
Monetizing
Machine
Learning

Quickly Turn Python ML Ideas into Web
Applications on the Serverless Cloud
—
Manuel Amunategui
Mehdi Roopaei

Monetizing Machine
Learning

Quickly Turn Python ML Ideas
into Web Applications on the

Serverless Cloud

Manuel Amunategui
Mehdi Roopaei

Monetizing Machine Learning: Quickly Turn Python ML Ideas into Web Applications
on the Serverless Cloud

ISBN-13 (pbk): 978-1-4842-3872-1			 ISBN-13 (electronic): 978-1-4842-3873-8
https://doi.org/10.1007/978-1-4842-3873-8

Library of Congress Control Number: 2018956745

Copyright © 2018 by Manuel Amunategui, Mehdi Roopaei

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484238721. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Manuel Amunategui
Portland, Oregon, USA

Mehdi Roopaei
Platteville, Wisconsin, USA

https://doi.org/10.1007/978-1-4842-3873-8

iii

About the Authors���xvii

About the Technical Reviewers���xix

Acknowledgments���xxi

Introduction���xxiii

Table of Contents

Chapter 1: �Introduction to Serverless Technologies�� 1

A Simple Local Flask Application��� 2

Step 1: Basic “Hello World!” Example�� 2

Step 2: Start a Virtual Environment�� 2

Step 3: Install Flask�� 3

Step 4: Run Web Application��� 3

Step 5: View in Browser��� 3

Step 6: A Slightly Faster Way�� 4

Step 7: Closing It All Down�� 5

Introducing Serverless Hosting on Microsoft Azure��� 5

Step 1: Get an Account on Microsoft Azure�� 6

Step 2: Download Source Files��� 6

Step 3: Install Git�� 7

Step 4: Open Azure Cloud Shell�� 8

Step 5: Create a Deployment User�� 10

Step 6: Create a Resource Group�� 11

Step 7: Create an Azure Service Plan��� 11

Step 8: Create a Web App��� 12

Check Your Website Placeholder�� 13

Step 9: Pushing Out the Web Application��� 14

Step 10: View in Browser��� 15

iv

Step 11: Don’t Forget to Delete Your Web Application!��� 16

Conclusion and Additional Information��� 16

Introducing Serverless Hosting on Google Cloud��� 16

Step 1: Get an Account on Google Cloud�� 17

Step 2: Download Source Files��� 17

Step 3: Open Google Cloud Shell�� 19

Step 4: Upload Flask Files to Google Cloud�� 20

Step 5: Deploy Your Web Application on Google Cloud��� 22

Step 6: Don’t Forget to Delete Your Web Application!��� 23

Conclusion and Additional Information��� 25

Introducing Serverless Hosting on Amazon AWS��� 26

Step 1: Get an Account on Amazon AWS��� 26

Step 2: Download Source Files��� 27

Step 3: Create an Access Account for Elastic Beanstalk�� 27

Step 4: Install Elastic Beanstalk (EB)�� 30

Step 5: EB Command Line Interface��� 31

Step 6: Take if for a Spin��� 32

Step 7: Don’t Forget to Turn It Off!�� 33

Conclusion and Additional Information��� 34

Introducing Hosting on PythonAnywhere��� 34

Step 1: Get an Account on PythonAnywhere�� 35

Step 2: Set Up Flask Web Framework�� 35

Conclusion and Additional Information��� 37

Summary��� 37

Chapter 2: �Client-Side Intelligence Using Regression Coefficients on Azure���������� 39

Understanding Bike Rental Demand with Regression Coefficients��� 41

Exploring the Bike Sharing Dataset��� 41

Downloading the Data from the UCI Machine Learning Repository�� 43

Working with Jupyter Notebooks��� 43

Exploring the Data�� 45

Table of Contents

v

A Closer Look at Our Outcome Variable��� 47

Quantitative Features vs. Rental Counts�� 48

Let’s Look at Categorical Features��� 50

Preparing the Data for Modeling�� 52

Regression Modeling�� 52

Simple Linear Regression��� 52

A Simple Model�� 52

Experimenting with Feature Engineering��� 54

Modeling with Polynomials�� 54

Creating Dummy Features from Categorical Data�� 56

Trying a Nonlinear Model�� 58

Even More Complex Feature Engineering—Leveraging Time-Series������������������������������������� 58

A Parsimonious Model��� 61

Extracting Regression Coefficients from a Simple Model—an Easy Way to
Predict Demand without Server-Side Computing�� 61

R-Squared�� 62

Predicting on New Data Using Extracted Coefficients�� 63

Designing a Fun and Interactive Web Application to Illustrate Bike Rental Demand������������������� 67

Abstracting Code for Readability and Extendibility�� 67

Building a Local Flask Application��� 67

Downloading and Running the Bike Sharing GitHub Code Locally��� 70

Debugging Tips��� 72

Microsoft Azure—Mounting a Web Application for the First Time��� 74

Git—Getting All Projects in Git��� 74

The azure-cli Command Line Interface Tool��� 76

Step 1: Logging In��� 77

Step 2: Create Credentials for Your Deployment User�� 78

Step 3: Create your Resource Group�� 78

Step 4: Create Your Azure App Service Plan��� 78

Step 5: Create Your Web App�� 79

Step 6: Push git Code to Azure��� 80

Table of Contents

vi

Important Cleanup!��� 82

Troubleshooting�� 83

Steps Recap��� 85

What’s Going on Here? A Look at the Scripts and Technology Used in Our Web Application������� 86

main.py��� 86

/static/ folder�� 88

/templates/index.html folder and script��� 88

Conclusion��� 90

Additional Resources��� 91

Chapter 3: �Real-Time Intelligence with Logistic Regression on GCP����������������������� 93

Planning our Web Application�� 95

Data Wrangling��� 95

Dealing with Categorical Data�� 100

Creating Dummy Features from Categorical Data�� 104

Modeling�� 106

Train/Test Split�� 106

Logistic Regression�� 107

Predicting Survivorship�� 109

Abstracting Everything in Preparation for the Cloud�� 110

Function startup( )��� 111

Function submit_new_profile( )�� 111

Interactivity with HTML Forms��� 111

Creating Dynamic Images�� 112

Downloading the Titanic Code��� 113

Google Cloud Flexible App Engine�� 115

Google App Engine�� 116

Deploying on Google App Engine��� 117

Step 1: Fire Up Google Cloud Shell��� 117

Step 2: Zip and Upload All Files to the Cloud�� 118

Step 3: Create Working Directory on Google Cloud and Unzip Files������������������������������������� 119

Table of Contents

vii

Step 4: Creating Lib Folder��� 120

Step 5: Deploying the Web Application��� 120

Troubleshooting��� 121

Closing-Up Shop�� 122

What’s Going on Here?��� 122

main.py��� 122

app.yaml��� 124

appengine_config.py & lib folder�� 125

requirements.txt��� 125

Steps Recap��� 126

Conclusion��� 127

Chapter 4: Pretrained Intelligence with Gradient Boosting
Machine on AWS�� 129

Planning our Web Application: What Makes a Top-Rated Wine?��� 131

Exploring the Wine-Quality Dataset��� 131

Working with Imbalanced Classes��� 135

Modeling with Gradient Boosting Classifiers��� 137

Evaluating the Model�� 139

Persisting the Model��� 143

Predicting on New Data�� 144

Designing a Web Application to Interact and Evaluate Wine Quality�� 146

Introducing AJAX – Dynamic Server-Side Web Rendering��� 147

Working in a Virtual Environment—a Sandbox for Experimentation, Safety and Clarity����������� 148

Amazon Web Services (AWS) Elastic Beanstalk��� 150

Create an Access Account for Elastic Beanstalk�� 151

Elastic Beanstalk�� 153

EB Command Line Interface��� 154

Fix the WSGIApplicationGroup�� 156

Creating the EB��� 158

Take if for a Spin��� 158

Don’t Forget to Turn It Off!��� 159

Table of Contents

viii

Steps Recap��� 162

Troubleshooting��� 163

Access the Logs��� 163

SSH into your Instance��� 164

Conclusion��� 165

Chapter 5: �Case Study Part 1: Supporting Both Web and Mobile Browsers���������� 167

The Pair-Trading Strategy�� 168

Downloading and Preparing the Data�� 169

Preparing the Data�� 171

Pivoting by Symbol��� 172

Scaling the Price Market Data��� 173

Percent Change and Cumulative Sum�� 173

Plotting the Spread�� 174

Serving up Trading Ideas�� 175

Finding Extreme Cases��� 175

Making Recommendations��� 177

Calculating the Number of Shares to Trade��� 179

Designing a Mobile-Friendly Web Application to Offer Trading Ideas�� 181

Fluid Containers��� 181

Running the Local Flask Version�� 183

What’s Going on Here?��� 185

Bootstrap Input Field Validation�� 185

Running on PythonAnywhere��� 186

Fixing the WSGI File��� 189

Source Code��� 189

WSGI Configuration��� 190

Reload Web Site��� 191

Troubleshooting PythonAnywhere�� 192

Conclusion��� 193

Table of Contents

ix

Chapter 6: �Displaying Predictions with Google Maps on Azure� 195

Planning our Web Application�� 197

Exploring the Dataset on SF Crime Heat Map on DataSF��� 197

Data Cleanup�� 199

Rebalancing the Dataset�� 199

Exploring by Day-of-the-Week��� 202

Feature Engineering��� 203

Creating a Month-of-the-Year Feature��� 203

Creating Time Segments�� 205

Exploring by Time Segment�� 206

Visualizing Geographical Data��� 208

Rounding Geocoordinates to Create Zone Buckets�� 209

Using the Past to Predict the Future�� 212

Google Maps Introduction�� 216

Heatmap Layer��� 217

Google Maps with Crime Data�� 218

Abstracting Our Crime Estimator��� 219

Designing a Web Application to Enable Viewers to Enter a Future Date
and Visualize Crime Hotspots��� 220

