— C OND

Linux

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

Linux

The Textbook, Second Edition

Syed Mansoor Sarwar and Robert M. Koretsky

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
International Standard Book Number-13: 978-1-138-71008-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Exceptas permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Sarwar, Syed Mansoor, author. | Koretsky, Robert, author.

Title: Linux : the textbook / Syed Mansoor Sarwar, Robert M Koretsky.
Description: Second edition. | Boca Raton : Taylor & Francis, CRC Press,
2018. | Includes index.

Identifiers: LCCN 2018019196 | ISBN 9781138710085 (hardback : alk. paper)
Subjects: LCSH: Linux. | Operating systems (Computers)

Classification: LCC QA76.774.L46 S37 2018 | DDC 005.4/46--dc23

LC record available at https://lccn.loc.gov/2018019196

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
https://lccn.loc.gov/2018019196
http://www.taylorandfrancis.com
http://www.crcpress.com

To Abbujee with love

SMS

To my family

RMK

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

Contents

PIEIACE ..ttt ettt sae e Xix
ACKNOWIBAZIMENIES ...ttt ettt ettt ettt ettt sh et e bt sat et e bt sat et e bt sbe et ebesaeeasenbesns Xxvii
F N D11 4103 USSP XXiX
1 Overview of Operating Systems 1
) O § 114 (04 1017 5 () FO OO OSSR USSRt 1
1.2 What Is an Operating SYStEIMTc.coiuiiiiiiieiiieieeie ettt ettt ee sttt be e ae 1
1.3 Operating SYSEIM SEIVICEScevueeruieriieiiiitieitiesite ettt et et e st see et e bt e bt e satesaeesateebeenbeesaeenas 3
1.4 Character (Command Line) versus Graphical User Interfacesccccoecevveeveninienenenennen. 4
1.5 Types of OPerating SYSIEIMSccuerueerierierieeierierieeierte e eteste st ete st st esteeesbeestebesbeeseensesaeeneens 4
1.6 The Linux Distribution FAmMiliescccccocineieiiineniiiininiccinceeseceececseeeeeiee 5
1.7 Linux Software ATCRILECIUTEc..ccevuirieiririinieieieiteeteee et 5
1.7.1 Device DIIVer LaYer........ccooiviiiiiiiiiiiiiiiieicieeeeseee e 5
1.7.2 LinuX KEINEL.....cooiiiiiiiiieiieeie ettt ettt sttt ettt e s e neesaseenne s 6
1.7.2.1 Process Management.............cecueeerueerienienieienieneeeeneenieeeessesiesseesensesseens 6
1.7.2.2 File Managementccccueiuieiieriieniienie ettt sttt seee s 6
1.7.2.3 Main Memory Management...........cccceereerieriieenieenieniieeieseeeieesieesaee s 6
1.7.2.4 Disk Management..........cccceeriiriiiiiieniieniienieeie ettt sttt 7
1.7.3 System Call INtIraCe.ceverieriiiieierieeieeseeee ettt 7
1.7.4 Language LiDIari€scccoeeoierieriirieienieeiieiesieet ettt ettt sttt 7
175 LINUX SRl et st e 7
1.7.6 APPLICALIONS ..uvinteiiiuieientteitest ettt ettt ettt ettt sttt sttt sae et sae et entesaeeaeen 7
1.8 Historical Development of the Linux Operating SyStemccccceviveciiinenienieinenenieeenean, 8
1.8.1 BEZINMINGS ..ottt

1.8.2 The History of Shells

1.8.3 Future Developments
1.9 A Basic Comparison of Linux System DiStributionsccccceveeriiniieniinneenienieeieeieeneen 11
1.9.1 Linux System StandardiZation.............cocceeieriererieiienieeeeiesieeeeete et 12
SUIMIMATY oottt ettt sb ettt et e e bt e s bt e e st e ea bt et e e bt e ea b e sue e e bt e bt e sbeeebeesaneenaeenbeenanen 12
QuESIONS ANA PTODIEINSoiiiviiiiiiiiiiiiceiee ettt et e e ere e eereeeetreeetreeeareeeeaseeenareeesreeenreeas 13
Advanced Questions and ProbIEMIScccviiiiuiiiiiiiieeeee et ere e et etr e erreeebeeeeareeennas 14
2 “Quick Start” into the Linux Operating System 15
2% R 0T (oo L (o1 (0) o FO USRS 15
2.2 The Structure of a LinuxX COmMmMmAand...........ccecueerirnienieiiieit ettt st 16
2.3 Logging On and Logging Off..........cooiiiiiiii et 18
2.3.1 Stand-Alone Login Connection to LinuxXccccceeiiiieniiniiiniiiinieienie e 19
2.3.1.1 Graphical Login and Logout Procedures............cccceevererereenienencenennne. 20
2.3.2 Connecting via PuTTY from a Microsoft Windows Computerc..c.ccceccevenene. 20
2.3.2.1 Login and Logout Procedurescccceeirerieninenienenenieeneeeeienes 21
2.3.3 Connecting via an SSH Client between Linux Machinesccccoceeeevevvenennee. 22
2.33.1 Login and Logout Procedurescccceovirieieiininenieiinienenieieceenene 23
2.4 File Maintenance Commands and Help on Linux Command Usage...........c.ccccceuecvrennenne. 24
2.4.1 File and Directory SIUCLUTIE.......c..eecuevueriirierienienieieneeirete ettt eee e enenaenn 25
2.4.2 Viewing the Contents of Files..........ccciiiiiiiiiiiiiie e 26

vii

viii

Contents

2.4.3 Creating, Deleting, and Managing Filescccoocieveiiniiienenicieeseceeeie e 27

2.4.4 Creating, Deleting, and Managing DireCtories.cccevvreerererierienenienieneseenns 30

2.4.5 Obtaining Help with the man Commandcccoeceereririeneniiieienesceesee e 34

2.4.6 Other Methods of Obtaining Helpccccecerieririiiinieniiieecceeecseeee e 36

2.5 Utility COMMANAS...c.eiitiriiiiinieeiteiesteee ettt ettt ettt sttt st sbe bt et saesbe e eaesbeeaeenee 37

2.5.1 EXxamining SYSLEmM SETUPSc.ccoeuiriiriiiiiriiieieiieiesteieeete sttt 37

2.5.2 Printing and General Utility Commands............ccooceveiiiiiiniininiiciiinceicene, 38

2.5.3 Communication COMMANGSceeuiruieriieiientieeie ettt eiee st eiee e ebeebeeseeesieesneeens 39

2.6 COMMANA ATTASES..c.uetetieiieeiieete ettt ettt ettt e et e bttt e bt e s bt e eaeeeabeenbe e bt e aaeesneesnneennean 41

2.7 Introduction to Linux SHellScccoiiiiiiiiiiii e 42

2.8 Various LinUX SHElIS......ccooiiieiiieiieieie sttt 44

2.8.1 SRell PrOGramsc..cooiiiiiiiiiiieiiiieee ettt ettt 45

2.8.2 Which Shell Suits YOUur Needs?cccueririeienienieienienieeiteiesieeieeie s 46

2.8.3 Ways to Change YOour Shellcccooiiiiiiriiiinienieieseseeees e 46

2.8.4 Shell Start-Up Files and Environment Variables.........c..ccceveviiieneneniencneneenns 48

2.9 Shell MEtaChATACLETS. ... ceeueeeiieiieiie ettt ettt ettt et e e eabeebeebeesseeeaaeenseenseenseenes 49

2.10 The sudo and su COMMANAS......cc.eririiiiiiriirieieteee ettt s 50

SUITIMIATY ..ttt ettt bt et et bt st et e bt eas et e ebeea s et e e bt eas et e nbeeasenbenbeebsensenbeennenee 50

Questions and PrODIEIMSc..ooouiiiiiiiieie ettt ettt ettt et e et e saeesaeesabeennean 51

Advanced Questions and ProblemScccviieiuiiiiiiiiciie et 52

(0] (51 £ OO URU PRSI 54

Editing Text Files 55

T8 B £ 1T (o Te 11T 8) s FO OO 55

3.1.1 nano Typographic CONVENLIONS.ccvertirueeieieneeeierieneeeiteteseeeaeeee e st eeeseesaeeneens 55

3.1.2 Comments on Linux Text Editors and Their General Usec.ccecevvereninennnene 55

3.1.3 Other Ways of Treating Text and Files in LinuXccocoecereninieneniniienenceieene 57

3.2 A Quick Introduction to the nano EditOr............ccoviieiiiiiiiiiiiiiieee e e 58

3.2.1 A Brief nano TUtOrial..........coocieiiiiiiiiiieieie e 59

3.2.1.1 Creating and Opening a New File..........c.cccccoiiiiiiiinniin, 59

32.1.2 How to Save a File.......coooiiiiiiiiiiiiieeee e 60

3.2.1.3 How to Cut and Paste TeXtccceerieriieiiiiiiiieeeeeeee e 60

3.2.1.4 How to Search and Replace a Wordcccevuiiiiiiininiiiicecceee. 60

3.2.1.5 How to Insert Another File into the Current Onecccccevvereeeeennnnee. 62

3.2.1.6 How to Show the Cursor POSItON..........cccoriririienenieieeseeee e 62

3.2.1.7 How to Back Up a Previous Version of a Filec.ccccceveveriieneninnenne. 62

SUITIMIATY .ttt ettt ettt bt ea e b e e bt e st et e bt eat et e ebeea s e b e e bt e st et e e bt esbenbesbe e st enbesbeennenee 64

QuUESHIONS ANA PIrODICINSccuvviiiiiiiiiiicciee ettt e ettt e et e et e e e beeeeaaeeeetseeesaeeensaeenareeennas 64

Advanced Questions and ProbIEMSccceiiieiiiiiiiiiiiie ettt 65

PLOJECES .. 67

Files and File System Structure 69

i I 115 (014 18 (1 5 o) DO OSSPSR 69

4.2 The Linux File CONCEPL.....coiuiiiiiiiiiiieieiee ettt e 69
4.3 Types of Files

4.3.1 Simple/Ordinary Filecooiiieiiiiiiieiiiieieeeeee e 70

43,2 DIHTECLOTY 1ottt ettt ettt sttt ettt b et bttt s bt be et s be e bt et e s be e bt enbenbeebeennenaes 71

433 LANK FAlE..ciiiiiiiiiiiiccc e 72

4.3.4 Special (Device) File.......ccccoiriiiiiiiiiiiiiiiicieseeecereee et 72

4.3.5 Named Pipe (FIFO)cooiiiiiiiiiiiiiiiceeecenee et 72

4300 SOCKEL.....tietietie ettt ettt ettt ettt e h e e st e e nteenbe e b e eneas 72

4.4 File SYStEIM STIUCTUTR. ... eetiiiiiiiieeit ettt ettt ettt st e et e bt e st e sateeseeembeenneenbeeneeas 73

Contents

.90
.91

4.4.1 File System OrganizZation...........cceceeeeruerierierierieeieeeeneeteeee e seeesesseseeesessesseensenes
4.4.2 Home and Present Working DireCtoriescecuerueririerieneninienieseeceniesieeeeie e
4.4.3 Pathnames: Absolute and Relative..........cccecevuerieiiinenicciniinenciiineneieeeeseeneen
444 Some Standard Directories and Filescccccocvvininiiiniinininiiinineiceecneeee
4.5 Navigating the File StrUCIUIE......cccoceeriiriiiieiiieieetee ettt
4.5.1 Determining the Absolute Pathname for Your Home Directory............ccccceeuneee.
4.5.2 Browsing the File SYStemcccceceviriiiieiieninicieneeceneseeeee et
453 Creating FIleSoooiiiiiieeee ettt sttt et
454 Creating and Removing Dir€Ctoriescoceerierieriieiieiiienieesie et
4.5.5 Determining File Attributes.ccocueiiiiiiiiiiiiieniei ettt
4.5.6 Determining the Type of a File’s CONtentscccoceeeerieririeieneneeieneeeeeeeee e
4.5.7 File Representation and Storage in LinUX........cccoceverieiieninennienenceienieseeeceee
4.6 Standard Files and File DeSCIIPLOTS......ccuevuerieriirierieienienitetesteeicetente sttt
4T FILE SYSIEIM .ttt ettt ettt s h ettt s b e bt et bbb b bt ebe b
4.7.1 Displaying Disk Usage of Files and Directories...........ccccecevueveirenenueeecnennenes
4.8 End-Of-File MAarkerccccooiiiiiiiiiieiiee ettt ettt s e e e s enne
SUITIMATY ..ottt ettt ettt ettt ettt et e sb e st et e s b e s ae e s e s bt ebeeatenbesbe e st enbesueesnenbesseeaeensenee
QuEStioNS aNd PrODICINIScc.uiiiiiiieiiiiciee ettt e rte et e e be e e sbeeetaeesbaeesabaeessseessseeansneennses
Advanced Questions and ProblemsS..........c.cuiiiiiiiiiiiiciie ettt se e re e e sare e e enees
PIOJECLS .ttt ettt et s h e ettt e b e bt eb e e ht e et e et e bt e nbee st enee
5 File Security
5.1 INEOAUCHION. ..ottt sttt et se et ebe s nene
5.2 Password-Based PrOtECtiON.........c.ccueivirueiiininiinieiii ettt
5.3 Encryption-Based PTOtECHION.ccccivuiriiiiiiiiiiiciit et
5.4 Protection Based on Access PermiSsion........c.ceceevieriiiiieiiieiiiesiesieeee et
541 TYPES Of USEIS..ueiuiiiieiiiiiiieeiicie sttt ettt sttt sttt sre e nenaes
5.4.2 Types of File Operations/Access PErmisSSionscc.ceeeueerieeneeenienieniiesieeeeenens
5.4.3 Access Permissions fOr DIr€CtOriescoeeievvenienirierieninecienineeecse e
5.5 Determining and Changing File Access Privileges..........cccceviemiiiiiniiniinieniiiieeeeee
5.5.1 Determining File Access Privilegesccceeeeviereririenienieieieseeeeee e
5.5.2 Changing File Access PrivIIEZesccceovireririieneniiiieieseeteiese et
5.5.3 Access Privileges for Dir€CtOries.couevuireririiineninierienienteiese st
5.54 Default File Access Privilegesccceceeviireririiineninieienieeeeeeseseeeesie e
5.6 SPecial ACCESS BIlS.....ciiiiiiiiiiiiiiiciiieieee e
5.6.1 SUID Bit ittt ettt sttt b sttt et be st
562 SGID Bil....couiiiiieieiiiiiieieierieseteeet ettt ettt sttt
563 SHCKY Biltieuiouiiiiiiiiiiiicceee ettt
SUIMIMIATY ..ttt ettt ettt e b e s ht e e et e sab e et e e bt e sb e e eaeeesbeeabe e beenbeesheeeneeeateenbeenbeenanes
Questions and ProODICINSccuiiiiiiiiiiieiicsieeeeeete ettt ettt e eesae et eseseesseesbeereesseessnesaneenns
Advanced Questions and ProbIEMScc.coiieiiriieiiieiieeeeie ettt reebeereesreessaeseneenns
PLOJECLS 1.ttt sttt sttt s h ettt s h e a et h e bt et bt e bt et e he e bt enbe st
6 Basic File Processing
LT B 0T (o Ta L (o110) s FO ST
6.2 Viewing Contents of TeXt FIIES..........cccccoiiiiiiiiiiiiiiiiiiiccecccceeeeeee e
6.2.1 Viewing Complete Files.........ccooiiiiiiiiiiieieieee ettt
6.2.2 Viewing Files One Page at @ Time.........cccooiiiiiiiiiiiiiiiiiieeeeeee e
6.2.3 Viewing the Head or Tail of @ File.........cccoooiiiiiiiiieeee,
6.3 Copying, Moving, and Removing Filescceciriiririeniiniiieietceeee e
6.3.1 COPYING FIIES ..ottt sttt

6.3.2 MOVING FAIES ..ttt ettt st

Contents

6.3.3 Removing/Deleting Filesccccooiiiiiiiiinenieieeseeee et 130

6.3.4 Determining File SiZ€.......cccoeviiiiiiiiiiiiiieieiesee et 133

6.4 ApPending to FIleS.......ccoriiriiiiieieiieiee ettt bttt 135
6.5 CombInINg FIlES......couiiiiiiiiiiiie ettt 136
6.6 ComPATiNg FIlES......couiiiiiiiriiiieietee ettt sttt sttt 137
6.0.1 TeXE FIIES ..ottt ettt b et eneas 137

6.6.2 NONLEXE FIIES ..coueiiiiiiiieii ettt ettt as 141

6.7 Locating and Removing Repetition within Text Files.........c.ccooiiiiiiniiniiniiniiceeee 142
6.8 Printing Files and Controlling Print JODSccccoiiiiiiiiiiiiiiieetee e 143
6.8.1 Linux Mechanism for Printing Files........ccccccociiiiiiiiniiniiniecceeee, 143

6.8.2 Printing FileS....cc.eoiiiiiiiiieieee ettt 144

6.8.3 Finding the Status of Your Print ReqUESS.........ccceeerierieniniiienineeieiececeee 146

6.8.4 Canceling Your Print JODScccoieriiiiiiiniiiieeceeteee e 147
SUITIMIATY «..eenteteittetente sttt ettt s bttt b e ea e st b e e bt eat et e sbeeat et e sbeeb e et e bt sheenbenbesbeenbenbesbeennenee 148
Questions and PrODIEMSccuieiiieriiieieeit ettt ettt st e e et e e s e st e snseeeseenbeenseenseennns 149
Advanced Questions and ProbIemsc.cecuieiieiiiiiieiieieeeee ettt 151
PLOJEOLS 1ttt ettt b et b et b e et a et besaeentens 151
7 Advanced File Processing 153
7.1 INETOQUCTION. ...ttt st st et sb e eae e b s bt nesne e bt enneneas 153
T2 SOTtNG FILES ..ttt ettt ettt ettt et e et et et e sae e st et e sbeeneenaens 153
7.3 Searching for Commands and Files...........cceceriiiiiiniiieieiiee e 158
7.4 Regular EXPIeSSIONScccueouiiiiriiriiiieeiieiesieeit ettt sttt ettt ettt et e b sbe st e te b saeennens 162
7.5 Searching FAlES....ccuooiiiiiiiiiieeieesee ettt ettt sbe st be st 165
7.6 Cutting and PastiN@........cccoeoiiiiiiiiiiiiiiccereeeee e 169
7.7 Compressing FIles.........coiviiiiiiiiiiiiiice e 172
7.7.1 The gzip COMMAN.........ccoiiieiriiiiiieeeeieeciee et ceveecereeeereeeeteeeeteeeereeeeseeeeareeenns 173

7.7.2 The gunzip COMMANG.......c..ccoeviieiiieeiirieeitee et et eereeeetreeeeaeeeetreeereeeeneeenareeenns 173

7.7.3 The gzexe CommANc..ccceveiiiiieeiiieeiiieeeieecereeeereeeereeeeaeeeeteeeereeeeneeenareeenns 174

7.7.4 The zcat and zmore Commands...........coceeeriererieiieneneeierene et 175

7.7.5 The gzip, bzip2, and xz COMMANAScccuerriieriieriieeieeieeie ettt 176

7.8 Encoding and DECOINGcecuevuiririeiiiniinieienienteetesteete ettt sttt et st aesaesreennens 177
7.9 File Encryption and DeCryPtionccc.ccivirieciiniinieiienieneetenteeieetetesee ettt snesieeneens 179
SUIMMIMIATY ...ttt h et e st et et e e bt e s bt e sateeubeeabeeabe e bt e ebeesaeeembeembe e bt ebeesaeeeneesaseensean 182
QUESHIONS ANA PIODIEINSccviiiiiiieeiieeeiieecieeeeiee ettt e te e s teeeette e e ssaeeesaeeessaeessbaeessseeessseessseeanes 183
Advanced Questions and ProDIEMScc.ceoviiriiiiiiiie ittt sea e a e e b eae e ee e 186
PLOJEOLS 1.ttt ettt h ettt h e e bbb bt e a e et bt e a b et bt e at et e bt e ht et e bt saeentens 187
8 File Sharing 189
8.1 INLIOAUCHION.uiiuiiiieiiciieieteteeet ettt bt 189
8.2 Duplicate Shared FIIEs.........cccccoiiiiiiiiiiiiiiiicicccee e 189
8.3 Common Logins for Team Members............cccccciiiiniiiiiiiiiiiiiiicceeeeeee 189
8.4 Setting Appropriate Access Permissions on Shared Files.......ccccccvveevievininicininicccnnen. 190
8.5 Common Groups for Team Memberscoceeiuiiiiiiiiniiiieeeete et 190
8.6 File Sharing via LINKScocciiiiiiiiiiiii ettt s 190
8.0.1 HArd LINKS c.coueviiieiiiiiiiciiecce ettt s 191

8.6.2 Drawbacks of Hard LINKSc..ccccoueirenienieininiieiiineiccecneeceecereseeeeeere e 196

8.6.3 Soft/Symbolic LNKScceiuiriiriiiiiiiiie ettt 197

8.6.4 Pros and Cons of Symbolic LinKscecevireriieninenieniinenieeeeceie e 201
SUITIMIATY ..ottt ettt ettt sh ettt s bt et e st e s bt e st e bt s bt e st et e sb e e st et e sbe e st et e sbeebeensenbeebeeasenbens 202
Questions anNd PrODIEIMScoiuiiiiiiiiieiieiiecteee ettt ettt et e st e eteesbe e st e s seesnbeenseenseens 202
Advanced Questions and ProbIemS...........cccuiieiiiiiiieieiieeciee ettt e e ve e ere e eareeerae e 203

(0] 1517 £ USRS SUPROUTN 204

Contents xi
9 Redirection and Piping 205
0.1 INEFOAUCHION.cvitiiieiiitintctctrtestet ettt sttt st b ettt besa e ae b sne e 205
0.2 Standard FIIESccceciiiiiiiiiiiniiieieeeteete sttt 205
9.3 INPUL REAITECHON ..ottt ettt sttt et st e st naes 206
9.4 Output REAITECLION ...euvieuiiiiiiieieieeieetee sttt ettt ettt eae e naes 207
9.5 Combining Input and Output Redirection...........ccccceeiiiiieiiininiciiiniciciceeeeeeceeeee 209
9.6 I/O Redirection with File DESCIIPLOTScccevuiiiiiiiiiiiiiciiiicccceececeece e 209
9.7 Redirecting Standard EITOTcccoceeviiiiiiinieiiniintcieeee ettt 210
9.8 Redirecting stdout and stderr in One Command............cc.cceevuieiienienirniienie e 211
9.9 Redirecting stdin, stdout, and stderr in One Commandccecceenienierieenieenieennen. 213
9.10 Redirecting without Overwriting File Contents (Appending)..........cccceeeeereercieenieenieeneenne. 214
01T LANUX PIPES ittt et ettt et e be e 215
9.12 Redirection and Piping COmDbINEd.........ccceeieriiriieieriirieeieie ettt 218
9.13 Output and Error Redirection in the TC Shell..........cccooieiiriiinieiinineieeeeeeeeeeeene 219
9.14 Recap of I/0 and Error Redir€Ctioncoceviiieieneneeienieieeieicseetee e 222
.15 FIFOS .ttt et ettt et 223
SUIIMIATY .ottt sttt et b s bbb et eb e s b st st ebe s e sae e eseeaesae e 226
Questions and PrODIEIMSceiuiiiiiiiieieeie ettt ettt ettt e st e et e ete e st e s aeeenseenseeseens 226
Advanced Questions and ProbIemS...........cccuvieiiiiiiieieiiieeie ettt s e e re e ere e eareeerae e 228
PLOJECLS 1.ttt et et st sttt s h et re e aennes 229
10 Processes 231
10.1 INEEOQUCHION.etiiinieiititetcert sttt ettt ettt ettt ettt sb ettt be b aeseebesaenene 231
10.2 CPU Scheduling—Running Multiple Processes Simultaneouslyc.ccecevereneeninnnen. 232
10.3 LinUX ProCess SEAtes.......ccccueiririeiiirinieieieienetetet sttt sttt ssene v s snesaens 233
10.4 Execution of Shell COMmMANASccccoerueirireniinieiiiinieieeee ettt 234
10.5 ProcCess ALTTDULEScoueeierieririerierieet ettt sttt st ettt sbe st et sbe e esenaes 237
10.5.1 Static Display of Process AttIibULESccccoevieiririinieiiiiiicieieeieieeeceees 237

10.5.2 Linux Process and Thread Scheduling..........ccceccevirieieninienenineeeneneeeeniene 244
10.5.2.1 Linux Scheduling Policies and Prioritiesccccceeveevieninnsieeieeenienne 244

10.5.3 Dynamic Display of Process Attributes...........cceeveeriieerieiiienienieeieeieeieeseeseeeaee 247
10.5.3.1 Top Interactive Keystroke Commandsc..ccocueevveeneenienienniencieenens 250

10.6 Process and JOb CONtrol..........ccccoiiieieiiininiiiiiiciciiieeecreseee e 250
10.6.1 Foreground and Background Processes and Related Commandscccceunenne 250

10.6.2 LinuxX DA@MONS....cc.coveieuiiiiriiieiiiinientcteteiestetet ettt sttt 255

10.6.3 Sequential and Parallel Execution of Commandsc..coceecuerineneenencneennenne. 255

10.6.4 Abnormal Termination of Commands and Processescccecceevveerivenieeneennennns 257

10.7 Linux Start-Up, Login, and Process Hierarchyccocoooiiiiiiniiinnicce, 261
10.7.1 Linux Login and @g@TLY ...cccceervierieeiieieeiiesieeeeesveeveereeseessnesveesseesseesseessnennns 262

10.7.2 Process Lifetime and PStre@......cuiicueiiivieeeiieeceee et eree v eetreeeeaveeereeeennes 263
10.7.2.1 PS VEISUS PSTIEE .uiiiiuriieirrieeiieeereeeereeeereeeetreeeeteeeeseeeeseeennseesesseesesees 265

10.8 The proc FIlESYSIEM......c..ccuiuiiiiiiiiiiiiieieieeeeee et 265
SUIITIATY .ttt a et b s b et a e s b e et e besaesa e neenesae e 267
QuEStions anNd ProDICIIISc..uiiiiiiieiiieciie ettt et e e sre e et e e eteeesbaeesabeeesabaeesseeessaesnsaeenns 268
Advanced Questions and ProblemS..........ccccuiieiiiiiiieicieeeie ettt vee e e re e e eeerae e 270
PrOJECLS ettt s e ettt e b et s h e ettt e bt e bt e et e eateebeens 271
11 Networking and Internetworking 273
L1 1 INEEOAUCHION. ...couitiieiieiiitiictettrtet ettt sttt ettt b e s st ebesresnene 273
11.2 Computer Networks and InternetWorks.........cccooeeieiieniniiiieninieieneeeeeeseetee e 274
11.3 Reasons for Computer Networks and Internetworks..........cccoceeveeverenieninennieneneneennee. 275
11,4 NEtWOrK MOEIS......cooviiiieiiiinieeieiesieete sttt ettt et ettt bbb ebenaes 275
11.5 The TCP/IP SUILE....ccueitiiiieiirtirtetetei ettt ettt sttt sttt s b ettt et et e et besbenean 276

Xii

12

Contents
11.5.1 TCP and UDPcoiriiiiiriiniiicirinentctetetestetetet ettt sttt 276
11.5.2 Routing of Application Data: The TP........ccccocovviiiininiieiinieeeeeeeeeeee 277
11.5.2.1 IPv4 Addresses in Dotted Decimal Notation...........cccceeceevverenceeenienne 279
11.5.3 SymbOLiC NAMEScouviiiiiiiiienieitetesie ettt sttt ettt st 280
11.5.4 Translating Names to IP Addresses: The Domain Name Systemcccc....... 281
11.5.5 Requests for COMMENLSccccoiruiruiiiiiriniiieieiee e
11.6 Internet Services and ProtoColScccuieiiiiiiiiiiiieeie ettt
11.7 The Client—Server Software Model............coccoiiiiiiiiiiiieieee e
11.8 ApPliCation SOfTWATEcc.eiiiiiiiiiieiieee ettt sttt et e e st e ssee e enee
11.8.1 Displaying the HOSt NAMEccciiriiiiiiiiiiiiiee e
11.8.2 Testing a Network Connection
11.8.3 Displaying Information ADOUt USEIS........ccevuerierierierierienierieienieeteie e eeeeenieene 290
11,84 File TIaANSTET ..ccueeuteiieiieieieetee ettt sttt et 291
11.8.5 SSH and Related Commands............coeeeeriererienienenieienieeieeienee ettt 294
11.8.5.1 Remote Login With SSh.......cceceviiiiiiiiiiiiieeeeeeee 294
11.8.5.2 Remote Command Execution with SSh.........ccccocevviiiininiinincnieiene 297
11.8.6 Remote COopy With SCP .c.eeiiriiriiiiiieieteee ettt 299
11.8.7 Secure File Transfer With STEP......ccovviiiiiiieieiiicciecceeceee et e 300
11.8.8 Packaged ssh APPLICALIONS.........ccceeueiiiruinieieieiiereeee s 303
11.8.9 INteractive CRAL.......cocuieiiiiieiieiieeie ettt ettt et sb et esaneenee 303
11.8.10 Tracing the Route from One Site to ANOther...........ccoooiiiiiiiiiiiiieeeeeeee 305
11.9 Important Internet Organizationscoceveeveruereeneertireneenteneeeesteseeeesre e seeessesreeeesennes 306
SUIMIMATY ..ttt ettt e bt e bt e ea e et e e bt e bt e s aeeeaeeeabe e bt e bt e saeesabeembeenbeenbeesaeesaneenee 307
Questions and PrODICINSccuviiiiiiiiiiiccieceeeee ettt ettt b e et ste e teesrreesseesbeesaeeesaeesseesseesseens 307
Advanced Questions and ProbIEMIScoovviievieiiieiiieee ettt eeaee e ereeeereeeetreeereee e 309
PLOJECLS 1ttt ettt s h et a e s bt et b e bt e a e b e s he st b bt et e b heeat et eaes 309
Introductory Bash Programming 311
12,1 INEEOAUCTION. ..c.eiitieitiieiteeit ettt ettt ettt ettt et et s b e eb et s b e bt et e sbe e bt eatenbeebeeanenbens 311
12.2 Running a Bash SCIIPt........ccoiiiiiiiiiiiiiiiiiicecc e 311
12.3 Shell Variables and Related Commands............c.ceoueerierieniiiiieeieeieseeie e 313
12.3.1 Controlling the Promptcccooiiiiiiiiiiiieieeeee et 315
12.3.2 Variable Declaration
12.3.3 Reading and Writing Shell Variables............ccccooiiiiiniiiiiiiiiiieeceeeeeeen 318
12.3.4 Command SUDSHIULION.coveeeiriirieieiriententetetee ettt 321
12.3.5 EXporting ENVITONMENEc.coouiiiiiiiriiniieieiesteeteiesie ettt sttt st 322
12.3.6 Resetting Variablesc..cecuereririinieniinieiesie sttt ettt 324
12.3.7 Creating Read-Only Defined Variables...........cccccvirieriininiiienineeienicnceieeee 325
12.3.8 Reading from Standard INPULccecueviiiniiniiiiiiiicicncceeeeee e 326
12.4 Passing Arguments to Shell SCIIPS.......ccccoiiiriiiiiiiiiiiiiiiiccceeeeee e 327
12.5 Comments and Program Headers.........ccccoeeveviirinieiiininicienienecenene et 331
12.6 Program Control FIow Commands..........cccceeieriiiiienienienie ettt siee e 332
12.6.1 The if-then-elif-else-fi Statementcccecceevierieriiieiieeiieiee e 332
12.6.2 The fOr StAteMENLcceieiieiieiieeiieeie ettt ettt seee st e et e et ebeeseeesaneenee 340
12.6.3 The whiTe Statement..........c.eeiuiiiiiiieiii ettt ettt e s enee 342
12.6.4 The untiT StAEMENTcc.eriiiiriirieieniieeeienre ettt sttt st eee e sae e nrene 343
12.6.5 The break and continue Commands.........c..ceceecuerireerieninieceeneneereneneeeennene 344
12.6.6 The case StatemMENtcccuevueruireirieniieeieniieeeeete ettt ne s ae s 345
127 ComMMANd GTOUPIIEZ «.cuveeuieniiriieiieiesieeieie sttt sttt et st est et e sae e st etesbeeseesesaeeseetesseeneensenaes 348
SUIMIMATY ..ttt ettt et sb st e bt e bt e s bt e eb et st e e bt e bt e satesbteeabeeaneenbeesbeesaneenee 349
QUESTIONS ANA PIODICINSc.vviiiiiiieieiieiie ettt et cete et eeetreeeetreeeeteeesreeeeseeeseseeeesseeesseeenreeenes 350
Advanced Questions and ProbIEmScccviieiiiiiiieiiiie ettt e eereeeeeree e reeeeneeesareeenes 352

PLOJECES .. et 353

Contents xiii
13 Advanced Bash Programming 355
13,1 INEFOAUCHION. ...cuitiieiietiititctet ettt ettt ettt sttt st ettt b e ens 355
13.2 Numeric Data PrOCESSINGcoeeieriiriiieniieiieteiesieetete sttt sttt s 355
13.2.1 Bash Features for Arithmetic Operations.............ceccevererierenereeneneneeneneseenees 355

13.2.2 Arithmetic With BC..c..coiiiiiiiiiicie e 361

13.3 ATTAY PrOCESSING. .. eeviiiieiieieiteeiteiesieetet ettt sttt ettt bbb sae bbb esenaes 363
13.4 The Here DOCUMENL.........c.cocuieiiieiieniieeie et eeeeieestesteesteeteesbeeseesseesnsesnseenseenseesseesseesasennns 366
13.5 Interrupt (Signal) PrOCESSINGcccoiiiiiiiiiiiiiiiiiiccrcceeeeee e 369
13.6 Functions in Bash...........ooouiiiiiiie et 372
13.6.1 Reasons for Using FUNCLIONScccoeiiiiiiiiiiiiiiie e 372

13.6.2 Function Definitioncc.cocveviiriirieiiiniiieieniineceeneee et 373

13.6.3 Function Invocation/Callccccoevevieirinineniiinincccnnecceeseseereeeee e 374

13.6.4 A Few More Examples of FUNCLIONScccevirieiieniiniiieriecececeeceeeecee e 374

13.6.5 Parameter Passing in FUNCHONScccoriiiiiiiiiieninecieceeteceete e 376

13.7 The exec Command and File I/O.......cc.cccccriminiiiiiiniiniiininceeccteeeeeeeeeee e 377
13.7.1 Execution of a Command (or Script) in Place of Its Parent Process 378

13.7.2 File Input/Output via the exec Command...........ccoceeerieninerieninenieeneneneeneenees 379

13.8 Debugging Shell SCIIPLSc.ccuiviiiiiiiiniiiiieieiereee et 385
SUIITIATY .ottt a et b e s e et e b e s b et b e b e s e e enesaesae e 386
QuEStioNS aNd PrODICINScc..viiiiiiieiiieeiie ettt et e e e e e eebeeeteeesvaeesaseeesabaeesseesnsseesnsseenes 387
Advanced Questions and ProbIemS...........cccuiieiiiiiiieicieecie ettt e e e e eeerae e 388
PrOJECLS .ttt ettt sa e ettt b e bt e sa et et e e bt e bt e bt e et e eateebeens 389
14 Linux Tools for Software Development 391
141 INEEOAUCHION. ...cuitiieiiitiitii ettt ettt ettt sttt et et saesa et be e nenis 391
14.2 Computer Programming Languages..........ccccecuerueruerieniinenienienenteniene et 391
14.3 The Compilation PrOCESS........cecueviiieeieriirieeiteiesieetete ettt sttt 392
14.4 The Software Engineering Life CyCleccceviiiriiiiiiiniiiininieicseeeeesieeeeeseeeeae e 394
14.5 Program Generation TOOILS..........ccccieiriiiiiiiiniiniiiiiicece e 395
14.5.1 Generating C Source FIlesccooiviiiiiniiiiiiiiccccceeee e 395

14.5.2 Indenting C SoUrce COde.........coirreriirririeieniinieienieneetente sttt eee e eaeenrenne 395

14.5.3 Running C, C++, Java, Perl, Python, and Ruby Programsc.cccooceiinine 396
14.5.3.1 Compiling and Executing C Programs........c..ccoceeverieenieniinnniencieeene 397

14.5.3.2 Dealing with Multiple Source Files..........cccccevviririeninenieeieeieieene 398

14.5.3.3 Linking LiDIaries........cccceeereerieneneeiesiesieeeeie ettt 399

14.5.3.4 Compiling and Executing C++ and Java Programsccccceceecvennene 400

14.5.3.5 Running Perl, Python, and Ruby Scripts........cccceeveevenenieveneneeienne 400

14.5.4 Handling Module-Based C Software with makec.ccccovveevienininienincnee, 402

14.5.5 Building Object Files into a Library Using ar and MRI Librarian...................... 409
14.5.5.1 Creating an ATChIVE.........cccevieiiiiininieienteetetereetet et 410

14.5.5.2 Displaying the Table of CONtENtScccrverereerierereenienereeieneneeneenne 410

14.5.5.3 Deleting Object Modules from an Archive..........cccceveveeieiicnenicnenne 410

14.5.5.4 Extracting Object Modules from an Archive............cccocceiininiiinnnns 411

14.5.5.5 Working with the MRI Librariancceccoeoiinieniiniiniiiiecenceeee 412

14.5.6 Working with Libraries Using ranTib and nm..........c..cooccoeiiiiiiniininniieceeee, 413
14.5.6.1 Ordering ATCRIVEScoviiiiieiieieie ettt 413

14.5.6.2 Displaying Library Informationc.ccceceeviiniiniiniinneiiienienieeee 414

14.5.7 Version Control With Zit.........ccccieiirieririeieniieieereeee ettt 415

14.6 Static ANAlySis TOOIS....ccueruiitirieienteeteteste ettt ettt et ettt e b bt et e besaeeaeenaeee 416
14.6.1 Verifying Code for Portability with cppcheckccccoceviriniinininiiieeceee, 417

14.6.2 Source Code Metrics With gprofccviieviiieiiiieeeecceeecree et ennes 419

14.7 Dynamic ANalysis TOOIScceerieriirieriertirieeieie ettt ettt ettt st s ebe e 422

14.7.1 Source Code Debugging with gdb..........cccevirieiieniniiiininiciceeeeeeeee e 422

Xiv

15

Contents

14.7. 1.1 USING GAD .ttt 423

14.7.1.2 Entering the gdb Environmentccoceeeveveninieiieneneeieneeeeeenene 425

14.7.1.3 Executing a Programc.ccocceveririenieninieiesieeieiesieeeeeeesieeeeee e 426

14.7.1.4 Listing Program Codececuevererienenenienienieeteee et 426

14.7.1.5 Tracing Program EXecution............ceccevererieniineneenieneneeieneneeeeeens 427

14.7.1.6 Setting Breakpointsccccveirinieiieiiinieieiiieieceeeeeeeneseeee e 428

14.7.1.7 Single-Stepping through Your Program..........ccccccccceevinininninincnnne. 428

14.7.1.8 Accessing Identifiers (Variables and Functions)c.ccccccceevennnne. 429

14.7.1.9 FixXing the BUgccccoeoiririieiinieetsce et 429

14.7.1.10 Leaving gdb and Wrapping Upcccceecierienienienieeieeeeee e 431

14.7.2 Run-Time Performance with time........c.ccocevininiiinininiiiccceceee 431
SUIMMATY ..ttt ettt ettt e bt e bt e sh e e sat e et e e bt e bt e sbeesaeeeabeeabe e bt e bt e sbeesnaesaneensean 433
Questions and ProbIEIMSccueiiiiiiiiiiiciicie ettt ettt ste e e ae b e e ae e teesraeesaeenbeesseereennes 433
Advanced Questions and ProbIEMIScoiuiiieiviiiiiieieeec et cete et eetee e eereeeereeeereeenanee e 435
PLOJECLS ettt sttt b e e bt et b e bt e a bbbt e h et b e e at et e bt e ht et e b saeentens 435
System Programming I: File System Management 437
151 INEEOAUCHION. ..cutiiiiieiieciie ettt ettt et ettt et et e st e e b e et e e st e seessbeenseenseenseanseessnesnsennne 437
15.2 What Is System Programming?........cccccccereeeerinenieninenieieneneeiesieseete e 438
15.3 Entry Points into the Operating System Kernelccoociiiiiiiiiiininiieeeee 438
15.4 Fundamentals of System Callsccccoiiiiiiiiiiiiiee et 439
15.4.1 WhatIs a System Call?cooiiiiiiiiiiie et 439

15.4.2 Types of SyStem CallS.......cccuerieririeiieriieieiesieeeee ettt 440

15.4.3 Execution of a System Call.........ccceoiriiiiiiiniiieeneeeeeteee et 440

15.5 Files: The Big PICTUIE ..c...ocuiiiiiiiiiiiieieieeeee ettt st 441
15.5.1 File Descriptors, File Descriptor Tables, File Tables, and Inode Tables.............. 441

1552 WHhy TWO Tables?c.ccoueiirieieniieiteiesieetetest ettt sttt 442

15.6 Fundamental File I/O Paradigmcccccooiiiiiiiiiiiiiiiiiiiccieceeceeeeeecee e 443
15.7 Standard I/O versus Low-Level I/O.........ccccooiiiiiiiiee et 443
I5.7.1 TRE CSL ittt ettt ettt 444

15.7.2 File Data I/O Using the CSL.......ccccoevtiirininieinirericeeentereteee et 444

15.7.3 Low-Level I/O in Linux via System CallS........ccccccocueriiiiinniiniinienieeieeceneee 445

15.7.4 System Call Failure and Error Handlingccccovevieiienininieninieeeeceeeee 446

15.8 File Manipulation.........cecuerieiuieierienieeieie ettt ettt ettt ei et sbesbe et e b sbeeaee e 446
15.8.1 Opening and Creating a File.........cccooiriiiiininiiiiniiceteceetee e 446

15.8.2 ClOSING @ FIIE ..uveiiiiiieieeeiese ettt ettt 448

15.8.3 Reading from a Fileccocoiiiiiiiiiiiiiiiccceee e 450

15.8.4 Writing to a Filec.cooiiiiiiiiic 450

15.8.5 Positioning the File Pointer: Random ACCeSS........cccuevieriiieieenienieeieeieeeeeeee 452

15.8.6 Truncating a Filecooiiiiiiiiiiie e 455

15.8.7 Removing @ Filecooiiiiiiiiiiiiie e 457

15.9 Getting File Attributes from a File Inode............cceoveviiiinieiiiieeceeeeee e 459
15.9.1 The STat SIIUCIUTEcoouiieiiieiieiieeiie ettt ettt ettt steebe s e ebeesneesaneenne 459

15.9.2 Populating the stat Structure with System Calls..............cccoeviiiininiiiinnnennne. 460

15.9.3 Displaying File AttriDULES........coceeveriiririeieniinietenteee ettt 461

15.9.4 Accessing and Manipulating File Attributesccceccieiienieniiiiienieeeieneee 461

15.10 Restarting SyStem Calls.........cooueiiiiiiiiiiiieeeee ettt s 462
15.11 System Calls for Manipulating DIr€CtOTiesccueeverirrierierierieeieriesieeeeie et 462
SUITIMIATY ..ttt ettt sttt s bt eat et e s b e eb e e st et e ebeea e e beebeest e besbeeseenbesaeentensensesaeensens 463
QUESHIONS ANA PTODICINSvviiiiiiiciiiecrie ettt eereeeetve e eetreeebeeeereeeeaseeeetreeesreeesseeenreeens 464
Advanced Questions and ProbIEmIS...........cccuveeiiviiiirieieiieecree ettt eere e eeveeeereeeetreeereeeereeenes 465

PIOJECES .ttt bt 466

Contents XV
16 System Programming II: Process Management and Signal Processing 469
16.1 INEFOAUCHION. ...cuitiieiieiiititcteteetct ettt sttt sttt b ettt besae st besrenene 469
16.2 Processes and TRICadS.ccccivueviiiiiriniiieinineiee ettt 470
16.2.1 What IS @ PrOCESS?cueeuiiiiiiieiiiiieicicteeeeeee ettt 470
16.2.2 Process Control BIOCK...........cccciiiriniiiiiiiniiiiiiicccc e 470
16.2.3 Process Memory Image (Process Address Space)..........cocceeeveeeinenieieencniennnne. 470
16.2.4 Process Disk IMage.......coeeievieniiriiiiiniiiicenteeeneee ettt 472
16.2.5 What Is @ Thread?........oooiiiiiiiee et 473
16.2.6 Commonalities and Differences between Processes and Threads........................ 475
16.2.7 Data Sharing among Threads and the Critical Section Problem........................... 475
16.3 Process Management CONCEPLSeeueruerueeierierieeientesteestentesteeseeseesaeeseessesseeneensesseeneensenas 477
16.3.1 Getting the PID and the PPIDccccocooiiiiininieieieeeeeeeee s 478
16.3.2 Creating a Clone 0f @ PrOCESScc.eeveruiriiiiiniirieeieeeeetese ettt 478
16.3.3 Reporting Status to the Parent Process..........ccccecevirieiienininiieninenicnicnceceee 480
16.3.4 Collecting the Status of a Child Processcccccoivecieininienieiininenieiecnenenee 480
16.3.5 Overwriting a Process Image............cccoeeiviniiiiiiiiniiiiiicccceeccecee 483
16.3.6 Creating a Zombie ProCessc.ccecuevieririeiieniinieienieneceenre sttt 486
16.3.7 Terminating @ PTOCESS.cc.iiiuiiiiiiieeie ettt ettt 487
16.4 Processes and the File Descriptor Table.............coociiiiiiiiiiiiiiiieeeeeececete e 487
16.4.1 File Sharing between ProCessSes.......couirierieririenienieieiesie et 487
16.4.2 Duplicating File DeSCIiPLOrcc.eecueriiririenieniieieiesteeee ettt eae 490
16.5 Getting the Attention of a Process: Linux Signalscccccoceveevieneneniienenenienieneeieeeenn 492
16.5.1 What Is @ Signal?cc.ooeeiiiiiiiiiiiiieet ettt e 492
16.5.2 Intercepting SiZNALScccceciirieriiiiirenieieese ettt st 493
16.5.3 Setting Up an Alarm........ccooooiiiiiiiiniiiiiiiiicccceeeee e 493
16.5.4 Sending SiZNalS.........cccccoiiiiiiiiiiiiiiieieieee e 496
16.6 Thread Programming with pthreadscccccoveriererininnicninieceec e 498
16.6.1 The pthread APL.........ccooiiiiiiiiieteeeee ettt 498
16.6.2 Thread Creationcoeeierienierieiinieniereteeit ettt et ne st saeenesre e 498
16.6.3 Thread Terminationccccoevveeirirerenieieeneneeeee ettt e e 501
16.6.4 Thread ALIIDULEScc.eoviirinieieirinetcteeeete ettt ne 503
16.6.5 Thread-Specific Datacoceveriiiiiriiniiieee ettt 503
16.6.6 Thread SYyNChIONIZAtION.ccuevuiiiiriiniieieierieeteeee ettt 504
SUITIMIATY ..ottt ettt ettt ettt et ettt sh et e st e s bt et e sbe s bt et e bt sbe e st e bt sbe e s s e b e sbeessenbenbeeneensenbeas 504
Questions and PrODIEINSceiuiiiiieiieiieiie ettt ettt ettt e st e st e ebe e bt e saaesnneenbeenseenseans 505
Advanced Questions and ProbIems............coocuieiiiiiiiiiiiiieee e 509
o (0] (511 £ OO URPOUUSTURRURRUPRINt 510
17 Linux System Administration Fundamentals 511
17.1 INEOAUCHION.etitinieiiitiitetceettrtcte ettt ettt ettt sttt sttt s b e st saesa e ebesnennene S11
17.1.1 System Administration the Easy Wayccccocerininiiineniiiiienceeceeee e 513
17.2 Doing a Fresh Install from DVD ISO-Image Media and Preliminary System

CONIGUIALION ...ttt ettt bttt s e bt et sbeebt et sbe e bt ebesbeeseesennes 514
17.2.1 Pre- and Postinstallation Considerations and ChoiCescc.ccecereeruerereneeneennen. 514
17.2.2 Installation Of LANUXcccceeiieriiiiieieeieeiiesiie ettt 520
17.2.3 System Services Administration, Startup, and Shutdown Procedures................. 520
17.2.3.1 The Boot and Startup Processes.........ccecervuirieeieenienienieeieeieeeeeene 520
17.2.3.2 systemd and Traditional System Reboot or Shutdown........................ 522

17.2.3.3 Preliminary Considerations When Managing System Services
WIth SYSTEMU ..cevviiiiiiecie ettt eaee e 523
17.2.3.4 Further References for System Service Management Using systemd523
17.3 User AdMINISIIAION.cueveuiriiieiieirtenieteteteetestetee ettt sttt st se s se e sae e 524

XVi

17.4

17.5
17.6

17.7

17.8

17.9

Contents
17.3.1 Adding a User and Group in a Text-Based Interface on LinuXccccooceeeennenee. 525
17.3.2 Adding and Maintaining Groups in a Text-Based Interface............ccccoecevveeruenene 527
17.3.3 Deleting a User Account and Group from the Command Line...........cccceceeuenneee. 529
17.3.4 A Method of User and Group Creation Utilizing a Second Hard Disk................ 529
17.3.5 Basic Password Management
17.3.6 ACCOUNE SECUTILY ...cviuiiiiiiiiiciieiietceietee et
File Systems, Connections to Persistent Media, and Adding Disks to Your System.......... 531
17.4.1 Preliminary Considerations When Adding New Disk Drives.......c...ccocceevueeiennnen. 535
17.4.2 Five Quick and Easy Ways to Find Out the Logical Device Names of Disks...... 536
17.4.3 Adding a New Hard Disk to the SyStem...........ccoceiiiiiiiiiiniiniiieeieeee 538
17.4.4 Adding Disks USing fdisKccceevieriririeieniiieee e 541
17.4.4.1 Partitioning a Disk Using fdiskcccceoveriienininiininieeceee, 541
Configuring @ PIINETcociiiiiiiiieiireeeeeee ettt sttt 543
File System Backup Strategies and TEChNIQUEScccevvevvererienieninieieneneeieseeeeeenene 543
17.6.1 A Strategic Synopsis and Overview of File Backup Facilities..........c.ccccccceennenee. 544
17.6.2 LINUX GIU LA oottt ettt sttt ettt se 544
17.6.2.1 Archiving and Restoring Files Using tarc.cceceveneneevieneneennennens 546
17.6.2.2 Eight EaSy TarsS..cccociiieiieiiiieieiesieece ettt 547
17.6.2.3 Creating an Archive With tarc..cccocvviviiiininininccee 549
17.6.2.4 Restoring Archived Files with tar............cccccoviviiiiiininiiinccee 551
17.6.2.5 Copying Directory Hierarchies Locally and Remotely 553
17.6.2.6 Extracting Software Distributions with tar.........c.ccoceeieiiinnienineenne 555
17.6.3 Other Linux Archiving and Backup Facilities...........cccccoeoiniiniiniiniiiniinenee 556
17.6.3.1 TSYIIC.iuiiiiieiietie ettt ettt ettt sttt sbe e s bt e st e st ebeen 556
17.6.3.2 Script Files for Backup and Recoveryccccoovviriinininienenieeees 559
17.6.3.3 Software for Backup and Recovery: The “Zillas” and Ghost.............. 560
17.6.3.4 Using git and GitHub to Backup File Systems.......c..cccccocevervienenennnene 561
Software Updates and Operating System Upgrades (On Debian-Family and CentOS)561
17.7.1 Preliminary Storage Model SugEeSstionscccecevvevueiririnieiiireneieieeeesenes 562
17.7.2 USINZ APT oo 563
17.7.2.1 USINGZ QPO ...cveentireriieieienieetete sttt sttt sttt ae e eneneens 563
17.7.3 0 Y UM ettt ettt ettt 566
17.7.3.1 YUM Package Installation Procedures...........c.ccceeeeveenieniinnnienccnnenne 566
17.7.4 Upgrading the Operating SYSTEML........ccocuerueriirniienierieeieeieeiee sttt esiee e 568
System and Software Performance Monitoring and Adjustment..............cocceeevereeneennnnne. 568
17.8.1 Application-Level Process/Thread Resource Managementcccccoeeceevennenne 569
17.8.1.1 Traditional Process Control...........c.ccccecevirenieirinenieinenenrereeeennenen 569
17.8.1.2 systemd Cgroups, Affecting the Limits of CPU Scheduling............... 570
17.8.1.3 Managing MEmMOTYccccereririeniiniieienienieeitenie et 575
17.8.1.4 Assessment of System Disk UsSageccceeevienieneneeneneneeneneneenn 576
17.8.2 Network Configuration with the ip Commandcccceeeverienineniienenenceniene. 577
17.8.2.1 Basic ip Command Syntax, Options, and Operationscc.ccc.cu.... 577
17.8.2.2 Use Case Example: Assigning Several IP Addresses to a NIC............ 579
SYSEEIM SECUTILY ..enveeevitieiietenteeie ettt ettt ettt et b et b et be et e st e bt eanesenseeaeenees 581
17.9.1 Password-Based Authentication...........ceceecuerrireecieniniecieneneeienese e seeeeenrene 582
17.9.2 Access Control Credentials: DAC, MAC, and RBACccoooviiiiiiiiiiiieeeeeeens 582
17.9.2.1 SUAO ceeiiiiieceeec et
17.9.3 IDS and IPS ..ottt
17.9.4 LinuX SeCUrity SOftWATIE.......ccevieieriiriirieientieieeie ettt sttt sttt eaee e e
17.9.4.1 System Firewall
17.9.4.2 ufw and Netfilter Interface in Debian Linux Familyccccceceeienen. 588
17.9.43 firewalldin CentOS.......c.ccoviviminieiiniinincieneceeeeereeeee s 588

17.9.5 Persistent Media SECUTILYcccerterieririerienieniieieneeeetene ettt 589

Contents Xvii

17.9.5.1 Persistent Media Allocations for/homec.ccccevevevirenencnenencncnnne. 589
17.9.5.2 Securing the File SyStem........ccccceririeiiiniiieiereeieeeseeeeeee e 590
17.9.6 Process Credentials..........oeoveirirenieieinineieieineneeeee sttt 590
17.9.6.1 File Permission-Based Mechanisms..........c..ccecevenveieenenrenieencnnennene. 590
17.9.7 DisK ENCTYPHON «.c.veiutiiiriiiiiieiiteiert ettt ettt sttt s 591
17.9.7.1 The Meaning of ENCryptionccccecvviviiiciiincniiiiinicieeeceeseeenes 591
17.10 Virtualization MethodOIOZIESccovuiiiiriiriiiiiiiiicer e 592
17.10.1 Virtualization APpliCAtIONSceceevuerririeieeniinieeeniene et sttt s eeenre s eieenreee 593
SUITIMATY ..ottt ettt et st ettt st ettt s bt ettt s bt e st e et s bt e bt et e s b e e st esnenbesbeensenneeueennennens 593
(00T 5 o) o TR0 Lo B 55 () 0] (3 ' 1 O USROS 594
Advanced Problems and PrOJECEScceeiiieieriiieiesie ettt sttt 596
PLOJECLS ettt ettt ettt et e bt s h e s et s he sttt bt bt et ehe st et e eheent et e bt ene et e naes 597
18 systemd 601
18.1 Introduction: Why You Should Know about and Use systemdcc.ccccevereeveenencennenne. 601
18.1.1 SOME PIEreqUISILES.cuevuiiiieiieiiiiiieieeeietee e 603
18.1.2 Where to Get Further Help and Documentationccccceceeincncnicinencnnnne. 604
18.2 System Start-Up, Initialization, and Shutdown Using systemd............ccccceceereenienrennnnne 604
18.2.1 An Overview of the Start-Up and Shutdown Processes............ccccceeveeniinieninnnne 604
18.2.2 systemd Start-Up: Targets, Target States, and Target Unitsccccceeveenennenne 605
18.2.3 systemd-Controlled Shutdown............ccocueiiiiiiiniiniiiiieeeeeeeeee e 606
18.3 systemd System Service Management Basics Using the systemctl Command.................. 607
18.3.1 How to Use systemctl to Manage systemd Services and Unitsc.cceceecuennene 608
18.3.1.1 Service Managementcoccevveruereenienerierienenieetenreseetesseseeeeee e 608
18.3.1.2 Starting and StOPPINg SEIVICEScccveiruirieieirinieieieiereieeeeereenes 609
18.3.1.3 Restarting and Reloadingccoceeviiiiiiiiiniininiiincicececee 610
18.3.1.4 Enabling and Disabling SerViCes.........cccceverrevuerimeerueneneeeenieneeeenienne 610
18.3.1.5 Checking the Status of Services.........ccccoerierieriieriiiniieeeseereeeee e 610
18.3.1.6 How to Check System Statecooceeriieieriiinienieneeeeieeee e 612
18.4 Using systemctl to View the SyStem State..........ccecerviiiriinienienieiieeieeee e 614
18.4.1 systemd Service VIEWING.......cceoirieieriirieieiieieeienie sttt sttt 614
18.5 Creating and Adding a New systemd-Controlled Service..........ceccevereeieneneeseenienenceenenne 615
18.5.1 New-Style Daemons and SEIVICEScecerirerieniineriienieseeeete et 615
18.5.1.1 A systemd-run Command Examplecccccceveriniiineneniinenenienene 615
18.5.1.2 Bourne-Again Daemon...........cccecevuiriiiiininiciiinicieieceeeeeeee 616
18.5.2 An Old-Style Simple Daecmon Web Server Exampleccccccoeviviiiiininincnn. 617
18.5.2.1 How to Run webserver2 before You Make It a Service.........ccccecuee. 618
18.5.2.2 Webserver Example Program Logic Model..........c..cccceverernenencnnnen 618

18.5.2.3 Using the Journal Application Programming Interface (API) in
WEDSEIVETZ ...ttt sttt sttt sttt 619
18.5.3 Making a Daemon a Service: A Simple Three-Step Exampleccccoceeeennenee. 620
18.5.3.1 Making webserver2 a systemd SEIviCeccceevveirenenieincneneeenne 621
SUITIMATY ..ottt ettt ettt sttt sh ettt s bt e bt ebe s bt e bt et e sbe e bt et e sbe e st et enbesbeeasenaeebeeanenaens 622
(00T 8 (o) 1 TSIV Lo B 5 (o) 0] (3 ' 1 USROS 623
Advanced Questions and ProbIemS...........cccueieciiiiiieieciieeeiie ettt e e are e e areeerae e 625
PLOJECLS .ttt h e ettt et et sh e et et e b e bt e st eateebeens 625
Appendix A: Installation Instructions 627
Appendix B: Books for Further Reference 641

Index 647

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

Preface

Authors

Together, the authors have almost 75 years of practical teaching experience at the college level. Our
continuing concept for this book grew out of our unwillingness to use either the large, intractable Linux
reference sources (both online and printed) or the short “nutshell” guides, to teach meaningful, complete,
and relevant introductory classes on the subject. We still feel very strongly that a textbook approach, with
pedagogy incorporating in-chapter tutorials and exercises, as well as useful basic and advanced prob-
lem sets at the end of each chapter, allows us to present all the important Linux topics for a classroom
lecture—laboratory—homework presentation.

In this second edition, we have continued to fine-tune in a manner consistent with what we feel are
optimal learning outcomes, i.e., well-thought-out sequencing of old and new topics, well-developed and
timely lessons, and homework exercises/problems synchronized with the sequencing of chapters in the
book. To assist our pedagogy, we have also incorporated in the earlier chapters, many forward references
to later chapters, and in the later chapters, backward-references to the earlier material.

Audience

This second edition is guided by the same intentions and core principles as the first edition, particularly
in terms of both its scope and its content. It is intended as a textbook on the modern, 21st-century Linux
operating system. It uses an introductory pedagogic style, very similar to the explication and layout of
the previous edition.

With the exception of two newly introduced chapters on system programming and two chapters on
system administration, the first 14 chapters of the book can be used successfully by a complete novice, as
well as by an experienced Linux system user. The text can be deployed in an informal, continuing educa-
tion environment, at home or work, and in a formal, higher education classroom learning environment.
Professionals interested in furthering their knowledge will also benefit from the depth and breadth this
book has to offer. It is aimed at anyone with a desire to learn.

The Purposes of This Book in the Second Edition

Our primary purpose in the core chapters remains a didactic description of the Linux application user’s
interface (AUI). We try to do this in a way that gives the reader insight into the inner workings of the
system, along with explanations of some important Linux concepts, data structures, and algorithms.
Notable examples include the in-depth descriptions of the Linux file, process, and input/output (I/O)
redirection concepts.

Our secondary purpose is to extensively describe the Linux application programmer’s interface (API)
in terms of C/C++ libraries and Linux system calls. In writing this second edition, particularly for the
system programming chapters, we do assume prior basic to intermediate knowledge of C/C++ program-
ming on the part of the reader.

Our tertiary purpose is to describe some important Linux software engineering tools for developers of
C/C++ software, Python programs, and shell scripts.

Last, our ancillary purpose is to present and situate various system administration topics in a modern,
21st-century Linux environment controlled by the systemd “superkernel.” These topics can be applied
in a single, stand-alone Linux system environment, or in a distributed computing environment. Their

Xix

XX Preface

subject matter can be extended from laptop or desktop systems to small-to-medium sized, server-class
systems, and beyond.

Distribution Information and Additions

The Linux system distributions, or “flavors,” that we use to illustrate everything in this edition are from
the Debian and Red Hat (RHEL) families: Debian, Ubuntu, Linux Mint, and CentOS. We have chosen
these flavors primarily because they are very easy to install and use, and, therefore, they are universally
used by a large international base of ordinary Linux users. They are freely available to an ordinary user
who wants to install the system on their own PC. The exemplary case of this is the free CentOS, versus
the only commercially available RHEL.

Most importantly, we have chosen to use recent versions that incorporate systemd—Debian 9.1,
Ubuntu 16.04, Linux Mint 18.2, and CentOS 7.4.

Whenever we illustrate a Linux command, by default we preface the command with only the Bash
shell prompt “$,” and we use the output that a Debian-family distribution would give. That output is gen-
erally uniform across Debian, Ubuntu, and Linux Mint, and also CentOS. Whenever the syntax, execu-
tion, and output of a command significantly differ from the default on the Debian-family distributions,
particularly as seen in Appendix A on Debian and CentOS, we preface the command with a shell prompt
as follows to help you differentiate the distribution the command has been executed on:

[root@debian]# for Debian
[root@centos]# for CentOS

By default, and in a majority of cases, we use the traditional text-based command line interface, in a text-
based terminal window interface, as it is presented on the distributions and versions we have chosen. The
use of a Graphical User Interface (GUI) desktop is also an integral part of our presentation, and we use
this wherever it is warranted, and promotes expediency for the beginner.

Because of their use of systemd in the kernel, these versions are distinctly different from earlier,
pre-systemd major release versions. There are many things that also make these distributions and ver-
sions superior to, as well as very different from, any other contemporary, nominally Linux distribution.
They are also distinctly different from other NIX-like operating systems, such as TrueOS, UNIX, and
OS X. There are many topics covered in this edition of the book that older, more traditional textbook
approaches to teaching Linux, and other NIX-like systems, could not include—systemd and ZFS being
prime examples of that.

The biggest difference between this edition and the previous one is the partitioning of the text into
three major modules:

Chapters 1-14 comprise the basic Linux core module.
Chapters 15 and 16 comprise the system programming module.
Chapters 17 and 18 comprise the system administration module.

We also provide two appendices (A and B). Appendix A is a set of instructions for critical software
installation on Debian-family and Red Hat family systems. Appendix B is a listing of further reference
books. A glossary of key terms is available for download at https://www.crcpress.com/9781138710085.

How will the reader benefit from this change? The biggest benefit of partitioning the book into these
modules, and all the supplements that we provide, is that the book can be used in a wider variety of learn-
ing situations. We describe these in detail in the “Pathways through the Text” section later.

The next major difference is that the basic material concerning these three major modules is found in
the printed book, and advanced, supplementary material for these modules is placed at the book website.

Because Debian and Red Hat families of Linux have had many important functional additions made
to the AUI since the previous edition of the book came out, and because Linux now holds a vast and

https://www.crcpress.com/9781138710085

Preface

widely dispersed share of the operating systems marketplace, we felt that we needed to add instructional

material to the book covering these additions, including the following:

In the advanced, supplementary chapters at the book website, all prefaced with the letter “W” to help you

A complete tutorial chapter on systemd and framing the presentation of everything in Linux
within a systemd environment

Two new, complete chapters on Linux system programming and the Linux API

A new, extensive chapter on Linux system administration using systemd that details installation,
maintenance, and updating/upgrading your Linux systems on your own PC

A revised and updated chapter on networking and internetworking to bring it in line with
current standards

Complete coverage of the system call interface, files, file-related data structures in the Linux
kernel, file I/O paradigms, and file manipulation API

Extensive coverage of the concepts of Linux processes and threads, process-related kernel data
structures in the Linux kernel, process management API, and signal handling

Comprehensive coverage of interprocess communication in Linux using pipes and named pipes
(FIFOs)

Use of GUI desktop environments, such as Cinnamon on Linux Mint

New diagrams, tables, interactive shell sessions, in-chapter tutorials, in-chapter exercises, and
basic and advanced end-of-chapter questions, problems, and projects

Coverage of many new commands and enhancing coverage of existing commands

Up-to-date URLSs for important Web resources on nearly everything in the book

New chapter on the nano text editor

Redesigned text layout for a more usable active learner printed document

differentiate them from the printed book chapters:

The second edition also offers enhanced usability of all shell scripts, Python and C/C++ programs, and
other programming code shown in the printed book, by maintaining them as correctly formatted and
usable text files at a GitHub repository. This feature allows you to easily utilize a single git command, or

A complete tutorial chapter on the Python 3 programming language and its use in Linux
(Chapter W19)

Two advanced chapters on system programming to supplement the two chapters on that topic
in the printed book (Chapters W20 and W21)

A complete reference chapter on the Zettabyte File System (ZFS), the kernel-loadable user file
system, with many practical Linux system administration examples (Chapter W22)

A complete chapter on virtualization methodologies, illustrating Linux containers with LXC/
LXD, cloud computing with Amazon Web Services EC2, and installation of various guest
operating systems in popular host systems using VirtualBox (Chapter W23)

An extensive and complete tutorial on the git command, and using GitHub (Chapter W24,
Section W5.7)

A complete tutorial on the more traditional Linux text editors vi, vim, gvim, and emacs, and
adding many example methods used to customize those editors (Chapter W25)

Additional advanced system administration topics, for example, extensive coverage of CUPS
printing in Linux (Chapter W26)

Additional advanced and critical systemd topics, such as cgroups, namespaces, and the clone
system call (Chapter W27)

Wayland (W28)

TC Shell Basic and Advanced Programming (W29, W30)

Web browser download, to obtain these files at a local repository or directory.

XX1

XXii Preface

Features

This edition has had many new diagrams and tables added, and there are many new in-chapter tutorials,
interactive shell sessions, in-chapter exercises, and end-of-chapter questions and problems. We have par-
titioned the end-of-chapter questions and problems into basic and advanced, with project-level problems
presented as well. These project-level problems can be done in the short term in a single week or can
stretch over the course of an entire term if used in a formal learning environment.

We have added more general command descriptions whenever we introduce a new command or utility.
These general command descriptions describe the exact syntax of the command (and any other pertinent
variants of the basic syntax), its purpose, the output produced by the command, and its useful options and
features. In addition, every chapter contains a summary of the material covered in the chapter. There is
also an appendix that shows how to install key software used throughout the book for both Debian and
Red Hat family systems.

Supplements

At the book website for everyone (available from the CRC website at
https://www.crcpress.com/9781138710085:

Whole Chapters or Sections, prefaced with the letter “W”

Python Programming (W19)

System Programming III: Interprocess Communication (W20)

System Programming IV: Practical Considerations (W21)

Zettabyte File System (W22)

Virtualization Methodologies (W23)

git/GitHub (W24, Section W5.7)

vi/vim/emacs Tutorial and Extensions (W25)

System Administration (W26)

systemd (W27)

Wayland (W28)

TC Shell Basic and Advanced Programming (W29, W30)

Solutions to In-Chapter Exercises for all Printed Book and Online Supplementary Chapters.
A Glossary of key terms used throughout the printed book and the supplementary chapters.

At the book website, for instructors only*:

Solutions to Questions and Problems/Advanced Questions/Problems/Projects sections for core
chapters (1-14)

Workbook and Solutions Manual for core chapters (1-14)

Test Bank and Solutions for core chapters (1-14)

PowerPoint Slides for core chapters (1-14)

Contact your CRC Press representative to gain access to this material.

At the author-maintained GitHub site:

1. Source code for C/C++ programs, Python code, and long shell scripts, arranged by chapter.

* Note: Resources available to qualified instructors only.

https://www.crcpress.com/9781138710085:

Preface XXiii

2. Author-maintained Web resource hyperlinks to many other Linux resources on the Web.

3. Updates of version-specific content of Debian and Red Hat family Linux systems that severely
impact our printed book presentations.

4. Errata.

The following are the instructions for using the author-maintained GitHub site:

a. You can use your Web browser and retrieve any part of the materials from the following GitHub
repository:
https://github.com/bobk48/linuxthetextbook
b. Or you can do the following to prepare and download these materials:
Prepare a git repository directory on your local system, using the instructions found in
Chapter W24, Section W5.7.
To access these materials, pull from the repository using this git command:
git pull https://github.com/bobk48/linuxthetextbook master
You will find items 1-4 previously in your local git repository.

A Note to Instructors

The didactic structure of each chapter in this new edition follows one of two similar formats: either the
shell session format or the tutorial format.

In the shell session format (used in all chapters in the printed book except 3, 17, and 18), the following
outline is used:

* Learning objectives
e Introduction
» Topic discussion and background organized in sections and subsections

* llustrative commands or topic illustrations presented as shell sessions, where the user types in
commands shown and results are displayed

* In-chapter exercises that reinforce what was discussed on a topic or done interactively in a shell
session

e Summary

* End-of-chapter basic and advanced questions and problems, keyed to topics presented

In the tutorial format (used in Chapters 3, 17, 18, and in all the book website chapters), the following
outline is used:

e Learning objectives
* Introduction
» Topic discussions and background organized in sections and subsections

* One or several example sessions or practice session tutorials that illustrate the commands and
topics of interest in any particular section or subsection

* Illustrative commands or topic illustrations presented as shell sessions, where the user types in
commands shown and results are displayed

* In-chapter exercises that reinforce what was discussed in an example or practice session, on a
topic, or done interactively in a shell session

e Summary

* End-of-chapter basic and advanced questions and problems keyed to topics presented

https://github.com/bobk48/linuxthetextbook
https://github.com/bobk48/linuxthetextbookmaster

XXiv Preface

Pathways through the Text

If this book is to be used as the main text for an introductory course in Linux, Chapters 1-13 should be
covered.

If the book is to be used as a companion to the main text in an operating system concepts and prin-
ciples course, the coverage of chapters would be dictated by the order in which the main topics of the
course are covered, but should include Chapters 4, 9, 10, 15, and 16.

For use in a C/C++ or shell programming course, Chapters 1 and 4-14, and relevant sections of Chapter
3 and W25 would be a great help to students. The extent of coverage of Chapter 14 would depend on
the nature of the course—partial coverage in an introductory course and full coverage in an advanced
course. Also, depending on the text editor used, relevant sections of Chapter W25 should be covered.

For use in a Linux system administration course, Chapters 4-10, 17, 18, W26, and W27, and relevant
sections of Chapters 11 and 12 should be used.

In a course on introduction to system programming, Chapters 11, 15, and 16; relevant portions of
Chapters 4-10; and Chapters 17, 18, W20, and W21 should be covered.

Finally, people using this book for professional development, and in informal learning environments,
can select relevant chapters that meet their individual learning objectives. For example, Chapter W24,
Section W5.7, can be used by anyone who wants to learn the basics of git and GitHub.

The Design of Fonts

The following typefaces have been used in the book for various types of text items:

Font
Minion Pro, italic
Minion Pro, bold
Courier Std
Courier Std, bold

Text Item
Key terms:

* Whatever directory you are currently in is known as the present working directory.
Files/directories/symbolic constants/menu paths:

* The directory first and the file myfile2 are now removed.

* Make the Options menu choice Save Options

* Make the pull-down menu choice File>Quit

* A socket with AF_INET address family is known as the Internet domain socket.

Commands, program code, output of commands and programs, and options:

* Use the man and whatis commands to find information about the passwd command.
* The output of the date command is Thu Apr 7 13:53:30 PKT 2016.

* You can use the -1 option to display the long listing.

* The following session shows the Bash shell script in the for_demol file:

$ cat for_demol
#!/bin/sh
for people in Debbie Jamie John Kitty Kuhn Shah

Preface XXV

do

echo “people”
done

exit O

$

Keystrokes:
¢ <Enter>, <Alt+V>, <F1>, a

Prompts, messages, dialogs, and windows:

* A user who runs a write or talk command sees the message Permission denied.
* The system then displays the Togin: prompt.

* In the Find file: dialog box that opens.

* Click the OK button in the Save window.

User input:

* $5ssh 192.168.0.8
* Password for bob@pcbsd-2467: XXX

We take full responsibility for any errors in the book. You can send your error reports and comments
to us via the email address provided in the README.md file at the GitHub site mentioned previously. We
will incorporate your feedback and fix any errors in subsequent printings.

A Note to Students and Readers

The way to use this book most effectively is to learn by doing. That is, after all, why we have provided
so many command line sessions. Type in what you see in those sessions and compare it to the output you
get on your Linux system.

And install the Linux system of your choice, hopefully chosen from the ones we have illustrated every-
thing in the book with, on your own PC. Then experiment and play with Linux. Play is the foundation
upon which learning is built.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

Acknowledgments

First and foremost, we would like to acknowledge the outstanding stewardship and guidance provided by
our editor, Randi Cohen, at CRC Press/Taylor & Francis Group. Education, in the modern world, is most
importantly a project of advocacy, and she stands as our greatest advocate.

Second, we were guided along in the excellent development process leading up to the final form of the
book by Eve Strillacci and Holly Omand at CRC Press/Taylor & Francis Group. They provided many
insights into how best to reach our target audience, through complete and articulate reports based upon
the input of numerous reviewers.

Third, we thank Todd Perry at CRC Press/Taylor & Francis Group and Paige Force, Rebecca Dunn,
and Alexandra Andrejevich at codeMantra.

Personal Acknowledgments

I thank my parents, wife, children, and siblings for their love, support, and trust. They have all been a
positive influence in my life, have helped me in many ways, and remain my biggest supporters. I can
never pay back the grace that they have extended to me over the years. My mother, a class act in mother-
hood, has been fighting serious illnesses for the past several years. I pray for her good health and peace
of mind.

I lost my father, Abbujee, on April 3, 2018, as I was finalizing the last of my chapters for the first draft.
He was my primary inspiration for book writing. Even during the final days of his life, as he was fighting
bilateral pneumonia and was placed at the intensive care unit (ICU) of a local hospital, he would ask me
about the status of this book. He was elated to hear when I told him that I was about to submit my final
chapter. A man out of this world, he was an avid reader even at the age of 97 and an icon of wisdom, cour-
age, care, intellect, logical reasoning, and mental toughness, and remains my inspiration for the quest of
knowledge discovery, rational thinking, and service to fellow humans. But, above all, he was the most
dedicated and model father that one can envision.

After completing his masters in philosophy in 1945 from the prestigious Government College, Lahore,
Pakistan, he pursued a 45-year career as a journalist and served in famous national English dailies,
including over 35 years at the famous London-based Civil and Military Gazette and The Pakistan Times.
He was well read in philosophy, world history (American, European, and Muslim), various religions
(Judaism, Christianity, Islam, Hinduism, Buddhism, and Zoroastrianism), and world politics, and had
written many thought-provoking articles on philosophy, constitution, comparative religions, and Islam.
His seminal work was published as a 162-page book, A Fresh Look at the Quran: Unmasking the Truth,
published by Amazon in 2013.

About a month before his death, my father finished rereading the following books that he had won
in a declamation contest as a college freshman in 1942: The Prince by Niccoldo Machiavelli, and Plays
and What Then Must We Do? by Leo Tolstoy. He was in the middle of rereading the classic Creative
Evolution by Henri Bergson when he was admitted to the ICU on March 18, 2018. His lead pencil
remains placed between pages 276 and 277 of this book. The next book on his to-read list was The
Autobiography on an Unknown Indian by Nirad C. Chaudhri. Without his and my wife’s continuous
encouragement and support, writing this book would never have been possible.

My wife, Robina, and children, Maham, Ibraheem, and Hassan, have been extremely patient and sup-
portive during the course of this project. Thank you for your understanding and support, guys! I could
not have done it without Robina, an exemplary mother and wife. At the time of writing the first edition of
the book, Hassan and Maham were in elementary school, and Ibraheem was not even born. Now, Hassan
is the CEO of infinione (infinione.com), a Los Angeles-based technology company that he founded 5

XXVii

http://infinione.com

Xxviii Acknowledgments

years ago when he was a junior at the University of Southern California, and a passionate world traveller
and avid hiker, who has already been to more than a dozen countries. Winter glacier hiking in Iceland
has thus far been the hallmark of his expeditions. After finishing her masters in textile design innovation
from Nottingham Trent University, Nottingham, Maham is a textile designer at Republic, a top brand
in fashion, and an adjunct faculty member at the Beaconhouse National University, Lahore. With the
Best Designer award under her belt in a national competition, several of her designs have already been
marketed through well-known fashion women’s wear brands such as Beechtree. Ibraheem is a young
6’2" teenager, with a love for mathematics and science, and has the goal to become a top-notch scientist
as well as a professional basketball player. He has already played at the national level at the age of 16.

My very special thanks to my sisters, Rizwana and Farhana, and brothers, Masood, Nadeem, Ageel,
and Nabeel, for their friendship and care. They are the best siblings one could possibly ask for. They
are always there for me whenever I need them. I convey my sincere gratitude to them, my sisters-in-
law, Maimoona, Sadaf, and Farzana, and brothers-in-law, Hamid and Abdul Ghafoor, for taking care
of our father and ailing mother during the hours of their need. Folks, I will forever remain indebted
to you for performing my share of service toward our parents. I hope to be able to offer a payback in
some form someday.

I also thank my colleagues and friends at Punjab University College of Information Technology,
Institute of Business and Information Technology, Department of Space Science, Institute of Chemistry,
Department of Persian, Department of Kashmir Studies, and Institute of Geology for their help and
encouragement through thick and thin as I was completing this project and handling the difficult uni-
versity affairs, particularly during the past 4 years. They are too many to name here, but they know who
they are. Thank you fellows!

I owe very special thanks to my coauthor, Robert Koretsky, for his friendship and out-of-the-way sup-
port throughout this project. He was there whenever I needed his help. In particular, after the death of my
father, he took over the responsibility to complete my remaining work without even my request. Bob, all
this meant a lot to me. I am truly indebted to you for your encouragement and support throughout. This
book would never have been published in time without you.

Syed Mansoor Sarwar

Without the love, encouragement, and guidance of my wife, Kathe, this work would never have been
realized. I would like to also thank my two children, Tara and Cody, for always being there for me.
A special thanks to my two grandsons, Victor and Garvey.

Dr. Syed Mansoor Sarwar provides the foundations for the vision of this book as a conceptual whole.
My greatest debt of gratitude goes to him for this, and many other things, in friendship and admiration.

Robert M. Koretsky

Authors

Syed Mansoor Sarwar is a professor and principal at Punjab University College of Information
Technology, Lahore, Pakistan, and a former tenured associate professor at the Multnomah School of
Engineering at the University of Portland (UP), Portland, Oregon. He received his MS and PhD in com-
puter engineering from the Iowa State University (ISU), Ames, Iowa, and has over 30 years of post-PhD
experience in teaching and research. He has authored over 40 research publications in international jour-
nals and conferences, and authored, as lead author, five books published by top world publishers. He was
nominated for the Best Graduate Researcher Award at ISU for his PhD research, and Best Researcher
and Best Teacher awards at UP. He has been learning, using, and teaching UNIX since 1986. His family
is spread over two continents. He currently resides in Lahore with his wife, daughter, and younger son.
His older son runs a software company in Los Angeles.

Robert M. Koretsky is a retired lecturer in mechanical engineering at the Multnomah School of
Engineering at the University of Portland, Oregon. Principally educated at the Pratt Institute in
Brooklyn, New York, he has also worked as an automotive engineering designer with Freightliner Corp.

in Portland. He currently resides in Portland, with his wife, two children, and two grandchildren.

Together, they are the authors of four textbooks on UNIX and Linux.

XXIX

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

1

Overview of Operating Systems

OBJECTIVES

* To explain what an operating system is

* To briefly describe operating system services

* To describe character and graphical user interfaces

* To discuss different types of operating systems

* To briefly describe the Linux operating system

» To give an overview of the structure of a contemporary system
* To briefly describe the structure of the Linux operating system
* To detail some important system setups

» To briefly describe the history of the Linux operating system

* To provide an overview of the different types of Linux systems

1.1 Introduction

Many operating systems are available today, some general enough to run on any type of computer (from
handheld, Internet of things (IoT) devices, to cloud-based, warehouse-scale server clusters) and some
specifically designed to run on a particular type of computer system, including real-time embedded com-
puter systems used to control the movement of mechanical devices such as robots, [Pads, and a plethora
of cell phone models. In this chapter, we describe the purpose of an operating system and the different
classes of operating systems. Before describing the different types of operating systems and where Linux
fits in this categorization, we present a layered diagram of a contemporary computer system and discuss
the basic purpose of an operating system. We then describe the different types of operating systems and
the parameters used to classify them. Finally, we identify the class that Linux belongs to and briefly
discuss the different members of the Linux family.

The people who use Linux comprise application developers, systems analysts, programmers, admin-
istrators, business managers, academicians, and people who just wish to read their e-mails. From its
inception in the early 1990s as a hobbyist project, it was explosively developed in conjunction with the
development of the Internet, via a vast community of developers, and then completely adopted for com-
mercial uses. In the fully developed and mature versions of today, Linux has an underlying functionality
that is complex but easy to learn, and extensible yet easily customized to suit a user’s style of comput-
ing. One key to understanding its longevity and its heterogeneous appeal is to study the history of its
evolution.

1.2 What Is an Operating System?

A computer system consists of various hardware and software resources, as shown in a layered fash-
ion in Figure 1.1. The primary purpose of an operating system is to facilitate easy, efficient, fair,
orderly, and secure use of these resources. This purpose can be conveniently described as a control-
ling function that ensures concurrency, virtualization, and persistence. It allows the users to employ

2 Linux

Users
AUI shell, commands, and application programs
API Language libraries and system call interface

Computer hardware

FIGURE 1.1 A layered view of a contemporary computer system.

application software—spreadsheets, word processors, Web browsers, e-mail software, and other pro-
grams. Programmers use language libraries, system calls, and program generation tools (e.g., text edi-
tors, compilers, and version control systems) to develop software. Fairness is obviously not an issue if
only one user at a time is allowed to use the computer system, including single-user desktop systems,
laptops, tablet computers, and cell phones. However, if multiple users are allowed to use the computer
system, fairness and security are two main issues to be addressed by the operating system designers.

Hardware resources include keyboards, touch pads, display screens (may also be touch screens), main
memory (commonly known as random access memory or RAM), disk drives, network interface cards,
and central processing units (CPUs). Software resources include applications such as word processors,
spreadsheets, games, graphing tools, picture- and video-processing tools, and Internet-related tools such
as Web browsers. These applications, which reside at the topmost layer in the diagram, form the appli-
cation user interface (AUI). The AUI is glued to the operating system kernel via the language libraries
and the system call interface. The system call interface comprises a set of functions that can be used by
the applications and library routines to execute the kernel code for a particular service, such as reading
a file. The language libraries and the system call interface comprise what is commonly known as the
application programming interface (API). The kernel is the core of an operating system, where issues
such as CPU scheduling, memory management, disk scheduling, and interprocess communication (IPC)
are handled. The layers in the diagram are shown in an expanded form for the Linux operating system in
Figure 1.2, which are described briefly.

There are two ways to view an operating system: top down and bottom up. In the bottom-up view, an
operating system can be viewed as a software system that allocates and deallocates system resources
(hardware and software) in an efficient, fair, orderly, and secure manner. For example, the operating
system decides how much RAM space is to be allocated to a program before it is loaded and executed.
The operating system ensures that only one file is printed on a particular printer at a time, prevents an
existing file on the disk from being accidentally overwritten by another file, and further guarantees that,
when the execution of a program given to the CPU for processing has been completed, the program
relinquishes the CPU so that other programs can be executed. Thus, in the bottom-up view, the operating
system is a resource manager.

In the top-down view, which we espouse in this textbook, an operating system can be viewed as a piece
of software that isolates you from the complications of hardware resources. You therefore do not have to
deal with the extremely difficult (and sometimes impossible for most users) task of interacting with these
resources. For example, as a user of a computer system, you don’t have to write the code that allows you
to save your work as a file on a hard disk, use a mouse as a point-and-click device, use a touch screen or
touch pad, or print on a particular printer. Also, you do not have to write new device driver software for

Overview of Operating Systems 3

f
Application Applications: Compilers, word processors, spreadsheets,
user’s ftp, ssh, web browsers, etc.
interface 9
(AU shell: Bourne shell, C shell, Bash, etc.
=
Application Language libraries: C, C++, Java, FORTRAN, etc.
programmer’s ¢
interface
(API) (System call interface (entry points into kernel)
.
kernel:
File Interprocess
management communication
(IPC)
Operating
system Process
management
Primary and
secondary
storage CPU
management scheduler
Device drivers: Mouse driver, printer driver, CD-ROM driver,
k hard disk driver, etc.
Hardware: Wires, capacitors, resistors, transistors, ICs,
mouse, display monitor, keyboard, CPU, RAM,
hard disk, CD-ROM, printer, USB, etc.

FIGURE 1.2 Software architecture of the Linux operating system.

a new device (e.g., mouse, disk drive, or DVD) that you buy and install in your system. The operating
system performs the task of dealing with complicated hardware resources and gives you a comprehen-
sive machine with a simple, ready-to-use interface. This machine allows you to use simple commands
to retrieve and save files on a disk, print files on a printer, and play movies from a DVD. In a sense, the
operating system provides a virtual machine that is much easier to deal with than the physical machine.
You can, for example, use a command such as cp memo Tletter to copy the memo file to the letter file
on the hard disk in your computer without having to worry about the location of the memo and letter files
on the disk, the structure and size of the disk, the brand of the disk drive, and the number or name of the
various drives (hard drive, Solid State Drive (SSD), DVD, etc.) on your system.

1.3 Operating System Services

An operating system provides many ready-made services for users. Most of these services are designed
to allow you to execute your software, both application programs and program development tools, effi-
ciently and securely. Some services are designed for housekeeping tasks, such as keeping track of the
amount of time that you have used the system. The major operating system services therefore provide
mechanisms for the following secure and efficient operations and processes:

* Execution of a program
* Input and output operations performed by programs

4 Linux

* Communication between processes
* Error detection and reporting

* Manipulation of all types of files

* Management of users and security

A detailed discussion of these services is outside the scope of this textbook, but we discuss them briefly
when they are relevant to the topic being presented.

1.4 Character (Command Line) versus Graphical User Interfaces

To use a computer system, you have to give commands to its operating system. An input device, such
as a keyboard, is used to issue a command. If you use the keyboard to issue commands to the operating
system, the operating system has a character user interface (CUI), commonly known as the command
line interface. If the primary input device for issuing commands to the operating system is a point-and-
click device, such as a mouse, a touch screen, or a touch pad, the operating system has a graphical user
interface (GUI). Most, if not all, operating systems have both CUI and GUI, and you can use either.
Some have a command line as their primary interface but allow you to also run software that provides
a GUI. Operating systems such as UNIX and Linux have CUIs, whereas Mac OSX and Microsoft
Windows primarily offer GUIs but have the capability to allow a user to enter text in a terminal screen.
Although Linux comes with a CUI as its fundamental interface, it can just as easily run the GUI-based
software that uses Wayland to provide the GUI interface. We primarily discuss the Linux GUI in
Chapters 17 and W28.

Although a GUI makes a computer easier to use, it gives you an automated setup with reduced flex-
ibility. A GUI also presents an extra layer of software between you and the task that you want to perform
on the computer, thereby making the task slower. That is because this GUI layer of software consumes
a significantly larger part of system resources to maintain its operability. In contrast, a CUI gives you
ultimate, fine-grained control of your computer system and allows you to run application programs any
way you want. A CUT is also more efficient because a minimal layer of software is needed between you
and your task on the computer, thereby enabling you to complete the task faster. The CUI software con-
sumes a significantly smaller part of system resources to maintain its operability. It is also malleable and
gives the user more control. Because many people are accustomed to the graphical interfaces of popular
gizmos and applications, such as IoT devices, high-powered video games, and Web browsers, the char-
acter interface presents an unfamiliar, and sometimes less intuitive, and difficult style of communicating
commands to the computer system. However, computer science students are usually able to meet this
challenge after a few hands-on sessions.

1.5 Types of Operating Systems

Operating systems can be categorized according to the number of users who can use the system at the
same time and the number of processes (executing programs) that the system can run simultaneously.
These criteria lead to three types of operating systems:

» Single-user, single-process system: These operating systems allow only one user at a time to
use the computer system, and the user can run only one process at a time. Such operating sys-
tems are commonly used for PCs. Examples of these operating systems are earlier versions of
Mac OS, DOS, and many of Microsoft’s Windows operating systems.

» Single-user, multiprocess system: As the name indicates, these operating systems allow only a
single user to use the computer system, but the user can run multiple processes simultaneously.
These operating systems are also used on PCs. Examples of such operating systems are OS/2,
Windows XP Workstation, and batch operating systems. Batch processing is still commonly

Overview of Operating Systems 5

used in mainframe computers, and most modern operating systems including UNIX, Microsoft
Windows 10, Linux, and Mac OSX perform some tasks in batch mode. Even smartphone/IoT
operating systems, including Android and iOS, perform tasks in batch mode.

* Multiuser, multiprocess system: These operating systems allow multiple users to use a com-
puter system simultaneously, and every user can run multiple processes at the same time. These
operating systems are commonly used on computers that support multiple users in organiza-
tions such as universities and large businesses. Examples of these operating systems are UNIX,
Linux, Windows 10 Server, z/OS, and z/VM.

Multiuser, multiprocess systems are used to increase resource utilization in the computer system by mul-
tiplexing expensive resources such as the CPU. This capability leads to increased system throughput (the
number of processes finished in a unit of time). Resource utilization increases because, in a system with
several processes, when one process is performing input or output (e.g., reading input from the keyboard,
capturing the event generation of a mouse click, or writing to a file on the hard disk), the CPU can be taken
away from this process and given to another process—effectively running both processes simultaneously
by allowing them both to make progress [one is performing input/output (I/O) and the other is using the
CPU]. The mechanism of assigning the CPU to another process when the current process is performing
I/0 is known as multiprogramming. Multiprogramming is the key to all contemporary multiuser, multi-
process operating systems. In a single-process system, when the process using the CPU performs 1/0O, the
CPU sits idle because there is no other process that can use the CPU at the same time.

Operating systems that allow users to interact with their executing programs are known as interac-
tive operating systems, and the ones that do not are called batch operating systems. Batch systems
are useful when programs are run without the need for human intervention, such as systems that run
payroll database programs. Almost all well-known contemporary operating systems (UNIX, Linux,
Windows, etc.) are interactive. UNIX and Linux also allow programs to be executed in batch mode,
with programs running in the background (see Chapter 10 for details on “background process execu-
tion” in Linux). Multiuser, multiprocess, and interactive operating systems are known as time-sharing
systems. In time-sharing systems, the CPU is switched from one process to another in quick succes-
sion. This method of operation allows all the processes in the system to make progress, giving each
user the impression of sole use of the system. Examples of time-sharing operating systems are UNIX,
Linux, and Windows 10 Server.

|
1.6 The Linux Distribution Families

In the early 1990s, the name Linux referred to a single operating system, but it is now used to refer to
three basic families of distributions, or “flavors,” of operating systems that are offshoots of the origi-
nal in terms of their user interface. In Section 1.8, we give a brief history of some of the most popular
and developmentally influential Linux systems. In Section 1.9, we sketch the very large variety and
distribution-specific implementation of some of the common features in all distributions.

—
1.7 Linux Software Architecture
Figure 1.2 shows a layered diagram for a Linux-based computer system, identifying the system’s soft-

ware components and their logical proximity to the user and hardware. We briefly describe each software
layer from the bottom up.

1.7.1 Device Driver Layer

The purpose of the device driver layer is to interact with various hardware devices. It contains a sepa-
rate program for interacting with each device, including the hard disk driver, DVD or CD-ROM driver,
keyboard driver, mouse driver, touch pad driver, and display driver. These programs execute on behalf

6 Linux

of the Linux kernel when a user command or application needs to perform a hardware-related operation
such as a file read that translates to one or more disk reads. The user doesn’t have direct access to these
programs and therefore can’t execute them as commands.

1.7.2 Linux Kernel

The Linux kernel layer contains the actual operating system. Some of the main functions of the Linux ker-
nel, listed in Figure 1.2, are described in this section. In addition, the kernel performs several other tasks
for fair, orderly, and safe use of the computer system. These tasks include managing the CPU, printers,
and other 1/O devices. The kernel ensures that no user process takes over the CPU forever, that multiple
files are not printed on a printer simultaneously, and that a user cannot terminate another user’s process.

1.7.2.1 Process Management

This part of the kernel manages processes in terms of creating, suspending, resuming, and terminating
them, and maintaining their states. It also provides various mechanisms for processes to communicate
with each other and schedules the CPU to execute multiple processes simultaneously in a time-sharing
system. IPC is the key to the client—server-based software that is the foundation for Internet applications,
including Web browsing (HTTP), File Transfer Protocol (FTP), and remote login [secure shell (SSH)].
The Linux system provides three primary IPC mechanisms/channels:

* Pipe: Two or more related processes running on the same computer can use a pipe as an [PC
channel. Typically, these processes have a parent—child or sibling relationship. A pipe is a tem-
porary channel that resides in the main memory and is created by the kernel, usually on behalf
of the parent process.

* Named pipe: A named pipe, also known as First-In First-Out (FIFO), is a permanent com-
munication channel that resides on the disk and can be used for IPC by two or more related or
unrelated processes running on the same computer.

* Berkeley Software Distribution (BSD) socket: A BSD socket is also a temporary channel that
allows two or more processes in a network (or on the Internet) to communicate, although pro-
cesses on the same computer can also use them. Sockets were originally a part of the BSD
UNIX only, but they are now available on every Linux system. Internet software such as Web
browsers, FTP, SSH, and electronic mailers are implemented by using sockets.

We discuss these mechanisms of IPC in detail in the major component of the book, Linux System
Programming, in particular, Chapter W20 at the book website.

1.7.2.2 File Management

This part of the kernel manages files and directories, also known as folders. It performs all file-related
tasks, including file creation and removal, directory creation and removal, setting access privileges on
files and directories, and maintaining their attributes, such as file size. A file operation usually requires
manipulation of a disk. In a multiuser system, a user must never be allowed to manipulate a disk directly
because it contains files belonging to other users, and user access to a disk poses a security threat. Only
the kernel must perform all file-related operations, such as file removal. Also, only the kernel must
decide where and how much space to allocate to a file.

