

CONTENTS

Preface
Dedication
Acknowledgement
CHAPTER 1 - Linux Introduction
CHAPTER 2 - Linux Boot Process
CHAPTER 3 - About Shell
CHAPTER 4 - File structure
CHAPTER 5 - Common Linux commands
CHAPTER 6 - Linux Command line structure
CHAPTER 7 - The vi editor
CHAPTER 8 - Displaying the Directory Content
CHAPTER 9 - Regular file manipulation commands
CHAPTER 10 - Shell meta-character
CHAPTER 11 - File Permission
CHAPTER 12 - The umask Command
CHAPTER 13 - Linux Process
CHAPTER 14 - Filters
About the Author

PREFACE

During my college days, as a young aspiring graduate from
computer science department, I used to practice certain programming
languages, all on the top of either UNIX or Linux.

At that time my focus was fully on languages and i never wanted to see
how my code runs or even who works it out. Later, when I joined an
organization all my applications written in fabulous languages stared at me
for automation. It triggered me to work on a few command line tasks. Though
I am good in C and C++, I found it a bit difficult to write shell scripts
especially for searching and filtering kind of task.

Then I realized the fact that Linux Commands are the core part of Shell
scripts and that it is impossible to write an optimized automation code
without commanding knowledge. That is where I started learning Linux
system programming, followed by shell, Perl, python and ruby, all on the top
of Linux.

Now with my experience as a corporate trainer for above 16+ years I
wanted to share my knowledge on Linux Commands in a book. This Book
will give you a clear start on Linux and you can keep up with further steps in
learning sed, awk and bash scripts to enhance your career.

If you are a beginner or if you want to master the fundamentals of
Linux, this book is for YOU.

DEDICATION

To my beloved LORD

ACKNOWLEDGEMENT

My heartfelt gratitude to my uncle Mr.Rajaram
for his dedicated support to complete this book.

My sincere thanks to Mr.Aravind,
Mr.JohnPaul, Mr.Kamal, Mr.Yuvraj and Mr.Richard
for the able support and acknowledgement given for
the perfection of this book.

My Love and gratitude to my beloved wife
Theeba Karthikeyan for her motivation, effort and
encouragement for this book.

Copyright © 2020 Palani Karthikeyan
All rights reserved.

CHAPTER 1 - LINUX
INTRODUCTION

What is Linux?

Linux is an operating system developed by Linus Torvalds in the year
1991.

Generally operating system is defined as a program, an interface
between user applications to the hardware. This Operating system is
responsible to connect system resources to the user. So which part of OS does
this task? The Kernel, the core component of operating system does this task.

Whenever a system starts, once the boot loader stage is done
successfully, the Kernel is the first program that is loaded. If boot loader gets
failed, then kernel loading is also failed and hence we have to troubleshoot
the boot loader issues. Only then the kernel will be loaded.

Once kernel is loaded, it remains in the memory until the Operating

System shut-downs because the Kernel should handle the rest of the thing of
the system for the Operating System. We will discuss about boot loader
sequence in our following topics.

GNU Project

GNU/Linux – (GNUs Not UNIX)is a term promoted by the Free
Software Foundation (FSF) and it is founded by Richard Stallman,.

This project had begun in 1984 to develop a free operating system.
The motto of the project was to develop a free Unix-Compatible

operating system. The Linux kernel was added in 1992, achieving the GNU
Project’s goal of developing a free operating system.

GPL
Linux and GNU software are distributed under the terms of the GNU

General Public License (GPL, www.gnu.org/licenses/licenses.html).
The GPL says we have the right to copy, modify, and redistribute the

code covered by the agreement.
The GPL provides some basic software freedoms

To use the software for any purpose
To share the software
To change the software to suit your needs
To share the changes that you make.

Why do we use Linux?
Linux has evolved into one of the most promising platform in today’s

world.
Linux is also distributed as an open source.
Here we have two terms- Open Source and Distributed. Let’s see what

these actually mean here.
Open source follows these key features.

The freedom to run the program, for any purpose.
The freedom to study how the program works, and change it in

http://www.gnu.org/licenses/licenses.html

order to make it do what you wish.
The freedom to redistribute copies so you can help your neighbor.
The freedom to distribute copies of your modified versions to
others.

What is distribution?
A Linux distribution is also referred as distro. Actually, Linux isn’t a

complete operating system — it’s just a kernel. Linux distributions take the
Linux kernel and combine it with other free software to create complete
packages like some proprietary software. There are many different Linux
distributions available.

If we want to “install Linux,” we need to choose a distribution. For
example: Linux mint, Ubuntu, redhat, openSUSE etc.,

Some popular Linux distributions include:

Debian
Fedora
Mandriva Linux
OpenSUSE
Gentoo

Slackware

Each distribution has a different take on the desktop, the software package
management repository and the software package management utility
commands.

For example, to install or update a package in RHL (Red-Hat Linux)
distribution, we use the following command: yum install <package name>

Ex 1: To install Python3 in RHL based distribution,
yum install python3

If we want to install the same package in Debian distribution Linux,
we can use apt-get install <packagename>command

Ex 2: To install Python3 in Debian based distribution,
apt-get installpython3

Note that, in both the examples, package name is python3 and working
kernel is Linux but distributors are different. The Complete Linux OS means
the combination of Linux kernel and distribution utilities.

Hope you now understand that the Linux distributions differ by its
distribution utilities. Now let’s see what this Linux Kernel is.

Linux Kernel
Operating system (OS) is a theoretical term,

Kernel is an implementation structured program; the kernel also has control
over everything in the system.

Note that in the above snap, uname is a command to display our
working kernel name. Both the above pictures show the terminal display of
Linux but just compare its distribution name and version details- Left side
snap shows Ubuntu Linux. The other one is oracle Linux in RHL standard
distribution Linux.

In Ubuntu Linux software package management, command line utility
is called apt-get whereas in RHL based Linux package management,
command line is yum utility. Thus both Linux will install python3 packages
in their own way.

My Ubuntu version is 14.04.6 (which is the distribution version and
not kernel version) whereas my Oracle Linux version is 7.4.

In both the OS, to get working kernel name, type uname command and
to get released the version of kernel, type uname–r command in command
line.

Note kernel is core part of the operating system. Linus Torvalds
created only the kernel which is present in all distribution. So in Linux of any
distribution, system related commands are same.

So if we want to test our working kernel &version, just type uname
and uname –r commands in command line. This helps us to know which
distribution of Linux we are using. To get distribution details, read
configuration file /etc/redhat-release, /etc/fedora-release and for Debian
based distribution: linux /etc/issue file.

So now we are clear with Linux terms such as kernel, distribution etc.
We will discuss Linux commands and other details in command topics.
Note: There is single space between command and its option (uname-r)

Linux kernel Development model
The heart of the Linux operating system is the kernel.
A lot of developers, representing hundreds of corporates are providing

frequent release of the Linux kernel.
The Linux community collaborates through various mailing lists that

are set up to handle kernel development.
Features are pushed upstream, through these mail list and Internet

Relay Chat (IRC).Upstream is the term used for a community-owned version
of a specific project.

This is where the development happens and it always has the most
recent changes.

Linus Torvalds leads a team that releases new versions called "vanilla"
or "mainline" kernels.

The mainline branch of development incorporates new features,
security fixes, and bug fixes. It is not considered a stable branch until it
undergoes through testing.

A number of kernel versions are currently being maintained as stable
kernels. These kernels have patches that are back ported to them.

Theses patches are primarily driver updates and security fixes.
Kernel branches are available at http://www.kernel.org

Architecture of Linux

In General, System consists of 3 layers. See the above diagram. The
layer1 is called user level that holds information about the application created
or executed by the user. All application at the user level is called user
process.

The layer2 is called kernel level. We know what kernel is. Here the
main functionality of kernel is to extend the user requests to hardware which
tells about the application that we want to execute on the hardware (CPU) or
about the file content that we want to read from storage (Hard disk). To do all
these tasks, we need the help of Kernel. Here kernel job is to interface our
(user) requests to corresponding hardware resources (CPU, Hard-Disk).

The bottom layer is called hardware level. All peripheral devices are
connected in this layer.

From this structure we can understand that as a user, we can’t talk to
hardware directly; so we need a kernel to interface. Now recap our operating

http://www.kernel.org

system definition “OS is a system program, it will interface the user to
hardware.”.

Now we can explore more details about Kernel Architecture, middle
layer (kernel level) in the above diagram.

Kernel Exploration
The Linux kernel is a modular designed kernel.
At the architecture level, the Linux kernel interacts with the hardware,

controls and schedules the access to resources (CPU, memory, storage,
network and so on) on behalf of the applications.

Applications run in what is called the user space and a call is made to a
stable set of system libraries to ask for kernel service.

This modular designed kernel allows components of Linux to originate
from different developers, each of which had their own specific design goals
in mind.

A modular design also means that the Linux kernel is independent of
applications and interfaces.

The result is that even when application crashes, all security
vulnerabilities in applications tend to remain isolated, rather than affecting
the system as a whole.

In Linux, each component is configured separately, typically by using
text-based configuration files.

Reading and writing configuration information can be done by scripts
or applications by using simple text parsing engines.

No special application programming interface (API) is required to
interface with the system configuration data.

LINUX KERNEL STRUCTURE

The above figure shows the detailed architecture of Linux kernel. Unix
and Linux are monolithic kernel. So, what is a monolithic kernel?

Monolithic kernel is a single large process, running entirely in a single
address space. It is a single static object file. All kernel services exist
and execute in the kernel address space. The kernel can invoke functions
directly. In Monolithic Kernel,all the parts of a kernel like the Scheduler,
File System, Memory Management, Networking Stacks, Device Drivers,
etc., are maintained as a single unit within the kernel.

Components of the System

The main components of Linux operating system are

1. Command utility

2. Shell
3. Kernel

Command utilities
Command utilities are binary files in Linux. As an end user, we will

get in to the system with the help of commands. But, how the command gets
in to the system? What is the interface name? The interface name is called
shell.

Yes, shell is an interface between user and kernel, the job of shell is
interpretation. Each input command will be interpreted (translated) to kernel.

The kernel is a core important program and the job of the kernel is to
interface your instruction (command) to hardware units.

In this entire tutorial book, we will discuss topics such as - what are
Linux command line utilities? how to use Linux command? And how to
explore more commands and additional options with real system?. Note that
we won’t discuss any programming topics here.

Shell
What is shell? Shell is an interpreter; it interfaces between user space

and kernel space.

Theoretically we say that, user interacts with operating system. But
how? We are the user and now, how are we going to run our commands on
OS?

Let’s say, how to start MySQL database? How to execute (or) run my
java program in Linux OS? How to display today date and time? To do all
these tasks, we need an interface and that interface is called shell. So Shell is
interface between user and kernel. There are many types of shells in Linux;
we will discuss more about shell in next chapter.

Kernel
Recap the previous chapter; we discussed - what is an operating

system? What is a kernel?
Linux is a kernel but when it first came out, it was called GNU/Linux .

However, the naming convention has its own way. People are more
familiar with Linux, and by saying Linux, they refer to the whole operating
system. Another unique case is Android. Android uses Linux as its kernel,
but people call it Android. Nobody says Android Linux. Linux is a true
UNIX kernel. When we say OS services, it is actually kernel services and that
is why kernel is called as the heart of an operating system.
Now we understand how our modern operating systemworks.

In next chapter, we will discuss about shell and shell types followed by
more exploration on Linux commands.

CHAPTER 2 - LINUX BOOT
PROCESS

Step 1- BIOS (Basic Input Output System)

Once the Personal Computer (PC) is switched on, BIOS instruction
will start its part. The BIOS is used to perform hardware initialization during
the booting process. The main job assigned to BIOS is POST (Power On
Self-Test). It is hardware self-testing and checking.

The two main errors that occur during POST are:

1. Fatal error - This occurs due to hardware problems.
2. Non-fatal error - This occurs due to software problems.

Main responsibilities of BIOS during POST are listed below:

1. Verify CPU registers.

2. Verify the integrity of the BIOS code itself.
3. Verify some basic components like DMA, timer, and interrupt

controller.
4. Find, size, and verify the system main memory.
5. Initialize BIOS
6. Identify, organize, and select which devices are available for

booting.
The beep sound after the POST indicates its result. A single short beep

while restart/start indicates normal POST i.e. the system is OK. Two short
beeps indicate a POST error and the error code is shown on screen.

BIOS act as an intermediary between computer CPU and Input/output
devices. This eliminates the intervention of the operating system and
software. The system/server is always aware of the details of hardware and
other I/O devices. If any hard disks or I/O devices is changed, the BIOS also
needs to be updated.

BIOS is stored in EEPROM (Electrically Erasable Programmable ROM)
/ Flash memory. BIOS cannot be stored on a hard disk or other devices
because it is the one which manages those devices.

BIOS is written in assembly language. After testing the system hardware
and its components, it loads a Master Boot Record. It is also called as Master
Boot Loader.

Step 2 - (MBR) Master Boot Record

What is Master Boot Record (MBR)?
Master Boot Record is the first place where boot loader begins to start.

MBR is a 512 byte sector located in the first sector of hard
disk. MBR contains both program code and partition table details.

On a computer with x86 architecture, the Master Boot Record (MBR) is the
first 512 bytes of the boot drive that is read into memory by the BIOS.

