
Zoiner Tejada

 Mastering
Azure
Analytics
ARCHITECTING IN THE CLOUD WITH AZURE DATA LAKE,
HDINSIGHT, AND SPARK

Zoiner Tejada

Mastering Azure Analytics
Architecting in the Cloud with Azure Data Lake,

HDInsight, and Spark

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95665-6

[LSI]

Mastering Azure Analytics
by Zoiner Tejada

Copyright © 2017 Zoiner Tejada. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Charles Roumeliotis

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2017: First Edition

Revision History for the First Edition
2017-04-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491956656 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mastering Azure Analytics, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491956656

Table of Contents

Foreword. vii

Preface. ix

1. Enterprise Analytics Fundamentals. 1
The Analytics Data Pipeline 1
Data Lakes 2
Lambda Architecture 3
Kappa Architecture 5
Choosing Between Lambda and Kappa 6
The Azure Analytics Pipeline 6
Introducing the Analytics Scenarios 9
Example Code and Example Data Sets 11
What You Will Need 11

Broadband Internet Connectivity 11
Azure Subscription 11
Visual Studio 2015 with Update 1 11
Azure SDK 2.8 or Later 15

Summary 16

2. Getting Data into Azure. 17
Ingest Loading Layer 17
Bulk Data Loading 19

Disk Shipping 19
End User Tools 35
Network-Oriented Approaches 52

Stream Loading 74
Stream Loading with Event Hubs 75

iii

Summary 76

3. Storing Ingested Data in Azure. 77
File-Oriented Storage 77

Blob Storage 79
Azure Data Lake Store 84
HDFS 90

Queue-Oriented Storage 94
Blue Yonder Scenario: Smart Buildings 95
Event Hubs 96
IoT Hub 111

Summary 122

4. Real-Time Processing in Azure. 123
Stream Processing 123

Consuming Messages from Event Hubs 125
Tuple-at-a-Time Processing in Azure 129

Introducing HDInsight 129
Storm on HDInsight 129
EventProcessorHost 170
Azure Machine Learning 174

Summary 174

5. Real-Time Micro-Batch Processing in Azure. 175
Micro-Batch Processing in Azure 175

Spark Streaming on HDInsight 175
Storm on HDInsight 192
Azure Stream Analytics 199

Summary 206

6. Batch Processing in Azure. 207
Batch Processing with MapReduce on HDInsight 209

Apache Hadoop MapReduce 210
Batch Processing with Hive on HDInsight 213

Internal and External Tables 214
Partitioning Tables 214
Views 215
Indexes 215
Databases 216
Using Hive on HDInsight 216
Storage on HDInsight 218
Batch Processing Blue Yonder Airports Data 219

iv | Table of Contents

Creating an External Table 220
Creating an Internal Table 225

Batch Processing with Pig on HDInsight 228
Batch Processing with Spark on HDInsight 229

Batch Processing Blue Yonder Airports Data 232
Creating an External Table 233

Batch Processing with SQL Data Warehouse 237
Using SQL Data Warehouse 240
Batch Processing Blue Yonder Airports Data 240
Storing the Credentials to Azure Storage 241

Batch Processing with Data Lake Analytics 247
Using Data Lake Analytics 249
Batch Processing Blue Yonder Airports Data 250
Processing with U-SQL 250

Batch Processing with Azure Batch 258
Orchestrating Batch Processing Pipelines with Azure Data Factory 259
Summary 260

7. Interactive Querying in Azure. 261
Interactive Querying with Azure SQL Data Warehouse 263

Partitions and Distributions 263
Indexes 265
Interactive Exploration of the Blue Yonder Airports Data 266

Interactive Querying with Hive and Tez 269
Indexes 271
Partitions 271
Interactive Exploration of the Blue Yonder Airports Data 271

Interactive Querying with Spark SQL 278
Indexes 278
Partitions 278
Interactive Exploration of the Blue Yonder Airports Data 279

Interactive Querying with USQL 283
Interactive Exploration of the Blue Yonder Airports Data 283

Summary 285

8. Hot and Cold Path Serving Layer in Azure. 287
Azure Redis Cache 290

Redis in the Speed Serving Layer 291
Document DB 296

Document DB in the Speed Serving Layer 299
Document DB in the Batch Serving Layer 302

SQL Database 303

Table of Contents | v

SQL Database in the Speed Serving Layer 305
SQL Database in the Batch Serving Layer 311

SQL Data Warehouse 311
HBase on HDInsight 312
Azure Search 317
Summary 318

9. Intelligence and Machine Learning. 319
Azure Machine Learning 322
R Server on HDInsight 324
SQL R Services 325
Microsoft Cognitive Services 326
Summary 338

10. Managing Metadata in Azure. 339
Managing Metadata with Azure Data Catalog 339

Data Catalog in the Blue Yonder Airports Scenario 342
Add an Azure Data Lake Store Asset 344
Add Azure Storage Blobs 347
Add a SQL Data Warehouse 352

Summary 355

11. Protecting Your Data in Azure. 357
Identity and Access Management 357
Data Protection 359
Auditing 361
Summary 362

12. Performing Analytics. 363
Analytics with Power BI 363

Real-Time Power BI in the Blue Yonder Scenario 365
Batch Analytics Reporting with Power BI in the Blue Yonder Scenario 374
A Look Ahead 378

Real Time 378
Lower Batch Latencies 379
IoT 379
Security 379
More Linux 379

Index. 381

vi | Table of Contents

Foreword

“Every 25 milliseconds, a turbine emits 10 distinct data points…” began almost every
customer conversation about big data and advanced analytics that I’ve been a part of
over the last six years. A simple story about the data needs of a wind farm highlighted
the evolving size, speed, and shape of data that is representative of customers across
industries. Over time, the technology names, the integration scenarios, and the guid‐
ance would evolve, but a few things remained consistent despite the ever-increasing
pace of change:

• Customers are faced with a rapidly expanding amount of data, in a variety of
shapes and sizes, generated and stored throughout their environment.

• Deep understanding of customers, of purchase patterns, of machine perfor‐
mance, of transaction streams, and more, is fast becoming table stakes as com‐
petitors are doing the same.

• The pace of innovation from vendors, and more importantly the ecosystem, is
operating at what feels like a record high.

The value that customers get from advanced analytics, big data, and machine learning
can transform businesses, but there are still a lot of pieces that need to come together.
I’ve been fortunate to have had such an immensely exciting, rewarding, and simply
fun time building products customers can use to solve these challenges. These tech‐
nologies have, in many cases, enabled people to build solutions that simply weren’t
possible 5 or 10 years ago.

The addition of the Azure cloud in these scenarios has given customers an entirely
new level of flexibility. Cloud services such as HDInsight make it faster, easier, and
cheaper to experiment with a wide range of software and hardware combinations,
make it possible to finely tune the consumption of cloud resources to the specifics of
a given project, and to scale up and down as required. Additionally, the economic
model of the cloud is fundamentally different than acquiring and operating these
tools on premises, which enables scenarios that are simply not possible on premises.
We’ve seen Azure customers scale out to a large number of GPU-enabled machines to

vii

conduct training using the latest deep learning libraries, and then take that output
and deploy it to their web services (as well as to devices running anywhere), paying
only for the few dollars’ worth of compute they used when they did so. Now, with this
flexibility comes the need to manage and orchestrate across these systems, which can
quickly become a key challenge.

This book takes the reader through the same workflow you’ll see for implementing an
analytics project in the real world—building a data pipeline. By first walking through
ingesting and storing data, you’ll set the stage in Azure for a rich set of insights to
derive from that data. Once you’ve ingested the data, processing can occur in real
time, in offline batch scenarios, and while using tools and languages that you’re famil‐
iar with. The next stage is in acting on the insights gained, whether through dash‐
boards or further integration into other applications and services. Oftentimes, the
analysis that we want to be able to do may also involve machine learning to bring
structure or predictions to the data. It is said that most machine learning projects are
80% acquiring and processing the data prior to performing any machine learning,
and the tools shown throughout this book can be used for this. Finally, we must deal
with a set of very real operational aspects of any production data pipeline, such as
security and data governance, which need to be considered throughout any project.

Zoiner’s perspective on this space is one crafted through years of hard work, walking
hand in hand with customers who are looking to transform their businesses with the
power of data. Zoiner and I met nearly 10 years ago while we were both working in
the distributed systems space, where we shared a passion for orchestration engines
and messaging layers. Since then, I have always appreciated his ability to work with
fantastically complicated technologies and distill down the key choices and aspects of
a solution into simple guidance that anyone can understand. I’m excited to see him
applying that same approach to a topic that’s so near to me, and I’m excited to see
what all the readers can do with the knowledge they will gain.

— Matt Winkler
Group Program Manager,

Big Data and Machine Learning
Microsoft

Woodinville, WA

viii | Foreword

Preface

If you are building software solutions today, odds are that you have a data problem.
You might even have an advanced analytics problem or one that requires machine
learning. The trouble is that the world of software development and those of big data
and advanced analytics seem like they are light years apart—they use different soft‐
ware stacks, different terminology, and often different engineering approaches, and
there are lots of choices. The aim of this book is to provide you with a map of the
galaxy that helps you chart your course to wrangling insights and guidance out of
your data—irrespective of whether that data is arriving at warp speed from IoT sen‐
sors or at the glacial pace of decades of historical data.

The structure of this book is designed along the path of a data pipeline that aims to
ingest, process, store, and deliver data along both real-time (hot data) and batch (cold
data) paths. The waypoints in the map to your data pipeline are groups of Azure serv‐
ices, and each is covered in one or more chapters. We describe each service and tool
that you should consider for a particular step in your pipeline. Another way to think
about it is to look at each phase of the analytics pipeline as a toolbox onto itself:
which Azure service would you use for long-term storage? We show you how to use
Azure Storage and Azure Data Lake Store. What about storage of streaming data? We
give you the options—including Azure Stream Analytics, Azure HDInsight with
Storm or Spark, and the Event Processor Host—and show you how to program them.

Of course, without a specific destination in mind, a map is not that interesting. To
motivate our journey to build analytic data pipelines in Azure, we provide a fictitious
business scenario looking to manage the data for airports, and give you all the sample
data and code you will need to cement your understanding of the covered services.

Approach this book as you would a tour guide: you can read it from cover to cover,
but you can also pick and choose the areas of most interest to you and dive into those.
The map we build provides a narrated tour of the constellations of the various Azure
services and tools you can use to build your data pipeline. In some cases, these con‐
stellations are complex, deep, and robust. In other cases, they are simple purpose-

ix

built solutions to a narrow set of problems. They might contain open source code
bases, or they might be proprietary innovations from Microsoft. In all cases, by the
end of this book you should have built your guide to the galaxy, will know which
services and tools to use for which purpose, and will be well on your way to master‐
ing Azure analytics.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ZoinerTejada/mastering-azure-analytics.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Mastering Azure Analytics by Zoiner
Tejada (O’Reilly). Copyright 2017 Zoiner Tejada, 978-1-491-95665-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xi

https://github.com/ZoinerTejada/mastering-azure-analytics
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/masterAzureAnalytics.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
A book with a scope this large needs a village to support its creation, and I was hon‐
ored to be supported by so many great experts along the way. I would like to thank
Lynn Langit for her hypercritical eye for anything unclear or ambiguous—her chal‐
lenges and pressure helped this book emerge from a diamond in the rough. I am hon‐
ored to have had technical reviewers from Microsoft: thanks to Nishant Thacker, Ted
Way, and Rama Ramani for lending their specific areas of expertise to this effort.

I would like to recognize one outstanding citizen of the Azure MVP community:
Tom Kerkhove. Thank you for your meticulous attention to detail in testing the code
and making modifications so that readers have a smooth implementation experience.

Thanks to Matt Winkler for lighting the way forward from those workflow days into
this amazing new world of data, and teaching me both how to drink from the firehose
and control it.

I would be remiss not to mention the caring, insightful, and helpful support I
received from my editor Shannon Cutt on this journey of more than a year. Similarly,
I am most appreciative to Kristen Brown for helping catch the places where my fin‐
gers didn’t quite transcribe my thoughts at the speed I was thinking them. Thank you
both for making my first O’Reilly authoring experience an amazing one.

Finally, thank you to my wife Ashley for tolerating the many late nights and boring
weekends we spent “together” writing this book. Your understanding and patience
were the ultimate gesture of love.

xii | Preface

http://bit.ly/masterAzureAnalytics
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Enterprise Analytics Fundamentals

In this chapter we’ll review the fundamentals of enterprise analytic architectures. We
will introduce the analytics data pipeline, a fundamental process that takes data from
its source through several steps until it is available to analytics clients. Then we will
introduce the concept of a data lake, as well as two different pipeline architec‐
tures: lambda architecture and kappa architecture. The particular steps in the typical
data processing pipeline (as well as considerations around the handling of “hot” and
“cold” data) are detailed and serve as a framework for the rest of the book. We con‐
clude the chapter by introducing our case study scenarios, along with their respective
data sets, which provide a more real-world context for performing big data analytics
on Azure.

The Analytics Data Pipeline
Data does not end up nicely formatted for analytics on its own; it takes a series of
steps that involve collecting the data from the source, massaging the data to get it into
the forms appropriate to the analytics desired (sometimes referred to as data wran‐
gling or data munging), and ultimately pushing the prepared results to the location
from which they can be consumed. This series of steps can be thought of as a pipeline.

The analytics data pipeline forms a basis for understanding any analytics solution,
and thus is very useful to our purposes in this book as we seek to understand how to
accomplish analytics using Microsoft Azure. As shown in Figure 1-1, the analytics
data pipeline consists of five major components, which are useful in comprehending
and designing any analytics solution.

Source
The location from which new raw data is pulled or which pushes new raw data
into the pipeline.

1

Ingest
The computation that handles receiving the raw data from the source so that it
can be processed.

Processing
The computation controlling how the data gets prepared and processed for deliv‐
ery.

Storage
The various locations where the ingested, intermediate, and final calculations are
stored. Storage can be transient (the data lives in memory only for a finite period
of time) or persistent (the data is stored for the long term).

Delivery
How the data is ultimately presented to the consumer, which can run the gamut
from dedicated analytics client solutions used by analysts to APIs that enable the
results to integrate into a larger solution or be consumed by other processes.

Figure 1-1. The data analytics pipeline is a conceptual framework that is helpful in
understanding where various data technologies apply.

Data Lakes
The term data lake is becoming the latest buzzword, and is following a path similar to
how big data grew in popularity, and at the same time its definition has become more
unclear as vendors attach the meaning that suits their products best. So let’s begin by
defining the concept of a data lake.

A data lake consists of two parts: storage and processing. Data lake storage requires
an infinitely scalable, fault-tolerant, storage repository designed to handle massive
volumes of data with varying shapes, sizes, and ingest velocities. Data lake processing
requires a processing engine that can successfully operate on the data at this scale.

The term data lake was originally coined by James Dixon, the CTO of Pentaho,
wherein he used the term in contrast with the traditional, highly schematized data‐
mart:

If you think of a datamart as a store of bottled water—cleansed and packaged and
structured for easy consumption—the data lake is a large body of water in a more natu‐
ral state. The contents of the lake stream in from a source to fill the lake, and various
users of the lake can come to examine, dive in, or take samples.

2 | Chapter 1: Enterprise Analytics Fundamentals

In this definition, a data lake is a repository that intentionally leaves the data in its
raw or least-processed form to allow questions to be asked of it that would not be
answerable if the data were packaged into a particular structure or otherwise aggrega‐
ted.

That simple definition of a data lake should serve as the core, but as you will see in
reading this book, it belies the true extent of a data lake. In reality, a data lake includes
not just a single processing engine, but multiple processing engines, and because it
represents the enterprise-wide, centralized repository of source and processed data
(after all, it champions a “store all” approach to data management), it has other
requirements such as metadata management, discovery, and governance.

One final important note: the data lake concept as it is used today is intended for
batch processing, where high latency (time until results ready) is appropriate. That
said, support for lower-latency processing is a natural area of evolution for data lakes,
so this definition may evolve with the technology landscape.

With this broad definition of data lake, let us look at two different architectures that
can be used to act on the data managed by a data lake: lambda architecture and kappa
architecture.

Lambda Architecture
Lambda architecture was originally proposed by the creator of Apache Storm, Nathan
Marz. In his book, Big Data: Principles and Best Practices of Scalable Realtime Data
Systems (Manning), he proposed a pipeline architecture that aims to reduce the com‐
plexity seen in real-time analytics pipelines by constraining any incremental compu‐
tation to only a small portion of this architecture.

In lambda architecture, there are two paths for data to flow in the pipeline (see
Figure 1-2):

• A “hot” path where latency-sensitive data (e.g., the results need to be ready in
seconds or less) flows for rapid consumption by analytics clients

• A “cold” path where all data goes and is processed in batches that can tolerate
greater latencies (e.g., the results can take minutes or even hours) until results are
ready

When data flows into the “cold” path, this data is immutable. Any changes to the
value of particular datum are reflected by a new, timestamped datum being stored in
the system alongside any previous values. This approach enables the system to re-
compute the then-current value of a particular datum for any point in time across the
history of the data collected. Because the “cold” path can tolerate a greater latency
until the results are ready, the computation can afford to run across large data sets,

Lambda Architecture | 3

and the types of calculation performed can be time-intensive. The objective of the
“cold” path can be summarized as: take the time you need, but make the results
extremely accurate.

When data flows into the “hot” path, this data is mutable and can be updated in place.
In addition, the hot path places a latency constraint on the data (as the results are typ‐
ically desired in near–real time). The impact of this latency constraint is that the types
of calculations that can be performed are limited to those that can happen quickly
enough. This might mean switching from an algorithm that provides perfect accuracy
to one that provides an approximation. An example of this involves counting the
number of distinct items in a data set (e.g., the number of visitors to your website):
you can either count each individual datum (which can be very high latency if the
volume is high) or you can approximate the count using algorithms like
HyperLogLog. The objective of the hot path can be summarized as: trade off some
amount of accuracy in the results in order to ensure that the data is ready as quickly
as possible.

Figure 1-2. The lambda architecture captures all data entering the pipeline into immuta‐
ble storage, labeled “Master Data” in the diagram. This data is processed by the batch
layer and output to a serving layer in the form of batch views. Latency-sensitive calcula‐
tions are applied on the input data by the speed layer and exposed as real-time views.
Analytics clients can consume the data from either the speed layer views or the serving
layer views depending on the time frame of the data required. In some implementations,
the serving layer can host both the real-time views and the batch views.

The hot and cold paths ultimately converge at the analytics client application. The cli‐
ent must choose the path from which it acquires the result. It can choose to use the
less accurate but most up-to-date result from the hot path, or it can use the less timely
but more accurate result from the cold path. An important component of this deci‐
sion relates to the window of time for which only the hot path has a result, as the cold
path has not yet computed the result. Looking at this another way, the hot path has
results for only a small window of time, and its results will ultimately be updated by

4 | Chapter 1: Enterprise Analytics Fundamentals

the more accurate cold path in time. This has the effect of minimizing the volume of
data that components of the hot path have to deal with.

The motivation for the creation of the lambda architecture may be surprising. Yes,
enabling a simpler architecture for real-time data processing was important, but the
reason it came into existence was to provide human fault tolerance. In effect, it recog‐
nizes that we are moving to a time when we actually can keep all the raw data. Simul‐
taneously, it recognizes that bugs happen, even in production. Lambda architectures
offer a solution that is not just resilient to system failure, but tolerant of human mis‐
takes because it has all the input data and the capability to recompute (through batch
computation) any errant calculation.

Kappa Architecture
Kappa architecture surfaced in response to a desire to simplify the lambda architec‐
ture dramatically by making a single change: eliminate the cold path and make all
processing happen in a near–real-time streaming mode (Figure 1-3). Recomputation
on the data can still occur when needed; it is in effect streamed through the kappa
pipeline again. The kappa architecture was proposed by Jay Kreps based on his expe‐
riences at LinkedIn, and particularly his frustrations in dealing with the problem of
“code sharing” in lambda architectures—that is, keeping in sync the logic that does
the computation in the hot path with the logic that is doing the same calculation in
the cold path.

Figure 1-3. In the kappa architecture, analytics clients get their data only from the speed
layer, as all computation happens upon streaming data. Input events can be mirrored to
long-term storage to enable recomputation on historical data should the need arise.

Kappa architecture centers on a unified log (think of it as a highly scalable queue),
which ingests all data (which are considered events in this architecture). There is a
single deployment of this log in the architecture, whereby each event datum collected
is immutable, the events are ordered, and the current state of an event is changed only
by a new event being appended.

Kappa Architecture | 5

The unified log itself is designed to be distributed and fault tolerant, suitable to its
place at that heart of the analytics topology. All processing of events is performed on
the input streams and persisted as a real-time view (just as in the hot path of the
lambda architecture). To support the human-fault-tolerant aspects, the data ingested
from the unified log is typically persisted to a scalable, fault-tolerant persistent stor‐
age so that it can be recomputed even if the data has “aged out” of the unified log.

Kreps on Kappa

If you’re interested in reading more about kappa architecture, take
a look at I Heart Logs by Jay Kreps (O’Reilly), as Kreps applied it
toward event log processing and analytics.

If this architecture sounds vaguely familiar to you, it is probably because it is. The
patterns employed by the kappa architecture are the same as those you may have
come across if you have used the Event Sourcing pattern or CQRS (command query
responsibility segregation).

Choosing Between Lambda and Kappa
Arguing the merits of lambda architecture over kappa architecture and vice versa is
akin to arguing over programming languages—it quickly becomes a heated, quasi-
religious debate. Instead, for the purposes of this book we aim to use both architec‐
tures as motivations to illustrate how you can design and implement such pipelines in
Microsoft Azure. We leave it to you, the reader, to decide which architecture most
closely matches the needs of your analytics data pipeline.

The Azure Analytics Pipeline
In this book we will expand on the analytics data pipeline to understand the ways we
can build the one required by a particular scenario. We attempt to do this in two
directions: first, by broadly showing the lay of the land for all the Azure services in
the context of where they apply to the pipeline; and second, by taking on specific sce‐
narios that enable us to apply a subset of the services in implementing a solution for
that scenario. We will explore the concepts of data lakes, lambda architectures, and
kappa architectures in our solutions, and show how we can achieve them using the
latest services from Microsoft Azure.

Throughout this book, we will tease out the analytics data pipeline into more and
more granular components, so that we can categorically identify the Azure services
that act in support of a particular component. We will expand our analytics data pipe‐
line (source, ingest, storage, processing, delivery) with the following sub-
components, as illustrated by Figure 1-4.

6 | Chapter 1: Enterprise Analytics Fundamentals

http://shop.oreilly.com/product/0636920034339.do

Figure 1-4. The Azure analytics pipeline we explore in this book, showing the various
Azure services in the context of the component they support.

The Azure Analytics Pipeline | 7

Source
For the purposes of this book, we will look at three different source types: an on-
premises database like SQL Server, on-premises files (like CSVs in a file share),
and streaming sources that periodically transmit data (such as logging systems or
devices emitting telemetry).

Ingest
In Chapter 2, we cover the components that act in support of getting data to the
solution, either through batch ingest (bulk data loading) or via streaming ingest.
We will examine loading from sources that use push-based approaches to ingest,
such as receiving streaming messages into Azure Event Hubs or IoT Hub. We will
also examine pull-based approaches, such as using the Azure Import/Export Ser‐
vice to send a disk full of files to Azure Storage or using Azure Data Factory
agents to query data from an on-premises source.

Storage
In Chapter 3 we explore the components that are used to store the ingested,
intermediate, and final data, such as queue-based and file-based approaches. We
place the storage options in three different contexts: transient storage, persistent
storage, and serving storage.

Transient storage
This can take the form of multiconsumer queues with a duration-based
expiry to their content, as in Event Hubs and IoT Hub.

Persistent storage
These components are capable of storing their content indefinitely and at
scale, as seen in Azure Blob Storage, HDFS, and Azure Data Lake Store.

Serving storage
In Chapters 7 and 8 we will also cover storage that is optimized for serving
results to the ultimate client of the analytics processing pipeline, generally to
support flexible, low-latency querying scenarios. In some cases, this might be
the direct landing point for data processed in real time; in other cases, these
serving storage services are the repository for the results of time-consuming
computation coming from batch processing. Among these components, we
cover Azure Document DB, Azure SQL Database, Azure SQL Data Ware‐
house, Azure Redis Cache, Azure Search, and HDInsight running HBase.

Processing
In Chapters 4–8, we cover the components that process and transform the inges‐
ted data and generate results from queries. We explore the gamut of latencies,
from the high-latency computations of batch processing, to the shorter latencies
expected with interactive querying, to the shortest latencies of real-time process‐
ing. With batch processing we will look at Azure HDInsight running Spark or

8 | Chapter 1: Enterprise Analytics Fundamentals

using Hive to resolve queries, and we will take a similar approach to applying
SQL Data Warehouse (and its PolyBase technology) to query batch storage.
Then, we will look at the unified capabilities that Azure Data Lake Analytics
brings to batch processing and querying. Finally, we will cover the MPP option
Azure offers for batch computation, in the form of Azure Batch, as well as how to
apply Azure Machine Learning in batches against data from batch storage.

Delivery
The analytics tools covered in Chapter 12 actually perform the analytics func‐
tions, and some of them can acquire their data directly from the real-time pipe‐
line, such as Power BI. Other analytics tools rely on serving storage components,
such as Excel, custom web service APIs, Azure Machine Learning web services,
or the command line.

Governance components allow us to manage the metadata for items in our solu‐
tion as well as control access and secure the data. These include the metadata
functionality provided by Azure Data Catalog and HDInsight. They are covered
in Chapter 10.

Introducing the Analytics Scenarios
To motivate the solution design, selection, and application of Azure services through‐
out the book, we will walk through a case-study scenario for a fictitious business,
Blue Yonder Airports. Following the process of creating a solution from the case
study will provide you with some of the “real-world” challenges you are likely to face
in your implementations.

Let’s imagine that Blue Yonder Airports (BYA) provides systems for airports that
improve passengers’ experience while they are in the airport. BYA services many of
the larger airports, primarily in the United States, and provides them with logistics
software that helps them “orchestrate the chaos” of moving passengers through the
airport.

The Federal Aviation Administration (FAA) classifies airports that provide scheduled
passenger service and serve at least 10,000 passengers per year as commercial primary
airports. Commercial primary airports are further classified by the volume of passen‐
ger boarding they have per year:

• Nonhub airports account for at least 10,000 and less than 0.05% of total US pas‐
sengers boarding.

• Small hubs account for between 0.05% and 0.25% of all US passenger boarding.
• Medium hubs account for between 0.25% and 1% of total US passenger boarding.

Introducing the Analytics Scenarios | 9

1 https://en.wikipedia.org/wiki/List_of_airports_in_the_United_States
2 https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

• Large hubs account for at least 1% of all US passenger boarding.1

As of 2014 there were 30 large hub and 31 medium hub airports in the United States.2

BYA’s business focuses on optimizing the experience for passengers traveling through
many of these medium and large hubs.

To put the volumes in perspective, on any given day in their largest large hub airport,
BYA sees upward of 250,000 people through the airport in response to over 1,500
flights per day, and manages the passenger experience at over 400 domestic and inter‐
national gates.

Of late, BYA has realized they have a significant opportunity to deliver the “intelligent
airport” by capitalizing on their existing data assets coupled with newer systems that
provide airport telemetry in real time. They want to apply intelligent analytics to the
challenges surrounding the gate experience.

They want to maintain passenger comfort while there are passengers waiting at a gate
for their departure, or deplaning from an arriving flight, by maintaining an ambient
temperature of between 68 and 71 degrees Fahrenheit. At the same time, they want to
aggressively avoid running the heating or cooling when there are no passengers at the
gate, and they certainly want to avoid the odd situation where the heating and air-
conditioning cycle back to back, effectively working against each other.

Today, many of BYA’s airports have their heating and cooling on a fixed schedule, but
BYA believes that by having a better understanding of flight delays, being able to rea‐
sonably predict departure and arrival delays, and having a strong sensor network,
they will be able to deliver the optimal passenger experience while saving the airport
money in heating and cooling costs.

Blue Yonder Airports has reviewed their data catalog and identified the following data
assets as potentially useful in their solution:

Flight delays
BYA has collected over 15 years of historical, on-time performance data across all
airlines. This data includes elements such as the airline, the flight number, the
origin and destination airports, departure and arrival times, flight duration and
distance, and the specific causes of delay (weather, airline issues, security, etc.).

Weather
BYA relies on weather data for its operational needs. Their flight delay data pro‐
vides some useful information regarding historical weather conditions for arriv‐
ing and departing flights, but they also have partnered with a third party to

10 | Chapter 1: Enterprise Analytics Fundamentals

https://en.wikipedia.org/wiki/List_of_airports_in_the_United_States
https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

provide them not only current weather conditions, but weather forecasts as well.
This data include elements like temperature, wind speed and direction, precipita‐
tion, pressure, and visibility.

Smart building telemetry
BYA installs smart meters and gateways that provide real-time telemetry of sys‐
tems running the airport. Initially, their smart meter telemetry focuses on heat‐
ing/cooling and motion sensors as they look to optimize costs while maintaining
passenger comfort. These provide time series data that includes the temperature
from each device at a given point in time, as well as activation/deactivation events
for heating/cooling and when motion is triggered.

Example Code and Example Data Sets
In each chapter that follows, we will provide links to any example code and example
data sets necessary to follow along with the BYA content in the chapter. You will want
to ensure your environment is set up per the instructions in the next section,
however.

What You Will Need
To follow along with the examples in this book you will need the following items.

Broadband Internet Connectivity
Many of the examples are performed directly on Azure, so you’ll need at least a stable
broadband connection to perform them. Of course, faster connections will certainly
be better, especially when you are transferring data sets between your computer and
the cloud.

Azure Subscription
A pay-as-you-go subscription or MSDN subscription is highly recommended. A free
trial subscription might get you through some of the examples, but you are very likely
to exceed the $200 free quota. To see all your options to get started with Azure, visit
the Microsoft Azure purchase page.

Visual Studio 2015 with Update 1
Visual Studio 2015 with Update 1 is used with the book’s examples. Any one of the
Community, Professional, or Enterprise editions will work.

Example Code and Example Data Sets | 11

https://azure.microsoft.com/en-us/pricing/purchase-options/

If you already have Visual Studio 2015 installed, but not Update 1, you can download
Update 1 online. Once the download completes, launch the installer and step through
the wizard to update your Visual Studio to Update 1.

If you do not have a development machine already set up with Visual Studio and
want to get started quickly, you can create a virtual machine (VM) from the Azure
Marketplace that has Visual Studio 2015 preinstalled and then remote-desktop into
that. Beyond reducing the setup time, most data transfers will benefit (e.g., they will
be faster) from running within the Azure data center. Just remember to shut down
your VM when you are not actively using it to keep your costs down!

To set up a VM with Visual Studio preinstalled, follow these steps:

1. Navigate to the Azure Portal and log in with the credentials you associated with
your subscription.

2. Click New.
3. In the blade that appears, under the New heading there is a search text box with

the hint text “Search the marketplace.” Type in Visual Studio 2015 and press
return (see Figure 1-5).

Figure 1-5. Searching for Visual Studio 2005 virtual machine images within the
Azure Marketplace.

4. The Everything blade will appear with a list of VM images that include Visual
Studio 2015. Choose “Visual Studio Community 2015 Update 1 with Azure SDK
2.8 on Windows Server 2012 R2” (see Figure 1-6). If this specific version is not
available, choose one with the more recent version of Visual Studio and the
Azure SDK.

12 | Chapter 1: Enterprise Analytics Fundamentals

https://www.visualstudio.com/news/vs2015-update1-vs
https://portal.azure.com

Figure 1-6. Selecting the correct Visual Studio 2015 image from the Azure
Marketplace.

5. On the blade that appears, leave “Select a deployment model” set to Resource
Manager and click Create.

6. On the Basics blade that appears, provide a name for the VM, the username and
password you will use to log in, a resource group name (e.g., “analytics-book”)
and the Location that is nearest you (see Figure 1-7).

What You Will Need | 13

Figure 1-7. Basic configuration of a VM.

7. Click OK.
8. On the “Choose a size” blade, select the instance size for the VM. We recommend

an A3 Basic, but any option with at least four cores and 7 GB or RAM will pro‐
vide a comfortable experience. If you are not seeing the A3 option, click the View
All link near the top right of the blade.

9. Click Select.
10. On the Settings blade, leave all the settings at their defaults and click OK.
11. On the Summary blade, click OK to begin provisioning your VM.
12. It may take 7–15 minutes to provision.
13. After the VM is created, the blade for it will appear. Click the Connect button in

the toolbar to download the RDP file (see Figure 1-8). Open the file (if it doesn’t
automatically open) to connect to your VM.

14. Log in with the username and password credentials you specified during the con‐
figuration steps.

14 | Chapter 1: Enterprise Analytics Fundamentals

Figure 1-8. Connect via RDP.

Azure SDK 2.8 or Later
Besides installing Visual Studio, make sure that you have the Azure SDK version 2.8
or later. The following section walks you through the installation.

If you are using Visual Studio on your own machine:

1. Launch Visual Studio.
2. From the Tools menu, select Extensions and Updates.
3. In the tree on the left, select Updates and then Product Updates. You should see

Microsoft Azure SDK 2.8.2 (or later) listed there. Click on the item in the listing
and then click the Update button (see Figure 1-9).

Figure 1-9. Install Azure SDK 2.8.2.

What You Will Need | 15

4. Follow the prompts to download the update. Then run the downloaded file, step‐
ping through the wizard until the installation is complete.

If you are using the VM with Visual Studio preinstalled, Azure SDK 2.8.2 or later
should already be installed. If you find yourself in a situation where that is not the
case, follow these steps:

1. Connect to the VM via Remote Desktop; the Server Manager application should
launch automatically.

2. Click on the Local Server tab on the lefthand navigation bar.
3. In the Properties pane, click the On link next to IE Enhanced Security Configura‐

tion. If the link already reads Off you can skip the next step, which disables
enhanced security for Internet Explorer.

4. Change Administrators to the Off setting and click OK.
5. Launch a browser and navigate to https://azure.microsoft.com/en-us/downloads.
6. Click the VS 2015 link under .NET, and when prompted click Run to install

Azure SDK 2.8.2. Complete the installation wizard.

You should now be ready to attempt any of the examples used throughout this book.

Summary
This chapter provided a tour of the fundamentals of enterprise analytic architectures.
We introduced the analytics data pipeline at a high level. We introduced the concepts
behind a data lake, and then illustrated two canonical architectures that implement
the data pipeline: lambda architecture and kappa architecture. We got a taste of all the
Azure services we will cover (at varying levels of detail) in this book, expanding on
our data analytics pipeline with the Azure services that are helpful to each phase. We
then introduced Blue Yonder Airlines (BYA), a fictitious company from which we
draw a case study that motivates our efforts and examples for the remainder of the
book. We concluded the chapter with the prerequisites and setup instructions you
will need to follow before attempting any of the book’s examples.

In the next chapter, we turn our attention to the first phase of the analytics data pipe‐
line: ingest. There we will explore how we get our data into Azure in the first place.

16 | Chapter 1: Enterprise Analytics Fundamentals

https://azure.microsoft.com/en-us/downloads

CHAPTER 2

Getting Data into Azure

In this chapter, we focus on the approaches for transferring data from the data source
to Azure. We separate out the discussion into approaches that transfer typically large
quantities of data in a single effort (bulk data loading) versus approaches that transfer
individual data (stream loading), and investigate the protocols and tools relevant to
each.

Using our Azure analytics pipeline as a guide, this chapter focuses on the items high‐
lighted by the red, dashed borders in Figure 2-1.

Ingest Loading Layer
In order to perform analytics in Azure, you need to start by getting data into Azure in
the first place. This is the point of the ingest phase. Ultimately, the goal is to get data
from a source location (e.g., on premises or another cloud) into either file- or queue-
based storage within Azure. In this context, we will look at the client tooling, pro‐
cesses, and protocols used to get the data to the destination in Azure.

To help put this layer in context, let’s refer back to the Blue Yonder Airlines scenario.
They have historical flight delay data, historical weather data, and smart building tele‐
metry upon which they wish to perform analytics. The first two data sets are candi‐
dates for bulk loading, which we will discuss next. The last data set, the smart
building telemetry, is a candidate for streaming ingest, which we will examine later in
the chapter.

The next chapter will dive into details of how data is stored once it lands in Azure,
while this chapter focuses on how to get the data there.

17

Figure 2-1. The Azure analytics pipeline focus for this chapter.

18 | Chapter 2: Getting Data into Azure

1 Eric S. Raymond, ed., The New Hacker’s Dictionary, 3rd ed. (Cambridge, MA: MIT Press, 1996).

Bulk Data Loading
Bulk data loading or bulk ingest is the process of loading larger sets of data in batches.
The bulk load may be a one-time event (such as loading all historical data into Azure)
or it may be ongoing (such as periodically shipping in bulk all telemetry collected on
premises over a period of time).

Disk Shipping
Disk shipping is an approach to bulk data loading that is about as direct as it sounds
—you take a disk, fill it with the data you want to store in Azure, and physically mail
the disk to a processing center, which then copies the data off of your disk and into
Azure. Let’s return to the Blue Yonder Airlines scenario for a moment to understand
why they would consider a disk shipping approach.

BYA has many terabytes’ worth of historical flight delay data that they have amassed
over the years. This is something they want to transfer in bulk up to Azure, so they
have the historical data available before they begin dealing with the current and real-
time data. Because the batch of data is sizeable (in the few terabytes range) and
because it’s likely a one-time event (once the historical data is loaded, updates will be
made in Azure directly), it makes sense to ship high-capacity disks loaded with the
historical flight delay data.

By shipping disks loaded with data, you do not have to deal with the network setup or
the effort involved in trying to secure a reliable connection. You also avoid having to
wait for the upload time required: 1 terabyte over blazing-fast 100 Mbps broadband
can take a full day to upload, so if you had 5 terabytes’ worth of data you would be
waiting five days in the best case (assuming the file transfer was not interrupted and
that your throughput was consistent). Finally, you avoid the costs associated with set‐
ting up and maintaining a performant network connection, especially one that is used
only in support of this one-time data transfer.

While the quote may be somewhat dated by the technologies he mentions, I like to
think of this option as I heard it from one of my Stanford professors quoting the New
Hacker’s Dictionary:1

Never underestimate the bandwidth of a 747 filled with CD-ROMs.

To perform disk shipping with Microsoft Azure, you can use the Import/Export
Service.

Bulk Data Loading | 19

Azure Import/Export Service
The Import/Export Service enables you to ship up to a 6 TB disk loaded with your
data to a local processing center, which will securely copy the data from your disk
into the Azure Storage blob container that you specify using a high-speed internal
network, and ship your disk back to you when finished. You can ship multiple disks if
you need to send more than 6 TB of data. In terms of costs, Azure will charge you a
flat fee of $80 per drive and you are responsible for the nominal round-trip shipping
costs of the drives you send.

Regional Availability

As of this writing, the Import/Export Service is available in most
Azure regions except Australia, Brazil, and Japan.

From a high level, the process of loading data using the Import/Export Service works
as shown in Figure 2-2 and described in the steps that follow it.

Figure 2-2. The high-level process of shipping data on disk to Azure using the Import/
Export Service.

1. Create your target Azure Storage account and take note of the account name and
key.

2. Attach the hard drive you want to ship to a Windows machine. Use the WAIm‐
portExport tool (whose filename is WAImportExport.exe) to enable BitLocker

20 | Chapter 2: Getting Data into Azure

encryption on your disk, copy the files over to the disk, and prepare metadata
files about the job.

3. Use the Azure Management Portal to create an import job, where you upload the
metadata files, select the datacenter region, and configure shipping information.

4. Package up your disk (just send the disk, without any cables or adapters) and
ship it to the processing center whose address you retrieved from the Manage‐
ment Portal.

5. Once you have shipped the disk, update the import job in the Portal with the
tracking number used for shipping. You can track the status of the shipping,
receiving, transferring, and completion of the import job via the Management
Portal.

6. When the import job is complete, your data will be in the configured location in
Blob Storage and your disk is shipped back to you.

Requirements for import job. Before you attempt a transfer, you should be aware of the
requirements for the disk you will ship. The hard drive you use must be a 3.5-inch
SATA II/III internal hard drive—that is, a drive that is external or USB only will not
work. If you, like me, work from a laptop, this means you will need to pick up a SATA
II/III-to-USB adapter. To give you an example, I use the Sabrent EC-HDD2 adapter.
To use it, you set your hard drive into the adapter like an old video game cartridge
and connect the adapter via USB to your computer, after which your computer
should recognize the attached drive (Figure 2-3).

Another important requirement is that your hard drive must not be more than 6 TB
in size—it can be smaller, just not larger. If you need to send more than 6 TB of data,
you can send up to 10 drives per job, and your Storage account will allow you to have
up to 20 active jobs at a time (so theoretically you could be copying from as many as
200 drives at a time).

On the computer you use to prepare the drive, you will need a version of Windows
that includes BitLocker drive encryption. Specifically, the supported editions include
Windows 7 Enterprise, Windows 7 Ultimate, Windows 8 Pro, Windows 8 Enterprise,
Windows 10, Windows Server 2008 R2, Windows Server 2012, and Windows Server
2012 R2.

Finally, as of the writing of this book the Azure Import/Export Service supports only
Storage accounts created in the Classic mode. That is to say, if you create a Storage
account in v2 or Resource Model mode, you will not be able to use it as a target.

Bulk Data Loading | 21

https://manage.windowsazure.com

Figure 2-3. An example of a SATA-to-USB adapter, showing the cartridge-like approach
to connecting an internal drive to a computer via external USB.

Preparing a disk. Assuming you have your storage account and compatible disk in
hand, let’s walk through the steps required to prepare a disk for use with an import
job.

1. Download the WAImportExport tool from http://bit.ly/2mtenkm.
2. Extract the files to somewhere easily accessible from the command prompt (e.g.,

C:\WAImport). Within that folder you should see the files shown in Figure 2-4.

22 | Chapter 2: Getting Data into Azure

http://bit.ly/2mtenkm

Figure 2-4. The files included with the WAImportExport tool.

3. Attach your SATA-to-USB adapter to your computer and connect the hard drive
to the adapter.

4. Within Windows, mount the drive (if it’s a new drive, you will need to mount and
format it). To do this, open an instance of File Explorer and right-click on “My
Computer” or “This PC” and select Manage (see Figure 2-5).

Figure 2-5. Accessing the Manage menu for the local computer.

5. In the Computer Management application, click Disk Management (see
Figure 2-6).

Bulk Data Loading | 23

Figure 2-6. Selecting the Disk Management node within Computer Management.

6. In the list of disks, you should see your disk listed (and likely hashed out if it is
new). Right-click on your disk and select New Simple Volume (see Figure 2-7).

Figure 2-7. Selecting New Simple Volume on an unallocated disk.

7. In the New Simple Volume Wizard, click Next past the first screen.
8. Leave the default size for the volume set to the full size of the drive and click

Next (Figure 2-8).

24 | Chapter 2: Getting Data into Azure

Figure 2-8. Setting the volume size to use the full capacity of the disk.

9. Choose a drive letter at which to mount the drive and click Next (Figure 2-9).

Figure 2-9. Selecting a drive letter to assign to the volume.

10. Leave “Do not format this volume” selected and click Next (Figure 2-10).

Bulk Data Loading | 25

Figure 2-10. Choosing not to format the volume.

11. Click Finish to complete the wizard. Take note of the drive letter you selected, as
you will need this in the command-line use of the WAImportExport tool
(Figure 2-11).

Figure 2-11. Summary screen of the New Simple Volume Wizard.

26 | Chapter 2: Getting Data into Azure

Run the WAImportExport tool. Now that you have your disk mounted to a drive letter,
you are ready to begin preparing the disk (and copying data to it) using the WAIm‐
portExport.exe file.

Open an instance of the command line as an administrator (this is important; other‐
wise, the output will just flash by in a new window and then close) and navigate to
where you extracted the WAImportExport tool.

From this point, you can prepare your disk with BitLocker encryption enabled and
copy over the files from a single source folder using a single command. The simplest
form of this command looks as follows:

WAImportExport PrepImport
/sk:<StorageAccountKey>
/t:<TargetDriveLetter>
/format
/encrypt
/j:<JournalFile>
/id:<SessionId>
/srcdir:<SourceDirectory>
/dstdir:<DestinationBlobVirtualDirectory>

This command will format and encrypt the drive, and then copy the files from source
over to the drive, preserving the folder structure. In the preceding command, the
parameters that you need to specify are enclosed in angle brackets (< >). They are:

StorageAccountKey
The key for the Azure Storage account to which your files will ultimately be
copied.

TargetDriveLetter
The drive letter at which you mounted your external drive that will be used for
shipping.

JournalFile
The name of the metadata file that will be created relative to WAImportEx‐
port.exe. This file contains the BitLocker key, so it does not ship with the disk
(you will upload an XML file derived from it through the portal later). You name
it whatever you like—for example, transfer1.jrn.

SessionID
Each run of the command line can create a new session on the external drive,
which allows you to copy from multiple different source folders onto the same
drive or to vary the virtual path under your target blob container for a set of files.
The SessionID is just a user-provided label for the session and needs to be
unique.

Bulk Data Loading | 27

SourceDirectory
The local path to the source files you want to copy from.

DestinationBlobVirtualDirectory
The path beneath the container in the Azure Blob Storage under which the files
will be copied. It must end with a trailing slash (/).

Parameters Used by WAImportExport.exe

For more details on all the parameters supported by WAImportEx‐
port.exe, see the Microsoft Azure documentation.

By way of example, here is a complete command (with my Storage account key short‐
ened for privacy):

WAImportExport PrepImport
/sk:c42fXQ==
/t:i
/format
/encrypt
/j:threetb01.jrn
/id:session#01
/srcdir: "Q:\sources\sampledata"
/dstdir:imported/sampledata/

The time required for the process to complete depends largely on the volume of data
you have to copy, and the speed of I/O on the machine you are using to perform the
operation. For example, in my setup using a 3TB SATA III drive across my adapter to
USB, I typically saw around 85 MB/second transfer rates.

When the process completes, you will see on your external drive a folder for the ses‐
sion, along with a manifest file (Figure 2-12).

Figure 2-12. The contents of the external disk after running the WAImportExport tool
once.

28 | Chapter 2: Getting Data into Azure

http://bit.ly/2mUS9nx

Within your session folder, you will see the files you selected for copying over with
their folder structure preserved (Figure 2-13).

Figure 2-13. The contents of a session.

Also, in the directory containing WAImportExport.exe, you will see your journal file,
an XML file (that you will upload to Azure), and a folder that contains the logs
(Figure 2-14).

Bulk Data Loading | 29

Figure 2-14. Metadata and logfiles created by running the WAImportExport tool.

You are now ready to create an import job in Azure.

Creating the import job. With your disk ready, navigate to the Management Portal and
locate the Storage account you are using as the target for the copy.

1. Click the Dashboard link for your Storage account (Figure 2-15).

Figure 2-15. The Dashboard for a Storage account, showing the quick glance area.

2. Underneath the quick glance section, click “Create an import job.”
3. On the first screen of the wizard, select the checkbox “I’ve prepared my hard

drives, and have access to the necessary drive journal files” and click the right
arrow (Figure 2-16).

30 | Chapter 2: Getting Data into Azure

https://manage.windowsazure.com/

Figure 2-16. Step 1 of the Create an Import Job Wizard.

4. Fill in your contact and return address information. If you desire detailed logs,
check the box for “Save the verbose log in my ‘waimportexport’ blob con‐
tainer." Click the right arrow (Figure 2-17).

Figure 2-17. Step 2 of the Create an Import Job Wizard.

5. On the Drive Journal Files window, click the Folder icon to the left of “Browse for
file,” select the journal file outputted by the WAImportExport tool (if you fol‐
lowed our naming convention, it should end in .jrn), and click the Add button.

6. Once the file has uploaded, as indicated by a green checkmark, click the right
arrow (Figure 2-18).

Bulk Data Loading | 31

Figure 2-18. Step 3 of the Create an Import Job Wizard.

7. Provide a name for the job and take note of the address to which you will need to
mail your drive (Figure 2-19). The Select Datacenter Region drop-down is auto‐
matically set and limited to the region used by the Storage account from which
you launched the wizard. Click the right arrow.

Figure 2-19. Step 4 of the Create an Import Job Wizard.

8. Fill in your shipping details (Figure 2-20). For the United States, the service only
uses FedEx, so you will need to be able to input your FedEx account number in
the Account Number field. Next, if you wish to provide the tracking number at a
later date, you can select the checkbox labeled “I will provide my tracking num‐

32 | Chapter 2: Getting Data into Azure

ber for this import job after shipping the drives.” Click the checkmark to com‐
plete the wizard.

Figure 2-20. Step 5 of the Create an Import Job Wizard.

9. You should see your new job listed in the portal, with a status of Creating. At this
point, disconnect your disk, pack it, and ship it. When you have your tracking
number in hand, come back to the screen in Figure 2-21.

Figure 2-21. Viewing your new import job in the Management Portal.

10. Select your job in the list and click Shipping Info (Figure 2-22).

Figure 2-22. The Shipping Info button in the portal.

Bulk Data Loading | 33

11. In the wizard, complete your contact information and click the right arrow
(Figure 2-23).

Figure 2-23. Completing your shipping information.

12. On the “Shipping details” page, complete the Delivery Carrier and Tracking
Number fields and click the checkmark (Figure 2-24).

Figure 2-24. Completing shipping information by providing a Delivery Carrier and
Tracking Number.

34 | Chapter 2: Getting Data into Azure

13. Now you wait. A typical transfer can take 3–5 days, consisting of the time it takes
for your disk to ship plus the time needed for the transfer to complete. You can
monitor the status using the portal (the status will change from Creating to Ship‐
ping to Transferring and finally to Completed if all goes well). Once the transfer
completes, your data will be waiting for you in your Azure Blob Storage.

End User Tools
In some situations, particularly those dealing with large data volumes, the aforemen‐
tioned approach of disk shipping is appropriate. There are, of course, multiple
options when it comes to tools you can use to bulk-load data into Azure directly from
your local machine. In this section, we examine tools that provide a user-friendly
interface as well as tools oriented toward programmatic use (such as the command
line and PowerShell).

Graphical clients
In this section we discuss the graphical clients you can use to bulk-load data into
Azure. Typically, your bulk data loads target either Azure Blob Storage or the Azure
Data Lake Store.

Using Visual Studio Cloud Explorer and Server Explorer to bulk-load to Blob Storage. Visual
Studio 2015 comes with two different tools that provide nearly identical support for
listing storage targets in Azure (such as Azure Storage and the Azure Data Lake
Store). These are the newer Cloud Explorer and the tried-and-true Server Explorer.

Both Cloud Explorer and Server Explorer provide access to the containers in Azure
Storage and support uploading in the same fashion. When you get to the point of
viewing the contents of a container, the user interface supports selecting and upload‐
ing multiple files to a container or a folder path underneath a container in Azure
Storage. It can handle four simultaneous uploads at a time. If more than four files are
selected, those will be queued as pending until one of the current uploads completes,
at which time the pending upload will begin uploading.

To upload a batch of files to Blob Storage using Server Explorer, follow these steps:

1. Launch Server Explorer in Visual Studio, and from the View menu select Server
Explorer.

2. Near the top of the Server Explorer pane, expand the Azure node (see
Figure 2-25). If prompted, log in with the credentials that have access to your
Azure subscription.

Bulk Data Loading | 35

Figure 2-25. Server Explorer displaying Azure resources.

3. In a few moments, the tool will list various Azure resources grouped by service.
To view your available Azure Storage accounts, expand the Storage node.

4. Underneath the Storage node you will find your Storage accounts, and beneath
any one of these you will see nodes for Blobs, Tables, and Queues.

5. Expand the Blobs node to see the blob containers in that account (Figure 2-26).

Figure 2-26. Viewing the Storage containers available underneath a Storage account
using Server Explorer.

6. Double-click on a container node to view the contents of the container
(Figure 2-27).

36 | Chapter 2: Getting Data into Azure

Figure 2-27. Listing of blobs in the container that was opened.

7. Within the blob container document that appears, click the Upload Blob button
(Figure 2-28).

Figure 2-28. The Upload Blob button.

8. In the Upload New File dialog that appears, click Browse… (Figure 2-29).

Figure 2-29. The Upload New File dialog.

9. In the Upload Blob dialog, you can select multiple files using either Ctrl to select
multiple files individually or Shift to select a range of files. Click Open when you
have completed your selection (Figure 2-30).

Bulk Data Loading | 37

Figure 2-30. Selecting multiple files to upload to Blob Storage.

10. Back in the Upload New File dialog, you can optionally provide a folder subpath
that will be used to place the uploaded files below the root of the currently
selected container. Click OK to begin the upload process.

11. You can track the status of your uploads in the Microsoft Azure Activity Log that
will appear (Figure 2-31).

Figure 2-31. The Azure Activity Log showing in-progress uploads.

12. Once finished, if necessary, you can click the Refresh button (next to the Upload
Blob button) to update the listing and view the uploaded files (Figure 2-32).

Figure 2-32. The Refresh button.

To upload a batch of files to Blob Storage using Cloud Explorer, follow these steps:

38 | Chapter 2: Getting Data into Azure

1. Launch Cloud Explorer in Visual Studio, and from the View menu select Cloud
Explorer.

2. If prompted, log in with the credentials that have access to your Azure subscrip‐
tion.

3. In a few moments, the tool will list various Azure resources grouped by service.
To view your available Azure Storage accounts, expand the Storage Accounts
node (Figure 2-33).

Figure 2-33. Selecting the Storage Accounts node in Cloud Explorer.

Bulk Data Loading | 39

4. Expand the Blob Containers node to see the containers in that account
(Figure 2-34).

Figure 2-34. Viewing the blob containers underneath a Storage account.

5. Double-click on a container node to view the contents of the container
(Figure 2-35).

Figure 2-35. Viewing a list of blobs in the selected container.

6. Within the blob container document that appears, click the Upload Blob button
(Figure 2-36).

40 | Chapter 2: Getting Data into Azure

Figure 2-36. The Upload Blob button.

7. In the dialog that appears, click Browse… (Figure 2-37).

Figure 2-37. The Upload New File Dialog

8. In the Upload Blob dialog, you can select multiple files using either Ctrl to select
multiple files individually or Shift to select a range of files. Click Open when you
have completed your selection (Figure 2-38).

Figure 2-38. Selecting multiple files to upload.

Bulk Data Loading | 41

9. Back in the Upload New File dialog, you can optionally provide a folder subpath
that will be used to place the uploaded files below the root of the currently
selected container. Click OK to begin the upload process.

10. You can track the status of your uploads in the Microsoft Azure Activity Log that
will appear (Figure 2-39).

Figure 2-39. Tracking the status of uploads using the Azure Activity Log.

11. Once finished, if necessary, you can click the Refresh button (next to the Upload
Blob button) to update the listing and view the uploaded files (Figure 2-40).

Figure 2-40. The Refresh button.

Using Visual Studio Cloud Explorer to bulk-load into your Data Lake Store. Using Cloud
Explorer in an approach similar to uploading to Blob Storage, you select a path
within your Azure Data Lake Store and upload multiple files at a time. The tool will
upload up to six files concurrently and queue the rest. It also gives you the ability to
reprioritize queued files.

To upload a batch of files to Azure Data Lake Store using Cloud Explorer, follow
these steps:

1. You will need to install the latest Azure Data Lake tools and then restart Visual
Studio. To accomplish this, in Cloud Explorer expand Data Lake Store and then
select your Data Lake Store.

2. In the Actions pane you will see a link labeled Open File Explorer. Click this, and
a link should appear near the top of Cloud Explorer that reads “Azure Data Lake
Tools is not installed. Download the latest version.” Click the download link.

42 | Chapter 2: Getting Data into Azure

3. Once the file is downloaded, run the setup executable until completion (there are
no options, so it is very straightforward).

4. Restart Visual Studio and return to Cloud Explorer, select your Azure Data Lake
Store, and once more click open File Explorer.

5. This time a new document should appear listing the contents of your Data Lake
Store (Figure 2-41).

Figure 2-41. Viewing the contents of the Data Lake Store.

6. If you click on a folder in the tree view and then right-click in the whitespace
where files are listed, you will be presented with a menu that allows you to upload
files (Figure 2-42). Choose “As Row-Structured File” for CSV and delimited text
data, or “As Binary” for file types that do not have their line endings preserved.

Figure 2-42. Menu showing the options for uploading to the Azure Data Lake Store.

7. In the Upload File dialog, you can select multiple files using either Ctrl to select
multiple files individually or Shift to select a range of files. Click Open when you
have completed your selection to begin the upload process (Figure 2-43).

Bulk Data Loading | 43

Figure 2-43. Selecting multiple files to upload to Azure Data Lake Store.

8. You can track the status of your uploads in the Azure Data Lake Explorer Task
List that will appear (Figure 2-44).

Figure 2-44. Viewing the progress of upload using the Data Lake Explorer Task List.

9. The document listing the files in Azure Data Lake Store will automatically update
as your uploads complete.

Microsoft Azure Storage Explorer. This utility, available for free from Microsoft, enables
you to manage files in Blob Storage without having Visual Studio. In fact, it runs on
Windows, macOS, and Linux. With this tool you can upload multiple files in parallel
to Azure Blob Storage (Figure 2-45).

44 | Chapter 2: Getting Data into Azure

http://storageexplorer.com/

Figure 2-45. The Microsoft Azure Storage Explorer.

Azure Portal. Certain Azure services within the Azure Portal allow you to upload files
via the web browser (e.g., Azure Data Lake Store and Azure Files). Unfortunately, the
experience tends to be tailored to “single file at a time” approaches, which is of limi‐
ted use when you are trying to bulk-load data into Azure.

Third-party clients. There are also excellent, free third-party tools that do a great job
with bulk data loading. The one I recommend the most is the Azure Explorer from
Cerebrata. This tool runs on Windows only, and gives you a Windows Explorer–like
shell for dragging and dropping files from your local environment into Azure Blob
Storage (Figure 2-46).

Bulk Data Loading | 45

http://www.cerebrata.com/products/azure-explorer/introduction

Figure 2-46. Cerebrata Azure Explorer.

SSIS Feature Pack for Azure. If you are already running SQL Server 2012 or later on
premises, then you can use SQL Server Integration Services (SSIS) along with the
Azure Feature Pack to extract data from your local directory on premises and write it
out to files on Blob Storage. In short, the Azure Feature Pack comes with an SSIS task
called Azure Blob Upload that enables this bulk loading for blobs from SQL Server.

Programmatic clients: Command-line and PowerShell clients
Sometimes the easiest way to bulk-transfer data from your local machine to Azure
does not require user interface so much as it does scriptability and reliability. To this
end there are a few command-line options that should be part of your toolbox.

AZCopy. AZCopy is a command-line executable provided by Microsoft that special‐
izes in copying data to and from Azure Blob Storage. While it can also target the
Azure Tables and Azure Files services, for our purposes of ingesting data from on
premises we are most interested in using it to copy data from a local directory on our
filesystem into Azure Blob Storage. It is in this scenario in which it excels, because it
offers support for up to 512 concurrent uploads per machine (i.e., it can use as much
bandwidth as you can give it) and has an automatic journaling mechanism that ena‐
bles it to restart failed transfers with minimal waste.

AZCopy is a Windows-only command-line executable. If you need an executable for
bulk transfer that can run on macOS or Linux, see “Azure Command-Line Interface”
on page 48. You can download AZCopy online. The website is also the primary point
of documentation for this feature-rich tool.

46 | Chapter 2: Getting Data into Azure

https://msdn.microsoft.com/en-us/library/mt146770(v=sql.120).aspx
http://bit.ly/2o50Pb6

Using AZCopy to bulk-load files into Blob Storage. Once you have downloaded AZCopy
and installed it, you need to open an instance of the command prompt as an adminis‐
trator and browse to the directory to which AZCopy was installed (by default this is
C:\Program Files (x86)\Microsoft SDKs\Azure\AZCopy on 64-bit Windows and C:
\Program Files\Microsoft SDKs\Azure\AZCopy on 32-bit Windows).

Once you have a command prompt in the AZCopy context, the most basic syntax for
copying files from a local directory to Blob Storage is as follows:

AzCopy /Source:<pathToLocalFiles>
/Dest:<uriToBlobStorage> /Key:<storageAccountKey>
/S /NC:<numParallelOperations>

The parameters used are as follows:

<pathToLocalFiles>

The path to the local file or folder you wish to use as the source.

<uriToBlobStorage>

Has the form https://<storageAccountName>.blob.core.windows.net/<container‐
Name>/<optionalVirtualPath>, where the <storageAccountName> is the name of
your Azure Storage account, <containerName> is the name of the target blob
container in that Storage account, and <optionalVirtualPath> is an optional
subfolder path under which your source files will be uploaded.

<storageAccountKey>

The key to your Azure Storage account.

/S

This switch is optional. If it is present, not only are all files in the source directory
copied, but so are all subfolders and their contents recursively. If omitted, then
only the files in the root of the source directory are copied; subfolders are not
copied.

<numParallelOperations>

This is optional, but it enables you to control just how many parallel operations,
in this case file uploads, are occurring at once. For most situations there is a point
of diminishing returns where having too many upload operations going at once
means that collectively all files take a long time to complete. Depending on your
file sizes (which for our purposes are quite likely large) and available bandwidth,
you may be best served by starting with this set to a low number like 2, 3, or 5.
The max you can set it to is 512. By default, AZCopy sets this to a value that is
eight times the number of processor cores on the machine on which it is running
(so if you have 4 cores, that means it will try 32 parallel uploads).

Bulk Data Loading | 47

For example, here is the command line used to upload all of the files within the
sampl_data folder on my local machine (without recursing into subdirectories) to my
Azure Storage account named solintanalytics2, into the container named imported
(the key has been shortened for privacy):

azcopy /Source:Q:\Projects\Spark\sample_data\
/Dest:https://solintxanalytics2.blob.core.windows.net/imported
/DestKey:gPl/Qf0==

Azure Storage Data Movement Library

If you have more programmatic needs, and want to leverage
AZCopy in your code, you can use the Azure Storage Data Move‐
ment Library, which exposes the functionality as .NET assemblies.
See the Azure blog for instructions.

Azure Command-Line Interface. If you want a command line that you can use to uni‐
versally bulk transfer data from macOS, Linux, and Windows machines, you should
consider the Azure Command-Line Interface (also known as the Azure CLI) pro‐
vided by Microsoft and shown in Figure 2-47. The Azure CLI gives you very broad
control over everything Azure exposes via its REST API, including Azure Storage.

You can download and install the Azure CLI onto the platform of your choice by fol‐
lowing the instructions at http://bit.ly/2n7QM5T.

Figure 2-47. The Azure Command-Line Interface.

48 | Chapter 2: Getting Data into Azure

http://bit.ly/2ndQ74x
http://bit.ly/2n7QM5T

The basic syntax for uploading a file using the Azure CLI is as follows:

azure storage blob upload -a <storageAccountName>
-k <storageAccountKey> <localFilePath> <containerName>

The parameters are as follows:

<storageAccountName>

The name of your Azure Storage account.

<storageAccountKey>

The key to your Azure Storage account.

<localFilePath>

The path to the local file on your system that will be uploaded.

<containerName>

The name of the blob container in your Azure Storage account under which the
file will be uploaded.

Note that with the preceding example, we don’t need to specify the name of the file (it
will automatically infer the appropriate filename to use with Blob Storage).

As a concrete example of using this to transfer a file, here I transfer one CSV file to
the fraudulent container (as usual my storage key has been shortened for privacy):

azure storage blob upload -a solintxanalytics2
-k gPl ==
Q:\On_Time_On_Time_Performance_2015_9.csv
fraudulent

No doubt you have noticed that this syntax allows for uploading only one file at a
time. Unfortunately, the current version does not support specifying a directory for
upload. The workaround is to incorporate calls to the Azure CLI within your plat‐
form’s preferred shell scripting approach to create a loop around all the files or folders
you wish to transfer.

AdlCopy. In order to move files from on premises into your Azure Data Lake Store,
you can use AdlCopy. At present this is not a direct copy proposition (see “Power‐
Shell cmdlets” on page 50 for other, more direct options); you first need to stage your
files in Blob Storage (for example, by using AZCopy or the Azure CLI) and then you
can run AdlCopy to transfer the files from Blob Storage to your Azure Data Lake
Store.

AdlCopy is provided by Microsoft and can be downloaded from http://aka.ms/down‐
loadadlcopy. It is available only for Windows 10.

The simplest syntax for copying files from a container in Blob Storage into a folder in
Azure Data Lake Store is as follows:

Bulk Data Loading | 49

http://aka.ms/downloadadlcopy
http://aka.ms/downloadadlcopy

adlcopy /Source <uriToBlobContainer>
/Dest <uriToADLSfolder> /SourceKey <storageAccountKey>

The parameters are as follows:

<uriToBlobContainer>

The URI to your Azure Storage account blob container.

<uritToADLSfolder>

The URI to your Azure Data Lake Store folder.

<storageAccountKey>

The key to your Azure Storage account.

You may be wondering where you provide the credentials for the Azure Data Lake
Store. When you run the adlcopy command, you will be prompted for them in a
pop-up window.

By way of example, here is a complete command line showing how to copy from my
imported container within my solintxanalytics2 Azure Storage account, copying only
the files under the path sampledata/zipped to my Azure Data Lake Store named Solli‐
ance to a folder under the root named imported2:

adlcopy
/Source https://solintxanalytics2.blob.core.windows.net/
imported/sampledata/zipped/
/Dest adl://solliance.azuredatalakestore.net/imported2/
/SourceKey gPlftsdgs==

In the preceding example, when specifying the uriToADLSfolder, you can use either
the adl: protocol (as was just shown) or the swebhdfs: protocol (which is often
shown in the documentation). The adl protocol is the preferred option moving for‐
ward, but the swebhdfs protocol is available for backward compatibility.

PowerShell cmdlets. Azure PowerShell cmdlets can be used to automate the transfer
of files from on premises to either Azure Blob Storage or Azure Data Lake Store.

Bulk loading into Azure Storage account blobs. Azure PowerShell enables you to upload a
file at a time using the Set-AzureStorageBlobContent cmdlet. You can wrap this with
a call to the Get-ChildItem cmdlet to upload all the local files in the current directory
to a container in Blob Storage:

Get-ChildItem -File -Recurse |
Set-AzureStorageBlobContent -Container "<containerName>"

In order for this command to properly function, the context needs to be set up with
the Azure subscription and Azure Storage account selected. The following shows a
complete example of this sequence:

50 | Chapter 2: Getting Data into Azure

Add-AzureAccount

Select-AzureSubscription -SubscriptionName "my subscription"

Set-AzureSubscription -CurrentStorageAccountName "solintxanalytics2"
-SubscriptionName "my subscription"

Get-ChildItem -File -Recurse |
Set-AzureStorageBlobContent -Container "imported"

The command executes with the output shown in Figure 2-48.