1.7.2.3 Main Memory Management

This part of the kernel allocates and deallocates RAM in an orderly manner so that each process has
enough space to execute properly. It also ensures that part or all of the space allocated to a process does not
belong to some other process. The space allocated to a process in the memory for its execution is known

Overview of Operating Systems 7

as its address space. The kernel ensures that no process accesses an area of memory that does not belong
to its address space. The kernel maintains areas in the main memory that are free to be allocated to pro-
cesses. The kernel code that performs this task is called the free space manager. When a program is to be
loaded in the main memory, the free space manager allocates adequate space for it, and the loader loads
the program into this space. The kernel also records where all the processes reside in the memory so that,
when a process tries to access main memory space that does not belong to it, the kernel can terminate the
process and give a meaningful message to the user. When a process terminates, the kernel deallocates the
space allocated to the process and puts it back in the free space pool so that it can be reused.

1.7.2.4 Disk Management

The kernel is also responsible for maintaining free and used disk space and for the orderly and fair allo-
cation and deallocation of disk space. It decides where and how much space to allocate to a newly created
file. The kernel code that performs this task is known as the disk storage manager. Also, the kernel per-
forms disk scheduling, deciding which request to serve next when multiple requests for file read, write,
and so on arrive for the same disk.

1.7.3 System Call Interface

The system call interface layer contains entry points into the kernel code. Because the kernel manages
all system resources, any user or application request that involves access to any system resource must be
handled by the kernel code. However, user processes must not be given open access to the kernel code for
security reasons so that user processes can invoke the execution of kernel code. Linux provides several
openings, or function calls, into the kernel, known as system calls. There are numerous system calls that
deal with the manipulation of processes, files, and other system resources. These calls are well tested,
and most of them have been used for several years, so their use poses much less of a security risk than if
any user code was allowed to perform the task.

1.7.4 Language Libraries

A language library is a set of prewritten and pretested functions in a programming language available to
programmers for use with the software that they develop. The availability and use of libraries save time
because programmers do not have to write these functions from scratch. This layer contains libraries for
several languages, including C, C++, C#, Java, Perl, and Python. For the C language, for example, there
are several libraries, including a string library (which contains functions for processing strings, such as
a function for comparing two strings) and a math library (which contains functions for mathematical
operations, such as finding the cosine of an angle).

As we stated earlier in this chapter, the libraries and system call interface form what is commonly
known as the APL In other words, programmers who write software in a language such as C can use in
their code the prewritten functions available in the various C libraries and system calls.

1.7.5 Linux Shell

The Linux shell is a program that starts running when you log on and interprets the commands that you
enter. The most popular shells are the Bourne Again shell (bash, the default shell in all major distribu-
tions of Linux), Bourne shell (sh), C shell (csh), TC shell (tcsh), and Korn shell (ksh). We show the usage
of shell commands in all of the core chapters of this book, and shell scripting in Chapters 12 and 13 for
bash, and Chapters W29 and W30 for the TC shell.

1.7.6 Applications

The application layer contains all the applications (tools, commands, and utilities) that are available
for your use. A typical Linux system contains hundreds of applications; we discuss the most useful and

8 Linux

commonly used applications throughout this textbook. When an application that you’re using needs to
manipulate a system resource (e.g., reading a file), it needs to invoke some kernel code that performs
the task. An application can find the appropriate kernel code to execute in one of two ways: (1) by
using a proper library function and (2) by using a system call. Library calls constitute a higher level
interface to the kernel than system calls, which makes library calls a bit easier to use. However, all
library calls eventually use system calls to begin execution of the appropriate kernel code. Therefore,
the use of library calls in software results in slightly slower execution. A detailed discussion of lan-
guage libraries and system calls is, generally, beyond the scope of this textbook. However, we discuss
and show the use of several library calls and system calls in Chapters 15 and 16, and W20 and W21,
on Linux system programming.

The user can use any command or application that is available on the system. As we mentioned earlier
in this chapter, this layer is commonly known as the AUIL

1.8 Historical Development of the Linux Operating System

Why has Linux achieved the status and position in the marketplace it has now?

In the 21st century, information, more than ever, is the common currency between everyone. Because
Linux, as a multiuser, multiprocessing stream computer operating system that can run on various proces-
sor architectures, processors that are found on very small- to very large-scale computer hardware used
by everyone, it is the premier expediter of information. It is used by casual, individual users on their cell
phones and home computers, to participate in widely dispersed social media, all the way up to multipro-
cessor servers in a cloud configuration at a commercial facility that services international populations.
As such, it can link your personal computing device to the Internet with a standard browser such as
Opera, or Firefox, and

Linux basically runs the Internet because of the servers that it runs on.

And what really is the difference between the major families of Linux we detail in the chapters in this
book? When you say “Linux,” what you can be referring to is either the kernel or a particular distribu-
tion. The kernel and its API, between distributions, or “flavors,” in the Debian, Slackware, and Red
Hat families are very uniform. This also depends on what release of the kernel the particular distribu-
tion, and the version of the distribution, is using. This uniformity is overseen and controlled by Linus
Torvalds and a legion of developers. From our subjective perspective, given what distributions we use
in this book, we describe some of the essential important differences between those distributions in
Section 1.8.3.

As stated in Section 1.1, the people who use the Linux operating system are application developers,
gamers, systems analysts, Web programmers, system administrators, business managers, scientists, aca-
demicians, and people who just want to read their e-mails or make phone calls on their way home from
work.

From its inception in the early 1990s, as a hobbyist project, it owes its historic development to the
Internet, and the developer base that has, and continues, to forge the kernel components, and the entire
suite of the eight features (and more) listed earlier. And then, of course, it is highly endorsed for com-
mercial use. Today’s Linux has an underlying functionality that is complex but easy to learn because
of its GUI and extensible yet easily customized to suit a user’s style of computing. In our opinion, the
desktop GUI is better than the equivalent on Windows or OS X machines. One of the primary keys to
understanding its longevity, and its heterogeneous appeal, is to study the history of its evolution, which
briefly follows next.

1.8.1 Beginnings

Before we describe the evolution of Linux, first we have to ask, “Why is this operating system so user
friendly and accommodating?” Part of the answer is: This ever-evolving operating system that is accepted
and used throughout the world was developed in response to the needs and activities of a heterogeneous

Overview of Operating Systems 9

community of developers and computer users. It grew, changed, and improved because of the work and
cooperation of many diverse, and sometimes opposing, individuals and groups.

Linux has continuously grown, changed, and improved alongside the development of computer
hardware, software applications, networking, and other components of the “computer revolution.” The
Linux project started as a personal and subjective endeavor of Linus Torvalds but, because of Internet-
distributed development by thousands of programmers, has exploded into a universal and generic techni-
cal tool. Thus, its various audiences must have found some basic advantages in this tool—particularly
the largest audience of ordinary, single-computer users. Separating the influences of various user groups
in the development of Linux is difficult, but one thing cannot be disputed: Linus Torvalds oversees it
all. Moreover, because the system is fundamentally an open software system—that is, the source code
is freely distributed among the community of users—its evolution has been shaped to some extent by a
populist mind-set. For example, this development model is expedited in the 21st century by development
resource and source code repositories such as GitHub. See the Web Resources available at the GitHub
site for the printed book for a link to GitHub. The instructions for accessing the book GitHub site are
given in the Preface. And it will continue to be in the future, thanks to the pervasive use of the Internet
in social media life, academic settings, and business and professional settings.

It is the underlying core functionality of Linux that brings together its diverse audiences into a com-
munity not so much in the sociological sense, but more in an independent “Do-It-Yourself,” intellectual
sense. As you delve into the subject matter of this textbook, you might wonder where you fit into the
Linux community and how its functionality might be adapted for your uses. Essentially, it is the style of
your interaction with the computer that will be the most important, invigorating, and critical aspect of
your work with the Linux operating system.

The development of other contemporary operating systems is motivated and informed by completely
different forces and bases (primarily commercialization) than those that motivated the inception and
development of Linux (primarily a user-friendly, text-based operating system). The history of Linux is a
record of how a system should be developed, regardless of how you believe that system should be struc-
tured, how you think it should function (whatever your user perspective), and whom you believe should
control that development.

Table 1.1 describes the three main branches of Linux systems: Debian, Slackware, and Red Hat. We
show them as they were developed from the early 1990s until the time of the writing of this book. The
current representative derived systems we use in this book (Debian 9.1, Ubuntu 16.04, Linux Mint 18.2,
and CentOS 7.4) are shown in the rightmost columns. The approximate dates of the initial and current
development of each of the branches, and distributions, are shown at the top. Also see the Web Resources
listed at the GitHub site for this book for more detailed diagram of the history of many more Linux dis-
tributions, what each was derived from, and their initial release dates.

A very important historical footnote to the development of Linux in its early years was the coding of
the operating system in the high-level programming language C. Written in C, Linux is very portable.
Also, C is much easier to program with than a lower level and processor architecture-specific language,
which is characteristically difficult to program with.

TABLE 1.1
Schematic Linux Timeline in Years
1993 1994 1995 2000 2005 2010 2016 2017
Debian 9.1
Ubuntu 16.04 17.10
Mint 18.2
Slackware 142
SUSE openSUSE 43.2
Red Hat 7.4

CentOS 7.4

10 Linux

1.8.2 The History of Shells

When you install, or in some capacity, use Linux, you must realize that the Gnu’s Not UNIX (Gnu)
utilities the Free Software Foundation contributed to the kernel, such as the various Linux shells, are the
core of the user interface to the kernel.

Development of the shell as a Linux utility parallels the development of Linux and Linux systems
themselves. The first commercially available shell, the Bourne shell, was written by Stephen R. Bourne.
The C shell, written in the late 1970s primarily by Bill Joy, was made available soon after in 2.0 BSD
UNIX. When introduced, it provided a C-program-like programming interface for writing shell scripts.
Following the development of the C shell, the Korn shell was introduced officially in Unix System V,
Release 4, in 1989. Written by David Korn of Bell Laboratories, it included a superset of Bourne shell
commands that had more functionality. It also included some useful features of the C shell. An addi-
tional shell derived from the C shell is the Tenex C (TC) shell. It was written and implemented in the
late 1970s.

In all of the current representative Linux distributions we show in this book, the default shell is
the Gnu bash shell. Bash was written by Brian Fox for the Gnu Project and was first released in 1989.
It is a superset of the Bourne, Korn, and C shells, with several programming and interactive features
that make it more useful for all users. These features include command line editing, unlimited com-
mand history, job control, a larger set of shell functions, and other programming and interactive
advantages.

We discuss the development history of the Linux shell in more detail in Chapter 2.

The major Linux shells have slightly different features and command sets. In this textbook, we discuss
common features and command sets for all Linux shells and versions. Whenever we discuss a feature or
command that is particular to a shell or version, we state that specifically.

If you want to know what shells are available on your Linux system, on the default bash command line,
type more /etc/shells

The output of this command on our Linux Mint system is as follows:

$ more /etc/shells

/etc/shells: valid Togin shells
/bin/sh

/bin/dash

/bin/bash

/bin/rbash

/bin/csh

$

1.8.3 Future Developments

As we see them currently, the following three developments pose the biggest challenge to the Linux
community of developers:

1. Probably the most exciting and challenging current Linux development for all distributions
of Linux focuses on the incorporation of the Zettabyte File System (ZFS) into the kernel,
and having the “boot,” or system disk, use ZFS. ZFS was developed by Sun Microsystems in
the years before its incorporation into the Solaris family in 2006. It is now a kernel-loadable
module on our representative Debian-family systems, Ubuntu and Linux Mint. As a “user
file system,” ZFS does not preclude the use of EXT4. We give a listing of Web Resources at
the GitHub site for this book for open-zfs.org.

2. Another major challenge on the horizon for Linux systems is the further development and
dispersion of systemd in the kernel, most importantly, in the area of container virtualization.
Examples of container virtualization are Linux Containers version C/Linux Containers version
D (LXC/LXD) and Docker. Currently, systemd is a “superkernel” suite of system manage-
ment daemons, API libraries, and utilities, designed as a central management and configuration

http://open-zfs.org

Overview of Operating Systems 11

platform for Linux. systemd is used on a majority of the current implementations and official
releases of the Linux kernel. It is a Linux init system (the process called by the Linux kernel
to initialize the user space during the Linux start-up process and, most importantly, manage all
processes and services afterward), thus replacing the Linux System V and BSD-style init dae-
mon. The name systemd adheres to the convention of making daemons easier to distinguish by
having the letter “d” as the last letter of the filename.

3. Finally, the replacement of the X Window System Protocol by various other software systems,
such as Wayland, promises to yield a smaller, more effective GUI system. Wayland is a protocol
that specifies the communication between a display server (called Wayland compositor) and
its clients, as well as a reference implementation of the protocol in C. We give a listing of Web
Resources at the GitHub site for this book for more information on Wayland.

1.9 A Basic Comparison of Linux System Distributions

As shown in Table 1.1, the general development of Linux system distributions proceeded along three
main branches: Debian, Slackware, and Red Hat. And as seen in the Web Resources diagram, available
at the book GitHub site, at http:/futurist.se, there are a multitude of other distributions, whose history
and specific implementation details run parallel to (or in some cases, diverge from) the three major
branches.

There is a very large variety and distribution-specific implementation of features in all distributions
shown in the Web Resources diagram. Some of these specific distribution implementation differences
are listed, in somewhat of a subjective order on our part, and are briefly described as follows:

1. Whether ZFS can be easily installed and maintained on the system.
2. The version of the kernel used and the specific details of the implementation of the AUL

3. The package management system used in any particular distribution (such as the Advanced
Package Tool (APT) or the Yellow Dog Updater, Modified (YUM)).

4. The variety of application software packages available via the package management system.
5. The approximate number of available precompiled and source packages.

6. Whether packages can be installed with a graphical package management front end (such as the
Software Manager in Linux Mint), and how reliable, extensive, and inclusive its GUI is.

7. The file system organization from the file system root down to the user level.

8. The reliability of the method of maintaining each release, either as a “rolling” or as a stable
upgrade.

9. The device driver base, or what and how many peripheral devices actually work with the
system.

10. The GUI desktop management system(s) available, if the system can be installed by default
with one, and their look and feel (such as Gnome and the K Desktop Environment (KDE)).

11. Instruction set architecture support (such as x86, x86-64, and Advanced RISC Machine
(ARM)).

12. The default file system type and the types of file system that can be readily accommodated
(such as Btrfs, XFS, ZFS, ext2, ext3, ext4, and NFSv4).

13. Availability and version(s) of Gnu compiler collection components (such as Gnu C Compiler
[gee] and Python).

14. Availability of CD/DVD/Universal Serial Bus (USB) live media images, and if it is possible to
“test drive” the system (perhaps even with “persistence”) using one of these.

15. The availability of standard images for the system in popular Virtual Machine Managers (such
as VirtualBox or LXC/LXD).

16. The security system used (SELinux, AppArmor).

http://futurist.se

12 Linux

All of these implementation differences, and many more, present personal choices to the user base.
They allow for the customization of the user experience, given a wide range of use cases available to
users.

1.9.1 Linux System Standardization

Distribution variety and divergence have the drawback that programs, and even commands, working
on one distribution either don’t exist or fail to work on another distribution. This defeats the inherent
strength of user-friendliness of the system itself. Attempts have been made to standardize Linux and
Linux—for example, via the IEEE Portable Operating System Interface (POSIX). This software stan-
dard not only covers Linux but also, in particular, specifies program operation and user interfaces, leav-
ing their implementations to the developer. Several standards have been adopted, and more have been
proposed. For example, adopted POSIX standards specify shell and utility standardization.

By far, the most inclusive and wide-ranging standardization mechanism is the Single UNIX Specification
(SUS). It is a family of standards for computer operating systems, compliance with which is required to
qualify for the name “Unix.” The core specifications of the SUS are developed and maintained by the
Austin Group, which is a joint working group of IEEE, ISO JTC 1 SC22, and The Open Group. See the
listing of Web Resources at the GitHub site for this book in The Open Group for more information.

In addition, the Linux Standard Base (LSB) is a standardization specification protocol that promotes
the compatibility between Linux distributions, by ensuring that compiled applications run on Linux
systems that claim to be in conformance with the LSB. At the time of the writing of this book, LSB
version 5 was the current specification. See the listing of Web Resources at the GitHub site for this book
for LSB.

Summary

An operating system is software that runs on the hardware of a computer system to manage its hardware
and software resources. It also gives the user of the computer system a simple, virtual machine that
is easy to use. The basic services provided by an operating system offer efficient and secure program
execution, I/O operations, communication between processes, error detection and reporting, and file
manipulation.

Operating systems are categorized by the number of users that can use a system at the same time and
the number of processes that can execute on a system simultaneously: single-user, single-process; single-
user, multiprocess; and multiuser, multiprocess operating systems. Furthermore, operating systems that
allow users to interact with their executing programs (processes) are known as interactive systems, and
those that do not are called batch systems. Multiuser, multiprocess interactive systems are known as
time-sharing systems, of which Linux is a prime example. The purpose of multiuser, multiprocess sys-
tems is to increase the utilization of system resources by switching them among concurrently executing
processes. This capability leads to higher system throughput, or the number of processes finishing in
unit time.

To use a computer system, the user issues commands to the operating system. If an operating system
accepts commands via the keyboard, it has a CUL If an operating system allows users to issue commands
via a point-and-click device such as a mouse, it has a GUI. Although Linux comes with a CUI as its basic
interface, it can run software based on the X Window System (Project Athena, MIT) that provides a GUL
Most Linux systems now have both interfaces. Mac OS X (Darwin), running on Apple products, is the
most well-known GUI-based Linux system.

A computer system consists of several hardware and software components. The software components
of a typical Linux system consist of several layers: applications, shell, language libraries, system call
interface, Linux kernel, and device drivers. The kernel is the main part of the Linux operating system
and performs all the tasks that deal with allocation and deallocation of system resources. The shell and
applications layers contain what is commonly known as the AUI. The language libraries and the system
call interface contain the API.

Overview of Operating Systems 13

The historical development of Linux is characterized by an open systems approach, whereby the source
code was freely distributed among users. Development of many versions of Linux progressed along three
main branches. Compatibility releases of various versions have been aimed at standardizing the system.
The POSIX and the Single UNIX Specification are related standardization effort. Three exciting and
challenging new developments in the future of Linux systems, as we see them, are as follows:

1. Incorporation of the Zettabyte File System (ZFS) into the kernel as the root file system
2. Further development and dispersion of systemd and its “superkernel” functionality
3. Replacement of the X Window System Protocol with the Wayland Protocol.

Questions and Problems

1. What is an operating system?

2. What are the three types of operating systems? How do they differ from each other?
3. What is a time-sharing system? Be precise.
4

. What are the main services provided by a typical contemporary operating system? What is the
basic purpose of these services?

9,1

. List one advantage and one disadvantage each for the CUI and the GUL

6. What is the difference between a CUI and a GUI? What is the most popular GUI for Linux
systems? Where was it developed?

7. What comprises the API and the AUI?

8. What is an operating system kernel? What are the primary tasks performed by the Linux
kernel?

9. What is a system call? What is the purpose of the system call interface?

10. If you access a Linux system with the ssh command, write down the exact step-by-step pro-
cedure you go through to log on and log off. Include as many descriptive details as possible
in this procedure so that if you forget how to log on, you can always refer back to this written
procedure.

11. What is a shell? Name the most popular Linux shells. Log on to your Linux computer system
and note the shell prompt being used.

12. How can you tell which variant from the main branches of Linux (see Table 1.1) is being used
on the computer system that you log on to?

13. If you were designing a Single UNIX Specification standard, what would you include in it? You
might want to research the already adopted Single Linux Specification, Release 4 standards,
presented briefly earlier in the chapter and online, before answering this question.

14. What were the names of some of the systems that were the immediate predecessors of Linux?
Where were these predecessors, and Linux itself, initially developed, and by whom?

15. Name the major versions and the three main branches of Linux development. Which is the
commercial branch?

16. What three important characteristics of Linux during its early development helped popularize
it? Explain how these characteristics apply to you as a Linux user, whatever your perspective.

17. Name the two most popular Linux systems that are the basis of most Linux systems. Where
were they developed?

18. Trace the history of Linux by browsing the Web. How many Linux systems have been devel-
oped so far? How many non-Linux systems have been developed? What is the most popular
Linux system for PCs? Why do you think it is so popular?

19. Name five popular members of each of the three major Linux families. What is the name of
your Linux system, and which major family does it come from?

14 Linux

Advanced Questions and Problems

20. According to what your personal use case for both the hardware and the software of a Linux sys-
tem would be, reprioritize the listing of implementation discriminators provided in Section 1.9,
in a new list according to what you think would be most critical when choosing a particular
distribution and version of Linux. In preparation for answering this question, define, in your
own terms, what each of the 15 presented implementation discriminators in Section 1.9 is, and
how you would situate each of them in a new, reprioritized list according to your own needs.
For example, if you want to use your hardware and Linux system exclusively to stream media
on a home network, which of the presented list items would be most important to you, and in
terms of a newly prioritized listing?

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.
CRC Press e-Resource: https://www.crcpress.com/9781138710085.
Authors’ GitHub: https://github.com/bobk48/linuxthetextbook.

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

2

“Quick Start” into the Linux Operating System

OBJECTIVES

To introduce the Linux character user interface (CUI) and show the generic structure of Linux
commands

To describe how to connect and log on to a computer running the Linux operating system
To explain how to manage and maintain files and directories

To show where to get online help for Linux commands

To demonstrate the use of a beginner’s set of utility commands

To describe what a Linux shell is

To briefly describe some commonly used shells

To cover the following basic commands and operators:

alias, biff, cal, cat, cd, chsh, cp, csh, echo, exit, hostname, Tlogin, Tlogout,
Tp, 1pr, 1s, man, mesg, mkdir, more, mv, passwd, PATH, pg, pwd, rm, rmdir, set,
ssh, su, sudo, talk, telnet, unalias, uname, whatis, whereis, who, whoami,
write

2.1 Introduction

To start working productively in Linux, a beginner needs to know eight sequential topics in the order
presented as follows:

1.

How to type a syntactically correct command on the Linux command line. One of the most
useful modes of interaction with the Linux system uses text-based, typed commands.

. How to log in and log out of a computer running Linux, using one of the standard methods we

show. Linux allows users to enter the operating system autonomously, do a combination of text-
and graphics-oriented operations, and exit gracefully.

. How to maintain and organize files in the file structure. Creating a tree-like structure of folders

(also called directories) and storing files in a logical fashion in these folders is critical to
working efficiently in Linux.

. How to get help on commands and their usage. In the keyboard entry, command-based character

user interface (CUI) environment, being able to find out, in a quick and easy way, how to use a
command by typing it on the keyboard correctly, is imperative to working efficiently.

. How to execute a small set of essential utility commands to set up or customize your working

environment. Once a beginner is familiar with the right way to construct file maintenance
commands, adding a set of utility commands makes each session more productive.

. The essential ways to work with Linux shells, what they are, and how to find out what shell is

running when you log in.

7. Ways to change your shell and what the shell environmental variables are.

. What shell metacharacters are.

15

16 Linux

To use this chapter successfully as a springboard into the remainder of the book, you should carefully
read, follow, and execute the instructions and command line sessions we provide, in the order presented.
Each section in this chapter, and every subsequent chapter as well, builds on the information that
precedes it. They will give you the concepts, command tools, and methods that will enable you to work
and program using the Linux operating system.

Throughout this edition of the book, we illustrate everything using four representative Linux dis-
tributions: Debian-family Debian, Ubuntu, Linux Mint, and RedHat Enterprise Linux (RHEL)-family
CentOS. By default, we present command line sessions and their output as seen on Debian-family Linux
Mint. When a command or its output is significantly different on one of the representative systems
from the default, we note this. A vast majority of commands and their output are uniform across the
representative systems.

In all chapters, the major commands we want to illustrate are first defined in a “syntax box,” with an
abbreviated syntax description, which will clarify general components of those commands. The syntax
box format and their descriptions are as follows:

Syntax: The exact syntax of how a command, its options, and its arguments are correctly typed
on the command line

Purpose: The specific purpose of the command
Output: A short description of the results of executing the command

Commonly used options/features: A listing of the most popular and useful options and option
arguments

2.2 The Structure of a Linux Command

Linux can very efficiently be used with a graphical user interface (GUI), especially by novices. But it
is also essential, at critical times, to use a text-based CUIL Therefore, correctly typed syntax of Linux
commands ensures subsequent correct execution of commands on all representative systems.

After a user successfully logs on to a Linux computer, a shell prompt, such as the $ character, appears on
the screen. The shell prompt is simply a message from the computer system to say that it is ready to accept
keystrokes on the command line that directly follows the prompt. The general syntax, or structure of a single
Linux command (sometimes called a simple command), as it is typed on the command line is as follows:

$ command [[-]option(s)] [option argument(s)] [command argument(s)]

where

$ is the command line or shell prompt from the computer;

anything enclosed in [] is not always needed;

command is the name of the valid Linux command for that shell in lowercase letters;
[-option(s)] is one or more modifiers that change the behavior of command;

[option argument(s)] is one or more modifiers that change the behavior of [-option(s)];
[command argument(s)] is one or more objects that are affected by command.

Note the following seven essentials:

1. A space separates command, options, option arguments, and command arguments, but no
space is necessary between multiple option(s) or multiple option arguments.

2. The order of multiple options or option arguments is irrelevant.
3. A space character is optional between the option and the option argument.
4. Always press the <Enter> key to submit the command for interpretation and execution.

“Quick Start” into the Linux Operating System 17

5. Options may be preceded by a single hyphen - or two hyphens, --, depending on the form of
the option. The short form of the option is preceded by a single hyphen, the long form of the
option is preceded by two hyphens. No space character should be placed between hyphen(s) and
option(s).

6. A small percentage of commands (like whoami) take no options, option arguments, or com-
mand arguments.

7. Everything on the command line is case sensitive!

Also, it is possible and very common to type multiple Linux commands (sometimes called compound
commands, to differentiate them from simple commands) on the same command line, before pressing
the <Enter> key. The components of a multiple Linux command are separated with input and output
redirection characters, to channel the output of one into the input of another. We show this in detail in
Chapter 9.

The following are examples of single Linux commands typed on the Linux command line after the $
prompt and illustrate some of the variations of the correct syntax for a single command that may have
options and arguments:

$1s
$ 1s -1a
$ 1s -1Ta m*

$ 1pr -Pspr -n 3 proposal.txt

The first example contains only the command. The second contains the command 1s and two options,
1 and a. The third contains the command 1s, two options, 1 and a, and a command argument, m*.
The fourth contains the command Tpr, two options, P and n, two option arguments, spr and 3, and a
command argument, proposal.txt.

You should also use the following rule of thumb: If the command executes properly, then you are
returned to the shell prompt; if it does not execute properly, then you get an error message displayed
on the command line, and then you are returned to the shell prompt. For example, if you type xy on
the command line and then press <Enter>, usually you will get an error message saying that no such
command can be found, and you are returned to the shell prompt so that you can keystroke a valid
command.

This rule of thumb does not ensure that what you wanted to achieve by typing the syntactically correct
command on the command line will be achieved. That is, you could execute a command and get no error
messages. But the command may not have done the things you wanted it to do, simply because you used
it with the wrong options or command arguments!

In addition, the following Web link is to a site that allows you to type in a single or multiple Linux
command, and get a verbose explanation of the components of that command:

https://explainshell.com/

In-Chapter Exercises

1. Type the following commands on your Linux system’s command line and note the results.
Which ones are syntactically incorrect? Why? (The Bash prompt is shown as the $ character in
each, and we assume that filel and file2 exist)

$ 1a -1s

$ cat

$ more -q filel
$ more file2

$ time

$ 1sblk-a

2. How can you differentiate a Linux command from its options, option arguments, and command
arguments?

https://explainshell.com/

18 Linux

3. What is the difference between a single Linux command and a multiple Linux command, as
typed on the command line before pressing <Enter>?

4. If you get no error message after you enter a Linux command, how do you know that it actually
accomplished what you wanted it to?

2.3 Logging On and Logging Off

How can you log on to a Linux computer and then gracefully leave?
Using one of these general ways, or a hybrid, combined version of them:

» Stand-alone: Use a stand-alone system, where Linux is the only operating system on the
hardware.

* Remote: Connect to a remote computer running Linux from a computer running Linux or
another operating system.

* Virtual: Start Linux as a guest operating system in a virtual environment, such as Linux
Containers version C/Linux Containers version D (LXC/LXD) containers or VirtualBox,
while another operating system is the host system on the hardware of the computer.

These general ways are the first step a user takes in a typical Linux session, gaining access to a Linux
system properly, and in a secure and autonomous way. Autonomous with respect to an individual user,
the operating system is seen as a virtual, concurrent, and persistent environment. It provides services
“as if”” she were the only user, is able to do many operations at the same time, and ensures that those
operations are securely preserved over time.

A more detailed description of these ways is as follows:

1. Stand-alone: This way, the most common case and the methodology we deploy in the rest of
this book involves sitting at a computer that can function completely on its own. This does not
mean that the stand-alone computer is not hooked up to a local area network (LAN), intranet,
or the Internet.

Rather, the users’ connection to Linux is dedicated to a single user at a time (or possibly
many autonomous users that log on to the same system individually at different times) sitting at
the computer and logging on to use Linux on that hardware platform exclusively.

2. Remote: There are several variations of using this way. Here are just two possible scenarios:

* You sit at a computer that acts like the traditional terminal connected to a mainframe
computer. This could also be a thin client (a minimally configured and capable device)
connected to a server. It is connected by a high-speed communication link to another single
computer or multiple computers that are interconnected with a LAN or the Internet. At the
terminal, and the console or command window that appears on its screen, your interface
with the operating system runs on a single, or even multiple, other computer(s). This is
a shared resource method, where several users on many different terminals can share a
single Linux system.

* Yous sit at a stand-alone computer or device, and via software such as PuTTY, Secure Shell
(SSH), or SSH X Windows forwarding (a variant of Transmission Control Protocol (TCP)
port forwarding), you connect to another system over a high-speed telecommunications
link. The PuTTY or SSH software then becomes your graphical connection, allowing
you to log on and use a remote computer or system that is running Linux. This is usually
a shared resource method, where several users on many different remote computers can
share a single Linux system. A variation of this is using a virtual private network and its
interconnection software, from a mobile device, such as a cell phone or tablet, to log onto
a system remotely via the Internet.

“Quick Start” into the Linux Operating System 19

3. Virtual: You have a Linux or UNIX-like operating system, such as OS X, or another operating
system installed and running the computer you are sitting in front of, and you have installed a
virtual environment such as VirtualBox on that computer. Then, when you want to use a Linux
system, you simply switch environments so that the Linux system in the virtual environment is
what you are using to interface with the computer hardware. Another variation of this is using
a cloud-based operating system that exists, and is running as an “instance,” on a server that you
legitimately log into via a Web browser.

We do not cover virtual connections in this chapter. Butin Chapter W23, titled “Virtualization
Methodologies,” at the book website, we cover virtual environments such as LXC/LXD and
VirtualBox. We illustrate the ways of connecting to virtual machines in that chapter.

In-Chapter Exercises

5. Define autonomy in the context of a single user’s login to a Linux system.

6. Which of the abovementioned three ways do you use to gain access to your Linux system? Is it
a way not shown previously? Is it a hybrid way of the ones shown previously and/or something
not shown?

Write a brief description of exactly how you login to your Linux system.

7. Explain in your own words what the difference is between a stand-alone, remote, and virtual
login to a Linux system?

8. Describe the exact nature and general hardware configuration of a “thin client.”

In the following subsections, we present three practical, useful, easy, and popular techniques of
connecting and logging on and off a computer running the Linux system, as outlined in this section.
The three techniques of connecting and logging into a Linux system we show are as follows:

1. Stand-alone login and logout.

2. Remote login via the PuTTY program from a computer running Microsoft Windows to a Linux
computer.

3. Remote login via an SSH client from a Linux client computer to another remote Linux host
computer.

What is common to all three of these techniques is that your first task is to identify yourself correctly
as a valid and autonomous user to the Linux system. This is the primary method of keeping computer
systems secure. Doing so involves typing in a valid username, or login name, consisting of a string of
valid characters. You then have to type in a valid password for that username.

Before proceeding with the remainder of this chapter, you should determine which one of the preceding
three ways you will use to log in to a Linux system, and then select from the three following sections that
give details on how to use that way correctly. If you cannot determine this on your own, get help from
your instructor or the system administrator at your site. Be aware that you may have to use some form of
hybrid way of the three ways we show, to log in and out of your Linux system.

2.3.1 Stand-Alone Login Connection to Linux

The login and logout procedures shown in this section are standard and vary only slightly between
all Linux and NIX-like systems. This way assumes that someone has either logged out gracefully or
rebooted the computer before you got to it, but has not shutdown the hardware or operating system of
the computer.

In this section, we also make these basic assumptions:

1. That you are logging on to an already-running computer with Linux as the operating system.

20 Linux

2. That you are physically sitting in front of that Linux computer.

3. As previously stated, when you log in, identifying yourself to the Linux system is your first
task. Doing so involves typing in a valid username, or login name, consisting of a string of valid
characters. Then you type in a valid password for that username.

Be aware that when typing on the command line, Linux is case sensitive!

2.3.1.1 Graphical Login and Logout Procedures

A login window should appear on the screen. In the login window, your username should appear in the
username field. For example, in one of our representative Linux systems, Linux Mint, from the username
choices presented to us, we chose a username graphically by clicking on it with the mouse. Also found
in the login window, as seen in Figure 2.1, are graphical icon choices that allow you to change keyboard
layout, country, and desktop system to be used during this login session. The lambda character in the
upper right of Figure 2.1 allows desktop system changes and presents choices based upon what desktop
system environments are available or installed.

A password entry field appears on the screen as well, as seen in Figure 2.1.

In the password field of the window, type in your password. Finally, click on the OK button as seen in
Figure 2.1, and you will be logged in.

To gracefully terminate your login session with a computer running Linux Mint, for example, make
the Mint Menu choice Log out. On many systems, this does not restart the computer or shut it down, it
only logs you out of the system.

In-Chapter Exercises

9. Describe all of the components of the GUI login window on your Linux system, including
things such as the ones shown in Figure 2.1.

10. When you logout of your Linux system, does the hardware reboot? What would be the security
advantage of having the hardware reboot every time a single user logs off the system? The
assumption in this question is that this applies to a stand-alone system, where only one user can
be logged into the operating system and hardware at a given time.

2.3.2 Connecting via PuTTY from a Microsoft Windows Computer

In this section, we make these basic assumptions:

1. That you are sitting at a computer running Microsoft Windows and trying to connect and log
on to a computer running the Linux operating system.

2. On your Microsoft Windows computer, you are connected to the Internet or an intranet LAN
where you know the Internet Protocol (IP) address of the Linux computer you want to log on
to. On an intranet, this is something like 192.168.0.13.

f = 2

‘ hassan hassan

|

| I |
Please enter your password OK J

FIGURE 2.1 Linux Mint password entry window.

“Quick Start” into the Linux Operating System 21

3. You have downloaded and installed the PuTTY program on your Microsoft Windows computer,
or the system administrator has done so for you. The details of downloading this software and
installing it are not given here. At the time of writing, the most current download site for the
PuTTY program was

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
4. You are using PuTTY to make an SSH connection to a Linux computer.

5. You know a valid username and password pair that will allow you to log in to the Linux
computer.

2.3.2.1 Login and Logout Procedures

Once you execute the PuTTY program, you use the valid username/password pair, and then you can type
commands into a console window or terminal screen. What you type in is shown as follows in bold text
and is always followed by pressing the <Enter> key on the keyboard.

To begin, on the Microsoft Windows computer, double click on the PUTTY program icon, or from the
Start Menu>Programs submenu, choose PuTTY. When the PUTTY program first launches, the PuTTY
configuration dialog window opens on screen, similar to Figure 2.2.

From the PuTTY configuration window, you can modify several of the parameters that control your
interactive session with a remote system. Almost all of these parameters can be left at their defaults. The
only two things that most users will need to do in this configuration window is type the host name (or IP
address) of the Linux computer they are trying to connect and log in to (in Figure 2.2, this is 192.168.0.13),
and click the protocol button for SSH, as seen in Figure 2.2. The port number is automatically set at 22 if
you click on the SSH button for “Connection type.” You need to know what the host name or IP address

B PuTTY Configuration
Category:
(=} Session ‘ Basic options for your PuTTY session
_Logging Specify the destinati tt tt
& Terminal pecify the destination you want to connect to
- Keyboard Host Name (or IP address) Port
Bell 192.168.0.13 |[22
-Features o o .
= Window onnection type: _ _
- Appearance (ORaw () Telnet ()Riogin @ SSH () Serial
~Behav109 ! Load, save or delete a stored session
-~ Translation
- Selection Saved Sessions
- Colours ’ .
= Connection -
Data Default Settings ’ Load ‘
-Proxy ==
- Telnet ’») va‘i ﬁ_‘
- Rlogin ——
& SSH ’ Delete |
- Serial
Close window on exit:
(OAways (O)Never (® Onlyon clean exit
P AEout ’ 6;;(en ‘ [Can;:el

FIGURE 2.2 PuTTY configuration window.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

22 Linux

of the Linux computer you want to log on to is. Then, click on the Open button, and a console window
will open on screen, allowing you to log in to the Linux computer.

As previously stated, in the process of logging in, identifying yourself to the Linux system is your
first task. Doing so involves typing in a valid username or login name, consisting of a string of valid
characters. You then type a valid password for that username. There are both valid and invalid characters
that you can use in both your username and password. See your system administrator or instructor to
find out what these characters are on the Linux system you want to log in to, if they have not already told
you what they are.

In response to the Togin: prompt, you type in your username on the Linux system, and then press
<Enter> on the keyboard. In our case, the username is bob. Remember that Linux is case sensitive.
When the Password: prompt appears, type your password on the Linux system and then press <Enter>
on the keyboard.

In-Chapter Exercise

11. What are the constraints on what your password can be on your Linux system, and what is the
expiration period set at (if any), as imposed by the system administrator on your Linux system?
That is, number of characters allowed, 6 months, every term, etc.

To terminate your connection type Togout at the command line prompt and then press <Enter> on the
keyboard or on a blank line press <Ctr1+D>—that is, hold down the <Ctr1> and D keys on the keyboard
at the same time. Logging out is somewhat system dependent as well as being an operation that can be
tailored to a specific installation of Linux by the local system administrator. In the Bourne again shell
(Bash), which is the default shell used on most Linux systems, typing the Togout command is the default
way of leaving the system gracefully.

If you use the Bash, Bourne, or Korn shell, holding down <Ctr1+D> or typing exit will accomplish the
same thing. You will then be logged off the system, the current PuTTY session will end, and all PuTTY
windows will close.

If you started a new shell during your session and didn’t exit that shell before logging off, Linux will
prompt Not Togin shell, and you will not be able to log off immediately. In this case, press <Ctrl1+D>
and the new shell will terminate. Also, if you started more than one shell and haven’t exited from those
shells before you log off, you will have to use <Ctr1+D> to terminate each shell individually. On some
systems, you type exit on the command line to terminate a shell process. In either case, you will then
be able to use the logout procedure previously described to leave the system.

2.3.3 Connecting via an SSH Client between Linux Machines

This way allows a user on one Linux computer to remote log in and log out of another Linux computer
using the SSH protocol. As further detailed in Chapter 11, Section 8.5, SSH is an encrypted channel of
communication between a client computer and a server on a LAN or the Internet. The computer you are
using to log into another computer with is known as the SSH client. The computer you want to log into
with SSH is known as the server or the host system.

Before this way can be used, both client and server systems must be able to talk to each other over the SSH
channel. In other words, the server system must have the SSH server-side software package installed on it.
This is usually not the default on most Linux systems, so you have to follow the installation instructions
given for your particular flavor of Linux to accomplish this. On our Debian-family Linux Mint system, we
were able to install the server-side software with the following package management command:

$ sudo apt-get install openssh-server

The client-side SSH software is installed by default on most Linux system implementations, including
all of the representative Linux systems we show in this book. See Appendix A for information on how to
use the package management system on any of our representative Linux systems.

“Quick Start” into the Linux Operating System 23

Also, as previously stated, the user must know a valid username/password pair on the remote server
system to be able to log in to the remote system!

We show three possible methods that can be used in this dialog. First, if the user has previously already
logged into the host successfully from the client before, and the authentication keys have not changed.
Second, if the user has never logged into the host successfully before from the client. Third, if the user
has logged into the host before, but the authentication key on the host has changed since the last success-
ful login. These are practical situations one might encounter any time you use this remote login method.

2.3.3.1 Login and Logout Procedures

What the user types in is shown in bold text:
Method 1. Having logged in before successfully:

$ ssh 192.168.0.8
bob@192.168.0.8's password: www
Welcome to Linux Mint 18.1 Serena (GNU/Linux 4.4.0-45-generic x86_64)

* Documentation: https://www.Tinuxmint.com
Last login: Mon Jan 9 07:25:18 2017 from 192.168.0.25
bob@bob-PowerEdge-T110 ~ $ Execute Command Line Linux Commands
bob@bob-PowerEdge-T110 ~ $ logout
Connection to 192.168.0.8 closed.
$

Method 2. Having never logged in before:

$ ssh 192.168.0.8

The authenticity of host '192.168.0.8 (192.168.0.8)' can't be established. ECDSA
key fingerprint is SHA256:uZpqi4U6uBN5SOBVFRbgb15HspmV3eZAw/nUvPBTS5I.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.8' (ECDSA) to the Tist of known hosts.
bob@192.168.0.8's password: www

Welcome to Linux Mint 18.1 Serena (GNU/Linux 4.4.0-45-generic x86_64)

* Documentation: https://www.linuxmint.com
Last login: Sat Dec 24 16:54:10 2016 from 192.168.0.6
bob@bob-PowerEdge-T110 ~ $ Execute Command Line Linux Commands
bob@bob-PowerEdge-T110 ~ $ Tlogout
Connection to 192.168.0.8 closed.
$

Method 3. Logged in before but host key has changed:

$ ssh 192.168.0.8

[ddddddddddddddddddddddddddddddddddedddddadddddddaddddddddddd

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
[ddddddddddedddededddddddddedddededdeddddddedddadddeddddddeddd

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!

It is also possible that a host key has just been changed.

The fingerprint for the ECDSA key sent by the remote host is
43:e8:cf:33:d5:ed:dd:05:d9:e9:a5:9d:d3:18:1d:2b.

Please contact your system administrator.

Add correct host key in /home/bob/.ssh/known_hosts to get rid of this message.
Offending ECDSA key in /usr/home/bob/.ssh/known_hosts:2

ECDSA host key for 192.168.0.8 has changed and you have requested strict checking.
Host key verification failed.

$ cd /home/bob/.ssh

$ rm known_hosts

$ cd

https://www.linuxmint.com
https://www.linuxmint.com

24 Linux

$ ssh 192.168.0.8

The authenticity of host '192.168.0.8 (192.168.0.8)' can't be established.
ECDSA key fingerprint is 43:e8:cf:33:d5:ed:dd:05:d9:e9:a5:9d:d3:18:1d:2b.
No matching host key fingerprint found in DNS.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.8' (ECDSA) to the Tist of known hosts.
bob@192.168.0.8's password: www

Last login: Sat Dec 24 16:54:10 2016 from 192.168.0.6

Output truncated...

bob@bob-PowerEdge-T110 $ Execute Command Line Linux Commands
bob@bob-PowerEdge-T110 $ Togout

Connection to 192.168.0.8 closed.

$

In all of the three methods, the user is assumed to have an account with the same username, and possibly
password, on both client and server systems.

In method 2, the keys are generated on host and client after the user types in yes and presses <Enter>.

In method 3, after the first failed attempt to establish an SSH connection, the error message indicates
that the authentication key has changed on the host. A very helpful component of the error message is
the instruction:

Add correct host key in /home/bob/.ssh/known_hosts to get rid of this message.

Offending ECDSA key in /usr/home/bob/.ssh/known_hosts:2

So a removal of the offending key in the file /home/bob/.ssh/known_hosts on the client machine is
done by deleting that file. Then a new key is generated, an exchange can take place, and the login can
proceed.

The line in all three methods that reads “Execute Command Line Linux Commands” is where the user
types in any of the valid Linux commands we show in this chapter and throughout the rest of this book.
Finally, after typing logout, the user cuts the SSH channel connection and is returned to the command
line prompt of the local client system.

In-Chapter Exercises

12. Use ssh to log into another machine on your LAN or intranet that can accept ssh logins as
a server, and that you have access to with a username and password. Which of the earlier
methods in this section did you have to deploy, on first ssh login, and on every subsequent ssh
login, to that host?

13. Can you log into a system using ssh that is a stand-alone (or dedicated) system, and that you
are already logged into? Remember that a stand-alone system can be connected to an intranet,
LAN, or the Internet, but as we define it, only one user (out of a population of possibly many
users) can be logged into it at any given time. Also, the assumption here is that the ssh client
and server software is installed on that system. Why would you want to do this?

It is also interesting that some virtual connections, such as to Docker containers, are not configured to
easily do this via a Dynamic Host Configuration Protocol (DHCP) server-assigned IP address on a LAN.

I
2.4 File Maintenance Commands and Help on Linux Command Usage

After your first-time login to a new Linux system using one of the three ways we described in the previous
section, one of your first actions will be to construct and organize your workspace environment and the
files that will be contained in it. The operation of organizing your files according to some logical scheme
is known as file maintenance. A logical scheme used to organize your files might consist of creating
bins for storing files according to the subject matter of the contents of the files or according to the dates
of their creation. In the following sections, you will type file creation and maintenance commands that

“Quick Start” into the Linux Operating System 25

produce a structure as shown in Figure 2.3. Complete the operations shown in the following sections in
the order they are presented, to get a better overview of what file maintenance really is. Also, it is critical
that you review what was presented in Section 2.2 regarding the structure of a Linux command so that
when you begin to type commands for file maintenance, you understand how the syntax of what you are
typing conforms to the general syntax of any Linux command.

2.4.1 File and Directory Structure

When you first log in, you are working in the home directory, or folder, of the autonomous user associ-
ated with the username and password you used to log in. Whatever directory you are presently in is
known as the current working directory, and there is only one current working directory active at any
given time. It is helpful to visualize the structure of your files and directories using a diagram. Figure 2.3
is an example of a home directory and file structure for a user named bob. In this figure, directories
are represented as parallelograms and plain files (e.g., files that contain text or binary instructions) are
represented as rectangles. A pathname, or path, is simply a textual way of designating the location of a
directory or file in the complete file structure of the Linux system you are working on. For example, the
path to the file myfile2 in Figure 2.3 is /home/bob/myfile2. The designation of the path begins at
the root (/) of the entire file system, descends to the folder named home, and then descends again to the
home directory of the user named bob.

As shown in Figure 2.3, the files named myfile, myfile2, and renamed_f1ile are stored under or in
the directory bob. Beneath bob is a subdirectory named first. In the following sections, you will create
these files, and the subdirectory structure, in the home directory of the username that you have logged
into your Linux system with.

In-Chapter Exercise

14. Type the following two commands on your Linux system:

$cd/
$1s

i I(root) ;

¥

/=7

TN

myfile2 first myfile
renamed_file

FIGURE 2.3 Example directory structure.

26 Linux

Similar to Figure 2.3, sketch a diagram of the directories and files whose names you see listed as the
output of the second command. Save this diagram for use later.

2.4.2 Viewing the Contents of Files

To begin working with files, you can easily create a new text file by using the cat command. The syntax
of the cat command is as follows:

Syntax:

cat [options] [file-Tist]
Purpose: Join one or more files sequentially or display them in the console window
Output: Contents of the files in file-Tist displayed on the screen, one file at a time
Commonly used options/features:

+E Displays $ at the end of each line

-n Puts line numbers on the displayed lines

-- help Displays the purpose of the command and a brief explanation of each option

The cat command, short for concatenate, allows you to join files. In the example, you will join what
you type on the keyboard to a new file being created in the current working directory. This is achieved
by the redirect character >, which takes what you type at the standard input (in this case the keyboard)
and directs it into the file named myfile. You can consider the keyboard and the stream of information it
provides as a file. As stated in Section 2.2, this usage involves the command cat but no options, option
arguments, or command arguments. It simply uses the command, a redirect character, and a target, or
destination, named myfile, where the redirection will go.

This is the very simplest example of a multiple command typed on the command line, as opposed to a single
command, as shown and briefly described in Section 2.2. In a multiple command, you can string together
single Linux commands in a chain with connecting operators, such as the redirect character shown here.

$ cat > myfile

This is an example of how to use the cat command to add plain text to a file
<Ctrl1+D>

$

You can type as many lines of text, pressing <Enter> on the keyboard to distinguish between lines in the
file, as you want. Then, on a new line, when you hold down <Ctrl1+D>, the file is created in the current
working directory, using the command you typed. You can view the contents of this file, since it is a plain
text file that was created using the keyboard, by doing the following:

$ more myfile
This is an example of how to use the cat command to add plain text to a file

$

This is a simple example of the syntax of a single Linux command.
The general syntax of the more command is as follows:

Syntax:

more [options] [file-Tist]
Purpose: Concatenate/display the files in file-1ist on the screen, one screen at a time
Output: Contents of the files in file-Tist displayed on the screen, one page at a time
Commonly used options/features:

+E/str Starts two lines before the first line containing str

-nN Displays n lines per screen/page

+N Starts displaying the contents of the file at line number n

“Quick Start” into the Linux Operating System 27

The more command shows one screenful of a file at a time by default. If the file is several pages long, you
can proceed to view subsequent pages by pressing the <Space> key on the keyboard or by pressing the
Q key to quit. Linux has a command named pg that accomplishes the same thing as the more command.

In-Chapter Exercise
15. Use the cat command to produce another text file named testfile. Then join the contents of

myfile and testfile into one text file, named myfile3, with the cat command.

2.4.3 Creating, Deleting, and Managing Files

To copy the contents of one file into another file, use the cp command. The general syntax of the cp
command is as follows:

Syntax:
cp [options] filel file2
Purpose: Copy filel to file2; if file2 is a directory, make a copy of filel in this directory
Output: Copied files
Commonly used options/features:
-i If destination exists, prompt before overwriting
-p Preserves file access modes and modification times on copied files
-r Recursively copies files and subdirectories

For example, to make an exact duplicate of the file named myfile, with the new name myfile2, type the
following:

$ cp myfile myfile2
$

This usage of the cp command has two required command arguments. The first argument is the source
file that already exists and which you want to copy. The second argument is the destination file or the
name of the file that will be the copy. Be aware that many Linux commands can take plain, ordinary,
or regular files as arguments, or can take directory files as arguments. This can change the basic task
accomplished by the command. It is also worth noting that not only can file names be arguments but
pathnames as well. This changes the site or location, in the path structure of the file system, of operation
of the command.

To change the name of a file or directory, you can use the mv command. The general syntax of the mv
command is as follows:

Syntax:
mv [options] filel file2
mv [options] file-1l1ist directory

Purpose: First syntax: Rename filel to file2
Second syntax: Move all the files in file-Tist to directory
Output: Renamed or relocated files
Commonly used options/features:
-f Forces the move regardless of the file access modes of the destination file
-i Prompts the user before overwriting the destination

In the following usage, the first argument to the mv command is the source file name, and the second
argument is the destination name.

28 Linux

$ mv myfile2 renamed_file
$

It is important at this point to notice the use of spaces in Linux commands. What if you obtain a file
from a Windows 10 system that has one or more spaces in one of the file names? How can you work with
this file in Linux? The answer is simple. Whenever you need to use that file name in a command as an
argument, enclose the file name in double quotes ("). For example, you might obtain a file that you have
“detached” from an e-mail message from someone on a Windows 10 system, such as latest revisions
october.txt.

In order to work with this file on a Linux system—that is, to use the file name as an argument in a
Linux command—enclose the whole name in double quotes. The correct command to rename that file
to something shorter would be

$ mv "latest revisions october.txt" laterevs.txt
$

To delete a file, you can use the rm command. The general syntax of the rm command is as follows:

Syntax:
rm [options] file-Tlist
Purpose: Remove files in file-Tist from the file structure (and disk)
Output: Deleted files
Commonly used options/features:
-f Removes regardless of the file access modes of file-1ist
-i Prompts the user before removing files in file-1list

-r Recursively removes the files in file-Tist if file-1ist is a directory; use with caution!

To delete the file renamed_file from the current working directory, type

$ rm renamed_file

$
In-Chapter Exercise

16. Use the rm command to delete the files testfile and myfile3 you created in In-Chapter
Exercise 15.

The most important command you will execute to do file maintenance is the 1s command. The general
syntax for the 1s command is as follows:

Syntax:
1s [options] [pathname-Tist]

Purpose: Send the names of the files and directories in the directory specified by pathname-Tist
to the display screen

Output: Names of the files and directories in the directory specified by pathname-1ist or the
names only if pathname-Tist contains file names only

Commonly used options/features:

-F Displays a slash character (/) after directory names, an asterisk (*) after binary executa-
bles, and an “at” character (@) after symbolic links

-a Displays names of all the files, including hidden files
-i Displays inode numbers

-1 Displays a long list that includes file access modes, link count, owner, group, file size
(in bytes), and modification time

“Quick Start” into the Linux Operating System 29

The 1s command will list the names of files or folders in your current working directory or folder.
In addition, as with the other commands we have used so far, if you include a complete pathname
specification for the pathname-Tist argument to the command, then you can list the names of files and
folders along that pathname list. To see the names of the files in your current working directory, type
the following:

$ 1s

Desktop Documents Downloads Dropbox Music Pictures
PubTic TempTlates Linuxthetextbook?2 Videos

$

Please note that you will probably not get a listing of the same file names as we did here, because your
system will have placed some files automatically in your home directory, as in the example we used,
aside from the ones we created together named myfile and myfile2. Also note that this file name listing
does not include the name renamed_file, because we deleted that file.

The next command you will execute is actually just an alternate or modified way of executing the
1s command, one that includes the command name and options. As shown in Section 2.2, a Linux
command has options that can be typed on the command line along with the command to change the
behavior of the basic command. In the case of the 1s command, the options 1 and a produce a longer list-
ing of all ordinary and system (dot) files, as well as providing other attendant information about the files.
Don’t forget to put the space character between the s and the dash. Remember again from Section 2.2
that spaces delimit, or partition, the components of a Linux command as it is typed on the command line.

Now, type the following command:

$ 1s -1a

total 164

drwxr-xr-x 25 bob bob 4096 Jan 9 15:06 .

drwxr-xr-x 3 root root 4096 Nov 21 09:48 ..

-rw------- 1 bob bob 503 Jan 10 16:30 .bash_history
-rw-r--r-- 1 bob bob 220 Nov 21 09:48 .bash_logout
-rw-r--r-- 1 bob bob 4000 Nov 21 09:48 .bashrc
drwx------ 11 bob bob 4096 Jan 8 21:13 .cache
drwxr-xr-x 4 bob bob 4096 Jan 9 15:06 .cinnamon
drwxr-xr-x 16 bob bob 4096 Jan 8 21:15 .config

drwx------ 3 bob bob 4096 Nov 21 10:00 .dbus
drwxr-xr-x 5 bob bob 4096 Jan 8 21:14 Desktop
-rw------- 1 bob bob 29 Jan 9 15:06 .dmrc

drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Documents
drwxr-xr-x 2 bob bob 4096 Jan 08:36 Downloads
drwx------ 5 bob bob 4096 Jan 15:06 .dropbox
drwx------ 30 bob bob 4096 Jan 15:06 Dropbox

8

9

9
drwxr-xr-x 3 bob bob 4096 Jan 4 08:40 .dropbox-dist
drwx------ 2 bob bob 4096 Jan 10 07:57 .gconf
-rw-r----- 1 bob bob 0 Jan 8 08:32 .gksu.lock
drwx------ 2 bob bob 4096 Jan 8 20:56 .gphoto
-rw------- 1 bob bob 4446 Jan 9 15:06 .ICEauthority
drwxr-xr-x 4 bob bob 4096 Nov 21 10:01 .Tlinuxmint
drwxr-xr-x 3 bob bob 4096 Nov 21 10:00 .local
drwxr-xr-x 4 bob bob 4096 Nov 21 10:02 .mozilla
drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Music
drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Pictures
-rw-r--r-- 1 bob bob 675 Nov 21 09:48 .profile
drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Public
drwx------ 2 bob bob 4096 Jan 5 11:14 .putty
drwx------ 2 bob bob 4096 Jan 5 11:12 .ssh
-rw-r--r-- 1 bob bob 0 Nov 21 10:03 .sudo_as_admin
drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Templates
drwxr-xr-x 2 bob bob 4096 Nov 21 10:00 Videos
-rw------- 1 bob bob 123 Jan 9 15:06 .Xauthority
-rw-r--r-- 1 bob bob 21022 Jan 11 07:10 .xsession-errors

30 Linux

-rw-r--r-- 2 bob bob 797 Jan 16 10:00 myfile
-rw-r--r-- 2 bob bob 797 Jan 16 10:00 myfile2
$

As you see in this screen display (which shows the listing of files in our home directory and will not be
the same as the listing of files in your home directory), the information about each file in the current
working directory is displayed in eight columns. The first column shows the type of file, where d stands
for directory, 1 stands for symbolic link, and — stands for ordinary or regular file. Also in the first col-
umn, the access modes to that file for user, group, and others is shown as r, w, or x. In the second column,
the number of links to that file is displayed. In the third column, the username of the owner of that file is
displayed. In the fourth column, the name of the group for that file is displayed. In the fifth column, the
number of bytes that the file occupies on disk is displayed. In the sixth column, the date that the file was
last modified is displayed. In the seventh column, the time that the file was last modified is displayed.
In the eighth and final columns, the name of the file is displayed. This way of executing the command
is a good way to list more complete information about the file. Examples of using the more complete
information are (1) so that you can know the byte size and be able to fit the file on some portable storage
medium or (2) to display the access modes so that you can alter the access modes to a particular file or
directory.

In-Chapter Exercise

17. Use the 1s -1a command to list all of the filenames in your home directory on your Linux sys-
tem. How does the listing you obtain compare with the listing shown earlier? Remember that
our listing was done on a Linux Mint 18.2 system.

You can also get a file listing for a single file in the current working directory, by using another variation
of the 1s command, as follows:

$ 1s -1a myfile
-rw-r--r-- 1 bob bob 797 Jan 16 10:00 myfile
$

This variation shows you a long listing with attendant information for the specific file named myfile.
A breakdown of what you typed on the command line is (1) 1s, the command name; (2) -1a, the options;
and (3) myfile, the command argument.

What if you make a mistake in your typing and misspell a command name or one of the other parts of
a command? Type the following on the command line:

$ 1x -1a myfile
1x: not found
$

The Ix: not found reply from Linux is an error message. There is no 1x command in the Linux oper-
ating system, so an error message is displayed. If you had typed an option that did not exist, you would
also get an error message. If you supplied a file name that was not in the current working directory, you
would get an error message too. This makes an important point about the execution of Linux commands.
If no error message is displayed, then the command executed correctly and the results might or might not
appear on screen, depending on what the command actually does. If you get an error message displayed,
you must correct the error before Linux will execute the command as you type it.
Typographic mistakes account for a large percentage of the errors that beginners make.

2.4.4 Creating, Deleting, and Managing Directories

Another critical aspect of file maintenance is the set of procedures and the related Linux commands
you use to create, delete, and organize directories in your Linux account on a computer. When moving

“Quick Start” into the Linux Operating System 31

through the file system, you are either ascending or descending to reach the directory you want to use.
The directory directly above the current working directory is referred to as the parent of the current
working directory. The directory or directories immediately under the current working directory are
referred to as the children of the current working directory. For more information on file system struc-
ture, see Chapter 4. The most common mistake for beginners is misplacing files. They cannot find the
file names listed with the 1s command because they have placed or created the files in a directory either
above or below the current working directory in the file structure. When you create a file, if you have also
created a logically organized set of directories beneath your own home directory, you will know where
to store the file. In the following set of commands, we create a directory beneath the home directory and
use that new directory to store a file.

To create a new directory beneath the current working directory, you use the mkdir command.
The general syntax for the mkdir command is as follows:

Syntax:
mkdir [options] dirnames

Purpose: Create directory or directories specified in dirnames
Output: New directory or directories
Commonly used options/features:
-m MODE Creates a directory with given access modes
-p Creates parent directories that don’t exist in the pathnames specified in dirnames

To create a child, or subdirectory, named first under the current working directory, type the
following:

$ mkdir first
$

This command has now created a new subdirectory named first under, or as a child of, the current
working directory. Refer back to Figure 2.3 for a graphical description of the directory location of this
new subdirectory.

To change the current working directory to this new subdirectory, you use the cd command. The
general syntax for the cd command is as follows:

Syntax:
cd [directory]

Purpose: Change the current working directory to directory or return to the home directory
when directory is omitted

Output: New current working directory

To change the current working directory to first by descending down the path structure to the specified
directory named first, type the following:

$ cd first
$

You can always verify what the current working directory is by using the pwd command. The general
syntax of the pwd command is as follows:

Syntax:

pwd
Purpose: Display the current working directory on screen
Output: Pathname of current working directory

32 Linux

You can verify that first is now the current working directory by typing the following:

$ pwd
/home/bob/first
$

The output from Linux on the command line shows the pathname to the current working directory or folder.
As previously stated, this path is a textual route through the complete file structure of the computer that
Linux is running on, ending in the current working directory. In this example of the output, the path starts
at /, the root of the file system. Then it descends to the directory home, a major branch of the file system
on the computer running Linux. Then it descends to the directory bob, another branch, which is the home
directory name for the user. Finally, it descends the branch named first, the current working directory.

On some systems, depending on the default settings, another way of determining what the current
working directory is can be done by simply looking at the command line prompt. This prompt may be
prefaced with the complete path to the current working directory, ending in the current working directory.

You can ascend back up to the home directory, or the parent of the subdirectory first, by typing the
following:

$ cd
$

An alternate way of doing this is to type the following, where the tilde character (~) resolves to, or is a
substitute for, the specification of the complete path to the home directory:

$ cd ~
$

To verify that you have now ascended up to the home directory, type the following:

$ pwd
/home/bob
$

You can also ascend to a directory above your home directory, sometimes called the parent of your
current working directory, by typing the following:

$cd ..
$

In this command, the two periods (..), represent the parent or branch above the current working direc-
tory. Don’t forget to type a space character between the d and the first period. To verify that you have
ascended to the parent of your home directory, type the following:

$ pwd
/home
$

To descend to your home directory, type the following:

$ cd
$

To verify that there are two files in the home directory that begins with the letters my, type the following
command:

$ 1s my*
myfile myfile2
$

“Quick Start” into the Linux Operating System 33

The asterisk following the y on the command line is known as a metacharacter or a character that rep-
resents a pattern; in this case, the pattern is any set of characters. When Linux interprets the command
after you press the <Enter> key on the keyboard, it searches for all files in the current working directory
that begin with the letters my and end in anything else.

In-Chapter Exercise

18. Use the c¢d command to ascend to the root (/) of your Linux file system, and then use it to
descend down each subdirectory from the root recursively to a depth of two subdirectories,
sketching a diagram of the component files found on your system. Make the named entries in
the diagram as complete as possible, listing as many files as you think necessary. Retain this
diagram as a useful map of your particular Linux distribution’s file system.

Another aspect of organizing your directories is movement of files between directories or changing the
location of files in your directories. For example, you now have the file myfile2 in your home directory,
but you would like to move it into the subdirectory named first. See Figure 2.3 for a graphic description
to change the organization of your files at this point. To accomplish this, you can use the second syntax
method illustrated for the mv file-Tist directory command to move the file myfile2 down into the
subdirectory named first. To achieve this, type the following:

$ mv myfile2 first
$

To verify that myfile2 is indeed in the subdirectory named first, type the following:

$ cd first
$ 1s
myfile2

$

You will now ascend to the home directory and attempt to remove or delete a file with the rm command.
Caution: you should be very careful when using this command, because once a file has been deleted,
the only way to recover it is from archival backups that you or the system administrator has made of the
file system.

$ cd

$ rm myfile2

rm: myfile2: No such file or directory
$

You get the error message because in the home directory, the file named myfile2 does not exist. It was
moved down into the subdirectory named first.

Directory organization also includes the ability to delete empty or nonempty directories. The com-
mand that accomplishes the removal of empty directories is rmdir. The general syntax of the rmdir
command is as follows:

Syntax:
rmdir [options] dirnames
Purpose: Remove the empty directories specified in dirnames
Output: Remove directories
Commonly used options/features:
-p Removes empty parent directories as well

-r Recursively deletes files and subdirectories beneath the current directory

34 Linux

To delete an entire directory below the current working directory, type the following:

$ rmdir first
rmdir: first: Directory not empty
$

Since the file myfile2 is still in the subdirectory named first, first is not an empty directory, and you get
the error message that the rmdir command will not delete the directory. If the directory was empty, rmdir
would have accomplished the deletion. One way to delete a nonempty directory is by using the rm command
with the -r option. The -r option recursively descends down into the subdirectory and deletes any files in
it before actually deleting the directory itself. Be cautious with this command, since you may inadvertently
delete directories and files with it. To see how this command deletes a nonempty directory, type the following:

$ rm -r first

$

The directory first and the file myfile2 are now removed from the file structure.

2.4.5 Obtaining Help with the man Command

A very convenient utility available on Linux systems is the online help feature, achieved via the use of
the man command. The general syntax of the man command is as follows:

Syntax:

man [options][-s section] command-Tist
man -k keyword-Tist

Purpose: First syntax: Display Linux Reference Manual pages for commands in command-1ist
one screen at a time

Second syntax: Display summaries of commands related to keywords
in keyword-Tist
Output: Manual pages one screen at a time
Commonly used options/features:
-k keyword-list Searches for summaries of keywords in keyword-1ist
in a database and display them
-s sec-hum Searches section number sec-num for manual pages
and display them

To get help by using the man command, on usage and options of the 1s command, for example, type the
following:

$ man 1s
LS(1) User Commands LS(D)

NAME
1s - 1list directory contents

SYNOPSIS
1s [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory
by default).
Sort entries alphabetically if none of -cftuvSUX nor -sort
is specified.

Mandatory arguments to Tlong options are mandatory for
short options too.

“Quick Start” into the Linux Operating System 35

-a, --all
do not ignore entries starting with

-A, --almost-all
do not Tist implied . and ..

--author
Manual page 1s(1) 1ine 1 (press h for help or q to quit)

This output from Linux is a Linux manual page, or man page, which gives a synopsis of the command
usage showing the options, and a brief description that helps you understand how the command should
be used. Typing q after one page has been displayed, as seen in the example, returns you to the command
line prompt. Pressing the space key on the keyboard would have shown you more of the content of the
manual pages, one screen at a time, related to the 1s command.

To get help in using all the Linux commands and their options, use the man man command to go to the
Linux reference manual pages.

The pages themselves are organized into eight sections, depending on the topic described and the
topics that are applicable to the particular system. Table 2.1 lists the sections of the manual and what
they contain. Most users find the pages they need in Section 1. Software developers mostly use library
and system calls and thus find the pages they need in Sections 2 and 3. Users who work on document
preparation get the most help from Section 7. Administrators mostly need to refer to pages in Sections 1,
4,5, and 8.

The manual pages comprise multipage, specially formatted, descriptive documentation for every
command, system call, and library call in Linux. This format consists of seven general parts: name, syn-
opsis, description, list of files, related information, errors, warnings, and known bugs. You can use the
man command to view the manual page for a command. Because of the name of this command, the man-
ual pages are normally referred to as Linux man pages. When you display a manual page on the screen,
the top-left corner of the page has the command name with the section it belongs to in parentheses, as
with LS(1), seen at the top of the output manual page.

The command used to display the manual page for the passwd command is

$ man passwd

The manual page for the passwd command now appears on the screen, but we do not show its output.
Because they are multipage text documents, the manual pages for each topic take up more than one
screen of text to display their entire contents. To see one screen of the manual page at a time, press the
space bar on the keyboard. To quit viewing the manual page, press the Q key on the keyboard.

Now type this command:

$ man pwd

TABLE 2.1

Sections of the Linux Manual

Section What It Describes

1 User commands

2 System calls

3 Language library calls (C, FORTRAN, etc.)

Devices and network interfaces

File formats

Games and demonstrations

Environments, tables, and macros for troff

[oL- RN e NNV T N

System maintenance-related commands

36 Linux

If more than one section of the man pages has information on the same word and you are interested in
the man page for a particular section, you can use the -S option. The following command line therefore
displays the man page for the read system call and not the man page for the shell command read.

$ man -S2 read

The command man -S3 fopen fread strcmp sequentially displays man pages for three C library calls:
fopen, fread, and strcmp.

Using the man command and typing the command with the -k option allows specifying a keyword that
limits the search. It is equivalent to using the apropos command. The search then yields useful man page
headers from all the man pages on the system that contain just the keyword reference. For example, the
following session yields the on-screen output on our Linux system:

$ man -k passwd
chgpasswd (8) - update group passwords in batch mode
chpasswd (8) - update passwords in batch mode
Crypt::PasswdMD5 (3pm) - Provides interoperable MD5-

based crypt() functions

fgetpwent_r (3) - get passwd file entry reentrantly
getpwent_r (3) - get passwd file entry reentrantly
gpasswd (1) - administer /etc/group

and /etc/gshadow
grub-mkpasswd-pbkdf2 (1) - generate hashed password for GRUB

pam_localuser (8) - require users to be listed
in /etc/passwd

passwd (1) - change user password

passwd (1ss1) - compute password hashes

passwd (5) - the password file

Output truncated. ..

2.4.6 Other Methods of Obtaining Help

To get a short description of what any particular Linux command does, you can use the whatis com-
mand. This is similar to the command man -f. The general syntax of the whatis command is as follows:

Syntax:
whatis keywords

Purpose: Search the whatis database for abbreviated descriptions of each keyword
Output: Prints a one-line description of each keyword to the screen

The following is an illustration of how to use whatis.
The output of the two commands are truncated.

$ whatis man

man (7) - macros to format man pages

man (1) - an interface to the on-Tine
reference manuals

$

You can also obtain short descriptions of more than one command by entering multiple arguments to the
whatis command on the same command line, with spaces between each argument. The following is an
illustration of this method:

$ whatis login set setenv

Togin (1) - begin session on the system

Tlogin (3) - write utmp and wtmp entries

setenv (3) - change or add an environment

“Quick Start” into the Linux Operating System 37

variable
set: nothing appropriate.

$

The following in-chapter exercises ask you to use the man and whatis commands to find information
about the passwd command. After completing the exercises, you can use what you have learned to
change your login password on the Linux system that you use.

In-Chapter Exercises

19. Use the man command with the -k option to display abbreviated help on the passwd command.
Doing so will give you a screen display similar to that obtained with the whatis command, but
it will show all apropos command names that contain the characters passwd.

20. Use the whatis command to get a brief description of the passwd command shown in Exercise 19,
and then note the difference between the commands whatis passwd and man -k passwd.

2.5 Utility Commands

There are several major commands that allow the beginner to be more productive when using the Linux
system. A sampling of these kinds of utility commands is given in the following sections, and is orga-
nized as system setups, general utilities, and communication commands.

2.5.1 Examining System Setups

The whereis command allows you to search along certain prescribed paths to locate utility programs
and commands, such as shell programs. The general syntax of the whereis command is as follows:

Syntax:
whereis [options] filename

Purpose: Locate the binary, source, and man page files for a command

Output: The supplied names are first stripped of leading pathname components and extensions,
then pathnames are displayed on screen

Commonly used options/features:
-b Searches only for binaries
-s Searches only for source code

For example, if you type the command whereis bash on the command line, you will see a list of the
paths to the Bash shell program files themselves, as follows:

$ whereis bash

bash: /bin/bash /etc/bash.bashrc /usr/share/man/manl/bash.1.gz

Note that the paths to a “built-in,” or internal, command cannot be found with the whereis command.
We provide more information about internal and external shell commands in Chapter 10.

When you first log on, it is useful to be able to view a display of information about your userid, the
computer or system you have logged on to, and the operating system on that computer. These tasks can be
accomplished with the whoami command, which displays your userid on the screen. The general syntax
of the whoami command is as follows:

Syntax:
whoami

Purpose: Display the effective user id

Output: Displays your effective user id as a name on standard output

38 Linux

The following shows how our system responded to this command when we typed it on the command
line.

$ whoami
bob
$

The following in-chapter exercises give you the chance to use whereis, whoam1i, and two other important
utility commands, who and hostname, to obtain the important information about your system.

In-Chapter Exercises

21. Use the whereis command to locate binary files for the Korn shell, the Bourne shell, the
Bourne again shell, the C shell, and the Z shell. Are any of these shell programs not available
on your system?

22. Use the whoami command to find your username on the system that you're using. Then use the
who command to see how your username is listed, along with other users of the same system.
What is the on-screen format of each user’s listing that you obtained with the who command?
Try to identify the information in each field on the same line as your username.

23. Use the hostname command to find out what host computer you are logged on to. Can you
determine from this list whether you are using a stand-alone computer or a networked computer
system? Explain how you can know the difference from the list that the hostname command
gives you.

2.5.2 Printing and General Utility Commands

A very useful and common task performed by every user of a computer system is the printing of text
files at a printer.

This is accomplished using the configured printer(s) on the local, or a remote, system. Printers are
controlled and managed with the Common UNIX Printing System. We show this utility in detail in
Chapter W26, Section 5, at the book website.

The common commands that perform printing on a Linux system are 1pr and 1p. The general syntax
of the Tpr command is as follows:

Syntax:
1pr [options] filename
Purpose: Send files to the printer
Output: Files sent to the printer queue as print jobs
Commonly used options/features:
-P printer Sends output to the named printer
-# copies Produces the number of copies indicated for each named file

The following Tpr command accomplishes the printing of the file named order.eps at the printer
designated on our system as spr. Remember from Section 2.2 that no space is necessary between the
option (in this case -P) and the option argument (in this case spr).

$ 1pr -Pspr order.eps
$

The following Tpr command accomplishes the printing of the file named memol at the default printer.

$ 1pr memol
$

“Quick Start” into the Linux Operating System 39

The following multiple command combines the man command and the 1pr command, and ties them
together with the Linux pipe (|) redirection character, to print the man pages describing the 1s command
at the printer named hpl.

$ man 1s | 1pr -Phpl
$

The following shows how to perform printing tasks using the 1p command.
The general syntax of the Tp command is as follows:

Syntax:
1p [options][option arguments] file(s)
Purpose: Submit files for printing on a designated system printer or alter pending print jobs
OQutput: Printed files or altered print queue
Commonly used options/features:
-d destination Prints to the specified destination

-n copies Sets the number of copies to print

In the first command, the file to be printed is named filel. In the second command, the files to be
printed are named sample and phones. Note that the -d option is used to specify which printer to use.
The option to specify the number of copies is -n for the 1p command.

$ 1p -d spr filel

request id is spr-983 (1 file(s))
$ 1p -d spr -n 3 sample phones
request id is spr-984 (2 file(s))
$

Among the most useful of the general purpose, personal productivity utility commands, the cal
command displays a calendar for a year or a month. The general syntax of the cal command is as follows:

Syntax:
cal [[month]year]

Purpose: Display calendar on screen as text

Output: Displays a calendar of the month or year

The optional parameter month can be between 1 and 12, and year can be 0-9999. If no argument is
specified, the command displays the calendar for the current month of the current year. If only one
parameter is specified, it is taken as the year. For example, the following command displays the calendar
for April 2018:

$ cal 4 2018

April 2018

Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

2.5.3 Communication Commands

The write command is used to send a message to another user who is currently logged on to the system.
The syntax and a brief description of the command is as follows:

40 Linux

Syntax:
write username [terminal]

Purpose: Write on the terminal screen or console window of the user with login name username;
the user must be logged on to the system, and the user’s terminal must have write access privi-
lege given by the mesg command.

Output: Message on another user’s console window.

The example shown in the following command line dialog session illustrates the use of this command.
The prerequisite for executing the write command is execution of the mesg y command by both sender
(in anticipation of a reply) and receiver to allow writing to their respective terminal screens or console
windows. The who command is used to determine whether the person to whom you want to write is logged
on. In this case, both sender (sarwar) and receiver (bobk) are logged on to the computer upibm?7, sarwar
at terminal ttyp0 and bobk at terminal ttyC2. The receiver’s screen is garbled with the message, but no
harm is caused to any work that the user is doing. Under the shell, pressing <Enter> performs the trick of
resetting the screen, and inside the vi editor (discussed in Chapter W25 at the book website), the screen can
be reset by pressing the <Ctrl> and R keys on the keyboard at the same time. Notice also that the sending
of the message is accomplished by holding down the <Ctr1> and D keys on the keyboard at the same time.

Sender's (sarwar) screen

$mesg y
$who
bob upibm7:ttyC2 Oct 12 13:47 :34
sarwar upibm7:ttyp0 Oct 12 14:20 :15
$write bob ttyC2
Bob,
How are the new chapter revisions coming along?
Take care,
Mansoor
<Ctr1+D>

Receiver's (bob) screen
$mesg y
$

Message from sarwar@upibm7.egr.up.edu on ttyp0O at 14:26
Bob,

How are the new chapter revisions coming along?
Take care,
Mansoor
EOF

The mesg command enables or disables real-time one-way messages and chat requests from other users
with the write and talk commands, respectively. The mesg y command permits others to initiate com-
munication with you by using the write or talk command. If you think that you are bothered too often
with write or talk, you can turn off the permission by executing the mesg n command. When you do
s0, a user who runs a write or talk command sees the message Permission denied. When the mesg
command is used without an argument, it returns the current value of permission, n or y.

The biff command lets the system know whether you want to be notified immediately of an incoming
e-mail message. The system notifies you by sounding a beep on your terminal. You can use the com-
mand biff y to enable notification and biff n to disable notification. When the biff command is used
without an argument, it displays the current setting, n or y.

In-Chapter Exercise

24. Display a calendar for the month of February 2020 on the command line of your Linux system.

mailto:sarwar@upibm7.egr.up.edu

“Quick Start” into the Linux Operating System 41

2.6 Command Aliases

The alias command can be used to create pseudonyms, or nicknames, for commands. The alias com-
mand has one syntax in the Bourne, Korn, and Bourne again shells (Bash); the default shell in Linux
shells, and another in the C shell; both forms are illustrated in the following example. The general syntax
for the alias command is as follows:

Syntax:

alias [name [=string] ...]in Bourne, Korn, Bash shells
alias [name [string]lin C shell

Purpose: Create pseudonym string for the command name

Output: Pseudonyms that can be used for commands

Nicknames are usually created for commands, but they can also be used for other items, such as naming
e-mail groups. Both Bash and C shells allow you to create aliases from the command line one at a time,
or put them multiply in the resource file for the particular shell.

Command aliases can be placed in the .profile file or the .login file, but they are typically
placed in the .bashrc file (for the Bash shell) and the .cshrc file (for the C shell). The .profile or
.Jlogin file executes when you log on, and the .cshrc or .bashrc file executes every time you start a
C or Bash shell.

Table 2.2 lists some useful aliases to put in one of these files. If set in your environment by any of
these means, the aliases in the session later allow you to use the names dir, rename, spr, 1s, 11, and
page as commands, substituting them for the actual commands given in quotes. Thus, when you type dir
Linuxbook, the shell executes the 1s -l1a Linuxbook command.

When you use the alias command without any argument, it lists all the aliases currently set by default.

The following session illustrates the use of this command with a Bourne, Korn, or Bash shell.

The aliases shown in the following command dialog are those found on our Linux Mint system, which
uses the Bash shell as the default. They may not be the same as the ones defined by default on your
system.

$ alias

alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias 1="1s -CF'

alias la='ls -A'

alias 11="1s -alF'

alias 1s='1ls --color=auto’

$

Running the same command under the C shell, where previously the system administrator or the
individual user has already defined a set of aliases, produces the following output. Again, they may not
be the same as the ones defined on your system:

TABLE 2.2

Some Useful Aliases for Various Shells

Bourne, Korn, and Bash Shells C Shell

alias dir="Ts -Ta \!*"' alias dir 'TIs -Ta \!*'
alias rename='mv \!*' alias rename 'mv \!*'
alias spr="Tpr -Pspr \!*' alias spr 'lpr -Pspr \!*'
alias 1s="'1s -C' alias 1s '1s -C'

alias 11="1s -T1tr' alias 11 '"1s -T1tr'

alias page='more' alias page 'more'

42 Linux

% alias

dir 1s -1a
rename mv
spr Tpr -Pspr
1s 1s -C

11 1s -Ttr
page more

%

You can use the unalias command to remove one or more aliases from the alias list.

In the following Bash session, the first of the two unalias commands removes the alias for 1s, and
the second removes all of the aliases from the alias list. Note that the output of the first alias command
does not contain an alias for the 1s command after the unalias T1s command has been executed. Use
of the second alias command produces no output because the unalias -a command removes all the
aliases from the alias list.

$ unalias 1s

$ alias
dir="1s -1a'
rename="mv'
spr="1pr -Pspr'
11="1s -Ttr"'
page="more'

$ unalias -a

$ alias

$

In the following in-chapter exercises, you will use the write, alias, and unalias commands to practice
their syntax and gain more insight into their utility. You will also examine a system file that keeps track
of users that can log in.

In-Chapter Exercises

25. Use the write command to communicate with a friend who is logged on to the system.

26. Use the alias command to display the nicknames (aliases) of commands on your Linux sys-
tem, if there are any. If there aren’t any, create a few useful ones for yourself according to
what you might use frequently and beneficially as a nicknamed command. Then, use unalias
to remove one or more of them. Use unalias -a to remove all of the aliases. After you have
unaliased all the defaults or defined aliases, how do you reinstate them?

27. Display the contents of the /etc/passwd file on your system to determine how many users can
log on to the system. What do the contents of this file show you for your username?

Table 2.3 shows some useful commands for beginners.

2.7 Introduction to Linux Shells

When you log on and enter a CUI using a console window or terminal, the Linux system starts running a
program that acts as an interface between you and the Linux kernel. This program, called a Linux shell,
executes the commands that you have typed on the keyboard. When a shell starts running, it gives you a
prompt and waits for your commands. When you type a command and press <Enter>, the shell interprets
your command and executes it. If you type a nonexistent command, the shell tells you this, then redis-
plays the prompt and waits for you to type the next command. Because the primary purpose of the shell
is to interpret your commands, it is also known as the Linux command line interpreter.

“Quick Start” into the Linux Operating System 43

TABLE 2.3

Useful Commands for the Beginner

Command What It Does

<Ctrl1+D> Terminates a process or command

alias Allows you to create pseudonyms for commands

biff Notifies you of new e-mail

cal Displays a calendar on screen

cat Allows joining of files

cd Allows you to change the current working directory

cp Allows you to copy files

exit Ends a shell that you have started

hostname Displays the name of the host computer that you are logged on to
Togin Allows you to log on to the computer with a valid username/password pair
Tpr or Tp Allows printing of text files

1s Allows you to display the names of files and directories in the current working directory
man Allows you to view a manual page for a command or topic

mesg Allows or disallows writing messages to the screen

mkdir Allows you to create a new directory

more Allows you to view the contents of a file one screen at a time

mv Allows you to move the path location of, or rename, files

passwd Allows you to change your password on the computer

pg Displays one screen of a file at a time

pwd Allows you to see the name of the current working directory

rm Allows you to delete a file from the file structure

rmdir Allows you to delete directories

talk Allows you to send real-time messages to other users

telnet Allows you to log on to a computer on a network or the Internet
unalias Allows you to undefine pseudonyms for commands

uname Displays information about the operating system running the computer
whatis Allows you to view a brief description of a command

whereis Displays the path(s) to commands and utilities in certain key directories
who Allows you to find out login names of users currently on the system
whoami Displays your username

write Allows real-time messaging between users on the system

A shell command can be internal/built-in or external. The code to execute an internal command is
part of the shell process, but the code to execute an external command resides in a file in the form of a
binary executable program file or a shell script. (We describe in detail how a shell executes commands
in Chapter 10.)

Because the shell executes commands entered from the keyboard, it terminates when it finds out that
it cannot read anything else from the keyboard. You can inform your shell of this by pressing <Ctr1+D>
at the beginning of a new line. As soon as the shell receives <Ctr1+D>, if you are logged in at a text-only
console, it terminates and logs you off the system. The system then displays the Togin: prompt again,
informing you that you need to log on again in order to use it. If you are using a desktop environment,
such as the Linux Mint Cinnamon desktop, and you have opened a terminal, or console, window on the
desktop, the effect of pressing <Ctr1+D> is to close the terminal or console window.

The shell interprets single Linux commands that are structured according to Section 2.2—that is, by
assuming that the first word in a command line is the name of the command that you want to execute.
It assumes that any of the remaining characters, starting with a hyphen (-) are options (possibly followed
by option arguments) and that the rest are the command arguments.

44 Linux

After reading your command line, the shell determines whether the command is an internal or external
command. It processes all internal commands by using the corresponding code segments that are within
its own code. To execute an external command, it searches several directories in the file system structure
(see Chapter 4), looking for a file that has the name of the command. It then assumes that the file contains
the code to be executed and runs the code.

The names of the directories that a shell searches to find the file corresponding to an external command
are stored in the shell variable named PATH (or path in the C shell). Directory names are separated by
colons in the Bourne, Korn, and Bash shells and by spaces in the C shell. The directory names stored in
the PATH variable form what is known as the search path for the shell. You can view the search path for
your variable by using the echo $PATH command in the Bourne, Korn, Bash, and C shells.

The following are two sample sessions run with this command in a terminal window on our Linux
Mint system. The first is done in the Bash shell and the second in the C shell. Note that in the default
Bash shell on our Linux systems, the search path contains the directory names separated by colons and
that in the C shell the directory names are separated by spaces.

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games

$

% echo $path

/usr/local/sbin /usr/local/bin /usr/sbin /usr/bin
/sbin /bin /usr/games /usr/local/games

%

The PATH (or path) variable is defined in a hidden file (also known as a dot file) called .profile or
.login. If you can’t find this variable in one of those files, it is in the start-up file (also a dot file) specific
to the shell that you’re using. You can change the search path for your shell by changing the value of this
variable. To change the search path temporarily for your current session only, you can change the value
of PATH at the command line. For a permanent change, you need to change the value of this variable in
the corresponding dot file.

In the following Bash shell example, the search path was augmented by two directories, ~/bin
and . (current directory). Moreover, the search starts with ~/bin and ends with the current directory.

Be careful when editing or changing the PATH variable, so that you don’t lose any component of the
default search path set by the system administrator for all users of the system.

$ PATH=~/bin:$PATH:.
$

You can determine your login shell by using the echo $SHELL command, as described in Section 2.8.3.
Each shell has several other environment variables set up in a hidden file associated with it. We describe
these files in Section 2.8.4 and present a detailed discussion of Linux files in Chapter 4.

In-Chapter Exercise

28. What command prints the names of only the dot files in your home directory on your Linux
system at standard output? What are the names of those dot files? What does each of the dot
files accomplish? Make a list of them, and next to each entry in the list, write a short description
in your own words of what that dot file accomplishes.

2.8 Various Linux Shells

All of our representative Linux systems come with the Bash shell preinstalled, and Bash is the default
shell. The C, Bourne, Korn, Tennex C (TC), and Z shells are less popular. But they can be installed on

“Quick Start” into the Linux Operating System 45

Debian-family systems using the apt package management facility, and with YUM on RHEL-family
CentOS. These other shells offer advantages for certain applications and ways of working with the Linux
system. When you log onto your Linux system using a non-GUI, text-based CUI, one particular type of
shell starts execution. This shell is known as your login shell, and it is usually determined by the system
administrator of your Linux system. If you want to use a different shell, you can do so by first installing
that shell program with the appropriate package management system, and then running a corresponding
command available on your system to execute the shell program.

For example, your login shell is Bash by default, but you want to use the C shell, you can do so by
first installing the C shell on a Debian-family Linux system with the apt-get command, as shown in the
following example, and then using the csh command.

$ sudo apt-get install csh
Output truncated..

$ csh

#

2.8.1 Shell Programs

Essentially the shell program itself, which is implemented in the C programming language, allows you to
do interpreted programming (as opposed to compiled programming). It does this in two senses. First, so
you can employ simple, single or complex, multiple Linux commands connected by redirection operators
and/or utilities such as sed, awk or grep, to do common tasks. Second, via user-written script files, coded
in the shell interpreted language, that automate and simplify those common, perhaps highly repetitive,
tasks. This interpreted language has all the features of any other structured, high-level programming/
scripting language, such as Perl, Tcl, or Python. The shell language is just not as complex as these other
common scripting languages. This fact should tell you why there are so many different shells, just as
there are many different high-level programming and scripting languages.

Programming languages have a tendency to evolve and grow with time, depending on the needs of
users, and shell programs are typical of this evolution. Table 2.4 contains a list of the most common
shells, their location, and the program names of those shells.

The locations shown in Table 2.4 are typical for most Linux systems. Consult your instructor or system
administrator if you can’t find the location shown for a shell on your system, or if you can’t use the
whereis command, as shown in Section 2.5.1.

Figure 2.4 traces the development of various shell families, and indicates the increasing functionality
of each family as it appears higher in the hierarchy. The Bourne shell (sh) is the grandmother of the main
shell families and has nearly the least level of functionality. Near the top of the hierarchy is the Korn
shell (ksh), which includes all the functionality of the Bourne shell and much more. The rc and zsh
shells are outliers that cannot be readily associated with any of the primary shell families.

TABLE 2.4

Shell Locations and Program Names

Default Location on Most Linux Systems Shell Program

Shell (if the shell has been installed!) (Command) Name
rc /bin/rc rc

Bourne shell /bin/sh sh

C shell /bin/csh csh
Bourne again shell (Bash) /bin/bash Bash

Z shell /bin/zsh Zsh

Korn shell /bin/ksh Ksh

TC shell /bin/tcsh Tcsh

46 Linux

Functionality
A tcsh
ksh
zsh
bash
csh
sh

rc

FIGURE 2.4 Development hierarchy of various Linux shells.

2.8.2 Which Shell Suits Your Needs?

Most shells perform similar functions, and knowing the details of how they do so is important in deciding
which shell to use for a particular task. Also, using more than one shell during a session is a common
practice, especially among shell script file programmers. For example, you might use the Bourne or
Korn shell for their programming capabilities and use the C shell to execute individual commands. We
discuss this example further in Section 2.8.3. The similarities of major shell functions are summarized
in Table 2.5.

2.8.3 Ways to Change Your Shell

You can easily determine what your default shell is by typing echo $SHELL on the command line when
you first log on to your computer system.

The question is: Why would you want to change your default shell, or for that matter, even use an
additional shell? The answer is that you want the greater, or in some sense qualitatively different,
functionality of another shell.

For example, your default shell might be the Bash shell (bash). A friend of yours offers you a neat and
useful Z shell script that allows you to take advantage of the Z shell script programming capabilities,
a script that wouldn’t work if it ran under the Bash shell. You can use this script by running the Z shell
at the same time you are running the default Bash shell. Because Linux is a multiprocess operating
system, more than one command line interpreter at a time can be active. That doesn’t mean that a single
command will be interpreted multiply; it simply means that input, output, and errors are “hooked” into
whatever shell process has control over them currently. [See Chapter 10 for more information about
process and shell command input/output (1/0).]

TABLE 2.5

Shell Similarities

Function Description

Execution The ability to execute programs and commands

1/0 handling The control of program and command input and output

Programming The ability to execute sequences of programs and commands

“Quick Start” into the Linux Operating System 47

You can change your shell in one of two ways:

Method 1. Changing to a new default for every subsequent login session on your system, and

Method 2. Creating additional shell sessions running on top of, or concurrently with, the default
shell only during the current login session.

The premise of both methods is that the shell you want to change to is available on your system. And if
it isn’t, you can use the apt command shown in Section 2.8 to install it.

Method 1. To change your default shell, after you have logged on as an ordinary user, type the
following command:

$ chsh

password for bob: www

Changing the Togin shell for bob

Enter the new value, or press ENTER for the default
Login Shell [/bin/bash]: /bin/csh

$

As shown on our Linux Mint system, you will be prompted for the name of the shell you want to change
to. You type the complete path to the location of the shell you want to change to—for example, /bin/sh
to change to the Bourne shell. Consult Table 2.4 for the complete paths to common Linux shells on your
system.

If this method doesn’t work on your system, consult your instructor or system administrator for more
help.

Method 2. To create or run additional shells on top of your default shell, simply type the name of the
shell program (see Table 2.4) on the command line whenever you want to run that shell. The following
session illustrates the use of this method to change a default Bash shell, which uses the $ as the shell
prompt, to a C shell, which shows the % as the shell prompt.

$ echo $SHELL
/bin/bash

$ csh

%

The first command line allows you to determine your default shell. In this case, the system shows you
that the default setting is the Bash shell. The second command line allows you to run the C shell. The
fourth line shows that you have been successful, because the default C shell prompt appears on your
display. If the C shell was not available on your system or was inaccessible to you, you would get an error
message after the third line. If your search path does not include /bin, you either have to type /bin/csh
in place of csh, or include /bin in your shell’s search path and then use the csh command.

To terminate or leave this new, temporary shell and return to your default login shell, hold down
<Ctr1+D> on a blank line. If this way of terminating the new shell doesn’t work, type exit on the
command line and then press <Enter>. By doing so, you halt the running of the new shell, and the default
shell prompt appears on your display. If you have opened a console or terminal window on your desktop,
typing exit also closes this console or terminal window.

The following in-chapter exercises ask you to determine whether various shells are available on your
system by using the whereis command and, for those that are available, to read the manual pages for
them by using the man command.

In-Chapter Exercises

29. Using the whereis command illustrated in Section 2.5.1, verify the locations of the various
shells listed in Table 2.4. Are all these shells available on your system? Where are they located
if you do not find them at the locations shown in Table 2.4?

48 Linux

30. Using the man command illustrated in Section 2.4.5, read the manual pages for each shell listed
in Table 2.4 that is on your system.

31. Ifthe C, Bourne, Korn, TC, and Z shells are not installed on your Linux system, then install them
using the appropriate package management commands. Look in Appendix A for descriptions
of how to use the package management commands that are available on your Linux system to
install these shells. Then, execute each of them, and experiment with any of the special features
that they have, by doing online research, to find a comparative analysis of those shells. You can
also gain some insight into their operation by doing Exercise 30.

2.8.4 Shell Start-Up Files and Environment Variables

The actions of each shell, the mechanics of how it executes commands and programs, how it handles the
command and program I/O, and how it is programmed, are affected by the setting of certain environment
variables.

Each Linux system has an initial system start-up file, usually named .profile or .login. This file
contains the initial settings of important environment variables for the shell and some other utilities.
In addition, hidden files for specific shells are executed when you start a particular shell. Known as the
shell start-up files, they are .bashrc for Bash and .cshrc for the C shell. These hidden files are ini-
tially configured by the system administrator for secure use by all users. Table 2.6 lists some important
environment variables common to Bash, Bourne, Korn, and C shells; the C shell variable name, where
applicable, is in lowercase following the uppercase Bash, Bourne, and Korn shell variable names. Note
that your system administrator may not have set some of these variables, such as ENV.

The following In-Chapter exercises let you view the settings of your environment variables. They
assume that you are initially running the Bash shell.

In-Chapter Exercises

32. At the default login shell prompt for your system, type set | more and then press <Enter>. On
our representative Linux systems, the default shell is Bash. What is displayed on your screen?
Identify and list the settings for all the environment variables shown in Table 2.6.

33. If the C shell is not installed on your system, install it using the command shown in Section 2.8.
Then make the C shell the current active shell for this session. Finally, type setenv | more
and then press <Enter>. Identify and list the settings for all the environment variables shown
in Table 2.6.

