

	
Linux	Command	Line

	
(Cover	All	Essential	Linux	Commands)

	

A	Beginner’s	Guide
	

By	Ray	Yao

Copyright	©	2014	by	Ray	Yao	All	Rights	Reserved	Neither	part	of	this	book	nor	whole
of	this	book	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means	electronic,	photographic	or

mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or	retrieval	system,	without
prior	written	permission	from	the	author.

Ray	Yao
	

About	the	Author
Ray	Yao:
Certified	PHP	engineer	by	Zend,	USA
Certified	JAVA	programmer	by	Sun,	USA
Certified	SCWCD	developer	by	Oracle,	USA
Certified	A+	professional	by	CompTIA,	USA
Certified	ASP.	NET	expert	by	Microsoft,	USA	Certified	MCP	professional	by	Microsoft,	USA	Certified
TECHNOLOGY	specialist	by	Microsoft,	USA	Certified	NETWORK+	professional	by	CompTIA,	USA

Preface
	
This	 book	 is	 a	 beginner’s	 guide	 for	 fast	 learning	 Linux	 commands	which	 are	 frequently	 used	 by	 Linux
administrators	 or	 beginners.	 The	 book	 covers	 all	 essential	 Linux	 commands	 as	 well	 as	 their	 operations,
examples	and	explanations.	 It	also	 includes	Linux	Helping	commands,	symbols,	shortcut	keys,	 run	 levels
and	Vi	commands.	From	this	book,	you	can	easily	learn:
How	to	run	all	essential	Linux	commands.
How	to	copy,	move,	and	delete	files	and	directories.
How	to	create,	remove,	and	manage	users	and	groups.
How	to	access	Linux	server,	and	use	SSH	commands.
How	to	operate	the	run	levels	and	change	the	run	levels	How	to	navigate	at	the	command	line	by	helping
commands.
How	to	compare	files,	find	out	a	file,	manipulate	file	contents	How	to	start	a	job,	stop	a	job	and	schedule	a
job.
How	to	manage	permissions,	ownership	of	files,	directories	How	to	connect	across	network,	communicate
with	network.
How	to	transfer	files	over	network,	send	network	messages	And	much	more	skill……
There	is	a	long	table	containing	all	common	Linux	commands	in	this	book,	which	can	give	you	a	great	help
in	your	job	or	study.	You	can	learn	all	essential	Linux	commands	quickly.

	
Table	of	Contents

	
Chapter	1			Introduction	to	Linux														6
Chapter	2			Enter	First	Commands
Chapter	3			Super	User	Commands
Chapter	4			Navigating	At	Commands
Chapter	5			File	Operation	Commands														39
Chapter	6			Viewing	File	Commands
Chapter	7			Comparing	File	Commands	Chapter	8			Matching	Text	Commands
Chapter	9			Directory	Commands
Chapter	10		Un/Compress	Commands														59
Chapter	11		Processe	Commands
Chapter	12		Account	Commands
Chapter	13		Groups	Commands														68
Chapter	14		Permission	Commands
Chapter	15		Running	Job	Commands	Chapter	16		Backup/Restore	Commands
Chapter	17		Date	&	Time	Commands														79
Chapter	18		Networking	Commands
Chapter	19		Scripting	Commands
Chapter	20		System	Commands
Chapter	21		Helping	Commands
Chapter	22		Skill	of	Commands														98
Chapter	23		Access	Permissions
Chapter	24		Linux	Symbols
Chapter	25		Shortcut	Keys
Chapter	26		Run	Levels	Table	Chapter	27		The	Vi	Editor	Commands
Chapter	28		All	Essential	Linux	Commands	Conclusion

	
	
	

Chapter	1
Introduction	to	Linux

	

About	Linux	Operating	System
Linux	 is	 a	Unix-like	 and	mostly	 POSIX-compliant	 computer	 operating	 system
assembled	under	 the	model	of	 free	and	open-source	software	development	and
distribution.
Linux	usually	works	as	a	server,	because	of	its	stability	and	security’s	feature.
Linux	programs	are	extremely	advantageous:

Linux	programs	are	free,	you’ll	see,	most	of	Linux	programs	are.
They	are	frequently	updated	and	for	Zero	charge!
Some	of	them	are	better	than	those	in	windows.	And	other	doesn’t	even
exist	in	windows!

If	 Linux	 is	 free	 and	 almost	 all	 their	 softwares	 are	 free,	 it	 is	 for	 a	 reason;	 to
understand	we	have	to	go	back	to	1984.
	

1984													
So	we	 are	 back	 in	 1984,	 computer	 science	was	not	 very	developed.	Microsoft
has	just	launched	its	first	os:	MS-DOS,	but	this	one	is	far	away	from	being	done.

But,	was	MS-DOS	the	only	one	then?

No!	There	was	other	operating	system	but	less	known	by	the	public.
The	one	that	was	called	the	best	was	“Unix”.	It	was	a	lot	powerful	than	MS-DOS
but	a	lot	complicated,	what	explains	that	only	the	professionals	could	use	it.
Graphically	UNIX	looked	a	 lot	 like	MS-DOS	they	were	both	seen	like	a	black
screen	with	some	white	 text	 in	 it.	We	must	say	 that	computers	back	 then	were
not	capable	of	doing	better.
	

GNU	Project													
It	is	just	in	1984,	that	Richard	Stallman	created	GNU	project.
The	GNU	Project	is	free	software,	mass	collaboration	project,	announced	on	27
September	1983,	by	Richard	Stallman	at	MIT.	Its	aim	is	to	give	computer	users
freedom	and	control	 in	 their	use	of	 their	computers	and	computing	devices,	by
collaboratively	developing	and	providing	software	that	is	based	on	the	following

freedom	 rights:	 users	 are	 free	 to	 run	 the	 software,	 share	 it	 (copy,	 distribute),
study	 it	 and	modify	 it.	 GNU	 software	 guarantees	 these	 freedom-rights	 legally
(via	its	license),	and	is	therefore	free	software;	the	use	of	the	word	"free"	always
being	taken	to	refer	to	freedom.
Richard	Stallman	was	a	researcher	in	Artificial	intelligence	in	MIT.	He	wanted
to	create	an	operating	system	based	on	UNIX	(the	commands	still	the	same).
But	why	would	he	create	a	copy	of	“UNIX”?
Because	 UNIX	 was	 not	 free	 and	 it	 was	 getting	 more	 expensive!	 Richard
Stallman	wanted	 to	 react	 by	 creating	 a	 free	 alternative:	 the	 project	 GNU	was
born.
	

GNU	is	an	open	operating	system
GNU	should	not	only	be	a	free	OS;	it	also	had	to	be	"open"
What	is	the	difference?
A	free	program	is	a	program	where	you	can	have	the	source	code,	that	is	to	say,
the	"batch	recipe."	In	contrast,	Windows	is	a	proprietary	OS	whose	source	code
is	 stored	 by	Microsoft.	 Imagine	 it's	 like	 Coca-Cola:	 nobody	 knows	 the	 recipe
(there	are	many	people	who	try	to	imitate	it,	but	hey	...).	So	we	cannot	change	it
or	see	how	it	works	inside.
An	open	program	is	mostly	a	free	program,	it	is	also	a	program	that	has	the	right
to	 copy,	modify,	 redistribute.	 It's	 a	 real	 ideology	 in	 computer	 science:	 people
think	it	is	better	to	give	the	source	code	of	the	programs	that	we	create	because	it
allows	knowledge	sharing	and	helps	the	computer	to	evolve	faster.	The	slogan	of
the	Free	World	might	be:	"Unity	is	strength."
They	 say	 whenever	 the	 program	 is	 "open	 source"	 because	 its	 source	 code	 is
open;	 everyone	 can	 see	 it.	 There	 are	 some	 slight	 differences	 between	 "open
source"	program	and	a	"free"	program,	but	we	will	not	go	into	details	here.
	

Linus	Torvalds	is	doing	his	hobby
In	1991,	Linus	Torvalds,	a	student	at	the	University	of	Helsinki	(Finland),	began
creating	 his	 free	 own	 operating	 system.	This	 system	became	 known	 as	Linux,
referring	to	the	name	of	its	creator	(Linux	is	a	contraction	of	Linus	and	UNIX).
	

Linus	Torvalds,	creator	of	Linux
What	 relationship	 with	 GNU?	Well	 it	 turns	 out	 that	 these	 two	 projects	 were
complementary:	 while	 Richard	 Stallman	 created	 the	 basic	 programs	 (program

file	 copy,	 delete,	 file,	 text	 editor),	 Linus	 had	 embarked	 on	 the	 creation	 of	 the
"heart"	an	operating	system	kernel.
The	GNU	(free	programs)	and	Linux	(OS	kernel)	project	merged	to	create	GNU
/	Linux.
Theoretically,	we	should	talk	about	GNU	/	Linux.	But	it	is	a	bit	difficult	to	write
and	pronounce,	and	by	abuse	of	language,	we	often	say	just	"Linux".	This	is	why
I	continue	to	speak	of	"Linux"	in	the	rest	of	the	book,	even	though	the	politically
correct	name	is	"GNU	/	Linux"	because	it	is	the	merger	of	two	complementary
projects.
	

Original	operating	systems
You	 should	 now	 have	 a	 better	 idea	 of	 the	 origin	 of	 the	 three	major	 operating
systems	that	exist	today:	Mac	OS,	Linux	and	Windows.
Thus,	Mac	OS	 and	 Linux	 are	 both	 based	 on	UNIX,	 the	 ancestor	 of	 operating
systems,	while	Windows,	from	MS-DOS	is	a	separate	branch.	Overall,	this	is	all
you	need	to	remember.
It	is	said	that	Mac	OS	and	Linux	are	based	on	UNIX	because	they	have	"copied"
its	 operation.	 It's	 not	 pejorative,	 it’s	 quite	 the	 opposite:	 it's	 been	 an	 honor	 to
UNIX.
Linux	programs	do	not	use	all	 the	same	source	code	as	UNIX	(it	was	also	 the
owner,	so	private).	They	have	been	completely	rewritten	but	work	the	same	way.
If	 I	 told	 you	 all	 this	 is	 because	 I	 believe	 that	 knowing	 the	 origin	 of	 Linux	 is
important.	This	will	help	you	understand	many	things	thereafter.
	

Linux	distributions
A	Linux	distribution	(often	called	distro	for	short)	is	an	operating	system	made
as	 a	 collection	 of	 software	 based	 around	 the	 Linux	 kernel	 and	 often	 around	 a
package	management	 system.	 	The	most	well	known	distributions	are	RedHat,
SUSE,	Debian,	Mandriva,	Slackware	and	Ubuntu.	You	can	find	much	different
software	and	there	are	hundreds	of	different	ways	to	install	it.
To	make	life	easier	for	users	and	allow	them	to	make	a	choice,	different	Linux
distributions	 were	 created.	 This	 is	 a	 concept	 that	 does	 not	 really	 exist	 in
Windows.	 It's	 like	 the	 difference	 between	Windows	 7	 Home	 and	Windows	 7
Professional,	but	it	goes	much	further	than	that.

Here's	what	can	differ	from	one	distribution	to	another:
Installation:	it	can	be	greatly	simplified	as	very	complicated;
Installing	management	 programs:	 If	 it	 is	 done	well	 and	 centralized,	 it

can	make	 the	 installation	 of	 new	 software	 simpler	 than	Windows,	 as
discussed	further!
The	preinstalled	programs	on	your	computer	(e.g.	Windows	is	bundled
with	Internet	Explorer	and	Windows	Media	Player).

In	fact,	distribution	is	somehow	packing	Linux.	The	heart	itself	remains	the	same
for	all	distributions.
Whichever	 distribution	 you	 install,	 you	 get	 a	 Linux	 compatible	 with	 others.
Some	distributions	are	just	more	or	less	easy	to	handle.	:-)
	

Various	existing	distributions
There	 are	 many	 different	 Linux	 distributions. Hard	 to	 choose ,	 you	 will	 say:
indeed,	the	first	time	it	is	unclear	what	to	choose	...	especially	since	all	are	free!
Do	not	worry;	I'll	help	you	make	your	choice.
I	will	not	list	all	existing	distributions,	but	here	at	least	the	main	ones:
Slackware:	one	of	the	oldest	Linux	distributions.	It	still	exists	today!
Mandriva:	published	by	a	French	company,	it	is	simple	to	use;
RedHat:	 published	 by	 an	 American	 company,	 this	 distribution	 is	 known	 and
widespread,	especially	on	servers;
SUSE:	Novell	published	by	the	company;
Debian:	Debian	distribution	alone	which	is	managed	by	independent	developers
rather	than	a	business.	This	is	one	of	the	most	popular	distributions.
As	I	have	said,	whatever	the	distro	(short	for	distribution)	you	choose,	you	will
have	 a	 Linux.	 Basically,	 "just"	 a	 screen	 on	 first	 boot	 and	 various	 software
preinstalled	(I'm	simplifying	a	bit	much,	but	the	idea	is	there).
	
	

Summary
	
Windows,	Mac	OS	and	Linux	are	the	most	popular	operating	systems.
Linux	usually	works	as	a	server,	because	of	its	stability	and	security’s	feature.
Linux	 has	 the	 distinction	 of	 being	 free,	 that	 is	 to	 say	 that	 its	 source	 code	 (the
manufacturing	recipe)	is	open:	anyone	can	view	it.	In	contrast,	 the	source	code
that	was	used	to	design	Windows	and	Mac	OS	is	closed;	we	say	that	 these	are
proprietary	operating	systems.
There	are	many	variants	of	Linux,	called	distributions.

Chapter	2
Enter	First	Commands

													
Dear	 friends,	 the	big	day	has	 finally	 arrived!	You	will	 get	 the	 chance	 to	write
your	first	command	in	console!
Okay,	not	too	stressed?

I	 assure	 you,	 we	 will	 start	 with	 simple	 things	 to	 become	 familiar	 with	 the
console.	We'll	really	see	the	ABC,	the	basic	survival	guide	of	kits.
	

What	is	the	Linux	shell?
A	Linux	shell	 is	a	command-line	 interpreter	or	shell	 that	provides	a	 traditional
user	interface	for	the	Linux	operating	system	and	for	Linux-like	systems.
The	shell	understands	a	plenty	of	shell	commands	and	its	option	which	change
their	action.	The	typical	syntax	of	sell	command	looks	 like	 this:	command		 	–
option			argument
or
command			parameter
(Usually	–option	argument	means	parameter)
Command	such	as:	ls,	cat,	pwd,	cp,	mv,	date……
Parameter	such	as:	-a,	-l,	-s,	--all,	--help……
	
Example:
ls	–a
Explanation:
ls	is	a	command	meaning	list	the	contents	in	current	directory	-a	is	a	parameter
meaning	“all”.
Result:	list	all	contents	in	current	directory.
	