The first 446 bytes out of 512 bytes contain low-level boot code. For
some boot loaders, the code in the MBR points to further boot loader code
stored somewhere else on the disk or on another disk.

The next 64 bytes contain the partition table for the disk where file
system utilities like fdisk, cfdisk, partedetc., are placed and using these
utilities, we can get partition table information.
The last two bytes are the boot signature, which is used for error detection.

Step 3 - Boot Loader

So far we are aware that when POST is done successfully, the BIOS
will execute MBR code. MBR code contains information about boot loader
and this MBR executes the boot loader. So let us now see what this boot
loader is?

The boot loader software runs when a computer starts. It is responsible
for loading and transferring control to the kernel.

It is located in the 1st sector of the bootable disk. (/dev/sda(or) /dev/had
(or) /dev/xvda)

Boot loader is kept in separate partition under file system; it will mount
from /boot partition.

The most common boot loaders for Linux are:

LILO(LInuxLOader)
GRUB (GRand Unified Boot loader).
GRUB2 stands for "GRand Unified Boot loader, version
2"

In this chapter we will discuss about grub2 boot loader.
GRUB2 which stands for "GRand Unified Boot loader, version 2" is a

primary boot loader in recent distribution of Linux such as RHL7, Oracle
Linux7, ubuntu16 etc.,

GRUB2 is also a program. Once GRUB2 is loaded into RAM, it
searches for the location of Kernel. This is the stage where it loads other
required drives and kernel modules.

GRUB2 understands file systems and kernel executable formats.
GRUB2 inspects the map file to find the kernel image that is located

under /boot.
GRUB2 loads the kernel (vmlinuz-version) from /bootpartition
If we have multiple kernel images installed on our system, we can

choose which one to be executed. We can select our choice based on cursor
keys from keyboard.

Once we select our desired kernel to load then the kernel stage begins.
Kernel is in compressed format. The selected kernel is now loaded into

the memory.
An image file, containing the basic root file systems with all kernel

modules, is then loaded into the memory. This image file is located under
/boot and it is known as initramfs.

Initramfs, abbreviated from “initial RAM file system”, is the successor
of initrd “initial ramdisk”.

This image file contains the initial file system. The GRUB starts the
kernel and tells the memory address of this image file.

The kernel then mounts this image file as a starter memory based root
file system.

The kernel then starts to detect the hardware of the system.
The boot process then starts init (or) systemd and other software

daemons. Init or systemd (systemdaemon manager) is the parent of all the
process. Process ID (PID) of init (or) system is 1 depending upon the
working Linux distribution.

Let us display the process name.
ps–e|grepinit (or) ps–e|grepsystemd

The Differences between grub and grub2 boot loader are as follows.

SPECIFICATION GRUB GRUB2
FULL FORM GRand Unified Bootloader GRand Unified Bootloader, version

2
USED IN RHL5,DEB14,Oracle Linux 5,6 RHL7,DEB16,Oracle Linux 7
CONFIGURATION
FILE

/boot/grub/grub.conf /boot/grub2/grub.cfg

CONFIGURATION
FILE CREATED BY

anaconda installer program. grub2-mkconfig template

Is it editable? Grub configuration file is
editable by root user

Grub2 configuration file is NOT
editable.

Is it a script file? Grub configuration file is NOT
shell script

Grub2 configuration file is a shell
scri
pt file.

File :
/boot/grub/grub.conf

File: /boot/grub2/grub.cfg

init process

Once boot process is done successfully, the next step is kernel
initialization.

So what is Kernel initialization?
The kernel will initialize CPU components,(Example: MMU,process

scheduler) and mount the root file system in read/write mode and finally
starts the init(initialization) process (/sbin/init) .

init is a parent of all the process; initprocess id is 1 (PID value is 1).
init is the first process which loads all the daemons and mounts all the

partitions which are listed under /etc/fstab
init identifies the default initlevelfrom /etc/inittaband uses that to load

all the appropriate program.
Let’s have a look at the /etc/inittabfile to decide the Linux run level.
Following are the available run levels

0 – halt
1 – Single user mode
2 – Multiuser, without NFS
3 – Full multiuser mode
4 – unused
5 – X11
6 – reboot

The kernel starts the /sbin/initprocess with a process ID of 1 (PID 1)
and if we want to start/ stop any daemon services, we can use an
administrative command called service command.

systemD introduction

On RHL7/ Ubuntu 16,
The boot loader loads the vmlinuzkernel image file into memory and

extracts the contents of the initramfs image file into a temporary, memory-
based file system (tmpfs).

The initial RAM disk (initramfs) is an initial root file system that is
mounted before the real root file system.

After the newly loaded kernel gets far enough in its initialization
sequence (disks probed, memory mapped, and so on), it then switches
over, using the real root file system as specified by the root directive in the
GRUB 2 configuration. This contains, among other things, the
/etc/fstabfileidentifying the rest of the file systems to be mounted.

The kernel starts the systemd process with a process ID of 1 (PID 1).
systemd is the system and service manager in the working Linux. It is
backward compatible with SysVinit scripts used by previous versions of
Linux. It replaces Upstart as the default initialization system.
systemd is the first process that starts after the system boots, and it is the final
process that is running when the system shuts down. It controls the final
stages of booting and prepares the system for use. It also speeds up booting
by loading services concurrently.

systemd allows you to manage various types of units on a system,
including services (name.service) and targets (name.target), devices
(name.device), file system mount points (name.mount), and sockets
(name.socket).

systemd units are defined by unit configuration fileslocated in the
following directories:

/usr/lib/systemd/system/: systemd units included with installed
RPM packages.
/run/systemd/system/: systemd units created by a running
program. These take precedence over units in the
/usr/lib/systemd/system directory.
/etc/systemd/system/: systemd units created and managed by the
system administrator. These take precedence over all other units.

The systemd (system and service manager) provides the following
features:

Systemd will start all the daemons (services) in parallel so it
provides fast boot when compared to init system.
Processes are tracked by using Control Groups (cgroups).

A cgroup is a collection of processes that are bound
together so that you can control their access to the
system resources.

System services can be started on-demand when a client attempts
to communicate, when a piece of hardware becomes available, and
when a file or directory state changes.

Snapshotting of the system state and restoration of the system state
from a snapshot is supported.

Mount and auto mount points can be monitored and managed by
systemd.
For administration task we will use systemctl(system control)
command.

CHAPTER 3 - ABOUT
SHELL

What is shell?

Shell is a command line interpreter.
So what is an interpreter? Interpreter is a translator which translates

our user instruction into an intermediate format.
So here shell is translating our user input (command) to kernel.
This means that all the Linux commands which we are typing in

command line will be interpreted (translated) by shell into kernel
understanding format. Then kernel will interact with hardware unit. So shell
has no connection with the hardware.

Hence we say Shell is an interface between user and kernel.

All the
user input commands are typed on command line interface and this interface
is called shell primary prompt (or) user interface prompt.

Linux abstractions are FILE and PROCESS.The execution of
command (or) interpretation of command is called a process and this process
is created by user; so we can say that this is user process.

In Linux every process creates another process, where the newly
created process is called child process and the creator process is called
Parent process. This is termed as Linux process model.

Here shell will interpret our user input command; so shell becomes the
parent process and the newly created (execution of command result) process
is called child process.

Shell is a parent process of our running commands.

The above snapshot shows the parent –child relationship. See the
picture where the active (Running) shell primary prompt is marked in red,
over which the command uname is present.

Note the place where I am typing the command. On the top of the shell
interface, the uname command is interpreted by the working shell. So
here shell is called the parent of uname command. Execution of a command
becomes a process and here that process is called a child process to shell.
Whenever child process is in active (running) state, parent process will be in
waiting state. Once child execution is done, child process will reach to exit
state and the parent process will resume from waiting state to running state.

Types of shell

1. Bourne Shell (SH)
2. KornShell(KSH)
3. BourneAgainShell(BASH)
4. C shell(CSH)
5. TurboCshell(TCSH) - Tcsh is enhanced C shell
6. ZSH

How to find current working shell?

1. Type the following special variable in command line

echo$0will display current working shell name.

2. Another way is to
use pscommand.

We will discuss about thepscommand and command attributes in next
chapter.
Do you know how shell is initialized?

Recap our system boot process. OncePOSTis done successfully, BIOS
will execute MBR(Master Boot Record). Then MBR will execute boot loader
and the boot loader executes the kernel. Then kernel will pass the control to
process (init or systemD). Now see the process execution where init or

systemD will be responsible to start all our Linux services (system process)
and these services are called daemon process, which are not created by user.
It is all created by systemD or init.Type pstree command in Linux command
line to see the process creation hierarchy.

One of the daemons, called getty(genome teletype terminal) is our
login screen interface. Once login is done successfully, shell will be started.

So shell is created by getty. If login credentials are invalid,getty won’t
execute shell.

Now in user perspective, let’s have a look in our graphical desktop
system. Once we switch on the PC, both boot process and kernel execution
all are done automatically and then we get our login window.

Once login (user name and password) is success, desktop will open.
Desktop is a graphical user interface (GUI) and on the top of the desktop, all
our applications (user process) will start. Similarly once Linux command line
environment login is done successfully, shell which is a command line
interface (CLI) will get initialized. So on the top of the shell; we will execute
our Linux commands (user process). Hope now you have got answers for the
following questions - what is shell? How shell is started? Who is the parent
of shell? Who is the child of shell?.

Once Login is done successfully shell will get started but internally
shell will read and execute /etc/profilefile. This is shell script file which is
located under /etcconfiguration directory. The /etc/profilefile, referred as
system profile file contains all global setting parameters like permission,
umask ,user ID etc.,

This system file (/etc/profile) provides personal profile file(~/.profile,
~/.bashrc) that contains commands that are used to customize the startup
shell. It is an optional file that runs immediately after the system profile file.
This ~/.profileand ~/.bashrcfiles are called as user file. If you want to make
any changes in personal login environment use personal profile file.

The shell also provides environment for user to execute commands that
can be customized using initialization files (or) personal profile files.

These files contain settings for user environment characteristics, such as:

Create alias of commands
Search paths for finding commands.
Default permissions on new files.
Exporting Values for variables that other programs use.

CHAPTER 4 - FILE
STRUCTURE

File structure

Linux File structure is tree structure (hierarchical structure). All the
files will map from root directory (/). There is a chance to get confused
between login root and root directory. Both login root (/root) and the root
directory (/) are not same.

Linux / symbol is called root directory this is like MyComputer in
other operating system.

/ is the entry point to map any files in Linux.
In Linux, however, the root of the file system doesn’t correspond with

any physical device. It is a logical location simply denoted as “/”.
In Linux everything is a file/process. It means that all peripherals

devices attached with system are considered as a file. Example, consider the
hard drive. Hard disk is a storage device. Once it is mounted to the kernel, the
kernel will treat them as a file. Such a file is called device file represented as
/dev/sda(device file).

Linux uses a hierarchical file system structure, much like an upside-down
tree, with root (/) at the top of the file system and all other directories
spreading from the root(/) . The root(/) is the parent directory and all other
directories becomes its sub directories.

Once logged in, the current working directory can be found
through pwd command.
root@krosumlabs:~# ls/
bindevinitrd.img media procsbin sys var
bootetc lib mnt root selinuxtmpvmlinuz

drom home opt run srvusr

All files and directories appear under the root directory /.

DIRECTORY DESCRIPTION

/ This is known as “root directory”, the logical
beginning of the Linux file system structure.
Every single file path in Linux begins
from root in one way or another.
/ contains the entirety of the operating system.

/bin
This is where most of the binary files are
stored, typically for the Linux terminal
commands and core utilities, such as cd
(change directory), pwd (print working
directory), mv (move), and so on.

/boot
This is where all the needed files for Linux to
boot are kept.
A key thing to note is that even when /boot is
stored on different partition, it is still
logically located at /boot as far as Linux is
concerned.

/dev This is where the physical devices are
mounted, such as the hard drives, USB drives,
optical drives, and so on.
The system hard drive is mounted under
/dev/sda, whereas the USB thumb drive might
be mounted under /dev/sde.
Different partitions on the disk, /dev/sda1,
/dev/sda2, and so on are available in Linux.

/etc
This is where configuration files are stored.
Configurations stored in /etc will typically

affect all users on the system

/home
This is where all of the personal files are kept.
The Desktop, Documents, Downloads, Photos,
and Videos folders are all stored under the
/home/username directory.
Whereas users can also store configuration
files under their own /home folders, which
will only affect that particular user.

/lib This is where libraries are kept.
When installing Linux software packages,
additional libraries are also automatically
downloaded, and they almost always start with
lib-something.
These files are needed for the programs on
Linux to work.

/media
Another place where external devices such as
optical drives and USB drives can be mounted.
This varies between different Linux distros.

/mnt
This is basically a placeholder used for
mounting other folders or drives.
Typically this is used for Network locations .

/opt
Optional software for the system

/var
This is where variable data is kept, usually
system logs but can also include other types of
data as well.

/usr Contains files and utilities that are shared
between users

/proc
The “processes” directory includes a lot of
system information which is represented as
files (remember, everything is a file).
It basically provides a way for the Linux
kernel (the core of the operating system) to
send and receive information from various
processes running in the Linux environment.
Using /proc directory we can customize all
kernel parameters at runtime.

/root
This is the login directory path for root user
where the root user is called the super user or
administrator.