In addition to the shells, several other programs have their own hidden files. These files are used to set up
and configure the operating environment within which these programs execute. We discuss some of these

TABLE 2.6

Shell Environment Variables

Environment Variable What It Affects

CDPATH, cdpath The alias names for directories accessed with the cd command
EDITOR The default editor used in programs such as the e-mail program Elm
ENV The path along which Linux looks to find configuration files
HOME, home The name of the user’s home directory when the user first logs on
MAIL, mail The name of the system mailbox file

PATH, path The directories that a shell searches to find a command or program
PS1, prompt The shell prompt that appears on the command line

PWD, cwd The name of the current working directory

TERM The type of console terminal being used

“Quick Start” into the Linux Operating System 49

hidden files in Chapters 4 and 5. They are called hidden files because when you list the names of files
contained in your home directory—for example, with the 1s -1 command and option (see Chapter 4)—
these files do not appear on the list. The hidden file names always start with a period (.), such as .login.

2.9 Shell Metacharacters

Most of the characters other than letters and digits have special meaning to the shell. These characters
are called shell metacharacters and, therefore, cannot be used in shell commands as literal characters,
without specifying them syntactically in a particular way. Thus, try not to use them in naming your
files. Also, when these characters are used in commands, no space is required before or after a character.
However, you can use spaces before and after a shell metacharacter for clarity. Table 2.7 contains a list
of the shell metacharacters and their purposes.

The shell metacharacters allow you to specify multiple files in multiple directories in one command
line. We describe the use of these characters in subsequent chapters, but we give some simple examples
here to explain the meanings of some commonly used metacharacters:

TABLE 2.7
Shell Metacharacters

Metacharacter Purpose Example
<New Line> To end a command line
<Space> To separate elements on a command line 1s /etc
<Tab> To separate elements on a command line Ts /etc
To start a comment # This is a comment line
" To quote multiple characters but allow substitution "$file" bak
$ To end line and dereference a shell variable $PATH
& To provide background execution of a command command &
! To quote multiple characters '$100,000"'
) To execute a command list in a subshell (commandl; command2)
* To match zero or more characters chap*.ps
[] To insert wild cards [a-s] or [1,5-9]
A To begin a line and negation symbol [A3-8]
To substitute a command PS1="command"
{3 To execute a command list in the current shell {commandl; command2}
| To create a pipe between commands commandl | command2
; To separate commands in sequential execution commandl; command2
< To redirect input for a command command < file
> To redirect output for a command command > file
? To substitute a wild card for 1ab . ? exactly one character
/ To be used as the root directory and /usr/bin as a component separator in a pathname
\ To escape/quote a single character; n command argl \ used to quote <New L1ine> character

C and Korn Shells Only

arg2 arg3 to allow continuation of a shell \? command on the following line

! To start an event specification in the history list and the e, 18
current event

% The C shell prompt or the starting character for % or %3
specifying a job number

~ To name home directory ~/.profile

50 Linux

« [1]

The ?.txt string can be used for all the files that have a single character before .txt, such as a.txt,
G.txt, @.txt, and 7.txt. The [0-9].c string can be used for all the files in a directory that have a single
digit before .c, such as 3.c and 8.c. The 1ab1\/c string stands for Tabl/c. Note the use of backslash (\)
to quote (escape) the slash character (/).

The following command prints the names of all the files in your current directory that have two-
character file names and an .htm] extension, with the first character being a digit and the second being
an uppercase or lowercase letter. The printer on which these files are printed is spr-.

$ 1pr -Pspr [0-9]1[a-zA-Z].html
$

Note that [0-9] means any digits from O to 9 and [a-zA-Z] means any lowercase or uppercase letter. The
following command displays the names of all six-character-long files with .c extension in your current
directory, with the first three characters being lab, the fourth being a digit, and the remaining being any
two characters.

$ 1s 1ab[0-9]??.c
Tlablla.clablal.c labl23.clab4ab.c
$

2.10 The sudo and su Commands

The sudo command allows a permitted user to execute a command as the superuser, or to assume the role
of another user, as specified by security policy. The su command allows an ordinary user to switch user
roles or to also simulate being the superuser on the system. The superuser has file permission and access
privileges to everything on the system.

In many of the operations shown in the following chapters, particularly in Chapter 17 on system
administration, it will be necessary to execute the sudo or su command to accomplish the tasks shown.
In order to use this command, it is necessary to know the root or superuser password.

We give a more complete explanation of the sudo command in Chapter W26, Section 9.2.1, at the book
website.

An example of using the su command is as follows:

$ su
Password: www
/home/bob#

Summary

The Linux operating system is most famous for its text-based command execution, but in the 21st century
it has a competitively developed GUI environment as well. This chapter serves to familiarize you with
the basic structure of a CUI Linux command. It also shows you how to log in via three popular and
typical login methods and how to gracefully log off.

A beginner must be able to do basic file maintenance, and a core set of CUI file maintenance commands
and their options are introduced in this chapter. These commands will be useful throughout the rest of
this book. Finally, we illustrate and give examples of some basic utility commands—most importantly,
the commands and their options that allow you to print files and the alias command.

When you log on to a Linux computer, the system runs a program called a shell that gives you a
prompt and waits for you to type commands, either as single commands or as multiple commands
connected by redirection or piping operators. The shell program, coded in C, is an interpreter, and

http://.html
http://9][a-zA-Z].html

“Quick Start” into the Linux Operating System 51

as such has the same structured programming capabilities of high-level languages. When you type
a command and press <Enter>, the shell interprets and tries to execute the command, assuming that
the first word in the command line is the name of the command. A shell command can be built-in
or external. The shell has the code for executing a built-in command, but the code for an external
command is in a file. To execute an external command, the shell searches several directories, one
by one, to locate the file that contains the code for the command. If the file is found, it is executed
if it contains the code (binary or shell script). The names of the directories that the shell searches to
locate the file for an external command form are known as the search path. The search path is stored
in a shell variable called PATH (for the Bourne, Korn, and Bash shells) or path (for the C shell). You
can change the search path for your shell by adding new directory names in PATH or by deleting some
existing directory names from it.

Several shells are available for you to use. These shells differ in terms of convenience of use at the
command line level and features available in their programming languages. The most commonly used
shells in a Linux-based system are the Bash and C shells. The Bourne shell is the oldest and has a good
programming language. The C shell has a more convenient and rich command-level interface. The Korn
shell has some good features of both and is a superset of the Bourne shell.

Certain characters, called shell metacharacters, have special meaning to the shell. Because the shell
treats them in special ways, they should not be used in file names. If you must use them in commands,
you need to quote them for the shell to treat them literally.

Questions and Problems

1. Create a directory called Linux in your home directory. What command line did you use to do
this?

2. Give a command line for displaying the files 1abl, 1ab2, 1ab3, and 1ab4. Can you give two
more command lines that do the same thing? What is the command line for displaying the files
labl.c, 1ab2.c, 1ab3.c, and 1ab4.c? (Hint: use shell metacharacters.)

3. Give a command line for printing all the files in your home directory that start with the
string memo and end with .ps on a printer called upmpr. What command line did you use to
do this?

4. Give the command line for nicknaming the command who -H as W. Give both Bash and C shell
versions. Where would you put it if you want it to execute every time you start a new shell?

5. Type the command man 1s > ~/Linux/ls.man on your system. This command will put the
man page for the 1s command in the 1s.man file in your ~/Linux directory (the one you created
in Problem 1). Give the command for printing two copies of this file on a printer in your lab.
What command line would you use to achieve this printing?

6. What is the mesg value set to for your environment? If it is on, how would you turn it off for
your current session? How would you set it off for every login?

7. What does the command Tpr -Pgpr [0-9]*.jpg do? Explain your answer.

8. Use the passwd command to change your password. If you are on a network, be aware that
you might have to use the yppasswd command to modify your network login password. Also,
make sure you abide by the rules set up by your system administrator for coming up with good
passwords!

9. Using the correct terminology (e.g., command, option, option argument, and command
argument), identify the constituent parts of the following Linux single commands.

1s -la *.exe
Tpr -Pwpr file27

chmod g+rwx *.*

52 Linux

10. View the man pages for each of the useful commands listed in Table 2.3. Which part of the man
pages is most descriptive for you? Which of the options shown on each of the man pages is the
most useful for beginners? Explain.

11. How many users are logged on to your system at this time? What command did you use to
discover this?

12. Determine the name of the operating system that your computer runs. What command did you
use to discover this?

13. Give the command line for displaying manual pages for the socket, read, and connect system
calls on your system.

14. What is a shell? What is its purpose?
15. What are the two types of shell commands? What are the differences between them?

16. Give the names of five Linux shells. Which are the most popular? What is a login shell?
What do you type in to terminate the execution of a shell? How do you terminate the execu-
tion of your login shell?
17. What shells do you think are supersets of other shells? In other words, which shells have other
shells’ complete command sets plus their own? Can you find any commands in a subset shell
that are not in a superset shell? Refer to Figure 2.4.

18. What is the search path for a shell? What is the name of a shell variable that is used to maintain
it for the Bash, C, and Korn shells? Where (i.e., in which file) is this variable typically located?

19. What is the search path set to in your environment? How did you find out? Set your search path
so that your shell searches your current and your ~/bin directories while looking for a com-
mand that you type. In what order does your shell search the directories in your search path?
Why?

20. What are hidden files? What are the names of the hidden files that are executed when you log
on to your Linux systems, and how did you find this out?

21. What is a shell start-up file? What is the name of this file for the Bash shell? Where (i.e., in
which directory) is this file stored?

22. What important features of each shell, as discussed on the manual pages for that shell, seem to
be most important for you as either a new, intermediate, or advanced user of Linux? Explain
the importance of these features to you in comparison with the other shells available and their
features.

23. Suppose that your login shell is a C shell. You receive a shell script that runs with the Bourne
shell. How would you execute it? Clearly write down all the steps that you would use.

Advanced Questions and Problems

24. Following is a typical /etc/profile configuration file, this particular one is from a default
installation on our Linux Mint 18.2 system:

/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).

if ["$PS1"]1; then
if ["$BASH"] && ["$BASH" != "/bin/sh"]; then
The file bash.bashrc already sets the default PSI1.
PS1="\h:\w\$ '
if [-f /etc/bash.bashrc]; then
. /etc/bash.bashrc
fi

“Quick Start” into the Linux Operating System

else
if ["id -u™" -eq 0]; then
PS1="# '
else
PS1='§ '
fi
fi
fi

if [-d /etc/profile.d]; then
for i in /etc/profile.d/*.sh; do
if [-r $i 1; then

. $i
fi
done

unset 1
fi

53

Write an explanatory sentence in your own words describing exactly what you consider important lines
in the file accomplish, including the comments (the lines that begin with the pound sign #). Examine this
file on your Linux system. How does it compare, line-for-line, with the one above? We assume here that,
by default, Bash is both the interactive and login shells on your system.

25.

26.

21.

28.

What is the default umask setting in an ordinary, nonprivileged account on your Linux system,
from both a login and a nonlogin shell? Describe in your own words what the umask setting is,
and how it is applied to newly created directories and files. Is the umask set in /etc/profile
on your Linux system? If not, where can the umask be set most effectively on a persistent basis,
for a particular single user, in both a login and a nonlogin shell?
Assume that all users, when they log into your Linux system, have Bash as their default shell.
What file sets the shell prompt for them on your Linux system? Is it the file illustrated in
Problem 247 Describe the lines in the file that actually specify the shell prompt, and give a
short description of the components of those lines. Experiment to find out which file accom-
plishes the actual shell prompt setting for ordinary users (for both nonlogin and login shells),
and write an explicit description of what you have discovered.

Additionally, set the shell prompt for yourself in the current nonlogin shell, so that it con-
tains the following:

A display of just the date/time.
A display of the date and time, hostname and current directory.
A display where the entire prompt is in red text, along with hostname and current directory.

Then make those changes persistent for yourself in both login and nonlogin shells. Finally,
undo the persistent changes.

As a follow-up, design your own shell prompt so that it contains the information you want in
a useful display, given your use case(s), and make that designed prompt persistent for yourself
on your Linux system.

Give a sequential list of the exact commands you would use to make the TC shell the default
login shell for your user account on your Linux system. Is the TC shell installed by default on
your Linux system? If not, how would you install it on a Debian-family or CentOS system?
Give the exact commands for installation of not only the TC shell, but any of the other four
major Linux shells available.

Execute all of the compound command examples provided at the Web link https://explainshell.
com/ and then use the output shown to explain all of them in your own words. Try executing
the examples with meaningful arguments on your Linux system, if possible.

https://explainshell.com/
https://explainshell.com/

54 Linux

Projects
Project 1

After completing Problems 24-26, gather your findings together in a summary report that details the
default settings (within the scope of the files you have examined, and in the context of those problems) of
the Bash environment on your Linux system. For example, which actual file takes precedence by default,
and what components of the Bash environment are set in that file? What are the critical default settings
in the Bash environment, and what actual files on your Linux system affect them?

Project 2

Design a scaled-down CUI command line interpreter, or shell, that is similar in function to the Bash
shell. It should be an interactive, nonlogin shell that uses the same exact structure for command, options,
option arguments (if you include those), and command arguments that all single Linux commands in the
traditional shells have. It should implement a minimum of five Linux commands, such as 1s, cd, more,
pwd, and rm. Specify as carefully, and in as much detail as necessary, all of the operations of your shell
program: how it is launched, its treatment of arguments, how it will handle errors in command input and
execution, and how it is exited. Also specify, as completely and articulately as possible, how it can be
tested on a set of valid (and invalid) arguments passed to it, and how options and option arguments will
function on valid arguments.

This project can be done by an individual or in a group.

First pseudocode the software to plan how it will execute the limited set of commands on selected
arguments, using a small set of options as “switches” to those commands. As an essential part of
the planning process, the completeness of the specification in pseudocode is critical. For example,
modularizing the program at this stage is a robust way of designing the logic of its execution.

Then, when the logic of execution is complete, convert your pseudocode into Python, C, C++, or
any other high-level language you are familiar with. You must not simply “wrap” Bash, or any other
Linux shells commands, inside of your coded program. Depending upon your knowledge of the coding
language chosen, and your familiarity with Linux API system calls (many of which we detail in Chapters
15 and 16, and at the book website in Chapters W20 and W21), you can make your program as “low level”
as you can.

Execute the program, and run it through the suite of test specifications you have designed, and let the
test results feed back into the coded version of the program if necessary.

Finally, produce a written report of your results that details all of your design criteria, the pseudocode,
the final code, and the testing results as well.

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

3

Editing Text Files

OBJECTIVES

* To explain the general utility of editing text files on a Linux system
* To give a basic introduction to the nano text editor

* To cover the following commands and primitives:
nano

3.1 Introduction

In this chapter, we use the following simple text editor that is commonly available on our base modern
Linux systems: nano. We also comment on the general uses of text editing, and in the light of these uses,
discuss other common Linux text editors. At the website for this book, we present more in-depth cover-
age of the vi/vim/gvim and emacs editors.

3.1.1 nano Typographic Conventions

To stress how the keyboard keys are used in the nano editor, we provide the following typographic con-
vention reference for the keys used to execute commands or change modes:

1. Pressing the Escape key is signified as <Esc>.
2. Pressing the Enter key is signified as <Enter>.

3. Pressing the <Ctr1> key (represented in shortcut form on the nano screens as A) in combination
with another single key is signified as <Ctr1+X>, where you hold down the <Ctr1> key and press
the X key (or any valid key for that combination) at the same time.

4. Pressing the Alt key in combination with another single key is signified as <A1t+X>,
where you hold down the <ATt> key and press the X key (or any valid key for that combination)
at the same time.

5. A variant of 3. and 4. is shown as <Ctr1+X> a [b], where you first press and release <Ctr1>and
X simultaneously, then press the a key, and optionally press the b key (or any valid combination
of single keys or strings of characters).

What you type or hold down on the keyboard is shown in bold text.

3.1.2 Comments on Linux Text Editors and Their General Use

Modern Linux uses both a graphical user interface (GUI), with powerful window management systems,
and a character user interface (CUI). Therefore, to do useful things such as execute multiple commands
from within a script file, write e-mail messages, or create C language programs, you must be familiar
with one or perhaps multiple ways of entering text into a file. In addition, you must also be familiar
with how to edit existing files efficiently—that is, to change their contents or otherwise modify them
in some way. Text editors allow you to view a file’s contents, similar to the more command, so that you

55

56 Linux

can identify the key features of the file, and then read and utilize the information contained in it. For
example, a file without any extension, such as foo (rather than foo.txt) might be a text file that you can
view with a text editor.

The editors that we consider here are all considered full-screen display editors. That is, on the display
screen or monitor that you are using to view or edit a file, you are able to see a portion of the file, which
fills most or all of the window allocated to the text editor screen display. You are also able to move the
cursor, or point, to any of the text you see in this full-screen display, with either the arrow keys on the
keyboard or with a mouse. That text material is usually held in a temporary storage area in computer
memory called the editor buffer. If your file is larger than one screen, the buffer contents change as you
move the cursor through the file. The difference between a file, which you edit, and a buffer is crucial.
For text-editing purposes, a file is stored on disk as a sequence of data. When you edit that file, you edit
a copy that the editor creates, which is in the editor buffer. You make changes to the contents of the
buffer—and can even manipulate several buffers at once—but when you save the buffer, you write a new
sequence of data to the disk, thereby saving the file.

Another important operational feature of all Linux editors is that, traditionally, their actions are
based on keystroke commands, whether they are a single keystroke or combinations of keys pressed
simultaneously or sequentially. Because one of the primary input devices in Linux is the keyboard,
using the correct syntax of keystroke commands is mandatory. But the keyboard method of input, once
you have become accustomed to it, is as efficient or, for some users, even more efficient than mouse/
GUI input. Keystrokes are also more flexible, giving you more complete and customizable control over
editing actions. Generally, you should choose the editor you are most comfortable with, in terms of the
way you prefer to work with the computer. Of course, for most beginners, that will be nano. However,
your choice of editor also depends on the complexity and quantity of text creation and manipulation
that you want to do. Practically speaking, editors such as vi, vim, gvim, and Gnu emacs are capable of
handling complex editing tasks in multiple windows on multiple files, and provide you with a visual
software development environment, as well as document production and management capability. But
to take advantage of that power, you have to learn the mechanics of the commands that are needed to
perform those tasks and how they are implemented either graphically or by typing them—and retain
that knowledge. The basic functions common to the text editors are listed in Table 3.1, along with a
short description of each function.

For the text editors vi, vim, and gvim, you can’t immediately begin to enter text into the file you are
editing. You have to be in Insert mode to do that. vi, vim, and gvim have modes.

In nano (and Gnu emacs), you can start typing text into the file immediately. nano is a modeless
editor, and that’s why it is easy to use. That basically means that you can immediately begin entering
and editing text using the keyboard and some particular pointing device, such as a mouse or keyboard
arrow keys.

We present the tutorial information on nano in this chapter using typed commands.

It is very important to realize that vi, vim, and gvim generally use the same commands and have basi-
cally the same functionality. vim and gvim are not only more graphical—allowing you to work more

TABLE 3.1

Basic Text-Editing Functions

Function Description

Cursor movement Moving the location of the insertion point or current position in the buffer

Cut or copy, paste “Ripping out” text blocks or duplicating text blocks, reinserting ripped or duplicated blocks
Deleting text Deleting text at a specified location or in a specified range

Inserting text Placing text at a specified location

Opening, starting Opening an existing file for modification, beginning a new file

Quitting Leaving the text editor, with or without saving the work done

Saving Retaining the buffer as a disk file

Search, replace Finding instances of text strings, replacing them with new strings

Editing Text Files 57

efficiently in GUI environments such as those on our base modern Linux systems—but they also have an
improved and expanded command structure.

At the time of the writing of this book, our base Linux systems had the following text editors
preinstalled:

Debian 9.1: nano, vi
Ubuntu 16.04: nano, vi
Linux Mint 18.2: nano, vi

CentOS 7.4: nano, vi, vim

The earlier listing is true if you have done a basic installation of the system, as detailed at the beginning
of Chapter 17. gvim, and Gnu emacs are not preinstalled on any of our base Linux systems.

The easiest and best way to install these editors on your system is by using the package management
system available on your system. We show the basics of package management systems for our base Linux
systems in Chapter 17.

We also show how to install vi, vim, and emacs on our base Linux systems in Appendix A.

The most expedient way of doing an installation of these editors, if they are not already installed on
your Linux system, is to use a graphical form of package management. This assumes you are interacting
with your Linux system using a desktop management system GUI, such as Cinnamon in Linux Mint. For
example, when we show installation of an editor on our Linux Mint system, we searched in the graphical
Software Manager for vim, gvim, and emacs, and then used the Linux Mint Software Manager’s facili-
ties to install the following packages:

For vim: Vim Version 2:7.4.1689-3ubuntul.2
For gvim: Vim-gtk 2:7.4.1689-3ubuntul.2
For emacs: Gnu emacs 24.3.1

In addition, be aware that if you are logging into a Linux system via a terminal window, such as with
PuTTY from a Windows machine, many of the graphical modes and techniques of using Linux text
editors will not be available to you. But that does not prevent you from using the traditional typed com-
mands and keyboard edits that we show for nano!

3.1.3 Other Ways of Treating Text and Files in Linux

Text editors, such as nano, vi/vim/gvim, and emacs, are not the only way of entering text into a file. As
we show in later chapters, some of the other methods are by using output redirection in a multiple Linux
command, and “stream editing,” using traditional text processing utilities such as sed and gawk.

Output redirection, with the > and >> shell command operators in a multiple command (as opposed
to a single Linux command whose structure we showed in Chapter 2) allows a quick and easy method
of entering text into a file. Coupled with the echo and cat commands, which we show examples of in
Chapter 9, output (and input) redirection is a viable and expedient way to create and modify text in
text files.

Stream editing, simply stated, is the manipulation of text from an input stream, such as a file or stan-
dard input, using codes that produce an output stream that has the desired text content. It is traditionally
and most readily accomplished using the sed (Stream Editor) or gawk commands. This allows you to
append or modify text into existing files, such as configuration files, and for example, use either basic or
extended Regular Expressions to construct the additions or modifications in the output stream.

For more complete documentation on sed, see the man page for sed on your Linux system. We also
provide a Web reference at the GitHub site for this book, which gives a more complete description of sed,
with numerous examples. gawk (the Gnu version of awk) is another stream editing method, which uses
a complete and complex programming language environment. gawk allows you to process text files. For
more information about gawk, see the man page for gawk on your Linux system.

58 Linux

3.2 A Quick Introduction to the nano Editor

The simplest and most readily available text editor in all of the Linux systems we show in this book is
nano. For many users, nano would be the most efficient and adequate editor to deploy whenever a text
editor is needed. Many of the tasks shown in the other standard Linux editors can be done quickly and
easily by a novice user of Linux using nano.

To get started in nano, either when you only have a CUI available, or when you are interacting with
Linux via some desktop GUI (such as Cinnamon or Gnome), on the Linux command line in a terminal
window, type the following:

$ nano

You are immediately able to enter text into the editor and move the cursor around with the arrow keys
available on either a physical or a “virtual” keyboard (such as is available on an iPad running the Termius
terminal application). The first screen display presented by nano is shown in Figure 3.1. You can also use
the Delete key to delete text on the current line, at the first character before the current position of the
cursor in the on-screen display of the text.

If you typed nano file2, where file2 is the name of an already-existing text file, that text file is dis-
played on-screen, allowing you to make changes or additions to it.

There are four main sections of the editor. The top line shows the program version, the current file-
name being edited, and whether or not the file has been modified. Next is the main editor window show-
ing the file being edited. The status line is the third line from the bottom and shows important messages.
The bottom two lines show the most commonly used commands executed via keyboard “shortcuts” in
the editor.

Referring to Figure 3.1, at the bottom of the nano screen display, there are several keyboard shortcut
choices that you can make by holding down the Control (<Ctrl>, displayed as A on the nano menu) key
on your keyboard, in combination with a letter key. The two most important shortcut choices presented
are as follows:

mint@mint ~ - + X
File Edit View Search Terminal Help
GNU nano 2.5.3 New Buffer 7

B¢ Get Help Qg Write Out @0 Where Is @M Cut Text @8] Justify @@ Cur Pos
R Exit My Read File g\ Replace gl Uncut Textgll To Spell gl Go To Line [

FIGURE 3.1 General appearance of the nano screen.

Editing Text Files 59

The command <Ctr1+0> allows you to write (in other words, save) the contents of what is shown on-
screen to a file in the current working directory, without leaving the nano editor.

The command <Ctrl+X> allows you to exit from the editor and return to the Linux command prompt.

To get a more in-depth explanation of the other menu choices at the bottom of the nano screen display,
and of the capabilities of nano itself, see Section 3.2.1. We also refer you to the various online help pages.
A good place to start is “The Beginner’s Guide to Nano, the Linux Command-Line Text Editor.”

3.2.1 A Brief nano Tutorial

The following subsections illustrate and explain some of the basic operations as well as some of the
features of nano.

3.2.1.1 Creating and Opening a New File

If you want to create a new file and open it using nano, use the following command(s):

$ nano

or

$ nano [filename]

The second command is also used to open an existing file, where filename is the name of the existing
file. If you want to open a file that is not located in your current directory, then you have to use the abso-
lute or relative path to that file. For example, /home/mint/filename.

Figure 3.2 shows a file that has been opened with the first command shown earlier.

At the bottom of the editor window, keyboard shortcuts are displayed (they are not GUI menu choices!)
that let you perform some basic operations. Examples of these are Cut (and paste) Text, save (Write Out)
the buffer content to a file, and exit the editor.

mint@mint ~ - + X
File Edit View Search Terminal Help
GNU nano 2.5.3 New Buffer Modified

This is your first nano-created file![]

B¢ Get Help Q¢ Write Out @Y Where Is QN Cut Text @8] Justify | Cur Pos
R Exit Bl Read File g\ Replace @l Uncut Textgl] To Spell gl Go To Line |

FIGURE 3.2 First opened file in nano.

60 Linux

3.2.1.2 How to Save a File

To save a file, use the keyboard shortcut <Ctr1+0>. When you use this key combination, the editor will
prompt you for a filename (or confirm the name if it was already provided when the editor was started).
Enter your filename and press <Enter> to save the file with that name.

This is illustrated in Figure 3.3.

3.2.1.3 How to Cut and Paste Text

To cut and paste a particular line of existing text that has already been entered into the buffer, first bring
the cursor to any character on that line by using the arrow keys on the keyboard. Press <Ctrl+K> to cut
that whole line out of the buffer, then position the cursor with the arrow keys to the place where you want
to paste the “cut” line back into the buffer. Finally, use <Ctrl+U> to paste the cut line back in.

For example, in Figure 3.4, if you want to cut the first line and paste it multiply to two lines below the
first. Go to the beginning of line 1 using the arrow keys on the keyboard, and then press <Ctr1+K>. Then,
the cursor below the first line and press <Ctr1+U>. Repeat to do this multiply.

3.2.1.4 How to Search and Replace a Word

This feature allows you to search for a particular word in the buffer, as well as replace it with another
word.

To search for a word in nano, press <Ctr1+W>. Then, you will be asked to enter the word which you
want to search for. After typing in the word, press <Enter> and the tool will take you to the matched
entry (See Figure 3.5).

first nano
KB DOS Format gB¥Y Append g8 Backup File
WEE Mac Format [HEY Prepend @l To Files

File Name to Write:
B¢ Get Help
Cancel

FIGURE 3.3 Writing out a file with a specific file name.

mint@mint ~ - + X

File Edit View Search Terminal Help

GNU nano 2.5. File: first nano Modified

This is your first nano-created file!
This is your first nano-created file!

This is your first nano-created file!

[Read 1 line]
e Get Help Qg¢ Write Out @Y Where Is QN Cut Text @8] Justify | Cur Pos
R Exit Ml Read File g\ Replace @l Uncut Textgl] To Spell gl Go To Line

FIGURE 3.4 Cut and paste text from one line to two more lines.

Editing Text Files 61

Search: nano-created
§ Get Help [H® Case SensiH:! Backwards] Fulllstifgq First Line
[@ Cancel g8 Regexp @i Replace inegy Last Line

Beg of Par
AY End of Par

FIGURE 3.5 Searching for text.

You can also replace a word (or phrase) with another by pressing <Ctr1+\>. When you press this key
combination, nano prompts you for the word (or phrase) that you want to replace. After typing in the
word (or phrase), press <Enter>. You will be prompted for the replacement word (or phrase). After this,
you will be prompted for various ways of doing the replacement, and then are asked to confirm the
changes. Once confirmed, the replacement is done.

Figures 3.6-3.9 illustrate this procedure.

Search (to replace) [nano-created]:
Wf Get Help REId Case Sens QB Backwards First Line PrevHstory
¢ Cancel WEY Regexp Ml No Replace Last Line NextHstory

FIGURE 3.6 First replace text screen.

Search (to replace) [nano-created]: nano
g Get Help iBld Case Sens B Backwards First Line PrevHstory
A® Cancel LB Regexp M No Replace Last Line NextHstory

FIGURE 3.7 Second replace text screen.

Replace with: user
¢ Get Help First Line PrevHstory
¢ Cancel Last Line NextHstory

FIGURE 3.8 Third replace text screen.

mint@mint ~ - + X
File Edit View Search Terminal Help
GNU nano 2.5.3 File: first nano Modified

fihis is your first user-created file!
This is your first user-created file!

This is your first user-created file!

[Replaced 3 _occurrences]

WE Get Help @O Write Out gy Where Is Cut Text gl Justify @ Cur Pos
R Exit @i Read File g\ Replace Y Uncut Textgll To Spell Go To Line ||

FIGURE 3.9 Final replace text screen.

62 Linux

3.2.1.5 How to Insert Another File into the Current One

To insert text from another, already-saved file, into the buffer you are currently editing, do the following.
Press <Ctr1+R>, and then give the complete pathname to the file which you want to insert into the current
buffer, at the current position of the cursor in that buffer.

Figures 3.10 and 3.11 illustrate this procedure.

As you can see in Figure 3.11, the text of /home/mint/second_nano was inserted at the cursor position
when it was at the last line in the file first_nano.

3.2.1.6 How to Show the Cursor Position

It is possible to get information about the position of your cursor in the current buffer. This can be done
by pressing the <Ctr1+C> keyboard shortcut.

Figure 3.12 shows that after <Ctrl+C> was pressed, the cursor position got highlighted in the editor
area, and detailed information about it showed up in the status line (the one that’s highlighted or dark-
ened in the figure—third line from the bottom of the window). It reports the cursor is at line 4 of 8, which
is 50% through the file, at column 1, and character 77 of 155 characters total in the buffer.

3.2.1.7 How to Back Up a Previous Version of a File

This facility allows you to back up the previous version of the file being edited. This is done after you
make changes and save the file. This feature can be accessed using the -B command line option.

$ nano -B [filename]

File to insert [from ./] : /home/mint/second nano
¢ Get Help @ Execute Command To Files

¥ Cancel B New Buffer

FIGURE 3.10 Inserting text from a file.

mint@mint ~ - + X

File Edit View Search Terminal Help

GNU nano 2.5. File: first nano Modified

This is your first user-created file!
This is your first user-created file!
This is your first user-created file!

This is the second nano-created file!

[Read 1 line]
S Get Help Q¢ Write Out g% Where Is @M Cut Text @8] Justify @ Cur Pos
R Exit Mi Read File g\ Replace @l Uncut Textgll To Spell gl Go To Line

FIGURE 3.11 File after text insertion.

Editing Text Files

mint@mint ~ - + X

File Edit View Search Terminal Help
GNU nano 2.5. File: third nano

This is your first user-created file!
This is your first user-created file!
This is your first user-created file!

This is the second nano-created file!

[line 4/8 (50%), col 1/1 (100%), char 77/155 (49%)]
Bf Get Help g Write Out @@l Where Is QN Cut Text @8] Justify @ Cur Pos
R Exit Wi Read File @Y Replace @l Uncut Textgl] To Spell @l Go To Line

FIGURE 3.12 Cursor position report.

For example:

$ nano -B third_nano

63

The backup will be saved in the current directory with the same filename but suffixed with a tilde (-B).
Files created for the first time cannot be backed up.

In-Chapter Exercises

1.

Launch nano without specifying a file name on the command line and then enter some text into
the New Buffer. Save that text into a file in your current working directory.

. Cut some text out of a displayed file in nano, and then paste it in at another point in the display.

What commands did you use to do this?

. Replace a string of text in a displayed file in nano with another string of text. What command(s)

did you use to do this? Can this be done at multiple sites repetitively in the file, and simultane-
ously all at once?

4. Describe, in your own words, the concept of a buffer in nano.

. How did you select multiple characters in nano for the commands executed in the exercises

earlier? If you use a single-console, text-only method of logging into and interacting with
Linux, how can you select multiple characters for the operations you are asked to do in the
exercises earlier?

. (@) In only a single terminal display, how can you open multiple buffers in previously created

text files in nano, and switch between editing in them? (b) What would be the major advantage
of doing this?

64 Linux

Summary

Linux text editors are critical to the operation of CUI-based interfaces to your Linux system, and also
very important even if you are using a GUI. They allow you to create text files important and critical for
system operations, such as Bash shell scripts or systemd unit files, or edit existing text entities such as
configuration files for applications.

This chapter covered the basics of the CUI-based nano editor and gave some important considerations
you might make when choosing a more sophisticated (although more complex) editor, such as vi, vim,
or emacs.

Questions and Problems

1. List ten commonly used text-editing operations you can do in nano.

2. Run nano on your Linux system. Create and edit a block of text that you want to be the body
of an e-mail message explaining the basic capabilities of the nano editor. This file should be at
least one page (45-50 lines of text) long. Then, save the file as nano_doc.txt. Insert the body
of text you created in an e-mail message and send it to yourself.

3. Log on to your Linux system, and execute the nano program on a new, blank file.
On the first line of the file, type your first and last name.

On the second line of the file, type “The nano Linux text editor allows you to do simple editing
on small text files efficiently.”

Use a nano command to write the file to the default directory with the name 1ab51.
Print the file Tab51 at your Linux system line printer.
4. Do the following steps to create a file in nano-
Step 1: At the shell prompt, type nano and then press <Enter>.
Step 2: In the text area of the nano screen, place the cursor on the first line and type-

This is text that I have entered on a line in the nano editor.

Use the <Delete> and <arrow> keys to correct any typing errors you make.
Step 3: Press <Enter > three times.
Step 4: Type-

This is a line of text three lines down from the first line.

Step 5: Hold down the <Ctrl> and <O> keys at the same time (<Ctrl-O> or <*O>).
Step 6: At the prompt File Name to Write: type Tinespaced and then press <Enter>.

Step 7: Hold down the <Ctrl> and <X> keys at the same time (<Ctrl-X> or <X>) to return to
the shell prompt.

Step 8: At the shell prompt, type more Tinespaced and then press <Enter>.
5. Do the following steps in nano:

Step 1: At the shell prompt, type nano Tinespaced and then press <Enter>. The linespaced file
you created in Problem 4 appears in the nano screen.

Step 2: Position the cursor at the beginning of the fourth line, at the character T in the word
This, using the <arrow> keys on the keyboard.

Step 3: Hold down the <Ctrl> and both the <Shift> and <6> keys at the same time.

Step 4: Move the cursor with the <right arrow> key on the keyboard until you have highlighted
the entire fourth line, including the period. The cursor should be one character to the right
of the period at the end of the line.

Editing Text Files 65

Step 5: Hold down the <Ctrl> and <K> keys at the same time. This action cuts the line of text
out of the current “buffer,” or file that you are working on.

Step 6: Position the cursor with the <arrow> keys at the beginning of the second line of the file,
directly under the line that reads

This is text that I have entered on a line in the nano editor.

Step 7: Hold down the <Ctrl> and <U> keys at the same time. This action pastes the former
fourth line into the second line of the file.

Step 8: Use the <arrow> keys on the keyboard to position the cursor at the third line of the file.

Step 9: Hold down the <Ctrl> and <U> keys on the keyboard at the same time. This action
pastes the former fourth line into the third line of the file.

Step 10: Now change the wording of lines 2 and 3 so that they read-

This is a line of text 1 line down from the first line.
This is a line of text 2 lines down from the first line.

How many lines are there in this file now, as far as nano is concerned?

Step 11: Hold down the <Ctrl> and <O> keys at the same time.

Step 12: At the prompt File Name to Write: type Tinespaced2 and then press <Enter>.

Step 13: Hold down the <Ctrl> and <X> keys at the same time to return to the shell prompt.

Step 14: At the shell prompt, type more linespaced2 and then press <Enter>.
What do you see on screen? How many line does the more command show in this file?

6. Complete Problem 5, use nano to add two (2) more lines of text to the file named linespaced?2
below lines 2 and 3, with similar content to lines 2 and 3. Then, add a line at the top of the file
with your first and last name on it. Save this new file with the name linespaced3 and print it at
your Linux system line printer.

7. What version of nano did you use in the earlier work, and how did you find this out?

8. Use the cat command to create a short text file named shorty on your UNIX system, and then
read that file into nano, and add text to it. What command did you use to read the cat-created
file into nano?

9. Execute nano on your Linux system using the -m command option. What functionality did
the —m option give you in nano?

10. Repeat Problems 4—6 by launching nano using the -m option on the command line? When
would it not be possible to use nano with the -m option?

Advanced Questions and Problems

vi (vim) and emacs

It is assumed here that you refer to Chapter W25 on Linux text editors at the book website, to gain
familiarity with the two major, traditional Linux text editors: vi and emacs. Also, you can use
vim on your Linux system in place of vi if you want to.

vi (vim)

11. Run vi on your Linux system. Create and edit a block of text that you want to be the body
of an e-mail message, explaining the basic capabilities of the vi editor. For example, part of
your message might describe the difference between the Insert and Command modes. This file
should be at least one page (45-50 lines of text) long. Then, save the file as vi_doc.txt. Insert
the body of text in an e-mail message and send it to yourself.

12. Run vi on your system and create a file of definitions in your own words, without looking at the
textbook, for

66 Linux

full-screen display editor
modeless editor

file versus buffer
keystroke commands
substitute versus search

- 0 &0 o

text file versus binary file

Then refer back to the relevant sections of Chapter W25 at the book website to check your definitions.
Make any necessary corrections or additions. Reedit the file in vim to incorporate any corrections or
additions that you made and then print out the file using the print commands available on your system.

13. Edit the file you created in Problem 12 and change the order of the text of your definitions to
(d), (@), (c), and (b), using the yank, put, and D or dd commands. Print out the file using the print
commands available on your Linux system.

14. Log on to your Linux system and execute the vi program on a new, blank file.
On the first line of the file, type your first and last name.

On the second line of the file, type “The Linux vi text editor has almost all the features of a
word processor and tremendous flexibility in creating text files.”

Print the file to your Linux system line printer, from within vi, using a single vi command. How
do you accomplish this, in a non-GUI, text-only environment?

15. What vi command allows you to move to the first line in the current buffer? What command
allows you to move to the last line in the buffer?

16. Use the set command to force vi into a 30 column by 15-line display of characters so that one
screen of the display shows only 15 lines, and text is automatically wrapped onto the next line
after the 30th character. How did you do this? (HINT: The set all command shows the current
status of all vi environment variables.)

17. What file in your home directory allows you to customize your vi environment variables
permanently?

18. What do the following eight vi commands do?
12dw, 5dd, 120, 50, c5b, d5,12, 12G, Syy
19. While editing a file, how do you “escape” to the default Linux shell (on our Linux systems,
Bash) while in vi, and then how do you return to the editor?

Gnu emacs

20. Using emacs, type in a paragraph of text from one of your favorite books, but without altering
the size or shape of the emacs frame or using the Enter key, use the word wrap feature of emacs
to format it exactly the way that it is printed in the book. Print the file at your Linux system line
printer.

21. Which emacs commands move you forward and backward one character, one word, one sen-
tence, and one paragraph?

22. Define an emacs keyboard macro that accomplishes a common editing task for you.
23. Create, edit, compile, link, and execute a short C program of your choice in emacs.

24. Try working with emacs in a text-only window and use only keystroke commands.
To do this, you will have to launch emacs from a console or terminal window by typing emacs
-nw newfile. The -nw option specifies that emacs will run in nongraphical mode. Then, in the
console or terminal window, a nongraphical emacs will open on the buffer newfile. As stated
in Section W25.3 at the book website, you can still gain access to the menu bar menus at the
top of the emacs screen by pressing the escape <Esc> key on the keyboard and then pressing
the single back quote (*) key. You can then descend through the menu bar choices by pressing
the letter key of the menu choice you want to make. For example, pressing the f key on the

Editing Text Files 67

keyboard gives you access to the File pull-down menu choices, and then pressing the s key on
the keyboard allows you to save the current buffer.

Log on to your Linux system and execute the emacs program on a new, blank file, using
the —-nw command option.

On the first line of the file, type your first and last name.

On the second line of the file, type “The emacs editor is the most complex and customizable of
the Linux text editors.”

Print the file to your Linux system line printer from within emacs, with a single emacs com-
mand. How do you accomplish this, in a non-GUI, text-only environment?
25. Use emacs’s capability of sending e-mail while you’re in emacs. Send an e-mail message to one
of your friends, composing the message body and sending from within emacs.
Answer: No answer required.

26. While editing a file, how do you “escape” to the default Linux shell (on our Linux systems,
Bash) while in emacs, and then how do you return to the editor?

Projects
Project 1

From within non-GUI, text-only vi, vim, and emacs sessions, create a text file that you want to print
at one of the available printers on your Linux system. Then, while still in the editor, give a series of
Common UNIX Printing Service (CUPS) commands to manage the CUPS service, either locally or
on your network, that will enable you to print the text file you created in the editor. This would involve
things like starting the CUPS service if it is not running by default, checking the status of the service
and attached printers with system commands, or changing the name of a particular attached printer, etc.
What specific commands do you use to accomplish these things, in all three editors? Create a short report
organizing both a general, and specific methodologies, someone could use to manage a CUPS service,
and print documents from within these editors, via the CUPS service.

Project 2

zenity is a graphical, GTK+ dialog box program that allows you to create interactive dialog boxes using
Bash script files. It is installed by default on our GUI-based Debian-family and CentOS Linux systems.
In this project, the zenity dialog box you will deploy will allow you to easily create new users on your
Linux system. Of course, it is assumed you have the privilege to do this account creation on your system!
Use emacs to create and execute a zenity-based Bash script file, following these steps:

a. In emacs, create and save the following Bash script file, named zenl, in your home directory:
#!/bin/bash

zenity --forms --title="newusers Command" --text="Add batch new user" \
--add-entry="Username" \
--add-password="Password" \
--add-entry="User Number UID" \
--add-entry="Group Number GID" \
--add-entry="GECOS Entry" \
--add-entry="Default Home Directory" \
--add-entry="Default Shell" \

>> zen_out

sed -i -e 's/|/:/9' /home/bob/zen_out

b. Make zenl executable, then on the command line, type ./zenl
A zenity dialog box will open on-screen. In the GUI dialog box you will create the seven fields
needed to be supplied to the newusers command, which we show in Chapter 17, Section 3.1,

68 Linux

Example 17.3, to create new users from a “batch file” on your Linux system. The seven inputs
you supply to the dialog box will be written to a file named zen_out.

The seven fields, separated by the colon character (), are the new user accounts name, pass-
word, User ID (UID), Group ID (GID), General Electric Comprehensive Operating Supervisor
(GECOS) commentary, default home directory, and default shell.

For example,

hassan:QQQ:2001:2001:CFO of Accounting:/home/hassan:/bin/bash

c. Use zenl to create a file of several new users you want to put on your Linux system. Then, put
those users on your system!

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.
CRC Press e-Resource: https://www.crcpress.com/9781138710085
Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

4

Files and File System Structure

OBJECTIVES

* To explain the Linux concept of file

» To discuss the various types of files supported by Linux

* To describe the attributes of a file

* To explain the notion of pathnames

* To briefly explain the structure and user view of the Linux file system

» To describe the user interface to the Linux file system—browsing the file system
» To discuss the representation of a file inside the Linux system

* To describe how a Linux file is stored on the disk

* To explain the concept of standard files in Linux

» To discuss the basics of the Extended File System (Ext), XFS, and Zettabyte File System (ZFS)
* To cover the following commands and primitives:

~, +y .., /, PATH, cat, cd, du, echo, fallocate, file, findmnt, getconf,
1s, mkdir, more, pwd, rmdir, touch

4.1 Introduction

Most computer users work with the file system structure of the computer system that they use. While
using a computer system, a user is constantly performing file-related operations: creating, reading,
writing/modifying, or executing files. Therefore, the user needs to understand what a file is in Linux,
how files can be organized and managed, how they are represented inside the operating system, and how
they are stored on the disk. In this chapter, the description of file representation and storage is simplified,
due to the scope of this textbook. More details on these topics are available in books on operating system
concepts and principles and in books on Linux internals.

4.2 The Linux File Concept

One of the many remarkable features of the Linux operating system is its concept of files. This concept is
simple, yet powerful, and results in a uniform view of all system resources. In Linux, a file is a sequence
of bytes. Thus, everything, including a network interface card, a disk drive, a Universal Serial Bus (USB)
flash drive, a keyboard, a printer, a simple/ordinary (text, executable, etc.) file, or a directory, is treated as
a file. As a result, all input and output devices are treated as files in Linux, as described under file types
and file system structure.

69

70

Linux

4.3 Types of Files

Linux supports seven types of files:

Simple/ordinary file

Directory

Symbolic (soft) link

Character special file

Block special file

Named pipe (also called FIFO)
Socket

You can use the Ts -1 command to display the type of a file, as shown in Table 4.1.

4.3.1 Simple/Ordinary File

Simple/ordinary files are used to store information and data on a secondary storage device, typically a
disk. An ordinary file may contain any of the following:

Unstructured text

Source code (or script) in a programming language such as C, C4++, Java, Ruby, Python, LISP,

and Bash

An executable program that you have created by compiling (and linking) a source program

Applications such as compilers, database tools, desktop publishing tools, and graphing software

PostScript code
Pictures

Video

Audio
Graphics

Etc.

TABLE 4.1

Summary of the Output of the Ts -1 Command (Fields Listed Left to Right)

Field

Meaning

First letter of first field

Remaining letters of first field
Second field

Third field

Fourth field

Fifth field

Sixth, seventh, and eighth fields
Ninth field

File type:

- ordinary file

b block special file

C character special file

d directory

1 link

p named pipe (FIFO)

S socket

Access permissions for owner, group, and others
Number of hard links

Owner’s login name

Owner’s group name (can also be a number)
File size in bytes

Date and time of last modification

File name

Files and File System Structure 71

TABLE 4.2

Commonly Used Extensions for Some Applications

Extension Contents of File

.bmp, .jpg, jpeg, .gif Graphics

.C C source code

.C, .cpp, .cc C++ source code

.class Java class file

.gz Compressed

.htm1, .htm File for a Web page

.java Java source code

.0 Object code

.pdf Contains data in Portable Document Format
Ltxt Contains unformatted text that is recognized by a

text editor or word processing software

Linux does not treat any one of these files differently from another. It does not give a structure or attach
a meaning to a file’s contents, because every file is simply a sequence of bytes. Meanings are attached
to a file’s contents by the application that uses/processes the file. For example, a C program file is no
different to Linux from a Hypertext Markup Language (HTML) file for a Web page or a file for a video
clip. However, a C compiler (e.g., cc or gcc), a Web browser (e.g., Firefox), and a video player (e.g., VLC
Media Players) treat these files differently.

You can name files by following any convention that you choose to use; Linux does not impose any
naming conventions on files of any type. On most Linux systems, the default maximum length of a file-
name is 255 characters. You can use the getconf command on your Linux system to display or configure
the maximum size of a file name in number of characters.

Although you can use any characters for file names, we strongly recommend that nonprintable char-
acters, white spaces (spaces and tabs), and shell metacharacters (as described in Chapter 2) not be used
because they are difficult to deal with as part of a file name. You can give file names any of your own or
application-defined extensions, but the extensions mean nothing to the Linux system—they are treated
as part of file name. For example, you can give an .exe extension to a document and a .doc extension
to an executable program. Some applications require extensions, but others do not. For example, all C
compilers require that C source program files have a .c extension, but not all Web browsers require an
.html extension for files for Web pages. Even so, extensions should be used—it helps keep track of which
files are for what purposes. Some commonly used extensions are given in Table 4.2.

4.3.2 Directory

A directory contains the names of other files and/or directories (the terms directory and subdirectory are
used interchangeably). In some systems, terms such as folder, drawer, or cabinet are used for a directory.
A directory file in any operating system consists of an array of directory entries, although the contents
of a directory entry vary from one system to another. In Linux, a directory entry has the structure shown
in Figure 4.1.

The inode number is four bytes long and is an index value for an array on the disk. An element of this
array, known as an index node, more commonly called an inode, contains the attributes of a file such

Inode number File name

FIGURE 4.1 Linux directory entry structure.

http://.html
http://C,.cpp,.cc
http://C,.cpp,.cc
http://C,.cpp,.cc
http://.html

72 Linux

as file size (in bytes). When you create a new file, the Linux kernel allocates an inode to it. Thus, every
unique file in Linux has a unique inode (and inode number). As discussed in Section 4.5.7 and Chapter 8,
hard links to a file have the same inode, and inodes are unique per partition. This means that two dif-
ferent files on different partitions can have the same inode number. The details of an inode and how the
kernel uses it to access a file’s contents on disk are discussed in Sections 4.5.7 and 4.6.

4.3.3 Link File

A file of type link “points to” an existing file. The content of a link file is the pathname of the existing
file. Thus, a link file allows you to access an existing file through another path in the file system struc-
ture and share it without duplicating its contents. The concept of a link in Linux is fully discussed in
Chapter 8. But, for now, a file of type link is created by the system when a symbolic link is created to an
existing file. Symbolic links are currently available on all versions of Linux.

4.3.4 Special (Device) File

A special file, also known as a device node, is a means of accessing hardware devices, including the
keyboard, disks, tape drive, graphic cards, network cards, and printers. Each hardware device is associ-
ated with at least one special file—and a command or an application accesses a special file to access the
corresponding device. Special files are divided into two types: character special files and block special
files. Character special files correspond to character-oriented devices, such as a keyboard, and block
special files correspond to block-oriented devices, such as a disk. Special files are typically placed in the
/dev directory (see Section 4.4 for more details).

Applications and commands read and write peripheral device files in the same way that they read
or write an ordinary file. That capability is the main reason that input and output in Linux is said to
be device independent. Various special devices simulate physical devices and are, therefore, known
as pseudo-devices. These devices allow you to interact with a Linux system without using the devices
that are physically connected to it. These devices are becoming more and more important, because
they allow use of a Linux system via a network connection or with ssh-tunneled virtual terminals in
Chapter W28.

4.3.5 Named Pipe (FIFO)

Linux has several tools that enable processes to communicate with each other. These tools, which are
the key to the ubiquitous client—server software paradigm, are called interprocess communication (IPC)
mechanisms (commonly known as IPC primitives or IPC channels). These primitives are called pipes,
named pipes (also called FIFOs), and sockets (systems that are strictly UNIX System V-compliant have
a mechanism called transport layer interface). These primitives are discussed in detail under “System
Programming” in Chapters 15, 16, W20, and W21. Here, we briefly mention the purpose of each so that
you can appreciate the need for each mechanism and understand the need for FIFOs.

A pipe is an area in the kernel memory (a kernel buffer) that allows two processes to communicate
with each other, provided the processes are running on the same computer system and are related to each
other; typically, the relationship is parent—child or sibling. A FIFO is a file (of named pipe type) that
allows two processes to communicate with each other if the processes are on the same computer; how-
ever, the processes do not have to be related to each other through a parent—child or sibling relationship.
We illustrate the use of pipes and FIFOs at the command level in Chapter 9.

4.3.6 Socket

A socket can be used by processes on the same computer or on different computers to communicate
with each other; the computers can be on a network (intranet) or on the Internet. Sockets can belong
to different address families, each specifying the protocol suite to be used by processes to commu-
nicate. For example, the application layer protocols such as the Hypertext Transfer Protocol (HTTP)

Files and File System Structure 73

use sockets of address family AF_INET in the Transmission Control Protocol/Internet Protocol
(TCP/IP) protocol suite for communication (see Chapter 11 for a detailed discussion on TCP/IP).
A socket with address family AF_INET is also known as the Internet domain socket, which means
that processes running on computers on the Internet can use sockets of this domain to communicate
with each other. A socket with address family AF_UNIX or AF_LOCAL can be used for communica-
tion between processes that run on the same machine under a Linux operating system. This kind
of socket is also known as a UNIX domain socket. See Chapter W20 for more details on UNIX and
Internet domain sockets.

4.4 File System Structure

Three issues are related to the file system structure of an operating system. The first is how files in the
system are organized from the user’s point of view. The second is how files are stored on the secondary
storage (usually, a hard disk). The third is how files are manipulated (read, written, etc.). In this chapter,
we will address the first issue, that is, the user view of files and directories in a Linux system. As has been
the case so far, our focus will be on Mint Linux.

4.4.1 File System Organization

The Linux file system is structured hierarchically and is treelike, but upside down, with the root at
the top. Thus, the file system structure starts with one main directory, called the root directory, and
can have any number of files and subdirectories under it, organized in any desired way. This struc-
ture leads to a parent—child relationship between a directory and its subdirectories/files. A typical
Linux system contains hundreds of files and directories. For our Linux Mint system, the files and
directories under the root directory, denoted as / in Linux terminology, are shown in the following
session:

$1s -1/

total 96

drwxr-xr-x 2 root root 4096 Dec 13 2016 bin
drwxr-xr-x 4 root root 4096 Jul 28 2016 boot
drwxr-xr-x 2 root root 4096 Jul 28 2016 cdrom
drwxr-xr-x 19 root root 4480 Apr 4 20:02 dev
drwxr-xr-x 151 root root 12288 Dec 14 2016 etc

drwxr-xr-x 12 root root 4096 Dec 14 2016 home
Trwxrwxrwx 1 root root 32 Jul 28 2016 initrd.img -> boot/initrd.img-4.4.0-21-generic
drwxr-xr-x 25 root root 4096 Jul 28 2016 Tib
drwxr-xr-x 2 root root 4096 Jun 28 2016 1ib64
drwx------ 2 root root 16384 Jul 28 2016 lost+found
drwxr-xr-x 2 root root 4096 Jun 28 2016 media
drwxr-xr-x 2 root root 4096 Jun 28 2016 mnt
drwxr-xr-x 2 root root 4096 Jun 28 2016 opt
dr-xr-xr-x 224 root root 0 Apr 4 20:02 proc
drwx------ 11 root root 4096 Jul 28 2016 root
drwxr-xr-x 32 root root 1060 Jul 4 21:45 run

drwxr-xr-x 2 root root 12288 Jul 28 2016 sbin

drwxr-xr-x 2 root root 4096 Jun 28 2016 srv

dr-xr-xr-x 13 root root 0 Jul 1 15:26 sys

drwxrwxrwt 14 root root 4096 Jul 4 22:17 tmp

drwxr-xr-x 10 root root 4096 Jun 28 2016 usr

drwxr-xr-x 11 root root 4096 Jun 28 2016 var

Trwx rwx rwx 1 root root 29 Jul 28 2016 vmlinuz -> boot/vmlinuz-4.4.0-21-generic
$

Note that the first line of the output (i.e., total 96) shows the size of the root directory in kilobytes.
You can view the total size of the root directory in kilo (K), mega (M), or giga (G) bytes by running
the 1s -1h / command. The rest of the output of the command shows that the root directory has 21

T4 Linux

directories and two symbolic links: initrd.img and vmlinuz (see Chapter 8 for symbolic links). In
addition, there are the current directory (.) and parent of the current directory (..). You can display the
long listing of all the files, including directories as well as the other dot files using the —-al options. The
big-picture user view of our system’s files and directories is shown in Figure 4.2.

4.4.2 Home and Present Working Directories

When you log on, the Linux system puts you in a specific directory, called your home/login directory.
For example, the directory called sarwar in Figure 4.2 is the home directory for the user with the login
sarwar. While using the C, tcsh, Bash, or Korn shell, you can specify your home directory by using the
tilde (~) character. The directory that you are in at any particular time is called your present working
directory (also known as your current directory). The present working directory is also denoted as .
(pronounced “dot”). The parent of the present working directory is denoted as .. (pronounced “dot dot™).

Later in this chapter, we describe the commands you can use to determine your home and present
working directories. We also identify commands you can use to interact with the Linux file system in
general.

4.4.3 Pathnames: Absolute and Relative

A file or directory in a hierarchical file system is specified by a pathname. Simply put, a pathname is the
full name of a file. Pathnames can be specified in three ways: (1) starting with the root directory, (2) start-
ing with the present working directory, and (3) starting with the user’s home directory. When a pathname
is specified starting with the root directory, it is called an absolute pathname, because it can be used by
any user from anywhere in the file system structure. For example, /home/faculty/sarwar/courses/
ee446 is the absolute pathname for the ee446 directory under the user sarwar’s home directory. The
absolute pathname for the file called midl under sarwar’s home directory is /home/faculty/sarwar/
courses/ee446/exams/midl. Note that whereas, as shown in Figure 4.2, our system partitions /home into
subdirectories admin, students, and faculty, most Linux systems place all home directories under /home.

¢¢J¢¢¢¢¢¢

| bin ‘ boot | dev etc |home] lib lmedta” mnt II opt ‘l proc II root II sbin II tmp || usr ‘l var l

g%] e[| [| [][]

stdout group passwd

I courses I %y 8 I personal l
S
Y

letter taxes19
I:] Directory file
m <« |exams
O Non-directory file { ? ‘}
O solutions

midl mid2

FIGURE 4.2 Typical Linux file structure.

Files and File System Structure 75

Pathnames starting with the present working directory or a user’s home directory are called relative
pathnames. When the user sarwar logs on, the system puts him into his home directory, /home/faculty/
sarwar. While in his home directory, sarwar can specify the file midl (see Figure 4.2) by using a relative
pathname, ./courses/ee446/exams/midl or courses/ee446/exams/midl. The user sarwar (or anyone
else) in the directory ee446 can specify the same file with the relative pathname exams/midl. The owner
(or anyone logged on as the owner) of the midLl file can also specify it from anywhere in the file structure
by using the pathname ~/courses/ee446/exams/midl or $HOME/courses/ee446/exams/midl. Or, you
could specify ee446 from your personal directory as ../courses/ee446.

A typical Linux system has several disk drives that contain user and system files, but, as a user, you
do not have to worry about which disk drive contains the file that you need to access. In Linux, multiple
disk drives and/or disk partitions can be mounted on the same file system structure, allowing their access
as directories and not as named drives A:, B:, C:, and so on, as in MS-DOS and Microsoft Windows.
You can access files and directories on these disks and/or partitions by specifying their pathnames as if
they are part of the file structure on one disk/partition. Doing so gives a unified view of all the files and
directories in the system, and you do not have to worry about remembering the names of drives and the
files and directories they contain.

4.4.4 Some Standard Directories and Files

Every Linux system contains a set of standard files and directories. The standard directories contain
some specific files. In this section, we discuss some of the important directories. You may like to browse
through the first website listed in Web Resources (Table 4.5 at the book GitHub site) to know more about
the Mint directory hierarchy.

Root directory (/): The root directory is at the top of the file system hierarchy and is denoted as
a slash (/). It contains some standard files and directories and, in a sense, is the master cabinet
that contains all drawers, folders, and files.

/bin: Also known as the binary directory, the /bin directory contains binary (i.e., executable)
images of most Linux programs/commands that are fundamental to starting and repairing
single-user and multiuser environments. The /bin directory contains only 179 files on our
system, including bash, bzexe, bzdiff, bzegrep, bzgrep, bzless, bzmore, cat, chmod,
chown, cp, date, echo, egrep, grep, gunzip, gzip, kill, Tess, 1n, 1s, mkdir, mknod, more,
mount, mv, nano, netstat, ping, ps, pwd, rm, rmdir, sed, sh, sleep, stty, su, systemd,
tar, tcsh, umount, zcat, zdiff, and zgrep. The superuser and ordinary users may use these
programs.

Unlike some UNIX systems, the /usr/bin directory is different from /bin under Linux.
The /usr/bin directory contains hundreds of executable programs that are not needed for
starting or repairing the system. A few of the most commonly used are awk, diff, du, env,
file, find, finger, gcc, gdb, groups, head, java, javac, less, lex, locate, 1p, 1pq, Ipr,
man, nl, pstree, sort, ssh, sudo, tail, telnet, time, top, touch, tr, uniq, vi, wc, which,
who, whoami, zip, zipgrep, and zipinfo. On our Linux Mint system, /usr/bin contains
2,078 files.

/boot: This directory contains everything required to boot the system, including the boot loaders,
except the configurations files for the boot loaders. The configuration files are placed in the /etc
directory. For example, the GRand Unified Bootloader (GRUB) bootloader must be in /boot
and its configuration file in /etc. On our system, the /boot/grub/grub.cfg configuration file
is generated by the utility grub-mkconfig using the templates in the /etc/grub.d directory.
Similarly, the systemd-boot loads and runs the Unified Extensible Firmware Interface (EFI or
UEFT for short) boot images. The /boot directory also contains the Linux kernel boot image
in vmlinuz-4.4.0-21-generic.

/dev: The /dev directory, which is also known as the device directory, contains files correspond-
ing to the devices connected to the computer, including terminals, USB and hard disk drives,

76

Linux

CD-ROM drive, tape drives, modems, graphics cards, network cards, printers, and so on. These
files, called special files, were described in Section 4.3.4.

This directory contains at least one file for every device connected to the computer. Each
device has a name and a number, and the special file representing the device reflects both. Some
example files in the /dev directory are as follows: sda is the first Serial Advanced Technology
Attachment (SATA) hard drive, sg for CD-ROM, dvd is a symbolic link to sr0, and tty’s
for (teletype) terminals. We discuss links in Linux, including symbolic links, in Chapter 8.
The /dev/pts directory is used to manage pseudo-terminals.

A system may have several devices of each type—for example, 10 hard disks or partitions,
20 terminals, 100 pseudo-terminals, two solid-state disks, and so on. Our Linux Mint-based
system contains a total of 223 files in the /dev directory. This directory may contain several
hundred—even more than 1,000—files in a network-based Linux environment in a medium-
to-large-sized organization.

/etc: The /etc directory contains commands, files, and scripts needed for system configuration
and administration. A typical user cannot modify files in this directory. Some of the files
and directories in this directory include crontab, csh.cshrc, csh.login, csh.logout, group,
inetd.conf, login.access, login.conf, passwd, printcap, profile, rc.d, rcp, shells,
services, ssh, ssl, and termcap. Discussion of most of the files in this directory is beyond
the scope of this textbook. However, we briefly discuss the /etc/passwd file toward the end
of this section.

/Tib: The library directory contains a collection of related files for a given language in a single file
called an archive. A typical Linux system today contains libraries for C and C++ The archive
file for one of these languages can be used by applications developed in that language. The /1ib
directories contains libraries that are critical for the executable programs in the /bin and /sbin
directories. The /usr/1ib directory contains the shared and archive-type libraries (created by
the ar command).

/tmp: Used by several commands and applications, the /tmp directory contains temporary files.
You can use this directory for your own temporary files as well. All the files in this directory
are deleted periodically so that the disk (or a partition of the disk) does not get filled with tem-
porary files. The life of a file in the /tmp directory is set by the system administrator and varies
from system to system, but it is usually only a few minutes. Files in /tmp may or may not exist
when a system is rebooted.

/usr: The /usr directory contains subdirectories that hold, among other things, most of the
utilities, system daemons (see Chapter 10), applications, programming tools, standard C
include files, shared and archive-type language libraries, manual pages and other important
documents, and source code (Berkeley Software Distribution (BSD) and third party).
Two of the most important subdirectories in this directory are bin and 1ib, which con-
tain binary images of most Linux commands (utilities, tools, etc.) and language libraries,
respectively.

/home: Organized in some fashion, the /home directory is normally used to hold the home direc-
tories of all the users of the system. For example, the system administrator can create subdirec-
tories under this directory that contain home directories for certain types of users. For instance,
the diagram in Figure 4.2, which shows a university-like setup, has one subdirectory each
for the home directories of members of the administration, faculty, staff, students, and so on.
These subdirectories are labeled admin, faculty, and students. As stated earlier, most Linux
systems place all home directories under /home.

/var: The /var directory contains multipurpose log, temporary, and spool files. Among several
other directories, the /var/mail directory contains files for receiving and holding incoming
e-mail messages of users. When you read your new e-mail, it comes from a file in this direc-
tory. The /var/spool/mqueue directory contains the undelivered mail queue and the /var/
spool/output directory contains the line printer spooling directories. The /var/tmp directory
contains temporary files that are kept between system reboots.

Files and File System Structure 77

/etc/passwd: The /etc/passwd file contains one line for every user on the system and describes
that user. Each line has seven fields, separated by colons. The following is the format of the line.

Togin_name:password:user_ID:group_ID:user_info:home_directory:login_shell

The Togin_name is the login name by which the user is known to the system and is what the user types
to log in. The password field contains the dummy password x (or *). The encrypted passwords are
stored in the /etc/shadow file. Only the superuser (i.e., root) has read and write access permissions for
this file; nobody else can even read it. Portable Operating System Interface (POSIX) requires user_ID
(UID) to be an integer type. Usually, the superuser is assigned a UID of 0. Several other login names
are also assigned UIDs that are known (or from a known range). Typically, UIDs 1-499 or 1-999 are
reserved. Depending on the Linux system that you use, UIDs 1,000-32,767 or 1,000—65,536 are assigned
to “normal” users like you and I. In systems that use 32-bit UIDs, this range is 1,000—4,294,967,296.
The group_ID identifies the group that the user belongs to, and it is also an integer between 0 and
65,535 with, usually, 0-99 reserved integers. The user_info field contains information about the user,
typically the user’s full name. The home_directory field contains the absolute pathname for the user’s
home directory. The last field, Togin_shell, contains the absolute pathname for the user’s login shell.
The command corresponding to the pathname specified in this field is executed by the system when the
user logs on. Back-to-back colons mean that the field value is missing, which is sometimes done with the
user_info field. The following session shows the line from the /etc/passwd file on our system for the
user sarwar:

$ cat /etc/passwd | grep "sarwar"
sarwar:x:1004:1008:Mansoor Sarwar,,,:/home/sarwar:/bin/bash
$

In this line, the login name is sarwar, the password field contains x, the user ID is 1004, the group ID is
1008, the personal information is the user’s full name (Mansoor Sarwar), the home directory is /home/
sarwar, and the login shell is /bin/bash, or the Bash shell.

The following in-chapter exercises give you practice in browsing the file system on your Linux machine
and help you understand the format of the /etc/passwd file.

Exercise 4.1
Go to the /dev directory on your system and identify one character special file and one block
special file.

Exercise 4.2
Determine your user ID on your Linux system by viewing the /etc/passwd file on it. What is
your user ID?

Exercise 4.3
How many files do the /bin and /usr/b1in directories contain on your Linux system. Show the
commands that you used to obtain your answer.

I
4.5 Navigating the File Structure

Now, we describe some useful commands for browsing the Linux file system, creating files and direc-
tories, and determining file attributes, the absolute pathname for your home directory, the pathname for

the present working directory, and the type of a file. The discussion is based on the file structure shown
in Figure 4.2 and the user name sarwar-.

4.5.1 Determining the Absolute Pathname for Your Home Directory

When you log on, the system puts you in your home directory. You can find the full pathname for your
home directory by using the echo and pwd commands.

78 Linux

With no argument, the echo command displays a blank line on the screen. You can determine the
absolute pathname of your home directory by using the echo command, as follows:

$ echo $HOME
/home/sarwar
$

where HOME is a shell variable (a placeholder) in the Bourne shell. The shell uses this variable to keep
track of the absolute pathname of your home directory. In the C shell, the variable is home. We discuss
shell variables and the echo command in detail in Chapters 12, 13, W29, and W30.

Another way to display the absolute pathname of your home directory is to use the pwd command.
You use this command to determine the absolute pathname of the directory you are currently in, that
is, your present working directory, also known as the current directory. This command does not require
any arguments. When you log on, the Linux system puts you in your home directory. You can use the
pwd command right after logging on to display the absolute pathname of your home directory as follows:

$ pwd
/home/sarwar
$

4.5.2 Browsing the File System

You can browse the file system by going from your home directory to other directories in the file system
structure and displaying a directory’s contents (files and subdirectories in the directory), provided that
you have the permissions to do so. We cover file security and access permissions in detail in Chapter 5.
For now, we show how you can browse your own files and directories by using the cd (change directory)
and Ts (list directory) commands. The following is a brief description of the cd command.

Syntax:
cd [directory]

Purpose: Change the present working directory to directory, or to the home directory if no
argument is specified

The shell variable PWD is set after each execution of the cd command. The pwd command uses the value of
this variable to display the present working directory. After getting into a directory, you can view its con-
tents (the names of files or subdirectories in it) by using the 1s command. The following is a brief descrip-
tion of this command. The cd and 1s commands are two of the most heavily used Linux commands.

Syntax:
1s [option] [pathname-Tist]

Purpose: Send the names of the files in the directories and files specified in pathname-list to the
display screen

Output: Names of the files and directories in the directory specified by pathname-list, or the
names only if pathname-list contains file names only

Commonly used options/features:
-F Display/after directories, * after binary executables, and @ after symbolic links

-a Display names of all files, including hidden files ., .., and so on.

-h Display output in human readable sizes (e.g., 1.1 K, 31 M, 2.6 G) when used with -1 and/
or —s option

-i Display inode number and file name

-1 Display long list that includes access permissions, hard link count, owner, group, file
size (in bytes), and modification time

Files and File System Structure 79

If the command is used without any argument, it displays the names of files and directories in the pres-
ent working directory. The following session illustrates how the 1s and cd commands work with and
without parameters. The pwd command displays the absolute pathname of the current directory. With
the exception of hidden files, the 1s command displays the name of all the files and directories in the
current directory. The cd courses command is used to make the courses directory the current directory.
The cd ee446/exams command makes ee446/exams the current directory. The 1s ~ and 1s $HOME
commands display the names of the files and directories in your home directory. The cd command
without any argument puts you in your home directory. In other words, it makes your home directory
your current directory.

$ pwd

/home/sarwar

$1s

courses Documents Tlinux2e Pictures Templates
Desktop Downloads Music PubTic Videos

$ cd courses

$ 1s

ee231 eed46
$ cd eed446/exams

$ pwd

/home/sarwar/courses/ee446/exams

$1s

midl mid2

$1s ~

courses Documents Tlinux2e Pictures Templates
Desktop Downloads Music PubTic Videos

$ 1s $HOME

courses Documents Tlinux2e Pictures Templates
Desktop Downloads Music PubTic Videos

$ cd

$1s

courses Documents Tlinux2e Pictures Templates
Desktop Downloads Music PubTic Videos

$

We demonstrate the use of the 1s command with various options in the remainder of this chapter and
other chapters of the book. We use the terms flag and option interchangeably.

In a typical Linux system, you are not allowed to access all the files and directories in the system. In
particular, you are typically not allowed to access many important files and directories related to system
administration and files and directories belonging to other users. However, you have permissions to read
a number of directories and files. The following session illustrates that we have permissions to go to and
list the contents of, among many other directories, the / and /usr directories.

$ cd /usr

$1s

bin games dinclude 1ib Tocal sbin share src

$cd/

$1s

bin dev dinitrd.img TJlost+found opt run sys var
boot etc Tib media proc sbin tmp vmlinuz
cdrom home 1ib64 mnt root srv usr

$ cd

$ 1s /usr

bin games include 1ib Tocal sbin share src

$

Without any option, the 1s command does not show all the files and directories; in particular, it does
not display the names of hidden files. Examples of these files include ., .., .bash_history, .bashrc,
.config, .cshrc, .history, .1ogin, .mailrc, .profile, .rhosts, .shrc, .ssh, and .xsession. We have

80 Linux

TABLE 4.3

Some Important Hidden Files and Their Purposes

File Name Purpose

Present working directory
Parent of the present working directory

.bash_history Contains the history of commands executed under bash

.bashrc Setup for the Bash shell

.cshrc Setup for the C shell

.exrc Setup for vi

.login Setup for shell if C or tcsh shells are the login shells; executed at login time

.mailrc Setup and address book for mail and mailx

.profile Setup for shell if Bourne or Korn shell is the login shell; executed at login time

.rhosts Domain names of the trusted hosts (see Chapter 11 for details)

.shrc Setup for shell if Bourne shell is the login shell; executed at login time

.ssh Keys of the servers on which you would be allowed to login using the ssh command.
Keys are stored when you try to establish the session on a server for the first time

.vimrc Setup for the vim text editor

.Xxsession Customized X session script

already discussed the . and .. directories. The purposes of some of the more important hidden files are
summarized in Table 4.3.

You can also display the names of all the files and directories in a directory, including the hidden files,
by using the 1s command with the -a option. In the following session, the cd command places you in
your home directory and the 1s -a command displays all the files and directories, including the hidden
files, in your home directory.

$ cd
$1s -a
.cache .dmrc Tinux2e Pictures .Xsession-errors
.. .config Documents .linuxmint .profile
.bash_history courses Downloads .Tocal PubTic
.bash_Togout .dbus .ICEauthority .mozilla Templates
.bashrc Desktop .lesshst Music Videos
$

You can use shell metacharacters in specifying multiple files or directory parameters to the 1s com-
mand. For example, the command 1s ~/courses/cs446/programs/*.c displays the names of all C
program files in the ~/courses/cs446/programs directory. We discuss the use of metacharacters and
regular expressions in detail later in this chapter and in Chapters 6 and 7.

You can display the sizes of files and directory sizes in human readable (K for kilo, M for mega, G
for giga) form by using the —h option, as shown in the following session with the 1s -sh and 1s -Th
commands.

$ 1s -sh chl4

total 27G

12.6K all.tar 4.0K compute.h 4.0K main.h
8.0K analysis.txt 4.0K compute.o 4.0K main.o
9.6G bigdata 4.0K flat_profile.out 4.0K makefile
4.0K 1input.h 8.0K working 4.0K working.c

$ 1s -Th all.tar analysis.txt bigdata bugged.c buggy
-rw-r--r-- 1 sarwar faculty 10K Jul 23 2017 all.tar
-rw-r--r-- 1 sarwar faculty 5.7K Oct 2 21:16 analysis.txt

Files and File System Structure 81

-rw-r--r-- 1 sarwar faculty 9.6G Oct 3 10:52 bigdata
-rw-r--r-- 1 sarwar faculty 694 Oct 3 08:56 bugged.c
-rwxr-xr-x 1 sarwar faculty 8.5K Oct 6 08:27 buggy

$

4.5.3 Creating Files

While working on a computer system, you need to create files and directories: files to store your work
and directories to organize your files more efficiently. You can create files by using various tools and
applications, such as editors, and create directories by using the mkdir command. You can use any of
the Linux text editors, including nano, vim, and emacs, that you can use to create files containing plain
text. You can create nontext files by using various applications and tools, such as a compiler, that trans-
lates source code in a high-level language (e.g., C) and generates a file that contains the corresponding
executable code.

At times, you need to create empty files or files of an arbitrary size with random data. You can do so by
using the touch and fallocate commands. The touch command creates an empty file and fallocate
command can be used to create a file of an arbitrary size. In the following session, we use the touch
command to create two empty files, filel and file2. We then use the fallocate command to create files
file3 and file4 of sizes 10 and 20 MB each. Files created by fallocate contain random data that already
resides on the disk blocks allocated to the file, without writing anything explicitly on them. This means
no disk input/output (I/O) takes place when fallocate is used to create a file of any size.

$ touch filel
$ touch file2
$ fallocate -1 10MB file3
$ fallocate -1 20MB file4d

$ 1s -1

total 19536

-rw-r--r-- 1 sarwar faculty 0 Mar 1 22:40 filel
-rw-r--r-- 1 sarwar faculty 0 Mar 1 22:40 file2
-rw-r--r-- 1 sarwar faculty 10000000 Mar 1 22:41 file3
-rw-r--r-- 1 sarwar faculty 20000000 Mar 1 22:42 file4

$

4.5.4 Creating and Removing Directories

We briefly discussed the mkdir and rmdir commands in Chapter 2. Here, we cover these commands
fully. You can create a directory by using the mkdir command. The following is a brief description of
this command.

Syntax:
mkdir [option] directory-names

Purpose: Create directories specified in directory-names
Commonly used options/features:
-m MODE Create directories with the access permissions specified in MODE in octal
(see Chapter 5)
-p Create parent directories that do not exist in the pathnames specified in
directory-names

Here, directory-names are the pathnames of the directories to be created. When you log on, you can use
the following command to create a subdirectory, called memos, in your home directory. Access permis-
sions for the newly created directories are determined by the current value of umask (see Chapter 5). You
can confirm the creation of this directory by using the 1s -1d memo command, as in

82 Linux

$ mkdir memos

$ 1s -1d memos

drwxr-xr-x 2 sarwar faculty 4096 Jul 6 15:19 memos
$

Similarly, you can create a directory called test_example in the /tmp directory by using

$ mkdir /tmp/test_example
$

While in your home directory, you can create the directory professional and a subdirectory letters
under it by using the mkdir command with the -p option, as in

$ mkdir -p professional/letters

$

You can use the rmdir command to remove an empty directory. If a directory is not empty, you must
remove the files and subdirectories in it before removing it. To remove nonempty directories, you need
to use the rm command with the -r option (see Chapter 6). The following is a brief description of the
rmdir command.

Syntax:
rmdir [option] directory-names

Purpose: Remove the empty directories specified in directory-names
Commonly used options/features:
-p Remove empty parent directories also

The following command removes the Tetters directory from the present working directory. If letters
directory is not empty, the rmdir command displays an error message rmdir: Tetter: Directory
not empty on the screen. If Tetters directory is a file, the command displays an error message rmdir:
letters: Not a directory.

$ rmdir letters

$

The following command removes the directory letters from your present working directory and memos
from your home directory.

$ rmdir ~/memos/letters
$

If the ~/personal directory contains only one subdirectory, called diary, and it is empty, you can use
the following command to remove both directories ~/personal and ~/personal/diary. We assume that you
are in your home directory when you execute this command.

$ rmdir -p personal/diary
$

4.5.5 Determining File Attributes

You can determine the attributes of files by using the 1s command with various options. The options can
be used together, and their order does not matter. For example, you can use the -1 option to get a long
list of a directory that gives the attributes of files, such as the owner of the file. Similarly, you can use
the -1d options to display the attributes of directories. The following examples illustrate the use of the
1s command with -1d and -1 options.

Files and File System Structure 83

$ 1s -1d courses memos personal

drwxr-xr-x 2 sarwar faculty 4096 Jul 6 10:31 courses
drwxr-xr-x 2 sarwar faculty 4096 Jul 8 15:19 memos
drwxr-xr-x 2 sarwar faculty 4096 Jul 8 15:19 personal
$ cd ~/courses/ee446/exams

$ 1s -1

total 44

-rw-r--r-- 1 sarwar faculty 7878 Jul 8 15:23 midl
-rw-r--r-- 1 sarwar faculty 32253 Jul 8 15:23 mid2
drwxr-xr-x 2 sarwar faculty 4096 Jul 8 15:22 solutions
$

The information displayed by the 1s -1 command is summarized in Table 4.1.

In the preceding two uses of the 1s -1 command, courses, memos, personal, and solutions are
directories, and midl and mid2 are ordinary files. As stated earlier, we discuss access permissions and
user types in Chapter 5. The owner of the files is sarwar, who belongs to the group faculty. The values
of the remaining fields are self-explanatory.

You can use the 1s command with the -i option to display the inode numbers of files and directo-
ries. To display the inode number of a directory, you need to use the 1s -id command. The following
examples of its use show that the inode number for the greeting file is 6278611, and for the directories
courses, memos, and personal, they are 6555603, 6555456, and 6555324, respectively.

$ 1s -i greeting

16517942 greeting

$ 1s -id courses memos personal

16517083 courses 16517069 memos 16517079 personal
$

The 1s -al command displays a long list of all the files in a directory as follows:

$ 1s -al ~/courses/ee446/exams

total 52

drwxr-xr-x 3 sarwar faculty 4096 Jul 8 15:22 .
drwxr-xr-x 4 sarwar faculty 4096 Jul 8 15:22 ..
-rw-r--r-- 1 sarwar faculty 7878 Jul 8 15:23 midl
-rw-r--r-- 1 sarwar faculty 32253 Jul 8 15:23 mid2
drwxr-xr-x 2 sarwar faculty 4096 Jul 8 15:22 solutions
$

You can use the -F option to identify directories, executable files, and symbolic links. The 1s -F com-
mand displays an asterisk (¥) after an executable file, a slash (/) after a directory, and an “at” symbol (@)
after a symbolic link (discussed in Chapter 8), as follows:

$1s -F /

bin/ dev/ initrd.img@ Tlost+found/ opt/ run/ sys/ var/
boot/ etc/ Tib/ media/ proc/ sbin/ tmp/ vmlinuz@
cdrom/ home/ 1ib64/ mnt/ root/ srv/ usr/

$

Note that there is no executable file in the root directory. The output of the 1s -F /bin command would
show that all the files in the /bin directory are executable. You are encouraged to read the online manual
pages for the 1s command on your system or see the Command Appendix at the CRC Press website for
this book for a detailed description of the command.

By using the shell metacharacters and regular expressions, you can specify a particular set of files and
directories in the file system structure or a particular set of strings in files or directories. For example,
the following command can be used in the C shell to display a long list for all the files in the ~/courses/
ee446 directory that have the .c extension and start with the string lab followed by zero or more charac-
ters, with the condition that the first of these characters cannot be 5.

84 Linux

$ 1s -1 ~/courses/ee446/T1ab[A5]*.c
$

Similarly, the following command can be used to display the inode numbers and names of all the files in
your current directory that have four-character names and an .html extension. The file names must start
with a letter, followed by any two characters, and end with a digit from 1 to 5.

$ 1s -i [a-zA-Z]1??[1-5].html

The following command under the C shell displays the names of all the files in your home directory that
do not start with a digit and that end with .c or .C. In other words, the command displays the names of
all the C and C++ source program files that do not start with a digit. Under the Bourne shell, you may
replace the A character with the ! character. Thus, the 1s ~/[10-9]*.[c,C] command would produce the
same results.

$ 1s ~/[A0-91*.[c,C]

$

4.5.6 Determining the Type of a File’s Contents

Because Linux does not support file extensions, you can use any extension name for any file. This means
that you can use the .jpg extension for an executable program file. Thus, you cannot determine the type
of content of a file by simply looking at its name. Since many software tools require the use of extensions
and the user may rely on extensions, extension names are, therefore, still significant. In Linux, you can
find the type of a file’s contents by using the file command. Mostly, this command is used to determine
whether a file contains text or binary data. Doing so is important because text files can be displayed on
a terminal screen, whereas displaying the contents of a binary file shows “garbage” on your terminal
screen and can also freeze your terminal, as it may interpret some of the binary values as control codes.
The command has the following syntax.

Syntax:
file [option] file-Tist

Purpose: Attempt to classify files in file-list
Commonly used options/features:
-f FILE Use FILE as a file of file-list

The following session shows a sample run of the command. In this case, the types of the contents of all
the files in the root directory are displayed.

$ file /*

/bin: directory

/boot: directory

/cdrom: directory

/dev: directory

/etc: directory

/home: directory

/initrd.img: symbolic 1link to boot/initrd.img-4.4.0-21-generic
/T1ib: directory

/T1ib64: directory

/lost+found: directory
/media: directory

http://.html
http://5].html

Files and File System Structure 85

/mnt: directory

/opt: directory

/proc: directory

/root: directory

/run: directory

/sbin: directory

/srv: directory

/sys: directory

/tmp: sticky, directory
/Jusr: directory

/var: directory
/vmlinuz: symbolic 1ink to boot/vmlinuz-4.4.0-21-generic
$

The following session shows a few more types of files.

$ cd /bin

$ file cat tar gzip which

cat: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /1ib64/1d-1inux-x86-64.s0.2, for GNU/Linux 2.6.32, BuildID[shal]l=
2267d831560007f67fa4388d8301921d89861061, stripped

tar: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /1ib64/1d-1inux-x86-64.s0.2, for GNU/Linux 2.6.32, BuildID[shal]l=
ac316e790c0a96f05810a5d5elc3ab8f2a2411cd, stripped

gzip: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically Tlinked,
interpreter /1ib64/1d-1inux-x86-64.s0.2, for GNU/Linux 2.6.32, BuildID[shal]l=
43b51e737be8684de2d196ee2f036c2cddd99c7d, stripped

which: POSIX shell script, ASCII text executable

$

The executable and linkable format (ELF) is a common standard file format for executable code, object
code, shared libraries, and core dumps. Linux creates a core dump in a file, called core, when a program
crashes. Programmers can use this file to identify what caused the program to crash. It contains the pro-
gram state at the time of crash: data that the crashed program was accessing at the time it crashed, the
state of the program stack, and the location of the program statement that caused the crash. You can use
the file core command to determine the name of the program that produced the core dump.

The cat, tar, and gzip files contain ELF 64-bit executable codes, and which contains a POSIX shell
script. Some more classifications that the file command displays are English text, C program text,
Bourne shell script text, empty, nroff/troff, Perl command text, Python text, PostScript, sccs, and setgid
executable. You should read the manual page for the command to learn more about the file command.
The terms SUID and SGID are explained in Chapter 5.

The following in-chapter exercises familiarize you with the echo, cd, s, and file commands and the
formats of their output.

Exercise 4.4
Right after you log on, run echo ~ to determine the full pathname of your home directory.

Exercise 4.5
Use the cd command to go to the /usr/bin directory on your system and run the 1s -F com-
mand. Identify two symbolic links and five binary files.

Exercise 4.6
Run the Ts command in the same directory and write down sizes of the find and sort com-
mands (i.e., files) in bytes and in K bytes. What commands did you use to accomplish the task?
What commands would you use to obtain the sizes of these commands/files, assuming your
were in your home directory?

Exercise 4.7
Run the file /etc/* command to identify types of all the files in this directory.

86 Linux

4.5.7 File Representation and Storage in Linux

As stated earlier, the attributes of a file are stored in a data structure on the disk, called an inode. At the
time of its creation, every file is allocated a unique inode from a list (array) of inodes on the disk, called
the i-list. The index value of the inode in the i-list is called the inode number for the inode allocated to the
file, and is known as the file’s inode number. The Linux kernel also maintains a table of inodes, called the
inode table, in the main memory for all open files. When an application opens a file, an inode is allocated
from the inode table and the contents of the file’s inode on the disk are copied into it.

The inode number is used to index the inode table, allowing quick access to the attributes of an open
file. When a file’s attributes (e.g., file size) change, the inode in main memory is updated; disk copies of
inodes are updated at fixed intervals. For files that are not open, their inodes reside on the disk. Some of
the contents of an inode are shown in Figure 4.3.

The “link count” field specifies the number of different names the file has within the system. This
count is also known as the hard link count (see Chapter 8 for details on links). The “file mode” field
specifies what the file was opened for (read, write, etc.). The “user ID” is the ID of the owner of the file.
The “access permissions” field specifies who can access the file for what type of operation (discussed
in more detail in Chapter 5). The file’s location on disk is specified by a number of direct and indirect
pointers to disk blocks containing file data.

A typical computer system has several disk drives. Each drive consists of a number of platters with
two surfaces (top and bottom). Each surface is logically divided into concentric circles called tracks,
and each track is subdivided into fixed size portions called sectors. Tracks at the same position on both
surfaces of all platters comprise a cylinder. Disk 1/O takes place in terms of one sector, also called a
disk block. For this reason, disks are known as block devices. Traditionally, the sector size for hard disks
has been 512 bytes. Newer hard disks use 4 K-byte (i.e., 4,096-byte) sector sizes. CD-ROMs and DVD-
ROMs use 2 K-byte (i.e., 2,048-byte) sector sizes.

A sector may be addressed using a four-dimensional address comprising <disk #, cylinder #, surface
#, and sector #>. This four-dimensional address is translated to a linear (one-dimensional) block num-
ber, and most of the software in Linux deals with block addresses, because they are relatively easy to
deal with. These blocks start with the sector numbered as 0 on the outermost cylinder on the topmost
surface (i.e., the topmost track of the outermost cylinder), which is assigned block number 0. The block
numbers increase through the rest of the tracks in that cylinder, through the rest of the cylinders on
the disk, and then through the rest of the disks. The diagram shown in Figure 4.4 is a logical view of
a disk system consisting of an array of disk blocks. File space is allocated in clusters of two, four, or
eight disk blocks.

Figure 4.5 shows how an inode number for an open file can be used to access a file’s attributes, includ-
ing the file’s contents, from the disk. It also shows contents of the directory ~/courses/ee446/1abs and
how the Linux kernel maps the inode of the file Tabl.c to its contents on disk. As previously discussed,

Link Count
File Mode
User ID
Time Created
Time Last Updated
Access Permissions

File’s Location on Disk

FIGURE 4.3 Contents of an inode.

Files and File System Structure 87

Disk drive

Sector

| |
| o |
| |
|
|
N o

FIGURE 4.4 Physical and logical views of a disk drive in terms of tracks, sectors, clusters, and disk blocks.

Contents of the directory
~ [courses/ee446/labs

1076
2083 .
/— 13059 lab1.c
17488 lab2.c
18995 lab3.c
® '.-"‘ Number of links — ————
. File mode —— —
. User ID
o Time created
\ l o Time last updated
‘.' L]
o "...' .
L] ..'.' o
* ... | Location oh disk
Inode for lab1.c Disk drive
Inode table

FIGURE 4.5 Relationship between the file Tabl.c in a directory and its contents on a disk.

and as shown in the diagram, a directory consists of an array of entries <inode #, filename>. Accessing
(reading or writing) the contents of 1abl.c requires the use of its inode number to index the in-memory
inode table to get to the file’s inode. The inode, as previously stated, contains, among other things, the
location of 1abl.c on the disk.

The inode contains the location of Tabl.c on the disk in terms of the numbers of the disk blocks that
contain the contents of the file. The details of how exactly a Linux file’s location is specified in its inode
and how it is stored on the disk are beyond the scope of this textbook. These details are available in any
book on Linux internals.

88 Linux

4.6 Standard Files and File Descriptors

When an application needs to perform an I/O operation on a file, it must first open the file and then issue
the file operation (read, write, seek, etc.). Linux automatically opens three files for every command it
executes. The command reads input from one of these files and sends its output and error messages to
the other two files. These files are called standard files: standard input (stdin) files, standard output
(stdout) files, and standard error (stderr) files. By default, these files are attached to the terminal on
which the command is executed. That is, the shell makes the command input come from the terminal
keyboard, and its output and error messages go to the terminal (or the console window in case of an ssh
session or an xterm in a Linux system running Wayland, as discussed in detail in Chapter W28). These
default files can be changed to other files by using the redirection operators: < for input redirection and >
for output and error redirection.

A small integer, called a file descriptor, is associated with every open file in Linux. The integer values
0, 1, and 2 are the file descriptors for stdin, stdout, and stderr, respectively, and are also known as
standard file descriptors. The kernel uses file descriptors to perform file operations (e.g., file read), as
illustrated in Figure 4.6. The kernel uses a file descriptor to index the per-process file descriptor table to
obtain a pointer to the systemwide file table. The file table, among other things, contains a pointer to the
file’s inode in the inode table. Once the inode for the file has been accessed, the required file operation
is performed by accessing appropriate disk block(s) for the file by using the direct and indirect pointers,
as described in Section 4.6.

Recall that every device, including a terminal, is represented by a file in Linux. The diagram shown in
Figure 4.7 depicts the relationship between a file and its file descriptor. Here, we assume that files 1abl.c
and Tlab2.c are open for some file operations (say, file read) and have descriptors 3 and 4, respectively,
that the kernel is assigned to the files when they were opened. We have described the details of this
relationship in the preceding paragraph and in Section 4.6, in terms of a file table, inode table, and the
storage of the file on disk; also see Figures 4.5 and 4.6.

The Linux system allows standard files to be changed to alternate files for a single execution of a
command, including a shell script. This concept of changing standard files to alternate files is called
input, output, and error redirection. We address input, output, and error redirection in detail in Chapter
9. We have briefly mentioned the standard files and file descriptors here because most Linux commands
that explicitly require input from an outside source get it from standard input, unless it comes from a
file (or list of files) that is passed to the command as a command line argument. Similarly, most Linux
commands that produce output send it to a standard output. This information is important for proper
understanding and use of commands in the remaining chapters.

Fil.e o . sl Number of links
Descriptor N . s File mode
. . s User ID
10 s Time created
2)] Time last updated Contents
Z) 3 . of lab1.c
5 . & '-‘ °
L] L] ““ L
® ° . S . i
. N | Location on disk
L] L] k
Inode for labl.c Disk drive
: Systemwide Systemwide
Per process file file table inode table

descriptor table

FIGURE 4.6 Relationship between file descriptors and the contents of files on disk.

Files and File System Structure 89

File Keyboard

Descriptor
o
1
2
?} Display Screen
5
L]
L] L]
L] L]

Per process file
descriptor table

FIGURE 4.7 Logical view of the relationship between file descriptors and the corresponding files.

4.7 File System

As mentioned in Section 4.2 and as detailed throughout this chapter, a file system is ordinarily thought of
as a highly organized and quickly accessible collection of data, in terms of persistent storage of that data
on any modern medium. That organization, the speed of accessibility, efficiency, and usefulness, are all
hallmarks of any particular file system implementation. Thought of in this way, a file system is a direc-
tory hierarchy with its own root stored on a hard disk/solid-state disk (SSD) or disk partition, mounted
under (glued to) a directory. The files and directories in the file system are accessed through the direc-
tory under which they are mounted. A file system may span disks, even computers connected through a
network. Their home is available on any workstation, mounted as needed. All references to a file system
in this textbook are to the local file system. The description of the Linux network file system (NFSv4) is
beyond the scope of this textbook, but it is briefly mentioned in Chapter 11.

Over the history of Linux, various file systems have been used to provide speed, efficiency, secu-
rity, and utility to an ordinary user. Three contemporary and extremely important file systems are the
Extended File System (ext), XFS File System, and the Zettabyte File System (ZFS).

The most universal of these, across all major branches of Linux, is ext. Most flavors of Linux use it as
the default file system. The fourth version of ext, ext4, is the current version with features such as large
scalability, the ability to map to very large disk array sizes and journaling. A file system is said to use
journaling if it keeps track of changes not yet committed to the file system’s main part by recording the
intentions of such changes in a data structure called a journal. Ext4 supports backward compatible with
ext3 and ext2, block allocation until data is flushed to disk, unlimited number of subdirectories, and
timestamps measured in nanoseconds.

The ZFS is a POSIX-compliant file system that was first released by Oracle in June 2006. It is a
transactional file system, which means that the file system state is always consistent on disk. It is reli-
able, flexible, and scalable, with built-in compression and advanced features for file system backup and
restoration. However, the hallmark of ZFS is its focus on maximum data integrity that protects user data
against all sorts of errors, including those caused by decaying storage media, electric current spikes,
accidental disk writes, and so on. It achieves such data integrity by using several techniques, including
data replication. Benchmarking has shown that given multiple dedicated disks, ZFS is considerably
faster than EXT4.

XFS is a high performance 64-bit journaling file system created by Silicon Graphics and ported to
Linux kernel in 2001. The key feature of XFS is execution of parallel I/O operations. It is a highly scal-
able file system that allows tremendous scalability of I/O threads, file system bandwidth, size of files, and
the size of the file system itself when spanning multiple physical storage devices.

90 Linux

You can use the findmnt command to display information about all mounted file systems, including
their type such as ext4. This command with -t option may be used to display the file systems of a par-
ticular type. For example, you can use the findmnt -t ext4 command to display the list of all ext4 file
systems mounted on your system.

Table 4.4 shows a summary comparison of Linux file systems XFS, Ext4, and ZFS. Browse through
the relevant websites listed in “Web Resources” (Table 4.5 at the book GitHub site) to find out more about
Ext4, XFS, and ZFS.