Figure 2-48. Example output from upload to Azure Storage using Azure PowerShell.

Bulk loading into Azure Data Lake Store. Azure PowerShell 1.0 and later provides a
cmdlet to directly upload files and folder from your local machine to a folder path on
Azure Data Lake Store.

At a high level, the syntax appears as follows:

Import-AzureRmDataLakeStoreItem -AccountName “<ADLSAccountName>"
-Path “<localFilePath>" -Destination <filePathInADLS>

The parameters are as follows:

<ADLSAccountName>

The name (not URI) of your Azure Data Lake Store account.

<localFilePath>

The local path to a file or to a folder. The value should end in a forward slash (\)
to represent a folder.

<filePathInADLS>

The file or folder name. The value should end in a backslash (/) to represent a
folder as it should appear in Azure Data Lake Store.

Bulk Data Loading | 51

The sequence used to invoke this cmdlet begins with launching PowerShell. After that
you will need to use the Login-RmAccount cmdlet to gain access. Then, depending on
how many subscriptions you have, you may have to use Select-RmSubscription to
change the active subcriptions used by the context to a different subscription. After
this, you can invoke the Import-AzureRmDataLakeStoreItem cmdlet. The following
shows an example of this sequence:

Login-RmAccount

Select-AzureRmSubscription
-SubscriptionName "Solliance Subscription"

Import-AzureRmDataLakeStoreItem -AccountName “solliance"
-Path “W:\Projects\Spark\sample_data\" -Destination /imported3

This command will execute with output similar to Figure 2-49.

Figure 2-49. Example output of uploading to Azure Data Lake Store using PowerShell.

Network-Oriented Approaches
There are other approaches to performing bulk data transfers that have heavier net‐
working requirements than a simple graphical or command-line client, and so we
classify these as network-oriented approaches. In some cases, these approaches center
on a particular protocol such as FTP, UDP, or SMB. In other cases, they center on
establishing a network tunnel that enables persistent hybrid connectivity—such as
establishing a virtual private network between your on-premises location and Azure.

FTP
For many legacy systems, the File Transfer Protocol (FTP) was, and may still be, the
key protocol used for batch transferring of data files. There no Azure services that
directly support the ingest of files via FTP; however, you can deploy a protocol gate‐
way that enables FTP ingest on the perimeter, which is then backed by Azure Blob
Storage.

There are three approaches to this:

• Build a cloud service worker role that exposes FTP endpoints.
• Run a virtual machine, with FTP services installed, that has a Windows service

running that transfers the files from the FTP server’s folders to Azure Storage.

52 | Chapter 2: Getting Data into Azure

• Leverage the FTP endpoints already available via the Azure Web Apps service to
receive FTP transfers to a monitored location on the filesystem that then trans‐
fers the files to Azure Storage.

The cloud service worker role option exists in the community, but the code is very
much in need of a refresh. If this approach is preferable to you, I suggest you examine
the source available at http://ftp2azure.codeplex.com/.

The details of the setup for the VM approach are beyond the scope of this book, but
are fairly well documented in the blog post “FTP Server Proxy for Azure Blob Stor‐
age”.

The last option, and the one I prefer, is to use an Azure web app with a Web Job. The
web app provides the FTP endpoints and receives files to storage it also provides. A
Web Job is used to host code (such as the FileSystemWatcher component from .NET)
that looks for new files in the filesystem and then triggers the execution of logic that
copies the file to Azure Storage. For the steps to set this up, take a look at http://bit.ly/
2mVH2u2.

UDP transfers
With the increasing adoption of cloud storage, a clear need has surfaced for optimiz‐
ing transfers from on premises to cloud storage. Most cloud storage services, such as
Azure Storage, are accessed through Transmission Control Protocol (TCP), which
relies on bidirectional communication. When you are performing an upload, the
communication needs to be largely one way, from the source to the destination, and
removing the chattiness incurred by maintaining a bidirectional channel can result in
a significant speedup in network transfer rates. To do so, change the protocol used for
the transfer: instead of using TCP, leverage the one-way User Datagram Protocol
(UDP).

There are no services in Azure that natively offer UDP endpoints, but to fill this void
two vendors provide excellent solutions that deploy into Azure to let you upload
from on-premises clients to Azure Storage via UDP. While these two solutions are
not free, they can be pivotal components of your ingest strategy by enabling reliable,
fast, and persistent ingest of large files to Azure Storage:

• Aspera Server On Demand
• Signiant Flight

SMB network shares
Another option you might be considering for ingest is to use network shares. On
premises these work well to copy files between servers, so what about using the same

Bulk Data Loading | 53

http://ftp2azure.codeplex.com/
http://www.redbaronofazure.com/?p=5781
http://www.redbaronofazure.com/?p=5781
http://bit.ly/2mVH2u2
http://bit.ly/2mVH2u2
http://bit.ly/2nCI5U2
http://bit.ly/2ndDJBD

approach to copy from on premises to Azure? The most common protocol for net‐
work shares is Server Message Block (SMB), and there is one service in Azure that
supports it natively: Azure Files. Azure Files is a component of Azure Storage that lets
you store up to 5 terabytes’ worth of files in a network share that is accessible from
any authorized device or client application.

With Azure Files you can mount shares from on-premises client services that support
SMB 3.0 (basically Windows 8 onward and Windows Server 2012 onward). However,
there is a hidden gotcha: many internet service providers block outbound TCP port
445 for security reasons, and this port is required by SMB. In other words, while
Azure Files may enable you to make a connection between your on-premises
machines and an Azure Files share via SMB, your ISP may prevent you from making
that connection. This latter issue typically rules out SMB as an option for on premises
to Azure Files.

Hybrid connections and Azure Data Factory
The term hybrid cloud refers to the ability to have services that span from an on-
premises datacenter to services in the cloud, supporting communication in both
directions as desired. One approach to establishing such connectivity is to use site-to-
site networking, which we will discuss in the next section. Another approach is to use
hybrid connections, as we will discuss here.

Hybrid connections revolve around the notion that you have a service running in
Azure that needs to access a service or resources that are available only on premises,
and they do this with minimal impact on your network configuration by requiring
only outbound TCP or HTTP connectivity. To accomplish this, they deploy a soft‐
ware agent that lives within the on-premises network and acts as proxy for the Azure-
hosted services to be able to reach the services desired on the network. The agent is
responsible for maintaining a secure connection with Azure, and for proxying traffic
from Azure to the target service and from the target service back to Azure. Typical
examples of this include enabling an Azure web app to query data stored in SQL
Server on premises, or to access a file share that exists only on premises (see
Figure 2-50).

The setup typically proceeds as follows:

1. Provision a service that supports hybrid connectivity in Azure.
2. Using the portal, download an installer onto a machine in the on-premises net‐

work that contains the service you want Azure to access.
3. After installation, return to the portal to configure the destination the agent

should be talking to (e.g., the hostname and port of your SQL Server or the IP
address of your file server).

54 | Chapter 2: Getting Data into Azure

4. Once configured, the Azure services that use this agent can communicate with
the machine as if it were local to them.

Figure 2-50. Example of a hybrid connection between a web app running in Azure and
SQL Server running on premises.

Hybrid connections are available to Azure App Services, which means your websites
and Web Jobs running, for example, on a web app can use the hybrid connection to
talk to your on-premises SQL Server. This scenario may be interesting to you if you
have code that you want to trigger that is hosted within an app service. The setup for
an app service hybrid connection is simple, but is outside the scope of this book. For
details, see the Microsoft Azure documentation.

The hybrid connections we focus on in this book are those that are tailor-made for
bulk data movement from your on-premises resources. The Azure service that pro‐
vides this capability is the Azure Data Factory (ADF). ADF provides the services and
tooling to compose and integrate data, build data pipelines, and monitor their status
in real time. It has a broad set of functionality to which we will return a few times in
this book, but for our focus on data ingest ADF supports data movement from on-
premises sources including a file share, SQL Server, Teradata, Oracle Database,
MySQL Database, DB2, Sybase Database, PostgresSQL, ODBC, and HDFS. The data
movement can ingest the data to Azure services including Azure Blob Storage and
Table Storage, Azure SQL Database, Azure SQL Data Warehouse, and Azure Data
Lake Store.

To accomplish the connectivity to the on-premises source, ADF uses the Data Man‐
agement Gateway, which is a hybrid connection agent as we discussed previously.
Once you have the Data Management Gateway agent installed, you configure data
sets that represent the source and destination, and construct a pipeline that consists
of a single activity, the Copy activity, which moves data between these data sets.

Bulk Data Loading | 55

http://bit.ly/2mV9GMq

Ingesting from a file share to Blob Storage
Let’s look in detail at the steps to create an Azure Data Factory pipeline that copies
files from a folder on a network share to blobs in Azure Storage. We begin by creating
an Azure Data Factory instance.

1. Log in to the Azure Portal.
2. Click New.
3. Choose Data + Analytics, and then click Azure Data Factory.
4. Provide a name for your new Data Factory, and select an Azure subscription, a

resource group, and a region.
5. Click OK to create your Azure Data Factory.

Once your Data Factory has been created, it takes about 20 minutes to provision; the
blade for it should automatically open in the Azure Portal. You are now ready to
install and configure the Data Management Gateway.

1. Log in to the machine on which you will install the agent for the Data Manage‐
ment Gateway.

2. Navigate to the Azure Portal. If possible, use Internet Explorer for the following
steps, because the gateway install is easier with ClickOnce.

3. From the ADF blade, click “Author and deploy” (Figure 2-51).

Figure 2-51. The “Author and deploy” tile on the Data Factory blade.

4. In the blade that appears, click “More commands” (Figure 2-52).

Figure 2-52. The “More commands” button

5. Click “New data gateway” (Figure 2-53).

56 | Chapter 2: Getting Data into Azure

https://portal.azure.com

Figure 2-53. The “New data gateway” button

6. Provide a name for your data gateway and click OK.
7. On the Configure blade, click the link below Express Setup (“Install directly on

this computer”). Alternately, click the “Download and install data gateway” link if
you are not using IE (when you do this, be sure to copy the NEW KEY value on
the blade so you can enter it during the installation). See Figure 2-54.

Figure 2-54. The Configure blade enables you to download the data gateway instal‐
ler.

8. Follow the onscreen instructions of the agent installer.
9. After a few moments you should see your gateway is connected in the Microsoft

Data Management Configuration Manager (Figure 2-55).

Bulk Data Loading | 57

Figure 2-55. The Data Management Gateway Configuration Manager.

10. Back on the Configure blade, click OK and OK again to complete the “New data
gateway” setup.

11. You should now be back on the “Author and deploy” blade. Click “New data
store” (Figure 2-56) and select Filesystem from the drop-down.

Figure 2-56. The “New data store” button.

12. In the dialog that appears, provide values for the following properties located
within the typeProperties object (Example 2-1):

host

Enter the UNC path to the file share you will be uploading from. You need to
escape the slashes by doubling them up—for example, \\mycomputer\sample‐
data\ would need to be entered as \\\\mycomputer\\sampledata\\.

gatewayName

Enter the name of the gateway you just provisioned.

58 | Chapter 2: Getting Data into Azure

Example 2-1. Sample configuration of a linked service

{
 "name": "OnPremisesFileServerLinkedService",
 "properties": {
 "type": "OnPremisesFileServer",
 "description": "",
 "typeProperties": {
 "host": "\\\\DESKTOP-ORFJ0P6\\SampleData\\",
 "gatewayName": "sol-gateway",
 "userId": "<Domain user name e.g. domain\\\\user>",
 "password": "<Domain password>"
 }
 }
}

13. When you finish entering the gatewayName, a button labeled “encrypt creden‐
tials” should appear (if not, try deleting the quote before gatewayName and then
re-adding the quote). Click the “encrypt credentials” button. This will download
a ClickOnce application called Credential Manager into which you will enter the
username and password of a Windows account authorized to access the share.
Since this relies on ClickOnce to install the app, you will need to use IE.

14. In the Credential Manager enter the following (see Figure 2-57):

Username

Provide the username in the on-premises environment that can access the
share. Be sure to enter it in domain\username format.

Password

Enter the password for the user.

Figure 2-57. The Data Factory Credential Manager.

15. Click OK.
16. Return to the linked service you were just editing and click Deploy (Figure 2-58).

Bulk Data Loading | 59

Figure 2-58. The Deploy button

Now that you have established connectivity to your file share via the linked service,
you are ready to begin constructing the data sets and the pipeline. First, begin by cre‐
ating a data set that represents the file share.

1. Within the “Author and deploy” blade, click “New dataset.”
2. Choose “On-premises file” from the drop-down (Figure 2-59).

Figure 2-59. Options for a new dataset

3. Specify the following attributes (Example 2-2):

name

Enter the name of this data set.

linkedServiceName

Provide the name of the linked service you just created.

folderPath

Provide the relative path to the folder containing the files you wish to process
(relative to the root of the share). Enter the path with double slashes (e.g., foo
\\bar).

60 | Chapter 2: Getting Data into Azure

availability.frequency

Specify the unit for the interval. Valid values are Minute, Hour, Day, Week, and
Month.

availability.interval

Specify the interval as an integer (no quotes around the value because it is an
integer and not a string).

external

This attribute is not present in the template, but you must add it (beneath
availability) because the data represented by this data set is produced by a
process outside of the pipeline (i.e., it’s an input to the pipeline and not a tar‐
get or sink). Set the value to true.

Example 2-2. Example of an on-premises file data set

{
 "name": "OnPremisesFile",
 "properties": {
 "type": "FileShare",
 "linkedServiceName": "OnPremisesFileServerLinkedService",
 "typeProperties": {
 "folderPath": "raw\\"
 },
 "availability": {
 "frequency": "Minute",
 "interval": 15
 },
 "external": true
 }
}

4. Click Deploy.

Next, you need to create a linked service that represents the connection information
to Azure Storage.

1. Within the “Author and deploy” blade, click “New data store.”
2. Choose Azure Storage from the drop-down.
3. Specify the following attributes (Example 2-3):

connectionString

Provide the AccountName and the AccountKey for the Storage account that
contains the blob container you will target.

Bulk Data Loading | 61

Example 2-3. Example of linked service to Azure Storage

{
 "name": "AzureStorageLinkedService",
 "properties": {
 "type": "AzureStorage",
 "description": "",
 "typeProperties": {
 "connectionString":
 "DefaultEndpointsProtocol=https;AccountName=
 <accountname>;AccountKey=<accountkey>"
 }
 }
}

4. Click Deploy.

Now that you have a linked service for Azure Storage, you need to create a data set
that represents the data as it will be stored.

1. Within the “Author and deploy” blade, click “New dataset.”
2. Choose Azure Blob Storage from the drop-down.
3. Specify the appropriate attributes. Let’s assume you are uploading CSV files, so

you would delete the structure object and then specify the following
(Example 2-4):

linkedServiceName

Provide the name of the linked service for Azure Blob Storage that you just
created.

folderPath

Enter the container and path to which your files will be written, including
the partitions if you specify any in the partitionedBy property (e.g., con
tainername/{Year}/{Month}/{Day}).

format

Enter TextFormat.

columnDelimiter, rowDelimiter, EscapeChar, NullValue
These can be deleted unless your CSV has something unusual.

availability.frequency

Specify the unit for interval (Minute, Hour, Day, Week, or Month).

availability.interval

Specify the interval as an integer (no quotes around the value):

62 | Chapter 2: Getting Data into Azure

Example 2-4. An Azure Blob Dataset configuration

{
 "name": "AzureBlobDataset",
 "properties": {
 "published": false,
 "type": "AzureBlob",
 "linkedServiceName": "AzureStorageLinkedService",
 "typeProperties": {
 "folderPath": "adfupload/{Year}/{Month}/{Day}",
 "format":{
 "type": "TextFormat"
 },
 "partitionedBy": [
 {
 "name": "Year",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "yyyy"
 }
 },
 {
 "name": "Month",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "MM"
 }
 },
 {
 "name": "Day",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "dd"
 }
 }
]
 },
 "availability": {
 "frequency": "Minute",
 "interval": 15
 }
 }
}

4. Click Deploy.

Bulk Data Loading | 63

At this point you have data sets for both the source (the files on the file share) and the
destination (the blobs in Azure Storage). You are now ready to create a pipeline that
describes the data movement by way of activities (in this case, a single Copy activity
between both data sets).

1. Within the “Author and deploy” blade, click “More commands” and then “New
pipeline” (Figure 2-60).

Figure 2-60. The “New pipeline” button.

2. Click “Add activity” (Figure 2-61).

Figure 2-61. The list of available pipeline activities.

3. Choose “Copy activity” from the drop-down.
4. At minimum, specify the following attributes (Example 2-5):

Description

Provide a user-friendly description for the pipeline.

inputs[0].name

Provide the name of your file share data set.

outputs[0].name

Provide the name of your blob container data set.

64 | Chapter 2: Getting Data into Azure

typeProperties.source.type

Enter FileSystemSource.

typeProperties.source.sqlReaderQuery

Delete this property.

typeProperties.sink.type

Enter BlobSink.

scheduler.frequency

Specify the unit.

scheduler.interval

Specify the interval as an integer (no quotes around the value).

start

Enter the date when the pipeline should start running, in YYYY-MM-DD
format. Set this to today’s date.

end

Enter the date when the pipeline should stop running, in YYYY-MM-DD
format. Set this to a future date.

5. Be sure to delete the typeProperties.source.sqlReaderQuery attribute that
was provided by the template as a sample.

Example 2-5. Example of a pipeline

{
 "name": "PipelineTemplate",
 "properties": {
 "description": "copies files from a share to blob storage",
 "activities": [
 {
 "name": "CopyActivityTemplate",
 "type": "Copy",
 "inputs": [
 {
 "name": "OnPremisesFile"
 }
],
 "outputs": [
 {
 "name": "AzureBlobDataset"
 }
],
 "typeProperties": {
 "source": {

Bulk Data Loading | 65

 "type": "FileSystemSource"
 },
 "sink": {
 "type": "BlobSink"
 }
 },
 "policy": {
 "concurrency": 1,
 "executionPriorityOrder": "OldestFirst",
 "retry": 3,
 "timeout": "1.00:00:00"
 },
 "scheduler": {
 "frequency": "Minute",
 "interval": 15
 }
 }
],
 "start": "2015-03-07T00:00:00Z",
 "end": "2015-03-15T00:00:00Z"
 }
}

6. Click Deploy.

Parameter Documentation

For the details on all the parameters available to the Azure Blob
Storage linked service and data set, see the Microsoft Azure docu‐
mentation.

Congratulations! You’ve just created your first data pipeline that copies data from an
on-premises file share to a blob in Azure Storage. Your data sets should soon begin
processing slices, and you should see your files start to appear in Azure Blob Storage
shortly.

To check on the status of your pipeline, from the home blade for your Azure Data
Factory, click Monitoring App, as shown in Figure 2-62.

Figure 2-62. The Monitoring App tile available on the Data Factory blade.

66 | Chapter 2: Getting Data into Azure

http://bit.ly/2n80dCr
http://bit.ly/2n80dCr

This will pop open a new browser window that loads the Monitoring App, which lets
you inspect the status of your pipeline by activity and time slice (Figure 2-63).

Figure 2-63. The Data Factory Monitoring App showing pipeline activity.

Ingesting from a file share to Azure Data Lake Store
Building upon the on-premises file linked service and data set from the previous sec‐
tion, in this section we show you can also target the Azure Data Lake Store.

Before you proceed with this section, you should have created an Azure Data Lake
Store. The details of this process will be covered in Chapter 3, but for our purposes
here you can create one using the Azure Portal.

1. Click New.
2. Select Data + Storage.
3. Select Azure Data Lake Store.
4. Provide a name, and choose a subscription, a resource group, and location.
5. Click Create.

Now you are ready to provision the linked service pointing to your Azure Data Lake
Store.

1. Within the “Author and deploy” blade, click “New data store.”

Bulk Data Loading | 67

2. Choose Azure Data Lake Store from the drop-down.
3. In the editor, provide the following properties (Example 2-6):

dataLakeStoreUri

Provide the URI to your Data Lake Store. It will be of the form https://[data‐
lakestorename].azuredatalakestore.net/webhdfs/v1.

accountName, subscriptionId, resourceGroupName
You can delete these if your Data Lake Store resides in the same Azure sub‐
scription as your Azure Data Factory. If that is not the case, then you will
need to fill these properties in.

4. Click the Authorize button, which will pop up a new browser window that will be
used to authorize access to your Data Lake Store.

Example 2-6. Example of a completed Data Lake Store linked service

{
 "name": "AzureDataLakeStoreLinkedService",
 "properties": {
 "type": "AzureDataLakeStore",
 "description": "",
 "typeProperties": {
 "authorization":
 "https://portal.azure.com/tokenauthorize?code=AAABAAAAiL9kn...",
 "dataLakeStoreUri":
 "https://<storename>.azuredatalakestore.net/webhdfs/v1",
 "sessionId": "eyJJZCI6bn..."
 }
 }
}

5. Click Deploy.

Now that you have a linked service for Azure Data Lake Store, you need to create a
data set that represents the data as it will be stored.

1. Within the “Author and deploy” blade, click “New dataset.”
2. Choose Azure Data Lake Store from the drop-down.
3. Specify the appropriate attributes. Let’s assume you are uploading CSV files, so

you would delete the structure object and do the following (see Example 2-7):

linkedServiceName

Provide the name of the linked service for Azure Data Lake Store that you
just created.

68 | Chapter 2: Getting Data into Azure

folderPath

Enter the folder path to where your files will be written, including the parti‐
tions if you specify any in the partitionedBy property (e.g., foldername/
{Year}/{Month}/{Day}).

filePath

Delete this when uploading a folder.

format

Enter TextFormat.

columnDelimiter, rowDelimiter, EscapeChar, NullValue
These can be deleted unless your CSV has something unusual.

compression

Delete this to leave the CSV files uncompressed.

availability.frequency

Specify the unit for interval (Minute, Hour, Day, Week, or Month).

availability.interval

Specify the interval as an integer (no quotes around the value).

Example 2-7. Example of a completed Data Lake Store data set

{
 "name": "AzureDataLakeStoreDataset",
 "properties": {
 "published": false,
 "type": "AzureDataLakeStore",
 "linkedServiceName": "AzureDataLakeStoreLinkedService",
 "typeProperties": {
 "folderPath": "adfupload/{Year}/{Month}/{Day}/{Hour}",
 "format":{
 "type": "TextFormat"
 },
 "partitionedBy": [
 {
 "name": "Year",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "yyyy"
 }
 },
 {
 "name": "Month",
 "value": {

Bulk Data Loading | 69

 "type": "DateTime",
 "date": "SliceStart",
 "format": "MM"
 }
 },
 {
 "name": "Day",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "dd"
 }
 },
 {
 "name": "Hour",
 "value": {
 "type": "DateTime",
 "date": "SliceStart",
 "format": "HH"
 }
 }
]
 },
 "availability": {
 "frequency": "Minute",
 "interval": 15
 }
 }
}

4. Click Deploy.

Azure Data Lake Store Parameters

For the details on all the parameters available to the Azure Data
Lake Store linked service and data set, see the Microsoft Azure doc‐
umentation.

At this point you have data sets for both the source (the files on the file share) and the
destination (the files in Azure Data Lake Store). You are now ready to create a pipe‐
line that describes the data movement by way of activities (in this case, a single Copy
activity).

1. Within the “Author and deploy” blade, click “More commands” and then “New
pipeline.”

2. Click “Add activity.”

70 | Chapter 2: Getting Data into Azure

http://bit.ly/2nnOaDk
http://bit.ly/2nnOaDk

3. Choose “Copy activity” from the drop-down.
4. At minimum, specify the following attributes (Example 2-8):

Description

Provide a user-friendly description for the pipeline.

inputs[0].name

Provide the name of your file share dataset.

outputs[0].name

Provide the name of your blob container data set.

typeProperties.source.type

Enter FileSystemSource.

typeProperties.source.sqlReaderQuery

Delete this property.

typeProperties.sink.type

Enter AzureDataLakeStoreSink.

scheduler.frequency

Specify the unit.

scheduler.interval

Specify the interval as an integer (no quotes around the value).

start

Enter the date when the pipeline should start running, in YYYY-MM-DD
format. Set this to today’s date.

end

Enter the date when the pipeline should stop running, in YYYY-MM-DD
format. Set this to a future date.

5. Be sure to delete the typeProperties.source.sqlReaderQuery attribute that
was provided by the template as a sample.

Example 2-8. Example of a completed on-premises file share to Azure Data Lake
Store pipeline

{
 "name": "PipelineOnPremToLake",
 "properties": {
 "description":
 "Copies data from on-premises share to Data Lake Store",
 "activities": [
 {

Bulk Data Loading | 71

 "name": "CopyActivityTemplate",
 "type": "Copy",
 "inputs": [
 {
 "name": "OnPremisesFile"
 }
],
 "outputs": [
 {
 "name": "AzureDataLakeStoreDataSet"
 }
],
 "typeProperties": {
 "source": {
 "type": "FileSystemSource"
 },
 "sink": {
 "type": "AzureDataLakeStoreSink"
 }
 },
 "policy": {
 "concurrency": 1,
 "executionPriorityOrder": "OldestFirst",
 "retry": 3,
 "timeout": "01:00:00"
 },
 "scheduler": {
 "frequency": "Minute",
 "interval": 15
 }
 }
],
 "start": "2016-03-06T00:00:00Z",
 "end": "2016-03-15T00:00:00Z"
 }
}

6. Click Deploy.

At this point your pipeline copying files from the on-premises share to the Azure
Data Lake Store should be running, and you should see your files start to appear
within a few minutes. If you use the Monitoring App from the Data Factory blade,
you should see both of your pipelines running, as shown in Figure 2-64.

72 | Chapter 2: Getting Data into Azure

Figure 2-64. Viewing both pipelines in the Monitoring App.

If you get any errors, the best place to see their details is within the Monitoring App.
Select a row indicating an error in the Activity Windows panel (the panel at the bot‐
tom center) and then in the Activity Window detail panel (the rightmost panel)
under Attempts, you will see any errors for the selected time slice. If you expand the
error you will be presented with the error details, similar to Figure 2-65.

Figure 2-65. Viewing exceptions in the Monitoring App.

Bulk Data Loading | 73

Site-to-site networking
When it comes to bulk loading data, you might also consider setting up a form of
site-to-site networking connectivity between your on-premises network and Azure.
There are two approaches to this.

Express Route. Express Route lets you create private connections between your on-
premises datacenter and Azure, without having connections going across the public
internet. The Express Route setup is more involved and expensive than the options
presented thus far, but it may make sense for you if you have ongoing large transfers
to Azure. Express Route allows you to use Microsoft peering, which enables applica‐
tions running on premises to transmit data to Azure services across the Express
Route connection instead of across the internet, enabling them to leverage the
increased throughput and security available to the Express Route connection. For
example, this would enable you to use any of the aforementioned applications or
commands to bulk-transfer data to Azure Blob Storage over your dedicated Express
Route connection.

More Info on Express Route

For more information on Express Route, see the Microsoft Azure
documentation.

Virtual private networks. Azure Virtual Networks enable you to set up a site-to-site
virtual private network (VPN). Unlike Express Route, site-to-site VPN does not have
a Microsoft peering option that makes Azure services such as Azure Storage available
across a VPN. Moreover, the VPN connectivity to Azure happens over the public
internet, so adding a VPN layer on top of it means your bulk data transfers are likely
to be slower than without the VPN.

Stream Loading
With stream loading, we take a different approach to ingesting data into Azure, typi‐
cally for a very different purpose. Whereas in the bulk load scenario, Blue Yonder
Airlines was interested in transferring their historical flight delay data, in the stream
loading scenario they are interested in collecting telemetry emitted by thermostats
(such as the point-in-time temperature and whether the heating or cooling is run‐
ning) and motion sensors (such as the point-in-time reading indicating if motion was
detected in the past 10 seconds).

Stream loading targets queues that can buffer up events or messages until down‐
stream systems can process them.

74 | Chapter 2: Getting Data into Azure

http://bit.ly/2n7UXyC
http://bit.ly/2n7UXyC

For our purposes we will examine Azure Event Hubs and Azure IoT Hub as targets,
and consider both of them simply as queueing endpoints. We will delve into their
function much more deeply in the next chapter.

Stream Loading with Event Hubs
Event Hubs provide a managed service for the large-scale ingest of events. At what
scale? Think billions of events per day. Event Hubs receive events (also referred to as
messages) from a public endpoint and store them in a horizontally scalable queue,
ready for consumption by consumers that appear later in the data pipeline.

Event Hubs provide endpoints that support both the AMQP 1.0 and HTTPS (over
TLS, or Transport Layer Security) protocols. AMQP is designed for message senders
(aka event publishers) that desire a long-standing, bidirectional connection such as
the connected thermostats in the Blue Yonder scenario. HTTPS is traditionally
deployed for senders that cannot maintain a persistent connection. For an example of
an HTTPS client, think of devices connected by cellular that periodically check in:
cost and/or battery capacity constraints may preclude them from maintaining an
open cellular data connection, so they connect to the cell network, transmit their
messages, and disconnect.

Events sent to Event Hubs can be sent one at a time, or as a batch, so long as the
resulting event is not larger than 256 KB. With AMQP, the event is sent as a binary
payload (see Figure 2-66). With HTTPS, the event is sent with a JSON serialized pay‐
load.

Figure 2-66. Ingest of streaming data with Event Hubs.

Stream loading with IoT Hub
IoT Hub is another Azure service that is designed to ingest messages or events at
massive scale. For our purposes in this chapter (focusing on message ingest), the IoT
Hub endpoint functions in a similar fashion to Event Hubs (in fact it provides an

Stream Loading | 75

Event Hubs endpoint). The key difference is that in choosing to use IoT Hub, you
gain support for an additional protocol—MQTT, which is a fairly common protocol
utilized by IoT solutions. Therefore, ingesting from device to cloud with IoT Hub
looks as shown in Figure 2-67.

Figure 2-67. Ingest of streaming data with IoT Hub

In the next chapter, we will examine Event Hubs and IoT Hubs in more detail, along
with introducing a simulator for Blue Yonder Airlines that simulates devices trans‐
mitting telemetry.

Summary
In this chapter we focused on the ingest loading layer, exploring two different
approaches. First, we looked at various options for bulk loading data into Azure from
on premises. We covered the options broadly, including the Import/Export Service,
Visual Studio, Microsoft Azure Storage Explorer, AzCopy, AdlCopy, Azure CLI and
Azure PowerShell cmdlets, FTP upload, UDP upload, SMB transfers, hybrid connec‐
tions, Azure Data Factory, and site-to-site networking options. Second, we looked at
streaming ingest of telemetry into Azure and the services that support it, namely
Event Hubs and IoT Hub.

In the next chapter we turn our focus to the target of the data ingest, or rather where
the data transmitted is initially stored.

76 | Chapter 2: Getting Data into Azure

CHAPTER 3

Storing Ingested Data in Azure

In this chapter, we explore where to land the transferred data and how to choose
among the storage options. These options fall into two broad categories: file-oriented
storage and queue-oriented storage. The particular category selected impacts the type
(and latency) of processing performed at later stages in the pipeline. We intentionally
omit other data stores (such as NoSQL or document stores) as the initial landing
place for ingested data, as the file and queue options are the simplest and least likely
to impose changes on the ingested data before processing can begin.

In terms of our analytics pipeline we are going to examine the storage items outlined
in Figure 3-1.

File-Oriented Storage
The more things change, the more they stay the same. This is also true of the innova‐
tions in approaches for storing big data used in analytics scenarios—the notion of a
filesystem that contains a tree of directories, which in turn can contain files of differ‐
ent formats and encodings, has persisted in storing data at cloud scale. In this section,
we examine three such “filesystems” prevalent in Azure: Blob Storage, Azure Data
Lake Store, and the Hadoop File System (HDFS).

77

Figure 3-1. Transient and persistent storage services are the focus of this chapter.

78 | Chapter 3: Storing Ingested Data in Azure

Blob Storage
Azure Blob Storage provides highly available, high-scale object storage and allows
you to store file data such as text files and binary files. Blob Storage is a component of
Azure Storage. In other words, to provision Blob Storage in your Azure subscription
you create an Azure Storage account, and within that Azure Storage account are three
storage services: Table Storage (a NoSQL key/value store), Queue Storage (a simple
queueing service), and Blob Storage—the latter of which is the focus of this section.
Blob Storage is used extensively throughout Azure to store things from logs to virtual
machine disks.

Blob Storage capabilities
Blob Storage enables you to store files predominantly in three different formats
according to your read/write workload.

Block blobs
Block blobs are optimized for storing text or binary files, allowing for efficient
parallel upload/download of a block or list of blocks and modification of a blob at
the block granularity. Modifications to an individual blob take a two-phase
approach. First, one uploads the changes as a set of blocks. Second, one commits
the changes by identifying the list of uploaded blocks. Block blobs are most com‐
monly used for files such as text files, CSVs, and binary files where the typical
workload is to read or write the entire file.

Append blobs
An append blob is a variant of a block blob that is optimized for append-only
write workloads, such as logging. It does not allow deleting or updating of exist‐
ing blocks.

Page blobs
Page blobs are optimized for predominantly random read/write workloads (such
as virtual machine disks) against portions of the blob, where data is stored in
pages.

The file structure for a blob in Blob Storage is as follows. At the root of the Storage
account, you have a container. A container is a logical grouping of blobs, similar to
how folders group files on your local machine. It can be used to set access permis‐
sions on the blobs it contains. Within each container you can have an unlimited
quantity of blobs.

Each blob (or more precisely, each container and blob pair) identifies a partition. In
other words, each file you have in Blob Storage is its own partition.

When you create your Storage account you can define the degree of replication of the
data that you desire for high availability and disaster recovery purposes. At minimum

File-Oriented Storage | 79

data stored within a Storage account is replicated on three separate nodes within a
single facility (i.e., building). The replication options are as follows:

Locally redundant storage (LRS)
LRS stores three copies of the data within a facility (which is naturally within a
specific geographic region).

Zone-redundant storage (ZRS)
ZRS augments LRS by enabling a replica within another facility within the same
region. ZRS supports only block blobs.

Geo-redundant storage (GRS)
GRS automatically replicates your blob storage to another geographic region that
is hundreds of miles away from the primary. For example, if your primary Stor‐
age account is within the West US region, you can have a secondary replica of it
in the East US region. This secondary replica is not readable unless the primary
becomes unavailable (and when this happens the failover is transparent to your
application, but Azure will send you an email notification). When new data
arrives, that data is first replicated to the three local replicas and then asynchro‐
nously replicated to the secondary geographic replica (where it is also replicated
three times).

RA-GRS
Read-only geo-redundant storage is a variant of GRS providing a secondary end‐
point that enables you to read from the secondary Storage account.

Blob Storage capacity
The capacity of Azure Blob Storage is largely dictated by two items: the universal size
limits of the Storage account and the limits specific to block or page blobs (see Tables
3-1 and 3-2). Each blob can also store up to 8 kilobytes’ worth of user-defined key/
value metadata, which is useful in scenarios where you want to query for the meta‐
data without transferring the entire blob.

Table 3-1. Blob Storage capacity limits

Item Limits

Storage account size 500 TB

Individual block blob size 4.77 TB

Individual append blob size ~195 GB

Individual page blob size 1 TB

Maximum size of metadata 8 KB

80 | Chapter 3: Storing Ingested Data in Azure

Table 3-2. Blob Storage throughput limits

Item Limits

Target throughput for a single blob 60 MB/s (~480 Mbps), up to 500 requests per second

Max ingress throughput In the US:
10 Gbps (with GRS/ZRS) or 20 Gbps (with LRS)

Max egress throughput In the US:
20 Gbps (with GRS/ZRS) or 30 Gbps (with LRS)

How do we use it in the scenario?
In the previous chapter we introduced many mechanisms for transferring data from
on premises to Blob Storage. Now that we have a more complete understanding of
Blob Storage, let’s look at how it would apply to Blue Yonder Airports. In the intro‐
duction, we established that BYA had historical flight delay data. This kind of data is
typically a great candidate for bulk storage in Blob Storage. For our purposes, we will
use data that’s available from the United States Department of Transportation’s (DoT)
Bureau of Transportation Statistics. They maintain a table of flight delay data, called
On-Time Performance, whose contents can be downloaded into CSVs. In this table,
you can query for data as far back as January 1987 and as recent as two months back.

Getting the sample data
To save time clicking through the DoT user interface, we have already collected one-
year’s worth of data (for calendar years 2014 and 2015) and made it available for
download from http://bit.ly/sampleflightdata.

Download this file and unzip it to view the contents. You should see 24 CSV files,
totaling about 4.88 GB (Figure 3-2).

File-Oriented Storage | 81

http://www.transtats.bts.gov/Tables.asp?DB_ID=120
http://bit.ly/sampleflightdata

Figure 3-2. Sample CSV files containing flight delay data used in the Blue Yonder Air‐
ports scenario.

The schema of the CSV files is described fairly well on the DoT website, so we won’t
repeat that here.

Next, go to Azure Portal and create a new Storage account. You can do so by follow‐
ing these steps (shown in Figure 3-3):

1. Log in to the Azure Portal.
2. Click the New button.
3. Choose Data + Storage, then select Storage Account.
4. In the “Create storage account” blade, provide a unique name for your Storage

account (you will be using it throughout this book).
5. Leave “Deployment model” at “Resource manager” and Performance at Standard.
6. Leave Replication at LRS.
7. Verify the Azure subscription selected is the proper one for the Storage account

(if you have multiple Azure subscriptions).
8. Set “Resource group” to one whose name you will use throughout the book to

logically group the Azure services you create (making them easier to manage or
clean up later).

9. Choose a Location that is nearest you.

82 | Chapter 3: Storing Ingested Data in Azure

http://1.usa.gov/1qwC9cR
https://portal.azure.com

10. Check “Pin to dashboard” so the account is readily available on your Azure Por‐
tal dashboard.

11. Click Create.

Figure 3-3. Creating a Storage account for the bulk ingest of flight delay data.

Now that you have a new Storage account provisioned, let’s briefly discuss the ration‐
ale for some of the key settings used. We chose the resource model as the deployment

File-Oriented Storage | 83

model because that is the new standard for which most new services should be
deployed into Azure and should be used wherever possible. We chose the Standard
performance tier because we will be working with block blobs; the Premium tier sup‐
ports only page blobs. Finally, we left the replication set to LRS for the purposes of
this book because we do not need the availability guarantees. In production you
should strongly consider ZRS (for greater in-region availability) or GRS (for greater
multiregion availability).

Transfer the files
Using the approach of your choice from Chapter 2, upload the files individually
uncompressed. If you are uncertain of what steps to take, we suggest using either Vis‐
ual Studio or Azure Explorer (both shown step by step in Chapter 2) to connect to
your Storage account and copy over your files. This will go significantly faster if you
perform the upload from the virtual machine we recommend you have set up and
assumes that the VM and your Storage account are in the same region (e.g., both are
in the West US region).

You should upload these blobs as block blobs (which will be the default for most
tools) since you will not be performing any random writes against them. This initial
upload represents the beginning of your data lake, as you will preserve these as your
master data set that is always unmodified and always available no matter what down-
stream processing you apply.

Once you have the flight delay files in Blob Storage, you are good to go! We will
return to them throughout the book.

Azure Data Lake Store
Azure Data Lake Store is a hyperscale data repository optimized for analytics work‐
loads. It enables you to scale your storage capacity without having to reengineer your
storage at any point, or even worry about scaling the capacity at all. Its performance is
optimized for analytics workloads, providing strong support for parallel reads. It pro‐
vides a Hadoop filesystem with the familiar notions of folders and files that’s accessi‐
ble via the WebHDFS API, which makes it accessible to many of the Hadoop
ecosystem components.

Azure Data Lake Store is built for the enterprise with availability (all data is replicated
three times within the datacenter) and security in mind, providing support for
authentication (via Azure Active Directory), authorization (via POSIX-style access
control lists and firewall rules), and auditing. It also supports encryption at rest (i.e.,
the data on disk is automatically encrypted on write, and decrypted on read).

Azure Data Lake Store exposes a WebHDFS endpoint that makes it available as a stor‐
age substrate for analytics workloads that can leverage the RESTful endpoint pro‐

84 | Chapter 3: Storing Ingested Data in Azure

vided by WebHDFS. In Azure this means first-class support for analytics workloads
running on HDInsight (and of course Azure Data Lake Analytics), but also support
for Hortonworks Data Platform (HDP) and Cloudera Distribution including Apache
Hadoop (CDH) as well as other clients that are capable of making REST requests
against the WebHDFS API (see Figure 3-4).

Figure 3-4. Azure Data Lake Store supports a wide variety of analytics workloads and
clients.

What’s the capacity?
Azure Data Lake Store is intended to allow for storage without limits and “massive”
throughput. In practice, this means that the Azure Data Lake Store does not have any
limits on the size of an individual file or on the total size of all files it manages. Con‐
trast this with Azure Blob Storage, and you should understand the motivation: Blob
Storage has a per-file size limit (4.77 TB for block blobs and 1 TB for page blobs), and
has an account limit of 500 TB total for all files stored. Azure Data Lake Store has
none of those limits.

Regarding the throughput, as of this writing the throughput targets have not been
published by Microsoft.

How do we use it in the BYA scenario?
Earlier, we uploaded the data from on premises to Blob Storage. On its own this is a
pretty capable storage area, but as we want to keep flight delay data in perpetuity, we
need to be aware that at some point we could exhaust the storage capacity of our Stor‐
age account and would then need to reengineer our solution to support using multi‐
ple Storage accounts in order to gain the required storage capacity. Alternately, we
can use Blob Storage as a staging ground and then copy the files over from Blob Stor‐

File-Oriented Storage | 85

age to Azure Data Lake Store for permanent storage. This is what we will walk
through next.

Provisioning Data Lake Store
Before you can get to the business of using Azure Data Lake Store, you will need to
provision one in your Azure subscription. You can accomplish this quickly by follow‐
ing these steps:

1. Log in to the Azure Portal.
2. Click New.
3. Select Data + Storage, and then Data Lake Store (Figure 3-5).

Figure 3-5. Creating an Azure Data Lake Store using the Azure Portal.

4. In the New Data Lake Store blade, provide a name for your new data lake; select
an Azure subscription, resource group, and deployment location; and click Cre‐
ate. Your new Data Lake Store should be ready within a minute (Figure 3-6).

86 | Chapter 3: Storing Ingested Data in Azure

https://portal.azure.com

Figure 3-6. Configuring the new Data Lake Store.

File-Oriented Storage | 87

Transferring the data
If you followed the previous steps on uploading your data to Azure Blob Storage, you
already have your data in Azure. Now we can perform a lateral copy of the data in
your Azure Data Lake Store. As we indicated in Chapter 2, this can be accomplished
using the AdlCopy command-line program.

To do this, load up the command prompt and navigate to the directory to which you
downloaded AdlCopy. Build your command to copy from Blob Storage to a folder
named FlightDelays in your Data Lake Store:

adlcopy /Source https://<StorageAccountName>.blob.core.windows.net/
<path>/<to>/<flights>/
/Dest adl://adlmvp.azuredatalakestore.net/FlightDelays/
/SourceKey <StorageAccountKey>

In the previous command, replace <StorageAccountName> with the name of the
source Storage account and <StorageAccountKey> with the key to that Storage
account. Also replace <path>/<to>/<flights> with the actual path to your uploaded
flight delay CSVs. Be sure to keep the last / after <flights> because this is what indi‐
cates to AdlCopy that it is copying a directory and not an individual blob.

When you run AdlCopy, and after it has prompted you to log in with your credentials
to your Azure Data Lake Store (which are likely the same credentials you use to
access the Azure Portal), the copy should take only a few minutes. When the copy is
finished, the output will look something like Figure 3-7.

Figure 3-7. Using AdlCopy.exe to copy the flight delay CSV files from Blob Storage to
Azure Data Lake Store.

88 | Chapter 3: Storing Ingested Data in Azure

Exploring the data via the portal
Now that you have your historical flight delay data uploaded, let’s examine it via the
Azure Portal.

Open the portal and navigate to your Azure Data Lake Store. At the top of the blade,
click Data Explorer (Figure 3-8).

Figure 3-8. The Azure Data Lake Store command bar, showing the Data Explorer
button.

Click on the folder to which your files were uploaded and notice the listing shows the
uploaded CSV files (Figure 3-9).

Figure 3-9. The Data Explorer blade showing the folders and files present in the Data
Lake Store.

Click on any one of the CSV files to preview the file contents. The File Preview blade
will open to let you view the first 25 rows of data (Figure 3-10).

File-Oriented Storage | 89

Figure 3-10. The File Preview blade showing a preview of the contents of a CSV file
uploaded to the Data Lake Store.

Congratulations, you now have the historical flight delay data stored in Azure Data
Lake Store and ready for analysis (which we will return to in the upcoming chapters).

HDFS
The Hadoop File System (HDFS) has become the de facto filesystem for storing data
used in big data and analytics scenarios. The value proposition is that HDFS can scale
its storage linearly by adding more compute nodes to provide storage to the cluster;
with the latest versions, it can support upward of 10,000 compute nodes. As a simple
example, if each node you provide has 24 disks attached with each disk being 4 TB in
size, you can reach 960 PB of capacity—in other words, almost an exabyte of stor‐
age! Increase the size of the disks, and you can get to multiple exabytes of storage.

The design of HDFS is primarily focused on supporting analytics workloads; it is
optimized for write once, read many (WORM) workloads where files can be
appended to but not modified. At its core, the architecture of HDFS is fairly straight‐
forward. Name nodes manage the metadata about what directories and files (which
are broken up into blocks typically of 128 MB in size) are available and where the
blocks of data that make up those files is stored. Data nodes actually store the blocks
of data. When a block of data is stored, it is replicated, by default, to three different
disks across the cluster. This provides availability in the case of failure, but also sup‐
ports parallel compute as more copies of the data are available for simultaneous reads
(Figure 3-11).

90 | Chapter 3: Storing Ingested Data in Azure

Figure 3-11. A high-level view of the topology of HDFS.

With this topology in mind, let’s cover the key points of how a client application reads
from and writes to HDFS.

When reading from HDFS, a client application using the HDFS API makes a request
to the name node for the file and in response receives a list of data nodes and blocks
from which to read the file. The client then requests the appropriate blocks from each
data node (Figure 3-12).

When writing to HDFS, a client application first communicates with the name node
and retrieves a list of data nodes to write to. The client then receives a list of blocks
from the first data node in the list, and uses those blocks to begin writing the file
(Figure 3-13).

File-Oriented Storage | 91

Figure 3-12. Reading a file from HDFS.

Figure 3-13. Writing a file to HDFS.

92 | Chapter 3: Storing Ingested Data in Azure

While not meant to turn you into an HDFS professional administrator, hopefully this
description helps you understand how HDFS operates under the covers and clarifies
how important benefits such as linear scale, parallel reads, and high availability are
achieved. As you will find in the following sections, in Azure you are less concerned
with managing HDFS than you are with the various services that build upon it.

How do you use HDFS in Azure?
Within Azure you can use HDFS in a few different ways. The most obvious is you
could provision an HDInsight cluster and use the HDFS that is provisioned with it
(Figure 3-14). In this case the disks attached to the cluster virtual machines provide
the actual storage. The downside to this approach is the requirement to have the clus‐
ter running before you can access your data; in order to simply provide storage, you
are paying for running compute (both in terms of money and in the time it takes to
spin up a cluster). This is because if the cluster is shut down, the name nodes and data
nodes created with the cluster are shut down as well, and without those there is no
access to the data stored by HDFS locally. By externalizing the storage from the clus‐
ter, you enable multiple clusters and applications to simultaneously access the data.
For this reason, the use of cluster local storage is rarely the approach taken.

Figure 3-14. Where HDFS “appears” in various Azure services.

The options that externalize storage are to use HDFS-compatible storage such as that
offered by Azure Blob Storage or Azure Data Lake Store. Within an HDInsight clus‐
ter, for example, your applications can use the wasb: scheme to access files that are
actually stored in Azure Blob Storage via the HDFS API. Windows Azure Storage
Blobs (wasb:) is an extension built upon HDFS APIs; more technically it’s provided
via the hadoop-azure module, which is a part of the Hadoop distribution.

File-Oriented Storage | 93

Similarly, your applications can access files that are stored in Azure Data Lake Store
via the adls: scheme.

The key takeaway is that by using either the Azure Data Lake Store or Azure Blob
Storage, you gain the ability to leverage HDFS for your HDFS-compatible applica‐
tions while still being able to shut down any compute clusters without fear of losing
access to your data.

ASV

If you search around the internet for other schemes, you may come
across the asv: scheme. ASV, which stood for Azure Storage Vault,
is a now-deprecated scheme and approach that was used to access
Azure Blob Storage from HDInsight. You should be using the wasb:
scheme moving forward.

How do we use HDFS in the scenario?
At this point in the Blue Yonder scenario, you already have stored your files in both
Azure Blob Storage and Azure Data Lake Store, so you are all ready to perform pro‐
cessing on this data.

Queue-Oriented Storage
The queue-oriented storage designed for massive ingest of events takes on a different
form than the traditional queue. Most traditional queues have consumers who com‐
pete to read messages from a queue. The first consumer who retrieves the messages
“wins”—the message is deleted from the queue and invisible to the other consumers.
The queues we cover in this section are different. They are, by contrast, “multicon‐
sumer” queues. In other words, the processing of a message by any consumer does
not delete it from the queue. The only thing that actually deletes messages from the
queue is the retention policy, which effectively ages out old messages.

This type of queuing expects that messages will be processed by downstream compo‐
nents in a specific window of time. It is very common in the Event Sourcing pattern,
and surfaces time and again with event log analytics. In this chapter we will examine
sending messages to the “multiconsumer” queues exposed by Event Hubs and IoT
Hub. In the subsequent chapters, we will get into the details about how messages are
actually consumed and how progress through a given queue is managed.

Before we do that, let’s add a little more detail to our Blue Yonder Airports scenario to
put the usage of these queues in context.

94 | Chapter 3: Storing Ingested Data in Azure

Blue Yonder Scenario: Smart Buildings
The medium and large hub airports served by BYA have between 12 and 22 gates per
terminal, and anywhere from 2 to 9 terminals. Most airports they serve have between
50 and 207 gates in total.

Blue Yonder Airports installs a sensor package at each gate consisting of four temper‐
ature sensors (one sensor in the center of the gate area, one by the gate doorway, and
two on the outskirts of the gate area). They also install one motion sensor in the area.
In addition, the climate control units report when the heat or air conditioning is acti‐
vated or deactivates. All of this telemetry is emitted in the form of time series data.

In the case of temperature sensors, the average temperature over the reporting win‐
dow is reported 6 times per minute (every 10 seconds, the average for that 10 seconds
is transmitted). In the case of the motion sensors, activity or lack of activity is
reported within each 10-second window (so if there was any activity within the 10-
second window, it’s reported as activity). Finally, in the case of the climate control
activation, this telemetry is transmitted per occurrence, and can be tied back to one
or more gates (since in many airports a given control unit may affect the temperature
in more than one gate).

In summary, let’s assume that a large hub airport has the following characteristics:

• 200 gates
• 800 temperature sensors
• 200 motion sensors
• 100 climate control units

A medium hub airport has the following characteristics:

• 50 gates
• 200 temperature sensors
• 50 motion sensors
• 25 climate control units

The sensors each emit telemetry of a slightly different shape. Table 3-3 documents the
shape of the telemetry emitted from the temperature sensors.

Queue-Oriented Storage | 95

Table 3-3. Temperature sensor telemetry

Field Type

temp double

createDate timestamp

deviceId string

Table 3-4 represents the telemetry emitted from the motion sensors.

Table 3-4. Motion sensor telemetry

Field Type

activityDetected bool

createDate timestamp

deviceId string

Finally, the HVAC activation telemetry has the shape shown in Table 3-5.

Table 3-5. HVAC activation telemetry

Field Type

state int (noChange = 0, heatActivated=1, coolingActivated=2, heatDeactiva

ted=3,coolingDeactivated=4)

createDate timestamp

deviceId string

Event Hubs
We briefly introduced Event Hubs in Chapter 2, noting that it provides for message
storage and supports a variety of protocols (HTTP, AMQP, and AMQP over Web
Sockets) for sending messages from the sender to the event hub. In this chapter we
dive one layer further into the ingest storage aspects of the highly scalable, multicon‐
sumer queue that is Event Hubs. In subsequent chapters we will examine the other
side of ingest, which is the consumption and processing of messages pulled from
Event Hubs.

Ingest and storage with Event Hubs
Let’s address ingest storage with the client of the event hub. The sender can use any of
a multitude of software development kits (SDKs) to communicate with Event Hubs.
At the time of this writing there are client SDKs for .NET, C, Node.js, and Java. Alter‐
nately, the REST API can be used directly from any platform that supports making
RESTful calls.

96 | Chapter 3: Storing Ingested Data in Azure

The sender creates an event, which represents the “message” that is sent to the service
bus. In the .NET SDK for Event Hubs, a sender creates an instance of the EventData
class, which has the structure shown in Figure 3-15.

Figure 3-15. The structure of an event sent to Event Hubs.

From a high level, there are three types of properties that are the most important:
user, system, and body. System properties are set by Event Hubs itself, while user
properties can include key/value pairs that contain string data that is useful for down‐
stream message processing (identifying the importance of a message, capturing the
ID of the sender, etc.). Body properties are ultimately always serialized to a binary
payload. When you are sending from the .NET SDK, the body is represented as a
byte[]. However, when you are sending using the REST API, it could prove challeng‐
ing to prepare a binary payload, so Event Hubs accepts JSON as the payload format.
The most common format is to have the body contain binary serialized JSON (which
we will show in code shortly).

The Offset, Enqueued Time, and Sequence Number properties are set by Event Hubs
upon event ingest. We will return to defining these properties in subsequent chapters,
as they have a more important role to play with consumers of the Event Hub.

What’s the capacity?
Each event instance can be at most 256 KB in size. For improved sending perfor‐
mance, senders can batch a list of events to send in a single go so long as the total size
of all events in the batch does not exceed 256 KB.

Queue-Oriented Storage | 97

Event Hubs supports partitioning the ingested events into partitions—in other words,
spreading messages across different “buckets” for storage. When an Event Hub is pro‐
visioned, the number of partitions, which can be 1–32, is specified. The number of
partitions cannot be changed after provisioning. When you send events to Event
Hubs, the default approach is for the messages to be distributed among partitions in a
round-robin fashion. However, if a partition key is provided, this value can be used to
influence the selection of the actual partition instead. The partition key is a string,
and any events sent to Event Hubs that share the same partition key value (or more
precisely, whose hash of the partition key is the same) are delivered in order to the
same partition. From the sender’s perspective, beyond using the partition key (which
does not identify a partition directly), individual partitions are not usually targeted by
a sender. Partitions play a very important role for consumers of Event Hubs, and we
will return to this role in subsequent chapters.

The scale of an Event Hub is controlled via throughput units (TUs), as shown in
Figure 3-16. Each TU controls the volume of data ingress and egress that can be han‐
dled by the Event Hubs instance. For the senders, the event ingress throughput scales
at 1 MB/s per TU or 1,000 events/s per TU. If either limit is triggered, message ingress
is throttled. By default, there is a per-subscription quota of 20 TUs, but this is a soft
limit that can be raised via a request to Azure support. When requesting additional
TUs, you can request them in batches of 20 up to a total of 100 TUs. Beyond 100 TUs,
you can request additional TUs in batches of 100. Note that TUs apply at the level of
the service bus namespace (a scoping container for a set of service bus messaging
entities like Event Hubs), meaning that your allocated TUs can be shared among mul‐
tiple Event Hubs.

There is also an ingress limit that applies to each partition. Each partition within an
Event Hub can utilize at most 1 TU, so if you had an Event Hubs instance with 32
partitions, and had allocated 32 TUs to the service bus namespace that contains the
Event Hubs instance, you are basically ensuring that each partition has access to its
full potential of 1 MB/s ingress. By way of example, if you allocated 33 TUs, this
would not benefit the partitions any further (albeit the extra capacity would benefit
other Event Hubs instances in the service bus namespace).

Now that you understand the throughput of message ingress, let’s turn to message
storage. The total storage capacity for an Event Hubs instance is not limited. Out of
the box, 84 GB of storage per TU is included free of charge. Any storage you consume
beyond 84 GB is billed at the rates for using Azure Storage in the locally redundant
storage (LRS) mode. The way Event Hubs manages storage (since events are not
deleted by the consumer when they are retrieved) is by applying a retention policy.
Event Hubs has a configurable retention policy where messages older than the reten‐
tion period are automatically purged. The retention period can be set in units of days,
between 1 and 7 days.

98 | Chapter 3: Storing Ingested Data in Azure

Figure 3-16. Scaling TUs using a slider. Notice that this configuration is performed upon
the service bus namespace and not an individual Event Hubs instance.

There’s one final important consideration for message ingest: the number of concur‐
rent connections has limitations depending on how the senders are communicating
with Event Hubs. If you are using HTTPS, there is no limit on the number of concur‐
rent connections; however, if you are using AMQP, then there is a service bus name‐
space–wide limit of 5,000 concurrent connections.

Table 3-6 summarizes the important quotas and limits having to do with Event Hubs
message ingest.

Table 3-6. Event Hubs ingress quotas and limits

Item Limits

Throughput units Default soft limit of 20 TUs per subscription

Ingress throughput 1 MB/s per TU and 1,000 events/s per TU

Total storage capacity No limit (~500 TB)

Message retention Min 1 day, max 7 days

Partitions Between 1 and 32 partitions

Max event size 256 KB

Max batch size 256 KB

How do we use Event Hubs in the scenario?
Now that we have some background on Event Hubs ingest and storage, let’s look at
how Blue Yonder Airports might apply it. Per the scenario, telemetry is being received
from three different sources—temperature sensors, motion sensors, and HVAC devi‐
ces—into an Event Hub.

Queue-Oriented Storage | 99

Exploring the sensor simulators
To illustrate the approach with code, we have provided a C# .NET-based simulator
that shows each of the three sensor types transmitting telemetry for an entire day
according to a schedule that simulates planes arriving/departing from a single gate in
a terminal.

You can download the source code from http://bit.ly/2bgsfHa.

Extract this solution and open it using Visual Studio.

This solution contains a few projects. For this chapter, we will focus on the Simple‐
SensorConsole and Sensors projects. The former provides the command-line UI for
simulating sensor data and emitting it to Event Hubs or IoT Hub. The latter project
provides the logic for building up a virtual schedule of events and emitting them,
where the logic that handles the emitted event is pluggable (so it can target either
Event Hubs or IoT Hub).

Introducing the Sensors and SimpleSensorConsole projects. The Sensors project provides a
base class for the simulated sensors in SensorBase.cs. At a high level SensorBase looks
as shown in Example 3-1.

Example 3-1. SensorBase provides the base class for our simulated sensors

public class SensorBase
{
 protected string deviceId;
 protected Action<string> transmitHandler;
 protected List<string> datapoints;
 protected int reportingIntervalSeconds;

 public int CountOfDataPoints{}

 protected SensorBase(string deviceId, Action<string> transmitHandler){}

 public virtual void InitSchedule(int reportingIntervalSeconds){}

 public Task Start(){}

 private Task RunAsync(){}

 private void InternalEmitEvents(){}
}

The implementation details are not super important (feel free to peruse the code!),
but there are a few things to point out. First, the purpose of each sensor is to populate
a list of data points. Each data point represents a telemetry event, where the data for
the event is JSON serialized to a string. Second, each sensor implementation, which

100 | Chapter 3: Storing Ingested Data in Azure

http://bit.ly/2bgsfHa

derives from SensorBase, needs to implement its own InitSchedule method. This
method is what creates the time series data by generating a list of data points accord‐
ing to whatever logic is appropriate for the sensor. Once InitSchedule executes, the
data points for a single day at the gate are created. Third, the Start method invokes
an asynchronous execution of InternalEmitEvents, which simply loops over each
data point in the data points list and invokes the transmitHandler (that was passed
in as a parameter to the constructor). The transmitHandler is an action that takes as
a parameter the string data point (Example 3-2).

Example 3-2. InternalEmitEvents invokes the pluggable action provided in
transmitHandler, passing it one data point at a time

private void InternalEmitEvents()
{
 for (int i = 0; i < datapoints.Count; i++)
 {
 transmitHandler.Invoke(datapoints[i]);
 }
}

Now let’s take a look at a single, concrete sensor implementation. Since all sensor
implementations work the same way, if you understand one, you will understand the
others. We’ll look at TemperatureSensor (defined in TemperatureSensor.cs), shown in
Example 3-3.

Example 3-3. The TemperatureSensor class simulates the fluctuations in temperature
such a device might experience during the course of a day at a single gate in an airport

 public class TemperatureSensor: SensorBase
 {
 public TemperatureSensor(string deviceId, Action<string> transmitHandler)
 : base(deviceId, transmitHandler) [...]

 public override void InitSchedule(int reportingIntervalSeconds) [...]

 private bool IsWithinPreFlightWindow(int intervalNumber,
 int reportingInterval, int departureIntervalNumber) [...]

 private bool IsWithinPostFlightWindow(int intervalNumber,
 int reportingInterval, int departureIntervalNumber) [...]

 private bool HasPlaneDeparted(int intervalNumber,
 int reportingInterval, int departureIntervalNumber) [...]

 private class TempDataPoint
 {
 public double temp;
 public DateTime createDate;

Queue-Oriented Storage | 101

 public string deviceId;
 }

 }

Notice that it defines its own private data structure called TempDataPoint that con‐
tains the temperature, the date the data point was created, and the ID of the device
that took the temperature reading. This structure ultimately gets serialized to a JSON
string that looks like the following:

{"temp":65.0,"createDate":"2016-04-11T07:00:00Z","deviceId":"1"}

The first method the harness (implemented within the SimpleSensorConsole project)
of the simulated sensor needs to call is the constructor, to provide the instance of the
TemperatureSensor a device ID and an action to use as a callback when processing
each data point for transmission. After that, the harness invokes the InitSchedule
method, passing it a reporting interval in seconds. This interval defines the maximum
reporting granularity of the device—in other words, how often it generates events if it
always has an event to transmit. By default the harness sets the reporting interval to
10 seconds.

Within the SimpleSensorConsole project, examining EventHubLoadSimulator.cs
shows just how this sensor is set up and executed (see Example 3-4).

Example 3-4. Setting up and executing a simulated sensor

public void SimulateTemperatureEvents()
{
 stopWatch.Restart();
 numEventsSent = 0;
 LogStatus("Sending Temperature Events...");
 SensorBase sensor = new TemperatureSensor("1", TransmitEvent);
 sensor.InitSchedule(10);
 Console.WriteLine("Generated {0:###,###,###} Events", sensor.CountOfDataPoints);
 sensor.Start().Wait();
 FlushEventHubBuffer();
 stopWatch.Stop();
 Console.WriteLine(
 "Completed transmission in {0} seconds. Sent {1:###,###,###} events.",
 stopWatch.Elapsed.TotalSeconds, numEventsSent);
}

To use the sensor, we begin by restarting a StopWatch instance that we use to track
the execution time of the sensor. We also track the number of events that have been
sent (numEventSent), which is used to report on the number of events generated ver‐
sus the number of events actually sent to Event Hubs. Then we create an instance of
TemperatureSensor, passing it an arbitrary device ID as a string, and the method
name of our transmitHandler function will be responsible for actually sending the

102 | Chapter 3: Storing Ingested Data in Azure

events to Event Hubs (we will show the details shortly). Next, we pregenerate the
events for the day by calling InitSchedule. Then we kick off the sending of the gen‐
erated events by calling Start on the sensor. We call Wait on the sensor to ensure we
have transmitted all of the day’s events before moving on. Then we flush any remain‐
ing unsent events using FlushEventHubBuffer. We conclude the run by displaying
the time it took to send the events to Event Hubs and the actual number of events that
were sent. When we run the SimpleSensorConsole, the output looks like Figure 3-17.

Figure 3-17. Output from running the three different sensors in the SimpleSensorCon‐
sole harness application.

The SimpleSensorConsole harness is able to transmit events to Event Hubs either one
event at a time or in a batched (hundreds of events at a time) fashion, so that you can
understand how transmission works in both scenarios (Example 3-5). This is accom‐
plished by the TransmitEvent method in EventHubLoadSimulator.cs. The TransmitE
vent method takes the string data point, converts the string to a UTF8-encoded byte
array, and passes it to the constructor of the EventData class (which will stash this
byte array as the body of the EventData instance).

Example 3-5. The load simulator can transmit sensor events one at a time or in a batch

void TransmitEvent(string datapoint)
{
 EventData eventData;
 try
 {
 eventData = new EventData(Encoding.UTF8.GetBytes(datapoint));

 if (sendAsBatch)
 {
 SendToEventHubAsBatch(eventData);
 }
 else

Queue-Oriented Storage | 103

 {
 SendToEventHubDirect(eventData);
 }

 //NOTE: Fastest execution time happens without console output.
 //LogStatus(datapoint);
 }
 catch (Exception ex)
 {
 LogError(ex.Message);
 }
}

Let’s begin by examining how events are emitted one at a time to Event Hubs using
the Event Hubs .NET SDK. The load simulator has an Init method that reads the
Event Hubs connection string from the app.config file (see Example 3-6).

Example 3-6. Initializing the EventHubClient instance

public void Init()
{
 try
 {
 eventHubsConnectionString =
 System.Configuration.ConfigurationManager.AppSettings[
 "EventHubsSenderConnectionString"];
 eventHubClient =
 EventHubClient.CreateFromConnectionString(eventHubsConnectionString);
 sendAsBatch =
 bool.Parse(System.Configuration.ConfigurationManager.AppSettings[
 "SendEventsAsBatch"]);
 }
 catch (Exception ex)
 {
 LogError(ex.Message);
 throw;
 }

}

The Init method uses this connection string to create an instance of EventHub
Client, which is used for communicating with the Event Hubs instance. With an
EventHubClient instance in hand, we are now ready to send events. This is as simple
as calling Send on the EventHubClient instance and passing it the EventData object
(see Example 3-7).

