< LINUX
ESSENTIALS

A BOOK THAT EVERY LINUX
BEGINNERSSITIOULD READ

‘

PALANI KARTHIKEYAN

www.krosum.com

CONTENTS

Preface

Dedication

Acknowledgement

CHAPTER 1 - Linux Introduction

CHAPTER 2 - Linux Boot Process

CHAPTER 3 - About Shell

CHAPTER 4 - File structure

CHAPTER 5 - Common Linux commands
CHAPTER 6 - Linux Command line structure
CHAPTER 7 - The vi editor

CHAPTER 8 - Displaying the Directory Content
CHAPTER 9 - Regular file manipulation commands
CHAPTER 10 - Shell meta-character
CHAPTER 11 - File Permission

CHAPTER 12 - The umask Command
CHAPTER 13 - Linux Process

CHAPTER 14 - Filters

About the Author

PREFACE

During my college days, as a young aspiring graduate from
computer science department, I used to practice certain programming
languages, all on the top of either UNIX or Linux.

At that time my focus was fully on languages and i never wanted to see
how my code runs or even who works it out. Later, when I joined an
organization all my applications written in fabulous languages stared at me
for automation. It triggered me to work on a few command line tasks. Though
I am good in C and C++, I found it a bit difficult to write shell scripts
especially for searching and filtering kind of task.

Then I realized the fact that Linux Commands are the core part of Shell
scripts and that it is impossible to write an optimized automation code
without commanding knowledge. That is where I started learning Linux
system programming, followed by shell, Perl, python and ruby, all on the top
of Linux.

Now with my experience as a corporate trainer for above 16+ years 1
wanted to share my knowledge on Linux Commands in a book. This Book
will give you a clear start on Linux and you can keep up with further steps in
learning sed, awk and bash scripts to enhance your career.

If you are a beginner or if you want to master the fundamentals of
Linux, this book is for YOU.

DEDICATION

To my beloved LORD

ACKNOWLEDGEMENT

My heartfelt gratitude to my uncle Mr.Rajaram
for his dedicated support to complete this book.

My sincere thanks to Mr.Aravind,
Mr.JohnPaul, Mr.Kamal, Mr.Yuvraj and Mr.Richard
for the able support and acknowledgement given for
the perfection of this book.

My Love and gratitude to my beloved wife
Theeba Karthikeyan for her motivation, effort and
encouragement for this book.

Copyright © 2020 Palani Karthikeyan
All rights reserved.

CHAPTER 1 - LINUX
INTRODUCTION

What is Linux?

Linux is an operating system developed by Linus Torvalds in the year
1991.

Generally operating system is defined as a program, an interface
between user applications to the hardware. This Operating system is
responsible to connect system resources to the user. So which part of OS does
this task? The Kernel, the core component of operating system does this task.

Whenever a system starts, once the boot loader stage is done
successfully, the Kernel is the first program that is loaded. If boot loader gets
failed, then kernel loading is also failed and hence we have to troubleshoot
the boot loader issues. Only then the kernel will be loaded.

Once kernel is loaded, it remains in the memory until the Operating

System shut-downs because the Kernel should handle the rest of the thing of
the system for the Operating System. We will discuss about boot loader
sequence in our following topics.

GNU Project

GNU/Linux — (GNUs Not UNIX)is a term promoted by the Free
Software Foundation (FSF) and it is founded by Richard Stallman,.

This project had begun in 1984 to develop a free operating system.

The motto of the project was to develop a free Unix-Compatible
operating system. The Linux kernel was added in 1992, achieving the GNU
Project’s goal of developing a free operating system.

GPL

Linux and GNU software are distributed under the terms of the GNU
General Public License (GPL, www.gnu.org/licenses/licenses.html).

The GPL says we have the right to copy, modify, and redistribute the
code covered by the agreement.

The GPL provides some basic software freedoms

e To use the software for any purpose

e To share the software

e To change the software to suit your needs
e To share the changes that you make.

Why do we use Linux?

Linux has evolved into one of the most promising platform in today’s
world.

Linux is also distributed as an open source.

Here we have two terms- Open Source and Distributed. Let’s see what
these actually mean here.

Open source follows these key features.

e The freedom to run the program, for any purpose.
e The freedom to study how the program works, and change it in

http://www.gnu.org/licenses/licenses.html

order to make it do what you wish.
e The freedom to redistribute copies so you can help your neighbor.

e The freedom to distribute copies of your modified versions to
others.

What is distribution?

A Linux distribution is also referred as distro. Actually, Linux isn’t a
complete operating system — it’s just a kernel. Linux distributions take the
Linux kernel and combine it with other free software to create complete
packages like some proprietary software. There are many different Linux
distributions available.

If we want to “install Linux,” we need to choose a distribution. For
example: Linux mint, Ubuntu, redhat, openSUSE etc.,

Some popular Linux distributions include:

e Debian

e Fedora

e Mandriva Linux
e OpenSUSE

e (Gentoo

e Slackware

Each distribution has a different take on the desktop, the software package
management repository and the software package management utility
commands.

For example, to install or update a package in RHL (Red-Hat Linux)
distribution, we use the following command: yum install <package name>

Ex 1: To install Python3 in RHL based distribution,
yum install python3

If we want to install the same package in Debian distribution Linux,
we can use apt-get install <packagename>command

Ex 2: To install Python3 in Debian based distribution,
apt-get installpython3

Note that, in both the examples, package name is python3 and working
kernel is Linux but distributors are different. The Complete Linux OS means
the combination of Linux kernel and distribution utilities.

Hope you now understand that the Linux distributions differ by its
distribution utilities. Now let’s see what this Linux Kernel is.

Linux Kernel

Operating system (OS) is a theoretical term,

root@krosumlabs: ~#

root@krosumlabs:~# uname|# Working kernel name
i [rootgkrosumlabs ~]# [uname |# Working kernel name
Linux

[root@krosumlabs ~]# Version
4,1,12-94.3.9,el7uek,. x86 64

[root@krosumlabs ~]#

Ubuntu 14.84.6 LTS \n \L [root@krosunlabs ~]# - . :
- [root@krosumlabs =]#|cat fetc/oracle- releasel

; : Oracle Linux Server release 7.4
'-L’ LaDs:~ : [root@krosumlabs ~]#

rout@iro'umlab"=# | [root@krosumlabs ~)# # install any pacakge
[root@krosumlabs ~]# #mm

[root@krosumlabs ~]# |

rebiferosumiabe~

be Edt Vew Seamh Termiml Help

root@krosumlabs:~# luname -r|# Version
3,13.8-170-generic
root@krosumlabs:~# cat [etc/issue # distribution

Kernel is an implementation structured program; the kernel also has control
over everything in the system.

Note that in the above snap, uname is a command to display our
working kernel name. Both the above pictures show the terminal display of
Linux but just compare its distribution name and version details- Left side
snap shows Ubuntu Linux. The other one is oracle Linux in RHL standard
distribution Linux.

In Ubuntu Linux software package management, command line utility
is called apt-get whereas in RHL based Linux package management,
command line is yum utility. Thus both Linux will install python3 packages
in their own way.

My Ubuntu version is 14.04.6 (which is the distribution version and
not kernel version) whereas my Oracle Linux version is 7.4.

In both the OS, to get working kernel name, type uname command and
to get released the version of kernel, type uname—r command in command
line.

Note kernel is core part of the operating system. Linus Torvalds
created only the kernel which is present in all distribution. So in Linux of any
distribution, system related commands are same.

So if we want to test our working kernel &version, just type uname
and uname —r commands in command line. This helps us to know which
distribution of Linux we are using. To get distribution details, read
configuration file /etc/redhat-release, /etc/fedora-release and for Debian
based distribution: linux /etc/issue file.

So now we are clear with Linux terms such as kernel, distribution etc.
We will discuss Linux commands and other details in command topics.

Note: There is single space between command and its option (uname-r)

Linux kernel Development model

The heart of the Linux operating system is the kernel.

A lot of developers, representing hundreds of corporates are providing
frequent release of the Linux kernel.

The Linux community collaborates through various mailing lists that
are set up to handle kernel development.

Features are pushed upstream, through these mail list and Internet
Relay Chat (IRC).Upstream is the term used for a community-owned version
of a specific project.

This is where the development happens and it always has the most
recent changes.

Linus Torvalds leads a team that releases new versions called "vanilla"
or "mainline" kernels.
The mainline branch of development incorporates new features,

security fixes, and bug fixes. It is not considered a stable branch until it
undergoes through testing.

A number of kernel versions are currently being maintained as stable
kernels. These kernels have patches that are back ported to them.

Theses patches are primarily driver updates and security fixes.
Kernel branches are available at http://www.kernel.org

Architecture of Linux

In General, System consists of 3 layers. See the above diagram. The
layer1 is called user level that holds information about the application created
or executed by the user. All application at the user level is called user
process.

The layer2 is called kernel level. We know what kernel is. Here the
main functionality of kernel is to extend the user requests to hardware which
tells about the application that we want to execute on the hardware (CPU) or
about the file content that we want to read from storage (Hard disk). To do all
these tasks, we need the help of Kernel. Here kernel job is to interface our
(user) requests to corresponding hardware resources (CPU, Hard-Disk).

The bottom layer is called hardware level. All peripheral devices are
connected in this layer.

From this structure we can understand that as a user, we can’t talk to
hardware directly; so we need a kernel to interface. Now recap our operating

http://www.kernel.org

system definition “OS is a system program, it will interface the user to
hardware.”.

Now we can explore more details about Kernel Architecture, middle
layer (kernel level) in the above diagram.

Kernel Exploration

The Linux kernel is a modular designed kernel.

At the architecture level, the Linux kernel interacts with the hardware,
controls and schedules the access to resources (CPU, memory, storage,
network and so on) on behalf of the applications.

Applications run in what is called the user space and a call is made to a
stable set of system libraries to ask for kernel service.

This modular designed kernel allows components of Linux to originate
from different developers, each of which had their own specific design goals
in mind.

A modular design also means that the Linux kernel is independent of
applications and interfaces.

The result is that even when application crashes, all security
vulnerabilities in applications tend to remain isolated, rather than affecting
the system as a whole.

In Linux, each component is configured separately, typically by using
text-based configuration files.

Reading and writing configuration information can be done by scripts
or applications by using simple text parsing engines.

No special application programming interface (API) is required to
interface with the system configuration data.

T " -

APPLICATIONS, TOOLS USER SPACE |

ARCHITECTURE
SPECIFIC CODE

HARD DISK, VARIOUS

CD, FLOPPY TERMINAL
DISK
EQUIPMENT

LINUX KERNEL STRUCTURE

The above figure shows the detailed architecture of Linux kernel. Unix
and Linux are monolithic kernel. So, what is a monolithic kernel?

Monolithic kernel is a single large process, running entirely in a single
address space. It is a single static object file. All kernel services exist
and execute in the kernel address space. The kernel can invoke functions
directly. In Monolithic Kernel,all the parts of a kernel like the Scheduler,
File System, Memory Management, Networking Stacks, Device Drivers,
etc., are maintained as a single unit within the kernel.

Components of the System

The main components of Linux operating system are

1. Command utility

2. Shell
3. Kernel

Command utilities

Command utilities are binary files in Linux. As an end user, we will
get in to the system with the help of commands. But, how the command gets
in to the system? What is the interface name? The interface name is called
shell.

Yes, shell is an interface between user and kernel, the job of shell is
interpretation. Each input command will be interpreted (translated) to kernel.

The kernel is a core important program and the job of the kernel is to
interface your instruction (command) to hardware units.

In this entire tutorial book, we will discuss topics such as - what are
Linux command line utilities? how to use Linux command? And how to
explore more commands and additional options with real system?. Note that
we won’t discuss any programming topics here.

Shell

What is shell? Shell is an interpreter; it interfaces between user space
and kernel space.

Shell

Application

Kernel

Hardware

Theoretically we say that, user interacts with operating system. But
how? We are the user and now, how are we going to run our commands on
0OS?

Let’s say, how to start MySQL database? How to execute (or) run my
java program in Linux OS? How to display today date and time? To do all
these tasks, we need an interface and that interface is called shell. So Shell is
interface between user and kernel. There are many types of shells in Linux;
we will discuss more about shell in next chapter.

Kernel
Recap the previous chapter; we discussed - what is an operating
system? What is a kernel?

Linux is a kernel but when it first came out, it was called GNU/Linux .

However, the naming convention has its own way. People are more
familiar with Linux, and by saying Linux, they refer to the whole operating
system. Another unique case is Android. Android uses Linux as its kernel,
but people call it Android. Nobody says Android Linux. Linux is a true
UNIX kernel. When we say OS services, it is actually kernel services and that
is why kernel is called as the heart of an operating system.

Now we understand how our modern operating systemworks.

- . —3 SHEL KERMNEL HARDWARE

KERMEL LEVEL HARDWARE
LEVEL

USER LEVEL

In next chapter, we will discuss about shell and shell types followed by
more exploration on Linux commands.

CHAPTER 2 - LINUX BOOT
PROCESS

Step 1- BIOS (Basic Input Output System)

Once the Personal Computer (PC) is switched on, BIOS instruction
will start its part. The BIOS is used to perform hardware initialization during
the booting process. The main job assigned to BIOS is POST (Power On
Self-Test). It is hardware self-testing and checking.

The two main errors that occur during POST are:
1. Fatal error - This occurs due to hardware problems.
2. Non-fatal error - This occurs due to software problems.
Main responsibilities of BIOS during POST are listed below:
1. Verify CPU registers.

2. Verify the integrity of the BIOS code itself.

3. Verify some basic components like DMA, timer, and interrupt
controller.

4. Find, size, and verify the system main memory.
5. Initialize BIOS

6. Identify, organize, and select which devices are available for
booting.

The beep sound after the POST indicates its result. A single short beep
while restart/start indicates normal POST i.e. the system is OK. Two short
beeps indicate a POST error and the error code is shown on screen.

BIOS act as an intermediary between computer CPU and Input/output
devices. This eliminates the intervention of the operating system and
software. The system/server is always aware of the details of hardware and
other I/O devices. If any hard disks or I/O devices is changed, the BIOS also
needs to be updated.

BIOS is stored in EEPROM (Electrically Erasable Programmable ROM)
/ Flash memory. BIOS cannot be stored on a hard disk or other devices
because it is the one which manages those devices.

BIOS is written in assembly language. After testing the system hardware
and its components, it loads a Master Boot Record. It is also called as Master
Boot Loader.

Step 2 - (MBR) Master Boot Record

What is Master Boot Record (MBR)?

Master Boot Record is the first place where boot loader begins to start.
MBR is a 512 byte sector located in the first sector of hard
disk. MBR contains both program code and partition table details.

< 512 Bytes >

MASTER BOOT RECORD (MBR)

On a computer with x86 architecture, the Master Boot Record (MBR) is the
first 512 bytes of the boot drive that is read into memory by the BIOS.

The first 446 bytes out of 512 bytes contain low-level boot code. For
some boot loaders, the code in the MBR points to further boot loader code
stored somewhere else on the disk or on another disk.

The next 64 bytes contain the partition table for the disk where file
system utilities like fdisk, cfdisk, partedetc., are placed and using these
utilities, we can get partition table information.

The last two bytes are the boot signature, which is used for error detection.

Step 3 - Boot Loader

So far we are aware that when POST is done successfully, the BIOS
will execute MBR code. MBR code contains information about boot loader
and this MBR executes the boot loader. So let us now see what this boot
loader is?

The boot loader software runs when a computer starts. It is responsible
for loading and transferring control to the kernel.

It is located in the 1st sector of the bootable disk. (/dev/sda(or) /dev/had
(or) /dev/xvda)

Boot loader is kept in separate partition under file system; it will mount
from /boot partition.

The most common boot loaders for Linux are:

e LILO(LInuxLOader)
e GRUB (GRand Unified Boot loader).

« GRUB?2 stands for "GRand Unified Boot loader, version
"

In this chapter we will discuss about grub2 boot loader.

GRUB2 which stands for "GRand Unified Boot loader, version 2" is a
primary boot loader in recent distribution of Linux such as RHL7, Oracle
Linux7, ubuntul®6 etc.,

GRUB2 is also a program. Once GRUB?2 is loaded into RAM, it
searches for the location of Kernel. This is the stage where it loads other
required drives and kernel modules.

GRUB2 understands file systems and kernel executable formats.

GRUB?2 inspects the map file to find the kernel image that is located
under /boot.

GRUB2 loads the kernel (vmlinuz-version) from /bootpartition

If we have multiple kernel images installed on our system, we can
choose which one to be executed. We can select our choice based on cursor
keys from keyboard.

GRUB 2 Menu

b4 with Unbreakable Enterps
Limux) .4

ealdolBaSdh with Linus

Once we select our desired kernel to load then the kernel stage begins.

Kernel is in compressed format. The selected kernel is now loaded into
the memory.

An image file, containing the basic root file systems with all kernel
modules, is then loaded into the memory. This image file is located under
/boot and it is known as initramfs.

Initramfs, abbreviated from “initial RAM file system”, is the successor
of initrd “initial ramdisk”.

This image file contains the initial file system. The GRUB starts the
kernel and tells the memory address of this image file.

The kernel then mounts this image file as a starter memory based root
file system.

The kernel then starts to detect the hardware of the system.

The boot process then starts init (or) systemd and other software
daemons. Init or systemd (systemdaemon manager) is the parent of all the
process. Process ID (PID) of init (or) system is 1 depending upon the
working Linux distribution.

Let us display the process name.

ps—e|grepinit (or) ps—e|grepsystemd

The Differences between grub and grub2 boot loader are as follows.

SPECIFICATION GRUB GRUB2
FULL FORM GRand Unified Bootloader GRand Unified Bootloader, version
2
USED IN RHL5,DEB14,0racle Linux 5,6 RHL7,DEB16,0racle Linux 7
CONFIGURATION /boot/grub/grub.conf /boot/grub?2/grub.cfg
FILE
CONFIGURATION anaconda installer program. grub2-mkconfig template
FILE CREATED BY
Is it editable? Grub configuration file is Grub2 configuration file is NOT
editable by root user editable.
Is it a script file? Grub configuration file is NOT Grub2 configuration file is a shell
shell script scri
pt file.
| grub X

If you change this file, run 'update-grub' afterwards to update
[boot/grub/grub.cfg.

For full documentation of the options in this file, see:

1info -f grub -n 'Simple configuration'

GRUB_DEFAULT=0

GRUB_HIDDEN_TIMEOUT=0

GRUB_HIDDEN_TIMEOUT_QUIET=true

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="lsb_release -1 -s 2> /dev/null || echo Debian’
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash”

GRUB_CMDLINE_LINUX=""|

root@krosumlabs:~# cat /boot/grub/grub.cfg
#

DO NOT EDIT THIS FILE

5

It is automatically generated by grub-mkconfig using templates
%

it
from fetc/grub.d and settings from fetc/default/grub
#

#HH BEGIN fetc/grub.d/8@_header ¥
if [-s Sprefix/grubenv]; then
set have_grubenv=true
load_env
fi
Af ["S{next_entry}" 1 ; then
set gefault="5{next_entry}"
set next_entry=
save_env next_entry
set boot_once=true
set default="8"

if [x"%{feature_menuentry_id}" = xy]; then
menuentry_id_option="--1d"

else
menuentry_id_option=""

fi

export menuentry_id_option
Uf ["${prev_saved_entry}" ; then
set saved_entry="5{prev_saved_entry}"

/boot/grub/grub.conf
File: /boot/grub2/grub.cfg

init process

Once boot process is done successfully, the next step is kernel
initialization.
So what is Kernel initialization?

The kernel will initialize CPU components,(Example: MMU,process
scheduler) and mount the root file system in read/write mode and finally
starts the init(initialization) process (/sbin/init) .

init is a parent of all the process; initprocess id is 1 (PID value is 1).

init is the first process which loads all the daemons and mounts all the

partitions which are listed under /etc/fstab

init identifies the default initlevelfrom /etc/inittaband uses that to load
all the appropriate program.

Let’s have a look at the /etc/inittabfile to decide the Linux run level.
Following are the available run levels

0 — halt

1 — Single user mode

2 — Multiuser, without NFS

3 — Full multiuser mode

4 —unused
5-X11
6 — reboot

The kernel starts the /sbin/initprocess with a process ID of 1 (PID 1)
and if we want to start/ stop any daemon services, we can use an
administrative command called service command.

systemD introduction

On RHL7/ Ubuntu 16,

The boot loader loads the vmlinuzkernel image file into memory and
extracts the contents of the initramfs image file into a temporary, memory-
based file system (tmpfs).

The initial RAM disk (initramfs) is an initial root file system that is
mounted before the real root file system.

After the newly loaded kernel gets far enough in its initialization
sequence (disks probed, memory mapped, and so on), it then switches

over, using the real root file system as specified by the root directive in the
GRUB 2 configuration. This contains, among other things, the
/etc/fstabfileidentifying the rest of the file systems to be mounted.

The kernel starts the systemd process with a process ID of 1 (PID 1).

systemd is the system and service manager in the working Linux. It is
backward compatible with SysVinit scripts used by previous versions of
Linux. It replaces Upstart as the default initialization system.

systemd is the first process that starts after the system boots, and it is the final
process that is running when the system shuts down. It controls the final
stages of booting and prepares the system for use. It also speeds up booting
by loading services concurrently.

systemd allows you to manage various types of units on a system,
including services (name.service) and targets (name.target), devices
(name.device), file system mount points (name.mount), and sockets
(name.socket).

systemd units are defined by unit configuration fileslocated in the
following directories:

o /usr/lib/systemd/system/: systemd units included with installed
RPM packages.

e /run/systemd/system/: systemd units created by a running
program. These take precedence over units in the
/usr/lib/systemd/system directory.

e /etc/systemd/system/: systemd units created and managed by the
system administrator. These take precedence over all other units.

The systemd (system and service manager) provides the following
features:

e Systemd will start all the daemons (services) in parallel so it
provides fast boot when compared to init system.
e Processes are tracked by using Control Groups (cgroups).

o A cgroup is a collection of processes that are bound
together so that you can control their access to the
system resources.

e System services can be started on-demand when a client attempts
to communicate, when a piece of hardware becomes available, and
when a file or directory state changes.

e Snapshotting of the system state and restoration of the system state
from a snapshot is supported.

Mount and auto mount points can be monitored and managed by
systemd.

For administration task we will use systemctl(system control)
command.

CHAPTER 3 - ABOUT
SHELL

What is shell?

Shell is a command line interpreter.

So what is an interpreter? Interpreter is a translator which translates
our user instruction into an intermediate format.

So here shell is translating our user input (command) to kernel.

This means that all the Linux commands which we are typing in
command line will be interpreted (translated) by shell into kernel
understanding format. Then kernel will interact with hardware unit. So shell
has no connection with the hardware.

Hence we say Shell is an interface between user and kernel.

root@krosumlabs:~#

|
I
primaw prompt Shell command line interface

All the
user input commands are typed on command line interface and this interface
is called shell primary prompt (or) user interface prompt.

Linux abstractions are FILE and PROCESS.The execution of
command (or) interpretation of command is called a process and this process
is created by user; so we can say that this is user process.

In Linux every process creates another process, where the newly
created process is called child process and the creator process is called
Parent process. This is termed as Linux process model.

Here shell will interpret our user input command; so shell becomes the
parent process and the newly created (execution of command result) process
is called child process.

Shell is a parent process of our running commands.

rosumiabs:~#

root@krosumlabs:~#

The above snapshot shows the parent —child relationship. See the
picture where the active (Running) shell primary prompt is marked in red,
over which the command uname is present.

Note the place where I am typing the command. On the top of the shell
interface, the uname command is interpreted by the working shell. So

here shell is called the parent of uname command. Execution of a command
becomes a process and here that process is called a child process to shell.
Whenever child process is in active (running) state, parent process will be in
waiting state. Once child execution is done, child process will reach to exit
state and the parent process will resume from waiting state to running state.

Types of shell

1. Bourne Shell (SH)

2. KornShell(KSH)

3. BourneAgainShell(BASH)

4. C shell(CSH)

5. TurboCshell(TCSH) - Tcsh is enhanced C shell
6. ZSH

How to find current working shell?

1. Type the following special variable in command line

echo$0will display current working shell name.

[student@krosum ~]$ echo %0
bash
[student@krosum ~1% ps

PID TTY TIME CMD

8206 pts/0 00:00:00 bash
8982 pts/0 00:00:00 ps
[student@krosum ~]%

Another way is to
use pscommand.

We will discuss about thepscommand and command attributes in next
chapter.

Do you know how shell is initialized?

Recap our system boot process. OncePOSTis done successfully, BIOS
will execute MBR(Master Boot Record). Then MBR will execute boot loader
and the boot loader executes the kernel. Then kernel will pass the control to
process (init or systemD). Now see the process execution where init or

systemD will be responsible to start all our Linux services (system process)
and these services are called daemon process, which are not created by user.
It is all created by systemD or init.Type pstree command in Linux command
line to see the process creation hierarchy.

One of the daemons, called getty(genome teletype terminal) is our
login screen interface. Once login is done successfully, shell will be started.

So shell is created by getty. If login credentials are invalid,getty won’t
execute shell.

Now in user perspective, let’s have a look in our graphical desktop
system. Once we switch on the PC, both boot process and kernel execution
all are done automatically and then we get our login window.

Once login (user name and password) is success, desktop will open.
Desktop is a graphical user interface (GUI) and on the top of the desktop, all
our applications (user process) will start. Similarly once Linux command line
environment login is done successfully, shell which is a command line
interface (CLI) will get initialized. So on the top of the shell; we will execute
our Linux commands (user process). Hope now you have got answers for the
following questions - what is shell? How shell is started? Who is the parent
of shell? Who is the child of shell?.

