Linux
GCommand Line

(Cover All Essential
Linux Commands)

A BEGINNER'S GUIDE

Linux Command Line

(Cover All Essential Linux Commands)
A Beginner’s Guide

By Ray Yao

COpyl‘ight © 2014 by Ray Yao All RightS Reserved Neither part of this book nor whole
of this book may be reproduced or transmitted in any form or by any means electronic, photographic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without
prior written permission from the author.

Ray Yao

About the Author

Ray Yao:

Certified PHP engineer by Zend, USA
Certified JAVA programmer by Sun, USA
Certified SCWCD developer by Oracle, USA
Certified A+ professional by CompTIA, USA

Certified ASP. NET expert by Microsoft, USA Certified MCP professional by Microsoft, USA Certified
TECHNOLOGY specialist by Microsoft, USA Certified NETWORKH+ professional by CompTIA, USA

Preface

This book is a beginner’s guide for fast learning Linux commands which are frequently used by Linux
administrators or beginners. The book covers all essential Linux commands as well as their operations,
examples and explanations. It also includes Linux Helping commands, symbols, shortcut keys, run levels
and Vi commands. From this book, you can easily learn:

How to run all essential Linux commands.

How to copy, move, and delete files and directories.

How to create, remove, and manage users and groups.

How to access Linux server, and use SSH commands.

How to operate the run levels and change the run levels How to navigate at the command line by helping
commands.

How to compare files, find out a file, manipulate file contents How to start a job, stop a job and schedule a
job.

How to manage permissions, ownership of files, directories How to connect across network, communicate
with network.

How to transfer files over network, send network messages And much more skill......

There is a long table containing all common Linux commands in this book, which can give you a great help
in your job or study. You can learn all essential Linux commands quickly.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Chapter 15
Chapter 17

Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 28

Table of Contents

Introduction to Linux
Enter First Commands
Super User Commands
Navigating At Commands
File Operation Commands 39

Viewing File Commands

Comparing File Commands Chapter 8 Matching Text Commands
Directory Commands
Un/Compress Commands 59
Processe Commands
Account Commands
Groups Commands 68
Permission Commands

Running Job Commands Chapter 16 Backup/Restore Commands
Date & Time Commands 79

Networking Commands
Scripting Commands
System Commands
Helping Commands
Skill of Commands

Access Permissions

98

Linux Symbols

Shortcut Keys

Run Levels Table Chapter 27 The Vi Editor Commands
All Essential Linux Commands Conclusion

Chapter 1
Introduction to Linux

About Linux Operating System

Linux is a Unix-like and mostly POSIX-compliant computer operating system
assembled under the model of free and open-source software development and
distribution.
Linux usually works as a server, because of its stability and security’s feature.
Linux programs are extremely advantageous:

Linux programs are free, you’ll see, most of Linux programs are.

They are frequently updated and for Zero charge!

Some of them are better than those in windows. And other doesn’t even

exist in windows!

If Linux is free and almost all their softwares are free, it is for a reason; to
understand we have to go back to 1984.

1984

So we are back in 1984, computer science was not very developed. Microsoft
has just launched its first os: MS-DOS, but this one is far away from being done.

But, was MS-DOS the only one then?

No! There was other operating system but less known by the public.

The one that was called the best was “Unix”. It was a lot powerful than MS-DOS
but a lot complicated, what explains that only the professionals could use it.
Graphically UNIX looked a lot like MS-DOS they were both seen like a black
screen with some white text in it. We must say that computers back then were
not capable of doing better.

GNU Project

It is just in 1984, that Richard Stallman created GNU project.

The GNU Project is free software, mass collaboration project, announced on 27
September 1983, by Richard Stallman at MIT. Its aim is to give computer users
freedom and control in their use of their computers and computing devices, by
collaboratively developing and providing software that is based on the following

freedom rights: users are free to run the software, share it (copy, distribute),
study it and modify it. GNU software guarantees these freedom-rights legally
(via its license), and is therefore free software; the use of the word "free" always
being taken to refer to freedom.

Richard Stallman was a researcher in Artificial intelligence in MIT. He wanted
to create an operating system based on UNIX (the commands still the same).

But why would he create a copy of “UNIX”?

Because UNIX was not free and it was getting more expensive! Richard
Stallman wanted to react by creating a free alternative: the project GNU was
born.

GNU is an open operating system

GNU should not only be a free OS; it also had to be "open"

What is the difference?

A free program is a program where you can have the source code, that is to say,
the "batch recipe." In contrast, Windows is a proprietary OS whose source code
is stored by Microsoft. Imagine it's like Coca-Cola: nobody knows the recipe
(there are many people who try to imitate it, but hey ...). So we cannot change it
or see how it works inside.

An open program is mostly a free program, it is also a program that has the right
to copy, modify, redistribute. It's a real ideology in computer science: people
think it is better to give the source code of the programs that we create because it
allows knowledge sharing and helps the computer to evolve faster. The slogan of
the Free World might be: "Unity is strength."

They say whenever the program is "open source" because its source code is
open; everyone can see it. There are some slight differences between "open
source" program and a "free" program, but we will not go into details here.

Linus Torvalds is doing his hobby

In 1991, Linus Torvalds, a student at the University of Helsinki (Finland), began
creating his free own operating system. This system became known as Linux,
referring to the name of its creator (Linux is a contraction of Linus and UNIX).

Linus Torvalds, creator of Linux

What relationship with GNU? Well it turns out that these two projects were
complementary: while Richard Stallman created the basic programs (program

file copy, delete, file, text editor), Linus had embarked on the creation of the
"heart" an operating system kernel.

The GNU (free programs) and Linux (OS kernel) project merged to create GNU
/ Linux.

Theoretically, we should talk about GNU / Linux. But it is a bit difficult to write
and pronounce, and by abuse of language, we often say just "Linux". This is why
I continue to speak of "Linux" in the rest of the book, even though the politically
correct name is "GNU / Linux" because it is the merger of two complementary
projects.

Original operating systems

You should now have a better idea of the origin of the three major operating
systems that exist today: Mac OS, Linux and Windows.

Thus, Mac OS and Linux are both based on UNIX, the ancestor of operating
systems, while Windows, from MS-DOS is a separate branch. Overall, this is all
you need to remember.

It is said that Mac OS and Linux are based on UNIX because they have "copied"
its operation. It's not pejorative, it’s quite the opposite: it's been an honor to
UNIX.

Linux programs do not use all the same source code as UNIX (it was also the
owner, so private). They have been completely rewritten but work the same way.
If T told you all this is because I believe that knowing the origin of Linux is
important. This will help you understand many things thereafter.

Linux distributions

A Linux distribution (often called distro for short) is an operating system made
as a collection of software based around the Linux kernel and often around a
package management system. The most well known distributions are RedHat,
SUSE, Debian, Mandriva, Slackware and Ubuntu. You can find much different
software and there are hundreds of different ways to install it.
To make life easier for users and allow them to make a choice, different Linux
distributions were created. This is a concept that does not really exist in
Windows. It's like the difference between Windows 7 Home and Windows 7
Professional, but it goes much further than that.

Here's what can differ from one distribution to another:

Installation: it can be greatly simplified as very complicated;

Installing management programs: If it is done well and centralized, it

can make the installation of new software simpler than Windows, as
discussed further!

The preinstalled programs on your computer (e.g. Windows is bundled
with Internet Explorer and Windows Media Player).

In fact, distribution is somehow packing Linux. The heart itself remains the same
for all distributions.

Whichever distribution you install, you get a Linux compatible with others.
Some distributions are just more or less easy to handle. :-)

Various existing distributions

There are many different Linux distributions. Hard to choose, you will say:
indeed, the first time it is unclear what to choose ... especially since all are free!
Do not worry; I'll help you make your choice.

I will not list all existing distributions, but here at least the main ones:

Slackware: one of the oldest Linux distributions. It still exists today!

Mandriva: published by a French company, it is simple to use;

RedHat: published by an American company, this distribution is known and
widespread, especially on servers;

SUSE: Novell published by the company;

Debian: Debian distribution alone which is managed by independent developers
rather than a business. This is one of the most popular distributions.

As I have said, whatever the distro (short for distribution) you choose, you will
have a Linux. Basically, "just" a screen on first boot and various software
preinstalled (I'm simplifying a bit much, but the idea is there).

Summary

Windows, Mac OS and Linux are the most popular operating systems.

Linux usually works as a server, because of its stability and security’s feature.
Linux has the distinction of being free, that is to say that its source code (the
manufacturing recipe) is open: anyone can view it. In contrast, the source code
that was used to design Windows and Mac OS is closed; we say that these are
proprietary operating systems.

There are many variants of Linux, called distributions.

Chapter 2
Enter First Commands

Dear friends, the big day has finally arrived! You will get the chance to write
your first command in console!
Okay, not too stressed?

I assure you, we will start with simple things to become familiar with the
console. We'll really see the ABC, the basic survival guide of kits.

What is the Linux shell?

A Linux shell is a command-line interpreter or shell that provides a traditional
user interface for the Linux operating system and for Linux-like systems.

The shell understands a plenty of shell commands and its option which change
their action. The typical syntax of sell command looks like this: command -
option argument

or

command parameter

(Usually —option argument means parameter)

Command such as: Is, cat, pwd, cp, mv, date......

Parameter such as: -a, -, -s, --all, --help......

Example:

Is —a

Explanation:

Is is a command meaning list the contents in current directory -a is a parameter
meaning “all”.

Result: list all contents in current directory.

Shell commands can be run at a prompt in text interface mode or in a shell
terminal window.

The command prompts with shell command show something like this:
username@hostname: ~ $ command parameter

root@hostname:~# command parameter

user> command parameter

Explanation:

What you see here is called the command prompt. It is a message that prompts
you to enter a command by giving you at the same time a lot of information.
This command prompt is displayed before each command you type.

“username@hostname:~$ ”is a command prompt.
“root@hostname:~#” is a command prompt too.
“user>” is a command prompt as well.

About the “username@hostname:~$ Is”

Example:
user2014@user-linux:~$ Is

Explanation:

user2014: the first element is your nickname. This is the user name under which
you are logged and you. Indeed, remember: you can create multiple user
accounts on Linux. It is generally advisable to generate a person who’s likely to
use the computer.

@: This symbol indicates nothing special. It's the symbol "at"

user-linux: that's the name of the computer on which you are working. In my
case it is called user-linux, but I could give it any name during installation.

: Again, this symbol does not mean anything special, it is a separator.

~: That's the folder where you currently are. You can navigate from folder to
folder in the console and it is very useful that you always be reminded where
you are before each command.