104 | Chapter 3: Storing Ingested Data in Azure

Example 3-7. Sending a single event to an Event Hubs instance

void SendToEventHubDirect(EventData eventData)
{
 eventHubClient.Send(eventData);
}

Sending events as a batch, such that one call to Event Hubs includes multiple mes‐
sages, is not much more difficult: you invoke EventHubClient.SendBatch, passing it
a list of EventData objects (see Example 3-8). It does come with a caveat, however:
the total size for all messages must be less than 256 KB.

Example 3-8. Sending a batch of events to Event Hubs

void SendToEventHubAsBatch(EventData eventData)
{
 long currEventSizeInBytes = eventData.SerializedSizeInBytes;

 if (bufferedSizeInBytes + currEventSizeInBytes >= maxBatchSizeInBytes)
 {
 FlushEventHubBuffer();
 }

 sendBuffer.Add(eventData);
 bufferedSizeInBytes += currEventSizeInBytes;
}

void FlushEventHubBuffer()
{
 if (sendBuffer.Count > 0)
 {
 eventHubClient.SendBatch(sendBuffer);

 numEventsSent += sendBuffer.Count;
 sendBuffer.Clear();
 bufferedSizeInBytes = 0;
 }
}

In the snippet shown in Example 3-8, SendToEventHubAsBatch typically just collects
events and adds them to a list acting as a buffer. Only when the maximum batch size
is exceeded does it actually send out the list and clear the buffer. You may recall from
the implementation of SimulateTemperatureEvents in Example 3-4 that we also call
FlushEventHubBuffer once after all messages have been processed by our transmi
tHandler. This is done to handle any of the few events that were buffered up before
reaching the end of all the simulator generated events, in case they didn’t trigger a
flush.

Queue-Oriented Storage | 105

For completeness, Example 3-9 shows the Main method of the SimpleSensorConsole
application. Here, we interview the user (to ask if she wants to use Event Hubs or IoT
Hub). Assuming she selects Event Hubs, we create an instance of the EventHubsLoad
Simulator, which has helper methods to generate one day’s worth of events from
each of three sensors.

Example 3-9. The Main method of the load generating console harness

static void Main(string[] args)
{
 InterviewUser();

 if (useEventHub)
 {
 EventHubLoadSimulator simulator = new EventHubLoadSimulator();
 simulator.Init();
 simulator.SimulateTemperatureEvents();
 simulator.SimulateMotionEvents();
 simulator.SimulateHVACEvents();
 }
 else
 {
 IoTHubLoadSimulator simulator = new IoTHubLoadSimulator();
 simulator.Init();
 simulator.SimulateTemperatureEvents().Wait();
 simulator.SimulateMotionEvents().Wait();
 simulator.SimulateHVACEvents().Wait();
 }

 Console.WriteLine("Press ENTER to exit.");
 Console.ReadLine();
}

Running the Event Hubs load simulator. Now that you have had a walkthrough of the
code, you probably want to give it a run. You need to do two things. First, you need to
provision an Event Hubs instance. Second, you’ll need to update the configuration of
SimpleSensorConsole with the connection string to that Event Hubs instance.

Creating an Event Hubs instance. We’ll walk through the steps to create an Event Hubs
instance.

1. Log in to the Management Portal.
2. Click New and select App Services→Service Bus→Event Hub (Figure 3-18).

106 | Chapter 3: Storing Ingested Data in Azure

https://manage.windowsazure.com/

Figure 3-18. Creating a new Event Hub in the Management Portal.

3. Click Custom Create (Figure 3-19)

Figure 3-19. The Custom Create option to select.

4. Enter a name for your Event Hub instance.
5. Choose the region.
6. For namespace, select “Create a new namespace.”
7. Optionally modify the namespace name as desired.
8. Click the right arrow. See Figure 3-20.

Figure 3-20. Basic Event Hub configuration.

Queue-Oriented Storage | 107

9. On the Configure Event Hub dialog, set the partition count to 4. We will guide
you on how to properly determine the number of partitions when we cover Event
Hub consumers later in the book.

10. For message retention, set it to 1 day.
11. Click the checkmark to create it. See Figure 3-21.

Figure 3-21. Configuring the number of partitions and the duration of message
retention for an Event Hub.

Within a minute, your new namespace and constituent Event Hubs instance should
be ready. Now you need create some connection credentials.

1. In the Service Bus list of namespaces, click on the name of the namespace you
just created. This should take you to its details.

2. Click on the Event Hubs tab at the top (Figure 3-22).

108 | Chapter 3: Storing Ingested Data in Azure

Figure 3-22. The Event Hubs tab shown in the Management Portal.

3. Your Event Hubs instance should appear selected. Click on its name.
4. Click the Configure tab at the top (Figure 3-23).

Figure 3-23. The Configure tab in the Management Portal.

5. Under Shared Access Policies, under the Name column, type a name for this first
policy (e.g., SendPolicy).

6. Click on the Permissions cell to expand the drop-down and check only the
checkbox for Send (Figure 3-24).

Figure 3-24. Selecting permissions for a shared access policy assigned to an Event
Hub.

7. Click the Save button at the bottom to apply the new policy.
8. Now click the big left arrow above your Event Hubs instance name to return to

the list of Event Hubs in the namespace (Figure 3-25).

Figure 3-25. The arrow to select in moving back to the list of Event Hubs in the
namespace.

Queue-Oriented Storage | 109

9. With your Event Hubs instance selected in the list, click Connection Information.
10. Hover over the Connection String field, you should see a button to copy the con‐

nection string to your clipboard. Click it (Figure 3-26).

Figure 3-26. Copying the connection string for the Event Hub that uses the newly
created policy.

11. Next, return to Visual Studio.
12. In Solution Explorer, expand the SimpleSensorConsole and open app.config.
13. Paste the value in between the double quotes of the value attribute for the setting

with the key EventHubsSenderConnectionString:
<appSettings>
 <add key="EventHubsSenderConnectionString" value="" />
</appSettings>

14. Save your app.config.
15. Run the SimpleSensorConsole project. When it starts, enter 1 to select to simu‐

late Event Hubs events and watch it run to completion (Figure 3-27).

110 | Chapter 3: Storing Ingested Data in Azure

Figure 3-27. Output shown after running the SimpleSensorConsole application.

By default it runs by sending messages in batch mode. To see the difference in the
time it takes to send the same messages event by event, open app.config for Simple‐
SensorConsole and change the value of the SendEventsAsBatch setting to false.
Then save app.config and rerun the project.

To recap, at this point you have created an Event Hubs instance, run a simulator that
creates some sample data, and transmitted those events to your Event Hubs instance.

IoT Hub
We briefly introduced IoT Hub in Chapter 2. As a reminder, IoT Hub enables reliable
bidirectional communication between millions of Internet of Things devices and
applications. From a message ingest standpoint (i.e., messages from devices to cloud),
you can think of it as encapsulating an Event Hub, and providing richer functionality
tailored to the needs of an IoT scenario. These extra features include support for
additional protocols, such as MQTT, as well as a device registry that provides per-
device access control functionality. In this chapter we will delve a little deeper into
IoT Hub, focusing on the device-to-cloud message ingest flow.

Ingest and storage with IoT Hub
From an ingest standpoint, the IoT Hub behaves very similarly to Event Hubs. It pro‐
vides client SDKs for .NET, C, Node.js, and Python. Clients built with these SDKs are
used to send device-to-cloud messages. Just as for Event Hubs, a REST API can be
used directly from any platform that supports making RESTful calls. One notable dif‐
ference from Event Hubs is the shift in terminology from events to messages.

The core set of properties in the message (in .NET this has the type Micro
soft.Azure.Devices.Client) includes the body (which is a binary stream created
from a byte[]) as well as the user and system dictionaries (Figure 3-28). There are

Queue-Oriented Storage | 111

many other properties that this type supports, but they are geared toward cloud-to-
device messaging, which we will cover later. An important omission is the Partition
Key field—in IoT Hub messages, the partition for a message is always based upon the
device ID of the source.

Figure 3-28. The simplest form of an IoT Hub client message.

What’s the capacity?
Each device-to-cloud message instance can be at most 256 KB in size. For improved
sending performance, senders can batch a list of events to send in a single go as long
as the total size of all events in the batch does not exceed 256 KB, and as long as there
are no more than 500 messages total in the batch.

IoT Hub supports partitioning the ingested events into partitions—in other words,
spreading messages across different “buckets” for storage. When an IoT Hub is provi‐
sioned, the number of partitions, which can be 1–32, is specified. The number of par‐
titions cannot be changed after provisioning. When you are sending events to IoT
Hub, the default approach is for the messages to be distributed among partitions
according to the hash of the originating device ID. Partitions play a very important
role for consumers of IoT Hub, and we will return to this role in subsequent chap‐
ters.

The scale of an IoT Hub is controlled via IoT Hub units. Each unit controls the vol‐
ume of messages that can be handled by the IoT Hub instance. Ingest throughput is
separated into S1 and S2 tiers. The S1 tier provides about 1.1 MB/s/unit and 400k
messages/day/unit, while the S2 tier provides 16 MB/s/unit and 6M messages/day/
unit. Ingest throughput is throttled to 12 messages/second/unit for the S1 tier and
120 messages/second/unit for the S2 tier, with the caveat that 100 messages/second is
the minimum performance you will see regardless of tier or unit quantity.

You can raise the number of IoT Hub units at any time by adjusting the setting for
your IoT Hub in the Azure Portal. By default, there is a per-subscription quota of 200

112 | Chapter 3: Storing Ingested Data in Azure

units per subscription, but this is a soft limit that can be raised via a request to Azure
support (Figure 3-29).

Figure 3-29. Adjusting the number of IoT Hub units assigned to IoT Hubs.

Just as for Event Hubs, the way IoT Hub manages storage (since messages are not
deleted by the consumer when they are retrieved) is by applying a retention policy.
IoT Hub has a configurable retention policy where messages older than the retention
period are automatically purged. The retention period can be set in units of days,
between 1 and 7 days.

There’s one final important difference for message ingest between IoT Hub and Event
Hubs: the number of concurrent connections has no limitation. In other words, there
is no hard limit or no unit-based limit on the number of devices you can have com‐
municating with your IoT Hub. That said, the service will throttle requests to connect
to your IoT Hub. It throttles connections requests per second by tier, where the S1
tier supports 12 requests/s/unit and the S2 tier supports a 120 requests/s/unit.

Table 3-7 summarizes the important quotas and limits having to do with IoT Hub
message ingest.

Queue-Oriented Storage | 113

Table 3-7. IoT Hub ingress quotas and limits

Item Limits

IoT Hub units Default soft limit of 200 units per subscription

Ingress throughput S1: ~1.1MB/min/unit, S2: 16MB/min/unit
S1: 400k messages/day/unit, S2: 6M messages/day/unit
S1: 12 messages/sec/unit and S2: 120 messages/sec/unit, starting at 100 messages/sec

Total storage capacity No limit (~500 TB)

Message retention Min 1 day, max 7 days

Partitions Between 1 and 32 partitions

Max message size 256 KB

Max batch size 256 KB

Max # of connected devices No limit

Max # of connection requests S1: 12 requests/sec/unit, S2: 120 requests/sec/unit

How do we use IoT Hub in the BYA scenario?
For the purposes of ingesting telemetry from the various airport sensors, we can
apply IoT Hub in almost the same fashion as we demonstrated for Event Hubs.

Revisiting the Sensors project
Return to Visual Studio and the sample solution. Since we already covered a lot of the
infrastructure for generating the telemetry in the SimpleSensorConsole and Sensors
projects, we will focus just on the components that handle sending the sensor teleme‐
try to IoT Hub.

From a high level, the biggest difference is that before our simulated devices can
begin transmitting data to the IoT Hub, they need to be added to the IoT Hub regis‐
try, which tracks the devices, their authentication keys, and whether or not they are
allowed to connect (enabled versus disabled).

We begin by looking at the Init method in IoTHubLoadSimulator.cs (Example 3-10).

Example 3-10. Creating an instance of RegistryManager that is used to manage devices
allowed to communicate with IoT Hub

public void Init()
{
 try
 {
 iotHubSenderConnectionString =
 System.Configuration.ConfigurationManager.AppSettings[
 "IoTHubSenderConnectionsString"];
 iotHubManagerConnectionString =
 System.Configuration.ConfigurationManager.AppSettings[

114 | Chapter 3: Storing Ingested Data in Azure

 "IoTHubManagerConnectionsString"];
 sendAsBatch =
 bool.Parse(System.Configuration.ConfigurationManager.AppSettings[
 "SendEventsAsBatch"]);

 registryManager =
 RegistryManager.CreateFromConnectionString(iotHubManagerConnectionString);

 }
 catch (Exception ex)
 {
 LogError(ex.Message);
 throw;
 }

}

Within the Init method, we load two different connection strings to our single IoT
Hub instance: one will be used by the devices to send their telemetry, while the other
has different permissions and is allowed to add new devices to the IoT Hub registry.
Once we have the latter connection string, we create an instance of RegistryManager
from the factory class, providing it this connection string.

Our pattern for creating the device and sending the messages is very similar to how
we approached it with Event Hubs, with the key difference that first we need to regis‐
ter and activate the device (Example 3-11).

Example 3-11. Simulating a temperature sensor sending to IoT Hub

public async Task SimulateTemperatureEvents()
{
 deviceId = "1";

 RegisterDeviceAsync().Wait();
 bool deviceActivated = await ActivateDeviceAsync();

 if (deviceActivated)
 {
 InitDeviceClient();

 stopWatch.Restart();
 numEventsSent = 0;
 LogStatus("Sending Temperature Events...");

 SensorBase sensor = new TemperatureSensor(deviceId, TransmitEvent);
 sensor.InitSchedule(10);
 Console.WriteLine("Generated {0:###,###,###} Events",
 sensor.CountOfDataPoints);
 sensor.Start().Wait();
 FlushIoTHubBuffer();

Queue-Oriented Storage | 115

 stopWatch.Stop();

 Console.WriteLine(
 "Completed transmission in {0} seconds. Sent {1:###,###,###} events.",
 stopWatch.Elapsed.TotalSeconds, numEventsSent);
 }
 else
 {
 LogError("Device Not Activated.");
 }
}

Let’s take a look at RegisterDeviceAsync in greater detail (Example 3-12).

Example 3-12. Adding a device to the registry is performed via RegistryManager

async Task RegisterDeviceAsync()
{
 Device device = new Device(deviceId);
 device.Status = DeviceStatus.Disabled;

 try
 {
 device = await registryManager.AddDeviceAsync(device);
 }
 catch (Microsoft.Azure.Devices.Common.Exceptions.DeviceAlreadyExistsException)
 {
 //Device already exists, get the registered device
 device = await registryManager.GetDeviceAsync(deviceId);

 //Ensure the device is disabled until Activated later
 device.Status = DeviceStatus.Disabled;

 //Update IoT Hubs with the device status change
 await registryManager.UpdateDeviceAsync(device);
 }

 deviceKey = device.Authentication.SymmetricKey.PrimaryKey;
}

In Example 3-12, we create a new instance of Device, passing it the string device ID.
By convention, we set the device’s status to Disabled (and we will set this status to
Enabled when we later activate the device). For many situations in the real world, this
is a convention that enables you to register a device, ship it, and activate it only once
it has been received by the trusted party installing the device. Notice in Example 3-12
that we have special case handling of the DeviceAlreadyExistsException. This han‐
dles the situation where if you try to run the simulator multiple times, you are
allowed to reuse devices with the same device ID. Finally, take note of the last line,
which collects the primary key for the device. This secret is effectively the password

116 | Chapter 3: Storing Ingested Data in Azure

the device needs to provide to authenticate with IoT Hub before it can begin trans‐
mitting.

ActivateDevice uses RegistryManager in a similar fashion, by getting the existing
device, changing its status to Enabled, and then updating the registry, as shown in
Example 3-13.

Example 3-13. Activating a device by setting its status to enabled in the IoT Hub registry

async Task<bool> ActivateDeviceAsync()
{
 bool success = false;
 Device device;

 try
 {
 //Fetch the device
 device = await registryManager.GetDeviceAsync(deviceId);

 //Verify the device keys match
 if (deviceKey == device.Authentication.SymmetricKey.PrimaryKey)
 {
 //Enable the device
 device.Status = DeviceStatus.Enabled;

 //Update IoT Hubs
 await registryManager.UpdateDeviceAsync(device);

 success = true;
 }
 }
 catch (Exception)
 {
 success = false;
 }

 return success;
}

The next step is to instantiate a DeviceClient instance that we use to communicate
with the IoT Hub (Example 3-14). Notice we need to provide it the IoT Hub host‐
name (which we parse from the sender connection string), device ID, and device key
(which we acquired when we registered the device).

Queue-Oriented Storage | 117

Example 3-14. Creating an instance of DeviceClient

void InitDeviceClient()
{
 var builder = Microsoft.Azure.Devices.
 IotHubConnectionStringBuilder.Create(iotHubSenderConnectionString);
 string iotHubName = builder.HostName;

 deviceClient = DeviceClient.Create(iotHubName,
 new DeviceAuthenticationWithRegistrySymmetricKey(deviceId, deviceKey));
}

Now that we have our device registered, we can send messages to the IoT Hub using
either the batch approach or one-message-at-a-time approach, just as we did for
Event Hubs. See Example 3-15.

Example 3-15. Sending messages in a batch and a message at a time

void FlushIoTHubBuffer()
{
 if (sendBuffer.Count > 0)
 {
 deviceClient.SendEventBatchAsync(sendBuffer);

 numEventsSent += sendBuffer.Count;
 sendBuffer.Clear();
 bufferedSizeInBytes = 0;
 }
}

void SendToIoTHubDirect(Microsoft.Azure.Devices.Client.Message message)
{
 deviceClient.SendEventAsync(message);
}

Now that you’ve gotten a tour of the IoT Hub load simulator, it’s time to run it.

Running the IoT Hub load simulator. In order to run the IoT Hub load simulator you
will need an existing IoT Hub instance and two connection strings, one for sending
and one with manage registry permissions. Once you have those connection strings,
you can update app.config and run the project.

Creating an IoT Hub instance. In this section we will walk through creating the IoT Hub
instance.

1. Navigate to the Azure Portal.
2. Click New, and select Internet of Things and then Azure IoT Hub (Figure 3-30).

118 | Chapter 3: Storing Ingested Data in Azure

https://portal.azure.com

Figure 3-30. Creating a new Azure IoT Hub in the Azure Portal.

3. In the IoT Hub blade, provide a name for your new IoT Hub instance.
4. Choose a resource group.
5. Verify the desired subscription is selected.
6. Choose a location nearest you. See Figure 3-31.

Figure 3-31. Configuring a new IoT Hub.

Queue-Oriented Storage | 119

7. Click Create.

Your new IoT Hub instance should be ready within a few minutes. When it is ready,
navigate to the Settings blade of your IoT Hub instance and follow these steps to get
your connection strings.

1. Click “Shared access policies” (Figure 3-32).

Figure 3-32. Viewing the Shared access policies for an IoT Hub.

2. Click on the policy named “device.”
3. On the blade that appears, click the copy button for “Connection string—pri‐

mary key” (Figure 3-33). This connection string will be used by the devices to
send their telemetry.

120 | Chapter 3: Storing Ingested Data in Azure

Figure 3-33. Viewing the device shared access policy.

4. Return to Visual Studio, open the app.config file within the SimpleConsoleSimu‐
lator project, and for the setting with the key IoTHubConnectionString, paste
this value.

5. Go back to the portal, close the device blade, and click on the registryRead
Write policy.

6. Copy the “Connection string—primary” for that policy.
7. Return to the app.config file in Visual Studio, and paste the value for the setting

with the key IoTHubManagerConnectionString.
8. Save the app.config file.

Build and run the project. This time, when console starts up, choose option 2 to send
your messages to your IoT Hub (Figure 3-34).

Queue-Oriented Storage | 121

Figure 3-34. Sending simulated messages to IoT Hub.

Summary
In this chapter we focused on the telemetry ingest, targeting files and queues for stor‐
age. With respect to file-based storage, we looked at Azure Data Lake Store, Azure
Blob Storage, and HDFS. With respect to storage of messages or events in a queue, we
examined ingest for both Event Hubs and IoT Hub.

122 | Chapter 3: Storing Ingested Data in Azure

CHAPTER 4

Real-Time Processing in Azure

Real-time processing is defined as the processing of a typically infinite stream of
input data, whose time until results ready is short—measured in milliseconds or sec‐
onds in the longest of cases. In this first chapter on real-time processing, we will
examine various methods for quickly processing input data ingested from queueing
services like Event Hubs and IoT Hub (Figure 4-1).

Stream Processing
When it comes to stream processing, there are generally two approaches to working
through the infinite stream of input data (or tuples): you can process one tuple at a
time with downstream processing applications, or you can create small batches (con‐
sisting of a few hundred or a few thousand tuples) and process these micro-batches
with your downstream applications. In this chapter we will focus on the tuple-at-a-
time approach, and in the next we will examine the micro-batch approach.

For our purposes in this book, the source of streamed data processed by an analytics
pipeline is either Event Hubs or IoT Hub. The options consolidate further when you
consider that when it comes to the services side of IoT Hub (i.e., the side that con‐
sumes and processes ingested telemetry), it is exposing an Event Hubs–compatible
endpoint. In other words, regardless of whether we ingest via Event Hubs or IoT Hub,
we process the messages by pulling from Event Hubs (see Figure 4-2).

123

Figure 4-1. This chapter focuses on a subset of the listed stream processing components
that process data in a tuple-at-a-time fashion.

124 | Chapter 4: Real-Time Processing in Azure

Figure 4-2. High-level view of the ingest and consumptions side of Event Hubs.

Consuming Messages from Event Hubs
We covered how Event Hubs ingest data from clients into Event Hub partitions in
depth in the previous chapter.In this chapter we focus on the path that pulls event
data from Event Hub partitions: the event consumer applications. There are SDKs to
build consumers in .NET, Java, and Node.js. However, be aware that not all SDKs
provide support for both sending to and receiving from Event Hubs. An example of
this is the Azure Event Hub client for C, which is intended for embedded devices to
utilize in transmitting their data to Event Hubs (and not for these devices to consume
Event Hub events).

Regardless of the implementation used for the consumer, there are some cross-
cutting concepts that apply. We will address those here and demonstrate the SDK
specifics in sample implementations.

The consumer (also referred to as the receiver) of the Event Hub draws events from a
single partition within an Event Hub. Therefore, an Event Hub with four partitions
will have four consumers—one assigned to consume from each partition. The con‐
sumers communicate with Event Hubs via the AMQP protocol, and the payload
retrieved is an EventData instance (having both event properties and a binary serial‐
ized body).

The logical group of consumers that receive messages from each Event Hub partition
is called a consumer group. The intention of a consumer group is to represent a single
downstream processing application, where that application consists of multiple paral‐
lel processes, each consuming and processing messages from a partition. All consum‐
ers must belong to a consumer group. The consumer group also acts to limit
concurrent access to a given partition by multiple consumers, which is desired for
most applications, because two consumers could mean data is being redundantly pro‐
cessed by downstream components and could have unintended consequences.

Stream Processing | 125

Creating Consumer Groups
By default every Event Hub starts with one consumer group named $Default. Con‐
sumer groups can be created through the Azure Portal. Navigate to your deployed
Event Hub in the Management Portal and click Create New Consumer Group. The
only configuration a consumer group accepts is a string name. To view the list of con‐
sumer groups for your Event Hub, drill into your Event Hub from the namespace
view and click the Consumer Groups tab.

In the situation where multiple processes need to consume events from a partition,
there are two options. First, consider if the parallel processing required should belong
in a new consumer group. Event Hubs has a soft limit that allows you to create up to
20 consumer groups. Second, if the parallel processing makes sense within the con‐
text of a single consumer group, then note that Event Hubs will allow up to five such
processes within the same consumer group to process events concurrently from a sin‐
gle partition.

On the event consumer side, Event Hubs works differently from traditional queues.
In the traditional queue, you typically see a pattern called competing consumers. It is
so named because each consumer targeting a queue is effectively competing against
all other consumers targeting the same queue for the next message: the first con‐
sumer to get the message wins, and the other consumers will not get that message
(Figure 4-3).

Figure 4-3. Two receivers dequeueing messages in a competing consumer pattern; notice
that Receiver A and Receiver B never receive the same message.

126 | Chapter 4: Real-Time Processing in Azure

By contrast, you can look at Event Hubs (or more precisely, the partitions within an
Event Hubs instance) as following a multiconsumer (or broadcast) pattern where
every consumer can receive every message (Figure 4-4).

Figure 4-4. Example of two Event Hubs receivers dequeueing messages, where the mes‐
sages Receiver A gets are not affected by messages acquired by Receiver B.

The critical difference between the two dequeuing patterns amounts to state manage‐
ment. In competing consumers, the queue system itself keeps track of the delivery
state of every message. In Event Hubs, no such state is tracked, so managing the state
of progress through the queue becomes the responsibility of the individual consumer.

So what is this state that the consumers manage? It boils down to byte offsets and
message sequence numbers in a process called checkpointing. If you think of the
underlying storage for a partition as a file, then you can think of the byte offset as a
way of describing a location in the file. Anything before the byte offset represents
messages you have already consumed, and anything after the byte offset represents
messages awaiting consumption. Sequence number is similar, except instead of meas‐
uring an offset in bytes, it is an ordinal based on the message position (so you might
have a sequence number of 10, indicating you had consumed 10 messages and your
next message will be the 11th). Both the byte offset and sequence number increase as
messages are added to the partition.

Consumers checkpoint their sequence number and an offset to some form of durable
storage, such as Azure Blob Storage or Apache Zookeeper, which enables new con‐
sumer instances to be started and resume from the checkpoint location should the
consumer process fail.

An important side effect of outsourcing this state management to the consumer is
that messages are no longer deleted from the queue when processed (as in the com‐
peting consumers pattern). Instead, Event Hubs queues have a retention period of 1

Stream Processing | 127

to 7 days, and it is the expiration of that retention period that effectively ages out and
deletes messages. With that retention period in mind, each partition tracks a begin
sequence number and an end sequence number that represents the current range of
available events. You can observe these values using the SDKs or with tools like Ser‐
vice Bus Explorer, pictured in Figure 4-5.

Figure 4-5. Service Bus Explorer showing the begin and end sequence numbers for a par‐
tition in Event Hubs.

When consumers process events from a partition, they can typically choose to indi‐
cate either a byte offset or a start date/time. They can begin consuming messages any‐
where in the stream of events within the retention period.

Consumer groups manage one final value, which has to do with the versioning of the
consumer application: the epoch. For a given partition, the epoch represents the
numeric “version” or “phase” of the consumer and can be used to ensure that only the
latest is allowed to pull events. When a higher-valued epoch receiver is launched, the
lower-valued one is disconnected.

It is possible to create a receiver without an epoch, in which case the epochs are not
enforced, but it is here that you are limited to five concurrent consumers per parti‐
tion/consumer group combination. The epoch value is typically supplied when the
consumer is created (at the same time where it might indicate an offset).

Table 4-1 summarizes the egress limits applicable to Event Hubs consumers.

128 | Chapter 4: Real-Time Processing in Azure

http://bit.ly/servicebusexplorer
http://bit.ly/servicebusexplorer

Table 4-1. Event Hubs egress quotas and limits

Item Limits

Consumer groups Max of 20 consumer groups per Event Hub

Consumers per
partition

Max of 1 consumer per partition per consumer group when consumer created with epoch; up to 5
consumers per partition per consumer group when consumer created without epoch

Egress throughput 2 MB/s per TU; no limit on # of events per second

We will show many examples of clients that consume messages from Event Hubs
using the preceding concepts. That said, many of the SDKs abstract away some of
these details and make the consumer application easier to implement. It’s important
to recognize that these concepts are still taking effect “under the covers.”

Tuple-at-a-Time Processing in Azure
This chapter focuses on tuple-at-a-time processing options including Storm on
HDInsight (in Java and .NET) and the Event Processor Host API for use in .NET.

Introducing HDInsight
HDInsight provides Hadoop ecosystem components in the form of a managed ser‐
vice. It takes the burden off of you from having to create, configure, and deploy indi‐
vidual virtual machines in order to build a cluster, keep it operational, and scale it by
adding or removing nodes. HDInsight uses the Hortonworks Data Platform (HDP)
to provide a consistent set of Hadoop ecosystem components, where the versions of
each have been tested to work well together. HDInsight lets you provision clusters for
major components such as Apache Spark, Apache Storm, Apache HBase, Apache
Hive, Apache Pig, and, of course, Apache Hadoop.

HDInsight Hadoop Components

For a complete listing of all the Hadoop ecosystem components
available and their versions in each release of HDInsight, see the
Microsoft Azure documentation.

Storm on HDInsight
HDInsight enables you to easily provision clusters that run Apache Storm, and tool‐
ing from Microsoft makes it easy to manage Storm using the Azure Portal and Visual
Studio.

Apache Storm provides a scalable, fault-tolerant platform for implementing real-time
data processing applications. From a physical view a Storm application runs in per‐
petuity across a cluster of nodes with separate responsibilities. Zookeeper nodes run

Tuple-at-a-Time Processing in Azure | 129

http://bit.ly/2nSoIUi

Apache Zookeeper and are used to maintain state. Supervisor nodes run worker pro‐
cesses, which in turn spawn threads called executors. These executors provide the
compute cycles to run tasks, which are instances of Storm components that contain
the processing logic. Nimbus nodes keep tabs on the supervisors and the tasks they
are running, restarting them in the face of failures.

From a logical perspective, what you actually implement—a Storm application—is
built by defining a topology. A topology describes a directed acyclic graph, meaning
looping is not permitted.

Storm takes the approach that input data is viewed as a continuous stream, where
each datum in the stream is called a tuple. In this graph, the entry point of the data
stream is the spout, and it is responsible for consuming the input data stream, such as
reading from a filesystem or a queue, and emitting tuples for downstream processing.
Bolts receive a stream of tuples from the spout, process the tuples one at a time, and
either emit them for further processing by another layer of bolts or complete the pro‐
cessing (such as by writing the result to a data store).

The way in which a tuple is assigned to a downstream bolt is controlled by stream
grouping. For a given downstream bolt, the stream grouping identifies the source and
parent component (spout or bolt) by name, and indicates how tuples should be dis‐
tributed among the instances of the bolt. These stream groupings include:

Shuffle grouping
Randomly distributes tuples among all of the bolt’s tasks.

None grouping
Effectively the same as shuffle grouping.

Local or shuffle grouping
If the target bolt shares a worker process with the source task, then that bolt task
is preferred for receiving the tuple. Otherwise, the tuple is randomly distributed
to one of the bolt’s tasks (as done by shuffle grouping). The idea is to keep the
tuple within the same worker process and avoid an interprocess or network
transfer.

Fields grouping
Partitions the stream so that fields of the tuple having the same value are assigned
to the same bolt task.

Partial key grouping
Performs the same grouping as fields grouping, but instead of having a single
task for any given group, there are always two bolt tasks between which the tuples
are distributed.

All grouping
The task is broadcast to all bolt tasks.

130 | Chapter 4: Real-Time Processing in Azure

Direct grouping
Allows the producer of the tuple to specifically indicate which bolt task will
receive the tuple.

Global grouping
This is the opposite of all grouping; it indicates that all upstream tuples should
flow to one bolt task.

Out of the box, Storm includes prebuilt spouts for consuming from queueing systems
such as Azure Event Hubs, Apache Kafka, and RabbitMQ. It also includes bolts that
are capable of writing to filesystems, like HDFS, and interacting with data stores, such
as Hive, HBase, Redis, and databases accessible by JDBC.

While a given tuple is flowing through the directed acyclic graph described by the
topology, Storm is able to keep track of its progress. It can provide three different
processing guarantees:

No guarantee
Not all situations require guarantees that an incoming tuple not be lost or fail to
be processed.

At-least-once guarantee
Ensures that any given tuple will never fail to be processed, even if it means it
must be processed multiple times because previous attempts encountered a fail‐
ure.

Exactly-once guarantee
Ensures that any tuple running in the topology is processed to completion by the
topology, with mechanisms to ensure resiliency of processing in the face of fail‐
ure without reprocessing.

In the context of tuple-at-a-time processing in this section, we will focus on topolo‐
gies that offer at-least-once tuple processing guarantees.

Let’s briefly explore at a high level how Storm provides an at-least-once guarantee.
Assume we have tuple input into the topology. Storm keeps track of the success or
failure status of this tuple at every step in the topology. It does so by requiring each
spout or bolt component that receives the tuple to do two things: it must acknowl‐
edge the tuple was processed successfully (or fail it outright), and when the compo‐
nent emits a new tuple in response to this original tuple, it must “anchor” the new
tuple to the original. By relating all derived tuples to the original tuple sourced at the
spout using this anchoring technique, Storm is able to establish a lineage for tuples
processed by a topology. By having this lineage, Storm can compute if a given input
tuple was fully processed by all components. It can also detect if a tuple failed to pro‐
cess, by checking at the end of a window of time if it has been successfully processed
by all components. If not, the processing can be retried.

Tuple-at-a-Time Processing in Azure | 131

Applying Storm to Blue Yonder Airports
To understand how tuple-at-a-time processing works with Storm, let’s apply it to a
situation within the Blue Yonder Airports scenario. When it comes to the ambient
temperature around a gate, BYA would like to keep the temperatures within a fairly
narrow range throughout the course of the day. If the temperature is outside of the
range, then either the thermostat is malfunctioning or there is actually a problem at
the gate. They would like the system to call attention to it by raising an alert. The
overall Storm topology looks like Figure 4-6.

Figure 4-6. Using Storm to process tuples from Event Hubs in a tuple-at-a-time fashion
in order to raise alerts about exception conditions.

In the approach, we collect the temperature telemetry into Event Hubs (or IoT Hub)
as we have shown previously. HDInsight runs a Storm topology that reads tuples
from Event Hubs. There is one instance of an EventHubSpout for each partition
present in Event Hubs. The EventHubSpout also checkpoints its progress through the
Event Hub partitions, maintaining this state in Zookeeper. This enables the topology
to be restarted (such as in the case of supervisor node failure) and the reading of
events to be resumed where the EventHubSpout left off. The topology uses the Local

132 | Chapter 4: Real-Time Processing in Azure

OrShuffleGrouping to randomly distribute the tuples received by the EventHubSpout
to a ParserBolt instance, which has the effect of preferring to send the tuple to a
ParserBolt instance that is running within the same worker as the EventHubSpout.
This eliminates a network transfer between separate worker processes and can dra‐
matically improve topology throughput. If there is no local ParserBolt available, the
LocalOrShuffleGrouping sends the tuple to a randomly selected ParserBolt.

The ParserBolt deserializes the telemetry string, and parses the JSON it contains. If
the tuple object has a temperature field, then the ParserBolt emits a new tuple (con‐
sisting of the three fields: temperature, date created, and device ID) for downstream
processing by the AlertBolt. If the telemetry lacks a temperature field, then the logic
assumes it is not a temperature reading and no tuple is emitted—effectively ignoring
the telemetry input.

The AlertBolt receives the tuple, and checks if the value of the temperature field is
greater or less than a configured value. If either is true, then it emits a new tuple that
contains the original three fields, plus a new field that provides the reason for emit‐
ting this alert tuple. On the other hand, if the tuple is within range, then no tuple is
emitted.

The assumption is this alert tuple could then be handled by downstream components,
either by storing it in a data store or by invoking an API. We will show examples of
consuming this alert later in the book.

Alerting with Storm on HDInsight (Java + Linux Cluster)
Storm topologies can be implemented on HDInsight in two ways: they can be imple‐
mented in Java and run on either a Windows or Linux HDInsight cluster, or they can
be implemented in C#, which requires a Windows HDInsight cluster.

In this section we will explore the Storm implementation in Java and run it on a
Linux HDInsight cluster.

Dev environment setup. While there are many IDEs you can choose from to develop
in Java, for the following section we choose IntelliJ IDEA. If you are new to Java
development, this allows us to give a simple from-zero-to-sixty option that gets you
productive with Storm quickly. If you are established with Java, feel free to modify the
following to the IDE of your choice.

For our purposes, you only need IntelliJ IDEA Community Edition, which you can
download for the platform (Windows, macOS, and Linux) of your choice from
https://www.jetbrains.com/idea/#chooseYourEdition.

Once you’ve downloaded the installer and completed the guided installation with the
default settings, you are ready to go. The next step is to download and open the Blue
Yonder Airports sample in IntelliJ IDEA.

Tuple-at-a-Time Processing in Azure | 133

https://www.jetbrains.com/idea/#chooseYourEdition

You can download the Storm sample from http://bit.ly/2beutHQ.

The download includes the Alerts Topology sample, and when opened in IntelliJ
IDEA will automatically download all dependencies, including Storm.

Once you have downloaded the sample, open IntelliJ IDEA and follow these steps:

1. Select File→Open.
2. In the “Open File or Project” dialog, navigate to the folder that contains the sam‐

ple, and select that folder.
3. Click OK.
4. If you are prompted to import dependencies, do so.

You should now be ready to explore the project. In the project tree view, expand
source→main→java→net.solliance.storm. You should see the three classes that define
the topology, the parser bolt, and the alert bolt, respectively, as shown in Figure 4-7.

Figure 4-7. The three classes that make up the alerting solution.

Next, expand source→main→resources. This folder contains the config.properties file
that holds the settings used to connect to your previously created Event Hubs
instance (Figure 4-8).

134 | Chapter 4: Real-Time Processing in Azure

http://bit.ly/2beutHQ

Figure 4-8. The config.properties file holds the connection information to Event Hubs.

Open config.properties and specify the following settings (Example 4-1):

eventhubspout.username

The policy name with read permissions to Event Hubs

eventhubspout.password

The primary key for the aforementioned policy

eventhubspout.namespace

The service bus namespace containing your Event Hubs instance

eventhubspout.entitypath

The name of your Event Hubs instance

eventhubspout.partitions.count

The number of partitions your Event Hubs instance contains

Example 4-1. Example configuration settings for the Event Hub Spout in
config.properties

eventhubspout.username = reader

eventhubspout.password = zotQvVFyStprcSe4LZ8Spp3umStfwC9ejvpVSoJFLlU=

eventhubspout.namespace = blueyonderairports-ns

eventhubspout.entitypath = blueyonderairports

eventhubspout.partitions.count = 4

Tuple-at-a-Time Processing in Azure | 135

The rest of the settings should already have reasonable defaults and are described by
the comments within the file, should you desire to understand the other “knobs” you
can adjust.

Now you are ready to build the project. Storm projects are built with Maven, a build
manager that is the recommended way to manage dependencies and define build
steps for Storm projects. At its core is the Project Object Model, an XML document
that describes the project structure, repositories (from which to acquire dependen‐
cies), the dependencies themselves, and any components needed during the build.
You can view the pom.xml document in the project tree view, in the root of the
project directory (Figure 4-9).

Figure 4-9. The pom.xml file, which configures dependencies and build settings.

IntelliJ IDEA provides a window that can execute the build steps as described in
pom.xml. To view this window, select View→Tool Windows→Maven Projects. When
you display this dialog, it should appear as shown in Figure 4-10.

Figure 4-10. The Maven Projects window showing the actions that can be run on the
project.

136 | Chapter 4: Real-Time Processing in Azure

Double-click on “compile” to build the project, and make sure you do not have any
build errors (which would appear in the window docked to the bottom of IntelliJ
IDEA).

Topology implementation. Before we get to running the topology, let’s explore the
implementation. We’ll start at the top, the topology, and then drill into the spouts and
bolts.

If you open AlertTopology.java, you should notice the AlertTopology class consists of
one static method, main; an empty constructor; and a few protected helper functions.
The purpose of this class is to instantiate the various bolts and spouts needed by the
topology and wire them together into a directed acyclic graph. The main method
takes as its only input argument an array of strings, which will contain any
command-line parameters used to launch the topology using the Storm command-
line client. When the topology is run, this main method is invoked first.

public static void main(String[] args) throws Exception {
 AlertTopology scenario = new AlertTopology();

 String topologyName;
 String configPropertiesPath;
 if (args != null && args.length >0){
 topologyName = args[0];
 configPropertiesPath = args[1];
 }
 else
 {
 topologyName = "AlertTopology";
 configPropertiesPath = null;
 }

 scenario.loadAndApplyConfig(configPropertiesPath, topologyName);
 StormTopology topology = scenario.buildTopology();
 scenario.submitTopology(args, topology);
}

The main method implementation follows a typical pattern for Storm topologies: load
configuration properties, build the topology, and submit the topology to run it.

Let’s look at each of these steps in detail, starting with the loading of configuration
properties. Within AlertTopology.loadAndApplyConfig we have the following:

protected void loadAndApplyConfig(String configFilePath, String topologyName)
 throws Exception {

 Properties properties = loadConfigurationProperties(configFilePath);

 String username = properties.getProperty("eventhubspout.username");
 String password = properties.getProperty("eventhubspout.password");

Tuple-at-a-Time Processing in Azure | 137

 String namespaceName = properties.getProperty("eventhubspout.namespace");
 String entityPath = properties.getProperty("eventhubspout.entitypath");
 String targetFqnAddress =
 properties.getProperty("eventhubspout.targetfqnaddress");
 String zkEndpointAddress =
 properties.getProperty("zookeeper.connectionstring");
 int partitionCount =
 Integer.parseInt(properties.getProperty("eventhubspout.partitions.count"));
 int checkpointIntervalInSeconds =
 Integer.parseInt(properties.getProperty("eventhubspout.checkpoint.interval"));
 int receiverCredits =
 Integer.parseInt(properties.getProperty("eventhub.receiver.credits"));
 String maxPendingMsgsPerPartitionStr =
 properties.getProperty("eventhubspout.max.pending.messages.per.partition");
 if(maxPendingMsgsPerPartitionStr == null) {
 maxPendingMsgsPerPartitionStr = "1024";
 }
 int maxPendingMsgsPerPartition =
 Integer.parseInt(maxPendingMsgsPerPartitionStr);
 String enqueueTimeDiffStr =
 properties.getProperty("eventhub.receiver.filter.timediff");
 if(enqueueTimeDiffStr == null) {
 enqueueTimeDiffStr = "0";
 }
 int enqueueTimeDiff = Integer.parseInt(enqueueTimeDiffStr);
 long enqueueTimeFilter = 0;
 if(enqueueTimeDiff != 0) {
 enqueueTimeFilter = System.currentTimeMillis() - enqueueTimeDiff*1000;
 }
 String consumerGroupName =
 properties.getProperty("eventhubspout.consumer.group.name");

 System.out.println("Eventhub spout config: ");
 System.out.println(" partition count: " + partitionCount);
 System.out.println(" checkpoint interval: " + checkpointIntervalInSeconds);
 System.out.println(" receiver credits: " + receiverCredits);

 spoutConfig = new EventHubSpoutConfig(username, password,
 namespaceName, entityPath, partitionCount, zkEndpointAddress,
 checkpointIntervalInSeconds, receiverCredits,
 maxPendingMsgsPerPartition,
 enqueueTimeFilter);

 if(targetFqnAddress != null)
 {
 spoutConfig.setTargetAddress(targetFqnAddress);
 }
 spoutConfig.setConsumerGroupName(consumerGroupName);

 //set the number of workers to be the same as partition number.
 //the idea is to have a spout and a partial count bolt co-exist in one
 //worker to avoid shuffling messages across workers in storm cluster.

138 | Chapter 4: Real-Time Processing in Azure

 numWorkers = spoutConfig.getPartitionCount();

 spoutConfig.setTopologyName(topologyName);

 minAlertTemp = Double.parseDouble(properties.getProperty("alerts.mintemp"));
 maxAlertTemp = Double.parseDouble(properties.getProperty("alerts.maxtemp"));
}

As you can see, the gist of this method is to use the properties collection to retrieve
string properties from the config.properties file and store the result either in a method
local variable or a global instance variable. Take particular note of the creation of the
spoutConfig variable, which is one such global variable. This instance of EventHub
SpoutConfig represents all the settings the EventHubSpout will need in order to
retrieve events from Events Hubs. Also, it is worth pointing out numWorkers. Recall
that in Storm, workers represent threads running within an executor. This setting will
be used when we build the topology. The last two lines in the method load the tem‐
perature below which an alert should be raised (minAlertTemp) and the temperature
above which an alert should be raised (maxAlertTemp).

The loadConfigurationProperties method invoked at the beginning of loadAndAp
plyConfig is responsible for doing the actual loading of the properties collection—
drawing the values either from a config.properties file indicated via a command-line
argument (such as when running the topology using the Storm client) or defaulting
to the copy of it embedded as a resource (which is needed when you’re running the
topology locally in the debugger).

protected Properties loadConfigurationProperties(String configFilePath)
 throws Exception{
 Properties properties = new Properties();
 if(configFilePath != null) {
 properties.load(new FileReader(configFilePath));
 }
 else {
 properties.load(AlertTopology.class.getClassLoader().getResourceAsStream(
 "config.properties"));
 }
 return properties;
}

The next method to be called, from main, is buildTopology. This method creates an
instance of the EventHubSpout, passing in the spoutConfig previously created. Then
an instance of TopologyBuilder is used to tie each of the topology components
together.

The call to builder.setSpout is how the spout for the topology is added. The first
parameter provides the name of the spout (as well as names the stream of tuples it
emits), the second parameter provides the instance of the spout constructed, and the
third sets the initial parallelism that configures the initial number of executor threads

Tuple-at-a-Time Processing in Azure | 139

allocated to the spout. The intent of setting the initial parallelism is to have one
thread available for each partition in Event Hubs.

The chained call to setNumTasks controls the number of task instances. The value for
the call to setNumTasks is also set to the number of partitions. Together, the initial
parallelism and declaration of the number of tasks ensure that when the topology
runs, there will always be one EventHubSpout instance actively running per partition
in Event Hubs.

This warrants a little explanation. While the initial parallelism controls the number of
threads allocated to a spout, the number of tasks controls how many instances of the
spout are run across the topology. If the number of tasks equals the initial parallelism
—for example, if you have four tasks and an initial parallelism of 4, then each spout
instance will run on its own thread. You can “double up” tasks on a thread, running
multiple spout instances per thread if the number of tasks is greater than the initial
parallelism. When it comes to consuming from Event Hubs, the best practice to ach‐
ieve the highest throughput is to have one consuming thread dedicated to a spout
instance that is able to retrieve messages from one partition without interruption.

protected StormTopology buildTopology() {
 TopologyBuilder builder = new TopologyBuilder();

 EventHubSpout eventHubSpout = new EventHubSpout(spoutConfig);

 builder.setSpout("EventHubSpout",
 eventHubSpout, spoutConfig.getPartitionCount())
 .setNumTasks(spoutConfig.getPartitionCount());

 builder.setBolt("ParseTelemetryBolt",
 new ParseTelemetryBolt(), 4).localOrShuffleGrouping("EventHubSpout")
 .setNumTasks(spoutConfig.getPartitionCount());

 builder.setBolt("EmitAlertBolt",
 new EmitAlertBolt(minAlertTemp, maxAlertTemp), 4).localOrShuffleGrouping(
 "ParseTelemetryBolt")
 .setNumTasks(spoutConfig.getPartitionCount());

 return builder.createTopology();
}

The next line is the first call to builder.setBolt. Here we configure the number of
tasks and the initial parallelism as before, but we don’t have the requirement of hav‐
ing as many executor threads initially, so we can set it to a different value than the
number of partitions. This line creates an instance of the ParseTelemetryBolt.

To configure the ParseTelemetryBolt so it gets its input tuples from the EventHubSp
out, we reference the latter by name in the localOrShuffleGrouping chained
method. The localOrShuffleGrouping provides an optimization in selecting the

140 | Chapter 4: Real-Time Processing in Azure

instance of the bolt that will receive tuples from the instance of a spout. If a spout and
an instance of the bolt are running within the same worker process, then this localOr
ShuffleGrouping prefers to use that bolt instance rather than any of the other instan‐
ces running within other worker processes. This avoids having to send the tuple over
the network to a remote bolt. However, if no local bolt is available, then the tuple is
sent to a randomly selected bolt.

The final call to builder.setBolt creates an instance of the EmitAlertBolt, which
takes in its constructor the minimum and maximum values used to control the range
outside of which an alert tuple is created. The EmitAlertBolt is configured to receive
its input tuples from the ParseTelemetryBolt, again using a localOrShuffleGroup
ing.

The final line creates the actual instance of the topology, which we can submit to
Storm to execute. This execution happens in the last line of main, which calls sce
nario.submitTopology, passing it any command-line arguments and the instance of
the topology constructed. The implementation of submitTopology is as follows:

protected void submitTopology(String[] args, StormTopology topology)
 throws Exception {
 Config config = new Config();
 config.setDebug(false);

 if (args != null && args.length > 0) {
 StormSubmitter.submitTopology(args[0], config, topology);
 } else {
 config.setMaxTaskParallelism(2);

 LocalCluster localCluster = new LocalCluster();
 localCluster.submitTopology("test", config, topology);
 Thread.sleep(600000);
 localCluster.shutdown();
 }
}

The goal of the submitTopology method is to support another common Storm pat‐
tern—to enable you to run the topology locally or against a Storm cluster. An
instance of Config is created that wraps the settings Storm will use when running the
topology. Next, we pass false to the call config.setDebug to minimize the logging
(setting it to true would mean Storm logs details every time a tuple is received or
emitted). After that, we examine the args array of command-line parameters. If we
have command-line parameters, then by convention we know we want to run it
against a Storm cluster. To do so, we use the submitTopology method of the Storm
class, passing it the first argument (the name of the topology), the Config instance,
and the topology we built. If we do not have any args, we create an instance of Local
Cluster, call submitTopology against that, and wait for 10 minutes (600,000 ms) in

Tuple-at-a-Time Processing in Azure | 141

the Thread.sleep before automatically shutting down the local cluster (without the
sleep call, the cluster would shut down before the topology even gets going).

Since we are processing telemetry from Event Hubs, we do not need to implement a
spout for that. The EventHubsSpout is a part of the Storm core libraries. So we will
jump into the implementation of the bolts.

Let’s take a look at the ParseTelemetryBolt. Recall that the objective of this bolt is to
take the input tuple, which contains the telemetry data in the form of a JSON serial‐
ized string, and turn it into a tuple with fields for each property (temperature, create
date, and device ID). This class overrides the two key methods of BaseBasicBolt:
execute and declareOutputFields.

The declareOutputFields method is called before the bolt begins executing, and its
purpose is to indicate the names of the fields that will be emitted in the tuples created
by this bolt. Think of it as declaring the schema of the output of the bolt, without
explicitly describing the types of the fields, just the names. In our case, the output bolt
from this will be a tuple that contains three fields: temp, createDate, and deviceId.

The execute method is called by Storm whenever there is a tuple to process by the
bolt. The collector parameter is used to emit the bolt after this method has finished its
processing. In the implementation, we use the Jackson library to parse the JSON
string into an object, and we check if it has a temp field. If it does, we assume this a
temperature reading tuple (as opposed to a motion sensor or HVAC reading) and we
create a new tuple using the Values class, passing into its constructor the value for
each field in the same order as the fields were declared in declareOutputFields.
Finally, we emit the tuple for processing by downstream bolts via the call to collec
tor.emit.

Observe that this class extends BaseBasicBolt. This is the class to use when you want
Storm to automatically acknowledge successful processing of an input tuple when the
execute method completes without error.

public class ParseTelemetryBolt extends BaseBasicBolt{

 private static final long serialVersionUID = 1L;

 public void execute(Tuple input, BasicOutputCollector collector) {

 String value = input.getString(0);
 ObjectMapper mapper = new ObjectMapper();
 try {
 JsonNode telemetryObj = mapper.readTree(value);

 if (telemetryObj.has("temp")) //assume must be a temperature reading
 {
 Values values = new Values(
 telemetryObj.get("temp").asDouble(),

142 | Chapter 4: Real-Time Processing in Azure

 telemetryObj.get("createDate").asText(),
 telemetryObj.get("deviceId").asText()
);

 collector.emit(values);
 }
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("temp","createDate", "deviceId"));
 }
}

Now let’s turn our attention to the implementation of the EmitAlert bolt. We follow
the same basic pattern as before. In this case we declare the schema of our output
tuples to have one additional field, reason, in addition to the fields we have in a tem‐
perature tuple. Within the execute method, we look at the value of the temperature
received from the incoming tuple, and if it’s outside of the bounds we emit a new
tuple with the reading’s value and the reason.

public class EmitAlertBolt extends BaseBasicBolt{

 private static final long serialVersionUID = 1L;

 protected double minAlertTemp;
 protected double maxAlertTemp;

 public EmitAlertBolt(double minTemp, double maxTemp) {
 minAlertTemp = minTemp;
 maxAlertTemp = maxTemp;
 }

 public void execute(Tuple input, BasicOutputCollector collector) {

 double tempReading = input.getDouble(0);
 String createDate = input.getString(1);
 String deviceId = input.getString(2);

 if (tempReading > maxAlertTemp)
 {

 collector.emit(new Values (
 "reading above bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting above bounds: " + tempReading);
 } else if (tempReading < minAlertTemp)

Tuple-at-a-Time Processing in Azure | 143

 {
 collector.emit(new Values (
 "reading below bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting below bounds: " + tempReading);
 }
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("reason","temp","createDate", "deviceId"));
 }
}

With the tour of the code artifacts behind us, let’s turn to running the topology locally
using IntelliJ IDEA. We will show two approaches: running the topology without the
debugger, and running the topology with the debugger.

To run the topology without the debugger, use the Maven Projects window and under
Run Configurations, double-click Topology (Figure 4-11).

Figure 4-11. Double-click on Topology to run the topology without the debugger.

The output of any diagnostic information, including the out-of-bound messages pro‐
duced by the EmitAlertBolt, will be shown in the bottom window (Figure 4-12).

144 | Chapter 4: Real-Time Processing in Azure

Figure 4-12. Example of the output that will scroll by when you run the topology locally.

The process will automatically terminate, or you can press the “Stop process” button
in the output dialog (the red square) to terminate on demand.

To run the topology with the debugger attached—and thereby stop at any break‐
points, allowing you to inspect variables and step through the code—from the Run
menu choose Debug “Topology.” When it is running you can use the controls in the
Debug window to step into, step over, and step out of code, as well as examine
frames, threads, and variables when you have hit a breakpoint (Figure 4-13).

Figure 4-13. The Debug window.

This sample project has been provided with the configuration topology. It is useful to
understand how this build configuration was created so that you can apply it in your
own Storm projects. From the Run menu, select Edit Configurations.

Notice in the tree that a Maven configuration was added (traditionally you’d do this
by clicking the + and choosing Maven in the Add New Configuration dialog). In the
tree, select the Topology entry. The working directory should be set to the root of
your Storm project directory. The command line should be set to use the Maven exec

Tuple-at-a-Time Processing in Azure | 145

plugin to run the java command, passing it the fully qualified name of your Storm
topology via the Dstorm.topology parameter (Figure 4-14). To be able to run another
topology you create in the future, alter this parameter to have a value of the class
name of your new topology.

Figure 4-14. The configuration needed to run topologies locally.

Now that we have run the topology locally, we’ll turn to running it in a production
cluster. Naturally, in order to do that, we first need a Storm cluster, which we will ach‐
ieve by provisioning an HDInsight cluster that is running Storm on Linux.

Provisioning the Linux HDI cluster. To provision a minimal Linux HDInsight Cluster
with Storm, follow these steps:

1. Log in to the Azure Portal.
2. Select New→Intelligence + Analytics→HDInsight.
3. On the New HDInsight blade, provide a unique name for your cluster.
4. Choose your Azure subscription.
5. Click “Select Cluster configuration.”
6. On the “Cluster type configuration” blade, set the cluster type to Storm, operating

system to Linux, version to Storm 0.10.0 (you can use any version of HDP, so
long as it uses this version of Storm for compatibility with the sample), and leave
cluster tier to Standard. Click Select.

7. Click “credentials.”
8. Set the admin login username and password, then the SSH username and pass‐

word, and click Select (Figure 4-15).

146 | Chapter 4: Real-Time Processing in Azure

https://portal.azure.com

Figure 4-15. Configuring authentication to HDInsight cluster.

9. Click Data Source.
10. Select an existing Azure Storage account or create a new one as desired

(Figure 4-16).
11. Modify the container name as desired. This container name will act as the root

folder for your HDInsight cluster.

Figure 4-16. Configuring storage for the cluster.

12. Choose the location nearest you.

Tuple-at-a-Time Processing in Azure | 147

13. Click Select.
14. Click Node Pricing Tiers.
15. Set the number of supervisor nodes to 1 (you do not need more to run the sam‐

ple), as shown in Figure 4-17.

Figure 4-17. Configuring the cluster size.

16. Click on Zookeeper Nodes Pricing Tier.
17. Click View All.
18. Click A2 and click Select to change the tier to A2 (you will not need a more pow‐

erful Zookeeper host for this sample).
19. Click Select on the Node Pricing Tiers blade.
20. Click resource group and select an existing resource group or create a new one as

desired. You should now have all the settings specified (Figure 4-18).
21. Click Create to begin creating the HDInsight cluster. It will take about 25 minutes

to complete. When it’s ready, continue with the next section to run the topology.

148 | Chapter 4: Real-Time Processing in Azure

Figure 4-18. Overview of the cluster configuration.

Running the topology on HDI. In order to run a topology on HDInsight, you need to
package the topology and all of its dependencies (excepting Storm) into an uber (aka
fat) JAR. Then you will need to use the SCP utility to upload the JAR and its con‐
fig.properties file to the cluster head node. You run the topology by using SSH to con‐
nect to the cluster head node, and then use the Storm client to run the topology. You
can monitor the status and view logs of the running topology via the Storm UI, which
is accessed by a web browser.

Let’s walk through each of these steps, starting with packaging the uber JAR. To build
the uber JAR, with the project open in IntelliJ IDEA, use the Maven Projects window
and double-click on the package node (Figure 4-19). This will compile the project
and create the uber JAR, with a name ending in "-jar-with-dependencies.jar.”

Tuple-at-a-Time Processing in Azure | 149

Figure 4-19. Use the package action to create the uber JAR.

Next, to upload the uber JAR and config file, you will need to use Secure Copy (SCP),
which effectively copies files over SSH. The SCP utility is included with most Linux
distributions in the bash shell. The syntax to upload any file via SCP to your HDIn‐
sight head node is as follows:

scp <localFileName> <userName>@<clusterName>-ssh.azurehdinsight.net:.

localFileName refers to the path on your local filesystem to the file you wish to
upload. userName refers to the SSH user you created when provisioning the cluster.
clusterName refers to the unique name you provided for your HDInsight cluster.
Note there are a few subtle characters in the command as well. Right after the clus
terName is a dash (-), and at the end after .net there is a colon (:) followed by a
period (.).

When you run the SCP command, you will be prompted for the password associated
with the SSH username. Enter that, and your upload will commence. In the context of
the sample, to upload the uber JAR and the config.properties file, we could run the
following two commands:

scp ./target/BlueYonderSamples-1.0.0-jar-with-dependencies.jar
zoinertejada@solstorm0-10-0-ssh.azurehdinsight.net:.
scp ./target/config.properties
zoinertejada@solstorm0-10-0-ssh.azurehdinsight.net:.

Now that you have your topology JAR and its config uploaded to the head node, you
need to run it using the Storm client, which is run from bash when you are connected
to the head node via SSH.

To SSH into the head node of your HDInsight cluster, the command looks as follows:

ssh <userName>@<clusterName>-ssh.azurehdinsight.net

150 | Chapter 4: Real-Time Processing in Azure

The parameters enclosed in angle brackets have the same meaning as for the SCP
command. For example, here is what we used to SSH into our cluster:

ssh zoinertejada@solstorm0-10-0-ssh.azurehdinsight.net

When you connect, you will be prompted for the password associated with the SSH
username. With the SSH connection established, you use the Storm client as follows:

storm jar <uber.jar> <className> <topologyName> <…topology specific params…>

The uber.jar parameter should have as its value the name of the uber JAR you
uploaded via SCP. The className parameter should be set to the fully qualified name
of the class that defines your topology. The topologyName is the name of the topology
as it will appear when Storm runs it (i.e., in the monitoring UIs and when you want to
manage a topology, you provide this name). Finally, each topology implementation
can require its own set of additional command-line parameters after the topology
Name. In our AlertTopology, we require the name of the file that contains the config‐
uration properties, as follows:

storm jar BlueYonderSamples-1.0.0-jar-with-dependencies.jar
 net.solliance.storm.AlertTopology alerts config.properties

When the storm command is run, it will kick off the topology and then return. To
monitor the status of the topology, you can used the browser-based Storm UI.

Running SSH and SCP in Windows
If you are developing your solution on Windows, you will need to download and
install the PuTTY Windows client to use SSH, and the PSCP command-line client to
use SCP. For instructions on setting up SSH to target your HDInsight cluster, see the
Microsoft Azure documentation.

You can download both PuTTY and PSCP from the same location: http://bitly.com/
XSB88p.

To access the Storm UI, open your favorite web browser and navigate to https://<clus‐
terName>.azurehdinsight.net/stormui.

When you first do so, you will be prompted to enter the admin username and pass‐
word you established when you created the cluster. Note that you should not use the
SSH username and password in this case.

The first view that loads provides you with a high-level summary of the Storm cluster
(Figure 4-20).

Tuple-at-a-Time Processing in Azure | 151

http://bit.ly/2nJWXQN
http://bitly.com/XSB88p
http://bitly.com/XSB88p

Figure 4-20. The top-level view of the Storm UI.

The view provides five sections:

Cluster Summary
Describes the top-level layout of the cluster, the version of Storm being run, the
number of supervisor virtual machines (Supervisors column), the number of
worker processes deployed (Total slots), the number of worker processes used
(Used slots) and unused (Free slots), the number of executor threads (Executors),
and the number of tasks across the cluster (Tasks).

Nimbus Summary
Provides a listing of all of the virtual machine nodes, indicating which nodes in
the cluster are providing Nimbus primary (Status is Leader) and secondary (Sta‐
tus is Not a Leader) functionality.

Topology Summary
Lists all the topologies currently deployed to the cluster, whether they are actively
running (Status), and their consumption of the cluster resources (Num workers,
Num tasks).

Supervisor Summary
Lists the virtual machine nodes that are running as supervisor nodes.

152 | Chapter 4: Real-Time Processing in Azure

Nimbus Configuration
Provides a read-only view into the Nimbus settings that are in effect.

To view the status for a topology, click on its name in the Topology Summary
(Figure 4-21).

Figure 4-21. The topology view of the Storm UI.

The topology view has seven sections:

Topology summary
Shows the same values as on the top-level, cluster-wide view.

Topology actions
These buttons enable you to deactivate (pause) a running topology or activate
(resume) a previously deactivated topology. You can click Rebalance to have

Tuple-at-a-Time Processing in Azure | 153

Storm reallocate available executors and tasks to the topology. You click Kill to
terminate the topology, which will also remove it from being listed in the Storm
UI.

Topology stats
These stats give the counts on the number of tuples emitted in total across all
spouts and bolts (the Emitted column) and the number of tuples actually trans‐
ferred between spouts and bolts or bolts and bolts (the Transferred column).
These values may be different, for example, when a bolt emits a tuple, but there is
not a downstream bolt to consume it. Acked indicates the number of tuples that
were succesfully processed across all spouts and bolts, whereas Failed is the count
of those that failed (typically where the spout or bolt threw an exception).

Spouts
Provides the stats for each spout in the topology.

Bolts
Provides the stats for each bolt in the topology.

Topology Visualization
This should show a graph of the directed acyclic graph form of the topology, but
is currently disabled in HDInsight.

Topology Configuration
This is a read-only listing of the config properties provided when the topology
was submitted.

If you click on the ID of a spout (in the Spouts listing) or a bolt (in the Bolts listing)
you are taken to a detailed view for just that spout or bolt (Figure 4-22).

This provides similar statistics as the other views, with two interesting additions:

Executors
Lists the executor threads in which instances of this bolt or spout are running.

Errors
Lists the text of any runtime errors encountered across all instances of the spout
or bolt.

154 | Chapter 4: Real-Time Processing in Azure

Figure 4-22. Viewing the details for the EmitAlertsBolt.

There is a subtlety to this UI that is worth understanding. If you want to view the log
output from any instance of the spout or bolt, under the Executors listing click the
hyperlinked port number. This will take you to a new screen where you can view the
logs captured for any instance of the spout or bolt being run by the executor
(Figure 4-23).

Tuple-at-a-Time Processing in Azure | 155

Figure 4-23. Viewing the logs for a bolt.

Alerting with Storm on HDInsight (C# + Windows cluster)
In addition to the Java implementation we demonstrated, Storm topologies can also
be implemented in C#. In fact, in this approach, you can build hybrid topologies that
are a mix of components written in C# and Java—effectively allowing you to get the
best from both worlds. The primary requirement is that topologies implemented in
C# can run only on Storm on HDInsight clusters running Windows.

In this section we will look at implementing the same alerting topology we showed
previously in Java. Here we will use the Java EventHubSpout that is included with
Storm, but implement our ParserBolt and EmitAlertBolt using C#. The topology
itself will also be defined using C#.

Let’s begin by setting up your development environment.

Dev environment setup. Building Storm topologies with C# requires Visual Studio
2015. However, you can use any edition of VS 2015, from the free Community edition
to the premium Enterprise edition.

You will also want to ensure you have the Microsoft Azure HDInsight Tools for Vis‐
ual Studio installed, which provide you with projects ranging from empty Storm
projects to hybrid topologies that read from Event Hubs.

156 | Chapter 4: Real-Time Processing in Azure

Installing the HDInsight Tools for Visual Studio
Currently, the Microsoft Azure HDInsight Tools for Visual Studio are installed along
with Azure SDK 2.9. You can always find the latest Azure SDK at https://azure.micro‐
soft.com/en-us/downloads/.

On this page, look for the title “.NET” and click the link labeled “VS 2015.” This will
download the Web Platform Installer, which will guide you through the simple SDK
installation process.

With Visual Studio properly updated, the next step is to download and open the Blue
Yonder Airports sample in Visual Studio.

You can download the Storm sample from http://bit.ly/2buuAwT.

The download includes the AlertTopology sample as a Visual Studio solution with a
single project that contains the topology, spouts, and bolts.

Once you have downloaded the sample, open the solution in Visual Studio. You
should now be ready to explore the project. In Solution Explorer, expand the
ManagedAlertTopology project. You should see the three classes that define the topol‐
ogy (AlertTopology.cs), the parser bolt (ParserBolt.cs), and the alert bolt (EmitAlert‐
Bolt.cs), as shown in Figure 4-24.

Figure 4-24. The files contained in the managed Storm project.

Next, expand JavaDependency. This is your first peek into how hybrid C# plus Java
projects are structured. The JavaDependency folder contains a single JAR file that
contains the Java-based EventHubSpout (Figure 4-25).