Add Your Google API Key��� 221

Take It for a Spin��� 222

Git for Azure��� 223

The azure-cli Command Line Interface Tool��� 225

Step 1: Logging In��� 226

Step 2: Create Credentials for Your Deployment User�� 227

Step 3: Create Your Resource Group��� 227

Step 4: Create your Azure App Service Plan��� 228

Step 5: Create your Web App�� 228

Step 6: Push Git Code to Azure��� 229

Table of Contents

x

Troubleshooting��� 231

Don’t Forget to Turn It Off!��� 234

Conclusion��� 234

Chapter 7: �Forecasting with Naive Bayes and OpenWeather on AWS�������������������� 237

Exploring the Dataset��� 238

Naive Bayes��� 240

Sklearn’s GaussianNB�� 241

Realtime OpenWeatherMap��� 242

Forecasts vs. Current Weather Data��� 245

Translating OpenWeatherMap to “Golf|Weather Data”��� 246

Designing a Web Application “Will I Golf Tomorrow?” with Real Forecasted Weather Data������ 251

Download the Web Application��� 251

Running on AWS Elastic Beanstalk�� 254

Fix the WSGIApplicationGroup�� 254

Take It for a Spin��� 255

Don’t Forget to Turn It Off!�� 257

Conclusion��� 259

Accessing OpenWeatherMap Data��� 259

Try/Catch�� 260

Handling User-Entered-Data��� 260

Chapter 8: Interactive Drawing Canvas and Digit Predictions
Using TensorFlow on GCP�� 263

The MNIST Dataset�� 265

TensorFlow��� 268

Modeling with TensorFlow and Convolutional Networks��� 268

Placeholders (tf.placeholder)�� 269

Building Modeling Layers��� 269

Loss Function��� 270

Instantiating the Session�� 270

Training��� 271

Table of Contents

xi

Accuracy��� 271

Running the Script�� 271

Running a Saved TensorFlow Model�� 273

Save That Model!��� 274

Drawing Canvas��� 274

From Canvas to TensorFlow�� 275

Testing on New Handwritten Digits�� 276

Designing a Web Application�� 278

Download the Web Application�� 278

Google Cloud Flexible App Engine�� 281

Deploying on Google App Engine��� 281

Step 1: Fire Up Google Cloud Shell��� 281

Step 2: Zip and Upload All Files to the Cloud�� 282

Step 3: Create Working Directory on Google Cloud and Unzip Files������������������������������������� 283

Step 4: Creating Lib Folder��� 284

Step 5: Deploying the Web Application��� 284

Troubleshooting��� 286

Closing Up Shop��� 286

Conclusion��� 287

HTML5 <canvas> tag��� 287

TensorFlow��� 287

Design�� 288

Chapter 9: �Case Study Part 2: Displaying Dynamic Charts������������������������������������ 289

Creating Stock Charts with Matplotlib��� 291

Exploring the Pair-Trading Charts�� 292

Designing a Web Application�� 295

Mobile Friendly with Tables��� 297

Uploading our Web Application to PythonAnywhere�� 299

Conclusion��� 303

Table of Contents

xii

Chapter 10: �Recommending with Singular Value Decomposition on GCP� 305

Planning Our Web Application�� 306

A Brief Overview of Recommender Systems��� 307

Exploring the MovieLens Dataset��� 307

More from the MovieLens Dataset’s Liner Notes�� 307

Overview of “ratings.csv” and “movies.csv”��� 309

Understanding Reviews and Review Culture��� 313

Getting Recommendations��� 317

Collaborative Filtering�� 320

Similarity/Distance Measurement Tools��� 320

Euclidean Distance�� 320

Cosine Similarity Distance��� 321

Singular Value Decomposition��� 323

Centering User Ratings Around Zero�� 323

A Look at SVD in Action�� 324

Downloading and Running the “What to Watch Next?” Code Locally�� 327

What’s Going on Here?��� 329

main.py�� 329

index.html�� 332

Deploying on Google App Engine��� 333

Step 1: Fire Up Google Cloud Shell��� 333

Step 2: Zip and Upload All Files to The Cloud��� 334

Step 3: Create Working Directory on Google Cloud and Unzip Files������������������������������������ 335

Step 4: Creating Lib Folder��� 336

Step 5: Deploying the Web Application��� 336

Troubleshooting��� 338

Closing Up Shop��� 339

Conclusion��� 340

Table of Contents

xiii

Chapter 11: Simplifying Complex Concepts with NLP and
Visualization on Azure��� 341

Planning our Web Application—the Cost of Eliminating Spam�� 342

Data Exploration��� 343

Cleaning Text�� 344

Text-Based Feature Engineering�� 344

Text Wrangling for TFIDF�� 347

NLP and Regular Expressions�� 348

Using an External List of Typical Spam Words��� 349

Feature Extraction with Sklearn’s TfidfVectorizer�� 350

Preparing the Outcome Variable�� 351

Modeling with Sklearn’s RandomForestClassifier��� 352

Measuring the Model’s Performance��� 353

Interacting with the Model’s Threshold�� 357

Interacting with Web Graphics��� 359

Building Our Web Application—Local Flask Version�� 361

Deploying to Microsoft Azure��� 363

Git for Azure�� 363

The azure-cli Command Line Interface Tool��� 367

Step 1: Logging In��� 367

Step 2: Create Credentials for Your Deployment User�� 368

Step 3: Create Your Resource Group��� 368

Step 4: Create Your Azure App Service Plan��� 369

Step 5: Create Your Web App�� 369

Step 6: Push Git Code to Azure��� 370

Important Cleanup!�� 371

Troubleshooting��� 372

Conclusion and Additional Resources�� 374

Table of Contents

xiv

Chapter 12: Case Study Part 3: Enriching Content with
Fundamental Financial Information�� 375

Accessing Listed Stocks Company Lists�� 377

Pulling Company Information with the Wikipedia API�� 379

Building a Dynamic FinViz Link�� 379

Exploring Fundamentals�� 381

Designing a Web Application�� 382

Uploading Web Application to PythonAnywhere�� 385

Conclusion��� 391

Chapter 13: �Google Analytics�� 393

Create a Google Analytics Account�� 393

JavaScript Tracker��� 395

Reading Your Analytics Report��� 396

Traffic Sources��� 397

Pages��� 398

Conclusion and Additional Resources�� 399

Chapter 14: �A/B Testing on PythonAnywhere and MySQL������������������������������������ 401

A/B Testing��� 402

Tracking Users�� 404

UUID�� 404

MySQL�� 405

Command Line Controls��� 407

MySQL Command Line Monitor�� 408

Creating a Database��� 409

Creating a Table�� 409

Creating A Database User��� 411

Python Library: mysql.connector��� 412

SELECT SQL Statement�� 412

INSERT SQL Statement��� 413

UPDATE SQL Statement�� 414

Table of Contents

xv

Abstracting the Code into Handy Functions��� 414

Designing a Web Application�� 417

Running a Local Version��� 418

Setting Up MySQL on PythonAnywhere��� 418

A/B Testing on PythonAnywhere�� 420

A/B Testing Results Dashboard�� 423

Conclusion��� 424

Chapter 15: �From Visitor to Subscriber��� 425

Text-Based Authentication��� 426

Flask-HTTPAuth—Hard-Coded Account��� 426

Digest Authentication Example��� 428

Digest Authentication Example with an External Text File�� 430

Simple Subscription Plugin Systems��� 432

Memberful�� 432

Create a Real Web Page to Sell a Fake Product��� 436

Checking Your Vendor Dashboard��� 438

Taking Donations with PayPal�� 439

Making a Purchase with Stripe�� 442

Conclusion��� 447

Chapter 16: Case Study Part 4: Building a Subscription Paywall
with Memberful��� 449

Upgrading Your Memberful and PythonAnywhere Pay Accounts��� 450

Upgrading Memberful��� 450

Upgrading PythonAnywhere��� 454

Pip Install Flask-SSLify��� 454

Memberful Authentication�� 455

Two-Step Process and Flask Session Mechanism��� 456

Authentication Step 1��� 456

Authentication Step 2��� 457

Calling Memberful Functions�� 460

Table of Contents

xvi

Designing a Subscription Plan on Memberful.com�� 463

Uploading the Web Application to PythonAnywhere�� 466

Replacing Memberful and MySQL with Your Own Credentials��� 466

What’s Going on Here?��� 467

main.py��� 467

welcome.html��� 468

index.html��� 468

Conclusion��� 469

Chapter 17: �Conclusion�� 471

Turning It Off!��� 471

Google Cloud (App Engine)��� 471

Amazon Web Services (Beanstalk)��� 472

Microsoft Azure (AWS)�� 474

PythonAnywhere.com��� 475

Memberful.com�� 475

Index�� 477

Table of Contents

xvii

About the Authors

Manuel Amunategui is VP of Data Science at SpringML,

a Google Cloud and Salesforce preferred partner, and

holds Masters in Predictive Analytics and International

Administration. Over the past 20 years, he has implemented

hundreds of end-to-end customer solutions in the tech

industry. The experience from consulting in machine

learning, healthcare modeling, six years on Wall Street in the

financial industry, and four years at Microsoft, has opened

his eyes to the lack of applied data science educational and

training material available. To help alleviate this gap, he has

been advocating for applied data science through blogs, vlogs, and educational material.

He has grown and curated various highly focused and niche social media channels

including a YouTube channel (www.youtube.com/user/mamunate/videos) and a popular

applied data science blog: amunategui.github.io (http://amunategui.github.io).