Once Login is done successfully shell will get started but internally
shell will read and execute /etc/profilefile. This is shell script file which is
located under /etcconfiguration directory. The /etc/profilefile, referred as
system profile file contains all global setting parameters like permission,
umask ,user ID etc.,

MNo

Execute

Jetc/profile

Execute ~/.profile

{or) ~/ bashre

Execute
environment file

Shell start up process

This system file (/etc/profile) provides personal profile file(~/.profile,
~/.,bashrc) that contains commands that are used to customize the startup
shell. It is an optional file that runs immediately after the system profile file.
This ~/.profileand ~/.bashrcfiles are called as user file. If you want to make
any changes in personal login environment use personal profile file.

The shell also provides environment for user to execute commands that
can be customized using initialization files (or) personal profile files.

These files contain settings for user environment characteristics, such as:

Create alias of commands

Search paths for finding commands.

Default permissions on new files.

Exporting Values for variables that other programs use.

CHAPTER 4 - FILE
STRUCTURE

File structure

Linux File structure is tree structure (hierarchical structure). All the
files will map from root directory (/). There is a chance to get confused
between login root and root directory. Both login root (/root) and the root
directory (/) are not same.

Linux / symbol is called root directory this is like MyComputer in
other operating system.

/ is the entry point to map any files in Linux.

In Linux, however, the root of the file system doesn’t correspond with
any physical device. It is a logical location simply denoted as “/”.

In Linux everything is a file/process. It means that all peripherals

devices attached with system are considered as a file. Example, consider the
hard drive. Hard disk is a storage device. Once it is mounted to the kernel, the
kernel will treat them as a file. Such a file is called device file represented as
/dev/sda(device file).

Linux uses a hierarchical file system structure, much like an upside-down
tree, with root (/) at the top of the file system and all other directories
spreading from the root(/) . The root(/) is the parent directory and all other
directories becomes its sub directories.

Once logged in, the current working directory can be found
through pwd command.

root@krosumlabs:~# Is/
bindevinitrd.img media procsbin sys var

bootetc lib mnt root selinuxtmpvmlinuz

root

)

(mir] | (moov) | [icew] | (fetr] | [momer] | (o) | [imediar] | [imot]
@ [root) (o] [isws) (]

fvar/

[oint | { incuder | { v | {ssbin] [fcachef] [Jlog;] [fspmb'] [nmw]

drom home opt run srvusr

All files and directories appear under the root directory /.

DIRECTORY

DESCRIPTION

/bin

This is where most of the binary files are
stored, typically for the Linux terminal
commands and core utilities, such as cd
(change directory), pwd (print working
directory), mv (move), and so on.

/dev

This is where the physical devices are
mounted, such as the hard drives, USB drives,
optical drives, and so on.

The system hard drive is mounted under
/dev/sda, whereas the USB thumb drive might
be mounted under /dev/sde.

Different partitions on the disk, /dev/sdal,
/dev/sda2, and so on are available in Linux.

/home

This is where all of the personal files are kept.
The Desktop, Documents, Downloads, Photos,
and Videos folders are all stored under the
/home/username directory.

Whereas users can also store configuration
files under their own /home folders, which
will only affect that particular user.

/media

Another place where external devices such as
optical drives and USB drives can be mounted.
This varies between different Linux distros.

Optional software for the system

/usr

/root

/tmp

Contains files and utilities that are shared
between users

This is the login directory path for root user
where the root user is called the super user or
administrator.

This is where temporary files are stored, and
they are usually deleted on shutdown.

Linux File Types

Linux File types are classified as follows.

Regular (or) Ordinary file

directory file

Link file (or) symbolic file (or) soft link file (or) symlink file
Device files

named pipe or fifo file

Socket file

kW=

1. Regular (or) Ordinary file

The Regular file or Ordinary file will be classified as following two
types

o ASCII or TEXT
o Binary (or) ELF (or) Object

What is ASCII or TEXT type file?

e The format in which the file contents can be read or understandable
by the user (plain text) is referred as ASCII or TEXT type file.
e Linux file type can be determined by the file command.

How to use file command?
Syntax : filefilename # determine the file type.

root@hostname~J]#cat ab.c

#include<stdio.h>
int main(){
printf(“Hello\n”);

return 0;

}

The above file contents are C program content. Even if we are not aware of C
programming language, we can read the content. So this type of file (i.e.,

Understandable format) is called ASCII or TEXT file.
root@hostname~]# file ab.c
ASCII or TEXT

root@hostname~]# file/etc/passwd
ASCII or TEXT

root@hostname~]#file/var/log/boot.log
ASCII or TEXT

So in Linux, file types are not determined by their file extension.

Binary file (or) object file (or) ELF File

A binary file is any file that contains at least some data that consists of
sequences of bits that do not represent plain text.

Binary files are used to represent images, sound, executable (i.e.,
runnable) programs and compressed data (including documents created by
most word processing programs).

They are usually the most compact means of storing data. This is
because of the data compression techniques, and the fact is that the programs
stored in binary form can be executed faster.

Linux binary files are called as ELF(Executable and Linkable Format) file.

What is an ELF file?

ELF is the abbreviation for Executable and Linkable Format and
defines the structure for binaries, libraries, and core files.
The formal specification allows the operating system to interpret its
underlying machine instructions correctly. ELF files are typically the output
of a compiler or linker and are a binary format. With the right tools, such file
can be analyzed and better understood.

A common misconception is that ELF files are just for binaries or executable.
They can be used for partial pieces (object code).

Take our sample Cprogram(ab.c) file. When you compile, source
(ab.c) will get compiled Executable file (a.out).Using that executable file, we
can run the C program.Thata.outfile is ELF type file.

An example is shared libraries or even core dumps (those core or
a.outfiles). The ELF specification is also used on Linux for the kernel itself
and Linux kernel modules.

root@hostname~]# file/lib/libproc-3.2.8.s0
ELF
In Linux, all the commands are ELF type files.
root@hostname~]# file/bin/date
ELF
HereDate file is binary file not in a readable format.

All the system commands are ELF type file.

2. Directory File

Directory file contains a collection of other files and directories. This
resembles like a folder.

3. Link File (Or) Symbolic File (Or) Soft Link File (Or) Symlink
File

A symbolic link, also known as a symlink or a soft link, is a special
kind of file (entry) that points to the actual file or directory on a disk (like a
shortcut in Windows).

Symbolic links are mostly used in administration task.

4. Device files

Recap in Linux, everything is a FILE. So, all the peripheral devices
that are attached with system are treated as device file.All the device files are
mounted under /devdirectory.

In Linux there are two categories of device files: character and block.

Character-type device files include devices such as keyboard, mouse,
and serial ports. In general, operations with these devices (read, write) are
performed sequentially byte by byte.

The Block -type device files includes devices where data volume is large
and is organized on blocks. Examples: Hard disks, USB, CDROM are block-
type device files.

5. Named Pipe Or FIFO File

e A FIFO special file (a named pipe) is similar to a pipe.

e [t can be opened by multiple processes for reading or writing.

e When processes are exchanging data via the FIFO, the kernel passes
all data internally without writing it to the file system.

e Thus, the FIFO special file has no contents on the file system; the

file system entry merely serves as a reference point so that processes
can access the pipe using a name in the file system.
e Using mkfifo command we can create FIFO file.

6. Socket file

A socket is a special file used for inter-process communication, which
enables communication between two processes.

Unlike named pipes which allow only unidirectional data flow, sockets
are fully duplex-capable.

There are many way to determine Linux file types

1. Using filecommand (file filename)
2. Usingls—lcommand (Is-1 filename)

Just typels—Ifollowed by the filename. From the resulting output, observe the
leftmost first character which depicts the type of file.

Character File Type
- regular file
d directory file
1 link file
C character type device file
b block type device file
p named pipe file

S (capital ‘s’) socket file

CHAPTER 5 - COMMON
LINUX COMMANDS

Linux will treat everything as file and process.
What Is File?

File is nothing but data under storage location.
What is process?

Process is nothing but Data under the processor.

So the job of processor is to fetch data from memory and store it in the
register from where execution takes place.

The execution instance is referred as process.

So every command in Linux is a binary file and that binary file will
become a process once it is executed.

Eg) date command is a file and it is also a process.

date binary file stored under /bin is an example for file.

[student@krosum ~]$ 1s -1h /bin/date
rwxr-xr-x. 1l root root:6/K May 8 2013

Group
file permission \ file owner
details \ name File size

File name

file creation date

link count

file type (regular file)

Fig. date file

date filewhen executed by processor will create a process. So now date is a
process.

[student@rosum ~]$%
[student@krosum ~]$ /bin/date
Tue Mar 24 13:52:05 IST 2020
[student@krosum ~]$

[student@rosum ~]$ date &
[1] 8240
[student@krosum ~]$ Tue Mar 24 13:52:34 IST 2020

Fig. date process

See the above example, date is a command in user view. In Kernel point of
view, date is both a file and a process. Like this all the Linux command when
entered to execution state will become a process.

From the above snap note the following symbols:-&(ampersand) symbol and
[1]. We will discuss them in Linux Process control system.

Linux Command

Linux is command based operating system. The basis of all Linux
interaction is the command.

Linux commands are binary files, it’s placed on /bin(or)
/usr/bin/directory. Recap file structures discussed in previous topics.

o All the Linux Commands are single line entered at a console.

o A Linux command is an action request given to the shell for
execution.

o Linux commands are entered at the command line prompt.
Command line prompt is known as shell prompt.

Recap shell definition that shell is an interpreter; all the user input
commands are interpreted by shell.
root@krosum~]# this is shell command line prompt

Every command execution displays some result to monitor. This result
can be either STDOUT or STDERR.

STDOUT - when a program needs to print output, it normally prints to
"standard out".

STDERR - when a program needs to print error information, it normally
prints to "standard error".

STDOUT, STDERR -Both are associated with monitor.

Although we do not need to worry about how the command does its
job, we must understand exactly what it does. We must know where to find
the input and where we want the output to be placed.

In general input comes from keyboard (STDIN) and the output is

usually shown on the monitor (STDOUT/STDERR).

There are many sources to pass input to system; one is keyboard
(STDIN) and another source is files on a disk.
Command Syntax

All the Linux commands are entered at the command line prompt.

Linux commands are case sensitive. Generally all Linux commands are
lowercase characters.

Every command has options and arguments.
command -option aiument(s)

additional information to the command
Dptlun modifies
how the action(command) is

command 2pplied
indicates what action
to be taken.

The
command format is:

command-option argument(s)

Linux options are identified as —(hypen)followed by single character.

The option characters are case sensitive; all options usage varies by its
command.

Examples :

o lIs-r# Here option —rindicates the list out files in reverse order.

o uname-r# Here option —rindicates released version of Linux
kernel.

o Is-R# Here option —Rindicates recursive view of files .

See the above example. With Is command, —r is different from —R. We will
discuss more details about this in following topics.

System commands

1. Date

e The date command displays system date and time.

e Each date response indicates what time zone is beingused.

Syntax:-date-option arqument

The input for date is the system itself. The date is actually maintained
in the computer as a part of the operating system.

Most modern hardware also has a hardware date and time clock that is
often updated automatically to ensure that it is accurate.

[student@krosum ~]% date

Tue Mar 24 14:13:40 IST 2020
[student@krosum ~]%$ If you enter date

command without any option, it displays the current date and time as in the
following example.

If no options are specified in date command, the local time is
displayed. Once command execution is done successfully, next primary
prompt will appear in the screen automatically.

If a -uoption is used, the time is UTC. The following example displays
time in UTC (universal time) which is equivalent to GMT.

[student@krosum ~]$ date
ue Mar 24 14:16:30 IST| 2020

each date response
indicates what time zone
is being used.

IST Indian Standard Time
(IST)

Universal Time Coordinated (UTC)

The date commandargument allows you to customize the format of the
date. The format of date command includes a plus sign (+) followed by text
and series of format codes,all enclosed in double quotes mark (””). Each
code is preceded by a percentage sign (%) that identifies it as a code.

[student@krosum ~]$ date
ue Mar 24 14:28:18 IST 2020
[student@krosum ~1%

[student@krosum ~]% date +%D
03/24/20
[student@krosum =]$%

FORMAT controls the output. It can be the combination of any one of the
following:

%FORMAT

. Description
String P

%a locale’s abbreviated weekday name (e.g., Sun)

%b locale’s abbreviated month name (e.g., Jan)

%cC locale’s date and time (e.g., Thu Mar 3 23:05:25 2005)

%d day of month (e.g, 01)

%e day of month, space padded; same as %_d

%g last two digits of year of ISO week number (see %G)

same as %b

hour (01..12)

Com wewonse |

%k hour (0..23)
[e
%m month (01..12)
e s
%n a newline
N[s (ooooomaan sessesese)
%p locale’s equivalent of either AM or PM; blank if not
known
[et
%r locale’s 12-hour clock time (e.g., 11:11:04 PM)
R [et and i e s SGHAM
%s seconds since 1970-01-01 00:00:00 UTC
s s
%t a tab
[e semais T
%u day of week (1..7); 1 is Monday

%V ISO week number, with Monday as first day of week
(01..53)

e oo |

%W week number of year, with Monday as first day of week
(00..53)
%X locale’s time representation (e.g., 23:13:48)
%Y Year
%:z +hh:mm numeric timezone (e.g., -04:00)
%:::z numeric time zone with : to necessary precision
(e.g., -04, +05:30)

ue Mar 24 14:47:27 IST 2020
[student@krosum ~]$%

[student@krosum ~]% date +%D # DD/MM/YYYY
03/24/20

[student@krosum ~]$ date +%H # Hour

It

[student@krosum ~]§ date +%Y # YYYY

+%m # month
+%F # Year-Month-Date

%("-"%H|# we can combine multiple formats
YEAR-Hour

[student@krosum ~]$
Fig. Date Command with format string

[student@krosum ~]1%$ date +%h

Mar -
[student@krosum ~]$ date |+%d |

24 ' '
[student@krosum ~]% date +%d"th "%h
24th Mar

student@krosum ~]% date

[student@krosum ~]%

[student@krosum ~]1% date|+%d"th "%h" "%Y
24th Mar 2020

[student@krosum ~1%

e can
combine multiple date formats as per our required format style. See the below
examples.

Fig. Date Command with multiple format string

The date command can also be used to set the date and the time but can
be done only by a system administrator.
For Example use the following syntax to change the current date.

Replace YYYY with a four-digit year, MM with a two digit month,
and DD with a two digit day of the month.

Syntax: date +%D —-s <YYYY-MM-DD>
date +%D -s 2020-05-11
05/11/20

2. Calendar (cal) command

[student@krosum ~]$ cal
March 2020
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 910 11 12 13 14
15 16 17 18 19 20 21
22 23 EH 25 26 27 28
29 30 31

[student@krosum ~]%

the calendar for a specified month or a year.

The calendar command (cal), displays

Syntax:- cal-options [[month]year]

[student@krosum ~]% cal 04 2020

April 2020

U Mo Tu We Th Fr Sa

1 2 3 4

5 6 7 8 910 11

14 15 16 17 18

9 20 21 22 23 24 25
28 29 30

[student@krosum ~]$|cal 03 1982
IMarch 1982
bu Mo Tu We Th Fr Sa
1 2 3 4 5§ 6
7 8 91011 12 13
15 16 17 18 19 20
23 24 25 26 27
8 29 30 31

Fig. cal command without option
and arguments

Fig.cal command with 2 argument no option

From the above example, there are 2 arguments without any options.

Arguments (i.e. month, year) are still optional. If there is no argument,
the calendar for current month is displayed.

February
Mo Tu We Th Fr Sa

gl

LSUUKBRLEErOUN. = k] cR) 202 If only one argument is entered, it is

assumed to be a year and not month. Hence the calendar for the year is
displayed.
Fig.cal command with 1 argument assumed as year
If both month and year are entered, then just one month of that

particular year is displayed.Note: - The 2 arguments are separated with a
whitespace.

3. Who command

The who command displays all the users currently logged into the system.

Syntax:- Who -options

[student@krosum ~]% who
student ttyl 2020-03-19 20:22 (:0)

student pts/0 2020-03-24 13:45 (:0.0)

student pts/1 2020-03-24 14:47 (:0.0)
[student@krosum ~]%

The who command returns the user’s name (ID), corresponding terminal and
time he/she logged in.

with option -u

[student@krosum ~]$|{who -u
student ttyl 2020-03-19 20:22 old 882 (:0)

student pts/0 2020-03-24 13:45 . 8202 (:0.0)
0)

student pts/1 2020-03-24 14:47 00:24 8202 (:0.

[student@krosum ~]$
To display the duration how long the system was idle (idle time), -u option is

used.

with option -H

This option is used to get header information.

[student@krosum ~]%$ who -H
NAME LINE TIME COMMENT

student ttyl 2020-03-19 20:22 (:0)
student pts/0 2020-03-24 13:45 (:0.0)
student pts/1 2020-03-24 14:47 (:0.0)

Who am i

[student@krosum ~]1% who am 1

student pts/0 2020-03-24 13:45 (:0.0)
If you want to display only your individual system information, enter who am
i.(note the white space entered between each word).

Whoami

e The whoami command returns the user ID(Login name).
[student@krosum ~]%|whoami [root@krosum ~]# \whoami
student root
[student@krosum ~]$ [root@krosum ~]#

If you logged in as root user, whoami displays root.
e If you logged in as Student user, whoami displays Student.

This is equivalent to the result of the following command:-
EIRE:

[student@krosum =]% 1d -un [root@krosum ~]#|id -un
student root

[student@krosum ~]% id -u [root@krosum ~]#|id -u
1000 0
[student@krosum ~1% [root@krosum ~]#

id-un

id -u displays only the login ID(Integer). This is always zero(0) for root user.

4. System name (uname) command

Theunameutility is most commonly used to determine the processor
architecture, the system hostname and the version of the kernel running on
the system.

Syntax:- uname-—option

Option Description

-r(kernel Prints the kernel release

release)

-V Prints the kernel version

-m Prints the name of the machine’s hardware name

p Prints the architecture of the processor

-i Prints the hardware platform

-0 Print the name of the operating system. On Linux systems
that is “GNU/Linux”

-a(all) When the -a option is used, uname behaves the same as if
the -snrvmo options have been given.

rosum —]3 Uname

[student@krosum ~]%$ uname
3.9.5-301.fc19.1686
[student@krosum ~]$% uname
inux

[student@krosum ~]%$ uname
1386

[student@rosum =]%$ uname
1686

[student@krosum ~]% uname
1686

~]% uname

Fig. uname command with options

5. Terminal (tty) command
The ttyutility is used to show the name of the terminal we are using.

[student@krosum ~]$ tty [student@krosum ~]$ ps
dev/pts/0 PID TTY TIME CMD
[student@krosum ~1% ps 8514 pts/1 00:00:00 bash
PID TTY TIME CMD | 8701 pts/1 00:00:00 ps

8206 pts/0 00:00:00 bash| [student@krosum ~]$%
8700 pts/0 00:00:00 ps | [student@krosum ~]$ tty
[student@krosum ~]1% /dev/pts/1
[student@krosum ~]% [student@krosum ~]%

Already we know that Linux treats everything as File and Process. Sottyis
also a filestored under /devdirectory.

When we open a new terminal, port number will be incremented
automatically as pts/0, pts/1 and so on.

6. Clear screen (clear) command

The clear command clears the screen and places the cursor at the top.

] Started Job spooling tools.
Starting Command Scheduler...

] Started Command Scheduler,
Starting Wait for Plymouth Boot Screen to Quit...
Starting Terminate Plymouth Boot Screen...

[] Started SYSV: Late init script for live image..
[student@krosum ~1%

[student@krosum ~]1%

[student@krosum ~]% clear

student@rosum ~]%

7. Script command

e This records an interactive session.

e When you want to record the full session, use this as your first
command on your session so that everything you do will be
recorded until you log out from the session.

e To stop the recording, type exit

e [f you do not specify your output log file name, then by default the
session log is saved as a file named typescript.

Refer the below example for more details.

[student@krosum ~]1% E=gls]s

Script started, file is typescript
[student@krosum ~]%$ date

Tue Mar 24 15:29:16 IST 2020
[student@krosum -]% pwd
/home/student

[student@krosum ~]% whoami

student

[student@krosum ~]% exit

exit

Script done, file is typescript
[student@k rosum -1%
Script started on Tue 24 Mar 2020 03:29:13 PM IST
[student@krosum ~]%$ date

Tue Mar 24 15:29:16 IST 2020
[student@krosum -]% pwd
/home/student

[student@krosum ~]% whoami

student

[student@krosum ~]%$ exit

Help documentation

e whatiscommand
e man command

1. whatis command

It is a help command that displays thedefinition of the command.In
order to get more detailed (syntax, options) information about command,
refer man command.

Syntax:- whatis<command>
whatis - single word there is no space

[student@krosum ~]% whatis date
- print or set the system date and
) - write the date and time
[student@krosum =]%
[student@krosum =]% whatis uname
- print system information
return system name

get name and information about cu...
uname (3p) get the name of the current system
[student@krosum =]%
[student@rosum ~]%$ whatis ps
ps (1) - report a snapshot of the current
ps (1p) - report process status
[student@krosum =]%

2. mancommand

Syntax:- man<command>

man is online reference manual(man)page. It provides detailed
descriptions and usage of the commands.

You can use the man command to display the man page entry that
explains a given command.

For example, display the man pages for the date command

[student@krosum ~]1% man date

and time * whatis date

DESCRIPTION
Display the current time in the given FORMAT, or set the system date.

Mandatery arguments to long options are mandatory for shert options too.

-d, --date=5TRING
display time described by STRING, not 'now

-f, --file=DATEFILE
like --date once for each line of DATEFILE

-I[TIMESPEC], --is0-B6O1[=TIMESFEC]
ge date(l) Line 1 (press h Tor help or g to quit)

Using the man command

Name— definition about command

Synopsis- Command with options — Syntax about command (or) how to
apply command in command line.

Scrolling Through the Man Pages

The following table lists the keyboard commands for scrolling through
the man pages.

Key board command Action
Space bar Displays the next screen of a man page
Return Displays the next line of a man page
B Moves back one full screen
/pattern Searches forward for a pattern
N Finds the next occurrence of a pattern after
you have used /pattern
H Provides a description of all scrolling
capabilities
Q Quits the man command and returns to the
shell Prompt

Searching the Man Pages

There are two ways to search for information in the man pages:

e Searching by section
e Searching by keyword

1. Searching the Man Pages: By Section

The online man page entries are organized into sections based on the type
or usage of the command or file.

For example, Section 1 contains user commands, and Section 5 contains
information about various file formats.

To look up a specific section of the man page, use the man command with
the -s option, followed by the section number, and the command or file name.

man-s number command

(or)

man-s number filename

[student@k rosum ~1%

[student@krosum ~]%$ whatis passwd

passwd (1) - update user's authentication tokens
sslpasswd (1lssl) - compute password hashes

passwd (5) - password file

[student@krosum ~1%
[student@krosum ~]1$ man EENERpasswd

The bottom portion of a man page, titled SEE ALSO, lists other
commands or files related to the man page.

The number in parentheses reflects the section where the man page is
located. We can use the man command with the -loption to list the man pages
that relate to the same command or file name.

For example, to view the online man page for the passwd file, use the
following commands:

man-| passwd

passwd (1) -M /usr/man

passwd (4) -M /usr/man

man-s 4 passwd

Reformatting page. Please Wait... done
File Formats passwd(4)

NAME

passwd - password file
SYNOPSIS
/etc/passwd
DESCRIPTION

The file /etc/passwd is a local source of information about users’ accounts.
The password file can... (Output truncated).

2. Searching the Man Pages: By Keyword

When we are unsure of the name of a command, we can use the man
command with the -k option and a keyword to search for matching man page
entries

man-k keyword

The man command output provides a list of commands and
descriptions that contain the specified keyword.

For example, using the man command, view commands containing the
calendar keyword.

$ man-k calendar

CHAPTER 6 - LINUX
COMMAND LINE
STRUCTURE

Linux Command line structure consists of following format.

e (Command only - there is no option and arguments
e Command with arguments
e Command with ‘command” (or) Command $(Command)

1. Command only

e There is no option and arguments.
e Command line prompt allows only a single command.

a’rujmr"}'rﬂn- ~]§ date
27 IST 2620

Mon Mar 23 18:48;
student@ rosum ~]$
student@rosum ~]$ ps
PID TTY TIME O
?'Z*IZI4 :ut5_.-'l3 (30:00:00 bash
BA: 0000 os
crosum ~]§ 1s

S |
digits emp.csy F3.txt IP2
F1.txt IP
[student@rosum ~]§ uname
inux
student@rosum ~]$ pwd
/home/student
student@rosum ~]3
See the below example snap

namesl.tut

|.'|-|I-

process
process.log
ptr.txt

Command followed by option or arguments style.

Command<space>-option
Command <space>argument
Command <space> -option<space>argument

e There is a single space in between command and option,
again followed by a space prefixing the arguments.

[student@krosum ~]$ date # Command only style
Mon Mar 23 18:53:33 IST 2020
[student@krosum ~]$%
[student@rosum ~]$ date |+%D|# display MM/DD/YYYY format command arguments
03/23/20
[student@krosum ~]$ ps # Command only style

PID TTY TIME CMD

7904 pts/0 00:00:00 bash

8018 pts/0 00:00:00 ps
[student@krosum ~]$%
[student@krosum ~]$ ps|-f|# Command with argument(-f option)
UID PID PPID C STIME TTY TIME CMD
student 7904 7900 0 18:32 pts/0 00:00:00 bash
student 8019 7904 0 18:54 pts/0 00:00:00 ps -f
[student@krosum ~]$% i .
[student@krosum ~]$ echo|"Hello Linux World" | command with single argument
Hello Linux World all the arguments are enclosed " "
[student@krosum ~]$ echo|Hello Linux World | command with arguments, arguments are
Hello Linux World separated by space. There is no quotes

Note the difference in usage of echo command with quotes and without
quotes.

In the upcoming topics, we will discuss more about the command
options. Just understand the command line structure.

Difference between ps vs ps-fanddate vs. date+% Dformat.