For information, the symbol ~ means that you are in your home directory, so-
called "home" under Linux; this is equivalent to the "My Documents" folder on
Windows. We will study in detail the operation of the files in Linux in the next
chapter.

$: That symbol is very important; it shows your authorization level on the
machine.

Is: Is is a command, show the contents of current directory.

More detail about $

$: Means you are currently using a user "normal" account with limited rights (he
cannot change the most important system files). My account user2014 is a
normal account with limited rights; As you can see, once we speak the same
language as the command prompt, you understand what it means!

"Welcome, you are user2014 at user-linux machine. You are currently in your
home directory and have limited user rights. You are using a command “Is” to
list the contents in current directory."

About the “root@hostname:~#whoami”

Example:
root@user-linux:~# whoami

Explanation:

root: means user work as a super user @: This symbol indicates nothing special.
It's the symbol "at"

user-linux: that's the name of the computer on which you are working. In my
case it is called user-linux, but I could give it any name during installation.

: Again, this symbol does not mean anything special, it is a separator.

~: That's the folder where you currently are. You can navigate from folder to
folder in the console and it is very useful that you always be reminded where
you are before each command.

For information, the symbol ~ means that you are in your home directory, so-
called "home" under Linux; this is equivalent to the "My Documents" folder on
Windows. We will study in detail the operation of the files in Linux in the next
chapter.

#: means you are working in super user mode Whoami: whoami is a command,

show the current user name M ore detail about #

#: Means you are in super user mode, that is to say that you are connected under
the pseudonym "root." The root is the master who has the right to do everything
on his computer user (even to destroy it!). We'll see how root in more detail
later; yet we remain in a limited user account, so we do not risk doing bad
things.

"Welcome, you are super user at user-linux machine. You are currently in your

home directory and have super user rights. You are using a command “whoami”
to show the current user name."

About “user>pwd”

Example:
user> pwd

Explanation:

user> : is a customized command prompt.

pwd: pwd is a command, print working directory.

You can customize the command prompt like user>. Of course after you are
familiar with Linux command programming, you will be able to customize the
shell prompt.

At this moment, the Linux machine will say hallo to you: "Welcome, you are a
user at user-linux machine. You are currently in your home directory and have
limited user rights. You are using the “pwd” command to print working
directory."

As a bit of everything on Linux, the command prompt is fully configurable. You
can shorten it if you find it is too long, or lengthen it if it does not give enough
information. You can theoretically put really everything you want in the prompt,
such as the current time.

Working in the console by typing commands, the latter being numerous, you can
never know all of them ... and it is not the goal: the goal is that you know by
heart to serve the most "common" ones and for the less common you are able to
learn to use them by reading their manual.

About Linux commands

The typical syntax of sell command looks like this: command —option
argument

or

command parameter

Let’s see some example of commands and parameters: Example:

Type “date” and press the Enter key.

user2014 @ user-linux: ~ $ date

Monday, September 20, 2010, 3:39:51 p.m. (UTC-0200) Explanation:

The first line contains the command prompt followed command I typed. In here,
“date” is a command.

The second line is the computer response to this command: we asked about the
date and time!

About Parameters

Parameters are options that are written after the command. The command and
parameters are separated by a space, like this: user2014 @ user-linux: ~ $
command parameters The parameters themselves can contain spaces, letters,
numbers ... a bit of everything, really. There is no real rule on how the settings,
but fortunately programmers have adopted a sort of "agreement" so that we can
recognize the different types of parameters.

Short parameters (one letter)

The most common parameters are constituted by a single letter preceded by a
dash.
For instance:

If we have to give several parameters, you can do it like this: -d -a -U -h
Or shorter:
-daUh

BEWARE! For short parameters: a parameter in different command has different
meanings.

Example:

Is -t (-t means “list by timestamps”.)

eject -t (-t means “tray close”.)

chfn -f (-f means ”change information by finger name”) cut -f (-f means “cut

text by a field number”)

ps -f (-f means “show process status in full information”) BEWARE! Parameter
is case sensitive (upper / lower case). If you write -u, this has generally not the
same sense as —U.

Does a test with the Is command, and write it the parameter "-a" (lower case), -a
means “all”’; Example:

user2014@user-linux: ~ $ Is -a.

.gconfd .mozilla-thunderbird .. gimp-2.2 .nautilus .bash_history .gksu.lock
.profile .bash_logout .gnome .recently-used .bashrc .gnome2 .recently-used.xbel
.config .gnome?2_private .ssh Desktop .gstreamer- .sudo_as_admin_successful
.dmrc .gtkrc 0.10-1.2-gnome?2 .themes .esd_auth .ICEauthority .thumbnails
.evolution .icons .Trash Examples .lesshst tutorials .face .local .update-manager-
core .fontconfig .macromedia .update-notifier .gaim. metacity .Xauthority .gconf
.mozilla .xsession-errors This displays all files of current directory, even hidden
files.

A "cookie" is a Linux file that begins with a period. Normally, if you're in your
home directory, you should have a good bunch of hidden files. These are usually
configuration files program.

Long parameters (severalletters) The parameters consist of

several letters are preceded by two dashes, like this: --long parameter

For instance: --all

--all is a long parameter, meaning all contents or all things.

For instance: --version

--version is a long parameter, meaning the version of the command For instance:
--help

--help is a long parameter, meaning get help for current command.

If you want to put several feature parameters, it will add a space between each
one: Command --long parametrel --long parametre2

One can also combine the long and short parameters in control parameters:
Command -daUh --All

Sometimes there are two possible entries for a control parameter: a short version
and a long version. This will let you choose whichever you prefer one or the
other.

Note that this is the command that decides the parameters it accepts: sometimes
some do not offer a choice between a short version and a long.

Let's test this on the Is command with the --all parameter, which means
"everything": Example:

user2014@user-linux: ~ $ Is --all.

.gconfd .mozilla-thunderbird .. gimp-2.2 .nautilus .bash_history .gksu.lock
.profile .bash_logout .gnome .recently-used .bashrc .gnome2 .recently-used.xbel
.config .gnome?2_private .ssh Desktop .gstreamer- .sudo_as_admin_successful
.dmrc .gtkrc 0.10-1.2-gnome?2 .themes .esd_auth .ICEauthority .thumbnails
.evolution .icons .Trash Examples .lesshst tutorials .face .local .update-manager-
core .fontconfig .macromedia .update-notifier .gaim. metacity .Xauthority .gconf
.mozilla .xsession-errors As you can see, is a synonym for --all -a. This
illustrates what I said a moment ago, which shows that sometimes a command
offers two ways to use a parameter: a short and a long.

Sk e sk e sk ok

Commands and Parameters Examples
OK! Let’s have a further look about the commands and their parameters.

su -l : switch user

Example:

user> su —1

(su: going to login as the root super user,
-1: is a parameter meaning “login”)

Is -1 : list long contents

Example:

user>ls -1

(Is: shows the contents of current directory.

—I: is a parameter meaning “long list include access permissions, ownership and
date & time.”) Is —a : list all contents

Example:

user>ls —a

(Is: shows the contents of current directory.

—a: is a parameter meaning “all contents” including hidden files.) rm —ri :
remove a directory and its contents

Example:

user>rm —ri NonEmptyDir

(rm: removes a file or a directory.

—i: is a parameter meaning remove a non-empty directory and its contents.
NonEmptyDir is a directory name.)

w —s : show current process for each user
Example:

user>w -s

(w: shows the shell working processes.

—S: is a parameter meaning “summary)

usermod -1 : modify an existing user account.
Example:

user>usermod -1 oldname newname
(usermod: modify an existing user account.

—I: is a parameter meaning “login name change”)

S e sk e sk ok

What is Virtual Console?

Virtual Console means an interface where the input device and the output device

designed to enable you to interact with your system.

Linux has 7 virtual consoles, you can switch them using Ctrl+Alt+F1through F7.

Ctrl+Alt+F1~F6: switch virtual console 1~ virtual console 6
Ctrl+Alt+F7: enter graphical desktop, which is default virtual console.

Summary:

1.When user is a normal user, use:

username@hostname:~$ command parameter

2.When user is a super user, use:

root@hostname:~# command parameter

3.When the shell prompt has been customized, use: User> command

parameter
4.Linux command: Is, pwd, su, whoami, loginname, rm, exit...

5.Command parameter: -a, -ri, -1,--all, --help...
6. Virtual Console: let you have several interface shell sessions active at the
same time.

Chapter 3
Super User Commands

su: switch a normal user into a root super user

loginname: shows the login name

exit: exit the shell.

whoami: shows the current user name

hostname: shows the current host name

sudo: allows a user with proper permissions to execute a command as another
user, such as the superuser su: switch a normal user into a root super user
Example:

user2014@user-linux:~$ su -1

(su: switch a normal user into a root super user.

—I: enter root password and login.

Note: After login as a super user, the $ will become #.) loginname: shows the
login name

Example:

root@user-linux: ~ # loginname

(loginname: shows the login name, the output is “root™.

Note: After login as a super user, the $ becomes #.) exit: exit the shell
Example:

root@user-linux:~# exit (exit: exit the shell. In here: exit the super user mode,
and enter the normal user mode.

Note: After exit super user, the # will become $.) whoami: shows the current
user name

Example:

user2014@user-linux: ~ $ whoami

(whoami: shows the current user name, the output is “user2014”) hostname:
shows the current host name

Example:

user2014@user-linux: ~ $ hostname

(hostname: shows the current host name, the output is “user-linux”) sudo:
allows a user with proper permissions to execute a command as another
user, such as the superuser Example:

root> sudo -u andy ls homemydir (list the contents of the homemydir directory
as user andy.

-u: specify a user) root> sudo —v

(-v: refresh the authentication timeout, the next sudo command will not require a

password.) root> sudo -k
(-k: expire the authentication timeout, the next sudo command will require a

password.)

Summary:

su: switch a normal user into a root super user loginname: shows the login name
exit: exit the shell.

whoami: shows the current user name

hostname: shows the current host name

sudo: allows a user with proper permissions to execute a command as another
user, such as the superuser

Chapter 4
Navigating At Commands

pwd: print working directory.

cd dir: change directory.

cd~ change directory to home directory.
cd.. change directory to a parental directory.
type: determine a command type.

pwd: print working directory.

Example: user> pwd (pwd: print working directory, the output is your current
working directory.) cd dir: change directory Example: user> cd mydir (cd:
change directory to mydir, the output is mydir.) cd~ change directory to home
directory.