Mehdi Roopaei (M’02–SM’12) is a Senior Member of IEEE,

AIAA, and ISA. He received a Ph.D. degree in Computer

Engineering from Shiraz University on Intelligent Control of

Dynamic Systems in 2011. He was a Postdoctoral Fellow at

the University of Texas at San Antonio, 2012-Summer 2018,

and holds the title of Assistant Professor at the University

of Wisconsin-Platteville, Fall 2018. His research interests

include AI-Driven Control Systems, Data-Driven Decision

Making, Machine Learning and Internet of Things (IoT), and

Immersive Analytics. He is Associate Editor of IEEE Access

and sits on the Editorial Board of the IoT Elsevier journal. He

was guest editor for the special issue: “IoT Analytics for Data

Streams” at IoT Elsevier and published a book Applied Cloud Deep Semantic Recognition:

Advanced Anomaly Detection (CRC Press, 2018). He was IEEE chapter chair officer for joint

communication and signal processing communities at San Antonio, Jan-July 2018. He has

more than 60 peer-reviewed technical publications, serves on the program committee at

several conferences, and is a technical reviewer in many journals.

http://www.youtube.com/user/mamunate/videos
http://amunategui.github.io/

xix

About the Technical Reviewers

Rafal Buch is a technologist living and working in

New York as a financial systems architect. He's been doing

software engineering for two decades and spends most of

his free time hacking in coffee shops and exploring new

technologies. Blog: rafalbuch.com  

Matt Katz has been working in financial technology since

2001 and still gets excited about new stuff all the time. He

lives online at www.morelightmorelight.com and he lives

offline in New York with his two strange children and one

amazing, patient wife.  

https://urldefense.proofpoint.com/v2/url?u=http-3A__rafalbuch.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=P7ns1GPlNsXq5kw8-QaqmGnJrIhBn3jnx4fyxasNUSo&m=MTRki_zsGjYIJLRtLS5zhWXxbZvRYziI2OqAwYPYzFE&s=2tYne0AN6WIZgvNHB4ECY7FNyTZParL6z0v2cxEtF1E&e=
http://www.morelightmorelight.com/

xxi

Acknowledgments

To the friends, family, editors, and all those involved in one way or another in helping

make this project a reality—a huge thanks! Without your help, this book would have never

seen the light of day.

xxiii

Introduction

A few decades ago, as a kid learning to program, I had an ASCII gaming book for my

Apple II (of which the name eludes me) that started each chapter with a picture of the

finished game. This was the teaser and the motivator in a book that was otherwise made

up of pages and pages of nothing else but computer code. This was years before GitHub

and the Internet. As if it were only yesterday, I remember the excitement of racing

through the code, copying it line-by-line, fixing typos and wiping tears just to play the

game. Today, a lot has changed, but even though the code is downloadable, we put a

screenshot of the final product at the beginning of each chapter, so you too can feel the

motivation and excitement of working through the concepts.

�Low-Barrier-To-Entry and Fast-To-Market
This book will guide you through a variety of projects that explore different Python

machine learning ideas and different ways of transforming them into web applications.

Each chapter ends with a serverless web application accessible by anyone around the

world with an Internet connection. These projects are based on classic and popular

Python data science problems that increase in difficulty as you progress. A modeling

solution is studied, designed, and an interesting aspect of the approach is finally

extended into an interactive and inviting web application.

Being a data scientist is a wonderful profession, but there is a troubling gap in the

teaching material when trying to become one. Data science isn’t about statistics and

modeling; it is about fulfilling human needs and solving real problems. Not enough

material tackles the big picture. it seems that whenever you start talking about the big

picture, you have to sign a non-disclosure agreement (NDA). This is an essential area of

study and if you are like me, you need to understand why you are doing something in

order to do it right. These aren’t difficult topics, especially when you use the right tools to

tackle them.

xxiv

We won’t focus on “becoming a data scientist” as an end goal; there are plenty of

books on that topic already. Instead, we’ll focus on getting machine learning products to

market quickly, simply, and with the user/customer in mind at all times! That’s what is

missing in this profession’s educational syllabus. If you build first and then talk to your

customer, your pipelines will be flawed and your solutions will miss their target. I have

redrawn Drew Conway’s Data Science Venn Diagram with the customer as top priority

(Figure 1).

1Mehdi and I worked hard on the content of this book. We took our time to develop

the concepts, making sure they were of practical use to our reader (i.e., our customer—

always keep the customer in mind at all times). I built the material and Mehdi edited

it. This is an ambitious book in terms of scope and technologies covered. Choices and

compromises had to be made to focus on the quickest ways of getting practical use out

of the material. The tools are constantly changing. Some things in this book are going

to be stale by the time you read them, and that is OK (you can go to the GitHub repo for

updates). Here, everything changes all the time, but things tend to change for the better!

So, learning new tricks often means learning better, faster, and more powerful ways to

do things. This book will not only show you how to build web applications but also point

you in the right direction to deepen your knowledge in those areas of particular interest.

1�http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Figure 1.  The classic data science Venn diagram next to my updated version

Introduction

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

xxv

If this was a class, I’d have you sign a “compete agreement”: yes, the opposite of a

non-compete. I would have you go through this book, understand the tools, and then

copy them and make them your own. These are meant to be templates to quickly get

your platforms up and running to focus on the bigger things, to build impactful tools for

your customers and friends. When you understand this, that’s the day you graduate with

all the entitlements and privileges of being called a “data science professional.”

�What is the Serverless Cloud?
Cloud providers have gone to great efforts to improve web hosting solutions and bring

costs down. The recent advent of the “serverless” option, which abstracts a large swath

of the configuring process, is available on three of the four cloud providers covered

in this book. This means you can get your projects up and running on fully managed

platforms, with automatic load-balancing, throughput scaling, fast deployments, etc.,

without having to select, configure, or worry about any of it. The level of disengagement

with these architectural and monitoring options is up to you. You can choose what you

want to control and what you want to delegate to the provider. One thing is guaranteed:

the site will automatically adjust with traffic and offer unparalleled uptime.

This allows us to focus on what is important without getting bogged down by the

trappings and support needed to get there. These so-called “trappings” are critical

and need to be taken very seriously. This is why we are looking at four reputable

cloud providers that will give us the peace of mind required to fully focus on our web

applications and not worry about the site crashing or the provider going dark. Let’s focus

on what is important and get to work!

�Critical Path in Web Application Development
So many machine learning models stagnate in their original coded state: hard to

understand, with no easy way to invite others to benefit from its insights. These models

are doomed to be forgotten. Even those that manage to escape the confines of an

integrated development interface fall short of their potential when reduced to a static

Introduction

xxvi

chart or a cryptic modeling score. This book aims to avoid this trap by breaking down

the process of extending a machine learning model into a universally accessible web

application. Each chapter follows these three critical steps:

	 1.	 Modeling the right way. We start at the end, by understanding

what users want to see, and by investing time and thought on the

final goal and user experience. We ensure that the appropriate

modeling approach is used in order to reach a web-application

state rapidly and without surprise (Figure 2).

Figure 2.  Always check that there is an audience for your idea before building
(source Lucas Amunategui)

Introduction

xxvii

	 2.	 Designing and developing a local web application. This step

requires leveraging various web front-end technologies to offer

the needed interactivity and dynamism to highlight a model's

insight and sustain a user's interest. The final product at this stage

is indistinguishable from the next one except that it is hosted on

your local machine, not the cloud.

	 3.	 Deploying onto a popular and reliable serverless cloud
provider. Each provider has unique requirements, advantages, and

disadvantages that need to be understood and addressed. This is the

final stage where the world gets to enjoy and learn from your work.

We start by tackling easy ways of offering intelligent interactivity, like leveraging a

model's coefficients or saving a trained model, then move to the complex, like using a

database to track engagement or relying on open-source pretrained models for image

recognition. A fictional case study around stock market predictions is started in the

first section, then revisited in subsequent ones. New features are added to it until it

culminates into a complex dashboard with a paywall to offer customized intelligence to

paying subscribers.

By focusing on classic, data science problems, coupled with popular, open-source

technologies like Python, Flask, Ajax, Bootstrap, JavaScript, and HTML, you should find

yourself on familiar ground and if you don’t, you’ll have a drastically reduced learning

curve. We focus on simple tools and simple techniques to reliably and rapidly get

machine learning ideas out into the wild. The tools and approaches are revisited in each

chapter, so don’t worry if some aspects aren’t clear from the start; keep going and things

will keep getting clearer.

We also rotate cloud providers in each chapter, so you will get exposed to the most

popular providers. This will give you plenty of insights into which provider to select for

your future project. I recommend going through all chapters, as each will show different

ways of doing things, highlighting a provider’s strengths along with showing unique tips

and tricks to get things done quickly.

Introduction

xxviii

�You, the Reader
This book is for those interested in extending statistical models, machine learning

pipelines, data-driven projects, or any stand-alone Python script into interactive

dashboards accessible by anyone with a web browser. The Internet is the most powerful

medium with an extremely low barrier to entry—anybody can access it, and this book is

geared to those who want to leverage that.

This book assumes you have Python and programming experience. You should

have a code editor and interpreter in working order at your disposal. You should have

the ability to test and troubleshoot issues, install Python libraries, and be familiar with

popular packages such as NumPy, Pandas, and Scikit-learn. An introduction to these

basic concepts isn't covered in this book. The code presented here uses Python 3.x only

and hasn’t been tested for lower versions. Also, a basic knowledge of web-scripting

languages will come in handy.

This book is geared towards those with an entrepreneurial bent who want to get their

ideas onto the Web without breaking the bank, small companies without an IT staff,

students wanting exposure and real-world training, and for any data science professional

ready to take things to the next level.