/sbin
This is similar to /bin, except that it’s
dedicated to certain commands that can only
be run by the root user, or the super user.

/tmp
This is where temporary files are stored, and
they are usually deleted on shutdown.

Linux File Types

Linux File types are classified as follows.

1. Regular (or) Ordinary file
2. directory file
3. Link file (or) symbolic file (or) soft link file (or) symlink file
4. Device files
5. named pipe or fifo file
6. Socket file

1. Regular (or) Ordinary file

The Regular file or Ordinary file will be classified as following two
types

ASCII or TEXT
Binary (or) ELF (or) Object

What is ASCII or TEXT type file?

The format in which the file contents can be read or understandable
by the user (plain text) is referred as ASCII or TEXT type file.
Linux file type can be determined by the file command.

How to use file command?
Syntax : filefilename # determine the file type.
root@hostname~]#cat ab.c

#include<stdio.h>
int main(){
printf(“Hello\n”);
return 0;
}
The above file contents are C program content. Even if we are not aware of C
programming language, we can read the content. So this type of file (i.e.,

Understandable format) is called ASCII or TEXT file.
root@hostname~]# file ab.c
ASCII or TEXT
root@hostname~]# file/etc/passwd
ASCII or TEXT

root@hostname~]#file/var/log/boot.log
ASCII or TEXT
So in Linux, file types are not determined by their file extension.

Binary file (or) object file (or) ELF File

A binary file is any file that contains at least some data that consists of
sequences of bits that do not represent plain text.

Binary files are used to represent images, sound, executable (i.e.,
runnable) programs and compressed data (including documents created by
most word processing programs).

They are usually the most compact means of storing data. This is
because of the data compression techniques, and the fact is that the programs
stored in binary form can be executed faster.
Linux binary files are called as ELF(Executable and Linkable Format) file.

What is an ELF file?
ELF is the abbreviation for Executable and Linkable Format and

defines the structure for binaries, libraries, and core files.
The formal specification allows the operating system to interpret its
underlying machine instructions correctly. ELF files are typically the output
of a compiler or linker and are a binary format. With the right tools, such file
can be analyzed and better understood.

A common misconception is that ELF files are just for binaries or executable.
They can be used for partial pieces (object code).

Take our sample Cprogram(ab.c) file. When you compile, source
(ab.c) will get compiled Executable file (a.out).Using that executable file, we
can run the C program.Thata.outfile is ELF type file.

An example is shared libraries or even core dumps (those core or
a.outfiles). The ELF specification is also used on Linux for the kernel itself
and Linux kernel modules.
root@hostname~]# file/lib/libproc-3.2.8.so
ELF
In Linux, all the commands are ELF type files.
root@hostname~]# file/bin/date
ELF

HereDate file is binary file not in a readable format.
All the system commands are ELF type file.

2. Directory File

Directory file contains a collection of other files and directories. This
resembles like a folder.

3. Link File (Or) Symbolic File (Or) Soft Link File (Or) Symlink
File

A symbolic link, also known as a symlink or a soft link, is a special
kind of file (entry) that points to the actual file or directory on a disk (like a
shortcut in Windows).
Symbolic links are mostly used in administration task.

4. Device files

Recap in Linux, everything is a FILE. So, all the peripheral devices
that are attached with system are treated as device file.All the device files are
mounted under /devdirectory.

In Linux there are two categories of device files: character and block.
Character-type device files include devices such as keyboard, mouse,

and serial ports. In general, operations with these devices (read, write) are
performed sequentially byte by byte.

The Block -type device files includes devices where data volume is large
and is organized on blocks. Examples: Hard disks, USB, CDROM are block-
type device files.

5. Named Pipe Or FIFO File

A FIFO special file (a named pipe) is similar to a pipe.
It can be opened by multiple processes for reading or writing.
When processes are exchanging data via the FIFO, the kernel passes
all data internally without writing it to the file system.
Thus, the FIFO special file has no contents on the file system; the

file system entry merely serves as a reference point so that processes
can access the pipe using a name in the file system.
Using mkfifo command we can create FIFO file.

6. Socket file

A socket is a special file used for inter-process communication, which
enables communication between two processes.

Unlike named pipes which allow only unidirectional data flow, sockets
are fully duplex-capable.
There are many way to determine Linux file types

1. Using filecommand (file filename)
2. Usingls–lcommand (ls-l filename)

Just typels–lfollowed by the filename. From the resulting output, observe the
leftmost first character which depicts the type of file.

Character File Type

- regular file

d directory file

l link file

c character type device file

b block type device file

p named pipe file
S (capital ‘s’) socket file

CHAPTER 5 - COMMON
LINUX COMMANDS

Linux will treat everything as file and process.
What Is File?

File is nothing but data under storage location.
What is process?

Process is nothing but Data under the processor.
So the job of processor is to fetch data from memory and store it in the

register from where execution takes place.
The execution instance is referred as process.
So every command in Linux is a binary file and that binary file will

become a process once it is executed.
Eg) date command is a file and it is also a process.

date binary file stored under /bin is an example for file.

Fig. date file

date filewhen executed by processor will create a process. So now date is a
process.

Fig. date process

See the above example, date is a command in user view. In Kernel point of
view, date is both a file and a process. Like this all the Linux command when
entered to execution state will become a process.
From the above snap note the following symbols:-&(ampersand) symbol and
[1]. We will discuss them in Linux Process control system.

Linux Command

Linux is command based operating system. The basis of all Linux
interaction is the command.

Linux commands are binary files, it’s placed on /bin(or)
/usr/bin/directory. Recap file structures discussed in previous topics.

All the Linux Commands are single line entered at a console.
A Linux command is an action request given to the shell for
execution.
Linux commands are entered at the command line prompt.
Command line prompt is known as shell prompt.

Recap shell definition that shell is an interpreter; all the user input
commands are interpreted by shell.
root@krosum~]# this is shell command line prompt

Every command execution displays some result to monitor. This result
can be either STDOUT or STDERR.
STDOUT - when a program needs to print output, it normally prints to
"standard out".
STDERR - when a program needs to print error information, it normally
prints to "standard error".
STDOUT, STDERR -Both are associated with monitor.

Although we do not need to worry about how the command does its
job, we must understand exactly what it does. We must know where to find
the input and where we want the output to be placed.

In general input comes from keyboard (STDIN) and the output is

usually shown on the monitor (STDOUT/STDERR).
There are many sources to pass input to system; one is keyboard

(STDIN) and another source is files on a disk.

Command Syntax
All the Linux commands are entered at the command line prompt.

Linux commands are case sensitive. Generally all Linux commands are
lowercase characters.

Every command has options and arguments.

The
command format is:

command-option argument(s)

Linux options are identified as –(hypen)followed by single character.
The option characters are case sensitive; all options usage varies by its
command.
Examples :

ls-r# Here option –rindicates the list out files in reverse order.
uname-r# Here option –rindicates released version of Linux
kernel.
ls-R# Here option –Rindicates recursive view of files .

See the above example. With ls command, –r is different from –R. We will
discuss more details about this in following topics.

System commands

1. Date

The date command displays system date and time.

Each date response indicates what time zone is beingused.

Syntax:-date-option argument
The input for date is the system itself. The date is actually maintained

in the computer as a part of the operating system.
Most modern hardware also has a hardware date and time clock that is

often updated automatically to ensure that it is accurate.

If you enter date
command without any option, it displays the current date and time as in the
following example.

If no options are specified in date command, the local time is
displayed. Once command execution is done successfully, next primary
prompt will appear in the screen automatically.

If a -uoption is used, the time is UTC. The following example displays
time in UTC (universal time) which is equivalent to GMT.

The date commandargument allows you to customize the format of the
date. The format of date command includes a plus sign (+) followed by text
and series of format codes,all enclosed in double quotes mark (””). Each
code is preceded by a percentage sign (%) that identifies it as a code.

FORMAT controls the output. It can be the combination of any one of the
following:

%FORMAT
String Description

%% a literal %

%a locale’s abbreviated weekday name (e.g., Sun)

%A locale’s full weekday name (e.g., Sunday)

%b locale’s abbreviated month name (e.g., Jan)

%B locale’s full month name (e.g., January)

%c locale’s date and time (e.g., Thu Mar 3 23:05:25 2005)

%C century; like %Y, except omit last two digits (e.g., 21)

%d day of month (e.g, 01)

%D date; same as %m/%d/%y

%e day of month, space padded; same as %_d

%F full date; same as %Y-%m-%d

%g last two digits of year of ISO week number (see %G)

%G year of ISO week number (see %V); normally useful
only with %V

%h same as %b

%H hour (00..23)

%I hour (01..12)

%j day of year (001..366)

%k hour (0..23)

%l hour (1..12)

%m month (01..12)

%M minute (00..59)

%n a newline

%N nanoseconds (000000000..999999999)

%p locale’s equivalent of either AM or PM; blank if not
known

%P like %p, but lower case

%r locale’s 12-hour clock time (e.g., 11:11:04 PM)

%R 24-hour hour and minute; same as %H:%M

%s seconds since 1970-01-01 00:00:00 UTC

%S second (00..60)

%t a tab

%T time; same as %H:%M:%S

%u day of week (1..7); 1 is Monday

%U week number of year, with Sunday as first day of week
(00..53)

%V ISO week number, with Monday as first day of week
(01..53)

%w day of week (0..6); 0 is Sunday

%W week number of year, with Monday as first day of week
(00..53)

%x locale’s date representation (e.g., 12/31/99)

%X locale’s time representation (e.g., 23:13:48)

%y last two digits of year (00..99)

%Y Year

%z +hhmm numeric timezone (e.g., -0400)

%:z +hh:mm numeric timezone (e.g., -04:00)

%::z +hh:mm:ss numeric time zone (e.g., -04:00:00)

%:::z numeric time zone with : to necessary precision
(e.g., -04, +05:30)

%Z alphabetic time zone abbreviation (e.g., IST)

Fig. Date Command with format string

We can
combine multiple date formats as per our required format style. See the below
examples.

Fig. Date Command with multiple format string

The date command can also be used to set the date and the time but can
be done only by a system administrator.

For Example use the following syntax to change the current date.
Replace YYYY with a four-digit year, MM with a two digit month,

and DD with a two digit day of the month.
Syntax: date +%D –s <YYYY-MM-DD>
date +%D -s 2020-05-11
05/11/20

2. Calendar (cal) command

The calendar command (cal), displays
the calendar for a specified month or a year.
Syntax:- cal-options [[month]year]

Fig. cal command without option
and arguments

Fig.cal command with 2 argument no option

From the above example, there are 2 arguments without any options.

Arguments (i.e. month, year) are still optional. If there is no argument,
the calendar for current month is displayed.

If only one argument is entered, it is
assumed to be a year and not month. Hence the calendar for the year is
displayed.

Fig.cal command with 1 argument assumed as year
If both month and year are entered, then just one month of that

particular year is displayed.Note: - The 2 arguments are separated with a
whitespace.

3. Who command

The who command displays all the users currently logged into the system.
Syntax:- Who -options

The who command returns the user’s name (ID), corresponding terminal and
time he/she logged in.

with option -u

To display the duration how long the system was idle (idle time), -u option is
used.

with option -H
This option is used to get header information.

Who am i

If you want to display only your individual system information, enter who am
i.(note the white space entered between each word).

Whoami

The whoami command returns the user ID(Login name).

If you logged in as root user, whoami displays root.
If you logged in as Student user, whoami displays Student.

This is equivalent to the result of the following command:-

id-un
id -u displays only the login ID(Integer). This is always zero(0) for root user.

4. System name (uname) command

Theunameutility is most commonly used to determine the processor
architecture, the system hostname and the version of the kernel running on
the system.
Syntax:- uname–option

Option Description
-r(kernel
release)

Prints the kernel release

-v Prints the kernel version
-m Prints the name of the machine’s hardware name
-p Prints the architecture of the processor
-i Prints the hardware platform
-o Print the name of the operating system. On Linux systems

that is “GNU/Linux”
-a(all) When the -a option is used, uname behaves the same as if

the -snrvmo options have been given.

Fig. uname command with options

5. Terminal (tty) command

The ttyutility is used to show the name of the terminal we are using.

Already we know that Linux treats everything as File and Process. Sottyis
also a filestored under /devdirectory.

When we open a new terminal, port number will be incremented
automatically as pts/0, pts/1 and so on.

6. Clear screen (clear) command

The clear command clears the screen and places the cursor at the top.

7. Script command

This records an interactive session.
When you want to record the full session, use this as your first
command on your session so that everything you do will be
recorded until you log out from the session.
To stop the recording, type exit
If you do not specify your output log file name, then by default the
session log is saved as a file named typescript.

Refer the below example for more details.

Help documentation

whatiscommand
man command

1. whatis command

It is a help command that displays thedefinition of the command.In
order to get more detailed (syntax, options) information about command,
refer man command.
Syntax:- whatis<command>

2. mancommand

Syntax:- man<command>
man is online reference manual(man)page. It provides detailed

descriptions and usage of the commands.
You can use the man command to display the man page entry that

explains a given command.

For example, display the man pages for the date command

Using the man command

Name– definition about command

Synopsis- Command with options – Syntax about command (or) how to
apply command in command line.

Scrolling Through the Man Pages

The following table lists the keyboard commands for scrolling through
the man pages.