Example: user>cd ~
(cd~ change directory to home directory, the output is home directory.) cd..
change directory to a parental directory.

Example:

user> cd ..

(cd.. change directory to a parental directory, the output is a parental directory.)
type: determine a command type Example: user> type pwd (output: pwd is a

shell builtin.) Summary: pwd: print working directory.

cd: change directory.

cd~ change directory to home directory.
cd.. change directory to a parental directory.
type: determine a command type.

Chapter 5
File Operation Commands

cp: copy a file

mv: move a file

mv: rename a file

rm: remove a file

rm —ri: remove a non-empty directory vi: open vi editor and edit a file find: look
for a file

wc: show word count of a file

file: estimate the type of a file In: create a link between two files In -s: create a
symbolic link to a file readlink: show the target of a symbolic link Ipr: sent a file
to printer

Ipq: display the print queue.

cp: copy a file

Example:
user> cp myfile /dirl
(cp: copy myfile to /dirldirectory.) mv: move a file

Example:
user> mv myfile /dir2
(mv: move myfile to dir2 directory.) mv: rename a file

Example:
user> mv myfilel myfile2
(mv: rename myfiell as myfile2.) rm: remove a file

Example:
user> rm myfile
(rm: remove myfile.)

rm —ri: remove a non-empty directory Example:

user> rm —1i NonEmptyDir

(rm: remove a directory named NonEmptyDir.

-ri: remove a directory containing contents.) vi: open vi editor and edit a file

Example:
user> vi myfile.txt
(vi: open vi editor and edit myfile.txt.) find: look for a file

Example:

user> find directory —type f —-name myfile.txt -print (find: look for a file.
-type f: specify a file

-name: specify a filename

-print: print)

wc: show word count of a file Example:

user> wc myfile.txt

(wc: show word count of myfile.txt.) file: estimate the type of a file Example:
user> file myfile.txt

(file: estimate the type of myfile.txt.) In: create a link to a file

Example:

user> In dirl/filel.txt dir2/file2.txt (In: create a link between filel and file2) In -
s: create a symbolic link between two files Example:

user> In —s dirl/filel.txt dir2/file2.txt (In-s: create a symbolic link between filel
and file2) (-s: a symbolic link allows a given file to appear in many places or
under many names at once. For instance, symbolic links can link to directories.)
readlink: show the target of a symbolic link Example:

user> readlink dir2/file2.txt (the output : dirl/filel.txt) Ipr: sent a file to
printer

Example:
user> lpr myfile.txt
(Ipr: sent myfile.txt to printer.) lpq: display the print queue.

Example:

user> Ipq

(Ipq: display the print queue.) Summary:

cp: copy a file

mv: move a file

mv: rename a file

rm: remove a file

rm —ri: remove a non-empty directory vi: open vi editor and edit a file find: look
for a file

wc: show word count of a file

file: estimate the type of a file In: create a link between two files In -s: create a

symbolic link to a file readlink: show the target of a symbolic link Ipr: sent a file
to printer
Ipq: display the print queue.

Chapter 6
Viewing File Commands

cat: show contents of a file

cat | less: display a file contents page by page cat | more: display a file contents
screen by screen head: show the front part contents of a file tail: show the last
part contents of a file aspell: spelling check for a file

cut: show the specified column of a text file paste: merge two files contents and
display sort: show lines of text sorted alphabetically stat: display the attributes of
a file or directory wc: display word count in a file

file: test the file type

touch: create a file or change file timestamp nl: show numbers for each line of a
file vi: edit or create a text file with vi editor tr: transform text in a file

tee: print standard output, write to a file cat: show contents of a file

Example:
user> cat myfile.txt
(cat: show contents of myfile.txt.)

cat | less: display a file contents page by page Example:

user> cat myfile.txt | less

(cat: show contents of myfile.txt.

| : redirect the output to another command less: display myfile.txt contents page
by page) cat | more: display a file contents screen by screen Example:

user> cat myfile.txt | more

(cat: show contents of myfile.txt.

| : redirect the output to another command more: display myfile.txt contents
screen by screen) head: show the front part contents of a file Example:

user> head myfile.txt

(head: show the front part contents of myfile.txt.) tail: show the last part
contents of a file Example:

user> tail myfile.txt

(tail: show the last part contents of myfile.txt.) aspell: spelling check for a file

Example:

user> aspell —c myfile.txt

(aspell: spelling check for myfile.txt.
-c: check)

cut: show the specified column of a text file Example:
user> cut —f2 myfile.txt

(cut: show the specified column of myfile.txt.

-f2: specify the second column)

paste: merge two files contents and display Example:

user> paste myfilel.txt myfile2.txt (paste: merge two files contents and display)
sort: show lines of text sorted alphabetically Example:

user> sort myfile.txt

(sort: show lines of text sorted alphabetically.) stat: display the attributes of a
file or directory Example:

root> stat myfile.txt

(stat: show file name, modify date, change time etc.) wc: display word count in
a file

Example:
root> wc myfile.txt
(wc: show the number of lines, words, bytes in a file) file: test the file type

Example:
root> file myfile.txt
(output: myfile.txt ASCII text)

touch: create a file or change file timestamp Example:

root> touch myfile.txt

(touch: create a file named myfile.txt) nl: show numbers for each line of a file
Example:

root> nl myfile.txt

(output:

023 sld slwflflf gjodijg gj4jf9ej

024 wz wg tjletj gegdtdy

025 sjflew gjlgnudg jgu675h dk9fh fmj6ju 026 jf5hjd fjtjfj d8gjlinfj,nuigrr ? rit

vi: edit or create a text file with vi editor Example:
root> vi myfile.txt
(vi: open myfile.txt with vi editor)

tr: transform text in a file

Example:

root> echo apple | tr “apple” “banana”
(output: banana)

tee: print standard output, write to a file Example:
Root> sort filel.txt | tee file2.txt (sort filel.txt and write to file2.txt)

Summary

cat: show contents of a file

cat | less: display a file contents page by page cat | more: display a file contents
screen by screen head: show the front part contents of a file tail: show the last
part contents of a file aspell: spelling check for a file

cut: show the specified column of a text file paste: merge two files contents and
display sort: show lines of text sorted alphabetically stat: display the attributes of
a file or directory wc: display word count in a file

file: test the file type

touch: create a file or change file timestamp nl: show numbers for each line of a
file vi: edit or create a text file with vi editor tr: transform text in a file

tee: print standard output, write to a file

Chapter 7
Comparing File Commands

diff: show differences between two files

cmp: compare two files byte by byte comm: compare two files line by line
md5sum: create a md5 checksum number

cksum: create a crc number

diff: show differences between two files Example:

user> diff myfilel.txt myfile2.txt (diff: show differences between two files.)
cmp: compare two files byte by byte Example:

user> cmp myfilel.txt myfile2.txt (cmp: compare two files byte by byte.)
comm: compare two files line by line Example:

user> comm myfilel.txt myfile2.txt (comm: compare two files line by line.)
md5sum: create a md5 checksum number Example:

user> md5Ssum myfilel.txt

(output: f7tkgu5orj1fjt8kelc20s95nd57jf8r myfilel.txt.) cksum: create a crc
number

Example:
user> chsum myfile2.txt

(output: 4658791048 19 myfile2.txt.) Summary

diff: show differences between two files cmp: compare two files byte by byte
comm: compare two files line by line md5sum: create a md5 checksum number
cksum: create a crc number

Chapter 8
Matching Text Commands

grep: show all lines that contain a specified string

egrep: show all lines that contain a specified string uniq: show unique lines in a
file

find: locate a file in specified directory

look: show words matching a given prefix grep: show all lines that contain a
specified string Example:

user> grep good myfile.txt

(grep: show all lines that contain “good” string.) egrep: show all lines that
contain a specified string Example:

user> egrep excellent myfile.txt

(egrep: show all lines that contain “excellent” string.) uniq: show unique lines
in a file

Example:

user> uniq myfile.txt

(uniq: show unique lines in myfile.txt.) find: locate a file in specified directory
Example:

user> find /mydir —type f myfile.txt -print (find: locate a file in a directory.

-type f: specify a file

-print: print)

look: show words matching a given prefix

Example:

User> look ab

(output: aba, abb, abc, abd...) Summary

grep: show all lines that contain a specified string egrep: show all lines that
contain a specified string uniq: show unique lines in a file

find: locate a file in specified directory look: show words matching a given
prefix

Chapter 9
Directory Commands

mkdir: make a new directory

rmdir: remove a empty directory basename: display the last part of a file path
dirname: show the directory path only mkdir: make a new directory Example:
user> mkdir mydir

(mkdir: make a new directory) rmdir: remove a empty directory Example:
user> rmdir mydir

(rmdir: remove a empty directory) basename: display the last part of a file
path Example:

user> basename homefoo/usr/file.txt (output: file.txt)

dirname: show the directory path only Example:

User>dirname foobar/baz/myfile.txt (output: foobar/baz) Summary

mkdir: make a new directory rmdir: remove a empty directory basename: display
the last part of a file path dirname: show the directory path only

Chapter 10
Un/Compress Commands

zip: compress a file to zip format

unzip: uncompress a file from zip format gzip: compress files to gzip format
gunzip: uncompress files from gzip format bzip2: compress files to bz2 format
bunzip2: uncompress files from bz2 format zip: compress a file to zip format
Example:

user> zip myfile.txt

(zip: compress myfile.txt to zip format.) unzip: uncompress a file from zip
format Example:

user> unzip myfile.zip

(unzip: uncompress myfile.zip.) gzip: compress files to gzip format Example:
user> gzip myfile.txt

(gzip: compress a file to gzip format) gunzip: uncompress a file from gzip
format Example:

user> gzip myfile.txt.gz

(gunzip: uncompress myfile.txt.gz) bzip2: compress files to bz2 format
Example:

user> bzip2 myfile.txt.

(bzip2: compress myfile to bz2 format) bunzip2: uncompress files from bz2
format Example:

user> bunzip2 myfile.txt.bz2

(bunzip2: uncompress myfile from bz2 format) Summary

zip: compress a file to zip format unzip: uncompress a file from zip format gzip:
compress files to gzip format gunzip: uncompress files from gzip format bzip2:
compress files to bz2 format bunzip2: uncompress files from bz2 format

Chapter 11
Processes Commands

ps: show the current processes of user

kill: kill a process by process id w: show all current working process.

df: show disk usage of file system uptime: show system uptime top: view the top
active process or a specified process.

ps: show the current processes of user Example:
root> ps —u username

(ps: show the current processes of a user.