Exercise 4.8
Use the findmnt command to display information about all the file systems mounted on your
system. How many file systems are mounted on your system?

Exercise 4.9

Use the findmnt command to display information about all ext4 file systems mounted on your
system. How many of these file systems are mounted on your system?

4.7.1 Displaying Disk Usage of Files and Directories

You can display the disk usage by files and directories by using the du command. It is a useful com-
mand for new Linux users with runaway log files, hitting their quotas. Here is a brief description of this
command.

Syntax:
du [option]... file-list...

Purpose: Display a summary of the disk usage of files in file-list, recursively for directories
Commonly used options/features:

-a Display disk usage for all files, not only directories

-h Display in humanly readable format, e.g., 1.7 K, 31.9 M, and 3 G

-s Display only total disk usage each file in file-list

In the following session, we use the du command without any option, and with -s and -h options, to
show disk usage for various files and directories in 1 K block sizes and in K, M, and G bytes.

$ du ~
4 /home/sarwar/.Tinuxmint/mintMenu/applications
34724 /home/sarwar/.Tinuxmint/mintMenu

27450108 /home/sarwar

$ du -h ~

4.0K /home/sarwar/.Tinuxmint/mintMenu/applications

34M /home/sarwar/.Tinuxmint/mintMenu

TABLE 4.4

A Summary Comparison of Linux File Systems

Feature Ext4 ZFS XFS
Introduced to Linux or Open Source 2006 2005 2001
Maximum file size 16 tebibytes (TiB?) 16 exbibytes (EiBY) 8 EiB
Maximum volume size 1 EiB 2128 bytes = 256 trillion yobibytes (YiB¢) 8 EiB
Maximum number of files 4 billion Unlimited (2*8 per directory) 16 EiB
Maximum filename length 255 bytes 255 bytes 255 bytes

@ TiB = 2% = 1024,
b EiB =260 = 10246,
¢ YiB = 2% = 1024¢,

Files and File System Structure 91

27G /home/sarwar

$ du -s Tinux2e/chl4

27401844 Tinux2e/newchl4
$ du -s -h 1inux2e/chl4

27G Tinux2e/newchl4

$ du -s -h /usr/bin

163M /usr/bin

$

Exercise 4.10
Use the du command to display disk usage for your home directory, /lib, and /dev directories
on your system in terms of 1 K blocks and in K, M, and G bytes?

4.8 End-of-File Marker

Every Linux file has an end-of-file (eof) marker. The commands that read their input from files read the
eof marker when they reach the end of a file. The <Ctr1-D> on a new line is the Linux eof marker when
the input file is attached to a keyboard. That is why commands such as cat while reading input from the
keyboard (see Chapter 6) terminate when you press <Ctr1-D> on a new line.

Summary

In Linux, a file is a sequence of bytes. This simple, yet powerful, concept and its implementation lead
to nearly everything in the system being a file; users and processes are not. Linux supports seven types
of file: ordinary file, directory, symbolic link, character special file, block special file, named pipe (also
known as FIFO), and socket. No file extensions are supported for files of any type, but applications run-
ning on a Linux system can require their own extensions.

Every file in Linux has several attributes associated with it, including file name, owner’s name, date last
modified, link count, and the file’s location on disk. These attributes are stored in an area on the disk called
an inode. When files are opened, their inodes are copied to a kernel area called the inode table for faster
access of their attributes. Every file in a directory has an entry associated with it that comprises the file’s
name and its inode number. The kernel accesses an open file’s attributes, including its contents, by reading
the file’s inode number from its directory entry and indexing the inode table with the inode number.

The Linux file structure is hierarchical, with a root directory and all the files and directories in the
system under it. Every user has a directory called the user’s home directory, which he or she is placed
when logging on to the system. Multiple disk drives and/or disk partitions can be mounted on the same
file system structure, allowing their access as directories, and not as named drives A:, B:, C:, and so on,
as in MS-DOS and Microsoft Windows. This approach gives a unified view of all the files and directories
in the system, and users do not have to worry about remembering the names of drives and the files (and
directories) that they contain.

Directories (primarily) can be created and removed under the user’s home directory. The file structure
can be navigated using various commands (mkdir, rmdir, cd, 1s, etc.). You can specify a file in the sys-
tem by using the file’s absolute or relative pathname. An absolute pathname starts with the root directory,
and a relative pathname starts with a user’s home directory or present working directory.

The following commands can be used to display file contents, know the type of file contents, create
directories, remove directories, display the contents of a directory, create empty files, create arbitrary
size files with random data, etc.: cat, cd, du, echo, fallocate, file, findmnt, getconf, Ts,
mkdir, more, pwd, rmdir,and touch.

You can create files on your Linux system by using several methods, including a text editor such as
nano or vim, a compiler to generate the executable image of a program, the touch command to create an
empty file, and the fallocate command to create an uninitialized file of any size.

92 Linux

Linux automatically opens three files for every command for it to read input from and send its out-
put and error messages to. These files are called standard input (stdin), standard output (stdout), and
standard error (stderr). By default, these files are attached to the terminal on which the command is
executed; that is, the command input comes from the terminal keyboard, and the command output and
error messages go to the terminal’s screen display. The default files can be changed to other files by using
redirection primitives: < for input redirection and > for output and error redirection.

The kernel associates a small integer with every open file. This integer is called the file descriptor. The
kernel uses file descriptors to perform operations (e.g., read) on the file. The file descriptors for stdin,
stdout, and stderr are 0, 1, and 2, respectively.

A file system is ordinarily thought of as a highly organized and quickly accessible collection of data,
in terms of persistent storage of that data on any modern medium. The Extended File System, XFS, and
the ZFS are the most contemporary and most important of all Linux file systems. Supporting very large
size files, allowing extremely large number of directories, and maintaining data consistency are some of
the hallmark features of these systems.

The du command can be used to display the disk usage for files and directories in 1 K blocks and in
terms of K, M, and G bytes.

Every Linux file has an eof marker. The eof marker is <Ctr1-D> if a command reads input from the
keyboard.

|
Questions and Problems

1. What is a file in Linux? What do character special and block special represent in Linux? How
many character special and block special files reside on your system? How did you obtain your
answer? Show your work.

2. Does Linux support any file types? If so, name them. Does Linux support file extensions?
. What is a directory entry? What does it consist of?

B~ W

. What are special files in Linux? What are character special and block special files? Run the
1s /dev | wc -wcommand to find the number of special files your system has.

5. What is meant by interprocess communication? Name three tools that Linux provides for inter-
process communication.

6. Draw the hierarchical file structure, similar to the one shown in Figure 4.2, for your Linux
machine. Show files and directories at the first two levels. Also show where your home direc-
tory is, along with files and directories under your home directory.

7. Give three commands that you can use to list the absolute pathname of your home directory.

8. Write down the line in the /etc/passwd file on your system that contains information about
your login. What are your login shell, user ID, home directory, and group ID? Does your system
contain the encrypted password in the /etc/passwd or /etc/shadow file?

9. What would happen if the last field of the line in the /etc/passwd file were replaced with /usr/
bin/date? Why?

10. What are the inode numbers of the root and your home directories on your machine? Give the
commands that you use to find these inode numbers.

11. Create a directory in your home directory, called memos. Go into this directory and create a file
called memo.james by using one of the editors such as vi. Give three pathnames for this file.

12. Give a command for creating a subdirectory called personal under the memos directory that
you created in Problem 11.

13. Make a copy of the file memo.james and put it in your home directory. Name the copied file
temp.memo. Give two commands for accomplishing this task.

14. Draw a diagram like that shown in Figure 4.5 for your memos directory. Clearly show all direc-

tory entries, including inode numbers for all the files and directories in it.

Files and File System Structure

15

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

. Give the command for deleting the memos directory. How do you know that the directory has
been deleted?

What is the purpose of the following command? What happens when you run this command on
your Linux system? Does the command output make sense? Explain your answer.

rmdir -p ~/personal/diary

Why does a shell process terminate when you press <Ctr1+D> at the beginning of a new line?
Give a command to display the types of all the files in your ~/Tinux2e directory that start
with the word chapter, are followed by one of the digits 1, 2, 6, 8, or 9, and end with .eps
or .prn.

Give a command line to display the types of all the files in the personal directory in your home
directory that do not start with letters a, k, G, or Q and the third letter in the name is not a digit
and not a letter (uppercase or lowercase).

Use the 1s -i command to display inode numbers for the /, /usr, and ~ directories on
your system. Show outputs of your commands and identify the inode numbers for these
directories.

What are ELF and core dump?
Where are the permissions and most other attributes for a file stored in Linux?

Display the absolute pathnames of your home directory by using two different methods in the
Bash and TC shells. Does your system use any symbolic links in the / directory? If so, display
those symbolic links by using a shell command.

Discuss possible ways to create files on Linux. Use the fallocate command to create files of
sizes 20 and 200 GB.

What is a file descriptor in Linux? What are standard files? What are their descriptors?

What is the concept of redirection of standard files?

Why do you think the system-wide file table is required between the per process file descriptor
table and the inode table?

What are sector, track, platter, and cylinder? What is the size of a sector in hard disks these
days?

What are block and cluster?

What are the basic characteristics of the ZFS file system? After referring to Chapter W22 and
the online resource for ZFS, is ZFS integrated into the Linux kernel, or is it a kernel-loadable
module?

What is the maximum size (in bytes/characters) of the file name in your Linux system? What
command did you use to obtain your answer?

Browse through the following directories and identify five commonly used commands, tools,
utilities, and daemons in them: /bin, /sbin, /usr/bin, /usr/sbin, /usr/local/bin, and /usr/
Tocal/sbin. Clearly state the purpose of each command, tool, utility, or daemon and the name
of the directory in which it is found.

We say that Ext4 is backward compatible. What does it mean?

What size volumes and files does Ext4 support? How many directories may be created on the
Ext4 file system?

Repeat Question 26 for ZFS and XFS.

How many file systems are mounted on your system? How many of these are of type Ext4, XFS,
ZFS, and cgroups type each? Show the commands you used to obtain your answers.

How many file systems each are mounted under /sys and /dev on your system. Show the com-
mand you use to obtain your answer along with the output of the command.

How many files can a directory have under ZFS? Please give number in trillion.

93

94 Linux

39. Use the du command with and without option(s) to display disk usage of the following files and
directories in terms of 1 K blocks and in terms of K, M, and G bytes:

a. /etc/passwd

b. /var/log/syslog

c. Your home directory

d. Root directory

e. /usr/bin directory
I

Advanced Questions and Problems

40. How would you accomplish obtaining and displaying (on standard out) the following file attri-
butes, for file objects in your current working directory?

Sorted files based on modification time, showing all long-form attributes.
A listing of all hidden files and subdirectories.

A listing of all files and directories in reverse alphabetical order.

A listing of all files and directories alphabetically, based on file extensions.
A listing of subdirectories in a recursive display.

A long-form attribute listing of filenames, including their inode numbers.
A listing of only the names of file and directories, and their sizes.

5@, 0 200 o

A listing of owner, group, and author in reverse alphabetical order.

i. A listing of names, sizes, and type of files, using the special indicators.

41. If you insert a USB thumbdrive on a Linux computer that is not running a GUI desktop, how
can you easily find out if it has automounted, and what (if it has automounted) the complete
pathname to where it has automounted in the file system is? What commands do you use to
navigate to that place? What command do you use to mount (if it hasn’t been automounted!)
and unmount the thumbdrive? What kind of partition table and file system type is present on
the thumbdrive? What command(s) can you use to find out all of the earlier information?

42. What Linux command allows you to list, modify, or create partitions on a dispensible USB
thumbdrive (one that you really don’t care about the data on) already automounted on your
system? Using that command, its subcommands, and any other necessary commands, do the
following-

Unmount the thumbdrive.

Print a listing of partition information about that thumbdrive at stdout.

Delete whatever partitions are on the thumbdrive.

Create a primary partition of type Linux filesystem, and numbered 1, on it.

o &0 o8

Let that partition use the whole disk.

f. Write the changes to the disk.
Is it then possible to then simply mount the thumbdrive (if it is not already mounted), and
immediately start putting files on it? What else would you have to do to accomplish that?

The ext4 file system is called a journaling file system and ZFS is called a transactional file
system. What is the difference between a journaling file system and a transactional file system?
What is a journal?

43. How many times bigger a file can be on ZFS-based Linux system compared with those based
on Ext4 and XFS? Show your work.

Files and File System Structure 95

Projects
Project 1

Put a dispensable USB thumbdrive (one that you really don’t care about the data on) into your computer,
and in the primary partition, create an ext4 file system on it. It is assumed that the USB thumbdrive
already has a primary partition on it, which is usually preformatted. Use two different approaches. First,
use the mkfs command. Then change the volume label to “USER_DATA” with the proper mke2fs com-
mand and then verify that change with the e2label command.

For a GUI-installed Linux system, use the Gparted graphical application on your Linux system to
delete the partition you created with mke2fs and recreate it in Gparted. In each approach, mount the ext4
partition at a convenient location in your Linux file system, create some files on it, and then unmount it.
Which approach is more useful for you?

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

S

File Security

OBJECTIVES

* To show the protection and security mechanisms that Linux provides
* To describe the types of users of a Linux file

* To discuss the basic operations that can be performed on a Linux file
» To explain the concept of file access permissions/privileges in Linux
» To discuss how a user can determine access privileges for a file

* To describe how a user can set and change permissions for a file

» To discuss special protection bits, set-user-ID, set-group-ID, and sticky bit, and describe their
purpose
* To cover the following commands and primitives:

?, ~, * chmod, mcrypt, groups, 1s -1, 1s -1d, openssl, umask, umask -S

5.1 Introduction

As we pointed out earlier, a time-sharing system offers great benefits. However, it poses the main
challenge of protecting the hardware and software resources in it. These resources include the input/
output devices, central processing unit (CPU), main memory, and the secondary storage devices that
store user files. The CPU runs user and kernel processes, the main memory stores user processes and
important operating system code and data structures while the system is running, and the secondary stor-
age devices store user files and operating system code on a permanent basis. We limit this chapter to a
discussion about the protection of a user’s files from unauthorized access by other users. Linux provides
three mechanisms to protect your files.

The most fundamental scheme to protect user files is to give every user a login name and a password,
allowing a user to use a system (see Chapter 2). To prevent others from accessing your files, keep the
password for your computer account strictly confidential. The second scheme protects individual files
by converting them to a form that is completely different from the original version by means of encryp-
tion. This technique is used to protect your most important files, so that the contents of these files cannot
be understood even if someone somehow gains access to them on the system. The third file protection
scheme allows you to protect your files by associating access privileges with them, so that only a subset
of users can access these files for a subset of file operations. In other words, the owner of the files can
decide to whom to grant access to these files. All three mechanisms are described in this chapter, with
emphasis on the third scheme.

|
5.2 Password-Based Protection

The first mechanism that allows you to protect your files from other users is the login password scheme.
Every user of a Linux-based computer system is assigned a login name (a name by which the user is
known to the Linux system) and a password. Both the login name and the password are assigned by the

97

98 Linux

system administrator and are required for a user to enter and use a Linux system. All login names are
public knowledge and can be found in the /etc/passwd file. A user’s password, however, is given to that
user only. This scheme prevents users from accessing each other’s files. Users are encouraged to change
their passwords frequently by using the passwd command (see Chapter 2).

On some networked systems, you may have to use the yppasswd or nispasswd command to change
your password on all the network’s computer systems. However, the execution of the command requires
superuser privileges (see Section 5.4.1). If you don’t find this command on your Linux system, you
have to install the nis or yp-tools package. Consult your instructor about the command that you need to
use on your particular system. Usually, only the system administrator can change login names. Under
some Linux installations, users are also allowed to change their usernames.

The effectiveness of this protection scheme depends on how well protected a user’s password is. If
someone knows your password, that person can log on to the system and access your files. There are,
primarily, the following methods of discovering a user’s password:

1. You, as the owner of an account, inform others of your password.

2. A user guesses (or cracks) another user’s password using several techniques such as the diction-
ary, brute force, rainbow table, and spidering attacks.

3. Using phishing to obtain your password.
4. Using social engineering to obtain your password.
5. Using malware or keylogger to obtain your password.

Never let anyone else know your password under any circumstances. As a safety measure, you should
change your password regularly. Always choose passwords that would be difficult for others to guess.
A good password is one that is a mixture of letters, digits, and punctuation marks—but it must be easy for
you to memorize. Never write your password on a piece of paper, and never use birthdays or the names of
relatives, friends, famous sportspersons, or favorite movie actors as passwords. Also, avoid using words
as passwords. Cryptographers recommend that a good password is 20 characters long.

You may like to browse through the websites given in Table 5.6 (found at the book GitHub site)
to know more about the details of the various techniques for hack or obtaining someone’s password,
including dictionary, brute force, rainbow table, spidering, phishing, malware, keylogger, and social
engineering attacks. The table also contains a link to a website that describes ten most popular tools for
cracking passwords. We briefly describe the brute force attack method of cracking someone’s password.
The dictionary, rainbow table, and spidering attacks are similar but less time consuming.

By using brute force, someone tries to learn your password by trying all possible combinations of
characters until the user’s password is found. Guessing someone’s password is a time-consuming pro-
cess and is commonly used by hackers. The brute force method can be made more time consuming for
an infiltrator if the password is long and consists of letters, digits, and punctuation marks. To illustrate
the significance of using a more complex password, consider a system in which the password is exactly
eight characters consisting of decimal digits only. This would allow a maximum of 10® (100 million)
passwords that the brute force method would have to go through, in the worst-case analysis. If the same
system requires passwords to consist of a mixture of digits and uppercase letters (a total of 36 symbols:
10 digits and 26 uppercase letters), the password space would comprise 36® (about 2.8 trillion) passwords.
If the system requires passwords that consist of a mixture of digits, uppercase letters, and lowercase
letters, the password space would comprise 628 (about 218 trillion) passwords. Imagine the size of the
password space if passwords could include punctuation marks too! Many systems force a short (e.g., 5s)
delay after an invalid password is entered before the next login prompt, to make the infiltrator’s job even
harder.

The following in-chapter exercise asks you to figure out how to change your password on your system.

Exercise 5.1
In some Linux systems you are not allowed to change your password. Does your system allow
you to change your password? If so, change your password. What command did you use?

File Security 99

Encryption/ Decryption/
decryption Encrypted decryption
Original file software file software Original file

ESEuleE

FIGURE 5.1 Process of encryption and decryption.

Note: Be sure to memorize your new password, because if you forget it you will have to request
your system administrator to reset your password to a new value, unless your system allows you
to change your password back to the previous password.

5.3 Encryption-Based Protection

In the second protection scheme, a software tool is used to convert a file to a form that is completely
different from its original version. The transformed file is called an encrypted file, and the process of
converting a file to an encrypted file is called encryption. The same tool is used to perform the reverse
process of transforming the encrypted file to its original form, called decryption. You can use this tech-
nique to protect your most important files so that their contents cannot be understood even if someone
else gains access to them. Figure 5.1 illustrates the encryption and decryption processes.

The Linux commands mcrypt and openss] can be used to encrypt and decrypt your files. You can
learn more about these commands by running the man mcrypt and man openss] commands. We discuss
these commands in detail in Chapter 7.

5.4 Protection Based on Access Permission

The third type of file protection mechanism prevents users from accessing each other’s files when
they are not logged on as a file’s owner. As a file owner, you can attach certain access rights to your
files that dictate who can and cannot access them for various types of file operations. This scheme
is based on the types of users, the types of access permissions, and the types of operations allowed
on a file under Linux. Without this protection scheme, users can access each other’s files because
the Linux file system structure (see Figure 4.2) has a single root from which all the files in the sys-
tem hang. We use the terms access permissions, access privileges, and access rights synonymously
throughout the book.

5.4.1 Types of Users

Each user in a Linux system belongs to a group of users, as assigned by the system administrator
when a user is allocated an account on the system. A user can belong to multiple groups, but a typical
Linux user belongs to a single group. All the groups in the system and their memberships are listed
in the file /etc/group (see Figure 4.2). This file contains one line per group, with the last field of the
line containing the login names of the group members. A user of a file can be the owner of the file, a
user who belongs to the same group as the owner, or everyone else who has an account on the system.
These, respectively, comprise the three types of users of a Linux file: user, group, and others. As the
owner of a file, you can specify who can access it. The group name of a file is known as the group
owner of the file.

Once a user of a system has logged in, he/she is known to the Linux system by an integer number,
known as the user ID (UID), and not by the user’s login name. Every Linux system has one special user
who has access to all of the files on the system, regardless of the access privileges on the files. This user

100 Linux

manages (administers) your Linux system and is commonly known as the superuser or system adminis-
trator. The login name for the superuser is root and the user ID is 0.

You can see the list of all user groups on your system by displaying the /etc/group file, shown as
follows.

$ more /etc/group

root:x:0:

daemon:x:1:

bin:x:2:root,bin,daemon

Sys:X:3:
adm:x:4:syslog,bob,ali,goldsmith, ravi
tty:x:5:

disk:x:6:

Tp:x:7:
mail:x:8:
news:x:9:

uucp:x:10:

man:x:12:

proxy:x:13:

kmem:x:15:
dialout:x:20:davis,bob
fax:x:21:

voice:x:22:
cdrom:x:24:bob
floppy:x:25:
tape:x:26:
sudo:x:27:bob
audio:x:29:pulse
dip:x:30:bob

sambashare:x:130:bob,ali, ravi
Tlab:x:1001:davis,sam
faculty:x:1002:bob,sarwar,goldsmith,ravi,
ravi:x:1003:

goldsmith:x:1004:

bob:x:1005:

sarwar:x:1006:

$

There is one line in this file for every group on the system, each line having four colon-separated fields.
The first field specifies the group name, the second specifies some information about the group, the third
specifies the group ID as a number, and the last specifies a comma-separated list of users who are mem-
bers of the group. For example, the bin group has group ID 2 and its members are users root, bin, and
daemon. If the membership list in a line is missing (e.g., the disk group), this means that its membership
is specified in the /etc/passwd file. The system administrator makes a user part of a group at the time
of adding the user to the system. This group is known as a user’s default group. The default group mem-
bership of a user is specified in the user’s entry in the /etc/passwd file. The system administrator can
make a user part of another group (in addition to his/her default group) by placing his/her username in
the comma-separated list of members for the group. You can use the groups command to display which
groups on your system a user is a member of. The following session shows that sarwar is a member of
the faculty group only; bob belongs to the groups adm, dialout, sambashare, and courses; and davis
is a member of three groups: dialout and Tab.

$ groups sarwar
faculty

$ groups bob
faculty courses
$ groups davis
dialout Tab

$

File Security 101

TABLE 5.1

Summary of File Permissions in Linux

Permission Type

User Type Read (r) Write (w) Execute (x) Meaning

User (u) X X X Three bits for the user (owner) of a file

Group (g) X X X Three bits for the group (owner) of a file

Others (o) X X X Three bits for the rest of the user on the Linux machine

Note: X is 1 if the relevant permission is on and 0 if it is off.

TABLE 5.2

Possible Access Permission Values of a File for a User, Their Octal Equivalents, and Their Meanings
Octal Digit for

r w X Permission Meaning

0 0 0 0 No permission

0 0 1 1 Execute-only permission

0 1 0 2 Write-only permission

0 1 1 3 Write and execute permissions

1 0 0 4 Read-only permission

1 0 1 5 Read and execute permissions

1 1 0 6 Read and write permissions

1 1 1 7 Read, write, and execute permissions

5.4.2 Types of File Operations/Access Permissions

In Linux, three types of access permissions/privileges can be associated with a file: read (r), write (w),
and execute (x). The read permission on a file allows you to read the file, the write permission allows you
to write to or remove the file, and the execute permission allows you to execute/run the file. The execute
permission should be set for executable files only, i.e., files containing binary code (i.e., executable code
generated by a compiler) or shell scripts, as setting it for any other type of file does not make any sense.
We discuss the purpose of execute permission on a directory in Section 5.4.3.

With three categories of file users and three types of permissions for each user type, a Linux file has
nine types of permissions associated with it, as shown in Table 5.1. Note that permissions are read across
row by row. As stated in Chapter 4, access privileges are stored in a file’s inode.

The value of X can be 1 (permission granted) or O (permission not granted). Thus, one bit is needed to
represent a permission type and a total of three bits are needed to indicate file permissions for one type
of user. In other words, a user of a file can have one of the eight (2%) possible types of permissions for a
file at a given time. Octal numbers can represent these eight three-bit access permission values from 0 to
7, as shown in Table 5.2. Access permissions O (binary 000) and 7 (binary 111) mean no access permis-
sions and all permissions, respectively.

The nine bits needed to express permissions for the three types of file users result in the possible
access permission values of three-digit octal numbers 000—777 for file permissions. The first octal digit
specifies permissions for the owner of the file, the second digit specifies permissions for the group that
the owner of the file belongs to, and the third digit specifies permissions for everyone else. In the output
of the 1s -1 command, a bit value of O for a permission is displayed as a dash (), and a value of 1 is
displayed as r, w, or x, depending on the position of the bit according to the table. Thus, a permission
value of 0 in octal (no permissions granted) for a user of a file can be written as ——- and a permission of
7 (all three permissions granted) can be denoted as rwx. The outputs of the 1s -1 commands in the fol-
lowing session show that the /etc/passwd file is read-only for everyone on the system except root, who
has read and write permissions. The client.c file has read and write permissions for the owner (sarwar)
and group (faculty), and read-only permission for others.

102 Linux

$ 1s -1 /etc/passwd

-rw-r--r-- 1 root root 2862 Dec 14 2016 /etc/passwd

$ 1s -1 client.c

-rw-rw-r-- 1 sarwar faculty 1277 Dec 12 2016 client.c
$

Because a user can be in many groups, you can expand access to your files to accommodate different
users through groups.

5.4.3 Access Permissions for Directories

Next, we will look at what the read, write, and execute permissions mean for directories. The read
permission for a directory allows you to read the contents of the directory; recall that the contents of a
directory are the names of files and directories in it. Thus, the 1s command can be used to list its con-
tents. The write permission for a directory allows you to create a new directory or a file in it or to remove
an existing entry from it. The execute permission for a directory is permission to search the directory
but not to read from or write to it. Thus, if you do not have execute permission for a directory, you can-
not use the 1s -1 command to list its contents or use the cd command to make it your current directory.
The same is true if any component in a directory’s pathname does not contain execute permission. We
demonstrate these aspects of the search permission on directories in Section 5.5.2.

5.5 Determining and Changing File Access Privileges

The following sections describe how you can determine the access privileges for files and directories and
how you can change them to enhance or limit someone’s access to your files.

5.5.1 Determining File Access Privileges

You can use the 1s command with the -1 or -1d option to display access permissions for a list of files and/
or directories. The following is a brief description of the 1s command with the two options.

Syntax:
I1s -1 [file-1ist]
1s -1d [directory-list]

Purpose: First syntax: Display the long list of files and/or directories in the space-separated
file-1ist on the display screen; in the case where file-list contains directories, display the
long list of all the files in these directories

Second syntax: Display the long list of directories in directory-1ist on the display screen.

If no file-list is specified, the command gives the long list of all the files (except hidden files) in
the present working directory. Add the -a option to the command line to include the hidden files in the
display. Consider the following session.

$1s -1

drwxr-x--- 2 sarwar faculty 512 Jul 29 17:35

courses

- PWX WX rwx 1 sarwar faculty 12 May 01 13:22 Tlabs
-rwxr--r-- 1 sarwar faculty 163 May 05 23:13 temp
$

File Type Link owner’s File [Date] |Time |File Name'
and Access count Group Size in

Permissions Bytes

File Security 103

TABLE 5.3

Permissions for Access to the Files courses, labs, and temp for the Three Types of Users
File Name User Group Other
courses Read, write, search Read and search No permission

labs Read, write, execute Read, write, execute Read, write, execute
temp Read, write, execute Read Read

The leftmost character in the first field of the output indicates the file type (d for a directory and —
for an ordinary file). The remaining nine characters in the first field show the file access privileges for
user, group, and others, respectively. The second field indicates the number of hard links (discussed
in Chapter 8) to the file. The third field shows the owner’s login name. The fourth field shows the
file’s group owner. The fifth field displays the file’s size (in bytes). The sixth, seventh, and eighth
fields display the date and time of file’s creation (or last update). The last field is the file’s name.
Table 5.3 shows who has what type of access privileges for the three files in this session: courses,
Tabs, and temp.

If an argument of the 1s -1 command is a directory, the command displays the long list of all the
files and directories in it. You can use the 1s -1d command to display the long list of directories only.
When executed without an argument, this command displays the long list of the current directory, as
shown in the first command of the following session. The second and third commands show that when
the 1s -1d command is executed with a list of directories as its arguments, it displays the long list of
those directories only. If an argument to the 1s -1d command is a file, the command displays the long
list of the file. The fourth command, 1s -1d pvm/*, displays the long lists of all the files and directories
in the pvm directory.

$1s -1d

drwx--x--x 2 sarwar faculty 11264 Jul 8 22:21 .

$ 1s -1d ABET

drwx------ 2 sarwar faculty 512 Dec 18 1997 ABET

$ 1s -1d ~/Images courses/ee446

drwx------ 3 sarwar faculty 512 Apr 30 09:52 courses/ee446
drwx--x--x 2 sarwar faculty 2048 Dec 18 1997 /home/sarwar/Images
$ 1s -1d pvm/*

drwx------ 3 sarwar faculty 512 Dec 18 1997 pvm/examples
drwx------ 2 sarwar faculty 1024 Oct 27 1998 pvm/gsort
-rw------- 1 sarwar faculty 1606 Jun 19 1995 pvm/Book_PVM
-rw------- 1 sarwar faculty 7639 Sep 11 1998 pvm/Jim_Davis
$

5.5.2 Changing File Access Privileges

You can use the chmod command to change access privileges for your files. The following is a brief
description of the command.

Syntax:
chmod [options] octal-mode file-list
chmod [options] symbolic-mode file-list

Purpose: Change/set permissions for files in file-Tist

Commonly used options/features:

-R Recursively descend through directories changing/setting permissions for all the files and
subdirectories under each directory

-f Force specified access permissions; no error messages are produced if you are the owner
of the file

104 Linux

TABLE 5.4

Values for Symbolic Mode Components

Who Operator Privilege

u User + Add privilege r Read bit

g Group - Remove privilege w Write bit

o Other = Set privilege x Execute/search bit

a All u User’s current privileges
ugo All Group’s current privileges

Others’ current privileges
Locking SGID privilege bit

— 0 «

wn

Sets user or group ID mode bit
t Sticky bit

TABLE 5.5

Examples of the chmod Command and Their Purposes

Command Purpose

chmod 700 * Sets access privileges for all files, including directories, in the current directory to read,

write, and execute for the owner, and provides no access privilege to anyone else

chmod 740 courses Sets access privileges for courses to read, write, and execute for the owner and
read-only for the group, and provides no access for others

chmod 751 ~/courses Sets access privileges for ~/courses to read, write, and execute for the owner, read
and execute for the group, and execute-only permission for others

chmod 700 ~ Sets access privileges for the home directory to read, write, and execute (i.e., search)
for the owner, and no privileges for anyone else

chmod u=rwx courses Sets owner’s access privileges for courses to read, write, and execute and keeps the
privileges of group and others at their present values

chmod ugo-rw sample or Does not let anyone read or write sample

chmod a-rw sample

chmod a+x sample Gives everyone execute permission for sample
chmod g=u sample Makes samp1e’s group privileges match its user (owner) privileges
chmod go= sample Removes all access privileges to samp1e for group and others

The symbolic mode, also known as mode control word, has the form <who><operator> <privi-
Tege>, with possible values for “who,” “operator,” and “privilege” shown in Table 5.4. This table also
shows the use of + and - operators in the chmod command to add and remove a permission. How and
when the set-group-ID (SGID) privilege bit is set to S or 1, is described in Section 5.6.2.

Note that u, g, or o can be used as a privilege with the = operator only. Multiple values can be used
for “who” and “privilege,” such as ug for the “who” field and rx for the “privilege” field. Some useful
examples of the chmod command and their purposes are listed in Table 5.5.

The following session illustrates how access privileges for files can be determined and set. The chmod
command is used to change (or set) access privileges, and the 1s -1 (or 1s -1d) command is used to
show the effect of the corresponding chmod command. After the chmod 700 courses command has
been executed, the owner of the courses file has read, write, and execute access privileges for it, and
nobody else has any privilege. The chmod g+rx courses command adds read and execute access privi-
leges to the courses file for the group; the privileges of the owner and others remain intact. The chmod
o+r courses command adds the read access privilege for the courses file for others. The chmod a-w
* command takes away the write access privilege from all users for all the files in the current direc-
tory. The chmod go+x, o+r * command enables the execute permission for group and others, and
read permission to others to all the files in the current directory. The chmod 700 [1-t]* command sets

File Security 105

the access permissions to 700 for all the files that start with letters “1” through “t,” as illustrated by the
output of the last Ts -1 command, which shows access privileges for the files Tabs and temp changed
to 700.

$ cd

$ 1s -1

drwxr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
—PWX WX rwx 1 sarwar faculty 12 May 01 13:22 Tabs
-rwxr--r-- 1 sarwar faculty 163 May 05 23:13 temp

$ chmod 700 courses

$ 1s -1d courses

drwx------ 2 sarwar faculty 512 Apr 23 09:37 courses
$ chmod g+rx courses

$ 1s -1d courses

drwxr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
$ chmod o+r courses

$ 1s -1d courses

drwxr-xr-- 2 sarwar faculty 512 Apr 23 09:37 courses
$ chmod a-w *

$ 1s -1

dr-xr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
-r-Xr-xr-x 1 sarwar faculty 12 May 01 13:22 Tlabs
-r-Xr——r-- 1 sarwar faculty 163 May 05 23:13 temp

$ chmod go+x, o+r *

$1s -1

dr-xr-xr-- 2 sarwar faculty 512 Apr 23 09:37 courses
-r-Xr-xr-x 1 sarwar faculty 12 May 01 13:22 Tabs
-r=Xr—-xr-- 1 sarwar faculty 163 May 05 23:13 temp

$ chmod 700 [1-t]*

$ 1s -1

dr-xr-x--- 2 sarwar faculty 512 Apr 23 09:37 courses
—rwx------ 1 sarwar faculty 12 May 01 13:22 Tabs
-rwx------ 1 sarwar faculty 163 May 05 23:13 temp

$ chmod +x *

$ 1s -1

dr-xr-x--x 2 sarwar faculty 512 Apr 23 09:37 courses
-rwX--X--X 1 sarwar faculty 12 May 01 13:22 Tlabs
—rwx--X--X 1 sarwar faculty 163 May 05 23:13 temp

$

The access permissions for all the files and directories under one or more directories can be set by using
the chmod command with the -R option. In the following session, the first command sets access permis-
sions for all the files and directories under the directory called courses to 711, recursively. The second
command sets access permissions for all the files and directories under ~/personal/letters to 700,
recursively. “Recursively” means by traversing all subdirectories under the specified directories, i.e.,
courses and ~/personal/letters in these examples.

$ chmod -R 711 courses
$ chmod -R 700 ~/personal/letters
$

If you specify access privileges with a single octal digit in a chmod command, it is used by the command
to set the access privileges for “others”; the access privileges for “user” and “group” are both set to 0 (i.e.,
no access privileges). If you specify two octal digits in a chmod command, the command uses them to set
access privileges for “group” and “others”; the access privileges for “user” are set to 0. In the following
session, the first chmod command sets “others” access privileges for the courses directory to 7 (rwx) and
0 (---) for owner and group. The second chmod command sets “group” and “others” access privileges for
the personal directory to 7 (rwx) and O (---), respectively, and no access rights for the file owner. The
Ts -1 command shows the results of these commands.

106 Linux

$ chmod 7 courses
$ chmod 70 personal

$ 1s -1

d------ rwx 2 sarwar faculty 512 Nov 10 09:43 courses
d---rwx--- 2 sarwar faculty 512 Nov 10 09:43 personal
drw------- 2 sarwar faculty 512 Nov 10 09:43 sample

$

5.5.3 Access Privileges for Directories

As previously stated, the read permission on a directory allows you to read the contents of the directory
(recall that the contents of a directory are the names of files and directories in it), the write permission
allows you to create a file in the directory or remove an existing file or directory from it, and the execute
permission for a directory is permission for searching the directory. It is important to note that read and
write permissions on directories are not meaningful without the search permission. So, you must have
both read and execute permissions on a directory to be able to list its contents. Similarly, you must have
both write and execute permissions on a directory to be able to create a file in it.

In the following session, the write permission for the directory courses has been turned off. Thus,
you cannot create a subdirectory ee345 in this directory by using the mkdir command or copy a file foo
into it. Similarly, as you do not have search permission for the directory personal, you cannot use the
cd command to enter (change directory to) this directory. If the directory sample had a subdirectory, say
foobar, for which the execute permission was turned on, you still could not change directory to foobar,
because search permission for sample is turned off. Finally, as read permission for the directory per-
sonal is turned off, you cannot display the names of files and directories in it by using the 1s command,
even though search permission on it is turned on.

$ chmod 600 sample

$ chmod 500 courses

$ chmod 300 personal

$ 1s -1d courses personal sample

dr-x------ 2 sarwar faculty 512 Aug 4 06:36 courses
d-wx------ 2 sarwar faculty 62 Aug 4 06:36 personal
drw------- 2 sarwar faculty 88 Aug 4 06:36 sample

$ mkdir courses/ee345

mkdir: courses/ee345: Permission denied
$ cp foo courses

cp: courses/foo: Permission denied

$ cd sample

cd: sample: Permission denied

$ 1s -1 personal

total 0
1s: personal: Permission denied
$

The next session shows that simply having read or write permission on a directory is not sufficient to read
its contents (e.g., display them with the 1s command) or create a file or directory in it. For example, the
directory dirl has write permission turned on, but you cannot copy the progl.cpp file into it, because
search permission on it is turned off. Similarly, you cannot remove the file f1 from dir2. After you turn
on its search permission with the chmod u+x dir2 command, you can remove the file f1.

$ 1s -1d dir?
d-w------- 2 sarwar faculty 2 Aug 4 06:59 dirl
d-w------- 2 sarwar faculty 3 Aug 4 06:59 dir2

$ cp progl.cpp dirl

cp: dirl/progl.cpp: Permission denied
$ rm dir2/f1

rm: dir2/fl: Permission denied

File Security 107

$ chmod u+x dir2

$ 1s -1d dir2

d-wx------ 2 sarwar faculty 3 Aug 4 06:59 dir2
$ rm dir2/f1

$

The following in-chapter exercises ask you to use the chmod and 1s -1d commands to see how they
work, and to enhance your understanding of Linux file access privileges.

Exercise 5.2
Create three directories called courses, sample, and personal by using the mkdir command.
Set access permissions for the directory sample so that you have all three privileges, users in
your group have read access only, and the other users of your system have no access privileges.
Show your work.

Exercise 5.3
Use the chmod o+r sample command to allow others read access to the directory sample. Use
the s -1d sample command to confirm that read permission for sample has been enabled for
others.

Exercise 5.4
Use the session preceding these exercises to understand fully how the read, write, and execute
permissions work for directories. Run the session on your system and verify results.

5.5.4 Default File Access Privileges

When a new file or directory is created, Linux sets its access privileges based on the current mask value.
On Linux systems, the default access privileges for the newly created files and directories are 777 for
executable files and directories and 666 for text files. However, these default permissions may be differ-
ent depending on the value of the mask set on your system. If a mask bit is 1, the corresponding permis-
sion will be disabled, and if it is 0, the permission will be determined by the system using a Boolean
logic expression involving the current value of the mask and the default permissions. We describe this
expression later in this section.

You can display the current mask value or set it to a new value by using the umask command. The
following is a brief description of the command.

Syntax:
umask [-S] [mask]

Purpose: Set access permission bits for newly created files and directories to 0, if the correspond-
ing bit in the mask is set to 1. Other permission bits are determined by using a Boolean logic
expression involving the values of the mask and default permissions. Without any argument,
the command displays the current value of the mask. With the -S option, the command displays
the mask value in a symbolic form (see the following paragraphs).

When the command is executed without an argument, it displays the current value of the bit mask in octal,
as is shown in the first command of the following session. The rightmost nine bits (i.e., the rightmost
three octal digits) are for user, group, and others, and the leftmost three bits (i.e., the leftmost octal digit)
are for special access bits described in Section 5.6. The umask -S command displays the symbolic value
of the mask, showing the access privileges that will be set for a newly created directory or executable file
for user, group, and others.

$ umask

0022

$ umask -S
U=rwx, g=rx, 0=rx

$

108 Linux

When used with a mask as an argument, the umask command can be used to set the mask value. The
mask value may be specified as a three-digit or four-digit octal number. In the following session, we
show how the umask command can be used without and with the -S option.

$ umask 077

$ umask

0077

$ umask -S u=rwx,g=,0=
$ umask

0077

$

The umask command is normally placed in the system startup file ~/.profile in Linux, including Mint
18, so that it executes every time you log on to the system.

The argument of umask is a bit mask, specified in octal, that identifies the permission bits that are to
be turned off when a new file is created. The values of other access permission bits are computed by the
Boolean expression:

A =B AND C' = BC'

Here, A is the file access permission assigned to a newly created file or directory, B is the default access
permission (777 for a directory or executable file and 666 for a text file), and C is the current mask value.
C' (pronounced “NOT C” or “C prime”) is called negation, or 1’s complement of C. The 1’s complement
of a binary number is obtained by replacing 1s with Os and vice versa. For example, the 1’s complement
of the four-bit binary number 1011 is 0100. The bitwise Boolean function AND of two binary variables
returns 1 if and only if both the bits are 1; it returns 0 otherwise. While computing A in the earlier equa-
tion, the AND function compares the respective bits in B and C' and returns a 1 if and only if both bits are
1; otherwise it returns 0.

We now show a few examples how Linux assigns file access permissions to newly created files and
directories for a given mask. We determine the access permissions for a newly created directory or
executable file for the mask value 022 by using the earlier Boolean expression.

C =022 = 000 010 010
c' = 111 101 101
B =777 = 111 111 111
A =B AND C' = 111 101 101 = 755 (octal) = 111101101 (binary)

rwxr-xr-x (symbolic)

Thus, file access permissions are 755 (read, write, execute for user, read and execute for group and
others). For a text file, B is 666. Thus, access permissions for a newly created text file would be 644 as
follows:

c' = 111 101 101
B = 666 = 110 110 110
A =B AND C' = 110 100 100 = 644 (octal) = 110100100 (binary)

rw-r--r-- (symbolic)

The access permissions for a newly created text file for the mask value 077 would be 600, as follows:

C =077 = 000 111 111
c' = 111 000 000
B = 666 = 110 110 110
A =B AND C' = 110 000 000 = 600 (octal) = 110000000 (binary)

rw------- (symboTlic)

We now do a Bourne shell session to verify the previous results. Note that with the mask set to 022, the
permissions for the newly created directory (labs) and executable file (hello) are 755 (rwx1-xr-x), and

File Security 109

are 644 (rw-r--r--) for the newly created text file, tempfile, as calculated earlier. With the mask set to
077, the permissions for the directory (lectures) and executable file (greeting) are 700 (rwx------),
and are 600 (rw-------) for the text file (textfile).

umask 022

mkdir Tabs

cc hello.c -o hello

cat > tempfile

date

pwd

$ 1s -1d 1abs hello tempfile

-rwxr-xr-x 1 sarwar faculty 6945 Aug 5 22:27 hello

R]

drwxr-xr-x 2 sarwar faculty 2 Aug 5 22:26 labs
-rw-r--r-- 1 sarwar faculty 9 Aug 5 22:30 tempfile
$ umask 077

$ mkdir lectures

$ cc hello.c -o greeting

$ cat > testfile

date

echo "Hello, world!"

$ 1s -1d lectures greeting testfile

-rwX------ 1 sarwar faculty 6945 Aug 5 22:28 greeting
drwx------ 2 sarwar faculty 2 Aug 5 22:27 Tectures
-rW------- 1 sarwar faculty 26 Aug 5 22:29 testfile
$

The authors prefer a mask value of 077 so that their new files are always created with full protection in
place, that is, files have full access permissions for the owner and no permissions for anyone else. This
mask allows you to have a completely private system, not allowing other users to read, write, or execute
your files or read, write, or search your directories. Recall that you can change access privileges for files
on an as-needed basis by using the chmod command. Another common umask value is 027, which gives
default privileges to group members and no permissions to others.

Exercise 5.5 asks you to use the umask command to determine the current file protection mask.

Exercise 5.5
Run all the shell sessions shown and discussed in this section to make sure that they work on
your system too and to understand the use of the umask command works and how the Linux
system decides about the access permissions on newly created files and directories.

5.6 Special Access Bits

In addition to the nine commonly used access permission bits described in this chapter, three additional
bits are of special significance. These bits are known as the set-user-ID (SUID) bit, SGID bit, and sticky bit.

5.6.1 SUID Bit

We have previously shown that the external shell commands have corresponding files that contain binary
executable codes or shell scripts. The programs contained in these files are not special in any way in
terms of their ability to perform their tasks. Normally, when a command executes, it does so under
the access privileges of the user who issues the command, which is how the access privileges system
described in this chapter works. However, a number of Linux commands need to write to files that are
otherwise protected from users who normally run these commands. An example of this file is /etc/
passwd, the file that contains a user’s login information (see Chapter 4). Only a superuser is allowed to
write to this file to perform tasks such as adding a new login and changing a user’s group ID. However,
Linux users are normally allowed to execute the passwd command to change their passwords. Thus,

110 Linux

when a user executes the passwd command, the command changes the user password in the /etc/
passwd file on behalf of the user who runs this command. The problem is that we want users to be able
to change their passwords, but at the same time, they must not have write access to the /etc/passwd
file to keep information about other users in this file from being compromised. On Linux Mint, it is the
nonreadable master password file /etc/shadow that changes.

As previously stated, when a command executes, it runs with the privileges of the user running
the command. Another way of stating the same thing is that, when a command runs, it executes with
the effective user ID of the user running the command. Linux has an elegant mechanism that solves the
problem stated in the preceding paragraph—and many other similar security problems—by allowing
commands to change their effective user ID and become privileged in some way. This mechanism allows
commands such as passwd to perform their work, yet not compromise the integrity of the system. Every
Linux file has an additional protection bit, called the SUID bit, associated with it. If this bit is set for a
file containing an executable program, the program takes on the privileges of the owner of the file when it
executes. Thus, if a file is owned by root and has its SUID bit set, it runs with superuser privileges. This
bit is set, for example, for the passwd command. So, when you run the passwd command, it can write to
the /etc/passwd file (replacing your existing password with the new password), even though you do not
have access privileges to write to the file.

Several other Linux commands require root ownership and the SUID bit set, because they access
and update operating system resources (files, data structures, etc.) that an average user must not have
permissions for. Some of these commands are 1p, mail, mkdir, mv, and ps. The authors of computer game
software that maintains a scores file can make another use of the SUID bit. When the SUID bit is set for
such software, it can update the scores file when a user plays the game, although the same user cannot
update the scores file by explicitly writing to it.

The SUID bit is enabled if the execute bit for the owner is s (or S). If both SUID and execute bits
are enabled, the bit is displayed as s in the output of the 1s -1 command. If SUID bit is enabled but
execute bit is disabled, the bit is displayed as S by the 1s -1 command. The following session shows an
example of each case.

$ 1s -1 cp.new foo

-rwSr--r-- 1 sarwar faculty 14 Aug 4 23:38 cp.new
-r-sr-xr-x 1 sarwar faculty 30 Aug 5 05:27 foo

$

The chmod command with the following syntax may be used to set the SUID bit.

Syntax:
chmod 4xxx file-list
chmod u+s file-list

Purpose: Change/set the SUID bit for files in file-Tist

Here, xxx is the octal number that specifies the read, write, and execute permissions for user, group, and
others, and the octal digit 4 (binary 100) is used to set the SUID bit. When the SUID bit is set, the execute
bit for the user is set to s (lowercase) if the execute permission is already set for the user; otherwise, it is
set to S (uppercase). The following session illustrates the use of these command syntaxes. The first, the
Ts -1 cp.new command, is used to show that the execute permission for the cp.new file is set. The chmod
4710 cp.new command is used to set the SUID bit and other nine bits of permission to octal 710. The
second, the 1s -1 cp.new command, shows that the x bit value has changed to s. The two subsequent
chmod commands are used to set the SUID and execute bits to 0. The 1s -1 cp.new command is used
to show that execute permission has been taken away from the owner. The chmod u+s cp.new com-
mand is used to set the SUID bit again, and the last 1s -1 cp.new command shows that the bit value is
S (uppercase) because the execute bit was not set before setting the SUID bit.

$ 1s -1 cp.new
-rwx--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new

File Security 111

$ chmod 4710 cp.new

$ 1s -1 cp.new

-rws--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod u-s cp.new

$ chmod u-x cp.new

$ 1s -1 cp.new

-rw---x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod u+s cp.new

$ 1s -1 cp.new

-rwS--x--- 1 sarwar faculty 14 Aug 4 23:26 cp.new

Although the idea of the SUID bit is sound, it can compromise the security of the system if not
implemented correctly. For example, if the permissions of any SUID program are set to allow write
privileges to others, you can change the program in this file or overwrite the existing program with
another program. Doing so would allow you to execute your (new) program with superuser privileges.

5.6.2 SGID Bit

The SGID bit works in the same manner in which the SUID bit does, but it causes the access permissions
of the process to take the group identity of the group to which the owner of the file belongs. This feature
is not as dangerous as the SGID feature, because most privileged operations require superuser identity,
regardless of the current group ID. The SGID bit is enabled if the execute bit for the group is displayed as
s (or S) by the 1s -1 command. If both SGID and execute bits are enabled, the bit is displayed as s in the
output of the 1s -1 command. If SGID bit is enabled but the execute bit is disabled, the bit is displayed
as S by the 1s -1 command. The following session shows an example of each case.

$ 1s -1 cp.new foo

-rw-r-Sr-- 1 sarwar faculty 14 Aug 4 23:38 cp.new
-r-xr-sr-x 1 sarwar faculty 30 Aug 5 05:27 foo

$

Using either of the following two command syntaxes can set the SGID bit.

Syntax:
chmod 2xxx file-Tist
chmod g+s file-list

Purpose: Change/set the SGID bit for files in file-1ist

Here, xxx is the octal number specifying the read, write, and execute permissions for the files in file-
Tist, and the octal digit 2 (binary 010) specifies that the SGID bit is to be set for the same files. The
following session on Linux Mint illustrates the use of these command syntaxes. The command chmod
2751 cp.new sets the SGID bit for the cp.new file and sets its access privileges to 751 (rwxr-x--x). The
rest of the commands are similar to those in Section 5.6.1.

$ 1s -1 cp.new

-rwxr-x--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod 2751 cp.new

$ 1s -1 cp.new

-rwxr-s--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod g-s cp.new

$ chmod g-x cp.new

$ 1s -1 cp.new

-rwxr----x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$ chmod g+s cp.new

$ 1s -1 cp.new

-rwxr-S--x 1 sarwar faculty 14 Aug 4 23:26 cp.new
$

112 Linux

You can set or reset the SUID and SGID bits by using a single chmod command. Thus, the command
chmod ug+s cp.new can be used to perform this task on the cp.new file. You can also set the SUID
and SGID bits along with the access permissions bits (read, write, and execute) by preceding the octal
number for access privileges by 6 because the leftmost octal digit 6 (110) specifies that both the SUID
and SGID bits be set. Thus, the command chmod 6754 cp.new may be used to set the SUID and SGID
bits for the cp.new file and its access privileges to 754. If SGID is set on a directory, directories created
in that directory will be owned not by the group of the user who created the directory, but by the group
owner of the parent directory.

The 1s -1 command displays 1 in the seventh permission bit if your operating system and file system
support mandatory file locking. The value 1 indicates that mandatory file locking is enabled for this file.
Read the man page for the fcnt1() system call and Chapter W21 for details on advisory (or discretion-
ary) and mandatory file locks.

5.6.3 Sticky Bit

The last of the 12 access bits, the sticky bit, is on if the execute bit for others is t (or T), as in the case /
tmp given as follows:

$1s -1 / | grep tmp
drwxrwxrwt 14 root root 4096 Jul 1 15:17 tmp
$

The sticky bit can be set for a directory to ensure that an unprivileged user cannot remove or rename files
of other users in that directory. You must be the owner of a directory or have appropriate permissions to
set the sticky bit for it. Some systems do not allow nonsuperusers to set the sticky bit. It is commonly set
for shared directories that contain files owned by several users.

The output of the earlier command shows that the /tmp directory, owned by root, has the sticky
bit on. It has read, write, and execute permissions for everyone. It means that any user can create a
file or directory in /tmp. However, because the sticky bit is on, no user (other than the superuser)
can remove a file or directory that he/she does not own. Thus, Linux allows you to remove any files
in /tmp that you own, but no other file or directory, because you are not the owner of those files and
directories.

Originally, this bit was designed to inform the kernel that the code segment of a program is to be
shared or kept in the main memory or the swap space owing to the frequent use of the program. Thus,
when this bit is set for a program, the system tries to keep the executable code for the program (the code
segment only) in memory after it finishes execution—the processes literally “stick around” in the mem-
ory. If, for some reason, memory space occupied by this program is needed by the system for loading
another program, the program with the sticky bit on is saved in the swap space (a special area on the disk
used to save processes temporarily). That is, if the sticky bit is set for a program, the code segment of the
program is either kept in memory or in the swap space after it finishes its execution. When this program
is executed again, with the program in memory, its execution starts right away. If the program is in the
swap space, the time needed for loading it is much shorter than if it were stored on disk as a Linux file.
The advantage of this scheme, therefore, is that if a program with the sticky bit on is executed frequently,
it is executed much more quickly.

This facility is useful for programs such as compilers, assemblers, editors, and commands such as 1s
and cat, which are frequently used in a typical computer system environment. However, care must be
taken that not too many programs have this bit set. Otherwise, system performance will suffer because
of the lack of free space, with more and more space being used by the programs whose sticky bit is set.
This historical use of the sticky bit is no longer needed in newer Linux systems because virtual memory
systems use page replacement algorithms that do not remove recently used program pages/segments.
Linux Mint allows you to set the sticky bit on nondirectory files, as shown in the shell session at the end
of this section.

Either of the following syntaxes may be used to set the sticky bit.

File Security 113

Syntax:
chmod 1xxx file-list
chmod +t file-list

Purpose: Change/set the sticky bit for files in file-Tist

Here, xxx is the octal number specifying the read, write, and execute permissions, and the octal digit 1
(binary 001) specifies that the sticky bit is to be set. When the sticky bit is set, the execute bit for others is
set to t if others already has execute permission; otherwise, it is set to T. The following session on Linux
Mint illustrates the use of these command syntaxes. The command chmod 1751 cp.new sets the sticky
bit for the cp.new file and set its access privileges to 751. As the outputs of these commands show, Linux
Mint allows you to enable the sticky bit for a nondirectory file. It also allows you to set this bit for dirl,
a directory, with the command chmod +t dirl. Linux Mint allows you to set the sticky bit for nondirec-
tory files as well as directories. The explanations for the lowercase t and uppercase T in the following
session are the same as for the lowercase s and uppercase S for SUID and SGID bits.

$ 1s -1 cp.new

-rw-rw-rw- 1 sarwar faculty 14 Aug 4 23:38 cp.new
$ 1s -1d dirl

drwxr-xr-x 2 sarwar faculty 2 Aug 5 07:59 dirl

$ chmod 1751 cp.new

$ 1s -1 cp.new

-rwxr-x--t 1 sarwar faculty 14 Aug 4 23:38 cp.new
$ chmod +t dirl

$ 1s -1d dirl

drwxr-xr-t 2 sarwar faculty 2 Aug 5 07:59 dirl

$ chmod o-x dirl

$ 1s -1d dirl
drwxr-xr-T 2 sarwar faculty 2 Aug 5 07:59 dirl
$

Exercise 5.6
Run all the shell sessions shown and discussed in this section to make sure that they work on
your system too and to understand how the chmod command is used to set and reset special
access permission bits (SUID, SGID, and sticky) on your Linux system. Also, find out if the
SGID and sticky bit may be set on your system for both files and directories.

Summary

A time-sharing system has to ensure protection of one user’s files from unauthorized (accidental or
malicious) access by other users of the system. Linux provides several mechanisms for this purpose,
including one based on access permissions. Files can be protected by informing the system of the type of
operations (read, write, and execute) that are permitted on the file by the owner, group (the users who are
in the same group as the owner), and others (everyone else on the system). Linux allows a user to be part
of multiple groups. Only the system administrator, also known as the superuser in Linux jargon, can add
you to a group or remove you from a group. You can display the groups you (or any user) are a member of
by using the groups command. These nine commonly used access permissions are represented by bits.
This information is stored in the inode of the file. When a user tries to access a file, the system allows or
disallows access based on the file’s access privileges stored in the inode.

Access permissions for files can be viewed by using the 1s -1 command. When used with directories,
this command displays attributes for all the files in the directories. The 1s -1d command can be used to
view access permissions for directories. The owner of a file can change access privileges on it by using
the chmod command. The umask command, which is usually placed in the ~/.profile file in Linux,
allows the user to specify a bit mask that informs the system of access permissions that are disabled

114 Linux

Bit: 12 11 10 9 8 7 6 5 4 3 2 1

SUID | SGID | Sticky r w X r w X r w X

Bits for special access Owner’s access Group’s access Others’ access
privileges privileges privileges privileges

FIGURE 5.2 Position of access privilege bits for Linux files as specified with the chmod command.

for the user, group, and others. When a file is created by the Linux system, it sets access permissions
for the file according to the bit mask and the default access permissions for directories, executable files,
and text files. File access permissions assigned to newly created files (A) are given by the expression
A=B AND C', where B is the default privileges for the file, C is the value of the bit mask, and AND is the
Boolean function for bitwise AND. In a typical system, the mask is set to 022 for default permissions on
newly created files and directories. For a fully secure system, it should be set to 077. You can use the
umask command to display the value of current flag in octal and umask -S command to display the flag
in a symbolic form.

Linux also allows three additional bits—SUID, SGID, and sticky bit—to be set. The SUID and SGID
bits allow the user to execute commands, including passwd, 1s, mkdir, and ps, which access important
system resources to which access is not allowed otherwise. The sticky bit can be set for a directory to
ensure that an unprivileged user cannot remove or rename files of other users in that directory. Only
the owner of a directory, or someone else having appropriate permissions, can set the sticky bit for the
directory. It is commonly set for shared directories that contain files owned by several users, such as /
tmp in the Linux file system structure. Historically, the sticky bit has served another purpose. It can be
set for frequently used utilities so that Linux keeps them in the main memory or on a fixed area on the
disk, called the swap space, after their use. This feature makes subsequent access to these files much
faster than if they were to be loaded from the disk as normal files. However, due to the implementation
of virtual memory systems using advanced algorithms of demand paging, demand segmentation, and
paged segmentation on most modern multiuser time-sharing systems, the use of the sticky bit to keep a
program memory or swap space resident is no longer required. Its use for directories remains useful and
necessary. Therefore, all modern Linux systems support the sticky bit for directories, but support for the
sticky bit for files is no longer maintained across the board. For example, Linux Mint does provide sup-
port for the sticky bit for nondirectory files.

The final format of the 12 access permissions bits, as used in the chmod command, is shown in
Figure 5.2.

Questions and Problems

1. What are the three basic file protection schemes available in Linux?
2. List all possible two-letter passwords comprising digits and punctuation letters.

3. If a computer system allows six-character passwords comprising a random combination of
decimal digits and punctuation marks, what is the maximum number of passwords that a user
will have to try with the brute force method of breaking into a user’s account? Why?

4. What is the maximum number of passwords that can be formed if a system allows digits,
uppercase and lowercase letters, and seven punctuation marks (, ; : ! “ . and ?) to be used?
Assume that passwords must be 12 characters long.

5. Suppose that a hacker is trying to guess a password—consisting of eight characters—using
uppercase letters, lowercase letters, and digits. Further, suppose that the system forces a 5s
delay after each password guess. How long will it take the hacker to guess the password in the
worst-case analysis? Repeat the exercise if we are allowed to use five punctuation marks as
characters in a password. Why? Show all your work.

File Security 115

6. How does file protection based on access permissions work? Base your answer on various types
of users of a file and the types of operations they can perform. How many permission bits are
needed to implement this scheme? Why?

7. How do the read, write, and execute permissions work in Linux? Illustrate your answer with
some examples.

8. How many user groups exist on your system? How did you get your answer? What groups are
you a member of and what is your default group? How many groups is root a member of on your
system? How did you obtain your answer? If you used any commands, show the commands and
their outputs.

9. Create a file testl in your present working directory and set its access privileges to read and
write for yourself, read for the users in your group, and none to everyone else. What command
did you use to set privileges? Give another command that would accomplish the same thing.

10. The user sarwar sets access permissions to his home directory by using the command chmod
700 $HOME. If the file cp.new in his home directory has read permissions of 777, can anyone
read this file? Why or why not? Explain your answer.

11. What is the effect of each command? Explain your answers.
chmod 776 ~/1ab5

chmod 751 ~/1ab?

chmod 511 *.c

chmod 711 ~/*

Ts -1

1s -1d

1s -1 ~/personal

PR o0 &0 o9

1s -1d ~/personal

12. What is the effect of each command? Explain your answers.
chmod u+rw,g-r,0-x ~/1ab5

chmod u+rw,g-r,0-x ~/lab?

chmod u+x,g-wx *.c

chmod ugo+x go-w ~/*

o &0 o9

chmod +x *

13. What does the execute permission mean for a directory, a file type for which execute operation
makes no sense? Explain with an example.

14. Create a file dirl in your home directory and use cp /etc/passwd dirl/mypasswd com-
mand to copy the /etc/passwd file into it. Use the chmod command to have only the search
permission on for it and execute the following commands. What is the result of executing these
commands? Do the results make sense to you? Explain.

a. cd dirl

b. 1s

c. rm dirl/mypasswd

d. cp /etc/passwd dirl

15. What umask command should be executed to set the permissions bit mask to 037? With this
mask, what default access privileges are associated with any new file that you create on the

system? Why? Where would you put this command so that every time you log on to the system
this mask is effective?

16. Give a command line for setting the default access mode so that you have read, write, and
execute privileges, your group has read and execute permissions, and all others have no
permission for a newly created executable file or directory. How would you test it to be sure
that it works correctly?

116 Linux

17. Give chmod command lines that perform the same tasks as the mesg n and mesg y commands.
(Hint: Every hardware device, including your terminal, has an associated file in the /dev directory.)

18. What are the purposes of the SUID, SGID, and sticky bits?

19. Give one command line for setting all three special access bits (SUID, SGID, and sticky) for
the file cp.new. (Hint: Use octal mode.)

20. In a Linux system, the cat command is owned by root and has its SUID bit set. Do you see any
problems with this setup? Explain your answer.

21. Some Linux systems do not allow users to change their passwords with the passwd command.
How is this restriction enforced? Is it a good or bad practice? Why?

22. Calculate the file access permissions assigned to newly created directories, executable files,
and text files for bit mask 027. Show all your work.

23. Describe briefly the purpose of each of the following commands. Run these commands on your
system after creating ~/progl (a file) and ~/dirl (a directory) on it and show the outputs of
the commands to verify your answers. If your system does not support any command on your
system, explain why you think it does so.

a. chmod 4776 ~/progl
b. chmod 1776 ~/progl
c. chmod 6776 ~/progl
d. chmod g+s ~/progl

e. chmod +t ~/progl

f. chmod +t ~/dirl

g. chmod ugo-r ~/progl
h. chmod a-rw ~/progl

i. chmod ug+x ~/dirl

j- chmod go= ~/dirl

k. chmod u=rwx ~/progl

1. chmod g=0 ~/dirl
m. chmod o-wx ~/dirl

——

Advanced Questions and Problems

24.

25.

26.

217.

28.

How many discrete “fields” are there in a single entry in the /etc/passwd file on your Linux sys-
tem, and what is the exact meaning of each field in that entry? What information do the fields in
your user entry in the /etc/passwd file give you? What is the purpose of the “nobody” account
that has an entry in the /etc/passwd file? Can you log into your Linux system as “nobody,” and
if you cannot, why?

When does the 1s -1 command display s, S, and 1 for SUID and SGID bits for files? Show a
Bash session to illustrate your answers.

If SGID is set on a directory, D1, the group owner of the parent directory will own directories
created in D1. Show a shell session to show that this statement is true.

What is the purpose of sticky bit for directories and files? When does the 1s -1 command dis-
play t and T for sticky bit for a directory or file? Show a Bash session to illustrate your answers.
To extend your knowledge of discretionary access control beyond the traditional Linux
permission bits, as have shown them in this chapter, work through the material presented in
Chapter W26, Sections 9.3.1-9.3.3 at the book website. Then do the following problems
If you give a set of user permissions to a project directory using POSIX.le ACLs, how can you
ensure that subdirectories that are created by the project manager beneath that project directory
provide the same access privileges to those users?

File Security 117

29. Create a project directory on your system and create a git repository in it for any number of
local users on your computer system. Then, use POSIX.le ACLs to give access to the project
directory to the users that are collaborating in the project. This should allow those users to push
to and pull from the git repository. Have your allowed users test the repository. Also test the
security of the repository, i.e., can nonallowed users access it? See Chapter W24, Section 5.7, at
the book website, to obtain complete information on creating a git repository.

|
Projects

Project 1

Mansoor is working with Bob on a project. He needs to read, write, create, and delete files related to the
project, which are located in the Project directory in Bob’s home directory. Bob and Mansoor are ordi-
nary users without administrative privileges. They wish to do this project without contacting the system
administrator to request new groups, group membership changes, sudo changes, etc. When the project is
over, Bob will remove the modify permissions on his home and the Project directory for user “Mansoor”
himself, instead of contacting the system administrator. They also must work solely on the same com-
puter, using the default locally mounted disk drives.
On your own Linux system, possibly in conjunction with another user, use POSIX.le ACLs to accom-

plish the following (substituting valid usernames on your system for Bob and Mansoor):

a. Create a project directory under Bob’s home directory named “Project.”

b. Set the POSIX.le ACL on Bob’s home directory, so Mansoor has read, write, and execute privi-

leges on it.

. Set the POSIX.le ACL on the Project directory so that Mansoor has rwxo privileges on it.
. Have Bob created some files in the Project directory.
. Have Mansoor made Bob’s home directory the current directory.

- 0O & 0

. Have Mansoor tested whether he can
i. delete files in Bob’s home directory,
ii. delete the Project directory from Bob’s home directory,
iii. list, create new files, or remove the files that Bob put in the Project directory.
. Have Bob revoked Mansoor’s x privileges on Bob’s home directory and the directory Project.

aQ

h. Have Mansoor tested the revocation of modify privileges from step g.

i. Why can Mansoor still see the files in Bob’s home directory, and the files in the Project direc-
tory, but not delete or modify any files in those directories after step g?

j- What chmod command(s) would Bob have to execute to deny Mansoor access to his home
directory?

*Show verification of POSIX.le ACL settings at as many steps as necessary to validate what you have
done.

Project 2

In addition to setting traditional permission bits as shown in this chapter, Access Control security measures
can be usefully grouped together into the general categories of discretionary, mandatory, or role-based.

Linux Control Group (cgroup) and namespace process isolation are system security techniques
applied at the process level that can powerfully augment the traditional permission bit access controls.
Various forms of cgroup and namespace techniques are employed effectively in virtualization method-
ologies, such as in LXC/LXD or Docker. But they can also be used in a much “lighter weight” way to
“sandbox” your working environment without the overhead of creating the “heavier weight” forms of
operating system virtualization implicit in those methodologies.

118 Linux

Create a verbose report on the forms of cgroup and namespace isolation in general, and more
specifically, how the /mnt form of Linux namespaces can be used to securely isolate directories and
files. Exactly why would you want to use this technique, instead of setting the traditional Linux per-
mission bits and UID, GID, EUID, etc., granting sudo privileges, or manipulating POSIX.le/ NFSv4
ACL’s on directories and files? What exclusive Linux system call(s) do cgroups and namespaces rely
upon? Which general category of access control does cgroups and namespaces belong to, if any? In
your report, provide a working example of /mnt namespace isolation that can be executed from the Bash
command line.

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

6

Basic File Processing

OBJECTIVES

* To discuss how to display the contents of a file

* To explain copying, appending, moving/renaming, and removing/deleting files
* To describe how to determine the size of a file

* To discuss commands for comparing files

* To describe how to combine files

* To discuss printer control commands

* To cover the following commands and primitives:

> >, A, ~, [1, * 7?, cancel, cat, cksum, cp, crc32, diff, diff3, head, Tp,
1pc, 1pqg, 1pr, Iprm, Tpstat, lptest, less, 1s, md5sum, more, mv, nl, patch, pg,
pr, rm, sdiff, shasum, tail, uniq, vimdiff, wc

6.1 Introduction

This chapter describes how some basic file operations can be performed in Linux. These operations
are primarily for nondirectory files, although some are applicable to directories as well; we previously
discussed the most commonly used directory operations in Chapter 4. When discussing the file operations
in this chapter, we also describe related commands and give examples to illustrate how these commands
can be used to perform the needed operations. Remember, complete information on a particular command
is available via the man command.

6.2 Viewing Contents of Text Files

You view files to identify their contents. You can use several Linux commands to display contents of text
files on the display screen. These commands differ from each other in terms of the amount of the file con-
tent displayed, the portion of file contents displayed (initial, middle, or last part of the file), and whether
the file’s contents are displayed one screen or one page at a time. Recall that you can view only those
files for which you have the read permission. In addition, you must have the execute (search) permission
for all the directories involved in the pathname of the file to be displayed. Viewing does not mean edit,
write, or update—just view.

6.2.1 Viewing Complete Files

You can display the complete contents of one or more files on screen by using the cat command.
However, because the command does not display file contents one screen or one page at a time, you see
only the last page of a file that is larger than one page (i.e., one screen) in size. The following is a brief
description of the cat command.

119

120 Linux

Syntax:
cat [options] [file-list]

Purpose: Concatenate/display the files in file-Tist on standard output (screen by default), one
after another

Output: Contents of the files in file-1ist displayed on the screen, one file at a time
Commonly used options/features:

-e Display $ at the end of each line; works in conjunction with the -v option

-n Put line numbers with the displayed lines

-t Display tabs as A1 and form feeds as AL

-v Display nonprintable characters, except for the tab, form feed, and newline characters

Here, file-1ist is an optional argument that consists of the pathnames for one or more files, separated
by spaces. For example, the following command displays the contents of the student_records file in
the present working directory. If the file is larger than one page, the file contents quickly scroll off the
display screen.

$ cat student_records

Jonh Doe ECE 3.54
Pam Meyer CS 3.61
Jim DAVIS CS 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38
$

The following command displays the contents of files Tabl and 1ab2 in the directory ~/courses/ee446
/1abs. The command does not pause after displaying the contents of Tabl.

$ cat ~/courses/ee446/1abs/1abl ~/courses/ee446/1abs/1ab2
[contents of labl and Tab2]
$

As discussed in Chapter 4, shell metacharacters can be used to specify file names. The contents of all the
files in the current directory can be displayed by using the cat * command. The cat exam? command
displays contents of all the files in the current directory starting with the string exam and followed by one
character such as examl. The contents of all the files in the current directory starting with the string Tab
can be displayed by using the cat lab* command.

As indicated by the command syntax, file-1ist is an optional argument. Thus, when the cat
command is used without any arguments, it takes input from standard input, one line at a time, and sends
it to standard output. Recall that, by default, standard input for a command is the keyboard, and standard
output is the display screen. Therefore, when the cat command is executed without an argument, it takes
input from the keyboard and displays it on the screen one line at a time. The command terminates when
the user presses <Ctrl+D>, the Linux end-of-file, on a new line. As is the case throughout the book, the
text typed by the user is shown in bold.

$ cat

This is a test.

This is a test.

In this example, the cat command takes input from stdin (keyboard)
In this example, the cat command takes input from stdin (keyboard)
and sends it to stdout (screen), one line at a time.

and sends it to stdout (screen), one Tline at a time.

However, this is not a typical use of this commend. It is normally
However, this is not a typical use of this commend. It is normally

Basic File Processing 121

used to display contents of a file, one 1ine at a time, until it

used to display contents of a file, one Tine at a time, until it

encounters the end-of-file marker. When the cat command reads input from stdin,
encounters the end-of-file marker. When the cat command reads input from stdin,
<Ctr1+D> 1is the end-of-file marker, as shown below.

<Ctr1+D> 1is the end-of-file marker, as shown below.

<Ctr1+D>

$

At times, you need to view a text file with line numbers. You typically need to do so when, during
the software-development phase, a compilation of your source code results in compiler errors having
line numbers associated with them. The Linux utility n1 allows you to display lines of text files with line
numbers. Thus, the n1 student_records command displays the lines in the student_records file with
line numbers, as shown in the following session. The cat -n student_records command can also
perform the same task.

$ nl student_records

Jonh Doe ECE 3.54
Pam Meyer CS 3.61
Jim DAVIS CS 2.71

Jason Kim ECE 3.97
Amy Nash ECE 2.38

v WN R

$

Also, if you need to display files with a time stamp and page numbers, you can use the pr utility. It dis-
plays file contents as the cat command does, but it also partitions the file into pages and inserts a header
for each page. The page header contains today’s date, current time, file name, and page number. The pr
command, like the cat command, can display multiple files, one after the other. The following session
illustrates a simple use of the pr command.

$ pr student_records
2017-07-09 12:02 student_records Page 1

Jonh Doe ECE 3.54
Pam Meyer CS 3.61
Jim DAVIS (S 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38

<Blank Tines until the end of page>

$

Exercise 6.1
Repeat the Bash sessions shown in this section on your system. Creates files and directories that
you may have to for this purpose.

You can print files with line numbers and a page header by connecting the n1, pr, and 1p (or 1pr)
commands. This method is discussed in Chapter 9.

6.2.2 Viewing Files One Page at a Time

If the file to be viewed is larger than one page, you can use the more command, also known as the Linux
pager, to display the file a screenful at a time. The following is a brief description of the command.

122 Linux

Syntax:
more [options] [file-list]

Purpose: Concatenate/display the files in file-Tist on standard output a screenful at a time
Output: Contents of the files in file-Tist displayed on the screen, one page at a time
Commonly used options/features:

+/str Start two lines before the first line containing str

-nn Display ~ line per screen/page

+N Start displaying the contents of the file at line number n

When run without file-11ist, the more command, like the cat command, takes input from the keyboard
one line at a time and sends it to the display screen. If a file-Tist is given as an argument, the command
displays the contents of the files in file-Tist one screen at a time. To display the next screen, press
<Space>. To display the next line in the file, press <Enter>. At the bottom left of a screen, the command
displays the percentage of the file that has been displayed up to that point. To display the next line, you
press <Space>. To return to the shell, you press the g or Q key.

The following command displays the sample file in the present working directory a screenful at a time.
Running this command is equivalent to running the cat sample | more command. We discuss the |
operator, known as the pipe operator, in detail in Chapter 9.

$ more sample
[contents of sample]
$

The following command displays contents of the files sample, Tetter, and memo in the present working
directory a screenful at a time. The files are displayed in the order they occur in the command.

$ more sample letter memo
[contents of sample, letter, and memo]

$

The following command displays the contents of the file param.h in the directory /usr/ include/sys
one page at a time with ten lines per page after fully displaying the first page.

$ more -nl0 /usr/include/sys/param.h
[contents of /usr/include/sys/param.h]
$

The following command displays, one page at a time, the contents of all the files in the present working
directory that have the .c extension (i.e., files containing C source codes).

$ more ./*.c
[contents of all .c files in the current directory]

$

The Tess command can also be used to view a file page by page. It is similar to the more command but
is more efficient and has many features that are not available in more. It has support for many of the vi
and vim Command Mode commands. For example, it allows forward and backward movement of file
contents one or more lines at a time, redisplaying the screen, and forward and backward string search. It
also starts displaying a file without reading the whole file, which makes it more efficient than the more
command or the vi or vim editor for large files.

Exercise 6.2
Repeat the Bash sessions shown in this section on your system. Creates files and directories that
you may have to for this purpose.

Basic File Processing 123

6.2.3 Viewing the Head or Tail of a File

Having the ability to view the head (some lines from the beginning) or tail (some lines from the end) of
a file is useful in identifying the type of data stored in the file. For example, the head operation can be
used to identify a PostScript file or a uuencoded file, which have special headers, and the tail information
could be used to inspect status information at the end of a log file or error file. (We discuss encoding and
decoding of files in Chapter 7.) The Linux commands for displaying the beginning lines or ending lines
of a file are head and taiTl. The following is a brief description of the head command.

Syntax:
head [option] [file-Tlist]

Purpose: Display the initial portions (i.e., heads) files in file-Tist; the default head size is ten
lines

Output: Heads of the files in file-Tist are displayed on the monitor screen
Commonly used options/features:
-n Display first n lines

Without any option and the file-Tist argument, the command takes input from standard input (the
keyboard by default). The following session illustrates the use of the head command. The cat sample
command is used to display the contents of the sample file. The head sample command displays the
first ten lines of the sample file. The head -5 sample command displays the first five lines of sample.

$ cat sample
Ann
Ben
Chen
David
Eto
Fahim
George
Hamid
Ira
Jamal
Ken
Lisa
Mike
Nadeem
Oram
Paul
Queen
Rashid
Srini
Tang
Ursula
Vinny
Wang

X Window System
Yen
Zen

$ head sample
Ann
Ben
Chen
David
Eto
Fahim
George

124 Linux

Hamid

Ira

Jamal

$ head -5 sample
Ann

Ben

Chen

David

Eto

$

You can display heads of multiple files by specifying them as arguments of the head command. For
example, the head sample memol phones command displays the first ten lines each of the sample,
memol, and phones files. The head of each file is preceded by ==> filename <== at the top left.

The following command, which displays the first ten lines of the file otto, shows that the file is a
PostScript file. The output of the command gives additional information about the file, including the
name of the software used to create it, the total number of pages in the file, and the page orientation. All
of this information is important to know before the file is printed.

$ head otto

%! PS-Adobe-3.0
%%BoundingBox: 54 72 558 720
%%Creator: Mozilla (Firefox) HTML->PS
%%DocumentData: Clean7Bit
%%0rientation: Portrait
%%Pages: 1

%%PageOrder: Ascend

%%Title: Otto Doggie
%%EndComments

%%BeginProlog

$

Similarly, the following command shows that data is a uuencoded file and that, when uudecoded
(see Chapter 7), the original file will be stored in the file data.99.

$ head -4 data

begin 600 data.99 M.0I$3T4L($I092!'#.B @,# P.3 P.3H@OT4Z(" @(" @("!34CH@I&]E,4!S
M;6EL92YC;VTZ(#4P,RXR,C(N,C(R,CH@-3"S+C,S,RXS,S,S"E-A<G=A<BP@ M4WEE9"!-.C P,#$P-
34714474U (Z<V%R=V%RO ' 5P+F5D=3HU, #,N, 3$5Q+C$R

$

The tail command is used to display the last portion (tail) of one or more files. It is useful to ascertain,
for example, that a PostScript file has a proper ending or that a uuencoded file has the required end on the
last line. The following is a brief description of the command.

Syntax:
tail [option] [file-list]

Purpose: Display the last portions (i.e., tails) of files in file-1ist; the default tail size is ten lines
Output: Tails of the files in file-Tist displayed on the monitor screen
Commonly used options/features:

-f Follow growth of the file after displaying its tail and display lines, as they are appended
to the file. The tail command run with this option is terminated with <Ctr1+C>

*n Start n lines from the beginning of the file for +n, and n line (or n units) before the end
of the file for -n; by default, n is 10

-n N Display first N lines
-r Display lines in the reverse order (last line first)

Basic File Processing 125

Like the head command, the tail command takes input from standard input if no file-Tist is given
as an argument. The following session illustrates how the tail command can be used with and without
options. We use the same sample file that we used for the head command. The tail sample command
displays the last ten lines (the default tail size) of the sample file, and the tail -5 sample displays the
last five lines of the sample file. The tail +12 sample command displays the tail of the file starting
with line number 12 (not the last 12 lines). Finally, the tail -5r sample command displays the last five
lines of the sample file in reverse order.

$ tail sample
Queen

Rashid

Srini

Tang

Ursula

Vinny

Wang

X Window System
Yen

Zen

$ tail -5 sample
Vinny

Wang

X Window System
Yen

Zen

$ tail +12 sample
Lisa

Mike

Nadeem

Oram

Paul

Queen

Rashid

Srini

Tang

Ursula

Vinny

Wang

X Window System
Yen

Zen

$ tail -5r sample
Zen

Yen

X Window System
Wang

Vinny

$

The following commands show that files otto and data have proper PostScript and uuencoded tails.

$ tail -5 otto

8 f3

() show

pagelevel restore

showpage

%%EOQF

$ tail data
M;W4@:&%VIOIN;W0@=")I960@;W5T(&90<B!L;VYG(‘1I;64N(“!(;W=E=F5R
M+”IT;R!B92!S=6-C97-S9G5L+"1Y;W4@;75S="1T<@I (96QL ;RP@5V]R;&0A

126 Linux
“(OH"

end
$

The -f option of the tail command is very useful if you need to see the tail of a file that is growing.
This situation occurs quite often when you run a simulation program that takes a long time to finish
(several minutes, hours, or days) and you want to see the data produced by the program as it is generated.
It is convenient to do so if your Linux system runs the X Window System (see Chapter W28). In an X
environment, you can run the tail command in an xterm (a console window) to monitor the newly
generated data as it is generated and keep doing your other work concurrently. The following command
displays the last ten lines of the sim.data file and displays new lines as they are appended to the file. You
can terminate the command by pressing <Ctr1+C>.

$ tail -f sim.data
. last 10 lines of sim.data ...
. more data as it is appended to sim.data ...

Sometimes, while identifying problems in a Linux system, the system administrator needs to display
files in the /var directory that keep growing because the kernel and applications keep appending new
messages to them, including files in the /var/spool, /var/mail, and /var/log directories.
Traditionally, the system administrators are able to view these files as they are appended using the
tail -f command, as in the following session to display the last ten lines in the /var/log/messages
file and continue to show new messages from the kernel and applications as they are appended to this file.

$ tail -f /var/log/messages
. last 10 lines of /var/log/messages ...
. more data as it is appended to /var/log/messages ...

Using systemd, available in all major branches of Linux, the system administrators can also use the
journalctl -f command to display messages being written to the system log in real time. It is possible,
using the journalctl -r command, to view the last or most recent lines written to the system log. We
show more uses of journalctl in Chapter 18, and Chapter W27 at the book website, on systemd.

In the following in-chapter exercises, you are asked to use the cat, head, more, pr, and tail commands
for displaying different parts of text files, with and without page titles and numbers.

Exercise 6.3
Insert the student_records file used in Section 6.2.1 in your current directory. Add to it ten more
students’ records. Display the contents of this file by using the cat student_records and cat -n
student_records commands. What is the difference between the outputs of the two commands?
Exercise 6.4
Display the student_records file by using the more and pr commands. What command lines
did you use?
Exercise 6.5
Display the /etc/passwd file two lines before the line that contains your login name. What
command line did you use?
Exercise 6.6
Give commands for displaying the first and last seven lines of the student_records file.

6.3 Copying, Moving, and Removing Files

In this section, we describe commands for performing copy, as well as move/rename and remove/delete
operations on files in a file structure. The commands discussed are cp, mv, and rm.

Basic File Processing 127

6.3.1 Copying Files

The Linux command for copying files is cp. The following is a brief description of the command.

Syntax:
cp [options] filel file2

Purpose: Copy filel to file2. If file2 is a directory, make a copy of filel in this directory.
Commonly used options/features:
-f Force copying if there is no write permission on file2
-i If file2 exists, prompt before overwriting
-p Preserve file attributes such as owner ID, group ID, permissions, and modification times
-r Recursively copy files and subdirectories

You must have permission to read the source file (filel) and permission to execute (search) the directo-
ries that contain filel and file2. In addition, you must have the write permission for the directory that
contains file2 if it does not already exist. If file2 exists, you don’t need the write permission to the
directory that contains it, but you must have the write permission to file2. If the destination file (file2)
exists, by default, it will be overwritten without informing you if you have permission to write to the file.
To be prompted before an existing file is overwritten, you need to use the -i option. If you do not have
permission to write to the destination file, you will be informed of this. If you do not have permission to
read the source file, an error message will appear on your screen.

The following cp command line makes a copy of temp in temp.bak. The 1s commands show the
state of the current directory before and after execution of the cp command. Figure 6.1 shows the same
information in pictorial form.

$ 1s

memo sample temp

$ cp temp temp.bak

$ 1s

memo sample temp temp.bak
$

The command returns an error message if temp does not exist or if it exists but you do not have permis-
sion to read its content. The command also returns an error message if temp.bak exists and you do not
have permission to write to it. The following session illustrates these points. The first error message is
reported because the letter file does not exist in the current directory. The second error message is
reported because you do not have permission to read the sample file. The last command reports an error
message because temp.bak exists and you do not have write permission for it. You can override the
absence of write permission and force copying by using the —f option, as shown in the next command.
The 1s -1 memo temp.bak command is used to show that the copying has actually taken place; that is,

Before copy After copy
Your current Your current
directory directory
memo sample temp memo sample temp temp.bak

FIGURE 6.1 State of the current directory before and after the temp file has been copied to temp.bak.

128 Linux

the data has been copied, but the time stamp for the file is the current time. If you want to copy both the
data and attributes of the source file, you need to use the cp command with -f and -p options, as in the
last cp command that follows. The last 1s -1 memo temp.bak command is used to show that both data
and file attributes, such as the time stamp, have been copied.

$1s -1

total 3

-rwxr----- 1 sarwar faculty 371 Aug 28 07:01 memo
——WXF----- 1 sarwar faculty 164 Jul 25 12:35 sample
-r-Xr----- 1 sarwar faculty 792 Aug 28 07:01 temp
-r-Xr----- 1 sarwar faculty 792 Aug 28 07:05 temp.bak

$ cp letter letter.bak

cp: letter: No such file or directory

$ cp sample sample.new

cp: sample: Permission denied

$ cp memo temp.bak

cp: temp.bak: Permission denied

$ cp -f memo temp.bak

$ 1s -1 memo temp.bak

-rwxXr----- 1 sarwar faculty O Aug 28 07:01 memo
-rwxr----- 1 sarwar faculty 0 Aug 28 07:22 temp.bak
$ cp -fp memo temp.bak

$ 1s -1 memo temp.bak

-rwxr----- 1 sarwar faculty O Aug 28 07:01 memo
-rwxr----- 1 sarwar faculty 0 Aug 28 07:01 temp.bak

The following command makes a copy of the .profile file in your home directory and puts it in the
.profile.old file in the sys.backups subdirectory, also in your home directory. This command works
regardless of the directory you are in when you run the command because the pathname starts with your
home directory. You should execute this command before changing your runtime environment specified
in the ~/.profile file, so that you have a backup copy of the previous working environment in case
something goes wrong when you set up the new environment. The command produces an error message
if ~/.profile does not exist, if you do not have permission to read it, if the ~/sys.backups directory
does not exist or you do not have the execute (search) and write permissions for it, or if .profile.bak
exists but you do not have permission to read it.

$ cp ~/.profile ~/sys.backups/.profile.bak
$

The following command copies all the files in the current directory, starting with the string lab to the
directory ~/courses/ee446/backups. The command also prompts you for overwriting if any of the
source files already exist in the backups directory. In this case (in which multiple files are being copied),
if backups is not a directory, or if it does not exist, an error message is displayed on the screen informing
you that the target must be a directory.

$ cp -i 1ab* ~/courses/ee446/backups
$

If you want to copy a complete directory to another directory, you need to use the cp command with
the -r option. This option recursively copies files and subdirectories from the source directory to the
destination directory. It is a useful option that you can use to create backups of important directories
periodically. Thus, the following command recursively copies the ~/courses directory to the ~/backups
directory.

$ cp -r ~/courses ~/backups

$

Basic File Processing 129

Before recursive copy After recursive copy

| csso1 | | csad6 |

o l O ({E [csso1 | [Ccsass |
pl.c p2.c p3.c labl.c lab2.c
plc p2.c p3.c labl.c lab2.c

plc p2.c p3.c labl.c lab2.c

FIGURE 6.2 Current directory before and after the cp -r ~/courses ~/backups command.

This command creates copies of the ~/courses directory, including all the files and directory hierarchies
under the ~/courses directory, and places it under the ~/backups directory. Figure 6.2 shows the state
of your home directory (~) before and after the execution of the command.

6.3.2 Moving Files

Files can be moved from one directory in a file structure to another. This operation in Linux can also
result in simply renaming a file if it is on the same file system. The renaming operation is equivalent
to creating a hard link (see Chapter 8) to the file, followed by removing/deleting (see Section 6.3.3) the
original file. If the source and destination files are on different file systems, the move operation results in
a physical copy of the source file to the destination, followed by removal of the source file. The command
for moving files is mv. The following is a brief description of the command.

Syntax:
mv [options] filel file2
mv [options] file-list directory

Purpose: First syntax: Move filel to file2 or rename filel to file2
Second syntax: Move all the files in file-list to directory

Commonly used options/features:
-f Force move regardless of the permissions of the destination file
-i Prompt the user before overwriting the destination file

You must have the write and execute access permissions for the directory that contains the source
file (filel in the description), but you do not need to have the read, write, or execute permissions for
the file itself. Similarly, you must have the write and execute permissions for the directory that con-
tains the target/destination file (file2 in the description), execute permission for every directory in the
pathname for the destination file, and write permission for the destination file if it already exists. If the
destination file exists, by default, it is overwritten without informing you. If you use the -i option, you
are prompted before the destination file is overwritten.

The following command moves temp to temp.moved. In this case, the temp file is renamed temp.
moved. The mv command returns an error message if temp does not exist, or if you do not have the exe-
cute permission for the directory it is in. The command prompts you for moving the file if temp.moved
already exists, but you do not have write permission for it.

130 Linux

Before move After move
Your current Your current
directory directory

memo temp memo temp temp.old

FIGURE 6.3 Current directory before and after the mv temp backups/temp.old command.

$ mv temp temp.moved
$

The following command moves temp to the backups directory as the temp.old file. Figure 6.3 shows the
state of your current directory before and after the temp file is moved.

$ mv temp backups/temp.old
$

The following command is a sure move; you can use it to force the move, regardless of the permissions
for the target file, temp.moved.

$ mv -f temp temp.moved

$

The following command moves all the files and directories (excluding hidden files) in dirl to the dir2
directory. The command fails, and an error message appears on your screen if dir2 is not a directory, if
it does not exist, or if you do not have the write and execute permissions for it.
$mv dirl/* dir2
$

After the command is executed, dirl contains the hidden files only. You can use the 1s -a command
to confirm the status of dirl.

Exercise 6.7
Create the directory structure discussed in this section under your home directory, including
directories dirl and dir2, and repeat the commands shown in this section on your system. Did
command executions result as expected?

6.3.3 Removing/Deleting Files

When files are not needed anymore, they should be removed from a file structure to free up disk space
to be reused for new files and directories. The Linux command for removing (deleting) files is rm. The
following is a brief description of the command.

Basic File Processing 131

Syntax:
rm [options] file-Tist

Purpose: Removes the files in file-Tist from the file structure (and disk)
Commonly used options/features:

-f Force remove regardless of the permissions for file-1ist

-i Prompt the user before removing the files in file-Tist

-r Recursively remove the files in the directory, which is passed as an argument. This removes
everything under the directory, so be sure you want to do so before using this option.

If files in file-Tist are pathnames, you need the read and execute permissions for all the directory
components in the pathnames and the read, write, and execute permissions for the last directory (that
contains the file or files to be deleted). You must also have write permission for the files themselves for
their removal without prompting you. If you run the command from a terminal and do not have write
permission for the file to be removed, the command displays your access permissions for the file and
prompts you for your permission to remove it.

The following command lines illustrate the use of the rm command to remove one or more files from
various directories.

rm temp

rm temp backups/temp.old

rm -f phones grades ~/letters/letter.john
rm ~/dirl/*

A A A A A

The first command removes temp from your current directory. The second command removes the
temp file from your current directory and the temp.old file from the backups directory in your current
directory. Figure 6.4 shows the semantics of this command. The third command removes the phones,
grades, and ~/letters/letter.john files, regardless of their access permissions. The fourth command
removes all the files from the ~/dirl directory; the directories are not removed.

Now, consider the following commands that use some shell metacharacter features (see Chapter 7).

$ rm [kK]*.prn
$ rm [a-kA-Z]*.prn
$

The first command removes all the files in current directory that have the .prn extension and names
starting with k or K. The second command removes all the files in the current directory that have the .prn
extension and names starting with a lowercase letter from a to k or an uppercase letter.

Before remove After remove
Your current Your current
directory directory

memo temp

memo temp temp.old memo temp

FIGURE 6.4 Current directory before and after execution of rm temp backups/temp.old command.

132 Linux

In Chapter 4, we talked about removing directories and showed that the rmdir command can be
used to remove only the empty directories. The rm command with the -r option can be used to remove
nonempty directories recursively. Thus, the following command recursively removes the 01dDirectory
in your home directory. This command prompts you if you do not have the permission to remove a file. If
you do not want the system to prompt you and you want to force remove the ~/01dDirectory recursively,
then use the rm -rf ~/01dDirectory command. This command is one of the commands that you must
never execute unless you really know its potentially catastrophic consequences: the loss of all the files
and directories in a complete directory hierarchy. But the command is quite useful if you want to free
up some disk space.

$ rm -r ~/0ldDirectory
$

You should generally combine the —i and -r options to remove a directory (~/OldDirectory in this case)
recursively, as shown in the following command. The -i option is for interactive removal, and when you
use this option, the rm command prompts you before removing a file. This way you can ensure that you
do not remove an important file by mistake.

$ rm -ir ~/01dDirectory

rm: examine files in directory /home/sarwar/0OldDirectory (y/n)? y
rm: remove /home/sarwar/01dDirectory/John.11.14.2018 (y/n)? y

rm: remove /home/sarwar/01dDirectory/Tom.2.24.2018 (y/n)?

If you do not have write permission to a directory, you can neither delete its file or subdirectory, nor cre-
ate a file or subdirectory in it. Similarly, if you do not have read and execute permissions to a directory,
you can neither copy a file from it to the target directory nor delete a file from it. The reason being that
you cannot search this directory with the execute permission off. For the same reason, you can also not
display a listing of the contents of this directory.

In the following session, we show a few examples to illustrate these concepts. Since you do not have
write permission to d1, the rm d1/f1 command fails to delete the f1 file in it. Similarly, you are not able
to create f4 file and d11 directory in d1 using the touch d1/f4 and mkdir d1/d11 commands, respec-
tively. After adding the write permission to d1 and taking away read and execute permissions from it
using the chmod u+w, u-rx d1 command, you are allowed to copy the f1 file from it to the directory
d2, remove f1, and list the contents of d1 using the cp d1/f1 d2, rm d1/f1, and 1s -1 d1 commands,
respectively.