�How to Use This Book
Each chapter starts with a picture of the final web application along with a description of

what it will do. This approach serves multiple purposes:

•	 It works as a motivator to entice you to put in the work.

•	 It visually explains what the project is going to be about.

•	 And more importantly, it teaches how critical it is to have a clear

customer-centric understanding of the end game whenever tackling

a project.

The book will only show highlights of the source code, but complete versions are

attached in the corresponding repositories. This includes a Jupyter notebook when

covering data exploration and zipped folders for web applications.

Introduction

xxix

The practical projects presented here are simple, clear, and can be used as templates

to jump-start many other types of applications. Whether you want to understand how

to create a web application around numerical or categorical predictions, the analysis of

text, the creation of powerful and interactive presentations, to offer access to restricted

data, or to leverage web plugins to accept subscription payments and donations, this

book will help you get your projects into the hands of the world quickly.

Note F or edits/bugs, please report back at www.apress.com/9781484238721.

�Tools of the Trade and Miscellaneous Tips
Here is a brief look at the tools that will transform our machine learning ideas into web

applications quickly, simply, and beautifully. This isn’t meant to be a comprehensive or

complete list, just a taste of the different technologies used and pointers for you to follow

if you want to learn more (and I hope you will).

�Jupyter Notebooks
The book only shows code snippets, so you need to download and run the Jupyter

notebook for each chapter in order to run things for yourself and experiment with the

various features and different parameters. If you aren’t familiar with Jupyter notebooks,

they are web-based interactive Python interpreters great for building, tweaking, and

publishing anything that makes use of Python scripting. It attaches to a fully functioning

Python kernel (make it a Python 3.x one) and can load and run libraries and scripts just

like any other interpreter. To install Jupyter notebooks, follow the official docs at http://

jupyter.readthedocs.io/en/latest/install.html.

There are various ways to install it, including the “pip3” command; check official

documentation for the different ways of doing it if this approach doesn’t work for you

(Listing 1).

Listing 1.  Install Jupyter

sudo pip3 install jupyter

Introduction

http://www.apress.com/9781484238721
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html

xxx

To use a Jupyter notebook is both easy and powerful at the same time. You simply

need to download the notebook to your local machine (it will be the file with a *.ipynb

extension), open a command/terminal shell window, navigate to that folder, and run the

“notebook” command (Listing 2).

Listing 2.  Run a Notebook (check official docs for alternative ways of starting

notebooks)

jupyter notebook

This command will open a web page showing the content of the folder from where it

was launched (Figure 3). You can navigate down a folder structure by clicking the folder

icon right above the file listings.

To open a Jupyter notebook, simply click any file with the “*.ipynb” extension and

you are good to go! If you want to create a brand-new notebook, click the “new” button

at the right of the dashboard next to the refresh button.

Note F or additional information, issues with Jupyter notebooks, and attaching
kernels, see: http://jupyter-notebook-beginner-guide.readthedocs.
io/en/latest/execute.html.

Figure 3.  Jupyter notebook landing page

Introduction

http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
http://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

xxxi

�Flask
Flask is a lightweight but very powerful server-side web framework. It is the brains behind

all the applications presented in this book. It is also the glue between our Python data

producing functions and web pages. That is one of the reasons I love working with Flask,

as it allows us to link stand-alone Python scripts to server-side web frameworks without

leaving the Python language; it makes passing data between objects a whole lot easier!

Flask comes with the bare minimum to get a web page published. If you need

additional support, like a database, form controls, etc., you will have to install additional

libraries and that is why it is called a lightweight, microframework. This is also what

makes it so easy to use, as you only have to learn a few more tricks; everything else uses

the tried-and-true Python libraries that we’re already familiar with.

Unfortunately, we can only work in Python for so long and eventually you will need

to step into front-end web scripting. But don't let that bother you; there are so many great

examples on the Web (Stackoverflow.com, w3schools.com) and the incredible looking

GetBootstrap.com templates to get you there as quickly as possible.

Note F or more information on Flask, check the official Flask documentation at
http://flask.pocoo.org/.

�HTML
HTML, which means Hypertext Markup Language, needs no introduction. This is the

lowest common denominator in terms of web technologies. It has been around for years

and is used to create practically all web pages and web applications in existence.

For those wanting to brush up on this topic, the amount of free material on the Web

can be overwhelming. I recommend anything from w3schools.com. Their material is

well organized, comprehensive, and often interactive.

�CSS
Cascading Style Sheets (CSS) is what makes most websites out there look great! We use

two types of CSS files here: the CSS links loaded in the “<HEAD>” section of most web

pages (the most common) and custom CSS as shown in code snippet in Listing 3.

Introduction

http://flask.pocoo.org/
http://w3schools.com/

xxxii

Listing 3.  Custom CSS Script Block

<STYLE>

.btn-circle.btn-xl {

 width: 70px;

 height: 70px;

 padding: 10px 2px;

 border-radius: 35px;

 font-size: 17px;

 line-height: 1.33;

}

</STYLE>

The CSS files that are hosted on outside servers cannot be customized but are

usually best-in-class. But there are times you simply need to customize a feature on your

page, and that is when you create a local CSS file or a style tag directly in the HTML page.

It is then applied to a particular tag or area using the “class” parameter (Listing 4).

Listing 4.  Applying CSS Tag to an HTML Tag

<button type="button" onclick="calculateBikeDemand(this)"

id="season_spring" class="btn btn-info btn-circle btn-xl">

<i class="fa fa-check">Spring</i></button>

CSS defines in great detail what size, color, font, everything and anything under the

sun, should look like. It also allows the generalization of your look-and-feel through

your web portal. You create it once and can have all your pages invoke it to inherit that

particular style.

Note F or additional information and training on CSS, check out the w3schools.com.

�Jinja2
Jinja2 is used to generate markup and HTML code, and works tightly with Flask

variables. It is created by Armin Ronacher, and is widely used to handle Flask-generated

data and if/then logic directly in HTML templates.

Introduction

xxxiii

In this HTML template example, a Flask-generated value called “previous_slider_

value” is injected into the slider’s “value” parameter using Jinja2. Note the use of double

curly brackets (Listing 5).

Listing 5.  Jinja2 Passing Data to HTML Input Control

<input type="range" min="1" max="100" value="{{previous_slider_value}}"

id="my_slider">

Note F or additional information on Jinja2, check out the docs at
http://jinja.pocoo.org/docs/2.10/.

�JavaScript
JavaScript is a real programming language in and of itself. It can add extremely powerful

behavior to any of your front-end controls. JavaScript brings a great level of interactivity

to a web page, and we will leverage it throughout each chapter.

Here is an interesting example where we capture the mouse-up event of an HTML

slider control to submit the form to the Flask server. The idea is that whenever a user

changes the slider value, Flask needs to do some server-side processing using the new

slider value and regenerate the web page (Listing 6).

Listing 6.  JavaScript Capturing Slider “onmouseup” Event

slider1.onmouseup = function ()

{

 document.getElementById("submit_params").submit();

}

Note F or additional information and training on JavaScript, check out
w3schools.com.

Introduction

http://jinja.pocoo.org/docs/2.10/

xxxiv

�jQuery
JQeury is a customized JavaScript library to facilitate the handling of complex front-end

and behavior events, and insures compatibility between different browser versions.

jQuery will facilitate things like button, drop-down dynamic behavior, even Ajax

(a critical technology used heavily in many of this book’s projects).

Note F or more information on JQuery, check out the official documents at
JQuery.com.

�Ajax
Ajax is a great front-end scripting technique that can add dynamic server-side behavior

to a web page. It allows sending and receiving data without rebuilding or reloading the

entire page as you would do with form submits. One area where it is commonly used is

on map web pages, such as Google Maps, which allows dragging and sliding the map

without reloading the entire page after every move.

Note F or additional information and training on Ajax, check out w3schools.com.

�Bootstrap
Bootstrap is a very powerful, almost magical tool for front-end web work. It is used

by almost 13% of the Web according to BuiltWith Trends.2 It contains all sorts of great

looking styles and behavior for most web tags and controls. By simply linking your

web page to the latest Bootstrap, CSS will give any boring HTML page an instant and

professional looking makeover!

If you look at any of the HTML files in this book, the first thing you will notice are the

links wrapped in “LINK” and “SCRIPT” tags at the top of the page. These represent an

enormous shortcut in building a web page (Listing 7).

2�https://trends.builtwith.com/docinfo/Twitter-Bootstrap

Introduction

http://w3schools.com/
https://trends.builtwith.com/docinfo/Twitter-Bootstrap

xxxv

Listing 7.  Link Tag to Inherit Bootstrap CSS Styles

<LINK rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/

bootstrap/4.0.0/css/bootstrap.min.css">

All the HTML files in this book (and more than likely any web page you will create

in the future) will use these links to download premade bootstrap and JavaScript scripts

and automatically inherit the beautiful fonts, colors, styles, and behaviors that are

prevalent all over the Internet. This allows you to immediately inherit best-in-class looks

and behavior with minimal effort.

Note F or additional information and training on Bootstrap, check out the official
documents on GetBootstrap.com.

�Web Plugins
Web plugins have a huge advantage: they push a large swath of hardware, data, and/or

security management onto someone else, preferably someone specialized in that area.

There is no reason to reinvent the wheel, waste valuable time, or introduce security risks.

Let others take care of that and focus on what you do best; this is what this book is all about!

Unfortunately, we only have the bandwidth to explore a few of these, but here is a list of

good ones that I’ve either used in the past or heard good things from others (and there are

hundreds more out there that are probably as good—look for those that offer good terms for

small businesses along with demo or test accounts to experiment before committing).

�Membership Platforms
There are several platforms to note.