-u: specify a user name)

kill: kill a process by process id Example:
root> kill 6270
(kill: kill a process by process id 6270: a process id.)

w: show all current working process Example:

root> w -s

(w: show all current working process.

-s: show summary of process.) df: show disk usage of file system Example:
root> df -h

(df: show disk usage of file system.

-h: make the output more understandable) uptime: show system uptime
Example:

root> uptime

(uptime: show system uptime.) top: view the top active or specified process
Example:

root> top -p pid

(top: show a process by pid) (-p:display specified process by pid) (pid: process
id)

Summary
ps: show the current processes of user Kkill: kill a process by process id w: show

all current working process.
df: show disk usage of file system uptime: show system uptime top: view the top
active process or a specified process.

Chapter 12
Account Commands

useradd: add a new user account

usermod: modify an existing user account userdel: delete an existing user
account passwd: set a user account password chfn: change personal finger
information finger: display personal user finger information useradd: add a
new user account Example:

root> useradd username

(useradd: add a new user account.) usermod: modify an existing user account
Example:

root> usermod —I oldname newname (usermod: modify an existing user account.
-1: modify login name.)

userdel: delete an existing user account Example:

root> userdel username

(userdel: delete an existing user account.) passwd: set a user account password
Example:

root> passwd username

(passwd: set a user account password for a user.) chfn: change personal finger
information Example:

root> chfn username

(chfn: change finger information for a user).

finger: display personal user finger information Example:

root> finger username

(finger: list the user's login name, email, domain name, time. etc.) Summary
useradd: add a new user account usermod: modify an existing user account
userdel: delete an existing user account passwd: set a user account password
chfn: change personal finger information finger: display personal user finger
information

Chapter 13
Groups Commands

groups: show the group membership

groupadd: create a new group

groupmod: modify an existing group groupdel: delete an existing group groups:
show the group membership Example:

root> groups username

(groups: show the group membership of a user.) groupadd: create a new group

Example:

root> groupadd newgroup

(groupadd: create a new group named newgroup.) groupmod: modify an
existing group Example:

root> groupmod newgroup

(groupmod: modify an existing group named newgroup.) groupdel: delete an
existing group Example:

root> groupdel newgroup

(groupdel: delete an existing group named newgroup.) Summary

groups: show the group membership groupadd: create a new group

groupmod: modify an existing group groupdel: delete an existing group

Chapter 14
Permission Commands

chmod: change mode of access permissions

chgrp: change group membership

chown: change ownership of a file or directory (Access permission in detail will
be in later chapter.) chmod: change mode of access permissions

Example:

root> chmod 752 myfilel.txt

(chmod: change mode of access permission for myfilel.txt.

7: set user permission with read, write, execute 5: set group permission with
read, execute 2: set others permission with write only.) chmod: change mode of
access permissions

Example:

root> chmod g+w myfile.txt

(g+w: give write permission to member of the file’s group) chgrp: change
group membership

Example:

root> chgrp groupname myfile2.txt

(chgrp: change group membership of myfile2.txt) chown: change ownership of
a file or directory Example:

root> chown username myfile3.txt

(chown: change ownership of myfile3)

Example:
root> chown groupname userdir (chown: change ownership of dir.)

Summary:

chmod: change mode of access permissions chgrp: change group membership
chown: change ownership of a file or directory (Access permission in detail will
be in later chapter.)

Chapter 15
Running Job Commands

job: display the status of all jobs

fg: run a suspended job in foreground bg: run a suspended job in background
kill: kill a job by number or a process by pid at: schedule a job run at a specified
time atq: display the scheduled jobs atrm: remove a scheduled job

ps: show current process status w: show who logged on and what doing uptime:
show how long the system has been running top: view the top active process
crontab: create a job to run at specified time job: display the status of all jobs
Example:

root> jobs

(job: display the status of all jobs.) fg: run a suspended job in foreground
Example:

root> fg %2

(fg %2: run a suspended job %2 in foreground.) bg: run a suspended job in
background Example:

root> bg %3

(bg %3: run a suspended job %3 in background.) kill: kill a job by number or a
process by pid Example:

root> kill %4

(kill %4: kill a running job %4) at: schedule a job run at a specified time
Example:

root> at 9:30 pm

(at 9:30: set a schedule job at 9:30.) atq: display the scheduled jobs Example:
root> atq

(atq: display all scheduled jobs) atrm: remove a scheduled job

Example:

root> atrm 25

(atrm 25: remove a scheduled job 25.) ps: show current process status
Example:

root> ps -f

(ps-f: show full information of current process.) ps: show current process
status Example:

root> ps -u username

(ps -u: show a user’s current process.) w: show who logged on and what doing
Example:

root> w -S username

(-s: show summary information of a user.) uptime: show how long the system
running Example:

root> uptime

(uptime: show system uptime.)

top: view the top active or specified process

Example:

root> top

(top: display all processes running on the system) crontab: create a job to run
at specified time Example:

root> crontab -e

(-e:edit the crontab file, add a crontab job to the table) Summary

job: display the status of all jobs fg: run a suspended job in foreground bg: run a
suspended job in background kill: kill a job by number or a process by pid at:
schedule a job run at a specified time atq: display the scheduled jobs atrm:
remove a scheduled job

ps: show current process status w: show who logged on and what doing uptime:
show how long the system has been running top: view the top active process
crontab: create a job to run at specified time

Chapter 16
Backup/Restore Commands

cpio: output or input an archive cpio file

tar: create, view, extract archived tar file cpio -o: output an archive cpio file
Example:

root> cpio -0 > directory.cpio (-0: backup to a archive cpio file)

cpio -i: input an archive cpio file
Example:
root> cpio -i < directory.cpio (-i: restore from a archive cpio file)

tar -xf: extract an archived tar file
Example:

root> tar -xf archive.tar

(-xf: extract an archive tar file)

tar -cf: create an archived tar file
Example:

root> tar -cf archive.tar

(-cf: create an archive tar file)

Summary

cpio: output or input an archive cpio file tar: create, view, extract archived tar
file

Chapter 17
Date & Time Commands

date: display t date and time

cal: display a calendar of month date: display date and time Example:

root> date

(date: display the current date and time.) date “+%A”: display current day
Example:

root> date “+%A”

(output: Sunday)

date “+%D”: display current date Example:
root> date “+%D”
(output: 08/10/14)

date “+%T”: display current time Example:
root> date “+%T”
(output: 11:30:28)

cal: display a calendar of month Example:
root> cal

(cal: display a month calendar.) Summary
date: display date and time cal: display a calendar of month

Chapter 18
Networking Commands

host: display remote hostname and IP

ifconfig: display local network configuration ping: send packets to test if remote
host reachable ssh: securely connect to a remote computer ftp: files transfer by
“File Transfer Protocol”

mesg: enable or disable messaging

write: write a messages to other users open: connect to an ftp server

mail: send and receive mails locally and globally.

dhclient: provides a means for configuring one or more network interfaces
nslookup: query internet name servers interactively for IP information.

host: display remote hostname and IP

Example:

root> host www.yahoo.com

(host: display remote hostname and IP.) ifconfig: display local network
configuration Example:

root> ifconfig

(ifconfig: display local network configuration) ping: send packets to test if
remote host reachable Example:

root> ping -c3 yahoo.com

(ping: send packets to test if yahoo host is reachable.

-c3: specify the number of pings)

ssh: securely connect to a remote computer Example:

root> ssh ray@myusername.com

(ssh: securely login to a remote computer) ftp: files transfer by “File Transfer
Protocol”

Example:

root> ftp ftpexample.myexample.com (ftp: connecting to
ftpexample.myexample.com and transfer files remotely) mesg: show messaging
Example:

root> mesg

(mesg: show current status of messaging) mesg y: enable messaging

Example:

root> mesg y
(mesg y: permit messaging)

mesg n: disable messaging

Example:
root> mesg n
mesg n: deny messaging)

write: write a messages to other users Example:
root> write ken
(write a message to ken)

open: connect to an ftp server

Example:

root> open ftp.myexamples.com

(open: connect to ftp.myexamples.com) mail: send and receive mails locally
and globally.

Example:

root> mail username@myexamples.com (mail: send a mail to
username@myexamples.com) dhclient: provides a means for configuring one
or more network interfaces.

Example:

root> dhclient ethO

(renew the dynamically assigned IP address of a primary Ethernet device.)
nslookup: query internet name servers interactively for IP information.
Example:

root> nslookup myexample.com (return an IP address, e.g. 75,126,166, 2XX)
(nslookup: manually query DNS servers.

The DNS (Domain Name System) protocol allows you to get an IP address for a
given host name from a name server. This process is called resolving.)

Summary

host: display remote hostname and IP

ifconfig: display local network configuration ping: send packets to test if remote
host reachable ssh: securely connect to a remote computer ftp: files transfer by
“File Transfer Protocol”

mesg: enable or disable messaging

write: write a messages to other users open: connect to an ftp server

mail: send and receive mails locally and globally.
dhclient: provides a means for configuring one or more network interfaces
nslookup: query internet name servers interactively for IP information.

Chapter 19
Scripting Commands

echo: display text.
expr: perform math calculation #!/bin/bash: put in the first line of a bash shell
scripts file.

echo: display text.

Example:

root> STR="Hello World!”

root> echo $STR

(echo: display text.

The output is “Hello World!”) echo -e: display text using escape sequences.

Example:

root> STR="Hello World!”

root> echo —e “\n$STR\n”

(echo -e: display text using \n. \n means add a new line.) The output is

Hello World!

»

expr: perform math calculation Example:
user> expr 20 + 80
(The output is “100™)

Example:
user> expr 21/7
(The output is “3”)

Example:

user> expr 9 “>” 6

(The output is “1”, the 1 means true) Example:

user> expr 9 “<” 6

(The output is “0”, the o means false) #!/bin/bash: put in the first line of bash

shell scripts.
Example:
#!/bin/bash
If...then...else...fi

(#!/bin/bash: always put in the first line of bash shell scripts) Summary

echo: display text.
expr: perform math calculation #!/bin/bash: always put in the first line of a bash
shell scripts

Chapter 20
System Commands

df: show disk usage of file system

mount: make a device available to file system umount: make a device
unavailable to file system fsck: check and repair the file system init n: switch the
system to run level n who -r: show the current run level free: show free disk
space

du: show disk usage of a file or directory export: set an environment variable
printenv: list environment variable names and values unset: remove the
environment variable clear: clear the screen

exit: exit the shell or logout.

shutdown —h +n: the system is going down in n minutes!

df: show disk usage of file system Example:
root> df -h

(df: show disk usage of file system.