$1s -1d =

dr-xr-xr-x 4 sarwar faculty 4096 Feb 12 22:35 dl
drwxr-xr-x 2 sarwar faculty 4096 Feb 12 22:37 d2
$1s -1 d1

total 356

-rw-rw-rw- 1 sarwar faculty 27 Feb 12 22:36 f1
-rw-rw-rw- 1 sarwar faculty 7878 Feb 12 22:36 f2
-rw-rw-rw- 1 sarwar faculty 340523 Feb 12 22:36 f3
$ rm d1/fl

rm: cannot remove 'dl/fl': Permission denied

$ touch d1/f4

touch: cannot touch 'dl/f4': Permission denied

$ mkdir dl/d11

mkdir: cannot create directory 'dl/dl1l': Permission denied
$ chmod u+w,u-rx dl

$1s -1d d1

d-w-r-xr-x 4 sarwar faculty 4096 Feb 12 22:35 dil

$ cp d1/fl d2

cp: cannot stat 'dl/fl': Permission denied

$ rm d1/f1

Basic File Processing 133

rm: cannot remove 'dl/fl': Permission denied

$ 1s -1 dl
1s: cannot open directory 'dl': Permission denied
$

Exercise 6.8
Repeat the rm, 1s, cp, and touch commands discussed in this section on your system. Did the
command executions result as expected?

6.3.4 Determining File Size

You can determine the size of a file by using one of several Linux commands. The two commands
commonly used for this purpose that are available in all Linux versions are 1s -1 and wc. We described
the 1s -1 command in Chapter 5, where we use it to determine the access permissions for files. We
revisit this command here in the context of determining file size.

As mentioned earlier, the 1s -1 command displays a long list of the files and directories in the direc-
tory (or directories) specified as its argument. You must have the read and execute permissions for a
directory to be able to run the 1s command on it successfully; no permissions are needed on the files
in the directory to be able to see the list. The command gives output for the current directory if none is
specified as an argument. The output of this command has nine fields, and the fifth field gives file sizes
in bytes (see Section 5.5). In the following command, the size of the 1ab2 file is 709 bytes.

$ 1s -1 1ab2
-rw-r--r-- 1 sarwar faculty 709 Apr 5 11:23 Tab2
$

This command also displays the size of directory files. You can also use it to get the sizes of multiple
files by specifying them in the command line and separating them by spaces. For example, the following
command shows that sizes of the Tabl and 1ab2 files are 163 bytes and 709 bytes, respectively.

$ 1s -1 Tabl 1ab2

-rw-r--r-- 1 sarwar faculty 163 Jul 9 16:47 Tlabl
-rw-r--r-- 1 sarwar faculty 709 Apr 5 11:23 Tab2
$

The following command uses the shell metacharacter * to display the long listing for all the files in the
~/courses/ee446 directory.

$ 1s -1 ~/courses/eed446/*
. output of the command ...
$

Whereas 1s -1 is a general-purpose command that can be used to determine many of the attributes
of one or more files, including their sizes in bytes/characters, wc is a special-purpose command that
displays only file sizes. The following is a brief description of the wc command.

Syntax:
wc [options] file-list

Purpose: Display sizes of the files in file-Tist as number of lines, words, and characters
Commonly used options/features:

-c Display only the number of characters

-1 Display only the number of lines

-w Display only the number of words

134

$ wc sample
6 44 227 sample
$
T T T T
Line Word Byte File
Count Count Count Name
$ wc letter sample test
44 250 1687 Tetter
4 44 227 sample
2 12 90 test
50 306 2004 total
$ wc -c letter sample test
1687 Tetter
227 sample
90 test
2004 total
$ wc -1w Tetter sample test
44 250 Tetter
4 44 sample
2 12 test
50 306 total
$

The first command displays the number of lines, words, and characters in the sample file in the present
working directory. The size of sample is 4 lines, 44 words, and 227 bytes. The second command displays
the same information for the files letter, sample, and test in the present working directory. The last
line in the output of this command also displays the total line count, word count, and byte count for all
three files. The third command displays the number of characters in letter, sample, and test. The last
command shows that multiple options can be used in a single command; in this case, the output is the
number of words and letters for the three files in the command line.

On FreeBSD, the wc command with a directory argument returns three numbers along with the name
of the directory: 0, 1, and the number of directory entries in the directory including the . (dot) and ..
(dotdot) directories, as in

$ wc /etc

0 1 116 /etc

$

This only applies to directories that contain regular files and directories as their contents. However, this
style of output is not produced for directories that contain device (character special and block special)
files and other types of files.

The wc command can be used with shell metacharacters such as * and ?. The following command
displays sizes of all the files in the directory /usr/include/x86_64-linux-gnu/sys. The last line shows the
total size of all the files in the directory.

$ wc /usr/include/x86_64-11inux-gnu/sys/*

108 501 3319 /usr/include/x86_64-1inux-gnu/sys/acct.h
37 196 1282 /usr/include/x86_64-Tinux-gnu/sys/auxv.h
3 12 86 /usr/include/x86_64-1inux-gnu/sys/bitypes.h
444 2124 15412 /usr/include/x86_64-1inux-gnu/sys/cdefs.h
88 559 3575 /usr/include/x86_64-11inux-gnu/sys/debugreg.h
27 142 921 /usr/include/x86_64-1inux-gnu/sys/dir.h
29 159 1023 /usr/include/x86_64-Tinux-gnu/sys/elf.h

Basic File Processing 135

142 640 4448 /usr/include/x86_64-Tinux-gnu/sys/epoll.h
1 2 19 /usr/include/x86_64-1inux-gnu/sys/errno.h

44 208 1399 /usr/include/x86_64-Tinux-gnu/sys/eventfd.h
38 187 1291 /usr/include/x86_64-Tinux-gnu/sys/fanotify.h
1 2 19 /usr/include/x86_64-1inux-gnu/sys/fcntl.h

56 281 1721 /usr/include/x86_64-Tinux-gnu/sys/file.h

175 934 6223 /usr/include/x86_64-Tinux-gnu/sys/wait.h
105 674 4274 Jusr/include/x86_64-Tinux-gnu/sys/xattr.h
8165 38513 267732 total

Exercise 6.9
Repeat the 1s and wc commands discussed in this section on your system. Create the requisite
files and directories in order to replicate the Bash sessions on your system. Did the command
executions result as expected?

6.4 Appending to Files

Appending to a file means putting new data at the end of the contents of the file. If the file does not exist,
it is created to contain new data. The append operation is useful when an application or a user needs to
augment a file by adding data to it. The following command syntax is used to append one or more files,
or keyboard input, at the end of a file.

Syntax:
cat [file-list] >> destination-file
Purpose: Append the contents of the files in file-1ist, in the order specified in the command
line, at the end of destination-file

The >> operator is the Linux append operator. We discuss the >>, <, and > operators in detail in Chapter 9.
That chapter describes how the input of your commands can be read as input from a file instead of the
keyboard, and how the output and error messages of your commands can be redirected from the terminal
(or console widow) to files. In this chapter, we use these operators only to describe how you can append
new data at the end of the current contents of a file and how you can combine the contents of multiple
files and put them in one file using the cat command.

The following session illustrates how the append operation works. The cat sample >> temp command
appends the contents of the sample file at the end of the temp file. The cat commands before and after
this command show the contents of the files involved. The command syntax can be used to append
multiple files to a file, as shown in the command cat memol memo2 memo3 >> memos.record. This
command appends the contents of the memol, memo2, and memo3 files at the end of the memos.record file.

$ cat temp

This is a simple file used to illustrate the working of append operation. The new
data will be appended right below this 1ine.

$ cat sample

These are the new data that will be appended at the end of the test file.

$ cat sample >> temp

$ cat temp

This is a simple file used to illustrate the working of append operation. The new
data will be appended right below this Tine.

These are the new data that will be appended at the end of the test file.

$ cat memol memo2 memo3 >> memos.record

$

136 Linux

Without the optional file-Tist argument (see the command description), the command can be used to
append keyboard input at the end of destination-file. The cat >> test.letter command takes input
from the keyboard and appends it to a file called test.letter. The command terminates when you press
<Ctr1+D> on a new line.

$ cat test.letter

John Doe

12345 First Lane

Second City, State 98765
$ cat >> test.letter
September 1, 2017

Dear John:

This is to inform you ...
<Ctr1+D>

$ cat test.letter

John Doe

12345 First Lane

Second City, State 98765
September 1, 2017

Dear John:

This is to inform you

Exercise 6.10
Repeat the Bash sessions shown in this section on your system. Create the requisite files on your
system. Did the command executions result as expected?

6.5 Combining Files

The following command syntax can be used to combine multiple files into one file.

Syntax:
cat [file-list] > destination-file
Purpose: Put the contents of the files in file-Tist, in the order specified in the command line,
and put them in destination-file

The destination-file is overwritten if it already exists. If you do not have the write permission for
the destination-file, the command displays an error message informing you that you do not have
permission to write to the file. Without the optional file-list argument, you can use the command to
put keyboard input in destination-file. Thus, this command syntax can be used to create a new file
whose contents are what you enter from the keyboard until you press <Ctr1+D> on a new line, as is the
case with the cat >> test.letter command in the previous session.

The following session illustrates how this command works with arguments. The 1s -1 command
is used to view permissions for the files. The wc memo? command displays the sizes of all the files in
the current directory that start with the string memo and have one character after this string. The third
command combines the contents of the memol, memo2, and memo3 files and puts them in the memos.
y2k18 file in the order they appear in the command. The wc memos.y2k18 command is used to confirm
that the memos.y2k18 file has the same number of lines, words, and characters as the three memo files
combined. Execution of the cat memol memo2 memo3 > memos.2018 command shows that you do not
have permission to write to memos.2018.

$1s -1
-r-xr--r-- 1 sarwar faculty 1687 Jan 10 19:15 memol

Basic File Processing 137

-r-xr--r-- 1 sarwar faculty 1227 Feb 19 14:37 memo2
-r-xr--r-- 1 sarwar faculty 790 Sep 1 19:16 memo3

—r-——————- 1 sarwar faculty 9765 Jan 15 22:11 memos.2018
$ wc memo?

44 250 3352 memol

34 244 4083 memo?2

12 112 907 memo3

90 606 3704 total
$ cat memol memo2 memo3 > memos.y2kl8
$ wc memos.y2k1l8

90 606 3704 memos.y2k18
$ cat memol memo2 memo3 > memos.2018
memos.2018: Permission denied.
$

You can also do the task of the cat memol memo2 memo3 > memos.y2k18 by using the following
command sequence.

$ cat memol > memos.y2kl8
$ cat memo2 >> memos.y2kl8
$ cat memo3 >> memos.y2kl8
$

The following in-chapter exercises ask you to practice using the cp, mv, 1s -1, wc, and cat commands
and the operator for appending to a file.

Exercise 6.11
Copy the .bashrc file in your home directory to a file .bashrc.old in a directory called
backups, also in your home directory. Assume that you are in your home directory. What
command did you use?
Exercise 6.12
Create a directory called new.backups in your home directory and move all the files in the
backups directory to new.backups. What commands did you use?
Exercise 6.13
Display the size in bytes of a file 1ab3 in the ~/ece345 directory. What command did you use?
Exercise 6.14
Give a command for appending all the files in the ~/courses/ece446 directory to a file called
BigBackup.ece446 in the ~/courses directory.

6.6 Comparing Files

At times, you will need to compare two versions of a program code or some other text document to find
out where they differ from each other. You do this in order to synchronize these files so that they contain
the same content. You may also need to compare nontext files to know if they are identical. There are
several Linux tools that let you perform these tasks. We discuss them here, first for text files and then for
nontext files.

6.6.1 Text Files

You can use the diff command to compare text files and identify their differences. The command com-
pares two files and displays differences between them in terms of commands that can be used to convert
one file to the other. You can then use another tool that synchronizes the files based on the commands
generated by diff. The following is a brief description of the command.

138 Linux

Syntax:
diff [options] [filel] [file2]

Purpose: Compare filel with file2 line by line and display differences between them as a series
of commands/instructions for the ed editor that can be used to convert filel to file2 or vice
versa; read from standard input if - is used for filel or file2

Commonly used options/features:

-b Ignore trailing (at the end of lines) white spaces (blanks and tabs), and consider other
strings of white spaces equal

-e Generate and display a script for the ed editor that can be executed to change filel to
file2

-h Do fast comparison (the —e option may not be used in this case)

The filel and file2 arguments can be directories. If filel is a directory, diff searches it to
locate a file named file2 and compares it with file2 (the second argument). If file2 is a directory,
diff searches it to locate a file named filel and compares it with filel (the first argument). If both
arguments are directories, the command compares all pairs of files in these directories that have the
same names.

The diff command does not produce any output if the files being compared are the same. When used
without any options, the diff command produces a series of instructions for the ed editor that can be
used to convert filel to file2 if the files are different. The instructions are a (add), c (change), and d
(delete) and are described in Table 6.1.

The following session illustrates a simple use of the diff command.

$ cat Fall1_OH

Office Hours for Fall 2017
Monday

9:00 - 10:00 A.M.

3:00 - 4:00 P.M.

Tuesday

10:00 - 11:00 A.M.
Wednesday

9:00 - 10:00 A.M.

3:00 - 4:00 P.M.

Thursday

11:00 A.M. - 12:00 P.M.
2:00 - 3:00 P.M.

4:00 - 4:30 P.M.

TABLE 6.1

File Conversion Instructions Produced by diff

Instruction Description for Changing filel to file2

Llal2,L3 Append lines L2 through L3 from file2 after line L1 in filel

> lines L2 through L3

L1,L2cL3,L4 Ci:la}r.llgezlines L1 through L2 in filel to lines L3 through L4 in
1le

< Tines L1 through L2 1in filel

> Tines L3 through L4 in file2
L1,L2dL3 Delete lines L1 through L2 from filel
< 1lines L1 through L2 1in filel

Basic File Processing 139

$ cat Spring_OH

Office Hours for Spring 2018
Monday

9:00 - 10:00 A.M.

3:00 - 4:00 P.M.

Tuesday

10:00 - 11:00 A.M.

1:00 - 2:00 P.M.

Wednesday

9:00 - 10:00 A.M.

Thursday

11:00 A.M. - 12:00 P.M.

$ diff Fal1_OH Spring_OH

1cl

< Office Hours for Fall 2017

> Office Hours for Spring 2018

6a7

> 1:00 - 2:00 P.M.
9d9

< 3:00 - 4:00 P.M.
12,13d11

< 2:00 - 3:00 P.M.
< 4:00 - 4:30 P.M.
$

The instruction 1c1 asks the ed editor to change the first line in the Fall_OH file (Office Hours for
Fall 2017) to the first line in the Spring_OH file (Office Hours for Spring 2018). The 6a7 instruction
asks the ed editor to append line 7 in Spring_OH after line 6 in Fal1_OH. The 12,13d11 instruction asks
the ed editor to delete lines 12 and 13 from Fall_OH.

The following session illustrates use of the -e option with the diff command and how the output of
this command can be given to the ed editor to make Fall_OH the same as Spring_OH. The command is
used to show you what the output of the command looks like. The second diff command (with > diff.
script) is used to save the command output (the ed script) in the diff.script file. The cat >> diff.
script command is used to convert the diff.script file into a complete working script for the ed editor
by adding two lines containing w and q. As previously stated, this command terminates with <Ctr1+D>.
Finally, the ed command is run to change the contents of Fall_OH, according to the script produced by
the diff -e command, and make it the same as Spring_OH. The numbers 209 and 177 show the sizes
of the Fall_OH file before and after the execution of the ed command. The last command, diff Fall_OH
Spring_OH, is run to confirm that the two files are the same.

$ diff -e Fal1_OH Spring_OH

12,13d

9d

6a

1:00 - 2:00 P.M.

1c

Office Hours for Spring 2015

$ diff -e Fal1_OH Spring_OH > diff.script

$ cat >> diff.script
w

q

<Ctrl1+D>

$ ed Fall_OH < diff.script
209

177

$ diff Fall_OH Spring OH

$

140 Linux

Most systems have a command called diff3 that can be used to do a three-way comparison; that is, three
files can be composed. You can also use the vimdiff command to compare multiple files. The sdiff
command allows you to compare two files side by side, optionally merge them manually, and output
results. See Table 6.3, at the book GitHub site, for websites that describe these commands with examples.

You can use the patch command to produce a patched version of the two files. The command takes a
patch file containing a difference listing produced by the diff command and applies those differences to
one or more original files, producing patched versions. Here is a brief description of the patch command.

Syntax:
patch [options] [originalfile [patchfilel]

Purpose: Takes patchfile containing the differences produced by the diff command and applies
these differences to one or more original files, producing patched versions. By default, patched
version overwrites the original files.

Commonly used options/features:
-b Creates backup files before overwriting the originals
-R Undo patch work, i.e., perform patching in reverse order and recover the original file(s)

In the following session, we use the diff command to generate the patch file for applying to hellol.c
file using the patch command. The first diff command is used to generate the patch file, called hello.
patch. The first and second lines (starting with --- and +++) show the names of first and second files,
and the dates and times of their creation, respectively. The third line (starting and ending with @@)
shows the total ranges of lines in the first and second files, respectively; 1-2 in the first file and 1-3 in
the second file. The — character at the beginning of a line in the patch file means the line belongs to the
first file, a+character means the line belongs to the second file, and a space implies the line is present
in both files. The patch < hello.patch command is used to patch hellol.c file so that it becomes the
same as hello2.c. The second diff command shows that hellol.c and hello2.c have no differences
between them.

$ cat hellol
Hello, world!
Welcome to the patch command.
$ cat hello2.c
Hello, world!
Welcome to the diff and patch commands.
Goodbye!
$ diff hellol hello2
2c2,3
< Welcome to the patch command.
> Welcome to the diff and patch commands.
> Goodbye!
$ diff -u hellol hello2 > hello.patch
$ cat hello.patch
--- hellol 2018-02-20 22:44:18.538080809 +0500
+++ hello2 2018-02-20 22:40:21.646225787 +0500
@@ -1,2 +1,3 @@
Hello, world!
-Welcome to the patch command.
+Welcome to the diff and patch commands.
+Goodbye!
$ patch < hello.patch
patching file hellol.c
$ diff hellol hello2
$ cat hellol

Basic File Processing 141

Hello, world!

Welcome to the diff and patch commands.
Goodbye!

$

The execution of the patch < hello.patch command overwrites the exiting hellol file. If you want to
keep a backup of hellol, run the patch command with -b option as in patch -b < hello.patch. The
backup file is saved as hellol.orig. You can use the patch command with —V option to save the backup
file in a numbered format. The patch -b -V numbered < hello.patch command saves the backup
file as hellol.~1~.

Sometimes, we need to undo the patch operation, i.e., apply the patch process in the reverse order. You
can do this by using the patch command with -R option, as shown below. The result is the recovery of
the hellol file to its original state, as shown below in the output of the cat hellol command.

$ patch -R < hello.patch
patching file hellol

$ cat hellol

Hello, world!

Welcome to the patch command.
$

6.6.2 Nontext Files

Sometimes, you need to compress, encode, or encrypt your files for various reasons discussed in
Chapter 7. These operations transform file data into a form that is completely different from the file’s
original content. These files have to be decompressed, decoded, or decrypted in order to recover their
original content and use them for the purpose they were created. After having performed the recovery
operations, you want to make sure the original content of a file has been recovered 100%. You usually
deal with downloadable compressed files containing large datasets, images, tools, and operating system
kernels such as that of Linux. You download such files, decompress them, and use them for their respec-
tive purposes.

However, before using a decompressed file, you want to make sure that it is the exact copy of the
original file before it was compressed. However, the problem is that you don’t have a copy of the original
file to compare it with. The suppliers of the compressed files publish signatures of the respective original
files along with the specific tools that were used to generate these signatures. This allows you to generate
the signature for your decompressed file. If the published and your signature are the same, it means that
the decompressed file is a true copy of the original.

There are several Linux tools that allow you to do so, including shasum, crc32, md5sum, and cksum.
Browse the manual pages for these commands to know more about them. You cannot use the diff com-
mand (or its variants) in this case, because it does not generate any signature for a file. Without going into
the details, the signature for a file is also called hash value, checksum, or message digest of the file. The
shasum tool uses the Secure Hash Algorithm that produces a 160-bit hash value and mdSsum uses MD5
hash function that produces a 128-bit hash value. Because researchers and practitioners have discovered
several serious vulnerabilities in MDS5, we therefore do not recommend the use of md5sum. You can run
shasum with various algorithms with the —a option, such as shal, sha224, sha256, etc. The default algo-
rithm used by shasum is shal. You can specify a specific algorithm with the -a option. See the manual
page for the command for more details.

We show the practical use of shasum in Chapter 7. Here, we show the simple use of shasum and
md5sum command to illustrate how they work. In the following session, we copy the /bin/cp file
into our current directory as my_cp and produce message digests for them using the shasum and
md5sum commands. In both cases, the files have identical message digests, guaranteeing that they
are identical.

$ cp /bin/cp my_cp
$ shasum /bin/cp my_cp

142 Linux

££3094b907d15cee91b8eech0559011d2d1cl75a /bin/cp
f£3094b907d15cee91b8eech0559011d2d1cl75a my_cp

$ md5sum /bin/cp my_cp
62eeb2e8a0073ab510bf75ec0876¢c7a6 /bin/cp
62eeb2e8a0073ab510bf75ec0876c7a6 my_cp

$

Exercise 6.15
Duplicate the interactive sessions given in this section to appreciate how the diff command
works.

Exercise 6.16
Browse through the man pages of sdiff and vimdiff commands to see how you could use
these commands to perform the task performed in Exercise 6.15.

Exercise 6.17
Duplicate the interactive sessions given in this section to appreciate how the diff and patch
commands work.

Exercise 6.18
Copy /bin/bash to your current directory and name it my_bash. Calculate their message
digests using the shasum and md5sum commands to show that they are identical files. Show
your work.

6.7 Locating and Removing Repetition within Text Files

You can use the unig command to remove all but one copy of the successive repeated lines in a text
file. The command is intended for files of sorted content, although it can work on files without sorted
content, as shown in the example. We discuss sorting in Chapter 7. The following is a brief summary of
the command.

Syntax:
uniq [options] [input-file] [output-file]

Purpose: Remove repetitious lines from the sorted input-file and send unique (nonrepeated)
lines to output-file. The input-file does not change. If no output-file is specified, the
output of the command is sent to standard output. If no input-file is specified, the command
takes input from standard input.

Commonly used options/features:
-c Precede each output line by the number of times it occurs
-d Display the repeated lines
-f N Ignore the first n fields in input lines while doing comparisons
-i Perform case-sensitive comparison of input lines
-s ¢ Ignore the first c characters in input lines while doing comparisons
-u Display the lines that are not repeated

The following session illustrates how the uniq command works. The cat command is used to show the
contents of the sample file. The uniq sample command shows that only consecutive duplicate lines are
considered duplicate. The uniq -c sample command shows the line count for every line in the file.
The uniq -d sample command is used to output repeated lines only. Finally, the uniq -d sample out
command sends the output of the command to the out file. The cat out command is used to show the
contents of out. Note that the uniq command only works for unsorted files if repeated lines are adjacent.

Basic File Processing 143

$ cat sample

This is a test file for the uniq command.

It contains some repeated and some nonrepeated 1lines.

Some of the repeated lines are consecutive, like this.

Some of the repeated lines are consecutive, like this.

Some of the repeated lines are consecutive, like this.

And, some are not consecutive, Tike the following.

Some of the repeated lines are consecutive, like this.

The above 1line, therefore, will not be considered a repeated
Tine by the unig command, but this will be considered repeated!
Tine by the unig command, but this will be considered repeated!
$ uniq sample

This is a test file for the uniq command.

It contains some repeated and some nonrepeated lines.

Some of the repeated lines are consecutive, like this.

And, some are not consecutive, Tike the following.

Some of the repeated lines are consecutive, like this.

The above 1line, therefore, will not be considered a repeated
Tine by the unig command, but this will be considered repeated!
$ uniq -c sample

This is a test file for the uniq command.

It contains some repeated and some nonrepeated lines.

Some of the repeated lines are consecutive, like this.
And, some are not consecutive, Tike the following.

Some of the repeated lines are consecutive, like this.

The above T1ine, therefore, will not be considered a repeated
Tine by the uniq command, but this will be considered repeated!
$ uniq -d sample

Some of the repeated lines are consecutive, like this.

Tine by the uniq command, but this will be considered repeated!
$ uniq -d sample out

$ cat out

Some of the repeated lines are consecutive, like this.

Tine by the unig command, but this will be considered repeated!
$

NRRRWRR

The uniq command is commonly used with Linux pipes and filters (such as sort and grep commands)
to perform more interesting tasks, as discussed in Chapter 9.

In the following in-chapter exercises, you will use the uniq command to appreciate the tasks they
perform.

Exercise 6.19
Duplicate the interactive sessions given in this section to appreciate how the unig command
works. Create the requisite files on your system.

6.8 Printing Files and Controlling Print Jobs

We briefly discuss the Linux commands for printing files in Chapter 2. In this section, we cover file
printing fully, including commands related to printing and printer control. These commands include
commands for printing files, checking the status of print requests/jobs on a printer, and canceling print
jobs. We describe two sets of commands for printing and controlling print jobs, based upon Berkeley
Software Distribution (BSD) or System V UNIX, that are available in Linux Mint.

6.8.1 Linux Mechanism for Printing Files

The process of printing files is similar to the process of displaying files; in both cases, the contents of one
or more files are sent to an output device. In the case of displaying output, the output device is a display

144 Linux

TABLE 6.2
List of Commands Related to Printing
System V Compatible BSD Compatible
Linux Linux Purpose
1p Lpr Submits a file for printing
Tpstat Lpg Shows the status of print jobs for one or more printers
cancel Tprm Removes/purges one or more jobs from the print queue
Lpc Activates the printer control program
Tptest Generates ripple pattern for testing the printer

screen, whereas in the case of printing output, the output device is a printer. Another key difference
results primarily from the fact that every user has an individual display screen but that many users may
share a single printer on a typical Linux (or any time-sharing) system. Thus, when you use the cat or
more command to display a file, the contents of the file are immediately sent to the display screen by
Linux. However, when you print a file, its contents are not immediately sent to the printer because the
printer might be busy printing some other file (yours or some other users). To handle multiple requests,
a first-come first-serve mechanism places a print request in a queue associated with the printer to which
you have sent your print request and processes the request in its turn when the printer is available.

Linux maintains a queue of print requests, called the print queue, associated with every printer in
the system. Each request is called a job. A job is assigned a number, called the job ID. When you use a
command to print a file, the system makes a temporary copy of your file, assigns a job ID to your request,
and puts the job in the print queue associated with the printer specified in the command line. When the
printer finishes its current job, it is given the next job from the front of the print queue. Thus, your job is
processed when the printer is available and your job is at the head of the print queue.

A Linux process called the printer spooler or printer daemon performs the work of maintaining the
print queue and directing print jobs to the right printer. This process is called lpd. It starts execution
in the background when the system boots up and waits for your print requests. We discuss daemons in
Chapter 10, but for now, you can think of a daemon as a process that runs but you are not aware of its
presence while it interacts with your terminal.

Linux systems have two different command sets for printing and controlling print jobs, based upon
BSD or System V UNIX. Table 6.2 contains a list of the printing-related commands for both systems;
all are available in Linux Mint. The superuser—the system administrator—normally uses the last two
commands, 1pc and Iptest.

Additionally, you can utilize the facilities of the Common UNIX Printing System (CUPS) to accomplish
everything shown in the sections below. We detail CUPS printing in the System Administration section
entitled “CUPS Printing” in Chapter W26 at the book website.

6.8.2 Printing Files

As shown in Table 6.2, you can print files by using the 1p command and the Tpr command on a Linux
system. It is very important to note that you should never try printing nontext files with the 1p or Tpr
command, especially files with control characters (e.g., executable files such as a.out). Doing so will not
print what you want printed and will waste many printer pages. Do not even try testing it. If by accident,
you do send a print request for a nontext file, turn off the printer immediately and alert your system
administrator that you need assistance.

The following is a brief description of the Tp command.

Syntax:
1p [options] file-Tlist

Purpose: Submit a request to print the files in file-Tist

Basic File Processing 145

Commonly used options/features:
-P page-list Print the pages specified in page-1ist

-d ptr Send the print request to the ptr printer

-m Send e-mail after printing is complete

-n N Print n copies of the file(s) in file-1ist; default is one copy
-t title Print title on a banner page

-w Write to user’s terminal after printing is complete

The following session shows how to use the 1p command with and without options. The first command
prints the sample file on the default printer. The system administrator sets the default printer for the users
on a system. The job ID for the first print request is cpr-981, which tells you that the name of the printer
is cpr. The second command uses the -d option to specify that the sample file should be printed on the
spr printer. The third command is for printing three copies each of the sample and phones files on the
gpr printer.

% 1p sample

request id is cpr-981 (1 file(s))
% 1p -d spr sample

request id is spr-983 (1 file(s))
% 1p -d qpr -n 3 sample phones
request id is qpr-984 (2 file(s))
%

As mentioned earlier, the BSD counterpart of the 1p command is the Tpr command. The following is a
brief description of this command.

Syntax:
Tpr [options] file-list

Purpose: Submit a request to print the files in file-Tist
Commonly used options/features:
-# N Print n copies of the file(s) in file-Tist; default is one copy
-P ptr Send the print request to the ptr printer
-T title Print title on a banner page
-m Send email after printing is complete
-p Format output by using the pr command

The following session shows the BSD variant of the commands that perform the same print tasks as the
1p command. Thus, the first Tpr command sends the print request for printing the sample file on the
default printer. The second command sends the request for printing the sample file on the spr printer.
The third command prints three copies of the sample and phones files on the gpr printer.

% lpr sample
1pr -P spr sample
Tpr -P gpr -# 3 sample

R R R R

You can use the following command to print the sample file with the header information on every page
produced by the pr command. The vertical bar (]) is called the pipe symbol, which we discuss in detail
in Chapter 9.

146 Linux

% pr sample | lpr
%

You can perform the same task with the Tpr -p sample command. You can print the sample file with
line numbers and a pr header on each page using the following command. You can also perform the
same task with the n1 sample | Tpr -p command.

$ nl1 sample | pr | 1pr
$

You can enable the Tpr command to print a nonstandard text file, such as a TEX file, by specifying an
appropriate flag. For example, you can use the -t option to print a troff file and the -n option to print an
nroff file.

6.8.3 Finding the Status of Your Print Requests

The Tpstat command can be used to display the status of print jobs on a printer. The following is a brief
description of the Tpstat command.

Syntax:
Tpstat [options]

Purpose: Display the status of print jobs on a printer
Commonly used options/features:

-d Display the status of print jobs sent to the default printer using the Tp
command
-0 job-m-list Display the status of the print jobs in job-m-Tist; separate job IDs with

spaces and enclose the requests in double quotes for more than one job
-p printer-list Display the status of print jobs on the printers specified in printer-Tist
-u user-list Display the status of print jobs for the users in user-Tist

Without any option, the Tpstat command displays the status of all your print jobs that are printing or
waiting in the print queue of the default printer. The commands in the following session show some
typical uses of the command. The Tpstat -p command shows the status of all printers on the network.
The Tpstat -p gpr displays the status of print jobs on the gpr printer. The Tpstat -u sarwar displays
all print jobs for the user sarwar. The output of the command shows that there are three print jobs that
sarwar has submitted: two to gpr (job IDs qpr-3998 and qpr-3999) and one to tpr (job ID tpr-203).
Finally, the Tpstat -a command displays all the printers that are up and accepting print jobs.

$ 1pstat -p

printer cpr is idle. enabled since Tue Sep 2 10:43:48 GMT 2014. available. printer
mpr faulted. enabled since Mon Sep 1 10:48:29 GMT 2014. available. printer gpr now
printing gpr-53. enabled since Mon Sep 1 10:48:29 GMT 2014. available. printer spr
is idle. enabled since Mon Sep 1 10:48:29 GMT 2003. available.

$ Tpstat -p gpr

printer gpr now printing qpr-53. enabled since Mon Sep 1 10:48:29 GMT 2014.
available.

$ lpstat -u sarwar

qpr-3998 sarwar 93874 Sep 2 22:05 on qpr
qpr-3999 sarwar 93874 Sep 2 22:05
tpr-203 sarwar 93874 Sep 2 22:05 on tpr

$ 1pstat -a

cpr accepting requests since Tue Sep 2 10:43:48 GMT 2014
spr accepting requests since Mon Sep 1 10:48:29 GMT 2014
$

Basic File Processing 147

The following is a brief description of the BSD counterpart of the Tpstat command, the Tpg command.

Syntax:
1pg [options]

Purpose: Display the status of print jobs on a printer
Commonly used options/features:
-P printer-list Display the status of print jobs on the printers specified in printer-Tist

-1 Display the long format status of print jobs sent using the Tpr command
on the default printer

The most commonly used option is -P. In the following session, the first command is used to display the
status of print jobs on the mpr printer. The output of the command shows that four jobs are in the printer
queue: jobs 3991, 3992, 3993, and 3994. The active job is at the head of print queue. When the printer is
ready for printing, it will print the active job first. The second command shows that the gpr printer does
not have any jobs to print.

$ 1pgq -Pmpr

mpr is ready and printing

Rank Owner Job Files Total Size
active sarwar 3991 mail.bob 1056 bytes
1st sarwar 3992 csh.man 93874 bytes
2nd davis 3993 proposall.nsa 2708921 bytes
3rd tom 3994 memo 8920 bytes

$ Tpg -Pgpr

no entries

$

6.8.4 Canceling Your Print Jobs

If you realize that you have submitted the wrong file(s) for printing, you will want to cancel your print
request(s). The command for performing this task is cancel. The following is a brief description of the
command.

Syntax:
cancel [options] [printer]

Purpose: Cancel the print requests sent through the 1p command—that is, take these jobs out of
the print queue

Commonly used options/features:
-jobm-Tist Cancel the print jobs specified in jobm-1sit
-ulogin Cancel all print requests issued by the user login

The following commands show how to cancel a print job. You can display the job IDs of the print jobs on a
printer by using the Tpstat or 1pq command, as shown in Section 6.8.3. The first command cancels the print
job mpr-3991. The second command cancels all print requests by the user sarwar on all printers. You can can-
cel your own print jobs only. The last command, therefore, works only when run by sarwar or the superuser.

$ cancel mpr-3991

request "mpr-3991" canceled
$ cancel -u sarwar mpr
request "mpr-3992" canceled
request "mpr-3995" canceled

$

148 Linux

The BSD counterpart of the cancel command is Tprm. The following is a brief description of the
command.

Syntax:
Tprm [options] [jobID-Tist] [user(s)]

Purpose: Cancel the print requests made by using the 1pr command—i.e., remove these jobs
from the print queue; the jobIDs in jobID-Tist are taken from the output of the 1pq command

Commonly used options/features:
- Remove all the print jobs owned by the user
-P ptr Specify the print queue for the ptr printer

The following 1prm commands perform the same tasks as the cancel commands described in the previ-
ous session.

$ Tprm -Pmpr 3991
mpr-3996 dequeued

$ 1prm -Pmpr sarwar
mpr-3997 dequeued
mpr-3998 dequeued

$

When run without an argument, the Tprm command removes the job that is currently active, provided it
is one of your jobs.
The following in-chapter exercises will give you practice on using the printing-related commands.

Exercise 6.20
How would you print five copies of the file memo on the printer ece_hpl? Give commands for
both System V and BSD-style commands on a Linux system.

Exercise 6.21
After submitting the two requests, you realize that you really wanted to print five copies of the
file Tetter. How would you remove the print jobs from the print queue? Again, give commands
for both System V and BSD-style commands on a Linux system.

Summary

The basic file operations involve displaying all or part of a file’s contents, renaming a file, moving a file to
another file, removing a file, determining a file’s size, comparing files, combining files and storing them
in another file, appending new contents (which can come from another disk file, keyboard, or output of
a command) at the end of a file, and printing files. Linux provides several commands that can be used to
perform these operations.

The cat and more commands can be used to display all the contents of a file on the display screen.
The > symbol can be used to send outputs of these commands to other files, and the >> operator can be
used to append new contents at the end of a file. The cat command sends a file’s contents as continuous
text, whereas the more command sends them in the form of pages. Furthermore, the more command
has several useful features, such as the ability to display a page that contains a particular string. The
Tess command supports even more features than the more command, including the vi-style forward and
backward searching.

The head and tail commands can be used to display the initial or end portions (head or tail) of a file.
These helpful commands are usually used to find out the type of data contained in a file, without using
the file command (see Chapter 4). In addition, the file command cannot decipher contents of all the
files.

Basic File Processing 149

A copy of a file can be made in another file or directory by using the cp command. Along with the >
operator, the cat command can also be used to make a file copy, although there are differences between
using the cp and cat > commands for copying files (see Chapter 9). A file can be moved to another file by
using the mv command. However, depending on whether the source and destination files are on the same
file system, its use might or might not result in actual movement of file data from one location to another.
If the source and destination files are on the same file system, the file data is not moved and the source
file is simply linked to the new place (destination) through a hard link (see Chapter 8) and the original/
source link is removed. If the two files are on different file systems, an actual copy of the source file is
made at the new location and the source file is removed (unlinked) from the current directory. Files can
be removed from a file structure by using the rm command. This command can also be used to remove
directories recursively.

The size of a file can be determined by using the 1s -1 or wc commands; both give file sizes in bytes.
In addition, the wc command gives the number of lines and words in the file. Both commands can be used
to display the sizes of multiple files by using the shell metacharacters *, 7, [, and A.

The diff command can be used to display the differences between two files. The command, in
addition to displaying the differences between the files, displays useful information in the form of a
sequence of commands for the ed editor that can be used to make the two files the same. The diff3
and vimdiff commands allow multifile comparison. The sdiff command allows comparison of two
files side by side and their manual merging. You can use the patch command instead of the ed com-
mand to merge files. The shasum and md5sum commands allow you to create unique signatures for files
called message digests. These message digests are used to identify identical files. We do not recom-
mend the use of mdSsum command due to serious vulnerabilities discovered by researchers in the MD5
algorithm.

The unig command can be used to remove all but one occurrence of successive repeated lines. With
the -d option, the command can be used to display the repeated lines. The unig command is commonly
used using Linux pipes and filters (such as sort and grep commands) to perform more interesting tasks,
as discussed in Chapter 7.

The 1p (System V) or 1pr (BSD) command can both be used for printing files on a Linux Mint
printer. The 1pstat (System V) or 1pg (BSD) commands can be used for checking the status of all
print jobs (requests) on a printer (waiting, printing, etc.). The cancel (System V) or 1prm (BSD) com-
mands can be used to remove a print job from a printer queue so that the requested file is not printed.
All of these print commands are available in Linux Mint. Additionally, Chapter W26, Section 5,
details CUPS printing.

Questions and Problems

1. List ten operations that you can perform on Linux files.

2. Give a command line for viewing the sizes (in lines and bytes) of all the files in your present
working directory.

3. What does the tail -10r ../letter.John command do?

4. Give a command for viewing the size of your home directory. Give a command for displaying
the sizes of all the files in your home directory.

5. Give a command for displaying all the lines in the students file, starting with line 25.

6. Give a command for copying all the files and directories under a directory courses in your
home directory. Assume that you are in your home directory. Give another command to
accomplish the same task, assuming that you are not in your home directory.

7. Repeat Problem 6, but give the command that preserves the modification times and permissions
for the file.

8. What is the difference between the cp -r ~/courses ~/backups and cp -r ~/courses/
~/backups commands?

150 Linux

9. Give an option for the rm command that could protect you from accidently removing a file,
especially when you are using wild cards such as * and ? in the command.

10. What do the following commands do?

cp -f sample sample.bak

cp -fp sample sample.bak

rm -i ~/personal/memo*.doc

rm -i ~/unixbook/final/ch??.prn

rm -f ~/unixbook/final/*.o

rm -f ~/courses/ece446/1ab[1-6].[cC]
rm -r ~/NotNeededDirectory

R0 &0 o

rm -rf ~/NotNeededDirectory
i. rm -ri ~/NotNeededDirectory

11. Give a command for moving files Tabl, 1ab2, and 1ab3 from the ~/courses/ece345 directory
to a newlabs.ece345 directory in your home directory. If a file already exists in the destination
directory, the command should prompt the user for confirmation.

12. Give a command to display the lines in the ~/personal/phones file that are not repeated.

13. Refer to In-Chapter Exercise 15. Give a sequence of commands for the ed editor and use them
to make sample and example the same files.

14. You have a file in your home directory called tryit&. Rename this file. What command did you use?

15. Give a command for displaying attributes of all the files starting with a string prog, followed
by zero or more characters and ending with a string .c in the courses/ece345 directory in your
home directory.

16. Refer to Problem 15. Give a command for file names with two English letters between prog
and .c. Can you give another command line to accomplish the same task?

17. Give a command for displaying files got|cha and M*A*S*H one screenful at a time.

18. Give a command for displaying the sizes of files that have the .jpg extension and names ending
with a digit.

19. What does the rm *[a-zA-Z]?7?[1,5,8].[*p]* command do?

20. Give a command to compare the files sample and example in your present working directory.
The output should generate a series of commands for the ed editor.

21. Use the diff command to generate the patch file for the Fall_OH file, called OH_patch.
Display the contents of OH_patch file and identify differences between the two files. Use the
patch command to produce the patched version of Fall_OH so that it becomes the same as
Spring_OH as shown in Section 6.6.1.

22. What is message digest for a file? List five Linux commands that can be used to generate
message digests for files.

23. What is a printer spooler? A print daemon? What is the name of printer daemon in Linux?

24. Give a command for producing ten copies of the report file on the ece_hp3 printer. Each page
should contain a page header produced by the pr command. Give commands for both System
V and BSD-style printing on a Linux system.

25. Give the command to print the nroff file Chapter 1 by using the 1pr command. What command
line would you use to print the troff file sample with the Tpr command?

26. Give a command for checking the status of a print job with job ID ece_hp3-8971. How would
you remove this print job from the print queue? Give commands for both System V and BSD-
style printing on a Linux system.

27. What is the difference between the tail -15 filel and tail +15 filel commands? Which
of the following command is equivalent to cat filel: tail -$ file, tail -1 filel, or tail +1
filel? Why?

Basic File Processing 151

28. What is the purpose of the more -n5 filel?

29. What are the differences between the more and less commands? Which of the two is more
powerful and user friendly in your opinion and why?

30. Create a file in your current directory called f1. What is the inode number of the file? Move the
file to your home directory and name it f1.moved. What is the inode number of the moved file?
Move the moved file to the /tmp directory. What is the inode number of the /tmp/fl.moved
file? Why are the inode numbers for f1 and f2 the same? Why is the inode number of /tmp/
fl.moved different from f1 (or ~/f1l.moved)?

Advanced Questions and Problems

31. Why can you not perform the following operations on a directory if you don’t have read and
execute permissions for it? Delete a file in it, copy a file from it to another directory, and list the
contents of the directory? Clearly explain your answer in each case.

32. Use sdiff and vimdiff commands to perform the task performed in In-Chapter Exercise 6.15.
Read through the man pages for these commands as well as the tutorials at the websites listed
in Table 6.3 at the book GitHub site.

33. Browse the Web and briefly describe the SHA and MD5 algorithms. What are the lengths of
message digests for crc32, md5sum, shalsum, sha224sum, sha256sum, and sha512sum?

34. Using the procedures and techniques developed in Section G19.5 on CUPS printing, found at
the GitHub site for this book, do the following exercise-

You have two computers on an intranet LAN, named Proliant and Black_Dragon. You
attach a USB-bus printer to Black_Dragon, and it is automatically detected and usable by
CUPS facilities, but on Black_Dragon only. Use the steps shown in Chapter W26, Sections
5.2.1.1-5.2.6 at the book website to allow you to manage printers on two computers from
your LAN. For example, from a Web browser on one computer, access the CUPS Web-based
interface on the second computer. From the first computer, you can also use a Web browser
and access the Web-based interface on the second computer to manage the printer on the first
computer?

35. Enable the CUPS printing service using systemd on your Linux system, and use the systemct]
commands shown in Chapter W26, Sections 5.1.1-5.1.5 at the book website, to manage that
service. In particular, examine the log entries, using the systemd journalctl command to
troubleshoot or gain an understanding of how viewing the log can be coupled with management
of CUPS using systemd.

36. Use the CUPS Print Manager GUI on your Linux system, as illustrated in Chapter W26,
Section 5.3 at the book website, to add, rename, and otherwise manage a new USB-attached
printer.

37. Modify the 13 examples in Chapter 17, Section 6.3.1 on rsync to be able to execute them locally
on your system, and remotely on your LAN, substituting file names, directories, account names,
and IP addresses as necessary.

Projects
Project 1

Modify the Extended Python Script Example Using the rsync command to do a “Rolling” Backup,
Chapter W19, Example 19.34 at the book website, to serve as an automated way of copying and backing
up specific user directories and files on your Linux system. If you haven’t already done so, do the
prerequisites and Chapter W19, Examples 31-33, in Section 4.2.2 at the book website.

152 Linux

Project 2

If you haven’t already done so, do the prerequisites and from Chapter W19, Examples 31-34, in
Section 4.2.2 at the book website, but achieve the same results WITHOUT using Python. Just use the
Linux commands shown embedded in the Python code to achieve these results. Most importantly, these
examples illustrate the use of the rsync command to do file copying and backup.

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

7

Advanced File Processing

OBJECTIVES

* To explain file compression and how it can be performed

» To explain the sorting process and how files can be sorted

* To discuss searching for commands and files in the Linux file structure

* To discuss the formation and use of regular expressions

* To describe searching files for expressions, strings, and patterns

» To describe how database-type operations of cutting and pasting fields in a file can be performed
* To discuss encoding and decoding of files

* To explain file encryption and decryption

* To cover the following commands and primitives:

A% /N, |+ >, ~, [, 1, md5sum, base64, bzip2, mcrypt, crypto, cut, egrep,
fgrep, find, grep, md5sum, openssl, paste, pcat, shasum, sort, whereis, which,
Xz, zcat

S

7.1 Introduction

In this chapter, we describe some of the more advanced file processing operations on text and nontext
files, and show how they can be performed in Linux. These operations include sorting files, searching
for files and commands in the file system structure, searching files for certain strings or patterns, per-
forming database-like operations of cutting fields from a table or pasting tables together, transforming
non- American Standard Code for Information Interchange (ASCII) files to ASCII, compressing and
decompressing file contents, and encrypting and decrypting files. Several tools are available in Linux for
performing these tasks.

We discuss the important topic of regular expressions, which are a set of rules that can be used to
specify one or more strings using a sequence of special text characters. While discussing the operations,
we also describe the related shell commands and tools that make use of regular expressions. We also give
examples to illustrate how these commands can be used to perform the required operations.

7.2 Sorting Files

Sorting means ordering a set of items according to some criteria. In computer jargon, it means ordering
a set of items (e.g., integers, a character, or strings) in ascending (the next item is greater than or equal
to the current item) or descending (the next item is less than or equal to the current item) order. So, for
example, a set of integers {10, 103, 75, 22, 97, 52, 1} would become {1, 10, 22, 52, 75, 97, 103} if sorted
in ascending order, and {103, 97, 75, 52, 22, 10, 1} if sorted in descending order. Similarly, words in a
dictionary are listed in ascending order. Thus, the word apple appears before the word apply.

Sorting is a commonly used operation and is also performed in a variety of software systems. Systems
in which sorting is used include

* Words in a dictionary
* Names of people in a telephone directory

153

154 Linux

* Airline reservation systems that display arrival and departure times for flights sorted according
to flight numbers at airport terminals

* Names of people displayed in a pharmacy with ready prescriptions
* Names of students listed in class lists coming from the registrar’s office

The sorting process is based on using a field, or portion of each item, known as the sort key. To determine
the position of each item in the sorted list, you compare the items in a list (usually two at a time) by using
their key fields. The choice of the field used as the key depends on the items to be sorted. If the items are
personal records (e.g., student employee records), last name, student ID, and social security number are
some of the commonly used keys. If the items are arrival and departure times for the flights at an airport,
flight number and city name are commonly used keys.

The Linux sort utility can be used to sort items in text (ASCII) files. The following is a brief descrip-
tion of this utility.

Syntax:
sort [options] [file-list]

Purpose: Sort lines in the ASCII files in file-Tist
Output: Sorted files to standard output
Commonly used options/features:

-b Ignore leading blanks

-d Sort according to usual alphabetical order: ignore all characters except letters,
digits, and then blanks

-c Check for sorted input; do not sort

-f Consider lowercase and uppercase letters to be equivalent

-m Merge already sorted files

-n Compare according to string numerical value

+nl[-n2] Specify a field as the sort key, starting with +nl and ending at -n2 (or end of line
if -n2 is not specified); field numbers start with 0

-o FILE Send sorted output to FILE instead of standard output
-r Sort in reverse order

If no file is specified in file-1ist, sort takes input from standard input. The output of the sort com-
mand goes to standard output. By default, sort takes each line, starting with the first column, to be the
key and performs case-insensitive sort in alphabetic order. In other words, it rearranges the lines of the
file—that is, strings separated by the newline character (\n)—according to the contents of all the fields,
going from left to right. Thus, in the output of the sort command, lines starting with digits (0-9) appear
before lines starting with letters, lowercase letters appear before their uppercase counterparts as in a, A,
b, B, ¢, etc., and 1,000 is treated smaller than 3 because 3 is greater than that of 1 (first letter in 1,000).
The following session illustrates these points.

$ cat data
100
Hello
war
Zoo
20
apple
World
200
April
40

Advanced File Processing 155

$ sort data
100
20
200
40
apple
April
Hello
war
World
Zoo

$

With the use of —n option, you can sort data in terms of their numerical values, placing letters before
digits and sorting numbers according to their numerical values. The output of the following sort com-
mand illustrates this point.

$ sort -n data
apple
April
Hello
war
World
Zoo
20

40
100
200

$

In the output of the preceding command, lines starting with lowercase letters still appear before lines
starting with corresponding uppercase letters. If you would like all the lines starting with uppercase
letters appear before the lines starting with lowercase letters, you should set the environment variable
LC_ALL to C and export it before using the sort command, as in the following session.

$ export LC_ALL=C
$ sort -n data
April

Hello

World

Zoo

apple

war

20

40

100

200

$

The following session illustrates the use of sort with and without some options using the students file,
containing the items (student records, one per line) to be sorted. Each line contains four fields: first name,
last name, e-mail address, and phone number. Each field is separated from the next by one or more space
characters.

$ cat students
John Johnsen john.johnsen@tp.com 503.555.1111

Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Kelly Kimberly kellyk@umich.gov 555.123.9999

Maham Sarwar smsarwar@kl2.st.or 713.888.0000

mailto:john.johnsen@tp.com
mailto:d_kendall@msnbc.org
mailto:j.johnsen@psu.net
mailto:ibraheem@abc.sci.com
mailto:kellyk@umich.gov

156

Jamie Davidson j.davidson@uet.edu 515
Nabeel Sarwar n.sarwar@xyz.net 434.
$ sort students

David Kendall d_kendall@msnbc.org 229.
Hassaan Sarwar hsarwar@kl2.st.or 503
Ibraheem Sarwar ibraheem@abc.sci.com 222
Jamie Davidson j.davidson@uet.edu 515
John Johnsen j.johnsen@psu.net 301.
John Johnsen john.johnsen@tp.com 503.
Kelly Kimberly kellyk@umich.gov 555
Maham Sarwar smsarwar@kl2.st.or 713
Nabeel Sarwar n.sarwar@xyz.net 434,
$

.001.

555.

111.

.444,
.123.
.001.

999.
555.

.123.
.888.

555.

1212
1212

2013
2132
4567
1212
8888
1111
9999
0000
1212

Linux

Note that the lines in the students file are sorted in ascending order by all characters, going from left
to right (the whole line is used as the sort key). The following command sorts the file by using the whole

line, starting with the last name—the second field (field number 1)—as the sort key.

$ sort +1 students

Jamie Davidson j.davidsonG@uet.edu 515
John Johnsen j.johnsen@psu.net 301.
John Johnsen john.johnsen@tp.com 503.
David Kendall d_kendall@msnbc.org 229.
Kelly Kimberly kellyk@umich.gov 555.
Hassaan Sarwar hsarwar@kl2.st.or 503
Ibraheem Sarwar ibraheem@abc.sci.com 222
Nabeel Sarwar n.sarwar@xyz.net 434,
Maham Sarwar smsarwar@kl2.st.or 713
$

.001.

999.
555.
111.
123.

.444,
.123.

555.

.888.

1212
8888
1111
2013
9999
2132
4567
1212
0000

The following command sorts the file in reverse order by using the phone number as the sort key and
ignoring leading blanks (spaces and tabs). The +3 option specifies the phone number to be the sort key
(as phone number is the last field), the -r option informs sort to display the sorted output in reverse order,

and the -b option asks the sort utility to ignore the leading white spaces between fields.

$ sort +3 -r -b students

Maham Sarwar smsarwar@kl2.st.or 713
Kelly Kimberly kellyk@umich.gov 555
Jamie Davidson j.davidson@uet.edu 515
John Johnsen john.johnsen@tp.com 503.
Hassaan Sarwar hsarwar@kl2.st.or 503
Nabeel Sarwar n.sarwar@xyz.net 434,
John Johnsen j.johnsen@psu.net 301.

David Kendall d_kendall@msnbc.org 229.
.123.

Ibraheem Sarwar ibraheem@abc.sci.com 222
$

.888.
.123.
.001.

555.

.444.,

555.
999.
111.

0000
9999
1212
1111
2132
1212
8888
2013
4567

The -b option is important if fields are separated by more than one space and the number of spaces
differs from line to line, as is the case for the students file. The reason is that the space character is
“smaller” (in terms of its ASCII value) than all letters and digits, and if we do not skip initial blanks,
unexpected output will be generated. The sort keys can be combined, with one being the primary key
and others being secondary keys, by specifying them in the order of preference (the primary key occur-
ring first). The following command sorts the students file with the last name as the primary key and the

phone number as the secondary key.

$ sort +1 -2 +3 -b students

Jamie Davidson j.davidson@uet.edu 515.001.1212
John Johnsen j.johnsen@psu.net 301.999.8888
John Johnsen john.johnsen@tp.com 503.555.1111
David Kendall d_kendall@msnbc.org 229.111.2013

mailto:j.davidson@uet.edu
mailto:n.sarwar@xyz.net
mailto:d_kendall@msnbc.org
mailto:ibraheem@abc.sci.com
mailto:j.davidson@uet.edu
mailto:j.johnsen@psu.net
mailto:john.johnsen@tp.com
mailto:kellyk@umich.gov
mailto:n.sarwar@xyz.net
mailto:j.davidson@uet.edu
mailto:j.johnsen@psu.net
mailto:john.johnsen@tp.com
mailto:d_kendall@msnbc.org
mailto:kellyk@umich.gov
mailto:ibraheem@abc.sci.com
mailto:n.sarwar@xyz.net
mailto:kellyk@umich.gov
mailto:j.davidson@uet.edu
mailto:john.johnsen@tp.com
mailto:n.sarwar@xyz.net
mailto:j.johnsen@psu.net
mailto:d_kendall@msnbc.org
mailto:ibraheem@abc.sci.com
mailto:j.davidson@uet.edu
mailto:j.johnsen@psu.net
mailto:john.johnsen@tp.com
mailto:d_kendall@msnbc.org

Advanced File Processing 157

Kelly Kimberly kellyk@umich.gov 555.123.9999
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
$

The primary key is specified as +1 -2, meaning that the key starts with the last name (+1) and ends before
the e-mail address field (-2) starts. The secondary key starts at the phone number field (+3) and ends at
the end of line. As no field follows the phone number, it alone comprises the secondary key. For our file,
however, the end result will be the same as for the command sort +1 students, because the first John
Johnsen’s e-mail address is “smaller” than the second’s.

The -c option allows you to check whether data in your input file is already sorted. It returns with no
output if file data is already in sorted order and at the first record that is not in sorted order, as shown in
the following session. The sort -c numbers command returns with no output and the sort -c names
command returns the first data value that is not in sorted order, i.e., Bill Gates.

$ cat numbers

40

$ sort -c numbers
$ cat names

Elon Musk

Bi11 Gates

Mark Zuckerberg
Jeff Bezos

Jack Ma

$ sort -c names
sort: names:2: disorder: Bill Gates
$

You can sort and merge data in multiple files by specifying files in the command line. In the following
session, we show how to sort and merge data in files numbersl and numbers2. Finally, we show how to
sort and merge data in both files and remove duplicates using the —u option.

$ cat numbersl
40

100

15

$ cat numbers2
15

200

90

40

$ sort -n numbersl numbers2
15

15

40

40

90

100

200

$ sort -u -n numbersl numbers2
15

40

90

100

200

$

mailto:kellyk@umich.gov
mailto:ibraheem@abc.sci.com
mailto:n.sarwar@xyz.net

158 Linux

Exercise 7.1
Repeat the abovementioned sessions on your system and verify that the sort command works
on your system as expected.
Exercise 7.2
Consider the numbers file contains the following data, one per line: 10, 20, 30, 40, 100, 200,
300, 400. Sort the command with the sort numbers. Does the output make sense to you? Why
or why not? Answer these questions for the output of the sort -c numbers command.
Exercise 7.3
What command would you use to sort data in the numbers file in the correct (expected) order,
i.e., keep data in the given order?

7.3 Searching for Commands and Files

At times, you will need to find whether a particular command or file exists in your file structure. Or, if
you have multiple versions of a command, you might want to find out which one executes when you run
the command. We discuss three commands that can be used for this purpose: find, whereis, and which.

You can use the find command to search a list of directories that meet the criteria described by the
expression (see the command description) passed to it as an argument. The command searches the list of
directories recursively; that is, all subdirectories at all levels under the list of directories are searched.
The following is a brief description of the command.

Syntax:
find directory-list expression
Purpose: Search the directories in directory-1ist to locate files that meet the “criteria” described
by the expression (the second argument); the expression comprises one or more “criteria” (see
the examples)
Output: None unless it is explicitly requested in expression
Commonly used options/features:
-L Follow symbolic links
-exec oM The file being searched meets the criteria if the command cvp returns O as
its exit status (true value for commands that execute successfully); cvo must
terminate with a quoted semicolon (\;)

-group name
—inum N
-links ~

-mtime N

-name pattern
-newer file
-ok v

-perm octal
-print

-size =N[c]

-type t

Search for files belonging to group name or ID name
Search for files with inode number n
Search for files with n links

Search for files whose data was modified within the last v days (for -~) and
more than n days (for +n); O acts as —1

Search for files that are specified by the pattern

Search for files that were modified after file (i.e., are newer than file)
Like -exec except that the user is prompted first

Search for files if permission of the file is octal

Display the pathnames of the files found by using the rest of the criteria;
works even if file names contain white spaces such as newline characters
Search for files of size n blocks; n followed by ¢ can be used to measure
size in characters; +N means size > N blocks, and -~ means size < N blocks
File is of type t: b (block special), ¢ (character special), d (directory), f

(regular), 1 (symbolic link—never true with —L option), p (named pipe—
FIFO), s (socket)

Advanced File Processing 159

-user name Search for files owned by the user name or ID name
\(C expr \) True if expr is true; used for grouping criteria combined with OR or AND
I expr True if expr is false

You can use [-a] or a space to logically AND, and -o to logically OR two criteria. Note that at least
one space is needed before and after an open bracket ([) or a close bracket (]), and before and after -o.
A complex expression can be enclosed in parentheses, \(and \). We now discuss some illustrative
examples.

The find (or find .) command lists pathname for all the files and directories under the current direc-
tory. The most common use of the find command is to search one or more directories for a file, as shown
in the first example. Here, the command searches for the USA.gif and Pakistan.gif files in your home
directory and displays the pathname of the directory that contains them. If the file(s) being searched for
occurs in multiple directories, the pathnames of all the directories are displayed.

$ find ~ -name USA.gif -0 -name Pakistan.gif
/home/sarwar/myweb/USA.html
/home/sarwar/myweb/Pakistan.html

$

The following command displays the absolute pathnames of all the files in your home directory that end
in .c and .C.

$ find ~ -name '*.c' -o -name '*.C'

The next command searches the /usr/include directory recursively for a file named socket.h and
prints the absolute pathname of the file.

$ find /usr/include -name socket.h
/usr/include/asm-generic/socket.h
/usr/include/x86_64-Tinux-gnu/sys/socket.h
/usr/include/x86_64-1inux-gnu/asm/socket.h
/usr/include/x86_64-Tinux-gnu/bits/socket.h
/usr/include/Tinux/socket.h

$

You might want to know the pathnames for all the hard links (discussed in Chapter 8) to a file—that is,
files that have the same inode number. The following command recursively searches the root directory
for all the files that have inode number 36700164 and prints the absolute pathnames of all such files.

$ find /usr . -inum 36700164
/usr/include

$

You can use the -perm option to display files under a directory hierarchy with given permissions. For
example, you can use the find . -perm 755 command to display a list of files in your current direc-
tory with octal permissions 755 (i.e., read, write, and execute for the file owner, and read and execute for
other users on your system). You can use the 1s -1 command to verify the output of the find command.

$ find . -perm 755

./sandbox_dir
./my_cat
$1s -1

total 1916

http:///home/sarwar/myweb/USA.html
http:///home/sarwar/myweb/Pakistan.html

160 Linux

-rW------- 1 sarwar faculty 502 Feb 27 01:42 memol
-rwxr-xr-x 1 sarwar faculty 52080 Feb 25 06:59 my_cat
-rw-r--r-- 1 sarwar faculty 151024 Feb 25 07:58 my_cp
-rw-r--r-- 1 sarwar faculty 56 Feb 28 04:05 names
-rw-r--r-- 1 sarwar faculty 28 Feb 28 04:14 numbers
drwxr-xr-x 2 sarwar faculty 4096 Feb 27 18:32 sandbox_dir
-rw-r--r-- 1 sarwar faculty 457 Feb 24 13:19 students

$

You can use the —size option to display files of specific sizes or range of sizes. The following command
displays regular files greater than 1 M bytes in your home directory.

$ find ~ -size +1M -type f
/home/sarwar/.Tinuxmint/mintMenu/apt.cache
/home/sarwar/Tinux2e/ch7/sandbox_dir/filel.nc
/home/sarwar/Tinux2e/ch7/sandbox_dir/filel
/home/sarwar/Tinux2e/ch7/bash_encoded
/home/sarwar/Tinux2e/newchl4/bigdata.old
/home/sarwar/1linux2e/newchl4/bigdatal
/home/sarwar/linux2e/newchl4/bigdata

$

You can use the —m option to display pathnames of the files in a directory hierarchy according to their
modification time. The following command lists pathnames of the files in your current directory that
have been modified within the last 2 days. The parameter —2 indicates within two days.

$ find . -mtime -2

./ch7

./ch7/secret_memo

./ch7/sandbox_dir

./ch7/sandbox_dir/secret_memo

./ch7/data

./ch7/names

./ch7/numbers

$

Similarly, you can identify files in your ~/1inux2e/ch5, ~/Tinux2e/ch6, and ~/1inux2e/ch7 directories
that have been modified more than seven days ago with the find ~/1inux2e/ch[5,6,7] -mtime +7.

The following command locates and removes file(s) named foobar in your home directory hierarchy.
The curly braces, {}, identify the position where the name(s) of the matched file(s) are placed. The com-
mand ends with a semicolon. The curly braces must be quoted ('{}') and semicolon escaped (\;) to prevent
the shell from interpreting them. If you want to be prompted for permission to remove the file, use the
rm -i command or replace —exec with —ok, as shown below.

$ find ~ -name foobar -exec rm '{}' \;

$ find ~ -name foobar -ok rm '{}' \;

< rm ... /home/sarwar/Tinux2e/ch7/foobar > ? y

< rm ... /home/sarwar/1inux2e/chl6/foobar > ? n

$ find ~ -name foo -exec rm -i '{}' \;

rm: remove regular file '/home/sarwar/linux2e/ch7/foo'? y
rm: remove regular file '/home/sarwar/linux2e/chl6/foo'? n

$

Another use of combining the use of find and exec is to search for text in one or more files. You can
use the following command to locate all occurrences of text “int i;” in all C program files in your home
directory along with line numbers.

$ find ~ -type f -name '*.c' -exec grep -n 'int i;' {} \;
23: int i;
33: int 1i;
8: int 1i;
21: int i;

$

Advanced File Processing 161

The following command searches the present working directory for files that have the name core or
have extensions .jpg or .o, displays their absolute pathnames, and removes them from the file struc-
ture. Parentheses are used to enclose a complex criterion. Be sure that you use spaces before and after
\G \), and -o. The command does not prompt you for permission to remove ; in order to be prompted,
replace -exec with -ok, or use the rm -i command.

$ find . \(-name core -o -name '*.jpg' -o -name '*.0' \) -print -exec rm {} \;

$

You can use the whereis command to find out whether your system has a particular command, and if it
does, where it is in the file structure. You typically need to get such information when you are trying to
execute a command that you know is valid but that your shell cannot locate because the directory con-
taining the executable for the command is not in your search path (see Chapters 2 and 4). Under these
circumstances, you can use the whereis command to find the location of the command and update your
search path. Although whereis is a Berkeley Software Distribution (BSD) command, most Linux sys-
tems today have it because they have a BSD compatibility package. Depending on the system you are
using, the command not only gives you the absolute pathname for the command that you are searching

for but also gives you the absolute pathnames for its manual page and source files if they are available on
your system. The following is a brief description of the command.

Syntax:
whereis [options] [file-list]

Purpose: Locate binaries (executable files), source codes, and manual pages for the commands in
file-list-a space-separated list of command names

Output: Absolute pathnames for the files containing binaries, source codes, and manual pages for
the commands in file-Tist

Commonly used options/features:
-b Search for binaries (executable files) only
-s Search for source code only

The following examples illustrate the use of whereis command. The first command is used to locate the
ftp command. The second command is used to locate the executable file for the cat command. The last
command locates the information for the find and tar commands.

$ whereis ftp

ftp: /usr/bin/ftp /usr/share/man/manl/ftp.1l.gz

$ whereis -b cat

cat: /bin/cat

$ whereis find tar

find: /usr/bin/find /usr/share/man/manl/find.l.gz /usr/share/info/find.info.gz
tar: /usr/lib/tar /bin/tar /usr/include/tar.h /usr/share/man/manl/tar.1l.g9z

$

In the outputs of these commands, the /bin directory contains the executable files (also called binaries)
essential user commands, the directory /usr/bin contains the executable files for utilities, applications,
and commands, the directory /usr/share/man contains several subdirectories that contain various sec-
tions of the Linux online manual, /usr/1ib libraries for programming languages and packages, and the
/usr/include directory contains header files.

In a system that has multiple versions of a command, the which utility can be used to determine the
location (absolute pathname) of the version that is executed by the shell you are using when you type the
command. The following sessions show sample runs of this command.

http://1.gz/usr/share/info/find.info.gz
http://1.gz/usr/share/info/find.info.gz

162 Linux

$ which cat
/bin/cat

$ which ftp
/usr/bin/ftp
$ which tar
/bin/tar

$

When a command does not work according to its specification, the which utility can be used to deter-
mine the absolute pathname of the command version that executes. A local version of the command may
execute because of the way the search path is set up in the PATH variable (see Chapters 2 and 4). And, the
local version has been broken due to a recent update in the code; perhaps it does not work properly with
the new libraries that were installed on the system. The which command takes command-1ist (actually a
file-Tist for the commands) as an argument and returns absolute pathnames for them to standard output.

In the following in-chapter exercises, you will get practice using the find, sort, and whereis com-
mands, as well as appreciate the difference between the find and whereis commands.

Exercise 7.4
Give a command for sorting a file called students by using the whole line starting with the
e-mail address.

Exercise 7.5
Give a command for finding out where the executable code for the traceroute command is
on your system.

Exercise 7.6
You have a file called phones somewhere in your directory structure, but you do not remember
the pathname of the directory it is in. What command would you use to locate it?

7.4 Regular Expressions

A regular expression is a sequence of constants and operator symbols (known as operators) that repre-
sents a set of strings, commonly known as search patterns. Most of the Linux utilities operate on text
files a line at a time. Regular expressions are used for searching file contents for the desired patterns on a
single line. They may not be used to search for patterns that start on one line and end on another.

Regular expressions allow you to search for strings of a certain size. You can search for strings with
particular patterns of letters, numbers, and punctuation marks. You can search for a word that starts and
ends with a vowel, and has two consecutive “I” letters. What you do with the strings identified by a regu-
lar expression that depends on the tool that you use to identify them. Text editor such as vim can replace
them with new strings. Some simply display them on the screen.

Some of the shell metacharacters are similar to the operators used in regular expressions. Although
metacharacters in a command line are processed and expanded by the shell before passing them to the
command, regular expressions are handled by the command. Bourne shell, Bash, C shell, and utilities
such as find and cpio use metacharacters and not regular expressions. On the other hand, utilities such as
awk, egrep, emacs, expr, grep, more, perl, python, sed, and vim use regular expressions. To prevent the
shell from processing them, operators in a regular expression must be quoted when passed as an option
in a shell command.

Different utilities in Linux support different sets of operators, but the following operators are sup-
ported by almost all Linux tools that support regular expressions: O, [], ., A, $, and * Some use addi-
tional operators like |, 7, and +. Table 7.1 shows the purpose of these and other operators with examples.

The * operator may be used to specify zero or more occurrences of the preceding element. For exam-
ple, a* represents an empty string, a, aa, aaa, and so on. The expression .com matches strings Acom,
acom, Bcom, bcom, Ccom, ccom, and so on. Similarly, the expression A.B matches AAB, ABB, ACB, AOB, A1B,
A2B, etc. It is important to note that regular expressions match the longest possible pattern. That is, the
regular expression A.*B matches “AAB” as well as “AAAABBBBABCCCCAAABCDEFBBBAAAB.” It is not the

http://.com

Advanced File Processing 163
TABLE 7.1
Regular Expression Operators and Their Support by Linux Tools
Sample Strings for
Name/Function Operator Example Usage Example Supported by
Any character except newline .com Acom, acom, Bcom, All
bcom, Ccom, ccom, ...
Beginning of line A AX A line starting with x All
End of line x$ A line ending with x All
Repetition: Zero or more Xy* X, XY, XYY, XYYV, .. All
occurrences of the preceding
element
Grouping () or \C\) (xy)+ XY, XyXy, XyXyXy, ... All
Matches any character enclosed [] /[Hhlello/ Hello, hello All
in brackets
Matches any character not [A] /[AA-KM- Z]Jove/ Love All
enclosed in brackets
Concatenation (AND) None Xyx Xyz All
Beginning of a word \< All
End of a word \> All
M to N duplicates of the \{M,N\}
preceding element
Alternation (OR) | x|y|z X, Y, 0rz awk, grep
Optional: Zero or one ? xy? X, Xy awk, egrep
occurrence of the preceding
element
Repetition: One or more + Xy+ XY, XYY, XYYV, ... awk, egrep
occurrences of the preceding
element
Escape sequence: Cancels the \ * * ed, sed, vi
special meaning of the
metacharacter that follows it
Delimiter: Marks the beginning ~ / /L..e/ Love, Live, Lose, Lase, ... ed, sed, vi

or end of a regular expression

cause of any problems when you are using searching tools such as grep, because such an expression will
just match more lines than desired. However, if you use such patterns with an editor like vim or sed, you
may end up deleting more than you wanted too.

The regular expression aa* represents a, aa, aaa, and so on. It is equivalent to the regular expression
a+. The regular expression Aa represents letter a at the beginning of a line. Similarly, a$ matches lines

that end with letter a.

The ? operator may be used to specify zero or one occurrence of the preceding element (a character

or a pattern). For example, a? specifies a string with no character (an empty string) or a string with
only a. The + operator may be used to specify one or more occurrence of the preceding element. For
example, a+ represents a, aa, aaa, and so on. The | operator specifies alternatives. For example, a|b,
pray|prey, or a|b*. The regular expression a|b* represents an empty string, a, b, bb, bbb, and so on.

The () operator is used to specify the scope and precedence of operators. For example, pr(ale)y
represents pray or prey, and is thus equivalent to pray|prey. You can use the [] operator to specify the
exact characters you want to search for. For example, [AaBbAc] matches a single character that is A, a, B,
b, C, or c. Similarly, [A-Za-z] matches a single uppercase or lowercase letter and [0-9]* matches zero
or more digits.

At times you need to use an element (e.g., a letter) that you have already identified. You can enclose
part of a pattern that you would like to refer in future between “\(* and “\)”. Each occurrence of “\(”
starts a new pattern. You can have nine different numbered patterns and can refer to a previous pattern

http://.com

164 Linux

TABLE 7.2
Examples of Regular Expressions for vim and Their Meaning
Regular Expression Meaning Examples
/AYes/ A line starting with the string Yes Yes...
Yesteryear...
Yesterday...
and so on
/th/ Occurrence of the string th anywhere in the, there, path, bathing, and so on
a word
/:$/ A line ending with a colon ... following:
... below:
... follows:
and so on
/[0-9]1/ A single digit 0,1,...,9
[a-z]1[0-91/ A single lowercase English letter a0, al, ..., a9, ...,b0,bl, ..., b9, ...,
followed by a single digit 20, ... z1, ..., 29
/\.c/ Any word that ends with . ¢ (all C source labl.c, programl.c,
code files) client.c, server.c, and so on
/[a-zA-Z 1%/ Any string composed of letters All strings without numbers and
(uppercase or lowercase) and spaces; no punctuation marks such as HeTlo
numbers and punctuation marks world
TABLE 7.3
Some Commonly Used vim Commands Illustrating the Use of Regular Expressions
/ [0-9] / Do a forward search for a single stand-alone digit character in the current file; digits
that are part of strings are not identified.
2\.c[1-7] ? Do a backward search for words or strings in words that end with . € followed by a
single digit between 1 and 7.
:1,%9s/:%/./ Search the whole file and substitute a colon (:) at the end of a line with a period (.).
:.,$s/A[Hhlello / From the current line to the end of file, substitute the words “Hello” and “hello”
Greetings / starting a line with the word “Greetings.”
:1,8s/A *// Eliminate one or more spaces at the beginning of all the lines in the file.

using “\” followed by a single digit starting with 1. Thus, the regular expression “\([0-9]\)\1” matches
two identical digits such as 33 and 99.

Some of the commonly used Linux tools that allow the use of regular expressions are awk, ed, egrep,
grep, sed, vi, and vim, but the level of support for regular expressions isn’t the same for all these tools.
Although awk and egrep have the best support for regular expressions, grep has the weakest.

Table 7.1 lists the regular expression operators, their names, example usage, meanings, and tools that
support them. The regular expression operators overlap with shell metacharacters, but you can use single
quotes around them to prevent the shell from interpreting them. The word “All” in the last column means
that all Linux utilities support the corresponding operator. We do not use quotes for strings in the fourth
column for brevity.

Table 7.2 lists some commonly used regular expressions in the vim editor and their meanings. Needless
to say, regular expressions are used in the vim commands. We discuss examples for grep and egrep in
Section 7.6. In the regular expression /\.c/, the backslash character (\) is used to escape the special
meaning of dot (.) and take its literal meaning.

Table 7.3 lists some examples of the vim commands that use regular expressions and their meaning.
Note that these commands are used when you are in vim’s command mode.

In the following in-chapter exercises, you will use regular expressions in the vim editor to appreciate
their power.

Advanced File Processing 165

Exercise 7.7
List the strings that regular expression “\([0-91\)\1\1” matches?

Exercise 7.8
Create a file that contains the words “Linux,” “UNIX,” “Windows,” and “DOS.” Be sure
that some of the lines in this file end with those words. Replace the string Windows with
Linux in the whole document as you edit it with the vim editor. What command(s) did you
use?

Exercise 7.9
As you edit the document in Exercise 7.8, in a vim, run the command :1,$s/DOS\./LINUX\./
gp. What did the command do to the document?

Exercise 7.10
Create a file called testregex that has several (but not all) lines containing words express,
expressing, expression, expressions, and expresses. What do you think would be the effect of
executing the :1,$s/e....ss/DOODLING/gp command while editing testregex. Now edit the
file with vim and run the command. What did the command do to the document? Does the
result make sense? Why or why not?

7.5 Searching Files

Linux has powerful utilities for file searching that allow you to find lines in text files that contain a par-
ticular expression, string, or pattern. For example, if you have a large file that contains the records for a
company’s employees, one per line, you might want to search the file for line(s) containing information
on John Johnsen. The utilities that allow file searching are grep, egrep, and fgrep. The following is a
brief description of these utilities.

Syntax:
grep [options] pattern [file-list]
egrep [options] [string] [file-Tist]
fgrep [options] [expression] [file-Tlist]

Purpose: Search the files in file-Tist for the given pattern, string, or expression; if no file-Tlist,
take input from standard input

Output: Lines containing the given pattern, string, or expression on standard output
Commonly used options/features:

-c Print the number of matching lines only

-i Ignore the case of letters during the matching process

-1 Print only the names of files with matching lines

-n Print line numbers along with matched lines

-r Read files under a directory (home directory if none is specified) recursively; following
symbolic links only if they are specified on command line

-s Useful for shell scripts; suppresses error messages (the return status is set to zero for
success and nonzero for no success—see Chapter 10)

-v Print nonmatching lines

-w Search for the given pattern as a string

Of the three, the fgrep command is the fastest but most limited; egrep is the slowest but most flexible,
allowing full use of regular expressions; and grep has reasonable speed and is fairly flexible in terms of
its support of regular expressions. In the following sessions, we illustrate the use of these commands with
some of the options shown in the description. We use the same students file in these sessions that we use
in describing the sort utility in Section 7.3. We display the file by using the cat command.

166 Linux

$ cat students

John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Kelly Kimberly ke1lyk@umich.gov 555.123.9999
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Sandy Khan sandy.khan@isu.edu 515.101.9009
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
$

The most common and simple use of the grep utility is to display the lines in a file containing a par-
ticular string, word, or pattern. In the following session, we display those lines in the students file that
contain the string Sarwar. The lines are displayed in the order they occur in the file.

$ grep Sarwar students

Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
$

The grep command can be used with the -n option to display the output lines with line numbers. In
the following session, the lines in the students file containing the string John are displayed with line
numbers.

$ grep -n John students

1: John Johnsen john.johnsen@tp.com 503.555.1111
4: John Johnsen j.johnsen@psu.net 301.999.8888
$

You can use the grep command to search a string in multiple files with regular expressions and shell
metacharacters. In the following session, grep searches for the string “include” in all the files in the pres-
ent working directory that end with .c (C source files). Note that the access permissions for server.c
were set so that grep couldn’t read it; the user running the command did not have the read permission
for the server.c file.

$ grep -n include *.c

client.c: 21: #include <stdio.h>
client.c: 22: #include <ctype.h>
client.c: 23: #include <string.h>
Tabl.c: 13: #include <stdio.h>
grep: can’t open server.c

$

You can also use the grep command with the -1 option to display the names of files in which the
pattern occurs. However, it does not display the lines that contain the pattern. In the following session,
the ~/States directory is assumed to contain one file for every US state, and this file is assumed to
contain the names of all the cities in the state (e.g., Portland). The grep command, therefore, displays
the names of files that contain the word “Portland”—that is, the names of states that have a city called
Portland.

$ grep -1 Portland ~/States
Maine
Oregon

$

mailto:john.johnsen@tp.com
mailto:d_kendall@msnbc.org
mailto:j.johnsen@psu.net
mailto:ibraheem@abc.sci.com
mailto:kellyk@umich.gov
mailto:j.davidson@uet.edu
mailto:sandy.khan@isu.edu
mailto:n.sarwar@xyz.net
mailto:ibraheem@abc.sci.com
mailto:n.sarwar@xyz.net
mailto:john.johnsen@tp.com
mailto:j.johnsen@psu.net

Advanced File Processing 167

Certain characters are treated specially by both shell and grep. Therefore, to make sure that shell
passes the desired regular expression to grep, you need to enclose the regular expression in single or dou-
ble quotes. You can pass quote a character by using backslash (\), unless the character is newline (\n).
A single quote (") quotes every character except itself. A double quote (") quotes every character except
", $, |, or . Thus, you may replace " with ' in any command that uses regular expressions enclosed in
" and the command would work, but not vice versa. In the following sessions, we use single and double
quotes interchangeably. Expressions enclosed in single and double quotes are also passed verbatim to
grep and egrep.

The following command displays the lines in the students file that start with the letters A to H. In the
command, A specifies the beginning of a line.

$ grep 'A[A-H]' students

Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
$

The following command displays the lines from the students file that contain eight consecutive lower-
case letters.

$ grep '[a-z]\{8\}' students

Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
$

The following command displays the lines from the students file that start five consecutive lowercase
or upper case letters followed by a space character.

$ grep 'A[A-Za-z]\{5\} ' students

David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly keT1lyk@umich.gov 555.123.9999
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Sandy Khan sandy.khan@isu.edu 515.101.9009
$

The character sequence \< is used to indicate the start of a word. Single (or double) quotes are used to
ensure that the shell does not interpret any letter in the pattern as a shell metacharacter, as in "\<Ke' or in
"\<Ke." Thus, the following command displays the lines that contain a word starting with the string “Ke.”

$ grep "\<Ke" students

David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly keT1Tlyk@umich.gov 555.123.9999
$

By using the regular expression "\<K," the output of the grep command displays lines that contain words
starting with the letter K. Thus, the output of the command also includes the line for Sandy Khan, as
follows.

$ grep "\<K" students

David Kendall d_kendall@msnbc.org 229.111.2013
Kelly Kimberly keT1Tlyk@umich.gov 555.123.9999
Sandy Khan sandy . khan@isu.com 515.101.9009
$

The string \> is the end of the word anchor. Thus, the following command displays the lines that contain
words that end with “net.” If we replace the string net with the string war, what would be the output of
the command?

mailto:d_kendall@msnbc.org
mailto:ibraheem@abc.sci.com
mailto:j.davidson@uet.edu
mailto:d_kendall@msnbc.org
mailto:kellyk@umich.gov
mailto:j.davidson@uet.edu
mailto:sandy.khan@isu.edu
mailto:d_kendall@msnbc.org
mailto:kellyk@umich.gov
mailto:d_kendall@msnbc.org
mailto:kellyk@umich.gov
mailto:sandy.khan@isu.com

168 Linux

$ grep 'net\>' students

John Johnsen j.johnsen@psu.net 301.999.8888
Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
$

In the following command, the regular expression "Kimberly|Nabeel" is used to have egrep display the
lines, and their numbers, that contain either “Kimberly” or “Nabeel.” Note that the regular expression
uses the pipe symbol (|) to logically OR the two strings.

$ egrep -n "Kimberly|Nabeel" students

6:Kelly Kimberly ke11yk@umich.gov 555.123.9999
10:Nabeel Sarwar n.sarwar@xyz.net 434.555.1212
$

The egrep -v Kimberly\|Nabeel students command would also produce the same result because the
pipe character has been escaped using \|.

You can use the -v option to display the lines that do not contain the string specified in the command.
The following command produces all the lines not containing the words “Kimberly” and “Nabeel.”

$ egrep -v Kimberly\|Nabeel students

John Johnsen john.johnsen@tp.com 503.555.1111
Hassaan Sarwar hsarwar@kl2.st.or 503.444.2132
David Kendall d_kendall@msnbc.org 229.111.2013
John Johnsen j.johnsen@psu.net 301.999.8888
Ibraheem Sarwar ibraheem@abc.sci.com 222.123.4567
Maham Sarwar smsarwar@kl2.st.or 713.888.0000
Jamie Davidson j.davidson@uet.edu 515.001.1212
Sandy Khan sandy.khan@isu.edu 515.101.9009
$

The following command displays the lines in the students file that start with the letter J. Note the use
of A to indicate the beginning of a line.

$ egrep "AJ" students

John Johnsen john.johnsen@tp.com 503.555.1111
John Johnsen j.johnsen@psu.net 301.999.8888
Jamie Davidson j.davidson@uet.edu 515.001.1212
$

The following command displays the lines in the students file that start with the letters J or K. Note that
AJ and AK represent lines starting with the letters J and K.

$ egrep "AJ|AK" students

John Johnsen john.johnsen@tp.com503.555.1111
John Johnsen j.johnsen@psu.net 301.999.8888
Kelly Kimberly keT1lyk@umich.gov 555.123.9999
Jamie Davidson j.davidson@uet.edu 515.001.1212
$

The egrep \AJ\|\AK students command could produce the same result. However, the egrep "AJ|AK"
students command uses simpler syntax. As a rule of thumb, if you need to escape multiple special
characters in a regular expression, enclose the regular expression in single or double quotes, as the case
may be.

In the following in-chapter exercises, you will use the commands of the grep family to understand
their various characteristics.

Exercise 7.11
Give a command for displaying the lines in the ~/Personal/Phones file that contain the words
starting with the string David.

mailto:j.johnsen@psu.net
mailto:n.sarwar@xyz.net
mailto:kellyk@umich.gov
mailto:n.sarwar@xyz.net
mailto:john.johnsen@tp.com
mailto:d_kendall@msnbc.org
mailto:j.johnsen@psu.net
mailto:ibraheem@abc.sci.com
mailto:j.davidson@uet.edu
mailto:sandy.khan@isu.edu
mailto:john.johnsen@tp.com
mailto:j.johnsen@psu.net
mailto:j.davidson@uet.edu
mailto:john.johnsen@tp.com
mailto:j.johnsen@psu.net
mailto:kellyk@umich.gov
mailto:j.davidson@uet.edu

Advanced File Processing 169

Exercise 7.12
Give a command for displaying the lines in the ~/Personal/Phones file that contain phone
numbers with area code 212. Phone numbers are stored as XXx-XxXX-xXxxX, where x is a digit
from O to 9.

Exercise 7.13
Display the names of all the files in your home directory that contain the word “main” (without
quotes). What command did you use?

Exercise 7.14
Display the names of all the files in your home directory that contain the word “main” (without
quotes). What command did you use?

7.6 Cutting and Pasting

You can process files that store data in the form of tables in Linux by using the cut and paste com-
mands. A table consists of lines, each line comprises a record, and each record has a fixed number of
fields. Tabs or spaces usually separate fields, although any field separator can be used. The cut command
allows you to cut one or more fields of a table in one or more files and send them to standard output.
In other words, you can use the cut command to slice a table vertically in a file across field boundaries.
The following is a brief description of the command.

Syntax:
cut -blist [-n] [file-Tist]
cut -clist [file-list]
cut -flist [-dchar] [-s] [file-list]

Purpose: Cut out fields of a table in a file

Output: Fields cut by the command

Commonly used options/features:
-b Tist Treat each byte as a column and cut bytes specified in the Tist
-c Tist Treat each character as a column and cut characters specified in the Tist
-d char Use the character char instead of the <Tab> character as field separator
-f Tist Cut fields specified in the Tist
-n Do not split characters (used with -b option)
-s Do not output lines that do not have the delimiter character

Here, Tist is a comma-separated list, with - used to specify a range of bytes, characters, or fields. The
following sessions illustrate some of the commonly used options and features of the cut command. In
this section, we use the file student_addresses, whose contents are displayed by the cat command.

$ cat student_addresses

John Doe jdoe@xyz.com 312.111.9999 312.999.1111
Pam Meyer meyer@uop.pk 666.222.1212 666.555.1212
Jim Davis jamesd@aol.org 713.999.5555 713.413.0000
Jason Kim j_kim@up.org 434.000.8888 434.555.2211
Amy Nash nash@state.gov 888.111.4444 888.827.3333
$

The file has five fields numbered 1-5, from left to right: first name, last name, e-mail address, home
phone number, and work phone number. Although we could have used any character as the field separa-
tor, we chose the <Tab> character to give a “columnar” look to the table and the output of the following
cut and paste commands. You can display a table of first and last names by using the -f option. Note
that -f1,2 specifies the first and the second fields of the student_addresses file.

mailto:jdoe@xyz.com
mailto:jamesd@aol.org
mailto:j_kim@up.org
mailto:nash@state.gov

170 Linux

$ cut -f1,2 student_addresses
John Doe

Pam Meyer
Jim Davis
Jason Kim
Amy Nash
$

We generate a table of names (first and last) and work phone numbers by slicing the first, second, and
fifth fields of the table in the student_addresses file.

$ cut -f1,2,5 student_addresses
John Doe 312.999.1111

Pam Meyer 666.555.1212

Jim Davis 713.413.0000
Jason Kim 434.555.2211
Amy Nash 888.827.3333

$

To generate a table of names and e-mail addresses, we use the following command. Here, -f1-3 specifies
fields 1-3 of the student_addresses file.

$ cut -fl-3 student_addresses

John Doe jdoe@xyz.com
Pam Meyer meyerQ@uop.pk
Jim Davis jamesd@aol.org
Jason Kim j_kim@up.org
Amy Nash nash@state.gov
$

We recommend that you run this command on your machine to determine whether the desired output is
produced. If the desired output is not produced, you have not used the <Tab> character as the field separa-
tor for some or all of the records. In such a case, correct the table and try the command again.

In the preceding sessions, we have used the default field separator, the <Tab> character. Depending
on the format of your file, you can use any character as a field separator. For example, as we discussed
in Chapter 4, the /etc/passwd file uses the colon character (:) as the field separator. You can therefore
use the cut command to extract information, such as the login name, real name, group ID, and home
directory for a user. Because the real name, login name, and home directory are the fifth, first, and sixth
fields, respectively, the following command can be used to generate a table of names of all users, along
with their login IDs and home directories. The first two lines of the output are for comments, as they
start with #.

$ cut -d: -f5,1,6 /etc/passwd

$FreeBSD$

#

root:Charlie &:/root

toor:Bourne-again Superuser:/root
daemon:Owner of many system processes:/root

sshd:Secure Shell Daemon:/var/empty
smmsp:Sendmail Submission User:/var/spool/cTlientmqueue

sarwar:Syed Mansoor Sarwar:/home/sarwar

Note that the -d option is used to specify : as the field separator, and it is also displayed as the field sepa-
rator in the output of the command. For blank delimited files, use one or more space characters (blanks)
after —d\, as shown in the following example. The cat sample command is used to display the blank

mailto:jdoe@xyz.com
mailto:jamesd@aol.org
mailto:j_kim@up.org
mailto:nash@state.gov

Advanced File Processing 171

delimited file, called sample, and the cut -d\ -f1,6 sample command is used to display fields 1 and
6 of this file.

cat sample

John CS Senior john@net2net.com 3.45
Jane CS Junior jane@net2net.com 3.76
Sara CS Senior sara@net3net.vom 3.33
cut -d\ -fl,6 sample

3.45

3.76

3.33

A WNREFEAWNR®»B

The paste command complements the cut command; it concatenates files horizontally (the cat com-
mand concatenates files vertically). Hence, this command can be used to paste tables in columns. The
following is a brief description of the command.

Syntax:
paste [options] file-list

Purpose: Horizontally concatenate files in file-1ist; use standard input if - (i.e., a hyphen) is
used as a file

Output: Files in file-Tist pasted (horizontally concatenated)

Commonly used options/features:
-d Tist Use Tist characters as line separators; <Tab> is the default character

Consider the file student_records, which contains student names (first and last), major, and current
Grade Point Average (GPA).

$ cat student_records

John Doe ECE 3.54
Pam Meyer CS 3.61
Jim Davis CS 2.71
Jason Kim ECE 3.97
Amy Nash ECE 2.38

$

We can combine the two tables, student_records and student_addresses_shortened, horizon-
tally and generate another by using the paste command in the following session. To keep the resultant
table small, we have used a shortened version of the original student_addresses file called student_
addresses_shortened, which contains the first name, last name, and work phone number only. We
generated this table by using the cut -f1,2,5 student_addresses > student_addresses_short-
ened command. Note that the output of the paste command is displayed on the display screen and is not
stored in a file. The resultant table has seven fields.

$ cat student_addresses_shortened
John Doe 312.999.1111
Pam Meyer 666.555.1212
Jim Davis 713.413.0000
Jason Kim 434.555.2211
Amy Nash 888.827.3333

$ paste student_records student_addresses_shortened

John Doe ECE 3.54 John Doe 312.999.1111
Pam Meyer CS 3.61 Pam Meyer 666.555.1212
Jim Davis CS 2.71 Jim Davis 713.413.0000
Jason Kim ECE 3.97 Jason Kim 434.555.2211
Amy Nash ECE 2.38 Amy Nash 888.827.3333
$

mailto:john@net2net.com
mailto:jane@net2net.com

172 Linux

Suppose that you want to use the student_addresses_shortened and student_records tables to
generate and display a table that has student names, majors, and home phone numbers. You may do so in
one of two ways. When you use the first method, you cut the appropriate fields of the two tables, put them
in separate files with the fields in the order you want to display them, paste the two tables in the correct
order, and remove the tables. The following session illustrates this procedure and its result. Note that
the new table is not saved as a file when the following commands are executed. If you want to save the
new table in a file, use the paste tablel table2 > students_table command. The students_table
contains the columns of tablel and table2 (in that order) pasted together.

$ cut -fl-3 student_records > tablel
$ cut -f4 student_addresses > table2
$ paste tablel table2

John Doe ECE 312.111.9999
Pam Meyer CS 666.222.1212
Jim Davis CS 713.999.5555
Jason Kim ECE 434.000.8888
Amy Nash ECE 888.111.4444
$ rm tablel table2

$

The procedure just outlined is expensive in terms of space and time because you have to execute four
commands, generate two temporary files (tablel and table2) on disk, and remove these temporary files
after the desired table has been displayed. You can use a different method to accomplish the same thing
with the following command.

$ paste student_records student_addresses | cut -f1-3,8
John Doe ECE 312.111.9999

Pam Meyer CS 666.222.1212

Jim Davis CS 713.999.5555

Jason Kim ECE 434.000.8888

Amy Nash ECE 888.111.4444

$

Here, you first combine the tables in the two files into one table with nine columns by using the paste
student_records student_addresses command and then displaying the desired table by using the
cut -f1-3,8 command. Clearly, this second method is the preferred way to accomplish the task because
no temporary files are created and only one command is needed. If you want to save the resultant table
in the students_table file, use the command paste student_records student_addresses | cut
-f1-3,8 > students_table.

Exercise 7.15
Create the student_addresses and student_records files used in Section 7.6. Then, run the
cut and paste commands described in this section to see how these commands work.

7.7 Compressing Files

Reduction in the size of a file is known as file compression, which has both space and time advantages.
A compressed file takes less disk space to store, less time to transmit from one computer to another in a
network or Internet environment, and less time to copy. It takes time to compress a file, but if a file is to be
copied or transmitted several times, the time spent compressing the file could be just a fraction of the total
time saved. In addition, if the compressed file is to be stored on a secondary storage device (e.g., a disk)
for a long time, the savings in disk space can be considerable. Another consequence of compression is that
a compressed file reads as garbage. However, this is not a problem because the process is fully reversible
and a compressed file can be converted back to its original form. If you can fully recover the original file
from its compressed version, the compression is known as lossless compression. Lossless compression

Advanced File Processing 173

techniques are normally used for text files. There are lossy compression techniques too. These techniques
are used to reduce the size of a file for storing, handling, and transmitting its content between computers
on a network. Lossy compression techniques are normally used for image files such as Joint Photographic
Experts Group (JPEG). In this chapter, we discuss tools for compressing and decompressing text and
executable files. We also discuss commands for displaying and searching compressed files.

The Linux operating system has many commands for compressing and decompressing files and for
performing various operations on compressed files. These commands include the Gnu tools gzexe (com-
press executable files), gzip (for compressing files), gunzip (for uncompressing files that were com-
pressed with gzip), zcat (for displaying compressed files; gzcat does the same), gzcmp (for comparing
compressed files), gzforce (for forcing the .gz extension onto compressed files so that gzip will not
compress them twice), gzmore (for displaying compressed files one page at a time), and gzgrep (the
grep command for compressed files; it searches possibly compressed files for a regular expression). This
section will primarily discuss file compression and decompression.

7.7.1 The gzip Command

The gzip command is the Gnu tool for compressing files. The compressed file is saved as a file that has
the same name as the original, with an extension .gz appended to it. As is the case with the compress
command, the compressed files retain the access/modification times, ownership, and access privileges of
the original files. The original file is removed from the file structure. With no file argument or with - as
an argument, the gzip command takes input from standard input (keyboard by default), which allows
you to use the command in a pipeline (see Chapter 9). We normally use the command with one or more
files as its arguments. Here is a brief description of the command.