Key board command Action
Space bar Displays the next screen of a man page

Return Displays the next line of a man page
B Moves back one full screen

/pattern Searches forward for a pattern
N Finds the next occurrence of a pattern after

you have used /pattern
H Provides a description of all scrolling

capabilities
Q Quits the man command and returns to the

shell Prompt

Searching the Man Pages

There are two ways to search for information in the man pages:

Searching by section
Searching by keyword

1. Searching the Man Pages: By Section

The online man page entries are organized into sections based on the type
or usage of the command or file.

For example, Section 1 contains user commands, and Section 5 contains
information about various file formats.

To look up a specific section of the man page, use the man command with
the -s option, followed by the section number, and the command or file name.
man-s number command
(or)
man-s number filename

The bottom portion of a man page, titled SEE ALSO, lists other
commands or files related to the man page.

The number in parentheses reflects the section where the man page is
located. We can use the man command with the -loption to list the man pages
that relate to the same command or file name.

For example, to view the online man page for the passwd file, use the
following commands:
man-l passwd
passwd (1) -M /usr/man
passwd (4) -M /usr/man
man-s 4 passwd
Reformatting page. Please Wait... done
File Formats passwd(4)

NAME
passwd - password file
SYNOPSIS
/etc/passwd
DESCRIPTION
The file /etc/passwd is a local source of information about users’ accounts.
The password file can... (Output truncated).

2. Searching the Man Pages: By Keyword

When we are unsure of the name of a command, we can use the man
command with the -k option and a keyword to search for matching man page
entries

man-k keyword
The man command output provides a list of commands and

descriptions that contain the specified keyword.
For example, using the man command, view commands containing the
calendar keyword.
$ man-k calendar

CHAPTER 6 - LINUX
COMMAND LINE

STRUCTURE

Linux Command line structure consists of following format.

Command only - there is no option and arguments
Command with arguments
Command with `command` (or) Command $(Command)

1. Command only

There is no option and arguments.
Command line prompt allows only a single command.

See the below example snap

Command followed by option or arguments style.

Command<space>-option
Command <space>argument
Command <space> -option<space>argument

There is a single space in between command and option,
again followed by a space prefixing the arguments.

Note the difference in usage of echo command with quotes and without
quotes.

In the upcoming topics, we will discuss more about the command
options. Just understand the command line structure.
Difference between ps vs ps-fanddate vs. date+%Dformat.

In Linux, command options are useful to get specific information about
command. In learning point of view, first let’s focus on the command and
then will explore more on options and arguments.
command only style :- unamedisplays kernel name.
command –option structure :- uname-rdisplays kernel version and

uname-ndisplays hostname

See the above 3 command line difference, when we put option –r (or) –
n the command display specific result. This is command –option structure.

We
can combine multiple options together in any order.

1. Command followed by Command style

Whenever we pass command without a back quote as an
argument to another command, shell will treat it as any ordinary word
and won’t consider it as a command.

Note the difference betweenecho unamevsecho `uname`

unameis a Linux command and it displays working kernel
name (see the 1st line)
echo command is used to display message to console (see the
2nd line in above snap)

When we combine both uname and echo command, shell will interpret
them as command with argument(echouname). Here unameis considered as
ordinary word and not a command. That’s the reason echo uname displays
message as unameto monitor.

When we enclose command with back quote ` ` symbol, shell
interprets them as command with `command`.

See the difference between command line (A) and command line (B)
When we pass command as an argument to another Linux command,

the command being passed is enclosed with back quote.i.e. ` command `
(back quote notation).

Note the difference between a back quote and single quote. Both are
different.

CHAPTER 7 - THE VI
EDITOR

The vi editor is a command-line, interactive editor that we can use to
create and modify the text files.
The vieditor is also the only text editor that we can use to edit certain
system files without changing the permissions of the files.
vi improved (Vim) is the default editor.
The Vim editor is an enhanced version of the vi editor.

Accessing the vi Editor

To create, edit, and view files in the vi editor, use the vi
command.
The vi command includes the following three syntaxes:

vi
vifilename
vioptionsfilename

The initial display of the editor in a terminal window is a blank
windowfilled with tildes and a blinking cursor in the top left corner.

If the system crashes while you are editing a file, you can use the -
roption to recover the file.

vi-rfilename
The file opens so that you can edit it. You can then save the file and

exit the vieditor, by using the following command:
vi-Rfilename

The file opens in read-only mode to prevent accidental overwriting of
the contents of the file.

student@krosum ~]$vi p1.txt {Enter}

The vi Editor Modes

The vi editor provides three modes of operation:
• Command
• Input
• Last line

1. Command mode

The command mode is the default mode for the vieditor.
In this mode, you can run commands to delete, change, copy,
and move text.

You can also position the cursor, search for text strings, and
exit the vieditor.

2. Input mode

You can insert text into a file in the input mode.
The vi editor interprets everything you type in the input
mode as text.
To invoke input mode, press any one of the following
lowercase keys:

KEY DESCRIPTION
i Inserts text before the cursor
o Opens a new blank linebelow the cursor
a Appends text after the cursor

You can also invoke the input mode to insert text into a file
by pressing one of the following uppercase keys:

KEY DESCRIPTION
I Inserts text at thebeginning of the line
O Opens a new blank line above the cursor
A Appends text at the end of the line

3. Last line mode

We can use advanced editing commands in the last line
mode.
To access the last line mode, enter a colon (:) when you are
still in the command mode.
Entering the colon (:) character places the cursor at the
bottom line of the screen.

student@krosum~]$ vip1.txt {Press-Enter}

Once we press i (insert), the command mode is switched to
input mode.
Now we can type our input text to editor. See the below
snap.

Now we want to write our input data to storage and switch to
command mode.
Now how to switch from input mode to command mode?
Press ESC key type shift with colon (ESC shift :)

Now type lower case character w(write) then press Enterkey

See the above snap p1.txt file. 3 lines 47 characters are
written to storage (last line in snap).

In order to come out of the editor (vi), press q(quit) then
enter, it will switch to exit mode (or)last line mode.

Note: The last line mode is actually the exmode. The vi editor is essentially a
visual extension to the exeditor,which in turn is an extended version of the
ededitor.

Switching Between Modes

The default mode for the vieditor is the command mode.
To switch to the input mode, press i, o, or a.
To return to the command mode, press the Esc key.
In the command mode, you can save the file and quit the vieditor,
and return to the shell prompt.

Viewing Files in the Read-Only Mode

The view command enables you to view files in the read-only
mode.

Syntax:-
viewfilename

The view command invokes the vi editor in the read-only option,
which means you cannot save changes to the file.
For example, to view the p1.txtfile in the read-only mode, enter the
following command:

viewp1.txt

The filename appears. Enter the: qcommand to exit the file, exit
the vi editor, and return to the shell prompt.

Moving the Cursor within the vi Editor

The tables shows the key sequences that move the cursor.

KEY SEQUENCE CURSOR MOVEMENT
h left arrow, or Backspace -shifts one character left
J down arrow - Down one line
K up arrow - Up one line
l right arrow, or space bar - Right (forward) one character
w Forward one word
b Back one word
e To The end of the current word
$ To the end of the line

0 (zero) To the beginning of the line
^ To the first non-white space character on the line

KEY SEQUENCE CURSOR MOVEMENT
1G Goes to the first line of the file
:n Goes to Line n
nG Goes to Line n

Control + F Pages moves forward one screen
Control +D Scrolls down one –half screen
Control + B Pages moves backward one screen
Control + U Scrolls up one-half screen
Control + L Refreshes the screen
Control +G Displays current buffer information

Inserting and Appending Text

KEY SEQUENCE CURSOR MOVEMENT
a new or existing file by using the vi editor
A Appends text after the cursor
i Inserts text before the cursor
I Inserts text at the beginning of the line
o Opens a new line below the cursor
O Opens a new line above the cursor
:r File name inserts text from another file into the current file

Text-Deletion Commands

KEY SEQUENCE CURSOR MOVEMENT
R Overwrites or replaces character on the line andthe cursor

position is moved pointing to next character. To terminate this
operation, press Escape.

C Changes or overwrites sequence of characters from the cursor to
the end of the line.

s Substitutes a string for a character at the cursor position.
x Deletes a character at the cursor position.

dw Deletes a word or part of the word to the right of the cursor
position.

dd Deletes the line containing the cursor position.
D Deletes the line from the cursor to the right end of the line.

:n,md Delete from nth line to mth line (For example, :5,10d deletes lines
5–10.)

We can use numerous commands to edit files by using thevieditor.
The following sections will describe the basic operations for deleting,

changing, replacing, copying, and pasting. Remember that thevieditor is
case-sensitive.

Note:-Output from the deletecommand writes to a buffer from which
text can be retrieved.

Edit Commands

The table describes the commands to change text, undo a change, and repeat
an edit function in the vieditor.

COMMAND FUNCTION
cw Changes or overwrites sequence of characters from the

cursor position to the end of that word.
R Replaces the character at the cursor position with another

character.
J Joins the current line and the line below

Xp Transposes the character at the cursor position and the
character to the right of the cursor position.

~ Changes the case of character placed at the cursor position
from uppercase to lowercase,

u Undo the previous command
U Undo all changes to the current line
. Repeats the previous command

Note:- Many of these commands change the vi editor into the input
mode. To return to the command mode, press the Esc key.

Search and Replace Commands

The table shows the commands that search for and replace text in the vi
editor.

COMMAND FUNCTION
/string Searches forward for the string
?string Searches backward for the string

n Searches for the next occurrence of the
string. Use this command after searching
for a string.

N Searches for the previous occurrence of the
string.

:%s/old/new/g Searches for the old string and replaces it
with the new string globally.

Copy and Paste Commands

The table shows the commands that cut, copy, and paste text in the vi
editor.

COMMAND FUNCTION
Yy Yanks a copy of a line
P Puts yanked or deleted text under the line

containing the cursor
P Puts yanked or deleted text before the line

containing the cursor
:x,yco n Copies lines from x to y and puts them after line n

(Forexample, :1,3 co 5 copies lines 1–3 and puts
themafter line 5.)

:x,y m n Moves lines in range between x and y to line after
n. For example, :4,6 m 8

Save and Quit Commands

The table describes the commands that save the text file, quit the vi
editor, and return to the shell prompt.

COMMAND FUNCTION
:w Saves the file with changes by writing to the

disk
:w new_filename Writes the contents of the buffer to

new_filename.
:wq Saves the file with changes and quits the vi

editor
:x Saves the file with changes and quits the vi

editor
ZZ Saves the file with changes and quits the vi

editor
:q! Quits without saving changes
ZQ Quits without saving changes

Session Customization

To create an automatic customization for all your vi sessions, perform
as following:
1. Create a file named .exrcin your home directory.
2. Enter any of the set variables into the .exrcfile.
3. Enter each set variable without the preceding colon.
4. Enter each command on one line.

The vi editor reads the .exrcfile located in your home directory each
time you open a vi session, regardless of your current working directory.

Note: The same steps apply for customizing a session in the Vim editor.
Except that, instead of creating an .exrcfile, you need to create a .vimrcfile.

Session Customization Commands

COMMAND FUNCTION
:set nu Shows line numbers

:set nonu Hides line numbers
:set ic Instructs searches to ignore case

:set noic Instructs searches to be case-sensitive
:set list Displays invisible characters, such as ^I for a Tab

and $ for
end-of-line characters

:set nolist Turns off the display of invisible characters
:set showmode Displays the current mode of operation

:set noshowmode Turns off the mode of operation display
:set Displays all the vi variables that are set

:set all Displays all vi variables and their current values

The table in the slide describes some of the variables of the set command.

CHAPTER 8 - DISPLAYING
THE DIRECTORY

CONTENT

ls –options

The ls command displays the content of a directory.
Syntax:- ls–options filename

To list the files and directories in the current directory, type ls command

without arguments.

To display the content of a specific directory within the current
working directory, type ls command followed by the directory name in both
ways (absolute way or relative way).

If we don’t have permission to list out files from a specific directory, then an
error message will be received as permission denied.

Note: If input directory is not present in current working directory location,
enter the ls command with the complete path of input directory.

1. ls –l
The ls-lcommand displays a long listing of file information.

The following is a brief explanation of the parts of the long list
displayed in the snap:

The first character is the file type.(referfile permission for more
details)

The second ninecharacters indicate the file permissions: r means
readable,w meanswritable, x means executable, and the – means
denied.
The third section (as single number) is the link count.

The fourth section is theowner(student).
The fifth section is the group(class).
The sixth section is the file size.
The seventh section is the date.
The eighth section is the file name.

2. ls –a

The ls-acommand lists all files in a directory, including hidden
files.

Some files are restricted to be displayed on the list, given by
the usual format of lscommand.

Hidden files often contain information that customizes your
working environment.

You can use the ls-acommand to list all files in a directory,
including the hidden files.

Note:A single period (.) represents the current working directory. The double
period (..) represents the parent directory, which itself contains the current
working directory.

3. ls –t
Syntax:-

ls–t option (time - sort by modification time, newest first)

4. ls -r
Syntax:-

ls-r (reverse order)

Default lscommand will display the list of files in alphabetical
order. The option –rshows the list of files in reverse order.

Note
:

-
r

reverse order
list

-
R

recursive list

5. ls -R
Syntax:-

ls-R (Recursive list)

 This option lists the contents of all directories recursively,
below its corresponding current directory.