Tuple-at-a-Time Processing in Azure | 157

https://azure.microsoft.com/en-us/downloads/
https://azure.microsoft.com/en-us/downloads/
http://bit.ly/2buuAwT

Figure 4-25. The JAR containing the EventHubSpout implementation.

We will walk through the implementation shortly, but first let’s finish preparing the
solution for build and deployment. Open app.config and set the values in appSet
tings as follows to enable the EventHubSpout to connect your instance of Event
Hubs:

EventHubNamespace

The service bus namespace containing your Event Hubs instance

EventHubEntityPath

The name of your Event Hubs instance

EventHubSharedAccessKeyName

The policy name with read permissions to Event Hubs

EventHubPartitions

The number of partitions your Event Hubs instance contains

Save app.config and from the Build menu, select “Build solution.” Verify that you do
not get any build errors.

Topology implementation. C# topologies are enabled via the Stream Computing Plat‐
form for .NET (SCP.NET). This platform provides both the plumbing to interact with
Storm’s native Java runtime, as well as classes for implementing topologies, spouts,
and bolts. If you are comfortable with our previous illustration of the AlertTopology
implemented with Java, then you should find most of the implementation in C# very
familiar. There are a few differences, and we will call them out as we proceed.

Let’s begin by examining AlertTopology.cs:
[Active(true)]
public class AlertTopology : TopologyDescriptor
{
 public ITopologyBuilder GetTopologyBuilder()
 {
 TopologyBuilder topologyBuilder = new TopologyBuilder("AlertTopology");

 var eventHubPartitions =
 int.Parse(ConfigurationManager.AppSettings["EventHubPartitions"]);

 topologyBuilder.SetEventHubSpout(
 "EventHubSpout",
 new EventHubSpoutConfig(

158 | Chapter 4: Real-Time Processing in Azure

 ConfigurationManager.AppSettings["EventHubSharedAccessKeyName"],
 ConfigurationManager.AppSettings["EventHubSharedAccessKey"],
 ConfigurationManager.AppSettings["EventHubNamespace"],
 ConfigurationManager.AppSettings["EventHubEntityPath"],
 eventHubPartitions),
 eventHubPartitions);

 List<string> javaSerializerInfo = new List<string>() {
 "microsoft.scp.storm.multilang.CustomizedInteropJSONSerializer" };

 var boltConfig = new StormConfig();

 topologyBuilder.SetBolt(
 typeof(ParserBolt).Name,
 ParserBolt.Get,
 new Dictionary<string, List<string>>()
 {
 {Constants.DEFAULT_STREAM_ID, new List<string>(){ "temp",
 "createDate", "deviceId" } }
 },
 eventHubPartitions,
 true
).
 DeclareCustomizedJavaSerializer(javaSerializerInfo).
 shuffleGrouping("EventHubSpout").
 addConfigurations(boltConfig);

 topologyBuilder.SetBolt(
 typeof(EmitAlertBolt).Name,
 EmitAlertBolt.Get,
 new Dictionary<string, List<string>>()
 {
 {Constants.DEFAULT_STREAM_ID, new List<string>(){ "reason",
 "temp", "createDate", "deviceId" } }
 },
 eventHubPartitions,
 true
).
 shuffleGrouping(typeof(ParserBolt).Name).
 addConfigurations(boltConfig);

 var topologyConfig = new StormConfig();
 topologyConfig.setMaxSpoutPending(8192);
 topologyConfig.setNumWorkers(eventHubPartitions);

 topologyBuilder.SetTopologyConfig(topologyConfig);
 return topologyBuilder;
 }
}

The first thing that might jump out at you is the use of the Active attribute atop the
class declaration. In the Java approach, we provided a static Main method that kicked

Tuple-at-a-Time Processing in Azure | 159

off the topology construction, and we selected which class’s Main method to invoke
when we actually ran the topology using the Storm client. With SCP.NET, the Active
attribute (when set to true) indicates that this is the one and only class within the
assembly that should be used to build the topology.

The topology class derives from TopologyDescriptor and implements only a single
public method: GetTopologyBuilder. This method takes the place of the Main
method we used in Java. Within it, we create an instance of TopologyBuilder, give it
a name, and then attach spouts and bolts, via the SetSpout, SetBolt, and more speci‐
alized SetEventHubSpout methods.

In the constructor of TopologyBuilder, we provide the runtime name of the topol‐
ogy. This can have almost whatever value you desire, but there is an important caveat
when you are working with the EventHubSpout. Recall that when reading from the
Event Hub partition, the spout tasks periodically checkpoint their progress with Zoo‐
keeper. Their progress is effectively grouped underneath the name of the topology
provided to the constructor of TopologyBuilder. This means that if you resubmit a
Storm topology with the same name, the EventHubSpouts will resume where they left
off. If you want the spouts to start from the beginning of each Event Hubs partition,
then be sure to provide a unique name that has not been used before.

In building the EventHubSpout, we load from the app.config the settings needed for
the Event Hub and use them to populate an instance of EventHubSpoutConfig. The
call to setEventHubSpout takes three arguments: a name for the component, the
EventHubSpoutConfig, and the initial parallelism hint (i.e., the initial number of
threads to allocate, which should be one thread per partition).

Moving to the call to topologyBuilder.setBolt, we provide the method the name
for the component, a reference to the method for constructing instances of the bolt, a
dictionary that lists the names of the fields emitted by the bolt, the initial parallelism
hint, and a boolean that enables or disables tuple ack. This latter property must be set
to true for topologies that consume from the EventHubSpout, since the spout itself
will keep in memory (for the purposes of resiliency) any tuples that have not been
acknowledged and will error out after a certain threshold is reached of unacknowl‐
edged tuples. This setting means that downstream bolts must also ack all the tuples
with a lineage tracing back to the EventHubSpout. In the Java implementation, this
was done automatically for us via the implementation of BasicBolt. In SCP.NET we
have a little extra work to do, which we will demonstrate shortly.

Right after the closing parenthesis of topologyBuilder.setBolt, we chain on a call
to DeclareCustomizedJavaSerializer and pass it the dictionary that names the
Java-based type of the serializer to use. The purpose of this call is to take the tuples
that are traditionally serialized using Java, and instead serialize them as JSON so
our .NET bolts can properly deserialize them.

160 | Chapter 4: Real-Time Processing in Azure

Finally, observe that in this chain that follows setEventHubSpout, we invoke shuffle
Grouping and reference the name of the EventHubSpout component to flow tuples
from the EventHubSpout to this ParserBolt.

The second call to topologyBuilder.setBolt works in an almost identical fashion,
but with one exception. In this case, we are flowing tuples from the ParserBolt to the
EmitAlertBolt—both of which are C# components. In this case we do not need to
inject a serializer.

Next, let’s look at the implementation for ParserBolt.cs. Bolts need to implement the
ISCPBolt interface, which only defines the Execute method that takes a tuple as
input. In reality, you will commonly also implement a constructor that defines the
input and output schema as well as any serializer or deserializer required, and a Get
method that acts as a factory method to construct instances of the bolt.

public class ParserBolt : ISCPBolt
{
 Context _context;

 public ParserBolt(Context ctx)
 {
 this._context = ctx;

 // set input schemas
 Dictionary<string, List<Type>> inputSchema = new Dictionary<string,
 List<Type>>();
 inputSchema.Add(Constants.DEFAULT_STREAM_ID, new List<Type>() {
 typeof(string) });

 // set output schemas
 Dictionary<string, List<Type>> outputSchema = new Dictionary<string,
 List<Type>>();
 outputSchema.Add(Constants.DEFAULT_STREAM_ID, new List<Type>() {
 typeof(double), typeof(string), typeof(string) });

 // Declare input and output schemas
 _context.DeclareComponentSchema(new ComponentStreamSchema(inputSchema,
 outputSchema));

 _context.DeclareCustomizedDeserializer(
 new CustomizedInteropJSONDeserializer());
 }

 public void Execute(SCPTuple tuple)
 {
 string json = tuple.GetString(0);

 var node = JObject.Parse(json);
 var temp = node.GetValue("temp");
 JToken tempVal;

Tuple-at-a-Time Processing in Azure | 161

 if (node.TryGetValue("temp", out tempVal)) //assume must be a
 //temperature reading
 {
 Context.Logger.Info("temp:" + temp.Value<double>());
 JToken createDate = node.GetValue("createDate");
 JToken deviceId = node.GetValue("deviceId");
 _context.Emit(Constants.DEFAULT_STREAM_ID, new List<SCPTuple>() {
 tuple }, new List<object> { tempVal.Value<double>(),
 createDate.Value<string>(),
 deviceId.Value<string>() });
 }

 _context.Ack(tuple);
 }

 public static ParserBolt Get(Context ctx, Dictionary<string, Object> parms)
 {
 return new ParserBolt(ctx);
 }
}

Finally, let’s examine EmitAlertBolt.cs. It is very similar structurally to ParserBolt.
Note that in this case the constructor does not define a deserializer because one is not
needed in the C# object to C# object pipeline.

public class EmitAlertBolt : ISCPBolt
{
 Context _context;

 double _minAlertTemp;
 double _maxAlertTemp;

 public EmitAlertBolt(Context ctx)
 {
 this._context = ctx;

 Context.Logger.Info("EmitAlertBolt: Constructor called");

 try
 {
 // set input schemas
 Dictionary<string, List<Type>> inputSchema = new Dictionary<string,
 List<Type>>();
 inputSchema.Add(Constants.DEFAULT_STREAM_ID, new List<Type>() {
 typeof(double), typeof(string), typeof(string) });

 // set output schemas
 Dictionary<string, List<Type>> outputSchema = new Dictionary<string,
 List<Type>>();
 outputSchema.Add(Constants.DEFAULT_STREAM_ID, new List<Type>() {
 typeof(string), typeof(double), typeof(string), typeof(string) });

162 | Chapter 4: Real-Time Processing in Azure

 // Declare input and output schemas
 _context.DeclareComponentSchema(new ComponentStreamSchema(inputSchema,
 outputSchema));

 _minAlertTemp = 65;
 _maxAlertTemp = 68;

 Context.Logger.Info("EmitAlertBolt: Constructor completed");
 }
 catch (Exception ex)
 {
 Context.Logger.Error(ex.ToString());
 }
 }

 public void Execute(SCPTuple tuple)
 {
 try
 {
 double tempReading = tuple.GetDouble(0);
 String createDate = tuple.GetString(1);
 String deviceId = tuple.GetString(2);

 if (tempReading > _maxAlertTemp)
 {
 _context.Emit(new Values(
 "reading above bounds",
 tempReading,
 createDate,
 deviceId
));
 Context.Logger.Info("Emitting above bounds: " + tempReading);
 }
 else if (tempReading < _minAlertTemp)
 {
 _context.Emit(new Values(
 "reading below bounds",
 tempReading,
 createDate,
 deviceId
));
 Context.Logger.Info("Emitting below bounds: " + tempReading);
 }

 _context.Ack(tuple);
 }
 catch (Exception ex)
 {
 Context.Logger.Error(ex.ToString());
 }
 }

Tuple-at-a-Time Processing in Azure | 163

 public static EmitAlertBolt Get(Context ctx, Dictionary<string, Object> parms)
 {
 return new EmitAlertBolt(ctx);
 }
}

With an understanding of the managed topology in place, we’ll turn our attention to
running the topology in HDInsight.

Provisioning the Windows HDI cluster. Provisioning an HDInsight cluster that runs
Storm on Windows follows a similar process to that used for provisioning a Linux
cluster. Follow these steps:

1. Log in to the Azure Portal.
2. Select New→Intelligence + Analytics→HDInsight.
3. On the New HDInsight blade, provide a unique name for your cluster.
4. Choose your Azure subscription.
5. Select “Cluster configuration.”
6. On the “Cluster type configuration” blade, set the cluster type to Storm, operating

system to Windows, version to Storm 0.10.0, and the cluster tier to Standard.
Click Select.

7. Click “credentials.”
8. Set the cluster login username and password, enable Remote Desktop (if desired)

and set the Remote Desktop username and password, and click Select
(Figure 4-26).

164 | Chapter 4: Real-Time Processing in Azure

https://portal.azure.com

Figure 4-26. Setting the Windows-based cluster credentials.

9. Click Data Source.
10. Select an existing Azure Storage account or create a new one as desired.
11. Modify the container name as desired. This container name will act as the root

folder for your HDInsight cluster.
12. Choose the location nearest you.
13. Click Select.
14. Click Node Pricing Tiers.
15. Set the number of supervisor nodes to 1 (you do not need more to run the sam‐

ple).
16. Click on Zookeeper Nodes Pricing Tier.
17. Click View All.

Tuple-at-a-Time Processing in Azure | 165

18. Click A2 and click Select to change the tier to A2 (you will not need a more pow‐
erful Zookeeper host for this sample).

19. Click Select on the Node Pricing Tiers blade.
20. Click Resource Group and select an existing resource group or create a new one

as desired. You should now have all the settings specified (Figure 4-27).

Figure 4-27. Overview of the cluster configuration.

21. Click Create to begin creating the HDInsight cluster. It will take about 25 minutes
to complete. When it’s ready, continue with the next section to run the topology.

Running the topology on HDI. Thanks to the integration provided by the HDInsight
Tools for Visual Studio, deploying and running a topology (even a hybrid one like we
demonstrate here) can be done completely within Visual Studio 2015.

To begin, in Solution Explorer, right-click on your project and select “Submit to
Storm on HDInsight” (Figure 4-28).

166 | Chapter 4: Real-Time Processing in Azure

Figure 4-28. Submitting a topology project to HDInsight from within Visual Studio.

You will be prompted to log in with the credentials to your Azure subscription. When
you have logged in, you will see the Submit Topology dialog (Figure 4-29).

Figure 4-29. The Submit Topology dialog within Visual Studio.

This dialog may take a few seconds to load the list of HDInsight clusters. You can see
the progress in the background by looking at the HDInsight Task List, which will
have an entry labeled “Get storm clusters list.”

When the list has loaded, select your HDInsight cluster from the Storm Cluster drop‐
down. Next, expand the Additional Configuration section. When creating a hybrid
topology, this is where you indicate the folder containing any JARs to include with
your Storm topology (Figure 4-30).

Tuple-at-a-Time Processing in Azure | 167

Figure 4-30. The Submit Topology dialog showing where to specify the folder containing
JAR files used by a hybrid topology.

Click Submit to deploy and run your topology on your HDInsight cluster.

Once it has deployed, a new document named Storm Topologies View will appear.
The lefthand pane will list all topologies deployed to the cluster (Figure 4-31).

Figure 4-31. The Storm Topologies View displaying the status of a selected topology.

If you click on any one topology, you will get the visualization that summarizes the
status.

168 | Chapter 4: Real-Time Processing in Azure

On the visualization, if you double-click any of the components (e.g., the box repre‐
senting a spout or bolt), you will be taken to a new document that is very similar to
the Storm UI and presents the same statistics (Figure 4-32).

Figure 4-32. Viewing the statistics for a spout in Visual Studio.

In fact, if you click on the hyperlinked port for an executor, you can view the logs
directly within Visual Studio (Figure 4-33).

Figure 4-33. Viewing the logs for an executor within Visual Studio.

You can always return to the Storm Topologies View by using Server Explorer,
expanding the Azure and HDInsight nodes, and then right-clicking on the HDInsight
cluster and selecting View Storm Topologies (Figure 4-34).

Tuple-at-a-Time Processing in Azure | 169

Figure 4-34. Using Server Explorer to access the Storm Topologies View.

EventProcessorHost
When you are developing with .NET and Visual Studio 2015, the recommended way
to build scalable, fault-resilient consuming applications for Event Hubs is to use the
EventProcessorHost class. EventProcessorHost takes care of:

• Spawning a consumer for each partition in the Event Hubs instance
• Checkpointing the state of each consumer periodically to Azure Blob Storage
• Ensuring that there is always exactly one consumer per partition, and re-creating

a new consumer should one fail
• Managing epochs to enable updating of event processing logic

The EventProcessorHost class is available with the Azure Service Bus SDK, and can
be found within the Microsoft.ServiceBus.Messaging.EventProcessorHost

assembly. It can be hosted in a console application, a cloud service web or worker
role, and even an Azure function, but the easiest place to host it is within a Web Job,
which we demonstrate next.

170 | Chapter 4: Real-Time Processing in Azure

EventProcessorHost API
For other examples that leverage the EventProcessorHost API at a lower level than
Web Jobs (such as if you wanted to self-host in a console or in a cloud service worker
role), see the Microsoft Azure documentation.

EventProcessorHost in Web Jobs
Azure Web Jobs (a feature of Azure App Services) provide the compute environment
for running many forms of tasks, from command-line applications to methods within
a .NET assembly in response to triggers that can include messages in a queue and
blobs being added to Blob Storage. Web Jobs also provide a tailored hosting environ‐
ment for the EventProcessorHost, where new events can trigger the invocation of a
processing method.

You can download the sample from http://bit.ly/2bJDLOi.

In this sample, we show how to accomplish the alert processing we have demon‐
strated throughout the chapter. Let’s begin with the implementation for the program
that creates the Web Job host in Program.cs:

class Program
{
 private static void Main()
 {
 var eventHubConnectionString =
 ConfigurationManager.AppSettings["eventHubConnectionString"];
 var eventHubName = ConfigurationManager.AppSettings["eventHubName"];
 var storageAccountName =
 ConfigurationManager.AppSettings["storageAccountName"];
 var storageAccountKey =
 ConfigurationManager.AppSettings["storageAccountKey"];

 var storageConnectionString =
 $"DefaultEndpointsProtocol=https;AccountName={storageAccountName};
 AccountKey={storageAccountKey}";

 var eventHubConfig = new EventHubConfiguration();
 eventHubConfig.AddReceiver(eventHubName, eventHubConnectionString);

 var config = new JobHostConfiguration(storageConnectionString);
 config.NameResolver = new EventHubNameResolver();
 config.UseEventHub(eventHubConfig);

 var host = new JobHost(config);
 host.RunAndBlock();
 }
}

Tuple-at-a-Time Processing in Azure | 171

http://bit.ly/2nSjZ4S
http://bit.ly/2bJDLOi

This is a common pattern for authoring Web Jobs. The code begins with the loading
of the Event Hub connection string, the Event Hub name, and the Azure Storage
account name and key from the appSettings contained within app.config.

Next, we create an instance of EventHubConfiguration and invoke the AddReceiver
method to register that we want to listen for events at the Event Hub indicated by the
parameters.

After that, we create an instance of JobHostConfiguration that takes in its construc‐
tor the connection string for an Azure Storage account. This account will be used to
checkpoint the state of the consumers managed by this EventProcessorHost. We set
the NameResolver property to an instance of EventHubNameResolver, a small utility
class that helps us load the Event Hub name from appSettings, and provide it to the
attribute we use to decorate the methods that respond to new events appearing in the
Event Hub (we will show this attribute shortly). Finally, we invoke the UseEventHub
method on the JobHostConfiguration instance to provide the Event Hub configura‐
tion.

Finally, we use the JobHostConfiguration as a parameter to the Web Job’s JobHost
and then kick off the Web Job by the blocking call to host.RunAndBlock.

Let’s look at the implementation that actually handles the processing of events, in
AlertsProcessor.cs:

public class AlertsProcessor
{
 double _maxAlertTemp = 68;
 double _minAlertTemp = 65;

 public void ProcessEvents(
 [EventHubTrigger("%eventhubname%")] EventData[] events)
 {
 foreach (var eventData in events)
 {
 try
 {
 var eventBytes = eventData.GetBytes();
 var jsonMessage = Encoding.UTF8.GetString(eventBytes);
 var evt = JObject.Parse(jsonMessage);

 JToken temp;
 double tempReading;

 if (evt.TryGetValue("temp", out temp))
 {
 tempReading = temp.Value<double>();

 if (tempReading > _maxAlertTemp)
 {

172 | Chapter 4: Real-Time Processing in Azure

 Console.WriteLine("Emitting above bounds: " +
 tempReading);
 }
 else if (tempReading < _minAlertTemp)
 {
 Console.WriteLine("Emitting below bounds: " +
 tempReading);
 }
 }

 }
 catch (Exception ex)
 {
 LogError(ex.Message);
 }
 }
 }

 private static void LogError(string message)
 {
 Console.ForegroundColor = ConsoleColor.Red;
 Console.WriteLine("{0} > Exception {1}", DateTime.Now, message);
 Console.ResetColor();
 }
}

The attribute that ensures the ProcessEvents method is invoked when new events
arrive at the Event Hub is the EventHubTriggerAttribute, applied to the first param‐
eter of ProcessEvents. This attribute typically takes a string that is the name of the
Event Hub:

public void ProcessEvents([EventHubTrigger("%eventhubname%")] EventData[] events)

To avoid hardcoding the name of the Event Hub, you can register a NameResolver as
we did. We implement our NameResolver in the EventHubNameResolver class, whose
Resolve method takes as input the name of the appSetting and returns the value.
Resolve is invoked and the actual name of the Event Hub stored in configuration is
passed to the EventHubTrigger constructor:

public class EventHubNameResolver : INameResolver
{
 public string Resolve(string name)
 {
 return ConfigurationManager.AppSettings[name].ToString();
 }
}

Returning to ProcessEvents, once the method is invoked, we are provided with an
array of events that we can process in the usual way. In this case we check if the JSON

Tuple-at-a-Time Processing in Azure | 173

string contains a temp field. If so, we check if it is out of bounds and write a console
message if it is. When ProcessEvents completes successfully (without throwing an
exception), the EventProcessorHost running under the covers makes a checkpoint,
persisting the progress through the partition to Azure Blob Storage. The Storage
account used in this case to store checkpoints is the same account used by the Web
Job. That’s all there is to it! This Web Job can be published to Azure and when it starts
it will begin processing messages from the Event Hub.

Deploying to Azure
If you have never deployed a Web Job to Azure App Services before, a detailed step-
by-step explanation is available in the Microsoft Azure documentation.

Azure Machine Learning
While we have an upcoming chapter dedicated to Machine Learning and applying
Cortana Intelligence components, it is worth mentioning how you might leverage
Azure Machine Learning in the context of tuple-at-a-time processing. All the solu‐
tions in this chapter have shown how to process one tuple at a time. When you build
a service using Azure Machine Learning and then operationalize it, you expose that
Machine Learning model as a RESTful web service. All of the examples we have
shown could be extended to invoke this web service to make predictions, using the
fields from the tuple as input. Of course, keep in mind this adds extra latency to the
processing (on account of the time added due to the network hop added).

Summary
In this chapter we dug deeper into how consumers from Event Hubs can be imple‐
mented that process events in a tuple-at-a-time fashion. We introduced the way con‐
sumer groups define applications that collectively process events from all partitions in
the Event Hub. Then we looked at implementing processing applications in Apache
Storm using both Java- and C#-based topologies. Finally, we looked at how we can
host a consumer application in Azure Web Jobs and implement a consumer applica‐
tion using C# by leveraging the infrastructure provided by the EventProcessorHost
API.

In the next chapter, we will look at the options for building real-time processing
applications that take a micro-batch approach.

174 | Chapter 4: Real-Time Processing in Azure

http://bit.ly/2nJRnhe

CHAPTER 5

Real-Time Micro-Batch Processing in Azure

In the previous chapter, we explored the tuple-at-a-time options in Azure for process‐
ing real-time, streaming data. In this chapter we focus on the options that take a
micro-batch approach to data processing (see Figure 5-1).

Micro-Batch Processing in Azure
In Azure, there are three approaches that process telemetry streams, such as those
coming from an Event Hub or IoT Hub, in small batches. Two of these options
(Spark Streaming and Storm) run on managed HDInsight clusters and one of them
(Azure Stream Analytics) is purely a managed service with no infrastructure you have
to manage at all.

Spark Streaming on HDInsight
Apache Spark provides a fast and general-purpose solution for in-memory and dis‐
tributed computing, providing APIs that are programmable with the Scala, Java,
Python, and R languages. The unique value of Spark is that it provides a set of higher-
level frameworks above the main functionality (referred to as Spark Core) for per‐
forming structured and SQL-based data processing (Spark SQL), machine learning
(MLlib and SparkML), graph processing (GraphX), and stream processing (Spark
Streaming). While there are many solutions in the wild that perform each of these
functions individually, Spark is unique in how it lets you combine the frameworks to
achieve your goals. For example, you can write a single streaming application that
uses Spark Streaming as the data processing framework that internally uses SQL
queries (supported by Spark SQL) to implement your data processing logic.

175

Figure 5-1. This chapter focuses on stream processing components that follow a micro-
batch approach.

176 | Chapter 5: Real-Time Micro-Batch Processing in Azure

Spark is most commonly deployed to a Hadoop cluster that is running the YARN
resource manager, but can also be deployed locally for development purposes to a
cluster running Apache Mesos, or to a standalone cluster in which Spark itself pro‐
vides the resource management. In Azure you can provision an HDInsight cluster
preconfigured to run Spark on a Hadoop cluster using the YARN resource manager,
with a few clicks in the Azure Portal.

In this section, we will focus on applying Spark Streaming to the challenge of process‐
ing streaming data. Spark Streaming provides scalable, high-throughput, and fault-
tolerant processing of live data streams where data can be ingested from a multitude
of sources, including Azure Event Hubs (and by extension IoT Hub), Kafka, Flume,
Twitter, ZeroMQ, raw TCP sockets, and filesystems like HDFS. Data can be processed
using high-level functions like map, reduce, join, and window. The processed data can
then be pushed out to filesystems, databases, and dashboards. As you will see, Spark
Streaming takes a micro-batch approach to processing data streams.

To best understand Spark Streaming, it’s useful to understand the flow of data
through a streaming application. From a high level, Spark Streaming receives live
input data streams and divides the data into batches, which are then processed by the
Spark engine to generate the final stream of batched results.

Spark Streaming represents a continuous stream of data using a high-level abstraction
called a discretized stream, or DStream. The DStream is created either from input data
streams from sources like Event Hubs, or by applying other high-level operations on
an existing DStream. Internally, a DStream is represented by a sequence of resilient
distributed datasets (RDDs), which is Spark’s core data structure that distributes parti‐
tioned data across multiple nodes in the cluster, and is generally maintained in cluster
memory for best performance. Each input source has a specialized client called a
receiver that understands the source, reads the data from the source, and emits
batches of data at a configurable interval that are themselves made up of a set of
RDDs. The DStream provides an abstraction on top of this endless stream of batches
(and by extension stream of RDDs). This process is shown in Figure 5-2.

Micro-Batch Processing in Azure | 177

Figure 5-2. How events are consumed from Event Hubs and processed by Spark Stream‐
ing in the form of DStreams.

A Spark Streaming application is basically a long-running application that continues
to receive data from input sources, processes them, and pushes them out to one or
more destinations. Every Spark Streaming application has the following steps:

1. Create a SparkContext that points to your Spark cluster.
2. Create a StreamingContext from the SparkContext, and define the batch inter‐

val (e.g., 2 seconds, 10 minutes).
3. Using the StreamingContext, create an input DStream from the input source.
4. Implement the streaming computations by applying transformations to the input

DStream.
5. Push the processed results out to target systems by applying output operations.
6. Start the long-running application by invoking StreamingContext.start.
7. Wait for the processing to be stopped (mannually or due to an error) using

StreamingContext.awaitTermination(). You can also manually stop processing
using StreamingContext.stop().

Once you’ve built your streaming application, you can run it locally on your machine
or in an Azure HDInsight Spark cluster.

In the sections that follow, we will look in greater detail at the steps to implement,
deploy, and run a Spark Streaming application.

178 | Chapter 5: Real-Time Micro-Batch Processing in Azure

Implementing a Spark Streaming application
Let’s build the same alerting application we have shown previously on temperature
telemetry data that is streaming into an Event Hub, but this time using Spark Stream‐
ing.

You can download the Spark Streaming sample from http://bit.ly/2bzr05J.

Open the project using IntelliJ IDEA. In the project, open EventHubsEmitAlerts.scala
(which is located underneath src\main\scala\net.solliance.spark.streaming.examples
\workloads).

The entry point for this application is the main method, which effectively controls the
lifecycle of the streaming application:

def main(inputArguments: Array[String]): Unit = {

 val inputOptions: ArgumentMap = EventhubsArgumentParser.parseArguments(Map(),
 inputArguments.toList)

 //Create or recreate (from checkpoint storage) streaming context
 val streamingContext = StreamingContext
 .getOrCreate(inputOptions(Symbol(EventhubsArgumentKeys.CheckpointDirectory))
 .asInstanceOf[String],
 () => createStreamingContext(inputOptions))

 streamingContext.start()

 if(inputOptions.contains(
 Symbol(EventhubsArgumentKeys.TimeoutInMinutes))) {

 streamingContext.awaitTerminationOrTimeout(inputOptions(
 Symbol(EventhubsArgumentKeys.TimeoutInMinutes))
 .asInstanceOf[Long] * 60 * 1000)
 }
 else {

 streamingContext.awaitTermination()
 }
}

In the first line, the inputOptions ArgumentMap includes all of the following configu‐
ration, passed in as command-line parameters:

eventhubs.namespace

The service bus namespace containing the Event Hub

eventhubs.name

The name of the Event Hub

Micro-Batch Processing in Azure | 179

http://bit.ly/2bzr05J

eventhubs.policyname

The name of the Event Hub policy used for access

eventhubs.policykey

The key associated with the Event Hub policy

eventhubs.consumergroup

The consumer group assumed by the application

eventhubs.partition.count

The number of partitions in the Event Hub

eventhubs.checkpoint.interval

The interval in seconds between the checkpointing of progress through an Event
Hub partition to Azure Storage

eventhubs.checkpoint.dir

The path, relative to the Azure Storage container deployed with the cluster, under
which to store checkpoint metadata

In the next line, we instantiate a StreamingContext. The getOrCreate method is
used in two ways. When the streaming application is first run, the “create” aspect
takes effect and the createStreamingContext method is invoked, which creates a
new, “from-scratch” instance of the streamingContext that will read all the EventHub
Partitions from the beginning. However, if a checkpoint directory is found to exist
at the configured path, then the “get” aspect takes effect to resume reading from the
Event Hub partitions based on where the checkpoint indicates reading left off. The
createStreamingContext is ultimately where the streaming application is defined,
and we will return to it momentarily.

After we have a streamingContext instance in hand, we invoke the start method to
effectively run the long-running application. The logic that keeps the application alive
sits in the following lines with the call to awaitTerminationOrTimeout or awaitTermi
nation. Both methods respond to termination events caused by the user cancelling
the application or terminating due to an error. However, awaitTerminationOrTime
out will also terminate the application once the configured interval has elapsed.

The createStreamingContext method is where a new StreamingContext is created
from a SparkContext, and the batch interval is specified:

def createStreamingContext(inputOptions: ArgumentMap): StreamingContext = {

 val eventHubsParameters = Map[String, String](
 "eventhubs.namespace" -> inputOptions(
 Symbol(EventhubsArgumentKeys.EventhubsNamespace)).asInstanceOf[String],
 "eventhubs.name" -> inputOptions(
 Symbol(EventhubsArgumentKeys.EventhubsName)).asInstanceOf[String],

180 | Chapter 5: Real-Time Micro-Batch Processing in Azure

 "eventhubs.policyname" -> inputOptions(
 Symbol(EventhubsArgumentKeys.PolicyName)).asInstanceOf[String],
 "eventhubs.policykey" -> inputOptions(
 Symbol(EventhubsArgumentKeys.PolicyKey)).asInstanceOf[String],
 "eventhubs.consumergroup" -> inputOptions(
 Symbol(EventhubsArgumentKeys.ConsumerGroup)).asInstanceOf[String],
 "eventhubs.partition.count" -> inputOptions(
 Symbol(EventhubsArgumentKeys.PartitionCount))
 .asInstanceOf[Int].toString,
 "eventhubs.checkpoint.interval" -> inputOptions(
 Symbol(EventhubsArgumentKeys.BatchIntervalInSeconds))
 .asInstanceOf[Int].toString,
 "eventhubs.checkpoint.dir" -> inputOptions(
 Symbol(EventhubsArgumentKeys.CheckpointDirectory)).asInstanceOf[String]
)

 val sparkConfiguration = new SparkConf().setAppName(
 this.getClass.getSimpleName)

 sparkConfiguration
 .set("spark.streaming.receiver.writeAheadLog.enable", "true")
 sparkConfiguration
 .set("spark.streaming.driver.writeAheadLog.closeFileAfterWrite", "true")
 sparkConfiguration
 .set("spark.streaming.receiver.writeAheadLog.closeFileAfterWrite", "true")
 sparkConfiguration
 .set("spark.streaming.stopGracefullyOnShutdown", "true")

 val sparkContext = new SparkContext(sparkConfiguration)

 val streamingContext = new StreamingContext(sparkContext,
 Seconds(inputOptions(
 Symbol(EventhubsArgumentKeys.BatchIntervalInSeconds)).asInstanceOf[Int]))
 streamingContext.checkpoint(inputOptions(
 Symbol(EventhubsArgumentKeys.CheckpointDirectory)).asInstanceOf[String])

 val eventHubsStream = EventHubsUtils.createUnionStream(streamingContext,
 eventHubsParameters)

 val eventHubsWindowedStream = eventHubsStream
 .window(Seconds(inputOptions(
 Symbol(EventhubsArgumentKeys.BatchIntervalInSeconds)).asInstanceOf[Int]))

 defineComputations(streamingContext, eventHubsWindowedStream, inputOptions)

 streamingContext

}

We begin by creating a Map that loads in all of the configuration values from the com‐
mand line. After that, we create an instance of SparkConf that allows us to set the
name of the long-running application that will appear in Spark’s monitoring UIs.

Micro-Batch Processing in Azure | 181

The next four lines control the reliability and restartability of the receiver by config‐
uring the write ahead log (we won’t cover these settings in detail here).

Then we get to the constructor of the SparkContext, which takes in our sparkConfi
guration object and provides us the baseline settings we need to reach the Spark
cluster.

This SparkContext instance is used to create a new StreamingContext instance. As a
part of the call to the StreamingContext constructor, we provide the all-important
batch interval. We invoke the checkpoint method on the StreamingContext instance
to configure the checkpoint directory that it will use.

We create our input DStream, assigned to the variable eventHubsStream, by using the
createUnionStream method of EventHubUtils, which is a library provided by
Microsoft to simplify the process.

With our input DStream ready, we can overlay tumbling or sliding windows that
define the set of batches to be used in each computation. In our example, and to illus‐
trate the point while keeping it simple, we create a sliding window with the same
duration as the batch size, meaning that each window effectively contains one batch
of RDDs.

In the penultimate line, we invoke the defineComputations method, which we use to
declare our transformations and output operations. In the last line, we return the
constructed StreamingContext.

Let’s look in more detail at how we actually provide the logic for the streaming appli‐
cation, by way of our defineComputations method:

def defineComputations(streamingContext : StreamingContext,
 windowedStream : DStream[Array[Byte]],
 inputOptions: ArgumentMap) = {

 // Simulate detecting an alert condition
 windowedStream.map(x => EventContent(new String(x)))
 .foreachRDD { rdd =>
 rdd.foreachPartition { partition =>
 //...Create/open connection to destination...

 partition.foreach {record =>
 // examine alert status
 val json = parse(record.EventDetails)
 val dataPoint = json.extract[TempDataPoint]

 if (dataPoint.temp > maxAlertTemp)
 {
 println(s"=== reading ABOVE bounds.
 DeviceId: ${dataPoint.deviceId}, Temp: ${dataPoint.temp} ===")
 //...push alert out ...

182 | Chapter 5: Real-Time Micro-Batch Processing in Azure

 }
 else if (dataPoint.temp < minAlertTemp)
 {
 println(s"=== reading BELOW bounds.
 DeviceId: ${dataPoint.deviceId}, Temp: ${dataPoint.temp} ===")
 //...push alert out ...
 }
 }
 //...Close connection ...
 }
 }

}

We begin by using the map operation to convert each record in the stream into an
instance of EventContent (which is a simple type that contains a property called Even
tDetails that represents the record as a string).

In the nested steps that follow, we set up a series of loops that ultimately allows us to
examine the temperature reported in each record, and emit an alert if the value is out
of bounds. The pattern we take—first iterating over each RDD (the DStream.fore
achRDD transformation), followed by iterating over each partition within each RDD
(rdd.foreachPartition), and ending in processing each record (partition.fore
ach)—has a specific purpose. If you are going to emit your alerts to an external sys‐
tem, such as a SQL database or alerting service where you need to open up a
connection before sending data, then you likely want to minimize the overhead of
opening the connection repeatedly. We accomplish this by opening the connection
only once per partition and using that open connection for transmitting details about
any records that the partition contains.

Within the innermost foreach, we deserialize the string payload of the record (now
contained in EventDetails) using the Lift library. We invoke Lift’s parse method to
create a JValue object, and on that object use the extract method to retrieve the
deserialized record value as an instance of TempDataPoint, which has the following
case definition:

case class TempDataPoint(temp: Double,
 createDate : java.util.Date,
 deviceId : String)

With an instance of our record as a TempDataPoint in hand, we can examine the temp
property to see if it is out of bounds and react accordingly.

Running the Spark Streaming application locally
Assuming you have downloaded Spark and unzipped it on your local machine, you
can run a Spark Streaming application in local mode on your machine to verify it
works before deploying it to a cluster. You would implement the aforementioned

Micro-Batch Processing in Azure | 183

application in Scala as shown earlier and then compile it into a JAR file. Then, from
the bash shell or command line you run spark-submit, providing all the settings
needed by your application as command-line switches, to launch the application
locally.

Let’s look at the steps required to run our EventHubsEmitAlerts application locally.
First things first: within IntelliJ IDEA, select Build→Make the Project. This should
provide you a JAR file located underneath out\artifacts\spark-streaming-data-
persistence-examples.

Copy this JAR into the root directory of your Spark installation. Using bash or the
command prompt, navigate to your Spark installation. The following command illus‐
trates, using bash syntax, how to invoke spark-submit to run this streaming applica‐
tion (be sure to remove the line breaks and substitute in the values for your Event
Hub instance):

./bin/spark-submit --master local[*]
--class net.solliance.spark.streaming.examples.workloads.EventhubsEmitAlerts
spark-streaming-data-persistence-examples.jar
--eventhubs-namespace 'blueyonderairports-ns'
--eventhubs-name 'blueyonderairports'
--policy-name 'receivePermissions'
--policy-key 'ZRapZ4N8GI9tgkOyO/0TLlj/ZFSX4f8sOAMjj/X4Fh8='
--consumer-group '$default'
--partition-count 4
--batch-interval-in-seconds 2
--checkpoint-directory './eventCheckpoints'
--event-count-folder 'eventCount/data'
--job-timeout-in-minutes 5

The syntax --master local[*] enables us to run Spark locally using all available
cores. The remainder of the settings should be pretty self-explanatory at this point.

When the application runs, you will see an eventCheckpoints directory created in the
root of your Spark installation directory, which will be used in the case when you ter‐
minate the application and later submit again. If you run the SimpleSensorConsole
application (the application included with this book’s source code to generate sample
telemetry) and use the option to transmit telemetry to Event Hub, you will eventually
see output like Figure 5-3 in the bash shell.

Figure 5-3. Sample output showing simulated alerts from the streaming application.

184 | Chapter 5: Real-Time Micro-Batch Processing in Azure

While you have the streaming application running, you can navigate to Spark’s Web
UI (located by default at http://localhost:4040/) to view the status of the application.
Once your streaming application has started, you should see a Streaming tab appear
as shown in Figure 5-4.

Figure 5-4. The Streaming tab that appears when Spark is running streaming applica‐
tions.

This UI provides you with graphical representations of your streaming application’s
performance (as well as insights into possible causes affecting performance), its active
batches, and its completed batches (Figure 5-5).

Figure 5-5. Example of the statistics displayed for a running streaming application in the
Spark Web UI.

Now that you have verified your streaming application runs locally, let’s turn our
attention to running it on HDInsight.

Micro-Batch Processing in Azure | 185

Provisioning the Spark Streaming application on an HDInsight cluster
Before you can run your streaming application on an HDInsight cluster, you will
need to provision one. The following steps walk you through the process.

Spark on HDInsight is supported only with Linux-based clusters. To provision a min‐
imal HDInsight cluster with Spark, follow these steps:

1. Log in to the Azure Portal.
2. Select New→Intelligence + Analytics→HDInsight.
3. On the New HDInsight blade, provide a unique name for your cluster.
4. Choose your Azure subscription.
5. Select “Cluster configuration.”
6. On the “Cluster type configuration” blade, set the cluster type to Spark, operating

system to Linux, version to Spark 1.6.1, and cluster tier to Standard. Click Select.
7. Click “credentials.”
8. Set the admin login username and password, then the SSH username and pass‐

word, and click Select. See Figure 5-6.

Figure 5-6. Configuring the cluster security.

186 | Chapter 5: Real-Time Micro-Batch Processing in Azure

9. Click Data Source.
10. Select an existing Azure Storage account or create a new one as desired.
11. Modify the container name as desired (Figure 5-7). This container name will act

as the root folder for your HDInsight cluster.

Figure 5-7. Configuring cluster storage.

12. Choose the location nearest you.
13. Click Select.
14. Click Pricing.
15. Set the number of worker nodes to 4 (you do not need more to run the sample),

and adjust the worker node size and head node size as desired (any of the smaller
available options will work). See Figure 5-8.

Figure 5-8. Configure cluster mode sizes.

16. Click Select on the pricing blade.
17. Click Resource Group and select an existing one or create a new resource group

as desired. You should now have all the settings specified (see Figure 5-9).

Micro-Batch Processing in Azure | 187

Figure 5-9. Cluster configuration overview.

18. Click Create to begin creating the HDInsight cluster. It will take about 25 minutes
to complete. When it’s ready, continue with the next section to run the streaming
application.

Running the Spark Streaming application on HDInsight
So how do you run your application on a Spark cluster? Taking the aforementioned
application in Scala you upload its resultant JAR file to the Azure Blob Storage con‐
tainer associated with your HDInsight cluster. You launch the application using the
Livy REST API’s submit batch operation. The submit batch operation is a POST oper‐
ation that expects a JSON document in the body that identifies the application to run
and contains all the settings needed by your application (it requires your cluster’s
admin username and password in the authorization header, in case you were wonder‐
ing about security).

Let’s examine these steps in more detail. First, copy the JAR for your application up to
the container in Azure Blob Storage that is associated with your HDInsight cluster.

188 | Chapter 5: Real-Time Micro-Batch Processing in Azure

You can use your Azure Storage Explorer tool of choice, or if you like a bash
approach you can take the following two steps.

First, upload your JAR file to the HDInsight head node using SCP:

scp ./spark-streaming-data-persistence-examples.jar
<username>@<yourclustername>-ssh.azurehdinsight.net:.

Second, SSH into the head node and copy the JAR file from local storage on the head
node to HDFS (which means it will appear in Azure Blob Storage):

hdfs dfs -copyFromLocal -f
./spark-streaming-data-persistence-examples.jar /example/jars/

Now you are ready to run your streaming application. To do this, you should use the
Livy API. You can use any tool that can execute REST requests. I tend to prefer the
Chrome application Postman for this.

Launching a new job with Livy requires you to perform a POST against the /livy/
batches endpoint on your HDInsight cluster (this endpoint is automatically exposed
to the Internet). So, for example, you would construct a POST against a URL of the
format https://<yourclustername>.azurehdinsight.net/livy/batches.

You need to configure an authorization header, where the username is the name of
administrative user you provided when provisioning the cluster and the password is
the password you provided to the same. In Postman, this looks as shown in
Figure 5-10.

Figure 5-10. Configuring authorization for submitting a new streaming application via
Livy.

Micro-Batch Processing in Azure | 189

https://www.getpostman.com/

Then you will need to provide a text file for the body that contains all the settings you
would have previously provided to spark-submit on the command line, plus a few
other Spark-specific settings that define the number of executors, number of cores,
and amount of memory used to run the application. Here is the template (be sure to
substitute in your own values):

{ "file":"wasbs:///example/jars/spark-streaming-data-persistence-examples.jar",
"className":"net.solliance.spark.streaming.examples.workloads.EventhubsEventCount",
"args":[
 "--eventhubs-namespace", "blueyonderairports-ns",
 "--eventhubs-name", "blueyonderairports",
 "--policy-name", "receivePermissions",
 "--policy-key", "8XzdjasMdApl7caNk8hQn2RPJNsSxkmCVrPKvjytcHo=",
 "--consumer-group", "$default",
 "--partition-count", 4,
 "--batch-interval-in-seconds", 2,
 "--checkpoint-directory",
 "/EventCheckpoint", "--event-count-folder",
 "/EventCount/EventCount10"
],
"numExecutors":8,
"executorMemory":"1G", "executorCores":1, "driverMemory":"2G" }

Using Postman, use this file as the binary body for the post (see Figure 5-11).

Figure 5-11. Configuring the body of the POST to include the settings file within
Postman.

Finally, click Send to schedule the execution of your application. You should see out‐
put similar to the following in response. Take note of the id; you can use this value
later to check on the status of your application or to terminate it using Livy
(Figure 5-12).

You can check the status of all applications (referred to as batches in Livy) by sending
a GET request of the form https://sol-spark161.azurehdinsight.net/livy/batches/.

190 | Chapter 5: Real-Time Micro-Batch Processing in Azure

Figure 5-12. Response for a newly submitted application.

Alternately, you can get the status for a single application by using its batch id in a
URL of the form https://sol-spark161.azurehdinsight.net/livy/batches/<id>.

For example, the previously started batch is queried in Postman as shown in
Figure 5-13.

Figure 5-13. Examining the status of a particular streaming application using Livy.

Micro-Batch Processing in Azure | 191

If you want to terminate the application, you can send a DELETE request to the same
URL as that used to inspect a particular batch’s details (Figure 5-14).

Figure 5-14. Terminating a streaming application using Livy.

With these steps in mind, you are now fully equipped to build, deploy, and manage
your Spark Streaming application on HDInsight.

Storm on HDInsight
Storm on HDInsight provides two approaches for micro-batch processing. The first is
the Trident framework and the second is by using tick tuples. We cover both in the
sections that follow.

Storm with Trident
Trident provides an alternative approach to implementing Storm topologies that adds
exactly-once processing and transactional support to persisting data in a data store.

The underlying stream is also different. Unlike for classic Storm topologies, where the
stream consists of a unbounded collection of tuples (that are processed in a tuple-at-
a-time fashion), Trident streams consist of batches of tuples (whose size is controlled
by the spout), where this processing happens in a micro-batch fashion.

Syntactically, if you are familiar with LINQ to objects from .NET, the approach Tri‐
dent takes to defining a topology should be familiar. Instead of explicitly building a
topology adding spouts and bolts, you chain together operations on a stream that can
process, filter, aggregate, and store state for micro-batches of tuples. The biggest
change in defining a topology is that you no longer define bolts; instead, you build
much simpler logic in the form of:

Functions
Take a set of fields as input, apply the function you define, and output new fields
that are appended to the original input tuple.

192 | Chapter 5: Real-Time Micro-Batch Processing in Azure

Filters
Take in a tuple and apply a function you define that decides whether a tuple
should continue to flow downstream or not.

Aggregates
Apply an aggregation function (either a built-in one like count or one you
define) against the micro-batch or globally across the entire stream of micro-
batches, where the output tuple(s) replace the input in the stream.

Repartitioning
Repartition the tuples contained within each batch, ranging from the shuffle to
evenly redistribute tuples across all partitions, to operations that let you control
how the repartitioning happens programmatically.

Stream merges and joins
Enable you to combine multiple, separate streams into a single stream.

Trident topologies are compiled into an optimized, classic Storm topology that uses
spouts, but the bolts are generated automatically based on the operations present in
your Trident topology.

Trident Window Computations
At the time of writing this chapter, the current version of Storm supported on HDIn‐
sight is 0.10.0, which only begins to hint at the true power that Trident can unlock.
Version 1.0.0 of Storm adds the much-needed support for built-in windowing seman‐
tics. With this capability, you can add processing such as sliding or tumbling windows
that look at batches of tuples where the batch size is controlled either by a count of
tuples or by an interval of time.

By way of comparison, let’s build the AlertTopology using Trident.

You can download the Trident sample from http://bit.ly/2bzd62J.

The project is structured in the same way as the classic Storm topology shown previ‐
ously, except instead of bolts we implement much simpler functions, and the way in
which we define the topology takes on a different syntax.

Open AlertTopology.java. The only change in this file from the classic Storm topology
can be seen in the buildTopology method:

protected StormTopology buildTopology() {

 TridentTopology topology = new TridentTopology();

 OpaqueTridentEventHubSpout spout =
 new OpaqueTridentEventHubSpout(spoutConfig);

Micro-Batch Processing in Azure | 193

http://bit.ly/2bzd62J

 topology.newStream("stream-" + spoutConfig.getTopologyName(), spout)
 .each(new Fields("message"), new ParseTelemetry(),
 new Fields("temp", "createDate", "deviceId"))
 .each(new Fields("message", "temp", "createDate", "deviceId"),
 new EmitAlert(65, 68), new Fields("reason"))
 .parallelismHint(spoutConfig.getPartitionCount());

 return topology.build();
}

Notice that in this case we create an instance of TridentTopology and then a Trident-
specific instance of the EventHubSpout. The line starting with topology.newStream is
where it gets interesting. The call to newStream does exactly as it describes, creating a
new, named stream using the OpaqueTridentEventHubSpout.

After that we chain on a call to the each operation. It takes as its first parameter, via
the Fields constructor, a comma-separated list of the fields coming from the spout
that we want to process by the function, which is provided in the second parameter.
In other words, the first parameter to each lets you project only the fields you want to
pass to the function. The third parameter lists the additional fields the ParseTeleme
try function will tack on to the tuple when it returns its result. So for the first line,
the input tuple just has the "message" field, and that is the only field that will be
passed as an input to ParseTelemetry. When ParseTelemetry has completed and it
has emitted a tuple, the tuple will be emitted with the fields "message", "temp", "crea
teDate", and "deviceId".

Let’s look at the complete implementation of the ParseTelemetry function:

public class ParseTelemetry extends BaseFunction {

 public void execute(TridentTuple tuple, TridentCollector collector) {

 String value = tuple.getString(0);

 ObjectMapper mapper = new ObjectMapper();
 try {
 JsonNode telemetryObj = mapper.readTree(value);

 if (telemetryObj.has("temp")) //assume must be a temperature reading
 {
 Values values = new Values(
 telemetryObj.get("temp").asDouble(),
 telemetryObj.get("createDate").asText(),
 telemetryObj.get("deviceId").asText()
);

 collector.emit(values);
 }
 } catch (IOException e) {

194 | Chapter 5: Real-Time Micro-Batch Processing in Azure

 System.out.println(e.getMessage());
 }
 }
}

Notice how much simpler and more focused this code is than the equivalent bolt. To
declare a function, we create a class that extends BaseFunction and then implement
the execute method. If the function will emit a tuple as a result of its execution, it
uses the TridentCollector provided and calls the emit method. If it does not emit a
tuple, then effectively the input tuple is removed from any downstream processing.

Returning to AlertTopology, the next call to each applies the EmitAlert function to
each tuple in the stream:

topology.newStream("stream-" + spoutConfig.getTopologyName(), spout)
 .each(new Fields("message"), new ParseTelemetry(), new Fields("temp",
 "createDate", "deviceId"))
 .each(new Fields("message", "temp", "createDate", "deviceId"),
 new EmitAlert(65, 68), new Fields("reason"))
 .parallelismHint(spoutConfig.getPartitionCount());

The implementation of EmitAlert is equally straightforward, with the notable differ‐
ence that in this case the function has a constructor we use to pass in the minimum
and maximum temperatures used for alerting:

public class EmitAlert extends BaseFunction {

 protected double minAlertTemp;
 protected double maxAlertTemp;

 public EmitAlert(double minTemp, double maxTemp) {
 minAlertTemp = minTemp;
 maxAlertTemp = maxTemp;
 }

 public void execute(TridentTuple tuple, TridentCollector collector) {

 double tempReading = tuple.getDouble(1);
 String createDate = tuple.getString(2);
 String deviceId = tuple.getString(3);

 if (tempReading > maxAlertTemp)
 {
 collector.emit(new Values (
 "reading above bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting above bounds: " + tempReading);
 } else if (tempReading < minAlertTemp)
 {

Micro-Batch Processing in Azure | 195

 collector.emit(new Values (
 "reading below bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting below bounds: " + tempReading);
 }
 }
}

Returning to AlertTopology one last time, the last call we chain to the topology is
parallelismHint. The effect of this call is the same as was demonstrated for the bolts
in the classic Storm topology. It will ensure there is one instance of the spout, the
dynamically generated bolt hosting the ParseTelemetry function, and the instance of
the bolt hosting the EmitAlert function for each partition in Event Hubs.

topology.newStream("stream-" + spoutConfig.getTopologyName(), spout)
 .each(new Fields("message"), new ParseTelemetry(), new Fields("temp",
 "createDate", "deviceId"))
 .each(new Fields("message", "temp", "createDate", "deviceId"),
 new EmitAlert(65, 68), new Fields("reason"))
 .parallelismHint(spoutConfig.getPartitionCount());

return topology.build();

The final line returns the StormTopology instance that we execute and run in exactly
the same way as the classic Storm version. It is worth noting that the calls to each
make it appear like we are processing the stream in a tuple-at-a-time fashion, but
under the covers the OpaqueEventHubSpout is emitting a batch of tuples at a time
(usually with several hundred tuples to a batch), and it is these batches that flow
down the stream.

Batch Operations
Trident contains various operations, such as aggregates, that can perform their work
on the batch (selecting the minimum value from the batch, counting the number of
tuples in a batch, etc).

For a more complete exploration of these operations in the Trident API, see the docu‐
mentation.

Storm with tick tuples
Another approach to implementing micro-batch processing with Storm centers on
the use of a “tick” tuple to define the batch. The idea is that the topology will, on a
periodic basis you configure, emit a special kind of tuple called a tick tuple. In your

196 | Chapter 5: Real-Time Micro-Batch Processing in Azure

https://storm.apache.org/releases/0.10.0/Trident-API-Overview.html
https://storm.apache.org/releases/0.10.0/Trident-API-Overview.html

bolt code, you can identify this tuple as being different from the other tuples because
it comes from a different stream. This enables you to build bolts that buffer up tuples,
only to release them or an aggregation tuple calculated from them, when the tick
tuple arrives. In other words, you can create a micro-batch that is defined by the win‐
dow of time between tick tuples. Prior to Storm 1.0.0, this was a common basic pat‐
tern that was implemented in order to perform time-window-based calculations
(such as counting the number of alert tuples over the last 15 minutes).

To examine how we might extend the AlertTopology (the classic Storm topology),
take a look at the TickTuples sample from http://bit.ly/2bzcV7q.

In the sample, we want to count how many alert tuples were emitted by each bolt
within a 10-second window. Using a tick tuple amounts to two steps. First, you need
to set the topology configuration so that it emits a tick tuple on the interval you con‐
figure. Second, you build your bolts to check if the input tuple comes from the special
tick stream, and if so perform your micro-batch calculation (if not, your bolt pro‐
cesses the tuple as it normally would).

Let’s begin with the configuration. This can be seen in AlertTopology, where the only
change needed is within the submitTopology method, where we add a configuration
setting for the Config.TOPOLOGY_TICK_TUPLE_FREQ_SEQS and provide a value of 10.
When submitted with our topology, this will cause a tick tuple to be emitted every 10
seconds.

protected void submitTopology(String[] args, StormTopology topology)
throws Exception {
 Config config = new Config();
 config.setDebug(false);

 config.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 10);

 if (args != null && args.length > 0) {
 StormSubmitter.submitTopology(args[0], config, topology);
 } else {
 config.setMaxTaskParallelism(2);

 LocalCluster localCluster = new LocalCluster();
 localCluster.submitTopology("test", config, topology);
 Thread.sleep(600000);
 localCluster.shutdown();
 }
}

Then we need to alter our bolts to be aware of this tick tuple. In the case of ParseTele
metry we just want to log that a tick tuple was received:

public void execute(Tuple input, BasicOutputCollector collector) {

 if (input.getSourceComponent()

Micro-Batch Processing in Azure | 197

http://bit.ly/2bzcV7q

 .equals(Constants.SYSTEM_COMPONENT_ID) //Handle Tick Tuple
 && input.getSourceStreamId().equals(Constants.SYSTEM_TICK_STREAM_ID)) {
 System.out.println("ParseTelemetry Tick tuple received.");
 }
 else { //Handle data tuple

 String value = input.getString(0);

 ObjectMapper mapper = new ObjectMapper();
 try {
 JsonNode telemetryObj = mapper.readTree(value);

 if (telemetryObj.has("temp")) //assume must be a temperature reading
 {
 Values values = new Values(
 telemetryObj.get("temp").asDouble(),
 telemetryObj.get("createDate").asText(),
 telemetryObj.get("deviceId").asText()
);

 collector.emit(values);
 }
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }
}

In the implementation of execute, observe that we check that the source component
is a system component and the ID of the source stream is the system tick stream. If
both are true, then we know the tuple is a tick tuple.

Next, let’s look at how we perform the counting of alert tuples within the implemen‐
tation of the EmitAlerts bolt:

protected int alertCounter;

public void execute(Tuple input, BasicOutputCollector collector) {

 if (input.getSourceComponent()
 .equals(Constants.SYSTEM_COMPONENT_ID) //Handle Tick Tuple
 && input.getSourceStreamId().equals(Constants.SYSTEM_TICK_STREAM_ID)) {
 System.out.println("=== EmitAlert: " + alertCounter
 + " alerts emitted in tick window. +++");
 alertCounter = 0;
 }
 else { //Handle data tuple
 double tempReading = input.getDouble(0);
 String createDate = input.getString(1);
 String deviceId = input.getString(2);

 if (tempReading > maxAlertTemp) {

198 | Chapter 5: Real-Time Micro-Batch Processing in Azure

 collector.emit(new Values(
 "reading above bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting above bounds: " + tempReading);
 alertCounter++;
 } else if (tempReading < minAlertTemp) {
 collector.emit(new Values(
 "reading below bounds",
 tempReading,
 createDate,
 deviceId
));
 System.out.println("Emitting below bounds: " + tempReading);
 alertCounter++;
 }
 }
}

We create a protected member field, alertCounter, in the class to store the count that
is incremented within the tick window. Each time we emit an alert tuple, we incre‐
ment alertCounter. Each time we receive a tick tuple, we print out the current value
of alertCounter and then reset the counter back to zero.

Azure Stream Analytics
Azure Stream Analytics is a fully managed, real-time event processing engine. This
makes it very different from Storm and Spark on HDInsight from the perspective that
there are no clusters you have to provision or manage—you provision a Stream Ana‐
lytics job and start it. The micro-batch processing performed by a Stream Analytics
job is described through a combination of configuration (by specifying the input
source of the streaming data and the output sink for the results of your job) and any
data transformation is expressed using declarative SQL. All of these steps are per‐
formed within the Azure Portal. Beyond a browser, there is no code and no IDE or
specialized authorizing environment required.

Without having any infrastructure, Stream Analytics is capable of handling high
event throughput from 1 MB/s on the low end up to 1 GB/s on the high end. The
extreme levels of throughput in this range are achieved by a combination of using the
partitions provided by Event Hubs, the manner in which data is partitioned in the
SQL queries, and the way in which data is partitioned on output. The service is built
following a pay-as-you-go model based on streaming unit (SU) usage and the amount
of data processed by the system; as you need more capacity you can add extra SUs,
which each provide 1 MB/s of additional capacity.

Micro-Batch Processing in Azure | 199

Stream Analytics is primarily aimed at processing input streams of data from Event
Hubs, and thus its inputs connect directly to Event Hubs and IoT Hubs for stream
ingestion. Stream Analytics can also connect directly to Azure Blob Storage to ingest
historical data. The inputs support data formatted in Avro, UTF-8-encoded CSV
(alternate field delimiters supported are semicolon, space, tab, or pipe), or UTF-8-
encoded JSON.

CSV Handling

CSVs ingested from Blob Storage must have a row header, where
each header label is unique. Additionally, files read from Blob Stor‐
age are processed only once, so any updates to a previously pro‐
cessed blob will not be processed by a Stream Analytics job.

In addition to streaming input data, Stream Analytics jobs can pull slowly changing
reference data from Azure Blob Storage. This reference data can be used to enrich the
streaming input data—for example, to look up device metadata from device IDs—and
is treated like any other event stream within the data transformations. Reference data
supports the same data formats as the streaming inputs.

Results can be written from Stream Analytics to Azure Blob Storage or Table Storage,
SQL Database, Data Lake Store, DocumentDB, Event Hubs, Service Bus Topics/
Queues, and Power BI.

The data transformations are expressed in a query language that is largely a subset of
T-SQL with added language extensions for expressing temporal semantics using win‐
dowing.

Examples of Stream Analytics SQL

For examples of typical query patterns, see the Microsoft Azure
documentation.

A query definition can consist of a single step (e.g., SELECT * FROM eventhub), or it
can contain multiple steps (either as multiple independent queries or as a sequence of
queries and subqueries defined using the WITH keyword). The latter approach yields
two benefits.

On the one hand, multiple independent queries can be used to describe multiple
independent transformations within the same Stream Analytics job. For example, you
could have one query step that reads all data from an Event Hub and writes it out to
Blob Storage to support cold path analytics, and within the same job have another
query step that reads the same data from the Event Hub but perhaps filters it for alert

200 | Chapter 5: Real-Time Micro-Batch Processing in Azure

http://bit.ly/2mR06cB
http://bit.ly/2mR06cB

conditions and writes it out to a SQL database. You can have up to 60 inputs and up
to 60 outputs per job.

On the other hand, multiple related queries and subqueries are written in a single job,
with data partitioning in mind, to maximize the parallel processing that occurs on the
data stream.

Partitioning Streaming Data

Detailed coverage of partitioning streaming data is beyond the
scope of this book, but the approach is summarized nicely in the
Microsoft Azure documentation.

When a job input, query, and output have all been specified, you can start the Stream
Analytics job. When starting a job, you can specify a Start Output value that dictates
the point in time at which the job begins to process data from the source. The default
setting for a new job is Job Start Time, which means any data received after the job’s
start time will immediately be processed. As Event Hubs and Blob Storage may con‐
tain data that predates the Job Start Time, you can also specify a Custom Time in the
past to process this historical data, or a time in the future to delay the processing until
some point in the future. Jobs can be stopped and restarted. When a previously stop‐
ped job is restarted, the Last Stopped Time becomes an option that resumes the job
from where the processing left off when it was stopped.

Comparison of Stream Analytics Versus Storm on HDInsight

Given that you’ve now read about both Stream Analytics and
Storm, you can cement your understanding of the differences
between the two in the Microsoft Azure documentation.

With this background in mind, let’s take a look at what it takes to provide the same
alert processing we have shown for Spark and Storm using Stream Analytics.

Provisioning a Stream Analytics job
Before you can configure your job inputs, outputs, and query definition, you need to
provision a new Stream Analytics job. Follow these steps:

1. From the Azure Portal, select New.
2. Select Intelligence + Analytics in the blade that appears.
3. Select “Stream Analytics job” (Figure 5-15).

Micro-Batch Processing in Azure | 201

http://bit.ly/2o5oTe7
http://bit.ly/2nJYy9v

Figure 5-15. Selecting a Stream Analytics job in the Azure Portal

4. In the blade that appears, provide a name for the job, then choose the subscrip‐
tion in which to deploy it, the resource group, and the location (it should be in
the same region as your input Event Hub), as shown in Figure 5-16.

Figure 5-16. Configuring a new Stream Analytics job.

5. Click Create to provision the job.
6. Once the job is created, open it in the Azure Portal.
7. On the blade for the Stream Analytics job, underneath Job Topology, click Inputs

(Figure 5-17).

Figure 5-17. The inputs tile on the Stream Analytics Job blade.

8. In the blade that appears, click Add.

202 | Chapter 5: Real-Time Micro-Batch Processing in Azure

9. On the “New input” blade, provide a name for your new input (e.g., eventhub).
This is the label you will need to use in your SQL query in the context of the FROM
clause.

10. Set the Source Type to “Data stream” and the Source to “Event hub.”
11. Use the “Subscription,” “Service bus namespace,” “Event hub name,” and “Event

hub policy name” to select the Event Hub you have created for the sample solu‐
tion, so it can receive data from the SimpleSensorConsole device simulator
application.

12. For the telemetry created by the simulator, you should leave the “Event serializa‐
tion format” as JSON and the “Encoding” as UTF-8 (since the simulator sends
the telemetry payload as UTF-8-encoded JSON). See Figure 5-18.

Figure 5-18. Configuring an Event Hub source for a Stream Analytics job.

13. Select Create to add the input.
14. Back on the blade for the Stream Analytics job, under Job Topology, select Out‐

puts (Figure 5-19).

Micro-Batch Processing in Azure | 203

Figure 5-19. The outputs tile on the Stream Analytics Job blade in the Azure Portal.

15. On the Outputs blade, select Add.
16. In this case, we will output alert telemetry to Azure Blob Storage. To do so pro‐

vide an alias (e.g., blobs).
17. Change the Sink drop-down to “Blob storage.”
18. Use the “Subscription” and “Storage account” drop-downs to select the storage

account to which you want to write the output files.
19. For the container, select an existing container.
20. For the Path pattern, specify a subfolder path that will be used beneath the con‐

tainer. For our purposes, it should read simply {date}.
21. Using the “Date format” drop-down that is enabled, select “YYYY/MM/DD.”

This will effectively write the blob data under the path <containerName>/
YYYY/MM/DD/<filename>.

22. Leave “Event serialization” as JSON, “Encoding” as UTF-8, and “Format” as “Line
separated” (so that each line contains a complete JSON document). See
Figure 5-20.

204 | Chapter 5: Real-Time Micro-Batch Processing in Azure

Figure 5-20. Configuring a blob sink for a Stream Analytics job.

23. Select Create to add the output.
24. Back on the blade for the Stream Analytics job, under Job Topology, select Query.
25. On the query blade, within the query text area, add the following query:

SELECT *
INTO blobs
FROM eventhub
WHERE temp < 65.0 OR temp > 68.0

26. Select Save.
27. Close the query blade.
28. Back on the blade for the Stream Analytics job, select Start.
29. Leave the “Job output start time set” to Now, and select Start (Figure 5-21).

Micro-Batch Processing in Azure | 205

Figure 5-21. Setting the Job output start time for a Stream Analytics job.

30. Run the SimpleSensorConsole (provided with this book’s sample files) and select
the Event Hub option to prime the Event Hub with some telemetry.

31. The job will take a few minutes to start, after which you should check the con‐
tainer in Blob Storage you configured as the output for new files (which you can
do via the portal by selecting the Storage account and selecting Blobs). See
Figure 5-22.