In Linux, command options are useful to get specific information about
command. In learning point of view, first let’s focus on the command and
then will explore more on options and arguments.

command only style :- unamedisplays kernel name.

command —option structure :- uname-rdisplays kernel version and

uname-ndisplays hostname

[student@krosum ~1%
[student@krosum =]$ uname # command only - display kernel name
Linux

[student@krosum ~1%
[student@krosum ~]% uname -r # command followed by option - version

3.9.5-301.1fcl19.1686

[student@krosum -]%

[student@krosum ~]$% uname -n # command followed by option - hostname
krosum.com

[student@krosum -]%

See the above 3 command line difference, when we put option —r (or) —
n the command display specific result. This is command —option structure.

[student@krosum ~]% uname
3.9.5-301.fcl9.1686

[student@krosum ~]%$ uname
Krosum.com :
[student@krosum ~]%$ uname

krosum.com 3.9.5-301.fcl9
[student@krosum ~1%

[student@krosum ~1% uname |
krosum.com 3.9.5-301.fcl9

[student@krosum ~]%

can combine multiple options together in any order.

1. Command followed by Command style

Whenever we pass command without a back quote as an
argument to another command, shell will treat it as any ordinary word

and won’t consider it as a command.

[student@krosum ~]% uname # display kernel name # Commandonly style
inux

[student@krosum ~]% echo Hello Linux| # command with arquments

ello Linux

[student@krosum ~1% echo uname # same like above command with argument
Lname

[student@krosum ~]% date +%D

03/23/20

[student@krosum ~1% echo date +%D

date +%D

[student@krosum ~1$%$ echo| "uname’ |# command " command
inux

[student@rosum ~1% echo| date +%D"| # command ~command’
03/23/20

[student@krosum ~]%

Note the difference betweenecho unamevsecho ‘uname’

e unameis a Linux command and it displays working kernel

name (see the 1* line)
e echo command is used to display message to console (see the

2" Jine in above snap)

When we combine both uname and echo command, shell will interpret
them as command with argument(echouname). Here unameis considered as
ordinary word and not a command. That’s the reason echo uname displays
message as unameto monitor.

When we enclose command with back quote ~ ° symbol, shell
interprets them as command with "‘command.
[student@krosum ~]%$ echo "My working kernel name is: uname " ##(A)

My working kernel name is:| uname
[student@krosum =]%

[student@krosum ~]$ echo "My working kernel name is:| uname’ |" ###(B)
My working kernel name is: Linux
[student@krosum ~]%

See the difference between command line (A) and command line (B)

When we pass command as an argument to another Linux command,
the command being passed is enclosed with back quote.i.e. = command °
(back quote notation).

[student@krosum =]$

[student@krosum ~]$ # command command (or) command $(command)
[student@krosum ~]$ # ------- ======== = ----.--
[student@krosum

[student@krosum ~]% whoami

student
[student@krosum ~]$ echo "Login name is: whoami " ## Way(1l)
Login name is:student

[student@krosum ~]$ echo "Login name is:$(whoami)" ## Way(2)
Login name is:student

Note the difference between a back quote and single quote. Both are
different.

CHAPTER 7 - THE VI
EDITOR

e The vi editor is a command-line, interactive editor that we can use to
create and modify the text files.

e The vieditor is also the only text editor that we can use to edit certain
system files without changing the permissions of the files.

e viimproved (Vim) is the default editor.

e The Vim editor is an enhanced version of the vi editor.

Accessing the vi Editor

e To create, edit, and view files in the vi editor, use the vi
command.
e The vi command includes the following three syntaxes:

vi
vifilename

vioptionsfilename

student@krosum -]% vi

VIM - V1 IMproved

version 7.3.944
by Bram Moolenaar et al.
Modified by
is open source and freely distributable

Help poor children in Uganda!
thelp iccf for information

:q to exit
thelp ar for on-line help
:help version? for version info

e The initial display of the editor in a terminal window is a blank
windowfilled with tildes and a blinking cursor in the top left corner.

e If the system crashes while you are editing a file, you can use the -
roption to recover the file.
vi-rfilename

The file opens so that you can edit it. You can then save the file and
exit the vieditor, by using the following command:

vi-Rfilename

The file opens in read-only mode to prevent accidental overwriting of
the contents of the file.

student@krosum ~]$vi pl.txt {Enter}

"pl.txt" [New File]

The vi Editor Modes

The vi editor provides three modes of operation:
e« Command
* Input

e Last line
1. Command mode

e The command mode is the default mode for the vieditor.
e In this mode, you can run commands to delete, change, copy,
and move text.

e You can also position the cursor, search for text strings, and
exit the vieditor.

2. Input mode

e You can insert text into a file in the input mode.

e The vi editor interprets everything you type in the input
mode as text.

e To invoke input mode, press any one of the following
lowercase keys:

KEY DESCRIPTION
i Inserts text before the cursor
0 Opens a new blank linebelow the cursor
a Appends text after the cursor

e You can also invoke the input mode to insert text into a file
by pressing one of the following uppercase keys:

KEY DESCRIPTION
I Inserts text at thebeginning of the line

O

Opens a new blank line above the cursor

>

Appends text at the end of the line

3. Last line mode

e We can use advanced editing commands in the last line
mode.

e To access the last line mode, enter a colon (:) when you are
still in the command mode.

e Entering the colon (:) character places the cursor at the
bottom line of the screen.

=N | w Q
student@krosum~]$ vip1.txt {Press-Enter}

-=- JNSERT --

e Once we press i (insert), the command mode is switched to
input mode.

e Now we can type our input text to editor. See the below
snap.

This is sample text file
test filel

test filel

-- INSERT --

e Now we want to write our input data to storage and switch to
command mode.

e Now how to switch from input mode to command mode?
Press ESC key type shift with colon (ESC shift :)

his is sample text file
est filel
file2

his is sample text file
&3t filel
est file2

Now type lower case character w(write) then press Enterkey

his iz sample text file
test filel
test file@

® [New] 3L, 47C written

e See the above snap pl.txt file. 3 lines 47 characters are
written to storage (last line in snap).

This is sample text file
est filel

test file2

In order to come out of the editor (vi), press q(quit) then
enter, it will switch to exit mode (or)last line mode.

Note: The last line mode is actually the exmode. The vi editor is essentially a
visual extension to the exeditor,which in turn is an extended version of the
ededitor.

Switching Between Modes

The default mode for the vieditor is the command mode.

To switch to the input mode, press i, o, or a.

To return to the command mode, press the Esc key.

In the command mode, you can save the file and quit the vieditor,
and return to the shell prompt.

his 1s sample text file
est filel
est file2

pl.txt" [readonly] 3L, 47C

Viewing Files in the Read-Only Mode

e The view command enables you to view files in the read-only
mode.

Syntax:-

viewfilename

e The view command invokes the vi editor in the read-only option,
which means you cannot save changes to the file.

e For example, to view the p1.txtfile in the read-only mode, enter the
following command:

viewpl.txt

e The filename appears. Enter the: gcommand to exit the file, exit
the vi editor, and return to the shell prompt.

Moving the Cursor within the vi Editor

The tables shows the key sequences that move the cursor.

KEY SEQUENCE CURSOR MOVEMENT

h left arrow, or Backspace -shifts one character left
J down arrow - Down one line
K up arrow - Up one line
I right arrow, or space bar - Right (forward) one character
w Forward one word
b Back one word
e To The end of the current word
$ To the end of the line

0 (zero) To the beginning of the line
A

To the first non-white space character on the line

KEY SEQUENCE CURSOR MOVEMENT

1G Goes to the first line of the file

‘n Goes to Line n

nG Goes to Line n

Control + F Pages moves forward one screen

Control +D Scrolls down one —half screen
Control + B Pages moves backward one screen
Control + U Scrolls up one-half screen
Control + L Refreshes the screen

Control +G Displays current buffer information

Inserting and Appending Text

KEY SEQUENCE CURSOR MOVEMENT
a new or existing file by using the vi editor
A Appends text after the cursor
i Inserts text before the cursor
I Inserts text at the beginning of the line
0 Opens a new line below the cursor
(0] Opens a new line above the cursor
r File name inserts text from another file into the current file

Text-Deletion Commands

KEY SEQUENCE CURSOR MOVEMENT
R Overwrites or replaces character on the line andthe cursor
position is moved pointing to next character. To terminate this
operation, press Escape.
C Changes or overwrites sequence of characters from the cursor to
the end of the line.
S Substitutes a string for a character at the cursor position.
X Deletes a character at the cursor position.
dw Deletes a word or part of the word to the right of the cursor
position.
dd Deletes the line containing the cursor position.
D Deletes the line from the cursor to the right end of the line.
m,md Delete from n™ line to m" line (For example, :5,10d deletes lines
5-10.)

We can use numerous commands to edit files by using thevieditor.

The following sections will describe the basic operations for deleting,
changing, replacing, copying, and pasting. Remember that thevieditor is
case-sensitive.

Note:-Output from the deletecommand writes to a buffer from which
text can be retrieved.

Edit Commands

The table describes the commands to change text, undo a change, and repeat
an edit function in the vieditor.

COMMAND FUNCTION

cw
R

J
Xp

-

Changes or overwrites sequence of characters from the
cursor position to the end of that word.

Replaces the character at the cursor position with another
character.

Joins the current line and the line below

Transposes the character at the cursor position and the
character to the right of the cursor position.

Changes the case of character placed at the cursor position
from uppercase to lowercase,

Undo the previous command
Undo all changes to the current line
Repeats the previous command

Note:- Many of these commands change the vi editor into the input
mode. To return to the command mode, press the Esc key.

Search and Replace Commands

The table shows the commands that search for and replace text in the vi
editor.

COMMAND FUNCTION
/string Searches forward for the string
?string Searches backward for the string
n Searches for the next occurrence of the

string. Use this command after searching
for a string.

N Searches for the previous occurrence of the
string.
:%s/old/new/g Searches for the old string and replaces it
g

with the new string globally.

Copy and Paste Commands

The table shows the commands that cut, copy, and paste text in the vi

editor.
COMMAND FUNCTION
Yy Yanks a copy of a line
P Puts yanked or deleted text under the line
containing the cursor
P Puts yanked or deleted text before the line
containing the cursor
:X,yco n Copies lines from x to y and puts them after line n

(Forexample, :1,3 co 5 copies lines 1-3 and puts
themafter line 5.)

x,ymn Moves lines in range between x and y to line after
n. For example, :4,6 m 8

Save and Quit Commands

The table describes the commands that save the text file, quit the vi
editor, and return to the shell prompt.

COMMAND FUNCTION

‘W Saves the file with changes by writing to the

disk
:w new_filename Writes the contents of the buffer to

new_filename.

‘wq Saves the file with changes and quits the vi
editor

X Saves the file with changes and quits the vi
editor

7 Saves the file with changes and quits the vi
editor

:q! Quits without saving changes

ZQ Quits without saving changes

Session Customization

To create an automatic customization for all your vi sessions, perform
as following:

1. Create a file named .exrcin your home directory.

2. Enter any of the set variables into the .exrcfile.

3. Enter each set variable without the preceding colon.
4. Enter each command on one line.

The vi editor reads the .exrcfile located in your home directory each
time you open a vi session, regardless of your current working directory.

Note: The same steps apply for customizing a session in the Vim editor.
Except that, instead of creating an .exrcfile, you need to create a .vimrcfile.

Session Customization Commands

COMMAND FUNCTION
:set nu Shows line numbers
:set nonu Hides line numbers
:set ic Instructs searches to ignore case
:set noic Instructs searches to be case-sensitive
:set list Displays invisible characters, such as /I for a Tab
and $ for
end-of-line characters
:set nolist Turns off the display of invisible characters
:set showmode Displays the current mode of operation
:set noshowmode Turns off the mode of operation display
:set Displays all the vi variables that are set
:set all Displays all vi variables and their current values

The table in the slide describes some of the variables of the set command.

CHAPTER 8 - DISPLAYING
THE DIRECTORY
CONTENT

Is —options

The Is command displays the content of a directory.
Syntax:- Is—options filename

[student@krosum ~]$%$ pwd
/home/student
[student@krosum ~]% 1s

[student@krosum ~]%

To list the files and directories in the current directory, type Is command

without arguments.

To display the content of a specific directory within the current
working directory, type Is command followed by the directory name in both
ways (absolute way or relative way).

[student@krosum ~]% 1s

[student@krosum =]% 1s Parentl

[student@krosum ~]%
[student@krosum ~]% ./Parentl # Relative Path

[student@krosum ~]1% /home/student/Parentl # absolute path

[student@krosum -]1%

[student@krosum ~]$ whoami
student

[student@krosum ~]$ # student(non-root) user can list out files
[student@krosum ~]$ # under /tmp directory
[student@krosum ~]$ 1s /tmp

[student@krosum ~]$%
[student@krosum ~]$ 1s /var/log/audit/
ls: cannot open directory /var/log/audit/:
[student@krosum ~]$%
[student@krosum ~]$%
If we don’t have permission to list out files from a specific directory, then an
error message will be received as permission denied.

Note: If input directory is not present in current working directory location,
enter the Is command with the complete path of input directory.

1. Is-1

The Is-lcommand displays a long listing of file information.

The 1s -1 command displays a long listing of file information.

File type (example:- for regular file ord for directory)

— Permissions
Link count
Ownerx
Group
Size
Last modification date and time

I_ File name

— — 1
= ¢ |_._ Farwocrw-xz-x11 5 Watudent!lclassl 15121 feb 22 14:51) Gira |
I—_rw—r—r——l 1 student class o feb 22 14:51 filel
r = readable
] w = writable
X = axecutable
| - = denied

The following is a brief explanation of the parts of the long list
displayed in the snap:

e The first character is the file type.(referfile permission for more
details)

e The second ninecharacters indicate the file permissions: r means
readable,w meanswritable, x means executable, and the — means
denied.

e The third section (as single number) is the link count.

e The fourth section is theowner(student).

e The fifth section is the group(class).

e The sixth section is the file size.

e The seventh section is the date.

e The eighth section is the file name.
2. Is—a

e The Is-acommand lists all files in a directory, including hidden
files.

[student@krosum Parentl]$ 1s
pl.c process.log
[student@krosum Parentl]$ 1s -a
pl.c process.log

[student@krosum Parentl]$
[student@krosum Parentl]$ mkdir .Demo # creating hidden directory

[student@krosum Parentl]$ 1s
pl.c process.log
[student@krosum Parentl]$ 1s -a
pl.c process.log
[student@krosum Parentl]$

e Some files are restricted to be displayed on the list, given by
the usual format of Iscommand.

e Hidden files often contain information that customizes your
working environment.

e You can use the Is-acommand to list all files in a directory,
including the hidden files.

Note: A single period (.) represents the current working directory. The double
period (..) represents the parent directory, which itself contains the current
working directory.

3. Is -t

Syntax:-
[student@krosum Parentl]$ 1s

pl.c process.log
[student@krosum Parentl]$

[student@krosum Parentl]$ 1s -t
pl.c process.log
[student@krosum Parentl]$

Is—t option (time - sort by modification time, newest first)

[student@krosum Parentl]$ 1s
pl.c process.log
[student@krosum Parentl]$ 1s -a # list all hidden files
pl.c process.log

[student@krosum Parentl]$
[student@krosum Parentl]$ ls -t # recently modified time
pl.c process.log

[student@krosum Parentl]$

[student@krosum Parentl]$ 1s -ta # -a all -t modified time
pl.c process.log

[student@krosum Parentl]$

[student@krosum Parentl]$ 1s -at # 1s -ta and 1s -at both are same
pl.c process.log

[student@krosum Parentl]$

4, Is -r

Syntax:-

Is-r (reverse order)

[student@krosum ~]$ 1s

[student@krosum ~]% 1s -r

[student@krosum ~]$

Default Iscommand will display the list of files in alphabetical
order. The option —rshows the list of files in reverse order.

Note - reverse order
: r list
- recursive list

Is-R (Recursive list)

Farentll$s 1=

pl.c process. lLog
Parentlls$
Parentl]$ NS # Recursive wview

pl.c process. Log

FChildl:

/Child1/GC

/Child2/GC2B:

AChild3:

. SChilc
[t uder suUm Parentl] $
This option lists the contents of all directories recursively,

below its corresponding current directory.

6. Is-S

Syntax:-
Is-S This option helps to sort files by their size.

[student@k rosum
[student@k rosum

[student@k rosum
[student@k rosum

[student@k rosum

7. Combine multiple options

Combining multiple options —r and-I together (-rl (or) —Ir)
shows the long list in reverse order.

[student@k rosum ~]$ 1s -1r
total O

student student
student student
student student
student student
student student
student student
drwxr-xr- student student
drwxr-xr- student student
[student@k rosum =]%
[student@k rosum =]% 1s -rl
total ©
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.

drwxr-xr-
drwxr-xr-

Hox oM oM oM M oM M
R MR RN
o O 0 Y O

B

student student &
student student &
student student &
student student &
student student 6
student student &
drwxr-xr-x. student student 6
drwxr-xr-x. student student 46
[student@k rosum ~]$%

(P SR SO S S S Y

[student@krosum ~]$%$ 1s -1 /var/log/boot.log

rw-r--r--. 1 root root 8844 Mar 20 01:52 /var/log/boot.log
[student@k rosum ~]%

[student@k rosum ~]% 1s IIH /var/log/boot.log

rw-r--r--. 1 root root 8.7K Mar 20 01:52 /var/log/boot.log

The option —I along with -h(human understand) format

-doption displays only the directory details.

[student@k rosum ~]% 1s
pl.c process.log

[student@k rosum =]$ 1s Desktop

[student@k rosum =]% 1s -1 Desktop

otal O

drwxrwxr-x. 2 student student & Mar 20 00:08
drwxrwxr-x. 5 student student 33 Mar 20 00:42

drwxrwxr-x. 5 student student 33 Mar 19 23:54
[student@k rosum ~]1%

B GCE GG B Rl s - 1d Desktop

drwxr-xr-x. 5 student student 46 Mar 20 00:42
[student@k rosum ~]1%

|student@krosun ~|§ 1s

pl.c
hat p2.c process.log
[student@krosun ~]$ s -F
[[plc [
hat| / 02.c@ process. log
[studentkrosun ~]$

Is -F

The option -F displays list of files, indicating their file types

Refer to the table given below for more details about file types indication.

9. Is-i

* Executable file

| Named pipe (or) FIFO File
/ Directory

@ Symbolic file

The option —i displays list of files with their corresponding file index

number.

How to list recently created files in long list?

[student@k rosum ~]$ 1s -1t

total 12

“rw-rw-r--.
SrWXrwWXr-x.
pPrw-rw-r--,
Lrwx rwx rwx .
-rwW-rw-r--
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.,
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.

MAMMMMMKMNOERERRERRE&

student
student
student
student
student
student
student
student
student
student
student
student
student

[student@k rosum ~]%

student : 18:31 process.log
student 18:25

student 18:23 chat
student - 18:23 p2.c -> pl.c
student 18:13 pl.c
student 00:42

student 201/

student ; : 2017

student 2017

student 2017

student 2017

student 2017

student 3 2017

e We can use both —land-toptions irrespective of their order.

Both Is—It andls -tlhas the same effect.

[student(k rosum ~|§ 1s

pl.c
chat p2.¢ process. log
[student tkrosun ~|$
[studentkrosum ~|§ 15 -1

180 4235394 6291588 141
178 chat 423539 146 process. log

2097282 113 pl.c 140

2097283 176 p2.c 6291587

[student tk rosun ~)$

How to view?

These are the following ways in viewing the list of files.
e Long list of files in recursive order.

Is—IR(or) Is-RI

e Recently created files in long list of recursive order.

Is-ItR(or) Is-tRI(or) Is-IRt

e List of files (long list) in descending (large to small size) order.

i
File Size

[student@k rosum ~]% 1s -15
otal 12
“rw-rw-r-
-rw-rw-r-

-Xr-x.
rWXr-Xr-
rWXr-Xr-
FWXTF-XF-

student student 168 Mar 18:13 pl.c
student student @ 84 Mar 18:31 process.log
student student | 46 Mar 20 00:42
student student 6 |Sep - 2017
student student Sep 2017
student student Sep 2017
student student Sep 2017
student student Sep 2017
student student Sep 2017
student student Sep 2017
student student Mar 18:23

- FWX WX -X. student student Mar 18:25

D W - FwW-I--, student student Mar 18:23 chat
[student@k rosum ~]%

M LA

-'xr‘-

-xr‘-

=Xr-x.

xXr-x.
FwX MW Fwx .

M B B B RS

= =
O B0 OO

P

Is-1S# Upper case S

e List of files (long list) in ascending (small file size to large size)
order

file size in ascending order

studentik rosum =%
Fotal 12
DW= W-1--.
FWEFWEr-%.
FWX FwX FWX .
Hrwxr-xr-x.
lrwxr-xr-x.
Hrwxr-xr-x.
Arwir-xXxr-x.
Hrwxr-xr-x.
Irwxr-xr-x.
Hrwxr-xr-x.
Hrwxr-xr-x.
FW-rw-F--.
rW=rw=r=-.

student student 18:23 chat
student student 18:25

student student 4 18:23 p2.c -= pl.c
student student - 2017

student student 2017

student student 6 2017

student student 6 23 2017

student student 6 : 2017

student student B 2017

student student 6 p. 2017

student student! 46 g0:42

student student B84 18:31 process.log
student student! 168 18:13 pl.c

Is-IrS# Upper case S # Is—ISr(reverse order)

1
1
1
2
2
2
2
F
2
2
5
1
1

OPTION USAGE

List directory entries

| -F FileTypes
-1 Long list

| -t Recently modified time |
-h Human readable format

| - Indexnumber
-r Reverse order

| -R Recusiveorder |
-S Sorted order

CHAPTER 9 - REGULAR
FILE MANIPULATION
COMMANDS

So far we know how to perform directory manipulation actions. Now
let’s discuss about regular file manipulation commands.

In Linux, Regular file (or) Ordinary file is classified in to two types.

1. ASCII (or) TEXT File- user can read (or) understand the
format.
2. ELF - user can’t read (or) understand .

How to create a new ASCII file?

There are many ways we can create a ASCII File.

1. Using editor
2. Using redirection symbols (<>>>)

First let’s discuss about editor. Linux supports command line editors
like vim, nanoetc., and GUI editors like gedit, leafpad, bluefish. Now we
will discuss about vi editor.

Recap previous chapter (vi editor) on how to use vi editor commands.

cat command

cat command is read-only command ; we can read existing ASCII file
from Linux command line.

[student@rosum ~]$ vi pl.txt @

This is test file from vi editor

this is mode is input mode {or) insert mode

how to write data to file --> go to command mode (press ESC)

type :w - W stands for write command @
wish to continue press 'L' insert (or) input mode

save and exit from editor press ESC then type :wq

student@krosum -1% vi pl.txt

file from vi editor

is input mode {(or) insert mode
ow to write data to file --»> go to command mode (press
ype w - w stands for write command
ish to continue press 'i' insert (or) input mode
ave and exit from editor press ESC then type :wg
studenti@krosum ~15

Task : create a new file named p1.txt. Write some text in the editor, save
a file to storage and then read input file using cat command.

[student@krosum ~]% vi ab.txt

echo "Welcome to Linux Command line"
echo "Today date: date +%D "

echo "Current working kernel is: uname

student@krosum ~]% cat ab.txt

echo "Welcome to Linux Command line"
echo "Today date: date +%D "

echo "Current working kernel is: uname
[student@krosum ~]%

*n

Task :Create a
new file name called ab.txt. Write following shell commands in ab.txt file
and display content to monitor.

[student@krosum ~]$ vi pl.c

#include<stdio.h>

int main(){
printf("Hello Linux\n");
return 0;

[student@krosum ~]$ cat pl.c
#include<stdio.h>
int main(){
printf("Hello Linux\n");
return 0;
}
[student@krosum ~]$%

Task :How to write c
program in Linux command line?

[student@krosum ~]$ cat pl.c # with out using -n option
#include<stdio.h>

int main(){
printf("Hello Linux\n");
return 0;

}

[student@krosum ~]% cat Iﬁ pl.c # with -n option
1 #include<stdio.h>
2 int main(){
3 printf("Hello Linux\n");
4 return 0;
5 }
[student@krosum ~]%
Using cat command, we can read the existing ASCII file. If you wish
viewing with line number use —n option.

[student@krosum ~]$ cat /var/log/boot.log Task :How to

read existing /var/log/boot.log file ?

Note : cat command is not a directory manipulation command.

Copy (cp) command

e The copy (cp) utility creates a duplicate of a file, a set of files, or a
directory.

o If the source is a file, the new file (target file) contains exact copy
of the data in the source file.

Syntax cp-option SourcefileTargetfile

[student@ rosum Demo]% ls

pl.log

[student@krosum Demo]$

[student@k rosum Demo]$% ' .

[student@krosum Demol$ 1s 3

pl.log p2.lc-g . target file
[student@krosum Demo]$ cat pl.log

Demo]$ cat p2.log

[student@k rosum Demo]$%

e If source file doesn’t exist (or) proper path is not specified (or)
case mismatch happens (upper/lower), cp action is failed. Refer to
the below snap for error messages.

dikk rosum
bl.log p2.log
 student@krosum Demo]$ cp ab.txt Tl.c ## source ab.txt Tile 1s not exist
fp: cannot stat 'ab.txt’': No such file or directory
student@krosum Demols
'student@krosum Demo]$ cp Pl.log T2.log ## source file Pl.log (uppercase)
tp: cannot stat 'Pl.log’': No such file or directory
student@krosum Demo]$
' student@krosum Demol$ cp passwd T3.log ## passwd file is not exists
p: cannot stat 'passwd’': No such file or directory
| s tadent@kTosun Denol$

student@krosum Demol$ cp backup.conf ## this is valid

[student@krosum Demo]s 1s
pl.log p2.log testl.c
[student@krosum Demo]$ cat -n pl.log
1 test logl
2 test log2
[student@krosum Demo]$ cat -n testl.c
1 #include=stdio.h=
int main{}{
printf("Hello Linux\n");
return 0:

[student@krosum Demo]$/cp pl.log testl.c # Note: target file(testl.c) is already
exists{overwrite)

[student@krosum Demo]$ cat -n testl.c
1 test logl
2 test log2

[student@krosum Demo]$

If target file already exists , the exiting file content will overwrite. See the
below example

e The testl.c file is already exists and hence its contents are replaced
by the source file (p1.log) contents.
e The cpcommand copies both text and binary files.

student@krosum

pl.log p2.log te
[student@krosum Demo]s f
repo: directory
[student@krosum Demo]s
[student@rosum Demo]$ # cp source(file) target(directory)
[student@krosum Demo]s

[student@krosum Demo]s 1s repo # under repo directory

pl.log

[student@krosum Demo]s

If the target is directory, the source file is copied to the directory. See the
below snap where p1.log file is copied to repo directory.