Memberful (www.memberful.com)
Memberful is the plugin we will work with and implement in this book. I personally

really like Memberful.com and think it is a great choice for anybody looking for an easy

way to manage a paywall section of a website. It offers credit card payment through

Stripe.com, offers user-management features, and is tightly integrated within your own

web application.

Introduction

http://www.memberful.com/
http://stripe.com/

xxxvi

Patreon (www.patreon.com)
Patreon is a membership platform and plugin for artists and content creators.

Wild Apricot (www.wildapricot.com)
Wild Apricot is a membership platform for small and nonprofit organizations.

Subhub (www.subhub.com)
Subhub is a membership platform designed for entrepreneurs, experts, and

organizations.

Membergate (www.membergate.com)
Membergate is a platform for corporate communications, newsletters, associations,

and restricted access sites.

�Payment Platforms
There are several platforms available.

Paypal Donations (www.paypal.com/us/webapps/mpp/donation)

I’ve used Paypal plugins in the past and have been delighted with the ease of installation

and use. All you need is a Paypal account in good standing and the rest is a cinch.

Paypal Express (www.paypal.com/us/webapps/mpp/express-checkout)

Paypal Express is still Paypal but for quick and easy checkouts.

Stripe (http://stripe.com/)

Stripe is a payment options that easily allow websites to accept online credit card

payments. It is the payment engine behind Memberful.com that we will see in the last

chapter of this book.

�Analytics
Building your own web-usage tracker requires a lot of Flask custom code on every page,

along with a database to save those interactions and an analytical engine to make sense of

it. That’s a lot of work! Instead, with Google Analytics, all we have to do is add a JavaScript

snippet of code at the top of each page. It is free for basic analysis, which is fine for our needs.

�Message Boards
I have used https://disqus.com in the past to add message boards to static websites. It

creates the appearance of professional-looking message boards directly on your site, all

the while being managed elsewhere.

Introduction

http://www.patreon.com/
http://www.wildapricot.com/
http://www.subhub.com/
http://www.membergate.com/
http://www.paypal.com/us/webapps/mpp/donation
http://www.paypal.com/us/webapps/mpp/express-checkout
http://stripe.com/
http://disqus.com/

xxxvii

�Mailing Lists
I have used formspree.io for many years and love it! It is trivial to add to any static web

page along with a text box and submit button. Users can add their email address on your

web page and https://formspress.io will email you the submitted information. This

is a great option if you are hosting a static site or don’t want to deal with managing your

own database.

�Git
Git is a great version control tool; it allows you to store your code’s creation, changes,

updates, and any deletions happening in a repository. It is tightly integrated with GitHub,

which is critical for code safeguard and collaboration. It is also integrated on most of the

cloud providers out there. In some chapters we will use it and in others we won’t. If you

end up working on larger applications or collaborate with others, I highly recommend

you start using it.

Most cloud providers support online code repositories like GitHub, BitBucket, and

others. These online repos work with Git, so learning the basics will give you a big leg up.

The process of deploying web applications on Microsoft Azure is tightly integrated with

Git, so please take a look at this basic primer or go online for some great tutorials such as

try.github.io3:

•	 git init: creates a local repository

•	 git clone https://github.com/… clones a GitHub repository to your

local drive

•	 git status: list files that are changed and awaiting commit + push

to repo

•	 git add .: add all files (note period)

•	 git add ‘*.txt’: add all text files

•	 git commit: commit waiting files

•	 git log: see commit history

3�https://try.github.io/

Introduction

http://formspress.io/
https://github.com/
https://try.github.io/

xxxviii

•	 git push (or git push azure master): push branches to remote

master

•	 git pull: get remote changes to local repo

•	 git reset *: to undo git

•	 git rm --cached <file>: stop tracking a file

�Virtual Environments
Using a virtual environment offers many advantages:

•	 Creates an environment with no installed Python libraries

•	 Knows exactly which Python libraries are required for your

application to run

•	 Keeps the rest of your computer system safe from any Python

libraries you install in this environment

•	 Encourages experimentation

To start a virtual environment, use the “venv” command. If it isn't installed on your

computer, it is recommended you do so (it is available via common installers such as pip,

conda, brew, etc). For more information on installing virtual environments for your OS,

see the “venv - Creation of virtual environments” user guide: https://docs.python.

org/3/library/venv.html.

Open a command window and call the Python 3 “venv” function on the command

line to create a sandbox area (Listings 8 and 9).

Listing 8.  Creating a Python Virtual Environment

$ python3 -m venv some_name

Listing 9.  Activating the Environment

$ source some_name/bin/activate

Once you are done, you can deactivate your virtual environment with the command

in Listing 10.

Introduction

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

xxxix

Listing 10.  Deactivating Virtual Environment

$ deactivate

�Creating a “requirements.txt” File
The “requirements.txt” file is used by most cloud providers to list any Python libraries

needed for a hosted web application. In most cases, it is packaged alongside the web files

and sent to its “serverless” destination for setup.

You can create your own “requirements.txt” and house it in the same folder as you

main Flask Python script. Let’s see how we can use virtual environments to create a

complete “requirements.txt” file. When using a virtual environment, you are creating

a safe sandbox free of any Python libraries. This allows you to install only what you

need and run a “pip freeze” command to get a snapshot of the libraries and current

version numbers. Mind you, you don’t need to do this if you already know what libraries,

dependencies, and version numbers you need. As a matter of fact, you can use the

“requirements.txt” files packaged with this book content just as well.

�Step 1
Start with a clean slate by creating a virtual environment in Python as shown in Listing 11.

Listing 11.  Starting Virtual Environment

$ python3 -m venv some_env_name

$ source some_env_name/bin/activate

�Step 2
Use “pip3” to install libraries needed to run a local web application, as shown in listing 12.

Listing 12.  Installing Some Libraries as an Example

$ pip3 install flask

$ pip3 install pandas

$ pip3 install sklearn

Introduction

xl

�Step 3
Freeze the environment and pipe all installed Python libraries, including version

numbers in the “requirements.txt” file, as shown in Listing 13.

Listing 13.  Installed Required Libraries

$ pip3 freeze > requirements.txt

�Step 4
Finally, deactivate your virtual environment, as shown in Listing 14.

Listing 14.  Deactivate out of venv

$ deactivate

There you go: you’ve just created a “requirements.txt” file. Check out its content by

calling “vi” (click Escape and q to exit). The contents of your “requirements.txt” may

look very different, and that’s OK (Listing 15).

Listing 15.  Checking the Content of “requirements.txt” File

Input:

$ vi requirements.txt

Ouput:

click==6.7

Flask==0.12.2

itsdangerous==0.24

Jinja2==2.10

MarkupSafe==1.0

numpy==1.14.2

scikit-learn

scipy

python-dateutil==2.7.2

pytz==2018.4

six==1.11.0

Introduction

xli

Werkzeug==0.14.1

Pillow>=1.0

matplotlib

gunicorn>=19.7.1

wtforms>=2.1

Inside the requirements.txt file, you can require a specific version by using the “==”

sign (Listing 16)

Listing 16.  Exact Assignment

Flask==0.12.2

You can also require a version equal to and larger, or equal to and smaller (Listing 17)

Listing 17.  Directional Assignment

Flask >= 0.12

Or you can simply state the latest version that the installer can find (Listing 18)

Listing 18.  Use Latest Version Available

Flask

�Conclusion
This was only meant to be a brief introduction to the tools used in this book. Use these as

jumping off points to explore further and to deepen your knowledge in the areas that are

of particular interest to you.

Introduction

1
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_1

CHAPTER 1

Introduction to Serverless
Technologies
We’re going to create a very simple Flask web application (Figure 1-1) that we will reuse

in the next four sections when we explore cloud-based services from Amazon AWS,

Google Cloud, Microsoft Azure, and Python Anywhere.

Figure 1-1.  Flask

It is a good idea to start with a local version of your website working on your local

machine before venturing out onto the cloud.

Note  Download the files for Chapter 1 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter1.ipynb” to follow along with this chapter’s content.

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

2

�A Simple Local Flask Application
The code in this section is very simple, and you can either write it from scratch or use the

files in folder “simple-local-flask-application.”

�Step 1: Basic “Hello World!” Example
Let’s create a very simple Flask script straight from the official Flask help docs

(Listing 1-1).

Listing 1-1.  Simple Flask Script

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

That’s it! Even-though this doesn’t do much, it represents the minimum of what

is needed to get a Flask website up and running; it is a real web application. Save the

script as “main.py” anywhere on your local machine (and you can name it anything

you want).

�Step 2: Start a Virtual Environment
It’s always a good idea to segregate your development work using virtual environments

from the rest of your machine (and this also comes in handy when building

“requirements.txt” files—see the section on “Creating a ‘requirements.txt’ File” in the

introduction). Let’s start a virtual environment (Listing 1-2).

Listing 1-2.  Starting a Virtual Environment

$ python3 -m venv simple_flask

$ source simple_flask/bin/activate

Chapter 1 Introduction to Serverless Technologies

3

�Step 3: Install Flask
Install Flask. This assumes you can run “pip3” to install libraries; otherwise use whatever

install tools you would normally use for Python 3.x or check the official Flask docs.1 See

Listing 1-3.

Listing 1-3.  Install Flask

$ pip3 install Flask

�Step 4: Run Web Application
Open a command/terminal window and enter the following command on the Mac or

Windows (Listings 1-4 and 1-5).

Listing 1-4.  On the Mac

$ export FLASK_APP=main.py

$ flask run

Listing 1-5.  On Windows

$ export FLASK_APP= main.py

$ python -m flask run

�Step 5: View in Browser
You should see the following message in the command window offering a local

“HTTP” address to follow. Copy it and drop it into the address bar of your browser

(Listing 1-6).