Shell	 commands	 can	 be	 run	 at	 a	 prompt	 in	 text	 interface	 mode	 or	 in	 a	 shell
terminal	window.
The	 command	 prompts	 with	 shell	 command	 show	 something	 like	 this:
username@hostname:	~	$	command	parameter
root@hostname:~#	command	parameter
user>	command	parameter

	

Explanation:

What	you	see	here	is	called	the	command	prompt.	It	is	a	message	that	prompts
you	 to	 enter	 a	 command	by	 giving	 you	 at	 the	 same	 time	 a	 lot	 of	 information.
This	command	prompt	is	displayed	before	each	command	you	type.

	
“username@hostname:~$	”is	a	command	prompt.
“root@hostname:~#”	is	a	command	prompt	too.
“user>”	is	a	command	prompt	as	well.

	
	

About	the	“username@hostname:~$	ls”
	

Example:
user2014@user-linux:~$	ls

	
Explanation:

user2014:	the	first	element	is	your	nickname.	This	is	the	user	name	under	which
you	 are	 logged	 and	 you.	 Indeed,	 remember:	 you	 can	 create	 multiple	 user
accounts	on	Linux.	It	is	generally	advisable	to	generate	a	person	who’s	likely	to
use	the	computer.
@:	This	symbol	indicates	nothing	special.	It's	the	symbol	"at"
user-linux:	 that's	 the	name	of	 the	computer	on	which	you	are	working.	 In	my
case	it	is	called	user-linux,	but	I	could	give	it	any	name	during	installation.
:	Again,	this	symbol	does	not	mean	anything	special,	it	is	a	separator.
~:	 That's	 the	 folder	where	 you	 currently	 are.	You	 can	 navigate	 from	 folder	 to
folder	 in	 the	 console	 and	 it	 is	 very	useful	 that	 you	 always	be	 reminded	where
you	are	before	each	command.
For	 information,	 the	 symbol	~	means	 that	you	are	 in	your	home	directory,	 so-
called	"home"	under	Linux;	this	is	equivalent	to	the	"My	Documents"	folder	on
Windows.	We	will	study	in	detail	the	operation	of	the	files	in	Linux	in	the	next
chapter.
$:	 That	 symbol	 is	 very	 important;	 it	 shows	 your	 authorization	 level	 on	 the
machine.
ls:	ls	is	a	command,	show	the	contents	of	current	directory.

	

More	detail	about	$
$:	Means	you	are	currently	using	a	user	"normal"	account	with	limited	rights	(he
cannot	 change	 the	 most	 important	 system	 files).	 My	 account	 user2014	 is	 a
normal	 account	with	 limited	 rights;	 As	 you	 can	 see,	 once	we	 speak	 the	 same
language	as	the	command	prompt,	you	understand	what	it	means!
"Welcome,	you	are	user2014	at	user-linux	machine.	You	are	 currently	 in	your
home	directory	and	have	 limited	user	rights.	You	are	using	a	command	“ls”	 to
list	the	contents	in	current	directory."
	
	

About	the	“root@hostname:~#whoami”
	
Example:
root@user-linux:~#	whoami
	
Explanation:
root:	means	user	work	as	a	super	user	@:	This	symbol	indicates	nothing	special.
It's	the	symbol	"at"
user-linux:	 that's	 the	name	of	 the	computer	on	which	you	are	working.	 In	my
case	it	is	called	user-linux,	but	I	could	give	it	any	name	during	installation.
:	Again,	this	symbol	does	not	mean	anything	special,	it	is	a	separator.
~:	 That's	 the	 folder	where	 you	 currently	 are.	You	 can	 navigate	 from	 folder	 to
folder	 in	 the	 console	 and	 it	 is	 very	useful	 that	 you	 always	be	 reminded	where
you	are	before	each	command.
For	 information,	 the	 symbol	~	means	 that	you	are	 in	your	home	directory,	 so-
called	"home"	under	Linux;	this	is	equivalent	to	the	"My	Documents"	folder	on
Windows.	We	will	study	in	detail	the	operation	of	the	files	in	Linux	in	the	next
chapter.
#:	means	you	are	working	in	super	user	mode	Whoami:	whoami	is	a	command,
show	the	current	user	name	More	detail	about	#
#:	Means	you	are	in	super	user	mode,	that	is	to	say	that	you	are	connected	under
the	pseudonym	"root."	The	root	is	the	master	who	has	the	right	to	do	everything
on	 his	 computer	 user	 (even	 to	 destroy	 it!).	We'll	 see	 how	 root	 in	more	 detail
later;	 yet	 we	 remain	 in	 a	 limited	 user	 account,	 so	 we	 do	 not	 risk	 doing	 bad
things.
"Welcome,	you	are	super	user	at	user-linux	machine.	You	are	currently	in	your

home	directory	and	have	super	user	rights.	You	are	using	a	command	“whoami”
to	show	the	current	user	name."
	
	

About	“user>pwd”
	
Example:
user>	pwd
	
Explanation:
user>	:	is	a	customized	command	prompt.
pwd:	pwd	is	a	command,	print	working	directory.
You	 can	 customize	 the	 command	 prompt	 like	 user>.	 Of	 course	 after	 you	 are
familiar	with	Linux	command	programming,	you	will	be	able	 to	customize	 the
shell	prompt.
At	this	moment,	the	Linux	machine	will	say	hallo	to	you:	"Welcome,	you	are	a
user	at	user-linux	machine.	You	are	currently	 in	your	home	directory	and	have
limited	 user	 rights.	 You	 are	 using	 the	 “pwd”	 command	 to	 print	 working
directory."
	
	
As	a	bit	of	everything	on	Linux,	the	command	prompt	is	fully	configurable.	You
can	shorten	it	if	you	find	it	is	too	long,	or	lengthen	it	if	it	does	not	give	enough
information.	You	can	theoretically	put	really	everything	you	want	in	the	prompt,
such	as	the	current	time.
	
Working	in	the	console	by	typing	commands,	the	latter	being	numerous,	you	can
never	know	all	of	 them	 ...	 and	 it	 is	not	 the	goal:	 the	goal	 is	 that	you	know	by
heart	to	serve	the	most	"common"	ones	and	for	the	less	common	you	are	able	to
learn	to	use	them	by	reading	their	manual.
	

About	Linux	commands
The	 typical	 syntax	 of	 sell	 command	 looks	 like	 this:	 command	 	 	 –option	 	
argument
or
command			parameter

	
Let’s	see	some	example	of	commands	and	parameters:	Example:
Type	“date”	and	press	the	Enter	key.
user2014	@	user-linux:	~	$	date
Monday,	September	20,	2010,	3:39:51	p.m.	(UTC-0200)	Explanation:
The	first	line	contains	the	command	prompt	followed	command	I	typed.	In	here,
“date”	is	a	command.
The	second	line	is	the	computer	response	to	this	command:	we	asked	about	the
date	and	time!
	

	
About	Parameters
Parameters	 are	 options	 that	 are	written	 after	 the	 command.	The	 command	 and
parameters	 are	 separated	 by	 a	 space,	 like	 this:	 user2014	 @	 user-linux:	 ~	 $
command	parameters	 The	 parameters	 themselves	 can	 contain	 spaces,	 letters,
numbers	...	a	bit	of	everything,	really.	There	is	no	real	rule	on	how	the	settings,
but	fortunately	programmers	have	adopted	a	sort	of	"agreement"	so	that	we	can
recognize	the	different	types	of	parameters.
	

Short	parameters	(one	letter)
The	most	 common	parameters	 are	 constituted	 by	 a	 single	 letter	 preceded	 by	 a
dash.
For	instance:
-d
-l
-a
If	we	have	to	give	several	parameters,	you	can	do	it	like	this:	-d	-a	-U	-h
Or	shorter:
-daUh
	
BEWARE!	For	short	parameters:	a	parameter	in	different	command	has	different
meanings.
Example:
ls	-t		(-t	means	“list	by	timestamps”.)
eject	-t		(-t	means	“tray	close”.)
chfn	 -f	 	 (-f	means	”change	 information	by	 finger	name”)	cut	 -f	 (-f	means	“cut

text	by	a	field	number”)
ps	-f	(-f	means	“show	process	status	in	full	information”)	BEWARE!	Parameter
is	case	sensitive	(upper	/	lower	case).	If	you	write	-u,	this	has	generally	not	the
same	sense	as	–U.
Does	a	test	with	the	ls	command,	and	write	it	the	parameter	"-a"	(lower	case),	-a
means	“all”:	Example:
user2014@user-linux:	~	$	ls	-a.
.gconfd	 .mozilla-thunderbird	 ..	 gimp-2.2	 .nautilus	 .bash_history	 .gksu.lock
.profile	.bash_logout	.gnome	.recently-used	.bashrc	.gnome2	.recently-used.xbel
.config	 .gnome2_private	 .ssh	 Desktop	 .gstreamer-	 .sudo_as_admin_successful
.dmrc	 .gtkrc	 0.10-1.2-gnome2	 .themes	 .esd_auth	 .ICEauthority	 .thumbnails
.evolution	.icons	.Trash	Examples	.lesshst	tutorials	.face	.local	.update-manager-
core	.fontconfig	.macromedia	.update-notifier	.gaim.	metacity	.Xauthority	.gconf
.mozilla	.xsession-errors	This	displays	all	files	of	current	directory,	even	hidden
files.
A	"cookie"	is	a	Linux	file	that	begins	with	a	period.	Normally,	if	you're	in	your
home	directory,	you	should	have	a	good	bunch	of	hidden	files.	These	are	usually
configuration	files	program.
	
Long	 parameters	 (severalletters) 	 The	 parameters	 consist	 of
several	letters	are	preceded	by	two	dashes,	like	this:	--long	parameter
For	instance:	--all
--all	is	a	long	parameter,	meaning	all	contents	or	all	things.
For	instance:	--version
--version	is	a	long	parameter,	meaning	the	version	of	the	command	For	instance:
--help
--help	is	a	long	parameter,	meaning	get	help	for	current	command.
If	you	want	to	put	several	feature	parameters,	 it	will	add	a	space	between	each
one:	Command	--long	parametre1	--long	parametre2
One	 can	 also	 combine	 the	 long	 and	 short	 parameters	 in	 control	 parameters:
Command	-daUh	--All
Sometimes	there	are	two	possible	entries	for	a	control	parameter:	a	short	version
and	 a	 long	 version.	 This	will	 let	 you	 choose	whichever	 you	 prefer	 one	 or	 the
other.
Note	that	this	is	the	command	that	decides	the	parameters	it	accepts:	sometimes
some	do	not	offer	a	choice	between	a	short	version	and	a	long.
Let's	 test	 this	 on	 the	 ls	 command	 with	 the	 --all	 parameter,	 which	 means
"everything":	Example:

user2014@user-linux:	~	$	ls	--all.
.gconfd	 .mozilla-thunderbird	 ..	 gimp-2.2	 .nautilus	 .bash_history	 .gksu.lock
.profile	.bash_logout	.gnome	.recently-used	.bashrc	.gnome2	.recently-used.xbel
.config	 .gnome2_private	 .ssh	 Desktop	 .gstreamer-	 .sudo_as_admin_successful
.dmrc	 .gtkrc	 0.10-1.2-gnome2	 .themes	 .esd_auth	 .ICEauthority	 .thumbnails
.evolution	.icons	.Trash	Examples	.lesshst	tutorials	.face	.local	.update-manager-
core	.fontconfig	.macromedia	.update-notifier	.gaim.	metacity	.Xauthority	.gconf
.mozilla	 .xsession-errors	 As	 you	 can	 see,	 is	 a	 synonym	 for	 --all	 -a.	 This
illustrates	what	 I	 said	a	moment	ago,	which	shows	 that	sometimes	a	command
offers	two	ways	to	use	a	parameter:	a	short	and	a	long.

Commands	and	Parameters	Examples
OK!	Let’s	have	a	further	look	about	the	commands	and	their	parameters.
	
su	–l	:	switch	user
Example:
user>	su	–l
(su:	going	to	login	as	the	root	super	user,
-l:	is	a	parameter	meaning	“login”)
	
	
ls	–l	:	list	long	contents
Example:
user>ls	–l
(ls:	shows	the	contents	of	current	directory.
–l:	is	a	parameter	meaning	“long	list	include	access	permissions,	ownership	and
date	&	time.”)	ls	–a	:	list	all	contents
Example:
user>ls	–a
(ls:	shows	the	contents	of	current	directory.
–a:	 is	 a	 parameter	 meaning	 “all	 contents”	 including	 hidden	 files.)	 rm	 –ri	 :
remove	a	directory	and	its	contents
Example:
user>rm	–ri		NonEmptyDir
(rm:	removes	a	file	or	a	directory.

–ri:	is	a	parameter	meaning	remove	a	non-empty	directory	and	its	contents.
NonEmptyDir	is	a	directory	name.)
	
w	–s	:	show	current	process	for	each	user
Example:
user>w	-s
(w:	shows	the	shell	working	processes.
–s:	is	a	parameter	meaning	“summary	”)
	
usermod	–l	:	modify	an	existing	user	account.
Example:
user>usermod	–l	oldname	newname
(usermod:	modify	an	existing	user	account.
–l:	is	a	parameter	meaning	“login	name	change”)

What	is	Virtual	Console?
Virtual	Console	means	an	interface	where	the	input	device	and	the	output	device
designed	to	enable	you	to	interact	with	your	system.
Linux	has	7	virtual	consoles,	you	can	switch	them	using	Ctrl+Alt+F1through	F7.
Ctrl+Alt+F1~F6:		switch	virtual	console	1~	virtual	console	6
Ctrl+Alt+F7:	enter	graphical	desktop,	which	is	default	virtual	console.

	
Summary:
	

1.When	user	is	a	normal	user,	use:

username@hostname:~$	command		parameter
	

2.When	user	is	a	super	user,	use:

root@hostname:~#		command		parameter
	

3.When	 the	 shell	 prompt	 has	 been	 customized,	 use:	 User>	 command
parameter

4.Linux	command:	ls,	pwd,	su,	whoami,	loginname,	rm,	exit…

5.Command	parameter:	-a,	-ri,	-l,--all,	--help…
6.	Virtual	Console:	let	you	have	several	interface	shell	sessions	active	at	the
same	time.