Figure 5-22. Viewing the listing of blobs emitted by the Stream Analytics job.

As you can see from the preceding steps, the only coding you perform to implement
the logic for the stream processing is the simple SQL query; the rest is configuration.

Summary
In this chapter we dug deeper into how consumers from Event Hubs can be imple‐
mented to process events in a micro-batch fashion, using our alerting example as a
reference across multiple options. We looked at implementing processing applica‐
tions in Apache Spark using Spark Streaming coded in the Scala language. We intro‐
duced using Storm with Trident and with tick tuples to perform event processing,
implementing the solution in Java. We also covered using Azure Stream Analytics
jobs to implement stream processing by using a variant of SQL.

In the next chapter, we will increase our latency tolerance from seconds, as required
by stream processing, to minutes and even hours as we look at the options for build‐
ing batch processing applications.

206 | Chapter 5: Real-Time Micro-Batch Processing in Azure

CHAPTER 6

Batch Processing in Azure

In this chapter we explore the options for performing batch processing in Azure
(Figure 6-1). Just as we did for real-time processing (which aimed for subsecond pro‐
cessing), we will use a latency definition of batch processing. Think of batch process‐
ing as those queries or programs that take tens of minutes, hours, or even days to
complete.

Batch processing is used in a variety of scenarios, from the initial data munging
efforts to a more complete ETL (extract-transform-load) pipeline, to preparing data
for ultimate consumption over very large data sets or where the computation takes
significant time. In other words, batch processing is a step in your lambda architec‐
ture processing pipeline—one that either leads to further interactive exploration
(downstream analytics), provides the modeling-ready data for machine learning, or
lands the data in a data store optimized for analytics and visualization.

A concrete example of batch processing is transforming a large set of flat, unstruc‐
tured CSV files into a schematized (and structured format) that is ready for further
querying. Along with this, typically the format is converted from the raw formats
used for ingest (such as CSV) to binary formats that are more performant for query‐
ing because they store data in a columnar format, and often provide indexes and
inline statistics about the data contained.

An important concept you will see in action throughout the technologies highlighted
in this chapter is that of schema on read. The idea is that instead of having to already
have the data in a format where the schema is applied, you can apply the schema
while loading the data from disk. This enables scenarios like the CSV one just
described, because you can take the data in whatever format it arrives and overlay a
schema so that you can then work with that data.

207

Figure 6-1. In this chapter we focus on the components used for batch processing.

208 | Chapter 6: Batch Processing in Azure

Another important concept that is leveraged by almost all batch processing systems is
the notion of external and managed (or internal) tables. Here the idea centers on the
authority provided to the batch processing solution over the data. A managed table
provides schema on read over data that the processing solution “owns”—that is to say,
it controls the lifecycle of the data and it is the only system expected to be interacting
with the data. This is in contrast to external tables, whereby the underlying data is
expected to be shared between the batch processing solution and other systems, so
the former would not have any expectations of control over the lifecycle of the under‐
lying data.

To illustrate batch processing in action in this chapter, we will return to the Blue Yon‐
der Airlines scenario. For the purposes of this chapter, we’ll examine a input data set
consisting of CSV files representing flight (and flight delay) information for multiple
years’ worth of data. We will examine how we can apply schema to this data and for‐
mat it for subsequent querying, such as interactive analytics (which we cover in the
next chapter). The process we use for Blue Yonder could extend to include additional
processing and transformation of the data, but with the basics of internal and external
tables and schema on read under your belt you will be well equipped to approach
batch processing challenges in general.

Batch Processing with MapReduce on HDInsight
The MapReduce programming model is designed for creating applications to batch
process big data sets in parallel. At its core it splits large data sets and converts them
into collections of key/value pairs for processing. The first step of MapReduce, the
map, applies some function that takes data rows of keys and values as input and
returns a list of new key/value pairs as output. In other words, for an input key/value
pair, the output key can differ from the input key. Additionally, the output can have
multiple key/value pairs with the same key (hence the output is really viewed as a list
of key/value pairs).

map(key1,value) -> list<key2,value2>

The second and final step takes as input the list of key/value pairs produced from the
map step, processing for each key the list of associated values to generate a new list of
values.

reduce(key2, list<value2>) -> list<value3>

By ensuring that each MapReduce operation is independent of all other ongoing
MapReduce operations, you have a solution that enables the operations to be run in
parallel on different keys and lists of data. This parallel processing is one of the

Batch Processing with MapReduce on HDInsight | 209

important benefits of the MapReduce model that makes it useful for processing big
data sets.

Apache Hadoop MapReduce
Apache Hadoop MapReduce is an implementation of the MapReduce programming
model that provides an embarrassingly parallel map phase where the data is split into
subsets to be processed, followed by a reduce phase where the output of the map
phase is aggregated to yield the desired result. The term embarrassingly parallel is
used to indicate a pattern whereby each task performing the processing does so in
isolation from and with no communication with any of the other tasks processing the
data (the opposite pattern is one where each task communicates directly with every
other task as a part of its processing, such as is done in Message Passing Interface, or
MPI, based solutions).

A tenet of the MapReduce implementation is that given a cluster of nodes (e.g.,
servers), you can improve processing times by limiting the amount of time spent
moving data between compute nodes across the network. This process of moving the
data to the compute is called a shuffle. MapReduce takes the alternate approach of
moving the computation to the data whenever possible (i.e., running the code on the
same node that is storing the data), thereby eliminating the time-consuming shuffle.
The storage underpinning the compute is assumed to be a distributed filesystem,
which in most cases is HDFS.

You can think of Hadoop MapReduce as encompassing three components:

MapReduce API
The end-user API for programming the application.

MapReduce framework
The runtime implementation of map, sort, shuffle, merge, and reduce.

MapReduce system
The backend infrastructure running the user’s MapReduce application, managing
cluster resources, and scheduling the concurrent jobs.

The Apache Hadoop MapReduce system has two major components, each of which
runs as a process on a node: a master JobTracker and multiple per-node slave Task‐
Tracker (see Figure 6-2). The JobTracker does two things:

Resource management
Manage the TaskTrackers; track resource consumption and availability

Job lifecycle management
Schedule individual job tasks with the TaskTrackers, tracking their progress and
providing fault tolerance for transient failures

210 | Chapter 6: Batch Processing in Azure

The TaskTracker follows the instructions given to it by the JobTracker, which are
either to launch tasks or kill tasks. It also provides periodic task status back to the
JobTracker.

Figure 6-2. The relationship between the client that submits a MapReduce job, the com‐
pute nodes that run the Tracker processes (the JobTracker and subordinate TaskTrack‐
ers), and the tasks that are ultimately executed.

In Hadoop 1, clusters would run MapReduce with the responsibilities defined previ‐
ously and would rely on the HDFS for storage of source data, intermediate results
(i.e., the results of a map step), and the final output (i.e., the results of a reduce step).

Hadoop 2 introduced some very dramatic changes that addressed the particular limi‐
tations of MapReduce. These limitations centered on the poor performance that
resulted from always having to write intermediate results to disk, low cluster utiliza‐
tion that surfaced as a result of the rigid number of map and reduce “slots” that were
available in the cluster, the inability to describe a processing pipeline that was any‐
thing other than a map followed by a reduce, and in a broader sense, the lack of flexi‐
bility to leverage the cluster to do any other form of distributed processing that was
not a MapReduce workload.

The response to these limitations in Hadoop 2 is Apache YARN (Yet Another
Resource Manager), which provides both resource management and a distributed

Batch Processing with MapReduce on HDInsight | 211

application framework. YARN changes its perspective on the resources it manages
from managing MapReduce jobs (as was done in Hadoop 1) on the cluster to manag‐
ing more generic applications, where applications can be instances of MapReduce or
even newer workloads like Spark. YARN takes the approach of splitting up the two
responsibilities of the JobTracker. The resource management responsibilities become
the duties of a global ResourceManager, and the job lifecycle management responsi‐
bilities become the duties of a per-application ApplicationMaster (Figure 6-3).

Figure 6-3. In Hadoop 2.0, MapReduce is just an application that runs atop the YARN
managed cluster.

The ResourceManager manages the allocation of resources among all the applications
in the system. The Scheduler component of the ResourceManager doles out resources
in packages of defined CPU, memory, disk, and network capacities called resource
containers.

Each node runs a slave process called the NodeManager, which is responsible for
launching containers, monitoring container resource usage, and reporting resource
usage to the ResourceManager. Containers within each node support two forms of
processing: an ApplicationMaster or execution of the tasks required by the applica‐
tion. One ApplicationMaster is created per application instance. It has the responsi‐
bility of negotiating the resource containers from the Scheduler of the

212 | Chapter 6: Batch Processing in Azure

ResourceManager, and then tracking the status and monitoring the progress of the
allocated resource containers executing across the cluster.

The final major modification introduced in the move to YARN is that MapReduce
becomes simply a type of application (that implements just the MapReduce algo‐
rithm) that runs on the YARN-managed cluster.

In Azure, whenever you provision any type of HDInsight cluster, you are provision‐
ing YARN, and it is YARN the provides the underlying resource management for
Apache Hive, Pig, Spark, and Storm applications, to name a few.

Authoring MapReduce Programs

We will not cover directly authoring MapReduce programs in this
book. Instead, we will focus on applications like Hive whose output
is a MapReduce program, or non-MapReduce applications like
Spark, each of which run on the YARN cluster provided by HDIn‐
sight. If you are curious about directly programming and running
Java-based MapReduce jobs on HDInsight, see the Microsoft Azure
documentation.

Batch Processing with Hive on HDInsight
Apache Hive is a data warehouse system for Hadoop that enables data summariza‐
tion, querying, and analysis by using HiveQL (a query language similar to SQL). Hive
can be used to interactively explore your data or to create reusable batch processing
jobs. Hive provides support for familiar objects like databases, tables, views, user-
defined functions, and indexes that are typically found in relational databases. Hive
supports most of the data types you would expect (bigint, binary, boolean, char,
decimal, double, float, int, smallint, string, timestamp, and tinyint), but also
has specialized support for arrays, maps, and structs. The primary benefits of Hive
are that it allows you to project a structure on unstructured (or semi-
structured) data, providing you an interface to query data residing in HDFS without
having to write programs using MapReduce.

It is worth emphasizing the Hive is not database—it simply provides a mechanism to
project database structure on data you store in HDFS and then lets you query that
data using HiveQL. Unlike a typical database, Hive has no control over the structure
of the underlying storage; it can only apply schema to the data stored in response to
queries. In other words, it provides schema on read. If the underlying data does not
match the expected schema, Hive will try to work around errors so that the query can
execute. For example, if the schema expects numbers, but the stored fields are non-
numeric strings, then Hive will return null for those fields.

Batch Processing with Hive on HDInsight | 213

http://bit.ly/2mQENbc
http://bit.ly/2mQENbc

When you query Hive with HiveQL, your queries are implicitly converted into Map‐
Reduce or Tez (which we cover in greater detail in the next chapter), or Spark jobs.

Hive-on-Spark

The option of executing HiveQL queries via Spark jobs is called
Hive-on-Spark. Hive-on-Spark is in its early days and not yet avail‐
able in HDInsight. It is a part of Hive 2.x, so it will become an
option for HDInsight when HDInsight adds support for Hive 2.x.
As HDInsight is based on HortonWorks HDP, watch for Horton‐
Works to release HDP 2.5, which should include Hive 2.x, and a
release of HDI with HDP 2.5 should follow shortly thereafter.

Hive can be used to query against data stored as text files (e.g., CSV) as well as some
of the more specialized binary formats that have emerged over the years, including
sequence files (the original key/value format used by MapReduce) and the columnar
formats ORC, RCFile, and Parquet.

Internal and External Tables
As previously mentioned, Hive supports the concept of internal and external tables.
Hive uses internal (aka managed) and external tables to capture intent—that is, the
intended ownership of a table and its data. Internal tables imply Hive is expected to
have full ownership, whereas external tables imply Hive is sharing access to the data
with other applications that have access to the same instance of HDFS.

Internal tables have their data physically located in a location managed by Hive
itself. External tables are effectively references to data located at some path external to
Hive. The major difference between the two occurs when tables are created and when
they are dropped. An internal table, when created, copies the data files into Hive’s
managed location, and when the table is dropped Hive also deletes the data from
disk. An external table, when created, leaves the data at its source location and when
the table is dropped, Hive does not delete the underlying data, only the structure
metadata.

Partitioning Tables
Tables, both internal and external, can be horizontally partitioned (i.e., the table is
split into sets of rows).

Partitioning tables changes how Hive structures the data storage. Hive will now create
subdirectories reflecting the partitioning structure, where the folder name takes the
format: <fieldName>=<value>. In this approach, the fields used for partitioning can
be removed from the data files themselves and expressed only once in the path lead‐
ing up to the data files, which saves space.

214 | Chapter 6: Batch Processing in Azure

Table Reference

For a detailed guide on all the options for creating a partitioned
table, see the Apache Hive wiki.

Views
A view allows a query to be saved and treated like a table. It is a logical construct, as it
does not store data like a table. In other words, materialized views are not currently
supported by Hive.

View Reference

For a good reference on the syntax used for creating a view, see the
Apache Hive wiki.

Indexes
Hive has some limited indexing capabilities. There are no keys in the usual relational
database sense, and since Hive is generally in the business of overlaying structure
without modifying the storage format, applying the equivalent of primary (or clus‐
tered) indexes that change sort order of the data on disk is not an approach Hive sup‐
ports. That said, you can build a secondary index on columns to speed up some
operations. The index data for a table is stored in another table.

When you declare an index, you specify an index handler that implements the
desired indexing strategy. The two most common ones are BITMAP (which is opti‐
mized for columns that have few distinct values, such as gender) and COMPACT
(which is optimized for queries performing point lookups). Indexing of external
tables and views is supported in addition to indexing internal tables.

It is important to note that indexes have to be manually rebuilt when the underlying
table data changes.

Indexes are supported only when MapReduce is used as the engine for Hive. When
Tez is used, index builds will fail. You should instead use ORC storage (which
includes inlined indexes) and partitions.

Index Management HiveQL Syntax

For documentation on creating and managing indexes, see the
Apache Hive wiki.

Batch Processing with Hive on HDInsight | 215

http://bit.ly/2nK0UVS
http://bit.ly/2mV4t7q
http://bit.ly/2nCJLgd
http://bit.ly/2nCJLgd

Databases
In Hive a database is basically a logical grouping of tables; think of it as a table catalog
or namespace. Hive has one out-of-the-box database called default, which is used
when no other database is explicitly specified.

Each database gets its own subfolder below Hive’s warehouse directory by default.
You can specify an alternate location for a database external to the warehouse direc‐
tory if desired. The exception to this is the default database, which effectively is the
root of the warehouse folder, which means any internal tables you create within it are
folders that are peers to other databases.

Database HiveQL Syntax Reference

For details on the HiveQL syntax for managing databases, see the
Apache Hive wiki.

Using Hive on HDInsight
Now let’s explore these concepts concretely on an HDInsight cluster. Before we begin,
make sure you provision a new HDInsight cluster. Strictly speaking, you can use any
of the cluster types, since they all include Hive, but if Hive is the main technology
you’re after you should deploy with a cluster type of Hadoop. This leaves the choice of
operating system open, so you can use either Linux- or Windows-based clusters. We
recommend deploying Linux clusters since this provides more robust functionality
than Windows (specifically in that it includes Apache Ambari, which has more pol‐
ished interfaces for Hive). Thus, we will assume a Linux deployment of HDInsight in
this section. Just for reference, here are click-by-click steps:

1. Log in to the Azure Portal.
2. Select New→Data + Analytics→HDInsight.
3. On the New HDInsight blade, provide a unique name for your cluster.
4. Choose your Azure subscription.
5. Click Select Cluster Type.
6. On the “Cluster type configuration” blade, set the cluster type to Hadoop, operat‐

ing system to Linux, version to Hadoop 2.7.1, and cluster tier to Standard. Click
Select.

7. Click “credentials.”
8. Set the admin login username and password, then the SSH username and pass‐

word, and click Select.
9. Click Data Source.

216 | Chapter 6: Batch Processing in Azure

http://bit.ly/2nShak9

10. For a Hadoop cluster (and by extension for Hive), you are required to associate
an Azure Storage account and optionally Azure Data Lake Store with your clus‐
ter. Select an existing Azure Storage account or create a new one as desired. This
Storage account will provide the default storage for your cluster.

11. Modify the container name as desired. This container name will act as the root
folder for your HDInsight cluster.

12. Choose the location nearest you.
13. Optionally, if you want to use Azure Data Lake Store, select “Cluster AAD iden‐

tity” and either create a new AAD Service Principal or select an existing one. In
order to configure an AAD Service Principal, you must be logged into the Azure
Portal as the subscription owner (co-admin users will not be able to successfully
perform this step). After your cluster is done provisioning, be sure to go to your
Data Lake Store instance, and give the service principal you created in this step
access to your Data Lake Store (Figure 6-4).

Figure 6-4. Configuring Data Lake Store access for the new cluster.

14. Click Select.
15. Click Pricing.

Batch Processing with Hive on HDInsight | 217

16. Set the number of worker nodes to 4 (you do not need more to run the sample),
and adjust the worker node size and head node size as desired (any of the smaller
available options will work).

17. Click Select on the Pricing blade.
18. Click Resource Group and select an existing one or create a new Resource Group

as desired. You should now have all the settings specified.
19. Click Create to begin creating the HDInsight cluster. It will take about 25 minutes

to complete. When it’s ready, continue with the next section to begin your Hive
exploration.

Storage on HDInsight
When you provision an HDInsight cluster, you are required to provision a new Azure
Storage account or associate an existing one with your cluster. Also, you must specify
a blob container within that associated Storage account that HDInsight will treat as
the root of the HDFS.

With regards to internal tables, the default Azure Storage container associated with
the cluster is used, and internal tables are stored under the path /hive/warehouse.

External tables may be created over data that lives in a different location under the
root container, but could also be created over data existing in different containers or
even different Azure Storage accounts that have been associated with the cluster.

In addition to providing a default Azure Storage account, you can also associate
Azure Data Lake Store with your HDInsight cluster (Figure 6-5). When you do so,
this enables you to use Azure Data Lake Store for the storage of your external table
data. Internal tables will continue to store their data on the HDInsight cluster’s con‐
figured container within the default Azure Storage account.

218 | Chapter 6: Batch Processing in Azure

Figure 6-5. Overview of the storage options available to Hive on HDInsight, which
allows for associating a mix of Azure Storage accounts and Azure Data Lake Stores.

Batch Processing Blue Yonder Airports Data
Now that you have your HDInsight cluster provisioned, make sure that you have
uploaded the flight delay data (see Chapter 2) to the Azure Storage account or the
Azure Data Lake Store that you have associated with your cluster and from which you
will be querying. In our steps that follow, we uploaded the data to the path /flightdata
in both data stores.

There are two primary modes of executing HiveQL queries. You can SSH into the
head node of the cluster and run your queries using the Hive shell, or you can use a
browser to access Ambari and use the Hive View GUI for querying. We show exam‐
ples of both.

The flight delay data set has a few real-world challenges that we will show you how to
address as well. Here is the gist of the challenges and how we will address them.

Challenges with the data set:

1. Each CSV file has a header row, which needs to be skipped over.
2. The OriginCityName and DestCityName fields themselves have a comma in

their value (e.g., “city, state”), which causes the fields after them to not align to the
headers.

Batch Processing with Hive on HDInsight | 219

3. The source data is in CSV, but we’d prefer to use a more performant format for
later analytic querying.

Solution to the challenges:

1. You can tell Hive to skip the first row of each file, to treat it as a header, by pro‐
viding the skip.header.line.count table property when you define your exter‐
nal table.

2. When defining the schema for the load, create two columns for OriginCityName,
and two columns for DestCityName. Then, in your transformation script, you
can merge these values back together as desired, but keep the correct field count
and header to value alignment.

3. For Hive, we can migrate the data into ORC for improved compression and
query performance.

Creating an External Table
In this section, we will begin the process of preparing the flight delay data for analyt‐
ics by overlaying a schema. We will accomplish this by using the Ambari Hive View
to execute our HiveQL scripts.

1. Open a browser and navigate to
https://<YOURCLUSTERNAME>.azurehdinsight.net/#/main/views.

2. When prompted, log in with the admin credentials you created when provision‐
ing the cluster.

3. In the list of views that appears, select Hive View (Figure 6-6).

Figure 6-6. The list of views available from the Ambari Hive View.

4. In the Database Explorer area, under the Databases tab, click the default hyper‐
link to view the tables that your default Hive database currently contains (it
should only have hivesampletable). See Figure 6-7.

220 | Chapter 6: Batch Processing in Azure

Figure 6-7. Listing showing the created Hive table

5. Next, in the Query Editor area, under the Worksheet tab, paste the following
query into the text area:

CREATE EXTERNAL TABLE FlightData
(
Year INT,
Quarter INT,
Month INT,
DayofMonth INT,
DayOfWeek STRING,
FlightDate STRING,
UniqueCarrier STRING,
AirlineID STRING,
Carrier STRING,
TailNum STRING,
FlightNum STRING,
OriginAirportID STRING,
OriginAirportSeqID STRING,
OriginCityMarketID STRING,
Origin STRING,
OriginCityName1 STRING,
OriginCityName2 STRING,
OriginState STRING,
OriginStateFips STRING,
OriginStateName STRING,
OriginWac STRING,
DestAirportID STRING,
DestAirportSeqID STRING,
DestCityMarketID STRING,
Dest STRING,
DestCityName1 STRING,
DestCityName2 STRING,
DestState STRING,
DestStateFips STRING,
DestStateName STRING,
DestWac STRING,
CRSDepTime INT,
DepTime INT,
DepDelay INT,
DepDelayMinutes INT,
DepDel15 BOOLEAN,
DepartureDelayGroups INT,

Batch Processing with Hive on HDInsight | 221

DepTimeBlk STRING,
TaxiOut INT,
WheelsOff INT,
WheelsOn INT,
TaxiIn INT,
CRSArrTime INT,
ArrTime INT,
ArrDelay INT,
ArrDelayMinutes INT,
ArrDel15 BOOLEAN,
ArrivalDelayGroups INT,
ArrTimeBlk STRING,
Cancelled BOOLEAN,
CancellationCode STRING,
Diverted BOOLEAN,
CRSElapsedTime INT,
ActualElapsedTime INT,
AirTime INT,
Flights INT,
Distance INT,
DistanceGroup INT,
CarrierDelay INT,
WeatherDelay INT,
NASDelay INT,
SecurityDelay INT,
LateAircraftDelay INT,
FirstDepTime INT,
TotalAddGTime INT,
LongestAddGTime INT,
DivAirportLandings BOOLEAN,
DivReachedDest BOOLEAN,
DivActualElapsedTime INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 'adl://solliance.azuredatalakestore.net:443/flightdata'
TBLPROPERTIES ("skip.header.line.count"="1");

Let’s explore the syntax a bit, before you run the script.

In the first line we provide the name of the table, and of course, we indicate that we
want an external table by using the keyword EXTERNAL:

CREATE EXTERNAL TABLE FlightData

Then we provide an open parenthesis and list all of the columns in the table and a
close parenthesis. Each column provides the name (as you will use in your queries)
and the data type. It’s important to list these columns in the same order as they appear
in each of the CSV files:

222 | Chapter 6: Batch Processing in Azure

(
Year INT,
Quarter INT,
Month INT,
...
DivReachedDest BOOLEAN,
DivActualElapsedTime INT
)

Following the columns, we indicate how Hive should parse this CSV file—namely by
specifying that the fields (columns) are delimited by commas, that rows are line-
delimited, and that we are dealing with a TEXTFILE (as opposed to ORC, SEQUENCE
FILE, RCFILE, etc.):

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE

Then we get to the line that tells Hive where the files actually live, via the LOCATION
keyword:

LOCATION 'adl://solliance.azuredatalakestore.net:443/flightdata'

We are telling Hive that our files live in Azure Data Lake Store. This is indicated by
the adl:// prefix. The name of the Azure Data Lake Store is indicated as the subdo‐
main (solliance, in this case). Finally, the folder in which the files exist is the path
component of the URL (flightdata, in this case). If you have multiple levels of sub‐
folders, you can express those in the path as you would expect (e.g., /flightdata/
2016). The syntax for this URL to Azure Data Lake Store is summarized as follows:

LOCATION 'adl://[STORENAME].azuredatalakestore.net:443/[FOLDER]'

It is important to note that LOCATION requires you to provide a path to a folder and
not to an individual file.

If we wanted to use Azure Blob Storage instead as the source for our CSV files, all we
would change is the URL used in the LOCATION. For example:

LOCATION
'wasbs://myhive@solexpanalytics1.blob.core.windows.net/flightdata'

For Azure Storage, the URL prefix needs to be wasbs:// (short for Windows Azure
Storage Blobs SSL), and then you need to provide the Storage account name, con‐
tainer name, and subfolder path below the container as follows:

LOCATION
'wasbs://[container]@[account].blob.core.windows.net/[subfolder]'

The last line in our script tells Hive to skip over the first line in each CSV file, since
this line contains the column names and not any actual data:

TBLPROPERTIES ("skip.header.line.count"="1");

Batch Processing with Hive on HDInsight | 223

Returning to the Ambari Hive View you should have open in the browser:

1. Before you run the script, make sure you modify the LOCATION URL to point to
where you have the flight delay data stored.

2. Click the Execute button (Figure 6-8).

Figure 6-8. The Execute button.

3. When you see Query Process Results (Status: Succeeded), as shown in Figure 6-9,
your external table metadata has been created.

Figure 6-9. The query process results dialog showing success.

4. In Database Explorer, click the Refresh button (Figure 6-10).

Figure 6-10. The Refresh button.

5. Click on your default database and you should see your new table in the list
(Figure 6-11).

Figure 6-11. Viewing the new table in the Hive tables underneath the default data‐
base.

Congratulations, you’ve created your first Hive external table!

224 | Chapter 6: Batch Processing in Azure

Next, issue a query against this table:

1. Click the New Worksheet button to open a new query tab (Figure 6-12).

Figure 6-12. The New Worksheet button.

2. Paste the following query into the worksheet and click Execute:
SELECT * FROM flightdata LIMIT 100;

This query will return just the first 100 rows from the external table. You should see
results similar to Figure 6-13.

Figure 6-13. The results of querying the first 100 rows from the flightdata external table.

Creating an Internal Table
Now let’s look at creating an internal table from the data contained in our flightdata
external table. Because an internal table will represent a copy of the data contained in
the external table, a typical reason you create one is to change the storage format
from the raw format used at ingest to one that is more performant for analytic quer‐
ies. For Hive, there are a few options, but ORC is one of the preferred formats.

More About ORC

If you’re curious about the ORC file format, you can find a compre‐
hensive description in the Apache Hive wiki.

Batch Processing with Hive on HDInsight | 225

http://bit.ly/2nK72NV

In the steps that follow, we will use a different approach to run our HQL queries. We
will use SSH and the Hive shell. If you prefer to keep using the Ambari Hive View,
you absolutely can.

1. SSH into your HDInsight cluster (recall this means running something akin to
"ssh [username]@[clustername]-ssh.azurehdinsight.net").

2. When prompted, enter the password for your user.
3. At the shell, type hive to launch the Hive shell.
4. Copy the following script to create the schema for an internal table stored using

the ORC format. Be sure to modify the URL in the location so it points to the
default Azure Storage account.

5. Paste your modified script into the Hive shell and press Enter to execute it.
CREATE EXTERNAL TABLE flightdataorc
(
Year INT,
Quarter INT,
Month INT,
DayofMonth INT,
DayOfWeek STRING,
FlightDate STRING,
UniqueCarrier STRING,
AirlineID STRING,
Carrier STRING,
TailNum STRING,
FlightNum STRING,
OriginAirportID STRING,
OriginAirportSeqID STRING,
OriginCityMarketID STRING,
Origin STRING,
OriginCityName1 STRING,
OriginCityName2 STRING,
OriginState STRING,
OriginStateFips STRING,
OriginStateName STRING,
OriginWac STRING,
DestAirportID STRING,
DestAirportSeqID STRING,
DestCityMarketID STRING,
Dest STRING,
DestCityName1 STRING,
DestCityName2 STRING,
DestState STRING,
DestStateFips STRING,
DestStateName STRING,
DestWac STRING,
CRSDepTime INT,

226 | Chapter 6: Batch Processing in Azure

DepTime INT,
DepDelay INT,
DepDelayMinutes INT,
DepDel15 BOOLEAN,
DepartureDelayGroups INT,
DepTimeBlk STRING,
TaxiOut INT,
WheelsOff INT,
WheelsOn INT,
TaxiIn INT,
CRSArrTime INT,
ArrTime INT,
ArrDelay INT,
ArrDelayMinutes INT,
ArrDel15 BOOLEAN,
ArrivalDelayGroups INT,
ArrTimeBlk STRING,
Cancelled BOOLEAN,
CancellationCode STRING,
Diverted BOOLEAN,
CRSElapsedTime INT,
ActualElapsedTime INT,
AirTime INT,
Flights INT,
Distance INT,
DistanceGroup INT,
CarrierDelay INT,
WeatherDelay INT,
NASDelay INT,
SecurityDelay INT,
LateAircraftDelay INT,
FirstDepTime INT,
TotalAddGTime INT,
LongestAddGTime INT,
DivAirportLandings BOOLEAN,
DivReachedDest BOOLEAN,
DivActualElapsedTime INT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS ORC
LOCATION 'wasbs://solspark1612@sollianceanalytics2.blob.core.windows.net
/flightdata_orc';

You should see output similar to the following after your script runs:

OK
Time taken: 2.944 seconds

Batch Processing with Hive on HDInsight | 227

Let’s recap what we accomplished in this script. In the STORED AS line we specified
ORC so that the data is stored using ORC instead of plain text. Also, you modified the
LOCATION to point to your default Azure Storage account blob container and sub‐
folder path.

STORED AS ORC
LOCATION
'wasbs://solspark1612@sollianceanalytics2.blob.core.windows.net/flightdata_orc';

This script only created the metadata describing the table. Now we need to actually
copy the data from the external table into this internal table.

To accomplish the copy, run the following script in your Hive session:

INSERT OVERWRITE TABLE flightdataorc SELECT * FROM flightdata;

After a few minutes, your internal table should contain a copy of all the data from the
raw CSV files represented by the external table, except stored in the binary columnar
format ORC.

Did You Know?

Microsoft engaged with the community to design the Optimized
Row Columnar (ORC) format.

After the insert query completes, you now have a table ready for some initial analytics
querying, which we will cover in the next chapter.

Batch Processing with Pig on HDInsight
Apache Pig is a platform for producing data processing programs using a scripting
language known as Pig Latin. It provides a simpler alternative to programming com‐
plex MapReduce applications in Java.

We will not cover Pig in detail in this book, except to say that if you have become
familiar from the previous section with how to set up Hadoop on HDInsight and are
comfortable connecting to the head node using SSH to run Hive, then running Pig
should be familiar territory for you: you basically run the Pig command at the SSH
terminal instead of Hive.

Want More Pig?

For a comprehensive overview of running Pig on HDInsight, see
the Microsoft Azure documentation.

228 | Chapter 6: Batch Processing in Azure

http://bit.ly/2n81E3N

Batch Processing with Spark on HDInsight
Apache Spark running on HDInsight provides a few options one could use for batch
processing. At the lowest level lies Spark Core and the RDD API, which lets you per‐
form parallel operations on Spark’s distributed data. Atop this sits the Spark SQL
module, which provides the DataFrame API and DataSet API as well as support for
issuing SQL queries directly against the DataFrame API.

These higher-level abstractions prove useful in batch processing both because they
simplify the development effort (as they are more expressive) and because they often
perform better than the raw RDD APIs (because they include extra information used
in optimizing queries before they execute). In this book, we’ll focus on Spark SQL
and its constituent DataFrame API. We will introduce batch processing with Data‐
Frame in this chapter and explore its support for SQL querying in the next.

So what is a DataFrame? Simply put, it is a distributed collection of data organized
into named columns (notice we said named columns only, not named and typed col‐
umns).

A DataFrame is created from one of a variety of sources. Parquet files are the default
data source, but the complete list of built-in sources includes:

• Parquet
• JSON
• ORC
• Text files
• Hive tables
• JDBC sources

Spark Packages

There are many more sources available than just those that are
built in. See the Spark Packages website for libraries you can use to
interact with other data sources.

For an HDInsight cluster, you are likely reading flat files either from the Azure Stor‐
age account associated with your cluster, an attached Azure Storage account, or an
Azure Data Lake Store (see Figure 6-14).

Batch Processing with Spark on HDInsight | 229

https://spark-packages.org/

Figure 6-14. Examples of accessing files stored in Azure from Spark on HDInsight.

You may recall from Chapter 5 that when we want to interact with Spark in a pro‐
gram, we always start with the SparkContext.

To use Spark SQL and the DataFrame API, we use one of two other contexts that
wraps the SparkContext: the SQLContext or the HiveContext. They both provide the
same functionality, but the HiveContext provides extra support for working with
data stored in Apache Hive.

In most situations where you run a Spark program, an instance of SQLContext/Hive
Context has already been created for you in addition to the base SparkCon
text. When reading from sources you use an instance of DataFrameReader, which is
accessed from the SQLContext via the read method (sqlContext.read). This part
gets a little confusing because there are multiple ways to get at the same DataReader
for a particular source, so let’s list them both so it’s easy to compare. Each of the built-
in sources has a helper method that simplifies the syntax:

sqlContext.read.parquet("path/to/files")
sqlContext.read.json(path/to/files")
sqlContext.read.orc("path/to/files")
sqlContext.read.jdbc(url, tableName, properties)
sqlContext.read.text("path/to/files")
sqlContext.read.table("hiveTableNameOrtempTableName")

Alternately, you can specify the data source format by using the format method,
which can take the full type name or its short name such as:

230 | Chapter 6: Batch Processing in Azure

sqlContext.read.format("org.apache.spark.sql.parquet").load("path")
sqlContext.read.format("parquet").load("path") //short format

The return value of any of these calls is a DataFrame instance. With a DataFrame in
hand, you can use Spark SQL’s language integrated query format (if you’re familiar
with LINQ in .NET, this should be very familiar), or issue SQL against it. We’ll show
the latter in the next chapter, and explore the former here. You can use your LINQ-
based script to transform the data as you see fit, and then write the results back out.

DataFrame Operations

For a complete example of the types of operations you apply
against a DataFrame, see the Spark documentation.

The object used to write your results back somewhere is a DataFrameWriter. When
you’re writing to sources your format options are similar to reading, except you are
using a DataWriter instance acquired off of a DataFrame instance you wish to persist.
The examples of this approach using the helper methods are as follows:

dataFrame.write.parquet("path/to/files")
dataFrame.write.json("path/to/files")
dataFramet.write.orc("path/to/files")
dataFrame.write.jdbc(url, tableName, properties)
dataFrame.write.text("path/to/files")

Spark SQL also has a notion of external and internal tables. External tables are effec‐
tively created as per-session temporary tables, using dataFrame.registerTempTa
ble(“tableName”) from a DataFrame instance sourced from either a SQLContext or a
HiveContext. The schema describing the table is all that Spark really maintains, and
when the table is deleted or expires with the session, the underlying data remains
untouched, albeit the schema is lost.

Spark SQL’s notion of internal tables has everything to do with creating managed
tables in Hive. You can create permanent, managed tables in Hive (that other Hive
clients can query without using Spark) using saveAsTable from a DataFrame
instance. Only when you are working with a HiveContext can DataFrames be saved
as persistent tables; DataFrame sources from a SQLContext cannot be saved as Hive
tables. Here is an example of DataFrame created from an existing RDD; note that the
DataFrame was created using the HiveContext:

val flightsDF = hiveContext.createDataFrame(resultRDD)
flightsDF.write.saveAsTable("FlightDelaysSummaryRDD")

Batch Processing with Spark on HDInsight | 231

http://bit.ly/2mQAbSy

DataSet API

The DataSet API aims to unify the benefits of the RDD APIs with
the benefits of the DataFrame API. As of Spark 1.6.1, the DataSet
API is experimental and separate from DataSet. There is a long-
term goal of unifying them in the early releases of Spark 2.0. One
way to quickly understand the difference between the two is to
describe a DataFrame as consisting of a collection of Row objects,
where each field in the Row is accessed via generic dictionary-like
access, and the type is applied on access. A DataSet, however, aims
to provide strong typing to the collection of objects at compile
time, such that each item in the collection is an instance of a class
with typed properties that match the schema of the underlying
data. Put another way, in the future a DataFrame will simply be an
extension of DataSet where each collection element is of type Row,
but you will tend to work with DataSets of Person or DataSets of
Flights, for example.

With these basic concepts in mind, let’s look at applying the DataFrame API to batch
processing the flight delay data. We will not cover how to deploy HDInsight with
Spark in this section. If you need a refresher, see Chapter 5 where we went step by
step to deploy Spark on HDInsight.

Batch Processing Blue Yonder Airports Data
Now that you have your HDInsight cluster provisioned, make sure that you have
uploaded the flight delay data (see Chapter 2) to the Azure Storage account or the
Azure Data Lake Store that you have associated with your cluster and from which you
will be querying. In our steps that follow, we uploaded the data to the path /flightdata
in both data stores.

There are two primary modes of executing Spark SQL queries. You can SSH into the
head node of the cluster and run your queries using the Spark shell, or you can use a
browser to access a Jupyter notebook for querying. In this section, we will show
examples using the former.

The flight delay data set has a few real-world challenges that we will show you how to
address as well. Here is the gist of the challenges and how we will address them:

Challenges with the data set:

1. Each CSV file has a header row, which needs to be used to drive the schema.
2. The OriginCityName and DestCityName fields themselves have a comma in

their value (e.g., “city, state”), which causes the fields after them to not align to the
headers.

232 | Chapter 6: Batch Processing in Azure

3. After processing the data set, we have an extra phantom column with a name of
“” (empty string). We need to remove this column.

4. The source data is in CSV, but we’d prefer to use a more performant format.

Solution to the challenges:

1. Using spark-csv, you can infer the schema from the files (which uses the header
rows for the column names and then makes passes over the data to infer the col‐
umn data type).

2. The spark-csv parser recognizes the nested comma correctly, so it’s not a problem
in this case.

3. Create a new data frame from the original that drops the column with the name
“”.

4. For Spark, we can migrate the data into ORC for improved compression and
query performance.

Creating an External Table
In order to use the Spark SQL API in Scala, we will SSH into the head node of our
HDInsight cluster. Recall this means running a command similar to the following:

ssh <user>@<clusterName>-ssh.azurehdinsight.net

You will be prompted for your password and then you should be ready to run the fol‐
lowing commands.

To run Scala code, we can use the spark-shell command. Note that because we want
to use the spark-csv package to help us process the flight delay data CSV files, we
need to launch it using the package option. In your SSH session, run the following:

$SPARK_HOME/bin/spark-shell
 --packages com.databricks:spark-csv_2.11:1.4.0

This will ensure that our Spark session has access to the spark-csv package (and takes
care of automatically downloading it from the Spark Packages respository).

Once Spark Shell has started up, run the following code (be sure to modify the string
provided to the load method to match your environment):

val flightData = sqlContext.read.format("com.databricks.spark.csv").
option("header","true").
option("inferSchema","true").
load("adl://[datalakestore].azuredatalakestore.net:443/flightdata")

This creates a DataFrame over the flight data, using the spark-csv library to parse the
data, ignoring header rows, and inferring the schema from the header rows and by

Batch Processing with Spark on HDInsight | 233

sampling the data to infer the data types. In our case we loaded it from Azure Data
Lake Store, but you can change the parameter string passed into the load method to
use Azure Storage instead:

val flightData = sqlContext.read.format("com.databricks.spark.csv").
option("header","true").
option("inferSchema","true").
load("wasbs://[container]@[acct].blob.core.windows.net/flightdata")

Next, spot-check that your data loaded OK by taking a preview look at it:

flightData.select("FlightDate","Carrier","OriginCityName",
"DestCityName").show()

The results of this should appear similar to the following:

+----------+-------+--------------+---------------+
|FlightDate|Carrier|OriginCityName| DestCityName|
+----------+-------+--------------+---------------+
2014-01-01	AA	New York, NY	Los Angeles, CA
2014-01-02	AA	New York, NY	Los Angeles, CA
2014-01-03	AA	New York, NY	Los Angeles, CA
2014-01-04	AA	New York, NY	Los Angeles, CA
2014-01-05	AA	New York, NY	Los Angeles, CA
2014-01-06	AA	New York, NY	Los Angeles, CA
2014-01-07	AA	New York, NY	Los Angeles, CA
2014-01-08	AA	New York, NY	Los Angeles, CA
2014-01-09	AA	New York, NY	Los Angeles, CA
2014-01-10	AA	New York, NY	Los Angeles, CA
2014-01-11	AA	New York, NY	Los Angeles, CA
2014-01-12	AA	New York, NY	Los Angeles, CA
2014-01-13	AA	New York, NY	Los Angeles, CA
2014-01-14	AA	New York, NY	Los Angeles, CA
2014-01-15	AA	New York, NY	Los Angeles, CA
2014-01-16	AA	New York, NY	Los Angeles, CA
2014-01-17	AA	New York, NY	Los Angeles, CA
2014-01-18	AA	New York, NY	Los Angeles, CA
2014-01-19	AA	New York, NY	Los Angeles, CA
2014-01-20	AA	New York, NY	Los Angeles, CA
+----------+-------+--------------+---------------+
only showing top 20 rows

Next, take a look at the schema that was inferred by running the following:

flightData.printSchema

The output of this should appear as follows:

root
 |-- Year: integer (nullable = true)
 |-- Quarter: integer (nullable = true)
 |-- Month: integer (nullable = true)
 |-- DayofMonth: integer (nullable = true)
 |-- DayOfWeek: integer (nullable = true)

234 | Chapter 6: Batch Processing in Azure

 |-- FlightDate: string (nullable = true)
 |-- UniqueCarrier: string (nullable = true)
 |-- AirlineID: integer (nullable = true)
 |-- Carrier: string (nullable = true)
 |-- TailNum: string (nullable = true)
 |-- FlightNum: integer (nullable = true)
 |-- OriginAirportID: integer (nullable = true)
 |-- OriginAirportSeqID: integer (nullable = true)
 |-- OriginCityMarketID: integer (nullable = true)
 |-- Origin: string (nullable = true)
 |-- OriginCityName: string (nullable = true)
 |-- OriginState: string (nullable = true)
 |-- OriginStateFips: integer (nullable = true)
 |-- OriginStateName: string (nullable = true)
 |-- OriginWac: integer (nullable = true)
 |-- DestAirportID: integer (nullable = true)
 |-- DestAirportSeqID: integer (nullable = true)
 |-- DestCityMarketID: integer (nullable = true)
 |-- Dest: string (nullable = true)
 |-- DestCityName: string (nullable = true)
 |-- DestState: string (nullable = true)
 |-- DestStateFips: integer (nullable = true)
 |-- DestStateName: string (nullable = true)
 |-- DestWac: integer (nullable = true)
 |-- CRSDepTime: integer (nullable = true)
 |-- DepTime: integer (nullable = true)
 |-- DepDelay: double (nullable = true)
 |-- DepDelayMinutes: double (nullable = true)
 |-- DepDel15: double (nullable = true)
 |-- DepartureDelayGroups: integer (nullable = true)
 |-- DepTimeBlk: string (nullable = true)
 |-- TaxiOut: double (nullable = true)
 |-- WheelsOff: integer (nullable = true)
 |-- WheelsOn: integer (nullable = true)
 |-- TaxiIn: double (nullable = true)
 |-- CRSArrTime: integer (nullable = true)
 |-- ArrTime: integer (nullable = true)
 |-- ArrDelay: double (nullable = true)
 |-- ArrDelayMinutes: double (nullable = true)
 |-- ArrDel15: double (nullable = true)
 |-- ArrivalDelayGroups: integer (nullable = true)
 |-- ArrTimeBlk: string (nullable = true)
 |-- Cancelled: double (nullable = true)
 |-- CancellationCode: string (nullable = true)
 |-- Diverted: double (nullable = true)
 |-- CRSElapsedTime: double (nullable = true)
 |-- ActualElapsedTime: double (nullable = true)
 |-- AirTime: double (nullable = true)
 |-- Flights: double (nullable = true)
 |-- Distance: double (nullable = true)
 |-- DistanceGroup: integer (nullable = true)
 |-- CarrierDelay: double (nullable = true)

Batch Processing with Spark on HDInsight | 235

 |-- WeatherDelay: double (nullable = true)
 |-- NASDelay: double (nullable = true)
 |-- SecurityDelay: double (nullable = true)
 |-- LateAircraftDelay: double (nullable = true)
 |-- FirstDepTime: integer (nullable = true)
 |-- TotalAddGTime: double (nullable = true)
 |-- LongestAddGTime: double (nullable = true)
 |-- DivAirportLandings: integer (nullable = true)
 |-- DivReachedDest: double (nullable = true)
 |-- DivActualElapsedTime: double (nullable = true)
 |-- DivArrDelay: double (nullable = true)
 |-- DivDistance: double (nullable = true)
 |-- Div1Airport: string (nullable = true)
 |-- Div1AirportID: integer (nullable = true)
 |-- Div1AirportSeqID: integer (nullable = true)
 |-- Div1WheelsOn: integer (nullable = true)
 |-- Div1TotalGTime: double (nullable = true)
 |-- Div1LongestGTime: double (nullable = true)
 |-- Div1WheelsOff: integer (nullable = true)
 |-- Div1TailNum: string (nullable = true)
 |-- Div2Airport: string (nullable = true)
 |-- Div2AirportID: integer (nullable = true)
 |-- Div2AirportSeqID: integer (nullable = true)
 |-- Div2WheelsOn: integer (nullable = true)
 |-- Div2TotalGTime: double (nullable = true)
 |-- Div2LongestGTime: double (nullable = true)
 |-- Div2WheelsOff: integer (nullable = true)
 |-- Div2TailNum: string (nullable = true)
 |-- Div3Airport: string (nullable = true)
 |-- Div3AirportID: integer (nullable = true)
 |-- Div3AirportSeqID: integer (nullable = true)
 |-- Div3WheelsOn: integer (nullable = true)
 |-- Div3TotalGTime: double (nullable = true)
 |-- Div3LongestGTime: double (nullable = true)
 |-- Div3WheelsOff: string (nullable = true)
 |-- Div3TailNum: string (nullable = true)
 |-- Div4Airport: string (nullable = true)
 |-- Div4AirportID: string (nullable = true)
 |-- Div4AirportSeqID: string (nullable = true)
 |-- Div4WheelsOn: string (nullable = true)
 |-- Div4TotalGTime: string (nullable = true)
 |-- Div4LongestGTime: string (nullable = true)
 |-- Div4WheelsOff: string (nullable = true)
 |-- Div4TailNum: string (nullable = true)
 |-- Div5Airport: string (nullable = true)
 |-- Div5AirportID: string (nullable = true)
 |-- Div5AirportSeqID: string (nullable = true)
 |-- Div5WheelsOn: string (nullable = true)
 |-- Div5TotalGTime: string (nullable = true)
 |-- Div5LongestGTime: string (nullable = true)
 |-- Div5WheelsOff: string (nullable = true)

236 | Chapter 6: Batch Processing in Azure

 |-- Div5TailNum: string (nullable = true)
 |-- : string (nullable = true)

The astute reader should notice the last column that was inferred does not really exist
in the source data—it is simply an artifact resulting from how each line in the flight
delay data ends in a comma. So drop this extra column (which is named empty string,
“”) by running:

val flightDataCleaned = flightData.drop("")

Now, flightDataCleaned represents a well-cleaned external table. Let’s save this as a
managed table in a format that is more performant than text and that will also save
the schema. Run the following to save a copy of the data in the ORC format (be sure
to modify the string passed to save so it accurately targets your Data Lake Store or
Azure Storage account):

flightDataCleaned.write.format("orc").
save("adl://[lake].azuredatalakestore.net:443/flightdataorcspark")

Congratulations! You’ve successfully batch processed your first set of CSV data using
Spark SQL! You are now ready to perform further processing on the data or perform
analytic querying as we will demonstrate in the next chapter.

Batch Processing with SQL Data Warehouse
Azure SQL Data Warehouse is a massively parallel processing (MPP) distributed
database system, based on the SQL Server relational database engine. In fact, it uses
specialized instances of Azure SQL Database as the compute nodes in the underlying
cluster. SQL Data Warehouse spreads your data across many shared-nothing storage
and processing units. SQL Data Warehouse provides its functionality as a Platform-
as-a-Service (PaaS) function, where your need to manage any of the nodes that make
up the cluster is completely removed (in fact, you have no way of accessing these
nodes directly). To query SQL Data Warehouse, you use T-SQL.

From a high level, Azure SQL Data Warehouse consists of four main elements
(Figure 6-15):

Control node
The control node manages and optimizes queries. It is the frontend that interacts
with all applications and connections (i.e., it is ultimately what you connect to
when querying SQL Data Warehouse). The control node is powered by SQL
Database. When you submit a T-SQL query to SQL Data Warehouse, the control
node transforms it into separate queries that run on each compute node in
parallel.

Batch Processing with SQL Data Warehouse | 237

Compute nodes
The compute nodes are SQL databases that store your data and process your
query in parallel. After processing, the compute nodes pass the results back to the
control node. To finish the query execution, the control node aggregates the
results and returns the final result to client application.

Storage
Just like for Hive, SQL Data Warehouse has a notion of external and internal
table storage. Its internal storage relies on Azure Premium Disk Storage, where
each disk (e.g., a page file in Premium Storage) is directly attached to a single
compute node, and that data is locally redundant. Unlike Hive, however, SQL
Data WareHouse is a database and the internal data is completely managed by the
database engine and stored in SQL Server’s own format for data files. Owing to a
feature called PolyBase, SQL Data Warehouse can also attach standard Azure
Storage blobs directly and project a schema on read over files in Blob Storage.
You access this functionality by creating external tables.

Data Movement Service
Data Movement Service (DMS) is a Windows service that runs alongside SQL
Database on all the nodes and is responsible for moving (e.g., shuffling) data
between the nodes. DMS gives the compute nodes access to data they need for
joins and aggregations.

In addition to enabling access to Azure Storage from SQL Data Warehouse quer‐
ies, PolyBase is the recommended tool for loading and extracting large volumes of
data, as it is designed to leverage the massively parallel processing architecture of SQL
Data Warehouse. PolyBase supports many of the common flat file formats, including
delimited text (UTF-8 only), ORC, RCFILE, and Parquet.

What makes SQL Data Warehouse unique among the batch processing options in
Azure is that you can pause, and also easily resume, the compute. When you do so,
the compute control and compute nodes are effectively deallocated, but your data
remains in storage. If you are using internal table storage, you need to resume the
SQL Data Warehouse instance to query the data. However, if you are using external
table storage, then you can use the tool of your choice to query and interact with the
data stored in Azure Blob Storage. When your SQL Data Warehouse instance is
paused, you only pay for the storage used and not the compute (which can create sig‐
nificant savings for bursty batch processing workloads).

238 | Chapter 6: Batch Processing in Azure

Figure 6-15. Overview of the main elements in SQL Data Warehouse.

The capacity of the SQL Data Warehouse instance is measured in Data Warehouse
units (which is a blended measure of CPU, network, memory, and I/O capacity).
While your cluster is running, you can adjust the resources available to it by adding
or removing Data Warehouse units.

In addition to external and internal tables, SQL Data Warehouse supports many of
the features you would expect from its SQL Server heritage, including indexes on
tables (both clustered and nonclustered b-tree indexes as well as clustered columnar
indexes), temporary tables, partitioned tables, stored procedures, user-defined func‐
tions (returning a scalar value only), nonmaterialized views, database schemas, and
databases.

Batch Processing with SQL Data Warehouse | 239

Using SQL Data Warehouse
Given that SQL Data Warehouse provides PolyBase, which lets you load flat file data
ingested into Blob Storage, SQL Data Warehouse shines with Extract, Load, and
Transform workloads that take the data from Azure Storage, load it into SQL Data
Warehouse’s premium storage, and perform the transformations after the fact as
desired.

In this section, we will explore how to provision and than use an instance of SQL
Data Warehouse to create an external table from which we load the flight delay data
into a SQL Data Warehouse internal table, preparing it for subsequent transformation
or analytics.

To begin, let’s provision an instance of Azure SQL Data Warehouse:

1. Log in to the Azure Portal.
2. Select New→Data + Storage→SQL Data Warehouse.
3. Provide a name for the SQL Data Warehouse database.
4. Set your subscription and resource group as desired.
5. Leave the select source set to “Blank database.”
6. Select Server.
7. Create a new server or use an existing server as desired.
8. Set the performance to 100 DWU. (You will not need any more for this example.)
9. Select Create.

Your Azure SQL Data Warehouse should be ready within a few minutes.

Batch Processing Blue Yonder Airports Data
For the following steps that issue queries against SQL Data Warehouse, you can use
either Visual Studio 2015 or SQL Server Management Studio. The latter is a free
download from Microsoft and at the moment offers better support for SQL Data
Warehouse, so we will use it in the steps that follow. You will need a Windows-based
machine for these steps (albeit you are very likely to replicate these steps using the
tool of your choice on any operating system that can make connections to SQL Data‐
base).

In the context of SQL Data Warehouse, the flight delay data set has a few real-world
challenges that we will show you how to address as well. Here is the gist of the chal‐
lenges and how we will address them:

Challenges with the data set:

240 | Chapter 6: Batch Processing in Azure

https://portal.azure.com
http://go.microsoft.com/fwlink/?LinkID=824938

1. Each CSV file has a header row, which needs to be skipped over.
2. The OriginCityName and DestCityName fields themselves have a comma in

their value (e.g., “city, state”), which causes the fields after them to not align to the
headers.

3. The source data is in CSV, but we’d prefer to use a more performant format.

Solution to the challenges:

1. You can tell SQL Data Warehouse to skip the first row of each file by defining a
filter clause in the query (i.e., that ignores rows having a value present in the
column header) that loads the data from the external table into the internal table.

2. You need to specify the string_delimiter to be a double quote when defining
the external file format used by the external table.

3. We can load the data into an internal table (stored on Azure Premium Storage)
for improved compression and query performance.

Storing the Credentials to Azure Storage
In this section, we will begin the process of preparing the flight delay data by creating
a data source for the Azure Storage account that contains the flight delay CSV files.

1. Launch SQL Server Management Studio, and in the “Connect to Server” dialog,
enter the name of the server hosting your SQL Data Warehouse in Azure.

2. Set the authentication to SQL Server Authentication and provide the username
and password you entered when provisioning the server.

3. Select Connect (see Figure 6-16).

Figure 6-16. Connecting to SQL Data Warehouse.

Batch Processing with SQL Data Warehouse | 241

4. From the File menu, select New→New Query with Current Connection.
5. In the query document that appears, paste the following script.

CREATE MASTER KEY;

CREATE DATABASE SCOPED CREDENTIAL AzureStorageCreds
WITH IDENTITY = '[identityName]'
, Secret = '[azureStorageAccountKey]'
;

CREATE EXTERNAL DATA SOURCE azure_storage
WITH
(
 TYPE = HADOOP
, LOCATION =
'wasbs://[containername]@[accountname].blob.core.windows.net/[path]'
, CREDENTIAL = AzureStorageCreds
);

You will need to modify and replace the variables within this script to suit your envi‐
ronment:

[identityName]

Replace this with any label you want to use for the credential storing the key to
your Azure Storage account.

[azureStorageAccountKey]

Replace this with the key of your Azure Storage account.

[containername]

Replace this with the name of the container in Blob Storage that contains your
flight data files.

[accountname]

Replace this with the name of your Azure Storage account.

[path]

Replace this with the subfolder path to the folder where your flight data files are
located.

With this portion of the script in place, you have effectively stored the connection
string to your Azure Storage account within SQL Data Warehouse. Next, you will
define the structure of the data it contains.

Below the SQL you already added, add the following lines:

CREATE EXTERNAL FILE FORMAT text_file_format
WITH
(

242 | Chapter 6: Batch Processing in Azure

 FORMAT_TYPE = DELIMITEDTEXT
, FORMAT_OPTIONS (
 FIELD_TERMINATOR =',',
 STRING_DELIMITER = '"',
 USE_TYPE_DEFAULT = TRUE
)
);

This script defines the format of the files that will be read. Think of it as simply con‐
figuration telling the parser used by SQL Data Warehouse how to interpret the flight
data CSV files. The FORMAT_TYPE is set to DELIMITEDTEXT to indicate it is a delimited
text file. The FIELD_TERMINATOR is set to a comma to indicate that the values in a line
of text are separated by commas. Setting STRING_DELIMITER to a double quote (")
helps with the situation when string values in a line of text have commas within them.
For example, in a row the OriginCityName may appear like:

“abc”, “San Diego, CA”, “def ”

Without the STRING_TERMINATOR being properly set to a double quote, the comma
between San Diego and CA would accidentally be treated as a field terminator, so the
single string value “San Diego, CA” would be interpreted as two strings—“San Diego”
and “CA”—which is obviously not desired.

Finally the USE_TYPE_DEFAULT is set to TRUE to indicate the default value for the data
type should be used when a value is missing (e.g., a numeric type would default to 0, a
string column would default to the empty string “”).

CREATE EXTERNAL FILE FORMAT

For more details on all the options supported by this statement,
see https://msdn.microsoft.com/library/dn935026.aspx.

Now you are ready to define the schema for the external table. Below the SQL script
for the file format, add the following:

CREATE EXTERNAL TABLE FlightDelays
(
[Year] varchar(255),
[Quarter] varchar(255),
[Month] varchar(255),
[DayofMonth] varchar(255),
[DayOfWeek] varchar(255),
FlightDate varchar(255),
UniqueCarrier varchar(255),
AirlineID varchar(255),
Carrier varchar(255),
TailNum varchar(255),

Batch Processing with SQL Data Warehouse | 243

https://msdn.microsoft.com/library/dn935026.aspx

FlightNum varchar(255),
OriginAirportID varchar(255),
OriginAirportSeqID varchar(255),
OriginCityMarketID varchar(255),
Origin varchar(255),
OriginCityName varchar(255),
OriginState varchar(255),
OriginStateFips varchar(255),
OriginStateName varchar(255),
OriginWac varchar(255),
DestAirportID varchar(255),
DestAirportSeqID varchar(255),
DestCityMarketID varchar(255),
Dest varchar(255),
DestCityName varchar(255),
DestState varchar(255),
DestStateFips varchar(255),
DestStateName varchar(255),
DestWac varchar(255),
CRSDepTime varchar(128),
DepTime varchar(128),
DepDelay varchar(128),
DepDelayMinutes varchar(128),
DepDel15 varchar(255),
DepartureDelayGroups varchar(255),
DepTimeBlk varchar(255),
TaxiOut varchar(255),
WheelsOff varchar(255),
WheelsOn varchar(255),
TaxiIn varchar(255),
CRSArrTime varchar(128),
ArrTime varchar(128),
ArrDelay varchar(255),
ArrDelayMinutes varchar(255),
ArrDel15 varchar(255),
ArrivalDelayGroups varchar(255),
ArrTimeBlk varchar(255),
Cancelled varchar(255),
CancellationCode varchar(255),
Diverted varchar(255),
CRSElapsedTime varchar(255),
ActualElapsedTime varchar(255),
AirTime varchar(255),
Flights varchar(255),
Distance varchar(255),
DistanceGroup varchar(255),
CarrierDelay varchar(255),
WeatherDelay varchar(255),
NASDelay varchar(255),
SecurityDelay varchar(255),
LateAircraftDelay varchar(255),
FirstDepTime varchar(255),

244 | Chapter 6: Batch Processing in Azure

TotalAddGTime varchar(255),
LongestAddGTime varchar(255),
DivAirportLandings varchar(255),
DivReachedDest varchar(255),
DivActualElapsedTime varchar(255),
DivArrDelay varchar(255),
DivDistance varchar(255),
Div1Airport varchar(255),
Div1AirportID varchar(255),
Div1AirportSeqID varchar(255),
Div1WheelsOn varchar(255),
Div1TotalGTime varchar(255),
Div1LongestGTime varchar(255),
Div1WheelsOff varchar(255),
Div1TailNum varchar(255),
Div2Airport varchar(255),
Div2AirportID varchar(255),
Div2AirportSeqID varchar(255),
Div2WheelsOn varchar(255),
Div2TotalGTime varchar(255),
Div2LongestGTime varchar(255),
Div2WheelsOff varchar(255),
Div2TailNum varchar(255),
Div3Airport varchar(255),
Div3AirportID varchar(255),
Div3AirportSeqID varchar(255),
Div3WheelsOn varchar(255),
Div3TotalGTime varchar(255),
Div3LongestGTime varchar(255),
Div3WheelsOff varchar(255),
Div3TailNum varchar(255),
Div4Airport varchar(255),
Div4AirportID varchar(255),
Div4AirportSeqID varchar(255),
Div4WheelsOn varchar(255),
Div4TotalGTime varchar(255),
Div4LongestGTime varchar(255),
Div4WheelsOff varchar(255),
Div4TailNum varchar(255),
Div5Airport varchar(255),
Div5AirportID varchar(255),
Div5AirportSeqID varchar(255),
Div5WheelsOn varchar(255),
Div5TotalGTime varchar(255),
Div5LongestGTime varchar(255),
Div5WheelsOff varchar(255),
Div5TailNum varchar(255)
)
WITH
(
LOCATION = '/',
DATA_SOURCE = azure_storage,

Batch Processing with SQL Data Warehouse | 245

FILE_FORMAT = text_file_format,
REJECT_TYPE = value,
REJECT_VALUE = 100000
);

The CREATE EXTERNAL TABLE syntax should look familiar all the way up to the WITH
clause. Let’s examine each of the parameters in the WITH clause. LOCATION provides a
path beneath the container and subfolder path that you specified in the external data
source configuration. DATA_SOURCE is how you tell SQL Data Warehouse to use the
data source you configured previously. FILE_FORMAT is how you apply the file format
you defined previously. REJECT_TYPE and REJECT_VALUE collectively define when SQL
Data Warehouse aborts processing because the data is not sufficiently aligned with
the schema. REJECT_TYPE can have the values of either value or percentage. When
specifying a REJECT_TYPE of value, you need to provide a number to REJECT_VALUE
that represents the fixed numeric threshold above which the query processing will be
aborted. When specifying a REJECT_TYPE of percentage, you must provide a value
between 0 and 100, to indicate the percentage of rows that must fail before the query
is aborted. If you specify a REJECT_TYPE of percentage you also need to specify
REJECT_SAMPLE_VALUE with an integer that indicates the number of rows SQL Data
Warehouse needs to have considered before it starts to calculate the percentage.

CREATE EXTERNAL TABLE

For the complete documentation on the CREATE EXTERNAL TABLE
syntax in SQL Data Warehouse, see the Microsoft documentation.

Now, press the Execute button in SQL Server Management Studio to run this query.

When it completes, your external table is ready. Try the following query to see a sam‐
ple of the data:

SELECT Top 100 * FROM FlightDelays;

Now you are ready to use this external table as a source from which to load an inter‐
nal table. In the same query script (or a new one), copy and paste the following SQL:

CREATE TABLE FlightDelaysStaging
WITH (DISTRIBUTION = ROUND_ROBIN)
AS
SELECT * FROM FlightDelays
WHERE [Year] <> 'Year';

In this script, we are creating a new internal table (notice this is indicated by the
absence of the EXTERNAL keyword). We are also setting the DISTRIBUTION to
ROUND_ROBIN, which will basically mean that rows will be distributed among all the
underlying storage distributions in a round-robin fashion. The AS keyword lets us

246 | Chapter 6: Batch Processing in Azure

https://msdn.microsoft.com/en-us/library/dn935021.aspx

specify a query, and in this case we select all the data in the FlightDelays external table
except those whose Year column has a value of the string 'Year'. This is how we can
make sure that the header rows of each CSV are not copied over into our internal
table.

CREATE TABLE

For the complete documentation on the CREATE TABLE syntax in
SQL Data Warehouse, see http://bit.ly/2nnE2KH.

Run the SQL script you just added. To verify that you do not have any header values
in the row data, run the following script:

SELECT [Year], Count(*) FROM FlightDelaysStaging Group By [Year];

The results should only show year values in the Year column of the results, similar to
Figure 6-17 (the query may take a few moments to complete).

Figure 6-17. Results of querying an internal table in SQL Data Warehouse.

Congratulations! You’ve just performed your first ELT operation using PolyBase to
load an internal table from data stored in Azure Storage. Your data in the internal
table is now ready for further processing or analytic querying, as we will demonstrate
in the next chapter.

Batch Processing with Data Lake Analytics
Azure Data Lake Analytics provides a Platform-as-a-Service approach to performing
analytics on big data. In fact, of all of the batch processing options presented in this
chapter, it is the one service that is most fully a PaaS solution because your interface
with Data Lake Analytics focuses on writing job scripts, running jobs, and managing
jobs. You are never exposed to the operational aspects of the distributed architecture
running under the covers.

When you run a job with Data Lake Analytics, you control the scale of the compute
applied and pay only for the resources you allocated for that particular job. In other

Batch Processing with Data Lake Analytics | 247

http://bit.ly/2nnE2KH

words, you are not paying for a cluster that is sitting around waiting for a job to
arrive; you pay only when you have a job actually executing.

Data Lake Analytics has its origins in Cosmos, a solution Microsoft uses internally for
analytics in Bing, Office 365, Skype, Windows, and Xbox Live, handling queries of
tens of thousands of users daily and driving hundreds of petabytes daily across exa‐
bytes of data. As a data platform service it provides many of the features you would
expect from a data store, including databases, database schemas, views, internal and
external tables, indexes, user-defined functions, and stored procedures. It also sup‐
ports invoking code source from user-provided code modules in the form of .NET
assemblies.

It also has some differences from the other processing solutions we have seen so far.
For starters, the language used to author jobs is neither largely functional (e.g., Scala
in Spark) nor largely declarative (e.g., SQL in SQL Data Warehouse)—it is a hybrid of
both. In Azure Data Lake Analytics, you author scripts using a new language called
U-SQL, and the idea is that you get the best of both T-SQL and C# worlds. Histori‐
cally speaking, U-SQL emerged from Scope, a SQL-like language for scale-out data
processing that is based on Dryad and used within Microsoft for formulating queries
within Cosmos.