S
5
1

tl.c
le repo # determine file type

Under the repo directory we can duplicate new name called test1.log

[student@krosum Demo]$ 1s

pl.log p2.log testl.c

[student@rosum Demo]$ 1s repo

pl.log

[student@rosum Demo]$ cp pl.log repo/testl.log

[student@krosum Demo]%
[student@krosum Demo]$ 1s repo
pl.log testl.log
[student@krosum Demo]3

We can use wild cardto copymore than one file into subdirectory or
remote directory.

[student@krosum Demols s

pl.log p2.log process.log testl.c vmreport.log
[student@krosum Demo]s

[student@krosum Demo]$ # copy list of log files into /tmp directory
[student@krosum Demo]s # ---- -
[student@krosum Demols 1s /tmp

[student@krosum Demol% cp *.log /tmp
[student@krosum Demo]s
[student@krosum Demo]$ 1s /tmp # after copied

process. log
pl.log
p2.log vmreport.log
[student@krosum Demols

Rules in file copy:
To copy a file successfully, several rules must be followed:

e Rule 1 : The source must exist. Otherwise, Linux prints the
following error message:

[student@rosum Demo]$ 1s
pl.log p2.log process.log testl.c vmreport.log
[student@krosum Demo]$

[student@krosum Demol$ cp result.log out.log # There is no result.log
cp: cannot stat ‘result.log’: No such file or directory
[student@krosum Demo]$

<sourcefile> - No such file (or) directory.

e Rule 2: If no destination path is specified, Linux assumes the
destination as the current working directory.

[student@krosum Demols 1s

pl.log p2.log process.log testl.c vmreport.log

[student@krosum Demo]$

[student@krosum Demol% cp testl.c testl.c # testl2.c file will creats
currentdirectory

[student@krosum Demol$ 1s
pl.log p2.log process.log testl.c vmreport.log
[student@krosum Demo]$

[student@krosum Demo]$ 1s

pl.log p2.log process.log testl.c test2.c vmreport.log

[student@krosum Demo]$

[student@rosum Demo]$ cp -r |repojupdated _repo # source file is directory

[student@krosum Demols 1s .

pl.log p2.log process.log testl.c testl.c vmreport.log

[student@krosum Demo]$

[student@krosum Demo]$ |cp p* repo|# more than one source files are copied to
repo directory.

[student@krosum Demo]$

Rule 3: If the source happens to be multiple files or a directory,
then the destination file must be a directory.

e Rule 4: To prevent an automatic replacement (overwrite) of the
destination file, use the interactive (-i) option. When interactive
is specified, Linux issues a warning message and waits for a reply.
Any reply other than yes will cancel the copy of the specified file.

[student@krosum Demo]$ cat -n testl.c
1 #include<stdio.h=
2 int main{}{
printf{"Hello\n"};
return 0;

5 }
[student@krosum Dema]$ cat -n pl.leg

1 test logl

2 test log?

[student@krosum Demol$ cp pl.log testl.c # testl.c(target)file will overwrite
[student@krosum Demold$ cat -n testl.c
1 test logl
2 test logZ
[student@krosum Demo]$ cat -n testZ.c
1 #include<stdio.h=
2 int main{){
printf({"Helle\n");
return 0;

[=

1
Note, however, that if the file/destination directory is write protected, we

cannot use this option to write to the directory.

[student@rosum Demo]$ cp @1 pl.log test2.c

cp: overwrite 'test2.c'? n

[student@rosum Demo]$ cat -n test2.c # there is no changes in target file
1 #includesstdio.h>

2 int main(){
printf("Hello\n");
return 0;

PO | student@rosum Demo]$

Rule 5: To preserve the modification times and file access
permission, use the preserver (-p) option. In the absence of the
preserve options, the time will be the time the file was copied and
the file access permissions will be the defaults.

[student@krosum Demo]$ 1s -1 pl.log

-rw-rw-r--. 1 student student 20 Mar 21 15:13 pl.log
[student@krosum Demo]l$

[student@krosum Demo]$ cp pl.log p2.log
[student@krosum Demo]% Ls -L pl.log pd.log
-rw-rw-r--, 1 student student 20 Mar 21 15:13 pl.log
-rw-rw-r--, 1 student student 20 Mar 21 1B:12 p2.log

[student@krosum Demo]s

[student@krosum Demo]$ cp -p pl.log p3.log # preserve attributes optior
[student@krosum Demo]s

[student@krosum Demo]$ 1s -1 pl.log p2.log p3.loc

-rw-rw-r--. 1 student student 20 Mar 21| 15:13

-rw-rw-r--. 1 student student 20 Mar 21 18:12 p2.loc

-rw-rw-r--. 1 student student 20 Mar 21] 15:13 p3

student@krosum Demo]d :

Note : pl.log and p3.log file preserve the time attributes.

[student@k rosum Demo]$ 1s -1 rl.sh
-rw-rw-r--, 1 student student 13 Mar 21 18:43 rl.sh
[student@krosum Demo]l$ 1s -1 r2.sh
AT 1 student student 13 Mar 21 18:44
[student@krosum Demol$
[student@krosum Demo]$ cp -p irl.sh r2.sh
[student@krosum Demol$
[student@k rosum Demo]$ 1ls -1 rl.sh r2.sh
-rw-rw-r--.! 1 student student 13 Mar 21 18:43 rl.sh
-rw-rw-r--.,! 1 student student 13 Mar 21 18:43 r2.sh
[student@k rosum Demo]%
As stated in the copy (cp) command section, when the destination file
already exists, its permissions, owner and group are used rather than the
source file attributes. However, We can force the permissions, owner, and
group to be changed, by using the preserve (-p) option.

Note how the permissions of r2.sh have been changed to match those of the
source file, r1.sh

Move (mv) command

e Move command is used to move either an individual file, a list of
files or directory. After a move, the old file name is gone and the
new file name is found at the destination.

p2.log process.log r2.sh testl.c vmreport.log
l.log p3.log rl.sh testl.c
student@k rosum Demo]s mv pl.log repo # file pl.log moved to repo directory
[student@krosum Demo]s Ls

p3.log rl.sh testl.c
2.log process,log r2.sh test2.c vmreport.log
student@rosum Demo]$ ## there is no pl.log file under Demo directory.
[student@rosum Demo]s 1s repo
p2.log process.log testl.log
'Y student@ rosum Demo] s

This is the difference between a move and a copy. After a copy,
the file is physically duplicated; it exists in two places. The move
format appears in below snap.

e The file pl.log is moved to repo directory - move action.
¢ Using mv command we can do rename operation.

[student@krosum Demol$ 1s
p3.log rl.sh testl.c
2.log process.log r2.sh test2.c vmreport.log
[student@krosum Demo]%
[student@krosum Demo]$ # mv oldfile newflile
[student@k rosum

[student@krosum Demo]$
[student@krosum Demo]$
[student@krosum Demo]ls$ ls
p3.log rl.sh testl.c
pZ2.log process.log rZ.sh testZ2.c vmreport.log
[student@krosum Demo]$

mv options

Move has only two options

1. Interactive (-i)
2. Force (-f)

[student@rosum Demo]$ 1s
p3.log rl.sh te

p2.log process.log r2.sh T
[student@krosum Demols cat p2.log
19:11:50 up 13:30, 3 users, Lload average: 0,00, 0,01, 0.05
[student@krosum Demo]$ (s repo ;
pl.log p2.log process.log testl.log
[student@rosum Demo]$ cat repo/p2.log

PID TTY TIME CMD

2010 pts/0 00:00:

3737 pts/0 i !
[student@rosum Uemo|$

[student@rosum Demo]d imv p2.log repo # repo directory file contains pZ.log file

overwrite repo/p2.log file

[student@rosum Demo]$ cat repo/pd.log

19:11:50 up 13:30, 3 users, load average: 0.00, 0.01, 0.05

[student@krosum Demo]$
If the destination file already exists, its old contents are destroyed
unless we use the interactive flag (-i) towarn us on such move
operation. When the interactive flag is on, move asks if we want to
destroy the existing file.

vmreport.log

[student@krosum Demo]$ cat testl2.c
#include<stdio.h>
int main(){

printf("Hello\n");

return 0;

}
[student@krosum Demo]$ cat repo/test2.c

#include<stdio.h>
int main(){

printf("Hello\n");
printf("This is test2 program file\n");
printf("This 1s test2 program file\n");
printf("This is test2 program file\n");
return 0;

}
[student@krosum Demo]$

[student@rosum Demo]$ s
process.log r2.sh test2.c vmreport.log
p3.1log rl.sh testl.c
[student@rosum Demo]$ cat -n test2.c
1 #include<stdio.h>
2 int main(){
3 printf("Hello\n");
4 return 0;
> }
[student@rosum Demo]$ cat -n repostest2.c
1 #include<stdio.h>
2 int main(){
printf("Hello\n");
printf("This is test2 program file\n");
printf("This is test2 program file\n");
printf("This is test2 program file\n");
return 0;

}

[student@krosum Demo]$ my -i test2.c repo

student@rosum Demo]$ mv -1 testZ.c repo
v: overwrite ‘repo/testl.c’? n

Using -i (interactive) option

See the above snap there is no modification in test2.c file placed under repo
directory.

2. Force (-f) option

[student@krosum Demo]l$ 1s -1 test2.c

-rw-rw-r--. 1 student student 63 Mar|21 19:35 testZ.c
[student@krosum Demo]$

[student@rosum Demo]$ 1s -1 repo/test2.c___

-rw-rw-r--. 1 student student 63 Mar|21l 18:04|repo/test2.c

[student@krosum Demo]$

[student@krosum Demo]$ mv -f test2.c repo

[student@k rosum Demo]$

[student@krosum Demo]$ 1s -1 repo/test2.c

-rw-rw-r--. 1 student student 63 Mar 21 19:35 repo/test’.c
[student@krosum Demo]$

If we are sure that we want to write it, even if it already exists, we can
skip the interactive message with the force (-f) option.

Link (In) command

The link command receives either a file or directory as input and
its output is an updated directory.
Two types of link in Linux

1. Hard link
2. Soft link (or Symbolic link)

. Hard links to Files

e To create a hard link to a file, we specify the source file and
destination file.

e [f the destination file doesn’t exist, it is created.
student@ rosum Demo]$ s

studnnt@krosum Demo]$ 1s -1i pl.txt
097307 -rw-rw-r--. 1 student student 40 Mar 21 19:45 pl.txt
5tudent@krnsum Dem&] 1n pl.txt p2.txt # creating hardlink
student@ rosum Demo]
student@rosum Demo]$ 1s -1i pl.txt p2.txt
P097307] -rw-rw-r--. |2 student student 40 Mar 21 19:¢
PO97307| - rw-rw-r--, |2|student student 40 Mar 21 19:¢
stutent@k rosum Demo)$ tat_-n pl.txt

1 eche.test reportl"

2 echo "teést report2"
student@ rosum Demo[$~cat -n p2.txt

1 echo "test reportl™

2 echo "test report2"

P student@krosum Demo]$

$
$
0]%

If it exists, it is first removed and then re-created as a linked
file.

e Note in both file (p1.txt and p2.txt) inode (index number) is
same.

e See the below snap where we have appended TEST3
REPORT TEST4 REPORT content to pl.txt file and this is

automatically updated in p2.txt file.

Similarly if we append numbers to p2.txt file, then it is

automatically updated to p1.txt file.
[student@krosum Demo]$ cat >>pl.txt

echo "TEST3 REPORT"
echo "TEST4 REPORT"

[student@krosum Demo]$ cat p2.txt

echo "test reportl®
echo "test report2"
echo "TEST3 REPORT"
echo "TEST4 REPORT"

[student@krosum Demo]$ cat >>p2.txt

12331212

[student@krosum Demo]$ cat pl.txt

echo "test reportl®
echo "test report2”
echo "TEST3 REPORT"
echo "TEST4 REPORT"
12331212

[student@krosum Demo]$

If we delete source file (pl.txt), the

link count is

decremented but still we can read destination file (p2.txt).

[student@krosum Demo]$ 1s -1 pl.txt p2.txt

-rw-rw-r--. 2 student student 89 Mar 21 19:52 pl.txt
-rw-rw-r--., 2 student student 89 Mar 21 19:52 p2.txt
[student@krosum Demo]$

[student@krosum Demo]$ rm pl.txt] # deleting source file
[student@krosum Demo]$ 1s

p2.txt

[student@kreosum Demo]$ 1ls -1 p2.txt

-rw-rw-r--, listudent student 89 Mar 21 19:52 p2.txt
[student@krusum Demo]$ cat p2.txt

echo "test reportl”

echo "test report2"

echo "TEST3 REPORT"

echo "TEST4 REPORT"

12331212

[student@krosum Demol$

Symbolic Links

When the link (In) command is executed with no option, the result
is a hard link. If we try to create a hard link to a different file
system, it is rejected because hard links must bemade within the
current directorystructure.

To link to a different file system, therefore, we must use symbolic
links. We must also use symbolic links when we are linking to
directories.

There is a danger with symbolic links because, although they
behave like files and directories, they do not physically exist. They
only point to real directory or file.

If the physical file is deleted, the file will no longer appear on a
listing under its original name. It will still be available under its
symbolic link name, but it is not accessible.

If a physical directory is deleted, the symbolic link to the directory
still exists. In that case if we try to list the symbolic directory, it
lists with no files. However, if we try to move to it, we receive a
message that it doesn’t exist.

[student@krosum Demo]$ 1s

a.txt b.txt

[student@krosum Demo]$ cat a.txt

test file name

TEST FILE DATA

1232121312

[student@krosum Demo]$ cat b.txt

test file name

TEST FILE DATA

1232121312

[student@krosum Demo]$ rm a.txt
[student@krosum Demo]$ Ls

D.TXT

[student@krosum Demo]$ file b.txt
b.txt: broken symbolic link to a.txt'
[student@krosum Demo]$ cat b.txt

cat: b.txt: No such file or directory
[student@krosum Demo]$

[student@krosum Demo]$ Lls

a.txt -

[student@krosum Demo]$|ln -s a.txt b.txt
[student@krosum Demo]$ 1s -1 a.txt b.txt

deleting source file (a.txt)

-rw-rw-r--. 1 student student 15 Mar 21 20:11 a,txt =
Trwxrwxrwx. 1 student student 5 Mar 21 20:11|b.txt -> a.txt

[student@krosum Demo]$ ls -1 a.txt b.txt

2097308 a.txt 2097307 b.txt

[student@krosum Demo]$

[student@krosum Demol]$ cat a.txt

test file name

[student@krosum Demo]$ cat b.txt

test file name

[student@krosum Demo]$ cat ==a.txt

TEST FILE DATA

[student@krosum Demo]$ cat b.txt

test file name

TEST FILE DATA

[student@krosum Demol$ cat >>b.txt
=

DESCRIPTION HARD LINK

SOFT LINK

SYNTAX

INODE

LINK COUNT

FILE
ACCESSIBILITY

Insource target

Same for both source and target
files.

Increased

If we delete source file, we can
able to access target file.

In-ssource target

Different for source and target
file.

Single link count

If we delete source file ,target
file is broken and we can’t
access

Remove (rm) command

¢ The remove (rm) utility deletes an entry from a directory and file.
To delete a file, we must have write permission.

[student@krosum Demol$ 1s
process.log

[student@krosum Demo]$ rm process.log
[student@krosum Demol$ 1s
student@krosum Demo]$

e In the above snap, process.log file is deleted from current
directory.

[student@krosum Demol$ 1s

1.txt

[student@krosum Demo]$ rm -i pl.txt
rm: remove regular file ‘pl.txt’'? n
[student@krosum Demo]$ 1s

nl.Txt

[student@krosum Demo]$

directory, we used option —r (recursive removal)

Note: to delete a

—i (interactive) option

[student@krosum Demo]$ 1s
pl.txt
[student@krosum Demo]$ rm -f pl.txt

[student@krosum Demo]$ 1s
[student@krosum Demo]$

-f (force) option

CHAPTER 10 - SHELL
META-CHARACTER

Asterisk (*) Character

e The asterisk (*) characteris also called the wildcard character and
represents zero or more characters, except the leading period (.)
of a hidden file.

e For example, in order to list all files and directories that start with
the letter p followed by zero or more characters and to list all files
and directories that end with the .log, preceded by zero or more
characters, refer following snap.

[student@rosum ~]% 1s
ab. log Fd.xt P2 pl.c process
F3:Ext process.log typescript
chat emp.csv IP namesl.txt p2.c ptr.txt
digits Fl.txt 1Fl names.txt
[student@rosum ~]$

[student@rosum ~]$ 1s p*

l.c pd.C process process.log ptr.ixt

[student@rosum ~]$

[student@rosum ~]$ 1s -1 *.log

-rw-rw-r--. 1 student student 107 Mar 23 18:3
18:3

ab.log

£7.
-rw-rw-r--. 1 student student B84 Mar 20 18:31 process.log

[student@rosum ~]$

Question Mark (?) Character

e The question mark (?)character is also called a wildcard

character that represents any single character.
[student@krosum =] s

F2.txt IP2 pl.c process
ab.log F3.txt process.log typescript
emp.csv IP namesl.txt p2.c ptr.txt
IF1 names.txt

LI student@krosum ~1%
For example, to list all files and directories where each file
name contains exactly two characters that end with extension .c

[student@krosum -]% 1s
F2.txt IP2

ab . Log F3.txt
chat emp . csv IP namesl.txt

digits Fl.txt IF1 names,txt
[student@krosum ~]%
[student@krosum ~]% [ls 777
IP1 IP2

[student@krosum ~]%|1s 7777
chat pl.c p2.c

emo:

[student@krosum ~]% 1s test??

s: cannot access test??: No such file or directory

[student@krosum -]%

Note: If no file matches with an entry using the question mark (?) character,

dn error message appedrs.

Square Bracket ([]) Characters

e The square bracket ([]) characters represent a set or range of
characters for a single character position.

e A set of characters is any number of specific characters,

e For example, [acb].

o The characters in a set do not necessarily have to be
in any order.

o For example, [abc] is the same as [cab].Whereas a
range of characters is a series of ordered characters.

o A range lists the first character followed by a
hyphen (-) and then the last character,
o for example, [a—z] or [0-9].

e When specifying a range, arrange the characters in the order
that you want them to appear in the output.
o For example, use [A-Z] or [a—z] to search for any
uppercase or lowercase alphabetical character,
respectively.

[root@krosum ~]# 1s| p[0-9].py # file name p<followed by any single digit=.py
l.py p2.py

[root@krosum ~]#

[root@krosum ~]# 1s -1|p[0-9].py # file name p<followed by any single digit=.py
-rw-r--r--. 1 root root 293 May 25 2019 pl.py

-rw-r--r--. 1 root root 146 May 25 2019 p2.py

[root@krosum ~1#

[root@krosum ~]# df -Th|grep "/dev/sda[l-4]"

2 xfs 9.86 2.6G 7.26 27

extd 488M 73M 396M 16% }bﬂﬂt

o Is p[abc].java # file name p<followed by character a or
b or c> .java extension

The Brace Expansion

e The brace {} expansion is a mechanism by which arbitrary
strings may be generated.

e The preamble "a" is prefixed to each string contained within the
braces, and the postscript "e" is then appended to each resulting
string, expanding left to right.

[root@krosum ~]# echo a{b,c,d}e
abe ace ade

[root@krosum ~]#

e Shell meta-characters are specific characters, generally symbols
that have special meaning within the shell.
e The meta-characters supported in bash are listed as follows:

The shell meta-characters are listed as follows:

META- DESCRIPTION
CHARACTERS

| Sends the output of the command placed at the left of
the pipe symbol as an input to the command on the
right of the symbol.

& Runs the process in the background, allowing you to
continue working on the command line.

5 Allows you to list multiple commands on a single line,
separated by this character.

0 Groups commands and sends their output to the same
place.

< The command placed at the left of the symbol, gets its
input from the right of the symbol

> Sends the output of the command placed on the left of
the symbol, into the file named on the right of the
symbol.

Caution: Do not include these meta-characters in filename/ directory name
during their creation.

Redirecting Meta-characters

e (Command redirection is enabled by the following shell
meta-characters:
o Redirection of standard input (<)
o Redirection of standard output (>)
o Redirection of standard error (2>)

The File Descriptors

e Each process works with file descriptors.

e File descriptors determine where the input to the command
originates and where the output and error messages are
directed to.

e The table explains the file descriptors.

FILE FILE DEFINITION
DESCRIPTOR DESCRIPTION
NUMBER ABBREVIATION

0 STDIN Standard command input
STDOUT Standard command output
2 STDERR Standard command error

[

Command Redirection

By default, the shell receives or reads input from the standard
input, the keyboard and displays the output and error messages to
the standard output, the screen.

Input redirection forces a command to read the input from a file
instead of receiving from the keyboard.
[root@krosum T]# uname -rs # display kernel name and version

inux 3.9.5-301.fc19,1686

[root@rosun T]#

[root@krosum T)# uname -rs >rl.log # redirecting command result to file(rl,log)
[root@rosum T)# 1s -t

r1.log emp.csv

[root@krosum T)# cat rl.log

inux 3.9.5-301.fc19.1686

[root@rosum T}# ps >process.log # redirect process result to process.log file
[root@krosun T]# 1s

enp.csv process.log rl.log

[root@krosum T]#

[root@rosun T]# ps -e|grep bash|wc -1

[root@rosum T]# ps -e|grep bash|we -1 >count.log # redirect pipe result to count.log file
[root@krosum T)# 1s

ount.log emp.csv process.log rl.log

Output redirection sends the output from a command into a file
instead of sending the output to the screen.

Redirecting Standard Input

e The less than (<) meta-character processes a file as the standard
input instead of reading the input from the keyboard.

command<filename
or

command(<filename

[root@krosum ~]# mailx <result.log [example

use the result.logfile as the input for the mailx command.

[student@krosum ~]% cat -n process
1 bash
2 python
3 netns
4 systemd
[student@krosum ~]% tr 'a-z' 'A-Z' <process # translate all lowercase chars are

convert to uppercase chars

[student@krosum ~]%

Redirecting Standard Output

The greater-than (>)meta-character redirects the standard output
to a file instead of printing them to the screen.

command>filename
or

command1> filename

If the file does not exist, the system creates it. If the file exists, the
redirection overwrites the content of the file.

For example, writes the output of current process command to
process.logfile

ps>process.log

[student@krosum ~]1$ ps
PID TTY TIME CMD
8206 pts/0 00:00:01 bash
9783 pts/0 00:00:00 ps
[student@krosum ~]1%
[student@krosum ~]$ ps >process.log

[student@krosum ~]1%

[student@krosum ~]$ cat process.log
PID TTY TIME CMD

8206 pts/0 00:00:01 bash

9784 pts/0 00:00:00 ps

[student@krosum ~]%

When you use a single greater-than (>) meta-character and if the
file already exists, the command overwrites the original contents
of the file whereas when you use double greater-than (>>)
characters, the command appends the output to the original

content of the file.

Redirecting Standard Error

e A command using the file descriptor number (2)and the greater-

than (>) sign redirects any standard error messages to the
/dev/nullfile.

command2>/dev/null

[student@krosum ~]% cat rl.log

12:45:51 up 1 day, 11:12, 3 users, Lload average: 0.10, 0.08, 0.06
[student@krosum ~]1%

[student@krosum ~]$ uptime 1>rl.log # same as uptime >rl.log
[student@krosum ~]1%

[student@krosum ~1%

[student@krosum ~]$ cat rl.log

12:46:11 up 1 day, 11:12, 3 users, load average: 0.20, 0.11, 0.06
[student@krosum ~]%

The following example shows the standard error redirected to the
error.logfile.

[student@krosum ~]$ uptimeee

bash: uptimeee: command not found
[student@krosum ~]$%

[student@krosum ~]% uptimeee >error.log
bash: uptimeee: command not found
[student@krosum ~]%

[student@krosum ~]$ uptimeeee 2=error.log

[student@krosum ~]% cat error.log

bash: uptimeeee: command not found

[student@krosum ~]% mkdir /D1 2>>error.log # appending command erro
error.log file

[student@krosum ~]% cat error.log
: uptimeeee: command not found

: cannot create directory ‘/D1': Permission denied
student@krosum ~]%

For redirecting both stdout and stderr message to the same file, use following
syntax

2>&1

[student@krosum ~]$ uptime 1>rl.log 2>error.log

[student@krosum ~]$ ###### ###### valid command result(STDOUT)

[student@krosum ~]$ ##### redirecting to rl.log file.

[student@krosum ~]$

[student@krosum ~]$ uptimeeee 1>rl.log 2>error.log

[student@krosum ~]$ ###sss REBBHARA S

[student@krosum ~]$ # invalid command - error message(STDERR)

[student@krosum ~]$ # redirecting to error.log file.

[student@krosum ~]$

[student@krosum ~]$ uptlme >resu1t log 2>&1 # both STDOUT/STDERR writing to
result.log file

[student@krosun ~]$ uptimeeee >>result.log 2>&1

[student@krosum ~]$ cat result.log

13:06:23 up 1 day, 11:33, 3 users, load average: 0.17, 0.11, 0.06

hash: uptimeeee: command not found

[student@krosum ~]$

Note: The syntax 2>&1 instructs the shell to redirect stderr (2) to the same
file that receives stdout (1).

Using the Pipe Character

e The pipe character redirects the standard output of one command
to the standard input of another command.