Chapter	3
Super	User	Commands

	
su:	switch	a	normal	user	into	a	root	super	user
loginname:		shows	the	login	name
exit:	exit	the	shell.
whoami:	shows	the	current	user	name
hostname:	shows	the	current	host	name
sudo:	 allows	a	user	with	proper	permissions	 to	 execute	 a	 command	as	 another
user,	 such	 as	 the	 superuser	 su:	 switch	a	normal	user	 into	a	 root	 super	user
Example:	
user2014@user-linux:~$	su	–l
(su:	switch	a	normal	user	into	a	root	super	user.
–l:	enter	root	password	and	login.
Note:	After	login	as	a	super	user,	the	$	will	become	#.)	loginname:	shows	the
login	name
Example:
root@user-linux:	~	#	loginname
(loginname:		shows	the	login	name,	the	output	is	“root”.
Note:	After	login	as	a	super	user,	the	$	becomes	#.)	exit:	exit	the	shell
Example:	
root@user-linux:~#	exit	 (exit:	exit	 the	shell.	 In	here:	exit	 the	super	user	mode,
and	enter	the	normal	user	mode.
Note:	After	exit	super	user,	the	#	will	become	$.)	whoami:	shows	the	current
user	name
Example:
user2014@user-linux:	~	$	whoami
(whoami:	 shows	 the	 current	 user	 name,	 the	 output	 is	 “user2014”)	 hostname:
shows	the	current	host	name
Example:
user2014@user-linux:	~	$	hostname
(hostname:	 shows	 the	 current	 host	 name,	 the	 output	 is	 “user-linux”)	 sudo:
allows	 a	 user	 with	 proper	 permissions	 to	 execute	 a	 command	 as	 another
user,	such	as	the	superuser	Example:
root>	sudo	-u	andy	ls	homemydir	(list	the	contents	of	the 	 homemydir 	 directory
as	user	andy.
-u:	specify	a	user)	root>	sudo	–v

(-v:	refresh	the	authentication	timeout,	the	next	sudo	command	will	not	require	a
password.)	root>	sudo	-k
(-k:	expire	the	authentication	timeout,	the	next	sudo	command	will	require	a
password.)		
	
Summary:
su:	switch	a	normal	user	into	a	root	super	user	loginname:		shows	the	login	name
exit:	exit	the	shell.
whoami:	shows	the	current	user	name
hostname:	shows	the	current	host	name
sudo:	 allows	a	user	with	proper	permissions	 to	 execute	 a	 command	as	 another
user,	such	as	the	superuser

Chapter	4
Navigating	At	Commands

	
pwd:	print	working	directory.
cd	dir:	change	directory.
cd~	change	directory	to	home	directory.
cd..	change	directory	to	a	parental	directory.
type:	determine	a	command	type.
	
pwd:	print	working	directory.
Example:	user> 	pwd	(pwd:	print	working	directory,	the	output	is	your	current
working	 directory.)	 cd	 dir:	 change	 directory	Example:	 user> 	 cd	mydir	 (cd:
change	directory	to	mydir,	the	output	is	mydir.)	cd~	change	directory	to	home
directory.

Example:	user>	cd 	~
(cd~	 change	 directory	 to	 home	 directory,	 the	 output	 is	 home	 directory.)	 cd..
change	directory	to	a	parental	directory.
Example:

user>	cd 	..
(cd..	change	directory	to	a	parental	directory,	the	output	is	a	parental	directory.)
type:	determine	a	command	type	Example:	user>	type	pwd	(output:	pwd	is	a
shell	builtin.)	Summary:	pwd:	print	working	directory.
cd:	change	directory.
cd~	change	directory	to	home	directory.
cd..	change	directory	to	a	parental	directory.
type:	determine	a	command	type.

Chapter	5
File	Operation	Commands

	
	
cp:	copy	a	file
mv:	move	a	file
mv:	rename	a	file
rm:	remove	a	file
rm	–ri:	remove	a	non-empty	directory	vi:	open	vi	editor	and	edit	a	file	find:	look
for	a	file
wc:	show	word	count	of	a	file
file:	estimate	the	type	of	a	file	ln:	create	a	link	between	two	files	ln	-s:	create	a
symbolic	link	to	a	file	readlink:	show	the	target	of	a	symbolic	link	lpr:	sent	a	file
to	printer
lpq:	display	the	print	queue.
	
	
	
cp:	copy	a	file
Example:
user>	cp	myfile	/dir1
(cp:	copy	myfile	to	/dir1directory.)	mv:	move	a	file
Example:
user>	mv	myfile	/dir2
(mv:	move	myfile	to	dir2	directory.)	mv:	rename	a	file
Example:
user>	mv	myfile1	myfile2
(mv:	rename	myfiel1	as	myfile2.)	rm:	remove	a	file
Example:
user>	rm	myfile
(rm:	remove	myfile.)
	
rm	–ri:	remove	a	non-empty	directory	Example:
user>	rm	–ri	NonEmptyDir
(rm:	remove	a	directory	named	NonEmptyDir.
-ri:	 remove	a	directory	containing	contents.)	vi:	open	vi	editor	and	edit	a	 file

Example:
user>	vi	myfile.txt
(vi:	open	vi	editor	and	edit	myfile.txt.)	find:	look	for	a	file
Example:
user>	find	directory	–type	f	–name		myfile.txt	-print	(find:	look	for	a	file.
-type	f:	specify	a	file
-name:	specify	a	filename
-print:	print)
	
wc:	show	word	count	of	a	file	Example:
user>	wc	myfile.txt
(wc:	show	word	count	of	myfile.txt.)	file:	estimate	the	type	of	a	file	Example:
user>	file	myfile.txt
(file:	estimate	the	type	of	myfile.txt.)	ln:	create	a	link	to	a	file
Example:
user>	ln	dir1/file1.txt		dir2/file2.txt	(ln:	create	a	link	between	file1	and	file2)	ln	-
s:	create	a	symbolic	link	between	two	files	Example:
user>	ln	–s	dir1/file1.txt		dir2/file2.txt	(ln-s:	create	a	symbolic	link	between	file1
and	 file2)	 (-s:	 a	 symbolic	 link	allows	a	given	 file	 to	 appear	 in	many	places	or
under	many	names	at	once.	For	instance,	symbolic	links	can	link	to	directories.)
readlink:	show	the	target	of	a	symbolic	link	Example:
user>	 readlink	 	 dir2/file2.txt	 (the	 output	 :	 	 dir1/file1.txt)	 lpr:	 sent	 a	 file	 to
printer
Example:
user>	lpr	myfile.txt
(lpr:	sent	myfile.txt	to	printer.)	lpq:	display	the	print	queue.
Example:
user>	lpq
(lpq:	display	the	print	queue.)	Summary:
cp:	copy	a	file
mv:	move	a	file
mv:	rename	a	file
rm:	remove	a	file
rm	–ri:	remove	a	non-empty	directory	vi:	open	vi	editor	and	edit	a	file	find:	look
for	a	file
wc:	show	word	count	of	a	file
file:	estimate	the	type	of	a	file	ln:	create	a	link	between	two	files	ln	-s:	create	a

symbolic	link	to	a	file	readlink:	show	the	target	of	a	symbolic	link	lpr:	sent	a	file
to	printer
lpq:	display	the	print	queue.

Chapter	6
Viewing	File	Commands

	
cat:	show	contents	of	a	file
cat	|	less:	display	a	file	contents	page	by	page	cat	|	more:	display	a	file	contents
screen	by	screen	head:	show	the	front	part	contents	of	a	file	 tail:	show	the	 last
part	contents	of	a	file	aspell:	spelling	check	for	a	file
cut:	show	the	specified	column	of	a	text	file	paste:	merge	two	files	contents	and
display	sort:	show	lines	of	text	sorted	alphabetically	stat:	display	the	attributes	of
a	file	or	directory	wc:	display	word	count	in	a	file
file:	test	the	file	type
touch:	create	a	file	or	change	file	timestamp	nl:	show	numbers	for	each	line	of	a
file	vi:	edit	or	create	a	text	file	with	vi	editor	tr:	transform	text	in	a	file
tee:	print	standard	output,	write	to	a	file	cat:	show	contents	of	a	file
Example:
user>	cat	myfile.txt
(cat:	show	contents	of	myfile.txt.)
	
cat	|	less:	display	a	file	contents	page	by	page	Example:
user>	cat	myfile.txt	|	less
(cat:	show	contents	of	myfile.txt.
|	:	redirect	the	output	to	another	command	less:	display	myfile.txt	contents	page
by	page)	cat	|	more:	display	a	file	contents	screen	by	screen	Example:
user>	cat	myfile.txt	|	more
(cat:	show	contents	of	myfile.txt.
|	 :	 redirect	 the	 output	 to	 another	 command	 more:	 display	 myfile.txt	 contents
screen	by	screen)	head:	show	the	front	part	contents	of	a	file	Example:
user>	head	myfile.txt
(head:	 show	 the	 front	 part	 contents	 of	 myfile.txt.)	 tail:	 show	 the	 last	 part
contents	of	a	file	Example:
user>	tail	myfile.txt
(tail:	show	the	last	part	contents	of	myfile.txt.)	aspell:	spelling	check	for	a	file
Example:
user>	aspell	–c	myfile.txt
(aspell:	spelling	check	for	myfile.txt.
-c:	check)
	

cut:	show	the	specified	column	of	a	text	file	Example:
user>	cut	–f2		myfile.txt
(cut:	show	the	specified	column	of	myfile.txt.
-f2:	specify	the	second	column)
	
paste:	merge	two	files	contents	and	display	Example:
user>	paste	myfile1.txt		myfile2.txt	(paste:	merge	two	files	contents	and	display)
sort:	show	lines	of	text	sorted	alphabetically	Example:
user>	sort	myfile.txt
(sort:	show	lines	of	text	sorted	alphabetically.)	stat:	display	the	attributes	of	a
file	or	directory	Example:
root>	stat	myfile.txt
(stat:	show	file	name,	modify	date,	change	time	etc.)	wc:	display	word	count	in
a	file
Example:
root>	wc	myfile.txt
(wc:	show	the	number	of	lines,	words,	bytes	in	a	file)	file:	test	the	file	type
Example:
root>	file	myfile.txt
(output:		myfile.txt		ASCII	text)
	
touch:	create	a	file	or	change	file	timestamp	Example:
root>	touch	myfile.txt
(touch:	create	a	file	named	myfile.txt)	nl:	show	numbers	for	each	line	of	a	file
Example:
root>	nl	myfile.txt
(output:
023		sld	slwflflf	gjo4ijg	gj4jf9ej
024		wz	wg	tjletj	geg4t4y
025		sjflew	gjlgnu4g	jgu675h	dk9fh	fmj6ju	026		jf5hjd	fjtjfj		d8gj1nfj,nuigrr	?	rit
……)
	
vi:	edit	or	create	a	text	file	with	vi	editor	Example:
root>	vi	myfile.txt
(vi:	open	myfile.txt	with	vi	editor)
	
tr:	transform	text	in	a	file
Example:

root>	echo	apple	|	tr	“apple”	“banana”
(output:	banana)
	
tee:	print	standard	output,	write	to	a	file	Example:
Root>	sort	file1.txt	|	tee	file2.txt	(sort	file1.txt	and	write	to	file2.txt)
Summary
cat:	show	contents	of	a	file
cat	|	less:	display	a	file	contents	page	by	page	cat	|	more:	display	a	file	contents
screen	by	screen	head:	show	the	front	part	contents	of	a	file	 tail:	show	the	 last
part	contents	of	a	file	aspell:	spelling	check	for	a	file
cut:	show	the	specified	column	of	a	text	file	paste:	merge	two	files	contents	and
display	sort:	show	lines	of	text	sorted	alphabetically	stat:	display	the	attributes	of
a	file	or	directory	wc:	display	word	count	in	a	file
file:	test	the	file	type
touch:	create	a	file	or	change	file	timestamp	nl:	show	numbers	for	each	line	of	a
file	vi:	edit	or	create	a	text	file	with	vi	editor	tr:	transform	text	in	a	file
tee:	print	standard	output,	write	to	a	file

Chapter	7
Comparing	File	Commands

	
diff:	show	differences	between	two	files
cmp:	 compare	 two	 files	 byte	 by	 byte	 comm:	 compare	 two	 files	 line	 by	 line
md5sum:	create	a	md5	checksum	number
cksum:	create	a	crc	number
	
diff:	show	differences	between	two	files	Example:
user>	 diff	 myfile1.txt	 	 myfile2.txt	 (diff:	 show	 differences	 between	 two	 files.)
cmp:	compare	two	files	byte	by	byte	Example:
user>	 cmp	 myfile1.txt	 	 myfile2.txt	 (cmp:	 compare	 two	 files	 byte	 by	 byte.)
comm:	compare	two	files	line	by	line	Example:
user>	 comm	myfile1.txt	 	 myfile2.txt	 (comm:	 compare	 two	 files	 line	 by	 line.)
md5sum:	create	a	md5	checksum	number	Example:
user>	md5sum		myfile1.txt
(output:	 f7tkgu5orj1fjt8kelc2os95nd57jf8r	 	 myfile1.txt.)	 cksum:	 create	 a	 crc
number
Example:
user>	chsum		myfile2.txt
(output:	4658791048		19		myfile2.txt.)	Summary
diff:	 show	differences	 between	 two	 files	 cmp:	 compare	 two	 files	 byte	 by	 byte
comm:	compare	two	files	line	by	line	md5sum:	create	a	md5	checksum	number
cksum:	create	a	crc	number

Chapter	8
Matching	Text	Commands

	
grep:	show	all	lines	that	contain	a	specified	string
egrep:	show	all	lines	that	contain	a	specified	string	uniq:	show	unique	lines	in	a
file
find:	locate	a	file	in	specified	directory
look:	show	words	matching	a	given	prefix	grep:	show	all	lines	that	contain	a
specified	string	Example:
user>	grep		good		myfile.txt
(grep:	 show	 all	 lines	 that	 contain	 “good”	 string.)	 egrep:	 show	 all	 lines	 that
contain	a	specified	string	Example:
user>	egrep		excellent		myfile.txt
(egrep:	show	all	lines	that	contain	“excellent”	string.)	uniq:	show	unique	lines
in	a	file
Example:
user>	uniq	myfile.txt
(uniq:	show	unique	lines	in	myfile.txt.)	find:	locate	a	file	in	specified	directory
Example:
user>	find	/mydir	–type	f	myfile.txt	-print	(find:	locate	a	file	in	a	directory.
-type	f:	specify	a	file
-print:	print)
	
look:	show	words	matching	a	given	prefix
Example:
User>	look	ab
(output:	aba,	abb,	abc,	abd…)	Summary
grep:	 show	 all	 lines	 that	 contain	 a	 specified	 string	 egrep:	 show	 all	 lines	 that
contain	a	specified	string	uniq:	show	unique	lines	in	a	file
find:	 locate	 a	 file	 in	 specified	 directory	 look:	 show	 words	 matching	 a	 given
prefix