1�http://flask.pocoo.org/

Chapter 1 Introduction to Serverless Technologies

http://flask.pocoo.org

4

Listing 1-6.  Flask Application Successfully Running on Local Machine

manuel$ export FLASK_APP=main.py

manuel$ flask run

 * Serving Flask app "main.py"

 * Environment: production

 WARNING: Do not use the development server in a production environment.

 Use a production WSGI server instead.

 * Debug mode: off

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Then open a browser and copy/paste (or type in) the local address listed (Figure 1-2).

�Step 6: A Slightly Faster Way
There you have it, a real server-generated web page. There is an even easier way you can

get your Flask app up and running locally by adding the following two lines to the end

of your “main.py” script. This only works in local mode but allows the script itself to run

the instantiated Flask application and allows you to skip the exporting step (Listing 1-7).

Listing 1-7.  Automatically Starting Flask Scripts in Local Mode

if __name__ == '__main__':

 app.run(debug=True)

Figure 1-2.  Local Flask application running as expected

Chapter 1 Introduction to Serverless Technologies

5

Save the amended “main.py” script, which should look like Listing 1-8.

Listing 1-8.  Full Flask Script

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

if __name__=='__main__':

 app.run(debug=True)

Go back to your command/terminal window pointing to the amended script and

enter the shorter version (Listing 1-9).

Listing 1-9.  Easier Command to Start Local Flask Script

$ python3 main.py

�Step 7: Closing It All Down
To stop the web application from serving the “Hello World!” page, hit “ctrl-c” in your

terminal window.

We turned on the “debug” flag to true in the last line of the script. This will print any Flask

errors with the script directly into the browser. This is a great feature for quickly developing

and debugging scripts, but remember to turn it to false before moving it to the cloud.

Finally, terminate your virtual environment (Listing 1-10).

Listing 1-10.  Closing the Virtual Environment

$ deactivate

�Introducing Serverless Hosting on Microsoft Azure
The Azure Cloud offers an easy-to-use, serverless and fully managed platform for web

applications, with plenty of customizable options ranging from storage to databases,

monitoring, and analytics (Figure 1-3).

Chapter 1 Introduction to Serverless Technologies

6

Let’s see how we can run our basic Flask application on Microsoft Azure’s serverless

web apps. Here, we’ll keep the steps as simple as possible, as we’ll drill down deeper into

this provider in subsequent chapters.

Note  Download the files for Chapter 1 by going to www.apress.com/
9781484238721 and clicking the source code button, and open the “serverless-
hosting-on-microsoft-azure” folder.

�Step 1: Get an Account on Microsoft Azure
You will need an account on Microsoft Azure and at the time of this writing, Microsoft

offers a convenient $200 30-day trial on all services and 12 months access. For more

information, see: https://azure.microsoft.com/en-us/free/.

�Step 2: Download Source Files
Download the files for this chapter onto your local machine and navigate to the folder

named “serverless-hosting-on-microsoft-azure.” Your local folder structure should

look like the following (notice the name of the Flask script “main.py,” the default on

Azure; Listing 1-11).

Figure 1-3.  Microsoft Azure

Chapter 1 Introduction to Serverless Technologies

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://azure.microsoft.com/en-us/free/

7

Listing 1-11.  All Files Needed for Our Web Application on Azure

serverless-hosting-on-microsoft-azure/

├── main.py
├── ptvs_virtualenv_proxy.py
├── requirements.txt
└── web.3.4.config

�Supporting Files

The “requirements.txt” file holds the Python library names the web application needs

and is used by the serverless cloud during the application’s deployment. You can create

your own “requirements.txt” and house it in the same folder as the Flask script “main.
py.” In this case it contains only one library and a version requirement (Listing 1-12).

Listing 1-12.  All Files for our Web Application

Flask>=0.12

The “web.3.4.config” is the web server’s configuration file. We will use the Python

3.4 version and go with the defaults. If you decide to explore this cloud-provider further,

then definitely crack it open and take a look inside.

�Step 3: Install Git
For this project you will need to have Git installed on your local machine (you can

find the install binaries at www.git-scm.com/downloads). As stated earlier, Git is a

source code versioning tool and it is a fully prepared Git package that we will push out

to Microsoft Azure (see the brief primer on Git in the introduction section). In most

chapters we would create a virtual environment to run the following steps, but as this is

already a big project, we’ll keep it simple and skip it.

Open your terminal/command-line window and point it to this chapter’s

“serverless-hosting-on-microsoft-azure” folder and initialize a Git session

(Listing 1-13).

Listing 1-13.  Initialize a Git Session

$ git init

Chapter 1 Introduction to Serverless Technologies

https://www.git-scm.com/downloads

8

Next, add all the web-application files from the “serverless-hosting-on-microsoft-
azure” folder and check its status (Listing 1-14 and Figure 1-4).

Listing 1-14.  Add All Files in Folder to Git and Check Status

$ git add .

$ git status

Do a local Git commit and add a comment that makes sense, in case you need to

revisit your past actions in the future (Listing 1-15).

Listing 1-15.  Committing Files to Git

$ git commit -am "Intro to Cloud Azure commit"

All the needed files are in the local repository. For more information on the Git

Deployment to Azure App Service, go to https://docs.microsoft.com/en-us/azure/

app-service/app-service-deploy-local-git.

�Step 4: Open Azure Cloud Shell
Log into your Microsoft Azure dashboard and open the Azure Cloud Shell by clicking the

caret-underscore (Figure 1-5).

Figure 1-4.  Shows the web application files ready for commit

Chapter 1 Introduction to Serverless Technologies

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

9

You will be prompted to create either a Linux or Power Shell window. Go with

Linux, as the commands will be similar to what you use in your local terminal window

(Figure 1-6).

It will also prompt you to create storage, which you will need in order to host the

application (Figure 1-7). If this is your first time, you may see the option “Free Trial” in

the drop-down. Either way, go with it and create storage.

Figure 1-5.  Starting Azure Cloud Shell

Figure 1-6.  Choosing between Bash (Linux) or PowerShell (Windows); go with the
familiar, Linux

Figure 1-7.  You need to create a storage repository

Chapter 1 Introduction to Serverless Technologies

10

�Step 5: Create a Deployment User
You should now be in the Azure Cloud Shell. This user will have appropriate rights

for FTP and local Git use. Here I set my user name to “flaskuser11” and password to

“flask123”; come up with your own name and remember it, as you will need it later on

(Listing 1-16).

Listing 1-16.  Creating a User

$ az webapp deployment user set --user-name <<REPLACE-WITH-YOUR-USER-NAME>>

--password flask123

The response from the command and most subsequent commands should look

like the following screen shot. Look closely for any errors or issues and fix accordingly

(Listing 1-17).

Listing 1-17.  Response Format from Azure’s “webapp” Commands

manuel@Azure:~$ az webapp deployment user set --user-name flaskuser11

--password flask123

{

 "id": null,

 "kind": null,

 "name": "web",

 "publishingPassword": null,

 "publishingPasswordHash": null,

 "publishingPasswordHashSalt": null,

 "publishingUserName": "flaskuser11",

 "type": "Microsoft.Web/publishingUsers/web",

 "userName": null

}

Your output JSON should be full of nulls; if you see “conflict,” your “user-name”

isn’t unique and if you see “bad request,” your password isn’t compliant (it should

be at least eight characters long and made up of a mix of characters, numbers, or

symbols).

Chapter 1 Introduction to Serverless Technologies

11

�Step 6: Create a Resource Group
Here we create a resource group for a location close to you—in my case “West US” (for

locations, see https://azure.microsoft.com/en-us/regions/ or use the command

“az appservice list-locations --sku FREE”—see Listing 1-18).

Listing 1-18.  Creating a Resource Group and Response

Input:

$ az group create --name myResourceGroup --location "West US"

Output:

manuel@Azure:~$ az group create --name myResourceGroup --location "West US"

{

 �"id": "/subscriptions/1e9ea6de-d6b9-44a5-b319-68b0ab52c2bc/resource

Groups/myResourceGroup",

 "location": "westus",

 "managedBy": null,

 "name": "myResourceGroup",

 "properties": {

 "provisioningState": "Succeeded"

 },

 "tags": null

}

�Step 7: Create an Azure Service Plan
Create your Azure service plan. Set the name to “myAppServicePlan” (it can be

whatever you want; Listing 1-19).

Listing 1-19.  Creating a Service Plan and Successful Response

Input:

$ az appservice plan create --name myAppServicePlan --resource-group

myResourceGroup --sku FREE

Chapter 1 Introduction to Serverless Technologies

https://azure.microsoft.com/en-us/regions/

12

Truncated Output:

manuel@Azure:~$ az appservice plan create --name myAppServicePlan

--resource-group myResourceGroup --sku FREE

{

 "adminSiteName": null,

 "appServicePlanName": "myAppServicePlan",

 "geoRegion": "West US",

 "hostingEnvironmentProfile": null,

 �"id": "/subscriptions/1e9ea6de-d6b9-44a5-b319-68b0ab52c2bc/resource

Groups/myResourceGroup/providers/Microsoft.Web/serverfarms/

myAppServicePlan",

 "isSpot": false,

 "kind": "app",

 "location": "West US",

 "maximumNumberOfWorkers": 1,

 "name": "myAppServicePlan",

 "numberOfSites": 0,

 "perSiteScaling": false,

 "provisioningState": "Succeeded"

...

�Step 8: Create a Web App
Next, create a web app and set the name parameter to the name of your application (it

has to be unique). I am setting mine to “AmunateguiIntroWebApp” and telling the web

app that the code will be deployed via local Git (Listing 1-20).