Command1 | Command?2

e For example, use the standard output from the who command as
the standard input for the wc-I command

who| wc-1
cat/etc/passwd|grepbash|wc-1

[student@krosum ~]%
[student@krosum ~]$ who|wc -1
3
[student@krosum ~]$ cat /etc/passwd|grep bash
root:x:0:0:root:/root:/bin/bash

student:x:1000:1000:apelix student:/home/student:/bin/bash
[student@krosum ~]1%

[student@krosum ~]$ |cat /etc/passwd|grep bash|wc -1

2
[student@krosum ~]%

Like this we can use pipes to connect numerous commands.

Quoting Characters

¢ Quoting is a process that instructs the shell to mask or ignore the
special meaning of shell meta characters.

e The quoting characters are:
o Single forward quotation marks (°): Instruct the shell

to ignore all enclosed meta-characters.

[student@krosum ~]%$ echo '$0'

$0

[student@krosum ~]$ echo $0

bash

[student@krosum ~]1$ echo |'$#!@#%$%&"

$# 1 @#$%&
[student@krosum ~]1$ echo $#!@#$%&
bash: !@#%$%: event not found

[student@krosum ~1$%

o Backslash (\): Prevents the shell from interpreting the next
character after the (\) as a meta-character.

[student@krosum ~]$ echo "Hello"
ello

[student@krosum ~]$%$ echo \'"Hello\"
'Hello"

Single backward quotation marks ('): Instruct the shell to
execute and display the output for a UNIX system
command.

Parentheses ($ (command)): Instruct the shell to execute and
display the output of the command enclosed within
parentheses.

CHAPTER 11 - FILE
PERMISSION

All files and directories in Linux have a standard set of access
permission.

This access permission controls the access to all the files available
and can provide a fundamental level of security to the files and
directories in a system.

How to view file permission?

e To view the permissions for files and directories, use

Is—1
or
Is—n

[student@krosum ~]$ 1s -1 pl.txt
-rw-rw-r--. 1 student student 47 Mar 20 20:59 pl.txt

student@krosum ~]¢

[student@krosum ~]$ 1s -1 pl.txt
rw-rw-r--i. 1 student student 47 Mar 20 20:59 pl.txt

ak rosum —~
A r = Readable
r'w- rw- I - -
user group other W = Writeable
¥ = Executable
d directory
| link tile

¢ character type file
b block type file

S socket file

p named pipe

e The first fieldof information displayed by the Is-1 command is the
file type.
o The file type typically specifies whether it is a file or a
directory.
o A file is represented by a hyphen (-) whereas a directory
is represented by the letter d.
e The remaining fieldsrepresent the permission groups: owner,
group,and other.

Permission Groups

There are three categories of permissions groups:

— Owner
— Group
— Other
* The table describes the permission groups and their scope
PERMISSION DESCRIPTION
Owner Permissions used by the assigned owner of the file or
directory.
Group Permissions used by members of the group that owns
the file or directory.
Other Permissions used by all other users except the file
owner, and members of the group that owns the file or
the directory.

Permission Set

Each permission group acquires three permissions, read, write and
execute which together called a permission set.

Each file or directory has a permission set specified for each
permission group. Since we have 3 type of permission group,
totally each file or directory contains 3 permission set
corresponding to each group.

The first permission set represents the owner permissionsthe
second set represents the group permissions, and the last set
represents the other permissions.

The read, writeand executepermissions are represented by the
characters r, w,andxrespectively.

The presence of any of these characters (rorw or x),indicates that
the particular permission is granted.

A dash (-) symbol in place of a character in a permission set
indicates that a particular permission is denied.

Linux assigns initial permissions automatically when a new file or
directory is created.

Interpreting File and Directory
Permissions

[PERMISSION FILE ACCESS DIRECTORY ACCESS

o We can modify the file o We can modify the contents
Write(w) contents. of a directory, such as by
creating and deleting the

file.

The read, write, and execute permissions are interpreted differently
depending upon whether it is a file or a directory. Note: For a directory to be
ofgeneral use, it must at least have read and execute permissions.

Determining File or Directory Access

The Is -n command determines the ownership of files and directories.

All files and directories have an associated
useridentification number (UID)and a group identification
number (GID).

To view the UIDs and GIDs, run thels-ncommand on the
/var/admdirectory.

Is-np1.txt

TheUIDidentifies the user who owns the file or directory.
The GID identifies the group of users who owns the file or
directory.

The Linux uses these numbers to track the ownership and
group membership of files and directories.

Interpreting the Is — n Command
$1ls -n /var/adx

total 244

drwxrwxr-x 544 512 MNov 15 14:55 acct
— 125 0 Jun 7 12:28 aculoeg
drwxr-xr-x 244 512 Jun 7 12:28 exacct
—r—r——-r—-— 100 308056 Nov 19 14:35 lastlog
drwxr-xr-x 244 512 Jun 7 12:28 1log
I=rw-r-z—] 100

|_6516j Nov 18 07:48 |messagesj
|

(output truncated)
The file/directory type

The number of hard links to the file or directory
The UID of the owner

The time and date the file or directory was last modified
The name of the file or directory

e The above image illustrates the parts of the output of the

Is-n command

The first character is the file/directory type.
The second set of nine characters represents the permission set.
e The third character represents thenumber of hard linksto the
file or directory.

e A hard link is a pointer that shows the number of files
or directories that are linked with a particular file in the
same file system.

The fourth character represents the UID of the owner.

The fifth character represents the GID of the group.

The sixth set represents the size of the file or directory in bytes.
The seventh set of characters represents the time and date of
the file or directory that was last modified.

The last set of characters represents the name of the file or
directory.

Use Owner
Permissions

Use Group
Permissions

Yes

No
GID=GID
No
Use Group
Permissions

Determining
Permissions

When a user attempts to access a file or directory, the UID of
the user is compared with theUID of the file or directory.

If the UIDs match, the permission set for the owner determines
whether the owner has access to the file or directory.

If the UIDs do not match, the user’s GID is compared with the
GID of the file or directory. If these numbers matches, the
group permissions apply.

If the GIDs do not match, the permission set for other is used to
determine file and directory access.

Referring to the above image,
o If the UID equals the UID, then use the owner
permissions.
o If not, checks whether GID equal the GID? If yes, use
group permissions. If not, use other permissions.

Changing the Permissions

e We can change the permissions on files and directories by using
the chmod command.
e Either the owner of the file/directory (or) the root user can use the
chmod command to change the permissions.
e The chmod command can be used in either symbolic or octal
mode.
o Symbolic mode uses a combination of letters and
symbols to add or remove permissions for each
permission group.

o Octal mode, also called the absolute mode, uses octal
numbers to represent each permission group.

Note :

We can assign execute permissions on files with the chmodcommand.
The chmod command is described later in this lesson. Execute permissions
are not assigned by default when we create a file.

Changing Permissions: Symbolic
Mode

The syntax for the chmod command in the symbolic mode is:

chmodsymbolic_modefilename

The symbolic_mode option consists of three parts:

o The user category (owner, group, or other) affected

o The function performed

o The permissions affected
For example, if the option is g+x, the executable permission is
added to the group.

student@rosum ~]$ 1s -1 pl.txt

rW-ru-r--, 1 student student 4/ Mar 20 20:39 pl.txt

student@krosun ~]$ chnod u+x pl.txt # Add execute permission for the user
student@rosum ~]$

student@krosum ~]§ 1s -1 pl.txt

rwxru-r--, 1 student student 47 Mar 20 20:59

student@rosum ~|$

student@rosun ~|$ chmod o-r pl.txt # To remove the read permission for others
student@rosum ~]$

student@krosum ~§ 1s -1 pl.txt

ruxrW----. 1 student student 4/ Mar 20 20:59

student@rosum ~|$

The following examples illustrate how to modify the permissions
on files and directories by using the symbolic mode.

$ chmod symbolic mode filename

who |op | permissions

u Owner (user) Permissions

g Group Permissions

o Other Permissions

a All Permissions (Owner, Group, Other)

+ Add Permissions
— Remove Permissions
= Assign Permissions Absolutely

r Read
w Write
*x Execute

Changing Permissions: Symbolic Mode

o The above image shows the components of the symbolic
mode command syntax.
o The first three letters represent “who” and consist of the

following codes:

u : Owner (user) permission
g : Group permissions
o : Other permissions

a : All permissions (owner, group, other)

e The next section is the “op” section and consists of the following:

+ : Add permissions
- : Remove permissions

= : Assign permissions

e The last section is the “permissions” section and consists of the

following:
r : Read
w : Write

X : Execute

Changing Permissions: Octal Mode

Thechmod command syntax in the octal mode is:

chmodoctal_modefilename

The octal_mode option consists of three octal numbers, 4, 2, and 1,
which represent a combination of permissions, from 0-7, for the
file/directory.

OCTAL VALUE PERMISSION
Read
2 Write

Execute

The above image shows the octal number corresponding to
permission.

For each permission set, these numbers are combined to form a
single number.

OCTAL VALUE PERMISSION BINARY

6 rw- 110(4+2+0)

4 r-- 100(4+0+0)

2 ~w- 010(0+2+0)

0 000(0+0+0)

Changing Permissions: Octal Mode

e The table shows the octal numbers that represent a combined
set of permissions.

e We can modify the permissions for each category of the users
by combining the octal numbers.

o The first set of octal number defines owner permissions, the
second set defines group permissions, and the third set defines

other permissions.
OCTAL MODE PERMISSIC
644 IW-I--I--
751 I'WXIr-X—3X
775 ITWXIWXTI-X
777 TWXTWXTWX

e The table shows the permission sets in the octal mode.For
example, let’s set permissions so that the owner, group, and
other have read and execute access only.

[student@krosum ~]%$ 1ls -1 pl.txt

rwxrw----. 1 student student 47 Mar 20 20:59
[student@krosum ~1%

[student@krosum ~]1$ chmod 654 pl.txt

[student@krosum ~1%

[student@krosum ~]%$ 1s -1 pl.txt

rw-r-xr--. 1 student student 47 Mar 20 20:59
[student@krosum ~1%

read and execute permission
: read only
read , write permission

e The chmod command fills with zeros to the left of octal digits.

Note: chmod44pl.txtbecomes chmod044p1.txt.

Caution
Note:- Missing one or more octal digits can lead to unwanted access to files
or directories.

e Some additional examples show how to modify permissions
on files and directories by using the octal mode.
o Assigning all the permissions for owner, group and
others, permits read, write and execute permissions
fully to that particular file.

[student@krosum ~]$ 1ls -1 pl.txt

-rw-r-xr--. 1 student student 47 Mar 20 20:59
[student@krosum ~1%

student@krosum ~]$ chmod 777 pl.txt

[

[student@krosum ~1%

[student@krosum =~]$ 1s -1 pl.txt

-rwxrwxrwx. 1 student student 47 Mar 20 20:59
[student@krosum ~1%

CHAPTER 12 - THE UMASK
COMMAND

e When files and directories are created, initial permission values
are automatically assigned.

e The initial permission value for a file is 666 (rw-rw-rw-) and it
is 777 (rwxrwxrwx) for a directory.

e The user mask affects and modifies the default file permissions
assigned to the file or directory.

e We can set the user mask by using the umaskcommand in a
user initialization file.

e To view the umask value, run theumask command.

[student@krosum ~]% whoami [root@krosum ~]# whoami
student root
[student@krosum ~]% umask [root@krosum ~]# umask

0002 0022
[student@krosum ~]$% [root@krosum ~]1#

Note:

o The default umask value for anon-root user is 002.

o The default umask value for a root user is 022.

e The umask utility affects the initial permissions for files and
directories when the files and directories are created.

e The umask utility is a three-digit octal value that is associated
with the read, write and execute permissions.

o The first digit determines the default permissions for theowner, the
second digit determines the default permissions for the group and
the third digit determines the default permissions for other.

e For example, to set the default file permissions in a user
initialization file to rw-rw-rw-,run the following command:

umask000

Determining umaskValue

umask OCTAL DIRECTORY
VALUE FILE PERMISSIONS PERMISSIONS

0 rw- rwx
1 rw- rw-
2 r-- r-x
3 r-- r--

4 -w- -WX
5 -W- -W-
6 --- --X

e The table shows the file and directory permissions for each of the
umask octal value.

e This table can also help us to determine the umask value that we
want to set on files and directories.

e To determine the umask value for a file, subtract the value of the
permissions that we want from 666 or 777 from a directory.

e Let’s see an example. If we want to change the default mode for
files to 644 (rw-r--r--),the difference between 666 and 644 gives
022, which is the value you would use as an argument to the
umaskcommand.

66 6
00 2(-)
66 4

Default file permission

(non-root user)

rw-rw-r--

777

00 2(-)

775

Default directory permission
(non-root user)

rwXrwxr-x

[student@k rosum ~]% umask

0002

[student@k rosum ~]1% vi tl.txt # creating new file
[student@k rosum =]% 1s -1 tl.txt

-rw-rw-r--. 1 student student 3 Jun 14 13:20 tl.txt
[student@k rosum ~]%

[student@k rosum ~]% mkdir Demo # creating new directory
[student@k rosum ~]%

[student@k rosum ~]% 1s -1d Demo

drwxrwxr-x. 2 student student 4096 Jun 14 13:21
[student@k rosum ~]%

777
02 2(-)
755

Default directory permission (root user)

IrwXxr-Xr-X

66 6
022(-)

64 4
Default file permission
(root user)

rw-r--r--

[root@k rosum T]# umask

0022

[root@krosum T]# vi tl.txt # creating new file
[root@krosum T]# ls -1 tl.txt

-rw-r--r--. 1 root root 4 Jun 14 13:25 t1.txt
[root@k rosum T]#

[root@k rosum T]# mkdir Demo # creating new directory
[root@k rosum T]#

[root@k rosum T]# 1s -1d Demo

drwxr-xr-x. 2 root root 4096 Jun 14 13:25

[root@k rosum T]#

Applying the umask Value

The default permissions assigned to the new files and directories
are based on the initial value of umaskwhich varies with the user
login (whether root or non-root).
The table displays the results in the symbolic mode. For example,
the initial permissions for a new file in the symbolic mode isrw-
rw-Irw-,
This set of permissions corresponds to read/write access for the
owner, group, and other.
This value is represented in the octal mode as, 420420420 or 666.
o To mask out the write permission for the group and
other, use 022, the default umask value.
o The result in the octal mode is 4204004000r 644,
and rw-r—r—in the symbolic mode.
We can apply this same process to determine the default
permissions for directories.
For directories, the initial value specified by the system is
rwxrwxrwx. This corresponds to read, write, and execute access
for the owner, group, and other.
This value is represented in the octal mode as 421421421 or 777.

PERMISSION DESCRIPTION
FIELD
rW-rw-rw- Initial Value specified by the system for a new
file
~—-—-W—W- Default umask utility value to be removed
rw-r- -r- - Default permissions assigned to newly created
files
rWXIwXIrwx Initial values specified by the system for a new
directory
--—-W- -W- Default umask utility value to be removed
rWXI-Xr-X Default permissions set for newly created

directories

Use the default umask value of 022to mask out the write
permission for the group and other.

The result in the octal mode is 421401401 or 755,and rwxr-xr-xin
the symbolic mode.

Note

Changing the umaskValue

We can change the umask value to a new value on the command
line.

For instance, we might require a more secure umask value of say
027, which assigns the following access permissions to newly
created files and directories:

o Files with read and write permissions for the owner,
read permission for the group, and no permissions for
other (rw-r-----).

o Directories with read, write, and execute permissions
for the owner, read and execute permissions for the
group, and no permissions for other (rwxr-x---).

The new umask value affects only those files and directories that
are created from this point onwards.

However, if the user logs out of the system, the new value (027) is
replaced by the old value (022) on subsequent logins because the
umask value has been changed at run time using the command
line.

If we want to make a permanent change on umask value, change
the umask parameter included in the configuration file.

[root@k rosum T]# umask # current umask value

0022

[root@krosum T]# vi t2.txt # creating new reg.file

[root@krosum T]# 1s -1 t2.txt

=rw-r--r--. 1 root root 0 Jun 14 13:45 t2.txt

[root@k rosum T]#

[root@k rosum T]# mkdir D1 # creating new directory D1

[root@k rosum T]#

[root@ rosum T]# 1s -1d D1

drwxr-xr-x. 2 root root 4096 Jun 14 13:45

[root@k rosum T]#

[root@k rosum T]# # changing umask value

[root@k rosum T]#

[root@k rosum T]# umask

0027

[root@krosum T]# vi t3.txt # creating new reg.file

[root@krosum T]# 1s -1 t3.txt # default file attributes
1l root root @ Jun 14 13:46 t3.txt

[root@k rosum T]# mkdir D2 # creating new directory

[root@krosum T]# 1ls -1ld D2 # default directory attributes

drwxr-x---, 2 root root 4096 Jun 14 13:47

[root@k rosum T]#

The tar Command

The tar command stores, lists, or extracts files in an archive.
e The output of using a tar command is a tar file.
e In Linux, the default output location for a tar file is the stdout.

Syntax
tar -option archivefileinputfiles

OPTIONS DEFINITION

C Creates a new tar file

Lists the table of contents of the tar file

Extracts files from the tar file

Specifies the archive file or tape device.

Executes in verbose mode, writes to the standard output
Follows symbolic links as standard files or directories

Reads or writes archives through gzip

- N T < ™ N

Compresses and extracts files and directories using bzip

Creating a tar Archive

You can use the tar command to create an archive file containing
multiple files or directories onto a disk or file.

The following example shows you how to archive your home
directory onto a disk.

tar-cvfbackup.tar inputfilel..inputfileN

[root@rosum ~]# tar -cvf Backupl.tar JavaBackup Test emp.csv process.log
JavaBackup/

JavaBackup/sun-javadb-demo-10.6.2-1.1.1386. rpm
JavaBackup/sun-javadb-javadec-10.6.2-1.1.1386. rpm
JavaBackup/jdk-6u37-1inux-1586-rpm.bin
JavaBackup/jre-6u38-1inux-1586-rpm.bin
JavaBackup/sun-javadb-docs-10.6.2-1.1.1386. rpm
JavaBackup/jdk-6u37-1inux-1586. rpm
JavaBackup/install.sfx.2426
JavaBackup/sun-javadb-common-18.6.2-1.
JavaBackup/sun-javadb-client-10.6.2-1.
JavaBackup/sun-javadb-core-10.6.2-1.1,
Test/

Test/process. log

Test/emp.csv.gz

Test/Bl.tar

Test/LOGFILEs.tar

Test/D1/

1.1386. rpm
1.1386. rpm
1386. rpm

The following example shows you how to archive multiple files
into an archive file called files.tar.

Viewing a tar Archive

e We can view the names of all the files that have been written
directly to a disk or file archive.

e To view the content of the Backup1.tar directory on the disk, enter
the following command:

To view the content of the files.tar archive file, enter the following
command:

tar-tvf backup.tar

| rootik rosum Temp |# 1s
ackupl . Eemp ., CSV
drwxrwxr-x studer [19 -18 [
Br
- student/student

% students/student G&EG0 9-08-18 . cup/ jdk -6u37 - Linux - 1586 - rpm.bin
x student/student 46 -0] JavaBac jre- 1 -rpm.bin
- student/student 4 -11- JavaBac

- student/

- = j,_._”

- studentss

- students 199375 2 -03 09:56 JavaBackup/sun-javadb-client-10.6.2-1.1.1i386

Extracting a tar Archive

e We can retrieve or extract the contents of an archive that was
written directly to a disk device or to a file.

e To retrieve the files from the disk archive, enter the following
command:

tar-xvf backup.tar

root@k rosum Temp |#
Backupl.ta emp .csv

[root@k rosum Temp]#
JavaBackup/
JavaBackup/sun-javadb-demo-10.6.2-1.1.1386. rpm
JavaBackup/sun-javadb-javadoc-10.6.2-1.1.1386. rpm
JavaBackup/jdk-6u37-1linux-1586-rpm.bin
JavaBackup/jre-6u38-1linux-1586-rpm.bin
JavaBackup/sun-javadb-docs-10.6.2-1.1.1386.rpm
JavaBackup/jdk-6u37-1linux-1586. rpm
JavaBackup/install.sfx.2426
JavaBackup/sun-javadb-common-10.6.2-1.1.1386.rpm
JavaBackup/sun-javadb-client-10.6.2-1.1.1386.rpm
JavaBackup/sun-javadb-core-10.6.2-1.1.1386. rpm
Test/
Test/process.log

File Compression

With the enormous amount of enterprise data that is created and
stored, there is a urgent need to conserve disk space and optimize
data transfer time.
There are various tools, utilities, and commands that are used for
file compression. Some of the commonly used commands are:

o The compress command

o Thegzipcommand

o The zip command

Viewing a Compressed File: zcat
Command

e The zcat command prints the uncompressed form of a compressed
file to the standard output.

e To view the content of the filename.gzcompressed file, enter the
following command:

o zcatfilename.gz

Note: The zcat command interprets the compressed data and displays the
content of the file as if it has not been compressed.

Compressing a File : gzip Command

e Alternatively, you can use the gzipcommand to compress files.

e Thegzipcommand performs the same function as the compress
command, but the gzipcommand generally produces smaller files.

e For example, to compress a set of files, filel, file2, file3 and file4,

enter the following command:

[root@krosum Temp|# cat process.log
PID TTY TIME CMD
26027 pts/2 00:00:00 bash
26240 pts/2 00:00:00 ps
[root@krosum Temp]#
Temp]# gzip process.log
Temp]# 1s
ach IF Emp.CSV roce
[root@krosum Temp|# cat process.leg.gz
whbi*[process. logShitQ

[root@krosum Temp]#

Note: The compressed files have a .gzextension.

. 6HIE [R=b<T [root@k rosum Templ#

Uncompressing a File :
gunzipCommand

e The gunzip command uncompresses a file that has been
compressed with the gzip command.

gunzipfilename

e To uncompressing or extract the filel.gz file, use the following
command:

[root@k rosum

[root@k rosum

[root@k rosum

[root@k rosum
[root@k rosum
Backupl.tat

[root@k rosum

Temp | #

Temp]# 1s

emp .csv

Temp]#

Temp]#
Temp]# 1s

emp .csv process.log
Temp] #

gunzipfilel.gz

Compressing and Archiving Multiple
Files: zip Command

e The zip command compresses and archives multiple files into a
single file in one go.

e To compress file2 and file3 into the file.zip archive file, enter the
following command:

[root@k rosum Temp]# gzip process.log
[root@ rosum Temp]# 1s

Backupl.tar emp.csv process. |
[root@k rosum Temp]# zcat process.log.gz

PID TTY TIME CMD
26027 pts/2 00:00:00 bash
26240 pts/2 00:00:00 ps
[root@k rosum Temp)#
ziptarget_filenamesource_filenames

CHAPTER 13 - LINUX
PROCESS

As we discussed, Linux abstractions are file and process. We discussed
what is file? What is Linux file structure? What are file types? and what are
file manipulation commands?

Now let’s discuss about process.

A process,also known as a task, is the running form of a program. It
means when the file enters the execution state, the execution instance of a file
(or) program (or) command called process is created.

In simpler form, the execution of a Linux command is called process.
Whenever a new process is created, kernel will create a unique ID and this

ID is called process ID (PID).

e Processes have a parent/child relationship.
e A process can spawn one or more children.

e Multiple processes can run in parallel.
e Linux command line is an active process (Running process).

Whenever a new command is executed on the command line, execution
of new command is called that child process is created.

By the time, the shell command line process will enter in to waiting state
and once child execution is done. i.e., reached to exit state, the parent process
(shell command line) will resume to the active (Running)state.

Attributes of a Process

e The kernel assigns a unique identification number to each process
called a process ID or PID.
e The Kernel uses the PID to track, control and manage the process.

o FEach process is further associated with a UID and a GID.

e UIDs and GIDs indicate the process owner.

e Generally, the UID and GID values associated with a process are
the same as the UID and GID of the user who has started the
process.

A process consists of an address space and a metadata object. The
process space is related to all the memory and swap space that a process
consumes. The process metadata is just an entry in the kernel's process table
and stores all other information about a process.

Process States

* A process may be in any one of the following states:

— D: Uninterruptible sleep (usually 10)

— R:Running or runnable (on run queue)

— S:Interruptible sleep (waiting for an event to complete)

— T Stopped, either by a job control signal or because it is being traced

— Z:Defunct ("zombie") process, terminated but not reaped by its parent

The process state can be displayed using the ps command. For BSD
formats and when the stat keyword is used, additional state information is
displayed such as the following:

» <: High-priority (not nice to other users)

* N: Low-priority (nice to other users)

* L:Has pages locked into memory (for real time and custom 10)
* s: Is a session leader

¢ I:Is multithreaded

* +: Is in the foreground process group

Note: niceis a useful program that is used to lower or increase the scheduling
priority of a process or batch processes. Users can assign nice values between
0 (no effect) and 19(greatest effect). The higher the nice value, the lower the
scheduling priority.

Process Subsystems

Each time we boot a system, execute a command, or start an
application, the system activates one or more processes.

* A process as it runs uses the resources of the various subsystems:

e Disk I/O
e Network
e Memory
e CPU

A process, as it runs, uses the resources of the various subsystems:

* The disk 1I/0 subsystem:Controls disk utilization and resourcing as well as
file system performance.

* The network subsystem:Controls the throughput and directional flow of
data between systems over a network connection.

* The memory subsystem:Controls the utilization and allocation of physical,
virtual, and shared memory.

* The CPU subsystem:Controls CPU resources, loading, and scheduling.

If not monitored and controlled, processes can consume our system
resources, causing the system to run slowly and in some cases even halt. The
Linux kernel collects performance-relevant statistics on each of these
subsystems, to include process information. We can view and use this
information to assess the impact that the processes have on the subsystem
resources.

Listing System Processes

* The process status (ps) command lists the processes that are associated with
the shell.

* For each process, the pscommand displays the PID, the terminal identifier
(TTY), the cumulative execution time (TIME), and the command name
(CMD).

* For example, to list the currently running processes on the system using the
ps command.

