN
MNC
MS

Internet Engineering Task Force
Integrity Key in 3G

Internet Key Exchange

International Mobile Equipment Identity
IMEI and Software Version Number

IP Multimedia Private Identity

IP Multimedia Subsystem

IMS Application Level Gateway
International Mobile Subscriber Identity
International Mobile Telecommunications
Internet Protocol

Security architecture for IP

IP multimedia Services Identity Module
International Organization for Standardization
Idle state Signalling Reduction
International Telecommunication Union
Local Master Key in EPS

Ciphering Key in GSM

Key Distributor

Key Derivation Function

Intermediate Key at eNB Level

Key Set Identifier used in 3G

Location Area Identity

Local Area Network

Linear Feedback Shift Register

Lawful Interception

Local IP Access

Logical Link Control

Local Mobility Anchor

Long Term Evolution

LTE-Advanced

Medium Access Control

Message Authentication Code

Message Authentication Code for Integrity
Mobile Access Gateway

Mobile Application Part

Mobile Country Code

Message-Digest algorithm 5

Mobile Equipment

Mobile IPv4

Mobility Management

MM Entity

MME Identifier

Mobile Node

Mobile Network Code

Mobile Station
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MSIN
MSC
MSK
MT
MTC
NAI
NAPT
NAS
NAS-MAC
NASS
NAT
NBA
NCC
NDS
NDS/AF
NDS/IP
NE

NH
NIST
NMT
NTP
o&M
OCSP
OFDMA
OMA
PBX
PCI
P-CSCF
PDC
PDCP
PDG
PDN
PDN GW
PDU
PIN
PKCS
PKI
PLMN
PMIP
PS
PSAP
PSTN
P-TMSI
QoS

RA

RAI

Mobile Subscriber Identification Number
Mobile Switching Centre

Master Session Key

Mobile Terminal

Machine-Type Communication

Network Access Identifier

Network Address Port Translation
Non-Access Stratum

MAC for NAS for integrity

Network Attachment Sub-System
Network Address Translation
NASS-IMS-Bundled Authentication
Next hop Chaining Counter

Network Domain Security

Network Domain Security/Authentication Framework
Network Domain Security/IP network layer security
Network Element

Next Hop parameter in E-UTRAN
National Institute of Standards and Technology
Nordic Mobile Telephone

Network Time Protocol

Operations and Management

Online Certificate Status Protocol
Orthogonal Frequency Division Multiple Access
Open Mobile Alliance

Private Branch Exchange

Physical Cell 1d

Proxy CSCF

Personal Digital Cellular

Packet Data Convergence Protocol
Packet Data Gateway

Packet Data Network

PDN Gateway

Protocol Data Unit

Personal Identification Number

Public Key Cryptography Standards
Public Key Infrastructure

Public Land Mobile Network

Proxy Mobile IP

Packet Switched

Public Safety Answering Point

Public Switched Telephone Network
Packet TMSI

Quality of Service

Registration Authority

Routing Area Identity
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Abbreviations

RANAP
RAND
RAT
RAU
RFC
RK
RLC
RLC-SN
RN
RNC
RRC
RRM
RTP

SA

SA
SAGE
SCC
SC-FDMA
S-CSCF
SDO
SDP
SEG
SeGW
SGSN
S-GW
SHA
shortMAC-I
SIM
SIP
SIPTO
SK
SKC
SMC
SMG
SMSC
SN

SPI
SOQN
SRB
SRES
SRVCC
SSL
STUN
SW

TAI
TAU

Radio Access Network Application Protocol
Random 128-bit string

Radio Access Technology

Routing Area Update

Request For Comments

Root Key

Radio Link Control

RLC Sequence Number

Relay Node

Radio Network Controller

Radio Resource Control

Radio Resource Management
Real-Time Transport Protocol
Service and System Aspects

Security Association

Special Algorithm Group of Experts
Service Centralization and Continuity
Single Carrier FDMA

Serving CSCF

Standards Development Organisation
Session Description Protocol
Security Gateway (in NDS)

Security Gateway (for HeNBs)
Serving GPRS Support Node
Serving Gateway

Secure Hash Algorithm
authentication token based on truncated MAC-I
Subscriber Identity Module

Session Initiation Protocol

Selective IP Traffic Offload

Session Key

Session Keys Context

Security Mode Command

Special Mobile Group

Short Message Service Centre
Serving Network

Security Parameter Index

Sequence Number used in AKA
Signalling Radio Bearer

Signed Response

Single Radio Voice Call Continuity
Secure Sockets Layer

Simple Traversal of UDP through NAT's
Software

Tracking Area Identifier

Tracking Area Update
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TCG
TCP
TDMA
TEK
TIA
TID
TIN
TISPAN

TLinkID
TLS
TMSI
TR

TrE

TS

TSG
TTA
TTC
UDP
UE
UEA
UIA
UICC
UMTS
UP

URI
URL
USIM
UTRAN
VCC
VLR
VPN
WCDMA
WG
WIiMAX
WLAN
XMAC-I
XOR
XRES

Trusted Computing Group

Transmission Control Protocol

Time Division Multiple Access

Transient EAP Key

Telecommunications Industry Association

Temporary 1D

Temporary Identity used in Next update

Telecommunications and Internet converged Services and Protocols for

Advanced Networking

Temporary Link ID

Transport Layer Security

Temporary Mobile Subscriber Identity
Technical Report

Trusted Environment

Technical Specification

Technical Specification Groups
Telecommunications Technology Association
Telecommunication Technology Committee
User Datagram Protocol

User Equipment

UMTS Encryption Algorithm

UMTS Integrity Algorithm

Universal Integrated Circuit Card

Universal Mobile Telecommunications System

User Plane

Uniform Resource Identifier

Uniform Resource Locator

Universal Subscriber Identity Module

Universal Terrestrial Radio Access Network
Voice Call Continuity

Visitor Location Register

Virtual Private Network

Wideband Code Division Multiple Access
Working Group

Worldwide Interoperability for Microwave Access

Wireless LAN

Expected MAC-I
Exclusive or (operation)
Expected Response
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