Chapter	9
Directory	Commands

	
mkdir:	make	a	new	directory
rmdir:	 remove	 a	 empty	directory	basename:	display	 the	 last	 part	 of	 a	 file	 path
dirname:	show	the	directory	path	only	mkdir:	make	a	new	directory	Example:
user>	mkdir	mydir
(mkdir:	make	a	new	directory)	rmdir:	remove	a	empty	directory	Example:
user>	rmdir	mydir
(rmdir:	 remove	 a	 empty	 directory)	basename:	 display	 the	 last	 part	 of	 a	 file
path	Example:
user>	basename	homefoo/usr/file.txt	(output:		file.txt)
	
dirname:	show	the	directory	path	only	Example:
User>dirname		foobar/baz/myfile.txt	(output:		foobar/baz)	Summary
mkdir:	make	a	new	directory	rmdir:	remove	a	empty	directory	basename:	display
the	last	part	of	a	file	path	dirname:	show	the	directory	path	only

Chapter	10
Un/Compress	Commands

	
zip:	compress	a	file	to	zip	format
unzip:	 	 uncompress	 a	 file	 from	 zip	 format	 gzip:	 compress	 files	 to	 gzip	 format
gunzip:	uncompress	files	from	gzip	format	bzip2:	compress	files	 to	bz2	format
bunzip2:	uncompress	files	from	bz2	format	zip:	compress	a	file	to	zip	format
Example:
user>	zip	myfile.txt
(zip:	 compress	 myfile.txt	 to	 zip	 format.)	 unzip:	 uncompress	 a	 file	 from	 zip
format	Example:
user>	unzip	myfile.zip
(unzip:	uncompress	myfile.zip.)	gzip:	compress	files	to	gzip	format	Example:
user>	gzip	myfile.txt
(gzip:	 compress	 a	 file	 to	 gzip	 format)	 gunzip:	 uncompress	 a	 file	 from	 gzip
format	Example:
user>	gzip	myfile.txt.gz
(gunzip:	 uncompress	 myfile.txt.gz)	 bzip2:	 compress	 files	 to	 bz2	 format
Example:
user>	bzip2	myfile.txt.
(bzip2:	 compress	myfile	 to	 bz2	 format)	bunzip2:	 uncompress	 files	 from	bz2
format	Example:
user>	bunzip2	myfile.txt.bz2
(bunzip2:	uncompress	myfile	from	bz2	format)	Summary
zip:	compress	a	file	to	zip	format	unzip:		uncompress	a	file	from	zip	format	gzip:
compress	files	to	gzip	format	gunzip:	uncompress	files	from	gzip	format	bzip2:
compress	files	to	bz2	format	bunzip2:	uncompress	files	from	bz2	format

Chapter	11
Processes	Commands

	
ps:	show	the	current	processes	of	user
kill:	kill	a	process	by	process	id	w:	show	all	current	working	process.
df:	show	disk	usage	of	file	system	uptime:	show	system	uptime	top:	view	the	top
active	process	or	a	specified	process.
	
	
ps:	show	the	current	processes	of	user	Example:
root>	ps	–u	username
(ps:	show	the	current	processes	of	a	user.
-u:	specify	a	user	name)
	
kill:	kill	a	process	by	process	id	Example:
root>	kill	6270
(kill:	kill		a	process	by	process	id	6270:	a	process	id.)
	
w:	show	all	current	working	process	Example:
root>	w	-s
(w:	show	all	current	working	process.
-s:	show	summary	of	process.)	df:	show	disk	usage	of	file	system	Example:
root>	df	-h
(df:	show	disk	usage	of	file	system.
-h:	 make	 the	 output	 more	 understandable)	 uptime:	 show	 system	 uptime
Example:
root>	uptime
(uptime:	 show	 system	uptime.)	 top:	 view	 the	 top	active	 or	 specified	process
Example:
root>	top	-p	pid
(top:	show	a	process	by	pid)	(-p:display	specified	process	by	pid)	(pid:	process
id)
	
	
	
Summary
ps:	show	the	current	processes	of	user	kill:	kill	a	process	by	process	id	w:	show

all	current	working	process.
df:	show	disk	usage	of	file	system	uptime:	show	system	uptime	top:	view	the	top
active	process	or	a	specified	process.

Chapter	12
Account	Commands

	
useradd:	add	a	new	user	account
usermod:	 modify	 an	 existing	 user	 account	 userdel:	 delete	 an	 existing	 user
account	 passwd:	 set	 a	 user	 account	 password	 chfn:	 change	 personal	 finger
information	 finger:	 display	 personal	 user	 finger	 information	 useradd:	 add	 a
new	user	account	Example:
root>	useradd	username
(useradd:	add	a	new	user	account.)	usermod:	modify	an	existing	user	account
Example:
root>	usermod	–l	oldname		newname	(usermod:	modify	an	existing	user	account.
-l:	modify	login	name.)
	
userdel:	delete	an	existing	user	account	Example:
root>	userdel	username
(userdel:	delete	an	existing	user	account.)	passwd:	set	a	user	account	password
Example:
root>	passwd	username
(passwd:	set	a	user	account	password	for	a	user.)	chfn:	change	personal	finger
information	Example:
root>	chfn	username
(chfn:	change	finger	information	for	a	user).
	
finger:	display	personal	user	finger	information	Example:
root>	finger	username
(finger:	list	the	user's	login	name,	email,	domain	name,	time.	etc.)	Summary
useradd:	 add	 a	 new	 user	 account	 usermod:	 modify	 an	 existing	 user	 account
userdel:	 delete	 an	 existing	 user	 account	 passwd:	 set	 a	 user	 account	 password
chfn:	 change	 personal	 finger	 information	 finger:	 display	 personal	 user	 finger
information

Chapter	13
Groups	Commands

	
groups:	show	the	group	membership
groupadd:	create	a	new	group
groupmod:	modify	an	existing	group	groupdel:	delete	an	existing	group	groups:
show	the	group	membership	Example:
root>	groups	username
(groups:	show	the	group	membership	of	a	user.)	groupadd:	create	a	new	group
Example:
root>	groupadd	newgroup
(groupadd:	 create	 a	 new	 group	 named	 newgroup.)	 groupmod:	 modify	 an
existing	group	Example:
root>	groupmod	newgroup
(groupmod:	modify	 an	 existing	 group	 named	 newgroup.)	groupdel:	 delete	 an
existing	group	Example:
root>	groupdel	newgroup
(groupdel:	delete	an	existing	group	named	newgroup.)	Summary
groups:	show	the	group	membership	groupadd:	create	a	new	group
groupmod:	modify	an	existing	group	groupdel:	delete	an	existing	group

Chapter	14
Permission	Commands

	
chmod:	change	mode	of	access	permissions
chgrp:		change	group	membership
chown:	change	ownership	of	a	file	or	directory	(Access	permission	in	detail	will
be	in	later	chapter.)	chmod:	change	mode	of	access	permissions
Example:
root>	chmod	752	myfile1.txt
(chmod:	change	mode	of	access	permission	for	myfile1.txt.
7:	 set	 user	 permission	 with	 read,	 write,	 execute	 5:	 set	 group	 permission	 with
read,	execute	2:	set	others	permission	with	write	only.)	chmod:	change	mode	of
access	permissions
Example:
root>	chmod	g+w	myfile.txt
(g+w:	 give	 write	 permission	 to	 member	 of	 the	 file’s	 group)	 chgrp:	 	 change
group	membership
Example:
root>	chgrp	groupname	myfile2.txt
(chgrp:	change	group	membership	of	myfile2.txt)	chown:	change	ownership	of
a	file	or	directory	Example:
root>	chown	username	myfile3.txt
(chown:	change	ownership	of	myfile3)
	
Example:
root>	chown	groupname	userdir	(chown:	change	ownership	of	dir.)
	
Summary:
chmod:	change	mode	of	access	permissions	chgrp:		change	group	membership
chown:	change	ownership	of	a	file	or	directory	(Access	permission	in	detail	will
be	in	later	chapter.)

Chapter	15
Running	Job	Commands

	
job:	display	the	status	of	all	jobs
fg:	 run	 a	 suspended	 job	 in	 foreground	 bg:	 run	 a	 suspended	 job	 in	 background
kill:	kill	a	job	by	number	or	a	process	by	pid	at:	schedule	a	job	run	at	a	specified
time	atq:	display	the	scheduled	jobs	atrm:	remove	a	scheduled	job
ps:	show	current	process	status	w:	show	who	logged	on	and	what	doing	uptime:
show	 how	 long	 the	 system	 has	 been	 running	 top:	 view	 the	 top	 active	 process
crontab:	create	a	job	to	run	at	specified	time	job:	display	the	status	of	all	jobs
Example:
root>	jobs
(job:	 display	 the	 status	 of	 all	 jobs.)	 fg:	 run	 a	 suspended	 job	 in	 foreground
Example:
root>	fg	%2
(fg	%2:	 run	 a	 suspended	 job	%2	 in	 foreground.)	bg:	 run	a	 suspended	 job	 in
background	Example:
root>	bg	%3
(bg	%3:	run	a	suspended	job	%3	in	background.)	kill:	kill	a	job	by	number	or	a
process	by	pid	Example:
root>	kill	%4
(kill	%4:	 kill	 a	 running	 job	%4)	 at:	 schedule	 a	 job	 run	 at	 a	 specified	 time
Example:
root>	at	9:30	pm
(at	9:30:	set	a	schedule	job	at	9:30.)	atq:	display	the	scheduled	jobs	Example:
root>	atq
(atq:	display	all	scheduled	jobs)	atrm:	remove	a	scheduled	job
Example:
root>	atrm	25
(atrm	 25:	 remove	 a	 scheduled	 job	 25.)	 ps:	 show	 current	 process	 status
Example:
root>	ps	-f
(ps-f:	 show	 full	 information	 of	 current	 process.)	 ps:	 show	 current	 process
status	Example:
root>	ps	-u	username
(ps	-u:	show	a	user’s	current	process.)	w:	show	who	logged	on	and	what	doing
Example:

root>	w	-s	username
(-s:	show	summary	information	of	a	user.)	uptime:	show	how	long	the	system
running	Example:
root>	uptime
(uptime:	show	system	uptime.)
	
	
top:	view	the	top	active	or	specified	process
Example:
root>	top
(top:	display	all	processes	running	on	the	system)	crontab:	create	a	job	to	run
at	specified	time	Example:
root>	crontab	-e
(-e:edit	the	crontab	file,	add	a	crontab	job	to	the	table)	Summary
job:	display	the	status	of	all	jobs	fg:	run	a	suspended	job	in	foreground	bg:	run	a
suspended	 job	 in	background	kill:	kill	a	 job	by	number	or	a	process	by	pid	at:
schedule	 a	 job	 run	 at	 a	 specified	 time	 atq:	 display	 the	 scheduled	 jobs	 atrm:
remove	a	scheduled	job
ps:	show	current	process	status	w:	show	who	logged	on	and	what	doing	uptime:
show	 how	 long	 the	 system	 has	 been	 running	 top:	 view	 the	 top	 active	 process
crontab:	create	a	job	to	run	at	specified	time

Chapter	16
Backup/Restore	Commands

	
cpio:	output	or	input	an	archive	cpio	file
tar:	create,	view,	extract	archived	tar	file	cpio	-o:	output	an	archive	cpio	file
Example:
root>	cpio	-o	>	directory.cpio	(-o:	backup	to	a	archive	cpio	file)
	
	
cpio	-i:	input	an	archive	cpio	file
Example:
root>	cpio	-i	<	directory.cpio	(-i:	restore	from	a	archive	cpio	file)
	
tar	-xf:	extract	an	archived	tar	file
Example:
root>	tar	-xf	archive.tar
(-xf:	extract	an	archive	tar	file)
	
	
tar	-cf:	create	an	archived	tar	file
Example:
root>	tar	-cf	archive.tar
(-cf:	create	an	archive	tar	file)
	
	
	

Summary
cpio:	output	or	 input	 an	archive	cpio	 file	 tar:	 create,	view,	extract	 archived	 tar
file

Chapter	17
Date	&	Time	Commands

	
date:	display	t	date	and	time
cal:	display	a	calendar	of	month	date:	display	date	and	time	Example:
root>	date
(date:	 display	 the	 current	 date	 and	 time.)	date	 	 “+%A”:	display	 current	day
Example:
root>	date	“+%A”
(output:	Sunday)
	
date		“+%D”:	display	current	date	Example:
root>	date	“+%D”
(output:	08/10/14)
	
date		“+%T”:	display	current	time	Example:
root>	date	“+%T”
(output:	11:30:28)
	
	
cal:	display	a	calendar	of	month	Example:
root>	cal
(cal:	display	a	month	calendar.)	Summary
date:	display	date	and	time	cal:	display	a	calendar	of	month

Chapter	18
Networking	Commands

	
host:	display	remote	hostname	and	IP
ifconfig:	display	local	network	configuration	ping:	send	packets	to	test	if	remote
host	reachable	ssh:	securely	connect	 to	a	remote	computer	ftp:	files	 transfer	by
“File	Transfer	Protocol”
mesg:	enable	or	disable	messaging
write:	write	a	messages	to	other	users	open:	connect	to	an	ftp	server
mail:	send	and	receive	mails	locally	and	globally.
dhclient:	provides	a	means	for	configuring	one	or	more	network	interfaces
nslookup:	query	internet	name	servers	interactively	for	IP	information.
	
host:	display	remote	hostname	and	IP
Example:
root>	host	www.yahoo.com
(host:	 display	 remote	 hostname	 and	 IP.)	 ifconfig:	 display	 local	 network
configuration	Example:
root>	ifconfig
(ifconfig:	 display	 local	 network	 configuration)	 ping:	 send	 packets	 to	 test	 if
remote	host	reachable	Example:
root>	ping	-c3	yahoo.com
(ping:	send	packets	to	test	if	yahoo	host	is	reachable.
-c3:	specify	the	number	of	pings)
	
ssh:	securely	connect	to	a	remote	computer	Example:
root>	ssh	ray@myusername.com
(ssh:	securely	login	to	a	remote	computer)	ftp:	files	transfer	by	“File	Transfer
Protocol”
Example:
root>	 ftp	 ftpexample.myexample.com	 (ftp:	 connecting	 to
ftpexample.myexample.com	and	transfer	files	remotely)	mesg:	show	messaging
Example:
root>	mesg
(mesg:	show	current	status	of	messaging)	mesg	y:	enable	messaging
Example:

root>	mesg	y
(mesg	y:	permit	messaging)
	
mesg	n:	disable	messaging
Example:
root>	mesg	n
mesg	n:	deny	messaging)
	
write:	write	a	messages	to	other	users	Example:
root>	write	ken
(write	a	message	to	ken)
	
open:	connect	to	an	ftp	server
Example:
root>	open	ftp.myexamples.com
(open:	 connect	 to	 ftp.myexamples.com)	mail:	 send	 and	 receive	mails	 locally
and	globally.
Example:
root>	 mail	 username@myexamples.com	 (mail:	 send	 a	 mail	 to
username@myexamples.com)	dhclient:	provides	a	means	for	configuring	one
or	more	network	interfaces.
Example:
root>	dhclient	eth0
(renew	 the	 dynamically	 assigned	 IP	 address	 of	 a	 primary	 Ethernet	 device.)
nslookup:	query	internet	name	servers	interactively	for	IP	information.
Example:
root>	nslookup	myexample.com	 (return	 an	 IP	 address,	e.g.	 75,126,166,	 2XX)
(nslookup:	manually	query	DNS	servers.
The	DNS	(Domain	Name	System)	protocol	allows	you	to	get	an	IP	address	for	a
given	 host	 name	 from	 a	 name	 server.	 This	 process	 is	 called	 resolving.)
Summary
host:	display	remote	hostname	and	IP
ifconfig:	display	local	network	configuration	ping:	send	packets	to	test	if	remote
host	reachable	ssh:	securely	connect	 to	a	remote	computer	ftp:	files	 transfer	by
“File	Transfer	Protocol”
mesg:	enable	or	disable	messaging
write:	write	a	messages	to	other	users	open:	connect	to	an	ftp	server

mail:	send	and	receive	mails	locally	and	globally.
dhclient:	provides	a	means	for	configuring	one	or	more	network	interfaces
nslookup:	query	internet	name	servers	interactively	for	IP	information.
	