[root@k rosum Temp |# ps
PID TTY TIME CMD
1195 pts/0 00:00:00 bash

25269 pts/0 00:00:00 ps
[root@k rosum Temp | #

The ps command has several options that you can use to display
additional process information.

» -a: Prints information about all processes most frequently requested, except
process group leaders and processes not associated with a terminal.

» -e: Prints information about all the processes that currently running.
» -f:Generates a full listing.
* -1: Generates a long listing

* -0 format: Writes information according to the format specification given in
a format.

Examples required for —o option:

[root@krosum Templ# ps
PID TTY TIME CMD
1195 pts/0 00:00:00 bash
25270 pts/0 00:00:00 ps
[root@krosum Templ#
[root@krosum Temp]# ps -o pid,cmd
PID CMD
1195 bash
25271 ps -o pid,cmd
[root@krosum Templ# ps -f
uID PID PPID C STIME TTY TIME CMD
root 1195 1191 0 12:52 pts/0 00:00:00 bash
root 25273 1195 0 14:57 pts/0 00:00:00 ps -f
[root@k rosum Temp]#

[root@k rosum Templ# ps -fo pid,ppid,stime,cnd

PID PPID STIME CMD
1195 1191 12:52 bash
25275 1195 14:58 _ ps -fo pid,ppid,stime,cmd
Also multiple -o options can be specified. The format specification is
interpreted as the space-character-separated concatenation of all the format
option arguments.

Using —o option we can filter specific fields from process command.

Listing All Processes

For example, use the ps -efcommand to list all the processes currently
scheduled to run on the system.

ps —ef|more
% ps -ef | more
UID PID PPID STIME TTY TIME CMD
Root 216 1 Oct 23 ? 0:18 /jusr/lib/power/powerd
I I | —]

| UID: The username of the owner of the process I'I

PID: The unique process identification number of the process

| PPID: The parent process identification number of the process

STIME :The time the process started (hh:mm:ss)

TTY : The controlling terminal for the process. Note that system
processes (daesmons) display a question mark (?), indicating
the process started without the use of a terminal.

TIME: The cumulative execution time for the process

[CMD: The command name. options. and arauments I

The illustration in the snap interprets the output of the ps —ef
command.
* The first column is the UID, the username of the owner of the process.
 The second column is the PID, the unique process identification number of
the process.
* The third column is the PPID, the parent process identification number of
the process.
» The fourth column is the STIME, the time the process started.
e The fifth column is the TTY, the controlling terminal for the process. Note
that system processes (daemons) display a question mark (?).
e The sixth column is the TIME, the cumulative execution time for the
process.
* The seventh column is the CMD, the command name, options, and
arguments.

Terminating a Process

* There might be times when we need to terminate an unwanted process.
* A process might have got into an endless loop, or it might have hung.
» We can Kkill or stop any process that we own.

* We can use the following two commands to terminate one or more
processes:

o kill

o pkill

» The kill and pkill commands send signals to processes directing them to
terminate.

* Each signal has a number, name, and an associated event.

However, there are processes that should not be terminated, such as the
init process. Killing such processes can result in a system crash.

Note: A super-user can kill any process in the system.

Terminating a Process: kill Command

e We can terminate any process by issuing the appropriate signal to
the process concerned.

e The kill command sends a termination signal to one or more
processes.

Note: The kill command terminates only those processes that we own.

The kill command sends signal 15, the terminate signal, by default.
This signal causes the process to terminate in an orderly manner.

All we need to know the PID of the process before to terminate it. We
can use either the psor pgrepcommand to locate the PID of the process.

Also, we can terminate several processes at the same time by entering
multiple PIDs on a single command line.

Note: The root user can use the kill command on any process.

Other way of terminating a Process: using killCommand

Use the kill command to terminate the mail process.

[root@k rosum Temp]# pgrep -1 mail
442 sendma1il
519 sendma1il

[root@k rosum Temp |#
[root@k rosum Temp |# pgrep -1 bash
1195 bash

[root@k rosum

Terminating a Process: pkill
Command

Alternatively, we can use the pkillcommand to send termination signal
to processes.

pkill[-options]pattern

The pkillcommand requires us to specify the name instead of the PID
of the process.

Forcefully Terminating a Process:

[rootidk rosum Temp]# kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGID 30) SIGPWR
31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

[root@k rosum Temp]#

Some processes ignore the default signal 15 that the kill command
sends.

« If a process does not respond to signal 15, you can force it to terminate by
using signal 9 with the kill or pkillcommand.

Temp |# ps

PID TTY TIME CMD

1195 pts/0 00:00:00 bash
25312 pts/0 00:00:00 python
25314 pts/0 00:00:00 ps
[root@k rosum Temp]#
[root@krosum Temp]# # To kill a python process
[root@k rosum Temp]# #

[root@k rosum Temp]#
[root@k rosum Temp]# kill -9 25312
[1]+ Killed
[root@krosum Temp]# ps

PID TTY TIME CMD

1195 pts/0 00:00:00 bash
25315 pts/0 00:00:00 ps

root@k rosum Temp|# ps
PID TTY TIME CMD
1195 pts/0 00:00:00 bash
25316 pts/0 00:00:00 python
25320 pts/0 00:00:00 ps
[root@k rosum Temp]#
[root@k rosum Templ# pkill -9 -x python

[1]1+ Killed
[root@k rosum Templ# ps

PID TTY TIME CMD
1195 pts/0 00:00:00 bash
25322 pts/0 00:00:00 ps
[root@k rosum Temp]#

Note : Sending signal 15 does not necessarily kill a process gracefully. Only

if the signal is caught by the process, it cleans itself up in order and dies. If
not, it just dies.

Caution

Use the kill -9 commandonly when necessary. When you use the kill
-9 command on an active process, the process terminates instantly. Using
signal 9 on processes that control databases or programs that update files
could cause data corruption.

Performing Basic Process Control

Process control Block (PCB) (or) Task control block is a data structure
that contains information about process register,state,program counter,
priority, register, memory limits, list of open files etc.,

In Linux Process table is a collection of PCB’s that means logically
contains a PCB for all of the current processes in the system.

[root@k rosum Temp]# # Listing Current Process
[root@k rosum Temp|# #
[root@k rosum Temp|]# ps

PID TTY TIME CMD

1195 pts/0 00:00:00 bash
25339 pts/0 00:00:00 ps
[root@k rosum Temp|#

This practice covers the following topics:

1. Display current process

2. Display list of all process

ps—e (or) ps-A

[root@k rosum Temp]# ps -e

PID TTY TIME CMD
00:00:01 systemd
00:00:00 kthreadd
00:00:00 ksoftirqd/0
00:00:00 kworker/0:0H
00:00:00 kworker/u:0
00:00:00 kworker/u:0H
00:00:00 migration/0
00:00:00 rcu_bh
00:00:00 rcu_sched
00:00:00 watchdog/0
00:00:00 khelper
00:00:00 kdevtmpfs
00:00:00 netns
00:00:00 bdi-default
00:00:00 kintegrityd
00:00:00 kblockd
00:00:00 ata sff

=]

?
.
?
5
7
’
?
s
?
f
?
[
?
f
?
Ty

[root@krosum Temp]# ps aux
PID %CPU SMEM VSZ RSS TTY STAT START TIME COMMAND

1 0.0 0.4 794 51167 S 12:46 0:01 Jusr/lib/systend/systend --swi

: 0.0 0.0] 0 12:46 0:00 [kthreadd]

3 0.0 0.0 0 07 12:46 0:00 [ksoftirqd/0]

a 0.0 0.0] 07 12:46 0:00 [kworker/0:0H]
0.0 0.0 0 07 12:46 0:00 [kworker/u:0]
0.0 0.0 0 b7 12:46 0:00 [kworker/u:0H]

8 0.0 0.0 0 07 12:46 0:00 [migration/0]
0.0 0.0] 07 12:46 0:00 [rcu bh]
0.0 0.0 0 07 12246 0:00 [reu_sched]
0.0 0.0 0 07 12:46 0:00 [watchdog/0]

2 0.0 0.0 0 07 12:46 0:00 [khelper]

3 0.0 0.0 0 07 12:46 0:00 [kdevtnpfs)

4 0.0 0.0 b 07 12:46 0:00 [netns]
0.0 0.0 b 07 12:46 0:00 [bdi-default]

5 0.0 0.0] 07 12:46 0:00 [kintegrityd]

L

e T T W T T e T T T T e T e e T W e
. Y o M

Display list of process in BSD format

4. Select all processes owned by you

Temp]# ps -x
STAT TIME COMMAND
S feystemd/systemd --switched-root
0 [kthreadd]
[ksoftirgdso]

--system --deserlialize 20

T
7]

L= L SR N

7
7

g
9

= b
b =

[
e

[bdi-default]
[kintegrityd]
100 [kblackd]

=
Ln

—
o
T I P T P T AT P R T PR T

[
-

w

5. To display a user’s processes by real user ID (RUID) or
name, use the -U flag.

root@k rosum
PID TTY
1195 pts/0
25444 pts/0
[rootak rosum
[root@k rosum
PID TTY
25397 pts/1

25447 pts/1

[rootik rosum

[rootik rosum
PID TTY

23397 pts/1
25447 pts/1
[rootk rosum

6.

PSs

Temp)# ps
TIME
0o:00:00
0o:00:00
Temp | #
Temp]# ps
TIME
00:00:00
00 :00:00
Temp | #
Temp | #| ps

0D :00:00
00:00:00
Temp)#

u <username> (or) ps—u <UID>

CMD
bash

CHMD
bash
ping

-u 1000 |
TIME CMD

bash
ping

-u student |

student@

PID TTY

25397 pts/1
25445 pts/1
[student@k rosum ~]%

[student@k rosum ~]% id

1000

[student@k rosum ~]% ping 127.0.0.1 =rl

krosum -=1%
00:00:00
0B :00:00

ps
TIME CMD
bash

ps

=

List all processes owned by a certain group

[ootk rosum Temp]# ps -6 sales
cMD
bash
python

Temp | #_ " : rminal Tabs Halg
Temp|# ps -G 1001 | [userA@k rosum ~]5 id
M uid=1001(userh) SpLEIGEN(sales) groups=1001(sale

ed_r:unconfined t:s0-s0:c0.c1D23

80 python [userh@k rosum =]5% ps
FID TTY TIME CHMD

25515 pts/1 B
25551 pts/1

[userk@gk rosum -~

13:43:50)
- of Lifux2
", “copyright®, “"credits" ar “license® for more

7. Display Processes by PID

[root@k rosum Temp]# ps -p 1,25211,25379
PID TTY TIME CMD
17 00:00:01 systemd
25211 7 00:00:00 dhclient
25379 pts/1 00:00:00 bash
[root@k rosum Temp]#

[root@k rosum Temp]# ps -t pts/0

PID TTY TIME CMD
1195 pts/0 00:00:00 bash

25573 pts/0 00:00:00 ps

[root@k rosum Temp]#

[root@k rosum Temp]# ps -t pts/l
PID TTY TIME CMD

25379 pts/1 00:00:00 bash

25396 pts/1 00:00:00 su

25397 pts/1 00:00:00 bash

25485 pts/1 00:00:00 su

25490 pts/1 00:00:00 bash

[root@k rosum Temp |# To select

processes by tty, use the -t flag as follows.

A process tree shows how processes on the system are linked to each
other; processes whose parents have been killed are adopted by the init (or
systemd).

[root@k rosum Templ# ps -e --forest
TIME CMD

PID TTY

=

00

00

oo

?
¥
g
?
?
e
?
?
?
7
?
7
g
?
7
?

00:

00

:00
00:
00:
00:

00
0o
00

:00
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00

:00
00:
00;
00:

00
00
00

9. Display process tree.

00 kthreadd
:00
:00
:00
00
:00
:00
00
00
:00
:00
00
00
100
:00
:00
100

ksoftirqd/0
kworker/0:0H
kworker/u:0
kworker/u:0H
migration/0
rcu_bh
rcu_sched
watchdog/0
khelper
kdevtmpfs
netns
bdi-default
kintegrityd
kblockd

ata sff
khubd

[root@k rosum Temp]# pstree
systemd NetwarkManager—I:dhclient
3*[{NetworkManager}]

Thunar

accounts-daemon—2*[{accounts-daemon}]

alsactl

applet.py—{applet.py}

at-spi-bus-laun dbus -daemon——{dbus -daemon}
3*¥[{at-spi-bus-laun}]

at-spi2-registr—{at-spi2-registr}

atd

auditd audispd—Izsedispatch
—I: {audispd}
{auditd}

avahi-daemon——avahi-daemon
blueman-applet——{blueman-applet}

10. print process tree for given process (ex: bash)

[root@krosum Templ]# ps -f --forest -C bash

UID PID PPID STIME TTY TIME
root 25490 25485 16:24 pts/1 00:00:00
student 25397 25396 16:09 pts/1 00:00:00

root 25379 1191 16:09 pts/1 00:00:00
root 1195 1191 12:52 pts/0 00:00:00
[root@k rosum Temp]#

11. Print Process Threads (LWP) use —L option

root@k rosum Temp]#
root@k rosum Templ# ps -L
PID LWP TTY TIME CMD

1195 1195 pts/0 00:00:00 bash
P5704 25704 pts/0 00:00:00 ps
root@k rosum Temp]#

CHAPTER 14 - FILTERS

In Unix/Linux, a filter is any command that gets its input from the
standard input stream, manipulates the input, and then sends the result to the
standard output stream. Some filters can receive data directly from a file.

Common Filters

cut Passes only specified columns

paste Combines columns

cmp Compares two files

comm Identifies common lines in two files

diff Identifies differences between two files or between
common files in two directories

head Passes the number of specified lines at the beginning of
the data

tail Passes the number of specified lines at the end of the data

sort Arranges the data in sequence

tr Translate one or more characters as specified

uniq Delete duplicate (continues repeated) lines

grep Print matched pattern lines

Find

Search file and directories

Filters and pipes

Unix/Linux filters depend on the input file or input pipe. All the filter
command will read data from input file (or) pipe, stores it to buffer. From the
buffer, filter command will execute and display command result to monitor.

cut command

The basic purpose of the cut command is to extract one or more
columns of data from standard input or from the input files.

The syntax of the cut command
cut-optionfilter_rangeinputfile (or)
commandresult| cut—option filter_range

Here filter_range are numbers. We can perform character based
filtering or field based filtering based on input field delimiter.

For character based filter, use —c option. See the below example snap
that shows filtering 2" characterfrom input file (emp.csv). Character
positions work well when the data are aligned in fixed columns.

[student@krosum ~]% cat -n emp.csv # This is sample input file
101 ,kumar,sales, pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR, mumbai,b 5490
€94,vijay,prod,delhi, 4590
245, theeba,hr,hyd, 9000
455, ram,sales, pune, 8905
393,karthik,prod,bglore, 5904
student@<rosum ~]$ cut -c 2 emp.csv

[
¢
0
E
2
9

[student@krosum ~1%

[student@krosum ~]$ cat -n emp.csv
101,kumar,sales, pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR,mumbai, 5490

894,vijay,prod,delhi,4590

245 ,theeba,hr,hyd, 9000

456, ram,sales, pune, 8905

399,karthik,prod, bglore, 5904
student@krosum ~1$

So the cut command will display the removed result to monitor. This
action takes on the buffer space and not in input file (emp.csv). So there are
no changes in input file (emp.csv) after removing the 2" character from
emp.csv file.

Specifying character positions

[student@rosum ~]$ cat -n IP1
1 riopt:bin:bash
2 UskEnM:usr:bin:ksh
3 usenBl:bin:csh
student@irogum <)% cut -c 2! IP1 # removed 2nd character from IP1 file.

student@krobum ~]% cut |- EEIFl # removed 5th character from IP1 file.

tudent@krosum ~]$ cut -c 2,5 IP1 # removed 2nd and 5th characters from IP1

[student@krosum ~]$
To specify that the file is formatted with fixed columns, we use the character
option, -c followed by one or more column specifications. A column
specification can be one column or a range of columns in the format N-M,

where N is the start column and M is the end column, inclusively. Multiple
columns are separated by commas.

Note: here comma (,) is used as a separator.

[student@krosum -]% cat -n IP1
1 root:bin:bash
2 userh:usr:bin:ksh
3 userB:bin:csh
[student@krosum =]% cut -c 2,5 IP1 # from 2nd character and 5th character

[student@krosum =]% cut —CEEIS IP1 # from 2nd chars te 5th chars

[student@krosum -1%

Note the difference between comma (,) and hyphen (-) symbol in cut
command where comma (,) is a separator and hyphen (-) is a range.

[student@krosum ~]% cat -n IP1
1 root:bin:bash
2 userA:usr:bin:ksh
3 userB:bin:csh
[student@krosum ~]%
[student@krosum ~]$ cut -c¢ 1-3,6-8,10-13 IP1

roobinbash
use:us:bin
use:bi:csh
[student@krosum ~]%

Note in the above example, both (,) and (—) special chars are used
and from IP1 file we have filtered multiple range of characters.

1-3 means from 1* to 3 characters

6-8 means from 6" to 8" characters

10-13 means from 10" to 13" characters
Using comma (,) we filtered different range of characters from IP1 file.
The previous example cuts the columns from a file.

But if the data are already in the input stream (pipe) from a previous

command operation, then there is no way to specify a filename. For example,
using pscommand, display process PID and process name list to monitor.

[student@krosum ~]$ ps
PID TTY TIME CMD
4303 pts/0 00:00:00 bash
4734 pts/0 00:00:00 ps
[student@krosum ~]$ ps|cut -c 2-6,25-28

PID CMD

4303 bash

4736 ps

4737 cut
[student@krosum ~1%

Field specification

While the column specification works well when the data are
organized around fixed columns, it doesn’t work in other situation.

For example see the below snap. The fields of file emp.csv are
separated by comma (,). Here if we want to filter based on the 1* field (emp
id), use —d option (-d delimiter).

So when the data are separated by (,) or any special characters, it is
easier to use fields to extract the data from the file.

To specify a field, we use the field option (-f). Fields are numbered from
the beginning of the line with the first being field number one. Like the
character option, multiple fields are separated by commas with no space after
the comma. Consecutive fields may be specified as a range.

[student@krosum ~]$ cat -n emp.csv
101, kumar,sales,pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR, mumbai, 5490
894,vijay,prod,delhi, 4590
245,theeba, hr,hyd, 9000
456, ram,sales, pune, 8905

399, karthik,prod,bglore, 5904
[student@krosum ~]$ cut h emp.csv

vijay,chennai
xerox,mumbal
vijay,delhi
heeba, hyd

karthik,bglore
[student@krosum ~]$ How to filter

employee name, and employee working city name ?

How to filter from 2" field to 4" field(range) from emp.csv file?

[student@krosum ~]%$ cut -d, -T 2,4 emp.csv
umar,pune

arun,bglore

ijay,chennai

xerox,mumbai

ijay,delhi

heeba, hyd

ram, pune

arthik,bglore _ R
[student@krosum ~]% cut |-d, - 2-4]emp.csv
umar,sales, pune P

arun,prod,bglore

ijay,sales,chennai

xerox,HR, mumbai

ijay,prod,delhi

heeba, hr, hyd

ram,sales,pune

arthik,prod,bglore

Paste command

The paste command combines lines together. It gets its input from two
or more files.

Syntax

pastefilenamel filename?2 .. filename

[student@krosum ~]% cat -n pl.log [student@krosum -]% cat -n p2.log
1 datal DATAL
2 dataz2 DATAZ
3 data3
4
5

datab
5] 5
7 data7/ DATA-END
[student@krosum -]$% [student@krosum ~]$%
datal DATAL
dataZ DATAZ
data3

datab

data’ DATA-END
[student@krosum ~]%

Using pastecommand we can combine multiple files.

paste command treats each file as a column. If there are more than two
files, the corresponding lines from each file, separated by tabs, are written to
the output stream. The above input file pl.log file contains 7lines along
including 2 empty lines (line 4 and line 6). The input file p2.log file contains
7lines including 5 empty lines. So when we combine p1l.log and p2.log file
together, the input file pl.log becomes 1* column and file p2.log becomes
2" column.

Note : the cat and paste commands are similar for combining multiple files.
However the cat command combines files vertically (by lines) whereas the
paste command combines files horizontally (by columns).

datal
dataz DATAZ
data3

datab

data7 DATA-END
[student@krosum ~]%

[student@krosum ~]$ cat -n IP1
1 datal
2 data2
3 data3
4 datad
5 datab
[student@krosum ~]$ cat -n IP2
1 DATAl
2 DATA2
[student@krosum ~]$ paste IP1 IP2
datal DATAl
DATAZ2

[student@krosum ~1%

If the files differ in
its length—that is, if each file contains different number of lines, then all data
are still written to the output with a delimiter. For example, if the first file is
longer than the second file,paste writes the extra data from the first file with a
separation delimiter, such as tab.

If the first file is shorter than the second file, paste writes a delimiter
followed by the extra data from the second file to the output stream. The
below example shows input file IP2 and IP1 combined. See the highlighted
box for the above case.

[student@rosum ~]% cat -n IP1 [student@krosum ~]%| paste IFZ2 IP1
1 datal DATAL datal
2 data? DATAZ data?
3 data3 data3s
4 datad datad
5 datasS dataS
[student@krosum -]% cat -n IP2 [student@krosum -]%
1 DATAl
2 DATA2
[student@krosum ~]$ paste IP1 IP2
datal DATAl
DATAZ

[student@k rosum -]1%

[student@krosum ~1$ paste IP1 IP2

[student@krosum ~]$| paste [Ef IP1 IP2
datal:DATAL
data2:DATAZ

[studént@krosum ~1%

We can specify the delimiters using -d optionto separate the data.

Option -d

Option —s

The option —s converts each file to single line format. Input filel is
placed at linel and input file2 is placed at line2

[student@krosum ~]$ paste IP1 IP2
datal DATA1

data?2 DATAZ2

datas

[student@rosum ~]$ paste -s IP1 IP2
atal data’ datas datad datab
DATA1 DATA2

[student@krosum ~]%

sort command

The sort command is one of the important filter commands in Linux.

When dealing with large volume of data, we need to organize them for
analysis and efficient processing. One of the simplest and powerful
organizing techniques is sorting.

When we sort data, we arrange them in sequence. Usually, we use
ascending order. By default all elements are sorted based on the first
character of the elements in ascending order. We can also sort them in
descending order, in which each piece of data is smaller than its predecessor.

[student@krosum ~]%$ cat names.txt

karthik

[student@krosum ~]% sort names.txt

Sort uses the ASCII
value of each character.

If you want to sort them in reverse order, use —r (reverse)option

[student@krosum ~]% sort -r names.txt

[student@krosum ~1%

Sort based on the fields

101, kumar,sales,pune, 1000
56, ram,sales,pune, 8905

P45 ,theeba,hr,hyd, 9000

894 ,vijay,prod,delhi, 4590
132,vijay,sales,chennai, 3500
823, xerox,HR, mumbai, 5490
student@krosum ~]%

Employee names are

sorted order. I we

want to sort the content based on the input field separator, there is an option
called —t (delimiter). Once the delimiter is identified, all the data are
separated in to multiple columns and using —k option, we can specify the
particular column where the sorting is to be done.

B ENC SV lsort -t, -rk 2 emp.csv
323, xerox,HR, mumbai, 5490
432,vijay,sales,chennai, 3500

894 ,vijay,prod,delhi, 4590

245,theeba, hr,hyd, 9000

456, ram,sales, pune,b 8905
101,kumar,sales, pune, 1000
399,karthik,prod,bglore, 5904
203,arun,prod,bglore, 1245
[student@krosum ~]$%

Employee names are
reverse order.

See the above snap we used multiple options. —t to specify the
delimiter to be specified in input file. Here the delimiter used is comma (;) .

-k (key) field value (-k 2 — 2"%ield) the option —r (reverse) descending
order.

The above example (sort-t, -rk2 emp.csv) display employee names
in descending order format.

Numerical sort fields

Sort filter considers every data in ASCII format. In other words it sorts
data as though they are strings of characters.

[student@krosum ~]$%$ cat digits

In the below
example, input file contains numbers (digits) which when sorted displays the
numbers in ascending order (ASCII code) format.

Using —n (numeric) option, we can perform numerical sorting.

[student@krosum ~]$ sort digits

[student@krosum ~1%

See the above input file (digits) sort—n option displayed in numerical sorting.

Reverse (Descending) order

To sort the data from largest to smallest value (descending order), we can
combine —n and —r options.

[student@krosum ~]$ sort -n digits

Task :From the below sample file emp.csv file, we can understand how to
sort employee salary amount in descending order (largest to smallest)?

[student@krosum ~]$ sort -t, Halgd> emp.csv
245,theeba,hr,hyd, 9000

456, ram,sales,pune, 8905
399,karthik,prod,bglore, 5904

323, xerox,HR,mumbai, 5490

894 ,vijay,prod,delhi, 4590
432,vijay,sales,chennai, 3500
203,arun,prod,bglore, 1245
101,kumar,sales,pune, 1000
[student@krosum ~]1%

-tinput file data are separated by comma (,) — delimiter
-nnumerical sort
-rreverse order

-k(key) field value , our input file salary (digits) are 5" field —k5

Merge files

A merge combines multiple sorted files into single sorted file. If we
know that the files are already ordered, we can save time by using the merge
option (-m). However, that if the files are not ordered, sort will not give you
an error message.

[student@krosum ~]% cat -n F1l.txt
1l pl.c
2 p2.cC
3 p3.c
4 pd.c
[student@krosum ~]1% cat -n F2.txt
L pd.c
2 p3.c
3 pd.c
4 pS.c
5 pb.c

[student@krosum ~]1% sort -m F1l.txt F2.txt
 C

. C
. C
 C
. C
. C
.C
. C
 C

The above input files F1.txt and F2.txt both are sorted order format.

Unique Sort Fields
The unique option (-u) eliminates the identical fields. See the below example.