6. ls-S
Syntax:-

ls-S This option helps to sort files by their size.

7. Combine multiple options
Combining multiple options –r and–l together (-rl (or) –lr)

shows the long list in reverse order.

The option –l along with -h(human understand) format

-doption displays only the directory details.

8.
ls –F

The option -F displays list of files, indicating their file types

Refer to the table given below for more details about file types indication.

* Executable file
| Named pipe (or) FIFO File
/ Directory
@ Symbolic file

9. ls -i
The option –i displays list of files with their corresponding file index

number.
How to list recently created files in long list?

We can use both –land-toptions irrespective of their order.

Both ls–lt andls -tlhas the same effect.

How to view?

These are the following ways in viewing the list of files.

Long list of files in recursive order.

ls–lR(or) ls-Rl

Recently created files in long list of recursive order.

ls-ltR(or) ls-tRl(or) ls-lRt

List of files (long list) in descending (large to small size) order.

ls-lS# Upper case S

List of files (long list) in ascending (small file size to large size)
order

ls-lrS# Upper case S # ls–lSr(reverse order)

OPTION USAGE
-a List all the files, including hidden files

(prefixed with .)
-d List directory entries
-F File Types
-l Long list
-t Recently modified time
-h Human readable format
-i Index number
-r Reverse order
-R Recursive order
-S Sorted order
-s Block size

CHAPTER 9 - REGULAR
FILE MANIPULATION

COMMANDS

So far we know how to perform directory manipulation actions. Now
let’s discuss about regular file manipulation commands.
In Linux, Regular file (or) Ordinary file is classified in to two types.

1. ASCII (or) TEXT File- user can read (or) understand the
format.

2. ELF - user can’t read (or) understand .

How to create a new ASCII file?

There are many ways we can create a ASCII File.

1. Using editor
2. Using redirection symbols (<>>>)

First let’s discuss about editor. Linux supports command line editors
like vim, nanoetc., and GUI editors like gedit, leafpad, bluefish. Now we
will discuss about vi editor.
Recap previous chapter (vi editor) on how to use vi editor commands.

cat command

cat command is read-only command ; we can read existing ASCII file
from Linux command line.

Task : create a new file named p1.txt. Write some text in the editor, save
a file to storage and then read input file using cat command.

Task :Create a
new file name called ab.txt. Write following shell commands in ab.txt file
and display content to monitor.

Task :How to write c
program in Linux command line?

Using cat command, we can read the existing ASCII file. If you wish
viewing with line number use –n option.

Task :How to
read existing /var/log/boot.log file ?

Note : cat command is not a directory manipulation command.

Copy (cp) command

The copy (cp) utility creates a duplicate of a file, a set of files, or a
directory.
If the source is a file, the new file (target file) contains exact copy
of the data in the source file.

Syntax cp-option SourcefileTargetfile

If source file doesn’t exist (or) proper path is not specified (or)
case mismatch happens (upper/lower), cp action is failed. Refer to
the below snap for error messages.

If target file already exists , the exiting file content will overwrite. See the
below example

The test1.c file is already exists and hence its contents are replaced
by the source file (p1.log) contents.
The cpcommand copies both text and binary files.

If the target is directory, the source file is copied to the directory. See the
below snap where p1.log file is copied to repo directory.

Under the repo directory we can duplicate new name called test1.log

We can use wild cardto copymore than one file into subdirectory or
remote directory.

Rules in file copy:

To copy a file successfully, several rules must be followed:

Rule 1 : The source must exist. Otherwise, Linux prints the
following error message:

<sourcefile> - No such file (or) directory.

Rule 2: If no destination path is specified, Linux assumes the
destination as the current working directory.

Rule 3: If the source happens to be multiple files or a directory,
then the destination file must be a directory.

Rule 4: To prevent an automatic replacement (overwrite) of the
destination file, use the interactive (-i) option. When interactive
is specified, Linux issues a warning message and waits for a reply.
Any reply other than yes will cancel the copy of the specified file.

Note, however, that if the file/destination directory is write protected, we
cannot use this option to write to the directory.

Rule 5: To preserve the modification times and file access
permission, use the preserver (-p) option. In the absence of the
preserve options, the time will be the time the file was copied and
the file access permissions will be the defaults.

Note : p1.log and p3.log file preserve the time attributes.

As stated in the copy (cp) command section, when the destination file
already exists, its permissions, owner and group are used rather than the
source file attributes. However, We can force the permissions, owner, and
group to be changed, by using the preserve (-p) option.

Note how the permissions of r2.sh have been changed to match those of the
source file, r1.sh

Move (mv) command

Move command is used to move either an individual file, a list of
files or directory. After a move, the old file name is gone and the
new file name is found at the destination.

This is the difference between a move and a copy. After a copy,
the file is physically duplicated; it exists in two places. The move
format appears in below snap.

The file p1.log is moved to repo directory - move action.
Using mv command we can do rename operation.

mv options

Move has only two options

1. Interactive (-i)
2. Force (-f)

If the destination file already exists, its old contents are destroyed
unless we use the interactive flag (-i) towarn us on such move
operation. When the interactive flag is on, move asks if we want to
destroy the existing file.

1.

Using -i (interactive) option

See the above snap there is no modification in test2.c file placed under repo
directory.

2. Force (-f) option

If we are sure that we want to write it, even if it already exists, we can
skip the interactive message with the force (-f) option.

Link (ln) command

The link command receives either a file or directory as input and
its output is an updated directory.
Two types of link in Linux

1. Hard link
2. Soft link (or Symbolic link)

1. Hard links to Files

To create a hard link to a file, we specify the source file and
destination file.
If the destination file doesn’t exist, it is created.

If it exists, it is first removed and then re-created as a linked
file.

Note in both file (p1.txt and p2.txt) inode (index number) is
same.
See the below snap where we have appended TEST3
REPORT TEST4 REPORT content to p1.txt file and this is

automatically updated in p2.txt file.
Similarly if we append numbers to p2.txt file, then it is
automatically updated to p1.txt file.

If we delete source file (p1.txt), the link count is
decremented but still we can read destination file (p2.txt).

2. Symbolic Links

When the link (ln) command is executed with no option, the result
is a hard link. If we try to create a hard link to a different file
system, it is rejected because hard links must bemade within the
current directorystructure.
To link to a different file system, therefore, we must use symbolic
links. We must also use symbolic links when we are linking to
directories.
There is a danger with symbolic links because, although they
behave like files and directories, they do not physically exist. They
only point to real directory or file.
If the physical file is deleted, the file will no longer appear on a
listing under its original name. It will still be available under its
symbolic link name, but it is not accessible.
If a physical directory is deleted, the symbolic link to the directory
still exists. In that case if we try to list the symbolic directory, it
lists with no files. However, if we try to move to it, we receive a
message that it doesn’t exist.

DESCRIPTION HARD LINK SOFT LINK

SYNTAX lnsource target ln-ssource target

INODE Same for both source and target
files.

Different for source and target
file.

LINK COUNT Increased Single link count

FILE
ACCESSIBILITY If we delete source file, we can

able to access target file.

If we delete source file ,target
file is broken and we can’t
access

Remove (rm) command

The remove (rm) utility deletes an entry from a directory and file.
To delete a file, we must have write permission.

In the above snap, process.log file is deleted from current
directory.

Note: to delete a
directory, we used option –r (recursive removal)
–i (interactive) option

-f (force) option

CHAPTER 10 - SHELL
META-CHARACTER

Asterisk (*) Character

The asterisk (*) characteris also called the wildcard character and
represents zero or more characters, except the leading period (.)
of a hidden file.
For example, in order to list all files and directories that start with
the letter p followed by zero or more characters and to list all files
and directories that end with the .log, preceded by zero or more
characters, refer following snap.

Question Mark (?) Character
The question mark (?)character is also called a wildcard
character that represents any single character.

For example, to list all files and directories where each file
name contains exactly two characters that end with extension .c
.

Note: If no file matches with an entry using the question mark (?) character,
an error message appears.

Square Bracket ([]) Characters

The square bracket ([]) characters represent a set or range of
characters for a single character position.
A set of characters is any number of specific characters,
For example, [acb].

The characters in a set do not necessarily have to be
in any order.
For example, [abc] is the same as [cab].Whereas a
range of characters is a series of ordered characters.

A range lists the first character followed by a
hyphen (-) and then the last character,
for example, [a–z] or [0–9].

When specifying a range, arrange the characters in the order
that you want them to appear in the output.

For example, use [A–Z] or [a–z] to search for any
uppercase or lowercase alphabetical character,
respectively.

ls p[abc].java # file name p<followed by character a or
b or c> .java extension

The Brace Expansion

The brace {} expansion is a mechanism by which arbitrary
strings may be generated.
The preamble "a" is prefixed to each string contained within the
braces, and the postscript "e" is then appended to each resulting
string, expanding left to right.

Shell meta-characters are specific characters, generally symbols
that have special meaning within the shell.
The meta-characters supported in bash are listed as follows:

|
&
;
(
)
<
>

Space
tab

The shell meta-characters are listed as follows:

META-
CHARACTERS

DESCRIPTION

| Sends the output of the command placed at the left of
the pipe symbol as an input to the command on the
right of the symbol.

& Runs the process in the background, allowing you to
continue working on the command line.

; Allows you to list multiple commands on a single line,
separated by this character.

() Groups commands and sends their output to the same
place.

< The command placed at the left of the symbol, gets its
input from the right of the symbol

> Sends the output of the command placed on the left of
the symbol, into the file named on the right of the
symbol.

Caution: Do not include these meta-characters in filename/ directory name
during their creation.

Redirecting Meta-characters

Command redirection is enabled by the following shell
meta-characters:

Redirection of standard input (<)
Redirection of standard output (>)
Redirection of standard error (2>)

The File Descriptors

Each process works with file descriptors.
File descriptors determine where the input to the command
originates and where the output and error messages are
directed to.
The table explains the file descriptors.

FILE
DESCRIPTOR

NUMBER

FILE
DESCRIPTION

ABBREVIATION

DEFINITION

0 STDIN Standard command input
1 STDOUT Standard command output
2 STDERR Standard command error

Command Redirection

By default, the shell receives or reads input from the standard
input, the keyboard and displays the output and error messages to
the standard output, the screen.
Input redirection forces a command to read the input from a file
instead of receiving from the keyboard.

Output redirection sends the output from a command into a file
instead of sending the output to the screen.

Redirecting Standard Input

The less than (<) meta-character processes a file as the standard
input instead of reading the input from the keyboard.

command<filename
or

command0<filename

For example,
use the result.logfile as the input for the mailx command.

Redirecting Standard Output

The greater-than (>)meta-character redirects the standard output
to a file instead of printing them to the screen.

command>filename
or

command1> filename

If the file does not exist, the system creates it. If the file exists, the
redirection overwrites the content of the file.
For example, writes the output of current process command to
process.logfile

ps>process.log

When you use a single greater-than (>) meta-character and if the
file already exists, the command overwrites the original contents
of the file whereas when you use double greater-than (>>)
characters, the command appends the output to the original

content of the file.

Redirecting Standard Error

A command using the file descriptor number (2)and the greater-
than (>) sign redirects any standard error messages to the
/dev/nullfile.

command2>/dev/null

The following example shows the standard error redirected to the
error.logfile.

For redirecting both stdout and stderr message to the same file, use following
syntax

2>&1

Note: The syntax 2>&1 instructs the shell to redirect stderr (2) to the same
file that receives stdout (1).

Using the Pipe Character

The pipe character redirects the standard output of one command
to the standard input of another command.

Command1 | Command2

For example, use the standard output from the who command as
the standard input for the wc-l command

who| wc-l
cat/etc/passwd|grepbash|wc–l

Like this we can use pipes to connect numerous commands.

Quoting Characters

Quoting is a process that instructs the shell to mask or ignore the
special meaning of shell meta characters.
The quoting characters are:

Single forward quotation marks (‘ ‘): Instruct the shell
to ignore all enclosed meta-characters.

Backslash (\): Prevents the shell from interpreting the next
character after the (\) as a meta-character.

Single backward quotation marks ('): Instruct the shell to
execute and display the output for a UNIX system
command.

Parentheses ($ (command)): Instruct the shell to execute and
display the output of the command enclosed within
parentheses.

CHAPTER 11 - FILE
PERMISSION

All files and directories in Linux have a standard set of access
permission.
This access permission controls the access to all the files available
and can provide a fundamental level of security to the files and
directories in a system.

How to view file permission?

To view the permissions for files and directories, use

ls–l
or
ls–n

The first fieldof information displayed by the ls-l command is the
file type.

The file type typically specifies whether it is a file or a
directory.
A file is represented by a hyphen (-) whereas a directory
is represented by the letter d.

The remaining fieldsrepresent the permission groups: owner,
group,and other.

Permission Groups

There are three categories of permissions groups:

– Owner

– Group
– Other

• The table describes the permission groups and their scope

PERMISSION DESCRIPTION

Owner Permissions used by the assigned owner of the file or
directory.

Group Permissions used by members of the group that owns
the file or directory.

Other Permissions used by all other users except the file
owner, and members of the group that owns the file or
the directory.