-h: make output understandable)

mount: make a device available to file system Example:

root> mount /cdrom

(mount: make a cd-rom available to file system.) umount: make a device
unavailable to file system Example:

root> umount /dev/hdal

(umount: make hdal unavailable to file system.

hdal: a hard drive partition)

fsck: check and repair the file system Example:

root> fsck

(fsck: check and repair the file system.) init n: switch the system to run level n
Example:

root@user-linux: ~ # init 5

(init 5: switch the system to run level 5) who -r: show the current run level
Example:

root@user-linux: ~ # who -r

(who -1: show the current run level.) free: show free disk space

Example:

root@user-linux: ~ # free -m

(free: show free disk space

-m: show free disk space in MB unit) du: show disk usage of a file or directory
Example:

root@user-linux: ~ # du —b myfile.txt (du: show disk usage of a file or directory.
-b: count the number of bytes it occupies.) export: set an environment variable
Example:

root@user-linux: ~ # export newvar=8

(echo $newvar. The output is 8)

printenv: list environment variable names and values Example:
root@user-linux: ~ # printenv

(printenv: list environment variable names and values) unset: remove the
environment variable Example:

root@user-linux: ~ # unset var

(unset var: remove the environment variable var.) clear: clear the screen

Example:
user>clear
(clear: clear the screen.)

exit: exit the shell or logout.

Example:

user>exit

(exit: exit the shell or logout.) shutdown —h +n: the system is going down in n
minutes!

Example:

root@user-linux: ~ # shutdown —-h +5

(shutdown —h +5: the system is going down in 5 minutes!) (-h: halt the system
+n: after n seconds)

Summary:

df: show disk usage of file system mount: make a device available to file system

umount: make a device unavailable to file system fsck: check and repair the file
system init n: switch the system to run level n who -r: show the current run level
free: show free disk space

du: show disk usage of a file or directory export: set an environment variable
printenv: list environment variable names and values unset: remove the
environment variable clear: clear the screen

exit: exit the shell or logout.

shutdown —h +n: the system is going down in n minutes!

Chapter 21
Helping Commands

Commands | Operations & Examples

man display manual for a command e.g. man
nice (show the manual for nice
command)

info display information for a command e.g.
info chmod (show information about
chmod cmd)

whatis display a description of what a cmd is
e.g. whatis ifconfig (show a description
of what ifconfig is)

help display help explanation of a cmd e.g.
help cd (show help explanation of cd
cmd)

apropos search manual pages for a keyword e.g.

apropos download (show manual entries
with “download”)

--help -help option gets help for a command
e.g. wget --help (get help for wget cmd)

Note:
If you are familiar with helping commands, you will know about the complete
Linux commands and their usages.

Chapter 22
Skill of Commands

Make use of Tab key to auto complete Linux offers so many

different commands that we easily to get lost and to forget one. Personally, it
happens very regularly, but this is fortunately not a drama. Indeed, Linux offers
a variety of ways to find a command that you missed.

The first "trick” to know what is to auto complete control.

Example:

For the date command: you're a little headache and you do not know how it is
written. By cons, you are sure the first or second letters of the command are
“da”.

Just type "da" in the console, then double-tap the Tab on the left of your
keyboard By double tapping Tab, you asked the computer a list of commands
that begin with "da". They said you "dash" and "date". So there are two
commands that start with "da", and you just find the one you are looking for, that
is to say "date".

Very nice, the computer has rewritten the prompt below and the beginning of the
command you typed. You only have to complete with the letters "you" missing
and hitting Enter and it will be good. :-) Even more fun, if there is only one
result for your search, the computer will complete with missing letters and you
only have to press Enter!

Example:

If you want to type “chsh” command and you are not sure the spelling, you can
only type “ch” in the console and press two times on Tab. The command is
completed magically. It will display “chfn, chsh”, then you can choose “chfn”.
Commaaaandes too!

The command hiStOI‘y We often need to find a command that was

typed there five minutes (or even five seconds). Sometimes it is because we have
forgotten the command, but it's often because you like me you really too lazy to
rewrite ourselves the entire command.

This shortcut is gold: press the Up arrow key; you will see the last command
you typed.

If you press again the directional arrow Top, you will see the penultimate
command, then the second-to-last, etc.

If you press the Down arrow key, you will return to the most recent commands.

Thus I can successively find the commands I just type in reverse command: Is --
all;

Is -a,

Is;

Date;

Etc.

If you want to "go" very far back into the history of your commands, no need to
type a hundred times on the directional arrow Top like madmen.

There is the history command that reminds you of the command history:
Example:

Press the Up arrow key; you will see the last command you typed. Then the
screen will display: Date 152 Is Is Is 153 154 155--all -a 156 157 history You
will notice that the controls are numbered: thus, we can know that date is the
152nd command I typed into the terminal, that three Is are the 153rd, 154rth and
156th command. The above command you typed will always be history, of
course.

Ctrl + R: find a hiStOI‘y command In case the directional arrow

Top and history command does not suffice to find an old command you typed,
there is a super useful shortcut: Ctrl+R. which can help you find out the history
command you have just used. So Press Ctrl+R keys simultaneously and
computer will switch "looking for a typed command" ("R" as research).

There you can type any sequence of letters that corresponds to an old command.
Example:

If you want to look for a command with “all” you have previously used, please
press Ctrl+R and type "all". Then, Linux will find out Is --all containing just the
word "all." You just have to hit Enter to run the command! :-) If this is not the
command you are looking for, again press Ctrl + R to move up the list of
commands containing "all".

It may look stupid on a drive like that, but some are very long and it is a pleasure
not to have to rewrite them again!

USiIlg Wildcards You can use wildcards with a lot of Linux commands.

A wildcard is a symbol or symbols that indicating other characters. There three
kinds of wildcards in Linux command: ? A question mark (?) indicates a single
character.

For instance: b??k matches bank, beak, back, bilk, or any other four-letter

filename that begins with b and ends with k.

* An asterisk (*) indicates any character or set of characters, including no
character or many characters.

For instance: b*k matches bk, bkk, bark, break, backtrack.

[1 Characters enclosed in square brackets ([]) usually indicates any character in
the set. But please note they are case-sensitive.

For instance: b[a-z]k matches bak, bbk, bck, bzk, but not matches bAk, bBKk,
bCk, bZk, because of case-sensitive.

Wildcards are actually implemented in the Linux commands.

Example:

user2014@user-linux:~$ 1s b??k (The wildcard b??k matches five files in
current directory. The output is “bank beak back bilk bark”) Example:
user2014@user-linux:~$ 1s a*d (The wildcard a*d matches some files in
current directory. The output is “ad add acid abroad abounded abed aid”)
Example:

user2014@user-linux:~$ Is se[a-e]

(The wildcard se[a-e] matches five files in current directory. The output is “sea

seb sec sed see”) About Run Levels what is a Run Levels? The term

run levels refers to a mode of operation in one of the computer operating systems
that implement Linux System V-style initialization. Usually, seven run levels
exist, numbered from zero to six; Only one "run level" is executed on boot up -
run levels are not executed sequentially, i.e. either run level 2 OR 3 OR 4 is
executed, not 2 then 3 then 4.

"run levels" defines the state of the machine after boot. Different run levels are
typically assigned to: 0.halt-the system is in the process of shutting down.
1.single-user mode 2.multi-user mode without network services started 3.multi-
user mode with network services started 4.system shutdown 6.system reboot
Example:

root@user-linux: ~ # init 3

(init 3: switch the system to run level 3) Summary:

Tab key can auto complete a missing work command.

Up arrow key can view the history commands Down arrow key can return to
most recent commands Ctrl+R can find out a history command by a key word.

? A question mark (?) indicates a single character.

* An asterisk (*) indicates any character or set of characters, including no
character or many characters.

[1 Characters enclosed in square brackets ([]) usually indicates any character in

the set. But please note they are case-sensitive.
Run Level number describers the level of services that have been initialized and
are running.

Chapter 23
Access Permissions

What is rwx?

After using Is -1 to view a file’s access permissions, you can see something like
this: rWX

Explanation: rwx signify the access permissions which can be described by a
number from 1 to 7. Really? Yes, the numbers from 1 to 7 indicate the access
permissions.

r stands for read permissions, value is 4.

w stands for write permissions, value is 2.

x stands for execute permissions, value is 1.

Vice versa: 4 means read permissions (r) 2 means write permissions (w) 1
means execute permissions (x) Example: If rwx value is 4, then you can figure
out its permission is read only.

If rwx value is 2, then you figure out its permission is write only.

If rwx value is 1, then you figure out its permission is execute only.

The numbers from 1 to 7 indicate the various access permissions: 7 means
permissions with read, write, execute (7=4+2+1) 6 means permissions with
read, write (6=4+2) 5 means permissions with read, execute (5=4+1) 4
means permissions with read only (4=4+0) 3 means permission with write,
execute (3=2+1) 2 means permission with write only (2=2+0) 1 means
permission with execute only (1=1+0) Example: If rwx value is 7, then you
can figure out its permission is read, write and execute.

If rwx value is 6, then you can figure out its permission is read and write.

If rwx value is 3, then you can figure out its permission is write and execute.

What are rwx rwx rwx?

Access permissions for a file are divided in to three: user permissions, group
permissions, others permissions, So, when you use Is -l to view the access

permission, you will find three rwx look like this: rwx rwx rwx......
Explanation: The 1st rwx means user permissions, The 2nd rwx means group
permissions, The 3th rwx means others permissions.

Example: If the 1st rwx is 7, it means user permissions with read, write,
execute.

If the 2nd rwx is 3, it means group permissions with write and execute.

If the 3th rwx is 6, it means others permissions with read and write.

From above you can understand the 1st rwx, 2nd rwx and 3th rwx respectively
indicate user permissions, group permissions and others permissions.

Example: 752 means: 1st rwx is 7 meaning user permissions with read, write,
execute.

2nd rwx is 5 meaning group permissions with read, and execute.

3th rwx is 2 meaning others permissions with write only chmod is a command,
meaning change the mode of access permissions for a file.

Example: chmod 643 myfile.txt Explanation: Change myfile.txt permissions to
643.

1st rwx is 6 meaning user permissions with read, and write.

2nd rwx is 4 meaning group permissions with read only.

3th rwx is 3 meaning others permissions with write, execute Example: chmod
751 myfile.txt Explanation: Change myfile.txt permissions to 751.

1st rwx is 7, meaning user permissions with r, w, x.

2nd rwx is 5 meaning group permissions with r, x.

3th rwx is 1 meaning others permissions with x only.