Syntax:
gzip [option] [file-Tist]

Purpose: Compress each file in file-1ist and store it in filename.gz, where filename is
the name of the original file. If no file is specified in the command line or if - is specified,
take input from standard input.

Output: The compressed .gz file or standard output if input is from standard input
Commonly used options/features:

-N Control compression speed (and compression ratio) according to the value of N, with
1 being fastest and 9 being slowest; slow compression compresses more

-c Send output to standard out; input files remain unchanged
-d Uncompress a compressed (.gz) file

-f Force compression of a file when its .gz version exists, or it has multiple links, or
input file is stdin

-1 For the compressed files given as arguments, display sizes of the uncompressed and
compressed versions, compression ratio, and uncompressed name

-r Recursively compress files in the directory specified as arguments
-t Test integrity of the compressed files specified as arguments
-v Display compression percentage and the names of compressed files

7.7.2 The gunzip Command

The gunzip command can be used to perform the reverse operation and bring compressed files back to
their original forms. The gzip -d command can also perform this task. With the gunzip command, the
-N, -c, -f, -1, and -r options work just like they do with the gzip command.

The following session shows the use of the two commands with and without arguments. We use the man
bash > bash.man and man tcsh > tcsh.man commands to save the manual page for the Bourne Again

174 Linux

and TC shells in the bash.man and tcsh.man files, respectively. The gzip bash.man tcsh.man com-
mand is used to compress the bash.man and tcsh.man files, and the gzip -1 bash.man.gz tcsh.man.
gz command is used to display some information about the compressed and uncompressed versions of the
bash.man and tcsh.man files. The output of the command shows, among other things, the percentage of
compression achieved: 71.3% for bash.man and 67.6% for tcsh.man. The gzip bash.man.gz command
is used to show that gzip does not compress an already compressed file that has a .gz extension. If a
compressed file does not have the .gz extension, gzip will try to compress it again. The gunzip *.man.gz
command is used to decompress the bash.man.gz and tcsh.man.gz files. The gzip -d *.man.gz com-
mand can be used to perform the same task. The 1s -1 commands have been used to show that the modi-
fication time, ownership, and access privileges of the original file are retained for the compressed file.

$ man bash > bash.man
$ man tcsh > tcsh.man
$ 1s -1 *.man
-rw-r--r-- 1 sarwar faculty 367470 Aug 30 21:39 bash.man
-rw-r--r-- 1 sarwar faculty 239996 Aug 30 21:39 tcsh.man
$ gzip bash.man
$ 1s -1 bash.man.gz
-rw-r--r-- 1 sarwar faculty 105342 Aug 30 21:39 bash.man.gz
$ gzip bash.man.gz
gzip: bash.man.gz already has .gz suffix - unchanged
$ gunzip bash.man.gz
$ gzip bash.man tcsh.man
$ gzip -1 bash.man.gz tcsh.man.gz
compressed uncompressed ratio uncompressed_name

105342 367470 71.3% bash.man
77715 239996 67.6% tcsh.man
183057 607466 69.8% (totals)

$ gunzip *.man.gz

$ 1s -1 *.man

-rw-r--r-- 1 sarwar faculty 367470 Aug 30 21:39 bash.man
-rw-r--r-- 1 sarwar faculty 239996 Aug 30 21:39 tcsh.man
$

7.7.3 The gzexe Command

The gzexe command can be used to compress executable files. An executable file compressed with the
gzexe command remains executable and can be executed by using its name. This is not the case if an
executable file is compressed with the gzip command. Therefore, an executable file is compressed with
the gzexe command in order to save disk space and network bandwidth if the file is to be transmit-
ted from one computer to another—for example, via e-mail over the Internet. The following is a brief
description of this command.

Syntax:
gzexe [options] [file-list]

Purpose: Compress the executable files given in file-1ist; backup files are created in filename~
and should be removed after the compressed files have been successfully created

Commonly used options/features:
-d Decompress compressed files

The following session illustrates the use of the gzexe command. Note that when you compress the
executable file sh.temp with the gzexe command, it creates a backup of the original file in the sh.temp~
file. After the sh.temp file has been compressed, it can be executed as an ordinary executable file. The
gzexe -d sh.temp command is used to decompress the compressed file sh.temp. The backup of the
compressed version is saved in the sh.temp~ file.

Advanced File Processing 175

$ cp /bin/sh sh.temp

$ file sh.temp

sh.temp: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD), dynamically
Tinked (uses shared 1ibs), for FreeBSD 10.0 (1000510), stripped

$ gzexe sh.temp

sh.temp: 49.2%
4 1s -1 sh*

-rwx------ 1 sarwar faculty 71133 Aug 30 21:59 sh.temp
-rwx------ 1 sarwar faculty 139264 Aug 30 21:59 sh.temp~
$ gzexe -d sh.temp

49.2%

$ 1s -1 sh*

-rwx------ 1 sarwar faculty 139264 Aug 30 22:00 sh.temp
-rwx------ 1 sarwar faculty 139264 Aug 30 21:59 sh.temp~
$

7.7.4 The zcat and zmore Commands

Converting the compressed file back to the original and then displaying it is a time-consuming process
because file creation requires disk input/output. If you only want to view the contents of the original file,
you can use the Linux command zcat (the cat command for compressed files), which displays the con-
tents of files compressed with gzip. The command decompresses a file before displaying it. The original
file remains unchanged. The zmore command can be used to display the compressed files one screenful at
atime. When no file or - is given as a parameter, these commands read input from stdin. Both commands
allow you to specify one or more files as parameters. Here is a brief description of the zcat command.

Syntax:
zcat [options] [file-list]

Purpose: Concatenate compressed files in their original form and send them to standard output; if
no file is specified, take input from standard input

Commonly used options/features:
-h Display help information
-r Operate recursively on subdirectories
-t Test integrity of compressed files

In the following session, the gzip command is used to compress the bash.man file and store it in the
bash.man.gz file. When the more command is used to display a compressed file, garbage is displayed on
the screen. The zmore command is used to display the contents of the original file. We did not use the
zcat command because bash.man is a large, multipage file.

$ gzip bash.man

$ more bash.man.gz

<8B>AHAHA<FE>T<97><(C3>
<DD><A0><CC>1<AE>j<82><B0>G<FE><EC>0<DC><99>U<DD><8F><AC><"

<E3><8E>_f<FA><E4><D9>0<8F><F9>0<E4><FF>fy<BE><FF><F9><BA><FA><FA>I

<F5><E4>w<D5><BE>X0<DE>><AF><FB><AB>x<BF><FA><FA><BB><F8>i1<B7>3%<9B><93>"'<97>u

<BB><8E><CF>"<DB>,<97><EF><BD><F7><AC>z<F6><A7><EA>0<F0><C5>0<AA>0<BE><AD><BE>

<85>?<9F>VO<E1>_<FB>zuAWu_<F5>W<D5>Uf<D1>m<86><B6>Yy<F7>/<E3><8B>y<B7>Z<D5><EB>

<C5>Y?T1<DB><F5>e<FC><CF>p<D1>.<9B><97><EF><BD><F7>Y<F5><8F><A3><FE><BE>

<FA>=

$ zmore bash.man.gz
BASH(1) BASH(1)

NAME

176 Linux

bash - GNU Bourne-Again SHell

SYNOPSIS
bash yoptions! ycommand_string f file!

COPYRIGHT
Bash is Copyright (C) 1989-2013 by the Free Software Foundation, Inc.

DESCRIPTION
Bash 1is an sh-compatible command Tanguage interpreter that executes
commands read from the standard input or from a file. Bash also incor-

In the following session, the zcat command decompresses the t2.gz file and sends its output to standard
output (the display screen in this case). The file t2.gz remains intact.

$ gzip t2

$ zcat t2.gz

This file will be used to test various Linux and Linux commands and tools.
Linux and Linux rule the networking world!

$

As given in this command description, multiple files can be displayed by the zcat command. For exam-
ple, zcat t1.Z t2.Z t3.Z may be used to display the uncompressed forms of the three files t1.Z, t2.Z,
and t3.Z. The zcat command may also be used to display the files compressed with the UNIX-only
compress command—that is, files with the .Z extension.

7.7.5 The gzip, bzip2, and xz Commands

All three are famous tools for file compression and decompression. Their time and space performance
tradeoff depends on the compression level used. Of the three, gzip has the lowest compression and
decompression time, and xz provides the best compression ratio (i.e., smallest size compressed file) and
second best decompression time. Thus, you should use gzip if you want to compress and decompress
files as fast as possible, and xz if you want to save disk space and network bandwidth while download-
ing the compressed content. Bzip2 is a good middle of the road tool in terms of compression ratio and
compression time. However, it takes the longest time to decompress. Thus, it is a good option if the
compressed content will not be decompressed frequently.

In the final analysis, the choice really depends on whether you would like to save disk space or CPU
time, and how frequently the compressed content will be decompressed. For content that will be com-
pressed once and frequently downloaded and decompressed, you should use xz, as is done by kernel.org
for compressing the Linux kernel. It saves disk space, download time, network bandwidth, and decom-
pression time.

In the following in-chapter exercises, you will use the gzip, gunzip, gzmore, and zcat commands to
appreciate their syntax and semantics.

Exercise 7.16
Create the t2 file used in this section. Use the gzip command to compress the file. What com-
mand line did you use?

Exercise 7.17
Create the bash.man file used in this section. Use the gzip command to compress the file. What
command line did you use?

Exercise 7.18
Display the compressed version of the t2 file on the display screen. What command line did
you use?

http://kernel.org

Advanced File Processing 177

Exercise 7.19
Give the command line for uncompressing the compressed files generated in Exercises 7.16 and

7.17. Where does the uncompressed (original) file go? Also, repeat the shell sessions shown in
Sections 7.7.1-7.7.4.

7.8 Encoding and Decoding

E-mail messages are transported in clear (plain) text, and some e-mail systems are fussy about certain
characters contained in the body of the message, such as the tilde character (~) in the first column for
the mail and mailx utilities. This is a serious problem for mail systems, such as mail, that do not have
convenient support for attachments when you need to attach items such as pictures, videos, or executable
programs (binaries). You can use the base64 utility to convert the contents of such a file into a format
that contains printable ASCII characters only and then e-mail it as the body of your e-mail message. This
conversion process is called encoding. The receiver can save the encoded contents in the e-mail body into
a file and use the base64 utility to convert the contents of this file to the original format. The process
of converting the encoded content into original form is called decoding. In this section, we discuss the
base64 utility, starting with its brief description.

Syntax:
base64 [option] ... [source-file]

Purpose: Encode/decode data using the Base64 method and send it to standard output
Commonly used options/features:
-d Decode data

The base64 command sends the encoded (ASCII) version of the source-file to standard output. The
command takes input from standard input if no source-file is specified, or - is specified, in the com-
mand. The base64 -d command recreates the original file from the encoded file and sends the decoded
(original) content to standard output. You can redirect the output of the base64 command to a file by
using the > symbol. The diagram shown in Figure 7.1 illustrates the process of encoding and decoding.
In the following session, we show the use of base64 command when data to be encoded and decoded
are supplied from standard input. The encoded version of Hello, world! is SGVsbG8sIHdvcmxkIQo=.

$ base64

Hello, world!
<Ctrl1+D>
SGVsbG8sIHdvemxkIQo=
$ base64 -d
SGVsbG8sIHdvcmxkIQo=
<Ctr14+D>

Hello, world!

$

In the following session, we show encoding of the binary file for the cp command in the /bin directory
with the base64 command and its conversion to original form with base64 -d command. The shasum

base 64 encoded base 64 Original binary

Binary file))
openssl| ASClII file openssl file

Mail

FIGURE 7.1 The process of encoding and decoding.

178 Linux

/bin/cp my_cp command is used to ascertain that /bin/cp and my_cp are identical files because the
shasum command produces the same hash value for the data in both files.

§ cat /binjcp | o ..
ELF>?-EE?FE8 EEEEEE?8BESEEE?272 ?7=7=b?=b?(?=?=b?=TTETEDDP?tdP?P?AP?A4 4

8,E??,EP!I?E?tEbTb?

$ base64 /bin/cp > cp_encoded

$ head cp_encoded
fOVMRgIBAQAAAAAAAAAAAATAPgABAAAAWDIAAAAAAABAAAAAAAAAALBGAGAAAAAAAAAAAEAAOAA]
AEAAHQACAAYAAAAFAAAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAA+AEAAAAAAADAAQAAAAAAAAQA
AAAAAAAAAWAAAAQAAAA4AGAAAAAAADgCQAAAAAAAOATAAAAAAAACAAAAAAAAABWAAAAAAAAAAQAA
AAAAAAABAAAABQAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAATwYAgAAAAAANDICAAAAAAAAACAA
AAAAAAEAAAAGAAAA4DOCAAAAAADgPWIAAAAAAOA9YgAAAAAATACAAAAAAAAOFgAAAAAAAAAATAAA
AAAAAgGAAAAYAAAD4PQIAAAAAAPGIYgAAAAAA+DLT AAAAAAAAAGAAAAAAAAACAAAAAAAACAAAAAAA
AAAEAAAABAAAAFQCAAAAAAAAVAIAAAAAAABUAKAAAAAAAEQAAAAAAAAARAAAAAAAAAAEAAAAAAAA
AFD1dGQEAAAAUPQBAAAAAABQIEEAAAAAAFDOQQAAAAAANAKAAAAAAAAOCQAAAAAAAAQAAAAAAAAA
UeVOZAYAAAEAAAAAAAAABS
5XRkBAAAAOA9AGAAAAAAA4DL 1 AAAAAADgPWIAAAAAACACAAAAAAAATATAAAAAAAABAAAAAAAAACYS
$ base64 -d cp_encoded > my_cp

$ 1s -1 my_cp /bin/cp cp_encoded

-rwxr-xr-x 1 root root 151024 Feb 18 2016 /bin/cp

-rw-r--r-- 1 sarwar faculty 204018 Feb 25 07:56 cp_encoded

-rw-r--r-- 1 sarwar faculty 151024 Feb 25 07:58 my_cp

$ shasum /bin/cp my_cp

f£3094b907d15cee91b8eech0559011d2d1cl75a /bin/cp
f£3094b907d15cee91b8eecb0559011d2d1cl75a my_cp

$

As the output of the last Is -1 command in the abovementioned session shows, the size of encoded data
generated by base64 (204,018 bytes) is about 35% larger than the data in the original file (151,024 bytes).
Thus, for efficient use of the network bandwidth, you should compress binary files before encoding them
and uncompress them after decoding them. Doing so is particularly important for large files containing
multimedia data, such as videos.

You can also use the openssl utility to encode and decode data. In the following session, we encode
and decode the /bin/cp file, and use the shasum command to confirm that the original and decoded files
have identical content.

$ openssl enc -base64 < /bin/cp > cp.encoded

$ openssl enc -base64 -d < cp.encoded > my_cp

$ 1s -1 /bin/cp my_cp cp.encoded

-rwxr-xr-x 1 root root 151024 Feb 18 2016 /bin/cp
-rw-r--r-- 1 sarwar faculty 204515 Feb 28 23:48 cp.encoded
-rw-r--r-- 1 sarwar faculty 151024 Feb 28 23:49 my_cp

$ shasum /bin/cp my_cp
f£3094b907d15cee91b8eech0559011d2d1cl75a /bin/cp
££3094b907d15cee91b8eech0559011d2d1cl75a my_cp

$

Exercise 7.20
Copy the executable code for the grep command from the /usr/bin directory and encode it
using base64. Run the 1s -1 command and report the sizes of original and encoded files. Then,
decode the encoded file to convert it back to the original file.

Advanced File Processing 179

7.9 File Encryption and Decryption

We briefly described encryption and decryption of files in Chapter 5. Here, we describe these processes
in more detail with the help of the Linux command crypt.

Recall that encryption is a process by which a file is converted to a form completely different from its
original version and that the transformed file is called an encrypted file; the reverse process of transforming
the encrypted file to its original form is known as decryption. Figures 7.2 and 7.3 illustrate these processes.

You encrypt files to prevent others from reading them. You can also encrypt your e-mail messages to
prevent hackers from understanding your message even if they are able to tap a network as your message
travels through it. On a Linux system, you can use the mcrypt command to encrypt and decrypt your
files. Ask your system administrator to install the command for you if it isn’t already installed. The
following is a brief description of the command.

Syntax:
mcrypt [options] [filename ...]

Purpose: Encrypt (decrypt) standard input and send it to standard output
Commonly used options/features:
-a ALGO Algorithm used to perform encryption (and decryption)

-d Decrypt
-g Use openPGP file format for encrypted files so that OpenPGP compliant tools may
access them
-z Use gzip to compress files before encryption; decompresses files if the option is
specified at decryption
-p Use bzip2 to compress files before encryption; decompresses files if the option is
specified at decryption
-u Delete (unlink) the original file if the whole process of encryption/decryption
completes
Encryption/ Decryption/
decryption Encrypted decryption
Original file software file software Original file

FIGURE 7.2 The process of encryption and decryption.

Encrypted Encrypted

Original file mcrypt
& e file file

mcrypt Original file

(a) Key (b) Key

FIGURE 7.3 (a) Encryption and (b) decryption of a file by using the mcrypt command.

180 Linux

By default, the mcrypt command takes input from standard input and sends its output to standard output.
The command is used mostly with actual files and not the keyboard input. The commonly used syntax
for the mcrypt command is

mcrypt file

The encrypted contents of file are placed in file.nc. The new file keeps the modification date of the
original and has protection mode 0600. The original file (the file to be encrypted) remains intact and
must be explicitly removed from the system after the encrypted version has been generated. You can
delete the original file successfully by specifying the -u option.

To decrypt an encrypted file, the process is reversed according to the syntax:

mcrypt -d file.nc

Remember that the key must be the same for both commands. Multiple files can be specified as source
files and the command encrypts these files one-by-one, prompting for key for the encryption of each file.
The semantics of these commands are shown in Figure 7.3.

The following session illustrates the use of mcrypt for encrypting and decrypting a file called memol.
The mcrypt memol command encrypts memol (in the present working directory) by using the key (i.e.,
passphrase) that you are prompted to enter and puts the encrypted version in the file memol.nc, also in the
present working directory. The cat commands before and after the crypt command show the contents
of the original and encrypted files. Note that the contents of the encrypted file, memol.nc, are not read-
able, which is the objective. Also note that your shell prompt might get messy after the cat memol.nc
command has completed its execution. If this happens, you should logout and login again.

$ cat memol

Dear Jim:

This is to inform you that the second quarter earnings do not
Took good. This information will be made public on Monday next
week when The Wall Street Journal reports the company earnings.
Of course, the company stock will take a hit, but we need to keep
the morale of our employees high. I am calling a meeting of the
vice presidents tomorrow morning at 8:00 to talk about this

issue in the main conference room. See you then. Make sure this
information does not get out before time.

Nadeem

$ mcrypt memol

Enter the passphrase (maximum of 512 characters)

Please use a combination of upper and Tower case letters and numbers.
Enter passphrase: XXXXXXXXX

Enter passphrase: XXXXXXXXX

File memol was encrypted.
$ cat memol.nc

}77&nI7177V3F677X777 7e7|e'7Q
~??76U7:772a?"??

F)?7{?n-7B7<?77+: 77b7m7Py7<777WJ7w)7G7&~777/727Vth77I7\D7 >077?]
{272Y$?7L2{?2227972?,a??)i?_?/0?a? ?E?TI?2g?Cy?#@??K?hRh??B?2?27{?? ! TW??_D*??1???aV??
?272127?7p???7\??yx?B??, 7 (Z$

?27X?22TT$G?s?M?C67n? ' 2@ | 2F?2Hqun??2d?P<t?rE?jK?227%72Q227t222y?7??
?7? U??t-h??ZZ2)?2272gH??22229" ;Y?b??7:29"22Q? ?Mtx>

~??2?'={1?T?I\??1{#%?0?Qu?P%?sarwar@intl8 ~/1inux2e/ch7 $
$

The command for decrypting the file memol.nc and putting the original version in the file memol is as fol-
lows. The cat command confirms that the original file has been restored. The output of the 1s -1 memo*
command shows that the encrypted file is about 20% larger than the original file.

Advanced File Processing 181

$ mcrypt -d memol.nc

mcrypt: memol already exists; do you wish to overwrite (y or n)?y<Enter>
Enter passphrase: XXXXXXXXX

File memol.nc was decrypted.

$ more memol

Dear Jim:

This is to inform you that the second quarter earnings do not
Took good. This information will be made public on Monday next
week when The Wall Street Journal reports the company earnings.
Of course, the company stock will take a hit, but we need to keep
the morale of our employees high. I am calling a meeting of the
vice presidents tomorrow morning at 8:00 to talk about this

issue in the main conference room. See you then. Make sure this
information does not get out before time.

Nadeem

$ 1s -1 memo*

-rw------- 1 sarwar faculty 502 Feb 27 01:42 memol
-rw------- 1 sarwar faculty 605 Feb 27 01:42 memol.nc
$

You can use the -k option to supply the key at the command line, as in the following session.

$ mcrypt memol -k $#123#$

Warning: It is insecure to specify keywords in the command line
File secret_memo was encrypted.

$ mcrypt -d memol.nc -k $#123#$

Warning: It is insecure to specify keywords in the command line
File secret_memo.nc was decrypted.

$

You can use mcrypt with -z (or —p) option to compress files before encrypting. The encrypted file is
placed in the memol.gz.nc file. After this file is decrypted, the compressed file is placed in the memol.gz
file that has to be decompressed with gunzip, as in the following session.

$ mcrypt -k $#123#% -z memol
Warning: It is insecure to specify keywords in the command line
File memol was encrypted.

$ 1s -1

total 8

-rw------- 1 sarwar faculty 502 Feb 27 09:03 memol
-rw------- 1 sarwar faculty 445 Feb 27 09:03 memol.gz.nc

$ mcrypt -k $#123#$% -d memol.gz.nc
Warning: It is insecure to specify keywords in the command Tine
File memol.gz.nc was decrypted.

$ 1s -1

total 12

—rW------- 1 sarwar faculty 502 Feb 27 09:03 memol
-rw------- 1 sarwar faculty 333 Feb 27 09:03 memol.gz
-rw------- 1 sarwar faculty 445 Feb 27 09:03 memol.gz.nc

$ gunzip -v memol.gz

gzip: memol already exists; do you wish to overwrite (y or n)? y<Enter>
memol.gz: 38.4% -- replaced with memol

$

Again, the mcrypt command does not remove the file that it encrypts (or decrypts), and it is your
responsibility to remove the original file after encrypting it. Note also that even a superuser cannot
decrypt an encrypted file without having the correct key. You can use the md5sum command before and
after encryption to verify that the source and decrypted files contain identical data.

The mcrypt command allows you to use any of the several encryption algorithms that it supports. You
can run the mcrypt --1ist-hash command to display the names of these algorithms. You can use any
of these algorithms to encrypt (and decrypt) files using the —h option, as in the following session.

182 Linux

$ mcrypt --list-hash
Supported Hash Algorithms:
crc32

md5

whirlpool

md2

$ mcrypt -h whirlpool memol -k $#123#$

Warning: It is insecure to specify keywords in the command line
File memol was encrypted.

$ 1s -1 memol.nc

-rW------- 1 sarwar faculty 658 Feb 27 01:42 memol.nc

$ mcrypt -d -h whirlpool memol.nc -k $#123#$

Warning: It is insecure to specify keywords in the command line
mcrypt: memol already exists; do you wish to overwrite (y or n)?y<Enter>
File memol.nc was decrypted.

$

If your work requires documentation and communication at higher levels of security, you should use the
openssl tool. It supports the crypto library, which allows you to use several cryptographic functions,
including the following:

* Encryption and decryption with ciphers

* Creation and management of public and private keys
* Public key cryptographic operations

* Handling of encrypted e-mail

The coverage of openss1 and crypto is beyond the scope of this book. You can learn more about them
by using the man openss1 and man crypto commands.

Additionally, we show how to do various forms of disk encryption using the Linux gpg encryption tool
in Chapter W26, Sections 9.7.3-9.7.5, at the book website. gpg is the OpenPGP-only version of the Gnu
Privacy Guard (GnuPG). See the man page on your Linux system for gpg.

The following in-chapter exercises will give you practice using the mcrypt command and help you to
understand its semantics with a hands-on session.

Exercise 7.21
Try the sessions for the mcrypt command given in this section on your system.

Summary

Several advanced operations have to be performed on text and nontext files from time to time. These
operations include compressing and uncompressing file contents, sorting files, searching for files
and commands in the file system structure, searching files for certain strings or patterns, performing
database-like operations of cutting fields from a table or pasting tables together, transforming non-ASCII
files to ASCII, and encrypting and decrypting files. Several tools are available in Linux for performing
these tasks.

Some of these tools have the ability to specify a set of strings by using a single character string
comprising of constants and operators called regular expressions. Commonly known as search patterns,
regular expressions are used to search file contents for desired strings. The utilities that allow the use of
regular expressions are awk, ed, egrep, grep, sed, and vim. In this chapter, we described regular expres-
sions and their use in vim, egrep, and grep.

The sort command can be used to sort text files. Each line comprises a record with several fields, and
the number of fields in all the lines in the file is the same. Text files can also be processed like tables by

Advanced File Processing 183

using the cut and paste commands that allow cutting of columns in a table and pasting of tables, respec-
tively. The sort, cut, and paste commands can be combined via a pipeline (see Chapter 9) to generate
tables based on different sets of criteria.

The find and whereis commands can be used to search the Linux file system structure to determine
the locations (absolute pathnames) of files and commands. The find command, in particular, is very
powerful and lets you search for files based on several criteria, such as file size. The which command
can be used to determine which version a command executes, in case there are several versions available
on a system.

Linux also provides a family of powerful utilities for searching for strings, expressions, and patterns
in text files. These utilities are grep, egrep, and fgrep. Of the three, fgrep is the fastest but most
limited; egrep is the most flexible but slowest of the three; and grep is the middle-of-the-road utility—
reasonably fast and fairly flexible.

The gzip command can be used to compress and decompress files. The gunzip, and gzip -d com-
mands, can be used to decompress files compressed with the gzip command. The gzexe command
can be used to compress executable files and the gzexe -d command can be used to decompress
them. Files compressed with gzexe can be executed without explicitly uncompressing them. The
zcat and zmore commands can be used to display compressed files without explicitly uncompressing
them. The bzip2 and xz can also be used for file compression and decompression. Of the three (gzip,
bzip2, and xz), xz is the best in terms of savings in disk space, download time, network bandwidth,
and decompression time.

The base64 utility is useful in situations when users want to e-mail non-ASCII files such as multime-
dia files, but the mailing system does not allow attachments. The base64 utility can be used to transform
a non-ASCII file into an ASCII file, and base64 can transform the ASCII file back into the original
non-ASCII version. Thus, the sender uses the base64 command before e-mailing a non-ASCII file as
part of the e-mail body, and the receiver of a uuencoded file uses base64 to convert it back to its original
form. The openss1 tool can be used to encode and decode data.

In the Linux system, the mcrypt command can be used to encrypt and decrypt files that the user
wants to keep secret. The techniques for converting an encrypted file back to its original are well known.
However, the average user is not familiar with these techniques, so the use of mcrypt results in a fairly
good scheme for protecting files. It also allows you to use any of the several encryption algorithms that
it supports.

If your work requires higher-level secure documentation and communication, you should use the
openssl and crypto tools. Additionally, Chapter W26 addresses the gpg encryption tool to accomplish
various forms of disk and file encryption.

|
Questions and Problems

1. List five file-processing operations that you consider advanced.

2. What is sorting? Give an example to illustrate your answer. Name four applications of sorting.
Name the Linux utility that can be used to perform sorting.

3. Go to http://cnn.com/weather and record the high and low temperatures for the following major
cities in Asia: Kuala Lumpur, Karachi, Tokyo, Lahore, Manila, New Delhi, and Jakarta. In a
file called asiapac.temps, construct an ASCII table comprising one line per city in the order:
city name, high temperature, and low temperature. The following is a sample line:

Tokyo 78 72

Give commands to perform the following operations.
a. Sort the table by city name.
b. Sort the table by high temperature.

c. Sort the table by using the city name as the primary key and the low temperature as the
secondary key.

http://cnn.com/weather

184 Linux

4. For the students file in Section 7.6, give a command to sort the lines in the file by using the
last name only as the sort key.

5. What commands are available for file searching? State the purpose of each.

6. Give the command to add write permission for group on all C program files in your home direc-
tory. Give the command that searches your home directory and displays pathnames of all the
files created after the file /etc/passwd.

7. On your Linux system, how long does it take to find all the files that are larger than 1000 bytes
in size? What command(s) did you use?

8. Give a command to list all the regular files in your home directory with size greater than 2M
bytes.

9. What does the following command do?
find ~ -size +2M -exec mv '{}' ~/bigfiles \;

10. Give commands to list all the files in your home directory that were modified within the last
24 hours and within the last one month. What commands did you use?

11. Give a command that searches your home directory and removes all PostScript and .gif files.
The command must take your permission (prompt you) before removing a file.

12. Give a command to interactively remove all the files in your home directory that have not been
modified for the last three months. How many such files existed in your system? What com-
mand did you use?

13. Repeat problem 12 for files that have been modified during the last three months.
14. What are regular expressions? What do the following regular expressions specify?
a. albc*
b. (a|b)*
c. aj(b®c+
15. Give the vim command for replacing all occurrences of the string DOS with the string Linux in
the whole document that is currently being edited. What are the commands for replacing all

occurrences of the strings DOS and Windows with the string Linux from the lines that start or
end with these strings in the document being edited?

16. Give the vim command for deleting all four-letter words starting with B, F, b, and f in the file
being edited.

17. Give the vim command for renaming all C source files in a document to C++ source code files.
Note: C source files end with .c and C++ source files end with .cpp.

18. What strings do the following regular expressions match?
AA

AA

A$

$A

AA

$$

19. What strings do the following regular expressions match?
AA*

AA*

AAA*

AAA*B

AA\{2,4\1}B

AA\{3,\1B

\{2,4\}

A{2,4}

- 0 &0 o

50 om0 0 o

Advanced File Processing 185

20. Give a regular expression for identifying blank lines.

21. What do regular expressions A.$, A.a*$, and A.a+$ represent?

22. What do regular expressions [0123456789], [0-9], and A[0-9]$ represent?

23. What does the regular expression [0-9_a-zA-Z] represent? What about [A-Z_a-z 0-9_] and
A[A-Z_a-z 0-9_]1%?

24. What is the difference between regular expressions [a-z][a-z] and \([a-z]\)\1.

25. What does the command grep -n 'A' student_addresses do? Assume that student_
addresses is the same file we use in Section 7.6.

26. Give the command that displays lines in student_addresses that start with the letter K or have
the letter J in them. The output of the command should also have display line numbers.

27. What do the following commands do?

a. grep [A-H] students
b. grep [A,H] students

28. What would be the alternative of the grep ' \<Ke' students command that uses only back-
slash (\) characters only (i.e., no quotes)?

29. What would be the alternative of the grep ' A[A-H]' students command that uses backs-
lashes (\) instead of single (or double) quotes?

30. What are the equivalent grep commands for the following commands: egrep, fgrep, zgrep,
zegrep, and zfgrep?

31. What reaches the grep command in the following cases:

a. grep '<K' students
b. grep \<K students
c. grep <K students

32. Give a command that displays names of all the files in your ~/courses/ece446 directory that
contain the word “Linux.”

33. Give a command that generates a table of user names for all users on your system along with
their personal information. Extract this information from the /etc/passwd file.

34. Use the tables student_addresses and student_records to generate a table in which each
row contains last name, work phone number, and GPA.

35. Imagine that you have a picture file campus.bmp that you would like to e-mail to a friend. Give
the sequence of commands that are needed to convert the file to ASCII form, reduce its size,
and encrypt it before e-mailing it.

36. What is the purpose of file encryption? Name the Linux command that you can use to encrypt
and decrypt files. Give the command for encrypting a file called ~/personal/memo7 and store
it in a ~/personal/memo_007 file. Be sure that, when the encrypted file is decrypted, it is put
back in the ~/personal/memo? file. Give the command to decrypt the encrypted file.

37. What is file compression? What do the terms compressed files and decompressed files mean?
What commands are available for performing compression and decompression in Linux?
Which are the preferred commands? Why?

38. Take three large files in your directory structure—a text file, a PostScript file, and a JPEG
file—and compress them by using the gzip command. Which file was compressed the most?
What was the percentage reduction in file size? Decompress the files by using the gunzip com-
mand. Show your work.

39. Which of gzip, bzip2, and xz is the best tool for file compression and decompression? Explain
your answer with examples.

40. What is the difference between the following:
a. encryption and encoding?
b. encoding and compression?

186 Linux

41. Store the man pages for bash, sh, and csh in a file called shell_man_pages. Use the gzip
command to compress with different levels of compression. Show your work and identify the
command that does the maximum compression, along with the compression ratio.

42. Use the base64 and openss] commands to encode /bin/bash and place encoded content in the
my_bash file in your current directory. Then, use base64 and openssT to decode the encoded
file. Finally, use the shasum command to confirm that /bin/bash and my_bash are identical.

43. How many encryption algorithms does the mcrypt command support? What command did you
use to obtain your answer? Create the memol file discussed in Section 7.9 and encrypt it using
the md5 and crc32 algorithms. Which of the two exhibits higher space efficiency? Show your
work.

Advanced Questions and Problems

44. Consider the persons file contains the following data with each line containing a person’s last
name and his/her age. Give the command to sort persons based on age, numerically.

$ cat persons
Linus,47

Judy, 20
Maham,25
Adelson, 85
Amy,38
Jacobson,25

$

45. What is the difference between the outputs of the following commands:
a. find ~
b. find ~ -L

46. What is the difference between the outputs of the following commands:
find ~ -name 'apple’

find ~ -iname 'apple'

find ~ -name 'apple' -type f

find ~ -name ‘'apple' -type d

find ~ | grep 'apple'

Q -hman

47. Give the command to display the names of files in your home directory that have been modified
during the past 24 hours.

48. The executable files for the commands used normally by the superuser are found in /sbin and /
usr/sbin directories. Give the command that displays pathnames for all the files in these direc-
tories that are executable but not readable.

49. Give the command that display the total number of files under your system’s file system hierar-
chy owned by root, excluding files in the directories that you cannot open. How many such files
exist on your system?

50. Give the command that displays the number of directories that you cannot search in your file
system hierarchy. How many such directories do you have on your system? Show the command
and its output on your Linux system.

51. Give the command to locate all C program files in or below your home directory, but limit
subdirectory traversal to three levels beneath the home directory.

52. What do the regular expressions A$, A#*, and AA* match?

53. What would be the regular expression to search for a string that
a. starts with letter M,
b. is the first word on a line,

Advanced File Processing

54.

55.

56.

57.

58.

59.

60.

61.

c. the second letter is a vowel,
d. is exactly three letters long, and
e. the third letter is ¢, d, m, n, or g.

9

Give the command that matches the lines containing strings “a hard question,” “an easy
question,” and “a question” in the file called questions.

Give the regular expression that would match a three-letter palindrome such as “mom,” “Mom,”
“MOM,” or “Dad.”

Give the regular expression that would match a five-letter palindrome such as “radar,” “Radar,”
“RADAR,” or “Maham.”

Give the command that would display lines in the questions file that contain the following
string:

a. ahard question

b. an easy question

c. aquestion

Give the command that displays lines in the students file in Section 7.6 that start with four to
six uppercase or lowercase letters followed by a space.

Use the gpg command on your Linux system to encrypt one or more important files in an
ordinary user’s account and then copy the encrypted file(s) to a USB thumbdrive, for transport
to another Linux system. Then, on the other Linux system, use the gpg command to decrypt
the important file(s). Refer to Chapter W26, Example 13 in Section 9.7.4, at the book website to
assist in doing this problem.

Use the gpg and tar commands on your Linux system to encrypt an important directory in an
ordinary user account, and then copy that directory to a USB thumbdrive for secure transport
to another Linux system. Then, on the other Linux system, insert the thumbdrive, and use the
appropriate commands to “untar” and decrypt the directory. Refer to Chapter W26, Example
12 in Section 9.7.3, at the book website to assist in doing this problem.

Use the cryptsetup utility on your Linux system to encrypt an entire USB thumbdrive. Then,
insert the USB thumbdrive into another Linux system, and unlock it with the proper pass-
phrase. Refer to Chapter W26, Example 14 in Section 9.7.5, at the book website, to assist in
doing this problem.

187

Projects

Project 1

How can you encrypt an entire user account upon installation of your Linux system? Detail as carefully as
you can, the installation procedures you would have to go through to achieve this. Test these procedures
on a Linux system of your choice. What would be the major advantage of doing this, for the ordinary

user, and for the security and integrity of the system itself?
Looking for more? Visit our sites for additional readings, recommended resources, and exercises.
CRC Press e-Resource: https://www.crcpress.com/9781138710085
Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

3

File Sharing

OBJECTIVES

» To explain different ways of sharing files
» To discuss the Linux schemes and commands for implementing file sharing

* To describe Linux hard and soft (symbolic) links in detail and discuss their advantages and
disadvantages

* To cover the following commands and primitives:

* ~, df, Tn, In -f, In -s, Is -i, TIs -1

8.1 Introduction

When a group of people works together on a project, they need to share information. If the information
to be shared is on a computer system, group members have to share files and directories. For example,
authors collaborating on a book or software engineers working on a software project need to share files
and directories related to their project. In this chapter, we discuss several ways of implementing file
sharing in a computer system. The discussion of file sharing in this chapter focuses on how a file can be
accessed from various directories by various users in a Linux system. Under the topic of version control
in Chapter 14 and in Chapter W25, Section 5.7 at the book website, we address how members of a team
can work on one or more files simultaneously without losing their work.

Several methods can be used to allow a group of users to share files and directories. In this chapter,
we describe duplicate shared files, common logins for members of a team, setting appropriate access
permissions on shared files, common groups for members in a team, and sharing via links. All these
methods can be used to allow a team of users to share files and directories in a Linux system. Although
we describe each of these techniques, the chapter is dedicated primarily to a discussion of sharing via
links in a Linux-based computer system.

8.2 Duplicate Shared Files

The simplest approach to files is to make copies of these files and give them to all team members. The
members can put these copies anywhere in their own accounts (directory structures) and manipulate
them in any way they desire. This scheme works well if members of the team are to work on the shared
file(s) sequentially, but it has obvious problems if team members are to work on these files simultane-
ously. In the former case, team members work on one copy of the shared files one by one and complete
the task at hand. In the latter case, because the members modify their own copies, the copies become
inconsistent and no single copy of the shared files reflects the work done by all the team members. This
outcome defeats the purpose of sharing.

8.3 Common Logins for Team Members

In this scheme, the system administrator creates a new user group comprising the members of a team and
creates for them a new account to which they all have access; that is, they all know the login name and

189

190 Linux

password for the account. The team owns all the files and directories created by any team member under
this account and everyone has access to them.

It is a simple scheme that works quite well, particularly in situations in which the number of teams is
small and teams are stable; that is, they stay together for long periods of time. Such is the case for teams
of authors writing a book or programming teams working on large software projects that take several
months to finish. However, this scheme also has a couple of drawbacks. First, the team’s members have
to use a separate account for their current project and cannot use their regular accounts to access shared
files and directories. Second, the system administrator has to create a new account for every new team
formed in the organization. Having to do so could create a considerable amount of extra work for the
administrator if the duration of projects is short and new teams are formed for every new project. The
scheme could be a real headache for the system administrator in a college-like environment where stu-
dent teams are formed to work on class projects, resulting in a large number of teams every semester or
quarter.

8.4 Setting Appropriate Access Permissions on Shared Files

In this scheme, the team members decide to put all shared files under one member’s account, and the
access permissions on these files are set so that all team members can access them. This scheme works
well if only this team’s members form the user group (recall the discussion of owner, group, and others
in Chapter 5) because, if the group has other users in it, they will also have access to the shared files.
For example, suppose that two university professors, Art Pohm and Jim Davis, belong to the user group
faculty. They decide to put their shared files in Davis’s account but set the group access permissions to
read, write, and execute for all shared files. All the professors in the user group faculty then will have
the same access permissions to these files, which will pose security problems. In particular, if the infor-
mation to be shared is a small portion of the total amount of information residing in a member’s account
(say, two ordinary files out of tens of files and directories that the member owns), the risk of opening the
door to all users in a group is too high, and a better technique must be used.

8.5 Common Groups for Team Members

This scheme works just like the preceding one, except that the system administrator creates a new user
group consisting of the members of the team only. All team members get individual logins and set access
permissions for their files so that they are accessible to other members of the team. This file-sharing
scheme is effective and is used often, particularly in conjunction with a version control mechanism (see
Chapter 14 and Chapter W25, Section 5.7 at the book website).

In Section 5.6.3, we show how you can set the sticky bit for a directory to allow a group of users to
share files and directories in it, but to ensure that an unprivileged user cannot remove or rename files of
other users in that directory.

8.6 File Sharing via Links

As described in Chapter 4, the attributes of a Linux file are stored in its inode on disk. When a file is
opened, its inode is copied into the main memory, allowing speedy access to its contents. In this section,
we describe how the use of an inode results in a mechanism that allows you to access a file by using
multiple pathnames. System administrators commonly use this scheme to allow access to some files and
directories through various other directories. Thus, for example, the home directories of all the users on
the system may be accessed through /home or /usr/home. As discussed in Chapter 4, the commands,
tools, and utilities for normal users are located in the /bin, /usr/bin, and /usr/local/bin directories,
and commands, utilities, daemons (see Chapter 10), and tools for systems administration are located in
the /sbin, /usr/sbin, and /usr/local/sbin directories.

File Sharing 191

A link is a way to establish a connection between the file to be shared and the directory entries of the
users who want to have access to this file. Thus, when we say that a file has N links, we mean that the file
has N directory entries somewhere in the file system hierarchy. The links therefore aid file sharing by pro-
viding different access paths to files to be shared. However, the appropriate setting of access permissions
on these files controls the level of sharing. You can create links to files to which you do not have any access,
but that gets you nowhere. Hence, file sharing via links is accomplished first by creating access paths to
shared files by establishing links to them and then by setting appropriate access permissions on these files.

Linux supports two types of links: hard links and soft/symbolic links. The Tn command may be used
to create both types of links. The remainder of this chapter discusses methods of creating both types of
links and their internal implementation in the Linux system.

8.6.1 Hard Links

A hard link is a pointer to the inode of a file. When a file is created in Linux, the system allocates a
unique inode to the file and creates an entry in the directory in which the file is created. As we discussed
in Chapter 4, the directory entry comprises an ordered pair (inode number, filename). The inode
number for a file is used to access its attributes, including its contents on the disk for reading or writing
(changing) them (see Chapter 4). Suppose that you create a file Chapter3 in your present working direc-
tory and the system allocates inode number 53472 to this file; the directory entry for this file would be
(52473, Chapter3).

If we assume that your present working directory previously contained files Chapterl and Chapter2,
its logical structure is shown in Figure 8.1(a). The new file has been highlighted with a gray shade.
Figure 8.1(b) shows the contents of the disk block that contains the present working directory. The con-
nection between this directory entry and the file’s contents is shown in Figure 8.1(c). The inode number in
Chapter3’s directory entry is used to index the inode table in the main memory to access the file’s inode.
The inode contains the attributes of Chapter3, including its location on disk.

Here is a brief description of the Tn command:

Syntax:
Tn [options] existing-file new-file
Tn [options] existing-file-list directory

Purpose: First syntax: Create a link to existing-file and name it new-file
Second syntax: Create links to the ordinary files in existing-file-1list in directory; links
have the same names as the original file

Commonly used options/features:
-f Force creation of link; don’t prompt if new-file already exists
-n Don’t create the link if new-file already exists

-s Create a symbolic link to existing-file and name it new-file

The Tn command without any option creates a hard link to a file, provided the user has execute permission
for all the directories in the path leading to the file. The following session illustrates how the Tn com-
mand can be used to create a hard link in the same directory that contains existing-file. The only
purpose of this example is to illustrate how the Tn command is used; it isn’t representative of how you
would establish and use hard links in practice.

$ 1s -1l

total 52

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar 4 09:58 Chapterl
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar 4 09:58 Chapter2
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar 4 09:59 Chapter3
$ 1n Chapter3 Chapter3.hard

$ 1s -1l

total 92

192

Structure of current directory

Contents of current directory

Inode # File
hapter1 hapter2 | Chapter
Chapte Chapte Chapter3 —

16517772 .
16518415 Chaptert
16518416 Chapter2
16518417 Chapter3

& ®)

Inode Table
Directory entry for Inode o
Chapter3
[[16518417] Chapters |
e Inode 16518417
Link count
Size
Date updated
Owner
File’s location on E
disk ; -
\ ——— _ —

Contents of inode
16518417

Contents of
Chapter3

e
(©

FIGURE 8.1 (a) Logical structure of the current directory; (b) contents of the current directory; (c) relationship between
directory entry, inode, and file contents.

16518415 -rw-r--r-- 1
16518416 -rw-r--r-- 1
16518417 -rw-r--r-- 2
16518417 -rw-r--r-- 2
$

4 09:58 Chapterl
4 09:58 Chapter2
4 09:59 Chapter3
4 09:59 Chapter3.hard

sarwar faculty 1958 Mar
sarwar faculty 5188 Mar
sarwar faculty 39573 Mar
sarwar faculty 39573 Mar

The 1s -i1 command shows some of the attributes of all the files in the present working directory,
including their inode numbers. The command 1n Chapter3 Chapter3.hard creates a hard link to
the file Chapter3; the name of the hard link is Chapter3.hard. The system creates a new directory
entry (16518417, Chapter3.hard) for Chapter3 in the present working directory. Thus, you can refer
to Chapter3 by accessing Chapter3.hard as well, because both names point to the same file on disk.

File Sharing 193

Structure of current directory Contents of current directory
Inode # File
Chapter1 | Chapter2 | Chapter3 |Chapters.hard
P P PR P 16517779
16517772 .
16518415 Chapter1
> 16518416 Chapter2
16518417 Chapter3
(a) 16518417 Chapter3.hard
(b)
Inode Table
Inode o
Directory entry for
; Chapter3.hard
| 16518417 | Chapter3 | : [16518417 [chapters.hard]
- “Inode 16518417
Link count
Size
Date updated
Owner
File’s location on g
disk B ”' T
Contents of inode 16518417,
the inode for files
Chapter3 and
Chapter3.hard
Contents of Chapter3/

Chapter3.hard
(©

FIGURE 8.2 Establishing a hard link: (a) logical structure of the current directory; (b) contents of the current directory;
(c) hard-link implementation by establishing a pointer to the inode of the file.

The second 1s -i1 command is used to confirm that Chapter3.hard and Chapter3 are two names for
the same file, as both have the same inode number, 16518417, and hence the same attributes. Therefore,
when a hard link is created to Chapter3, a new pointer to its inode is established in the directory where
the link (Chapter3.hard, in this case) resides, as illustrated in Figure 8.2.

Note that the output of the 1s -1 command also shows that both Chapter3 and Chapter3.hard have
link counts of 2 each. Thus, when a hard link is created to a file, the link count for the file increments
by 1. That is, the same file exists in the file structure with two names (i.e., two pathnames). When you
remove a file that has multiple hard links, the Linux system decrements by 1 the link count in the file’s
inode. If the resultant link count is 0, the system removes the directory entry for the file, releases the
file’s inode and all other kernel resources allocated to the file so they can be reused, and deallocates
disk blocks allocated to the file so that they can be used to store other files and/or directories created
in the future. If the new link count is not 0, only the directory entry for the removed file is deleted; the

194 Linux

file contents and other directory entries for the file (hard links) remain intact. The following session
illustrates this point.

$ rm Chapter3

$ 1s -1l

total 52

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar 4 09:58 Chapterl
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar 4 09:58 Chapter2
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar 4 09:59 Chapter3.hard
$

This session clearly shows that removing Chapter3 results in the removal of the directory entry for this
file but that the file still exists on disk and is accessible via Chapter3.hard. This link has the inode num-
ber and file attributes that Chapter3 had, except that the link count, as expected, has been decremented
from 2 to 1

The following 1n command can be used to create a hard link called memo6.hard in the present work-
ing directory to a file ~/memos/memo6. The 1s -i1 command is used to view attributes of the file before
the hard link to it is created.

$ 1s -i1 ~/memos/memo6
16518418 -rw-r--r-- 1 sarwar faculty 7878 Mar 4 10:05 /home/sarwar/memos/memo6
$ Tn ~/memos/memo6 memo6.hard

$

After executing the Tn command, you can run the 1s -i1 command to confirm that both files (~/memos/
memo6 and memo6.hard) have the same inode number and attributes, as shown in the following session.

$ 1s -i1 ~/memos/memo6

16518418 -rw-r--r-- 2 sarwar faculty 7878 Mar 4 10:05 /home/sarwar/memos/memo6
$ 1s -i1 memo6.hard

16518418 -rw-r--r-- 2 sarwar faculty 7878 Mar 4 10:05 memo6.hard

$

The output shows two important things: first, the link count is up by 1; second, both files are represented
by the same inode, 16518418. Figure 8.3 shows the hard link pictorially.

In the following session, the Tn command creates hard links to all nondirectory files in the directory
called ~/Tinux2e/examples/dirl. The hard links reside in the directory ~/Tinux2e/examples/dir2 and
have the names of the original files in the dirl directory. The second argument, dir2, must be an existing
directory, and you must have execute and write permissions to it. Note that the link counts for all the files
in dirl and dir2 are 2. The -f option is used to force creation of a hard link in case any of the files f1,
f2, or 3 already exist in the ~/Tinux2e/examples/dir2 directory.

$ cd Tinux2e/examples
$ more dirl/fl

Hello, World!

This is a test file.

$ 1s -1 dirl

-rW------- 1 sarwar faculty 35 Jun 22 22:21 f1
-rw------- 1 sarwar faculty 68 May 16 21:03 f2
-rw------- 1 sarwar faculty 94 Jul 11 11:39 f3
$ In -f ~/1inux2e/examples/dirl/* ~/1inux2e/examples/dir2
$ 1s -1 dirl

-rw------- 2 sarwar faculty 35 Jun 22 22:21 fl1
-rW------- 2 sarwar faculty 68 May 16 21:03 f2
-rw------- 2 sarwar faculty 94 Jul 11 11:39 f3
$ 1s -1 dir2

-rW------- 2 sarwar faculty 35 Jun 22 22:21 f1
-rw------- 2 sarwar faculty 68 May 16 21:03 f2

-rw------- 2 sarwar faculty 94 Jul 11 11:39 f3

File Sharing 195

Contents of current directory Contents of ~/memos
Inode # File Inode # File

16517779 § 16517779
16517772 P 16517772 5
16518415 Chapter1 16518411 memot1
16518416 Chapter2
16518417 Chapter3 16518418| memo6
16518418 memo6.hard

Contents of
~/memo/memo6

FIGURE 8.3 Pictorial representation of the hard link between ~/memos/memo6 and memo6.hard in the current
directory.

$ more dir2/f1
Hello, World!

This is a test file.
$

You can run the following command to create a hard link in your home directory to the file /home/
sarwar/Tinux2e/examples/demol. The hard link appears as a file demol in your home directory. If
demol already exists in your home directory, you can overwrite it with the -f option. If demol exists
in the home directory and you don’t use the -f option, an error message is displayed on the screen
informing you that the demol file exists. You must have the execute permission for the directories in the
pathname /home/sarwar/Tinux2e/examples/demol, and demol must be a file.

$ In -f /home/sarwar/1inux2e/examples/demol ~
$

The user sarwar can run the following command to create a hard link demol in a directory dirl in bob’s
home directory that points to the file /home/sarwar/Tinux2e/examples/demol. The name of the link
in bob’s directory is demol, the same as the original file. Figure 8.4 shows the establishment of the link.

$ In -f /home/sarwar/1inux2e/examples/demol /home/bob/dirl
$

The user sarwar must have execute permission for bob’s home directory and execute and write permis-
sions for dirl (the directory in which the link is created). The user bob must have proper access permis-
sions for demol in sarwar’s directory structure to access this file. Thus, if sarwar and bob are in the
same user group and bob needs to edit demol, sarwar must set the group access privileges for the file
to read and write. Then, bob is able to edit demol by using, for example, the vim demol command from
his home directory.

The following command accomplishes the same task. Remember that sarwar runs this command.

$ In -f ~/1inux2e/examples/demol /home/bob/dirl
$

196 Linux

/home/sarwar/linux2e/examples /home/bob/dirl

e demol demol e

FIGURE 8.4 A hard link between /home/sarwar/1inux2e/examples and /home/bob/dirl.

You can run the following command to create hard links to all nondirectory files in your ~/Tinux2e/
examples directory. The hard links reside in the Tinux2e/examples directory in user john’s home
directory and have the names of the original files. The user john must first create the Tinux2e directory
in his home directory and the examples directory in his Tinux2e directory. You must have the execute
permission for john’s Tinux2e directory and execute and write permissions for his examples directory
for the command to run successfully and accomplish the task.

$ In -f ~/1inux2e/examples/* /home/john/1inux2e/examples
$

8.6.2 Drawbacks of Hard Links

Hard links are the traditional way of gluing the file system structure in Linux, which usually comprises
several file systems. Hard links, however, have some problems and limitations that make them less
attractive to the average user.

The first problem is that hard links cannot be established between files that are on different file systems.
This inability is not an issue if you are establishing links between files in your own directory structure,
with your home directory as the top-level directory, or with files in another user’s directory structure that
is on the same file system as yours.

However, if you want to create a hard link between a file (command) in the /bin directory and a file
in your file structure, it most likely will not work, because on almost all systems, the /bin directory and
your directory structure reside on different file systems. This problem also shows up when a file with
multiple links is moved to another file system. The following session illustrates this point. The 1s -i1
command shows that Chapter3 and Chapter3.hard are hard links to the same file (note the same inode
number). The mv command is used to move the file Chapter3 to the /dev/shm directory, which is a dif-
ferent file system than the one that currently contains Chapter3 (and Chapter3.hard). Note that, after
the mv command has been executed, the link counts for Chapter3.hard and /dev/shm/Chapter3 are 1
each and that the files have different inodes; /dev/shm/Chapter3 has inode 4 and Chapter3.hard has
the same old inode 16518417. Note that although the Tn command fails, the mv command is successful.
The Tn command cannot link /dev/shm/Chapter3 to Chapter3 because the two files are in different file
systems.

$ 1s -1l

total 92

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar 4
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar 4
16518417 -rw-r--r-- 2 sarwar faculty 39573 Mar 4
16518417 -rw-r--r-- 2 sarwar faculty 39573 Mar 4
$ mv Chapter3 /dev/shm

$ 1s -1l

total 52

4:07 Chapterl
9:58 Chapter2
4:10 Chapter3
4:10 Chapter3.hard

File Sharing 197

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar 4 14:07 Chapterl
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar 4 09:58 Chapter2
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar 4 14:10 Chapter3.hard
$ 1s -i1 /dev/shm/Chapter3

4 -rw-r--r-- 1 sarwar faculty 39573 Mar 4 14:10 /dev/shm/Chapter3

$ In /dev/shm/Chapter3 Chapter3

Tn: failed to create hard 1link 'Chapter3' => '/dev/shm/Chapter3':
Invalid cross-device 1link

$

The second problem is that only a superuser can create a hard link to a directory. The Tn command gives
an error message when a nonsuperuser tries to create a hard link to a directory myweb, as shown in the
following session:

$ In ~/myweb myweb.hard
Tn: /home/sarwar/myweb: hard 1link not allowed for directory
$

The third problem is that some editors remove the existing version of the file you are editing and put new
versions in new files. When that happens, any hard links to the removed file do not have access to the
new file, thereby defeating the purpose of linking (file sharing). Fortunately, none of the commonly used
editors do so. Thus, the text editors discussed in Chapter W25 (vi,vim, and emacs) at the book website
are safe to use.

In the following in-chapter exercises, you will use the 1n and 1s -i1 commands to create and identify
hard links, and to verify a serious limitation of hard links.

Exercise 8.1
Create a file Ch8Ex1 in your home directory that contains this problem. Establish a hard link
to this file, also in your home directory, and call the link Ch8Ex1.hard. Verify that the link has
been established by using the 1s -i1 command. What field in the output of this command did
you use for verification?

Exercise 8.2
Execute the Tn /dev/shm ~/tmp command on your Linux system. What is the purpose of the
command? What happens when you execute the command? Does the result make sense? Why
or why not?

8.6.3 Soft/Symbolic Links

Soft/symbolic links take care of all the problems inherent in hard links and are therefore used more often
than hard links. They are different from hard links, both conceptually and in terms of how they are
implemented. They do have a cost associated with them, which we discuss in Section 8.6.4, but they
are extremely flexible and can be used to link files across machines and networks.

You can create soft links by using the Tn command with the -s option. The following session illus-
trates the creation of a soft link.

$ 1s -1l

total 92

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar
$ 1Tn -s Chapter3 Chapter3.soft

$ 1s -1l

total 92

16518415 -rw-r--r-- 1 sarwar faculty 1958 Mar
16518416 -rw-r--r-- 1 sarwar faculty 5188 Mar
16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar

14:07 Chapterl
09:58 Chapter2
: Chapter3
14:10 Chapter3.hard

A DA DD
=
i
'_l
~N

14:07 Chapterl
09:58 Chapter2
14:17 Chapters3

A DD

198 Linux

16518417 -rw-r--r-- 1 sarwar faculty 39573 Mar 4 14:10 Chapter3.hard
16518423 Trwxrwxrwx 1 sarwar faculty 8 Mar 4 14:17 Chapter3.soft -> Chapter3
$

The Tn -s Chapter3 Chapter3.soft command is used to create a symbolic link to the file Chapter3 in
the present working directory, and the symbolic link is given the name Chapter3.soft. The output of the
Ts -i1 command shows a number of important items that reveal how symbolic links are implemented
and how they are identified in the output. First, the original file (Chapter3) and the link file (Chapter3.
soft) have different inode numbers: 16518417 for Chapter3 and 16518423 for Chapter3.soft, which
means that they are different files. Second, the original file (Chapters3) is of file type - (ordinary) and
the link file (Chapter3.soft) is of type 1 (link). Third, the link count has not changed for Chapter3 (and
Chapter3.hard) and is 1 for Chapter3.soft, which further indicates that the two files are different.
Fourth, the file sizes are different: 39,573 bytes for the original file (Chapter3) and 8 bytes file the link
file (Chapter3.soft). Last, the name of the link file is followed by -> Chapter3, the pathname for the
file that Chapter3.soft is a symbolic link to; the string after the -> sign is specified as the first argu-
ment in the Tn -s command. The pathname of the existing file is the content of the link file, which also
explains the size of the link file (eight characters in the word Chapter3). Figure 8.5 shows the logical file
structure of the current directory, directory entries in the current directory, and a diagram that shows
that Chapter3 and Chapter3.soft are truly separate files and that the link file contains the pathname of
the file to which it is a link.

In summary, when you create a symbolic link, a new file of type 1 is created. This file contains the
pathname of the existing file as specified in the first argument of the Tn -s command. When you make
a reference to the link file, the Linux system sees that the type of the file is 1 and reads the link file to
find the pathname for the actual file to which you are referring. For example, for the cat Chapter3.
soft command, the system reads the contents of Chapter3.soft to get the name of the file to dis-
play (Chapter3 in this case) and sends its contents to standard output. Hence, you see the contents of
Chapter3 displayed.

You can create soft links across file systems. In the following session, we create a symbolic link to the
/bin directory. The name of the symbolic link is symlinktobin, and it is placed in the current directory.
Note that the inode numbers of /bin and symlinktobin are different, as expected.

$ Tn -s /dev symlinktodev
$ 1s -ild symlinktodev /dev/
2 drwxr-xr-x 19 root root 4480 Feb 25 11:58 /dev/
16518424 Trwxrwxrwx 1 sarwar faculty 4 Mar 4 14:19 symlinktodev -> /dev
$

In the following session, we show an example to create a soft link to a file such that the file and its
symbolic link reside in different file systems.

$ 1n -s /dev/shm/Chapter3 temp.soft
$ 1s -i1 /dev/shm/Chapter3 temp.soft
4 -rw-r--r-- 1 sarwar faculty 39573 Mar 6 07:26 /dev/shm/Chapter3
16518443 Trwxrwxrwx 1 sarwar faculty 17 Mar 6 08:09 temp.soft -> /dev/shm/Chapter3
$

Here, the file Chapter3 is copied from one file system (that contains this file) to another that contains
the /dev/shm directory. Then, the Tn -s /dev/shm/Chapter3 temp.soft command is used to create a
symbolic link to the copied file. The command works without any problems, establishing a symbolic link
to /dev/shm/Chapter3 in temp.soft. Note that the inode numbers of the two files are different, indicat-
ing that the two files are distinct; temp.soft contains the pathname of the file for which it is a symbolic
link, /tmp/Chapter3. Recall that in Section 8.6.1 a similar call to establish a hard link between /tmp/
Chapter3 and temp.hard failed.

File Sharing 199

Structure of current directory Contents of current directory
Inode # File

Chapter1 | Chapter2 | Chapters | Chapters.soft
P P PIEES 16517779

16517772 w

16518415 Chapter1

16518416 Chapter2

16518417 Chapter3
(©)

16518423 | Chapter3.soft

(b)
Inode Table
Inode o
Directory entry for
. Chapter3.hard
[16518417 | Chapter3 | d [16518423 | chapters.soft |
» Inode 16518417
<
............. Inode 16518423
Link count § . Link count
Size i Size
Date updated i Date updated
Owner H Owner
File’s location on ::': File’s location on
disk Y — disk
Chaptgt Contents of inode 16518423,
the inode for file
Chapter3.soft
Contents of Chapter3
©)

FIGURE 8.5 Establishing a soft link: (a) logical structure of the current directory; (b) contents of the current directory;
(c) soft link implementation by establishing a pointer in the link file to (the pathname of) the existing file.

The following session shows how symbolic links can be created to all the files in a directory, including
the directory files. The Tn -sf ~/Tinux2e/examples/dirl/* ~/Tinux2e/examples/dir2 command
creates soft links to all the files in the directory called ~/1inux2e/examples/dirl and puts them in the
directory ~/Tinux2e/examples/dir2. You must have execute and write permissions for the dir2 direc-
tory, and execute permission to all the directories in the pathname. The -f option is used to force creation
of the soft link in case any of the files f1, f2, or f3 already exist in ~/1inux2e/examples/dir2. On some
systems, the -f and -s options may not work together, in which case you will use only the -s option.

$ cd ~/1inux2e/examples
$ more dirl/fl

200 Linux

Hello, World!
This is a test file.

$ 1s -1 dirl

-rw------- 1 sarwar faculty 35 Jun 22 22:21 f1

-rw------- 1 sarwar faculty 168 Jun 22 22:33 f2

-rw------- 1 sarwar faculty 783 Jun 22 22:35 f3

$ 1n -sf ~/1inux2e/examples/dirl/* ~/1inux2e/examples/dir2
$ 1s -1 dir2

Trwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f1 -> /home/sarwar/linux2e/examples/dirl/fl
Trwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f2 -> /home/sarwar/linux2e/examples/dirl/f2
Trwxr-xr-x 1 sarwar faculty 38 Jun 22 22:54 f3 -> /home/sarwar/linux2e/examples/dirl/f3
$ more dir2/f1

Hello, World!

This is a test file.

$

You can run the following command to create a symbolic link in your home directory to the file
/home/sarwar/Tinux2e/examples/demol. The soft link appears as a file called demol in your
home directory. If demol already exists in your home directory, you can overwrite it with the -f
option. If demol exists in the home directory and you don’t use the -f option, an error message is
displayed on the screen informing you that the demol file exists. You must have the execute per-
mission for the directories in the pathname /home/sarwar/Tinux2e/examples/demol, and demol
must be a file.

$ In -sf /home/sarwar/1inux2e/examples/demol ~
$

The user sarwar can run the following command to create a soft link called demol in a directory dirl in
bob’s home directory that points to the /home/sarwar/1inux2e/examples/demol file. Figure 8.6 shows
how the soft link is established.

$ In -sf /home/sarwar/1inux2e/examples/demol /home/bob/dirl
$

The user sarwar must have execute permission for bob’s home directory, and execute and write
permission for dirl (the directory in which the soft link is created). The user bob must have proper
access permissions for demol in sarwar’s directory structure to access this file. Thus, if sarwar and bob
are in the same user group and bob has to edit memol, then sarwar must set the group access privileges
on the file to read and write. The user bob can then edit demol by using, for example, the vi demol
command from his home directory.

The following command accomplishes the same task. Remember that sarwar runs this command.

Structure of /home/sarwar/linux2e/examples Structure of /home/bob/dirl

o demo1l demo1l o

demol -> /home/sarwar/
linux2e/examples/demol

(a) (b)

FIGURE 8.6 A soft link between (a) /home/sarwar/1inux2e/examples/demol and (b) /home/bob/dirl.

File Sharing 201

$ In -sf ~/1inux2e/examples/demol /home/bob/dirl
$

You can run the following Tn command to create soft links to all the files, including directory files, in
your ~/Tinux2e/examples directory. These soft links reside in the directory called Tinux2e/examples
in john’s home directory and have the names of the original files. The user john must create the Tinux2e
directory in his home directory and the examples directory in his Tinux2e directory. You must have
execute permission for john’s Tinux2e directory and execute and write permission for his examples
directory in order for the command to run successfully.

$ In -sf ~/1inux2e/examples/* /home/john/1inux2e/examples
$

8.6.4 Pros and Cons of Symbolic Links

As previously stated, symbolic links do not have the problems and limitations of hard links. Thus,
symbolic links can be established to directories and between files across file systems. Also, files that
symbolic links point to can be edited by any kind of editor without any ill effects, provided that the file’s
pathname doesn’t get changed—that is, the original file is not moved.

Symbolic links do have a problem of their own that is not associated with hard links: if the file that
the symbolic link points to is moved from one directory to another, it can no longer be accessed via the
link. The reason is that the link file contains the pathname for the original location of the file in the file
structure. When the file location is changed, the link becomes dangling; that is, it points to a file that
does not exist at the specified (original) location. You also have a dangling pointer if the original file is
deleted. The following session illustrates this point.

$ mv /dev/shm/Chapter3 .

$ cat temp.soft

cat: temp.soft: No such file or directory
$

Suppose that temp.soft is a symbolic link to the file /dev/shm/Chapter3. The mv command is used to
move /dev/shm/Chapter3 to the present working directory. The cat command fails because the soft
link still points to the file with pathname /dev/shm/Chapter3. This result is quite logical but is still a
drawback; in hard links, the cat command would not fail so long as the moved file stays within the same
file system.

Some other drawbacks of the symbolic links are that Linux has to support an additional file type (the
link type) and a new file has to be created for every link. Creation of the link file results in space overhead
for an extra inode, disk space needed to store the pathname of the file to which it is a link, and other
kernel data structures. Symbolic links also result in slower file operations because, for every reference
to the file, the link file has to be opened and read in order for you to reach the actual file. The actual file
is then processed for reading or writing, requiring an extra disk access to be performed if a file is refer-
enced via a symbolic link to the file.

In the following in-chapter exercises, you will use the Tn -s and 1s -i1 commands to create and
identify soft links, and to verify that you can create soft links across file systems.

Exercise 8.3
Establish a soft link to the file Ch8Ex1 that you created in Exercise 8.1. Call the soft link
Ch8Ex1.soft. Verify that the link has been established. What commands did you use to estab-
lish the link and verify its creation?

Exercise 8.4
Execute the Tn -s /dev/shm ~/tmp command on your Linux system. What is the purpose of
the command? What happens when you execute the command? Does the result make sense?
Why or why not?

202 Linux

Summary

Any of the several techniques can be used to allow a team of users to share Linux files and directories.
Some of the most commonly used methods of file sharing are duplicating the files to be shared and
distributing them among team members, establishing a common account for team members, setting
appropriate permissions on the files to be shared, setting up a Linux user group for the team members,
and establishing links to the shared files in the directories of all team members. File sharing via hard and
soft links is the main topic of this chapter. However, the issue of simultaneous access of shared files by
team members is not discussed here (see Chapter 14 and Chapter W25, Section 5.7 at the book website).

Hard links allow you to refer to an existing file by another name. Although hard links are the primary
mechanism used by Linux to glue the file system structure, they have several shortcomings. First, an
existing file and its links must be in the same file system. Second, only a superuser can create hard links
to directories. Third, moving a file to another file system breaks all links to it.

Soft links can be used to overcome the problems associated with hard links. When a soft link to a file
is created, a new file is created that contains the pathname of the file to which it is a link. The type of this
file is link. Soft links are expensive in terms of the time needed to access the file and the space overhead
of the link file. The time overhead during file access occurs because the link file has to be opened in order
for the pathname of the actual file to be read (or written to, whatever the case may be), and only then
does the actual process of file opening and reading (or writing) take place. The link file that contains the
pathname of the original file causes the space overhead.

Hard and soft links are established with the Tn command. For creating soft links, the -s option is used
with the command. The 1s -i1 command is used to identify (or confirm establishment of) links. The
first field of the output of this command identifies the inode numbers for the files in a directory, and all
hard links to a file have the same inode number as the original file. The first letter of the second field
represents file type (1 for soft link) and the remaining letters specify file permissions. The third field
identifies the number of hard links to a file. Every simple file has one hard link at the time it is created.
The last field identifies file names; a soft link’s name is followed by -> filename, where filename is the
name of the original file. The -f option can be used to force the creation of a link—that is, to overwrite
an existing file with the newly created link.

|
Questions and Problems

1. What are the five methods that can be used to allow a team of users to share files in Linux?

2. What is a link in Linux? Name the types of link that Linux supports. How do they differ from
each other?

3. What are the problems with hard links?

4. Remove the file Ch8Ex1 that you created in Exercise 8.1. Display the contents of Ch8Ex1.hard
and Ch8Ex1.soft. What happens? What command did you use for displaying the files? Does
the result make sense? Why or why not?

5. Search the /usr/bin directory on your system and identify three links in it. Write down the
names of these links. Are these hard or soft links? How do you know?

6. While in your home directory, can you establish a hard and soft link to /etc/passwd on your
system? Why? What commands did you use? Are you satisfied with the results of the command
execution?

7. Every Linux directory has at least two hard links. Why?

8. Can you find the number of hard and soft links to a file? If so, what command(s) do you need to
use?

9. Suppose that a file called shared in your present directory has five hard links to it. Give a
sequence of commands to display the absolute pathnames of all these links. (Hint: Use the find
command.)

File Sharing 203

10. Create a directory, dirl, in your home directory and three files, f1, f2, and f3, in it. Ask a
friend to create a directory, dir2, in his or her home directory, with dirl.hard and dirl.soft
as its subdirectories. Create hard and soft links to all the files in your dirl in your friend’s
~/dir2/dirl.hard and ~/dir2/dirl.soft directories. Give the sequence of commands that you
executed to do so.

11. For Problem 10, what are the inode numbers of the hard links and soft links? What command
did you use to determine them? What are the contents of the link (both hard and soft) files?
How did you get your answers?

12. What are the pros and cons of symbolic links?

13. Clearly describe how file sharing can be accomplished by using links (hard and soft) in
Linux. In particular, do you need to do anything other than establish links to the files to be
shared?

14. Suppose you have a collection of data files, say filel.data, .., file9.data, that need to be
shared (read only) among 100 programs in your group. Discuss the overhead involved for each
of the following:

a. Setting permissions

b. Creating hard links

c. Creating soft links

d. Making individual private copies of each file

15. Browse through the root (/) directory and its subdirectories. Identify ten soft links and write
them in a table, along with the name of each link and the directory in which it is found.

16. Symbolic links have the dangling pointer problem. What is it? Explain with an example.

17. Hard links may not be established between files across file systems. What is the technical
reason for this limitation of hard links? (Hint: Think about inodes and file systems.)

Advanced Questions and Problems

18. You can use the df -h command to display information about all the file systems on your
system. Can you create hard and soft links to a file under your home directory to a file under
the following directories? Why or why not? Show your work and explain your answer.

a. /tmp
b. /dev/shm

19. What is the purpose of executing the In command in the following session? Why does the
command display an error message?

$ In /bin/rm del
Tn: failed to create hard Tink 'del' => '/bin/rm': Operation not permitted

$

20. Display the pathnames for the files in your home directory hierarchy with two or more hard
links. What command did you use? Show the execution of the command on your system.

21. The presentation of the materials in Chapter W26, Sections 9.8.2 and 9.8.3, and particularly
Example W26.27, all available at the book website, serve to further extend your idea of how
file-sharing techniques can be used, by applying Linux “capabilities.” Capabilities are per-
mission checks implemented at the most fundamental level of system operation: the process
level. Capabilities function to check permissions that a process can perform on file objects, in
conjunction with and beyond what is presented in this chapter. A capability-enabled privileged
process can operate with an effective User ID of 0 (root), as opposed to an unprivileged nonzero
User ID. Capabilities give processes that they are applied to a more incisive, finer-grained, and
limited scope privilege (or root privilege), rather than the all-or-nothing privileges exercised

204 Linux

with the role-based access control techniques of sudo (on Debian-family Linux systems) or
superuser (on CentOS 7) assignment.

22. Take an executable program, one you have written yourself, and apply capabilities to it that give
it a “limited” root set of privileges on files, in either the current working directory, or across the
file system(s) available. Write the program by yourself in any language you are familiar with,
such as C, C++, Python, and Bash scripting. More specifically, have the program interact with
and be able to access a file or files that it would ordinarily be denied access to by the traditional
permission bits set on those file objects. This is illustrated in Example W26.27. Although you
can assign capabilities as a sudo user, as is shown in that example, execute your program as an
ordinary, unprivileged user. What capability, from those illustrated in Table W26.14, would you
use in your program to achieve the results asked for in this problem?

Additionally, enhance your program to allow the setting and testing of as many other
capabilities listed in Table G19.14 as you can, or as are assigned.

23. Can the file-sharing techniques shown in this chapter be applied to NFSv4-mounted network
drives, as described in Chapter W26, Sections 9.3.3 and 9.3.4 at the book website, and the file
system objects found on them? Which techniques would best apply to network drives? Fully
explain your answer.

24. What do you believe are the major distinctions, differences, and relative advantages and
disadvantages, of using all of the file-sharing techniques shown in this chapter, and those
shown in Chapter W26, Section 9.3.4 “Setting NFSV4 ACLs on ZFS”? Is it possible for a
single, stand-alone system to be both an NFSv4 server and client? How would you implement
this scenario? Why would you want to implement this scenario, and what would its advantages
and disadvantages be?

Projects
Project 1

Using the techniques that modify the traditional Linux access privileges developed in Section 5.5.2, and
the git and NFSv4 material presented in Chapter W24, Section 5.7 and Chapter W26, Section 9.3.4, both
found at the book website, create a git repository in an NFSv4 server directory, and share that directory
with an NFSv4 client. Both server and client machines should be on the same intranet. Then, through
the application of traditional Linux permissions, limit the access privileges of a nonprivileged user on
the client, to the NFSv4-mounted git repository in a variety of ways. For example, only let the client
user pull from the server-side git repository directory, or only let the client user push to that directory.
The privileged user on the server should be able, via traditional permission control, to administrate the
git repository directory. Test the git push and pull operations to the repository directory, from both the
server (via a privileged account), and the client (via the nonprivileged account), given the variety of
access modes you have set to it with the traditional permissions.

Project 2

Do the same thing as you did in Project 1, except have the server be a Virtualbox Virtual Machine (VM)
instance that is any supported Linux flavor that you like, and let the client be the host system for that
VirtualBox VM.

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

9

Redirection and Piping

OBJECTIVES

* To describe the notion of standard files—standard input, standard output, and standard error
files—and file descriptors

* To describe input and output redirection for standard files
» To discuss the concept of error redirection and appending to a file
» To explain the concept of pipes in Linux

* To describe how powerful operations can be performed by combining pipes, file descriptors,
and redirection operators

» To discuss error redirection in the TC shell
* To explain the concept of FIFOs (also known as named pipes) and their command line use
* To cover the following commands and primitives:

&, |, <, > >, cat, diff, find, grep, 1p, mkfifo, more, pr, sort, stderr, stdin,
stdout, tee, tr, uniqg, wc, xargs

9.1 Introduction

All computer software (commands) performs one or more of the following operations: input, processing,
and output; a typical command performs all three. The question for the operating system is: Where does
a shell command (internal or external) take its input from, where does it send its output to, and where are
the error messages sent to? If the input to a command is not part of the command code (i.e., data within
the code in the form of constants and/or variables), it must come from an outside source. This outside
source is usually a file, although it could be an input/output (I/O) device such as a keyboard or a network
interface card. Command output and error messages can go to a file as well. For a command to read from
or write to a file, it must first open the file.

There are default files where a command reads its input and sends its output and error messages, called
standard input, standard output, and standard error. In Linux, these files are known as standard files
for a command. The input, output, and errors of a command can be redirected to other files by using
file redirection facilities in Linux. This allows you to connect several commands together to perform a
complex task that cannot be performed by a single existing command. We discuss the notion of standard
files and redirection of input, output, and error in Linux in this chapter.

9.2 Standard Files

In Linux, the kernel opens three files automatically for every command (or process) to read input from
and send its output and error messages to. These files are known as standard files: standard input (stdin),
standard output (stdout), and standard error (stderr). By default, these files are associated with the
terminal on which the command executes. More specifically, the keyboard is standard input, and the dis-
play screen (or the console at which you are logged in) is standard output and standard error. Therefore,
every command, by default, takes its input from the keyboard and sends its output and error messages

205

206 Linux

File
descriptor

Screen

A\ A 4

stderr

sV BhWN-O

stdout

stderr

Per process file
descriptor table
for ‘command’

(a) (b)
FIGURE 9.1 Standard files and file descriptors: (a) file descriptors; (b) semantics of a command execution.
to the display screen (or the console window), as shown in Figure 9.1. Recall our explanation of the per-

process file descriptor table in Chapter 4. In the remainder of this chapter, we use the terms monitor
screen, display screen, console window, and display window interchangeably.

9.3 Input Redirection

Input redirection is accomplished by using the less than symbol (<). The following syntax is used to
detach the keyboard from the standard input of command and attach input-file to it. Thus, if command
reads its input from standard input, this input will come from input-file, not the keyboard attached to
the terminal on which the command is run. The semantics of the command syntax are shown in
Figure 9.2. Note that the command input comes from input-file.

Syntax:
command < input-file

Purpose: Input to command comes from input-file instead of from the keyboard

File
descriptor stdin Input-file
? stdout
- » Screen
Z stderr 4
5
stdout
Input-file
stderr
Per process file
descriptor table
for ‘command’
(a) (b)

FIGURE 9.2 Input redirection: (a) file descriptors and standard files for command; (b) semantics of input redirection.

Redirection and Piping 207

For example, the command cat < tempfile reads input from tempfile (as opposed to the keyboard,
because the standard input for cat has been attached to tempfile) and sends its output to the display
screen. So, effectively, the contents of tempfile are displayed on the monitor screen. This command
is different from cat tempfile, in which tempfile is passed as a command line argument to the cat
command; the standard input of cat does not change and is still the keyboard attached to the terminal
on which the command is run.

Similarly, in the command grep "John" < Phones, the grep command reads its input from the
Phones file in the current directory, not from the keyboard. The output and error messages of the com-
mand go to the display screen. Again, this command is different from grep "John" Phones, in which
the Phones file is passed as an argument to grep; the standard input of grep does not change and is still
the keyboard attached to the terminal on which the command executes. However, the net effect of the
grep command is the same in both cases from a user’s perspective. Similarly, the use of < is not needed
in most cases because the command reads from a file in any case.

The cat and grep commands take input from standard input if they are not passed file arguments
from the command line. The tr command takes input from standard input only and sends its output to
standard output. The command does not work with a file as a command line argument. Thus, input redi-
rection is often used with the tr command, asin tr -s ''''< Bigfile. When this command is executed,
it substitutes multiple spaces in Bigfile with single spaces.

9.4 Output Redirection

Output redirection is accomplished by using the greater than symbol (>). The following syntax is used to
detach the display screen from the standard output of command and attach output-file to it. Thus, if
command writes/sends its output to standard output, the output goes to output-file, not the monitor
screen attached to the terminal on which the command runs. The error messages still go to the display
screen, as before. The semantics of the command syntax are shown in Figure 9.3.

Syntax:
command > output-file

Purpose: Send output of command to the file output-file instead of to the monitor screen

Consider the cat > newfile command. Recall that the cat command sends its output to standard output,
which is the display screen by default. This command syntax detaches the display screen from standard
output of the cat command and attaches newfile to it. The standard input of cat remains attached

File

descriptor y !
sidout rl Output—fllel

stderr Screen

sV BWN-=O

stdout

output-file

. stderr
Per process file

descriptor table
for ‘command’

(a) (b)

FIGURE 9.3 Output redirection: (a) file descriptors and standard files for command; (b) semantics of input redirection.

208 Linux

stdout:
Sorted datafile

Contant of datafile
| datafile I »(sort < Screen

client Running on stderr client
Server

FIGURE 9.4 Semantics of the ssh server sort < datafile command run on mymachine.

to the keyboard. When this command is executed, it creates a file called newfile whose contents are
whatever you type on the keyboard until you hit <Ctr1-D> in the first column of a new line. If newfile
already exists, by default it is overwritten.

Similarly, the command grep "John" Phones > Phone_John sends its output (lines in the Phones
file that contain the word “John”) to a file called Phone_John, as opposed to displaying it on the monitor
screen. The input for the command comes from the Phones file. The command terminates when grep
encounters the end-of-file character in Phones.

In a network environment, the following command can be used to sort the file datafile residing on
the computer that you are currently logged on to (the client computer), on the computer called server.
The output of the command—that is, the sorted data—is sent to the display screen of the client computer.
Figure 9.4 illustrates the semantics of this command.

$ ssh server sort < datafile
$

This command is a good example of how multiple computers can be used to perform various tasks
concurrently in a network environment. It is a useful command if your computer (call it client) has
a large file, datafile, to be sorted and you do not want to make multiple copies of the file on various
computers on the network to prevent inconsistency in them. This command allows you to perform the
task. Such commands are also useful if the server has specialized Linux tools that you are allowed to use
but not allowed to make copies of on your machine. We discuss network-related Linux commands and
utilities in Chapter 11. We have used this example to illustrate the power of the Linux I/O redirection
feature, not to digress to computing in a network environment.

The following session shows the contents of the Students file on the local (client) machine and the
output of the sort command executed on a remote (server) machine 198.102.10.20 under sarwar’s login.
Since sarwar’s login is password protected, the system prompted him for a password before running the
sort command on the remote computer and displaying its output on the local computer. Note that we
have shown the Internet Protocol (IP) address of a fictitious ssh server, but the session was executed on
a real remote machine.

$ cat Students

John Doe ECE 3.54 A
Pam Meyer (& 3.61 A
Jim Davis CcS 2.71 B
John Doe ECE 3.54 A
Jason Kim ECE 3.97 A
Amy Nash ECE 2.38 C
$ ssh sarwar@198.102.10.20 sort < Students

Password for sarwar@pcbsd-srv:

Amy Nash ECE 2.38 C
Jason Kim ECE 3.97 A
Jim Davis CS 2.71 B
John Doe ECE 3.54 A
John Doe ECE 3.54 A
Pam Meyer (& 3.61 A

$

Redirection and Piping 209

stdout

output-file

Input-file

stderr

FIGURE 9.5 Combined use of input and output redirection.

9.5 Combining Input and Output Redirection

Input and output redirections can be used together, according to the syntax given in the following
command description.

Syntax:
command < input-file > output-file
command > output-file < input-file

Purpose: Input to command comes from input-file instead of the keyboard and output of
command goes to output-file instead of the display screen

When this syntax is used, command takes its input from input-file (not from the keyboard attached
to the terminal) and sends its output to output-file (not to the display screen), as shown in Figure 9.5.

In the cat < Tabl > Tab2 command, the cat command takes its input from the 1abl file and sends
its output to the 1ab2 file. The net effect of this command is that a copy of 1abl is created in Tab2.
Therefore, this command line is equivalent to cp labl Tab2, provided that Tab2 does not exist. If Tab2
is an existing file, the two commands have different semantics. The cat < labl > 7Tab2 command
truncates 1ab2 (sets its size to zero and the read/write pointer to the first byte position) and overwrites it
with the contents of Tabl. Because Tab2 is not recreated, its attributes (e.g., access permissions and link
count) are not changed. In the case of the cp T1abl Tab2 command, not only is the data in Tabl copied
into Tab2 but also its attributes from its inode are copied into the inode for 1ab2. Thus, the cp command
results in a true copy (data and attributes) of 1abl into Tab2.

In the following in-chapter exercises, you will practice the use of input and output direction features
of Linux.

Exercise 9.1
Write a shell command that counts the number of characters, words, and lines in a file called
memo in your present working directory and shows these values on the display screen. Use input
redirection.

Exercise 9.2
Repeat Exercise 9.1, but redirect output to a file called counts.memo. Use I/O redirection.

9.6 1I/0 Redirection with File Descriptors

As described in Section 4.6, the Linux kernel associates a small integer number with every open file,
called the file descriptor for the file. The file descriptors for standard input, standard output, and standard
error are 0, 1, and 2, respectively. The Bash and Portable Operating System Interface (POSIX) shells
allow you to open files and associate file descriptors with them; the TC shell does not allow the use of
file descriptors. The other descriptors, usually ranging from 3 onward, are used when a process opens
files simultaneously. These descriptors are called user-defined file descriptors. The upper limit of these
descriptors (and hence the number of files that a process may open simultaneously) varies from system

210 Linux

to system and may be determined by running the uname -n command. Each descriptor is used to index
a kernel table, called the per-process file descriptor table, as discussed briefly in Section 4.7. A more
detailed discussion on this topic may be found in Chapters 15 and 16, and Chapters W20 and W21 at the
book website. In the following sections, we describe I/O and error redirection under the Bash and POSIX
shells. We discuss the TC shell syntaxes and give examples in Section 9.13.

By making use of file descriptors, standard input and standard output can be redirected in the Bash
and POSIX shells by using the 0< and 1> operators, respectively. Therefore, cat 1> outfile, which is
equivalent to cat > outfile, takes input from standard input and sends it to outfile; error messages
go to the display screen. Similarly, 1s -1 foo 1> outfile is equivalentto 1s -1 foo > outfile.
The output of this command (the long listing for foo) goes into a file called outfile, and error messages
generated by it go to the display screen.

The file descriptor 0 can be used as a prefix with the < operator to explicitly specify input redirection
from a file. In the command shown in the following session, the input to the grep command is the con-
tents of tempfile in the present working directory.

$ grep "John" 0< tempfile
. command output ...

s

9.7 Redirecting Standard Error

The standard error of a command can be redirected by using the 2> operator (i.e., associating the file
descriptor for standard error with the > operator) as follows:

Syntax:
command 2> error-file

Purpose: Error messages generated by command and, by default, sent to stderr are redirected to
error-file

With this syntax, command takes its input from the keyboard, sends its output to the monitor screen, and
any error messages produced by command are sent to error-file. The semantics of the command syntax
are shown in Figure 9.6. Command input may come from a file passed as a command line argument.
The command grep "John" Phones 2> error.log takes input from the Phones file, sends output to
the display screen, and any error message produced by grep goes to a file called error.log. If error.log

File stdin _v(_Keyboard
descriptor —_
o "
; sidour | Screen
3
: d
5 stderr error-file

stdout

Screen

error-file

" Keyboard

Per process file stderr
descriptor table
for ‘command’

(a) (b)

FIGURE 9.6 Error redirection: (a) standard descriptors and standard files for command; (b) semantics of error redirection.

Redirection and Piping 211

already exists, it is overwritten; otherwise, it is created. The following example shows how the standard
error of 1s -1 can be redirected to a file.

$ 1s -1 foo 2> error.log
Tong 1listing for foo if no errors

$

The output of 1s -1 foo goes to the display screen, and error messages go to error.log. Thus, if foo
does not exist, the error message 1s: foo: No such file or directory goes into the error.log file,
as shown in the following session. The actual wording of the message varies from system to system, but
it basically informs you that foo does not exist.

$ 1s -1 foo 2> error.log
$ cat error.log
1s: foo: No such file or directory

$

Keeping standard error attached to the display screen and not redirecting it to a file is useful in many
situations. For example, when the cat Tabl lab2 1ab3 > all command is executed to concatenate
files Tabl, 1ab2, and T1ab3 into a file called al1, you would want to know whether any of the three input
files are nonexistent or if you do not have permission to read any of them. In this case, redirecting the
error message to a file does not make much sense because you want to see the immediate results of the
command execution.

——
9.8 Redirecting stdout and stderr in One Command
Standard output and standard error can be redirected to the same file. One obvious way to do so is to

redirect stdout and stderr to the same file by using file descriptors with the > symbol, as in the follow-
ing command.

$ cat T1abl 1ab2 1ab3 1> cat.output 2> cat.errors
$

In this case, the input of the cat command comes from the 1abl, Tab2, and 1ab3 files, its output goes to
the cat.output file, and any error message goes to the cat.errors file, as shown in Figure 9.7.

File e Ao

descriptor Keyboard
o
2 stdout :II cat.outputl
3 ;
3 stdin
? cat.error stdout

stderr
Per process file stderr
descriptor table m
for cat
(a) (b)

FIGURE 9.7 Error redirection: (a) file descriptors and standard files for cat labl Tab2 l1ab3 1> cat.output 2>
cat.errors; (b) semantics of the cat command.

212 Linux

File -
descriptor Keyboard
0
1 stdout
§ Y| cat.output.errors |
4
5
stderr
stdout
cat.output.errors
Per process file stderr
descriptor table
for cat
(a) (b)

FIGURE 9.8 Error redirection: (a) file descriptors and standard files; (b) semantics of the cat Tabl lab2 Tab3 1>
cat.output.errors 2>&l and cat labl lab2 Tab3 2> cat.output.errors 1>&2 commands.

Note that, although not shown in Figure 9.7b, files 1abl, 1ab2, and T1ab3 have file descriptors assigned
to them when they are opened for reading by the cat command. The command produces an error
message if any one of the three “lab” files does not exist or if you do not have read permission for any
of these files.

The following command redirects the stdout and stderr of the cat command to the cat.output.
errors file. Thus, the same file (cat.output.errors) contains the output of the cat command, along
with any error messages that may be produced by the command.

$ cat 1abl 1ab2 1ab3 1> cat.output.errors 2>&l
$

In this command, the string 2>&1 tells the command shell to make descriptor 2 a duplicate of descrip-
tor 1, resulting in the error messages going to the same place that the command output goes to. Similarly,
the string 1>&2 can be used to tell the command shell to make descriptor 1 a duplicate of descriptor 2.
Thus, the following command accomplishes the same task. Figure 9.8 shows the semantics of the two
commands.

$ cat 1abl 1ab2 lab3 2> cat.output.errors 1>&2
$

The evaluation of the command line content for file redirection is left to right. Therefore, redirections
must be specified in the left-to-right order if one notation is dependent on another. In the preceding com-
mand, first, stderr is changed to the file cat.output.errors, and then stdout becomes a duplicate
of stderr. Thus, the output and errors for the command both go to the same file, cat.output.errors.

The following command therefore does not have the effect of the two commands just discussed.
The reason is that, in this command, stderr is made a duplicate of stdout before output redirection.
Therefore, stderr becomes a duplicate of stdout (the display screen at this time) first, and then stdout
is changed to the file cat.output.errors. Thus, the output of the command goes to cat.output.errors
and errors go to the display screen. The sequence shown in Figure 9.9 illustrates the semantics of this
command.

$ cat T1abl 1ab2 T1ab3 2>&1 1> cat.output.errors
$

Note that Figure 9.9a and b are identical because the execution of cat labl Tlab2 lab3 2>&1 does not
make any changes to stdout and stderr—they stay attached to the display screen before and after the
command is executed.

Redirection and Piping 213

File File
descriptor stdin descriptor stdin

o o
1 stdout . 1 stdout
2 »| Screen 2 »| Screen
431 stderr 2 stderr
5 5
Per process file Per process file
descriptor table descriptor table
for cat for cat

(a) (b)

File i
descriptor stain ‘
g »| Cat.output.errors
4 stdout 'I -output. |
3
4
5 stderr Screen

Per process file
descriptor table
for cat

cat.output.errors

Screen

FIGURE 9.9 Output and error redirection: (a) file descriptors and standard files for the cat command; (b) standard files
after cat Tabl Tab2 Tab3 2>&1 with no change in stdout and stderr; (c) standard files after cat Tlabl Tab2
Tab3 2>&1 1> cat.output.errors;and (d) command semantics.

(d)

9.9 Redirecting stdin, stdout, and stderr in One Command

Standard input, standard output, and standard error can be redirected in a single command according to
the following syntax.

Syntax:
command 0< 1input-file 1> output-file 2> error-file

Purpose: Input to command comes from input-file instead of the keyboard, output of command
goes to output-file instead of the display screen, and error messages generated by command
are sent to error-file instead of the display screen

The file descriptors 0 and 1 are not required because they are the default values for the < and > opera-
tors, respectively. The semantics of this command syntax are shown in Figure 9.10. Evaluation of the

214 Linux

stdout

output-file

error-file

FIGURE 9.10 Redirecting stdin, stdout, and stderr in a single command.

Input-file

stderr

command line content for file redirection is left to right, so the order of redirection is important. Consider
the following command syntaxes. For the first command, if input-file is not found, the error message
is sent to the display screen, because stderr has not been redirected yet. For the second command, if
input-file is not found, the error message goes to error-file because stderr has been redirected to
this file. If error-file exists, the outputs of the first and second commands go to stdout and output-
file, respectively.

command 1> output-file O< input-file 2> error-file command 2> error-file 1> output-file O< input-file

The following sort command sorts lines in a file called students and stores the sorted file in students.
sorted. If the sort command fails to start because the students file does not exist, the error message
goes to the display screen as shown, not to the file sort.error. The reason is that, at the time the shell
determines that the students file does not exist, stderr is still attached to the console.

$ sort O< students 1> students.sorted 2> sort.error
cannot open students: No such file or directory
$

For the following command, the error message goes to the sort.error file if the sort command fails
because the students file does not exist. The reason is that the shell processes error redirection before it
determines that the students file is nonexistent.

$ sort 2> sort.error 0< students 1> students.sorted
$ cat sort.error
cannot open students: No such file or directory

$

9.10 Redirecting without Overwriting File Contents (Appending)

By default, output and error redirections overwrite contents of the destination file. To append output
or errors generated by a command to the end of a file, replace the > operator with the >> operator. The
default file descriptor with >> is 1, but file descriptor 2 can be used to append errors to a file. In the fol-
lowing command, the output of 1s -1 is appended to the output.dat file, and the error messages are
appended to the error.log file.

$ 1s -1 1>> output.dat 2>> error.log

$

The following command appends the contents of the files memo and letter to the end of the file stuff. If
the command produces any error message, it goes to the error.log file. If error.log is an existing file,
its contents are overwritten with the error message.

$ cat memo letter >> stuff 2> error.log

$

If you want to keep the existing contents of error.log and append new error messages to it, use the fol-
lowing command. For this command, the previous contents of error.log are appended with any error
message produced by the cat command.

$ cat memo letter >> stuff 2>> error.log

$

Redirection and Piping 215

The Bourne shell, by default, overwrites a file when the stdout or stderr of a command is redirected
to it, but the Korn, TC, and Bash shells have a noclobber option that prevents you from overwriting
important files accidentally. We discuss this option for the TC shell in Section 9.13, but discuss it for the
Bash shell here.

You can set the noclobber option in the Bash shell by using the set command with the -o option as
shown. Of course, if you want to set this option permanently, put the command in your ~/.profile file.