Listing 1-20.  Creating a Web App (replace this with your app name)

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan

--name <<REPLACE-WITH-YOUR-APP-NAME>> --runtime "python|3.4" --deployment-

local-git

Check the large response string from the “az web app create” command

and copy the link after “Local git is configured with url of…” or from the

“deploymentLocalGitUrl” value—both are the same, so pick whichever is easiest. You

will need this when you push your Flask files out to Azure (Listing 1-21).

Chapter 1 Introduction to Serverless Technologies

13

Listing 1-21.  Copy Your Git URL; You Will Need It Later

Local git is configured with the URL 'https://flaskuser11@

amunateguiintrowebapp.scm.azurewebsites.net/AmunateguiIntroWebApp.git'

{

 "availabilityState": "Normal",

 "clientAffinityEnabled": true,

 "clientCertEnabled": false,

 "cloningInfo": null,

 "containerSize": 0,

 "dailyMemoryTimeQuota": 0,

 "defaultHostName": "amunateguiintrowebapp.azurewebsites.net",

 �"deploymentLocalGitUrl": "https://flaskuser11@amunateguiintrowebapp.scm.

azurewebsites.net/AmunateguiIntroWebApp.git",

 ...

Extract the local Git configuration URL for your Azure project is (Listings 1-22

and 1-23).

Listing 1-22.  The Extracted Git URL in My Case

https://flaskuser11@amunateguiintrowebapp.scm.azurewebsites.net/

AmunateguiIntroWebApp.git

Listing 1-23.  Yours Will Look Like the Following

https://<<REPLACE-WITH-YOUR-USER-NAME>>@<<REPLACE-WITH-YOUR-APP-NAME>>.scm.

azurewebsites.net/<<REPLACE-WITH-YOUR-APP-NAME>>.git

�Check Your Website Placeholder
If everything worked, you should be able to visit the placeholder website. Replace

“<<REPLACE-WITH-YOUR-APP-NAME>>” with the application name you created in

the “az webapp create” step and drop it into your browser (Listing 1-24 and Figure 1-8).

Listing 1-24.  Checking Your Web Placeholder

http://<<REPLACE-WITH-YOUR-APP-NAME>>.azurewebsites.net

Chapter 1 Introduction to Serverless Technologies

14

If this didn’t work, you need to check each step again and make sure you didn’t miss

one or if any returned an error that needs to be addressed.

�Step 9: Pushing Out the Web Application
Now go back to your local terminal/command window on your local computer pointing

to the correct directory and with the initialized Git session we created earlier. Append

the URL we saved previously with the location of your GIT repository to the “add azure”

command (Listing 1-25).

Listing 1-25.  Final Code Push to Azure

$ git remote add azure https://flaskuser11@amunateguiintrowebapp.scm.

azurewebsites.net/AmunateguiIntroWebApp.git

It may prompt for your password; make sure you use the one you created in the

“az webapp deployment user” step (“flask123” in my case; Listing 1-26).

Figure 1-8.  Confirming that your site’s placeholder is created and running

Chapter 1 Introduction to Serverless Technologies

15

Listing 1-26.  Final Code Push to Azure

$ git push azure master

�Step 10: View in Browser
That’s it! You can get back to your placeholder browser page and hit refresh (or

open a new browser page and enter http://<<REPLACE-WITH-YOUR-APP-NAME>>.

azurewebsites.net and you should see “Hello World!”; Figure 1-9)

In case you are not seeing the “Hello World!” site, you can access the tail of the log

directly in your command window— just swap the name for the web site name (in my

case “amunateguiintroapp”) and the group (in my case “myResourceGroup”); see

Listing 1-27.

Listing 1-27.  Final Code Push to Azure

$ az webapp log tail --resource-group myResourceGroup --name

amunateguiintroapp

Figure 1-9.  Flask application successfully running on Amazon Azure

Chapter 1 Introduction to Serverless Technologies

16

�Step 11: Don’t Forget to Delete Your Web Application!
If you aren’t using your web application anymore, don’t forget to delete it. If you don’t,

the meter will keep running and eating credits or accruing cost. The easiest way to delete

everything is to log into the Azure Dashboard and enter “All resources” in the search bar

and delete everything you created (Figure 1-10).

�Conclusion and Additional Information
Microsoft Azure is a powerful cloud provider with a lot of offerings. It runs simple Flask

applications and deploys quickly. In order to load more complicated libraries, you will

need the support of Python wheels (https://pythonwheels.com/).

For additional information, see the excellent post titled “Create a Python web app

in Azure” on Microsoft Azure Docs, upon which this section was based: https://docs.

microsoft.com/en-us/azure/app-service/app-service-web-get-started-python.

�Introducing Serverless Hosting on Google Cloud
Google Cloud is a powerful platform to build, manage, and deploy web applications.

It integrates seamlessly with TensorFlow and its distributed graph mechanism

(Figure 1-11).

Figure 1-10.  Deleting your application to not incur additional costs

Chapter 1 Introduction to Serverless Technologies

https://pythonwheels.com/
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python

17

Let’s see how we can run our basic Flask application on Google Cloud’s serverless

App Engine. We’ll keep the steps as simple as possible, as we’ll go deeper into this

provider in subsequent chapters.

Note  Download the files for Chapter 1 by going to www.apress.
com/9781484238721 and clicking the source code button and open the
“serverless-hosting-on-google-cloud” folder.

�Step 1: Get an Account on Google Cloud
At the time of writing, Google is offering a convenient 12-month, $300 credit free trial to

get you started. For more information, see https://console.cloud.google.com/start.

There are two types of App Engines you can opt for: the “Standard Environment,”

which is simple but less customizable, and the “Flexible Environment,” which can

handle more-or-less anything you throw at it. We’ll stick with the simple one in this

section, the “Standard Environment.”

�Step 2: Download Source Files
Download the files for this chapter onto your local machine and navigate to the folder

named “serverless-hosting-on-google-cloud” (Listing 1-28).

Listing 1-28.  All Files Needed for Our Web Application on Google Cloud

serverless-hosting-on-google-cloud/

├── app.yaml
├── appengine_config.py
├── main.py
└── requirements.txt

Figure 1-11.  Google Cloud

Chapter 1 Introduction to Serverless Technologies

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://console.cloud.google.com/start

18

“app.yaml” declares where the controlling Flask Python application (in this case

“main”) resides along with the static and templates folder locations (Listing 1-29).

Listing 1-29.  A Look at app.yaml

runtime: python27

api_version: 1

threadsafe: true

handlers:

- url: /static

 static_dir: static

- url: /.*

 script: main.app

- url: /favicon.ico

 static_files: static/images/favicon.ico

 upload: static/images/favicon.ico

libraries:

- name: ssl

 version: latest

The “appengine_config.py” points to the lib folder to hold additional Python

libraries during deployment (Listing 1-30).

Listing 1-30.  A Look at “appengine_config.py”

from google.appengine.ext import vendor

Add any libraries installed in the "lib" folder

vendor.add('lib')

The “requirements.txt” holds Python library names and the version to be installed

and added to the lib folder (Listing 1-31).

Listing 1-31.  Content of “requirements.txt”

Flask>=0.12

“main.py” is the brains of the Flask operations and holds all of the Python code and

directives for each HTML page (Listing 1-32).

Chapter 1 Introduction to Serverless Technologies

19

Listing 1-32.  Content of “main.py”

from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

�Step 3: Open Google Cloud Shell
Log into your instance of Google Cloud and select the project you want your App

Engine to live in (if you don’t have one, see Creating and Managing Projects: https://

cloud.google.com/resource-manager/docs/creating-managing-projects). Start the

cloud shell command line tool by clicking the upper-right caret button. This will open

a familiar-looking command line window in the bottom half of the GCP dashboard

(Figure 1-12).

Figure 1-12.  Starting the Google Cloud shell

Chapter 1 Introduction to Serverless Technologies

https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects

20

In the terminal section of the GCP dashboard, create a new folder called

“GoogleCloudFlaskIntro” (Listing 1-33).

Listing 1-33.  Creating Directory in GCP

$ mkdir GoogleCloudFlaskIntro

$ cd GoogleCloudFlaskIntro

�Step 4: Upload Flask Files to Google Cloud
There are many ways to proceed, you can upload the files one-by-one, clone a GitHub

repository, or you can zip them into one archive file and upload all of it in one go. We’ll

go with the latter. So zip the following four files only: “app.yaml,” “appengine_config.
py,” “main.py,” and “requirements.txt” into one archive file (Figure 1-13).

Upload it using the “Upload file” option (this is found on the top right side of the

shell window under the three vertical dots Figure 1-14).

Figure 1-13.  Zipping web application files for upload to Google Cloud

Chapter 1 Introduction to Serverless Technologies

21

It will upload the file (in my case called “Archive.zip”) into the root directory, so you

will need to move it into the “GoogleCloudFlaskIntro” folder and unzip it (Listing 1-34).

Listing 1-34.  Moving and Unzipping Web Application Files

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

Figure 1-14.  Uploading files via Google Cloud shell

Chapter 1 Introduction to Serverless Technologies

22

Run the “pip install -t lib” command to install all the libraries in the “requirements.
txt” file (Listing 1-35). This will create the necessary “lib” folder holding any needed

Python libraries (you may get some complaints if you don’t use “sudo,” which gives you

root rights, but don’t abuse it!)

Listing 1-35.  Filling the lib Directory with Necessary Python Libraries

$ sudo pip3 install -t lib -r requirements.txt

At this point, your folder directory in the cloud should look like the following if you

run the “ls” command (Listing 1-36).