Example: Chmod u+r (gives the user a read permission) Example: Chmod g-x
(remove execute permission from members of the file’s group) Example:

Chmod o-w (remove write permission from others) Summary: 4 means

read permissions (r) 2 means write permissions (w) 1 means execute permissions
(x) The numbers from 1 to 7 indicate the various access permissions: 7 means
permissions with read, write, execute (7=4+2+1) 6 means permissions with read,
write (6=4+2) 5 means permissions with read, execute (5=4+1) 4 means
permissions with read only (4=4+0) 3 means permission with write, execute
(3=2+1) 2 means permission with write only (2=2+0) 1 means permission with

execute only (1=1+0)

Chapter 24
Linux Symbols

Commands

Operations & Examples

<

get input from a file to a command
e.g. cat < myfile.txt

send output from a command to file
e.g. cat > myfile.txt

>>

append output to a file e.g. cat
filel.txt >> file2.txt

send cmd1 output to cmd? input e.g.
Is -al /etc | less

combine two or more commands e.g.
cd~; 1s

escape the special character e.g. echo
-e “\n Hello \t World! \n”

run a script in the current directory
e.g. .J/script.sh

parent directory e.g. cd..

home directory e.g. cd~

variable prefix for variable name and
value e.g. echo $var

$$

show the running processes number
e.g. echo $$

T

repeat the last command e.g. !!

Istring

run recent cmd that begins with string
e.g. lcat

Chapter 25

Shortcut Keys

CTRL+B move the cursor backward only one
character.

CTRL+C cancel the running command or kill
the running process.

CTRL+D log out of the current session. similar
to exit command.

CTRL+F move the cursor forward only one
character.

CTRL+H erase one backward character. similar
to pressing backspace.

CTRL+P paste the previous line(s) to one
specified location.

CTRL+R type to bring up recent commands,
return a list of commands in history

CTRL+S stop all output on screen. freeze the
shell as it locks the terminal output

CTRL+Q resume all stopped output on screen,
continue the terminal output.

CTRL+U erase the complete line where the
cursor locates.

CTRL+W delete the last recent word you have
just typed in.

CTRL+Z suspend a running process. if want to

resume, use fg or bg commands.

Chapter 26
Run Levels Table

Run Description
Level
0 Halt the system. When this is the

current run level, the system is in the
process of shutting down.

1 Single user mode. Only small set of
kernel processes running. Almost all
other services disabled.

2 Basic multiuser mode. This run level
starts most services, but does not
enable network connection service.

3 Full multiuser mode. This run level
starts all services including network
connection. but does not start X
window

4 User defined mode. No conventional
definition applies to run level 4. It is
fully open to user configuration.

5 Full multiuser mode with X window.
Starts all enabled services with Linux
graphical desktop environments.

6 Reboot. When this is the current run
level, the system is in the process of
rebooting.

Chapter 27
The Vi Editor Commands

Commands | Operations
h,1k,j cursor move left, right, up, down
w,b cursor move forward, backward
0 go to the beginning of line

go to the ending of line

$

G go to the last line of the file
J join current line with next line
zZ undo last command
. repeat last command
77 save file and exit
i insert before the character at cursor
I insert character to beginning of line
a append after the character at cursor
A append character to the ending of line
C change until...
C change to end of line
d delete until...
D change to end of line
r replace one character
R replace more characters
0 open a new line below
O open a new line above
esc exit insert mode, go to cmd mode
X delete the character at cursor
X delete the character at left
u undo last change

redo last change
U restore line

m mark position

M middle of screen

dw delete current word

dd delete current line

cC change current line

fx find x on current line

F x find x on previous line
/string search string, look forwards
?string search string, look backwards
[n]G go to line number “n”

n search forward next

N search backward next

p paste line(s) below current line
P paste line(s) above current line
t to...

T backward to...

S substitute

S substitute entire line

77 write and quit

e edit file

el forget change of file

:$ go to last line of file

:number go to line number

W write and save

tw! save with read-only file

:w filename save with new file name

'wq write, save and quit

n go to next file

rew go to the first file

Hi| quit after using :w to save

:q! quit without saving

:r filename read file, insert file at cursor position
:! command run a shell command

:sh run a temporary shell

Chapter 28
All Essential Linux Commands

Note:

cmd means command

regex means regular expression

(*) means the command run by root user

Commands | Operations &
Examples
a2p translate awk to perl

e.g. a2p myfile.awk> myfile.pl
(translate myfile.awk into pl file)
alias create another name for a command
e.g. alias p="pwd"

(set p as alias for pwd)

apropos view the searched term in man
pages e.g. apropos find

(list entries with "find" in man page)
apropos -e view searched term in man pages
e.g. apropos —e nice

(-e: show exact word in man pages)
apt-get install, remove or update a package
e.g. apt-get install libc6

(install libc6 package)

aspell check and correct for misspellings
e.g. aspell -c test.txt

(-c:check spelling in test.txt file)

at run a job at a schedule time

e.g. at 1 AM Fri

(run the job at 1am Friday)

awk match text by regular expression
e.g. awk 'length($0) > 88' text.txt
(list only lines longer than 88

words)

basename

display the last part of a file path
e.g. basename homefoousrfile.txt
(output: file.txt)

bc

perform a calculation by a calculator
e.g. bc 8+9
(output: 17)

bg

resume a stopped job in background
e.g. bg %3
(resume %3 job in background)

bunzip2

uncompress a file from zip format
e.g. bunzip2 myfile.tar.bz2
(uncompress myfile.tar.bz2)

bzip2

compress a file to zip format
e.g. bzip2 myfile.dat
(compress myfile.dat)

cal

display a month or year calendar
e.g. cal 2014
(display 2014 calendar)

cal -3

display a month or year calendar
e.g. cal -3
(-3:display 3 months)

cat

display contents of one of more files
e.g. cat filel.txt file2.txt (display
contents of filel and file2)

cat -n

display contents of one of more files
e.g. cat —n myfile.txt
(-n: specify number of output lines)

cd

change directory
e.g. cd homeuser/mydir (change
current directory to mydir)

chattr

set attributes for a file
e.g. chattr +i myfile.txt
(+i make the file as read-only)

chfn

change user’s finger information
e.g. chfn
(change all users information)

chfn -f

change user’s finger information
e.g. chfn —f Full-Name
(-f: change full name)

chgrp *

change the group ownership
e.g. chgrp groupname usrmyfile.txt
(alter group ownership of myfile.txt)

chkconfig*

view and modify run level file
e.g. chkconfig —list
(-list: list services of run level)

chmod

change access permission
e.g. chmod 755 filename
(set file access permission as 755)

chown *

change ownership of file or
directory e.g. chown username
myfile.txt (alter file ownership of
myfile.txt)

chpasswd*

change password for users.
e.g. chpasswd
(then enter username: password)

chsh *

change login shell for a user
e.g. chsh -s binbash ray (-s specify
login shell)

cksum

produce a CRC checksum number
e.g. cksum file.txt

(output checksum number of
file.txt)

clear

clear the screen.
e.g. clear
(clear the shell window)

cmp

compare two files text byte by byte
e.g. cmp first.txt second.txt
(compare first.txt and second.txt)

collect]

monitor the current system status
e.g. collectl
(list cpu, sys, inter .etc information)

comim

compare two files text line by line
e.g. comm first.txt second.txt

(compare first.txt second.txt)

cp

copy file(s) to another directory
e.g. cp myfile.txt /mydir
(copy myfile.txt to mydir)

Cp-p

copy file(s) to another directory
e.g. cp —p myfile.txt /mydir (-p:
keep original permission)

cp -a

copy file(s) to another directory
e.g. cp —a myfile.txt /mydir (-a: keep
original attributes)

cpio -0

output archived cpio file
e.g. cpio -o > directory.cpio (-o:
backup to an archive cpio file)

cpio -i

input archived cpio file
e.g. cpio -i < directory.cpio (-i:
restore from an archive cpio file)

crontab

create a job to run at specified time
e.g. crontab
(set to run jobs at regular intervals.)

crontab -e

run a recurring job at a specified
time e.g. crontab -e
(-e allow edit the crontab file)

crontab -1

run a recurring job at a specified
time e.g. crontab -1
(-L: lists the crontab files)

crontab -r

run a recurring job at a specified
time e.g. crontab -r
(-r: remove the crontab file)

csplit

split a file into some separated files
e.g. csplit myfile.txt ”/part1/”
“part2”

(separate files named xx00, xx01)

cut -d

show the specified field of a file
e.g. cut —d “:” myfile.txt (-d: specify
a field delimiter “:)

cut -c

extract contents from a file
e.g. cut —c 6 myfile.txt

(-c6: the sixth character of each
line)

cut -f

extract contents from a file
e.g. cut —f 3 myfile.txt
(-f3: specify a field number as 3)

date

show the date and time
e.g. date
(display the current date and time)

date -s

set the date and time
e.g. date -s "11/20/2014"

(-s set the date)

dc

open a command line desk
calculator e.g. dc
(“dc” means desk calculator)

dd

data dump to convert and copy a file
e.g. dd if=devsda of=devsdb (copy
data from sda to sdb)

dmesg

print out all kernel log messages
e.g. dmesg > kmsg.txt

(output kernel messages to
kmsg.txt)

df

display free disk space
e.g. df
(display file system free space)

df -m

display free disk space
e.g. df -m
(-m: display sizes in Mb)

dhclient

configure network interfaces
e.g. dhclient ethO
(renew IP address of ethO)

diff

show difference between two files
e.g. diff firstfile.txt secondfile.txt
(display difference above two files)

diff3

show difference among three files
e.g. diff3 filel.txt file2.txt file3.txt
(display difference above three
files)

dig

display the details of DNS servers
e.g. dig xvxaxx.com (list
information about xvxaxx.com)

dir

show directory contents
e.g. dir
(display current directory contents)

dircolors

show color settings for “Is”
command.

e.g. dircolors

(display directory coloring of 1s)

dirname

remove the last part of a file path.
e.g. dirname foobar/baz/myfile.txt
(output: foobar/baz)

du -s

display disk usage
e.g. du -s * *
(-s list files size in current directory)

du -h

display disk usage
e.g. du -h myfile.txt
(-h: show human readable units)

dump -f

makes backup of filesystem
e.g. dump -f0 filebk /mydir (-
f:backup -0:dump-level filebk:
dump-file)

echo

display input on standard output
e.g. echo “Hello World!”
(show “Hello World!™)

echo -e

display text using escape sequence
e.g. echo —e “\n Hello World!”
(-e: allow use \n to show text)

ed

open a command-line text editor
e.g. ed myfile.txt
(open myfile.txt with text editor)

egrep

search file(s) for a specified regex
e.g. egrep "new | string” myfile.txt
(search myfile.txt for “new | string”)

eject

eject the cd or dvd tray
e.g. eject cdrom

(eject cdrom tray)

eject -t

eject or close the cd or dvd tray
e.g. eject —t cdrom
(-t: close an open cdrom tray)