$ set -o noclobber
$

In the Bash shell, you can also set the option by using the set -C command. When you set the noclob-
ber option, you can force overwriting of a file by using the >| operator.

In the following in-chapter exercises, you will practice the use of input, output, and error redirection
features of Linux shells (excluding the TC shell) in a command line.

Exercise 9.3
Write a command that counts the number of characters, words, and lines in a file called memo in
your present working directory and writes these values into a file memo.size. If the command
fails, the error message should go to a file error.1og. Use 1/O and error redirections.
Exercise 9.4
Write a shell command to send the contents of a file greetings to doe@domain.com by using
the mail command. If the mail command fails, the error message should go to a file mail.
errors. Use input and error redirection.
Exercise 9.5
Repeat Exercise 9.2, but append error messages at the end of mail.errors.

9.11 Linux Pipes

The Linux system allows stdout of a command to be connected to the stdin of another command. You
can make it do so by using the pipe character (]) according to the following syntax.

Syntax:
commandl | command2 | command3 | .. | command

Purpose: The standard output of commandl is connected to the stdin of command2, the stdout
of command? is connected to the stdin of command3, ..., and the stdout of commandN-1 is
connected to the stdin of commandN

Figure 9.11 illustrates the semantics of this command.

Thus, a pipe allows you to send output of a command as input to another command. The commands
that are connected via a pipe are called filters. A filter belongs to a class of Linux commands that take
input from stdin, manipulate it in some specific fashion, and send it to stdout. Pipes and filters are
frequently used in Linux to perform complicated tasks that cannot be performed with a single command.
Some commonly used filters are cat, compress, crypt, grep, less, 1p, more, pr, sort, tr, unig, and wc.
If a command at the output of a pipe processes its input at a rate slower than the command connected to
its input, the pipe stores the excess data and serves it to the command at the output on a first-in-first-out
basis. Thus, if cmd2 in Figure 9.11 processes the incoming data at a slower rate than the rate at which
cmdl produces data, the excess data produced by cmdl is stored in the pipe between cmdl and cmd2,
which serves it to cmd2 on a first-in-first-out basis. The maximum data that can be written to a pipe
without interruption (i.e., atomically) in Linux, is dictated by the symbolic constant PIPE_BUF in /usr/
include/Tinux/Timits.h.

mailto:doe@domain.com

216 Linux

stdout of stdin of stdout of stdin of
commandi1 command?2 command2 commandN

FIGURE 9.11 Semantics of a pipeline with N commands.

stdout stdin
of Is-I of more

(s D> Pire |—>(more)

FIGURE 9.12 Semantics of the 1s -1 | more command.

For example, in 1s -1 | more, the more command takes the output of 1s -1 as its input. The net
effect of this command is that the output of 1s -1 is displayed one screen at a time. The pipe really acts
like a water pipe, taking the output of 1s -1 and giving it to more as its input, as shown in Figure 9.12.

This command does not use a disk to connect the standard output of 1s -1 to the standard input
of more, because the pipe is implemented in the kernel area of the main memory. In terms of the I/O
redirection operators, the command is equivalent to the following sequence of commands.

$ 1s -1 > temp

$ more < temp (or more temp)
[contents of temp]

$ rm temp

$

As you can see, not only do you need three commands to accomplish the same task, but the command
sequence is also extremely slow, because file read and write operations are involved. Recall that files are
stored on a secondary storage device, usually a disk. On a typical contemporary computer system, disk
operations are about one million times slower than main memory (random access memory) operations.
The actual performance gain in favor of pipes, however, is much smaller, owing to efficient caching of
file blocks by the Linux kernel and the use of semiconductor disks.

You can use the sort utility discussed in Chapter 7 to sort lines in a file. Suppose that you have a file
called student_records that you want to sort and that the file may have some repeated lines that you
want to appear only once in the sorted file. The sort -u student_records command can accomplish
this task. As discussed in Chapter 6, the uniq command can also do the task if it is given the sorted
version of student_records with repeated lines in it. One way to perform the task is to use the following
commands. The more command is used to show the contents of student_records.

$ more student_records

John Doe ECE 3.54
Pam Meyer CS 3.61
Jim Davis CS 2.71
John Doe ECE 3.54
Jason Kim ECE 3.97
Amy Nash ECE 2.38
Kim Coleman (&) 3.19

$ sort student_records > student_records_sorted
$ uniq student_records_sorted

Amy Nash ECE 2.38
Jason Kim ECE 3.97
Jim Davis CS 2.71
John Doe ECE 3.54
Kim Coleman cs 3.19
Pam Meyer (& 3.61

$

Redirection and Piping 217

The same task can be accomplished in one command line by using a pipe, as follows:

$ sort student_records | uniq

Amy Nash ECE 2.38
Jason Kim ECE 3.97
Jim Davis Cs 2.71
John Doe ECE 3.54
Kim Coleman cS 3.19
Pam Meyer CS 3.61
$

If you want to display the record for a student with first or last name Kim, you can use the grep student_
records Kim command to do so. However, if you do not know the location of the student_records
file in your home directory, you can use the find ~ -name student_records | xargs grep Kim
command, as shown in the following session. The xargs command executes the rest of the line as a shell
command, i.e., grep Kim in this case.

$ find ~ -name student_records | xargs grep Kim

Jason Kim ECE 3.97
Kim Coleman (&) 3.19
$

If you want to display the record for Kim Coleman, you can pass it as a string to grep, as in

$ find ~ -name student_records | xargs grep "Kim Coleman"
Kim Coleman (&) 3.19
$

At times, you may need to connect several commands. The following command line demonstrates the
use of multiple pipes, forming a pipeline of commands. In this command line, we have used the grep
and sort filters.

$ who | sort | grep "john" | mail -s "John’s Terminal" doe@coldmail.com

This command sorts the output of who and sends the lines containing the string “john” (if any exists) as
an e-mail message to doe@coldmail.com, with the subject line “John’s Terminal.” In terms of input and
output redirection, this command line is equivalent to the following command sequence.

who > templ

sort < templ > temp2

grep "john" temp2 > temp3

mail -s "John's Terminal" doe@coldmail.com < temp3
rm templ temp2 temp3

A A A A A

The command with pipes does not use any disk files, but the preceding command sequence needs three
temporary disk files and six disk I/O (read and write) operations. The number of I/O operations may be a
lot higher, depending on the sizes of these files, the system load in terms of the number of users currently
using the system, and the run-time behavior of other processes running on the system.

A pipe, therefore, is a Linux feature that allows two Linux commands (processes) to communicate
with each other. Hence, a pipe provides an interprocess communication (IPC) mechanism in Linux. More
specifically, it can be used as a channel between two related processes on the same system to talk to each
other. Typically, processes have a parent—child relationship (see Chapter 10) but processes with a common
ancestor (parent, grandparent, etc.) can also communicate using a pipe. From a programmer’s perspective,
we discuss IPC using pipes in detail in Chapter W20 at the book website. The communication between
processes is one-way only. For example, in 1s | more, the output of 1s is read by more as input. Thus, the
one-way communication is from 1s to more. For a two-way communication between processes, at least

mailto:doe@coldmail.com
mailto:doe@coldmail.com
mailto:doe@coldmail.com

218 Linux

FIGURE 9.13 Semantics of the grep "John" < Students | Tpr -Pspr command.

FIGURE 9.14 Semantics of the egrep 'A$' < ee446.grades | sort > ee446.As.sorted command.

two pipes must be used. This cannot be accomplished at the command shell level, but it can be done in
C/C++ by using the pipe() system call. We explore this topic in Chapter W20 at the book website also.
1/O redirection and pipes can be used in a single command, as follows:

$ grep "John" < Students | Tpr -Pspr
$

Here, the grep command searches the Students file for lines that contain the string “John” and sends
those lines to the Tpr command to be printed on a printer named spr. Figure 9.13 illustrates the semantics
of this command.

In the following command, egrep takes its input from ee446.grades and sends its output (lines
ending with the character A) to the sort utility, which sorts these lines and stores them in the file called
ee446.As.sorted in the current directory. The end result is that the names, scores, and grades of those
students who have A grades in the ECE446 course are stored in the ee446.As.sorted file in the current
directory. Figure 9.14 illustrates the semantics of this command.

$ egrep 'A$' < eed446.grades | sort > ee446.As.sorted

Suppose that, before running the ssh server sort < datafile command in Section 9.4, you want to
be sure that datafile on your local system is consistent with the updated copy on the server, called ~/
research/pvm/datafile.server. You can copy datafile.server and compare it with your local copy,
datafile. But, you will then have three copies, and if you are not careful you might remove the wrong
copy. In this case, you can run the following command to see the differences between your local copy
and the copy on the server without copying datafile.server on your (local) computer.

$ ssh server cat ~/research/pvm/datafile.server | diff datafile -

$

In this case, the cat command runs on the server side, and its output is fed as input to the diff command
executed on the local machine. The output of the diff command also goes to the display screen on the
local machine. Figure 9.15 illustrates the semantics of this command.

Exercise 9.6
Create the student_records file on your system and repeat all the commands in this section
that were run using this file.

9.12 Redirection and Piping Combined

You cannot use the redirection operators and pipes alone to redirect the stdout of a command to a file
as well as connect it to stdin of another command in a single command line. However, you can use the
tee utility to do so. You can use this utility to tell the command shell to send the stdout of a command
to one or more files specified as arguments of tee, as well as to another command. The following is a
brief description of how the tee utility is normally used.

Redirection and Piping 219

stderr

~ [research/pvm/datafile.server

stdout
On server On server

FIGURE 9.15 Semantics of the ssh server cat ~/research/pvm/datafile.server | diff datafile -
command.

Syntax:
commandl | tee filel file2 .. fileN | command2

Purpose: Standard output of commandl is connected to the stdin of tee, and tee sends its input
to files filel through fileN as well as the stdin of command?2

The semantics of this command syntax are that commandl is executed and its output is stored in files
filel through fileN as well as sent to command? as its input. An example use of the tee utility is given
in the following command.

$ cat names students | grep "John Doe" | tee filel file2 | wc -1

$

This command extracts the lines from the names and students files that contain the string “John Doe,”
pipes these lines to the tee utility, which puts copies of these lines into filel and file2 as well as
sending them to wc -1, which sends its output to the display screen. Thus, the lines in the names and
students files that contain the string “John Doe” are saved in filel and file2, and the line count of
such lines is displayed on the monitor screen. Figure 9.16 illustrates the semantics of this command line.
Such commands are useful in a shell script where different operations have to be performed on filel
and file2 later in the script.

Exercise 9.7
Create the names and students files on your system and repeat all the commands in this
section that were run using these files. Did the commands work as expected?

9.13 Output and Error Redirection in the TC Shell

The operators for performing the input, output, and append operations (<, >, >>) work in the TC shell
as they do in other shells, as previously discussed. However, file descriptors cannot be used with these
operators in the TC shell. Also, error redirection works differently in the TC shell than it does in other
shells. In the TC shell, the operator for output and error redirection is >&.

Syntax:
command >& file

Purpose: Redirect stdout and stderr of command to file

For example, the following command redirects output and errors of the 1s -1 foo command to the
error.log file. The standard input of the command is still attached to the keyboard. Note that we have
used the % sign as the shell prompt, which is the default for the TC shell.

220 Linux

|students| | names I

y
y

filex

FIGURE 9.16 Semantics of the cat names students | grep "JohnDoe" | tee filelfile2 | wc -1 command.

% 1s -1 foo >& error.log
%

The TC shell does not have an operator to redirect stderr alone. However, the stdout and stderr of a
command can be attached to different files, if the command is executed in a subshell, by enclosing the
command in parentheses. The following session illustrates this point.

% find ~ -name foo -print >& output.error.log
% (find ~ -name foo -print > foo.paths) >& error.log
%

The children of your current shell process, also known as subshells (see Chapter 10), execute all external
shell commands. When the first command executes, the output and errors of the find command go to
the output.error.log file. Because the subshell process is not created until the whole command line
has been processed (interpreted), the stdout and stderr of the parent shell process are redirected to
the error.log file because of the >& operator. Therefore, the subshell also has its stdout and stderr
redirected to the error.log file.

In the second command line, the find command is executed under a subshell and inherits the standard
files of the parent shell. When the find command in parentheses executes, it redirects the stdout of the

Redirection and Piping 221

Parent shell Child (sub) shell
File File
descriptor stdin - d descriptor stdin
o o
1 stdout 1 stdout
Z »| Screen 2 »| error.log |
> stderr Z stderr
5 5
Per process file Per process file
descriptor table descriptor table
for the parent for the sub-shell
shell
(a) (b)
find
File tdi ———
descriptor stain _ Keyboard
(o]
; stdout :I foo.paths |
3
4
5

error.log

stderr

Per process file
descriptor table
for find

(c) (d)

FIGURE 9.17 (a-d) Step-by-step semantics of the (find~-name foo -print > foo.paths) >& error.log
command.

command to the foo.paths file; the stderr of the command remains attached to error.log. Thus, the
output of the find command goes to the foo.paths file, and the errors generated by the command go to
the error.log file. Figure 9.17 illustrates the semantics of the second find command.

You can use the >>& operator to redirect and append stdout and stderr to a file. For example, 1s -1
foo >>& output.error.log redirects the stdout and stderr of the 1s command and appends them to
the error.log file.

The TC shell also allows the stdout and stderr of a command to be attached to the stdin of another
command with the |& operator. The following is a brief description of this operator.

Syntax:
Commandl |& command2

Purpose: Redirect stdout and stderr of commandl to command2, that is, pipe stdout and stderr
of commandl to command?2

In the following command, the stdout and stderr of the cat command are attached to the stdin of the
grep command. Thus, the output of the cat command, or any error produced by it (e.g., owing to the lack
of read permission for filel or file2), is fed as input to the grep command.

% cat filel file2 |& grep "John Doe"
%

222 Linux

The I/0 redirection and piping operators (| and |&) can be used in a single command, as shown in
the following session. This command is an extension of the previous command, in which the stdout
of the grep command is attached to the stdin of the sort command. Furthermore, the stdout and
stderr of the sort command are attached to the stdin of the wc -1 command. Thus, if the command
line completes successfully, it displays the number of lines in filel and file2 that contain the string
“John Doe.”

% cat filel file2 |& grep "John Doe" | sort |& wc -1
%

In the following in-chapter exercises, you will practice the use of Linux pipes, the tee command, and the
error redirection feature of the TC shell.

Exercise 9.8
Write a shell command that sorts a file students.records and stores the lines containing
“Davis” in a file called Davis.record. Use piping and I/O redirection.

Exercise 9.9
Write a command to copy a file Scores to Scores.bak and send a sorted version of Scores to
professor@university.edu via the mail command.

Exercise 9.10
Write a TC shell command for copying a file Phones in your home directory to a file called
Phones.bak (also in your home directory) by using the cat command and the >& operator.

The TC shell has a special built-in variable that allows you to protect your files from being overwrit-
ten with output redirection. This variable is called noclobber and, when set, prevents the overwriting
of existing files with output redirection. You can set the variable by using the set command and unset
it by using the unset command. Or, you can place the set noclobber command in your ~/.tcshrc or
~/.cshrc file (or some other startup file).

% set noclobber
[your interactive session]

% unset noclobber
%

If the noclobber variable is set, the command cat filel > file2 generates an error message if
file2 already exists. If file2 does not exist, it is created and the data from filel is copied into
it. The command cat filel >> file2 works if file2 exists and noclobber is set, but an error
message is generated if file2 does not exist. You can use the >!, >>!, and >>&! operators to over-
ride the effect of the noclobber variable if it is set. Therefore, even if the noclobber variable is
set and file2 exists, the command cat filel >! file2 copies data from filel to file2. For the
cat filel >>! file2 command, if the noclobber variable is set and file2 does not exist, file2
is created and the data from filel is copied into it. The >>&! operator works in a manner similar to
the >>! operator.

9.14 Recap of I/0 and Error Redirection

Table 9.1 summarizes the input, output, and error redirection operators in the Bash and TC shells. We did
not discuss some of these operators in this chapter; we discuss them in detail in Chapters 12 and 13, and
W29 and W30 at the book website under shell programming. We included these operators in this table
because it seems to be the most appropriate place to show all of them together.

mailto:professor@university.edu

Redirection and Piping 223

TABLE 9.1
Redirection Operators and Their Meaning in the Bash and TC Shells
Operator Bash Shell TC Shell
< file Input redirection Input redirection
> file Output redirection Output redirection
>> file Append standard output Append standard output
0< file Input redirection
1> file Output redirection
2> file Error redirection
1>> file Append standard output to file
2>> file Append standard error to file
<&m Attach standard input to file descriptor m
>&m Attach standard input to file descriptor m
m>&n Attach file descriptor m to file descriptor n
<&- Close standard input
>&- Close standard output
m<&- or m>&- Close file descriptor m
>& file Output and error redirection to file Output and error redirection to file
>| file Ignore noclobber and assign standard
output to file
>! file Ignore noclobber and assign standard output
to file
>>1 file Ignore noclobber and assign standard output
to file; if file does not exist, create it
>>&! file Ignore noclobber and append standard
output and standard error to file
n>| file Ignore noclobber and force output from
file descriptor n to file
<> file Assign standard input and standard output
to file
n< file Set file as file descriptor n
n> file Direct file descriptor n to file
cmdl | cmd2 Connect standard output of command Connect standard output of command
“cmd1” to standard input of command “cmd1” to standard input of command
“cmd2” “cmd2”
cmdl | &cmd2 Connect standard output and standard error

of command “cmd1” to standard input of
command “cmd2”
(cmd> filel)>&file2 Redirect standard output of the command
“cmd” to filel and standard error to file2
|& Allow stdout and stderr of a command to be
attached to stdin of another command

9.15 FIFOs

FIFOs, also known as named pipes, can also be used for communication between two processes execut-
ing on a system. Although processes communicating with pipes must be related to each other through a
common ancestor process that you execute, processes communicating with FIFOs do not have to have this
kind of relationship—they can be independently executed programs on one system. For the command line
use of pipes and FIFOs, this means that pipes can be used only for communication between commands
connected via a pipeline, and FIFOs can be used for communication between separately run commands.

224 Linux

Another difference between pipes and FIFOs is that whereas a pipe is a main memory buffer maintained
by the Linux kernel and has no name, a FIFO is created on disk and has a name like a filename. This means
that, like files, FIFOs have to be created and opened before they can be used for communication between
processes. Thus, accessing a FIFO requires an access to the secondary storage device where it resides.
Pipes are process persistent, which means that they exist as long as the process that creates them exists.
FIFOs on most Linux systems are filesystem persistent, meaning that they exist on the system until they
are explicitly removed/deleted or the relevant file system is unmounted (i.e., removed from the system).

You can use the mknod() system call or the mkfifo() library call to create a FIFO in a program and
the mkfifo command to create a file in a shell session. We discuss the command line use of FIFOs in this
section. We discuss the use of FIFOs, pipes, and the related system calls and library calls in the chapters
on system programming (Chapters 15 and 16, and W20 and W21 at the book website). Here is a brief
description of the mkfifo command.

Syntax:
mkfifo [option] file-Tist

Purpose: Create FIFOs with pathnames given in file-list
Output: FIFOs for the pathnames given in file-1ist are created in the relevant directories
Commonly used options/features:

-mmode Setaccess permissions for newly created FIFOs to “mode”; the access permissions
are specified in “mode” as they are with the chmod command, such as 666, mean-
ing read and write permissions for everyone and execute permission for nobody

In the following session, we use the first command to create a FIFO, called myfifol, with default permis-
sions based on the current value of umask (see discussion in Chapter 5). We use the second command to
create a FIFO, called myfifo2, with read and write permissions for the owner and no permissions for all
other users. We use the 1s -al myfifol myfifo2 command to display the access permissions of the two
FIFOs. Note that the first character in the long listing of the two FIFOs is “p,” indicating that myfifol
and myfifo2 are of the FIFO (named pipe) type.

$ mkfifo myfifol

$ mkfifo -m 600 myfifo2

$ 1s -1 myfifo3 myfifo4

prw-r--r-- 1 sarwar faculty O Aug 9 08:30 myfifo3
prw------- 1 sarwar faculty O Aug 9 08:31 myfifo4

The general method by which two commands, cmdl and cmd2, can communicate with a FIFO, called
myfifol, is shown in the following command sequence.

cmdl < myfifol &
cmd2 infile | tee myfifol | cmd3

Note that we run the first command in the background (see Chapter 10 for background processes) so that
we could run cmd2. When we execute cmdl, it blocks, because myfifol is empty. Note that cmd1 blocks
and returns immediately if myfifol is a file. When the output of cmd2 is sent to myfifol and cmd3 via
the tee utility, cmdl unblocks and starts processing data in myfifol. Outputs of commands cmdl and
cmd3 are sent to standard output (i.e., the display screen). Figure 9.18 shows these semantics with the
help of a diagram.

In the following session, the command sequence displays the status of all the processes running on the
system, the number of daemon processes, and the total number of processes running on the system. The
two cat commands block until something is written into myfifol and myfifo2. The ps -a command
sends the status of all the processes running on the system to the tee command, which redirects this
data to the two FIFOs as well as sending it to the grep command. The grep command extracts all the

Redirection and Piping 225

Display screen

FIGURE 9.18 Semantics of execution of the command sequence cmdl < myfifol & followed by cmd2 infile |
tee myfifol | cmd3.

daemon processes from its input (i.e., the output of the ps -a command) and sends them to the wc -1
command through a pipe. Thus, the first cat command displays the status of all the processes running
on the system. The output of the second cat command is the number of processes running on the system
and that of the third command (ps -a) is the number of daemons running on the system. As shown by
the last two lines of the output, at the time of running this command sequence, the system was running
20 processes, of which two were daemons.

$ cat myfifol &

$ cat myfifo2 | wec -1 &

$ ps -a | tee myfifol myfifo2 | grep 'd$' | wc -1
PID TT STAT TIME COMMAND

1533 v0- I 0:00.01 /bin/sh /usr/local/sbin/PCDMd
1548 vO0- IN 3:43.82 /bin/sh /usr/local/sbin/pbid
1790 vO Is+ 0:00.00 /usr/libexec/getty Pc ttyv0
1791 vl 1Is+ 0:00.00 /usr/libexec/getty Pc ttyvl
1797 v7 Is+ 0:00.00 /usr/libexec/getty Pc ttyv7
56478 1 1Is 0:00.24 -csh (csh)
57216 1 S 0:00.12 /bin/sh
58002 1 S 0:00.01 cat myfifol
58045 1 S 0:00.01 cat myfifo2
58046 1 I 0:00.01 wc -1
58089 1 R+ 0:00.02 ps -a
58090 1 S+ 0:00.01 tee myfifol myfifo2
58091 1 S+ 0:00.02 grep d$
58092 1 S+ 0:00.01 wc -1

2
$ 20

The sequence of the output in this session is dependent on the scheduling of the three commands; the
output shown previously is what was produced by our system and is the most likely output. An interesting
exercise would be to come up with a sequence of commands to ensure that the output is always produced
in the same order as seen here.

When you no longer need to use a FIFO, you can remove it just like you remove an ordinary file. This
means that you can use the unlink() system call (from within a process) or the rm command at the
command line for removing a FIFO from your file system hierarchy. In the following session, we use the
rm command for removing the myfifol and myfifo2 FIFOs. The output of the 1s command before and
after the rm command shows that the two FIFOs have in fact been removed.

$1s

myfifol myfifo2

$ rm myfifol myfifo2
$ 1s

$

The following in-chapter exercises are designed to give you practice using the mkfifo command and
help you to understand its semantics with a hands-on session.

226 Linux

Exercise 9.11
Create three FIFOs, called fifol, fifo2, and fifo3, with a single command. Write down the
command that you used to perform the given task.

Exercise 9.12
Create a FIFO, called fifo4, with its access privileges set to read and write for owner and
group, and no privileges for others. Show the command that you used to accomplish the given
task.

Exercise 9.13
Try the shell session given in this section on your system. Does your system produce output
in the same order as shown in our session? If not, show the output produced on your system.

Summary

Linux automatically opens three files for every command for it to read input from and send its output and
error messages to. These files are called standard input (stdin), standard output (stdout), and standard
error (stderr). By default, these files are attached to the terminal on which the command is executed.
Thus, the shell makes the command input come from the keyboard and its output and error messages to
go to the monitor screen. These default files can be changed to other files by using redirection operators:
< for input redirection and > for output and error redirection.

The three standard files can be referred to by using the digits O (stdin), 1 (stdout), and 2 (stderr),
called the file descriptors for the three standard files. All open files in Linux are referred to by similar
integers that are used by the kernel to perform operations on these files. In the Bash and POSIX shells,
the greater than symbol (>) is used in conjunction with descriptors 1 and 2 to redirect standard output
and standard error, respectively.

The standard output of a command can be connected to the standard input of another command via a
Linux pipe (]). Pipes are created in the main memory and are used to take the output of a command and give
it to another command without creating a disk file, effectively making the two commands talk to each other.
For this reason, a pipe is called an IPC channel, which allows related commands on the same machine to
communicate with each other at the shell and application levels. The processes communicating through
pipes must be related through a common ancestor; the relationship is usually parent—child or sibling.

The I/0 and error redirection features and pipes can be used together to implement powerful com-
mand lines. However, redirection operators and pipes alone cannot be used to redirect the standard out-
put of a command to a file as well as connecting it to standard input of another command. The tee utility
can be used to accomplish this task, sending standard output of a command to one or more files as well
as to another command. The commands and tee are connected through pipes.

The TC shell does not support I/0 and error redirection with file descriptors. Also, redirecting stan-
dard output and standard error of a command to different files is specified differently in the TC shell
than it is in the other shells.

FIFOs, also known as named pipes, allow related or unrelated processes on a system to communicate.
Unlike a pipe, which is an in-memory buffer, a FIFO is a file created on a secondary storage device.
For command line use, you can create a FIFO with the mkfifo command. The mknod() system call or
mkfifo() library call may be used to create FIFOs within processes. When you no longer need a FIFO,
you can remove it with the unlink() system call from within a running program (process) or the rm
command at the command line. We discuss the Linux system calls and library calls related to pipes and
sockets in Chapters 15 and 16, and W20 and W21 at the book website on Linux system programming.

Questions and Problems

1. What are standard files? Name them and state their purpose.

2. Briefly describe input, output, and error redirection. Write two commands of each to show
simple and combined use of the redirection operators.

Redirection and Piping 227

3. What are file descriptors in Linux? What are the file descriptors of standard files? How can the
I/0 and error redirection operators be combined with the file descriptors of standard files to
perform redirection in the Bourne, Korn, Bash, and POSIX shells?

4. Sort a file datal and put the sorted file in a file called datal.sorted. Give the command that
uses both input and output redirection.

5. Give the command to accomplish the task in Problem 4 by using a pipe and output redirection.

6. Give a set of commands equivalent to the command 1s -1 | grep "sarwar" > output.
p3 that use I/O redirection operators only. How does the performance of the given command
compare with your command sequence? Explain.

7. What is the purpose of the tee command? Give a command equivalent to the command in
Problem 6 that uses the tee command.

8. Write Linux shell commands to carry out the following tasks.

a. Count the number of characters, words, and lines in a file called datal and display the
output on the display screen.

b. Count the number of characters, words, and lines in the output of the 1s -1 command and
display the output on the display screen.

c. Do the same as in part (b), but redirect the output to a file called datal.stats.

9. Give the command for searching a file datafile for the string “Internet,” sending the output of
the command to a file called Internet.freq and any error message to a file error.log. Draw a
diagram for the command, similar to the ones shown in the chapter, to illustrate its semantics.

10. Give a command for accomplishing the task in Problem 9, except that both the output of the
command and any error message go to a file called datafile.

11. Give a command to search for lines in /etc/passwd that contain the string “sarwar.” Store the
output of the command in a file called passwd.sarwar in your current directory. If the com-
mand fails, the error message must also go to the same file.

12. What is the Linux pipe? How is pipe different from output redirection? Give an example to
illustrate your answer.
13. What do the following commands do under the Bash?
a. cat 1> letter 2> save 0< memo
b. cat 2> save 0O< memo 1> Tletter
c. cat 1> Tetter 0< memo 2>&1
d. cat O< memo | sort 1> letter 2> /dev/null
e. cat 2> save 0O< memo | sort 1> letter 2> /dev/null
14. Consider the following commands under the Bourne shell.
a. cat memo letter 2> communication 1>&2
b. cat memo Tetter 1>&2 2> communication
15. Where do output and error messages of the cat command go in each case if
a. both files (memo and letter) exist in the present working directory, and
b. one of the two files does not exist in the present working directory?

16. Send an e-mail message to doe@domain.com, using the mail command. Assume that the mes-
sage is in a file called greetings. Give one command that uses input redirection and one that
uses a pipe. Any error message should be appended to a file mail.error.

17. What happens when the following commands are executed on your Linux system? Why do
these commands produce the results that they do?

a. cat letter >> Tetter

b. cat Tetter > letter
18. By using output redirection, send a greeting message “Hello, World!” to a friend’s terminal.
19. Give a command for displaying the number of users currently logged on to a system.
20. Give a command for displaying the login name of the user who was the first to log on to a system.

mailto:doe@domain.com

228 Linux

21. What is the difference between the following commands?
a. grep "John Doe" Students > /dev/null 2>&1
b. grep "John Doe" Students 2>&1 > dev/null

22. Give a command for displaying the contents of (the files’ names in) the current directory, with
three files per line.

23. Give a command that reads its input from a file called Phones, removes unnecessary spaces
from the file, sorts the file, and removes duplicate lines from it.

24. Repeat Problem 23 for a version of the file that has unnecessary spaces removed from the file
but still has duplicate lines in it.

25. What do the following commands do?
a. uptime | cat - who.log >> system.log
b. zcat secret_memo.Z | head -5

26. Give a command that performs the task of the following command but with the diff command

running on the machine called server: ssh server cat ~/ research/pvm/datafile.
server | diff datafile -

27. Give a command for displaying the lines in a file called employees that are not repeated. What
is the command for displaying repeated lines only?

28. Give a command that displays a long list for the most recently created directory.

29. Create a FIFO, called myfifol. What are the default access privileges set for it? Create a FIFO,
myfifo2, with read and write access privileges for everyone. Show your commands and their
output for performing these tasks.

30. Give a set of commands for producing the output of the session given in Section 9.15. Your
command sequence should ensure that the order of output is always the following: the status of
all the processes running on the system, the number of daemons running on the system, and the
total number of processes running on the system.

31. The number of files a process can open simultaneously on a Linux system is dependent on
the size of the per-process file descriptor table on the system. Use a shell command with the
features discussed in this chapter to display the value of the NR_OPEN variable in the /usr/
include/Tinux/Timits.h file. Show your command and its output and explain your answer.

Hint: Look for a symbolic constant defined in the /usr/include/Tinux/Timits.h file.

32. How much data can a pipe store on your system? Use a shell command to obtain your answer.
What command did you use? Show the command and its output.
Hint: Look for a symbolic constant defined in the /usr/include/Tinux/Timits.h file.

33. What is the output of the following command? Give reasons for your answer.
cat filel file2 |& grep "John Doe" | sort |& wc -1

34. What is the purpose of the following command?
cat /usr/include/1limits.h | n1 | grep NR_MAX

35. What do the following commands do?
a. mail mike@somewhere.org < to_do
b. cat Phones | sort | uniq | pr | Tpr

36. The ps -e command displays information about all the processes running on your system.
These processes include multiple instances of some processes such as systemd and sshd. Show
a command that displays the number of unique processes running on the system.

|
Advanced Questions and Problems

37. What does the following command do? Clearly explain the purpose of every component and

argument of the find and xargs commands.
find ~ 2> /dev/null -size +2G -print0 | xargs -0 -I '{}' mv '{}' ~/bigfiles

mailto:mike@somewhere.org

Redirection and Piping 229

38. What do the following commands do? Clearly explain the purpose of every component and
argument of the find and grep commands.
a. find / 2>&1 | grep -v 'Permission denied'
b. find / 2>&1 | grep 'Permission denied'

39. Give a command to display the total number of files in your home director. The command
should not display the “Permission denied” message.

40. Display the pathnames of the ten largest files under your home directory hierarchy in sorted
order (largest first).

41. Give a command that displays the total number of files in your system with three hard links.

42. Write two programs in C that would obtain and print to stdout the values of the resource limits
that you found in Problems 31 and 32.

43. Why would you want to find out the resource limits obtained in Problems 31 and 32?7 What kind
of application, or user-written C program, would need to make use of not only those resource
limits, but any of the others that the Single Unix Specification Version 3 (SUSv3) allows you to
query, in either a determinate or indeterminate fashion?

44. Analyze the following line of Bash code, and in your own words, describe as exactly as you
can what is being accomplished by each element on the line. The numbers 1, 3, etc. refer to file

descriptors.
4>&1 >&3 3>&- | while read a; do echo "File_D4: $a"; done 1>&3 5>&- 6>&-

Exactly what does this structure while read a; do echo "File_D4: $a"; done accomplish?

Projects
Project 1

Familiarize yourself with the Bash Debugger, bashdb, which can be installed on Debian-family and
CentOS 7 systems. Then do the following:

Run the script file found in the following session (which you can name “stdtest”) from the command
line, using the command ./stdtest. Then, use bashdb to step through the script file, one command at a
time. Exactly what does this script file accomplish? What are the times listed for bashdb-controlled exe-
cution? Why are they greater than execution of the script file without bashdb? How would you examine
the assigned values of file descriptors during the bashdb debugging-controlled execution of this script?

#!/bin/bash
LOGFILE=my_logfile.txt
exec 6>&1

exec > $LOGFILE

time

cd /

df -hT

exec 1>&6 6>&-

1s -1a

exit O

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.
CRC Press e-Resource: https://www.crcpress.com/9781138710085
Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

10

Processes

OBJECTIVES

» To describe the concept of a process, and execution of multiple processes on a computer system
with a single central processing unit (CPU)

» To explain how a shell executes commands

* To discuss static and dynamic display of process attributes

* To discuss the main memory image of a Linux process

» To briefly describe the concept of CPU scheduling and scheduling classes in Linux

» To explain the concept of foreground and background processes, including a description of a
daemon and its uses

* To describe sequential and parallel execution of commands

* To discuss process and job control in Linux: foreground and background processes, sequential
and parallel processes, suspending processes, moving foreground processes into the background
and vice versa, and terminating processes

* To describe the Linux process hierarchy
* To cover the following commands and primitives:

<Ctr1+C>, <Ctrl+D>, <Ctrl+Z>, <Ctrl+\>, ;, &, (), bg, chrt, fg, jobs, kill,
nice, nohup, ps, pstree, renice, sched, size, sleep, top, ulimit -s

10.1 Introduction

As we have mentioned in Chapter 1, a process is a program in execution. The program may be assembly
language code, an executable code generated after compiling a source program written in a high-level
language such as C++, or an interpreted code written in LISP, JavaScript, Perl, Python, Interpreted C
(CINT), or a Linux shell. The Linux system creates a process every time you run an external command,
and the process is removed from the system when the command finishes its execution. We use the terms
program and command interchangeably.

Process creation and termination are the only mechanisms used by the Linux system to execute exter-
nal commands. In a typical time-sharing system such as Linux, which allows multiple users to use a
computer system and run multiple processes simultaneously, hundreds to thousands of processes are
created and terminated every day. Remember that the central processing unit (CPU) in the computer
executes processes. The question is, how does a system with a single CPU with one core execute multiple
processes simultaneously? Even for systems with multiple CPUs or multiple cores in a CPU, the number
of processes is greater than the number of CPUs or cores. How does a system with the number of pro-
cesses larger than the number of CPUs or CPU cores execute these processes simultaneously? A detailed
discussion of this topic is beyond the scope of this textbook, but we briefly address it in Section 10.2 and
later in Section 10.5.1. You can get detailed information about CPU scheduling and related algorithms
in a book on operating system concepts. Later in the chapter, we discuss viewing the static and dynamic
state of processes, foreground and background processes, daemons, jobs, process and job attributes, and
process and job control. We use the terms time-sharing and multitasking synonymously.

231

232 Linux

10.2 CPU Scheduling—Running Multiple Processes Simultaneously

On a computer system that contains a single CPU and runs a time-sharing operating system, multiple
processes are simultaneously executed by quickly switching the CPU from one process to the next. That
is, one process is executed for a short period of time, and then the CPU is taken away from it and given
to another process. The new process executes for a short period of time and then the CPU is given to the
next process. This procedure continues until the first process in the sequence gets to use the CPU again.
The time a process is “in” the CPU before it is switched “out” of the CPU is called a quantum or time
slice. The quantum is usually very short: one second or less for a typical Linux system.

On Linux Mint, the default kernel-set quantum, is 100 ms, as set by RR_TIMESLICE in the kernel
include file /usr/src/linux-headers-4.4.0-21/include/linux/sched/rt.h. The actual quantum is not fixed for
real-time (RT) processes and threads on Linux Mint, since the scheduler calculates it at run time, given
the target level and how many processes are running at any given time.

When the CPU is free/idle (i.e., not used by any process) or when the current process has finished its
quantum, the kernel uses an algorithm to decide which process gets to use the CPU next. The technique
used to choose the process that gets to use the CPU is called CPU scheduling. The kernel code that performs
this task is known as the Short-term CPU Scheduler or CPU Scheduler. On Linux Mint, this scheduler is
known as the Completely Fair Scheduler (CFS). The details of CFS are beyond the scope of this book.

The process of taking the CPU away from the currently executing process and giving it to the newly
scheduled process is called context switching. This task is performed by another part of the kernel,
known as the dispatcher. In systems with multiple CPUs or a CPU with multiple cores, such as those
multicore processors by Intel, Advanced Micro Devices (AMD), and other companies, if the number of
processes on the system is more than the number of CPUs in the system (or the number of cores for a
single CPU system), CPU scheduling and context switching still happen.

Thus, on a system with multiple users running multiple processes, the scheduler and dispatcher work
in tandem to make you feel as if you are the only one using the system. This is the fundamental concept
of concurrency as maintained and implemented by the kernel—an important higher-level abstraction
issue we raise in Chapter 16, Section 16.1. It is also the foundation of the idea of autonomy, or the autono-
mous, insulated, self-contained, and independent user.

Although a focused discussion on CPU scheduling algorithms is beyond the scope of this book, we
give a brief and simplistic view of how Linux schedulers work. In Section 10.5, we go into more detail
about CPU scheduling for processes and threads in Linux. We do this by delineating a major aspect of
scheduling: scheduler priorities and classes.

In a time-sharing system, a priority value is assigned to every process, and the process that has the high-
est priority gets to use the CPU next. Several methods can be used to assign a priority value to a process.
One simple method is based on the time that it enters the system. In this scheme, typically, the process that
enters the system first is assigned the highest priority and gets to use the CPU next; the result is called a
first-come, first-serve (FCES) scheduling algorithm. Another scheme is to assign a priority value based on
the amount of time a process has used the CPU. Thus, a newly arriving process, or a process that spends
most of its time performing input and/or output (I/O) operations, gets the highest priority. Processes that
spend most of their time performing I/O are known as I/O-bound processes; they need less time in the CPU
because 1/0 is sporadic. Processes that spend most of their time performing computations are known as
compute-bound or CPU-bound processes; they need more time in the CPU because of the nature of their
operations. An example of an I/O-bound process is a text editor such as vim. Classic examples of compute-
bound processes are matrix calculations, database search algorithms, and forms of video processing.

In the round robin (RR) scheduling algorithm, the CPU is given to each process in the queue of pro-
cesses for one time quantum, one after the other. This algorithm is a natural choice for time-sharing
systems, wherein all users like to see progress by their processes.

If you are interested in other CPU scheduling algorithms and their details, we encourage you to read
a book on operating system principles and concepts. The operating system code that implements the
CPU scheduling algorithm is known as the processor scheduler. The processor scheduler code for most
operating systems, including Linux, resides in the kernel.

Processes 233

You can assign a higher nice value to your processes by using the nice or renice command, but the
nice value cannot be set to a negative number by a nonsuperuser. A higher nice value means a higher
priority value and, hence, a lower priority. So, when you increase the nice value of your process, you are
being nice to other user processes. The formula clearly indicates that the higher the recent CPU usage
of a process, the higher its priority value and the lower its priority. Thus, Linux favors processes that
have used less CPU time in the recent past. A text editor such as vim gets higher priority than a process
that computes the value of pi (m) because vim spends most of the time waiting for I/O—that is, read-
ing keyboard input, reading/writing to disk, and displaying file data or keyboard input on the screen.
On the other hand, the process that computes n spends most of its time doing calculations—that is, using
the CPU. Recalculating priority values of all the processes every second causes process priorities to
change dynamically (up and down). In Section 10.5, we further explore the Linux scheduling concept.
We also give a few more details about the use of the nice and renice commands in Section 10.5.2.

Exercise 10.1
Search the Web for context switch times for different CPUs. What is the range of these times for
different CPUs. Which CPU has the shortest context time and how much is this time?
Exercise 10.2
Give three examples each of CPU-bound and I/0-bound processes.

10.3 Linux Process States

A Linux process can be in one of many states, moving from one state to another, eventually finishing its
execution, normally or abnormally, and getting out of the system. A process terminates normally when
it finishes its work and exits the system gracefully. A process terminates abnormally when it exits the
system because of an exception (error condition) or intervention by its owner or the superuser. The owner
of the process can intervene by using a command or a particular keystroke to terminate the process. We
discuss these commands and keystrokes later in the chapter. The primary states that a process can be in
are shown in the state diagram in Figure 10.1.

The waiting state encompasses several states; we use the term here to keep the diagram simple. Some
of the states belonging to the waiting state are listed under the oval representing the state. Table 10.1

Swapped

process in process out

COE D

Pending I/O
Child to exit

Sleeping

FIGURE 10.1 Linux process state diagram.

234 Linux

TABLE 10.1

A Brief Description of the Linux Process States

State Description

Ready The process is ready to run but does not have the CPU. Based on the scheduling algorithm, the scheduler

decided to give the CPU to another process. Several processes can be in this state, but on a machine with
a single CPU, only one can be executing/running (i.e., using the CPU).

Running The process is actually running (i.e., using the CPU).

Waiting The process is waiting for an event. Possible events are an I/O operation to complete (e.g., disk/terminal
read or write), a child process to complete (the parent is waiting for one or more of its children to exit),
or the process itself is waiting to be reawakened having been put to sleep.

Swapped The process is ready to run, but it has been temporarily put on the disk (on the swap space); perhaps it
needs more memory and there is not enough available at this time.

Zombie A dying process is said to be in a zombie state. Usually, when the parent of a process terminates before it
executes the exit call, it becomes a zombie process. The process finishes and finds that the parent is not
waiting. The zombie processes are finished for all practical purposes and do not reside in the memory, but
they still have some kernel resources allocated to them and cannot be taken out of the system. All zombies
and their live children are eventually adopted by the granddaddy, the systemd process, which removes
them from the system.

gives a brief description of these Linux process states. In the interest of brevity, and in keeping with the
scope of this book, the other states that a Linux process can be in are not included in this discussion.

10.4 Execution of Shell Commands

A shell command can be internal (built in) or external. An internal/built-in command is one whose code
is part of the shell process. Some of the commonly used internal commands are . (dot command), bg,
cd, continue, echo, exec, exit, export, fg, jobs, pwd, read, readonly, return, set, shift, test,
times, trap, umask, unset, and wait. An external command is one whose code is in a file; contents of
the file can be binary code or a shell script. Some of the commonly used external commands are grep,
more, cat, mkdir, rmdir, 1s, sort, ftp, telnet, 1p, and ps. A shell creates a new process to execute
a command. While the command process executes, the shell waits for it to finish. In this section, we
describe how a shell (or any process) creates another process and executes external commands. You
can use the type command to determine whether your command is built in or external, as shown in the
following session. Under Bash, you can also use the -a option of type to display all the locations of a
command. Remember that if you created an alias for the type command in Chapter 2, Section 2.6, you
will have to unalias it in order for the following session to work!

In the following session, you can see that the bg command is built in. The Bash shell may be invoked
through an executable available in your file system structure as shown.

$ type bg

bg is a shell builtin
$ type -a bash

bash is /bin/bash

$

A Linux process can create another process by using the fork() system call, which creates an exact
main memory copy of the original process (i.e., the process that calls fork()). Both processes con-
tinue execution, starting with the statement that follows the fork. The forking process is known as the
parent process, and the created (forked) process is called the child process, as shown in Figure 10.2.
Here, we show a Bash shell that has created a child process (another Bash). We discuss the use of
fork() and other system calls needed for the creation of processes and interprocess communication
in Chapters 15-16.

Processes 235

@ Parent

<_I— fork

() ou

FIGURE 10.2 Process creation via the fork system call.

Step 1: Shell uses fork to Step 2: Child uses exec to overwrite itself with Step 3: Sort starts execution while ‘bash’ waits for th
create a child the executable file corresponding to command to finish. When sort finishes, the
the sort command. child process terminates and ‘bash’ starts

execution again, wating for the user to give it
@ Parent @ Parent

another command to execute.
Parent
<_I— fork

@ Child @
exec sort

FIGURE 10.3 Steps for execution of a binary program sort by a Linux shell.

For executing an external binary command, a mechanism is needed that allows the child process to
become the command to be executed. The Linux system call exec() can be used to do exactly that, allow-
ing a process to overwrite itself with the executable code for another command. A shell uses the fork()
and exec() calls in tandem to execute an external binary command. Figure 10.3 shows the sequence of
events for the execution of an external command sort, whose code is in a binary file, /usr/bin/sort.

The execution of a shell script (a series of shell commands in a file; see Chapters 12 and 13) is slightly
different from the execution of a binary command/file. In the case of a shell script, the current shell cre-
ates a child shell and lets the child shell execute commands in the script file, one by one. Each command
in the script file is executed in the same way that commands from the keyboard are; that is, the child shell
creates a child for every command that it executes. While the child shell is executing commands in the
script file, the parent shell waits for the child to terminate. When the child shell hits the eof marker in the
script file, it terminates. The only purpose of the child shell, like any other shell, is to execute commands,
and eof means “no more commands.” When the child shell terminates, the parent shell comes out of the
waiting state and resumes execution. This sequence of events is shown in Figure 10.4, which also shows
the execution of a find command in the script file.

Unless otherwise specified in the file containing the shell script, the child shell has the type of the par-
ent shell. That is, if the parent is Bash, the child is also Bash. Thus, by default the shell script is executed
by a “copy” of the parent shell. However, a shell script written for any shell (C, TC, Bourne, Bash, Korn,
etc.) can be executed regardless of the type of the current shell. To do so, simply specify the type of the
child shell under which the script should be executed in the first line of the file containing the shell script
as #!full-path-name-of-the-shell. For example, the following line dictates that the child shell is
Bash, so the script following this line is executed under the Bash.

#!/bin/bash

Also, you can execute commands in another shell by running that shell as a child of the current shell,
executing commands under it, and terminating the shell. A child shell is also called a subshell. Recall
that the commands to run various shells are sh for the Bourne shell, csh for the C shell, tcsh for the TC

236 Linux

Step 1 Step 2 Step 3

@ Parent @ Parent Parent

4_I_ fork 4_I— fork These fork and exec

commands are repeated for

A all external commands;
Child SC'”Pt bash Child internal commands are
file executed by the ‘Child’ shell

4_|_ exec find

<

find

(3)

FIGURE 10.4 Steps for execution of a shell script by a Linux shell.

shell, ksh for the Korn shell, and bash for Bash. To start a new shell process, simply run the command
corresponding to the shell you want to run. See Table 2.4 for a complete path to common Linux shells. If
a shell is not installed on your Linux by default, ask your system administrator to install it for you or see
Appendix A for instructions to install it on your system. Bash is the default shell on Linux Mint.

In the following session, we are running Bash as the default shell (see Chapter 2, Section 2.8.3, for
information on how to set the default shell for the current session, or any subsequent sessions), and the
Bourne shell runs as its child. The echo command is executed under the Bourne shell. Then another
Bash shell is started, and the echo command is executed under it. The ps command shows the three
shells running. Finally, both the TC and Bourne shells are terminated when <Ctr1+D> is pressed in suc-
cession, and control goes back to the original shell, Bash. The first <Ctr1+D> terminates the TC shell,
giving control back to the Bourne shell. You can also exit a shell running the exit command. Figure 10.5
illustrates all the steps involved, showing the parent—child relationship between processes.

$ ps

PID TTY TIME CMD
14738 pts/0 00:00:00 bash
14760 pts/0 00:00:00 ps
$ /bin/sh
$ echo "This is Bourne shell."
This 1is Bourne shell.
$ bash
$ echo "This 1is Bourne Again SHell."
This is Bourne Again SHelTl.
$ ps

PID TTY TIME CMD
14738 pts/0 00:00:00 bash
14761 pts/0 00:00:00 sh
14762 pts/0 00:00:00 bash
14764 pts/0 00:00:00 ps
$ <Ctrl1+D>
$ exit
$ <Ctr1+D>
$

Exercise 10.3
Repeat the previous session on your system to understand how shell processes are created and
terminated. Draw the process hierarchy for the output of the last ps command.

Processes 237

& @ & & &)

shell
e @ ° @ Bourne @ Bourne <Ctrl-D>
shell shell
@ echo @ bash @ bash @ bash <Ctrl-D>
under shell shell shell
Bourne
shell
@ echo @ echo
under under
bash shell bash shell

FIGURE 10.5 Execution of commands under the child shell (also called subshells).

10.5 Process Attributes

Every Linux process has several attributes, including owner ID (called user ID [UID] in Linux jargon),
process ID (PID), PID of the parent process (PPID), process name, process state, command executed
to start the process, priority of the process, process start time, percentage of the CPU time consumed
by the process, percentage of the main memory consumed by the process, size of the process in virtual
memory, size of the process currently in main memory, state of the process, the event a process is wait-
ing for (in case it is not running), and the length of time the process has been running. From the user’s
and programmer’s point of view, one of the most useful of these attributes is the PID, which is used as a
parameter in several process control commands discussed later in this chapter.

Linux provides several tools that allow you to monitor the attributes of the processes currently running
on your system, change the states of your processes, and perform various operations on them, including
stopping/restarting them, sending them specific messages, having them communicate with each other,
and terminating them. In this chapter, we will discuss some of the commands and tools that allow us to
monitor the attributes of processes statically and dynamically, as well as perform various operations on
processes just stated.

10.5.1 Static Display of Process Attributes

The ps command can be used to view a snapshot of the attributes of processes currently in the system.
The following is a brief description of the ps command, with option/feature variants for both Berkeley
Software Distribution (BSD)-style options (executed without a dash on the command line) and UNIX/
POSIX-style options (executed with a dash on the command line).

Syntax:
ps [options]

Purpose: Report static (one shot) information about process status/attributes
Output: A header line and a snapshot of the attributes of processes running on the system.
Note: Gnu long options are preceded by two dashes.
Commonly used options/features (BSD variants without a preceding dash):
0 Display information about the comma- or space-separated keywords after the
PID field in the default output. You can assign the header of your choice for a
keyword by putting an = after the keyword, followed by the header value.

238 Linux

u Display information about the processes for the users specified in the comma-
separated list of usernames; no spaces before or after the commas

Lift the BSD-style “only yourself” restriction
Display the environmental information for each process

o Similar to -o, except that it does not show the default fields and you can change
header texts for multiple using multiple -o options. If no headers are specified
with keywords, the header line is not displayed.

u Display for each process information about the following keywords: user, pid,
%Ccpu, %mem, vsz, rss, tty, state, start, time, and command.

X Display information about processes that do not have controlling terminals
(including daemons)

Commonly used options/features (UNIX/POSIX variants with a preceding dash):

-A Select all processes

-e Same as the -a option: display information about all processes, including session
leaders

-f Display a full format listing, including process owner ID (UID), PID, PPID, C, pro-
cess start time (STIME), TTY, time executed for (TIME), full command line (CMD)

-1 Display a long listing: F, state (S), UID, PID, PPID, C, PRI, NI, ADDR, SZ, WCHAN,

TTY, TIME, CMD

-u or -u Display a list of processes belonging to UIDs or lognames listed in the comma-
separated list

The output of the ps command is sorted first by the terminals associated with processes and then by their
PIDs. You can change the default sort order by using different options. If multiple such options are speci-
fied, the command exercises the last option. The shell sessions in this section demonstrate the use of the
ps command with and without options. We ran all of them on a Linux machine running the Bash shell.
The output of the ps command, as shown in the following session, displays four fields about processes,
whose attributes are displayed one per line: PID, the terminal the process is attached to (TTY), the CPU time
the process has consumed (TIME), and the command used by the user to run the process (CMD). The output
shows that two processes are attached to terminal O: bash (the login Bash) and ps. The PIDs of the pro-
cesses attached to terminal 0, -bash and ps, are 27753 and 27783, and have run for O s each, respectively.

$ ps

PID TTY TIME CMD
27753 pts/0 00:00:00 bash
27783 pts/0 00:00:00 ps
$

You can also add columns of displayed output with the -o option. A comma-separated list must follow
the option, with keywords designating which output format columns you want displayed. For example,
the following command displays the default columns of output, plus a column showing the state of the
processes shown.

$ ps -o pid,tty,stat,time,cmd
PID TT STAT TIME CMD
27753 pts/0 Ss 00:00:00 -bash
27794 pts/0 R+ 00:00:00 ps -o pid,tty,stat,time,cmd
$

The state of a process is displayed as a character string—for example, Ss, S+, and R+ in the previous
session. Table 10.2 explains the various characters in the string listed under the process state (STAT)
column. Thus, the process with the Ss state is a session leader process that is currently sleeping—that is,
waiting for less than 20 s. Similarly, the process with the S+ state is a foreground process that has been

Processes 239

TABLE 10.2

A Brief Description of the Linux Process States Displayed by the ps Command

First Additional

Character Description Character Description
D Process on a disk or other short-term + Foreground process

interruptible wait
Dead process Process has raised scheduling priority
Runnable process waiting to get CPU Process locked in core—for example, for raw I/O
Sleeping process—waiting for < 20 s Process has reduced CPU-scheduling priority
Stopped/suspended process Session leader process—for example, login shell

Multithreaded

— un Z2 - A

Idle interrupt process/thread

N = 4 nn ©™ X

Zombie process

waiting for less than 20 s. Finally, the process with the R+ state is a foreground process that is ready to
run and is waiting to be scheduled to use the CPU. We discuss foreground and background processes in
detail in Section 10.6.

The ps -u command shows a long listing of all the processes belonging to the user running the com-
mand. VSZ is the virtual size of the process and RSS (resident set size) is the real size of the process in
memory. Both sizes are in kilobytes. Note that sarwar has logged in on one terminal with Bash running.

$ ps -u

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
sarwar 27753 0.0 0.0 23192 5404 pts/0 Ss 07:23 0:00 -bash
sarwar 27797 0.0 0.0 37680 3356 pts/0 R+ 07:39 0:00 ps -u

$

You can specify a comma-separated list of UIDs to display the same information about the processes
belonging to them, as in ps -u 1004,1009,1020. As a reminder, UID is the third field of a line in the
/etc/passwd file. Note that the state of the first three processes is Is+, which means that they are fore-
ground idle session leader processes. In other words, they are foreground login shell processes that have
not used the CPU for more than 20 s.

You can use the -U option to display the default status of all the processes belonging to the users whose
comma-separated usernames are specified after the option. In the following example, all the processes
belonging to the user sarwar are displayed. The ps -U john,bob,davis,sunil,goldman,ibraheem
command would display the default status of all the processes belonging to the users john, bob, davis,
sunil, goldman, and ibraheem.

$ ps -U sarwar

PID TTY TIME CMD
19919 ? 00:00:00 systemd
19923 ? 00:00:00 (sd-pam)
19937 ? 00:00:00 sshd

27753 pts/0 00:00:00 bash
27799 pts/0 00:00:00 ps
$

You can also use the comma-separated list of UIDs of the users to display the same information. Thus,
the ps -U 1004 command displays the default status of all the processes belonging to the user with UID
1004. Similarly, the ps -U 1004,1005,1001 command displays the default status of all the processes
belonging to the users with UIDs 1001, 1004, and 1005.

You can use the —a and -x options to display information about your processes, processes belonging to
other users, system processes, and processes not attached to any controlling terminals, such as daemons.
You can determine the total number of processes, including all system processes and daemons, running
on a system by using the ps -ax | wc -1 command. The output contains a header line and a line each

240 Linux

for the ps -ax and wc -1 processes. Thus, 176 processes are currently running on our Linux Mint system
if we do not count the two processes created due to the command line itself.

$ ps -ax | wc -1
177
$

You can also determine the number of processes running on a machine by using the ps -e | wc -1
command.

You can use the —H option to display the kernel-visible threads, known as lightweight processes (LW Ps)
in Solaris, in the processes running on your system. The output of the ps -axH | wc -1 command
shows 283 as its output. Out of these 283 lines, one line is for the output header and one line each for the
ps -axH and wc -1 commands each. Thus, 280 kernel-visible threads are running in the 176 processes
that are currently running on the system.

$ ps -axH | wc -1
283
$

Although the —j, -1, -u, and -v options allow you to display the values of predetermined keywords in a
known order and the standard header information, the -0 and -o options allow you to display customized
output: values of the keywords of your choice, in the order of your liking, and with the header of your
taste. In the following session, we show the use of the ps command with these options. The keywords
dsiz and tsiz are, respectively, the sizes (in kilobytes) of the data and text/code segments of the memory
image of the process. wchan is the event a process is waiting for. The last command in the sessions again
shows how you can customize the header of the output.

$ ps -o dsiz,tsiz,vsz,rss,wchan

DSIZ TSIz VSzZ RSS WCHAN

22217 974 23192 5472 wait

29114 89 29204 1604 -

$ ps -o dsiz,tsiz,lwp,nlwp,wchan,pcpu,pmem,flags,args
DSIZ TSIz LWP NLWP WCHAN %CPU %MEM F COMMAND

22217 974 14738 1 wait 0.0 0.0 0 -bash

29142 89 14813 1 - 0.0 0.0 0 ps -o dsiz,tsiz,lwp,nlwp,wchan,pcpu, pmem
$ ps -o user,pid=SON -o ppid=MOM -o args
USER SON MOM COMMAND

sarwar 14738 14737 -bash
sarwar 14814 14738 ps -o user,pid=SON -o ppid=MOM -o args
$

Some of the fields and the corresponding keywords are obvious, and we have discussed a few of them
earlier in this chapter. However, some keywords, which we will discuss now, are new and not obvious.
You can display all keywords by using the ps L command, as shown:

$ps L
%Cpu %CPU
%mem %MEM

[Output truncated]
$

Table 10.3 shows some of the commonly used keywords and their meanings. Note that these fields are
displayed in uppercase in the header of the output of the ps command (e.g., COMMAND for command and
PID for pid).

The data, stack, and text/code segments are part of the memory image of a process. Three addi-
tional sections of the memory image of a Linux process are shared libraries, heap, and environment.
Figure 10.6 shows the memory image of a Linux process. The environment consists of command line

Processes 241
TABLE 10.3
A Brief Description of the Commonly Displayed Fields/Keywords of the ps Command
Field Description Field Description
command Command executed to create process Ppid Parent’s PID
dsiz Data size in kilobytes Pri Scheduling priority
cpu Short-term CPU usage for scheduling Rss Real process size (kilobytes) in memory
flags Flags indicating process states/events Sid Session ID; PID of the session leader
Lwp Lightweight process (thread) ID Ssiz Stack size in kilobytes
majflt Total page faults (same as PAGEIN) started Time the process was started
mwchan Event or lock of the locked/blocked Stat Process state
process
nlwp Number of threads tied to an LWP Time Time the process has executed for
pcpu CPU utilization up to one previous Tsiz Text (code) size in kilobytes
minute
pgid Process group ID Tt Terminal the process is attached to
pid Process ID Vsz Virtual size of the process in kilobytes
pmem Percentage of memory used by wchan Event (or address) on which a process

process

waits

High Memory
Environment

Command line arguments and
environment variables

Stack Segment

Stack Segment

Shared Libraries

Heap

Uninitialized Data (bss)

Data Segment

Initialized Data

Text/Code
Segment

Low Memory

Text/Code Segment

FIGURE 10.6 Memory image of a Linux process.

arguments and five shell variables (HOME, PATH, SHELL, USER, and LOGNAME), accessible through pointers
to two arrays of pointers to null-terminated strings. The stack grows from high memory to low memory
and the heap grows from low memory to high memory. Text and initialized data portions are read from
the program file by the exec(2) system call, and the uninitialized data (bss) section is initialized to zero,
also by exec(2).

You can also use the size command to display the sizes (in bytes) of text/code, initialized data, and
uninitialized data (bss) for an executable program. The following is the sample run of the command on
our Linux Mint system with /usr/bin/sort as the argument. The fourth number is the total size of the
text and data sections (i.e., the sum of first three numbers) in decimal. The fifth number is the total size
in hexadecimal.

242 Linux

$ size /usr/bin/sort
text data bss dec hex filename
104653 1880 1960 108493 1la7cd /usr/bin/sort
$

The ulimit -s command displays the virtual stack size of a Linux process to be 8,192 kilobytes
(i.e., 8 MB).

$ ulimit -s
8192
$

The UNIX/POSIX options version of the ps command supports the following options of the BSD
version of the command: S, a, e, r, v, w, and x. However, you invoke them without using a hyphen before
them—for example, ps r. Similarly, the —o option also works under the UNIX/POSIX options, as it does
under BSD, but not with all the keywords listed in Table 10.3 (or those displayed by the ps L command
in the BSD version.). It works with the following keywords, most of which are common with the ps BSD
version: user, ruser, group, rgroup, uid, ruid, gid, rgid, pid, ppid, pgid, sid, tasked, ctid, pri,
opri, pcpu, pmem, vsz, rss, 0sz, nice, class, time, etime, stime, zone, zoneid, f, s, c, Twp, nlwp, psr,
tty, addr, wchan, fname, comm, args, projid, project, pset, and 1grp.

The sample runs in the following session show the use of the ps command with various options. Note
that the output of the ps -1 command includes the obsolete fields F and ADDR, and the old-style (obsolete)
PRI (known as opri in the list of keywords shown in the previous paragraph), where lower PRI value
means higher priority. You can use the -y and -1 options together to exclude the columns for the obsolete
fields F and ADDR, include the RSS column, and display the PRI value in vogue.

$ ps -1

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1004 14738 14737 0 80 0 - 5798 wait pts/0 00:00:00 bash

0 R 1004 14832 14738 0 80 0 - 7308 - pts/0 00:00:00 ps

$ ps -1y

S uiD PID PPID C PRI NI RSS SZ WCHAN TTY TIME CMD
S 1004 14738 14737 0 80 0 5472 5798 wait pts/0 00:00:00 bash
R 1004 14839 14738 0 80 0 1476 7308 - pts/0 00:00:00 ps
$

The second column, S, shows the state of the process. Process states in UNIX/POSIX are briefly
described in Table 10.2, along with some fields that are different from the fields displayed by the ps com-
mand in the BSD variant. Note that the ps command is in the running state and bash is waiting for an
event. The event in this case is the termination of its child, i.e., the ps command running in foreground.
NI shows the nice value of the process; the higher the value, the lower the priority of the process. You
can display the priorities of processes by using the —c option. The SZ field shows the size (in pages) of the
process in virtual memory. We have discussed the rest of the fields in the output of the ps -1y command
earlier in this section.

You can appreciate the difference between the old style and new style displays of priorities by running
the following command. The first column for PRI is for the new style and the second column is for the
obsolete PRI. Note the priority values displayed for the two processes in the obsolete and new styles.

$ ps -c -o pid,pri,opri,args
PID PRI PRI COMMAND

14738 19 80 bash

14842 19 80 ps

$

You can use the -t option to display processes associated with a particular terminal, as shown in the
following session. The ps -eLP command displays all the LWPs running in each process as well as the
CPU core (shown under PSR) on which a thread runs. The first line of the output shows that systemd is

Processes 243

running on core 4. The bottom three lines of the output of the command shows that our sshd, bash, and ps
commands run on cores 1, 3, and 5, respectively. Note that systemd has six threads running, as shown by
the output of the ps -eL | grep "systemd" | wc -1 command. The output of the ps -eL | wc -1 com-
mand shows that 282 LWPs are currently running on the system. The last command in the session shows
how you can use the -o option to display various attributes about all the processes running on the system.

$ ps -t /dev/pts/0

PID TTY TIME CMD
7074 pts/0 00:00:00 bash
7224 pts/0 00:00:00 ps

$ ps -elP
PID LWP PSR TTY TIME CMD
1 1 47 00:01:39 systemd
2 2 6 ? 00:00:00 kthreadd
3 3 0°7? 00:00:13 ksoftirqd/0
5 5 07 00:00:00 kworker/0:0H
7 7 47 01:49:49 rcu_sched
8 8 0°7? 00:00:00 rcu_bh
9 9 07 00:00:00 migration/0
10 10 07 00:00:20 watchdog/0
11 11 17 00:00:20 watchdog/1
12 12 17? 00:00:00 migration/1
[Output Truncated]
26829 26829 3 7 00:00:00 sshd

26842 26842 17 00:00:00 sshd
26843 26843 3 pts/2 00:00:00 bash
26861 26861 5 pts/2 00:00:00 ps

$ ps -eL | grep "systemd" | wc -1

6

$ ps -eL | wc -1

282

$ ps -e -o user,uid,pid,ppid,pri,nice,vsz,rss,nlwp,args

USER UID PID PPID PRI NI VSZ RSS NLWP COMMAND

root 0 1 0 19 0 119836 4664 1 /sbin/init splash
root 0 2 0 19 o0 0 0 1 [kthreadd]
root 0 3 2 19 o0 0 0 1 [ksoftirqd/0]
root 0 5 2 39 -20 0 0 1 [kworker/0:0H]
root 0 7 2 19 o0 0 0 1 [rcu_sched]
root 0 8 2 19 0 0 0 1 [rcu_bh]

root 0 9 2 139 - 0 0 1 [migration/0]
root 0 10 2 139 - 0 0 1 [watchdog/0]
root 0 11 2 139 - 0 0 1 [watchdog/1]
root 0 12 2 139 - 0 0 1 [migration/1]

[Output Truncated]

sarwar 1004 26842 26829 19 0 124556 4568 1 sshd: sarwar@pts/2
sarwar 1004 26843 26842 19 0 23160 5452 1 -bash
sarwar 1004 26860 26843 19 0 37680 3324 1 ps -e -o user,uid,pid,ppid,
$
Exercise 10.4

What command can you use to display the list of keywords that may be used with the O, -O, o,
and —o options to display various attributes of running processes? Run the command on your
system and show its output.

Exercise 10.5
Repeat the sessions discussed in Section 10.5 thus far on your system to understand how the ps
command works with various options. Capture the shell commands and their outputs.
Exercise 10.6
Find the sizes of text, data, and bss for the executable code for bash and draw the process dia-
gram for bash when it is in execution. Clearly show the sizes of as many sections as you can.
State how you were able to find these sizes.

244 Linux

10.5.2 Linux Process and Thread Scheduling

There are two preliminary things you must realize about process and thread scheduling. First, Linux is
predominantly a general-purpose operating system, not an RT operating system. That means that it is not
intended to be used as the basis for embedded, RT control systems. This does not mean that it cannot or
has not been applied very successfully that way. Examples of RT control systems are found in electro-
mechanical embedded microprocessor-guided controllers in any industrial process application. Second,
as Seymour Cray said, “Anyone can build a faster processor. The trick is to build a faster system.” That’s
what the scheduler does; it gives you a faster system with higher throughput.

As can be seen in Chapter 16, Section 16.1, the steady-state maintenance of the Linux OS, and the
hardware that it is running on, is achieved by the techniques of virtualization, concurrency, and persis-
tence. The CPU scheduler provides the operating system virtualization and concurrency.

The CFS accomplishes virtualization in Linux. This means that the CPU appears as if it is more
powerful than it really is in terms of system throughput and “simultaneous” execution of multiple pro-
cesses, even on a single-core CPU. The CFS algorithm and its implementation by the scheduler are
beyond the scope of what we cover in this book. It is sufficient to say that CFS tailors CPU usage for all
executing processes and threads, to maximize CPU utilization and maximizes throughput.

10.5.2.1 Linux Scheduling Policies and Priorities

The scheduling of processes (or threads) on a CPU is dictated by a scheduling algorithm (or policy),
which chooses the highest priority process from among the processes that are waiting to use the CPU
and dictates the amount of time the chosen process can use the CPU for. Priorities are represented as
integer numbers. We describe briefly the various scheduling policies used by the Linux scheduler and
the mechanism used to assign priority values to processes. The technique used to calculate priorities is
such that it allows kernel process to set their priorities higher than any user process. The CPU scheduling
policies (or classes) supported by Linux are shown in Table 10.4, along with their purpose.

To gain a full appreciation of how scheduling priorities are assigned in Linux, browse through /usr/
src/linux-headers-4.4.0-21/include/linux/sched/prio.h. A close reading of this header file will reveal that
the priority of a process is dependent on its nice value, nice width (NICE_WIDTH), and default priority,
DEFAULT_PRIO, of a process in Linux. The default priority is dependent on two symbolic constants,
MAX_RT_PRIO and NICE_WIDTH, also defined in the same file. Table 10.5 shows the values of these
and a few other parameters needed for the calculation of the priority of a process.

The priority of a process is calculated according to the following formula.

Priority =[(nice value) + DEFAULT_PRIO |

This means that the smaller nice values result in smaller priority values and vice versa. Thus, if the nice
value of a process is 0, its priority value will be 120. Similarly, the priority value of a process with a nice
value 10 will be 130. In Linux, priority values are inverted, i.e., a smaller priority number equates to a
higher CPU priority and vice versa. Thus, the process with priority value 120 will be given preference by
the scheduling algorithm over the process with priority value 130.

TABLE 10.4

Scheduling Classes in Linux and Their Purpose

Policy Class Purpose

SCHED_BATCH Non-preemptive scheduling designed for CPU-bound processes/threads
SCHED_FIFO Non-preemptive FIFO scheduling for time-critical (RT) processes/threads
SCHED_IDLE Non-preemptive (?) scheduling for very low-priority processes/threads
SCHED_OTHER The default Linux scheduling policy for most of the processes

SCHED_NORMAL
SCHED_RR Round Robin SCHED_FIFO scheduling

Processes 245

TABLE 10.5

Important Parameters for Computing the Priority of a Process in Linux

Parameter Value

MAX_NICE 19 (least favorable to a process)

MIN_NICE —20 (most favorable to a process)

NICE_WIDTH (MAX_NICE — MIN_NICE + 1) =40

MAX_RT_PRIO 100

MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH) = 100 + 40 = 140
DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2) = (100 + 40/2) = 120

The priority of a process can be 0—139. The priorities of RT processes can be 0-99. The user pro-
cesses, i.e., SCHED_NORMAL/SCHED_OTHER (normal) and SCHED_BATCH (batch) processes
have priorities of 100-139. For convenience, while working with various scheduler parameters, this
priority range is translated to 0-39, achieved by simply subtracting MAX_RT_PRIO from the given
priority value. This is the range of priorities that can be assigned to and affected by the nice value via
the commands nice and renice. You can launch a program with your required priority using the gen-
eral command nice -n nice_value program_name. Similarly, you can also change the priority of an
already running process using the general command renice -n nice_value -p process_id.

Consider the following output of the ps command on our Linux Mint system, where the system is
running at the multi-user.target level, and which requests an output format for scheduling priority class
(CLS), scheduling priority (PRI), and nice value (NI), along with some standard identifying output
format columns.

$ ps -ax --format uname,pid,ppid,tty,cmd,cls,pri,nice

USER PID PPID TT CMD CLS PRI NI
root 1 07 /sbin/init splash TS 19 0
root 2 07 [kthreadd] TS 19 0
root 3 27 [ksoftirqd/0] TS 19 0
root 5 27 [kworker/0:0H] TS 39 -20
root 7 27 [rcu_sched] TS 19 0
root 8 2 ? [rcu_bh] TS 19 0
root 9 27 [migration/0] FF 139 -
root 10 27 [watchdog/0] FF 139 -

[output truncated]

root 21936 2

? [kworker/ul6:1] TS 19 0
root 21942 1128 ? sshd: sarwar [priv] TS 19 0
sarwar 21944 17 /T1ib/systemd/systemd --user TS 19 0
sarwar 21946 21944 ? (sd-pam) TS 19 0
sarwar 21960 21942 ? sshd: sarwar@pts/0 TS 19 0
sarwar 21961 21960 pts/0 -bash TS 19 0
sarwar 21982 21961 pts/0 ps -ax --format uname,pid,p TS 19 O
root 22407 1 ttyl /bin/login -- TS 19 0
root 22876 27 [kworker/6:0] TS 19 0

$

The /sbin/init splash command was run to create systemd, which has a priority of 19 and is in the
class TS (SCHED_OTHER). Systemd is a collection of system management daemons, utilities, and
libraries that serve as a replacement of the classical init daemon, initially designed for System V UNIX.
It is the parent of all user-level processes and daemons. The same is true for the process kthreadd, the
kernel thread daemon. Note that all the processes belonging to sarwar have priority value have the same
class and priority as that of systemd. For more information on systemd, its service-starting capabilities,
and how it allocates resources in unit files, see Chapter 20.

246 Linux

The chrt command sets or retrieves the RT scheduling attributes of a running process or runs a com-
mand with the specified attributes. You can set or retrieve both the scheduling policy and priority of a
process. The default scheduling policy used by Linux is SCHED_OTHER (or SCHED_NORMAL).
When run without any argument, chrt displays a brief summary of how it can be used, as shown in the
following session.

$ chrt
Show or change the real-time scheduling attributes of a process.

Set policy:
chrt [options] <priority> <command> [<arg>...]
chrt [options] -p <priority> <pid>

Get policy:
chrt [options] -p <pid>

Policy options:

-b, --batch set policy to SCHED_BATCH

-f, --fifo set policy to SCHED_FIFO

-i, --idle set policy to SCHED_IDLE

-0, --other set policy to SCHED_OTHER

-r, --rr set policy to SCHED_RR (default)

Scheduling flag:
-R, --reset-on-fork set SCHED_RESET_ON_FORK for FIFO or RR

Other options:

-a, --all-tasks operate on all the tasks (threads) for a given pid
-m, --max show min and max valid priorities

-p, --pid operate on existing given pid

-v, --verbose display status information

-h, --help display this help and exit

-V, --version output version information and exit

For more details see chrt(l).
$

The output of the chrt -m command shows that SCHED_OTHER/SCHED_NORMAL, SCHED_
BATCH, SCHED_IDLE polices only allow for priority 0, while that of SCHED_FIFO and SCHED_RR
can range from 1 to 99.

$ chrt -m

SCHED_OTHER min/max priority : 0/0
SCHED_FIFO min/max priority : 1/99
SCHED_RR min/max priority : 1/99

SCHED_BATCH min/max priority : 0/0
SCHED_IDLE min/max priority : 0/0
$

In the following session, we use the ps command to display the status of current processes, including
bash with PID 27223. The chrt -p 27223 command displays the RT scheduling attributes of bash. The
attributes are current scheduling policy and current priority of the process.

$ ps

PID TTY TIME CMD
27223 pts/0 00:00:00 bash
27330 pts/0 00:00:00 ps

Processes 247

$ chrt -p 27223

pid 27223's current scheduling policy: SCHED_OTHER
pid 27223's current scheduling priority: 0

$

The first command in the following session is used to change the scheduling policy of bash from
SCHED_OTHER to SCHED_BATCH. The second command displays the new scheduling policy as
SCHED_BATCH and scheduling priority as 0.

$ chrt -b -p 0 27223

$ chrt -p 27223

pid 27223's current scheduling policy: SCHED_BATCH
pid 27223's current scheduling priority: 0

$

The man page for sched on your Linux system describes the API for CPU scheduling.
In the following in-chapter exercises, you will use the ps command with and without options to gain
an appreciation of the command output.

Exercise 10.7
Use the ps command to display the status of processes that are running in your current session.
Can you identify your login shell? What is it?

Exercise 10.8
Run the command to display the status of all the processes running on your system. What com-
mand did you run? What are their PIDs? What are the PIDs of the parents of all the processes?

Exercise 10.9
Replicate the earlier sessions involving the chrt command on your Linux system to verify that
it works as expected.

10.5.3 Dynamic Display of Process Attributes

At times, you want to identify runaway processes or processes for a particular user that aren’t advancing
(i.e., stuck processes). The Linux top command allows you to perform these tasks by reporting the CPU
activity and attributes of processes in real time. It displays the status of the most CPU-intensive processes
on the system, by default, in terms of the following process attributes displayed from left to right:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

where PID is the process ID number, USER is the effective username of the owner, PR is the process
priority, NI is the process nice value, VIRT is the size of the process in virtual memory, SHR is the
amount of shared memory available to the process, RES is the resident part of the process (i.e., current
size of the process in the main memory), S is the process status, %CPU is the percentage of CPU time
used by a process, %MEM is the amount of memory used by the process, TIME+ is the amount of time
a process has executed for, and COMMAND is the command name used to invoke the process. To see
a more complete alphabetical list of process attributes that can be displayed, see the man page for top
on your system.

The top command continues to run until you press <g> or <Q>, and keeps updating the status every
second or so. The periodic update time can be specified through a command line option when the top
command is executed or through an interactive command while top runs. The number of processes
whose status is displayed depends on the size of the display screen or window size on a Graphical User
Interface (GUI)-based system. On smart displays or windows, it is usually 15-30 lines, one per process.

The command also displays several other important system statistics in a short header, comprising
five to eight lines, displayed before the statistics of the processes and/or threads. The header information

248 Linux

TABLE 10.6

Headers of the top Command for Linux Mint

top - 14:07:29 up 30 days, 21:30, 1 user, Tload average: 0.50, 0.36, 0.31
Tasks: 250 total, 1 running, 248 sleeping, 0 stopped, 1 zombie

%Cpu(s): 7.0 us, 3.9 sy, 0.0 ni, 88.9 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st

KiB Mem : 5981672 total, 833348 free, 975496 used, 4172828 buff/cache
KiB Swap: 6157308 total, 6155404 free, 1904 used. 4641868 avail Mem

depends on the Linux variant on which the command runs. The information in the header can include
load average, time (days+hours:minutes:seconds) the system has been up and running, current time,
number of processes on the system, number of processes sleeping, number of zombie processes, CPU
utilization (percentages of idle time, user time, kernel/system time, and interrupt-handling time), utiliza-
tion of user area in the main memory (total and free), and swap space (total and free). Table 10.6 gives a
listing of top command header information for Linux Mint.

Most of the features of the top command can be selected by an interactive keystroke command while
top runs. The following syntax box gives common command line options, and Table 10.7 gives a brief
description of the top command’s interactive keystrokes.

Syntax:
top [options]

Purpose: Display and periodically update information about processes currently running on the
system

Output: The various attributes of processes currently running on the system, periodically updated
Commonly used options/features:

-H Display statistics for each thread of a multithreaded process, one line per
thread

-i Do not display idle processes

-p Monitor only processes with specified PIDs.

-s Display/toggle system processes.

-u username Display statistics for only those processes belonging to username

-o field Sort display by field, a header of a column in output in lowercase—for
example, cpu, pri, res, or time

-s Starts top with secure mode forced, even for root.

-C Display full command line for each process or just command name.

The options -H, -i, -p, -s, and -c are really toggles.

In the following text, we show example sessions of the top command output. The following is a run of
the command without any options. The command output shows that the system has been up and running
for 82 days without crashing. Further, 178 processes are currently in the system, with one running, 177
sleeping, and zero stopped or in the zombie state. The systemd process, owned by root, is PID 1. The
rcu_sched process, PID 7, has used 112 h and 59.23 s of the CPU time that it and its dead children have
used. You can appreciate other values in the header and attributes of the processes by using Table 10.8. If
you observe the command output for a little while, you will notice that the processes move up and down
as their priorities change. Similarly, the statistics in the header are also updated periodically. Also notice
that pid 1 is listed as systemd, the program name of that process, not the path to the command. We can
use the c interactive top command on our Linux Mint system to toggle the display of the COMMAND
column to show the paths to the commands that execute the processes.

Processes 249

TABLE 10.7

Brief Description of Some of the Interactive Keystroke Commands of top

Command Meaning

H Display/toggle the threads statistics on separate lines

S Display/toggle system processes

AL Redraw screen

h or ? Display summary of interactive keystrokes

k Kill processes whose space-separated PID-list is specified

n or # Change the number of processes to display

ooro0O Other-filtering—You will be prompted for the selection criteria which then determines which tasks will be

shown in the “current” window

R Change the nice value of a list of processes specified as space-separated PIDs

S Change periodic update time (in seconds)

t Toggle the display of top process

z Switches the “current” window between your last used color scheme and the older form of black-on-white.

TABLE 10.8

Default Fields of the Output of the top Command with Brief Descriptions

Field Description

%CPU CPU usage—The task’s share of the elapsed CPU time since the last screen update, expressed as a
percentage of total CPU time

%MEM Memory usage (RES)—A task’s currently used share of available physical memory

COMMAND Command name or command line—Display the command line used to start a task or the name of the
associated program

NI Nice value—The nice value of the task. A negative nice value means higher priority, whereas a positive nice
value means lower priority

PID Process id—The task's unique PID, which periodically wraps, though never restarting at zero

PR Priority—The scheduling priority of the task

RES Resident memory size (KiB)—The nonswapped physical memory a task is using

S Process status—The status of the task which can be one of the following:

D = uninterruptible sleep, R = running, S = sleeping, T = stopped by job control signal, t = stopped by
debugger during trace, Z = zombie

SHR The amount of VIRT memory that is shareable

TIME+ CPU time, hundredths—The same as TIME, but reflecting more granularity through hundredths of a second
USER User name—The effective user name of the task owner

VIRT Virtual memory size (KiB)—The total amount of virtual memory used by the task. It includes all code, data,

and shared libraries plus pages that have been swapped out and pages that have been mapped but not used

$ top

top - 21:17:44 up 82 days, 2:25, 3 users, Tload average: 0.37, 0.28, 0.29
Tasks: 178 total, 1 running, 177 sleeping, 0 stopped, 0 zombie

%Cpu(s): 7.7 us, 0.2 sy, 0.0 ni, 92.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 8079236 total, 2255528 free, 231152 used, 5592556 buff/cache

KiB Swap: 8292348 total, 8206680 free, 85668 used. 7063932 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
24303 root 20 0 123204 7532 6392 S 0.7 0.1 0:00.06 sshd
24302 sarwar 20 0 42116 3780 3160 R 0.3 0.0 0:00.04 top
1 root 20 0 119836 4664 2976 S 0.0 0.1 1:42.38 systemd
2 root 20 O 0 0 0S 0.0 0.0 0:00.81 kthreadd
3 root 20 0 0 0 0S 0.0 0.0 0:13.36 ksoftirqd/0
5 root 0 -20 0 0 0S 0.0 0.0 0:00.00 kworker/0:+
7 root 20 0 0 0 0S 0.0 0.0 113:00.38 rcu_sched

250 Linux

8 root 20 O 0 0 0S 0.0 0.0 0:00.00 rcu_bh

9 root rt O 0 0 0S 0.0 0.0 0:00.80 migration/0
10 root rt O 0 0 0S 0.0 0.0 0:21.12 watchdog/0

11 root re 0 0 0 0S 0.0 0.0 0:20.72 watchdog/1

12 root rt 0 0 0 0S 0.0 0.0 0:00.71 migration/1
13 root 20 O 0 0 0S 0.0 0.0 0:32.22 ksoftirqd/1
15 root 0 -20 0 0 0S 0.0 0.0 0:00.00 kworker/1:+
16 root rt 0 0 0 0S 0.0 0.0 0:35.27 watchdog/?2

17 root rt O 0 0 0S 0.0 0.0 0:03.94 migration/2
18 root 20 O 0 0 0S 0.0 0.0 3:53.88 ksoftirqd/2

[Output truncated]

$

10.5.3.1 Top Interactive Keystroke Commands

You can interact with top while it runs by using various interactive keystrokes. You can press h to display
the various keystrokes that allow you to interact with top to modify the information it displays. When
you use an interactive command, top prompts you with one or more questions related to the chore that
you want it to perform. For instance, when you press n, top prompts you for the number of processes
to display. You input the number and hit the <Enter> key for top to start displaying information about
the said number of processes. Similarly, if you want to terminate a process, press k and top prompts
you for the PID of the process to be terminated. You input the PID of the process to be terminated and
hit <Enter> for top to terminate the process. So, if you want to display the RT status of the processes
owned by the user sarwar, you press u and enter the login name of the user. The following output shows
the monitoring of sarwar’s processes.

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
24302 sarwar 20 0 42116 3800 3160 R 0.3 0.0 0:00.60 top
23923 sarwar 20 0 45224 5172 4288 S 0.0 0.1 0:00.00 systemd
23927 sarwar 20 0 180020 2176 12 S 0.0 0.0 0:00.00 (sd-pam)
23941 sarwar 20 0 124552 4572 3368 S 0.0 0.1 0:00.08 sshd
23942 sarwar 20 0 23160 5376 3232 S 0.0 0.1 0:00.04 bash

You can use the interactive keystrokes listed in Table 10.7 to observe various effects on the command
display. A more complete listing of interactive keystroke commands is given on the man page for top on
your system.

Exercise 10.10
Try the previous sessions for the top command on your system. How many processes are run-
ning on your system? What are the priority and nice values for the highest priority process?
How would you toggle the display in the COMMAND column between showing the pathnames
to the commands that execute the processes, and the actual program name? What is pid 1 on
your system, and what does the display of the command that runs it, /sbin/init splash, mean?

|
10.6 Process and Job Control

Linux is responsible for several activities related to process and job management, including process creation,
process termination, running processes in the foreground and background, suspending and resuming pro-

cesses, and switching processes from foreground to background and vice versa. As a Linux user, you can
request the process and job control tasks by using the shell commands discussed in this section.

10.6.1 Foreground and Background Processes and Related Commands

When you type a command and hit <Enter>, the shell executes the command and returns by displaying
the shell prompt. While your command executes, you do not have access to your shell and therefore cannot

Processes 251

execute any commands (i.e., continue work) until the current command finishes and the shell returns.
When commands execute in this manner, we say that they execute in the foreground. By default, every
process runs in the foreground, taking input from the keyboard and sending output to the display screen.

Linux allows you to run a command so that, while the command executes, you get the shell prompt
back and can submit other commands. This capability is called running the command in the background.
You can run a command in the background by ending the command with an ampersand (&). Of course,
in a graphical environment, you can run a command in one terminal window in the foreground, open
another terminal window, and use the shell in the new terminal window. However, this activity takes
time and consumes additional system resources.

Background processes run at lower priorities compared with their foreground counterparts. Thus, they
get to use the CPU only when no higher priority process needs it. When a background process generates
output that is sent to the display screen, the screen looks garbled, but if you are simultaneously using
another application, your work is not altered in any way. You can get out of the application and then get
back into it to obtain a cleaner screen. Some applications such as vim allow you to redraw the screen
without quitting it. In vim (see Chapter 3), pressing <Ctr1+L> in Command mode allows you to do so.

The syntaxes for executing commands in the foreground and background are as follows. Note that no
space is needed between the command and & but that you can use space for clarity.

Syntax:
command (for foreground execution)
command & (for background execution)

Now consider the following command executed under the Bash shell. It searches the whole file struc-
ture for a file called 4plot (which exists on our system) and stores the pathnames of the directories that
contain this file in the file 4plot.paths. The error messages are sent to the file /dev/null, which is the
Linux black hole: whatever goes in never comes out. Note that, for the C shell, 2> should be replaced with
>&. This command may take several minutes, perhaps hours, depending on the size of the file structure,
system load (in terms of the number of users logged on), and the number of processes running on the
system. So if you want to do some other work on the system while the command executes, you cannot do
so because the command executes in the foreground.

$ find / -name 4plot -print > 4plot.paths 2> /dev/null
$

The find command is a perfect candidate for background execution because, while it runs, you have
access to the shell and can do other work. Thus, the preceding command should be executed as follows:

$ find / -name 4plot -print > 4plot.paths 2> /dev/null &
[1] 26472
$

The number shown in brackets is returned by the shell and is the job number (also called job ID) for the
process; the other number is the PID of the process. Here, the job number for the find command is 1 and
the PID is 26,472. A job is a process that is not running in the foreground and is accessible only at the
terminal with which it is associated. Such processes typically run in the back or are suspended processes.

The commands that perform tasks that do not involve user intervention and take a long time to finish are
good candidates for background execution. Some examples are sorting large files (sort command), com-
piling large programs (cc, gcc, CC, make, etc.), computationally intensive programs such as one that deter-
mines whether a large integer number is prime and searching a large file structure for one or more files
(find command). Commands that do terminal I/O, such as the vim editor, are, of course, not good candi-
dates for background execution. The reason is that, when such a command executes in the background, it
stops accepting input from the keyboard. The command needs to be brought back to the foreground before
it can start running again. The fg command allows you to bring a background process to the foreground.

252 Linux

While running a command in the foreground, you might need to suspend it in order to go back to the shell,
do something under the shell, and then return to the suspended process. For example, say that you are in the
middle of editing a C program file with vim and need to compile the program to determine whether some
errors have been corrected. You can save changes to the file, suspend vim, compile the program to view the
results of the compilation, and return to vim. You can suspend a foreground process by pressing <Ctr1+Z>,
move a suspended process to the foreground by using the fg command, and move a suspended process to the
background by using the bg command. So you can suspend vim by pressing <Ctr1+Z>, compile the program
to identify any other errors, and resume the suspended vim session by using the fg command.

Syntax:
fg [%jobid]
bg [%jobid-Tist]

Purpose: Syntax 1: Resume execution of the process with job number jobid in the foreground or
move background processes to the foreground; a jobid starts with %
Syntax 2: Resume execution of suspended processes/jobs with job numbers in jobid-Tist in
the background; a jobid starts with %

Commonly used options/features:
% or %+ Current job

%- Previous job

%N Job number n

%Name Job beginning with name
%?Nname Command containing Nname

If there are multiple suspended processes, the fg command without an argument brings the current
process into the foreground, and the bg command without an argument resumes execution of the current
process in the background. The job using the CPU at any particular time is called the current job.

You can use the jobs command to display the job numbers of all suspended (stopped) and background
processes and identify which one is the current process. The current process is identified by a + and the previ-
ous process by a - in the output of the jobs command. The following is a brief description of the command.

Syntax:
jobs [option] [%jobid-list]

Purpose: Display the status of the suspended and background processes specified in jobid-Tist;
with no list, display the status of current job

Commonly used option/feature:
-1 Also display PIDs of jobs

In the following sessions, we show the use of the fg, bg, <Ctr1+Z>, and jobs commands. It is assumed
here that the example file bigdata is very large and takes a long time to sort and copy! Otherwise, your
commands and the processes they generate don’t live long enough to show up as running processes
unless they comprise of infinite loops such as a C program like int main() { for(;); }

We run the sort and cp commands in the background. The jobID and PID pairs of these processes are
[1] 60149 and [2] 60156 for the sort and cp commands, respectively. The sort bigdata command is in
the currently running process/job, as shown in the output of the jobs and jobs -1 commands, as well
as the R state of the process in the output of the ps command. The cp bigdata bigdatal command has
been swapped on the disk, as indicated by the D state of the process in the output of the ps command.

$ sort bigdata > bigdata.sorted &
[1] 60149
$ cp bigdata bigdatal &

Processes 253

[2] 60156
$ ps
PID TT TIME COMMAND
56222 1 0:00.67 bash (bash)
60149 1 0:07.94 sort bigdata
60156 1 0:00.00 bash (bash)
60157 1 0:00.34 cp bigdata bigdatal
60164 1 0:00.00 ps
$ jobs
[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdatal
$ jobs -1
[1] + 60149 Running sort bigdata > bigdata.sorted
[2] - 60156 Running cp bigdata bigdatal
$

In the following session, the first fg command brings the current job into the foreground. The fg %2
command brings job number 2 into the foreground. A string that uniquely identifies a job can also be
used in place of a job number. The string is enclosed in double quotes if it has spaces in it. The third
fg command illustrates this convention. The jobs -1 command, as expected, shows both jobs as sus-
pended. The output of the ps command shows the state of the cp bigdata bigdatal command as TW,
which means that the process has been suspended and swapped out to disk temporarily. We use the bg
%1 %2 command to start the background execution of the two suspended processes. We later confirm
this status by using the jobs command, which shows both processes as running, with the sort process
currently using the CPU. We also show that the bg command without argument puts the current (or the
only suspended) process into the background. The ps -p 60149 command shows that the sort process
is in the running state and has been in the system for 11 min and 3.78 s.

$ fg
sort bigdata > bigdata.sorted
<Ctrl1+Z>
Suspended
$ fg %2
cp bigdata bigdatal
<Ctrl1+Z>
Suspended
$ fg %"sort"
sort bigdata > bigdata.sorted
<Ctrl+Z>
Suspended
$ jobs -1
[1] + 60149 Suspended sort bigdata > bigdata.sorted
[2] - 60156 Suspended cp bigdata bigdatal
$ ps
PID TT TIME COMMAND
56222 1 0:00.96 bash (csh)
60149 1 0:29.29 sort bigdata
60156 1 0:00.00 bash (csh)
60157 1 0:00.00 cp bigdata bigdatal
61261 1 R+ 0:00.02 ps
$ bg %1 %2

[1] sort bigdata > bigdata.sorted &

[2] cp bigdata bigdatal &

$ jobs

[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdatal

$ fg %1

sort bigdata > bigdata.sorted

<Ctrl1+Z>

Suspended

$ bg

254 Linux

[1] sort bigdata > bigdata.sorted &

$ jobs
[1] + Running sort bigdata > bigdata.sorted
[2] - Running cp bigdata bigdatal
$ ps -p 60149
PID TT TIME COMMAND
60149 2 11:03.78 sort bigdata
$

As discussed earlier in this section, we discuss the following session as an additional example to explain
the working of the fg and <Ctr1+Z> commands. The gcc -o Tab8 lab8.c command is used to compile
the C program in the Tab8.c file and put the executable in a file called 1ab8. Understanding what compila-
tion means is not the point here, and a fuller discussion of the syntax and semantics of the gcc command
is presented in Chapter 15. Here, we are merely emphasizing that processes that take a long time to start
or those that have executed for a considerable amount of time are usually good candidates for processes
to be suspended. The example of suspending the vim command is presented only as an illustration. This
sequence of events is shown in the following session. Note that the output of the ps command after vim has
been suspended shows the status of vim as T, which means that this process has been suspended/stopped.

$ ps

PID TT TIME COMMAND

587 1 0:00.17 bash (bash)

616 1 0:00.00 ps

$ vim Tab8.c

#include <stdio.h>

#define SIZE 100

int main (int argc, char *argv[])

{

<Ctrl+Z>
Suspended
$ ps
PID TT TIME COMMAND
587 1 0:00.41 bash (bash)
812 1 0:00.13 vim lab8.c
1035 1 0:00.02 ps
$ gcc -o 1ab8 T1ab8.c
$ fg %1
#include <stdio.h>
#define SIZE 100
main (int argc, char *argv[])
{
:q!
$

In the following in-chapter exercise, you will practice the creation and management of foreground and
background processes by using the bg, fg, and jobs commands.

Exercise 10.11
Run the sessions presented in this section on your system to practice foreground and background
process creation and switching processes from the foreground to the background (with the bg
command) and vice versa (with the fg command). Use the jobs command to display the job
IDs of the active and suspended processes.