[student@krosum ~]% sort Fl.txt
pl.c

pl.
pl.
p2.
p2.
p2.
p3.
p3.
pd.
p4d.
p4.
[student@krosum =]% sort -u/F1l.txt
pl.c

p2. ¢

p3.c

pd.c

[student@krosum ~]%

OO0 000060000

Check sequence (-c)

Verifies that data are correctly sorted or not. Using —c option, if input
file content is not in sorted order, command will display disorder element. If
input file is in sorted order, it will print an empty line.

[student@krosum ~]$ cat -n F2.txt
L p.
2 p3.
3 p4.
4 p5.
5 p6.
[student@krosum ~]$ sort -c F2.txt
[student@krosum ~1%
[student@krosum ~]%$ cat -n IP1l
datal
aix
data3
unix
datad
datab
[student@krosum ~]% sort -c 1Pl
sort: IPl:2: disorder: aix
[student@krosum ~]%

[student@krosum ~]$ cat emp.csv
101, kumar,sales,pune, 1000
203,arun,prod,bglore, 1245
32,vijay,sales,chennai, 3500
323, xerox,HR, mumbai, 5490

B94,vijay,prod,delhi, 4590
245 ,theeba, hr,hyd, 9000

56, ram,sales, pune, 8905

399, karthik,prod,bglore, 5904

ow we got an idea about the usage of cutcommand and sortcommand.
Based on the use case, we can combine multiple filter commands in
single pipe line.

[student@krosum ~]$ cat emp.csv |cut -d, -f 2 |sort

arun

karthik

kumar

[student@krosum ~]$ cat emp.csv |cut -d, -f 2 # filter emp name
Kumar
arun

[student@krosum ~]$%

Display employee names which are in sorted order (Ascending
order)

[student@krosum ~]$ cat emp.csv |cut -d, -f 2 |sort -r
Xerox

vijay

vijay

theeba

ram
kumar

karthik

arun
[student@krosum ~]%

Display employee names which are in descending order.

[student@krosum ~]$ cut -d, -f 2 emp.csv |sort

[student@krosum ~]$ sort -t, -k 2 emp.csv |cut -d, -f 2
arun
karthik

We can combine cut| sort(or) sort| cutin any order. See the below snap
where both possibility results are same.

uniq command

The unigcommand deletes the duplicate lines but doesn’t sort. It is
case sensitive.

[student@krosum ~]% cat F1l.txt

pd.c
[student@krosum ~1% juniqg F1.txt

[student@krosum ~]$ Syntax

unig—option inputfile

Remember all the filter commands outputs are runtime results that
won’t modify the input file.

[student@krosum ~]% cat IP1l

[student@krosum ~]%$ uniq IP1
html
HTML

[student@krosum ~]$ uniq -i IP1 # ignore case
html

[student@krosum ~]%

In case if the duplicates are in continuous format (one after the other),
unigcommand omits the duplicates whereas if the duplicates are not in
continuous format, say adjacent format, the duplicates will still persist.

Duplicates of java are not in continuous format. So it is not omitted. In
such case, before omitting the duplicate line, we can sort them first and then
use the unique command.

[student@krosum ~]$ cat IPl # input file

Count duplicated lines (-c) option

[student@krosum ~]1%
[student@krosum ~]% cat IP1

[student@krosum ~]%$ uniq -¢ IPl # -¢ option count duplicated lines
1 html
1/HTML
1 java
2 C++
INSEVE
[student@krosum ~]%

Non duplicated lines (-u) option

student@krosum ~]$ cat names.txt
umar
Lumar

ijay

[student@krosum ~]$§uniq -u names.txt |# Nonduplicated lines
WEEE ' “
arthik

student@k rosum ~]%
The non-duplicated lines option is —u. It suppresses the outputof the

duplicated line and lists only the unique lines in the file.

cmp command

cmp command in Linux/UNIX is used to compare the two files byte by
byte and helps you to find out whether the two files are identical or not.

When cmp is used for comparison between two files, it reports the
location of the first mismatch to the screen if difference is found and if no
difference is found i.e if the files are identical, cmp displays no message and
simply returns the prompt.

[student@krosum ~]$ cat -n F1.txt
1l pl.c
2 p2.c
3 p3.c
4 pd.c

[student@krosum ~]$ cat -n F3.txt
1l pl.c

2 p2.c

3 p3.c

4 pd.c
[student@krosum # both file contents are same
[student@k rosum :
[student@krosum cmp F1.txt F3.txt
[student@krosum

If file contents are not unique, it will get display message as below.

[student@krosum ~]% cat -n Fl.txt
1l pl.c
2 p2.c
3 p3.c
4 pd.c

[student@krosum ~]%$ cat -n F2.txt
1 p2.c

2 p3.c

3 p4.

4 pb5.

5 pb.c
[student@krosum ~]% cmp F1l.txt F2.txt
F1.txt F2.txt differ: byte 2, line 1

Options for cmp command

-b(print-bytes)
If we want cmp to display the differing bytes to the output, use -b option.

[student@krosum ~]% cat -n names.txt
1 arun
2 babu
3 paul

[student@krosum ~]% cat -n namesl.txt
1l arun
2 babu
3 PAUL

4 xerox
[student@krosum ~]%$ cmp names.txt namesl.txt
names.txt namesl.txt differ: byte 11, line 3
[student@krosum ~]%
[student@krosum ~1$
names.txt namesl.txt differ: byte 11, line 3 is 160 p 120 P
[student@krosum ~]%

-1 [bytes-to-be-skipped]
[student@krosum ~]1% cat -n names.txt
1 arun
2 babu
3 paul
[student@krosum ~]1% cat -n namesl.txt
1 arun
2 babu

3 PAUL

4 xerox
[student@krosum ~]1% cmp -1 5:6 names.txt namesl.txt

names.txt namesl.txt differ: byte 1, line 1

[student@krosum ~1%
[student@krosum ~]$ cmp -i 9:13 names.txt namesl,txt

names.txt namesl.txt differ: byte 1, line 1

[student@krosum ~1%
Now, this option when used with cmpcommand helps to skip a particular
number of initial bytes from both the files and then after skipping it compares
the files. This can be done by specifying the number of bytes as argument to

the -icommand line option.

Difference (diff) command

The diff command shows the line-by-line difference between two files.
The first file is compared to the second file. The differences are identified so
that the first file could be modified to make it match the second file.

Syntax
diff -optionfiles (or) directories

the diff command always works on files. The arguments can be two
files, a file and a directory or two directories. When one file and one directory
are specified, the utility looks for a file with the same name in the specified
directory.

If the two directories are provided, all files with matching names in
each directory are used. Each difference is displayed using the following
format:

rangel action range2
< text from filel
>text from file2

The first line defines what should be done at rangel in filel to make it
match the lines at range? in file2.

If the range spans multiple lines, there will be a text entry for each line
in the specified range.

The action can be change (¢), append (a), delete (d)

Change (¢) indicates what action should be taken to make filel the
same as file2.

Append (a) indicates what lines need to be added to filel to make it
the same as file2. Appends can take place only at the end of filel; they occur
only when filel is shorter that file2.

Delete (d) indicates what lines must be deleted from filel to make it
the same as file2. Delete can occur only if filel is longer than file2.

diff command report Interpretation

Example Interpretation

5¢5 Change: Replace line 5 in file1l with line 5 in file2

10 a 16,17 Append: at the end of filel (after linel0), insert
lines 16,17 from file2

Note that for append,there is no separator(dash)
line and no file1(<) lines

28,29d30 Delete : The extra lines at the end of filel should
be deleted.

The text of the lines to be deleted is shown. Note
again that there is no separator line and in this
case ,no file2 (>) lines.

[student@krosum ~]% cat -n Fl.txt
1l pl.c
2 p2.c
3 p3.c
4 pd.c
[student@krosum ~]% cat -n F2.txt
l p2.c
2 p3.c
3 pd.c
4 pb.c
5 pb6.c
[student@krosum ~]% diff F1.txt F2.txt
1d0
< pl.c
4a4,5
> p5.c
> pb6.c
[student@krosum =]1%

[student@krosum ~]$ cp F1.txt F3.txt
[student@krosum ~]1$ cat >>F3.txt
testl.c
test2.c
[student@rosum ~]$ cat -n F3.txt
pl.c
p.c
pd.c
pd.c
testl.c
testl.c
[student@krosum ~]1% diff Fl.txt F3.txt
4a5,6
> testl.c
> test2.c
[student@k rosum

Directory Differences

[student@krosum ~]% ls D1

pl.log p2.log

[student@krosum ~]% 1s D2

FL.txt

[student@krosum ~]% diff D1 D2 Directory Differences

Only in D2: F1l.txt
Only in D1: pl.log
Only in D1: p2.log
[student@krosum ~]%

Common (comm) command

The commcommand finds lines that are identical in two files. It
compares the files line by line and displays the results in three columns. The
left column contains unique lines in the filel ; the center contains unique
lines in file2 ; and the right column contains lines found in both files.

Note : Both input files (filel and file2) must be sorted order.
Syntax
comm —optionfilel file2

[student@krosum ~]% cat F1l.txt
pl.c
p2i€
p3.c
pd.c
[student@krosum ~]% cat F2.txt
p2.c
p5i€
p6.c

[student@krosum ~]1% lcomm F1l.txt F2.txt
pl.c

p2.c
p3.€
pad.c
pS.c
pb.c
[student@krosum ~]1%

[student@krosum ~]$ comm F1,txt F2,txt

[student@krosum =]%jcomm -23 F1.txt F2.txt] # ommit 2nd and 3rd column
pl.c

p3.c

Task : Filter 2™ column only (unique elements from F2.txt file content)

[student@krosum ~]% comm F1.txt F2.txt
pl.c
p2.c

p5.c
pb.c
[student@rosum ~]% comm -13 Fl.txt F2.txt # ommit 1lst column and 3rd column
p5.c
pb.c
[student@krosum ~1%

[student@krosum ~]% comm F1l.txt F2.txt
pl.c
pd.C
p3.c
pd.c

pb. ¢
pb.c

[student@krosum ~]% comm -12 F1.txt F2.txt
p2.c

[student@krosum ~]% Task : Filter
34 column only (common content from F1.txt and F2.txt)

tr command

The tr (translate) command replaces each character in a the first set of
characters with a corresponding character in the second specified set. Each
set is specified as a string.

The first character in the first set is replaced by the first character in
the second set, the second character in the first set is replaced by the second
character in the second set,and so forth until all matching characters have
been replaced.

Syntax :

tr option oldstring newstring
-ddelete characters

-ssqueeze duplicates
-ccomplement set

Translate receives its input from standard input and writes its output to
standard output.

[student@krosum =]$ tr 'abc’ "ABC
est line abc code

est line ABC Code

bdcode

[student@krosum =]$%

If no options are
specified, the text is matched against the oldstring set, and any matching
characters are replaced with the corresponding characters in the newstring
set. Unmatched characters are unchanged.

range of characters are denonted by — symbol. For example a-z means match
all lowercase characters.

[student@krosum ~]%

[student@krosum ~]$ ps|tr 'a-z' 'A-Z°
PID TTY TIME CMD

5785 PTS/0 00:00:02 BASH

6387 PTS/0 P0:00:00 PS

6388 PTS/0 00:00:00 TR

[student@krosum ~]%

[student@rosum =]% ps|tr ':"' "\t'

PID TTY TIME CMD

5785 pts/0 00 00 02 bash
6389 pts/0 00 00 00 ps
6390 pts/0 00 Q0 00 tr
[student@krosum ~]$%

1-5 means match range of number 1 2 3 4 5. See the below example to
convert all characters from lower case to uppercase. tr command reads the
input string from pipe STDIN.

Delete characters
To delete all matching characters in the translation, we use the delete option

(-d).

An example to delete all lowercase chars from the given string.

[student@krosum ~]% tr -d "a-z"

THis samplel TEST REPORT @f 15th|sep 2019 time

TH TEST REPORT 15 2019

[student@krosum ~]%

[student@rosum =]1% ps tr -d "0-9%9a-z" # delete all the digits and lowercasechars
PID TTY TIME CMD

/

[student@krosum -1% ps |tr [-d|/":/" # delete all the : / chars
PID TTY TIME CMD

5785 ptsi 000002 bash

6400 ptsO 0oooee ps

6401 ptsO 002000 tr

student@ rosum =]%

Squeeze output (-s)

The squeeze option deletes consecutive occurrences of the same

character in the output.

For example , if after the translation of ‘e’ to the letter :’, the output
contains a string of “:” all but one would be deleted. See the below snap

[student@krosum ~]% echo "Heeeello"|tr "e" ":"
Hisaillo

[student@krosum -]% echo "Heeeello"|tr |-s|"e

H:11lo

[student@krosum ~]$ echo "Test code is D313 Value is R544"|tr 'a-

| 10 D313 V:i::: :: R544
[student@krosum ~]$

[student@krosum ~]$ echo "Test code is D313 Value is R544"|tr -s
T: : : D313 V: : R544

[student@krosum -]%

Complement(-c)

[student@krosum ~]$ echo "Hello"|tr
H:llo

[student@krosum ~]$ echo "Hello"|tr
rer i [student@krosum ~]%
[student@krosum ~]$% uptime

23:37:40 up 22:22, 2 users, Lload average: 0.08, 0.06, 0.05

[student@krosum ~]%
[student@rosum ~]$ uptime|tr "0-9" ":"
: users, load average: :.::,
~]1$ uptime|tr[-c]"0-9" ":"

The complement option reverses the meaning of the first string. Rather than
specifying what characters are to be changed, it says what characters are not

to be changed.

Translate will not accept data from a file. To translate a file,therefore
,we must redirect the file into the translate command.

tr ‘a-z’ ‘A-Z’ < emp.csv

convert from lowercase characters to uppercase characters

[student@krosum ~]$ cat emp.csv
101 ,kumar,sales, 1234

344 ,xerox,prod, 3455

553, le0,sales, 3490

[student@krosum ~1$ tr [EIERYYH <emp.csv

101,KUMAR,SALES, 1234
344 ,XEROX ,PROD, 3455
553,LEO,SALES, 3490
[student@krosum =]$%

Viewing Files

There are several commands that display information about a file in the
read-only format.

* The file-viewing commands include the following:

cat
more
tail
head
wC

we have already discussed how to use cat command. recap cat command
syntax: cat -option inputfile. The cat command displays the content of one or
more files.

Viewing Files: more Command
The more command displays the content of a text file one screen at a time.
Syntax:-

morefilename

The --More--(n%) message appears at the bottom of each screen,
where n% is the percentage of the file that has been displayed. When the
entire file has been displayed, the shell prompt appears.

When the --More--(n%)prompt appears at the bottom of the screen, we
can use the keys described in the table to scroll through the file.

Keyboard | Action
Spacebar |Moves forward one screen

Return Scrolls one line at a time

B Moves back one screen

H Displays a help menu of features

/string Searches forward for pattern

N Finds the next occurrence of pattern

Q Quits and returns to the shell prompt
Examples

/nalogin

1/sbin/shutdown

:/sbin/nologin
bin/nologin
sbin/nologin

n/nologin
in
:fsbin/nologin
:Journal Gateway:/var/log/journal:/usr/sbin/no
:/sbin/nologin
bin/neloglin
pn:/sbin/nologin
'sbin/nologin

[student@krosum ~]$ ps -e|more

Press ‘q’ to quit.

Viewing Files: head Command

The head command by default, displays the first 10 lines of a file.

Syntax

head -n filename

We can change the number of lines displayed by using the -n option.

For example, to display the first five lines of the /etc/passwd file, enter the
head command with the -n option set to 5.

[student@krosum ~]%

[student@krosum ~]%$/ head -n 5 /etc/passwd
root:x:0:0:root:/root:/bin/bash
pin:x:1:1:bin:/bin:/sbin/nologin

aemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
p:x:4:7:1p:/var/spool/lpd:/sbin/nologin
student@krosum ~1]$

[student@krosum ~]%
[student@rosum ~]$ head -n 5 /etc/passwd|cut -d: -f 1

[student@rosum ~]%

Task: How to filter first 5 line contents from /etc/passwd file and from that
filter login name (1* field) and display all the login names in sorted order ?

Viewing Files: tail Command

The tail command by default, displays the last 10 lines of a file
Syntax
tail —n/+n filename

We can change the number of lines displayed by using the -n or +n
options.

The -n option displays n lines from the end of the file.
o The +n option displays the file from line n to the end of the
file.

tail-n +2 emp.csv

his example shows all lines of the report starting from the second line.
[student@krosum ~]$ cat -n emp.csv
101, kumar,sales, pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR,mumbai, 5490
894,vijay,prod,delhi, 4590
245 ,theeba, hr,hyd, 9000
456, ram, sales, pune, 8905
399, karthik,prod,bglore, 5904
[student@krosum ~]%
[student@krosum ~]$ tail -n +2 emp.csv
203, arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
23,xerox,HR, mumbai, 5490
894 ,vijay,prod,delhi, 4590
245, theeba, hr,hyd, 9000
156, ram, sales, pune, 8905
99,karthik,prod,bglore, 5904
[student@krosum ~]$%

There is a special command line option —f. Instead of just displaying
the last few lines and exiting, tail command with —foption, displays the lines
and then monitors the file.

[student@krosum ~1¢ tail -f /var/log/boot.log

[] Started Permit User Sessions.

[] Started LSB: Init script for live image..
Starting SYSV: Late init script for live image....
Starting Job spooling tools...
Started Job spooling tools.

Starting Command Scheduler...
Started Command Scheduler.

Starting Wait for Plymouth Boot Screen to Quit...
Starting Terminate Plymouth Boot Screen...
] Started SYSV: Late init script for live image..

We can use either tail—for tailfcommand — this command will monitor
log content dynamically.

To interrupt tail while it is monitoring, break-in with Ctrl+C.

wc command

The wc command displays the number of lines, words, and characters
contained in a file.

Syntax:
wc -options filename

When we use the wc command without options, the output displays the
number of lines, words, and characters contained in the file.

Symbol{PathName

-1 Line count

-W Word count

-C Byte count

-m Character count

[student@ rosum ~]$ wc emp.csv
8 8 208 emp.csv
[student@krosum ~]%
[student@krosum ~]$ wc /etc/passwd
36 59 1827 /etc/passwd
[student@rosum ~]$ wc -1 /etc/passwd # total no.of lines
36 /etc/passwd
[student@rosum ~]$ wc -w /etc/passwd # total no.of words
59 /etc/passwd
[student@krosum ~]$ wc -c /etc/passwd # total no.of chars
1827 /etc/passwd
[student@krosum ~]$ ps -e|wc -1 # total no.of process count
137
[student@krosum ~]$ lsmod|wc -1 # total no.of loaded kernel modules

[student@krosum ~]$
For example, to display the number of lines, words, and characters in the
emp.csv file, use the wc command.

grep command

e grep stands for global regular expression print.

o grep is used to search the input file for all lines that match a
specified reqular expression and write them to the standard output
file (monitor).

Syntax

grep—option pattern inputfile(s)

grep performs the following operations:

o step 1 : greputility read the input data, line by line from file (or)
pipe into pattern space. The pattern space is a buffer that can hold
only one text line.

o step 2: search the pattern to the pattern space

o step3: If there is a match, the line is copied from the pattern space
to the standard output.

The grep utilities repeat these three operations on each line in the input.

[student@krosum ~]% cat -n emp.csv
101, kumar,sales, pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR, mumbai, 5490
894 ,vijay,prod,delhi, 4590
245 ,theeba,hr,hyd, 9000
456, ram, sales, pune, 8905
399,karthik,prod,bglore, 5904

[student@krosum ~]1%

[student@rosum ~]$ # grep pattern 1nputfile

[student@krosum ~]% |grep sales emp.csv

101, kumar,sales,pune, 1000

432,vijay,sales,chennai, 3500

456, ram,sales,pune, 8905

[student@krosum ~1%

[student@krosum ~]$|grep admin emp.csv

[student@krosum ~]% Examples :

See the above examples. Here initially we are searching keyword
salesfrom emp.csv file, recap the above 3 steps on how grep is working.

o Step 1 :grepwill read input (emp.csv) data line by line , placed to
pattern space

o Step 2: search the sales keyword on the pattern space

o Step 3: if sales keyword is matched, display the matched pattern
lines to monitor (STDOUT).

If pattern is not matched, grep does not return any result to monitor. In
the above example admin keyword is not matched in emp.csv file.

As we walk through the flow, look for how grephandles the following

situations:

1. grep is a search utility; it can search only for the existence of a
line that matches a pattern.

2. The only action that grepcan perform on a line is to send it to
standard output. If the line does not match the pattern, it is not
printed.

3. The line selection is based only on the pattern.

e grepis a filter , it is used to search keyword (pattern) from input file

(or) pipe.
e grepcannot be used to add, delete or change a line.

grep options and explanation

grep—optionpattern inputfile

Option Explanation

-C Prints only a count of the number of lines matching the
pattern

-i Ignores upper/lower case in the matching text

-1 Prints a list of files that contains at least one line
matching the pattern

-n Shows line number of each line before the line

-q Silent mode

Y Inverse output. Prints lines that do not match pattern

-wW Word based search

-X Prints only lines that entirely match pattern.

-f file List of strings to be matched are in file.

-0 Prints only matched pattern.

101, kumar,sales,pune, 1000
203,arun,prod,bglore, 1245
d432,vijay,sales,chennai, 3500
323, xerox,HR, mumbai , 5490

894 ,vijay,prod,delhi, 4590

245, theeba,hr,hyd, 9000

456, ram,sales,pune, 8905

399, karthik,prod,bglore, 5904
studentgkrosum -]%

student@krosum -]% grep sales emp.csv

O~ LN s W) D=

01, kumar, s, pune, 1000

32,vijay,: ;chennai, 3500

56, ram,s , pune, 8905

student@krosum ~]% ;

student@krosum ~]% grep|-n|sales emp.csv # -n option shows line number of each
Line before the line.

101, kumar, sz , pune , 1000
432,vijay chennai, 3500
25, pune , 8905
student@crosum ~]1%

Examples

101, kumar,sales, pune, lUUD
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR,mumbai, 5490
894,v1ijay,prod,delh1,4590
245,theeba, hr,hyd, 9000
456, ram,sales, pune, 8905
399,karthik,prod, bglore, 5904
[student@rosum ~]$ grep|-n HRjemp.csv
323, xerox, HR, mumbai , 5490
[student@krosum ~]% "
[student@krosum ~]$ grep|-n hr emp.csv
245, theeba, hr,hyd, 9000
[student@rosum ~]$ grep -1 HR] |emp. csv # -1 ignore case
323, xerox, HR, mumbai, 5490
245,theeba, hr,hyd, 9000
[student@rosum ~]$ grep -in HR |emp.csv # we can combine multiple optilons
323, xerox,HR, mumbai, 5490
245, theeha hr,hyd, 9000

O~ M N = Ly k)=

[student@krosum =]$ cat -n emp.csv
1 101,kumar,sales,pune, 1000
2 203,arun,prod,bglore,1245
3 432,vijay,sales,chennai, 3500
4 323,xerox,HR,mumbai, 5490
5 B894,vijay,prod,delhi,4590
245,theeba, hr,hyd, 90600
456, ram,sales,pune, 83905
399 ,karthik,prod, bglore, 5904
udent@krosum ~]% grep sales emp.csv |wc -1

tudent@krosum ~]% grep|-c sales emp.csv # -c count

student@krosum -]% ps -elgrept-ﬁ bash|# count total no.of bash process

L%t
[s
E]
[student@krosum ~]% grep| —1c HR emp csv # -1 (ignorecase) and count
=
Fai
[
1

101,kumar,sales, pune, 1000
203,arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
323, xerox,HR, mumbai , 5490
894,vijay,prod,delh1,4590
245, theeba,hr,hyd, 9000

456, ram,sales,pune, 8905

399, ,karthik,prod,bglore, 5904
[student@krosum =]%

[student@krosum ~]$ grep -v sales emp.csv # -v option inverse output
203,arun,prod,bglore, 1245

323, xerox,HR, mumbai, 5490

HO94 ,vijay,prod,delhi, 4590

45,theeba, hr,hyd, 9000

B99 karthik,prod,bglore, 5904

[student@rosun ~]$ # searching single pattern from more than one file(s)
[student@krosum ~]$ #
[student@rosun ~]$ grep sales|emp.csv FL.txt F2.txt pl.ixt
101, kunar, sales, pune, 1000

432,v1jay, sales, chennal, 3500

456, ram, sales, pune, 8905

list of sales emp detials
[studentkrosun ~]¢

[student@krosun ~]$ qrep -1 sales GMNEININS MRS WIRY # -1 print a list

RS

-l O LN B W k) =

oo

[studentkrosum ~]$

[student@krosum ~]%

[iguden‘t@msum ~]% ps -e|wc -1 # total no.of process count
i;tuderﬁ:@qrosum ~]1% ps -e|grep -c bash # total no.of bash process count
'[jftuden‘t@:rnsum ~]%$ ps -e|grep -cv bash # except bash process count
%:Euderﬁt@crnsum ~1%

[student@krosum ~]$%$ # searching more than one pattern
[student@krosum

[student@krosum

[student@krosum ~]$ grep -e sales -e prod emp.csv

101 ,kumar,sales,pune, 1000

203,arun,prod,bglore, 1245

132,vijay,sales,chennai, 3500

894 ,vijay,prod,delhi, 4590

56, ram,sales, pune, 8905

99,karthik,prod,bglore, 5904

[student@krosum ~]$ grep -nie sales -e prod emp.csv
101, kumar,sales,pune, 1000
203, arun,prod,bglore, 1245
432,vijay,sales,chennai, 3500
894 ,vijay,prod,delhi,4590
456, ram,sales,pune, 8905
399,karthik,prod,bglore, 5904

[student@krosum ~]%

We can search more than one pattern in the following ways .
Syntax:
grep-e “patternl” -e “pattern2 ”inputfile

egrep“patternl |pattern2|patternN” inputfile

[student@rosum ~]%$ grep -e sales -e prod emp.csv
101, kumar,sales,pune, 1000
203,arun,prod,bglore, 1245
32,vijay,sales,chennai, 3500
894,vijay,prod,delhi, 4590
56, ram,sales,pune, 8905
399,karthik,prod,bglore, 5904