Permission Set

Each permission group acquires three permissions, read, write and
execute which together called a permission set.
Each file or directory has a permission set specified for each
permission group. Since we have 3 type of permission group,
totally each file or directory contains 3 permission set
corresponding to each group.
The first permission set represents the owner permissionsthe
second set represents the group permissions, and the last set
represents the other permissions.
The read, writeand executepermissions are represented by the
characters r, w,andxrespectively.
The presence of any of these characters (rorw or x),indicates that
the particular permission is granted.
A dash (-) symbol in place of a character in a permission set
indicates that a particular permission is denied.
Linux assigns initial permissions automatically when a new file or
directory is created.

Interpreting File and Directory
Permissions

PERMISSION FILE ACCESS DIRECTORY ACCESS

Read (r)
We can display file
contents and copy the file.

We can list the directory
contents with
thelscommand.

Write(w)
We can modify the file
contents.

We can modify the contents
of a directory, such as by
creating and deleting the
file.

Execute(x)

If our file has
executepermission, we
can execute it both on
command line and within
a shell script.

We can use the cd command
to access the directory.
By default, we have the read
access and can run the ls–
lcommand on the directory to
list the contents.
Even in case if we are
restricted for a read access,
we can run the ls command
as long as we know the file
name.

The read, write, and execute permissions are interpreted differently
depending upon whether it is a file or a directory. Note: For a directory to be
ofgeneral use, it must at least have read and execute permissions.

Determining File or Directory Access

The ls -n command determines the ownership of files and directories.

All files and directories have an associated
useridentification number (UID)and a group identification
number (GID).
To view the UIDs and GIDs, run thels-ncommand on the
/var/admdirectory.

ls-np1.txt

TheUIDidentifies the user who owns the file or directory.
The GID identifies the group of users who owns the file or
directory.
The Linux uses these numbers to track the ownership and
group membership of files and directories.

Interpreting the ls – n Command

The above image illustrates the parts of the output of the

ls-n command

The first character is the file/directory type.
The second set of nine characters represents the permission set.

The third character represents thenumber of hard linksto the
file or directory.

A hard link is a pointer that shows the number of files
or directories that are linked with a particular file in the
same file system.

The fourth character represents the UID of the owner.
The fifth character represents the GID of the group.
The sixth set represents the size of the file or directory in bytes.
The seventh set of characters represents the time and date of
the file or directory that was last modified.
The last set of characters represents the name of the file or
directory.

Determining
Permissions

When a user attempts to access a file or directory, the UID of
the user is compared with theUID of the file or directory.
If the UIDs match, the permission set for the owner determines
whether the owner has access to the file or directory.
If the UIDs do not match, the user’s GID is compared with the
GID of the file or directory. If these numbers matches, the
group permissions apply.
If the GIDs do not match, the permission set for other is used to
determine file and directory access.

Referring to the above image,
If the UID equals the UID, then use the owner
permissions.
If not, checks whether GID equal the GID? If yes, use
group permissions. If not, use other permissions.

Changing the Permissions

We can change the permissions on files and directories by using
the chmod command.
Either the owner of the file/directory (or) the root user can use the
chmod command to change the permissions.
The chmod command can be used in either symbolic or octal
mode.

Symbolic mode uses a combination of letters and
symbols to add or remove permissions for each
permission group.

Octal mode, also called the absolute mode, uses octal
numbers to represent each permission group.

Note :
We can assign execute permissions on files with the chmodcommand.

The chmod command is described later in this lesson. Execute permissions
are not assigned by default when we create a file.

Changing Permissions: Symbolic
Mode

The syntax for the chmod command in the symbolic mode is:

chmodsymbolic_modefilename

The symbolic_mode option consists of three parts:
The user category (owner, group, or other) affected
The function performed
The permissions affected

For example, if the option is g+x, the executable permission is
added to the group.

The following examples illustrate how to modify the permissions
on files and directories by using the symbolic mode.

Changing Permissions: Symbolic Mode

The above image shows the components of the symbolic
mode command syntax.
The first three letters represent “who” and consist of the
following codes:

u : Owner (user) permission

g : Group permissions

o : Other permissions

a : All permissions (owner, group, other)

The next section is the “op” section and consists of the following:

+ : Add permissions

- : Remove permissions

= : Assign permissions

The last section is the “permissions” section and consists of the

following:

r : Read

w : Write

x : Execute

Changing Permissions: Octal Mode

Thechmod command syntax in the octal mode is:

chmodoctal_modefilename

The octal_mode option consists of three octal numbers, 4, 2, and 1,
which represent a combination of permissions, from 0–7, for the
file/directory.

OCTAL VALUE PERMISSION
4 Read
2 Write
1 Execute

The above image shows the octal number corresponding to
permission.
For each permission set, these numbers are combined to form a
single number.

OCTAL VALUE PERMISSION BINARY
7 rwx 111 (4+2+1)
6 rw- 110(4+2+0)
5 r-x 101(4+0+1)
4 r-- 100(4+0+0)
3 -wx 011(0+2+1)
2 -w- 010(0+2+0)
1 --x 001(0+0+1)
0 --- 000(0+0+0)

Changing Permissions: Octal Mode

The table shows the octal numbers that represent a combined
set of permissions.
We can modify the permissions for each category of the users
by combining the octal numbers.
The first set of octal number defines owner permissions, the
second set defines group permissions, and the third set defines
other permissions.

OCTAL MODE PERMISSION
644 rw-r--r--
751 rwxr-x—x
775 rwxrwxr-x
777 rwxrwxrwx

The table shows the permission sets in the octal mode.For
example, let’s set permissions so that the owner, group, and
other have read and execute access only.

The chmod command fills with zeros to the left of octal digits.

Note: chmod44p1.txtbecomes chmod044p1.txt.

Caution
Note:- Missing one or more octal digits can lead to unwanted access to files
or directories.

Some additional examples show how to modify permissions
on files and directories by using the octal mode.

Assigning all the permissions for owner, group and
others, permits read, write and execute permissions
fully to that particular file.

CHAPTER 12 - THE UMASK
COMMAND

When files and directories are created, initial permission values
are automatically assigned.
The initial permission value for a file is 666 (rw-rw-rw-) and it
is 777 (rwxrwxrwx) for a directory.
The user mask affects and modifies the default file permissions
assigned to the file or directory.
We can set the user mask by using the umaskcommand in a
user initialization file.
To view the umask value, run theumask command.

Note:

The default umask value for anon-root user is 002.

The default umask value for a root user is 022.

The umask utility affects the initial permissions for files and
directories when the files and directories are created.
The umask utility is a three-digit octal value that is associated
with the read, write and execute permissions.
The first digit determines the default permissions for theowner, the
second digit determines the default permissions for the group and
the third digit determines the default permissions for other.
For example, to set the default file permissions in a user
initialization file to rw-rw-rw-,run the following command:

umask000

Determining umaskValue

umask OCTAL
VALUE FILE PERMISSIONS DIRECTORY

PERMISSIONS
0 rw- rwx
1 rw- rw-
2 r-- r-x
3 r-- r--
4 -w- -wx
5 -w- -w-
6 --- --x

The table shows the file and directory permissions for each of the
umask octal value.
This table can also help us to determine the umask value that we
want to set on files and directories.
To determine the umask value for a file, subtract the value of the
permissions that we want from 666 or 777 from a directory.
Let’s see an example. If we want to change the default mode for
files to 644 (rw-r--r--),the difference between 666 and 644 gives
022, which is the value you would use as an argument to the
umaskcommand.

6 6 6

0 0 2 (-)

6 6 4

Default file permission

(non-root user)

rw-rw-r--

7 7 7

0 0 2 (-)

7 7 5

Default directory permission

(non-root user)

rwxrwxr-x

7 7 7

0 2 2 (-)

7 5 5
Default directory permission (root user)
rwxr-xr-x

6 6 6

0 2 2 (-)

6 4 4
Default file permission
(root user)
rw-r--r--

Applying the umask Value

The default permissions assigned to the new files and directories
are based on the initial value of umaskwhich varies with the user
login (whether root or non-root).
The table displays the results in the symbolic mode. For example,
the initial permissions for a new file in the symbolic mode isrw-
rw-rw-.
This set of permissions corresponds to read/write access for the
owner, group, and other.
This value is represented in the octal mode as, 420420420 or 666.

To mask out the write permission for the group and
other, use 022, the default umask value.
The result in the octal mode is 420400400or 644,
and rw-r—r–in the symbolic mode.

We can apply this same process to determine the default
permissions for directories.
For directories, the initial value specified by the system is
rwxrwxrwx. This corresponds to read, write, and execute access
for the owner, group, and other.
This value is represented in the octal mode as 421421421 or 777.

PERMISSION
FIELD

DESCRIPTION

rw-rw-rw- Initial Value specified by the system for a new
file

----w—w- Default umask utility value to be removed
rw-r- -r- - Default permissions assigned to newly created

files
rwxrwxrwx Initial values specified by the system for a new

directory
----w- -w- Default umask utility value to be removed
rwxr-xr-x Default permissions set for newly created

directories

Use the default umask value of 022to mask out the write
permission for the group and other.
The result in the octal mode is 421401401 or 755,and rwxr-xr-xin
the symbolic mode.

Changing the umaskValue

We can change the umask value to a new value on the command
line.
For instance, we might require a more secure umask value of say
027, which assigns the following access permissions to newly
created files and directories:

Files with read and write permissions for the owner,
read permission for the group, and no permissions for
other (rw-r-----).
Directories with read, write, and execute permissions
for the owner, read and execute permissions for the
group, and no permissions for other (rwxr-x---).

Note

The new umask value affects only those files and directories that
are created from this point onwards.
However, if the user logs out of the system, the new value (027) is
replaced by the old value (022) on subsequent logins because the
umask value has been changed at run time using the command
line.
If we want to make a permanent change on umask value, change
the umask parameter included in the configuration file.

The tar Command

The tar command stores, lists, or extracts files in an archive.
The output of using a tar command is a tar file.
In Linux, the default output location for a tar file is the stdout.

Syntax
tar -option archivefileinputfiles

OPTIONS DEFINITION

C Creates a new tar file

T Lists the table of contents of the tar file

X Extracts files from the tar file

F Specifies the archive file or tape device.

V Executes in verbose mode, writes to the standard output

H Follows symbolic links as standard files or directories

Z Reads or writes archives through gzip

J Compresses and extracts files and directories using bzip

Creating a tar Archive

You can use the tar command to create an archive file containing
multiple files or directories onto a disk or file.
The following example shows you how to archive your home
directory onto a disk.

tar-cvfbackup.tar inputfile1..inputfileN

The following example shows you how to archive multiple files
into an archive file called files.tar.

Viewing a tar Archive

We can view the names of all the files that have been written
directly to a disk or file archive.
To view the content of the Backup1.tar directory on the disk, enter
the following command:

To view the content of the files.tar archive file, enter the following
command:

tar-tvf backup.tar

Extracting a tar Archive

We can retrieve or extract the contents of an archive that was
written directly to a disk device or to a file.
To retrieve the files from the disk archive, enter the following
command:

tar-xvf backup.tar

File Compression

With the enormous amount of enterprise data that is created and
stored, there is a urgent need to conserve disk space and optimize
data transfer time.
There are various tools, utilities, and commands that are used for
file compression. Some of the commonly used commands are:

The compress command
Thegzipcommand
The zip command

Viewing a Compressed File: zcat
Command

The zcat command prints the uncompressed form of a compressed
file to the standard output.
To view the content of the filename.gzcompressed file, enter the
following command:
zcatfilename.gz

Note: The zcat command interprets the compressed data and displays the
content of the file as if it has not been compressed.

Compressing a File : gzip Command

Alternatively, you can use the gzipcommand to compress files.
Thegzipcommand performs the same function as the compress
command, but the gzipcommand generally produces smaller files.
For example, to compress a set of files, file1, file2, file3 and file4,
enter the following command:

Note: The compressed files have a .gzextension.

Uncompressing a File :
gunzipCommand

The gunzip command uncompresses a file that has been
compressed with the gzip command.

gunzipfilename

To uncompressing or extract the file1.gz file, use the following
command:

gunzipfile1.gz

Compressing and Archiving Multiple
Files: zip Command

The zip command compresses and archives multiple files into a
single file in one go.
To compress file2 and file3 into the file.zip archive file, enter the
following command:

ziptarget_filenamesource_filenames

CHAPTER 13 - LINUX
PROCESS

As we discussed, Linux abstractions are file and process. We discussed
what is file? What is Linux file structure? What are file types? and what are
file manipulation commands?

Now let’s discuss about process.

A process,also known as a task, is the running form of a program. It
means when the file enters the execution state, the execution instance of a file
(or) program (or) command called process is created.

In simpler form, the execution of a Linux command is called process.

Whenever a new process is created, kernel will create a unique ID and this
ID is called process ID (PID).

Processes have a parent/child relationship.
A process can spawn one or more children.

Multiple processes can run in parallel.
Linux command line is an active process (Running process).

Whenever a new command is executed on the command line, execution
of new command is called that child process is created.

By the time, the shell command line process will enter in to waiting state
and once child execution is done. i.e., reached to exit state, the parent process
(shell command line) will resume to the active (Running)state.

Attributes of a Process

The kernel assigns a unique identification number to each process
called a process ID or PID.
The Kernel uses the PID to track, control and manage the process.

Each process is further associated with a UID and a GID.

UIDs and GIDs indicate the process owner.
Generally, the UID and GID values associated with a process are
the same as the UID and GID of the user who has started the
process.