Chapter	19
Scripting	Commands

	
echo:	display	text.
expr:	perform	math	calculation	#!/bin/bash:	put	 in	 the	 first	 line	of	a	bash	shell
scripts	file.
	
echo:	display	text.
Example:
root>	STR=”Hello	World!”
root>	echo	$STR
(echo:	display	text.
The	output	is	“Hello	World!”)	echo	-e:	display	text	using	escape	sequences.
Example:
root>	STR=”Hello	World!”
root>	echo	–e	“\n$STR\n”
(echo	-e:	display	text	using	\n.	\n	means	add	a	new	line.)	The	output	is
“
Hello	World!
	
”
	
	
expr:	perform	math	calculation	Example:
user>	expr	20	+	80
(The	output	is	“100”)
	
Example:
user>	expr	21/7
(The	output	is	“3”)
	
Example:
user>	expr	9	“>”	6
(The	output	is	“1”,	the	1	means	true)	Example:
user>	expr	9	“<”	6
(The	output	is	“0”,	the	o	means	false)	#!/bin/bash:	put	in	the	first	line	of	bash

shell	scripts.
Example:
#!/bin/bash
If…then…else…fi
(#!/bin/bash:	always	put	in	the	first	line	of	bash	shell	scripts)	Summary
echo:	display	text.
expr:	perform	math	calculation	#!/bin/bash:	always	put	in	the	first	line	of	a	bash
shell	scripts

Chapter	20
System	Commands

	
df:	show	disk	usage	of	file	system
mount:	 make	 a	 device	 available	 to	 file	 system	 umount:	 make	 a	 device
unavailable	to	file	system	fsck:	check	and	repair	the	file	system	init	n:	switch	the
system	 to	 run	 level	 n	who	 -r:	 show	 the	 current	 run	 level	 free:	 show	 free	 disk
space
du:	 show	disk	 usage	 of	 a	 file	 or	 directory	 export:	 set	 an	 environment	 variable
printenv:	 list	 environment	 variable	 names	 and	 values	 unset:	 remove	 the
environment	variable	clear:	clear	the	screen
exit:	exit	the	shell	or	logout.
shutdown	–h	+n:	the	system	is	going	down	in	n	minutes!
	
	
df:	show	disk	usage	of	file	system	Example:
root>	df	-h
(df:	show	disk	usage	of	file	system.
-h:	make	output	understandable)
	
mount:	make	a	device	available	to	file	system	Example:
root>	mount		/cdrom
(mount:	 make	 a	 cd-rom	 available	 to	 file	 system.)	 umount:	 make	 a	 device
unavailable	to	file	system	Example:
root>	umount	/dev/hda1
(umount:	make	hda1	unavailable	to	file	system.
hda1:	a	hard	drive	partition)
	
fsck:	check	and	repair	the	file	system	Example:
root>	fsck
(fsck:	check	and	repair	the	file	system.)	init	n:	switch	the	system	to	run	level	n
Example:
root@user-linux:	~	#	init	5
(init	5:	 switch	 the	 system	 to	 run	 level	5)	who	 -r:	 show	 the	current	run	 level
Example:
root@user-linux:	~	#	who	-r
(who	-r:	show	the	current	run	level.)	free:	show	free	disk	space

Example:
root@user-linux:	~	#	free	-m
(free:	show	free	disk	space
-m:	show	free	disk	space	in	MB	unit)	du:	show	disk	usage	of	a	file	or	directory
Example:
root@user-linux:	~	#	du	–b	myfile.txt	(du:	show	disk	usage	of	a	file	or	directory.
-b:	count	the	number	of	bytes	it	occupies.)	export:	set	an	environment	variable
Example:
root@user-linux:	~	#	export	newvar=8
(echo	$newvar.	The	output	is	8)
	
printenv:	list	environment	variable	names	and	values	Example:
root@user-linux:	~	#	printenv
(printenv:	 list	 environment	 variable	 names	 and	 values)	 unset:	 remove	 the
environment	variable	Example:
root@user-linux:	~	#	unset	var
(unset	var:	remove	the	environment	variable	var.)	clear:	clear	the	screen
Example:
user>clear
(clear:	clear	the	screen.)
	
exit:	exit	the	shell	or	logout.
Example:
user>exit
(exit:	exit	the	shell	or	logout.)	shutdown	–h	+n:	the	system	is	going	down	in	n
minutes!
Example:
root@user-linux:	~	#	shutdown	–h	+5
(shutdown	–h	+5:	the	system	is	going	down	in	5	minutes!)	(-h:	halt	the	system
+n:	after	n	seconds)

	
	
Summary:
	
df:	show	disk	usage	of	file	system	mount:	make	a	device	available	to	file	system

umount:	make	a	device	unavailable	to	file	system	fsck:	check	and	repair	the	file
system	init	n:	switch	the	system	to	run	level	n	who	-r:	show	the	current	run	level
free:	show	free	disk	space
du:	 show	disk	 usage	 of	 a	 file	 or	 directory	 export:	 set	 an	 environment	 variable
printenv:	 list	 environment	 variable	 names	 and	 values	 unset:	 remove	 the
environment	variable	clear:	clear	the	screen
exit:	exit	the	shell	or	logout.
shutdown	–h	+n:	the	system	is	going	down	in	n	minutes!
	

Chapter	21
Helping	Commands

	

Commands Operations		&		Examples
man display	manual	for	a	command	e.g.	man

nice	(show	the	manual	for	nice
command)

info display	information	for	a	command	e.g.
info	chmod	(show	information	about
chmod	cmd)

whatis display	a	description	of	what	a	cmd	is
e.g.	whatis	ifconfig	(show	a	description
of	what	ifconfig	is)

help display	help	explanation	of	a	cmd	e.g.
help	cd	(show	help	explanation	of	cd
cmd)

apropos search	manual	pages	for	a	keyword	e.g.
apropos	download	(show	manual	entries
with	“download”)

--help -help	option	gets	help	for	a	command
e.g.	wget	--help	(get	help	for	wget	cmd)

	
	
Note:
If	you	are	 familiar	with	helping	commands,	you	will	know	about	 the	complete
Linux	commands	and	their	usages.
	

Chapter	22
Skill	of	Commands

	

Make	use	of	Tab	key	to	auto	complete	Linux	offers	so	many
different	 commands	 that	we	 easily	 to	 get	 lost	 and	 to	 forget	 one.	 Personally,	 it
happens	very	regularly,	but	this	is	fortunately	not	a	drama.	Indeed,	Linux	offers
a	variety	of	ways	to	find	a	command	that	you	missed.
The	first	"trick"	to	know	what	is	to	auto	complete	control.
Example:
For	the	date	command:	you're	a	little	headache	and	you	do	not	know	how	it	is
written.	 By	 cons,	 you	 are	 sure	 the	 first	 or	 second	 letters	 of	 the	 command	 are
“da”.
Just	 type	 "da"	 in	 the	 console,	 then	 double-tap	 the	 Tab	 on	 the	 left	 of	 your
keyboard	By	double	 tapping	Tab,	 you	 asked	 the	 computer	 a	 list	 of	 commands
that	 begin	 with	 "da".	 They	 said	 you	 "dash"	 and	 "date".	 So	 there	 are	 two
commands	that	start	with	"da",	and	you	just	find	the	one	you	are	looking	for,	that
is	to	say	"date".
Very	nice,	the	computer	has	rewritten	the	prompt	below	and	the	beginning	of	the
command	you	typed.	You	only	have	to	complete	with	the	letters	"you"	missing
and	 hitting	 Enter	 and	 it	 will	 be	 good.	 :-)	 Even	more	 fun,	 if	 there	 is	 only	 one
result	for	your	search,	the	computer	will	complete	with	missing	letters	and	you
only	have	to	press	Enter!
Example:
If	you	want	to	type	“chsh”	command	and	you	are	not	sure	the	spelling,	you	can
only	 type	 “ch”	 in	 the	 console	 and	 press	 two	 times	 on	 Tab.	 The	 command	 is
completed	magically.	It	will	display	“chfn,	chsh”,	then	you	can	choose	“chfn”.
Commaaaandes	too!
	

The	 command	history	We	 often	 need	 to	 find	 a	 command	 that	 was
typed	there	five	minutes	(or	even	five	seconds).	Sometimes	it	is	because	we	have
forgotten	the	command,	but	it's	often	because	you	like	me	you	really	too	lazy	to
rewrite	ourselves	the	entire	command.
This	shortcut	 is	gold:	press	 the	Up	arrow	key;	you	will	 see	 the	 last	command
you	typed.
If	 you	 press	 again	 the	 directional	 arrow	 Top,	 you	 will	 see	 the	 penultimate
command,	then	the	second-to-last,	etc.

If	you	press	the	Down	arrow	key,	you	will	return	to	the	most	recent	commands.
Thus	I	can	successively	find	the	commands	I	just	type	in	reverse	command:	ls	--
all;
ls	-a,
ls;
Date;
Etc.
If	you	want	to	"go"	very	far	back	into	the	history	of	your	commands,	no	need	to
type	a	hundred	times	on	the	directional	arrow	Top	like	madmen.
There	 is	 the	 history	 command	 that	 reminds	 you	 of	 the	 command	 history:
Example:
Press	 the	Up	arrow	key;	 you	will	 see	 the	 last	 command	 you	 typed.	Then	 the
screen	will	display:	Date	152	 ls	 ls	 ls	153	154	155--all	 -a	156	157	history	You
will	 notice	 that	 the	 controls	 are	numbered:	 thus,	we	can	know	 that	date	 is	 the
152nd	command	I	typed	into	the	terminal,	that	three	ls	are	the	153rd,	154rth	and
156th	 command.	 The	 above	 command	 you	 typed	 will	 always	 be	 history,	 of
course.
	

Ctrl	+	R:	find	a	history	command	In	case	the	directional	arrow
Top	and	history	command	does	not	suffice	to	find	an	old	command	you	typed,
there	is	a	super	useful	shortcut:	Ctrl+R.	which	can	help	you	find	out	the	history
command	 you	 have	 just	 used.	 So	 Press	 Ctrl+R	 keys	 simultaneously	 and
computer	will	switch	"looking	for	a	typed	command"	("R"	as	research).
There	you	can	type	any	sequence	of	letters	that	corresponds	to	an	old	command.
Example:
If	you	want	to	look	for	a	command	with	“all”	you	have	previously	used,	please
press	Ctrl+R	and	type	"all".	Then,	Linux	will	find	out	ls	--all	containing	just	the
word	"all."	You	just	have	to	hit	Enter	to	run	the	command!	:-)	If	this	is	not	the
command	 you	 are	 looking	 for,	 again	 press	 Ctrl	 +	 R	 to	 move	 up	 the	 list	 of
commands	containing	"all".
It	may	look	stupid	on	a	drive	like	that,	but	some	are	very	long	and	it	is	a	pleasure
not	to	have	to	rewrite	them	again!

Using	Wildcards	You	can	use	wildcards	with	a	lot	of	Linux	commands.
A	wildcard	is	a	symbol	or	symbols	that	indicating	other	characters.	There	three
kinds	of	wildcards	in	Linux	command:	?			A	question	mark	(?)	indicates	a	single
character.
For	 instance:	 b??k	 matches	 bank,	 beak,	 back,	 bilk,	 or	 any	 other	 four-letter

filename	that	begins	with	b	and	ends	with	k.
*	 	An	 asterisk	 (*)	 indicates	 any	 character	 or	 set	 of	 characters,	 including	 no
character	or	many	characters.
For	instance:		b*k	matches	bk,	bkk,	bark,	break,	backtrack.
[]		Characters	enclosed	in	square	brackets	([])	usually	indicates	any	character	in
the	set.	But	please	note	they	are	case-sensitive.
For	 instance:	 b[a-z]k	matches	 bak,	 bbk,	 bck,	 bzk,	 but	 not	matches	 bAk,	 bBk,
bCk,	bZk,	because	of	case-sensitive.
	
Wildcards	are	actually	implemented	in	the	Linux	commands.
Example:
user2014@user-linux:~$	 	 ls	 	 b??k	 (The	 wildcard	 b??k	 matches	 five	 files	 in
current	directory.	The	output	is	“bank		beak		back		bilk		bark”)	Example:
user2014@user-linux:~$	 	 ls	 	 a*d	 (The	 wildcard	 a*d	 matches	 some	 files	 in
current	directory.	The	output	is	“ad		add		acid		abroad		abounded		 	abed		aid”)
Example:
user2014@user-linux:~$		ls		se[a-e]
(The	wildcard	se[a-e]	matches	five	files	in	current	directory.	The	output	is	“sea	
seb		sec	sed		see”)	About	Run	Levels	What	is	a	Run	Levels?	The	term
run	levels	refers	to	a	mode	of	operation	in	one	of	the	computer	operating	systems
that	 implement	 Linux	 System	 V-style	 initialization.	 Usually,	 seven	 run	 levels
exist,	numbered	from	zero	to	six;	Only	one	"run	level"	is	executed	on	boot	up	-
run	 levels	 are	 not	 executed	 sequentially,	 i.e.	 either	 run	 level	 2	OR	 3	OR	 4	 is
executed,	not	2	then	3	then	4.
"run	levels"	defines	the	state	of	the	machine	after	boot.	Different	run	levels	are
typically	assigned	to:	0.halt-the	system	is	in	the	process	of	shutting	down.
1.single-user	mode	2.multi-user	mode	without	network	services	started	3.multi-
user	 mode	 with	 network	 services	 started	 4.system	 shutdown	 6.system	 reboot
Example:
root@user-linux:	~	#	init	3
(init	3:	switch	the	system	to	run	level	3)	Summary:
Tab	key	can	auto	complete	a	missing	work	command.
Up	 arrow	 key	 can	 view	 the	 history	 commands	Down	 arrow	 key	 can	 return	 to
most	recent	commands	Ctrl+R	can	find	out	a	history	command	by	a	key	word.
?			A	question	mark	(?)	indicates	a	single	character.
*	 	An	 asterisk	 (*)	 indicates	 any	 character	 or	 set	 of	 characters,	 including	 no
character	or	many	characters.
[]		Characters	enclosed	in	square	brackets	([])	usually	indicates	any	character	in

the	set.	But	please	note	they	are	case-sensitive.
Run	Level	number	describers	the	level	of	services	that	have	been	initialized	and
are	running.