We will dive into an example of U-SQL shortly, but before we do, keep in mind it
does have some differences from both SQL and C#:

• All keywords such as SELECT have to be in UPPERCASE.
• The type system and expression language inside clauses like SELECT and predi‐

cates like WHERE are in C#.
• The data types are the C# types (int, string, double?, etc.)
• The data types use C# NULL semantics, and the comparison operations inside a

predicate follow C# syntax (e.g., a == "foo" instead of a = 'foo').
• This also means that the values are full .NET objects, allowing you to easily use

any method to operate on the object (e.g., "a,b,c".Split(',')).

Another difference from the other processing solutions is how Azure Data Lake Ana‐
lytics defines the notion of external tables and managed (aka internal) tables. At the
time of this writing, external tables are used for querying data stored in Azure SQL
Database, Azure SQL Data Warehouse, and SQL Server running within an Azure vir‐
tual machine.

You can use U-SQL to query files stored in Azure Blob Storage and Azure Data Lake
Store, but these are defined as queries that are encapsulated in U-SQL views or U-
SQL table-valued functions—they do not get the traditional external table representa‐
tion we have seen with the other options.

248 | Chapter 6: Batch Processing in Azure

Data Lake Analytics refers to internal tables as managed tables. Here, just as for SQL
Data Warehouse, managed tables “own” their data. Both the table definition (the
metadata) as well as the table data are being managed via the metadata system. The
data for managed tables is stored in the default instance of Azure Data Lake Store that
is associated with the Azure Data Lake Analytics instance at the time of provisioning.
See Figure 6-18.

Figure 6-18. Overview of the storage options for Data Lake Analytics along with samples
of the FROM clause used to target those sources in U-SQL scripts.

Using Data Lake Analytics
In this section, we will explore how to provision a Data Lake Analytics account, asso‐
ciating it with a Data Lake Store, and show how to schematize and load CSV data
from the Data Lake Store, wrap the query in a view, and then query against that view
to create a new managed table with a copy of the data.

To begin, let’s provision an instance of Azure Data Lake Analytics:

1. Log in to the Azure Portal.
2. Select New→Data + Analytics→Data Lake Analytics.
3. Provide a name for your Data Lake Analytics account.

Batch Processing with Data Lake Analytics | 249

https://portal.azure.com

4. Choose the subscription and resource group as desired.
5. Choose a location (it should be the same as where you provisioned your Azure

Data Lake Store or Azure Storage accounts).
6. Select Data Lake Store, and select your existing Data Lake Store or create a new

one.
7. Select Create.

Your Azure Data Lake Analytics account should be ready within a few minutes.

Batch Processing Blue Yonder Airports Data
In the context of Azure Data Lake Analytics, the flight delay data set has a few real-
world challenges that we will show you how to address as well. Here is the gist of the
challenges and how we will address them:

Challenges with the data set:

1. Each CSV file has a header row, which needs to be skipped over.
2. The OriginCityName and DestCityName fields themselves have a comma in

their value (e.g., “city, state”), which causes the fields after them to not align to the
headers.

3. The source data has a trailing comma after each row.
4. The source data is in CSV, but we’d prefer to use a more performant format.

Solution to the challenges:

1. You can tell Azure Data Lake Analytics to skip the header row in each file by
using the text extractor and provide the value of 1 for the skipFirstNRows
parameter in the constructor.

2. You need to use the text extractor and provide the value of true for the quoting
parameter in the constructor.

3. You need to add an extra field to your schema to capture this phantom column,
which you can discard in a subsequent query.

4. We can load the data into a managed table that has a clustered index.

Processing with U-SQL
Let’s begin by authoring a U-SQL query that creates a view by applying schema on
read over the flight delay data that has been uploaded to the Data Lake Store.

250 | Chapter 6: Batch Processing in Azure

For the following steps that create U-SQL scripts for executing within Data Lake Ana‐
lytics, you can use either Visual Studio 2015 or the Azure Portal, as we will essentially
only be working with a text-based script. We will highlight the steps using the Azure
Portal.

Authoring U-SQL with Visual Studio 2015

For instructions on how to use Visual Studio to author and execute
a U-SQL script, see the Microsoft Azure documentation.

Within the Azure Portal, navigate to your Data Lake Analytics accounts and follow
these steps:

1. Select New Job in the command bar.
2. In the New U-SQL Job blade, provide a name for the job. Optionally, set the pri‐

ority (lower numbers give a job a higher priority to resources over a job with
higher priorities in your Data Lake Analytics account) and set the parallelism
(note this affects your cost, and for the purposes of this demo even a parallelism
of 1 will suffice).

3. Within the text area, paste the following script:
DROP VIEW IF EXISTS FlightDelaysView;

CREATE VIEW FlightDelaysView
AS
 EXTRACT Year int,
 Quarter int,
 Month int,
 DayofMonth int,
 [DayOfWeek] int,
 FlightDate string,
 UniqueCarrier string,
 AirlineID int,
 Carrier string,
 TailNum string,
 FlightNum string,
 OriginAirportID int,
 OriginAirportSeqID int,
 OriginCityMarketID int,
 Origin string,
 OriginCityName string,
 OriginState string,
 OriginStateFips string,
 OriginStateName string,
 OriginWac int,
 DestAirportID int,

Batch Processing with Data Lake Analytics | 251

http://bit.ly/2mQPURv

 DestAirportSeqID int,
 DestCityMarketID int,
 Dest string,
 DestCityName string,
 DestState string,
 DestStateFips string,
 DestStateName string,
 DestWac int,
 CRSDepTime string,
 DepTime string,
 DepDelay double?,
 DepDelayMinutes double?,
 DepDel15 double?,
 DepartureDelayGroups string,
 DepTimeBlk string,
 TaxiOut double?,
 WheelsOff string,
 WheelsOn string,
 TaxiIn double?,
 CRSArrTime string,
 ArrTime string,
 ArrDelay double?,
 ArrDelayMinutes double?,
 ArrDel15 double?,
 ArrivalDelayGroups string,
 ArrTimeBlk string,
 Cancelled double?,
 CancellationCode string,
 Diverted double?,
 CRSElapsedTime double?,
 ActualElapsedTime double?,
 AirTime double?,
 Flights double?,
 Distance double?,
 DistanceGroup double?,
 CarrierDelay double?,
 WeatherDelay double?,
 NASDelay double?,
 SecurityDelay double?,
 LateAircraftDelay double?,
 FirstDepTime string,
 TotalAddGTime string,
 LongestAddGTime string,
 DivAirportLandings string,
 DivReachedDest string,
 DivActualElapsedTime string,
 DivArrDelay string,
 DivDistance string,
 Div1Airport string,
 Div1AirportID string,

252 | Chapter 6: Batch Processing in Azure

 Div1AirportSeqID string,
 Div1WheelsOn string,
 Div1TotalGTime string,
 Div1LongestGTime string,
 Div1WheelsOff string,
 Div1TailNum string,
 Div2Airport string,
 Div2AirportID string,
 Div2AirportSeqID string,
 Div2WheelsOn string,
 Div2TotalGTime string,
 Div2LongestGTime string,
 Div2WheelsOff string,
 Div2TailNum string,
 Div3Airport string,
 Div3AirportID string,
 Div3AirportSeqID string,
 Div3WheelsOn string,
 Div3TotalGTime string,
 Div3LongestGTime string,
 Div3WheelsOff string,
 Div3TailNum string,
 Div4Airport string,
 Div4AirportID string,
 Div4AirportSeqID string,
 Div4WheelsOn string,
 Div4TotalGTime string,
 Div4LongestGTime string,
 Div4WheelsOff string,
 Div4TailNum string,
 Div5Airport string,
 Div5AirportID string,
 Div5AirportSeqID string,
 Div5WheelsOn string,
 Div5TotalGTime string,
 Div5LongestGTime string,
 Div5WheelsOff string,
 Div5TailNum string,
 Garbage1 string
 FROM "/flightdata/On_Time_On_Time_Performance_2014_1.csv"
 USING Extractors.Text(',', null, null, null,
 System.Text.Encoding.UTF8, true, false, 1);

This script should seem reasonably familiar if you have worked with SQL. However,
let’s take a look at a few of the details that are easy to overlook in the familiar-looking
syntax.

In the first line, we drop the view definition if it already exists.

Batch Processing with Data Lake Analytics | 253

After that, we begin the CREATE VIEW syntax and provide a name for the view (Flight
DelaysView, in this case). Following that line, we encounter the AS keyword where
the query definition for the view usually begins. Here, we encounter the EXTRACT key‐
word. The EXTRACT keyword is how we tell U-SQL to define a schema on demand
(i.e., the parameters list following the EXTRACT keyword) and apply over data read at
the location specified in the FROM clause—in our case, reading the CSV file found in
the flightdata directory underneath the root of our Data Lake Store. Here we are
referring to a single CSV file of the flight delay data, but we could also provide the
path to a folder that contains many CSV files.

How Azure Data Lake Analytics parses the files at the FROM location is controlled by
the use of an extractor, which is defined following the USING keyword:

USING Extractors.Text(',', null, null, null,
 System.Text.Encoding.UTF8, true, false, 1);

Notice from the Extractors object we use the Text factory method to create an
instance of the text extractor. Observe also that we are passing in parameters to con‐
figure the extractor so it properly reads the flight data CSV.

The parameters for the Text factory method are defined as follows:

Text(
 System.Char delimiter, //the delimiter character between fields
 System.String rowDelimiter, //the string separating rows
 System.Nullable<System.Char> escapeCharacter, //used to
 //escape delimiter chars
 System.String nullEscape, //the string to put in place of null
 System.Text.Encoding encoding, //the text encoding of the files
 System.Boolean quoting, //ignore delimiters appearing within
 //quoted strings
 System.Boolean silent, //ignore rows that don't match schema
 System.Int32 skipFirstNRows // the number of header rows to skip over
);

So now you should understand that we have configured our text extractor to use a
comma as the field delimiter, expect the text to be UTF-8 encoded, properly handle
string values (like “Los Angeles, CA”) by ignoring the comma within quoted strings,
and skip over the first row of data (which has only the column headers).

U-SQL currently supports three different extractors that all work on text files. There
is the text extractor as was just shown and also Csv and Tsv, which are simply special‐
ized variants of text preconfigured for comma-separated value files and tab-separated
value files, respectively. You can also develop custom extractors and use them here.

254 | Chapter 6: Batch Processing in Azure

Extractors

For detailed documentation on all the extractors and their parame‐
ters, see the Microsoft Azure documentation.

Returning to our query, take a look back at the parameters list. Did you notice any‐
thing unusual? Did you happen to notice that the data type of DepDelay is a "dou
ble?" and Carrier is a "string"? These are C# types. The ? in double? means that
the field is nullable.

Now run the script by selecting Submit Job in the command bar at the top of the New
U-SQL Job blade. It will take about 30 seconds to run, after which you will have your
view defined and ready for querying (see Figure 6-19).

Figure 6-19. Successfully creating a view from U-SQL in the Azure Portal.

Once the job is complete, close the blade displaying Job Summary and you should be
back at the New Job blade where you can author another U-SQL script. Now, replace
the script that’s there with the following script, which we will use to query the data.
And, by using an outputter (the opposite of an extractor), we can save the results of
the query to another CSV file in Azure Data Lake Store.

@results =
 SELECT *
 FROM FlightDelaysView;

Batch Processing with Data Lake Analytics | 255

http://bit.ly/2n7XPvi

OUTPUT @results
TO "/flightdataout/Output/On_Time_On_Time_Performance_2014_copy.csv"
USING
Outputters.Text(',', null, null, null, System.Text.Encoding.UTF8,
true, null);

Run the query, which should take about 90 seconds with 1 unit of parallelism. While
you are waiting for the query to complete, take a look at the syntax of the previous
query. We assigned the SELECT * FROM FlightDelaysView to something that looks
like a variable in T-SQL. The @results object is called a rowset variable. Each query
expression that produces a rowset can be assigned to a variable. Note that the assig‐
ment does not force the execution, it merely names the query expression. It is the
OUTPUT keyword that causes the @results expression to be evaluated and its results
ultimately written to a CSV file (Figure 6-20).

Figure 6-20. Results of creating a CSV output from querying the view. Notice the direc‐
ted acyclic graph visualization of the script execution.

When your query completes its execution in the Azure Portal, observe the summary
and the view of the directed acyclic graph (recall Azure Data Lake Analytics runs on
YARN, so this should seem familiar by now). If desired, you can navigate to the path
in your Azure Data Lake Store and see your output file.

Now, let’s look at copying the view data into a managed table. To do this, close the
summary blade, and in the New U-SQL Job blade paste the following query:

256 | Chapter 6: Batch Processing in Azure

DROP TABLE IF EXISTS FlightDelays;

CREATE TABLE FlightDelays(
 INDEX idx_year CLUSTERED (Year)
 PARTITIONED BY RANGE (Year)
) AS
SELECT *
FROM FlightDelaysView;

Submit the job. While it runs, let’s review the query. We create a managed table with
CREATE TABLE. Inside of that, we must specify both which column to create the clus‐
tered index on and the columns to use to partition the data.

Creating Managed Tables

For the full documentation on the syntax for creating managed
tables, see the Microsoft documentation.

Following the AS keyword, we query the data from our view. Notice that the schema
for the new FlightDelays table is automatically inferred from the underlying query, as
we did not have to specify any of the columns involved in the view (Figure 6-21).

Figure 6-21. The job summary after we successfully create a managed table from a query
against the view.

The query should take about 3 minutes to complete with 1 unit of parallelism. When
it is finished, in the Azure Portal go back to your Data Lake Analytics account, and

Batch Processing with Data Lake Analytics | 257

https://msdn.microsoft.com/library/azure/mt718728.aspx

select Data Explorer. If you expand Catalog, your Data Lake Store, master, and then
Tables, you should see your new managed table (Figure 6-22).

Figure 6-22. The newly created managed table in the Data Lake Analytics Data Explorer
view.

Now that we have created a managed table from our CSV data, we are better prepared
for additional batch processing and interactive querying, as we will show in the next
chapter.

Batch Processing with Azure Batch
No discussion of batch processing in Azure would be complete without Azure Batch.
Azure Batch enables you to run high-performance computing (HPC), embarassingly
parallel processing (MPP), and message passing interface (MPI)–based workloads,
where as a platform service it schedules the work to run on a managed collection of
virtual machines that can scale automatically to meet the demands of your job.

Azure Batch is very powerful, but it is also quite different from the data-oriented sol‐
utions we’ve covered thus far because it is designed to be much more generic. For
example, what if the unstructured data you wanted to batch process was not CSV
data, but rather photographic images, and what if instead of querying data your pro‐
cessing consisted of performing image-processing tasks (such as edge detection)?

258 | Chapter 6: Batch Processing in Azure

While you might be able to engineer a solution that uses Spark on HDInsight for this,
this workload is clearly not the type of big data batch processing Hive, SQL Data
Warehouse, or Data Lake Analytics is designed for. Thus, Azure Batch may form a
part of a larger data pipeline, where the outputs of the Azure Batch processing may
well be data that is more easily manipulated by the technologies we’ve covered in this
chapter.

Given these differences, we will not cover Azure Batch in any greater detail except to
ensure the reader is aware of it should the right workload arise.

Want More Azure Batch?

Azure Batch is a rich and powerful platform service. If you are
curious to learn more about it, see the Microsoft Azure documen‐
tation.

Orchestrating Batch Processing Pipelines with Azure Data
Factory
We introduced Azure Data Factory in Chapter 2, showing how to build a simple pipe‐
line that orchestrates the copying of data from an on-premises network share to
either an Azure Storage account or to Azure Data Lake Store. This pipeline was built
with a Copy activity.

In the context of this chapter on batch processing, it is worth mentioning that Azure
Data Factory has the following data transformation activities that you can use to kick
off your batch processing as part of a larger pipeline that is orchestrated by Azure
Data Factory:

Hive activity
Run a HiveQL script from a file stored in Blob Storage.

Pig activity
Run a Pig Latin script from a file stored in Blob Storage.

MapReduce
Run a MapReduce program from a JAR file stored in Blob Storage.

Stored procedure activity
Execute a stored procedure in Azure SQL Data Warehouse

Data Lake Analytics U-SQL
Execute a U-SQL job.

Orchestrating Batch Processing Pipelines with Azure Data Factory | 259

http://bit.ly/2nJOjln
http://bit.ly/2nJOjln

Want More Azure Data Factory?

For more details on using Azure Data Factory to orchestrate your
batch processing, including sample pipelines, see the Microsoft
Azure documentation.

Summary
In this chapter we took a broad perspective on the batch processing options avail‐
able in Azure, where we used a latency definition of batch processing as those queries
or programs that take tens of minutes, hours, or even days to complete. We covered
multiple batch processing options that run on Azure HDInsight (Hive, Pig, Spark,
MapReduce), as well as SQL Data Warehouse and Azure Data Lake Analytics. We also
touched on Azure Batch and put it in context relative to all of the other options we
covered.

In the next chapter, we will dial back and reduce our latency tolerance from tens of
minutes, as is typical of batch processing, to the hopefully shorter latencies we expect
as we explore the data interactively and apply more advanced analytics on our pre‐
pared data.

260 | Chapter 6: Batch Processing in Azure

http://bit.ly/2nCBSHN
http://bit.ly/2nCBSHN

CHAPTER 7

Interactive Querying in Azure

In this chapter, we look at various techniques that are useful to achieving interactive
query performance (Figure 7-1). For our purposes in this chapter, this means query‐
ing batch data at “human” and “humane” (pun intended) interactive speeds, which
with the current generation of technologies means results are ready in time frames
measured in seconds to minutes.

The fundamental concept introduced in this chapter that is universal to all the data
stores we cover is understanding how to prune large data sets during query process‐
ing to achieve faster query execution. The concept seems fairly obvious—if you
reduce the amount of data that the query engine has to read through, then your quer‐
ies will be faster. Exactly how you reduce the data set size is where you get into the
various techniques these data stores utilize, including:

Indexes
Creating indexes over the data can help the query engine identify the data files to
include and which to skip over by consulting a separate set of data that represents
the index, which is presumably significantly smaller than the source data set. In
some cases, such as for data stored using ORC, indexes are automatically created
and stored with the data files to aid in identifying complete files to exclude from
processing as well as large segments of a file that can be ignored because they do
not contain the values of interest.

Partitions
All of the data stores in this chapter have a notion of a table that acts to group
data into rows that share a similar schema. Partitions are used to split very “tall”
tables with lots of rows into separate files, whereby each file on disk contains only
the data for a partition.

261

Figure 7-1. This chapter focuses on achieving “interactive” query latencies with batch
processing components.

262 | Chapter 7: Interactive Querying in Azure

Predicate pushdown
When the filter (or WHERE clause) of a query is applied in deciding what data files
to load or which to ignore, you are in effect pushing the filter (aka predicate)
down toward the storage layer instead of waiting to apply it after you have read
all of the data from disk.

To apply these concepts, we will continue with the data prepared in the previous
chapter for Blue Yonder Airports. This time, Blue Yonder Airports is interested in
exploring the data to understand, for any given airport, which three months of the
year seem to incur flight delays longer than five minutes. They want to focus their
initial expenditures for these three months on at-gate amenities to improve the guest
experience.

Interactive Querying with Azure SQL Data Warehouse
Azure SQL Data Warehouse provides a handful of features that help reduce query
latency and improve the interactive querying experience and center on distributions
and indexes.

Partitions and Distributions
SQL Data Warehouse supports two separate concepts for spreading table data among
all nodes that make up its cluster. When you create a table in SQL Data Warehouse,
your table’s data is automatically divided across 60 databases. Each of these individual
databases is referred to as a distribution. The act of assigning a row to given distribu‐
tions takes place when data is loaded into each table. During table creation, we con‐
figure the algorithm the SQL Data Warehouse follows in deciding how to allocate a
given row by setting the distribution method.

SQL Data Warehouse supports the following distribution methods:

ROUND_ROBIN

Randomly distributes data evenly across distributions. As your data is loaded,
each row is sent to the next distribution in the circular list of distributions.

HASH

Distributes data based on hashing values from a single column that you
select. The hashing algorithm and resulting distribution is deterministic, so for a
given input value you will always hash to the same value and by extension the
same distribution.

All tables in SQL Data Warehouse must specify a distribution method. If you do not
explicitly declare one when creating a table, it will default to ROUND_ROBIN. Here is an
example of creating a table with an explicit ROUND_ROBIN distribution method:

Interactive Querying with Azure SQL Data Warehouse | 263

CREATE TABLE flights
(
 flightNum int NOT NULL,
 airlineName varchar(20),
 ...,
 DepDelay REAL
)
WITH
(
 DISTRIBUTION = DISTRIBUTION = ROUND_ROBIN
)

Here is an example of creating the same table with using the HASH method (notice that
in this case we need to provide the name of single column used as an input to the
hash):

CREATE TABLE flights
(
 flightNum int NOT NULL,
 airlineName varchar(20),
 ...,
 DepDelay REAL
)
WITH
(
 DISTRIBUTION = HASH (flightNum)
)

Partitioning is also supported on all SQL Data Warehouse tables, irrespective of their
distribution method. As you would expect, partitions can be used to improve query
performance by scanning only the qualifying partitions needed to satisfy a query, and
ideally avoiding a full table scan.

As with most other data stores we cover in this book, creating a table with too many
partitions can hurt performance. The general rule of thumb is to create partitions in
the tens to hundreds of partitions and not in the thousands. That said, be aware of the
interaction between distributions and partitions. Since any table of the gate will be
distributed into 60 distributions, your data will automatically be split there and you
initially may not need any partitions. For example, if you create a table with 100 parti‐
tions (a reasonable count by our rule of thumb), you would actually be partitioning
your data into 6,000 partitions (because 60 distributions × 100 partitions = 6,000 par‐
titions), which is far too many partitions.

Creating a partition in SQL Data Warehouse is a little different from the process you
may be familiar with from SQL Server. Instead of defining the partitioning function
(which describes the value boundaries) and scheme (which describes the mapping
between a partition and its underlying file group) that are used during table creation
to partition the data, in SQL Data Warehouse you must explicitly define the partition
boundaries inline with the CREATE TABLE statement. For example:

264 | Chapter 7: Interactive Querying in Azure

CREATE TABLE flights
(
 flightNum int NOT NULL,
 airlineName varchar(20),
 ...,
 DepDelay REAL
)
WITH
(
 PARTITION (flightNum RANGE LEFT FOR VALUES (100, 200, 300, 400))
)

The previous query would create a table with five partitions based on the boundary
value provided, and a row would be inserted into the appropriate partition based on
the value of its flightNum field.

Indexes
SQL Data Warehouse provides three different index options (clustered columnstore
indexes, clustered indexes, and nonclustered indexes) and one no-index option for
table data. Let’s briefly examine each of these index options.

Clustered columnstore index
The clustered columnstore index stores data in a columnar format, and provides the
actual storage for the entire table. The structure of a columnstore table index slices
the table into groups of rows, creatively referred to as rowgroups. The columnstore
format organizes the data first into column segments. A column segment is a column
of data from within a rowgroup, where each rowgroup contains one column segment
for every column in the table. This approach enables each column segment to be
compressed and stored together on disk. Clustered columnstore indexes perform best
when each row group has between 100,000 and 1M rows.

You can create a clustered columnstore index using the following syntax within the
WITH clause:

CREATE TABLE flights
(
 flightNum int NOT NULL,
 airlineName varchar(20),
 ...,
 DepDelay REAL
)
WITH
(
 DISTRIBUTION = DISTRIBUTION = ROUND_ROBIN,
 CLUSTERED COLUMNSTORE INDEX
)

Interactive Querying with Azure SQL Data Warehouse | 265

If you create a table without specifying any index options, a clustered columnstore
index will be the default.

Clustered index
A clustered index provides a primary index created on a rowstore (i.e., row-oriented
storage) table. It is responsible for the physical sort order of the data on disk. These
are akin to primary indexes in other relational databases. Clustered indexes may out‐
perform clustered columnstore indexes when a single row needs to be quickly
retrieved.

Nonclustered index
A nonclustered index provides a secondary index on a rowstore table. It is secondary
in the sense that the table usually already has a primary clustered index that defines
the physical sort order on disk, and the nonclustered index contains a copy of part or
all of the rows and columns in the underlying table.

Heap table
A heap table is a table without any index at all, and by extension no sorting is applied
to the physical layout of the data on disk. A heap table is often the most performant
way to load data into SQL Data Warehouse, since it does not have to sort the data
prior to writing it out. Also, for small tables (i.e., less than 100M rows), heap tables
might be an option.

Clustered and Nonclustered Index Syntax

We won’t cover the syntax for creating clustered and nonclustered
rowstore indexes in this book, as the columnar format is typically
the preferred structure for a data warehouse. If you are interested
in the syntax, see http://bit.ly/2nnCi44.

Interactive Exploration of the Blue Yonder Airports Data
In this section, we will pick up where we left off in the previous chapter, so make sure
you have your SQL Data Warehouse instance running with the managed table Flight‐
DelaysStaging.

You can execute the following queries using any tool that can connect to SQL Server,
but we will demonstrate the results using SQL Server Management Studio connected
to our instance of SQL Server Data Warehouse.

Let’s begin by partitioning this data so it better suits the needs of Blue Yonder Air‐
ports. Since each airport is an entity, they want to focus queries at the airport first. For
example, to understand which three months experience the most delays, they would

266 | Chapter 7: Interactive Querying in Azure

http://bit.ly/2nnCi44

start by narrowing the data by origin airport, say San Diego International (airport
code SAN) and then performing analytics from there.

As a first query, let’s examine how many distinct origin airports the data set contains:

SELECT count(distinct origin)
FROM FlightDelaysStaging
WHERE year = 2015

Note that we have 322 distinct origin airports (Figure 7-2).

Figure 7-2. Results displayed in SQL Server Management Studio showing the number of
distinct origin airports in the data set for the year 2015.

Next, let’s identify the top 30 busiest airports by departures:

SELECT Top(30) origin, count(*) counted
FROM FlightDelaysStaging
WHERE year = 2015
GROUP BY origin
ORDER BY count(*) DESC

The results appear as shown in Figure 7-3.

Interactive Querying with Azure SQL Data Warehouse | 267

Figure 7-3. Sample of top 30 busiest airports by departures in 2015.

This gives us a sense of how many rows each airport would typically have to deal with
to understand its operations, each in the few hundred thousands at most. In other
words, pretty small.

Given the requirement that all queries will take the perspective of an origin airport,
we could consider partitioning the data by origin airport. However, there really is no
need to partition, because the automatic partitioning into 60 distributions is more
than sufficient (and already results in very small distributions). However, to support
future growth, it would be wise to distribute data so that rows describing a given air‐
port are located in the same distribution. We can accomplish this by creating a new
table using a HASH distribution on the Origin column as follows:

CREATE TABLE DepartureFlightData
WITH (DISTRIBUTION = HASH(Origin))
AS
SELECT * FROM FlightDelaysStaging

Now we are ready to perform our analytics query for the busiest months:

SELECT Month, Count(*)
FROM DepartureFlightData
WHERE origin='SAN' AND Cast(DepDelay as REAL) > 15
GROUP BY Month

The results of this query appear similar to Figure 7-4.

268 | Chapter 7: Interactive Querying in Azure

Figure 7-4. Results showing the month ordinals and number of flights having greater
than 15-minute delays for the airport with code SAN.

So, from this we can conclude that for the San Diego International Airport, Blue Yon‐
der Airports should really focus on the customer experience during the months of
July, August, and December.

Interactive Querying with Hive and Tez
In 2009, Hive started out as a data warehouse solution intended for batch analytics
(read: long waits until results ready). Hortonworks launched an initiative in 2013
called Stinger to make Hive more suitable for interactive SQL queries common in the
enterprise, thereby reducing the query latency. The Stinger initiative, delivered in
2014, is included with and enabled by default in HDInsight, and evolves Hive’s tradi‐
tional architecture by providing the following core enhancements:

ORC file format
The ORC (Optimized Row Columnar) file format provides compressed column-
oriented storage. When it comes to data pruning, the Hive engine avoids having
to read data for columns it is not querying. It also provides lightweight, inline
indexes that support predicate push-down efforts to reduce the reading of unnec‐
essary data. The ORC file format divides the data into files, and within a file into
stripes consisting of 200 megabytes’ worth of data. Within each stripe, the data is
stored in column order (a set of data for column 1 appears, then a set of data for
column 2, etc.). Each file has a footer that provides statistics (in the form of an
index) about the data contained at the file level and the stripe level. Additionally,

Interactive Querying with Hive and Tez | 269

each stripe has its own index that helps to summarize the data contained within
the stripe. This index includes the minimum and maximum values contained for
each column within a group of 10,000 rows within the stripe. In short, engines
that understand how to read ORC files use the indexes that the ORC files contain
to prune unnecessary I/O.

Vectorized SQL engine
Instead of processing a single row’s worth of data at a time, the gist of vectorized
execution is to process 1,024 rows’ worth of data at a time. The idea here is to
leverage data locality principles—the data for one row is probably surrounded by
other rows that are going to be queried, so it makes sense to load and process
them in the same effort.

Apache Tez
Tez is an application framework completely separated from MapReduce that is
used for general data processing tasks that execute on YARN. Think of it this
way: instead of generating a MapReduce program to execute on the cluster, Tez
generalizes map and reduce tasks into a directed acyclic graph (DAG) that
describes the program to execute as a graph where the vertices represent tasks
(map or reduce) and the edges represent the data connection between tasks. The
design of this framework directly addresses the performance shortcomings of
MapReduce, such as always having to have a reduce step follow a map step, or
always having to write intermediate results to disk between steps. In Hive, the Tez
framework is referred to as an engine, where it is the alternative to the Map‐
Reduce engine.

In short, to leverage the benefits of Stinger you need to make sure to store your data
in the ORC file format, and configure Hive to use vectorized SQL execution as well
as the Tez engine. These are enabled by default in HDInsight, so you do not have to
do any special configuration to leverage Stinger.

Stinger.next

The enhancements to Hive from the Stinger initiative will continue
in Stinger.next, which aims to bring subsecond query performance
to Hive. The key enhancements here include long-running daemon
processes in the cheekily named Live Long and Process (LLAP).
LLAP provides a host of functionality that enables subsecond per‐
formance and in-memory caching, leveraging HBase for the meta‐
data catalog to speed metadata operations, and support for Spark as
an alternative engine to Tez and MapReduce (called Hive on
Spark).

270 | Chapter 7: Interactive Querying in Azure

Indexes
When it comes to indexes, Hive has limited indexing capabilities, and these generally
only come into use when you have overridden Hive on HDInsight’s default configu‐
ration to use the MapReduce engine instead.

Hive Indexes and You

For details on the indexes supported by Hive, see the Apache Hive
wiki.

Instead of defining explicit table indexes, you should be leveraging the inline indexes
automatically provided by the ORC file format along with partitioning your tables.

Partitions
Partitioning directly controls how Hive constructs the folder hierarchy leading up to
the data files that make up a table. Hive creates subdirectories reflecting the partition‐
ing structure, where the folder name takes the format: <fieldName>=<value>. The
fieldName represents the name of the column in the source data, and value repre‐
sents that actual value for that partition. One way to understand this is to visualize the
filesystem as a tree:

flightdata
- airport=LAX
---- year=2015
-------- 000000_0.orc
-------- 000001_0.orc
- airport=SAN
---- year=2015
-------- 000000_0.orc

In the previous listing, the flightdata table is partitioned by airport code at the top
level, and then by year. As you can see, this is expressed in the names of the folders
leading up to the ORC files that have the data for the particular partition. You can
think of this approach as indexing the data by way of the folder path leading up to it.
The insight is that if you partition correctly, the query engine gets to ignore entire
directories’ worth of data files during query processing (as would be the case if we
were after only data for the SAN airport—we could ignore the data under the LAX
folder). This is just another example of how to prune large data sets.

Interactive Exploration of the Blue Yonder Airports Data
In this section, we will pick up where we left off in the previous chapter, so make sure
you have your HDInsight cluster ready with the ORC-based internal table
flightdataorc.

Interactive Querying with Hive and Tez | 271

http://bit.ly/2n7XOri
http://bit.ly/2n7XOri

You can execute the following queries using either the Ambari Hive View or an SSH
session running the Hive shell.

Running Hive Queries from Visual Studio

When you have the HDInsight Tools for Visual Studio installed
(which are installed with Azure SDK 2.5.1 or later), you can also
use Visual Studio’s Server Explorer to view your tables and run
Hive queries. If you are curious, try the queries in this chapter
using the steps described here.

Let’s begin by partitioning this data so it better suits the needs of Blue Yonder Air‐
ports. Since each airport is an entity, they want to focus queries at the airport first. For
example, to understand which three months experience the most delays, they would
start by narrowing the data by origin airport, say San Diego International (airport
code SAN), and then performing analytics from there.

One approach is to partition all of the flight delay data in the flightdataorc table by
the value of the origin field (which indicates a flight that is departing from that air‐
port). With Hive, an important consideration is to keep the number of partitions to a
reasonable number—a few hundred to at most a thousand. If you grow beyond that,
you run the risk of creating too many small partitions, and that can get you in trouble
because the result is too many small files, which can overload your HDFS nodes.

So let’s begin by understanding how many partitions we would have if we partitioned
by origin airport:

SELECT count(distinct origin)
FROM flightdataorc
WHERE year = 2015;

If you run the preceding query, you would find that in 2015 there were 322 distinct
origin airport values. Since the number of airports is not likely to change dramatically
over time, this seems like a reasonable way to partition the data. It would be tempting,
for example, to further partition by year (i.e., airport code and then year), but con‐
sider with only three years’ worth of data you would be hitting close to a thousand
partitions (3 years × 322 airports = 966 partitions), and worse, the number of parti‐
tions grows significantly (by over 300) each year.

To get some additional context, run the following query so we get a sense of just how
many rows would be in each partition if we partitioned only by origin airport:

SELECT origin, count(*) FROM flightdataorc
WHERE year = 2015
GROUP BY origin;

Running this query would provide insights like:

272 | Chapter 7: Interactive Querying in Azure

http://bit.ly/2n7VwbF

1. ATL, or Hartsfield-Jackson Atlanta International Airport, has the most flights in
2015 with 379,424.

2. LAX, or Los Angeles International Airport, has 212,401 flights.
3. SAN, or San Diego International Airport, has 76,416 flights.

Why do we care about flight counts departing from each airport? Because the number
of flights represents the number of rows we will have in each partition, assuming we
partition by origin airport. These are not huge numbers of rows—10 years’ worth of
data might have 4M rows in the ATL partition, and it strikes a good balance between
having partitions whose row count is too high and having too many partitions.

Confident we have a good partitioning strategy, let’s look at how we actually create a
partitioned internal table by running the following:

CREATE TABLE departureflightdata
(
Year INT,
Quarter INT,
Month INT,
DayofMonth INT,
DayOfWeek STRING,
FlightDate STRING,
UniqueCarrier STRING,
AirlineID STRING,
Carrier STRING,
TailNum STRING,
FlightNum STRING,
OriginAirportID STRING,
OriginAirportSeqID STRING,
OriginCityMarketID STRING,
--Origin STRING,
OriginCityName1 STRING,
OriginCityName2 STRING,
OriginState STRING,
OriginStateFips STRING,
OriginStateName STRING,
OriginWac STRING,
DestAirportID STRING,
DestAirportSeqID STRING,
DestCityMarketID STRING,
Dest STRING,
DestCityName1 STRING,
DestCityName2 STRING,
DestState STRING,
DestStateFips STRING,
DestStateName STRING,
DestWac STRING,
CRSDepTime INT,
DepTime INT,

Interactive Querying with Hive and Tez | 273

DepDelay INT,
DepDelayMinutes INT,
DepDel15 BOOLEAN,
DepartureDelayGroups INT,
DepTimeBlk STRING,
TaxiOut INT,
WheelsOff INT,
WheelsOn INT,
TaxiIn INT,
CRSArrTime INT,
ArrTime INT,
ArrDelay INT,
ArrDelayMinutes INT,
ArrDel15 BOOLEAN,
ArrivalDelayGroups INT,
ArrTimeBlk STRING,
Cancelled BOOLEAN,
CancellationCode STRING,
Diverted BOOLEAN,
CRSElapsedTime INT,
ActualElapsedTime INT,
AirTime INT,
Flights INT,
Distance INT,
DistanceGroup INT,
CarrierDelay INT,
WeatherDelay INT,
NASDelay INT,
SecurityDelay INT,
LateAircraftDelay INT,
FirstDepTime INT,
TotalAddGTime INT,
LongestAddGTime INT,
DivAirportLandings BOOLEAN,
DivReachedDest BOOLEAN,
DivActualElapsedTime INT
)
PARTITIONED BY (Origin STRING)
STORED AS ORC;

In the previous data definition language query, we declare a managed table just as we
did previously, with two notable differences. The second to last has a PARTITIONED BY
clause that lists the column name and type of the column to partition by; here we
identify that we want to partition by the Origin column, which has a type of STRING.
Because we identified the partitioning column in the PARTITIONED BY clause, we
should not redefine it in the columns listing that defines the schema of the table—
note that Origin is commented out to highlight this fact.

Now we have an empty table and are ready to load data into it. But how do we load
data into the right partitions of a table, given that each partition is basically just a
folder (or folder hierarchy)? Because we want to insert into a partitioned table, Hive

274 | Chapter 7: Interactive Querying in Azure

does not allow us to use the CREATE TABLE AS syntax, but we can still use a plain
INSERT statement augmented with a clause that identifies the partition column to use
from the source query by running the following:

INSERT OVERWRITE TABLE departureflightdata
PARTITION (Origin)

 SELECT
 Year ,
 Quarter ,
 Month ,
 DayofMonth ,
 DayOfWeek ,
 FlightDate ,
 UniqueCarrier ,
 AirlineID ,
 Carrier ,
 TailNum ,
 FlightNum ,
 OriginAirportID ,
 OriginAirportSeqID ,
 OriginCityMarketID ,
 --Origin ,
 OriginCityName1 ,
 OriginCityName2 ,
 OriginState ,
 OriginStateFips ,
 OriginStateName ,
 OriginWac ,
 DestAirportID ,
 DestAirportSeqID ,
 DestCityMarketID ,
 Dest ,
 DestCityName1 ,
 DestCityName2 ,
 DestState ,
 DestStateFips ,
 DestStateName ,
 DestWac ,
 CRSDepTime ,
 DepTime ,
 DepDelay ,
 DepDelayMinutes ,
 DepDel15 ,
 DepartureDelayGroups ,
 DepTimeBlk ,
 TaxiOut ,
 WheelsOff ,
 WheelsOn ,
 TaxiIn ,
 CRSArrTime ,
 ArrTime ,

Interactive Querying with Hive and Tez | 275

 ArrDelay ,
 ArrDelayMinutes ,
 ArrDel15 ,
 ArrivalDelayGroups ,
 ArrTimeBlk ,
 Cancelled ,
 CancellationCode ,
 Diverted ,
 CRSElapsedTime ,
 ActualElapsedTime ,
 AirTime ,
 Flights ,
 Distance ,
 DistanceGroup ,
 CarrierDelay ,
 WeatherDelay ,
 NASDelay ,
 SecurityDelay ,
 LateAircraftDelay ,
 FirstDepTime ,
 TotalAddGTime ,
 LongestAddGTime ,
 DivAirportLandings ,
 DivReachedDest ,
 DivActualElapsedTime ,
 Origin
 FROM flightdataorc;

In the previous query, notice that the PARTITION clause identifies the column Origin
as the column containing the value used to partition each row. Reading further down,
observe that we commented out Origin from its original position and made it the
very last column we select. Hive follows a convention that the columns referenced in
order in the PARTITION clause are listed in the same order as the last columns in the
query. In this case we only used one column, Origin. If we had three (say Origin,
Year, and Quarter) columns in the PARTITION clause, then the last three columns
before the FROM clause would need to be Origin, Year, and Quarter. With this syntax,
we are able to dynamically insert data into the right partitions—this is what Hive calls
dynamic partitioning.

If you take a look at the departureflightdata on disk (in Azure Storage or Azure Data
Lake Store according to your cluster), you will see the partitioning structure clearly,
as shown in Figure 7-5.

276 | Chapter 7: Interactive Querying in Azure

Figure 7-5. Folder structure resulting from partitioning by origin airport code.

With our data set now nicely partitioned by origin airport, let’s take the perspective of
a single airport (say SAN) and find the count of delays that are greater than 15
minutes. Run the following query against your instance of Hive:

SELECT Month, Count(*)
FROM departureflightdata
WHERE origin='SAN' AND DepDelay > 15
GROUP BY Month;

You should see a result set that looks like the following:

month _c1

5 2418

9 1488

11 1922

1 2365

2 2296

7 3053

10 1529

12 2992

3 2206

4 2161

6 2999

8 2365

Interactive Querying with Hive and Tez | 277

A quick scan of this (or if you are so bold, another query) reveals that the top three
months with the most delays are:

• 7: July
• 6: June
• 12: December

So it would seem Blue Yonder Airports should focus their efforts on customer experi‐
ence in the earlier summer months and the December holiday season.

Where’s the Tez?

One thing you may not have noticed while you ran these queries
was the framework being run under the covers. Unless you
changed your default settings, your queries were executing using
Tez on HDInsight. This is a fact you can confirm if you look closely
at the console output when the query is running (you will see men‐
tion of “starting Tez session” or “DAG finished in XX.YY seconds”).

Interactive Querying with Spark SQL
Spark SQL and the DataFrame API enable interactive querying of data sets in a few
different ways. First, Spark SQL’s support for performant columnar formats like Par‐
quet and ORC enable pruning of large data sets at query processing time by virtue of
predicate pushdown and table partitions. Second, once a data set has been loaded in-
memory across the cluster, iterative querying (which is common when you are
exploring data during interactive querying) benefits, as the data is served directly
from memory instead of from disk.

Indexes
Currently, Spark SQL has no support for indexes. Table indexes (compact, bitmap,
and bloom) from Hive are also not supported yet—meaning that if you have created a
table in Hive that has these indexes and try to query it via a HiveContext in Spark, the
indexes will not be used in the query processing. Just as for Hive, you can get some
index help by saving your data to ORC files, so when the data is being loaded the
inline indexes within the ORC file can help to prune the data that has to actually be
read.

Partitions
Spark SQL uses the same approach to expressing partitions on disk as does Hive (see
“Interactive Querying with Hive and Tez” on page 269), whereby the partitions are
subfolders whose names are key/value pairs, where the key is the partition column

278 | Chapter 7: Interactive Querying in Azure

name and the value is the particular value for the data represented in that partition.
You can partition a DataFrame at save time by using the partitionBy method prior
to invoking the save method:

mydataframe.write.format("orc").partitionBy("name").save("mydata")

The partitionBy method takes a list of string names representing the columns in
order by which to partition the DataFrame’s data.

Interactive Exploration of the Blue Yonder Airports Data
In this section, we will pick up where we left off in the previous chapter, so make sure
you have your Spark HDInsight cluster ready with the ORC-based data set available
as flightdataorcspark, as was shown there.

The following scripts can be run using either the Jupyter notebook or the Spark shell
within an SSH session. For our purposes here, we’ll use the Jupyter notebook so we
can also leverage some of its chart visualization features. Recall you can open Jupyter
from the blade for your HDInsight cluster, selecting Cluster Dashboards, selecting
Jupyter, and then logging in with your admin credentials.

Once you have the Jupyter website open, select New and then Spark to create a new
notebook for running Scala-based Spark programs.

The first thing you will need to is to create a DataFrame loaded with the ORC data
you created in the previous chapter. If you were using Azure Data Lake Store, this
would appear as follows:

val flightData = sqlContext.read.format("orc")
.load("adl://[lake].azuredatalakestore.net:443/flightdataorcspark")

Similarly, you would load from Azure Storage by using the wasbs: scheme and path:

val flightData = sqlContext.read.format("orc")
.load(
"wasbs://[container]@[acct].blob.core.windows.net/flightdataorcspark"
)

Now that we have this data in a DataFrame, we can query it using the Language Inte‐
grated Query approach as we showed in the previous chapter, or we can explore it
using SQL. To be able to issue queries using SQL, we first need to register a tempo‐
rary table that represents the DataFrame:

flightData.registerTempTable("flightdatatemp")

Make sure you run these cells in your Jupyter notebook before proceeding.

Next, let’s explore the number of distinct origin airports. Within a Jupyter notebook,
you can use what’s called “magics” to issue specialized commands, such as SQL state‐
ments. In a new cell in the notebook, enter the following and run it:

Interactive Querying with Spark SQL | 279

%%sql
SELECT count(distinct origin)
FROM flightdatatemp
WHERE year = 2015

Note that the magic that is responsible for interpreting the cell’s script as SQL instead
of Scala is %%sql. Once the query returns, you should see output similar to Figure 7-6.

Figure 7-6. The results table indicates there are 322 distinct origins in the data repre‐
sented by the flightdatatemp temporary table.

This gives us a sense for how many partitions we will create when we partition the
data by origin. Next, let’s take a look at about how much data will appear in the largest
partitions:

%%sql
SELECT * FROM
(SELECT origin, count(*) counted FROM flightdatatemp
WHERE year = 2015
GROUP BY origin) departures
ORDER BY counted DESC
LIMIT 30

The results showing the top 30 busiest airports in 2015 should appear as shown in
Figure 7-7.

Given that we are happy that we have a reasonable number of partitions and a rea‐
sonable size for partitions, let’s save the DataFrame in a partitioned format back to
storage by running the following:

flightData.write.format("orc").partitionBy("origin").save(
"adl://[lake].azuredatalakestore.net:443/departureflightdata")

280 | Chapter 7: Interactive Querying in Azure

Figure 7-7. The results indicate that the ATL partition would have the most rows, at
379,424 rows.

Substitute the WASB string as the input to the save method if you were using Azure
Storage instead. Note that all we needed to do was invoke the partitionBy method
and tell it the name of the column to partition by (in our case, the origin column).

If we open up our favorite tool for exploring storage, we can observe the partitioned
folder structure, with ORC files at the leaf nodes of each directory tree (Figure 7-8).

Figure 7-8. Viewing the partitioned folder structure for the origin=SAN partition of the
departureflightdata table in Azure Data Lake Store.

Now, before we can query against this partitioned version, we need to load it into a
DataFrame. Run the following in your notebook:

Interactive Querying with Spark SQL | 281

val departureFlightData = sqlContext.read.format("orc").load(
"adl://[lake].azuredatalakestore.net:443/departureflightdata")
departureFlightData.registerTempTable("departureflightdatatemp")

Now we are ready to write our analytic query against this table. Run the following in
a new cell in your notebook:

%%sql
SELECT Month, Count(*)
FROM departureflightdatatemp
WHERE origin='SAN' AND DepDelay > 15
GROUP BY Month

When the results appear, select the Bar button to visualize the results as a bar chart.
Notice that June, July, and December have the most delays over 15 minutes in dura‐
tion—these are the months Blue Yonder Airports should focus on for the San Diego
airport (Figure 7-9).

Figure 7-9. The results of the SQL query against the partitioned data, showing the results
as a bar chart in a Jupyter notebook.

282 | Chapter 7: Interactive Querying in Azure

Interactive Querying with USQL
Azure Data Lake Analytics is primarily aimed at batch analytics, but there are a few
features it supports that can help bring down the query processing time into the
realm of interactive querying.

Like SQL Data Warehouse, Azure Data Lake Analytics supports indexes, partitions,
and distributions, with some limitations.

Tables in Azure Data Lake Analytics currently must have a clustered index (e.g., col‐
umnar indexes and heap tables are not supported). Tables can be split into partitions
or directly into distributions. Furthermore, partitions can be split into distributions.
In addition to defining a clustered index, every table must define a distribution
scheme that determines how rows are assigned to the distributions that make up a
table or partition of a table.

Azure Data Lake Analytics supports the following four distribution schemes:

RANGE

Distributes rows based on an ordered list of columns where the system will auto‐
matically determine the bounds for the distribution. In effect, each distribution
will contain a range of rows in sorted order between a minimum value inclusive
and maximum value exclusive for the columns in the range.

HASH

Distributes rows according to the hash of a list of columns.

DIRECT_HASH

Distributes rows according to the hashed value of a single, integer column.

ROUND_ROBIN

Assigns rows to distributions in a round-robin fashion irrespective of any col‐
umn values.

Interactive Exploration of the Blue Yonder Airports Data
In this section, we will pick up where we left off in the previous chapter, so make sure
you have your Azure Data Lakes Analytics instance ready with the managed table
available as FlightDelays, as was shown there.

We will execute the U-SQL jobs using the Azure Portal (as was shown in the previous
chapter), but of course you are free to try alternatives such as Visual Studio.

Let’s begin by getting the count of the distinct airports in the data set in 2014:

Interactive Querying with USQL | 283

@results =
 SELECT COUNT(DISTINCT Origin) AS Counted
 FROM FlightDelays
 WHERE Year == 2014;

OUTPUT @results
TO "/flightdataout/Output/counts.csv"
USING Outputters.Csv();

If you open the output file (counts.csv), you should confirm the count is 301 distinct
origins for the year 2014.

You can view the top 30 busiest airports by departures by executing the following
query:

@results =
 SELECT Origin, COUNT(*) AS Counted
 FROM FlightDelays
 WHERE Year == 2014
 GROUP BY Origin
 ORDER BY Counted DESC
 FETCH 30 ROWS;

OUTPUT @results
TO "/flightdataout/Output/counts.csv"
USING Outputters.Csv();

You should find that in 2014, the busiest airport was ATL.

Next, let’s examine how we might partition the table by using a HASH distribution, to
help with the requirement that most queries will center on a single airport:

CREATE TABLE DepartureFlightData(
 INDEX idx_year_month_day_flightnum CLUSTERED (Year, Month, DayofMonth,
 FlightNum)
 PARTITIONED BY HASH (Origin)
) AS
SELECT *
FROM FlightDelays;

Note in the previous query that we were required to provide a definition for the clus‐
tered index (for which we defined the composite Year, Month, DayofMonth, and
FlightNum), and defined the HASH distribution on the Origin column within the PAR
TITIONED BY clause.

With our table partitioned, now we can query for the busiest months:

@results =
SELECT Month, COUNT(*) AS Counted
FROM DepartureFlightData
WHERE Origin == "SAN" AND DepDelay > 15
GROUP BY Month;

284 | Chapter 7: Interactive Querying in Azure

OUTPUT @results
TO "/flightdataout/Output/counts.csv"
USING Outputters.Csv();

Summary
In this chapter we explored various techniques within Hive, Spark, SQL Data Ware‐
house, and Azure Data Lake Analytics to further prepare the flight data for explora‐
tory analytics, and then we issued some analytic queries to help Blue Yonder Airports
better understand their “busy” seasons during which flights are most delayed.

In the next chapter, we will look at layering in intelligence to our data pipeline by
exploring the options for creating and operationalizing machine learning models.

Summary | 285

CHAPTER 8

Hot and Cold Path Serving Layer in Azure

In this chapter we focus on the end goal of the lambda architecture—enabling the
querying of the results of all the processing performed. To this end, we will examine
the Azure services that support querying of both hot path data and cold path data by
client applications and BI tools, which we will collectively refer to as the serving layer
(see Figure 8-1).

The serving layer collectively deals with data from both the hot path and the cold
path. It is further subdivided into a speed serving layer, which represents the subset of
incrementallyprocessed hot path data that has not yet been processed by the batch
techniques of the cold path, and the batch serving layer that contains the batch-
processed output of the cold path.

The main idea behind the speed serving layer is that it supports a high degree of
query flexibility—that is to say, it provides a query model enabling the client applica‐
tions to ask the questions they need, be it direct lookups or more complex analytic
queries. In other words, the serving layer has strong support for random reads. The
serving layer also has low latency; these queries should return results in subseconds
to seconds.

287

Figure 8-1. This chapter focuses on the serving storage components in the Azure analyt‐
ics pipeline.

288 | Chapter 8: Hot and Cold Path Serving Layer in Azure

For the speed serving layer, because of the subsetting of the data, the actual volumes
of data that it needs to store and process are usually measured in tens or hundreds of
gigabytes to at most a few terabytes, as opposed to the much higher scale we need to
handle in the cold path. This data volume reduction opens the door to using a wide
variety of data stores in the speed serving layer. The key aspects of the speed serving
layer are:

Random reads
Support for quickly locating data during random read style queries. Usually sup‐
port for random reads is enabled via indexes.

Random writes
The data store needs to support random writes inserting data from the streaming
sources with very low latency (e.g., measured in milliseconds), since any prepara‐
tion work needed to create a batch and batch load data into the data store would
typically introduce undesired delays in making the hot data available to clients.

Data expiration
The data stores can provide a mechanism to automatically purge the data in the
speed serving layer once it has landed in the batch serving layer. Some data stores
offer a time to live (TTL) on each record managed by the data store, whereby
those records exceeding the TTL are automatically purged from the data store. In
some scenarios this is sufficient, because there is enough of a time overlap
between the TTL and the time it takes for the batch serving layer to get the same
data that it is never the case that data is purged from the speed serving layer but
has not arrived in batch serving layer. In other cases, the application coordinating
the data processing pipeline has to orchestrate this purging of data from the
speed serving layer after it has successfully written the data to the batch serving
layer.

Approximation
Some data stores can minimize their read and write latency by reducing the
amount of data actually stored. Oftentimes the data is approximated or stored
using specialized algorithms that summarize the data within a tolerable margin
of error.

The batch serving layer has a different set of characteristics. The key aspects of the
batch serving layer are:

Random reads
For the batch serving layer, indexes play an equally important role to support
both point lookup and analytic style queries that may span large swaths of the
data they manage.

Hot and Cold Path Serving Layer in Azure | 289

Batch writes
The batch serving layer need not support random writes; since the requirement
of the batch serving layer is to enable querying over the latest set of batch-
processed data, loading data in batches consisting of the processed views is all
that is required. Random writes add complexity and overhead (such as having to
deal with compaction of unused space resulting from deleted or updated data
and enforcing synchronization to present the correct value for read after write
scenarios). Swapping in bulk sets of data representing the latest run of batch-
processed, cold path data and swapping out the old data are techniques often
leveraged by data stores in the batch serving layer.

Azure Redis Cache
Azure Redis Cache provides the open source Redis cache in the form of a managed
service. At its core Redis provides a distributed, in-memory cache that, when
deployed in Azure, can support production workloads using either a replicated pri‐
mary/secondary configuration or a scaled-out cluster involving many nodes and pro‐
viding as much as 530 GB of cache storage.

The fact that all data is stored in memory should suggest that Redis is particularly
good at handling random reads and random writes—and it is. Redis is a key/value
store where the key is always a string, but the value can be one of the many supported
types. Under the covers, values that use primitive types like strings and numbers are
always represented as string values. However, Redis provides commands that can
atomically parse and manipulate numeric values (such as to increment or decrement
the number). Redis also supports structures as values including lists, sets, sorted sets,
hashes, and bit arrays. Redis also provides a unique structure, the HyperLogLog,
which can be very useful for counting unique inputs at scale using a slight approxi‐
mation (with an error of less than 1%) while using very little memory. Finally, Redis
also supports setting an expiration on keys so that once the TTL has elapsed the key
(and its value) are automatically removed from the data store.

Redis Reference

To get a better idea of the capabilities of Redis, see the complete list
of commands for Redis by visiting http://redis.io/commands. Follow
that up with this excellent summary of Redis data types: http://
redis.io/topics/data-types-intro.

Given that Redis operates in-memory, the I/O latency for performing random read/
write operations is minimized versus the same performed on disk. In Azure Redis
Cache, the latency you experience is a combination of the latency of performing the
operation within Redis plus the network latency of the round-trip between your cli‐

290 | Chapter 8: Hot and Cold Path Serving Layer in Azure

http://redis.io/commands
http://redis.io/topics/data-types-intro
http://redis.io/topics/data-types-intro

ent application and Redis Cache. You minimize network latency simply by deploying
your Redis cache in the same location as the service or client applications that use it.
Additionally, you can control throughput of your Redis instance by the selection of
the pricing tier—this will determine the available network bandwidth and the peak
requests per second. While Redis is accessed over the network (like any other data
store), for most applications you will see latencies predominantly in the low double-
digit millisecond range (e.g., 3–20 ms), which is pretty low latency indeed.

Benchmarking Azure Redis Cache

Your application latency may vary. If you are curious, you can run
your own benchmarks on your Azure Redis Cache instance to see
if you have it configured and sized correctly. This involves setting
up a Windows VM in the same region as your Azure Redis Cache
instance and running a command-line executable against it.
You can download the Redis benchmark for Windows from https://
github.com/MSOpenTech/redis/releases.
Once you have done that, see this page for samples of the bench‐
mark commands.

Given the support for random reads/writes, data expiration, and approximation,
Azure Redis Cache fits well in the speed serving layer to enable client applications to
query the hot path data.

Because Redis maintains all data in memory, its maximum size will always have sig‐
nificantly lower limits than disk-based data stores. The current limit of 530 GB is
likely plenty to support a window of hot path data for a few hours, but certainly not
likely to support all of the data produced from batch processing. Hence, it is not a
good candidate for the batch serving layer.

Redis in the Speed Serving Layer
Let’s turn our attention to applying Redis to support the speed serving layer for Blue
Yonder Airports.

First, we need to deploy an instance of Azure Redis Cache. We can easily accomplish
this using the Azure Portal:

1. Log in to the Azure Portal and select New→Data + Storage→Redis Cache.
2. Provide a DNS name for your Redis Cache instance, then choose a subscription,

resource group, and location.
3. For the pricing tier, you can use any tier for this example. For production, you

are likely to use Premium so that you can leverage the total memory made avail‐
able by the cluster.

Azure Redis Cache | 291

https://github.com/MSOpenTech/redis/releases
https://github.com/MSOpenTech/redis/releases
http://bit.ly/2o55Alg
https://portal.azure.com

4. If you selected a Premium tier, on the Redis Cluster setting, you should enable
clustering and indicate how many nodes are in the cluster (and also the total
amount of cluster memory) by adjusting the shard count slider. Also, note that if
you selected Premium tier, you can enable Redis Database (RDB) backup, which
will take snapshots on an interval. With Premium, you can also opt to provision
the cluster within an Azure virtual network (meaning that your Azure hosted
applications can access Redis without having to go through a public endpoint).

5. Select Create to provision your Redis Cache.

With your Redis Cache instance in hand, clone the sample project from http://bit.ly/
2bJDLOi.

This Visual Studio solution contains a project called CachingEventProcessorHost‐
WebJob, which shows an event processor host consuming events from an Event Hubs
instance (which can also be IoT Hub), and storing the results of later querying. For
simplicity, it periodically queries the cache to the log output to show the approach to
querying Redis. This project uses the Redis C# StackExchange libraries.

Open the solution in Visual Studio, expand the CachingEventProcessorHostWebJob,
and then open app.config to set the following settings:

redisConnectionString

From the Azure Portal, navigate to your Redis Cache instance, and select Settings
and then Access Keys. On the Access Keys blade, copy the value under the label
“Primary conneciton string (StackExchange.Redis)” and paste it into the value of
this app setting in app.config.

eventHubConnectionString

The connection string to your Event Hub endpoint that has read permissions.

eventHubName

The name of your Event Hub.

eventHubConsumerGroup

The name of the consumer group for the event processor to use if you created
one; otherwise, leave this as $Default.

storageAccountName

The Azure Storage account name where the event processor will checkpoint its
progress.

storageAccountKey

The key to the aforementioned Storage account.

This project follows the same structure as was covered in Chapter 4, in “EventProces‐
sorHost” on page 170. This project provides a different implementation for the event

292 | Chapter 8: Hot and Cold Path Serving Layer in Azure

http://bit.ly/2bJDLOi
http://bit.ly/2bJDLOi

processor that writes to the Redis Cache and periodically queries it. Let’s explore how
it uses Redis.

Open CachingProcessor.cs and scroll down to the ProcessEvents method, which
looks as follows:

private void ProcessEvents(IEnumerable<EventData> events)
{
 IDatabase cache = Connection.GetDatabase();

 foreach (var eventData in events)
 {
 try
 {
 var eventBytes = eventData.GetBytes();
 var jsonMessage = Encoding.UTF8.GetString(eventBytes);
 var evt = JObject.Parse(jsonMessage);

 JToken temp;
 TempDataPoint datapoint;

 if (evt.TryGetValue("temp", out temp))
 {
 datapoint = JsonConvert.DeserializeObject<TempDataPoint>(
 jsonMessage);
 cache.StringSet("device:temp:latest:" +
 datapoint.deviceId, jsonMessage);
 cache.KeyExpire("device:temp:latest:"+
 datapoint.deviceId,
 TimeSpan.FromMinutes(120));
 cache.HyperLogLogAdd("device:temp:reportcounts:" +
 datapoint.deviceId, jsonMessage);
 }
 }
 catch (Exception ex)
 {
 LogError(ex.Message);
 }
 }
}

In the first line, we get a connection to the Redis instance, and then the default data‐
base. The Connection property is lazily initialized with the redisConnectionString
value you updated in app.config. Then we loop over each event received from the
Event Hub, and extract and parse the JSON to examine if it contains a temperature
value. If it does, we want to cache it. This brings us to the first use of Redis, to cache a
value:

cache.StringSet("device:temp:latest:" +
 datapoint.deviceId, jsonMessage);

Azure Redis Cache | 293

The way primitive values are cached is by providing a string key name and a value
that is serialized as a string. Notice the way we structure the string that makes up the
key ("device:temp:latest:123")—it looks like a namespace prefixed in front of the
device ID, and that’s exactly how its used. With Redis you only have a single database
(on a clustered deployment), and you don’t have any notion of tables. However, if you
use prefixes for your keys, then you can query for the keys that match a substring of
the namespace and thereby query for all keys in that “table”—for example, to retrieve
the latest temperature reading for all devices. We’ll show how we query that in a
moment. For now, take a look at the second parameter we provide to StringSet: the
JSON-formatted string representing the event payload.

In the next line, we set time to live on the newly added key by using the KeyExpire
method:

cache.KeyExpire("device:temp:latest:"+ datapoint.deviceId,
 TimeSpan.FromMinutes(120));

In this line, we are instructing Redis that this key and its value should be deleted after
120 minutes, assuming that’s more than enough time for our cold path processing to
include this data. If we run into a situation where it is not long enough (e.g., the cold
path processing is down for maintenance), we can always extend the TTL by making
another call to KeyExpire.

Following that, we show an example of using HyperLogLog, which takes a set-based
approach to counting, whereby the count of items in the set (the cardinality of the
set) is the number of unique items in the set:

cache.HyperLogLogAdd("device:temp:reportcounts:" + datapoint.deviceId,
 jsonMessage);

The way to think about HyperLogLog in this case is that we are using it to count the
number of unique JSON message temperature payloads sent by the device. Alter‐
nately, if the device sent the same temperature reading with the same timestamp mul‐
tiple times, these would yield the same JSON string and HyperLogLog would count it
as having happened only once. This should elucidate a core value of the HyperLogLog
approach in the speed serving layer: it can be used to easily deduplicate counts com‐
ing from hot path data.

Reading values from Redis using C# is fairly straightforword as well. In CachingPro‐
cessor.cs, we have the method PrintSnapshotStatus, which is called periodically by
the event processor:

private void PrintStatusSnapshot()
{

 try
 {
 var redisClient = new StackExchangeRedisCacheClient(

294 | Chapter 8: Hot and Cold Path Serving Layer in Azure

 Connection, new NewtonsoftSerializer());
 var keys = redisClient.SearchKeys(
 "device:temp:latest:" + "*");
 var dict = redisClient.GetAll<TempDataPoint>(keys);

 Console.WriteLine("=======================");
 Console.WriteLine("Latest Temp Readings: ");
 foreach (var key in dict.Keys)
 {
 Console.WriteLine($"\t{key}:\t{dict[key].temp}");
 }

 IDatabase cache = Connection.GetDatabase();
 var countKeys = redisClient.SearchKeys("device:temp:reportcounts:" + "*");

 Console.WriteLine("=======================");
 Console.WriteLine("Latest Report Counts: ");
 foreach (var key in countKeys)
 {
 Console.WriteLine($"\t{key}:\t{cache.HyperLogLogLength(key)}");
 }
 }
 catch (Exception ex)
 {
 LogError("PrintStatusSnapshot: " + ex.Message);
 }

}

Note that in this case, we wrap the connection in an instance of StackExchangeRedis
CacheClient. This provides some extra functionality, including the ability to scan all
keys that match a pattern and return them as a list, which we can then use to get all
the values for those keys:

var redisClient = new StackExchangeRedisCacheClient(
 Connection, new NewtonsoftSerializer());
var keys = redisClient.SearchKeys(
 "device:temp:latest:" + "*");
var dict = redisClient.GetAll<TempDataPoint>(keys);

The important piece in the call to SearchKeys is the use of the asterisk (*) to enable
the matching of any key that starts with device:temp:latest. The call to GetAll gets
us back a dictionary of key/value pairs that we can iterate over to see the latest cached
temperature readings by device:

foreach (var key in dict.Keys)
{
 Console.WriteLine($"\t{key}:\t{dict[key].temp}");
}

Azure Redis Cache | 295

Following that loop in PrintStatusSnapshot, we query the HyperLogLog counts for
each key:

IDatabase cache = Connection.GetDatabase();
var countKeys = redisClient.SearchKeys("device:temp:reportcounts:" + "*");

Console.WriteLine("=======================");
Console.WriteLine("Latest Report Counts: ");
foreach (var key in countKeys)
{
 Console.WriteLine($"\t{key}:\t{cache.HyperLogLogLength(key)}");
}

Notice that in this case we use SearchKeys to get the list of keys to use in retrieving
values, but we need to make each lookup individually by using HyperLogLogLength.
This call returns the count of distinct temperature reports for each device.

If you run the project, the output should be similar to the following (depending on
how much data you have in your Event Hub):

=======================
Latest Temp Readings:
 device:temp:latest:1: 65
=======================
Latest Report Counts:
 device:temp:reportcounts:1: 29705
Checkpoint partition 1 progress.
Checkpoint partition 3 progress.
Checkpoint partition 2 progress.
Checkpoint partition 0 progress.

You can also deploy this project as a Web Job in Azure as desired (which will greatly
improve the processing speed by eliminating the network latency).

Document DB
Azure DocumentDB is a PaaS offering that enables the scalable storage and querying
of schemaless JSON documents with response times in the order of milliseconds, and
it enables you to scale the service along the axis required by your applications—be it
storage capacity (e.g., total storage in GBs), query throughput (e.g., queries per sec‐
ond), or both. DocumentDB can be queried using SDKs for .NET, Node.js, Java, or
Python, or via its REST endpoints. In addition, there is the DocumentDB Hadoop
Connector, which enables you to interact with DocumentDB from Hive, Pig, and
MapReduce. Users can also write queries in a SQL syntax or leverage the SDK’s
language-specific constructs to generate and issue the necessary SQL on their behalf.