Processes 255

10.6.2 Linux Daemons

Although any process running in the background can be called a daemon, in Linux jargon a daemon
is a system process running in the background. Daemons are frequently used in Linux to offer various
types of services to users or running software and handle system administration tasks. For example,
printing, logging, e-mail, Web browsing, remote login via Secure Shell, file transfer, interaction through
social networking sites, and finger services are provided via daemons. Printing services are provided via
systemd by the printer daemon cupsd. Finger services (see Chapter 11) are handled by the finger daemon
fingerd, if that service has been started and enabled at system boot. The traditional inetd daemon, the
Linux Internet superserver, has been replaced by the NetworkManager daemon running as a service
under systemd. More information on systemd daemons and services can be found in Chapter 20.

10.6.3 Sequential and Parallel Execution of Commands

You can type multiple commands on one command line for the sequential and/or parallel execution of
these commands. The following is a brief description of the syntax for sequential execution of commands
specified in one command line.

Syntax:
cmdl; cmd2; ..; cmdN
Purpose: Execute commands cmdl, cmd2, .., cmdN sequentially as separate processes

Note that the semicolon is used as a command separator and, therefore, does not follow the last command.
No spaces are needed before and after a semicolon, but you can use spaces for clarity. These commands
execute one after the other, as though each were typed on a separate line. In the following session, the
date and echo commands execute sequentially as separate processes.

$ date; echo Hello, World!
Wed Oct 11 22:16:05 PKT 2017
Hello, World!

$

You can specify parallel execution of commands in a command line by ending each command with an
ampersand (&). The commands that end with an ampersand also execute in the background. No spaces
are required before or after &, but you can use spaces for clarity. When you execute a command in the
background, the shell displays the following pair as output: [jobID] PID, where the first job ID is 1,
increasing linearly by adding one to the last-used job ID. Like PIDs, a job ID may be recycled if it has
not been assigned to a process currently. The following is a brief description of the syntax for parallel
execution of shell commands specified in one command line.

Syntax:
cmdl& cmd2& .. cmdN&
Purpose: Execute commands cmdl, cmd2, .., cmdN in parallel as separate processes

The following sessions were executed under Bash. The date and echo commands execute in parallel and
in the background, followed by the sequential execution of the uname and who commands in the fore-
ground. In general, since the who command executes at the end, its output is always displayed at the end.
The outputs of the other three commands (date, echo, and uname) may be displayed in any order. This
order is due to the scheduling of processes and the amount of time each takes to execute. Thus, the same
output order may or may not be reproduced if you execute the command line again. In the following

256 Linux

session, the outputs are displayed in the order echo, date, uname, and who. The job and PIDs for the date
and echo commands are [1] 32429 and [2] 32430, respectively.

$ date& echo Hello, World\!& uname; who
[1] 32429

[2] 32430

Hello, World!

Fri Jul 7 20:16:28 PDT 2017

Linux

[1]- Done date

[2]+ Done echo Hello, World\!
bob tty8 2017-06-20 14:14 (:0)

$

The last & in a command line puts all the commands since the previous & in one process. In the following
command line session, therefore, the date command executes as one process and all the commands in
who; whoami; uname; echo Hello, World!& as another process.

As shown in the following session, the job ID and PID pair for the two processes are [1] 32445 and [1]
32449, respectively. Note that the job ID for each of the two jobs is 1. Further, the PIDs for the two pro-
cesses are nonconsecutive. Finally, as shown in the shaded regions of the session, since the shell prompt
returns after the two processes (jobs) have been created but before any or some output has been displayed
on the screen, we have to hit the <Enter> key to display the shell prompt again.

$ date & who; whoami; uname; echo Hello, World\! &
[1] 32445

Fri Jul 7 20:22:28 PDT 2017

bob tty8 2017-06-20 14:14 (:0)

[1]+ Done date

bob

Linux

[1] 32449

Hello, World!

$ <Enter>
[1]+ Done echo Hello, World\!
$

As will be discussed briefly in Chapter 12, Linux allows you to group commands and execute them as
one process by separating commands using semicolons and enclosing them in parentheses. This is called
command grouping. Because all the commands in a command group execute as a single process, they
are executed by the same subshell. However, all the commands execute sequentially, one after the other.
The following is a brief description of the syntax for command grouping.

Syntax:
(cmdl; cmd2; ..; cmdN)
Purpose: Execute commands cmdl, cmd2, .., cmdN sequentially, but as one process

In the following Bash session, therefore, the date and echo commands execute sequentially, but as one
process.

$ (date; echo Hello, World\!)
Fri Jul 7 20:38:21 PDT 2017
Hello, World!

$

You can combine command grouping with sequential execution by separating command groups with
other commands or command groups. In the following session, the date and echo commands execute as
one process, followed by the who command executing as a separate process.

Processes 257

$ (date; echo Hello, World\!); who

Fri Jul 7 20:40:54 PDT 2017

Hello, World!

bob tty8 2017-06-20 14:14 (:0)
$

Command groups can be nested. Hence, ((date; echo Hello, World!); who) and ((date; echo Hello,
World!); (who; uname)) are valid commands and produce the expected results. Command grouping
makes more sense when groups are executed as separate processes, as shown in the following session.

$ (date ; echo Hello, World\!)&

[1] 446

$ Fri Jul 7 20:42:28 PDT 2017

Hello, World!

<Enter>

[1]+ Done (date; echo Hello, World\!)
$ (date; echo Hello, World)& (who; uname)& whoami

[1] 453

[2] 454

bob

bob@bob-sbc-f1tl ~ $ bob tty8 2017-06-20 14:14 (:0)
Fri Jul 7 20:44:48 PDT 2017

Hello, World

Linux

[1]- Done (date; echo Hello, World)
[2]+ Done (who; uname)

<Enter>

[2] Done (who; uname)

$

In the second group of commands, (date; echo Hello, World) and (who; uname) execute in the back-
ground and the whoami command executes in the foreground; all three commands execute in parallel.
Again, the order of output is dependent on the scheduling of these commands.

In the following in-chapter exercises, you will practice sequential and parallel execution of Linux
commands.

Exercise 10.12
Run the sessions presented in this section on your system to practice sequential and parallel
execution of shell commands.

Exercise 10.13
Which of the following commands run sequentially and which run in parallel? How many of
the processes run in parallel? (who; date) & (cat temp; uname & whoami)

10.6.4 Abnormal Termination of Commands and Processes

When you run a command, it terminates normally after successfully completing its task. A command
(process) can terminate prematurely because of a bad argument that you passed to it, such as a directory
argument as source file to the cp command, or because of a run-time error. At times, you might also need
to terminate a process abnormally. The need for abnormal termination arises when you run a process
with a legal but wrong argument (e.g., a wrong file name to the find command) or when a command
is taking too long to finish, perhaps, due to an infinite loop. Here, we address abnormal termination in
relation to both foreground and background processes.

You can terminate a foreground process by pressing <Ctr1+C> or using the ki1l command from another
shell. You can terminate a background process in one of two ways: (1) by using the ki11 command or (2)
by first bringing the process into the foreground by using the fg command and then pressing <Ctr1+C>.
The primary purpose of the ki1l command is to send a signal (also known as a software interrupt) to

258 Linux

a process. The Linux operating system uses a signal to get the attention of a process. You can send any
one of the several signal types supported by your Linux system to a process that you own or you have the
permission to do so. A process can take one of the three actions upon receiving a signal:

1. Accept the default action as determined by the Linux kernel
2. Ignore the signal
3. Intercept the signal and take a user-defined action

For most signals, the default action, in addition to some other events, always results in termination of the
process. Ignoring a signal does not have any impact on the process. A user-defined action is specified as
a program statement (usually a function call) that takes control to a specific piece of code in the process.
In a shell script, you can specify these actions by using the trap command in the Bash shell. The C
shell provides a limited handling of signals via the onintr command. In a C program, you can specify
these actions by using the library call signal. We discuss the trap command in detail in Chapter 13.
We describe the signal(2) system call in detail in Chapter 17. For more details, view its manual page by
using the man signal or man -S3 signal commands.

Signals can be generated for various reasons. The processes themselves cause some of these reasons,
whereas others are external to processes. A signal caused by an event internal to a process is known as
an internal signal or a trap (not to be confused with the trap command in the Bash shell). For example,
the execution of a divide-by-zero instruction in a process generates a trap. A signal caused by an event
external to a process or a hardware device in the computer system is called an external signal. If an
external signal is for a hardware device such as a CPU or disk controller, it is called a hardware interrupt
or interrupt. An external event meant to get attention of one or more processes is known as a software
interrupt or signal in the Linux jargon. For example, an internal signal is generated for a process when
the process tries to execute a nonexisting instruction or access a memory region that it is not allowed to
access, such as memory belonging to some other process or the Linux kernel. You can generate an exter-
nal signal by pressing <Ctr1+C>, by logging out, or by using the ki11 command. The ki1l command can
be used to send any type of signal to a process. The following is a brief description of the ki11 command.

Syntax:
kill [-s signal_name] proc-list
kill [-signal_name] proc-list
kill [-signal_number] proc-list
ki1l -1 [exit_status]

Purpose: Syntaxes 1-3: Send the signal for signal_number or symbolic signal_name to pro-
cesses whose PIDs or jobIDs are specified in space-separated proc-1list; jobIDs must start
with %.

Syntax 4: The command ki1l -1 returns a list of all the signals along with their numbers
and names. The operand exit_status specifies a signal number or the exit status of a ter-
minated or completed process.

Commonly used options/features:

1 HUP (Hang-up)

2 INT (Interrupt: <Ctrl+C>)

3 QUIT (Quit: <Ctrl+\>)

6 ABRT (Abort)

9 KILL (Sure kill: Nonignorable, noninterceptable)
14 ALRM (Alarm clock)

15 TERM (Software termination: the default signal number)

You can use the ki1l -1 (number one) command to send the default signal to all of your processes.
Only a superuser can send a signal to the processes belonging to other users. Thus, a superuser can
use this command to send signals to all the processes running on the system. You can use the ki1l -1

Processes 259

(lowercase L) command to display the signals supported by your Linux system. Linux Mint supports
64 signal types, as shown in the following session. You can use the man signal command to verify for
yourself. The syntax box shows details of some of the more commonly used signals.

$ ki1l -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3

38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7

58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

$

Table 10.9 shows some examples of the ki1l command and their meanings.

The hang-up signal is generated when you log out, the interrupt signal is generated when you press
<Ctr1+C>, and the quit signal is generated when you press <Ctrl+\>. The ki1l command sends signal
number 15 to the process whose PID is specified as an argument. The default action for this signal is
termination of the process that receives it. This signal can be intercepted and ignored by a process, as can
most of the other signals. To terminate a process that ignores signal 15 or other signals, signal number 9,
known as sure kill, has to be sent to it. The ki11 command terminates all the processes whose PIDs are
given in the proc-Tlist, provided that these processes belong to the user who is using ki11. The follow-
ing session presents some instances of how the ki11 command can be used. But don’t kill the login shell
process because it will log you out.

$ jobs -1

[1] + 14338 Running sort bigdata > bigdata.sorted
[2] - 14667 Running cp biggerdata biggerdata.bak
[3] 14668 Running grep sh biggerdata > Tines.sh

$ kill 14668
$ kill -2 14667

[3] Terminated grep sh biggerdata > Tines.sh

$ ki1l -9 14338

[2] Interrupt cp biggerdata biggerdata.bak

$ jobs

[1] KiTTled sort bigdata > bigdata.sorted

$ jobs

$

TABLE 10.9

Some Examples of the ki1l Command and Their Meanings

Command Meaning

kill 1234 Send the default signal (SIGTERM) to the process with PID 1234
ki1l -9 1234 Send SIGKILL (guaranteed termination signal) to the process with PID 1234

kill -s kill 1234

kill -s KILL 1234

kill -9 1234 -1004 Send SIGKILL (guaranteed termination signal) to the process with PID 1234 and to
ki1l -s ki1l 1234 -1004 all the processes with process group ID (PGID) 1004

kill -s KILL 1234 -1004

kill -TERM -1004 Send SIGTEM to all the processes with process group ID 1004

kill -- -1004

260 Linux

In the first case, the kill command sends signal number 15 to a process with PID 14668. In the second
case, signal number 2 (SIGINT) is sent to a process with PID 14667. In both cases, because the speci-
fied signal numbers are not intercepted, the processes are terminated. The ki11 command can be used
to terminate a number of processes with one command line. For example, the command ki1l -9 13586
20581 terminates processes with PIDs 13586 and 20581.

Process ID 0 can be used to refer to all the processes created during the current login. Thus, the ki1l
-9 0 command terminates all processes resulting from the current login, as shown in the following
session. Note that the command has terminated all the processes resulting from sarwar’s current login
session, including the process that maintains the Secure Shell login connection with the client. That is
why you see the prompt of the local machine, a terminal window running Bash on a MacBook Pro under
Mac OS X (Darwin), MacBook-Pro:~ syedsarwars$. This has serious consequences because the order
in which ki11 terminates processes is not known in this case. Thus, if the login shell and the process that
maintains the Secure Shell connection with the client machine are terminated first, then the processes
executing under the login shell continue to run. You would notice this when you login again and realize
that the ssh command is taking longer than usual to establish the connection with the remote machine,
and once you are connected and have a login shell running, system response time is poor. The ps com-
mand would show that your background processes from the previous login are still running, as shown
in the following session in the shaded portions. Note that the statuses of these “leftover” processes are D
(swapped out) and DL (swapped out and locked), and they are not associated with any terminal (note the
negative terminal numbers). You need to terminate these processes to improve the system response time,
as shown in the last line of the session.

$ ps -U sarwar
PID TT STAT TIME COMMAND

15361 - S 0:00.01 sshd: sarwar@pts/1 (sshd)
15368 1 Ss 0:00.07 -csh (csh)

15424 1 D 0:07.05 sort bigdata

15437 1 D 0:00.60 cp biggerdata biggerdata.bak
15456 1 D 0:01.31 grep sh biggerdata

15521 1 R+ 0:00.00 ps -U sarwar

15158 2- DL 1:58.99 sort bigdata

$ ki1l -9 0

Connection to 192.102.169.10 closed.

MacBook-Pro:~ syedsarwar$ ssh sarwar@l92.102.169.10

Password for sarwar@pcbsd-srv:

Last login: Sun Oct 5 10:17:45 2014 from 139.15.192.135

FreeBSD 10.0-RELEASE-p6 (GENERIC) #0 acf484b(releng/10.0): Mon Feb 24 15:14:38 EST
2014

Welcome to FreeBSD!

$ ps
PID TT TIME COMMAND
15424 1- 0:23.56 sort bigdata
15437 1- 0:09.15 cp biggerdata biggerdata.bak
15456 1- 0:21.06 grep sh biggerdata
15158 2- 1:59.38 sort bigdata
15866 3 0:00.06 bash (bash)
15913 3 0:00.00 ps
$ ki1l 15158 15424 15437 15456
$

The ki1l command also works with job numbers. Hence, the following command can be used to terminate
a process with job number 1. You can terminate multiple processes by specifying their job numbers in the
command line. For example, ki1l -9 %1 %3 can be used to terminate processes with job numbers 1 and 3.

$ kill -9 %1
[1] + Killed find / -name foo -print > foo.paths &
$

Processes 261

When you log out, all the processes running in your session get a hang-up signal (signal number 1) and are
terminated per the default action. If you want processes to continue to run even after you have logged out,
you need to execute them so that they ignore the hang-up signal when they receive it. You can use the Linux
command nohup to accomplish this task. The following is a brief description of the syntax for this command.

Syntax:
nohup command [args]

Purpose: Execute command and ignore the hang-up signal

You need to use the nohup command for processes that take a long time to finish, such as a program
sorting a large file containing hundreds of thousands of customer records. Obviously, you would run this
type of program in the background so that it runs at a lower priority. The following is a simple illustration
of the use of the nohup command. Here, the find command runs in the background and is not terminated
when you log out or send it signal number 1 (hang-up) via the ki1l command. If output of the command
is not redirected, it is appended to the nohup.out file by default.

$ nohup find / -name foo -print 1> foo.paths 2> /dev/null &

[1] 62808

$ ki1l -1 62808

$ jobs

[11+ Running nohup find / -name foo -print > foo.paths 2> /dev/null &
$ ki1l 62808

$ <Enter>

[1]+ Terminated nohup find / -name foo -print > foo.paths 2> /dev/null

$ jobs

$

If you separate commands with semicolons, you can run them with nohup. In the following session,
GenData generates some data and puts it in a file called employees, and the sort command sorts the file
and stores the sorted version in the employees.sorted file.

$ nohup GenData > employees ; sort employees > employees.sorted &
[2] 15931
$

In the following in-chapter exercises, you will use the ki1l command to practice abnormal termination
of processes, and the nohup and ps -a commands to appreciate how you can run processes that do not
terminate when you log out.

Exercise 10.14
Give a command for terminating processes with PID 10974 and jobID 3.

Exercise 10.15
Run the first of the nohup commands, use ps to verify that the command is executing, log out,
log in again, and use the ps -a command to determine whether the find command is running.

10.7 Linux Start-Up, Login, and Process Hierarchy

When you turn on the power to your Linux computer system, there are basically two operations that are
performed to make your computer behave in the way that you normally would expect it to. As detailed
in Chapter 17, these two operations are booting and start-up. We are concerned here with the start-up
operation, particularly with the creation of processes in user space, or user-side processes. We are also
concerned with systemd as the controlling process during the start-up phase, and how processes are
arranged and controlled in a hierarchical fashion by systemd during the entire time the computer is
powered on.

262 Linux

TABLE 10.10

Some of the Key Linux System Processes

Process Purpose

systemd Granddaddy of all user processes; all user-level services, including all Internet services, and
user processes run under the children of this process

kthreadd Kernel thread daemon

agetty Creates and controls tty’s

NetworkManager Manages your network devices and connections, attempting to keep active network
connectivity when available

mdm Mint Display Manager, controls desktop environment

cupsd Linux print daemon, manages printers and printing

systemd-journal Logging mechanism for systemd

As a part of the start-up operation, the Linux kernel is extracted from the boot medium and put into a
working configuration. After performing some checks and other housekeeping tasks, the kernel then cre-
ates the first kernel space, or kernel side, process from scratch. In Linux, this process is called swapper
or scheduler. This process, which has no parent, has PID 0. The PPID of this process is also 0. This first
process then spawns several other kernel-side processes, which are intended to handle several important
kernel tasks, including tasks related to virtual memory, file handling, interrupt handling, and performing
various tasks in the continuing boot sequence, such as initializing hardware ports. To see a brief listing
and description of key Linux processes, see Table 10.10.

As start-up continues, in all major branches of Linux, systemd is the first user-side process that is cre-
ated. systemd is the granddaddy of all subsequent user processes that are created, so long as the system is
up and running. The systemd process has a PID of 1 and runs with superuser privileges. Configurations
in the /etc/systemd/system directory guides the initialization through various “target” states, depend-
ing upon whether the system is being used as a server or a desktop computer, for example. To see an
illustration of the steps systemd goes through when it brings a Linux system up to nominal performance,
see Section 18.2.

10.7.1 Linux Login and agetty

In terms of a user space interactive session, the process that is of critical importance during the start-up
procedure is agetty, traditionally named getty in a legacy UNIX or Linux system. You can use any of the
three methods to connect to a Linux system: through a GUI or Character User Interface (CUI), or via ssh
(or a similar command for remote login). Whatever method you use to connect to a Linux machine, when
you log on to the Linux system, the system creates the first process for you, and that is called your login
shell. The login shell interprets/executes your commands by creating processes for all the commands
that you execute (see Section 10.3 for details of command execution).

If you log in through a GUI, the display manager handles the details of agetty process generation.
On Mint Linux, this is mdm. If you log in using a CUI method, agetty goes through the following steps
to handle your login. At the Togin: prompt, when you type your login name and press <Enter>, the
agetty process forks a child. The child process executes the exec system call to become a login process,
with your login name as its parameter. The login process prompts you for your password and checks
the validity of your login name and password. If it finds both to be correct, the login process execs to
become your login shell. If the login process does not find your login name in the /etc/passwd file or
finds that the password that you entered does not match the one in the /etc/passwd file, it displays an
error message and terminates. Control goes back to the agetty process, which redisplays the login:
prompt. Once in your login shell, you can do your work and terminate the shell by pressing <Ctrl+D>,
typing logout, and then pressing <Enter>, or running the exit command. When you do so, the shell
process terminates and control goes back to the agetty process, which displays the login: prompt, and
life goes on.

Processes 263

When you log in to a remote server via an sshd daemon, you run the ssh command on your machine.
The sshd daemon on the remote machine creates a child process, your private sshd, that handles com-
munication with your client. The server sshd goes back and looks for more ssh connection requests from
other clients. Your private sshd spawns another sshd process that overwrites itself with a pseudoterminal,
which prompts you for the password. When you enter the correct password, it runs the login shell process
for you. By default, the default login shell is Bash on a remote Linux machine. You run your commands
under your login shell. When you press <Ctrl+D>, type logout, and then press <Enter>, or run the exit
command, your login shell terminates along with your private sshd daemon.

10.7.2 Process Lifetime and pstree

Two Linux processes that exist throughout the running time of a powered-on system are scheduler and
systemd. The agetty process, which monitors various forms of terminal lines, must live for as long as
a terminal is attached to the system. Your login shell process lives for as long as you are logged on. All
other processes are usually short lived, or are running for as long as a command, utility, or service must
execute. Many of the services and their processes that are shown in the following sessions are essential
for normal system operation. Of course, depending upon the use cases that your Linux system is designed
for, many of the other services and their processes run continuously.

You can use the pstree command on a Linux system to display the process tree of the currently
running processes on the system in a graphical form, showing the parent—child relationships. You can
display the process tree for a process or for a user. For more information on the pstree command, see
its man page on your system.

To view the process tree for a user named bob, the following session illustrates the hierarchical graphi-
cal form:

$ pstree -a bob
sshd
L—bash
Lpstree -a bob

systemd --user
L—(sd-pam)

In the following sessions, we use the pstree command to show our system’s process hierarchy for Linux
Mint graphical.target (GUI) and also multi-user.target (CUI) systems. The outputs show that the grand-
daddy of all user processes is, as expected, the systemd process. Notice that four agetty processes are
running on our system in the graphical.target state.

$ pstree
systemd——ModemManager {gdbus}
—[{gmai n}
—NetworkManager dnsmasq
{gdbus}
{gmain}
—accounts-daemon {gdbus}
—[{gma‘i n}
—acpid
—4*[agetty]
—avahi-daemon——avahi-daemon
—cgmanager
I—console-kit-dae 62*[{console-kit-dae}]
{gdbus}
{gmain}
—cron
—cups-browsed {gdbus}
—[{gmai n}

264

—2*[dbus-daemon]

—dbus-Taunch

—irgbalance

—1ogin——bash

—1vmetad

—mdm mdm |__Xor‘g 3*[{Xorg}]

{gdbus}
{gmain}
{poo1}
—ntpd
—polkitd {gdbus}
p '—I: g

{gmain}
—rsyslogd {in:imkTog}
-—Ez{in:imuxsock}
{rs:main Q:Reg}
—rtkit-daemon 2*[{rtkit-daemon}]

—2*[systemd——(sd-pam)]
—systemd-journal
—systemd-logind
—systemd-udevd
—thermald——-{thermald}

—ud1isksd {cTeanup}
{gdbus}
{gmain}

{probing-thread}
L—upowerd {gdbus}
-_I:{gmain}

$

mdmwebki t {dconf worker}

12*[{mdmwebkit}]

—sshd sshd sshd bash pstree

Linux

The following pstree command shows our system’s process hierarchy for Linux Mint multi-user.target

output on a CUI system like a server.

$ pstree
systemd—ModemManager—{gdbus}
L—{gmain}
—NetworkManager—dhclient
dnsmasq
{gdbus}
{gmain}
—agetty
—avahi-daemon——avahi-daemon
—cgmanager
—cron
—cups-browsed—i{gdbus}
L{gmain}
—cupsd
—dbus-daemon

—gpg-agent
—irgbalance
—mdadm
—ntpd
—polkitd—{gdbus}
{gmain}
{poo1}
—rsyslogd—-{in:imklog}
{in:imuxsock}
{rs:main Q:Reg}
—sd_cicero—sd_cicero

Processes 265

{sd_cicero}
{threaded-m1}
—sd_dummy—q{sd_dummy}
L_{threaded-m1}
—sd_espeak—3*[{sd_espeak}]
L—{threaded-m1}
—sd_generic—q{sd_generic}
L_{threaded-m1}
—speech-dispatch {speech-dispatch}
—sshd sshd sshd bash pstree
—systemd-journal
—systemd-logind
—systemd-udevd
L—vsftpd

$

Further analysis of the output of the two commands mentioned previously shows that the user is using the
system through an Secure Shell (SSH) session and is currently using Bash to run the pstree command.

10.7.2.1 ps versus pstree

You can use the ps -auf command to display the parent—child relationship between processes. However,
the output for this command is not as complete and fancy as it is for the pstree command, as can be
seen in the following session. The ps -uf command displays the process hierarchy for the current user.

$ ps -auf

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

sarwar 29016 0.0 0.0 23160 5400 pts/0 Ss 07:38 0:00 -bash

sarwar 29127 0.0 0.0 37680 3340 pts/0 R+ 07:47 0:00 _ ps -auf
root 10096 5.9 6.0 888264 490852 tty7 Ss1+ Jul25 6817:12 /usr/1ib/xorg/
root 5015 0.0 0.0 16256 0 tty2 Ss+ Jul24 0:00 /sbin/agetty --
root 22407 0.0 0.0 104912 3692 ttyl Ss Jul24 0:00 /bin/login --
root 12694 0.0 0.0 23160 5152 ttyl S+ Jul25 0:00 _ -bash

root 3191 0.0 0.0 16256 0 ttyS5s Ss+ Jul2l 0:00 /sbin/agetty --
root 3187 0.0 0.0 16256 0 tty4 Ss+ Jul2l 0:00 /sbin/agetty --
root 3180 0.0 0.0 16256 0 tty3 Ss+ Jul2l 0:00 /sbin/agetty --
$ ps -uf

USER PID %CPU %MEM VSZz RSS TTY STAT START TIME COMMAND

sarwar 29016 0.0 0.0 23160 5400 pts/0 Ss 07:38 0:00 -bash

sarwar 29130 0.0 0.0 37680 3388 pts/0 R+ 07:48 0:00 _ ps -uf

$

You can run the ps -af1x | more command to display information about all the processes running
on your system and some of their important attributes, including PID, PPID, priority, nice value, virtual
size, size currently in main memory, status, event waiting for, and full command name used to start the
process.

Exercise 10.16
Run the pstree, ps -auf, and ps -uf commands on your system. Show outputs of these com-
mands. Identify the process on your system that take the highest percentage of CPU time. Also
identify the process that uses highest percentage of main memory. Clearly state the amount of
virtual memory and physical memory this process is using.

10.8 The proc Filesystem

It is instructive to know how to look at, assess, and even change characteristics of the RT operation of the
Linux kernel. For example, seeing what processes are running, and what characteristics these processes

266 Linux

have, and then taking actions based upon these observations. A key component of this interaction is the
Iproc filesystem, often referred to simply as proc. Here we give a brief overview of proc, and show how
an understanding of it contributes to helping you in assessing the tasks that Linux manages on your com-
puter. Those tasks are traditionally, and very commonly, referred to as processes and threads.

The proc filesystem was historically derived from the Plan 9 distributed operating system, developed
at Bell Labs between the mid-1980s to 2002. This operating system was designed based on most of the
principles of UNIX. It glues almost all computing resources, including files, network interfaces, and
peripheral devices, through the file system. proc makes it easy for an ordinary user to gain access to
kernel data structures, memory allocation, and information about processes on the system. The Linux
version of the ps command directly accesses proc to show information about processes on the system.
The proc filesystem is mounted at /proc, which gives you the ability to navigate through its hierarchy
with the cd command.

The /proc directory structure on our Linux Mint system includes subdirectories for all running pro-
cesses and other attendant facilities. For all processes on the system, there is a directory named /proc/
PID, where PID is the process ID number for any particular process. In that directory, there are numer-
ous files and subdirectories with information about that process. For example, directory 1 is for systemd
(PID 1). In the following session, we show commands that gave information about the systemd process.

$ cd /proc

$ 1s

1 13 22659 29157 49 847 bus misc

10 15 22662 29158 5 85 cgroups moduTes
100 16 2280 3 50 86 cmdline mounts
10083 17 22825 30 5015 87 consoles mtrr

10096 177 23 31 51 88 cpuinfo net

101 179 2306 315 52 884 crypto pagetypeinfo
10110 18 25 317 53 89 devices partitions
[Output truncated]

$cdl

$ 1s

1s: cannot read symbolic 1link 'cwd': Permission denied
1s: cannot read symbolic 1link 'root': Permission denied

T1s: cannot read symbolic Tink 'exe': Permission denied

attr cpuset Timits net projid_map stat
autogroup cwd loginuid ns root statm
auxv environ map_files numa_maps sched status
cgroup exe maps oom_adj schedstat syscall
clear_refs fd mem oom_score sessionid task
cmdline fdinfo mountinfo oom_score_adj setgroups timers
comm gid_map mounts pagemap smaps uid_map
coredump_filter 1o mountstats personality stack wchan

$ sudo 1s -la exe

password for bob: xxxxx

Trwxrwxrwx 1 root root 0 Jul 24 09:03 exe -> /Tib/systemd/systemd

$ 1s -1 /1ib/systemd/systemd

-rwxr-xr-x 1 root root 1573136 Apr 12 2016 /Tib/systemd/systemd

$ file /1ib/systemd/systemd

/1ib/systemd/systemd: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically Tinked, interpreter /1ib64/1d-Tinux-x86-64.s0.2, for GNU/Linux 2.6.32,
BuildID[shal]=80c38f5ef6fd5a367d6b043d91b43blldcee91fb, stripped

$ more cmdline

/sbin/init

$ 1s -al cmdline

-r--r--r-- 1 root root 0 Jul 25 02:15 cmdline

$

The 1s command in the preceding session shows the subdirectories of proc for our purposes here,
the running process “numbered” directories. Changing to the 1 directory (the systemd directory), we
use the 1s command to see the contents of this directory and find out that we have cwd, root, and exe files.

Processes 267

The exe file is a symbolic link to the /1ib/systemd/systemd file that contains the executable program
that creates systemd. If you have superuser privileges, you can use the su 1s -Ta exe command to verify
this information. We then use the 1s -1a command to find the command line file that originally starts
the systemd process. Using the more command to examine the contents of the cmd1ine file, we see it as
a symbolic link to /sbin/init splash, the command that begins the execution of the systemd program.

In addition, there are numerous other subdirectories and files in /proc, which can be queried by
Python for example, to extract kernel-related and other values from. Some of those are seen in the out-
puts of the commands in the previous session. For more in-depth information on the /proc filesystem,
and the files and directories in /proc/PID, for example, see the man page for procfs on your Linux sys-
tem. For more information on systemd, see Chapter 18.

Exercise 10.17
Replicate the Bash sessions discussed in this section on your system. Do the commands produce
expected outputs? How are outputs of the various commands different on your system?

Summary

A process is a program in execution. Being a time-sharing system, Linux allows execution of multiple
processes simultaneously. On a computer system with one CPU, processes are executed concurrently by
scheduling the CPU time and giving it to each process for a short time called a quantum. Each process
is assigned a priority by the Linux system, and when the CPU is available, it is given to the process with
the highest priority.

The shell executes commands by creating child processes using the fork and exec system calls. When
a process uses the fork system call, the Linux kernel creates an exact main memory image of the pro-
cess. The shell itself executes an internal command. An external binary command is executed by the
child shell overwriting itself by the code of the command via an exec call. For an external command
comprising a shell script, the child shell executes the commands in the script file one by one.

Every Linux process has several attributes, including PID, PPID, process name, process state (running,
suspended, swapped, zombie, etc.), the terminal the process was executed on, the length of time the
process has run, and process priority. The ps command may be used to view a static display of these
attributes. The top command may be used to view a dynamic display of the various system statistics
and attributes of the processes running on the system, and permit interactive commands via various
keystrokes.

Linux processes can be run in the background or the foreground. A foreground process controls the
terminal until it finishes, so the shell cannot be used for anything else while a foreground process runs.
When a process runs in the background, it returns the shell prompt so that the user can do other work
as the process executes. Because a background process runs at a lower priority, a command that takes a
long time is a good candidate for background execution. The background system processes that provide
various services are called daemons. A set of commands can be run in a group as separate processes or
as one process. Multiple commands can be run from one command line as separate processes by using
a semicolon (;) as the command separator; enclosed in parentheses, these commands can be executed
as one process. Commands can be executed concurrently by using an ampersand (&) as the command
separator.

Suspending processes, moving them from the foreground to the background and vice versa, having
the ability to display their status, interrupting them via signals, and terminating them are all known as
job control, and Linux has a set of commands that allow these actions. Foreground processes can be
suspended and moved to the background pressing <Ctrl1+Z> followed by executing the bg command.
Suspended and background processes can be moved to the foreground by using the fg command.
Commands that are suspended or run in the background are also known as jobs. The jobs command can
be used to view the status of all your jobs. You can press <Ctr1+C> to terminate a foreground process.

The ki1l command can terminate a process with its PID or job ID. The command can be used to
send various types of signals, or software interrupts, to processes. Upon receipt of any signal except one,

268 Linux

a process can take the default (kernel-defined) action, take a user-defined action, or ignore it. No process
can ignore the ki1l -9 command, the sure kill signal, which was put in place by the Linux designers to
make sure that every process running on a system could be terminated. Commands executed with the
nohup command keep running even after a user logs out. The ki1l -9 0 command is the sure kill for
all the processes associated with the current login of a user.

When you power up your Linux system, the operations of booting and start-up begin the process of
bringing your computer to a state that you would normally expect it to be in when you work with it.
When the Linux kernel takes over during the start-up phase, the systemd superkernel is the first userland
process that is started. The agetty program handles console or terminal connections that allow you to
interact with the system.

You can use the pstree command on a system running Bash to display tree structures for your or
some other user’s processes. With the -a option, the output displayed contains a line for the granddaddy
systemd process. The ps -auxfd command displays the complete hierarchy of all the processes on the
system and the ps -d command displays the process hierarchy for a particular user.

A key component of the user interaction possible between kernel space and user space is the /proc
filesystem, often referred to simply as proc. We gave a brief overview of proc, and showed how an under-
standing of it contributes to helping you in assessing the tasks that the Linux kernel and its components
manage on your computer.

We present some comparisons that can allow you to know what the difference is, if any, between a
process and a thread, in the context of tasks in Linux. Several of these comparisons are cross-referenced
to sections in this chapter, as well as to other chapters and sections in the book.

Questions and Problems

1. What is a process? What is the PID of a process?

2. What is CPU scheduling? How does a time-sharing system run multiple processes on a
computer system with a single CPU? Be brief but precise.

3. What is a quantum? What is the default value of a quantum on your Linux machine? Where did
you find this information? What is the quantum value on your system for RT processes?

4. Name three famous CPU-scheduling algorithms. Which are parts of the Linux scheduling
algorithm?

5. What is a time-sharing system? What is a batch system?

6. What are the main states that a process can be in? What does each state indicate about the status
of the process?

7. What is the difference between built-in (internal) and external shell commands?

8. How does a Linux shell execute built-in and external commands? Explain your answer with an
example.

9. Name ten process attributes.
10. What is the purpose of the nice command in Linux?

11. What are foreground and background processes in Linux? How do you run shell commands as
foreground and background processes? Give an example for each.

12. In Linux jargon, what is a daemon? Give examples of five daemons.

13. What are signals in Linux? Give three examples of signals. What are the possible actions that
a process can take upon receiving a signal? Write commands for sending these signals to a
process with PID 10289.

14. Give a command that displays the status of all running processes on your system.
15. Give a command that returns the total number of processes running on your system.

16. Compute the priority number of a Linux process with a recent CPU usage of 31, a threshold
priority of 60, and a nice value of 20. Show your work.

Processes 269

17. What command line will you use to display all the processes running under the SCHED_FIFO
priority policy class? Show the results of running the command on your system. What com-
mand will you use to display the total number of processes running under the SCHED_OTHER
priority policy class?

18. What is the most important SCHED_OTHER process?

19. Give the sequence of steps (with commands) for terminating a background process.

20. Create a zombie process on your Linux system. Use the ps command to show the process and
its state.

21. The ps -auxw or ps auxw command is one of the most useful commands. What does it
display? Explain your answer.

22. Give two commands to run the date command after 10 s. Make use of the sleep command;
read the relevant manual page to find out how to use it.

23. Run a command that would remind you to leave for lunch after an hour by displaying the
message Time for Lunch!

24. Give a command for running the find and sort commands in parallel.
25. Give an example of a Linux process that does not terminate with <Ctrl+C>.

26. Run the following commands on one command line so that they do not terminate when you log
out. What command did you use?
find / -inum 23476 -print > all.links.hard 2> /dev/null
find / -name foo -print > foo.paths 2> /dev/null

27. Run the following sequence of commands under your shell. What are the outputs of the three
pwd commands? Why are the outputs of the last two pwd commands different?

pwd

sh

cd /usr
pwd

A A A

<Ctrl1+D>
pwd

A

28. What are the names of processes with PIDs 0, 1, 2, and 3 on your Linux system? How did you
get the answer to the question? Show your work.

29. Suppose you are running various programs in a session—ssh, vim, etc.—and the terminal
locks up or the remote login program crashes, causing you to be disconnected from the host. Or,
perhaps your keyboard or mouse suddenly stops working. Explain how you could log in from
another physical terminal and use a sequence of Linux commands to recover from the situation.
Give the sequence of Linux commands you would use.

30. What command would you use to display the hierarchical structure of processes on your
system? What is the name of the process with PID 0? How many children does this process
have and what are their names? What is the pathname of the executable for the systemd process
(not its symbolic link!)?

31. Write commands for displaying the number of threads in the kthreadd process (the grand-
mother of all kernel threads) and the systemd process (the granddaddy of all user processes).
How long has the kernel process been running on your system? What command(s) did you use
to find this out?

32. The ps -U root,bin,goldman,ibraheem command displays the default status of all the pro-
cesses belonging to the users root, bin, goldman, and ibraheem. However, the output does not
show the logname of the process owner. Write down the Linux command, along with a sample
run on your machine that would display the username for each process.

270 Linux

33. Make a process “map” of your system using the pstree command. How does it differ from the
two maps of multi-user.target and graphical.target Linux systems we present in Section 10.7.2?
To what extent is your map the same as either of our maps? What daemons and services are
running on your system, which are not running on ours, and vice versa?

34. In the output of the command ps ax --format uname,pid,ppid,tty,cmd,cls,pri,nice,
you will notice that almost all processes have the same priority value (19 on our Linux Mint
system). This includes all of the important one, such as systemd and kthreadd. Explain why
they are all the same, and why they all have such a low priority.

35. Present a ps command with modifiers that would show the output columns for PID, Command
Name, Thread Group, and Task ID, for any particular user’s processes on your Linux system.

36. What do the following commands display?

a. ps H
b. psm
c. ps j
d. ps 1
e. ps av
f. ps ax
g ps -L
h. ps -P

37. Give commands to

a. Display processes with the number of LWPs (i.e., threads) in each process.

b. Display the number of the processor on which an LWP is bound, i.e., executed on.

c. Display processes, except session leaders, i.e., login shells for user processes and parent for
the kernel processes.

d. Display the tree structure for processes in ASCII

e. Display a list of processes associated with a pst/1

f. Display information about processes with a list of PIDs

38. Run the top command on your system. What are the priority and nice values of the highest
priority process? Run commands to have top display information about the top-10 processes
and refresh its output every 7 s. What commands did you use?

39. As you monitor the top session, display processes for the user john. What command did you
use? Show your work.

40. Use the pstree command to display the tree structure for the processes running in your current
session. What command did you use? Which process is the grandparent of all your processes
and what is its PID? What command will you use to display the tree hierarchy for the processes
that the user kent has run on your system?

41. What does /proc contain? What do directories /proc/1 through /proc/10 contain? Which
command starts the systemd program? Where is it located?

Advanced Questions and Problems

42. How many processes are currently running on your system? What states are they in? Write the
names and function of each of the processes on your system with PIDs 1-10. What is the prior-
ity of each of these processes? Which of them are RT processes? Show details of your work,
including any commands that you ran along with their outputs.

43. Table 10.8 shows the default fields in the output of the top command with brief descriptions.
There are around 30 more output fields for the top command that you can display with various
options. List each of these fields and what they mean.

Processes 271

44. In Section 10.5.1, the ulimit -s command displays the virtual stack size for a process to be
8 MB. This seems an awfully large stack size for a process. Browse the Web and/or use other
resources to explain how a Linux process uses stack.

45. Browse the Web and/or use other resources to report the stack size of a pthread and stack size of
a kernel process thread. If these stack sizes are different from the stack size of a Linux process,
explain why that is.

46. What is contained in the /proc subdirectory for the kthreadd process on your Linux system?
Using the online chapter resource at this book’s GitHub site for Python, write some simple
Python script files that not only search for interesting strings in the kthreadd process’s files in
the subdirectory of /proc, but also query and search for interesting string information in the
files contained in other subdirectories of /proc on your Linux system.

47. Explain the similarities and differences between a process capability and the namespace the
process executes in. Formulate your answer in terms of an overall execution environment
and security model, for both a bare-metal installation in a host machine environment, and
as applied in a Virtual Machine (VM) environment. That VM environment could be either
Virtualbox, LXD containers, or Docker. Which component(s) of the kernel-provided functions
of concurrency, virtualization, and persistence do capabilities and namespaces implement and
impact most strongly? How and why?

48. With respect to system initialization with systemd on your Linux system, what is contained in
all the target.wants directories in /etc/systemd/system?

49. Referring to Chapter W27, Sections 5.1.8.2-5.1.8.10, at the book website, answer the following
with respect to system initialization with systemd-:

a. What systemctl subcommand lists all target unit statuses?
b. What systemctl subcommand would allow you to see the targets that are currently active?
c. How would you bring the system to any new target state?

Projects
Project 1

To extend your knowledge and understanding of Linux process state, execution, and security, read and
do the exercises presented (as much as possible in the following order) in Chapter 10, Sections 5 and 6,
and Chapter 17, Section 9.6. In addition, read and do the exercises presented in Chapter W26, Sections
9.8.2-9.9 (particularly Examples W26.27 and W26.28) at the book website.

Looking for more? Visit our sites for additional readings, recommended resources, and exercises.

CRC Press e-Resource: https://www.crcpress.com/9781138710085

Authors’ GitHub: https://github.com/bobk48/linuxthetextbook

https://www.crcpress.com/9781138710085
https://github.com/bobk48/linuxthetextbook

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://www.taylorandfrancis.com

11

Networking and Internetworking

OBJECTIVES

* To describe networks and internetworks and explain why they are used

* To briefly discuss the Transmission Control Protocol/Internet Protocol (TCP/IP) suite, IP
addresses, protocol ports, and Internet services and applications

» To explain what the client—server software model is and how it works

* To discuss various network software tools for electronic communication, remote login, file
transfer, remote command execution, tracing a route in the Internet, and status reporting

¢ To describe in detail the Secure Shell and other secure commands
* To cover the following commands and primitives:

finger, ftp, ip, host, nslookup, ping, scp, sftp, ssh, talk, telnet, traceroute

.|
11.1 Introduction

The history of computer networking and Internet dates back to the late 1960s, when the Department
of Defense’s Advanced Research Projects Agency (ARPA) started funding networking research.
This research resulted in a wide area network, called Advanced Research Projects Agency Network
(ARPANET), by the late 1970s, with five nodes—University of California at Los Angeles (UCLA),
Stanford, UC Santa Barbara, University of Utah, and Bolt, Beranek, and Newman (BBN) Technologies.
In 1982, a prototype Internet that used Transmission Control Protocol/Internet Protocol (TCP/IP)
became operational and was utilized by a few academic institutions, industrial research organizations,
and the US military. By early 1983, all US military sites connected to ARPANET were on the Internet,
and computers on the Internet numbered 562. By 1986, this number had more than quadrupled to 2,308.
From then on, the size of the Internet doubled every year for the next 10years, until it served about 9.5
million computers by 1996. The first Web browser, called Mosaic, was developed at the National Center
for Supercomputer Applications (NCSA) and launched in 1991. As a result, World Wide Web (shortened
to the www, or just the Web) browsing surpassed File Transfer Protocol (FTP) as the major use of the
Internet by 1995. The first website, info.cern.ch, was launched on August 6, 1991. Since the first edition
of this book was written, the social networking sites have had a major impact on the use of the Internet.
Facebook, Flickr, YouTube, Reddit, Twitter, Tumblr, Dropbox, Instagram, and Pinterest were born dur-
ing this period of time. As of the writing of this book, Facebook and Twitter have over 2 billion and over
320 million active users, respectively, generating over 5 billion likes and 670 million tweets per day, and
Google+ and Pinterest have over 550 million and 295 million active users.

The Internet has grown from less than 1% of world population in 1995 to over 51% of the world popu-
lation. Today, the Internet serves around 3.9 billion users and has over 1.01 billion hosts, around 1.27
billion websites live on the Internet, over 1 yottabyte (10?* bytes) of data resides on the Internet, over
1.2 billion domain names are in use, over 220 billion e-mails are sent every day, over 5.4 billion Google
searches are made daily, more than 6.1 billion YouTube videos are watched every day, about 70 million
photos are uploaded on Instagram daily, over 240 million Skype calls are made every day, and over 259
of 263 countries, colonies or territories, and disputed territories in the world provide Internet access.

273

http://info.cern.ch

274 Linux

It is projected that, by 2020, over 60% (5 billion) of the planet’s population will be connected by the
Internet. Linux has a special place in the world of networking in general and internetworking in particu-
lar, because most of the networking protocols were initially implemented on UNIX and Linux platforms.
Also, server processes running on Linux-based computers provide most of the Internet services.

11.2 Computer Networks and Internetworks

When two or more computer hardware resources (computers, printers, scanners, plotters, etc.) are
connected, they form a computer network. A hardware resource on a network or an internetwork is usu-
ally referred to as a host. Figure 11.1a shows a schematic diagram of a network with six hosts, H1-H6.

Computer networks are categorized as local area networks (LANSs), metropolitan area networks
(MANS), and wide area networks (WANS), based on the maximum distance between two hosts on the
network. Networks that connect hosts in a room, building, or buildings of a campus are called LANSs.
The distance between hosts on a LAN can be anywhere from a few meters to about 1km. Networks
that are used to connect hosts within a city, or between small cities, are known as MANs. The distance
between hosts on a MAN is about 1-20km. Networks that are used to connect hosts within a state or
country are known as WANs. WANSs are also known as long-haul networks. The distance between the
hosts on a WAN is in the range of tens of kilometers to a few thousand kilometers.

An internetwork is a network of networks. Internetworks can be used to connect networks within a
campus or networks that are thousands of kilometers apart. The networks in an internetwork are con-
nected to each other via specialized devices called routers or gateways. The Internet is the ubiquitous
internetwork of tens of thousands of networks throughout the world. Figure 11.1b shows an internet-
work of four networks. The four networks, Netl-Net4, are connected via five routers, R1-RS5. Not all
of the networks are directly connected, and two networks can be connected to each other via multiple
routers. In Figure 11.1b, for example, Net2 and Net4 are not directly connected and Net3 and Net4
are connected to each other directly via two routers, R4 and RS. Note that the router R4 also connects
directly Net3 and Netl. Routers such as R4 that can connect more than two networks are known as
multiport routers.

FIGURE 11.1 (a) A network of six hosts; (b) an internetwork of four networks.

Networking and Internetworking 275

11.3 Reasons for Computer Networks and Internetworks

There are numerous reasons for using networks of computers as opposed to stand-alone personal com-
puters, powerful minicomputers, mainframe computers, or supercomputers. The main reasons include
the following:

» Sharing of computing resources: Users of a computer network can share hardware resources
including computers, printers, plotters, and scanners, and software resources such as files (data
and software).

* Network as a communication medium: A network is an inexpensive, fast, and reliable commu-
nication medium between people who live far from each other.

* Cost efficiency: For the same price, you get more computing power with a network of worksta-
tions than with a minicomputer or mainframe computer.

* Less performance degradation: With a single powerful minicomputer, mainframe computer, or
supercomputer, the work comes to a screeching halt if anything goes wrong with the computer,
such as a bit in the main memory going bad. With a network of computers, if one computer
crashes, the remaining computers on the network are still up and running, allowing continua-
tion of work.

11.4 Network Models

Various questions arose in the design and implementation of networks, and these questions dictated the
design of the two best-known network models:

1. The type of physical communication medium, or communication channel, used to connect
hardware resources: It can be a simple RS-232 cable, telephone line, coaxial cable, fiber-optic
cable, microwave link, or satellite link.

2. The topology of the network—that is, the physical arrangement of hosts on a network: Some
commonly used topologies are bus, ring, mesh, and general graph.

3. The set of rules, called protocols, used to allow a host on a network to access the physical
medium before initiating data transmission.

4. The protocols are used for routing application data (e.g., a Web page) from one host to another
in a LAN or from a host in one network to a host in another network in an internetwork.

5. The protocols are used for transportation of data from a process on a host to a process on
another host in a LAN or from a process on a host in one network to a process on a host in
another network in an internetwork.

6. The protocols are used by network-based software to provide specific applications such as ftp.

The two best-known network models are the International Standards Organization’s Open System
Interconnect Reference Model (commonly known as the Open Systems Interconnection (OSI) Seven-
Layer Reference Model) and the TCP/IP Five-Layer Model. The OSI model was proposed in 1981 and
the TCP/IP model in the late 1970s. In March 1982, the U.S. Department of Defense adopted the TCP/IP
model as the standard for all military networks. The TCP/IP model, which has its roots in ARPA, is the
basis of the Internet and is, therefore, also known as the IP model. This model consists of five layers, each
having a specific purpose and a set of protocols associated with it. The diagram in Figure 11.2 shows the
two models, along with an approximate mapping between the two.

Because the TCP/IP model is used in the Internet, this will be our focus. In terms of the six issues
previously listed, the first layer in the TCP/IP model deals with the first two issues, the second layer
deals with the third issue, the third layer deals with the fourth issue, the fourth layer deals with the fifth
issue, and the fifth layer deals with the sixth issue. In terms of their implementation, the first four layers

276 Linux

ISO TCP/IP Task Handled
7 Application
6 Presentation 6 Application User process: Application details
5 Session 5
4 Transport 5 4 Transport
3 Network 4 3 Network
- - Kernel and Hardware:
2 Data Link 3 2 Link Communications details
1 Physical 1and2 1 Device/Physical
ISO TCP/IP

FIGURE 11.2 ISO and TCP/IP layered models, mapping between the two, and the general purpose of a group of layers.

deal with the details of communication between hosts, and the fifth layer deals with the details of the
Internet services provided by various applications. Most of the first layer is handled by hardware (type
of communication medium used, attachments of hosts to the medium, etc.). The network interface card
(NIC) in a host handles the rest of the first layer and the second layer. Layer 2 consists of medium access
control (MAC) addresses, network cards, drivers, and switches. Layers 3 and 4 are fully implemented
in the operating system kernel on most existing systems. The first two layers are network hardware
specific, whereas the remaining layers work independently of the physical network. On newer gigabit
Ethernet interfaces where the processing overhead of the network stack becomes significant, the TCP
offload engine (TOE) technology is used in NIC to offload processing of the TCP/IP stack to the network
controller.

Exercise 11.1
Ask your system administrator: How many hosts are connected on your LAN? What type of
computers are they (PCs or workstations)?
Exercise 11.2
What is the physical medium for your network (coaxial cable, twisted pair, or glass fiber)? Ask
your instructor or system administrator about the topology of your network (bus, ring, etc.).
Exercise 11.3
Ethernet is the most commonly used link-level protocol for LANs. Does your LAN use
Ethernet? If not, what does it use?

11.5 The TCP/IP Suite

Several protocols are associated with various layers in the TCP/IP model. These protocols result in what
is commonly known as the TCP/IP suite, which is illustrated in Figure 11.3. The description of most
of the protocols in the suite is beyond the scope of this textbook, but we briefly describe the purpose
of those that are most relevant to our discussion. As a user, you see the application layer in the form of
applications and utilities that can be executed to invoke various Internet services. Some of the commonly
used applications are for electronic mail, Web browsing, file transfer, and remote login. We discuss some
of the most useful applications in Section 11.8.

11.5.1 TCP and UDP

The purpose of the transport layer is to transport application data from your machine to a remote machine
and vice versa. This delivery service can be a simple, best-effort service that does not guarantee reliable
delivery of the application data or one that guarantees reliable and in-sequence delivery of the applica-
tion data. The User Datagram Protocol (UDP) provides a best-effort delivery service and the TCP offers

Networking and Internetworking 277

g http, telnet, smtp, ftp, traceroute, Aolicati
ping, time, daytiem, etc. ppiication

4 TCP Rew sockets ubP Transport
3 Ipv4 Ipvé ICMP IGMP Network

ARP RARP
2 Link

Ethernet, Token ring,
ATM, etc

1 Device/Physical Device/Physical

FIGURE 11.3 The TCP/IP suite.

completely reliable, in-sequence delivery. The UDP is a connectionless protocol; that is, it simply sends
the application data to the destination without establishing a virtual connection with the destination
before transmitting the data. Hence, the UDP software on the sender host does not “talk” to the UDP
software on the receiver host before sending data. The TCP is a connection-oriented protocol that estab-
lishes a virtual connection between the sender and receiver hosts before transmitting application data,
leading to reliable, error-free, and in-sequence delivery of data. Of course, the overhead for establishing
the connection makes TCP more costly than UDP. Many well-known Internet applications such as ftp
use TCP. Applications where efficiency of data delivery is more important than error-free, in-sequence
delivery, such as video streaming, use UDP. In Internet jargon, a data packet transported by TCP is called
a segment and a data packet transported by UDP is called a datagram.

Because multiple client and server processes might be using TCP and/or UDP at any one time, these
protocols identify every process running on a host by 16-bit positive integers (0-65,535) called port
numbers. Port numbers from 0 to 1,023 are called well-known ports and are controlled by the Internet-
Assigned Numbers Authority (TANA). Well-known services such as http are assigned ports that fall in
the well-known range (excluding 0). Most of these services allow the use of either TCP or UDP, and the
IANA tries to assign the same port number to a given service for both TCP and UDP. For example,
the ssh service is assigned port number 22 and the http (Web) server is assigned port number 80, for
both TCP and UDP. Most clients can run on any port and are assigned a port by the operating system
at the time the client process starts execution. Some well-known clients such as ssh require the use of a
reserved port as part of the client—server authentication protocol. These clients are assigned ports in the
range 513-1,023. Although server processes run forever, client processes for services that are not well
known are assigned ports for as long as they run. Such ports, known as ephemeral ports, are in the range
of 1,024-65,553.

11.5.2 Routing of Application Data: The IP

As mentioned earlier, the network layer is responsible for routing application data to the destination host.
The protocol responsible for this is the IP, which transports TCP segments or UDP datagrams containing
application data in its own packets called IP datagrams. The routing algorithm is connectionless, which
means that IP routing is the best-effort routing and does not guarantee delivery of TCP segments and
UDP datagrams. Applications that need guaranteed delivery use TCP as their transport-level protocol or

278 Linux

have it built into the application itself. There are two versions of IP: the older version is IPv4 and the new
version is IPv6 (commonly known as IPng or Internet Protocol: The Next Generation). In this textbook,
we primarily discuss IPv4. The discussion on the actual routing algorithms used by IP is beyond our
scope here. However, we describe a key component of routing on the Internet—the IP addressing (nam-
ing) scheme to uniquely identify a host on the Internet.

The key to routing is the IP assignment of a unique identification to every host on the Internet. IP
does so by uniquely identifying the network the host is on and then uniquely identifying the host on that
network. The ID, a 32-bit positive integer in IPv4 and a 128-bit positive integer in IPv6, is known as the
host’s IP address. Every IP datagram has the sender’s and the receiver’s IP address in it. The sender’s IP
address allows the receiver to identify and respond to the sender. Hosts and routers perform routing by
examining the destination IP address on an IP datagram.

In IPv4, the IP address is divided into three fields: address class, network ID, and host ID. The address
class field identifies the class of the address and dictates the number of bits used in the network ID and
host ID fields. This scheme results in five address classes: A, B, C, D, and E, with classes A—C being the
most common. Figure 11.4 shows the structures of the five address types. The IP addresses belonging
to classes D and E have special use, and their discussion is beyond the scope of this textbook. A central
authority, the Network Information Center (NIC; www.internic.net), assigns all IP addresses.

The maximum number of networks of classes A—C that can be connected to the Internet is given by the
expression: 2742144221, Here, 7, 14, and 21 are the number of bits used to specify network IDs in class
A~C addresses, respectively. Thus, there are 27 class A networks, 2'* class B networks, and 2?' class C
networks. The sum of these numbers gives a total of 2,113,664 networks. Similarly, the number of bits
used to identify host IDs in the three classes of addresses can be used to get the maximum number of
hosts that can be connected to the Internet. Thus, there are roughly 22* hosts per class A network, 21
hosts per class B network, and 2% hosts per class C network. The sum of all the hosts on the three types
of networks is a total of 3,758,096,400 hosts. The actual numbers of class A—C networks and hosts are
somewhat smaller than numbers shown, due to some special addresses (e.g., broadcast and localhost
addresses). The broadcast addresses are used to address all hosts on a network. A host uses the localhost
address to send a datagram to itself. Hence, an IP datagram with Tocalhost as its destination address is
never put on the network.

To slow down the use of IPv4 addresses and to reduce the growth of routing tables on Internet routers,
the Internet Engineering Task Force IETF; www.ietf.org) introduced Classless Internet-Domain Routing
(CIDR) in 1993. Under CIDR, network address spaces in IPv4 are allocated on any address bit boundary,
not necessarily on 8-bit sections. There are a lot of classless networks on the Internet.

The number of class A addresses is very small, so these addresses are assigned only to very large
commercial organizations, educational institutions, and government agencies, such as US national

git 31 24 23 1615 87 0
Class A: 0 Net ID Host ID

git 31 24 23 1615 87 0
Class B: 1o Net ID Host ID

it 31 24 23 1615 87 0
Class C: 1]1)o Net ID Host ID

it 31 24 23 1615 87 0
Class D: 1]1]zfo Multicast address

git 31 24 23 1615 87 0
Class E: 1]1]1fz]o Reserved for future use

FIGURE 11.4 1Pv4 address classes.

http://www.internic.net
http://www.ietf.org

Networking and Internetworking 279

laboratories, the Massachusetts Institute of Technology (MIT), the University of California at Berkeley,
Bell Labs, and National Aeronautics and Space Administration (NASA). The number of class B
addresses is relatively large, and these addresses are assigned to large commercial organizations and
educational institutions. Hence, corporations such as IBM and Oracle, educational institutions such as
Iowa State University, and numerous other national and international universities have been assigned
class B addresses. The total number of class C addresses is quite large, so these addresses are assigned
to individuals and small- to medium-sized organizations, such as local Internet service providers, small
consulting and software companies, community colleges, and universities.

Although the IPv4 addressing scheme can be used to identify a large number of networks and hosts, it
has not been able to cope with the rapid growth of the Internet. Among the many advantages of IPv6 is
the extremely large number of hosts that can be connected. With the 128-bit address, the maximum num-
ber of hosts on the Internet will increase to roughly 2128, which is greater than 3.4 x 10?8, This number is
roughly 6 x 228 times the present world population. One disadvantage of IPing is that, as the address size
is very large, remembering IPv6 addresses becomes very difficult. However, because most users prefer
to use symbolic names, remembering IPv6 addresses should not present a problem. Also, some compact
notations similar to dotted decimal notation (DDN) have been proposed for IPv6 addresses as well.
Many large companies and academic institutions have been assigned IPv6 addresses, including Google,
IBM, Intel, Microsoft, MIT, UC Berkeley, and Iowa State University. You can use the host command to
find out if an organization has been assigned an IPv6 address, as follows:

$ host stanford.edu

stanford.edu has address 171.67.215.200

stanford.edu has IPv6 address 2607:f6d0:0:925a::ab43:d7c8
stanford.edu mail is handled by 10 mxa-00000d03.gs1b.pphosted.com.
stanford.edu mail is handled by 10 mxb-00000d03.gs1b.pphosted.com.
$

Note that IPv6 addresses are displayed in the colon-hex notation. In this notation, two hexadecimal
digits are used to specify every byte of the address. A colon (:) is inserted between every two bytes—that
is, four hex digits—of an address. If a number between two consecutive colons is not four digits, it repre-
sents the least significant nibbles in a two-byte sequence. For example, 82 in an address in fact is 0082, 0
is 0000, and 10 is 0010. The right most hex number for the two-byte sequence is for the least significant
two bytes of the 128-bit address. Finally, two consecutive colons between the least significant hex num-
ber and previous hex number represent all zeros. The 128-bit IPv6 address of stanford.edu, consisting of
32 nibbles, is therefore represented as follows:

MSD LSD
2[6|of7[f]6|d|ofofofo|o]of2]5]alo]o|o|o]ofofo|olala4][3]d|7]c]8

Most Linux commands and tools have been enhanced to handle IPv6 addresses in the colon-hex nota-
tion, as follows:

$ host 2607:f6d0:0:925a::ab43:d7c8
8.c.7.d.3.4.b.a.0.0.0.0.0.0.0.0.2.5.2.9.0.0.0.0.0.d.6.f.7.0.6.2.ip6.arpa domain
name pointer web.stanford.edu.

$

Here, the hex numbers are shown in the reverse order of significance—that is, least significant hex digit
first. As you can see, the IPv6 address is for thumb.iastate.edu. A more detailed discussion on IPv6
addresses, including the purpose of each byte of the address, is beyond the scope of this book.

11.5.2.1 IPv4 Addresses in Dotted Decimal Notation

Although hosts and routers process IPv4 addresses as 32-bit binary numbers, they are difficult for
people to remember. For this reason, the IPv4 addresses are given in DDN. In this notation, all four

http://stanford.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://00000d03.gslb.pphosted.com.stanford.edu
http://00000d03.gslb.pphosted.com.stanford.edu
http://00000d03.gslb.pphosted.com
http://stanford.edu
http://web.stanford.edu
http://thumb.iastate.edu

280 Linux

bytes of an IPv4 address are written in their decimal equivalents and are separated by dots. Thus, the
32-bit IP address

11000000 01100110 00001010 00010101
is written as

192.102.10.21

in DDN. The ranges of valid IP addresses belonging to the five address classes in DDN are shown in
Table 11.1. Some of the addresses given in the table are special addresses.

The internetwork shown in Figure 11.5 connects four networks via four routers, R1-R4. Netl is a class
A network, Net3 is a class B network, and Net2 and Net4 are class C networks. The way to identify the
class of a network is to look at the leftmost decimal number in the IP address of a host on the network—
in this case, the IP addresses of the routers. Note that the routers are assigned as many IP addresses as
the number of networks they connect. Here, for example, router R1 connects Netl and Net2 and has IP
addresses 121.1.1.1 and 192.102.10.1. Similarly, R3 is assigned three IP addresses, as it interconnects
three networks Netl, Net3, and Net4.

Of the special addresses, 127.0.0.0 (or 127.x.x.x, where x can be any number between 0 and 255), also
known as localhost, is used by a host to send a data packet to itself. It is also commonly used for testing new
applications before they are used on the Internet. Another special address, in which the host ID field is all
Is, is the directed broadcast address. This address is used to send a data packet to all hosts on a network—
that is, for broadcasting on a local network whose host is using the address as a destination address.

11.5.3 Symbolic Names

People prefer to use symbolic names rather than numeric addresses, because names are easier to remem-
ber, especially with the transition of the 128-bit-long numeric addresses in IPv6. Also, symbolic names

TABLE 11.1
IPv4 Address Classes and Valid IP Addresses
Range of Valid IP Addresses

Address Class Lowest Highest

A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 240.0.0.0 247.255.255.255

121.1.2.10

II R1 |' Net2
121.1.1.1 192.102.10.1 192.102.10.2
R2

129.10.1.1

.19. 129.10.1.2
II R4 II Net3
129.220.19.1 129.10.1.3

FIGURE 11.5 An internetwork of four networks with one class A, one class B, and two class C networks.

Networking and Internetworking 281

can remain the same even if numeric addresses change. Like its IP address, the symbolic name of a host
on the Internet must be unique. The Internet allows the use of symbolic names by using a hierarchical
naming scheme. The symbolic names have the format

hostname.domain_name

where domain_name is the symbolic name referring to the site and is assigned by various registrars
whose list is maintained by the NIC. The hostname is assigned and controlled by the site that is allo-
cated the domain_name. The domain_name consists of two (or more) strings separated by a period (.).
The rightmost string in a domain name is called the fop-level domain (TLD). The string to the left of
the rightmost period identifies an organization and can be chosen by the organization and assigned to
it by the NIC. If the string has already been assigned to another organization under the same TLD,
another string is assigned to keep the domain names unique. There are three types of TLDs: special
TLDs, generic TLDs (gTLDs), and country code TLDs (ccTLDs). According to the IANA’s Root Domain
Database (www.iana.org/domains/root/db), 1,776 TLDs have been registered at the time of writing.
Details of these domains are given in Table 11.2.

For the domain names that consist of more than two strings, the remaining strings are assigned by
the organization that owns the domain. Some example domain names are www.infinione.com, stan-
ford.edu, intel.com, whitehouse.gov, uu.net, omsi.org, cs.berkeley.edu, www.cam.ac.uk, amazon.com.jp,
pucit.edu.pk, www.beaverton.k12.org.us, www.abc.tv, www.nato.int, www.darpa.mil, example.info, and
bbc.co.uk. The authorities in a country assign strings to the left of that country’s domain. Figure 11.6
illustrates the domain name hierarchy.

Attaching the name of a host to a domain name with a period between them yields the fully qualified
domain name (FQDN) for the host—for example, cs.stanford.edu, where cs is the name of a host in the
department of computer science at Stanford University. However, FQDNs for the hosts on the Internet do
not always have three parts. Most organizations allow various groups within the organization to choose
the primary names for the hosts that they control and are responsible for. For example, the Department
of Computer Science at Stanford, which uses the primary name cs.stanford.edu, uses www.cs.stanford.
edu as the FQDN for its HTTP server. The School of Business Administration at Duke, which uses the
primary name fuqua.duke.edu, can use the host name www.fuqua.duke.edu for its Web server.

11.5.4 Translating Names to IP Addresses: The Domain Name System

Because Internet software deals with IP addresses and people prefer to use symbolic names, application
software translates symbolic names to equivalent IP addresses. This translation involves the use of a
service provided by the Internet known as the Domain Name System (DNS). The DNS implements
a distributed database of name-to-address mappings. A set of dedicated hosts run server processes
called name servers that take requests from application software (also called the client software; see
Section 11.7) and work together to map domain names to the corresponding IP addresses. Every organi-
zation runs at least one name server, often the Berkeley Internet Name Domain (BIND) program. The
applications use resolver functions such as gethostbyname to invoke the DNS service. The gethostby-
name resolver function maps a hostname (simple or fully qualified) to its IP address, and gethostbyaddr
maps an IP address to its hostname.

An alternative, and old, scheme for using the DNS service is to use a static hosts file, usually /etc/
hosts. This file contains the domain names and their IP addresses, one per line. The following command
displays a sample /etc/hosts file.

$ more /etc/hosts
127.0.0.1 Tlocalhost
127.0.1.1 Mintl8

The following lines are desirable for IPv6 capable hosts
! ip6-localhost ip6-loopback

fe00::0 ip6-Tocalnet

ff00::0 ip6-mcastprefix

http://www.iana.org/domains/root/db
http://www.infinione.com
http://intel.com
http://omsi.org
http://www.cam.ac.uk
http://amazon.com.jp
http://www.abc.tv
http://cs.stanford.edu
http://cs.stanford.edu
http://www.cs.stanford.edu
http://www.cs.stanford.edu
http://fuqua.duke.edu
http://www.fuqua.duke.edu

282

Linux

TABLE 11.2
Top-Level Internet Domains
Top-Level
Domain Type Domain Assigned To/For
Special ARPA Used exclusively for Internet; currently second-e164.arpa, in-addr.arpa, ip6.
arpa, uri.arpa, urn.arpa
Generic ACCOUNTANTS Knob Town, LLC
ACTOR United TLD Holdco, Ltd.
AERO Reserved for members of air transport industry
AIRFORCE United TLD HoldCo, Ltd.
ARMY United TLD HoldCo, Ltd.
ATTORNEY United TLD HoldCo, Ltd.
BEER Top-Level Domain Holdings Limited
BIKE Grand Hollow, LLC
BIZ Reserved for businesses
BUILDERS Atomic Madison, LLC
CAREERS Wild Corner, LLC
CHRISTMAS Uniregistry, Corp.
CHURCH Holly Fields, LLC
COM Reserved for commercial organizations
COOP Reserved for cooperative associations
EDU Reserved for U.S. postsecondary educational institutions that are accredited
by an agency on the U.S. Department of Education’s list of Nationally
Recognized Accrediting Agencies
GOV Reserved for the U.S. government
INFO First unrestricted TLD since .com, so it can be used by anyone—businesses,
marketers, and so on
INT Reserved for organizations established by treaties between governments
MIL Reserved for the U.S. military
MUSEUM Reserved for museums
NAME Reserved for individuals
NET Intended for internet service providers (ISPs) and telephone service providers
ORG Intended for noncommercial communities but all are eligible to register
PRO Restricted to credentialed professionals (this domain is being established)
ZIP Charleston Road Registry, Inc.
ZONE Outer Falls, LLC
Country Code AU Australia
DE Germany (Deutschland)
FI Finland
JP Japan
PK Pakistan
UK United Kingdom
usS United States

ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

$

There are two problems with this scheme. First, its implementation depends on how the system adminis-
trator configures the system. Second, owing to the sheer size of the Internet and its current rate of growth,

the static file can be extremely large.

http://since.com
http://since.com

Networking and Internetworking 283

ORORO,
OROX0R0

beavton

FIGURE 11.6 A portion of the Internet domain name hierarchy.

You can use the ifconfig command to view and set network interface parameters, including the
IP address, localhost, netmask, broadcast address, and maximum transmission unit (MTU). However,
this command is not maintained anymore and has been replaced with more contemporary ip command
in most modern Linux systems. It can be used for doing post-install network configuration of network
interface parameters as well as see their current settings. You can do with the ip command all that you
can do with the ifconfig command and more. In this section, we show few sample runs of the ip com-
mand for viewing the various interface parameters. We give extensive information and examples of the
use of the ip command for checking and setting network interface parameters in Chapter 17, Section 8.2.

Netmask, also known as subnetmask, is a bit mask used by TCP/IP to identify whether a host is on
a remote network or on a local subnet. A broadcast address is used by the IP layer in a host to send a
datagram to all the hosts on a subnet or to a remote network. The Ethernet broadcast address is all 1s.
The MTU in a TCP/IP network is the maximum size of an IP datagram (packet) and is dependent on the
technology used at the data link layer for connection to other hosts.

The following is an example run of ip on our Linux Mint machine. The output of the ip addr show
(or ip a s) command shows that you are logged on to a host that has localhost interface and net-
work interfaces enp2s0 and enol, each having IPv4 and IPv6 addresses. For IPv4, localhost is 127.0.0.1,
with MTU 65,536 bytes. For IPv6, localhost is ::1/128. The IPv4 network addresses are 202.147.169.195
and 172.16.0.101; each with MTU 1,500 bytes, and broadcast IP addresses 202.147.169.223 and
172.16.255.255, respectively. Further, the IP address 202.147.169.195 is associated with MAC address
00:10:18:30:ee:6e. For IPv6, network IP addresses for external traffic are fe80::67ab:4f1a:21fa:fOf5 and
fe80::e352:b2f4:9833:ceb0, respectively, for enp2s0 and enol.

$ 1ip addr show
1: To: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
glen 1
Tink/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid_1ft forever preferred_1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_1ft forever
2: enp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group
default qlen 1000
Tink/ether 00:10:18:30:ee:6e brd ff:ff:ff:ff:ff:ff
inet 202.147.169.195/27 brd 202.147.169.223 scope global enp2s0
valid_1ft forever preferred_1ft forever
inet6 fe80::67ab:4fla:21fa:f0f5/64 scope Tink

284 Linux

valid_1ft forever preferred_1ft forever
3: enol: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
group default glen 1000
Tink/ether 64:51:06:49:70:46 brd ff:ff:ff:ff:ff:ff
inet 172.16.0.101/16 brd 172.16.255.255 scope global enol
valid_1ft forever preferred_1ft forever
inet6 fe80::e352:b2f4:9833:ceb0/64 scope Tink
valid_1ft forever preferred_1ft forever

$

You can also use the ip command to display information about a particular interface. For example, the
ip a show enol command displays information about the interface enol. The system administrator can
enable or disable these interfaces or any of its parameters, as discussed in Chapter 17. Further discus-
sion on the output of the command, and its various options for viewing and setting different network
parameters is beyond the scope of this chapter.

The ip command is normally located in the /bin and/or /sbin directories on Linux Mint. If you get
an error message that ip is not found, you should include the relevant directories in your search path and
re-execute the command. You can run the cat /etc/hosts command to display the domain names and
IP addresses of the hosts on your network.

You can use the host command to do the DNS lookup for a host whose domain name is passed as a
command line argument to it. The command allows you to display IP address(es) for a domain name
or vice versa. In the following session, we use the host command to display the IP addresses of the
hosts iastate.edu, berkeley.edu, and facebook.com, and the domain names corresponding to two IPv6
addresses. The output of the host ijastate.edu command displays the IPv4 and IPv6 addresses of
iastate.edu (Iowa State University). It also displays that ten machines handle e-mail at Iowa State. The
output of the second command shows that the given IPv6 address is for thumb.iastate.edu. The outputs
of the fourth and sixth commands show the IPv4 and IPv6 addresses for stanford.edu and facebook.com,
as well as the fact that ten hosts each handle e-mail for them. Finally, the output of the last command
shows that the name server failed to map the IP address 198.175.96.33 to any domain name, which does
not mean that the domain does not exist.

$ host iastate.edu

iastate.edu has address 129.186.235.2

iastate.edu has IPv6 address 2610:130:101:113::2

iastate.edu mail is handled by 10 mailin.iastate.edu.

$ host 2610:130:101:113::2
2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.1.1.0.1.0.1.0.0.3.1.0.0.1.6.2.1ip6.arpa domain
name pointer redirect.its.iastate.edu.

$ host redirect.its.iastate.edu

redirect.its.iastate.edu has address 129.186.235.2
redirect.its.iastate.edu has IPv6 address 2610:130:101:113::2

$ host stanford.edu

stanford.edu has address 171.67.215.200

stanford.edu has IPv6 address 2607:f6d0:0:925a::ab43:d7c8

stanford.edu mail is handled by 10 mxa-00000d03.gsTb.pphosted.com.
stanford.edu mail is handled by 10 mxb-00000d03.gs1b.pphosted.com.

$ host 2607:f140:0:82::10
0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.8.0.0.0.0.0.0.0.4.1.f.7.0.6.2.1p6.arpa domain
name pointer calweb-farm-prod.ist.berkeley.edu.

$ host facebook.com

facebook.com has address 157.240.20.35

facebook.com has IPv6 address 2a03:2880:f11c:8183:face:b00c:0:25de
facebook.com mail is handled by 10 msgin.vvv.facebook.com.

$ host 198.175.96.33

Host 33.96.175.198.1in-addr.arpa. not found: 3(NXDOMAIN)

$ host 52.6.169.253

253.169.6.52.1in-addr.arpa domain name pointer ec2-52-6-169-253.compute-1.
amazonaws .com.

$

http://iastate.edu
http://berkeley.edu
http://facebook.com
http://iastate.edu
http://iastate.edu
http://thumb.iastate.edu
http://stanford.edu
http://facebook.com
http://iastate.edu
http://iastate.edu
http://iastate.edu
http://iastate.edu
http://mailin.iastate.edu
http://redirect.its.iastate.edu
http://redirect.its.iastate.edu
http://redirect.its.iastate.edu
http://redirect.its.iastate.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://00000d03.gslb.pphosted.com.stanford.edu
http://00000d03.gslb.pphosted.com.stanford.edu
http://00000d03.gslb.pphosted.com
http://calweb-farm-prod.ist.berkeley.edu
http://facebook.com
http://facebook.com
http://facebook.com
http://facebook.com
http://msgin.vvv.facebook.com
http://198.in-addr.arpa
http://52.in-addr.arpa
http://1.amazonaws.com
http://1.amazonaws.com

Networking and Internetworking 285

On Linux systems, you can use the nslookup command to do the DNS lookup. Here is a sample run of
the command.

$ nslookup google.com
Server: 127.0.1.1
Address: 127.0.1.1#53

Nonauthoritative answer:
Name: google.com
Address: 216.58.208.78

$

Similarly, you can use the dig command to do the DNS lookup on Linux. Here is a sample run of the
command

$ dig google.com

; <<>> DiG 9.10.3-P4-Ubuntu <<>> google.com

;3 global options: +cmd

;3 Got answer:

;35 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8082

;35 flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O, ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;5 QUESTION SECTION:

;google.com. IN A

;5 ANSWER SECTION:
google.com. 298 IN A 216.58.210.78

;5 Query time: 34 msec

;5 SERVER: 127.0.1.1#53(127.0.1.1)

;5 WHEN: Sat Mar 31 10:51:24 PKT 2018
;3 MSG SIZE rcvd: 55

$

11.5.5 Requests for Comments

The TCP/IP standards are described in a series of documents, known as Requests for Comments (RFCs).
RFCs are first published as Internet Drafts and are made available to all Internet users for review and
feedback by placing them in known RFC repositories. After the review process is complete, a draft can
become a standard. But not all RFCs are Internet Standards documents; some are for information only
and others are experimental.

An RFC citation has the following format:

#it## Title. Authors (up to three). Issue date. (Format: TXT=size-in-bytes,
PS=size-in-bytes, PDF=size-in-bytes) (Obsoletes xxx) (Obsoleted by RFC####)
(Updates RFC####) (Updated by RFC####) (Also FYI ####) (Status: ssssss)

where #### is a four-digit decimal number; Format can be TXT (ASCII), PS (PostScript), and PDF
(Portable Document Format); and Status can be UNKNOWN, PROPOSED STANDARD, DRAFT STANDARD,
STANDARD, INFORMATIONAL, EXPERIMENTAL, or HISTORIC. Here is an example citation

1180 TCP/IP tutorial. T.J. Socolofsky,
C.J. Kale. Jan-01-1991. (Format:

http://google.com
http://google.com
http://google.com
http://google.com
http://;google.com
http://google.com

286 Linux

TXT=65494 bytes) (Status:
INFORMATIONAL)

You can view and download an RFC by accessing any of the repositories maintained on ftp or websites.
The most common method of accessing an RFC is to browse the Web page at www.ietf.org/rfc.html. As
of the writing of this chapter, there are 8,349 RFCs available in the RFC index maintained on this Web
page, the last one being submitted in October 2017 as Internet Standards Track document. If you want to
be notified of the announcement of a new RFC, you can subscribe to the following distribution list: http://
mailman.rfc-editor.org/mailman/listinfo/rfc-dist.

To display the text version of an RFC in your browser, type www.ietf.org/rfc/rfcNNNN.txt into the
location field of your browser, where NNNN is the RFC number. So, to display the text version of RFC
2020, type www.ietf.org/rfc/rfc2020.txt into the location field of your browser.

The following in-chapter exercises are designed to enhance your depth of understanding of your own
network environment by way of learning the domain names and IP addresses of hosts on your network.
You will also use the host command to translate domain names to IP addresses and vice versa.

Exercise 11.4
Give the domain names of some hosts on your LAN. Ask your instructor for help if you need
any. How did you obtain your answer?

Exercise 11.5
List the IP addresses of the hosts identified in Exercise 11.4 in DDN. What is the class of your
network (A, B, C, or classless)? How did you find out?

Exercise 11.6
Does your network have an IPv6 address? What is its value? Show the command that you used
to obtain your answer to this question.

Exercise 11.7
Repeat the shell sessions given in this section demonstrating the host command on your
system. Do you get the same results? If not, how do the outputs of your commands differ from
those shown in this section?

Exercise 11.8
Browse the Web page at www.ietf.org/rfc.html, find the citation for RFC1118, and write it down.

11.6 Internet Services and Protocols

Most users do not understand the intricacies of the IPs and its architecture—nor do they need to. They access
the Internet by using programs that implement the application-level protocols for various Internet services.
Some of the most commonly used services and the corresponding protocols are listed in Table 11.3. The
services are listed in alphabetic order and not according to their frequency of use. You can display the /etc/
services file on your host to view the Internet services and their well-known port numbers.

The Linux operating system has some network-related services that are not necessarily available in
other operating systems. They include services for displaying all the users logged on to the hosts in

TABLE 11.3

Popular Internet Services and Corresponding Protocols
Service Protocol
Electronic mail SMTP (Simple Mail Transfer Protocol)
File transfer FTP (File Transfer Protocol)

Remote login SSH (Secure Shell) and TELNET

Web browsing HTTP (Hypertext Transfer Protocol) and HTTPS (HTTP Secure)

http://www.ietf.org/rfc.html
http://mailman.rfc-editor.org/mailman/listinfo/rfc-dist
http://mailman.rfc-editor.org/mailman/listinfo/rfc-dist
http://www.ietf.org/rfc/rfcNNNN.txt
http://www.ietf.org/rfc/rfc2020.txt
http://www.ietf.org/rfc.html

Networking and Internetworking 287

a LAN, remote execution of a command, real-time chat in a network, and remote copy. We discuss
software for most of these services in Section 11.8.

11.7 The Client—Server Software Model

Internet services are implemented by using a paradigm in which the software for a service is partitioned
into two parts. The part that runs on the host that the user is logged on to is called the client software.
The part that handles client requests and usually starts running when a host boots up is called the server
software. On the one hand, the server runs forever, waiting for a client request to come. Upon receipt of
a request, it services the client request and waits for another request. On the other hand, a client starts
running only when a user runs the program for a service that the client offers. It usually prompts the user
for input (command and/or data), transfers the client’s request to the server, receives the server’s response,
and forwards the response to the user. Most clients terminate with some sort of “quit” or “exit” command.

Many of the applications are connection-oriented client—server models, in which the client sends a
connection request to the server and the server either accepts or rejects the request. If the server accepts
the request, the client and server are connected through a virtual connection. From this point on, the cli-
ent sends user commands to the server as requests. The server process serves client requests and sends
responses to the client, which sends them to the user in a particular format. Communication between a cli-
ent and a corresponding server—and the client’s interaction with the user—is dictated by the protocol for
the service offered by an application. Figure 11.7 shows an overview of the client—server software model.

Thus, when you run a program, such as Firefox, that allows you to surf the Web, an http client process
starts running on your host. By default, most clients display the home page of the organization that owns
the host on which the client runs, although it can be set to any page, including a blank page. When you
want to view the Web page of a site, you give the site’s Uniform Resource Locator (URL) to the client
process. For displaying a home page, the URL has the format:

http://host/page

where host can be the FQDN or IP address (in DDN) of the computer that has the home page you want to
display and page is the pathname for the file containing the page to be displayed—for example, http://cnn.
com, www.stroustrup.com, http://mitadmissions.org/index.php, and http://profiles.stanford.edu/russ-altman.
The client tries to establish a connection with the http server process on the site corresponding to the URL.
If the site has the http server running and no security protections such as a password are in place, a connec-
tion is established between the client and server. The server then sends the Web page to the client, which
displays it on the screen, with any audio or video components sent to appropriate devices. Note that http
can be replaced with ftp if you want to access an ftp site through your browser, or with ssh if you want to
remotely logon via the Secure Shell (SSH) protocol.

You can invoke the client programs for most Internet services by using the corresponding commands,
such as ssh for the SSH service and ftp for the FTP service. Most of these commands permit a domain

Client Communicaton between Server
application client and server application
4_ _>
User’s Remote

host host

FIGURE 11.7 Depiction of the client—server software model.

http://cnn.com
http://cnn.com
http://www.stroustrup.com
http://mitadmissions.org/index.php
http://profiles.stanford.edu/russ-altman

288 Linux

name or [P address of the host on which the server runs as an argument in the command. Some com-
mands also allow port number as an argument. Client software that has such flexibility built in is known
as a fully parameterized client. Such clients are important in terms of the flexibility they offer. They also
allow testing of updated server software by running it on a port that is not well known and contacting
it with the client. A telnet client, discussed in Section 11.8, is a good example of a fully parameterized
client.

11.8 Application Software

Numerous programs that implement the application-level protocols just discussed are available on
networks of Linux hosts. Of the most commonly used applications described here, some are available
on Linux- and Linux-based systems only, whereas others are available to all the hosts on the Internet.

11.8.1 Displaying the Host Name

Network-based applications use the user@host address format to identify a user on a network on the
Internet. You can use the hostname and uname commands to display the name of the host you are logged
on to. On some systems, the host name is shown in the short, simple name format, and on others it is
displayed in the long, FQDN format. If you have to identify the host on the network that you are logged
on to, you can use the hostname -s command to display the short format, which is simply the name
of the host (the leftmost string in the FQDN format). You can use the uname -n command to display
the host name of the computer that you are logged on to in the FQDN format. The uname -a command
displays complete information about a host, including the operating system it is running and the name of
the CPU. The following are some examples of the hostname and uname commands.

$ hostname
Mintl8
$ uname -n
Mintl8

$ uname -a

Linux Mintl8 4.4.0-21-generic #37-Ubuntu SMP Mon Apr 18 18:33:37 UTC 2016 x86_64
x86_64 x86_64 GNU/Linux

$

You can use the arch command to print the processor architecture name. This command outputs the
same information as does uname -m, as can be seen in the following session.

$ arch
x86_64

$ uname -m
x86_64

$

Exercise 11.9
Ask your friends and fellow students about the two network services they use most often.
Which services are they? Which is the more popular of the two? How many people did you ask?

11.8.2 Testing a Network Connection

You can test the status of a network or a particular host on it by using the ping command. If the ping
command does not work on your system, use the type ping command to find its location, update your
search path, and try the command again. It is normally in the /bin directory on a Linux Mint system.
You can also use the whereis ping command to find the location of command. The following is a brief
description of the command.

Networking and Internetworking 289

Syntax:

-f

-c count

ping [optins] hostname
Purpose: Send IP datagrams to hostname to test whether it is on the network (or Internet); if the
host is alive, it simply echoes the received datagram

Output: Message(s) indicating whether the machine is alive
Commonly used options/features:

-s packetsize

Send and receive count packets

Send 100 packets per second or as many as can be handled by the
network; only the superuser can use this option

Send packetsize packets; the default is 56 bytes (plus an 8-byte
header)

The following session illustrates the use of the ping command on Linux, with and without options. The
output of the command is different for some systems, with the command displaying the echoed messages
until you press <Ctr1+C>. We used the -c option in the following session to send and receive three mes-
sages. The -c and -s options are used to send and receive three 32-byte messages plus an 8-byte Internet
Control Message Protocol (ICMP) header.

$ ping stanford.edu

PING stan
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
64 bytes
AC

ford.

from
from
from
from
from
from

edu
web

(171.67.215.200) 56(84) bytes of data.

.stanford.edu (171.67.215.200): icmp_seq=1 tt1=231 time=317 ms
web.
web.
web.
web.
web.

stanford.edu (171.67.215.200): 1icmp_seq=2 tt1=231 time=464 ms
stanford.edu (171.67.215.200): icmp_seq=3 tt1=231 time=508 ms
stanford.edu (171.67.215.200): icmp_seq=4 tt1=231 time=402 ms
stanford.edu (171.67.215.200): 1icmp_seq=5 tt1=231 time=451 ms
stanford.edu (171.67.215.200): icmp_seq=6 tt1=231 time=410 ms

--- stanford.edu ping statistics ---

9 packets transmitted, 8 received, 11% packet loss, time 8002ms

rtt min/avg/max/mdev = 317.866/440.723/531.807/62.377 ms

$ ping -c 3 stanford.edu

PING stanford.edu (171.67.215.200) 56(84) bytes of data.

64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=1 tt1=231 time=406 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=2 tt1=231 time=493 ms
64 bytes from web.stanford.edu (171.67.215.200): icmp_seq=3 tt1=231 time=470 ms

--- stanford.edu ping statistics ---

3 packets transmitted, 3 received, 0% packet Toss, time 2000ms
rtt min/avg/max/mdev = 406.913/457.112/493.781/36.735 ms

$ ping -c 3 -s 32

PING stanford.

40 bytes
40 bytes
40 bytes

from
from
from

edu

web.
web.
web.

stanford.edu

(171.67.215.200) 32(60) bytes of data.

stanford.edu (171.67.215.200): icmp_seq=1 tt1=231 time=568 ms
stanford.edu (171.67.215.200): icmp_seq=2 tt1=231 time=547 ms
stanford.edu (171.67.215.200): 1icmp_seq=3 tt1=231 time=317 ms

--- stanford.edu ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2170ms

rtt min/avg/max/mdev = 317.216/477.698/568.159/113.787 ms

$ ping -c 3 -s 128 stanford.edu

PING stanford.edu (171.67.215.200) 128(156) bytes of data.

136 bytes from web.stanford.edu (171.67.215.200): icmp_seq=1 tt1=231 time=340 ms
136 bytes from web.stanford.edu (171.67.215.200): icmp_seq=2 tt1=231 time=476 ms
136 bytes from web.stanford.edu (171.67.215.200): icmp_seq=3 tt1=231 time=325 ms

--- stanford.edu ping statistics ---

3 packets transmitted, 3 received, 0% packet Toss, time 1999ms
rtt min/avg/max/mdev = 325.864/381.032/476.819/67.994 ms

$

http://stanford.edu
http://stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://stanford.edu
http://stanford.edu
http://stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://web.stanford.edu
http://stanford.edu

290 Linux

You can use the IP address of a host in place of its hostname. For example, you can use ping
171.67.215.200 instead of ping stanford.edu, as in

$ ping 171.67.215.200

PING 171.67.215.200 (171.67.215.200) 56(84) bytes of data.
64 bytes from 171.67.215.200: +icmp_seq=1 tt1=231 time=617 ms
64 bytes from 171.67.215.200: icmp_seq=2 ttl=231 time=312 ms
64 bytes from 171.67.215.200: icmp_seq=3 tt1=231 time=437 ms
64 bytes from 171.67.215.200: +icmp_seq=4 tt1=231 time=398 ms
64 bytes from 171.67.215.200: icmp_seq=5 tt1=231 time=438 ms
AC

---171.67.215.200 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms
rtt min/avg/max/mdev = 312.828/441.068/617.665/99.423 ms

$

11.8.3 Displaying Information About Users

You can use the finger command to display information about users on a local or remote host. The
information displayed is extracted from a user’s ~/.plan and ~/.project files. By default, the finger
command is not installed on our Linux Mint system. If your system does not have finger available on
your Linux system, see Appendix A for instructions to install it on your system. The following is a brief
description of the command.

Syntax:
finger [options] [user-list]

Purpose: Display information about the users in user_list; without a user_1ist, the command
displays a short status report about all the users currently logged on to the specified hosts

Output: User information extracted from the ~/.project and ~/.plan files
Commonly used options/features:

-m Match user_Tist to login names only

-s Display output in a short format

The following session shows the simplest use of the command in which information about a user, bob,
on the host is displayed.

$ finger bob

Login: bob Name: Robert Koretsky

Directory: /home/bob Shell: /bin/bash

On since Sun Oct 15 20:21 (PDT) on pts/1 from 103.255.5.99
1 hour 39 minutes idle

On since Sun Oct 15 21:53 (PDT) on pts/0 from 103.255.5.99
3 seconds idle

No mail.

No Plan.

$

You can use the finger command with the -s option to display the command’s output in a short format
and the -m option to match user-1ist to login names only. The finger -m tree command displays the
same information as the finger Birch command if the login name of the user is tree (uppercase and
lowercase letters are considered the same by the networking commands). However, if the login name of
the user is btree and the login name birch does not exist in the system, the finger command displays
the message informing you accordingly.

When run without any argument, the finger command returns the status of all the users who are
currently logged on to your machine. The amount of information displayed varies somewhat, depending
on the Linux system that your host runs. The following command runs on Linux Mint-

http://stanford.edu

Networking and Internetworking 291

$ finger

Login Name Tty Idle Login Time Office Office Phone
bob bob tty8 12:37 Jul 25 17:53 (:0)

malik Malik tty8 86d Jul 21 18:54 (:0)

root root *ttyl 2d Jul 25 08:12

sarwar Mansoor Sarwar pts/1 1:42 Oct 15 20:21 (103.255.5.99)

$

You can use the finger command to display information about a user on a host on the Internet, pro-
vided the host offers the finger service and has the finger server (fingerd; the finger daemon) running.
The remote finger is disabled on most systems. The finger Pohm@iastate.edu Ashfag@iastate.
edu command can be used to display information about the users Pohm and Ashfagq at the iastate.edu
if it runs the finger daemon. If a host does not run the finger server, the finger command displays the
Connection refused message for you, as in

$ finger crenshaw@up.edu
finger: connect: Connection refused
$

If DNS cannot find a mapping for a domain name, the finger command returns an appropriate error
message. When this happens, you can run the host command to find the IP address for the destination
host and rerun the finger command by using the IP address instead of the domain name.

With *@hostname as its argument, the command displays the status of all the users who are currently
logged on to hostname. Some sites put restrictions on the use of the wild card *—for example, requiring
the use of at least two characters in all queries. Most sites today do not allow the use of the wild card *.

In the following in-chapter exercises, you will use the ping and finger commands to understand their
syntax and various characteristics.

Exercises 11.10
Run the ping command to determine whether a remote host that you know about is up.

Exercises 11.11
Give the command for displaying information about yourself on your Linux host.

Exercises 11.12
Give the command for displaying information about a user on your host, with “John” as his
first or last name.

Exercises 11.13
How many users with name Jack are found at iastate.edu? What command did you use to obtain
the answer? Show the command and its output, and clearly identify your answer in the output.

11.8.4 File Transfer

There are several tools in Linux that you can use to transfer files to and from a remote host on the same
network or another network. The classical of these tools is implemented using the well-known FTP pro-
tocol, with server side running the ftpd daemon and the client side invoking the service using the ftp
command. You can use the ftp command used to transfer files to and from a remote host on the Internet.
There is also the sftpd daemon that allows the use of client-side sftp command for secure transfer of
files using the SSH protocol. We discuss this command in Section 11.8.9.

It is also possible, as we show in Appendix A, Section 2.3.4, and particularly in Example 19.1, to
download, install, and start (using systemd) a very secure ftp daemon (vsftpd) on your Linux system.
Example 19.1 shows the download, installation, and service starting using systemd on a Linux Mint sys-
tem. vsftpd has many security advantages over the default installation of ftp on your system. The major
security feature of vsftpd is that, unlike ftp that sends passwords in plain text, vsftpd encrypts passwords.

In this section, we show the use of the ftp command. The following is a brief description of the
command.

mailto:Pohm@iastate.edu
mailto:Ashfaq@iastate.edu
mailto:Ashfaq@iastate.edu
http://iastate.edu
mailto:crenshaw@up.edu
http://iastate.edu?

292 Linux

Syntax:
ftp [options] [host]

Purpose: To transfer files from or to a remote host
Commonly used options/features:
-d Enable debugging
-i Disable prompting during transfer of multiple files
-v Show all remote responses

As mentioned earlier in the chapter, the FTP is a client—server protocol based on TCP. When you run the
ftp command, an ftp client process starts running on your host and attempts to establish a connection
with the ftp server process running on the remote host. If the ftp server process is not running on the
remote host before the client initiates a connection request, the connection is not made and an Unknown
host error message is displayed by the ftp command. A site running an ftp server process is called an
ftp site. When an ftp connection has been established with the remote ftp site, you can run several ftp
commands for effective use of this utility. However, you must have appropriate access permission to
transfer files to the remote site. Table 11.4 pr