Chapter	23
Access	Permissions

	

What	is	rwx?
After	using	ls	–l	to	view	a	file’s	access	permissions,	you	can	see	something	like
this:	rwx	…..	……

	
Explanation:	 rwx	 signify	 the	 access	 permissions	which	 can	 be	 described	 by	 a
number	 from	1	 to	7.	Really?	Yes,	 the	numbers	 from	1	 to	7	 indicate	 the	access
permissions.
r	stands	for	read	permissions,	value	is	4.
w	stands	for	write	permissions,	value	is	2.
x	stands	for	execute	permissions,	value	is	1.
	
Vice	 versa:	4	means	 read	permissions	 (r)	2	means	write	permissions	 (w)	1
means	execute	permissions	(x)	Example:	If	rwx	value	is	4,	then	you	can	figure
out	its	permission	is	read	only.
If	rwx	value	is	2,	then	you	figure	out	its	permission	is	write	only.
If	rwx	value	is	1,	then	you	figure	out	its	permission	is	execute	only.
	
	
The	numbers	from	1	to	7	indicate	the	various	access	permissions:	7	means
permissions	with	read,	write,	execute	(7=4+2+1)	6	means	permissions	with
read,	write	(6=4+2)	5	means	permissions	with	read,	execute	(5=4+1)	4
means	permissions	with	read	only	(4=4+0)	3	means	permission	with	write,
execute	(3=2+1)	2	means	permission	with	write	only	(2=2+0)	1	means
permission	with	execute	only	(1=1+0)	Example:	If	rwx	value	is	7,	then	you
can	figure	out	its	permission	is	read,	write	and	execute.
If	rwx	value	is	6,	then	you	can	figure	out	its	permission	is	read	and	write.
If	rwx	value	is	3,	then	you	can	figure	out	its	permission	is	write	and	execute.

	
	

What	are	rwx	rwx	rwx?
Access	 permissions	 for	 a	 file	 are	 divided	 in	 to	 three:	 user	 permissions,	 group
permissions,	 others	 permissions,	 So,	 when	 you	 use	 ls	 –l	 to	 view	 the	 access

permission,	you	will	find	three	rwx	look	like	this:	rwx	rwx	rwx……
Explanation:	The	1st	 rwx	means	user	permissions,	The	2nd	 rwx	means	group
permissions,	The	3th	rwx	means	others	permissions.
	
Example:	 If	 the	 1st	 rwx	 is	 7,	 it	 means	 user	 permissions	 with	 read,	 write,
execute.
If	the	2nd	rwx	is	3,	it	means	group	permissions	with	write	and	execute.
If	the	3th	rwx	is	6,	it	means	others	permissions	with	read	and	write.
	
From	above	you	can	understand	the	1st	rwx,	2nd	rwx	and	3th	rwx	respectively
indicate	user	permissions,	group	permissions	and	others	permissions.
	
Example:	752	means:	1st	rwx	is	7	meaning	user	permissions	with	read,	write,
execute.
2nd	rwx	is	5	meaning	group	permissions	with	read,	and	execute.
3th	rwx	is	2	meaning	others	permissions	with	write	only	chmod	is	a	command,
meaning	change	the	mode	of	access		permissions	for	a	file.
	
Example:	chmod	643	myfile.txt	Explanation:	Change	myfile.txt	permissions	to
643.
1st	rwx	is	6	meaning	user	permissions	with	read,	and	write.
2nd	rwx	is	4	meaning	group	permissions	with	read	only.
3th	rwx	is	3	meaning	others	permissions	with	write,	execute	Example:	chmod
751	myfile.txt	Explanation:	Change	myfile.txt	permissions	to	751.
1st	rwx	is	7,	meaning	user	permissions	with	r,	w,	x.
2nd	rwx	is	5	meaning	group	permissions	with	r,	x.
3th	rwx	is	1	meaning	others	permissions	with	x	only.
	
	
Example:	Chmod	u+r	(gives	the	user	a	read	permission)	Example:	Chmod	g-x
(remove	execute	permission	from	members	of	the	file’s	group)	Example:
Chmod	o-w	(remove	write	permission	from	others)	Summary:	4	means
read	permissions	(r)	2	means	write	permissions	(w)	1	means	execute	permissions
(x)	The	numbers	from	1	to	7	indicate	the	various	access	permissions:	7	means
permissions	with	read,	write,	execute	(7=4+2+1)	6	means	permissions	with	read,
write	(6=4+2)	5	means	permissions	with	read,	execute	(5=4+1)	4	means
permissions	with	read	only	(4=4+0)	3	means	permission	with	write,	execute
(3=2+1)	2	means	permission	with	write	only	(2=2+0)	1	means	permission	with

execute	only	(1=1+0)

Chapter	24
Linux	Symbols

	
	

Commands Operations		&		Examples
< get	input	from	a	file	to	a	command

e.g.	cat	<	myfile.txt
> send	output	from	a	command	to	file

e.g.	cat	>	myfile.txt
>> append	output	to	a	file	e.g.	cat

file1.txt	>>	file2.txt

|
send	cmd1	output	to	cmd2	input	e.g.
ls	-al	/etc	|	less

;
combine	two	or	more	commands	e.g.
cd~;	ls

\
escape	the	special	character	e.g.	echo	
-e	“\n	Hello	\t	World!	\n”

./
run	a	script	in	the	current	directory
e.g.	./script.sh

.. parent	directory	e.g.	cd..

~
home	directory	e.g.	cd~

$
variable	prefix	for	variable	name	and
value	e.g.	echo	$var

$$
show	the	running	processes	number
e.g.	echo	$$

!! repeat	the	last	command	e.g.	!!
!string run	recent	cmd	that	begins	with	string

e.g.	!cat
	

Chapter	25
Shortcut	Keys

	
	
CTRL+B move	the	cursor	backward	only	one

character.
CTRL+C cancel	the	running	command	or	kill

the	running	process.
CTRL+D log	out	of	the	current	session.	similar

to	exit	command.
CTRL+F move	the	cursor	forward	only	one

character.
CTRL+H erase	one	backward	character.	similar

to	pressing	backspace.
CTRL+P paste	the	previous	line(s)	to	one

specified	location.
CTRL+R type	to	bring	up	recent	commands,

return	a	list	of	commands	in	history
CTRL+S stop	all	output	on	screen.	freeze	the

shell	as	it	locks	the	terminal	output
CTRL+Q resume	all	stopped	output	on	screen,

continue	the	terminal	output.
CTRL+U erase	the	complete	line	where	the

cursor	locates.
CTRL+W delete	the	last	recent	word	you	have

just	typed	in.
CTRL+Z suspend	a	running	process.	if	want	to

resume,	use	fg	or	bg	commands.
	

Chapter	26
Run	Levels	Table

	

Run
Level

Description
	

0 Halt	the	system.	When	this	is	the
current	run	level,	the	system	is	in	the
process	of	shutting	down.

1 Single	user	mode.	Only	small	set	of
kernel	processes	running.	Almost	all
other	services	disabled.

2 Basic	multiuser	mode.	This	run	level
starts	most	services,	but	does	not
enable	network	connection	service.

3 Full	multiuser	mode.	This	run	level
starts	all	services	including	network
connection.	but	does	not	start	X
window

4 User	defined	mode.	No	conventional
definition	applies	to	run	level	4.	It	is
fully	open	to	user	configuration.

5 Full	multiuser	mode	with	X	window.
Starts	all	enabled	services	with	Linux
graphical	desktop	environments.

6 Reboot.	When	this	is	the	current	run
level,	the	system	is	in	the	process	of
rebooting.

	
	

Chapter	27
The	Vi	Editor	Commands

	

Commands Operations
h,l,k,j cursor	move	left,	right,	up,	down
w,b cursor	move	forward,	backward
0 go	to	the	beginning	of	line

$
go	to	the	ending	of	line

G go	to	the	last	line	of	the	file
J join	current	line	with	next	line
z undo	last	command
. repeat	last	command
ZZ save	file	and	exit
i insert	before	the	character	at	cursor
I insert	character	to	beginning	of	line
a append	after	the	character	at	cursor
A append	character	to	the	ending	of	line
c change	until…
C change	to	end	of	line
d delete	until…
D change	to	end	of	line
r replace	one	character
R replace	more	characters
o open	a	new	line	below
O open	a	new	line	above
esc exit	insert	mode,	go	to	cmd	mode
x delete	the	character	at	cursor
X delete	the	character	at	left
u undo	last	change
. redo	last	change
U restore	line

m mark	position
M middle	of	screen
dw delete	current	word
dd delete	current	line
cc change	current	line
f	x find	x	on	current	line
F	x find	x	on	previous	line
/string search	string,	look	forwards
?string search	string,	look	backwards
[n]G go	to	line	number	“n”
n search	forward	next
N search	backward	next
p paste	line(s)	below	current	line
P paste	line(s)	above	current	line
t to…
T backward	to…
s substitute
S substitute	entire	line
ZZ write	and	quit
:e edit	file
:e! forget	change	of	file
:$ go	to	last	line	of	file
:number go	to	line	number
:w write	and	save
:w! save	with	read-only	file
:w	filename save	with	new	file	name
:wq write,	save	and	quit
:n go	to	next	file
:rew go	to	the	first	file
:q quit	after	using	:w	to	save
:q! quit	without	saving
:r	filename read	file,	insert	file	at	cursor	position
:!	command run	a	shell	command
:sh run	a	temporary	shell

	
	

Chapter	28
All	Essential	Linux	Commands

	
	
Note:
cmd	means	command
regex	means	regular	expression
(*)	means	the	command	run	by	root	user

Commands Operations	 	 &	
Examples
	

a2p translate	awk	to	perl
e.g.	a2p	myfile.awk>	myfile.pl
(translate	myfile.awk	into	pl	file)

alias create	another	name	for	a	command
e.g.	alias	p="pwd"
(set	p	as	alias	for	pwd)

apropos view	the	searched	term	in	man
pages	e.g.	apropos	find
(list	entries	with	"find"	in	man	page)

apropos	-e view	searched	term	in	man	pages
e.g.	apropos	–e	nice
(-e:	show	exact	word	in	man	pages)

apt-get install,	remove	or	update	a	package
e.g.	apt-get	install	libc6
(install	libc6	package)

aspell check	and	correct	for	misspellings
e.g.	aspell	-c	test.txt
(-c:check	spelling	in	test.txt	file)

at run	a	job	at	a	schedule	time
e.g.	at	1	AM	Fri
(run	the	job	at	1am	Friday)

awk match	text	by	regular	expression
e.g.	awk	'length($0)	>	88'	text.txt
(list	only	lines	longer	than	88

words)
basename display	the	last	part	of	a	file	path

e.g.	basename	homefoousrfile.txt
(output:	file.txt)

bc perform	a	calculation	by	a	calculator
e.g.	bc	8+9
(output:	17)

bg resume	a	stopped	job	in	background
e.g.	bg	%3
(resume	%3	job	in	background)

bunzip2 uncompress	a	file	from	zip	format
e.g.	bunzip2	myfile.tar.bz2
(uncompress	myfile.tar.bz2)

bzip2 compress	a	file	to	zip	format
e.g.	bzip2	myfile.dat
(compress	myfile.dat)

cal display	a	month	or	year	calendar
e.g.	cal	2014
(display	2014	calendar)

cal	-3 display	a	month	or	year	calendar
e.g.	cal	-3
(-3:display	3	months)

cat display	contents	of	one	of	more	files
e.g.	cat	file1.txt	file2.txt	(display
contents	of	file1	and	file2)

cat	-n display	contents	of	one	of	more	files
e.g.	cat	–n	myfile.txt
(-n:	specify	number	of	output	lines)

cd change	directory
e.g.	cd	homeuser/mydir	(change
current	directory	to	mydir)

chattr set	attributes	for	a	file
e.g.	chattr	+i	myfile.txt
(+i	make	the	file	as	read-only)

chfn change	user’s	finger	information
e.g.	chfn
(change	all	users	information)

chfn	-f change	user’s	finger	information
e.g.	chfn	–f	Full-Name
(-f:	change	full	name)

chgrp	* change	the	group	ownership
e.g.	chgrp	groupname	usrmyfile.txt
(alter	group	ownership	of	myfile.txt)

chkconfig* view	and	modify	run	level	file
e.g.	chkconfig	–list
(-list:	list	services	of	run	level)

chmod change	access	permission
e.g.	chmod	755	filename
(set	file	access	permission	as	755)

chown	* change	ownership	of	file	or
directory	e.g.	chown	username
myfile.txt	(alter	file	ownership	of
myfile.txt)

chpasswd* change	password	for	users.
e.g.	chpasswd
(then	enter	username:	password)

chsh	* change	login	shell	for	a	user
e.g.	chsh	-s	binbash	ray	(-s	specify
login	shell)

cksum produce	a	CRC	checksum	number
e.g.	cksum	file.txt
(output	checksum	number	of
file.txt)

clear clear	the	screen.
e.g.	clear
(clear	the	shell	window)

cmp compare	two	files	text	byte	by	byte
e.g.	cmp	first.txt		second.txt
(compare	first.txt	and	second.txt)

collectl monitor	the	current	system	status
e.g.	collectl
(list	cpu,	sys,	inter	.etc	information)

comm compare	two	files	text	line	by	line
e.g.	comm	first.txt		second.txt

(compare	first.txt	second.txt)
cp copy	file(s)	to	another	directory

e.g.	cp	myfile.txt	/mydir
(copy	myfile.txt	to	mydir)

cp	-p copy	file(s)	to	another	directory
e.g.	cp	–p	myfile.txt	/mydir	(-p:
keep	original	permission)

cp	-a copy	file(s)	to	another	directory
e.g.	cp	–a	myfile.txt	/mydir	(-a:	keep
original	attributes)

cpio	-o output	archived	cpio	file
e.g.	cpio	-o	>	directory.cpio	(-o:
backup	to	an	archive	cpio	file)

cpio	-i input	archived	cpio	file
e.g.	cpio	-i	<	directory.cpio	(-i:
restore	from	an	archive	cpio	file)

crontab create	a	job	to	run	at	specified	time
e.g.	crontab
(set	to	run	jobs	at	regular	intervals.)