296 | Chapter 8: Hot and Cold Path Serving Layer in Azure

DocumentDB Hadoop Connector

The DocumentDB Hadoop Connector is something you install into
your HDInsight cluster during provisioning time. For step-by-step
instructions on how to install the connector, see the Microsoft
Azure documentation.
For the GitHub repository containing the connector source code
and documentation, see http://bit.ly/2o5epeK.

The structure of DocumentDB is as follows. At the very lowest level you have com‐
plete, individual JSON documents. These documents are stored in collections, which
are logical containers for storing document data. Collections can store a mix of docu‐
ments having differing schemas—essentially, a schema is never explicitly defined at
write time, and is used in schema-on-read fashion. Collections can consist of either a
single partition or be created to support multiple partitions. Each partition has a fixed
10 GB of SSD-backed storage and a configurable throughput with a maximum of 10K
request units (RUs) per second. RUs are a logical metric of provisioned throughput
that quantify the reserved amount of resources (CPU, memory, and IOPS) available
for read and write operations. In addition to storing documents, collections can also
manage triggers (pre-action and post-action), stored procedures, and user-defined
functions, all of which are programmed in JavaScript and run server-side.

Estimating RUs

To help you estimate the RU requirements for your workload,
Microsoft has provided a web-based calculator that enables you to
upload a sample of your JSON documents and provides an estimate
of RU needs based upon read, write, update, and delete operations
per second that you specify. See https://www.documentdb.com/
capacityplanner.

Collections are grouped into a database, which acts as the security boundary at which
you define users and permissions. Databases are themselves organized into a database
account that controls aspects such as georeplication, default consistency settings, and
the master access keys.

Given this hierarchy, it should come as no surprise that we scale DocumentDB by
scaling collections, which we achieve in a scale-out fashion by adding partitions.

When you provision a collection, you specify its partitioning mode, which can either
be Single Partition or Partitioned. If you select Single Partition, then your collection
will have a maximum capacity of 10 GB and 10K RUs. If you select Partitioned, then
you eliminate those hard limits. In the case of a partitioned collection, the number of
partitions is automatically determined by DocumentDB based on the storage size and
the provisioned throughput of the collection. In fact, partition management is fully

Document DB | 297

http://bit.ly/2nCL2DR
http://bit.ly/2nCL2DR
http://bit.ly/2o5epeK
https://www.documentdb.com/capacityplanner
https://www.documentdb.com/capacityplanner

managed by Azure DocumentDB—you do not have to write any code or manage
your partitions to deal with tasks like adding, removing, and rebalancing partitions.
For your part, during collection provisioning you need to provide a partition key (the
path to the value in the JSON document whose hashed value will determine partition
assignment for that document). After that, DocumentDB will take care of ensuring
that documents with the same partition key land in the same partition.

With regards to indexing, by default all document properties of all documents are
indexed, but you can alter the indexing policy to specify which document paths to
include or exclude from the index to improve write performance and lower index
storage costs. Additionally, collections can be configured to index lazily (i.e., asyn‐
chronously to the write operation), which also improves write performance.

All DocumentDB partitions are replicated to multiple replicas for high availability.
DocumentDB offers a unique mechanism for improving write performance—tunable
consistency levels (between replicas) that are scoped to a single user request. Docu‐
ment DB provides four consistency levels; from strongest (heaviest write impact, but
greatest consistency across replicas) to weakest (lowest write impact, but lowest con‐
sistency across replicas), they are:

Strong
Reads are globally (across any and all replicas) guaranteed to return the most
recent version of a document. A write is visible only after it is synchronously
committed by the majority quorum of replicas. A client can never see an uncom‐
mitted or partial write and is always guaranteed to read the latest acknowledged
write.

Bounded Staleness
Globally guarantees that the reads may lag behind writes by at most K versions of
a document or by a specified time interval.

Session
Enables local guarantees for a client to “read your own writes”—in other words,
ensuring a client sees changes consistent within its session.

Eventual
Provides the weakest of guarantees, essentially saying that DocumentDB is not
enforcing a quorum of replicas to have acknowledged the change before
acknowledging the write to a client—replicas will asynchronously become con‐
sistent at some undetermined point in time after the write. The client, for its part,
sees the write as a “fire and forget,” knowing that only the primary replica
acknowledged the change.

You can specify the default consistency level for all collections by configuring it on
the database account. However, each read or query request can specify its desired
consistency level.

298 | Chapter 8: Hot and Cold Path Serving Layer in Azure

More on Consistency Levels

For more details on the consistency levels and the use of lazy
indexes, see the Microsoft Azure documentation.

Document DB in the Speed Serving Layer
Given that DocumentDB serves data off of SSD storage and its measured propensity
to service random reads 99% of the time in under 10 ms and random writes 99% of
the time under 15 ms, it makes a great candidate for landing hot path data and ena‐
bling querying against it using a SQL syntax. Features like eventual consistency and
lazy indexing enable you to trade some degree of read-time accuracy in favor of
improved write performance to better meet the demands of your workload. Parti‐
tioned collections, and the automatic partition management provided by Docu‐
mentDB, help ensure that as your hot path gets “hotter” you can scale by adding
more partitions with more RUs.

DocumentDB supports specifying a time to live on documents within collections,
which is also beneficial to managing the size of your hot path data stores. With the
TTL behavior, documents can be automatically purged from the database after a
period of time. The default TTL can be set at the collection level, and overridden on a
per-document basis. The TTL value is set in seconds and is calculated from the delta
between the _ts property (that captures the time when the document was last modi‐
fied) and the current time. While the documents are physically deleted by the system
in the background, the documents are marked as unavailable as soon as the docu‐
ment has expired. This means no operations will be allowed on these documents after
this time, and they will be excluded from the results of any queries performed.

Figure 8-2. Example of enabling time to live on a collection in the Azure Portal and set‐
ting the default expiration to 10 minutes (600 seconds).

In addition to the SDKs, DocumentDB provides click-to-configure integration with
Stream Analytics, making it an easy destination for data ingested from Event Hubs
and processed by Stream Analytics.

Let’s examine this flow to store the Blue Yonder Airports telemetry data from Event
Hubs using a Stream Analytics job. In the Azure Portal, create a new DocumentDB
account, by selecting New→Databases→DocumentDB. To create a DocumentDB
account you only need to provide an ID for the account, select the NoSQL API

Document DB | 299

http://bit.ly/2nnBsEq

(which for our purposes you can leave at DocumentDB), and choose a subscription,
resource group, and location (Figure 8-3).

Figure 8-3. Creating a new DocumentDB account in the Azure Portal.

With your DocumentDB account ready, select Add Database in the DocumentDB
Account blade. This only requires an ID for the database. With your database in
place, from its blade in the Portal, select Add Collection. Here you will need to pro‐
vide an ID for the collection, choose the pricing tier (Standard is sufficient for our
purposes), and set the partitioning mode to Partitioned. You should also set the RUs
as desired (the minimum is 10,100 RUs, but for reasonable performance in this demo
you should opt for 50,000 RUs). Finally, set the partition key to “/deviceId”. This last
setting ensures that all telemetry arriving from a given device always lands in the
same partition. Click OK, and in a few moments your collection is ready to receive
data (see Figure 8-4).

300 | Chapter 8: Hot and Cold Path Serving Layer in Azure

Figure 8-4. Creating a partitioned collection in the Azure Portal, and indicating the par‐
tition key.

Next, configure a Stream Analytics job to pull from your Event Hubs instance as we
documented in Chapter 5. The major difference is you will want to configure your
output to use your created DocumentDB collection instead of Azure Storage. You
may also want to modify the query used in your Stream Analytics job, removing the
where clause so that all data goes to DocumentDB (of course, you should also indicate
the name of your DocumentDB sink in the query):

SELECT *
INTO docdb
FROM eventhub

Start your job and then use the Blue Yonder Airports simulator console to prime the
Event Hub with some telemetry.

After a few moments, go to the Azure Portal and navigate to your DocumentDB col‐
lection. At the top of the blade, select Query Explorer. In the text area, paste the fol‐
lowing query:

SELECT * FROM c
WHERE c.deviceId = "1" AND c.temp > 69.97
ORDER BY c.createDate DESC

Document DB | 301

Select Run Query, and you should see a listing of telemetry documents. Notice in the
DocumentDB query that we include in the where clause a filter against deviceId.
This enables DocumentDB to narrow the query to a single partition (because we con‐
figured the deviceId property as the partition key). If you omit a filter that includes
the deviceId, the portal will throw an error indicating that cross-partition query is
not supported. This is simply a restriction in how the Azure Portal’s Query Explorer
operates—if you use any of the SDKs or the REST API, you can enable cross-partition
querying and successfully execute such a query.

Document DB in the Batch Serving Layer
While DocumentDB is scalable both in terms of compute (RUs) and storage, it does
have smaller limits that make it less of a fit for the batch serving layer. While not limi‐
ted in size (the 250 GB max collection size is a soft limit you can raise by contacting
support), DocumentDB has limited support for batch writes, both in terms of scale
(most batches are 100 records max) and in terms of swapping in the latest view to
replace an older view (it has no support for this).

One consideration for either the real-time or batch serving layer is that even though
DocumentDB supports querying using SQL syntax, the clients used to issue those
SQL queries are not standard ODBC or JDBC clients (and in fact have a lot of
DocumentDB-specific “smarts”), as DocumentDB does not offer an ODBC-
compatible endpoint. This mostly means that your clients of DocumentDB are going
to be custom applications where you programmatically leverage the DocumentDB
client, or solutions that explicitly integrate with DocumentDB.

Another consideration is that DocumentDB does not currently provide aggregation
support, so its support for analytics query workloads is fairly limited out of the box.
You currently need to perform any aggregation client-side or within a stored proce‐
dure, or you can preaggregate data on write using a trigger. Take note that your aggre‐
gate calculations need to complete within the a bounded time window or they may
fail.

Lumenize

You can use the DocumentDB-Lumenize library for adding sup‐
port for analytic operations like group by, pivot tables, aggregation
functions (sum, count, average, etc.), and precomputing OLAP
style n-dimensional cubes. See the GitHub repository at https://
github.com/lmaccherone/documentdb-lumenize.

302 | Chapter 8: Hot and Cold Path Serving Layer in Azure

https://github.com/lmaccherone/documentdb-lumenize
https://github.com/lmaccherone/documentdb-lumenize

SQL Database
Azure SQL Database is a managed, PaaS offering of the SQL Server relational data‐
base that is available only in Azure. A few years back when SQL Database launched, it
had significant incompatibilities with SQL Server and lagged behind it in terms of
shipping innovative features. Fast forward to today, and Azure SQL Database and
SQL Server have significant feature parity and provide for a common programming
surface area that lets you write the same code that will run equally well against either.
More so, Microsoft has established a trend in previewing new database engine fea‐
tures in SQL Database first and then incorporating those into the next release of SQL
Server—so you could say it is no longer just reaching parity with SQL Server, but
actually introducing features in advance of SQL Server.

In the context of the serving layer, SQL Database provides support for real-time
operational analytics—which is a set of features that make it particularly well suited
to the write-heavy workloads combined with analytic-style queries (e.g., utilizing
aggregates and group by) present in the speed serving layer.

The real-time operational analytics capability comes from the combination of mem‐
ory optimized tables, columnstore indexes, and native compiled stored procedures.

Memory-optimized tables in SQL Database are created to exist in the server’s active
memory instead of exclusively on disk, and by operating in memory have shown to
improve performance anywhere from 2x to 30x compared to the disk-based equiva‐
lent. This does not mean, however, that if the database goes down you lose your data,
as memory-optimized tables have one representation in active memory and another
secondary copy on disk. This duality of memory and disk is managed by SQL Data‐
base automatically and is completely hidden from your queries.

In SQL Database, memory-optimized tables are only available in the Premium tiers,
and the total amount of memory available to them and their indexes is governed by
the selected tier. For example, a P1 offers 1 GB of in-memory storage, whereas a P6
provides 8 GB and a P15 provides 32 GB.

So, what happens when you run out of memory? This is a condition you will have to
both plan against and monitor (using the alerting features in the Azure Portal),
because when you run out of memory the system will no longer allow most write
operations. You will want to ensure that you are periodically cleaning up unneeded
data or offloading that data to a disk-based table (e.g., by copying to a disk-based
table and then deleting the copied rows from the source memory-optimized table
within a transaction).

SQL Database | 303

Oops, I Ran Out of Memory

If you run out of memory and try to insert a new row into a
memory-optimized table, you will get the error, “Could not per‐
form the operation because the database has reached its quota for
in-memory tables.” While you can still query the table, you may
also find yourself blocked from cleaning up space in the table by
deleting rows, because the delete operation itself will be preven‐
ted. It’s probably unlikely you want to truncate the table and lose all
of the data.
So what can you do? If you find yourself in this situation, a tempo‐
rary solution is to increase the tier of your database to the next
level up (e.g., go from a P2 to P4), which will increase the amount
of available in-memory storage. Then delete the desired rows, and
then scale back down to the original tier.
Also note that memory-optimized tables do not support partition‐
ing, so it is truly up to your application to manage the table data
and ensure it does not exhaust the available memory. For an exam‐
ple of the pattern to follow to offload from a memory-optimized
table to a partitioned-disk-based table, see https://msdn.micro‐
soft.com/en-us/library/dn133171.aspx.

The indexing story for memory-optimized tables is extremely important to under‐
stand in order to utilize such tables effectively for your serving layer. For a memory-
optimized table, its indexes are also memory optimized and exist only in active
memory (the index is rebuilt when a database is brought back online). The entries in
a memory-optimized index contain the memory address that directly points to the
row in the table, and these indexes do not suffer from fragmentation because they do
not have fixed-size pages. Memory-optimized tables support three kinds of indexes:

Nonclustered indexes
These are the familiar B-tree indexes you are likely to have used on your disk-
based tables when you wanted to support both point lookups and range scans.
Note that clustered indexes are not supported in memory-optimized tables
because the in-memory layout of data necessarily has different requirements than
when the data is stored on disk.

Hash indexes
These are available to memory-optimized tables only, and should be used when
you want to perform fast point lookups and allow the fastest form of row inserts.
The storage for hash indexes is preallocated when the table is created, as its size is
controlled by the bucket count parameter (which explicitly defines the number of
buckets the hash entries are divided into, and implicitly defines the number of
hash entries that need to be searched in a given bucket). The general recommen‐
dation is to use a bucket count of 1 to 2 times the number of distinct index keys

304 | Chapter 8: Hot and Cold Path Serving Layer in Azure

https://msdn.microsoft.com/en-us/library/dn133171.aspx
https://msdn.microsoft.com/en-us/library/dn133171.aspx

your data will have—having too few buckets means longer index lookup times,
and having too many buckets means you are wasting precious memory.

Columnstore indexes
These indexes are optimized for supporting analytic style workloads because they
index all columns of the table in a columnar format, which has been shown to
offer gains of 10x in performance and in data compression. For memory-
optimized tables, you can only create a clustered columnstore index, which is
represented as a secondary copy of the data. In other words, it is not a traditional
clustered index in the sense that it affects the storage layout of the memory-
optimized table.

The power to support real-time operational analytics workloads surfaces when you
mix the indexes, so that you have the OLTP workload using the nonclustered or hash
index, while analytics run concurrently against the columnstore index. For the speed
serving layer, this approach yields fast inserts, but also enables performant analytics
queries against the hot data. When authoring queries, SQL Database will automati‐
cally determine the appropriate index to use for a given query so you do not have to
specify, for example, to use the columnstore index when running aggregation queries.

The final piece enabling real-time operational analytics is native compiled stored
procedures. These are stored procedures authored in the typical fashion except they
indicate NATIVE_COMPILATION in their definition. When created in this way, the T-
SQL statements that make up the procedure are compiled to machine code on first
use of the procedure. The result is that subsequent invocations of the native compiled
stored procedure no longer endure the slow interpretation of every instruction like
their traditional counterparts. It is worth noting that a native stored procedure can
only reference memory-optimized tables and cannot reference disk-based tables.

SQL Database in the Speed Serving Layer
There are a few things about memory-optimized tables that are attractive in this sce‐
nario, but the main one is the value of getting better write and analytics performance
without the cost increase associated with going to a higher SQL Database tier.

Random reads benefit from the memory-optimized tables using either hash indexes
or nonclustered indexes and performing analytic queries against the columnstore
index. Random writes benefit from the memory-optimized storage approach, which
eliminates locks and has the I/O characteristics of a memory-based access. When it
comes to data expiration, SQL Database has no support out of the box, so you will
need to implement the application pattern to periodically delete expired rows from
the memory-optimized table.

Let’s examine this flow to store the Blue Yonder Airports telemetry data from Event
Hubs using an event processor host.

SQL Database | 305

Memory-Optimized Tables and Stream Analytics

Using Stream Analytics to write to a memory-optimized table
would seem a match made in heaven. Unfortunately, this is cur‐
rently not supported. If you try it out, your Stream Analytics job
will fail with the error “The table option ‘tablock’ is not supported
with memory optimized tables.” This is a known issue and Stream
Analytics is expected to support memory-optimized tables in the
future. In the meantime, consider using an alternate means to
pump data into the memory-optimized table, such as by using an
event processor host.

In the Azure Portal, you can create a new SQL Database by selecting New→Data‐
bases→SQL Database. To create a SQL Database you need to provide a name for the
database, then choose a subscription and resource group. You should opt to leave the
“Select source” value at “Blank database” to avoid creating a database with sample
data (Figure 8-5).

Figure 8-5. Configuring the settings for a new SQL Database instance in the Azure Por‐
tal.

306 | Chapter 8: Hot and Cold Path Serving Layer in Azure

For the server option, choose an existing server, if you have one you prefer to use, or
follow the steps to provision a new one (Figure 8-6).

Figure 8-6. Creating a new server for the SQL Database instance in the Azure Portal.

Leave the “Want to use SQL elastic pool?” option set to “Not now.” Memory-
optimized tables cannot be used with elastic pools. For the pricing tier, be sure to
select a Premium tier (for the purposes of our sample, a P1 will suffice). You can leave
the collation set at its default value and then select Create to provision your SQL
Database (and related server if you chose to create one).

Firewall Rules

If you created a new server, after your SQL Database instance is
ready, be sure to add the appropriate firewall rules so that the com‐
puter you are working from can access the databases it contains.
This is something you can quickly configure using the Azure Por‐
tal. See the Microsoft Azure documentation.

With your database ready, you can proceed to the next step of creating a memory-
optimized table to store the telemetry data. We recommend using SQL Server Man‐
agement Studio (which is a free download) for these steps, but you can use the tools
of your choice for this.

Connect to your newly created SQL Database instance and run the following script:

SQL Database | 307

http://bit.ly/2mtqAWu

-- {"temp":65.0,"createDate":"2016-10-11T08:28:30Z","deviceId":"1"}
CREATE TABLE [RealtimeReadings] (
 -- ID should be a Primary Key, fields with a b-tree or hash index
 [id] bigint IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED
 HASH WITH (BUCKET_COUNT = 30000000),
 [deviceId] int,
 [temp] decimal(8,4),
 createDate datetime,
 -- This table should have a columnar index
 INDEX Transactions_CCI CLUSTERED COLUMNSTORE
) WITH (
 -- This should be an in-memory table
 MEMORY_OPTIMIZED = ON
);

The aforementioned script will create the memory-optimized table. This is indicated
by the WITH (MEMORY_OPTIMIZED) = ON clause. This table has also two indexes. It has
a hash index on the id column that acts as the primary key for looking up specific
readings, and it has a clustered columnstore index to support analytic querying
against all columns. The hash index, defined with the NONCLUSTERED HASH WITH
(BUCKET_COUNT = 30000000) clause, yields a hash index that, when the table is cre‐
ated, consumes approximately 353 megabytes’ worth of memory-based storage, but it
will never grow beyond that. The columnstore index is defined with the clause INDEX
Transactions_CCI CLUSTERED COLUMNSTORE. Note that it does not specify any col‐
umns of the table, as the columnstore index covers all columns in a memory-
optimized table.

After creating your table, you need to run the following to ensure that all memory-
optimized tables auto-elevate their transaction level to snapshot automatically, which
is the only level supported by memory-optimized tables:

-- In-memory tables should auto-elevate their transaction level
-- to Snapshot
ALTER DATABASE CURRENT SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON ;

This makes it so you do not have to make changes to your application code that
might only be written to work with disk-based tables and are likely to use transaction
levels other than snapshot.

Now your table is ready for use. In the EventProcessorHostWebJob solution that
accompanies this book’s source code, we have provided the SqlDBEventProcesso‐
rHostWebHob project that you can run to pull telemetry out of your Event Hub and
write it to your newly created, memory-optimized table. Before you run it locally or
deploy it to a Web Job in Azure, be sure to update the app.config file with the connec‐
tion string to your SQL Database, your Event Hub connection details, and your Stor‐
age account credentials. After starting up the event processor, run an instance of
SimpleSensorConsole to populate telemetry in your Event Hub.

308 | Chapter 8: Hot and Cold Path Serving Layer in Azure

As both the event generator and event processor are running, you can perform ana‐
lytic queries against the table, such as the following:

SELECT
 Count(*) Counted,
 DatePart(YYYY, createDate) [year],
 DatePart(MM, createDate) [month],
 DatePart(DD, createDate) [day],
 DatePart(hh, createDate) [hour]
FROM RealtimeReadings
GROUP BY
 DatePart(YYYY, createDate),
 DatePart(MM, createDate),
 DatePart(DD, createDate),
 DatePart(hh, createDate)
ORDER BY [year], [month], [day], [hour];

In SQL Server Management Studio, if you turn on the option to include the actual
execution plan, you should see that this query correctly selects the clustered colum‐
nstore index (Figure 8-7).

Figure 8-7. Running analytic queries against a memory-optimized table and showing
how the execution plan selects to use the columnstore index.

Also in SQL Server Management Studio, you can examine your utilization of the
available memory by using Object Explorer, right-clicking your database, and select‐
ing Reports, then “Memory Usage by Memory Optimized Objects” (Figure 8-8).

SQL Database | 309

Figure 8-8. Utilizing the context menu to retrieve a memory usage report.

You will be presented with a report similar to Figure 8-9.

Figure 8-9. A report showing the memory used by the memory-optimized table. In this
case that the data is using 1.33 MB, but the preallocated hash index is using 353 MB.

310 | Chapter 8: Hot and Cold Path Serving Layer in Azure

SQL Database in the Batch Serving Layer
The availability of the columnstore index for both memory-optimized tables and
disk-based tables is a boon to performing analytics over large data sets. SQL Server
has long had support for partitioned tables and the ability to swap in and out parti‐
tions of disk-based tables, which enables you to batch load data without having to
drain and reload tables in their entirety. SQL Database also supports partitioning of
tables in this way.

The application of SQL Database in the batch serving layer is a story of good up to a
certain size. The largest database currently available, a P15, provides 1 TB of storage.
If your storage requirements for the batch serving layer exceeds that, then you will
need to use a sharding approach to divide your data among multiple SQL Database
instances (each instance is a shard having the same scheme but a subset of the data),
and enable T-SQL querying across the multiple shards. The good news is that SQL
Database provides the Elastic Database Query feature to do just that, and it takes the
now-familiar approach of using external tables to represent the table whose data
spans across the shards. What’s more, by using Elastic Database Query, you can still
query using your favorite reporting tools as if it were a single SQL Server database.

Going Deeper on Elastic Database Query

Elastic Database Query is a robust feature, whose proper coverage
is outside the scope of this book. To learn more about the feature,
see the Microsoft Azure documentation.

The official recommendation is to use Elastic Database Query for “occasional report‐
ing scenarios,” but if your needs include heavy reporting workloads, possibly with
more complex queries, then you should consider SQL Data Warehouse. This is the
subject of the next section.

SQL Data Warehouse
SQL Data Warehouse is almost purpose-built to support that batch serving layer, pre‐
dominantly because of the scale of the data it can serve. The maximum size of all per‐
manent table data (i.e., excluding space used by tempdb or logs) is 240 TB once
stored compressed on disk, and any given table maxes out at 60 TB of compressed
disk storage. Columnstore storage, for example, provides compression of table data
that yields as much as 5x compression on the raw data, so the actual uncompressed
volume of data manageable by a SQL Data Warehouse database is close to 1 petabyte.

It has some limitations on random writes that are worth considering. From the data
load perspective, SQL Data Warehouse is better suited for loading data in batches
from files, then dealing with thousands or millions of small inserts. For example, if

SQL Data Warehouse | 311

http://bit.ly/2nK2IOA

you try to load it with streaming data directly from your hot path, you are likely to
find that it cannot keep up with that high velocity of small inserts. Moreover, the sta‐
tistics that are used to optimize query execution are not automatically updated after
data is inserted (in contrast to the way SQL Database and SQL Server operate). This
means that your query performance is likely to suffer if significant new data is added
without the statistics being manually updated.

When it comes to random reads, SQL Data Warehouse is again slightly different from
its SQL Database and SQL Server brethren. It supports a maximum of 1,024 concur‐
rently open connections, which is reasonable given a good solution design that mini‐
mizes chattiness with the database. However, only at most 32 queries can be executing
concurrently. After that limit is reached, queries are queued. Queries against tables
and views can queue up to 1,000 deep. This means that if you either have lots of users
concurrently querying or a workload of queries that primarily take a long time to exe‐
cute, then performance will not be ideal. This is where properly leveraging SQL Data
Warehouse as a batch serving layer is important: you should design the tables so that
all of the work needed to support good query performance occurs before you query—
by way of how you load, distribute, partition, index, and create statistics for the data.

Given the aforementioned constraints, it is worth noting that SQL Data Warehouse
would not make a good option for the speed serving layer.

HBase on HDInsight
Apache HBase is an open source, NoSQL database that is built on Hadoop and mod‐
eled after Google BigTable. HBase was created in 2007 at Powerset and was initially
part of their contributions in Hadoop. Since then, it has become its own top-level
project under the Apache Software Foundation umbrella. The goal of HBase is to pro‐
vide a fault-tolerant data store hosting a few very large tables of sparse data—that is,
billions or trillions of rows tall by possibly millions of columns wide—while at the
same time allowing for very low latency and support for near-real-time random reads
and random writes. The canonical use case for HBase was to support web search
(where search engines build indexes that map terms to the web pages that contain
them), but HBase has proven useful in other scenarios, including key/value storage,
sensor data storage, and real-time query support, as well as situations that leverage
HBase as a platform data store and layer on additional functionality (such as
OpenTSDB for time series data and SQL support via Phoenix).

HBase organizes its data as rows of a table, where row data is grouped into column
families and then columns. Column families represent a named grouping of logically
or functionally related columns (it is desirable that they are compressed together or
pinned to memory together). Thinking about it another way—within a given table,
the number of column families is in the low tens at most, but the number of columns
is generally unlimited. Each cell within a particular row of a column is timestamped,

312 | Chapter 8: Hot and Cold Path Serving Layer in Azure

meaning you store a history of values for that cell sorted with the newest value com‐
ing first. Rows themselves are identified by a row key, which is represented as a byte
array and must by unique within the table. Additionally, as you might expect, the row
key controls the sort order of the rows. Collectively, you can think of a value as being
located by this 5-tuple:

[TableName, RowKey, ColumnFamilyName, ColumnName, Timestamp] -> value

In keeping with its goal of providing low-latency random reads and writes, HBase
takes a few optimizations:

• When data is updated it is first written to a commit log, called a write-ahead log
in HBase, and then stored in the in-memory store. Only once the data in mem‐
ory has exceeded a configured maximum value is the data flushed to disk and the
commit logs can be discarded.

• When data is deleted, a delete marker (also known as a tombstone marker) is writ‐
ten to indicate the fact that the given key has been deleted. During the retrieval
process, these delete markers mask out the actual values and hide them from
reading clients.

• Data may be read from an in-memory cache or from the files on-disk.

The way you interact with HBase is by using the create, get, put, and scan com‐
mands. You write data to the database by using create and put, and read by using
get, while you use scan to obtain data from multiple rows in a table. In other words,
the mechanism is not SQL. However, by layering on Apache Phoenix to your HBase
data store you get support for operational analytics that are programmed with SQL.
Phoenix adds coprocessors that support running client-supplied code in the address
space of the server, so it executes colocated with the data. It also adds support for
secondary indexes beyond the single row key that HBase supports natively.

HBase on HDInsight provides managed HBase clusters integrated with the Azure
environment. Your HBase cluster can read from and write to Azure Blob Storage and
the Azure Data Lake Store. One feature worth noting is that HBase on HDInsight
support private endpoints (i.e., endpoints that are not accessible via the public inter‐
net) because it can be provisioned into virtual networks.

This combination of easy querying using SQL, support for low-latency reads and
writes, high scalability, and support for secondary indexes makes HBase a good can‐
didate for both the batch serving and speed serving layers.

Let’s examine this flow to store the Blue Yonder Airports telemetry data and perform
an analytics query using SQL.

First, you will need to provision your HDInsight cluster. You can do this following
the steps we have shown previously for provisioning any HDInsight instance. Just be

HBase on HDInsight | 313

sure to select HBase as the cluster type. This will include Apache Phoenix in the clus‐
ter. For our purposes here, we will use a cluster provisioned on the Linux operating
system.

Once your cluster is provisioned, you will need to upload some of the flight data to
query. You can use the Azure Portal to upload the provided sample file
On_Time_On_Time_Performance_2014_1_NoHeader.csv to the container in Azure
Storage that represents the root of your HDInsight cluster. We need to use a CSV file
here that has no header because the import tool we will use cannot ignore the header
row.

Next, look up the internal name of your Zookeeper head node in order to target the
command-line tools against it. To do this, from the Azure Portal displaying your clu‐
ster’s blade, select Cluster Dashboard. Log in with the admin credentials you provided
during provisioning. From the Ambari home page, select HBase from the list of items
on the left; then, in the Summary area, select the Active HBase Master link. On the
screen that appears, the value displayed for hostname in the summary box is what
you seek (Figure 8-10).

Figure 8-10. The hostname value, as seen in Ambari, identifies the Zookeeper hostname
needed by many HBase commands.

Next, SSH into your cluster and navigate to the Phoenix binaries by issuing the
command:

cd /usr/hdp/current/phoenix-client/

From here you can run the SQLLine command-line tool to execute SQL commands
against Phoenix. Run the following command, substituting in the value of your
hostname:

314 | Chapter 8: Hot and Cold Path Serving Layer in Azure

./bin/sqlline.py <ZooKeeperHostname>.internal.cloudapp.net:2181:/
hbase-unsecure

Once within SQLLine, create the schema for the flights table by running the
following:

CREATE TABLE FlightData
(
Year INTEGER not null,
Quarter INTEGER not null,
Month INTEGER not null,
DayofMonth INTEGER not null,
DayOfWeek VARCHAR(255),
FlightDate VARCHAR(255),
UniqueCarrier VARCHAR(255),
AirlineID VARCHAR(255),
Carrier VARCHAR(255),
TailNum VARCHAR(255),
FlightNum VARCHAR(255) not null,
OriginAirportID VARCHAR(255),
OriginAirportSeqID VARCHAR(255),
OriginCityMarketID VARCHAR(255),
Origin VARCHAR(255),
OriginCityName1 VARCHAR(255),
OriginCityName2 VARCHAR(255),
OriginState VARCHAR(255),
OriginStateFips VARCHAR(255),
OriginStateName VARCHAR(255),
OriginWac VARCHAR(255),
DestAirportID VARCHAR(255),
DestAirportSeqID VARCHAR(255),
DestCityMarketID VARCHAR(255),
Dest VARCHAR(255),
DestCityName1 VARCHAR(255),
DestCityName2 VARCHAR(255),
DestState VARCHAR(255),
DestStateFips VARCHAR(255),
DestStateName VARCHAR(255),
DestWac VARCHAR(255),
CRSDepTime INTEGER,
DepTime INTEGER,
DepDelay INTEGER,
DepDelayMinutes INTEGER,
DepDel15 BOOLEAN,
DepartureDelayGroups INTEGER,
DepTimeBlk VARCHAR(255),
TaxiOut INTEGER,
WheelsOff INTEGER,
WheelsOn INTEGER,
TaxiIn INTEGER,
CRSArrTime INTEGER,
ArrTime INTEGER,
ArrDelay INTEGER,

HBase on HDInsight | 315

ArrDelayMinutes INTEGER,
ArrDel15 BOOLEAN,
ArrivalDelayGroups INTEGER,
ArrTimeBlk VARCHAR(255),
Cancelled BOOLEAN,
CancellationCode VARCHAR(255),
Diverted BOOLEAN,
CRSElapsedTime INTEGER,
ActualElapsedTime INTEGER,
AirTime INTEGER,
Flights INTEGER,
Distance INTEGER,
DistanceGroup INTEGER,
CarrierDelay INTEGER,
WeatherDelay INTEGER,
NASDelay INTEGER,
SecurityDelay INTEGER,
LateAircraftDelay INTEGER,
FirstDepTime INTEGER,
TotalAddGTime INTEGER,
LongestAddGTime INTEGER,
DivAirportLandings BOOLEAN,
DivReachedDest BOOLEAN,
DivActualElapsedTime INTEGER,
CONSTRAINT FlightData_PK PRIMARY KEY(Year, Quarter, Month, DayofMonth, FlightNum)
);

Now you are ready to load some data into this table.

Exit out of SQLLine by typing:

!quit

Back at the SSH command line, you will use the CsvBulkLoadTool included with
Phoenix to load data into a table. Run the following command, being sure to adjust
the path to your CSV file and the hostname of your Zookeeper node.

hadoop jar phoenix-client.jar
org.apache.phoenix.mapreduce.CsvBulkLoadTool
--table flightdata
--input /example/data/On_Time_On_Time_Performance_2014_1_NoHeader.csv
--zookeeper "<ZookeeperHostName>.cloudapp.net:/hbase-unsecure"

Note that in the preceding, the --input parameter accepts either a single CSV file or
a path to a folder containing CSV files. This command will kick off a MapReduce job
that, once complete, will have your data loaded into the HBase table and queryable by
Phoenix.

Now you are ready to query the data. Begin by running SQLLine as shown previously.

Within SQLLine, run the following to output results in a CSV format (the default tab‐
ular format may be too wide for most displays):

316 | Chapter 8: Hot and Cold Path Serving Layer in Azure

!outputformat csv
select carrier, count(*) from flightdata group by carrier;

In a few moments, you should see a summary of the flight data similar to the
following:

'CARRIER','COUNT(1)'
'AA','13299'
'AS','2977'
'B6','5377'
'DL','22919'
'EV','32323'
'F9','1362'
'FL','1449'
'HA','1610'
'MQ','20224'
'OO','30308'
'UA','9776'
'US','9330'
'VX','1272'
'WN','14773'

With that, you have just experienced the power of HBase, queried with the simplicity
of SQL via Phoenix.

Azure Search
There is one final Azure service that pairs well with the data stores used in either the
speed serving layer or the batch serving layer: Azure Search. Azure Search provides,
in effect, an external index to any data. This means it can be used to provide a secon‐
dary index for data managed by data stores that do not support secondary indexes.
The central object created in Azure Search is an index, and the items contained by the
index are JSON documents. Index documents are loaded directly by applications on
an item-by-item basis; for example, when new data is added to the source data store,
the application orchestrating the input can also push the data that needs to be present
in the index into Azure Search. In this case, data is inserted using either a REST API
or the .NET SDK. Alternatively, data can be periodically pulled and indexed from the
source using an indexer. Sources that support indexers include Azure Blob Storage,
DocumentDB, SQL Database, and SQL Server in a VM. When using an indexer, you
don’t actually need any code—you just configure the indexer within the Azure Portal.

Loading Azure Search

For examples on how to load data into Azure Search from various
sources, see the Microsoft Azure documentation.

Azure Search | 317

http://bit.ly/2nJULcf

Azure Search provides for performant querying of the documents it manages. It has
support for faceted queries (think data that has categories) and for setting up ranges/
buckets and getting document counts by facets. It can provide a universal external
index to all serving layer storage that provides quick, high-level summarization and
navigation for a max of 2.4 TB (200 GB × 12 partitions) and 1.4 billion documents
per service instance.

Querying Azure Search

For detailed examples on how to query Azure Search, see the
Microsoft Azure documentation.

In the end, you should consider Azure Search for select data sets of either serving
layer to optimize the query experience of the downstream analytic clients.

Summary
In this chapter we completed our exploration of the data processing pipeline of the
lambda architecture, having gotten our data to the serving layer. We looked at options
for the speed serving layer (Redis, DocumentDB, SQL Database, SQL Server in VM,
HBase on HDInsight) and options for the batch serving layer (SQL Data Warehouse
and HBase on HDInsight).

In the next chapter, we will look at the options for adding intelligent analytics to your
data pipeline, including the various mechanisms Azure offers for training and opera‐
tionalizing your models, as well as the ready-made web services available from
Microsoft Cognitive Services.

318 | Chapter 8: Hot and Cold Path Serving Layer in Azure

http://bit.ly/2n82gGI

CHAPTER 9

Intelligence and Machine Learning

Advanced analytics pipelines often include machine learning to make predictions
against data flowing through the data pipeline. Azure provides a few ways you can
integrate machine learning into your data pipeline. While this chapter is not meant to
provide deep coverage of machine learning in Azure, which merits a book of its own,
it will provide broad coverage of the machine learning options available and the two
most critical phases of most machine learning: model training and model operation‐
alization (see Figure 9-1).

In the world of machine learning algorithms, there are two broad categories of algo‐
rithms (aka learners) that are defined based on the way the model is created. Super‐
vised learners are like students in school—they need to be taught by example. They
are shown lots of examples and the resulting outcomes, with the goal that one day
(e.g., during final exams) they can be presented with new data and accurately predict
the outcome (e.g., pass the test). They are called “supervised” because they need train‐
ing before they can make any predictions, much like students need to be taught the
subject before they hope to pass an exam on it. In machine learning, examples of sce‐
narios that use supervised learners include:

• Examining email to classify it as spam or not spam
• Reviewing consumer profiles to predict their likelihood of default on a mortgage
• Predicting flight delays given flight and weather historical data

319

Figure 9-1. This chapter focuses on the intelligence components of the Azure analytics
pipeline.

320 | Chapter 9: Intelligence and Machine Learning

By contrast, unsupervised learners can make predictions the first time they see the
data. They do not undergo a training phase. The most common example of this is
grouping (aka clustering) consumers into distinct groups for marketing purposes. In
this scenario, the algorithm is provided data about consumers and told to divide
them into N buckets. The algorithm will do its best to create N buckets where within
each bucket all consumers are very similar in some fashion, while ensuring the con‐
sumers in different buckets are sufficiently different. The outcome can be used, for
example, to separate out buckets representing groups of consumers by behavior,
including sale shoppers, regular customers, and patrons.

With an understanding of supervised and unsupervised learners in tow, let’s define
model training and model operationalization. In model training a supervised learner
is trained, and the outcome is a model that can be used to make predictions. The inte‐
gration of that model into a production analytics pipeline is called model operationali‐
zation. For example, the trained model might be wrapped in a web service and
prediction is performed from a production application by invoking the web service.
Unsupervised learners skip model training and typically go straight to operationaliza‐
tion.

In this chapter, we will cover machine learning with this perspective of model train‐
ing and model operationalization in mind, using Figure 9-2 as a guide.

Figure 9-2. Model training and operationalization options in Azure.

Intelligence and Machine Learning | 321

Azure Machine Learning
Azure Machine Learning (Azure ML) allows you to train models using its web-based
Machine Learning Studio. This interface provides a visual drag-and-drop experience
that is similar to designing a flow chart, but instead of representing activities and
decision points, each box is a called a module and the flow chart itself is called a train‐
ing experiment. Modules can retrieve data (such as from Azure Blob Storage, SQL
Database, or external REST services), transform data (such as by converting data
types, or addressing missing values), process data (such as by filtering or joining),
train a model (using one of the 25+ built-in algorithms or pulling from the 8,000+
available in the community), and evaluate the model’s performance. Training experi‐
ments can consist purely of configured modules, but also support modules allowing
you to author and execute code using R or Python. When you train a model in Azure
ML, the training happens in the context of a single virtual machine running on your
behalf in Azure. See Figure 9-3.

Figure 9-3. Example training experiment for predicting flight delays showing a mixture
of built-in modules and modules that run R script code.

When you are ready to operationalize your training experiment, you click a button to
set up the training experiment as a web service. The result is a new experiment called

322 | Chapter 9: Intelligence and Machine Learning

a predictive experiment, which basically wraps the call to execute the prediction
against your trained model between web service input (that receives the inputs you
want to predict against) and web service output (that returns the predicted results).
See Figure 9-4.

Figure 9-4. A predictive experiment showing the web service input and web service out‐
put modules that wrap the trained model.

Once you have created your predictive experiment, you publish it as a web service. At
this point, your predictive web service is automatically provisioned and hosted in a
scalable fashion by Azure ML. You can integrate calls to this web service into your
pipeline code. It’s worth noting that Azure ML can perform predictions in two ways.
It can provide a prediction for a single input record (known as the request/response
API), or you can provide it with a data source containing a batch of records to score
(e.g., the path to a CSV file in Blob Storage or tables in SQL Database or Hive) and it
will return a new CSV file with predictions for each row in that file (known as the
batch execution API). Both mechanisms are available via separate web service end‐
points that result when you publish your predictive experiment.

Azure Machine Learning | 323

Beyond the aformentioned approaches, it is also possible to publish a web service
from R Studio or a Jupyter notebook; see http://bit.ly/2khOkuL.

Hands-on with Azure Machine Learning

If you are interested in experimenting with Azure ML, see the tuto‐
rial in the Microsoft Azure documentation.
It is also worth exploring the ready-made experiments in the Cor‐
tana Intelligence Gallery, as they may provide solutions similar to
your particular needs and are easily modified to suit your require‐
ments.

R Server on HDInsight
HDInsight offers a variety of ways you can train a predictive model using the cluster
of servers running in Azure. You can author R scripts that execute across the cluster
to train and verify your model against data stored in Azure Blob Storage or Azure
Data Lake Store by using the R Server on Spark or R Server on Hadoop cluster types
of HDInsight. Deploying HDInsight with Spark enables you to author the model
training using Scala, Java, Python, or R. The workflow followed here involves devel‐
oping your application remotely or over SSH, and then executing your application on
the cluster by using SSH. This approach enables you to train a model against data sets
that are much larger than can fit in the memory of a single machine. The outcome of
this training is typically a model that you serialize to disk for subsequent operationali‐
zation. Naturally, hosting your trained model as a web service within your HDInsight
cluster is not cost-efficient, so the better approach is to host the model in another
environment that just provides web server capabilities.

Hands-on with R Server on HDInsight

If you are interested in training a model using R Server on HDIn‐
sight, see the tutorial in the Microsoft Azure documentation.

When you are ready to operationalize your model, you take the serialized version of
your trained model and upload it to a compatible host that can wrap prediction calls
that use the model in a web service. In Azure, you deploy a virtual machine that is
running Microsoft DeployR (you can find an image for this from the Azure Market‐
place), which wraps a web services layer around a prediction script written in R
(Figure 9-5).

324 | Chapter 9: Intelligence and Machine Learning

http://bit.ly/2khOkuL
http://bit.ly/2nSiQu7
https://gallery.cortanaintelligence.com/
https://gallery.cortanaintelligence.com/
http://bit.ly/2ndRBfd

Figure 9-5. Example of the R script in Microsoft DeployR that invokes prediction against
a trained model (top left), the input parameters (top right), the diagnostic output (bot‐
tom left), and the prediction results (bottom right).

SQL R Services
SQL R Services represents a new set of functionality available with SQL Server 2016
when running in an Azure virtual machine. It enables you to train and test predictive
models in the context of SQL Server 2016—you literally embed your R script code
within T-SQL, and SQL Server takes care of the execution. The pattern typically fol‐
lowed is that you package the R code that trains your model, and a call to sp_exe
cute_external_script that executes the R code, in a stored procedure that saves the
serialized model to a table in the database. Because the R script runs in the context of
SQL Server, it has easy and ready access to data stored within the tables there.

Once you have trained your model, you operationalize it by encapsulating the R code
to make predictions within another stored procedure. This stored procedure loads
the serialized model from the table in which it was stored, and executes the predic‐
tion script, returning the results as tabular result sets. The net effect of this approach
to operationalization is that it simplifies the integration of predictive analytics into

SQL R Services | 325

any application that can use TDS to connect to SQL Server and invoke a stored pro‐
cedure.

Hands-on with SQL R Services

Want to get your hands on SQL R Services? Get started with the
great tutorial at http://bit.ly/2ndCoLk.

Microsoft Cognitive Services
Not all predictive analytics services in Azure require you to build your own model
from scratch. Microsoft Cognitive Services provides a set of specialized web services
that are already fully trained and hosted and ready for integration with your analytics
pipeline or directly within your application.

Categorically, you can understand the set of services provided by Microsoft Cognitive
Services by examining them in the context of these four categories:

Vision
Enables your pipeline to understand images and videos, via the Emotion API
(which can detect people’s emotions from a photo), Face API (which provides
demographic information from a photo), and various computer vision APIs
(which can analyze image content, detect celebrities, create smart thumbnails,
and perform OCR).

Speech
Enables your pipeline to process spoken audio by filtering noise, identifying
speakers, and understanding intent. Includes the Speaker Recognition API and
the Bing Speech API (which provides various services like speech to text, intent
recognition, and text to speech).

Language
Enables your pipeline to process text and understand text-based conversation.
The APIs include Text Analytics (which provides sentiment analysis, key phrase
extraction, topic detection, and language detection), the Web Language Model
API (which provides word breaking, text conditional and join probabilities, and
statement completions), and the Language Understanding Intelligent Service API
(which enables you to define context models for understanding objects and
actions from prose).

Recommendations
The Recommendations API enables your pipeline to apply intelligence such as
frequently bought together, item-to-item recommendation, and customer-to-
item recommendation.

326 | Chapter 9: Intelligence and Machine Learning

http://bit.ly/2ndCoLk

See All the APIs

For the latest list of Cognitive Services APIs, see https://www.micro‐
soft.com/cognitive-services/en-us/apis.

Let’s drill into the plethora of Cognitive Services options a little further. The current
list includes a suite of 23 services, which can seem an overwhelming number of
options. To help you pick the one that is right for you, here is the 30,000-foot view on
each. We’ll follow that with a table that will help you select which service to use based
on the type of data you intend to process.

Academic Knowledge API
Supports querying of academic research papers.

Bing Autosuggest API
Provides suggestions to a partial search query based on what other Bing users
have used.

Bing Image Search API
Provides a similar search capability as bing.com/images for submitting a query
and getting back a list of relevant images from the web.

Bing News Search API
Provides a similar experience to bing.com/news for submitting a query and get‐
ting back a list of relevant news articles from the web.

Bing Speech API
Provides support for speech recognition and text to speech.

Bing Spell Check API
Provides inline suggestions for misspelled words.

Bing Video Search API
Provides a similar search capability to bing.com/videos for submitting a search
query and getting back a list of relevant videos from the web.

Bing Web Search API
Provides a similar search capability to bing.com/search for submitting a search
query and getting back a list of relevant search results from the web.

Computer Vision API
Tags/categorizes images, identifies type and quality of images, detects faces, per‐
forms OCR, identifies adult content, crops photos, and automatically generates
text descriptions of photo contents.

Microsoft Cognitive Services | 327

https://www.microsoft.com/cognitive-services/en-us/apis
https://www.microsoft.com/cognitive-services/en-us/apis

Content Moderator
Scans text, images, and video for profanity, adult content, and personally identifi‐
able information (PII); autocorrects text content; reviews API and web experi‐
ence for human–computer content moderation workflows.

Emotion API
Detects emotions in photos or video.

Entity Linking
Detects entities in text and returns a list, along with possible Wikipedia entries.

Face API
Detects faces in photos, identifies facial attributes (pose, gender, age, facial hair,
glasses), and provides face recognition capabilities (verification, find similar, face
grouping, and person identification).

Knowledge Exploration Service
Builds an index from structured data, authors a grammar to interpret natural lan‐
guage queries, and provides interactive query formulation. Currently this is an
executable that can be run locally or deployed in an Azure VM or cloud service
and then exposed via a Web API interface.

Linguistic Analysis APIs
A set of APIs that provide sentence splitting and tokenization, part-of-speech
tagging, and constituency (i.e., key phrase) parsing.

LUIS (Languange Understanding Intelligent Service)
Takes a sentence and interprets the intention and key entities present. Enables
custom apps as well those leveraging Cortana (the personal assistant). Includes
channels for news, weather, stocks, dictionary definitions, and time. Supports
integration with Slack and the Microsoft Bot Framework.

QnA Maker
Enables you to quickly build an interactive bot (typically in Azure Bot Service)
that can answer questions just by learning from web pages or files containing text
content (.tsv or .tx, .doc, .pdf) in the typical question-and-answer format used
by FAQs.

Recommendations
Enables ecommerce applications to provide recommendations such as frequently
bought together, item-to-item, and customer-to-item recommendations.

Speaker Recognition API
Provides capabilities for identification and verification based on a user’s speech.

328 | Chapter 9: Intelligence and Machine Learning

Text Analytics
A set of APIs supporting sentiment analysis, key phrase extraction, topic detec‐
tion, and language detection.

Translator API
Performs language translation, speech-to-speech translation, text language detec‐
tion, and language translation in speech to text and text to speech. Includes an
embeddable web widget for translating your own web pages in situ.

Video API
Tracks faces, detects motion, stabilizes video, and creates thumbnails.

Web Language Model API
Natural language processing operations supporting joint probability of a word
sequence, conditional probability of one word given preceding words, list of
completions, and word breaking of strings that are missing spaces.

One way to approach identifying which service might be helpful to your application
is to take the perspective of the data used as input. In Table 9-1, the options are text
(the input data is textual), speech (the input is recorded human speech), images
and/or video, web search (the input is web search query), and other (those whose
input is different from the aforementioned).

Table 9-1. Narrow your options based on the type of input data (first row)

Text Speech Images and video Web search Other
Text Analytics Bing Speech API Computer Vision API Academic Knowledge API Bing Spell Check API
Content Moderator Speaker Recognition

API
Content Moderator Bing Autosuggest API Recommendations

Entity Linking Emotion API Bing Image Search API
LUIS Face API Bing News Search API
QnA Maker Video API Bing Video Search API
Linguistic Analysis APIs Bing Web Search API
Translator API Translator API
Knowledge Exploration
Service

Web Language Model API

Since you will generally utilize the Cognitive Services in response to some event, like
a photo being uploaded or a text chat message being input, a good way to integrate
them in your application is to use the Azure Functions service. If you use the Con‐
sumption plan for hosting your Azure function, then you pay only for the time your
code is running, as opposed to having a web server running 24/7 even while there is
no activity. You can create these functions using either Visual Studio 2015 or directly
within the Azure Portal. The latter approach can be useful during your experimenta‐

Microsoft Cognitive Services | 329

tion with a given Cognitive Service on account of the minimal overhead it requires to
create and deploy a function.

Visual Studio Tools for Azure Functions

If you are interested in developing your Azure functions with Vis‐
ual Studio, you will need to get the latest version of the Visual Stu‐
dio Tools for Azure Functions. You can read a quickstart blog> on
how to install and use the tools.

To illustrate using a Cognitive Service from an Azure function, let’s take a computer
vision scenario where we upload a photo to Azure Blob Storage and would like to get
a peek at what a Cognitive Services API would “see” in the photo. To do this we will
integrate a call to the Computer Vision API. Begin by creating the Cognitive Services
account (Figure 9-6):

1. In the Azure Portal, select New→Intelligence + Analytics→Cognitive Services
APIs.

2. In the Create Cognitive Services Account blade, provide a unique account name.
3. Select your subscription.
4. In the “API type” drop-down, select Computer Vision API.
5. Select a location.
6. For the pricing tier, you can use any of the options.
7. Choose a resource group as desired.
8. Check the checkbox to agree to the legal terms.
9. Select Create.

In a few moments your new Cognitive Services account should be ready. When it is
ready, navigate to its blade in the Azure Portal and follow these steps:

1. Select Keys from the menu bar at left.
2. Take note of the Account Name and Key 1 values for when we configure the

Azure function.

330 | Chapter 9: Intelligence and Machine Learning

http://bit.ly/2nJV5Yj
https://portal.azure.com

Figure 9-6. Creating a new Cognitive Services account for the Computer Vision API

Now, create a new Azure function by following these steps in the Azure Portal
(Figure 9-7).

1. Select New→Compute→Function App.
2. Provide a unique name for your new function app.
3. Select your subscription and resource group.
4. For the hosting plan, select Consumption Plan.
5. Choose a location.
6. Leave Storage Account set to create a new account.
7. Select Create.

Microsoft Cognitive Services | 331

Figure 9-7. Create a new Azure function app using a Consumption Plan

Once your function app is ready, navigate to its blade in the Azure Portal and follow
these steps (Figure 9-8):

1. From the menu on the left, select New Function.
2. From the “Choose a template” menu, select BlobTrigger-CSharp.
3. Provide a name for your function.
4. Under the Configure section, provide the path where you will upload images in

your Azure Storage account.
5. For “Storage account connection,” leave the value set to AzureWebJobsDash‐

board; this will enable us to reuse the Storage account created to support this
function. Of course, if you want to use a different Azure Storage account, select
the new link to the right of this field.

6. Select Create.

332 | Chapter 9: Intelligence and Machine Learning

Figure 9-8. Creating an Azure function that will trigger when a file is uploaded to Blob
Storage.

In the code dialog that appears, replace the contents with the following code:

#r "Microsoft.WindowsAzure.Storage"
#r "Newtonsoft.Json"

using System.Net;
using System.Net.Http;
using System.Net.Http.Headers;
using Newtonsoft.Json;
using Microsoft.WindowsAzure.Storage.Table;
using System.IO;

Microsoft Cognitive Services | 333

public static async Task Run(Stream myBlob, TraceWriter log)
{
 log.Info("Before call to Vision API");
 string result = await CallVisionAPI(myBlob, log);
 log.Info("After call to Vision API");

 log.Info("Result from call to Computer Vision API: '" + result + "'");
 log.Info(result);
}

static async Task<string> CallVisionAPI(Stream image, TraceWriter log)
{
 using (var client = new HttpClient())
 {
 var content = new StreamContent(image);
 var url = "https://api.projectoxford.ai/vision/v1.0/" +
 "analyze?visualFeatures=description";

 log.Verbose("Vision API Key: '" +
 Environment.GetEnvironmentVariable(
 "Vision_API_Subscription_Key") + "'");

 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
 Environment.GetEnvironmentVariable("Vision_API_Subscription_Key"));
 content.Headers.ContentType =
 new MediaTypeHeaderValue("application/octet-stream");

 var httpResponse = await client.PostAsync(url, content);

 log.Verbose("Vision API Response '" + httpResponse + "'");

 if (httpResponse.StatusCode == HttpStatusCode.OK)
 {
 return await httpResponse.Content.ReadAsStringAsync();
 }
 }
 return null;
}

Next, you will need to provide your function the account name and key to your Cog‐
nitive Services Account that you noted earlier (Figure 9-9):

1. In your Azure Functions blade, from the menu on the left select “Function app
settings.”

2. Select the button labeled “Configure app settings.”
3. Scroll down to “App settings” and add a new key/value entry where the key is

“Vision_API_Subscription_Key” and the value is the value of Key 1 from your
API.

334 | Chapter 9: Intelligence and Machine Learning

4. Select Save to apply your new setting.

Figure 9-9. Adding a Cognitive Services key to an Azure function’s app settings.

Now you are ready to upload a photo to try out your function.

1. Navigate back to the Code screen for your Azure function and click the Logs icon
so that you can see the real-time logs emitted as your function executes. Leave
this tab open as you proceed.

2. In a new browser tab, navigate to the Azure Portal and locate the resource group
that contains your Azure function.

3. Select the Storage account in that resource group associated with your Azure
function.

4. Select the Blobs tile.
5. On the Blob service tab, select Container and provide the name “images” for the

new container that will hold your uploaded images.
6. Select Create.
7. Back on the “Blob service” blade, select your images container to view its con‐

tents.
8. From the command bar, select Upload.
9. On the “Upload blob” blade, use the folder button to launch a file picker dialog

and choose an image to upload.
10. Select Upload on the “Upload blob” blade.

Microsoft Cognitive Services | 335

11. Return to the tab where your Azure function log is displayed. You should see new
output similar to Figure 9-10, showing what the Computer Vision API “saw” in
the photo.

Figure 9-10. Example monitoring function log output as an image is processed.

For example, in my case I uploaded the photo shown in Figure 9-11.

336 | Chapter 9: Intelligence and Machine Learning

Figure 9-11. Sample photo submitted to the Computer Vision API

The Computer Vision API came up with the following result (formatted for
readability):

{
 "description": {
 "tags": [
 "grass",
 "outdoor",
 "house",
 "building",
 "green",
 "yard",
 "lawn",
 "front",
 "small",
 "home",
 "field",
 "red",
 "sitting",
 "grassy",
 "white",
 "brick",
 "large",

Microsoft Cognitive Services | 337

 "old",
 "standing",
 "grazing",
 "sheep",
 "parked",
 "garden",
 "woman",
 "man",
 "hydrant",
 "sign"
],
 "captions": [
 {
 "text": "a large brick building with green grass in front
 of a house",
 "confidence": 0.73412133238971
 }
]
 },
 "requestId": "842b2e69-2e09-441d-9c60-8a3700435c6e",
 "metadata": {
 "width": 700,
 "height": 539,
 "format": "Png"
 }
}

Take a look at the tags and the autogenerated caption. While it’s not perfect (the API
acknowledges it was only 73% confident), it’s a pretty good interpretation of the
photo given there were no humans involved!

Summary
In this chapter, we looked at the options for adding intelligent analytics to your data
pipeline, including the various mechanisms Azure offers for training and operation‐
alizing your models, as well as the ready-made web services available from Microsoft
Cognitive Services.

In the next chapter, we will examine how you manage the metadata for your data, and
keep track of your data assets.

338 | Chapter 9: Intelligence and Machine Learning

CHAPTER 10

Managing Metadata in Azure

When you think of metadata, you probably think schema—what are the names and
types of fields contained in a table, the names of tables, etc.? This is the sort of infor‐
mation managed by localized metadata stores, like the Hive metadata store, which
manages the metadata for external tables used by both Spark and Hive on HDInsight.

However, there is a bigger-picture metadata consideration that has to do with how
you manage the metadata across all of your data assets in your data lake. In this chap‐
ter we explore one approach to doing so using the Azure Data Catalog (Figure 10-1).

Managing Metadata with Azure Data Catalog
When you first start collecting your data assets, managing what data lives where is
easy. You have this database for your ecommerce transactions, and that data ware‐
house for your analytics. Think of how you would describe that to the new person on
your team. However, as your data needs evolve to encompass a data lake, you have an
explosion of databases, multiple data warehouses, and hyperscale filesystems. How do
you help your new hire find that transaction history log he is asking for? That is the
goal of Azure Data Catalog, a fully managed cloud service that enables users to dis‐
cover the data sources they need for themselves, and to be certain it is the data they
are looking for, all without actually having to move the data out of the data store in
which it resides.

Azure Data Catalog is intended to enable any user—from developers to data scientists
—to discover, understand, and consume data, but also to empower folks in the know
about a data source (such as the owners of the ecommerce database mentioned previ‐
ously) to easily contribute their understanding of the data by means of authoring
metadata and annotations.

339

Figure 10-1. This chapter focuses on the metadata aspects of governance and security in
the Azure analytics pipeline.

340 | Chapter 10: Managing Metadata in Azure

Users of Azure Data Catalog search for their desired data using a web portal that
returns in the results descriptive metadata about the data as well as the connection
information required to access the data in its native data store. For example, for SQL
Database, the connection information returned includes the standard connection
string format. For certain data sources, the web portal provides single-click access to
open the data source using Power BI, Excel, or SQL Server Data Tools.

Search Syntax

The Azure Data Catalog supports a robust search syntax. You can
search for assets whose metadata matches a term, but also specify
more complex boolean expressions that match specific properties
of an asset.
See http://bit.ly/2ndOHHt for more details on the syntax options.

Metadata publishers add metadata to the Azure Data Catalog via a public API, via an
application that automates the collection of metadata, or by entering it manually in
the Data Catalog web portal.

This list of supported data sources is extensive, so here is just a sampling of the sup‐
ported data sources:

• Azure Data Lake Store
• Azure Blob Storage
• Azure Table Storage
• HDFS
• Hive Tables and Views
• MySQL Tables and Views
• Oracle Tables and Views
• SQL Data Warehouse Tables and Views
• SQL Server Tables and Views
• Teradata Tables and Views
• FTP files and directories
• HTTP endpoints
• OData endpoints

In addition to enabling metadata discovery and metadata publishing, Azure Data
Catalog supports governance efforts by providing asset-level authorization that con‐
trols which users can view and modify any metadata asset.

Managing Metadata with Azure Data Catalog | 341

http://bit.ly/2ndOHHt

Data Catalog in the Blue Yonder Airports Scenario
If you’ve been following along with the examples in this book, you have probably
noticed Blue Yonder Airports has a lot of data stores. Let’s look at the experience of
using Azure Data Catalog to manage the metadata for a few of these.

You Will Need Azure Active Directory Credentials

Azure Data Catalog relies on Azure Active Directory, so you will
need to try this using a work or school account. Personal accounts
will not work. This restriction only applies for creating and access‐
ing the data catalog, so if you have data stores you want to utilize
that are in Azure subscriptions using personal accounts, you will be
able to add metadata for those.

Begin by provisioning a new Azure Data Catalog.

1. Navigate to https://azure.microsoft.com/en-us/services/data-catalog/.
2. Select the Get Started button.
3. Provide a name for your data catalog, select a subscription, and choose a location

(Figure 10-2).

Figure 10-2. Creating a new Azure Data Catalog.

4. Select a pricing tier (you can leave it at Free Edition for the purposes of these
steps).

5. Leave Security Groups, Catalog Users, Glossary Administrators, and Catalog
Administrators at their defaults (Figure 10-3).

342 | Chapter 10: Managing Metadata in Azure

Figure 10-3. Configuring the new Azure Data Catalog.

6. Select Create Catalog. It will take a few minutes to provision.
7. When you see the home page for Azure Data Catalog, you are all ready to go

(Figure 10-4).

Managing Metadata with Azure Data Catalog | 343

Figure 10-4. Azure Data Catalog home page

What’s the Difference Between Standard and Free?

The Azure Data Catalog Free Edition includes access to all Data
Catalog features except those having to do with asset-level authori‐
zation (which allows asset owners to restrict which users can dis‐
cover and annotate registered data assets). The Standard Edition
adds these capabilities.

Add an Azure Data Lake Store Asset
Let’s add an Azure Data Lake Store to the data catalog.

1. On the Azure Data Catalog page, select Create Manual Entry.
2. Provide the Name, Friendly Name, Description, and Request Access (describing

how a user should go about requesting access).
3. For the Source Type choose Azure Data Lake Store and set the Object Type to

Data Lake with OAuth Authentication (Figure 10-5).

344 | Chapter 10: Managing Metadata in Azure

Figure 10-5. Manual entry of an asset to Azure Data Catalog.

4. For the “Connection info,” provide the URL to your Azure Data Lake Store.
5. Select Create and View Portal.
6. Once the asset has been created, you will be able to see it in the catalog. Notice

the search box at the top and the faceted search fields at left that you can use to
find assets (Figure 10-6).

Managing Metadata with Azure Data Catalog | 345

Figure 10-6. A Data Lake Store asset.

7. Click on your Data Lake Store asset to view the Properties panel with the meta‐
data (Figure 10-7).

Figure 10-7. Properties panel for an Azure Data Lake Store asset.

346 | Chapter 10: Managing Metadata in Azure

8. Select the Document tab. Note that you can write more detailed descriptions
about the data asset here using the rich text editor (Figure 10-8).

Figure 10-8. Documentation tab for an Azure Data Lake Store asset.

That should give you a sense of the manual approach to adding an asset, but if you
are running Windows there is a ClickOnce application you can download and run
that will automate the collection of the metadata. If you are running on Windows,
continue with the following steps.

Add Azure Storage Blobs
Now, let’s look at the similar process for adding Azure Blob Storage assets. We will
add these using the Azure Data Catalog application.

1. From the menu bar at the top of the Data Catalog website, select Publish.
2. On the Publish screen, select Launch Application.
3. Download and run the app.
4. Select Install on the Application Install Security Warning.
5. The application will take a few moments to download and install.
6. Accept the license agreement.
7. On the Welcome! screen, select “Sign in.” Use the credentials you used when cre‐

ating the Azure Data Catalog to sign in when prompted (Figure 10-9).

Managing Metadata with Azure Data Catalog | 347

Figure 10-9. Welcome screen for the Azure Data Catalog ClickOnce application.

8. On the Select Data Source screen, select Azure Blob and then select Next
(Figure 10-10).

Figure 10-10. Selecting Azure Blob to add a Blob Storage asset.

9. Provide your Storage account name and key, and select Connect (Figure 10-11).

348 | Chapter 10: Managing Metadata in Azure

Figure 10-11. Providing credentials to Azure Storage.

10. From the list of blob containers under Server Hierarchy, select the container that
has your flight delay data.

11. In the “Available objects” listing, choose the subfolder that contains your flight
delay blobs.

12. To the right of the “Available objects” listing, select the right chevron to add the
blob directory (Figure 10-12).

Managing Metadata with Azure Data Catalog | 349

Figure 10-12. Selecting a subfolder of a container in Azure Storage to add as a direc‐
tory asset.

13. Select Register. You have now registered this container.
14. To register individual blobs within it, select Register More Objects.
15. Select Azure Blob and then select Next.
16. Provide your Storage account name and key, and select Connect.
17. This time, select the flights subfolder underneath your container. The blobs in

that folder should appear listed in the “Available objects."
18. Select the double chevron to add all of the blob files. See Figure 10-13.

350 | Chapter 10: Managing Metadata in Azure

Figure 10-13. Adding individual blobs as assets to Azure Data Catalog.

19. Select Register. Wait for the registration to complete.
20. Select View Portal.

Now that you have the Blob Storage container, you can document and search for the
individual Storage blobs available as assets (Figure 10-14).

Managing Metadata with Azure Data Catalog | 351

Figure 10-14. Viewing blob assets available in Azure Data Catalog.

If you select a blob, notice next to the Properties pane the Data Profile tab appears.
Selecting that will show the size of the blob (Figure 10-15).

Figure 10-15. Viewing the Data Profile for a blob asset in Azure Data Catalog.

Add a SQL Data Warehouse
Now, let’s add the SQL Data Warehouse that contains the FlightDelays table.