[student@krosum ~]%

[student@rosum ~]$ egrep "sales|prod" emp.csv
101,kumar,sales, pune, 1000

203,arun,prod,bglore, 1245
32,vijay,sales,chennai, 3500

894 ,vijay,prod,delhi, 4590
56,ram,sales,pune, 8905
399,karthik,prod,bglore, 5904

grep-E “Patternl | Pattern2 |Pattern3 .. |PatternN“ input_file

[student@krosum ~]$ grep -E "sales|prod" emp.csv
101, kumar,sales, pune, 1000

203,arun,prod,bglore, 1245

432,vijay,sales,chennai, 3500
894,vijay,prod,delhi, 4590
456, ram,sales,pune, 8905
399,karthik,prod,bglore, 5904

[student@krosum ~]$ ps -e|grep -e "bash" -e "python"
6780 pts/0 00:00:02 bash

7314 pts/1 00:00:00 bash

7335 pts/2 00:00:00 bash

7397 pts/2 00:00:00 python

[student@krosum ~]%

[student@krosum ~]$%$ ps -e|egrep "bash|python"
6780 pts/0 00:00:02 bash

7314 pts/1 00:00:00 bash

7335 pts/2 00:00:00 bash

71397 pts/2 00:00:00 python

[student@krosum ~1%

[student@krosum ~]%$ ps -e|grep -E "bash|python"
6780 pts/0 00:00:02 bash

7314 pts/1 00:00:00 bash
7335 pts/2 00:00:00 bash
7397 pts/2 00:00:00 python
[student@krosum ~1%

[student@krosum ~]% cat ptr.txt
sales

prod

pune

[student@krosum ~]% grep -T ptr.txt emp.csv # -T attaching external pattern file
101, kumar,sales,pune, 1000

203, arun,p glore, 1245

432, vijay, ., chennai, 3500
894, vijay, delhi, 4590

456, ram, sales,pune , 8905

399, karthik,pred,bglore, 5904
[student@krosum ~]%

[student@krosum ~]1%$ grep sales emp.csv
101, kumar,sales, pune, 1000
432,vijay,sales,chennai, 3500

456, ram, sales, pune, 8905

[student@krosum ~]%

[student@rosum ~]$ grep|-o sales emp.csv

ales

[student@krosum ~1% ps -e|grep bash
6780 pts/0 00:00:02 bash

7314 pts/1 00:00:00 bash

7335 pts/2 00:00:00 bash
[student@krosum ~]$ ps -e|grep -o bash

[student@krosum ~1%

[student@krosum ~]$%$ cat process

[student@krosum ~]$ ps -e|grep -f process
1 7 P0:00:06 systemd
14 00:00:00 netns
158 * 00:00:13 systemd-journal
160 7 00:00:01 systemd-udevd
289 7% 00:00:00 systemd-logind
6780 pts/0 00:00:02 bash
7314 pts/1 00:00:00 bash
7335 pts/2 00:00:00 bash
7397 pts/2 00:00:00 python
[student@krosum ~1%

[student@krosum ~]$ cat -n IP
this code number 2345
sample test
is a relationship
line number is3455
total no.of line code 1455
[student@krosum ~]1$ grep |-n 1s|IP
this code number 2345
1s a relationship
line number 1s3455
[student@krosum ~1% grep|-nw is IP
is a relationship
[student@krosum ~]$ ps -e|grep cron
29157 ? 00:00:01 crond
[student@krosum ~]1%
[student@rosum ~]$ ps -e|grep |-w cron
[student@krosum ~1%

[student@krosum ~]$ cat -n IP1
1 sales details
2 sales
3 vijay,sales
4 paul,sales,pune
[student@krosum ~]$ grep|-n sales IPl
sales details

vijay,sales

paul ,sales,pune
[student@krosum ~]$% grep -x sales IP1
sales

[student@krosum ~]% grep |-nx sales IP1l

5
= = P
1= | I_.E‘S

[siudent@krosum ~1%

only lines that entirely match pattern.

X

option prints

student@krosum ~]$ # filter mounted xfs type file system
student@krosum ~-]% #

student@krosum ~]$ df -Th|grep xfs

dev/sda2 xfs 9.8¢ 2.6G 7.2G 27% /

dev/sdad xfs 2.06 33M 2.0G 2% /home
student@krosum ~1%

[student@krosum ~]%$ # search list of loaded bluetooth module
[student@krosum

[student@krosum ~1%

[student@krosum ~]$ lsmod|grep bluetooth

bluetooth 312602 22 bnep,btusb,rfcomm

rfkill 20721 3 bluetooth

[student@krosum ~1%
[student@krosum ~]$ lsmod|grep -n bluetooth
bluetooth 312602 22 bnep,btusb, rfcomm
rfkill 20721 3 bluetooth
[student@krosum ~]%

student@rosum =]% free -m
total used free shared buffers
lem: 1003 981 21 0
/+ buffers/cache: 260 743
bwap 7965 0 7965
student@rosum ~]% free -m |grep -1 swap # filter swapspace usage
Swap 7965 0 7965
student@rosum ~1%

[student@rosum ~]$ grep sales emp.csv

101, kumar, sales, pune, 1000
32,vijay,sales,chennai, 3500

100, ram, sales, pune, 8905

student@rosum ~]$ |grep sales emp.csv| |cut -d, -f2

student@rosum =3

grep Family

e Fast grep(fgrep: supports only string patterns — no regular
expression)

e grep: supports only a limited number of regular expression

e Extend grep(egrep: supports most regular expressions)

[student@rosum ~]$|grep -n sales emp.csv|# grep family
101, kumar,sales,pune, 1000
432,vijay,sales,chennai, 3500
456, ram,sales, pune, 8905
[student@krosum ~]$
[student@rosum ~]$ grep -ne “sales" emp.csv # egrep family
101, kumar, sales, pune, 1000
432,vijay,sales,chennai, 3500
456, ram,sales, pune, 8905
[student@krosum ~]$
[student@rosum ~]$ [fgrep -n "sales" emp.csv|# fgrep family
101, kumar, sales, pune, 1000
432,vijay,sales,chennai, 3500
456, ram, sales, pune, 8905
[student@rosum ~]$
We will have a detailed look on regular expressions in
upcoming topics.

Find command

e Find command used to search and locate list of files and
directories.

Syntax:

find<searching from path>-name search file

[student@krosum ~]1%
[student@krosum ~]%$ find -name emp.csv

./Demo/L1/L2/emp.csv
./Demo/emp.csv

./emp.csv
./D1/emp.csv
[student@krosum ~]%

Task :Find all the
files whose name is emp.csv in a current working directory.

e find command searches the input files recursively

[student@krosum ~]$ find ~ -name t1.txt
/home/student/Demo/tl. txt
/home/student/tl. txt

/home/student/D1/tl. txt
[student@krosum ~]%

Task: find all the files whose name is t1.txt in a login directory.

Task: Find Files Using Name and Ignoring Case

[student@krosum ~]$ find ~ -name emp.csv
home/student/Demo/L1/L2/emp.csv
home/student/Demo/emp.csv
home/student/emp.csv

home/student/D1/emp.csv

[student@krosum ~]$

[student@krosum ~]$ ## ignore case use -iname

[student@krosum -]$:
[student@krosum ~]$ [find ~ -iname emp.csv
home/student/Demo/EMP.csv
home/student/Demo/L1/L2/emp.csv
home/student/Demo/emp.csv
home/student/emp.csv
home/student/D1/Emp.csv
home/student/D1/emp

Search a file with pattern

Filter list of log files

[student@krosum ~]$ find -name "*,log"
./ . local/share/gvfs-metadata/home-d8db22ac. log

./rl.log
[student@krosum ~]$

Task :Filter list of log file under /var directory

[root@krosum ~]#|find /var -name . Log
/var/log/lightdm/1lightdm. Log
/var/log/lightdm/x-0-greeter.log
/var/log/lightdm/x-0.1l0g
/var/log/dracut. lLog

/var/log/Xorg.9.log
/var/log/prelink/prelink. log
/var/log/pm-powersave. log
/var/log/Xorg.0.log
/var/log/anaconda/anaconda.storage. log
/var/log/anaconda/anaconda. log
/var/log/anaconda/ks-script-jWdTaS. log
/var/log/anaconda/anaconda.ifcfg. log
/var/log/anaconda/anaconda. packaging. log
/var/log/anaconda/anaconda.program. log
/var/log/yum. Log

/var/log/boot. log
/var/log/spice-vdagent. log
/var/log/audit/audit. log

[root@krosum ~]#

Task: Find list of regular files in a current directory.

[student@krosum ~]$%
[student@krosum ~]$ find -type f

Task : Find list of directory files in a current directory.

[student@krosum ~]$ find -type d
. /Videos

./.liferea 1.8

./ . 1iferea_l1.8/cache
./.liferea_l.8/cache/favicons
./.1liferea_1.8/cache/plugins
./.liferea_l.8/cache/feeds
./.1iferea_l.8/cache/scripts

./ .gnupg

./ .gnupg/private-keys-vl.d

. /Music

./ . local

./ . local/share

./ . local/share/gvfs-metadata
./.local/share/webkit

./ . local/share/webkit/icondatabase
./ .local/share/webkit/databases

. /Demo

Task : Find list of character type device files in a /dev directory

dev/ttyb
dev/tty5
dev/tty4
dev/tty3
dev/tty2
dev/ttyl
dev/vcsal
dev/vcsl
dev/vcsa
dev/vcs
dev/tty0
dev/console
dev/tty
dev/oldmem
dev/kmsg
dev/urandom
dev/random
dev/full
dev/zero

Task : Find list of block type device files in a /dev directory

[student@krosum -~]1%
[student@krosum ~]$ find /dev -type b # List of block type device files
/dev/sdab

/dev/sdad

/dev/sda3

/dev/sda2

/dev/sdal

/dev/sda

/dev/sr0

/dev/Loop7
/dev/Loopb
/dev/Loop5
/dev/loop4
/dev/loop3
/dev/loop2
/dev/loopl
/dev/loopD

Task : Find Files Based on their Permissions

Find all the files whose permissions are user can do read/write/execute

[student@krosum ~]%
[student@krosum ~]$ find -perm -u=rwx

. /Pictures

./ .config

./ .config/Thunar

./ .config/ibus

./ .config/ibus/bus

./ .config/xfced4

./ .config/xfced4/terminal
./ .config/xfced/xfwmé
/.config/xfced4/desktop
/.config/xfced/xfconf

./ .config/xfced4/xfconf/xfce-perchannel-xml
./ .config/midori
./ .config/yumex

mindepth and maxdepth

using mindepth and maxdepth we can limit the search to a
specific directory.
maxdepth levels : Descend at most levels

Examples required —-maxdepth1

-maxdepthO means only apply the tests and actions to the starting-
points themselves.

: -name passwd
usr/bin/passwd
usr/share/bash-completion/completions/passwd
/sys/fs/selinux/class/passwd

/sys/fs/selinux/class/passwd/perms/passwd
etc/passwd
etc/pam.d/passwd

[root@krosum ~]# find / -maxdepth 2 -name passwd
/etc/passwd

[root@krosum ~]# find / -maxdepth 3 -name passwd
usr/bin/passwd

etc/passwd

etc/pam.d/passwd -

mindepthlevels : Do not apply any tests or actions at levels less
than mindepth levels
-mindepth1 means process all files except the starting-points.

[student@krosum ~]% find ~ -name "emp.csv"
/home/student/Demo/L1/L2/emp.csv
/home/student/Demo/emp.csv

/home/student/emp.csv

/home/student/D1l/emp.csv

[student@krosum ~]%

[student@krosum ~]% find ~ -maxdepth 1 -name "“emp.csv"

/home/student/emp.csv

[student@krosum =]%

[student@krosum ~]$ find ~ -maxdepth 2 -name "emp.csv"
/home/student/Demo/emp.csv

/home/student/emp.csv

/home/student/D1/emp.csv

Task :Find the passwd file under all sub-directories starting from root
directory.

- terminal - root@krosum: - . . ox)

Fle Edit wiew Terminal Tabs Helg

[root@krosum ~]# find / -name passwd
/usr/bin/passwd
Jusr/share/bash-completion/completions/passwd
/sys/fs/selinux/class/passwd
/sys/fs/selinux/class/passwd/perms/passwd
/etc/passwd

/etc/pam. d/passwd
[root@k rosum -]#

_erminal - root Gkrosum: -

Fle Edit View Terrminal Tabs Help

[root@krosum -~]#

[root@krosum ~]# find / -name passwd
Jusr/bin/passwd
/usr/share/bash-completion/completions/passwd
/sys/fs/selinux/class/passwd
/sys/fs/selinux/class/passwd/perms/passwd

/etc/passwd

/etc/pam.d/passwd

[root@krosum ~]#

[root@krosum ~]#
/etc/passwd

[root@krosum ~]#

[root@krosum ~]#

Task : Find the passwd file under / directory and one level down

(i.e root - level 1, and one sub-directory - level 2)

-

File Edit “iew Terminal Tabs Help
[root@krosum -]#
LGOI E R find / -mindepth 3 -name passwd
/Jusr/bin/passwd
/usr/share/bash-completion/completions/passwd
/sys/fs/selinux/class/passwd
/sys/fs/selinux/class/passwd/perms/passwd
/etc/pam.d/passwd

[root@krosum ~]#

Task :Find the passwd file under / directory

(search from level 3)

File Edit wiew Terminal Tabs Help

[root@krosum ~]# find / -mindepth 4 -name passwd
/usr/share/bash-completion/completions/passwd
/sys/fs/selinux/class/passwd
/sys/fs/selinux/class/passwd/perms/passwd
[root@krosum -]#

Task :Find the passwd file under /directory(search from level 4)

Find Files and Directories Based on
Date and Time

As units we can use:

b— for 512-byte blocks

c- for bytes

w- for two-byte words

k- for kilobytes (units of 1024 bytes)

M- for Megabytes (units of 1048576 bytes)
G- for Gigabytes (units of 1073741824 bytes)

We can search for exact file size or just for bigger(+) or smaller (-) files

Task : Find files all bigger than 512k files

| F-.=t view Termina -=|:'-=. -=|:‘

[root@krosum -]#

[root@krosum ~]#

. /JavaBackup/sun-javadb-demo-10.6.2-1.1.1386. rpm

. /JavaBackup/jdk-6u37-1inux-i586-rpm.bin

. /JavaBackup/jre-6u38-1inux-i586-rpm.bin

. /JavaBackup/sun-javadb-docs-10.6.2-1.1.1386. rpm

. /JavaBackup/jdk-6u37-1inux-1i586. rpm

. /JavaBackup/install.sfx.2426

. /JavaBackup/sun-javadb-core-10.6.2-1.1.i386. rpm
T

. /Temp/JavaBackup/sun-javadb-demo-10.6.2-1.1.i386. rpm
. /Temp/JavaBackup/jdk-6u37-1inux-1i586-rpm.bin
./Temp/JavaBackup/jre-6u38-1linux-1i586-rpm.bin

. /Temp/JavaBackup/sun-javadb-docs-10.6.2-1.1.1386. rpm
. /Temp/JavaBackup/jdk-6u37-1linux-i586. rpm

. /Temp/JavaBackup/install.sfx.2426

. /Temp/JavaBackup/sun-javadb-core-10.6.2-1,1.1386. rpm
. /Temp/Backupl. tar

. /Downloads/google-chrome-stable_current_amd64.deb

. /Backupl. tar

./D1/p2.log

[root@krosum ~]#

Task: search only regularfiles only

e

i Terminal - root@krosum: -
File Edt ‘iew Terminal Tabs Help

(LGOI ERfind / -type f -size +512k

. _Terminal - r

File Edit Wview Terminal Tabs Help
/root/Temp/JavaBackup/sun-javadb-demo-10.6.2-1.1.1i386. rpm
/root/Temp/JavaBackup/jdk-6u37-1inux-i586-rpm.bin
/root/Temp/JavaBackup/jre-6u38-1inux-i586-rpm.bin
/root/Temp/JavaBackup/sun-javadb-docs-10.6.2-1.1.1386. rpm
/root/Temp/JavaBackup/jdk-6u37-1inux-1586. rpm
/root/Temp/JavaBackup/install.sfx.2426
/root/Temp/JavaBackup/sun-javadb-core-10.6.2-1.1.1i386. rpm
/root/Temp/Backupl. tar
/root/Downloads/google-chrome-stable current_amd64.deb
/root/Backupl. tar

/root/D1/p2.log

/etc/services

/etc/udev/hwdb.bin

/etc/selinux/targeted/policy/policy.29
/etc/selinux/targeted/modules/active/policy.kern
/etc/gconf/schemas/desktop_gnome_url_handlers.schemas
/home/student/.liferea_l1.8/1iferea.db
/boot/System.map-3.9.5-301.fc19.i686
/boot/vmlinuz-0-rescue-9388a5eb453d59f4fd98567b37061720
/boot/vmlinuz-3.9.5-301.fcl9.1686
/boot/initrd-plymouth.img
/boot/grub2/themes/system/background.png

Task :To find all 50MB files.

fusrfllhflocaleflocale archive
/usr/share/icons/gnome/icon-theme. cache
/usr/java/jdkl.6.0 37/jre/lib/rt.jar
/sys/devices/pci0000:00/0000:00:0f.0/resourcel_wc
/sys/devices/pci0000:00/0000:00:0f.0/resourcel
/var/1lib/rpm/Packages
/root/JavaBackup/jdk-6u37-1inux-1i586-rpm.bin
/root/JavaBackup/jdk-6u37-1inux-1586. rpm

/root/pl.log
/root/Temp/JavaBackup/jdk-6u37-1inux-i586-rpm.bin
/root/Temp/JavaBackup/jdk-6u37-1inux-i586. rpm
/root/Temp/Backupl. tar
/root/Downloads/google-chrome-stable_current_amd64.deb
/root/Backupl. tar

/root/D1/p2.1l0g

/proc/kcore

find: ‘/proc/2061/task/2061/fd/6': No such file or directory
find: ‘/proc/2061/task/2061/fdinfo/6’: No such file or directory
find: ‘/proc/2061/fd/6’: No such file or directory
find: ‘/proc/2061/fdinfo/6': No such file or directory
/dev/shm/pulse-shm-288956020
/dev/shm/pulse-shm-1962391980

[root@krosum ~]#

Task :To find all the files which are greater than 50MB andless than 100MB.

i B T e —

File Edit view Terminal Tabs Help

[root@krosum ~]#
[root@krosum ~]# # To find all the files which are modified more
[root@krosum ~]# # back and less than 100 days
[root@krosum
[root@krosum ~]# find / -mtime +50 -mtime -100
1 ‘/proc/2074/task/2074/fd/6': No such file or directory
‘/proc/2074/task/2074/fdinfo/6’': No such file or directory

‘/proc/2074/fd/6': No such file or directory
‘/proc/2074/fdinfo/6’': No such file or directory
[root@krosum ~]#

@

File Edit View Tarminal Tabs Help

[root@krosum ~]# find / -mtime 30

Task :To find all the files which are modified 30 days back.

[root@krosum ~]# # To find all the files which are accessed 30 days back
[root@krosum ~]# #

[root@krosum ~]#
[root@krosum ~]# find / -atime 30

Task :To find all the files which are accessed 30 days back.

Task :To find all the files which are modified more than 50 days back and
less than 100 days.

- T — . x
File Edn aw Terminal Tabs I | ' vl

[root@k rosum ~]#

[root@krosum ~]# # To find all the files which are modified more than 50 days
[root@krosum ~]# # back and less than 100 days

[root@krosum =]# #------cccecccccecee e e s e e e ce e e e e m e .
[root@krosum ~]# find / -mtime +50 -mtime -100

find: */proc/2074/task/2074/fd/6"': No such file or directory

find: ‘/proc/2074/task/2074/fdinfo/6": No such file or directory

find: ‘/proc/2074/fd/6': No such file or directory

find: ‘/proc/2074/fdinfo/6': Mo such file or directory
[rooti@k rosum ~]#

L] Terminal - root @krosum: - T

[root@krosum ~]#
[root@krosum ~]# # To find all the file which are changed in last 1 Hr

[root@krosum ~]# #
[root@krosum ~]# find / -cmin -60

Task :To find all the files which are changed in last 1 hour.

I 1erminal - root Ekrosum: - #._ax
Ala Edit ‘\Jiaw rminal s Haelp

sys/fs/extd

fsys/fs/extd/sdal
/sys/fs/ext4/sdal/inode_readahead_blks
sys/fs/ext4/sdal/mb_max_to scan
/sys/fs/ext4/sdal/delayed_allocation_blocks
sys/fs/ext4/sdal/max_writeback _mb_bump
sys/fs/extd/sdal/mb stream req
/sys/fs/extd/sdal/mb_min_to_scan
sys/fs/ext4/sdal/mb_stats
'sys/fs/extd/sdal/trigger_fs_error
/sys/fs/extd4/sdal/session_write_kbytes
sys/fs/extd/sdal/lifetime write kbytes
/sys/fs/extd/sdal/mb_group_prealloc
sys/fs/ext4/sdal/inode_goal
sys/fs/extd/sdal/extent_max_zeroout kb
/sys/fs/extd/sdal/mb_order2_req
sys/fs/ext4/sda2
sys/fs/extd4/sda2/inode_readahead_blks
/sys/fs/extd/sda2/mb_max_to_scan
sys/fs/ext4/sda2/delayed allocation blocks

Task :To find all the files which are modified in last 1 hour.

Sproc/208l/attr/keycreate
/proc/208l/attr/sockcreate
Jproc/2081/wchan
/proc/2081/stack
/proc/2081/schedstat
Sproc/2081/latency
/proc/2081/cpuset
Jproc/20B1l/cgroup
/proc/2081/0om_score
/proc/2081/0om_adj
/proc/2081/0om_score_adj
/proc/2081/loginuid
/proc/2081/sessionid
/proc/2081/coredump_filter
/proc/2081/i0

Jrun
Jrun/dhclient-ens33, pid
Jrun/user

Jrun/lock
Jrun/systemd/users
Jrun/systemd/sessions
Jdev/pts/0

Jdev/ptmx

[root@krosum -]#

xargs

e xargs converts input from standard input into arguments to a
command.

e By default xargsdisplays whatever comes to its stdin as shown
below.

i

File Edit wiew Terminal Tabs Help

one

five" |xargs
one two three four five
[root@krosum -]#

e T B g i b 9 P

File Edit Wwiew Terminal T
(MG ERSERfind ~ -name "*.csv" |xargs grep -n sales
/root/Test.csv:1:total sales count:1000
/root/Desktop/emp.csv:1:101,arun,sales,pune,1000
/root/Desktop/emp.csv:4:954, renu,sales, pune, 3424
/root/Desktop/emp.csv:6:234,bibu,sales,chennai, 4566
/root/Temp/emp.csv:1:101,arun,sales,pune,1000
/root/Temp/emp.csv:4:954, renu,sales,pune, 3424
/root/Temp/emp.csv:6:234,bibu,sales,chennai, 4566
/root/emp.csv:1:101,arun,sales,pune, 1000
/root/emp.csv:4:954,renu,sales,pune, 3424
/root/emp.csv:6:234,bibu,sales,chennai, 4566

[root@krosum ~]#

File Edt %“iew Terrminal Tabs Help

[root@krosum ~]#

[root@krosum ~]# find -size +100M

./pl.log

. /Temp/Backupl. tar

. /Backupl. tar

./D1/p2.log

[root@krosum ~]# find -size +100M|xargs rm

[root@krosum ~]#
[root@krosum ~]# find -size +100M
[root@krosum ~]#
[root@krosum ~]#

Task: search

sales keyword from filtered files

find /root -name "*.csv" |xargsgrep -n sales

exec
-execcommand ;Execute command; true if 0 status is returned.

All following arguments to find are taken to be arguments to the command
until an argument consisting of “;' is encountered.

Syntax
find-exec command {} \;

exec

Task: search list of .csv files under /root directory ,from that search
pattern is called sales, display matched result to monitor.

e find/root-name "*.csv" -exec grep-n sales {} \;
Task : search all files with size more than 100MB and delete them.
e find / -size +100M -exec /bin/rm {} \;

ABOUT THE AUTHOR

Mr. Palani Karthikeyan is well known for his role as a corporate
trainer.

He is also working as a Technical Consultant for krosum labs, an
Online Technical institution.

He pursued his Bachelor degree in Computer Engineering from The
University of Madras and Post Graduate degree M.S. from The Manipal
University.

He has more than 16 years of professional experience in corporate
world. Until now, He has conducted 350+ corporate trainings. He has
acquired profound knowledge in the following areas.

e High-performance UNIX & LINUX system programming
e Oracle Linux Administration & Ansible

e Efficient code handling in C/ C++ Program.

e Unix Shell Script (BASH, KSH, CSH, expect)

e Perl Script

e Python - flask, django.

e TCL script

e Ruby Script

He has worked as a Consultant in various projects like Linux kernel

by-pass technique, System Performance monitoring tools, Education
Automation System (EASY). In addition he has developed various ERP
Business modules for enterprises.

Whtps://www .krosum.com/ email Id- abpalanikarthik@gmail.com
Connect me by LinkedIn — Palani karthikeyan

https://www.krosum.com/

	Contents
	Preface
	Dedication
	Acknowledgement
	CHAPTER 1 - Linux Introduction
	CHAPTER 2 - Linux Boot Process
	CHAPTER 3 - About Shell
	CHAPTER 4 - File structure
	CHAPTER 5 - Common Linux commands
	CHAPTER 6 - Linux Command line structure
	CHAPTER 7 - The vi editor
	CHAPTER 8 - Displaying the Directory Content
	CHAPTER 9 - Regular file manipulation commands
	CHAPTER 10 - Shell meta-character
	CHAPTER 11 - File Permission
	CHAPTER 12 - The umask Command
	CHAPTER 13 - Linux Process
	CHAPTER 14 - Filters
	About the Author