A process consists of an address space and a metadata object. The
process space is related to all the memory and swap space that a process
consumes. The process metadata is just an entry in the kernel's process table
and stores all other information about a process.

Process States

• A process may be in any one of the following states:
– D: Uninterruptible sleep (usually IO)

– R:Running or runnable (on run queue)

– S:Interruptible sleep (waiting for an event to complete)

– T: Stopped, either by a job control signal or because it is being traced

– Z:Defunct ("zombie") process, terminated but not reaped by its parent

The process state can be displayed using the ps command. For BSD
formats and when the stat keyword is used, additional state information is
displayed such as the following:

• <: High-priority (not nice to other users)

• N: Low-priority (nice to other users)

• L:Has pages locked into memory (for real time and custom IO)

• s: Is a session leader

• l:Is multithreaded

• +: Is in the foreground process group

Note: niceis a useful program that is used to lower or increase the scheduling
priority of a process or batch processes. Users can assign nice values between
0 (no effect) and 19(greatest effect). The higher the nice value, the lower the
scheduling priority.

Process Subsystems

Each time we boot a system, execute a command, or start an
application, the system activates one or more processes.

• A process as it runs uses the resources of the various subsystems:

Disk I/O
Network
Memory
CPU

A process, as it runs, uses the resources of the various subsystems:

• The disk I/O subsystem:Controls disk utilization and resourcing as well as
file system performance.

• The network subsystem:Controls the throughput and directional flow of
data between systems over a network connection.

• The memory subsystem:Controls the utilization and allocation of physical,
virtual, and shared memory.

• The CPU subsystem:Controls CPU resources, loading, and scheduling.

If not monitored and controlled, processes can consume our system
resources, causing the system to run slowly and in some cases even halt. The
Linux kernel collects performance-relevant statistics on each of these
subsystems, to include process information. We can view and use this
information to assess the impact that the processes have on the subsystem
resources.

Listing System Processes

• The process status (ps) command lists the processes that are associated with
the shell.

• For each process, the pscommand displays the PID, the terminal identifier
(TTY), the cumulative execution time (TIME), and the command name
(CMD).

• For example, to list the currently running processes on the system using the
ps command.

The ps command has several options that you can use to display
additional process information.

• -a: Prints information about all processes most frequently requested, except
process group leaders and processes not associated with a terminal.

• -e: Prints information about all the processes that currently running.

• -f:Generates a full listing.

• -l: Generates a long listing

• -o format: Writes information according to the format specification given in
a format.

Examples required for –o option:

Also multiple -o options can be specified. The format specification is
interpreted as the space-character-separated concatenation of all the format
option arguments.

Using –o option we can filter specific fields from process command.

Listing All Processes

For example, use the ps -efcommand to list all the processes currently
scheduled to run on the system.

ps –ef|more

The illustration in the snap interprets the output of the ps –ef
command.
• The first column is the UID, the username of the owner of the process.
• The second column is the PID, the unique process identification number of
the process.
• The third column is the PPID, the parent process identification number of
the process.
• The fourth column is the STIME, the time the process started.
• The fifth column is the TTY, the controlling terminal for the process. Note
that system processes (daemons) display a question mark (?).
• The sixth column is the TIME, the cumulative execution time for the
process.
• The seventh column is the CMD, the command name, options, and
arguments.

Terminating a Process

• There might be times when we need to terminate an unwanted process.

• A process might have got into an endless loop, or it might have hung.

• We can kill or stop any process that we own.

• We can use the following two commands to terminate one or more
processes:

kill
pkill

• The kill and pkill commands send signals to processes directing them to
terminate.

• Each signal has a number, name, and an associated event.

However, there are processes that should not be terminated, such as the
init process. Killing such processes can result in a system crash.

Note: A super-user can kill any process in the system.

Terminating a Process: kill Command

We can terminate any process by issuing the appropriate signal to
the process concerned.
The kill command sends a termination signal to one or more
processes.

Note: The kill command terminates only those processes that we own.

The kill command sends signal 15, the terminate signal, by default.
This signal causes the process to terminate in an orderly manner.

All we need to know the PID of the process before to terminate it. We
can use either the psor pgrepcommand to locate the PID of the process.

Also, we can terminate several processes at the same time by entering
multiple PIDs on a single command line.

Note: The root user can use the kill command on any process.

Other way of terminating a Process: using killCommand

Use the kill command to terminate the mail process.

Terminating a Process: pkill
Command

Alternatively, we can use the pkillcommand to send termination signal
to processes.

pkill[-options]pattern

The pkillcommand requires us to specify the name instead of the PID
of the process.

Forcefully Terminating a Process:

Some processes ignore the default signal 15 that the kill command
sends.

• If a process does not respond to signal 15, you can force it to terminate by
using signal 9 with the kill or pkillcommand.

(or)

Note : Sending signal 15 does not necessarily kill a process gracefully. Only
if the signal is caught by the process, it cleans itself up in order and dies. If
not, it just dies.

Caution

Use the kill -9 commandonly when necessary. When you use the kill
-9 command on an active process, the process terminates instantly. Using
signal 9 on processes that control databases or programs that update files
could cause data corruption.

Performing Basic Process Control

Process control Block (PCB) (or) Task control block is a data structure
that contains information about process register,state,program counter,
priority, register, memory limits, list of open files etc.,

In Linux Process table is a collection of PCB’s that means logically
contains a PCB for all of the current processes in the system.

This practice covers the following topics:

1. Display current process

2. Display list of all process

ps–e (or) ps-A

3.
Display list of process in BSD format

4. Select all processes owned by you

5. To display a user’s processes by real user ID (RUID) or
name, use the -U flag.

ps- u <username> (or) ps–u <UID>

6. List all processes owned by a certain group

7. Display Processes by PID

8. To select
processes by tty, use the -t flag as follows.

A process tree shows how processes on the system are linked to each
other; processes whose parents have been killed are adopted by the init (or
systemd).

9. Display process tree.

10. print process tree for given process (ex: bash)

11. Print Process Threads (LWP) use –L option

CHAPTER 14 - FILTERS

In Unix/Linux, a filter is any command that gets its input from the
standard input stream, manipulates the input, and then sends the result to the
standard output stream. Some filters can receive data directly from a file.

Common Filters

cut Passes only specified columns
paste Combines columns
cmp Compares two files
comm Identifies common lines in two files
diff Identifies differences between two files or between

common files in two directories
head Passes the number of specified lines at the beginning of

the data
tail Passes the number of specified lines at the end of the data
sort Arranges the data in sequence
tr Translate one or more characters as specified
uniq Delete duplicate (continues repeated) lines
grep Print matched pattern lines
Find Search file and directories

Filters and pipes

Unix/Linux filters depend on the input file or input pipe. All the filter
command will read data from input file (or) pipe, stores it to buffer. From the
buffer, filter command will execute and display command result to monitor.

cut command

The basic purpose of the cut command is to extract one or more
columns of data from standard input or from the input files.

The syntax of the cut command

cut-optionfilter_rangeinputfile (or)

commandresult| cut–option filter_range

Here filter_range are numbers. We can perform character based
filtering or field based filtering based on input field delimiter.

For character based filter, use –c option. See the below example snap
that shows filtering 2nd characterfrom input file (emp.csv). Character
positions work well when the data are aligned in fixed columns.

So the cut command will display the removed result to monitor. This
action takes on the buffer space and not in input file (emp.csv). So there are
no changes in input file (emp.csv) after removing the 2nd character from
emp.csv file.

Specifying character positions

To specify that the file is formatted with fixed columns, we use the character
option, -c followed by one or more column specifications. A column
specification can be one column or a range of columns in the format N-M,

where N is the start column and M is the end column, inclusively. Multiple
columns are separated by commas.

Note: here comma (,) is used as a separator.

Note the difference between comma (,) and hyphen (-) symbol in cut
command where comma (,) is a separator and hyphen (-) is a range.

Note in the above example, both (,) and (–) special chars are used
and from IP1 file we have filtered multiple range of characters.

1-3 means from 1st to 3rd characters

6-8 means from 6th to 8th characters

10-13 means from 10th to 13th characters

Using comma (,) we filtered different range of characters from IP1 file.

The previous example cuts the columns from a file.

But if the data are already in the input stream (pipe) from a previous

command operation, then there is no way to specify a filename. For example,
using pscommand, display process PID and process name list to monitor.

Field specification

While the column specification works well when the data are
organized around fixed columns, it doesn’t work in other situation.

For example see the below snap. The fields of file emp.csv are
separated by comma (,). Here if we want to filter based on the 1st field (emp
id), use –d option (-d delimiter).

So when the data are separated by (,) or any special characters, it is
easier to use fields to extract the data from the file.

To specify a field, we use the field option (-f). Fields are numbered from
the beginning of the line with the first being field number one. Like the
character option, multiple fields are separated by commas with no space after
the comma. Consecutive fields may be specified as a range.

How to filter
employee name, and employee working city name ?

How to filter from 2nd field to 4th field(range) from emp.csv file?

Paste command

The paste command combines lines together. It gets its input from two
or more files.

Syntax

pastefilename1 filename2 .. filename

Using pastecommand we can combine multiple files.

paste command treats each file as a column. If there are more than two
files, the corresponding lines from each file, separated by tabs, are written to
the output stream. The above input file p1.log file contains 7lines along
including 2 empty lines (line 4 and line 6). The input file p2.log file contains
7lines including 5 empty lines. So when we combine p1.log and p2.log file
together, the input file p1.log becomes 1st column and file p2.log becomes
2nd column.

Note : the cat and paste commands are similar for combining multiple files.
However the cat command combines files vertically (by lines) whereas the
paste command combines files horizontally (by columns).

If the files differ in
its length–that is, if each file contains different number of lines, then all data
are still written to the output with a delimiter. For example, if the first file is
longer than the second file,paste writes the extra data from the first file with a
separation delimiter, such as tab.

If the first file is shorter than the second file, paste writes a delimiter
followed by the extra data from the second file to the output stream. The
below example shows input file IP2 and IP1 combined. See the highlighted
box for the above case.

Option –d
We can specify the delimiters using -d optionto separate the data.

Option –s

The option –s converts each file to single line format. Input file1 is
placed at line1 and input file2 is placed at line2

sort command

The sort command is one of the important filter commands in Linux.

When dealing with large volume of data, we need to organize them for
analysis and efficient processing. One of the simplest and powerful
organizing techniques is sorting.

When we sort data, we arrange them in sequence. Usually, we use
ascending order. By default all elements are sorted based on the first
character of the elements in ascending order. We can also sort them in
descending order, in which each piece of data is smaller than its predecessor.

Sort uses the ASCII
value of each character.

If you want to sort them in reverse order, use –r (reverse)option

Sort based on the fields

If we
want to sort the content based on the input field separator, there is an option
called –t (delimiter). Once the delimiter is identified, all the data are
separated in to multiple columns and using –k option, we can specify the
particular column where the sorting is to be done.

See the above snap we used multiple options. –t to specify the
delimiter to be specified in input file. Here the delimiter used is comma (,) .

-k (key) field value (-k 2 – 2ndfield) the option –r (reverse) descending
order.

The above example (sort–t, -rk2 emp.csv) display employee names
in descending order format.

Numerical sort fields

Sort filter considers every data in ASCII format. In other words it sorts
data as though they are strings of characters.

In the below
example, input file contains numbers (digits) which when sorted displays the
numbers in ascending order (ASCII code) format.

Using –n (numeric) option, we can perform numerical sorting.

See the above input file (digits) sort–n option displayed in numerical sorting.

Reverse (Descending) order

To sort the data from largest to smallest value (descending order), we can
combine –n and –r options.

Task :From the below sample file emp.csv file, we can understand how to
sort employee salary amount in descending order (largest to smallest)?

-tinput file data are separated by comma (,) – delimiter

-nnumerical sort

-rreverse order

-k(key) field value , our input file salary (digits) are 5th field –k5

Merge files
A merge combines multiple sorted files into single sorted file. If we

know that the files are already ordered, we can save time by using the merge
option (-m). However, that if the files are not ordered, sort will not give you
an error message.

The above input files F1.txt and F2.txt both are sorted order format.

Unique Sort Fields
The unique option (-u) eliminates the identical fields. See the below example.

Check sequence (-c)
Verifies that data are correctly sorted or not. Using –c option, if input

file content is not in sorted order, command will display disorder element. If
input file is in sorted order, it will print an empty line.

N ow we got an idea about the usage of cutcommand and sortcommand.
Based on the use case, we can combine multiple filter commands in
single pipe line.

Display employee names which are in sorted order (Ascending
order)

Display employee names which are in descending order.

We can combine cut| sort(or) sort| cutin any order. See the below snap
where both possibility results are same.

uniq command

The uniqcommand deletes the duplicate lines but doesn’t sort. It is
case sensitive.

Syntax
uniq–option inputfile

Remember all the filter commands outputs are runtime results that
won’t modify the input file.

In case if the duplicates are in continuous format (one after the other),
uniqcommand omits the duplicates whereas if the duplicates are not in
continuous format, say adjacent format, the duplicates will still persist.

Duplicates of java are not in continuous format. So it is not omitted. In
such case, before omitting the duplicate line, we can sort them first and then
use the unique command.