crontab	-e run	a	recurring	job	at	a	specified
time	e.g.	crontab	-e
(-e	allow	edit	the	crontab	file)

crontab	-l run	a	recurring	job	at	a	specified
time	e.g.	crontab	-l
(-l:	lists	the	crontab	files)

crontab	-r run	a	recurring	job	at	a	specified
time	e.g.	crontab	-r
(-r:	remove	the	crontab	file)

csplit split	a	file	into	some	separated	files
e.g.	csplit	myfile.txt	”/part1/”
“part2”
(separate	files	named	xx00,	xx01)

cut	-d show	the	specified	field	of	a	file
e.g.	cut	–d	“:”	myfile.txt	(-d:	specify
a	field	delimiter	“:”)

cut	-c extract	contents	from	a	file
e.g.	cut	–c	6	myfile.txt

(-c6:	the	sixth	character	of	each
line)

cut	-f extract	contents	from	a	file
e.g.	cut	–f	3	myfile.txt
(-f3:	specify	a	field	number	as	3)

date show	the	date	and	time
e.g.	date
(display	the	current	date	and	time)

date	-s set	the	date	and	time
e.g.	date	-s	"11/20/2014"
(-s	set	the	date)

dc open	a	command	line	desk
calculator	e.g.	dc
(“dc”	means	desk	calculator)

dd data	dump	to	convert	and	copy	a	file
e.g.	dd	if=devsda	of=devsdb	(copy
data	from	sda	to	sdb)

dmesg print	out	all	kernel	log	messages
e.g.	dmesg	>	kmsg.txt
(output	kernel	messages	to
kmsg.txt)

df display	free	disk	space
e.g.	df
(display	file	system	free	space)

df	-m display	free	disk	space
e.g.	df	-m
(-m:	display	sizes	in	Mb)

dhclient configure	network	interfaces
e.g.	dhclient	eth0
(renew	IP	address	of	eth0)

diff show	difference	between	two	files
e.g.	diff		firstfile.txt	secondfile.txt
(display	difference	above	two	files)

diff3 show	difference	among	three	files
e.g.	diff3		file1.txt	file2.txt	file3.txt
(display	difference	above	three
files)

dig display	the	details	of	DNS	servers
e.g.	dig	xvxaxx.com	(list
information	about	xvxaxx.com)

dir show	directory	contents
e.g.	dir
(display	current	directory	contents)

dircolors show	color	settings	for	“ls”
command.
e.g.	dircolors
(display	directory	coloring	of	ls)

dirname remove	the	last	part	of	a	file	path.
e.g.	dirname	foobar/baz/myfile.txt
(output:	foobar/baz)

du	-s display	disk	usage
e.g.	du	-s	*.*
(-s	list	files	size	in	current	directory)

du	-h display	disk	usage
e.g.	du	-h	myfile.txt
(-h:	show	human	readable	units)

dump	-f makes	backup	of	filesystem
e.g.	dump	-f0	filebk	/mydir	(-
f:backup	-0:dump-level		filebk:
dump-file)

echo display	input	on	standard	output
e.g.	echo	“Hello	World!”
(show	“Hello	World!”)

echo	-e display	text	using	escape	sequence
e.g.	echo	–e	“\n	Hello	World!”
(-e:	allow	use	\n	to	show	text)

ed open	a	command-line	text	editor
e.g.	ed	myfile.txt
(open	myfile.txt	with	text	editor)

egrep search	file(s)	for	a	specified	regex
e.g.	egrep	"new	|	string"	myfile.txt
(search	myfile.txt	for	“new	|	string”)

eject eject	the	cd	or	dvd	tray
e.g.	eject	cdrom

(eject	cdrom	tray)
eject	-t eject	or	close	the	cd	or	dvd	tray

e.g.	eject	–t	cdrom
(-t:	close	an	open	cdrom	tray)

emacs powerful,	extensible	file	editor
e.g.	emacs	file.txt
(launch	emacs	and	open	file.txt)

env show,	set	the	environment	variables
e.g.	env
(list	current	environment	variables)

eval make	a	command	from	its
arguments
e.g.	UPLS=”eval	cd..	;	ls	”
(create	a	command	named	UPLS)

exit exit	the	shell
e.g.	exit
(terminate	the	program	and	log	out)

expand convert	tabs	into	spaces
e.g.	expand	myfile.txt
(convert	tabs	to	spaces	for
myfile.txt)

expand	-t convert	tabs	into	spaces
e.g.	expand	-t	3	myfile.txt
(-t:	set	tabs	3	characters	apart)

export set	an	environment	variable	&	value
e.g.	export	newvar=8	echo	$newvar
(output:	8)

expr evaluate	an	expression
e.g.	expr		10+8
(output:	18)

factor show	the	prime	factors	of	a	number
e.g.	factor	1001
(output:		7		11		13)

fc list,	edit,	re-execute	last	commands
e.g.	fc	-l
(-l:list	the	history	of	commands)

fdisk* manipulate	the	hard	disk	partitions

e.g.	fdisk	devhdb
(list	hard	disk	partitions
information)

fg resume	a	stopped	job	in	foreground
e.g.	fg	%3
(resume	the	job	3	in	foreground)

fgrep search	file(s)	for	a	specified	string
e.g.	fgrep	"good"	myfile.txt	(search
myfile.txt	for	“good”)

file detect	the	file	type.
e.g.	file	myfile.tar
(determine	file	type	of	myfile.tar)

find	 –print	 –
name
	

find	file(s)	in	a	directory	named	dir
e.g.	find	dir	-print	-name	'abc.txt'
(-print:print,	-name:specify	file
name)

finger show	user’s	information
e.g.	finger	username
(list	the	user's	login	name,	time.
etc.)

fmt format	text	files
e.g.	fmt	myfile1.txt	>	myfile2.txt
(format	myfile1	&	output	to
myfile2)

fmt	-u format	text	files
e.g.	fmt	–u	myfile.txt
(-u:	provide	uniform	word	spacing)

fold wrap	each	line	to	fit	a	specified
width	e.g.	fold	-w	15	myfile.txt
(-w	specify	how	many	words)

for		in set	conditional	parameter	for	loop
e.g.	for	n	in	3	6	9	do	echo	$n	done
(output:	3	6	9)

free displays	free	memory	information
e.g.	free
(list	free,	used,	total	memory…)

free	-m displays	free	memory	information

e.g.	free	-m
(-m:	show	sizes	in	Mb.)

fsck	* file	system	check
e.g.	fsck
(check	or	fix	Linux	file	system)

ftp transfer	files	by	File	Transfer
Protocol	e.g.	ftp	ServerURL
(transfer	files	using	ftp)

gawk find	or	replace	text	in	a	file
e.g.	gawk	'length($0)	>	88'
(list	lines	longer	than	88	characters)

grep match	a	specified	string	or	regex.
e.g.	grep	onestring	myfile.txt
(search	myfile.txt	for	onestring)

groups list	groups	to	which	the	user	belongs
e.g.	groups
(print	the	groups	of	user)

groupadd	* add	a	new	group
e.g.	groupadd	newgroup
(create	a	new	group)

groupadd	*	-f add	a	new	group
e.g.	groupadd	–f	newgroup
(-f:	check	group	doesn’t	exist)

groupdel	* delete	an	existing	group.
e.g.	groupdel	existinggroup
(remove	an	existing	group)

groupmod	*-n modify	an	existing	group
e.g.	groupmod	-n	newgrp	oldgrp	(-n
change	group	name)

gunzip uncompress	a	file	from	gzip	format
e.g.	gunzip	myfile.txt.gz
(uncompress	myfile.txt.gz)

gzip compress	a	file	to	gzip	format
e.g.	gzip	myfile.txt
(compress	myfile.txt)

halt shutdown	the	system
e.g.	halt

(power	off	the	system)
hash access	the	hash	table

e.g.	hash
(list	commands	from	hash	table)

head display	some	front	lines	in	a	file
e.g.	head	myfile.txt
(output	the	first	ten	lines	of
myfile.txt)

head	-n display	some	front	lines	in	a	file
e.g.	head	–n	4	myfile.txt
(-n:	specify	a	number	of	lines)

help show	help	information	of
commands
e.g.	help	echo
(show	information	about	echo)

history show	the	commands	history
e.g.	history
(list	commands	in	this	shell	session)

host find	the	ip	address	of	a	domain
name	e.g.	host	websprogram.com
(show	ip	of	websprogram.com)

hostid display	id	of	the	current	host	in	hex.
e.g.	hostid
(print	the	current	host	id)

hostname show	or	set	the	host	name
e.g.	hostname
(display	the	name	of	current	host)

id show	the	user	or	group	id	number
e.g.	id
(display	the	root	user	uid,	gid.	etc.)

ifconfig show,	configure	the	network
interface	e.g.	ifconfig
(display	the	network	settings)

init	* set	the	system	run	level
e.g.	init	5
(change	to	run	level	5)

info show	help	information	of	a

command
e.g.	info	man
(show	help	page	for	man)

install copy	files,	set	permission,
ownership	e.g.	install	myfiles	
homeuser	(copy	myfiles	to	user
directory)

install	-o copy	files,	set	permission,
ownership	e.g.	install	–o	myfiles	ray
/home	(-o:	specify	ownership)

jobs show	all	jobs’	status
e.g.	jobs
(list	all	running	jobs’	information)

join join	lines	of	files	having	common
field	e.g.	join	myfile1.txt	myfile2.txt
(join	lines	of	two	files	by	same
field)

join join	lines	of	two	files
e.g.	join	–i	myfile1.txt	myfile2.txt	(-
i:	ignore	the	differences)

kill stop	a	job	by	number.
e.g.	kill	%3
(terminate	job	%3)

kill stop	a	process	by	pid.
e.g.	kill	3956
(terminate	process	3956)

killall stop	a	process	by	name
e.g.	killall	no	respond
(terminate	process	no	respond)

last show	most	recently	logged-in	users
e.g.	last
(list	recent	users’	date,	time…)

lastb show	bad	login	attempts
e.g.	lastb
(display	bad	login	attempts)

lastlog display	the	last	login	information
e.g.	lastlog	-u	username

(-u:	specify	a	user)
less show	contents	page	by	page

e.g.	less	myfile.txt
(display	myfile.txt	page	by	page)

let perform	arithmetic	on	shell
variables	e.g.	let	a=12;	let	a=a+8;
echo	$a	(output:	20)

link create	a	link	to	a	file.
e.g.	link	file1.txt	file2.txt
(create	a	link	from	file1	to	file2)

ln create	a	hard	link	to	a	file
e.g.	~/myfile.txt
(create	a	hard	link	to	myfile.txt)

ln	-s create	a	link	between	two	files
e.g.	ln	-s	file1.txt	file2.txt	(create	a
symbolic	link	to	file1/file2)

locate find	the	location	of	a	file	or	a
directory	e.g.	locate	myfile.txt
(locate	myfile.txt	on	local	machine)

logname show	the	current	user’s	login	name
e.g.	logname
(display	the	login	name	of	user)

look show	words	matching	a	given	prefix
e.g.	look	ab
(output:	aba,	abb,	abc,	abd…)

lpc run	the	line	printer	control	program
e.g.	lpc	status
(show	status	of	current	print	queue)

lpq show	the	printer	queue	status
e.g.	lpq
(list	the	print	queue)

lpr send	a	print	request	to	printer
e.g.	lpr	myfile.txt
(send	myfile.txt	to	printer)

lprm cancel	the	printing	job	in	print
queue	e.g.	lprm	2
(remove	printing	job	2)

ls list	the	contents	of	current	directory
e.g.	ls
(list	files	and	sub-directories)

ls	-l long	list	contents	of	current
directory	e.g.	ls	-l
(-l:long	lists	including	permissions)

ls	-a lists	all	entries	including	hidden
files	e.g.	ls	-a
(-a:	show	all	files)

ls	-t lists	all	entries	by	time	stamps
e.g.	ls	-t
(-t:	show	by	time	stamps)

ls	-lh lists	contents	in	current	directory
e.g.	ls	-lh
(-lh:	list	files	with	size	in	mb	and
gb.)

lsattr list	the	attribute	of	a	file	or	a
directory	e.g.	lsattr	myfile.txt
(show	myfile.txt	attribute)

lsof list	opened	files
e.g.	lsof
(list	all	opened	files)

man get	command	help	from	manual
e.g.	man	cat
(show	manual	page	for	cat)

man	-k search	manual	pages	for	keyword
e.g.	man	–k	printf
(-k:	specify	a	keyword)

md5sum create	a	md5	checksum	number
e.g.	md5sum	-c	file.txt
(-c	validate	file	against	a	checksum)

mesg enable	or	disable	messaging
e.g.	mesg
(show	the	current	write	status)

mesg	y/n enable	or	disable	messaging
e.g.	mesg	y/n
(y	or	n:	permit	or	deny	messaging)

mail send	and	receive	mails
e.g.	mail	ray@websprogram.com
(email	to	ray@websprogram.com)

mkdir make	a	new	directory
e.g.	mkdir	mydir
(create	a	directory	named	mydir)

mknod make	a	device	file
e.g.	mknod	devdk	b	45	0
(dk:device;																					b:block;
45:major	no.;	0:minor	no.)