€macs

powerful, extensible file editor
e.g. emacs file.txt
(launch emacs and open file.txt)

env

show, set the environment variables
e.g. env
(list current environment variables)

eval

make a command from its
arguments

e.g. UPLS="eval cd.. ; Is ”
(create a command named UPLS)

exit

exit the shell
e.g. exit
(terminate the program and log out)

expand

convert tabs into spaces
e.g. expand myfile.txt
(convert tabs to spaces for
myfile.txt)

expand -t

convert tabs into spaces
e.g. expand -t 3 myfile.txt
(-t: set tabs 3 characters apart)

export

set an environment variable & value
e.g. export newvar=8 echo $newvar
(output: 8)

expr

evaluate an expression
e.g. expr 10+8
(output: 18)

factor

show the prime factors of a number
e.g. factor 1001
(output: 7 11 13)

fc

list, edit, re-execute last commands
e.g. fc -1
(-L:list the history of commands)

fdisk*

manipulate the hard disk partitions

e.g. fdisk devhdb
(list hard disk partitions
information)

fg

resume a stopped job in foreground
e.g. fg %3
(resume the job 3 in foreground)

fgrep

search file(s) for a specified string
e.g. fgrep "good" myfile.txt (search
myfile.txt for “good”)

file

detect the file type.
e.g. file myfile.tar
(determine file type of myfile.tar)

find —print
name

find file(s) in a directory named dir
e.g. find dir -print -name 'abc.txt'
(-print:print, -name:specify file
name)

finger

show user’s information

e.g. finger username

(List the user's login name, time.
etc.)

fmt

format text files

e.g. fmt myfilel.txt > myfile2.txt
(format myfilel & output to
myfile2)

fmt -u

format text files
e.g. fmt —u myfile.txt
(-u: provide uniform word spacing)

fold

wrap each line to fit a specified
width e.g. fold -w 15 myfile.txt
(-w specify how many words)

for in

set conditional parameter for loop
e.g. fornin 3 6 9 do echo $n done
(output: 369)

free

displays free memory information
e.g. free
(list free, used, total memory...)

free -m

displays free memory information

e.g. free -m
(-m: show sizes in Mb.)

fsck *

file system check
e.g. fsck
(check or fix Linux file system)

ftp

transfer files by File Transfer
Protocol e.g. ftp ServerURL
(transfer files using ftp)

gawk

find or replace text in a file
e.g. gawk 'length($0) > 88'
(list lines longer than 88 characters)

grep

match a specified string or regex.
e.g. grep onestring myfile.txt
(search myfile.txt for onestring)

groups

list groups to which the user belongs

e.g. groups
(print the groups of user)

groupadd *

add a new group
e.g. groupadd newgroup
(create a new group)

groupadd * -f

add a new group
e.g. groupadd —f newgroup
(-f: check group doesn’t exist)

groupdel *

delete an existing group.
e.g. groupdel existinggroup
(remove an existing group)

groupmod *-n

modify an existing group
e.g. groupmod -n newgrp oldgrp (-n
change group name)

gunzip

uncompress a file from gzip format
e.g. gunzip myfile.txt.gz
(uncompress myfile.txt.gz)

gzip

compress a file to gzip format
e.g. gzip myfile.txt
(compress myfile.txt)

halt

shutdown the system
e.g. halt

(power off the system)

hash

access the hash table
e.g. hash
(list commands from hash table)

head

display some front lines in a file
e.g. head myfile.txt

(output the first ten lines of
myfile.txt)

head -n

display some front lines in a file
e.g. head —n 4 myfile.txt
(-n: specify a number of lines)

help

show help information of
commands

e.g. help echo

(show information about echo)

history

show the commands history
e.g. history
(list commands in this shell session)

host

find the ip address of a domain
name e.g. host websprogram.com
(show ip of websprogram.com)

hostid

display id of the current host in hex.
e.g. hostid
(print the current host id)

hostname

show or set the host name
e.g. hostname
(display the name of current host)

id

show the user or group id number
e.g. id
(display the root user uid, gid. etc.)

ifconfig

show, configure the network
interface e.g. ifconfig
(display the network settings)

init *

set the system run level
e.g. init 5
(change to run level 5)

info

show help information of a

command
e.g. info man
(show help page for man)

install

copy files, set permission,
ownership e.g. install myfiles
homeuser (copy myfiles to user
directory)

install -o

copy files, set permission,
ownership e.g. install —o myfiles ray
/home (-o: specify ownership)

jobs

show all jobs’ status
e.g. jobs
(list all running jobs’ information)

join

join lines of files having common
field e.g. join myfilel.txt myfile2.txt
(join lines of two files by same
field)

join

join lines of two files
e.g. join —i myfilel.txt myfile2.txt (-
i: ignore the differences)

kill

stop a job by number.
e.g. kill %3
(terminate job %3)

kill

stop a process by pid.
e.g. kill 3956
(terminate process 3956)

killall

stop a process by name
e.g. killall no respond
(terminate process no respond)

last

show most recently logged-in users
e.g. last
(list recent users’ date, time...)

lastb

show bad login attempts
e.g. lastb
(display bad login attempts)

lastlog

display the last login information
e.g. lastlog -u username

(-u: specify a user)

less

show contents page by page
e.g. less myfile.txt
(display myfile.txt page by page)

let

perform arithmetic on shell
variables e.g. let a=12; let a=a+8;
echo $a (output: 20)

link

create a link to a file.
e.g. link filel.txt file2.txt
(create a link from filel to file2)

In

create a hard link to a file
e.g. ~/myfile.txt
(create a hard link to myfile.txt)

In -s

create a link between two files
e.g. In -s filel.txt file2.txt (create a
symbolic link to filel/file2)

locate

find the location of a file or a
directory e.g. locate myfile.txt
(locate myfile.txt on local machine)

logname

show the current user’s login name
e.g. logname
(display the login name of user)

look

show words matching a given prefix
e.g. look ab
(output: aba, abb, abc, abd...)

Ipc

run the line printer control program
e.g. Ipc status
(show status of current print queue)

Ipq

show the printer queue status

e.g. Ipq
(list the print queue)

lpr

send a print request to printer
e.g. Ipr myfile.txt
(send myfile.txt to printer)

Iprm

cancel the printing job in print
queue e.g. lprm 2
(remove printing job 2)

Is

list the contents of current directory
e.g.ls
(list files and sub-directories)

Is -1

long list contents of current
directory e.g. Is -1
(-l:1ong lists including permissions)

Is -a

lists all entries including hidden
files e.g. Is -a
(-a: show all files)

Is -t

lists all entries by time stamps
e.g. Is -t
(-t: show by time stamps)

Is -1h

lists contents in current directory
e.g. Is -1h

(-1h: list files with size in mb and
gb.)

Isattr

list the attribute of a file or a
directory e.g. Isattr myfile.txt
(show myfile.txt attribute)

Isof

list opened files
e.g. lsof
(list all opened files)

man

get command help from manual
e.g. man cat
(show manual page for cat)

man -k

search manual pages for keyword
e.g. man —k printf
(-k: specify a keyword)

md5sum

create a md5 checksum number
e.g. md5sum -c file.txt
(-c validate file against a checksum)

mesg

enable or disable messaging
e.g. mesg
(show the current write status)

mesg y/n

enable or disable messaging
e.g. mesg y/n
(y or n: permit or deny messaging)

mail

send and receive mails
e.g. mail ray@websprogram.com
(email to ray@websprogram.com)

mkdir

make a new directory
e.g. mkdir mydir
(create a directory named mydir)

mknod

make a device file

e.g. mknod devdk b 45 0
(dk:device; b:block;
45:major no.; 0:minor no.)

more

show content one screen at one time
e.g. more +2 myfile.txt
(+2: beginning at line 2)

mount

mount a storage device
e.g. mount devcd
(mount a device cd)

mount -1

mount or show devices
e.g. mount -1
(-L: list all mounted devices)

mt

magnetic tape drive control
e.g. mt -f devtape eod (-f select eod;
move to end of data)

mv

move a file to another directory
e.g. mv myfile.txt homeuser/mydir
(move myfile.txt to mydir directory)

mv

rename a file
e.g. mv myfilel.txt myfile2.txt
(rename mayfilel to myfile2)

netstat

display network status
e.g. netstat (print network
connections, routing tables.etc)

nice *

set the priority level of a job
e.g. nice -19 ftp
(set priority level as 19 for ftp)

nl

add text with number lines
e.g. nl mylist.txt
(make number lines for mylist.txt)

nohup

ignore hangup signals
e.g. nohup find ftp
(run ftp ignoring hangup signals)

nslookup

query internet name servers for IP
e.g. nslookup myxxexample.com
(return IP like 75.126.162.XXX)

passwd

modify a user password
e.g. passwd username
(change password for username)

paste

merge lines of multiple files
e.g. paste filel.txt file2.txt (merge
contents for filel and file2)

pidof

show process ID of running
program

e.g. pidof console

(display console’s process id)

ping

send data to a host, await response
e.g. ping xvxmjfz.com (test if
remote host can be reached)

ping -c

test if remote host can be reached
e.g. ping —c5 xvxmjfz.com (-c5:
specify the number of pings)

pkill

kill a running process
e.g. pkill firefox
(stop web browser firefox)

pr

prepare text files for printing
e.g. pr myfile.txt
(prepare myfile.txt for printing)

pr-n

prepare text files for printing
e.g. pr —n myfile.txt
(-n: specify number in each line)

pr -h

prepare text files for printing
e.g. pr —h “Good” myfile.txt (-h:
specify a header)

printenv

show the environment variables
e.g. printenv
(list values of environment

variables)

printf format and print data
e.g. printf "start\b"
(\b: backspace output: star)
printf format and print data
e.g. printf 'hello \n world \n !"
(\n: prints by newlines. output 3
lines)
ps -f show the process status
e.g. ps -f
(-f full information of current
process)
ps -u show the process status
e.g. ps -u ray
(-u specify a user’s current process)
pstree displays process in tree structure
e.g. pstree
(show all process as a tree)
pwd print working directory
e.g. pwd
(display current directory)
rcp remotely copy file between two
hosts e.g. rcp file.txt
host2:/dir2/file.txt (remotely copy
file.txt to host2)
read read a line from standard input
e.g. read name (input ray) echo
“$name” (output ray)
reboot* restart the system
e.g. reboot
(cause the computer to restart)
renice * change the priority level of a job
e.g. renice 3 23001
(set priority level as 3 for job
23001)
restore restores data from the backup file

e.g. restore -f databackup

(-f:specify a backup file)

rlogin

remotely login to a system
e.g. rlogin -1 username domain.com
(-1: specify a username)

rm

remove one or more files
e.g. rm myfile.txt
(remove myfile.txt)

rm -r

remove non-empty directory
e.g. rm -r /NonEmptyDir
(-r: remove directory and its
content)

rm -i

remove non-empty directory or a
file e.g. rm -i myfile.txt
(-i: ask before removing)

rmdir

remove empty directory
e.g. rmdir /emptydir
(delete directory without contents)

route

show or modify the IP routing table
e.g. route -n
(-n: show in numerical format)