Count duplicated lines (-c) option

Non duplicated lines (-u) option

The non-duplicated lines option is –u. It suppresses the outputof the
duplicated line and lists only the unique lines in the file.

cmp command

cmp command in Linux/UNIX is used to compare the two files byte by
byte and helps you to find out whether the two files are identical or not.

When cmp is used for comparison between two files, it reports the
location of the first mismatch to the screen if difference is found and if no
difference is found i.e if the files are identical, cmp displays no message and
simply returns the prompt.

If file contents are not unique, it will get display message as below.

Options for cmp command

-b(print-bytes)
If we want cmp to display the differing bytes to the output, use -b option.

-i [bytes-to-be-skipped]

Now, this option when used with cmpcommand helps to skip a particular
number of initial bytes from both the files and then after skipping it compares
the files. This can be done by specifying the number of bytes as argument to
the -icommand line option.

Difference (diff) command

The diff command shows the line-by-line difference between two files.
The first file is compared to the second file. The differences are identified so
that the first file could be modified to make it match the second file.

Syntax

diff -optionfiles (or) directories

the diff command always works on files. The arguments can be two
files, a file and a directory or two directories. When one file and one directory
are specified, the utility looks for a file with the same name in the specified
directory.

If the two directories are provided, all files with matching names in
each directory are used. Each difference is displayed using the following
format:

range1 action range2

< text from file1

>text from file2

The first line defines what should be done at range1 in file1 to make it
match the lines at range2 in file2.

If the range spans multiple lines, there will be a text entry for each line
in the specified range.

The action can be change (c) , append (a) , delete (d)

Change (c) indicates what action should be taken to make file1 the
same as file2.

Append (a) indicates what lines need to be added to file1 to make it
the same as file2. Appends can take place only at the end of file1; they occur
only when file1 is shorter that file2.

Delete (d) indicates what lines must be deleted from file1 to make it
the same as file2. Delete can occur only if file1 is longer than file2.

diff command report Interpretation

Example Interpretation
5c5 Change: Replace line 5 in file1 with line 5 in file2

10 a 16,17 Append: at the end of file1 (after line10), insert
lines 16,17 from file2
Note that for append,there is no separator(dash)
line and no file1(<) lines

28,29d30 Delete : The extra lines at the end of file1 should
be deleted.
The text of the lines to be deleted is shown. Note
again that there is no separator line and in this
case ,no file2 (>) lines.

Examples :

Directory Differences

Common (comm) command

The commcommand finds lines that are identical in two files. It
compares the files line by line and displays the results in three columns. The
left column contains unique lines in the file1 ; the center contains unique
lines in file2 ; and the right column contains lines found in both files.

Note : Both input files (file1 and file2) must be sorted order.

Syntax

comm –optionfile1 file2

Task : Filter 1st column only (unique elements from F1.txt file content)

Task : Filter 2nd column only (unique elements from F2.txt file content)

Task : Filter
3rd column only (common content from F1.txt and F2.txt)

tr command

The tr (translate) command replaces each character in a the first set of
characters with a corresponding character in the second specified set. Each
set is specified as a string.

The first character in the first set is replaced by the first character in
the second set, the second character in the first set is replaced by the second
character in the second set,and so forth until all matching characters have
been replaced.

Syntax :

tr option oldstring newstring

-ddelete characters

-ssqueeze duplicates

-ccomplement set

Translate receives its input from standard input and writes its output to
standard output.

If no options are
specified, the text is matched against the oldstring set, and any matching
characters are replaced with the corresponding characters in the newstring
set. Unmatched characters are unchanged.

range of characters are denonted by – symbol. For example a-z means match
all lowercase characters.

1-5 means match range of number 1 2 3 4 5. See the below example to
convert all characters from lower case to uppercase. tr command reads the
input string from pipe STDIN.

Delete characters
To delete all matching characters in the translation, we use the delete option
(-d).

An example to delete all lowercase chars from the given string.

Squeeze output (-s)

The squeeze option deletes consecutive occurrences of the same
character in the output.

For example , if after the translation of ‘e’ to the letter ‘:’, the output
contains a string of ‘:’ all but one would be deleted. See the below snap

Complement(-c)

The complement option reverses the meaning of the first string. Rather than
specifying what characters are to be changed, it says what characters are not
to be changed.

Translate will not accept data from a file. To translate a file,therefore
,we must redirect the file into the translate command.

tr ‘a-z’ ‘A-Z’ < emp.csv

convert from lowercase characters to uppercase characters

Viewing Files

There are several commands that display information about a file in the
read-only format.

• The file-viewing commands include the following:

cat
more
tail
head
wc

we have already discussed how to use cat command. recap cat command
syntax: cat -option inputfile. The cat command displays the content of one or
more files.

Viewing Files: more Command

The more command displays the content of a text file one screen at a time.

Syntax:-

morefilename

The --More--(n%) message appears at the bottom of each screen,
where n% is the percentage of the file that has been displayed. When the
entire file has been displayed, the shell prompt appears.

When the --More--(n%)prompt appears at the bottom of the screen, we
can use the keys described in the table to scroll through the file.

Keyboard Action
Spacebar Moves forward one screen
Return Scrolls one line at a time
B Moves back one screen
H Displays a help menu of features

/string Searches forward for pattern
N Finds the next occurrence of pattern
Q Quits and returns to the shell prompt

Examples

Press ‘q’ to quit.

Viewing Files: head Command

The head command by default, displays the first 10 lines of a file.

Syntax

head -n filename

We can change the number of lines displayed by using the -n option.

For example, to display the first five lines of the /etc/passwd file, enter the
head command with the -n option set to 5.

Task: How to filter first 5 line contents from /etc/passwd file and from that
filter login name (1st field) and display all the login names in sorted order ?

Viewing Files: tail Command

The tail command by default, displays the last 10 lines of a file

Syntax

tail –n/+n filename

We can change the number of lines displayed by using the -n or +n
options.

The -n option displays n lines from the end of the file.
The +n option displays the file from line n to the end of the
file.

t

tail–n +2 emp.csv

his example shows all lines of the report starting from the second line.

There is a special command line option –f. Instead of just displaying
the last few lines and exiting, tail command with –foption, displays the lines
and then monitors the file.

We can use either tail–for tailfcommand – this command will monitor
log content dynamically.

To interrupt tail while it is monitoring, break-in with Ctrl+C.

wc command

The wc command displays the number of lines, words, and characters
contained in a file.

Syntax:

wc -options filename

When we use the wc command without options, the output displays the
number of lines, words, and characters contained in the file.

Symbol PathName
-l Line count
-w Word count
-c Byte count
-m Character count

For example, to display the number of lines, words, and characters in the
emp.csv file, use the wc command.

grep command

grep stands for global regular expression print.

grep is used to search the input file for all lines that match a
specified regular expression and write them to the standard output
file (monitor).

Syntax

grep–option pattern inputfile(s)

grep performs the following operations:

step 1 : greputility read the input data, line by line from file (or)
pipe into pattern space. The pattern space is a buffer that can hold
only one text line.
step 2: search the pattern to the pattern space
step3: If there is a match, the line is copied from the pattern space
to the standard output.

The grep utilities repeat these three operations on each line in the input.

Examples :

See the above examples. Here initially we are searching keyword
salesfrom emp.csv file, recap the above 3 steps on how grep is working.

Step 1 :grepwill read input (emp.csv) data line by line , placed to
pattern space
Step 2: search the sales keyword on the pattern space
Step 3: if sales keyword is matched, display the matched pattern
lines to monitor (STDOUT).

If pattern is not matched, grep does not return any result to monitor. In
the above example admin keyword is not matched in emp.csv file.

As we walk through the flow, look for how grephandles the following
situations:

1. grep is a search utility; it can search only for the existence of a
line that matches a pattern.

2. The only action that grepcan perform on a line is to send it to
standard output. If the line does not match the pattern, it is not
printed.

3. The line selection is based only on the pattern.

grepis a filter , it is used to search keyword (pattern) from input file
(or) pipe.
grepcannot be used to add, delete or change a line.

grep options and explanation

grep–optionpattern inputfile

Option Explanation
-c Prints only a count of the number of lines matching the

pattern
-i Ignores upper/lower case in the matching text
-l Prints a list of files that contains at least one line

matching the pattern
-n Shows line number of each line before the line
-q Silent mode
-v Inverse output. Prints lines that do not match pattern
-w Word based search
-x Prints only lines that entirely match pattern.
-f file List of strings to be matched are in file.
-o Prints only matched pattern.

Examples

We can search more than one pattern in the following ways .

Syntax:

grep-e “pattern1” -e “pattern2”inputfile

egrep“pattern1|pattern2|patternN” inputfile

grep-E“Pattern1 | Pattern2 |Pattern3 .. |PatternN“ input_file

-x option prints
only lines that entirely match pattern.

grep Family

Fast grep(fgrep: supports only string patterns – no regular
expression)
grep: supports only a limited number of regular expression
Extend grep(egrep: supports most regular expressions)

We will have a detailed look on regular expressions in
upcoming topics.

Find command

Find command used to search and locate list of files and
directories.

Syntax:

find<searching from path>-name search file

Task :Find all the
files whose name is emp.csv in a current working directory.

find command searches the input files recursively

Task: find all the files whose name is t1.txt in a login directory.

Task: Find Files Using Name and Ignoring Case

Search a file with pattern

Filter list of log files

Task :Filter list of log file under /var directory

Task: Find list of regular files in a current directory.

Task : Find list of directory files in a current directory.

Task : Find list of character type device files in a /dev directory

Task : Find list of block type device files in a /dev directory

Task : Find Files Based on their Permissions

Find all the files whose permissions are user can do read/write/execute

mindepth and maxdepth

using mindepth and maxdepth we can limit the search to a
specific directory.
maxdepth levels : Descend at most levels

Examples required –maxdepth1

-maxdepth0 means only apply the tests and actions to the starting-
points themselves.

 -
mindepthlevels : Do not apply any tests or actions at levels less
than mindepth levels
-mindepth1 means process all files except the starting-points.

Task :Find the passwd file under all sub-directories starting from root
directory.

Task : Find the passwd file under / directory and one level down

(i.e root - level 1, and one sub-directory - level 2)

Task :Find the passwd file under / directory

(search from level 3)

Task :Find the passwd file under /directory(search from level 4)

Find Files and Directories Based on
Date and Time

As units we can use:

b– for 512-byte blocks

c- for bytes

w- for two-byte words

k- for kilobytes (units of 1024 bytes)

M- for Megabytes (units of 1048576 bytes)

G- for Gigabytes (units of 1073741824 bytes)

We can search for exact file size or just for bigger(+) or smaller (-) files

Task : Find files all bigger than 512k files

Task: search only regularfiles only

Task :To find all 50MB files.

Task :To find all the files which are greater than 50MB andless than 100MB.

Task :To find all the files which are modified 30 days back.

Task :To find all the files which are accessed 30 days back.

Task :To find all the files which are modified more than 50 days back and
less than 100 days.

Task :To find all the files which are changed in last 1 hour.

Task :To find all the files which are modified in last 1 hour.

xargs

xargs converts input from standard input into arguments to a
command.
By default xargsdisplays whatever comes to its stdin as shown
below.

Task: search
sales keyword from filtered files

find /root -name "*.csv" |xargsgrep -n sales

exec
-execcommand ;Execute command; true if 0 status is returned.

All following arguments to find are taken to be arguments to the command
until an argument consisting of `;' is encountered.

Syntax

find-exec command {} \;

exec

Task: search list of .csv files under /root directory ,from that search
pattern is called sales , display matched result to monitor.

• find/root-name "*.csv" -exec grep-n sales {} \;

Task : search all files with size more than 100MB and delete them.

• find / -size +100M -exec /bin/rm {} \;

ABOUT THE AUTHOR

Mr. Palani Karthikeyan is well known for his role as a corporate
trainer.

He is also working as a Technical Consultant for krosum labs[i], an
Online Technical institution.

He pursued his Bachelor degree in Computer Engineering from The
University of Madras and Post Graduate degree M.S. from The Manipal
University.

He has more than 16 years of professional experience in corporate
world. Until now, He has conducted 350+ corporate trainings. He has
acquired profound knowledge in the following areas.

High-performance UNIX & LINUX system programming
Oracle Linux Administration & Ansible
Efficient code handling in C / C++ Program.
Unix Shell Script (BASH, KSH, CSH, expect)
Perl Script
Python - flask, django.
TCL script
Ruby Script

He has worked as a Consultant in various projects like Linux kernel

by-pass technique, System Performance monitoring tools, Education
Automation System (EASY). In addition he has developed various ERP
Business modules for enterprises.

[i]https://www.krosum.com/ email Id- abpalanikarthik@gmail.com
Connect me by LinkedIn – Palani karthikeyan

https://www.krosum.com/

	Contents
	Preface
	Dedication
	Acknowledgement
	CHAPTER 1 - Linux Introduction
	CHAPTER 2 - Linux Boot Process
	CHAPTER 3 - About Shell
	CHAPTER 4 - File structure
	CHAPTER 5 - Common Linux commands
	CHAPTER 6 - Linux Command line structure
	CHAPTER 7 - The vi editor
	CHAPTER 8 - Displaying the Directory Content
	CHAPTER 9 - Regular file manipulation commands
	CHAPTER 10 - Shell meta-character
	CHAPTER 11 - File Permission
	CHAPTER 12 - The umask Command
	CHAPTER 13 - Linux Process
	CHAPTER 14 - Filters
	About the Author