1. Return to the Microsoft Data Catalog application and select Register More
Objects.

2. This time, select SQL Data Warehouse and select Next.

352 | Chapter 10: Managing Metadata in Azure

3. Enter the connection details for your SQL Data Warehouse instance that has the
FlightDelays table.

4. In the Server Hierarchy, select the root node.
5. In the “Available objects” listing, select your FlightDelays table and press the right

chevron to add it to the “Objects to be registered” list.
6. In the “Objects to be registered” list, select the table.
7. In the “add tags” field, add the tags “historical, flight delay, DOT” to annotate this

table with those tags for easier discovery later.
8. Select Register. When it is finished registering, select View Portal.

You should see two new assets, a SQL Data Warehouse and a SQL Data Warehouse
table. Also, notice that your faceted search options have automatically been populated
with the tags you provided (Figure 10-16).

Figure 10-16. Viewing SQL Data Warehouse assets in Azure Data Catalog.

Select the FlightDelays table, and in the Properties panel select the Columns tab.
Notice that the application has automatically populated the columns for you
(Figure 10-17).

Managing Metadata with Azure Data Catalog | 353

Figure 10-17. Viewing the columns of a SQL Data Warehouse table in Data Catalog.

Back on the FlightDelays table asset, select Open In and choose Excel (Top 1000).
This will download an Excel file. Open the file and log in to your SQL Data Ware‐
house; it brings back a sample of the data (Figure 10-18).

354 | Chapter 10: Managing Metadata in Azure

Figure 10-18. Opening a SQL Data Warehouse table in Excel.

Now that you have loaded a few different data assets in Azure SQL Data Catalog, you
can see how this will help you manage the data across all of the assets Blue Yonder
Airports may have in a data lake.

Summary
In this chapter we examined how to organize all of the data assets in a data lake by
using the Azure Data Catalog as our metadata repository.

In the next chapter, we will look at considerations for securing the data in our data
lake.

Summary | 355

CHAPTER 11

Protecting Your Data in Azure

If you built a data pipeline following the lambda architecture guidance in this book,
then odds are you view your data as a valuable asset—one that you want to protect.

In this chapter we take a high-level look at the options for protecting your data in
Azure.

Identity and Access Management
Controlling who gets access to the resources in your analytics pipeline and what they
can do once they have access is the goal of identity and access management. This
boils down to these main concepts:

Identity
Who are the users or groups?

Authentication
How do you verify that a user or application is who they say they are?

Authorization
What do you let the user or application do?

The actual mechanisms provided for defining identities, authenticating identities, and
authorizing actions varies by Azure service, but can be distilled to the following,
which we’ll call access management mechanisms:

Azure Active Directory identities
Using Azure Active Directory (AAD) to manage user identities, application iden‐
tities, and group identities.

Shared keys
Typically a username and password or a key name and secret value.

357

Shared access signatures
Cryptographically secured URIs that encapsulate a resource and the permissions
allowed on that resource in a convenient URL format. The canonical example of
this is Azure Blob Storage, which enables you to manage access to an
account, container, or blob and specify what the user is allowed to do with it
(read, write, delete, create, update, etc.).

Policies
Describe what actions a user is allowed to take. This could take the form of
POSIX-style permissions (e.g., read, write, execute) or more service-specific per‐
missions (e.g., IoT Hub defines manage, send, and listen).

Role-based access control
Permissions are applied to a user or application based on their membership in a
role or group.

Firewall
Access is allowed based on the IP address of the client attempting to reach the
service.

In this chapter, we will not go into the specifics of using each of the mechanisms (the
previous chapters covered many of these by way of using the service). However, it is
important to understand, for your data lake and analytics pipeline, exactly what
access management surface area you need to consider when securing your solution.
Table 11-1 summarizes the available mechanisms for all the services mentioned in
this book.

Table 11-1. Access management mechanisms by service

Azure service Access management mechanisms

Azure Event Hubs Shared access policies using shared access key name and value
Policy defines manage, send, and listen permissions

Azure IoT Hub Azure role-based access control
Shared access policies using shared access key name and value
Policy defines registry read/write, service connect, and device connect permissions
Device shared access signatures

Azure Import/Export Service Azure Storage account key for disk preparation
Personal, school, or work credentials for job creation

Azure Data Factory Azure role-based access control

Azure HDInsight Azure role-based access control
Admin username and password
SSH user and password
SSH public key

Azure Stream Analytics Azure role-based access control

358 | Chapter 11: Protecting Your Data in Azure

Azure service Access management mechanisms

Azure Blob Storage Azure role-based access control
Azure Storage account name and key
Shared access signatures

Azure Data Lake Store Azure role-based access control
AAD native client application
AAD Web Apps application with secret key
AAD Web Apps application with certificate
POSIX access controls on lake, folders, and files
Firewall

Azure SQL Data Warehouse SQL authentication
AAD identities
Firewall

Azure SQL Database SQL authentication
AAD identities
Firewall

Azure Data Lake Analytics Azure role-based access control
AAD identities

Azure DocumentDB Azure role-based access control
Account endpoint and account key with read/write and read-only versions
Firewall

Azure Redis Cache Hostname and password

Azure Search Azure role-based access control
Shared keys for administration and query

Data Protection
Beyond controlling who can access your data and what they can do with it, your solu‐
tion needs to consider the security of the data as it sits at rest on disk and while it is in
transit between the client and the data store.

These are collectively the data protection mechanisms, and we can summarize the
available options for data protection at rest as follows:

Disk encryption
The disk volume or virtual hard disk is encrypted.

Storage encryption
For file stores like Azure Blob Storage and Azure Data Lake Store, the data is
encrypted prior to write and decrypted prior to read. Encryption and decryption
operations are transparent to the client application.

Transparent data encryption
For databases like SQL Database and SQL Data Warehouse, the data is encrypted
prior to write and decrypted prior to read. Encryption and decryption operations
are transparent to the client application.

Data Protection | 359

Similarly, the options available for data protection of the data in transit can be sum‐
marized as follows:

TLS
The connection between the client and the data store uses the industry standard
Transport Layer Security, which provides secure communication across public
channels like the internet.

Disk encryption
When you use the Azure Import/Export Service, your data never goes across the
wire. However, the physical disk is shipped and hence the data in transit is pro‐
tected by the encryption applied to the disk.

Table 11-2 sums up the available data protection mechanisms for the services covered
in this book.

Table 11-2. Data protection mechanisms

Azure service At rest In transit

Azure Event Hubs Not available TLS

Azure IoT Hubs Not available TLS

Azure Import/Export Service Disk encryption Disk encryption

Azure Blob Storage Storage encryption TLS

Azure Data Lake Store Storage encryption TLS

Azure SQL Data Warehouse Storage encryption
Transparent data encryption

TLS

Azure SQL Database Transparent data encryption TLS

Azure HDInsight Not available TLS

Azure Redis Cache Not available TLS

Azure Search Not available TLS

Azure DocumentDB Not available TLS

For those with “Not available” in the “At rest” column, consider that you may be able
to implement your own mechanism to encrypt the data before sending it to the data
store and encrypt it when retrieving, such that the data store itself only manages
encrypted data. Also, some of these may become available soon, as the product team
has indicated support is planned, such as for HDInsight to be able to query against
Azure blobs that have storage encryption enabled.

360 | Chapter 11: Protecting Your Data in Azure

Azure Feedback

To check on the status of improvements requested, planned, in
progress, or completed for any of the Azure services, see https://
feedback.azure.com.
For example, the entry describing support for HDInsight accessing
blobs using storage encryption can be found at http://bit.ly/
2n7O8Nz.

Auditing
When it comes to keeping a watchful eye on who is doing what with your data, there
are two forms of monitoring you want to perform. First, you want to monitor any
operations that change or configure your Azure services. Second, you want to collect
logs about who is accessing the data. Together these audit mechanisms appear under
a variety of names in Azure, but can be summarized as follows:

Activity logs
This nearly universal feature captures any changes made that affect the configu‐
ration of an Azure service. It is available through the Activity Log feature of a ser‐
vice in the Azure Portal.

Diagnostic logs
Diagnostic logs capture Azure Storage account operations that interact with the
data managed by the service. Typically, this includes audit logs that can indicate
events such as successful and failed access by a user.

Storage analytics logging
Azure Blob Storage provides a specialized set of audit logs that capture, for exam‐
ple, successful and failed requests, throttling, and authorization errors.

Auditing and threat detection
This feature is specific to SQL Database and SQL Data Warehouse. It lets you
track database events such as successful/failed logins, stored procedure execu‐
tions, and SQL execution. Once auditing is enabled, the threat detection feature
looks for anomalous database activities and can send you alerts about them via
email.

Table 11-3 summarizes the audit mechanisms by each of the services we covered in
this book.

Auditing | 361

https://feedback.azure.com
https://feedback.azure.com
http://bit.ly/2n7O8Nz
http://bit.ly/2n7O8Nz

Table 11-3. Audit mechanisms by service

Azure service Audit mechanisms

Azure Event Hubs Diagnostic logs

Azure IoT Hub Activity logs
Diagnostic logs

Azure Import/Export Service Diagnostic logs

Azure Data Factory Activity logs

Azure Blob Storage Activity logs
Storage analytics logging

Azure Data Lake Store Activity logs
Diagnostic logs

Azure SQL Data Warehouse Activity logs
Auditing and threat detection

Azure SQL Database Activity logs
Auditing and threat detection

Azure DocumentDB Activity logs

Azure Redis Cache Activity logs
Diagnostic logs

Azure Search Not available

Summary
In this chapter we took a high-level look at the options for protecting your data in
Azure, from controlling access, to protecting the data in transit and rest, to auditing
access to the data.

In the next chapter, we will examine the ultimate goal of our data pipeline—perform‐
ing analytics.

362 | Chapter 11: Protecting Your Data in Azure

CHAPTER 12

Performing Analytics

In this final chapter, we’ll pull things together to see how we can perform analytics
against a lambda architecture built in Azure. Throughout the course of this book,
you’ve seen examples of the technologies that act in support of the hot path, the cold
path, or both. We have also explored some of the tradeoffs you can make between low
latency/low precision and high latency/high precision.

When you are performing analytics against data in a data pipeline, the tools are as
varied as those we used to perform the data preparation. Examples include using
Excel and packaging up access to data stores in custom apps and APIs. In this chap‐
ter, we’ll take a look at using Power BI to create an analytics dashboard that reports
against both hot and cold path data (see Figure 12-1).

Analytics with Power BI
Power BI provides a trio of tools for providing visualization and analytics against the
data flowing through your data pipeline. There is the Power BI web application (also
known as powerbi.com), which enables you to create and share visualizations using
only a web browser. Second, the Power BI Desktop is a Windows-based, ClickOnce
installed application that provides a similar user experience to the Power BI web
application, but enables richer data munging and querying as well as support for an
extensible library of visualizations provided by the community. Content created in
the Power BI Desktop application can be published to the Power BI web application
once ready. Users of the Power BI web app need to authenticate using Azure Active
Directory credentials, and will need a Power BI subscription. However, if you want to
share a report with the public internet consumer, you can leverage the third tool of
the trio, the Power BI embedded service. This enables you to embed any report
within an iframe of any web page, without requiring visitors to have a Power BI
subscription.

363

Figure 12-1. This chapter focuses on the last mile of the Azure analytics pipeline, the cli‐
ents.

364 | Chapter 12: Performing Analytics

Power BI supports connectivity to both real-time streaming and queryable data
stores.

Support for streaming data sources is only available in the Power BI web application.
It provides support in two ways:

• Automatic integration as an output from Stream Analytics
• Manual integration via a REST API

More About the Real-Time Power BI REST API

The Power BI REST API enables your applications to add data to
reports whose changes can be visualized in real time. To learn more
about this API, see http://bit.ly/2mtlqKa.

The supported data stores vary between the Power BI web application and Power BI
Desktop (which includes significantly more connectors), but generally both include
the following:

• Azure SQL Database
• Azure SQL Data Warehouse
• SQL Analysis Services
• Spark on HDInsight

Real-Time Power BI in the Blue Yonder Scenario
Let’s examine building a real-time dashboard in Power BI to visualize telemetry flow‐
ing through the data pipeline. In this scenario, we’ll collect temperature events that
are emitted from the device simulator and collected by an Event Hub. We’ll create a
Stream Analytics job that summarizes the data in one-minute windows, and then
outputs the summarized result to a Power BI data set. The data produced by the
Stream Analytics job consists of the window end timestamp; the device ID; the max,
min, and average temperatures over the window; and the count of events collected
during the window.

In order to use Power BI you will need to register at https://app.powerbi.com using a
work or school account (personal accounts like @outlook.com or @hotmail.com will
not work). Once you have signed up for Power BI, continue with the following.

Begin by creating a new Stream Analytics job (refer to Chapter 5 for a refresher on
how to do this). Then add an input for the job that points to the Event Hub collecting

Analytics with Power BI | 365

http://bit.ly/2mtlqKa
https://app.powerbi.com

the data produced by the SimpleSensorConsole device simulator application
(Figure 12-2).

Figure 12-2. Adding the Event Hub input to a Stream Analytics job.

366 | Chapter 12: Performing Analytics

Next, add an output to your Stream Analytics job that points to Power BI. To accom‐
plish this, when you add a new output, select a sink of Power BI. Click the Authorize
button and log in with the same credentials you used to create your Power BI account
(see Figure 12-3).

Figure 12-3. Adding the Event Hub output to a Stream Analytics job.

Analytics with Power BI | 367

When the authorization succeeds, you should be back at the “New output” blade.
Provide a Dataset Name and Table Name to store the hot data in Power BI. Select
Create (see Figure 12-4).

Figure 12-4. Completing the configuration of a Power BI output.

Now you are ready to define the query that will control what data flows from the hot
stream of data entering the Event Hub to the data set in Power BI. For the query, use
the following (be sure to adjust the input and output names as appropriate to your
Stream Analytics job):

SELECT
 System.TimeStamp AS WindowEnd, DeviceId,
 Min(temp) AS Temp_Min, Max(temp) AS Temp_Max,
 Avg(temp) AS Temp_Avg, Count(*) AS Temp_ReportCount
INTO
 powerbi
FROM
 eventhub
GROUP BY TumblingWindow(Duration(minute, 1)), deviceId

Save the query and start the Stream Analytics job. While you wait for the Stream
Analytics job to finish starting, open the BlueYonderAirlines solution in Visual Stu‐
dio. Expand the SimpleSensorConsole in Solution Explorer and open app.config.

368 | Chapter 12: Performing Analytics

Make sure that the SendEventAsBatch appSetting is set to the value of "false". This
will ensure that data continues to stream from the simulator for at least 30 minutes
(or until you close the SimpleSensorConsole). Also, ensure that EventHubsSenderCon
nectionString is set to the correct value for your Event Hub.

Run the SimpleSensorConsole application and select option 1 to generate and send
simulated telemetry to Event Hubs. Leave the console running.

Return to the Power BI web app. On the lefthand menu, underneath the Datasets
grouping, look for “Streaming datasets” and select it.

You should see your new data set that is coming from Stream Analytics in the listing.
If you do not, make sure your Stream Analytics job has started up successfully and
that the SimpleSensorConsole is still sending data (see Figure 12-5).

Figure 12-5. A Power BI streaming data set

Click the + next to Dashboard on the lefthand menu to create a new dashboard and
then provide a name for it. In the top right of the screen, select the “Add tile” button
(Figure 12-6).

Analytics with Power BI | 369

https://app.powerbi.com/

Figure 12-6. The “Add tile” button used to add new streaming tiles to a Power BI dash‐
board.

On the “Add tile” panel, select Custom Streaming Data and select Next (Figure 12-7).

Figure 12-7. The “Add tile” panel.

On the next dialog, select your data set and select Next (Figure 12-8).

370 | Chapter 12: Performing Analytics

Figure 12-8. Selecting a data set for a custom streaming data tile.

On the Visualization Design, choose Card. Select “Add value” below the Fields header,
select temp_reportcount, and select Next (Figure 12-9).

Figure 12-9. Selecting a field from the streaming data to visualize.

On the Tile Details panel, provide a title for the tile (such as “# Events in Last Win‐
dow”) and select Apply. What you have just created is a tile that displays the last value
received for the temp_reportcount field from the input stream of data. If your pipe‐
line is working as it should (and the simulator is still transmitting), the tile should
look similar to Figure 12-10.

Analytics with Power BI | 371

Figure 12-10. Example result of a tile displaying streaming data.

Now that you have one tile going, let’s quickly build the remaining tiles for this
dashboard.

Add another tile with a custom streaming source. This tile will report the last maxi‐
mum temperature reported. Repeat the same steps as for the previous tile, except pro‐
vide the following:

• Fields: temp_max
• Title: Last Temp Max Reported
• Subtitle: (Degrees F)

This tile should appear as shown in Figure 12-11.

Figure 12-11. Example result of a tile displaying the temp_max field streaming in.

Next, add another tile. This time use the following settings:

• Visualization Type: Line Chart
• Axis: windowend
• Legend: deviceid
• Values: temp_avg
• Time Window To Display: Last 10 Minutes

372 | Chapter 12: Performing Analytics

The result of this tile should be a line graph similar to Figure 12-12 showing the tem‐
perature reported over time for the streaming data.

Figure 12-12. Example result of a tile showing the average temperature graphed over
time.

Finally, add one more tile that shows the average temperature relative to the min and
max for the window. Use the following settings:

• Visualization Type: Gauge
• Value: temp_avg
• Minimum Value: temp_min
• Maximum Value: temp_max
• Title: Last Temp Range
• Subtitle: (Degrees F)

This should result in a gauge chart similar to Figure 12-13.

Analytics with Power BI | 373

Figure 12-13. Example result of a tile showing the average temperature relative to the
min and max temperature for the latest window of time.

If you arrange the tiles as desired, you should have a dashboard that looks similar to
Figure 12-14 and is updating in real time!

Figure 12-14. Example completed real-time dashboard for temperature telemetry.

Batch Analytics Reporting with Power BI in the Blue
Yonder Scenario
Power BI can display charts for real-time data alongside reports computed from
batch-processed data. Let’s look at augmenting the real-time reports with a simple Fil‐
led Map visualization showing the states with the most flight delays. In this case, we
will draw the flight delay data from SQL Data Warehouse.

374 | Chapter 12: Performing Analytics

In the Power BI web app, from the lefthand menu near the bottom select Get Data,
then underneath the Databases tile select Get.

In the list of available data sources, select Azure SQL Data Warehouse and select Con‐
nect (Figure 12-15).

Figure 12-15. Selecting an Azure SQL Data Warehouse source.

On the Connect to Azure SQL Data Warehouse screens, provide the server name,
database, username, and password for your Azure SQL Data Warehouse instance that
contains the FlightDelaysStaging table as created in Chapter 6.

Once the connection succeeds, select the data set on the lefthand menu named after
your SQL Data Warehouse. On the Visualization panel, select “Filled map”
(Figure 12-16).

Figure 12-16. Selecting the “Filled map” visualization.

In the Fields list, expand FlightDelaysStaging and drag OriginState and drop it on the
Location bucket. Also, drag and drop DepDel15 from the Fields list onto the Color
Saturation bucket. On the Format tab of the visualization, expand the “Data colors”
ribbon. Set the diverging option to On and set your desired colors for the minimum,
center, and maximum values (these will be used to color the states), as shown in
Figure 12-17.

Batch Analytics Reporting with Power BI in the Blue Yonder Scenario | 375

Figure 12-17. Setting the data colors for the filled map in Power BI.

Within a few moments you should be presented with a filled map that looks similar to
Figure 12-18.

376 | Chapter 12: Performing Analytics

Figure 12-18. Example of the completed filled map showing the flight delays summarized
by state.

Click on the Pin icon in the top-right corner of the filled map visualization
(Figure 12-19).

Figure 12-19. The Pin visual button in Power BI.

In the dialog, leave Existing Dashboard selected; from the drop-down, select the
dashboard you created previously with your real-time tiles, and select Pin
(Figure 12-20).

Batch Analytics Reporting with Power BI in the Blue Yonder Scenario | 377

Figure 12-20. The “Pin to dashboard” dialog.

From the menu on the left, select your real-time dashboard. The finished result
should look similar to Figure 12-21.

Figure 12-21. An example dashboard showing visuals for both hot and cold path data.

You have just constructed a report against your lambda architecture!

A Look Ahead
The technologies available for building an analytics data pipeline continue to evolve,
and new ones seem to be introduced regularly. In the last section of Mastering Azure
Analytics, let’s take a look at some of the highlights of the road ahead for building
analytics pipelines in Azure.

Real Time
At the time of this writing, Apache Kafka was announced as a newly supported work‐
load for HDInsight. This very popular open source project can be thought of as

378 | Chapter 12: Performing Analytics

similar to the message handling capabilities provided by Event Hubs. However, given
its history in the community, Apache Kafka brings with it very strong support for
implementing kappa architectures where, instead of thinking of a database as your
central store, you use a universal log to maintain the history of your data as it changes
over time. Already many microservices and log analytics solutions rely on Kafka as
the heart of their architecture, and this will certainly empower new analytics work‐
loads on Azure.

Lower Batch Latencies
Also just announced was support for Interactive Hive—a set of features considered
part of Stinger v.next in the Hortonworks distribution of Hadoop. Now, Interactive
Hive is available in preview as an HDInsight workload and provides the much-
anticipated Live Long and Process long-running processes, which will only serve to
reduce query latency for Hive workloads, and further narrow the gap between Spark
and Hive performance.

IoT
Azure IoT Hubs is introducing a Gateway SDK that, among other things, enables you
to extend the reach of your data pipeline processing all the way to the edge—to where
your devices live. This ability to preprocess and minimize the data flowing into the
pipeline is likely to become de rigueur for any IoT-based pipeline.

Security
Recently introduced to HDInsight is Apache Ranger, which provides more fine-
grained, role-based access control over Hadoop components. As HDInsight contin‐
ues to evolve, we should expect tighter integration with these components and Azure
Active Directory to make universally securing the data lake built in Azure a much
easier proposition.

More Linux
At the time of this writing, SQL Server on Linux was just made available in public
preview. It brings with it significant feature parity to SQL Server on Windows
(including features like R Services, memory-optimized tables, and columnar
indexes). What might make it very unique in a pipeline is the ease with which SQL
Server on Linux can be deployed into Docker containers, bringing a new degree of
flexibility for deploying SQL Server on a wider range of operating systems, including
Linux and macOS.

The road ahead is an exciting one, with lots of new ways of mastering Azure
analytics.

A Look Ahead | 379

Index

A
Academic Knowledge API, 327
access management mechanisms, 357

by service, 358
activity logs, 361
ADF (see Azure Data Factory)
AdlCopy, copying data from Blob Storage to

Data Lake Store, 88
adls: scheme, 94
AlertTopology

C# implementation, 158
extending to use tick tuples, 197
Java implementation, 137

Storm with Trident, 193
Ambari, 219, 314

using Hive View to execute HiveQL queries,
220

AMQP (Advanced Message Queuing Protocol),
75, 96
communicating with Event Hubs, limits on,

99
analytics, 1

(see also enterprise analytics)
case-study scenario, introduction to, 9-11
performing, 363-379

batch analytics reporting with Power BI,
374-378

future developments in, 378
real-time dashboard in Power BI,

365-374
with Power BI, 363

real-time operational analytics support in
SQL Database, 303

analytics data pipeline, 1

Azure pipeline, 6-9
building in Azure, future developments, 378
example of, 65
storage items in, 77

analytics workloads
Azure Data Lake Store support for, 84
handled by Azure Batch, 258
HDFS support for, 90

Apache Ambari (see Ambari)
Apache Hadoop (see Hadoop)
Apache HBase (see HBase)
Apache Kafka, 378
Apache Phoenix (see Phoenix)
Apache Pig (see Pig on HDInsight)
Apache Ranger, 379
Apache Spark (see Spark on HDInsight; Spark

SQL; Spark Streaming on HDInsight)
Apache Storm (see Storm on HDInsight)
Apache Tex (see Tez)
Apache YARN (see YARN Resource Manager)
Apache Zookeeper (see Zookeeper)
append blobs, 79
ApplicationMaster, 212
approximation of data, 289
Aspera Server On Demand:, 53
asv: scheme (deprecated), 94
at-least-once tuple processing guarantees, 131
auditing, 361

audit mechanisms by service, 361
auditing and threat detection feature, 361
support for, in Azure Data Lake Store, 84

authentication, 357
support for, in Azure Data Lake Store, 84

authorization, 357

381

support for, in Azure Data Lake Store, 84
Avro, data formatted in, 200
AZCopy, 46

using Azure Storage Movement Library
with, 48

using to bulk load files into Blob Storage, 47
Azure

building analytics pipelines in, future devel‐
opments, 378

getting data into, 17-76
subscription to, 11

Azure Active Directory, 342
identity management, 357

Azure App Services
deploying Web Jobs to, 174
hybrid connections, 55

Azure Batch, batch processing with, 258
Azure Blob Storage, 79-84

adding to Azure Data Catalog, 347-352
audit logs, 361
bulk loading files into, using AZCopy, 47
bulk loading files into, using Azure

Explorer, 45
bulk loading files into, using Azure Storage

Explorer, 44
bulk loading files into, using Cloud

Explorer, 38
bulk loading files into, using PowerShell

cmdlets, 50
bulk loading files into, using Server

Explorer, 35
direct connections to, Azure Stream Analyt‐

ics, 200
ingesting from file share to, using Azure

Data Factory pipeline, 56
staging files in, for AdlCopy, 49
storage capacity, 80
storage capacity, per-file size limits and

account limit, 85
Stream Analytics Jobs pulling reference data

from, 200
transferring flight delay data files into, 84

Azure Command-Line Interface (CLI), 48
Azure Data Catalog, 339

managing metadata with, 339-355
adding Azure Blob Storage, 347-352
adding Azure Data Lake Store, 344-347
adding Azure SQL Data Warehouse,

352-355

data sources supported, 341
Free versus Standard Edition, 344
governance efforts support, 341
provisioning a new Azure Data Catalog,

342
search syntax, 341

Azure Data Factory
data ingest from on-premises sources, 55
hybrid connections and, 54
ingestion from file share to Blob Storage,

56-67
creating data set for data as it will be

stored, 62
creating linked service to Azure Storage,

61
creating pipeline for data movement, 64
installing and configuring Data Manage‐

ment Gateway, 56
Monitoring App, 66

ingestion from file share to Data Lake Store,
67-74
creating pipeline for data movement, 70
viewing pipelines in Monitoring App, 72

orchestrating batch processing pipelines
with, 259

Azure Data Lake Analytics, 247-258
batch processing Blue Yonder Airports data,

250
interactive querying with U-SQL, 283-285

distributions, 283
exploring Blue Yonder Airports data, 283

processing with U-SQL, 250-258
provisioning an instance, 249
storage options, 249
U-SQL language, 248

Azure Data Lake Store, 84-90
adding to Azure Data Catalog, 344-347
associating with HDInsignt cluster, 218
bulk loading files into, using AdlCopy, 49
bulk loading files into, using Cloud

Explorer, 42
bulk loading files into, using PowerShell

cmdlets, 51
ingesting from a file share to, 67-74
provisioning, 86
storage capacity, 85
transferring flight delay data from Blob

Storage into, 88
Azure DocumentDB, 296-303

382 | Index

Hadoop Connector, 297
in the batch serving layer, 302
in the speed serving layer, 299-302
structure of, 297

Azure Event Hub client for C#, 125
Azure Explorer (Cerebrata), 45, 84
Azure Feature Pack (SSIS), 46
Azure Files, 54
Azure Functions service, 329-338
Azure Machine Learning, 322-324

creating experiments with, 324
leveraging in tuple-at-a-time processing,

174
Azure Management Portal, creating an import

job, 21
Azure Portal

creating an Azure Data Lake Store, 67, 86
creating new Storage account, 82
examing flight delay data via, 89
Query Explorer, 301
uploading files via web browser, 45

Azure Redis Cache, 290-296
latencies in performing random read/write

operations, 290
reference for, 290
size limit, 291

Azure SDK 2.8 or later, 15, 157
Azure Search, 317

loading data into, 317
querying, 318

Azure Service Bus SDK, 170
Azure SQL Data Warehouse, 237-247, 311

adding to Azure Data Catalog, 352
auditing and threat detection feature, 361
batch processing Blue Yonder Airports data,

240
indexes, 265
interactive exploration of Blue Yonder Air‐

ports data, 266
overview of main elements, 237
partitions and distributions, 263
Power BI data source, 375
provisioning an instance, 240
storing credentials to Azure Storage

account, 241
Azure SQL Database, 303-311

auditing and threat detection feature, 361
in the batch serving layer, 311
in the speed serving layer, 305-311

Azure Storage Data Movement Library, 48
Azure Storage Explorer, 44
Azure Storage Vault (ASV), 94
Azure Stream Analytics, 199-206

comparison to Storm on HDInsight, 201
creating a job that outputs results to Power

BI, 365-368
DocumentDB integration with, 299

configuring a Stream Analytics job for
DocumentDB, 301

memory-optimized tables and, 306
Power BI, automatic integration as output

from, 365
provisioning a Stream Analytics job,

201-206
query definitions (SQL), 200

Azure Web Apps service, FTP endpoints, 53

B
B-tree indexes, 304
batch analytics reporting with Power BI,

374-378
batch execution API, 323
batch processing

batch operations in Storm Trident, 196
in Azure, 207-260

orchestrating pipelines with Azure Data
Factory, 259

with Azure Batch, 258
with Azure Data Lake Analytics, 247-258
with Azure SQL Data Warehouse,

237-247
with Hive on HDInsight, 213-228
with MapReduce on HDInsight, 209-213
with Pig on HDInsight, 228
with Spark on HDInsight, 229-237

micro-batch processing in Azure, 175-206
batch serving layer, 287

Azure DocumentDB in, 302
Azure Search in, 317
Azure SQL Data Warehouse in, 311
Azure SQL Database in, 311
data expiration and, 289
key aspects, 289

batch writes, 290
benchmarking Azure Redis Cache, 291
Bing Autosuggest API, 327
Bing Image Search API, 327
Bing News Search API, 327

Index | 383

Bing Speech API, 326, 327
Bing Spell Check API, 327
Bing Video Search API, 327
Bing Web Search API, 327
BitLocker encryption, 21, 27
Blob Storage (see Azure Blob Storage)
blobs (in Blob Storage)

block blobs, 84
file structure, 79
formats, 79

block blobs, 79, 84
Blue Yonder Airports (BYA) scenario, 9-11

Azure Data Catalog in, 342-344
batch analytics reporting with Power BI,

374-378
batch processing data with Azure Data Lake

Analytics, 250
batch processing data with Azure SQL Data

Warehouse, 240-241
batch processing data with Hive on HDIn‐

sight, 219
bulk data loading using disk shipping, 19
data, ingestion into Azure, 17
example code and data sets, 11
interactive exploration of data with Azure

SQL Data Warehouse, 266
interactive exploration of data with Hive

and Tez, 271-278
interactive exploration of data with Spark

SQL, 279-283
interactive exploration of data with U-SQL,

283
prerequisites for following along with, 11-16
real-time Power BI, 365-374
smart buildings telemetry, 95-96
speed serving layer support with Azure

DocumentDB, 299
speed serving layer support with Azure

Redis Cache, 291-296
Storm on HDInsight, application to, 132
stream loading data, smart buildings tele‐

metry, 74
transferring flight delay data from Blob

Storage into Data Lake Store, 84
using Azure Data Lake Store, 85
using Blob Storage for flight delay data, 81

getting the data, 81
using Event Hubs for smart buildings tele‐

metry data, 99-111

using HDFS, 94
using IoT Hub for smart buildings telemetry

data, 114-122
using Spark on HDInsight to batch process

data, 232
bolts (Storm), 130, 131

EmitAlerts bolt implementation, counting
alert tuples, 198

in Java implementation, 142
bounded staleness consistency level, 298
bulk data loading, 17, 19-74

disk shipping, 19-35
end user tools, 35-52
network-oriented approaches, 52-74

ingesting from file share to Blob Storage,
56-67

ingesting from file share to Data Lake
Store, 67-74

site-to-site networking, 74
using FTP, 52

programmatic clients, command line and
PowerShell, 46-52
ADlCopy, 49
AZCopy, 46
Azure Command-Line Interface, 48
PowerShell cmdlets, 50

C
C#

building Storm topologies with
dev environment setup, 156
topology implementation, 158

.NET-based sensor simulator, 100
StackExchange library, 292

caching, 290
(see also Azure Redis cache)

CachingEventProcessorHostWebJob project,
292

checkpointing, 127
client SDKs for Event Hubs, 96
Cloud Explorer, 35

bulk loading into Data Lake Store, 42-44
uploading a batch of files to Blob Storage, 38

cloud service worker role to expose FTP end‐
points, 52

Cloudera Distribution, 85
clustered columnstore indexes

for memory-optimized tables in SQL Data‐
base, 305

384 | Index

in Azure SQL Data Warehouse, 265
in Azure SQL Database, 308

clustered indexes (in SQL Data Warehouse),
266

clustering, 321
code examples for this book, 11
collections of documents (DocumentDB), 297,

300
column families, 312
columnstore indexes, 305

(see also clustered columnstore indexes)
command-line clients

AZCopy, 46
Azure Command-Line Interface, 48

compute nodes, 238
Computer Management application, 23
computer vision APIs, 326
config.properties file, 134
consistency levels in DocumentDB, 298

documentation, 299
consumers

consuming messages from Event Hubs, 125
competing consumers, 126
consumer groups, 125
egress quotas and limits, 128

Content Moderator, 328
control node, 237
Cortana, 328
Cosmos, 248
CQRS (command query responsibility segrega‐

tion), 6
CREATE EXTERNAL FILE FORMAT state‐

ment, 242
CREATE EXTERNAL TABLE statement, 243
CREATE TABLE statement, 246

in Azure SQL Data Warehouse
creating clustered columnstore index,

265
defining partition boundaries, 264

PARTITIONED BY clause, 273
CSV files

containing flight delay data used in Blue
Yonder Airports scenario, 82

flight delay data, copying from Blob Storage
into Data Lake Store, 88

ingested from Blob Storage, 200
reading using U-SQL extractors, 254
stored in Data Lake store, previewing file

contents, 89

transforming in batch processing, 207
UTF-8-encoded CSV, 200

CsvBulkLoadTool, 316

D
DAGs (see directed acyclic graphs)
Data Catalog (see Azure Data Catalog)
data expiration in speed serving layer, 289, 294

in DocumentDB, 299
SQL Database and, 305

Data Lake Analytics (see Azure Data Lake Ana‐
lytics)

data lakes, 2
Data Management Gateway, 55

installing and configuring, 56
Data Movement Service (DMS), 238
data protection, 359-361

checking on status of improvements, 361
mechanisms for Azure services, 360

data sets, example, for this book, 11
data sources, 1

(see also source)
supported by Azure Data Catalog, 341

data stores and databases, Storm interaction
with, 131

Data Warehouse units, 239
data wrangling (or data munging), 1
databases

encryption of data, 359
Hive, 216
in Azure DocumentDB, 297, 300

DataFrame API, 229
DataFrame instance, 231

DataFrameReader, 230
DataFrameWriter, 231
DataReader, 230
DataSet API, 229, 232
delete markers, 313
delivery in analytics data pipeline, 2

Azure analytics pipeline, 9
diagnostic logs, 361
directed acyclic graphs (DAGs), 130, 131, 137

for map and reduce tasks in Apache Tez, 270
of script execution, 256

DIRECT_HASH distributions, 283
discretized stream (DStream), 177
disk encryption, 359

for data in transit, 360

Index | 385

Disk Management (in Computer Manage‐
ment), 23

disk shipping (to Azure), 19-35
Import/Export Service, 20

distributed, in-memory cache (Azure Redis
cache), 290

distributions, 263
methods supported in Azure Data Lake

Analytics, 283
methods supported in Azure SQL Data

Warehouse, 263
HASH distribution, 268

DocumentDB (see Azure DocumentDB)
drive letter, choosing to mount a drive, 25
DStream, 177, 182

E
Elastic Database Query feature, 311
elastic pools, 307
embarrassingly parallel, 210
Emotion API, 326
encryption, 359
encryption at rest, in Azure Data Lake Store, 84
end user tools for bulk data loading, 35-52

graphical clients, 35
Microsoft Azure Storage Explorer, 44
SSIS Feature Pack for Azure, 46
third-party clients, 45
Visual Studio Cloud Explorer and Server

Explorer, 35-44
programmatic clients, command line and

PowerShell, 46-52
AdlCopy, 49
AZCopy, 46
Azure Command-Line Interface, 48
PowerShell cmdlets, 50-52

enterprise analytics, 1-16
analytics data pipeline, 1
analytics scenarios, introduction to, 9-11
Azure analytics data pipeline, 6-9
choosing between lambda and kappa, 6
data lakes, 2
kappa architecture, 5
lambda architecture, 3-5

Entity Linking, 328
epoch (Event Hub consumers), 128
ETL (extract-transform-load) pipeline, 207
Event Hubs, 75, 96-111

Azure Stream Analytics job for Docu‐
mentDB, 301

capacity, 97
ingress quotas and limits, 99
throughput units controlling volume of

data ingress/egress, 98
total storage capacity for messages, 98

configuration settings for the Event Hub
Spout in config.properties, 134

consuming events from, Spark Streaming,
177

consuming messages from, 125
egress quotas and limits, 128

creating an Event Hubs instance, 106
running a simulator to create sample

data, 110
transmitting sample data to the instance,

111
Event Hub Spout for Java Storm implemen‐

tation, adding, 139
Event Hub Spout, Trident-specific instance

of, 194
ingest and consumptions side, 123
ingest and storage with, 96-97
JAR file containing Event Hub Spout, 157
processing of streams by Azure Stream Ana‐

lytics, 199
running Event Hubs load simulator, 106
sensor simulators, 100
Sensors and SimpleSensorConsole projects,

100-106
spawning a consumer for each partition in

the instance, 170
stream loading with IoT Hub, 75
tuples from, for Storm on HDInsight, 132
using in Blue Yonder Airports scenario, 99

Event Sourcing pattern, 6
EventData instances, 125
EventHubUtils library, 182
EventProcessorHost, 170-174

in Web Jobs, 171
EventProcessorHostWebJob solution

SqlDBEventProcessorHostWebJob project,
308

eventual consistency, 298
example code and data sets, 11
examples in this book, requirements for, 11-16
executors, 130
expiration on keys (Redis), 290, 294

386 | Index

Express Route, 74
external and internal tables, 209, 214

creating an external table in Azure SQL
Data Warehouse, 243

creating an external table in Hive, 220-225
creating an external table in Spark, 233-237
creating an internal table in Azure Data

Lake Analytics, 257
creating an internal table in Hive, 225-228
in Azure Data Lake Analytics, 248
in Spark SQL, 231
storage on HDInsight, 218

extractors (in U-SQL), 254

F
Face API, 326, 328
faceted queries, 318
fault tolerance

in kappa architecture, 6
in lambda architecture, 5

feedback, 361
file shares

ingesting from file share to Blob Storage,
56-67

ingesting from file share to Data Lake Store,
67-74

file-oriented storage, 77-94
Azure Blob Storage, 79-84
Azure Data Lake Store, 84-90
HDFS (Hadoop Distributed File System),

90-94
filled map visualization, 375
firewall rules, 307
firewalls, 358
flight delay data (example), 10

(see also Blue Yonder Airports scenario)
copying from Blob Storage into Data Lake

Store, 88
getting the sample data, 81
On-Time Performance table, 81

FTP, using to bulk load into Azure Blob Stor‐
age, 52

functions (Azure), 329
using a Cognitive Service from, 330-338

G
geo-redundant storage (GRS), 80, 84

read-only geo-redundant storage (RA-GRS),
80

Get-ChildItem cmdlet, 50
grouping, 321

H
Hadoop

Cloudera Distribution, 85
DocumentDB Hadoop Connector, 297
ecosystem components in HDInsight, 129
HBase and, 312
Hortonworks Data Platform (HDP), 129
MapReduce, 210-213

components of, 210
MapReduce system, 210
running on YARN managed cluster, 212

running Spark on cluster using YARN
resource manager, 177

hard drive (for disk shipping), 21
HASH distributions, 263, 268, 283
hash indexes

for memory-optimized tables in SQL Data‐
base, 304

in Azure SQL Database, 308
HBase, 270

benefits of, 312
data organization in, 312
on HDInsight, 312-317

HDFS (Hadoop Distributed File System),
90-94, 210
client application reading from/writing to,

91
provided by Azure Data Lake Store, 84
topology of, 90
using in Azure, 93

HDInsight
Apache Ranger, 379
Azure support for analytics workloads in, 85
HBase on, 312-317
Hive on, 213-228

batch processing Blue Yonder Airports
data, 219

indexes, 271
interactive querying of Blue Yonder Air‐

ports data, 271-278
Stinger initiative core enhancements,

269
storage on HDInsight, 218

introduction to, 129
Kafka as newly supported workload, 378
MapReduce on, 209-213

Index | 387

Pig on, 228
provisioning a cluster and using HDFS pro‐

vided with it, 93
R Server on, 324
Spark on, 229-237

batch processing Blue Yonder Airports
data, 232

creating an external table, 233-237
Spark Streaming on, 175-192

implelmenting a Streaming application,
179-183

provisioning an HDInsight cluster,
186-188

running the Streaming application
locally, 183-185

running the Streaming application on
HDInsight, 188-192

Storm on, 129-170, 192-199
alerting with, Java implementation on

Linux cluster, 133-156
applying Storm to Blue Yonder Airports,

132
Storm with tick tuples, 196-199

Tools for Visual Studio, 157
heap tables, 266
Hive, 213-228

creating permanent, managed tables in, 231
data types supported, 213
databases, 216
Hive-on-Spark, 214
indexes, 215
indexes in, and queries from Spark, 278
interactive querying with

exploring Blue Yonder Airports data,
271-278

indexes, 271
partitions, 271
Stinger initiative core enhancements,

269
internal and external tables, 214
metadata store, 339
partitioning tables, 214
querying with HiveQL, 213
running HiveQL script from Azure Data

Factory, 259
Stinger.next initiative, 270
using on HDInsight, 216, 218

batch processing Blue Yonder Airports
data, 219

creating an external table, 220-225
creating an internal table, 225-228
storage on HDInsight, 218

views, 215
HiveContext, 230
HiveQL, 213

syntax for managing databases, 216
Hortonworks Data Platform (HDP), 85, 129

HDP 2.5, 214
hot and cold path serving layer, 287-318

Azure DocumentDB, 296-303
in batch serving layer, 302
in speed serving layer, 299-302

Azure Redis Cache, 290-296
in speed serving layer, 291-296

Azure Search, 317
Azure SQL Data Warehouse in batch serv‐

ing layer, 311
Azure SQL Database, 303-311

in batch serving layer, 311
in speed serving layer, 305-311

HBase on HDInsight, 312-317
HTTPS, 75

using to communicate with Event Hubs, 99
hybrid cloud, 54
HyperLogLog, 290

example of use, 294
HyperLogLogLength, 296

I
identity and access management, 357-359
IDEs for Java development, 133
image processing tasks, 258
Import-AzureRmDataLakeStoreItem cmdlet,

52
Import/Export Service, 20-35

import job, creating, 30-35
preparing disk to use with import job, 22
regional availability, 20
requirements for import job, 21
running WAImportExport tool, 27
Storage accounts created in Classic mode,

21
indexes, 261

and Spark SQL, 278
clustered and nonclustered index syntax,

266
external, provided by Azure Search, 317
in Azure SQL Data Warehouse, 265

388 | Index

clustered columnstore index, 265
clustered index, 266
nonclustered index, 266

in Azure SQL Database, 303, 308
for memory-optimized tables, 304

in Hive, 215, 271
secondary index support in HBase, 313

ingest loading layer, 17
ingesting data, in analytics data pipeline, 2

Azure pipeline, 8
INSERT statement (for partitioned table in

Hive), 274
intelligence and machine learning, 319-338

Azure Machine Learning, 322-324
intelligence components of Azure analytics

pipeline, 319
Microsoft Cognitive Services, 326-338
R Server on HDInsight, 324
SQL R Services, 325

IntelliJ IDEA, 133
creating JAR for Storm topology, 149
Spark Streaming project, 179

interactive querying in Azure, 261-285
pruning data sets in query processing to

achieve faster query execution, 261
with Azure SQL Data Warehouse, 263-269

exploring Blue Yonder Airports data, 266
indexes, 265
partitions and distributions, 263

with Hive and Tez, 269-278
exploring Blue Yonder Airports data,

271-278
partitions, 271

with Spark SQL, 278-283
exploring Blue Yonder Airports data,

279-283
with U-SQL in Azure Data Lake Analytics,

283-285
internal tables (see external and internal tables)
IoT Hub, 75, 111-122

capacity, 112
IoT Hub units, 112
quotas and limits for message ingest, 113
storage, 113

core set of properties in the message, 111
creating an instance of, 118-122

getting connection strings, 120
sending simulated messages to IoT Hub,

121

Gateway SDK, 379
ingest and storage with, 111
partition for a message, 112
running IoT Hub load simulator, 118
Sensors and SimpleSensorConsole projects,

114-118
service side, exposing Event Hubs-

compatible endpoint, 123
using in Blue Yonder Airports scenario, 114

J
Java

authoring model training in, 324
hybrid C# and Java project, EventHubSpout

in JAR file, 157
Storm implementation in, 133

dev environment setup, 133
packaging the Storm topology in a JAR,

149
topology implementation, 137-146

Storm toplogy implementation, AlertTopol‐
ogy, 193

JDBC, 131
and DocumentDB clients, 302

JobTracker, 210
JSON

event data for telemetry events, 100
Event Hubs payload format, 97
schemaless documents in Azure Docu‐

mentDB, 296
UTF-8-encoded, 200, 203

Jupyter notebook, 232
publishing a web service from, 324

K
Kafka, 378
kappa architecture, 5

choosing between lambda architecture and,
6

key expiration in Redis, 294
key/value store, Azure Redis Cache, 290
Knowledge Exploration Service, 328

L
lambda architecture, 3-5

choosing between kappa architecture and, 6
language services, 326

Index | 389

Language Understanding Intelligent Service
API, 326

latencies
achieving interactive query latencies in

batch processing, 261
benchmarking for Azure Redis Cache, 291
high latency in data lake processing, 3
I/O latency for random read/write in Azure

Redis Cache, 290
in Azure analytics pipeline processing, 8
lower batch latencies, 379

lazy indexing, 299
Linguistic Analysis APIs, 328
LINQ (language integrated query), 231
Linux

AZCopy executable for, 46
Azure Command-Line Interface, 48
HDInsight cluster with Hive, 216-218
HDInsight cluster with Spark, 186, 188
HDInsight cluster with Storm

provisioning the cluster, 146
running the Storm topology on HDI,

149
SQL Server on, 379

Live Long and Process, 379
locally redundant storage (LRS), 80, 84
Login-RmAccount cmdlet, 52
logs, 361
long-running processes, 379
LUIS (Language Understanding Intelligent Ser‐

vice), 328
Lumenize library (DocumentDB), 302

M
machine learning, 319-338

Azure Machine Learning, 322-324
Microsoft Cognitive Services, 326-338
MLlib and SparkML, 175
model training and model operationaliza‐

tion, 321
RServer on HDInsight, 324
SQL R Services, 325
supervised and unsupervised learners, 319

macOS
AZCopy executable for, 46
Azure Command-Line Interface, 48
SQL Server on, 379

Main method, SimpleSensorConsole applica‐
tion, 106

Manage menu for local computer, 23
managed (or internal) tables, 209

creating with U-SQL in Azure Data Lake
Analytics, 257

in Azure Data Lake Analytics, 249
ManagedAlertTopology project (Visual Studio),

157
Management Portal (see Azure Management

Portal)
MapReduce

in Hive, 213
on HDInsight, 209-213

Apache Hadoop MapReduce, 210-213
MapReduce programming model, 209

performance shortcomings, addressed in
Tez, 270

running a program using Azure Data Fac‐
tory, 259

Maven build manager, 136
configuration to run Storm topologies

locally, 145
memory-optimized tables

and Azure Stream Analytics, 306
in Azure SQL Database, 303

benefits for random reads/writes, 305
indexing, 304
running out of memory, 304

messages, 111
(see also IoT Hub)

metadata, managing in Azure, 339-355
with Azure Data Catalog, 339-355

adding Azure Blob Storage asset,
347-352

adding Azure Data Lake Store asset,
344-347

adding Azure SQL Data Warehouse
asset, 352-355

adding metadata to Azure Data Catalog,
341

in Blue Yonder Airports scenario, 342
provisioning a new Azure Data Catalog,

342
micro-batch processing in Azure, 175-206

approaches to, 175
Azure Stream Analytics, 199-206
Spark Streaming on HDInsight, 175-192
Storm on HDInsight, 192-199

Storm with tick tuples, 196-199
Storm with Trident, 192-196

390 | Index

Microsoft Azure Storage Explorer, 44
Microsoft Cognitive Services, 326-338

categories of services, 326
identifying which service to use for your

application, 329
services overview, 327
using from an Azure function, 330-338

Microsoft Data Management Configuration
Manager, 57

Microsoft DeployR, 324
model operationalization, 321, 324

encapsulated R code making predictions in
a stored procedure, 325

model training, 321
creating experiments in Azure Machine

Learning, 324
using R Server on HDInsight, 324

modules, 322
MQTT (Message Queue Telemetry Transport)

protocol, 76
multiconsumer (or broadcast) pattern, 127

N
native compiled stored procedures, 305
.NET

C# .NET-based sensor simulator, 100
exposing AZCopy functionality as .NET

assemblies, 48
SDK for Event Hubs, 97

sending a single event to Event Hubs,
104

sending events as a batch, 105
SDK for IoT Hub, 111
Stream Computing Platform for .NET

(SCP.NET), 158
network-oriented approaches to bulk data load‐

ing, 52-74
hybrid connections and Azure Data Factory,

54
ingesting from file share to Blob Storage,

56-67
ingesting from file share to Data Lake Store,

67-74
site-to-site networking, 74
SMB network shares, 53
UDP transfers, 53
using FTP, 52

New Simple Volume Wizard, 24
NodeManager, 212

nonclustered indexes
for memory-optimized tables in SQL Data‐

base, 304
in Azure SQL Data Warehouse, 266

NoSQL key/value store, 79
numeric values, parsing and manipulation by

Redis, 290

O
ODBC or JDBC and DocumentDB clients, 302
ORC file format, 214, 215

in Hive architecture core enhancements,
269

inline indexes automatically provided by,
271, 278

using for internal table in Hive, 225
outputs for Azure Stream Analytics job, 203

P
page blobs, 79, 84
parallel processing

embarrassingly parallel processing in
Apache Hadoop MapReduce, 210

in MapReduce operations, 209
massively parallel processing, SQL Data

Warehouse, 237
parameter documentation

parameters for Azure Blob Storage linked
service and data set, 66

parameters for Azure Data Lake Store
linked service and data set, 70

Parquet files, 229
PARTITIONED BY clause, 274
partitions, 261

files in Blob Storage, 79
in Azure DocumentDB, 297, 300

scaling, 299
in Azure SQL Data Warehouse, 263
in Event Hubs, 98

begin and end sequence numbers, 127
ingress limit, 98

in Hive, 271
exploring Blue Yonder Airports data,

272-277
partitioning tables, 214

in IoT Hub, 112
in Spark SQL, 278
partitioning streaming data, 201
use in Azure Stream Analytics, 199

Index | 391

peering, 74
permissions, 358
persistent storage in Azure analytics pipeline, 8
Phoenix, 314

CsvBulkLoadTool, 316
executing SQL commands against, 314
layering onto HBase data store, 313
SQL support for HBase, 312

photographic images, processing, 258
Pig, 213

Pig on HDInsight, 228
running Pig Latin script from Azure Data

Factory, 259
Pig Latin, 228
policies, 358
PolyBase, 240
pom.xml file, 136
Power BI, 363-378

batch analytics reporting in Blue Yonder
Airports scenario, 374-378

real-time analytics in Blue Yonder Airports
scenario, 365-374

support for streaming data and queryable
data stores, 365

web application and Power BI Desktop, 363
PowerShell

using cmdlets to transfer files to Blob Stor‐
age or Data Lake Store, 50
bulk loading into Azure Storage Account

blobs, 50
bulk loading into Data Lake Store, 51

predicate pushdown, 263
predictions, performing in Azure ML, 323
predictive analytics, 325
predictive experiments, 323

publishing as web service, 323
primitive values, caching in Redis Cache, 294
private endpoints, support by HBase on HDIn‐

sight, 313
processing

batch processing in Azure, 207-260
in analytics data pipeline, 2
in Azure analytics pipeline, 8
in data lakes, 2
real-time micro-batch processing in Azure,

175-206
real-time processing in Azure, 123-174

Project Object Model (pom.xml file), 136
protecting your data in Azure (see security)

PSCP command-line client, 151
PuTTY Windows client, 151
Python, 322, 324

Q
QnA Maker, 328
queries

defining for Azure Stream Analytics job,
205

formulating and running a query for Docu‐
mentDB with Query Explorer, 301

querying, interactive (see interactive querying
in Azure)

Queue Storage, 79
queue-oriented storage, 94-122

Blue Yonder Airports scenario, smart build‐
ings, 95-96

with Event Hubs, 96-111
with IoT Hub, 111-122

queueing systems, 123
Event Hubs, 126

queue retention period, 127
IoT Hub, 111
Storm consuming from, 131

R
R language, 322, 324

R script on Microsoft DeployR invoking
prediction against a trained model, 324

SQL R Services, 325
R Server on HDInsight, 324
R Studio, 324
random reads

Azure Redis cache, 290
in Azure SQL Data Warehouse, 312
in Azure SQL Database, 305
in HBase, 312
support in batch serving layer, 289
support in speed serving layer, 289

random writes
Azure Redis cache, 290
in Azure SQL Data Warehouse, limitations

on, 311
in Azure SQL Database, 305
in HBase, 312
support in speed serving layer, 289

RANGE distributions, 283
Ranger, 379
read-only geo-redundant storage (RA-GRS), 80

392 | Index

real-time processing in Azure, 123-174, 175
(see also micro-batch processing in Azure)
stream processing, 123-129

consuming messages from Event Hubs,
125

tuple-at-a-time processing, 129-174
EventProcessorHost, 170-174

receivers for Event Hubs, 125
(see also consumers)

Recommendations API, 326
Redis C# StackExchange libraries, 292
Redis Cache (see Azure Redis Cache)
replication

data stored in Azure Data Lake Store, 84
in Azure Redis Cache, 290
in DocumentDB, 298
locally redundant storage (LRS), 84
Storage account options for, 80

request units (RUs), 297
estimating requirements for your workload,

297
setting for Azure DocumentDB, 300

request/response API, 323
resilient distributed datasets (RDDs), 177

DataFrame created from, 231
iterating over and processing, 183
RDD API in Spark, 229

resource containers, 212
ResourceManager, 212
REST APIs

Event Hubs, 96
Power BI, 365
querying Azure DocumentDB via, 296

RESTful endpoint provided by WebHDFS, 85
role-based access control, 358
ROUND_ROBIN distributions, 263, 283
RUs (see request units)

S
SATA II/III internal hard drive, 21
Scala, 324

implementing a Spark Streaming applica‐
tion in, 179-183

using Spark SQL API in, 233
schema on read, 207

Azure DocumentDB, 297
SCP utility, 150

running in Windows, 151
SDKs

for building Event Hubs consumers, 125
for Event Hubs, 96
for IoT Hub, 111
for querying Azure DocumentDB, 296

search syntax, Azure Data Catalog, 341
secondary indexes, 313

provided by Azure Search, 317
Secure Copy (see SCP utility)
security, 357-362

audit mechanisms, 361
future developments in, 379
identity and access management, 357-359

Select-RmSubscription cmdlet, 52
sensor simulators (Event Hubs), 100
Sensors and SimpleSensorConsole projects,

100-106
sending sensor telemetry to IoT Hub,

114-118
sensor implementation, TemperatureSensor,

101
SensorBase class, 100
SimpleSensorConsole project, 102, 206, 308

EventHubLoadSimulator class, 102
Main method, 106
output from running three sensors, 103
transmitting events to Event Hubs, 103

TempDataPoint structure, 102
Server Explorer, 35

uploading a batch of files to Blob Storage, 35
Server Message Block (SMB) network shares,

54
Service Bus Explorer, 128
Service Bus SDK, 170
serving layer, 287

(see also hot and cold path serving layer)
speed and batch divisions, 287

serving storage in Azure analytics pipeline, 8
session consistency, 298
Set-AzureStorageBlobContent cmdlet, 50
shared access signatures, 358
shared keys, 357
shuffle, 210
Signiant Flight, 53
site-to-site networking between on-premises

network and Azure, 74
smart building telemetry, 11

(see also Blue Yonder Airports scenario)
collecting, 74

Index | 393

SMB (Server Message Block) network shares,
54

source
in analytics data pipeline, 1
in Azure analytics pipeline, 8

Spark jobs, executing HiveQL queries via, 214,
270

Spark on HDInsight, 229-237
accessing files stored in Azure, 229
batch processing Blue Yonder Airports data,

232
creating an external table, 233, 237
DataSet API, 232
Spark packages, 229

Spark SQL, 229
creating an external table, 233-237
external and internal tables, 231
interactive querying with, 278-283

exploring Blue Yonder Airports data,
279-283

indexes, 278
partitions, 278

language integrated query (LINQ) format,
231

modes of executing queries, 232
Spark Streaming on HDInsight, 175-192

events consumed from Event Hubs, 177
flow of data through streaming applications,

177
implementing a Streaming application,

179-183
provisioning an HDI cluster, 186-188
running the Streaming application locally,

183-185
viewing application on Spark Web UI,

185
running the Streaming application on

HDInsight, 188-192
steps in building Streaming applications,

178
SparkContext, 230
Speaker Recognition API, 326
speech services, 326
speed serving layer, 287

Azure DocumentDB in, 299-302
Azure Redis Cache in, 291-296
Azure Search in, 317
Azure SQL Database in, 305-311
key aspects, 289

spouts (in Storm), 131, 131
SQL

for querying Azure DocumentDB, 296, 302
in Azure Stream Analytics, 200
support via Phoenix in HBase, 312
U-SQL in Data Lake Analytics, 248

processing with, 250-258
vectorized execution in Hive, 270

SQL Data Warehouse (see Azure SQL Data
Warehouse)

SQL Database (see Azure SQL Database)
SQL R Services, 325
SQL Server

hybrid connection between web app run‐
ning in Azure and SQL Server on prem‐
ises, 54

on Linux and macOS, 379
SQL R Services, 325

SQL Server Integration Services (SSIS), Azure
Feature Pack, 46

SQL Server Management Studio, 240, 266
analytics queries against memory-optimized

table, 309
Object Explorer, examining utilization of

available memory, 309
SQL-based data processing (Spark SQL), 175
SQLContext, 230
SQLLine command-line tool, 314
SSH

connecting to HDInsight cluster head node,
150

running in Windows, 151
state management by consumers, 127
Stinger initiative, 269

Stinger.next, 270
storage, 77

(see also storing ingested data in Azure)
HBase on HDInsight, 313
in analytics data pipeline, 2
in Azure analytics pipeline, 8
in Azure SQL Data Warehouse, 238
in Azure, accessing files from Spark on

HDInsight, 229
in data lakes, 2
options for Azure Data Lake Analytics, 249
storing credentials to Azure Storage

account, 241
Storage account

394 | Index

creating for bulk ingest of flight delay data,
82

defining degree of replication of data, 79
storage services in, 79

storage analytics logging, 361
storage encryption, 359
stored procedures

encapsulated R code making predictions in,
325

native compiled stored procedures in Azure
SQL Database, 303, 305

storing ingested data in Azure, 77-122
file-oriented storage, 77

Azure Blob Storage, 79-84
Azure Data Lake Store, 84-90
HDFS (Hadoop Distributed File Sys‐

tem), 90-94
queue-oriented storage, 94-122

Blue Yonder scenario, smart buildings,
95-96

using Event Hubs, 96-111
using IoT Hub, 111-122

Storm on HDInsight, 129-170, 192-199
alerting with, C# implementation on Win‐

dows cluster, 156-170
C# topology implementation, 158
dev environment setup, 156
provisioning Windows HDI cluster, 164
running the topology on HDI, 166

alerting with, Java implementation on Linux
cluster, 133-156
Java dev environment setup, 133
provisioning Linux HDI cluster, 146
running the topology on HDI, 149
topology implementation, 137-146

applying Storm to Blue Yonder Airports sce‐
nario, 132

comparison to Azure Stream Analytics, 201
consuming from queuing systems, 131
processing guarantess for tuples, 131
Storm with tick tuples, 196-199
Storm with Trident, 192-196

Trident window computations, 193
Stream Analytics (see Azure Stream Analytics)
Stream Computing Platform for .NET

(SCP.NET), 158
stream grouping, 130
stream loading, 17, 74-76

with Event Hubs, 75

using IoT Hub, 75
stream processing, 123-129

consuming messages from Event Hubs, 125
Spark Streaming on HDInsight, 175-192

strong consistency, 298
structures as values, Redis support of, 290
supervised learners, 319

T
T-SQL, 200

embedding R script within, 325
native compiled stored procedures in Azure

SQL Database, 305
Table Storage, 79
TaskTracker, 210
TCP, cloud storage service access via, 53
TemperatureSensor class (example), 101
Text Analytics, 326, 329
Tez, 270

running undercover in interactive queries,
278

threat detection, 361
throughput units (TUs), in Event Hub, 98
tick tuples, Storm with, 196-199
time to live (TTL)

data expiration in data stores, 289
expiration on keys in Redis Cache, 290
extending on keys in Redis Cache, 294
on documents in DocumentDB, 299

TLS (Transport Layer Security), 360
HTTPS over, 75

tombstone markers, 313
topologies (Storm), 130

C# implementation, running on HDI,
166-170

Java implementation, AlertTopology,
137-146
running the topology on HDI, 149

Storm with Trident, 192
temperature alerts for Blue Yonder Airports

scenario, 132
training experiments, 322

example for predicting flight delays, 322
transient storage in Azure analytics pipeline, 8
Translator API, 329
transparent data encryption, 359
Trident, Storm with, 192-196

batch operations in Trident, 196
Trident window computations, 193

Index | 395

tuple-at-a-time processing, 129-174
Azure Machine Learning, 174
EventProcessorHost, 170
HDInsight, 129
Storm on HDInsight, 129-170

tuples, 130
tick tuples, using with Storm, 196-199

U
U-SQL, 248

executing a job from Azure Data Factory,
259

interactive querying with, 283-285
processing with, 250-258
syntax, differences from SQL and C#, 248

UDP, uploading files to Azure Storage via, 53
unified log (event data) in kappa architecture, 5
unsupervised learners, 321
USB adapter, SATA II/III-to-USB, 21
UTF-8-encoded CSV, 200
UTF-8-encoded JSON, 200, 203

V
vectorized SQL engine, 270
Video API, 329
views (Hive), 215
virtual machines (VMs)

using for bulk ingestion into Blob Storage,
84

with FTP services, transferring files to
Azure Storage, 52

with Visual Studio preinstalled, 12
virtual private networks (VPNs), 74
vision services, 326
Visual Studio 2015, 156

authoring U-SQL with, 251
deploying and running a Storm topology on

HDI, 166
HDInsight tools for, installing, 157
running Hive queries from, 272
Tools for Azure Functions, 330
using Cloud Explorer and Server Explorer

to bulk load Blob Storage, 35-42
using Cloud Explorer to bulk load into Data

Lake Store, 42-44
using for SQL Data Warehouse queries, 240
using to bulk load data into Blob Storage, 84

Visual Studio 2015 with Update 1, 11

volume, configuring with New Simple Volume
Wizard, 24

VPNs (virtual private networks), 74

W
WAImportExport tool, 20, 22

complete command example, 28
metadata and logfiles created by running, 29
running, 27

wasb: (Windows Azure Storage Blobs), 93
weather data (example), 10

(see also Blue Yonder Airports scenario)
web browsers

Storm UI, accessing, 151
uploading files via, in Azure Portal, 45

Web Jobs, 53
deploying to Azure App Services, 174
EventProcessorHost in, 171
hybrid connections, using to talk to on-

premises SQL Server, 55
Web Language Model API, 326, 329
web portal for Azure Data Catalog, 341
web search, HBase support for, 312
web service, setting up training experiment as,

322
Web Sockets, AMQP over, 96
WebHDFS API, 84
WHERE clause, 263
Windows Azure Storage Blobs (wasb:), 93
Windows systems

HDInsight cluster running Storm on, 164
with BitLocker drive encryption, 21

WITH clause
CREATE EXTERNAL TABLE statement,

246
CREATE TABLE statement, 265
for memory-optimized table, 308

write once, read many (WORM) workloads, 90

Y
YARN Resource Manager, 177, 212, 256

Z
zone-redundant storage (ZRS), 80, 84
Zookeeper, 129, 148, 160

hostname needed by many HBase com‐
mands, 314

396 | Index

About the Author
Zoiner Tejada has more than 17 years of experience consulting in the software indus‐
try as a software architect, CTO, and start-up CEO, with particular expertise in cloud
computing, big data, analytics, and machine learning. He was among the first to
receive a Microsoft Azure MVP (“Most Valuable Professional”) designation and has
since been awarded the MVP for five consecutive years, and now holds a dual MVP
in Microsoft Azure and Microsoft Data Platform. He received his BS in computer sci‐
ence from Stanford University.

Zoiner is the coauthor of Exam Ref 70-532: Programming Microsoft’s Clouds (the offi‐
cial exam study guide for developers seeking Azure certification), coauthor of Devel‐
oping Microsoft Azure Solutions, and creator of the “Google Analytics Fundamentals”
course on Pluralsight.com.

Colophon
The animal on the cover of Mastering Azure Analytics is a Philippine fairy-bluebird
(Irena cyanogastra), a crow-sized bird found in the Philippine Islands. These animals
have dark blue feathers on their back and wingtips, though the color is more vivid on
males of the species. While their plumage makes them stand out in direct sunlight,
they are more difficult to spot within shaded forest areas.

The fairy-bluebird lives in moist forest habitat, and eats a diet primarily made up of
fruit, supplemented by insects. Figs in particular are a favorite food. Their beaks are
strong and have notches to help crush fruit into smaller pieces. These birds are rarely
seen alone, but forage in pairs or small groups through the forest canopy. Males court
females with elaborate vocalizations, which the female responds to by building a nest.
The female fairy-bluebird lays two to three eggs at a time, and both partners work
together to take care of chicks.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Natural History of Birds. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