ISync

remotely synchronize files
e.g. rsync myfile host2:/dir2/myfile
(sync. myfile with remote host2)

scp

securely copy files amid two hosts
e.g. scp file.txt host2:/dir2/file.txt
(securely copy file to remote host2)

screen

open the terminal window manager
e.g. screen
(start a new screen)

sdiff

show two files’ difference side by
side e.g. sdiff myfilel.txt
myfile2.txt (compare two files side
by side)

sed

filter and transform input text
e.g. sed “{print $3}” myfile.txt
(display the third word of each line)

seq

list sequent numbers in given range

e.g.seq18
(output: 1234567 8)

seq -w

list sequent numbers in given range
e.g.seq—w 13
(-w: with zeros output: 01 02 03)

seq

list sequent numbers in given range
e.g.seq—s\| 13
(-s: with separators output: 1|2 |3)

set

set shell variable or function
e.g. set n=who ami’; echo $n
(output: who am i)

sftp

securely transfer files by ftp
e.g. sftp SeverURL
(securely transfer files to a Server)

shopt

show the shell option settings
e.g. shopt
(show the shell behavior settings)

shutdown *

close system
e.g. shutdown 22:00
(shut down at 22:00 o’clock)

shutdown-h

close system
e.g. shutdown —h +5
(-h+5: halt after 5 minutes)

shutdown -r

shutdown and restart
e.g. shutdown -r now
(-r:shut down and instantly restart)

sleep

pause for a specified amount of time
e.g. sleep 10
(pause for 10 seconds)

sort

show sorted contents alphabetically
e.g. sort -r myfile.txt
(-r sort file in reverse order)

split -b

split a file to some files in given size
e.g. split -b 11 file.txt (split file to
some 11 byte files named
xaa,xab,xac, etc.)

split -1

split a file to some files in given size

e.g. split -1 8 file.txt (split file to
some 8 line files named
xaa,xab,xac, etc.)

ssh

login to remote secure shell
e.g. ssh ray@myexample.com
(securely connect to a remote host)

ssh -1

login to remote secure shell
e.g. ssh -1 username hostname (-1
specify your remote username)

stat

list status about file size, access, etc.
e.g. stat myfile.txt
(show myfile.txt statistics)

su

switch user
e.g. su user2
(switch user named user?)

su -1

login as a root super user

e.g. su—l

(-l:enter password, login root
account)

sudo -u

execute a command as another user
e.g. sudo -u user?2 Is homemydir (-u:
specify user2 to execute Is cmd)

sudo -v

refresh the authentication timeout
e.g. sudo -v

(next sudo will not require
password.)

sudo -k

expire the authentication timeout
e.g. sudo -k
(next sudo will require password.)

sum

summarize a file with a checksum
e.g. sum myfile.txt (create a
checksum for myfile.txt)

suspend

suspend the working shell
e.g. suspend
(pause system during execution)

sync

synchronize disk data with memory
e.g. sync

(flush all file system buffers to disk)

tac

display lines of a file in reverse
order e.g. tac myfile.txt
(print file from last line to first line)

tail

show the final part of a file
e.g. tail -n 20 file.txt
(-n20:output last 20 lines of file.txt)

talk

communicate with another user
e.g. talk ray
(talk to user ray)

tar -xf

extract an archived tar file
e.g. tar -xf archive.tar
(-xf: extract an archive tar file)

tar -cf

create an archived tar file
e.g. tar -cf archive.tar
(-cf: create an archive tar file)

tee

print standard output, write to a file
e.g. sort filel.txt | tee file2.txt (sort
filel.txt and write to file2.txt)

tee -a

print standard output, write to a file
e.g. sort filel.txt | tee —a file2.txt (-a:
append instead of overwrite)

test

calculate a boolean expression
e.g. [8 -gt 6]; echo $?
(output: 0 O:true; 1:false)

test

calculate a boolean expression
e.g. [5-eq6]; echo $?
(output: 1 O:true; 1:false)

time

show the time taken to run a
program e.g. time ftp
(display the time taken to execute

ftp)

times

show the uptime of sell
e.g. times
(display the system uptime)

tload

show a graphic report of system
load e.g. tload (show the current

system load average to a specified
process)

top

list the top active or specified
process e.g. top -p pid
(-p:display specific process by pid)

touch

update timestamp for an existing file
e.g. touch myfile.txt

(modify myfile.txt to the current
time)

touch -t

update timestamp for an existing file
e.g. touch —t myfile.txt
(-t: specify a time)

tr

translates sets of characters
e.g. echo apple | tr “apple” “banana”
(output: banana)

traceroute™®

trace the route to a host
e.g. traceroute xvauhdhxv.com
(trace packets route to another host)

trap

run a command on receiving a
signal e.g. trap
(display the current signal traps)

tree -p

list directory contents in tree format
e.g. tree —p
(-p: also show the file permissions)

tty

show the name of the terminal
device e.g. tty
(show the terminal filename)

type

detect the type of a command
e.g. type wait
(output: wait is a shell builtin)

ulimit -a

limit user resources
e.g. ulimit -a
(-a:display all limits for the system)

umask

show or set the file permission value
e.g. umask 0022 (allow user read,
write privileges and all others to
read)

umask

show or set the file permission value
e.g. umask 0002 (allow group read,
write privileges and all others to
read)

umask

show or set the file permission value
e.g. umask 0077 (allow user read,
write privileges and no for others)

umount

unmount a device or filesystem
e.g. umount devdvd
(unmount a device DVD)

unalias

remove an alias
e.g. unalias aliasname
(delete a specified alias)

uname -a

show the current system information
e.g. uname -a
(-a: display all information)

uname -n

show the current system information
e.g. uname -n
(-n: display the host name)

unexpand

convert spaces into tabs
e.g. unexpand myfile.txt
(convert spaces to tabs for
myfile.txt)

uniq

filter out repeated lines in a file e.g.
uniq myfile.txt
(show unique line in myfile.txt)

unset

remove shell variable or function
e.g. unset var
(delete a variable)

unzip

uncompress files from zip format
e.g. unzip archive.zip
(uncompress file from archive.zip)

uptime

show system uptime
e.g. uptime
(display system uptime)

useradd *

add a new user account
e.g. useradd username

(create a user account)

useradd* -d display default value for new users
e.g. useradd -d
(show default data for a new user)
userdel * delete an existing user account

e.g. userdel username
(remove a user account)

usermod* -d

modify home directory
e.g. usermod -d homemydir andy (-
d: specify home directory for andy.)

usermod * -1

modify an existing user account
e.g. usermod -1 oldname newname (-
l: login name change)

usermod * -p

modify an existing user account
e.g. usermod -p password username
(-p:modify password of a user)

users

display current logged-in users
e.g. users
(list users currently logged in)

vdir

verbosely show directory contents
e.g. vdir
(vdir just like 1s, but more verbose)

Vi

open the vi text editor
e.g. vi filename
(open a file with vi text editor)

vmstat

report virtual memory statistics...
e.g. vmstat

(also report swap, disk i/o
devices...)

list current processes for each users
e.g. w username
(show the user’s process)

list current processes by summary
e.g. w -s

(-s: show a summary of shell
process)

wait

wait for a process to change state

e.g. wait 10788
(wait for 10788 to change state)

watch

execute a command periodically
e.g. watch —n 5 date
(-n5:update date every 5 seconds)

wC

show word count, line count, etc
e.g. wc myfile.txt

(list word, line count... for
myfile.txt)

wC

1
(@)

show word count, line count, etc
e.g. wc —c myfile.txt
(-c: show the byte counts)

wget

download a web page from a
website

e.g. wget
http://www.xvfwkaljo.com
(download webpage from above url)

wget -C

download a web page from a
website

e.g. wget —c http://www.examp.com
(-c: continue download previous
web)

whatis

show manual page of a command
e.g. whatis ping
(show manual page of ping)

whereis

locate source, man for a command
e.g. whereis Is
(show source, man locations of 1s)

which

show path of a executable command
e.g. which ftp (show the full path of
ftp command)

who

show who currently logged in
e.g. who

(list all logged-in users, date,
time...)

who -a

list all users currently logged in
e.g. who -a

(-a: all information)

whoami

show the current user’s login name
e.g. whoami
(show your own user name)

whois

show domain owner’s information
e.g. whois xvqizx.com

(list xvgizx.com owner’s
information)

write

write a message to another user
e.g. write username
(then write your message...)

xargs

execute a command with arguments
e.g. find -name " a*.* " | xargs rm
(find files named a*.*, remove
them)

xcalc

launch a graphical calculator
e.g. xcalc
(open a scientific calculator)

xclock

launch graphical clock
e.g. xclock -digital
(-digital: specify a digital clock)

yes

output a string repeatedly until
killed e.g. yes “hello”
(output hello repeatedly until killed)

yum

rpm-based package manager
e.g. yum install update
(install a package named "update™)

zcat

output compressed text
e.g. zcat myfiles.txt.gz | less
(uncompress file and show contents)

zless

show un/compressed file contents
e.g. zless myfile.txt.gz
(zless: show contents by page)

zmaore

show un/compressed file contents
e.g. zmore myfile.txt.gz
(zmore: show contents by screen)

zZip

compress files to zip format

e.g. zip documents *
(create documents.zip for all files)

unzip

uncompress files from zip format
e.g. unzip myfile.zip
(uncompress myfile.zip.)

Conclusion

My friends,

This book is only for a basic Linux commands quick learning. Thank you for
your support!

I will greatly appreciate if you kindly give a positive review to this book.

Thank you very much!

Best Regards

Sincerely

Ray Yao

My friend, See you!