more show	content	one	screen	at	one	time
e.g.	more	+2	myfile.txt
(+2:	beginning	at	line	2)

mount mount	a	storage	device
e.g.	mount	devcd
(mount	a	device	cd)

mount	-l mount	or	show	devices
e.g.	mount	-l
(-l:	list	all	mounted	devices)

mt magnetic	tape	drive	control
e.g.	mt	-f	devtape	eod	(-f	select	eod;
move	to	end	of	data)

mv move	a	file	to	another	directory
e.g.	mv	myfile.txt	homeuser/mydir
(move	myfile.txt	to	mydir	directory)

mv rename	a	file
e.g.	mv	myfile1.txt	myfile2.txt
(rename	mayfile1	to	myfile2)

netstat display	network	status
e.g.	netstat	(print	network
connections,	routing	tables.etc)

nice	* set	the	priority	level	of	a	job
e.g.	nice	-19	ftp
(set	priority	level	as	19	for	ftp)

nl add	text	with	number	lines
e.g.	nl	mylist.txt
(make	number	lines	for	mylist.txt)

nohup ignore	hangup	signals
e.g.	nohup	find	ftp
(run	ftp	ignoring	hangup	signals)

nslookup query	internet	name	servers	for	IP
e.g.	 nslookup	 myxxexample.com
(return	IP	like	75.126.162.XXX)

passwd modify	a	user	password
e.g.	passwd	username
(change	password	for	username)

paste merge	lines	of	multiple	files
e.g.	paste	file1.txt	file2.txt	(merge
contents	for	file1	and	file2)

pidof show	process	ID	of	running
program
e.g.	pidof	console
(display	console’s	process	id)

ping send	data	to	a	host,	await	response
e.g.	ping	xvxmjfz.com	(test	if
remote	host	can	be	reached)

ping	-c test	if	remote	host	can	be	reached
e.g.	ping	–c5	xvxmjfz.com	(-c5:
specify	the	number	of	pings)

pkill kill	a	running	process
e.g.	pkill	firefox
(stop	web	browser	firefox)

pr prepare	text	files	for	printing
e.g.	pr	myfile.txt
(prepare	myfile.txt	for	printing)

pr	-n prepare	text	files	for	printing
e.g.	pr	–n	myfile.txt
(-n:	specify	number	in	each	line)

pr	-h prepare	text	files	for	printing
e.g.	pr	–h	“Good”	myfile.txt	(-h:
specify	a	header)

printenv show	the	environment	variables
e.g.	printenv
(list	values	of	environment

variables)
printf format	and	print	data

e.g.	printf	"start\b"
(\b:	backspace			output:	star)

printf format	and	print	data
e.g.	printf	'hello	\n	world	\n	!'
(\n:	prints	by	newlines.		output	3
lines)

ps	-f show	the	process	status
e.g.	ps	-f
(-f	full	information	of	current
process)

ps	-u show	the	process	status
e.g.	ps	-u	ray
(-u	specify	a	user’s	current	process)

pstree displays	process	in	tree	structure
e.g.	pstree
(show	all	process	as	a	tree)

pwd print	working	directory
e.g.	pwd
(display	current	directory)

rcp remotely	copy	file	between	two
hosts	e.g.	rcp	file.txt
host2:/dir2/file.txt	(remotely	copy
file.txt	to	host2)

read read	a	line	from	standard	input
e.g.	read	name			(input	ray)	echo
“$name”				(output	ray)

reboot* restart	the	system
e.g.	reboot
(cause	the	computer	to	restart)

renice	* change	the	priority	level	of	a	job
e.g.	renice	3	23001
(set	priority	level	as	3	for	job
23001)

restore restores	data	from	the	backup	file
e.g.	restore	-f	databackup

(-f:specify	a	backup	file)
rlogin remotely	login	to	a	system

e.g.	rlogin	-l	username	domain.com
(-l:	specify	a	username)

rm remove	one	or	more	files
e.g.	rm	myfile.txt
(remove	myfile.txt)

rm	-r remove	non-empty	directory
e.g.	rm	-r	/NonEmptyDir
(-r:	remove	directory	and	its
content)	

rm	-i remove	non-empty	directory	or	a
file	e.g.	rm	-i	myfile.txt
(-i:	ask	before	removing)	

rmdir remove	empty	directory
e.g.	rmdir	/emptydir
(delete	directory	without	contents)

route show	or	modify	the	IP	routing	table
e.g.	route	-n
(-n:	show	in	numerical	format)

rsync remotely	synchronize	files
e.g.	rsync	myfile	host2:/dir2/myfile
(sync.	myfile	with	remote	host2)

scp securely	copy	files	amid	two	hosts
e.g.	scp	file.txt	host2:/dir2/file.txt
(securely	copy	file	to	remote	host2)

screen open	the	terminal	window	manager
e.g.	screen
(start	a	new	screen)

sdiff show	two	files’	difference	side	by
side	e.g.	sdiff	myfile1.txt
myfile2.txt	(compare	two	files	side
by	side)

sed filter	and	transform	input	text
e.g.	sed	“{print	$3}”	myfile.txt
(display	the	third	word	of	each	line)

seq list	sequent	numbers	in	given	range

e.g.	seq	1	8
(output:	1	2	3	4	5	6	7	8)

seq	-w list	sequent	numbers	in	given	range
e.g.	seq	–w	1	3
(-w:	with	zeros			output:	01	02	03)

seq list	sequent	numbers	in	given	range
e.g.	seq	–s\|	1	3
(-s:	with	separators		output:	1|	2	|3)

set set	shell	variable	or	function
e.g.	set	n=`who	am	i`;		echo	$n
(output:	who	am	i)

sftp securely	transfer	files	by	ftp
e.g.	sftp	SeverURL
(securely	transfer	files	to	a	Server)

shopt show	the	shell	option	settings
e.g.	shopt
(show	the	shell	behavior	settings)

shutdown	* close	system
e.g.	shutdown	22:00
(shut	down	at	22:00	o’clock)

shutdown-h close	system
e.g.	shutdown	–h	+5
(-h+5:	halt	after	5	minutes)

shutdown	-r shutdown	and	restart
e.g.	shutdown	-r	now
(-r:shut	down	and	instantly	restart)

sleep pause	for	a	specified	amount	of	time
e.g.	sleep	10
(pause	for	10	seconds)

sort show	sorted	contents	alphabetically
e.g.	sort	-r	myfile.txt
(-r	sort	file	in	reverse	order)

split	-b split	a	file	to	some	files	in	given	size
e.g.	split	-b	11	file.txt	(split	file	to
some	11	byte	files	named
xaa,xab,xac,	etc.)

split	-l split	a	file	to	some	files	in	given	size

e.g.	split	-l	8	file.txt	(split	file	to
some	8	line	files	named
xaa,xab,xac,	etc.)

ssh login	to	remote	secure	shell
e.g.	ssh	ray@myexample.com
(securely	connect	to	a	remote	host)

ssh	-l login	to	remote	secure	shell
e.g.	ssh	-l	username	hostname	(-l
specify	your	remote	username)

stat list	status	about	file	size,	access,	etc.
e.g.	stat	myfile.txt
(show	myfile.txt	statistics)

su switch	user
e.g.	su	user2
(switch	user	named	user2)

su	-l login	as	a	root	super	user
e.g.	su	–l
(-l:enter	password,	login	root
account)

sudo	-u execute	a	command	as	another	user
e.g.	sudo	-u	user2	ls	homemydir	(-u:
specify	user2	to	execute	ls	cmd)

sudo	-v refresh	the	authentication	timeout
e.g.	sudo	-v
(next	 sudo	 will	 not	 require
password.)

sudo	-k expire	the	authentication	timeout
e.g.	sudo	-k
(next	sudo	will	require	password.)

sum summarize	a	file	with	a	checksum
e.g.	sum	myfile.txt	(create	a
checksum	for	myfile.txt)

suspend suspend	the	working	shell
e.g.	suspend
(pause	system	during	execution)

sync synchronize	disk	data	with	memory
e.g.	sync

(flush	all	file	system	buffers	to	disk)
tac display	lines	of	a	file	in	reverse

order	e.g.	tac	myfile.txt
(print	file	from	last	line	to	first	line)

tail show	the	final	part	of	a	file
e.g.	tail	-n	20	file.txt
(-n20:output	last	20	lines	of	file.txt)

talk communicate	with	another	user
e.g.	talk	ray
(talk	to	user	ray)

tar	-xf extract	an	archived	tar	file
e.g.	tar	-xf	archive.tar
(-xf:	extract	an	archive	tar	file)

tar	-cf create	an	archived	tar	file
e.g.	tar	-cf	archive.tar
(-cf:	create	an	archive	tar	file)

tee print	standard	output,	write	to	a	file
e.g.	sort	file1.txt	|	tee	file2.txt	(sort
file1.txt	and	write	to	file2.txt)

tee	-a print	standard	output,	write	to	a	file
e.g.	sort	file1.txt	|	tee	–a	file2.txt	(-a:
append	instead	of	overwrite)

test calculate	a	boolean	expression
e.g.	[8	-gt	6];	echo	$?
(output:	0		0:true;		1:false)

test calculate	a	boolean	expression
e.g.	[5	-eq	6];	echo	$?
(output:	1		0:true;		1:false)

time show	the	time	taken	to	run	a
program	e.g.	time	ftp
(display	the	time	taken	to	execute
ftp)

times show	the	uptime	of	sell
e.g.	times
(display	the	system	uptime)

tload show	a	graphic	report	of	system
load	e.g.	tload	(show	the	current

system	load	average	to	a	specified
process)

top list	the	top	active	or	specified
process	e.g.	top	-p	pid
(-p:display	specific	process	by	pid)

touch update	timestamp	for	an	existing	file
e.g.	touch	myfile.txt
(modify	myfile.txt	to	the	current
time)

touch	-t update	timestamp	for	an	existing	file
e.g.	touch	–t	myfile.txt
(-t:	specify	a	time)

tr translates	sets	of	characters
e.g.	echo	apple	|	tr	“apple”	“banana”
(output:	banana)

traceroute* trace	the	route	to	a	host
e.g.	traceroute	xvauhdhxv.com
(trace	packets	route	to	another	host)

trap run	a	command	on	receiving	a
signal	e.g.	trap
(display	the	current	signal	traps)

tree	-p list	directory	contents	in	tree	format
e.g.	tree	–p
(-p:	also	show	the	file	permissions)

tty show	the	name	of	the	terminal
device	e.g.	tty
(show	the	terminal	filename)

type detect	the	type	of	a	command
e.g.	type	wait
(output:	wait	is	a	shell	builtin)

ulimit	-a limit	user	resources
e.g.	ulimit	-a
(-a:display	all	limits	for	the	system)

umask show	or	set	the	file	permission	value
e.g.	umask		0022	(allow	user	read,
write	privileges	and	all	others	to
read)

umask show	or	set	the	file	permission	value
e.g.	umask		0002	(allow	group	read,
write	privileges	and	all	others	to
read)

umask show	or	set	the	file	permission	value
e.g.	umask		0077	(allow	user	read,
write	privileges	and	no	for	others)

umount unmount	a	device	or	filesystem
e.g.	umount	devdvd
(unmount	a	device	DVD)

unalias remove	an	alias
e.g.	unalias	aliasname
(delete	a	specified	alias)

uname	-a show	the	current	system	information
e.g.	uname	-a
(-a:	display	all	information)

uname	-n show	the	current	system	information
e.g.	uname	-n
(-n:	display	the	host	name)

unexpand convert	spaces	into	tabs
e.g.	unexpand	myfile.txt
(convert	spaces	to	tabs	for
myfile.txt)

uniq filter	out	repeated	lines	in	a	file	e.g.
uniq	myfile.txt
(show	unique	line	in	myfile.txt)

unset remove	shell	variable	or	function
e.g.	unset	var
(delete	a	variable)

unzip uncompress	files	from	zip	format
e.g.	unzip	archive.zip
(uncompress	file	from	archive.zip)

uptime show	system	uptime
e.g.	uptime
(display	system	uptime)

useradd	* add	a	new	user	account
e.g.	useradd	username

(create	a	user	account)
useradd*	-d display	default	value	for	new	users

e.g.	useradd	-d
(show	default	data	for	a	new	user)

userdel	* delete	an	existing	user	account
e.g.	userdel	username
(remove	a	user	account)

usermod*	-d modify	home	directory
e.g.	 usermod	 -d	homemydir	andy	 (-
d:	specify	home	directory	for	andy.)

usermod	*	-l modify	an	existing	user	account
e.g.	usermod	-l	oldname	newname	(-
l:	login	name	change)

usermod	*	-p modify	an	existing	user	account
e.g.	usermod	-p	password	username
(-p:modify	password	of	a	user)

users display	current	logged-in	users
e.g.	users
(list	users	currently	logged	in)

vdir verbosely	show	directory	contents
e.g.	vdir
(vdir	just	like	ls,	but	more	verbose)

vi open	the	vi	text	editor
e.g.	vi	filename
(open	a	file	with	vi	text	editor)

vmstat report	virtual	memory	statistics…
e.g.	vmstat
(also	report	swap,	disk	i/o
devices…)

w list	current	processes	for	each	users
e.g.	w	username
(show	the	user’s	process)

w	-s list	current	processes	by	summary
e.g.	w	-s
(-s:	show	a	summary	of	shell
process)

wait wait	for	a	process	to	change	state

e.g.	wait	10788
(wait	for	10788	to	change	state)

watch execute	a	command	periodically
e.g.	watch	–n	5	date
(-n5:update	date	every	5	seconds)

wc show	word	count,	line	count,	etc
e.g.	wc	myfile.txt
(list	word,	line	count…	for
myfile.txt)

wc	-c show	word	count,	line	count,	etc
e.g.	wc	–c	myfile.txt
(-c:	show	the	byte	counts)

wget download	a	web	page	from	a
website
e.g.	wget
http://www.xvfwkaljo.com
(download	webpage	from	above	url)

wget	-c download	a	web	page	from	a
website
e.g.	wget	–c	http://www.examp.com
(-c:	continue	download	previous
web)

whatis show	manual	page	of	a	command
e.g.	whatis	ping
(show	manual	page	of	ping)

whereis locate	source,	man	for	a	command
e.g.	whereis	ls
(show	source,	man	locations	of	ls)

which show	path	of	a	executable	command
e.g.	which	ftp	(show	the	full	path	of
ftp	command)

who show	who	currently	logged	in
e.g.	who
(list	all	logged-in	users,	date,
time…)

who	-a list	all	users	currently	logged	in
e.g.	who	-a

(-a:	all	information)
whoami show	the	current	user’s	login	name

e.g.	whoami
(show	your	own	user	name)

whois show	domain	owner’s	information
e.g.	whois	xvqizx.com
(list	xvqizx.com	owner’s
information)

write write	a	message	to	another	user
e.g.	write	username
(then	write	your	message…)

xargs execute	a	command	with	arguments
e.g.	find	-name	"	a*.*	"	|	xargs	rm
(find	files	named	a*.*,	remove
them)

xcalc launch	a	graphical	calculator
e.g.	xcalc
(open	a	scientific	calculator)

xclock launch	graphical	clock
e.g.	xclock	-digital
(-digital:	specify	a	digital	clock)

yes output	a	string	repeatedly	until
killed	e.g.	yes	“hello”
(output	hello	repeatedly	until	killed)

yum rpm-based	package	manager
e.g.	yum	install	update
(install	a	package	named	"update")

zcat output	compressed	text
e.g.	zcat	myfiles.txt.gz	|	less
(uncompress	file	and	show	contents)

zless show	un/compressed	file	contents
e.g.	zless	myfile.txt.gz
(zless:	show	contents	by	page)

zmore show	un/compressed	file	contents
e.g.	zmore	myfile.txt.gz
(zmore:	show	contents	by	screen)

zip compress	files	to	zip	format

e.g.	zip	documents	*
(create	documents.zip	for	all	files)

unzip uncompress	files	from	zip	format
e.g.	unzip	myfile.zip
(uncompress	myfile.zip.)

	

Conclusion
	
My	friends,
This	 book	 is	 only	 for	 a	 basic	Linux	 commands	 quick	 learning.	Thank	you	 for
your	support!
I	will	greatly	appreciate	if	you	kindly	give	a	positive	review	to	this	book.
Thank	you	very	much!
	
	
Best	Regards
	
Sincerely
	
Ray	Yao
	
	

My	friend,	See	you!
	