Listing 1-36.  Checking Content of the “GoogleCloudFlaskIntro” Folder on GCP

Input:

$ ls

Output:

$ appengine_config.py app.yaml Archive.zip lib main.py requirements.txt

�Step 5: Deploy Your Web Application on Google Cloud
We are now ready to deploy the “Hello World” site. Call the “gcloud app
deploy command” from within the dashboard’s shell window under the

“GoogleCloudFlaskIntro” folder. It will ask you to confirm that you do indeed want to

deploy to the —and “Y”es we do (Listing 1-37).

Listing 1-37.  Deploying the Web Application

Input:

$ gcloud app deploy app.yaml

Truncated Output:

...

File upload done.

Updating service [default]...done.

Setting traffic split for service [default]...done.

Chapter 1 Introduction to Serverless Technologies

23

Deployed service [default] to [https://apt-memento-192717.appspot.com]

To view your application in the web browser, run:

$ gcloud app browse

If all goes well, you can call the convenience “gcloud app browse” command to get

the full URL (Listing 1-38).

Listing 1-38.  Getting Our Web Application’s URL Address

Input:

$ gcloud app browse

Output:

Did not detect your browser. Go to this link to view your app:

https://apt-memento-192717.appspot.com

Either click the link in the Google Cloud Shell or paste it in a browser (Figure 1-15).

�Step 6: Don’t Forget to Delete Your Web Application!
If you aren’t using your web application anymore, don’t forget to delete it. If you don’t,

the meter will keep running and accrue cost. You can’t just flat out delete an App Engine

application if it is your only application (you are required to have a default application),

instead you redirect traffic to a blank application.

Figure 1-15.  Flask application successfully running on Google Cloud

Chapter 1 Introduction to Serverless Technologies

24

In the Google Cloud shell, enter the Linux text editor “vi” (Listing 1-39).

Listing 1-39.  Editing the “app.yaml” File

$ vi app.yaml

This will open a small command line editor; then hit the “i” key to insert or edit the

file (Listings 1-40 and 1-41).

Listing 1-40.  Scroll Down and Replace “main.app”

script: main.app

Listing 1-41.  With “blank.app”

script: blank.app

Your “app.yaml” file should now have its “url” handler pointing to “blank.app.” This

stops GCP from serving anything, as “blank.app” doesn’t exist and will stop accruing

charges (Listing 1-42).

Listing 1-42.  Pointing Our Yaml File to a Black Script

runtime: python27

api_version: 1

threadsafe: true

handlers:

- url: /static

 static_dir: static

- url: /.*

 script: blank.app

- url: /favicon.ico

 static_files: static/images/favicon.ico

 upload: static/images/favicon.ico

libraries:

- name: ssl

 version: latest

Chapter 1 Introduction to Serverless Technologies

25

Click the escape key to get out of insert mode, and type “wq” for write and quit. Then

redeploy your web application (Listing 1-43).

Listing 1-43.  Redeploying Blank Web Application

$ gcloud app deploy app.yaml

After the App Engine has had time to propagate, the URL should show an error

instead of “Hello World” (Figure 1-16).

�Conclusion and Additional Information
GCP has a lot of features to offer and is tightly integrated with other Google offerings (like

their great Cloud APIs at https://cloud.google.com/apis/) and TensorFlow. If you

need to use more powerful Python libraries, you can switch from standard App Engine to

Flexible.

For additional information, see the handy post titled “Quickstart for Python App
Engine Standard Environment” on the Google Cloud Docs at: https://cloud.google.

com/appengine/docs/standard/python/quickstart

By the way, if you have any issues with your Google Cloud App Engine, you can

access the logs with the following command (Listing 1-44).

Listing 1-44.  Viewing Deployment Logs

$ gcloud app logs tail -s default

Figure 1-16.  The error confirms your site is down

Chapter 1 Introduction to Serverless Technologies

https://cloud.google.com/apis/
https://cloud.google.com/appengine/docs/standard/python/quickstart
https://cloud.google.com/appengine/docs/standard/python/quickstart

26

�Introducing Serverless Hosting on Amazon AWS
AWS Elastic Beanstalk is a simple yet powerful platform for deploying web applications.

It comes with all the amenities like scaling, load balancing, monitoring, etc. It only

charges for resources used (Figure 1-17).

Let’s see how we can run our basic Flask application on Amazon’s AWS Elastic

Beanstalk. We’ll keep the steps as simple as possible, as we’ll look deeper into this

provider in subsequent chapters.

Note  Download the files for Chapter 1 by going to www.apress.
com/9781484238721 and clicking the source code button, and open the
“serverless-hosting-on-amazon-aws” folder.

�Step 1: Get an Account on Amazon AWS
Amazon AWS offers an “AWS Free Tier” account that allows you to try some of its

services for free. For more information on creating an account, go to: https://aws.

amazon.com/free/.

Figure 1-17.  Amazon Web Services

Chapter 1 Introduction to Serverless Technologies

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://aws.amazon.com/free/
https://aws.amazon.com/free/

27

�Step 2: Download Source Files
Download the files for this chapter onto your local machine and navigate to the folder

named “serverless-hosting-on-amazon-aws.” The folder structure should look like

Listing 1-45.

Listing 1-45.  All Files Needed for Our Web Application on AWS Elastic Beanstalk

serverless-hosting-on-amazon-aws/

├── application.py
└── requirements.txt

�Step 3: Create an Access Account for Elastic Beanstalk
Log into the AWS web console and go to the Identity and Access Management (IAM)

console. A quick way there is to simply type “IAM” in the AWS services search box on the

landing page. Select “Users” in the navigation section and click the “Add user” button

(Figure 1-18).

Figure 1-18.  Adding a user through the Access Management console

Chapter 1 Introduction to Serverless Technologies

28

Select a user name—here we enter “ebuser” and check “Access type: Programmatic
access” (Figure 1-19).

Click the blue “Next: Permissions” button. This will take you to the “Set
permissions” page; click the “Add user to group” large menu button then click “Create
group.” Create a group name, “ebadmins” in this case, and assign it the policy name

“WSElasticBeanstalkFullAccess.” Then click the “Create group” button to finalize the

group (Figure 1-20).

Figure 1-19.  Adding correct access rights to “ebuser”

Chapter 1 Introduction to Serverless Technologies

29

Click the “Next: review” blue button and, on the following page, click the blue

“Create user” button (Figure 1-21).

Figure 1-20.  Create group with “WSElasticBeanstalkFullAccess” access

Figure 1-21.  Download access key after successfully creating a user

Chapter 1 Introduction to Serverless Technologies

30

Once you see the “Success” message, this means you have successfully created

the “ebuser” account. Make sure you download the “.csv” file to your local machine

by clicking the “Download .csv” button. This file is important as it holds your key and

secret code. Store it in a known location on your local machine as you will need that

information to upload the web application code and to Secure Shell (SSH) into your EB

(we won’t need SSH in this section but will in subsequent ones).

�Step 4: Install Elastic Beanstalk (EB)
Start by creating a virtual environment to segregate installations. This isn’t an obligation

but it will help you keeps things clean and neat by separating this environment from

the rest of your machine (if you haven’t installed it yet, see the earlier section named

“Virtual Environments”); see Listing 1-46.

Listing 1-46.  Start a Virtual Environment

$ python3 -m venv amazon_aws_intro

$ source amazon_aws_intro/bin/activate

Install the “awsebcli” library to interact and manage our EB service on AWS

(Listing 1-47 and 1-48).

Listing 1-47.  For Mac and Linux Users

$ pip3 install awscli

$ pip3 install awsebcli

Listing 1-48.  For Windows (if it complains about the “user” parameter, try

without it)

$ pip3 install awscli –-user

$ pip3 install awsebcli --user

Chapter 1 Introduction to Serverless Technologies

31

�Step 5: EB Command Line Interface
It’s time to initialize the Elastic Bean interface (Listing 1-49).

Listing 1-49.  Start the Elastic Beanstalk Command Line Interface

$ eb init -i

This will ask you a series of questions and you can go with most of the defaults.

Under “Enter Application name,” enter “AWSBeanstalkIntroduction” (Figure 1-22).

If this is your first time running AWS on your computer, it will ask for your

credentials. Open the “credentials.csv” that was downloaded on your machine when

you created a user and enter the two fields required (Figure 1-23).

Go with the Python defaults (it needs to be a 3.x version); ignore warnings. Say yes to

SSH (Figure 1-24).

Figure 1-22.  Creating a new EB application

Figure 1-23.  Entering your credentials

Chapter 1 Introduction to Serverless Technologies

32

Create a new key pair or select an existing one and keep going with the defaults. If

you create a new key pair, it will save it in a folder and tell you the location (Figure 1-25).

Next, you need to create your EB (this has to be a unique name). This command will

automatically zip up the data in the folder and upload it to the AWS cloud (Listings 1-50

and 1-51). This can take a few minutes, so be patient.

Listing 1-50.  Create Your EB and Upload it to AWS

$ eb create <<ENTER-YOUR-EB-NAME>>>

Listing 1-51.  My EB for This Example

$ eb create AWSBeanstalkIntroduction

�Step 6: Take if for a Spin
It takes a few minutes, and you should get a success message if all goes well. Then you

can simply use the “eb open” command to view the web application live (Listing 1-52).

Listing 1-52.  Fire Up Your Web Application

$ eb open AWSBeanstalkIntroduction

It may take a little bit of time to run the application the first time around and may

even timeout. Run the “eb open” one more time if it times out (Figure 1-26).

Figure 1-24.  Turning on SSH settings

Figure 1-25.  Create or reuse an RSA key pair

Chapter 1 Introduction to Serverless Technologies

33

If things don’t go as planned, check out the logs for any error messages

(Listing 1-53).

Listing 1-53.  Access the Logs in Case of Problems

$ eb logs

�Step 7: Don’t Forget to Turn It Off!
Finally, we need to terminate the Beanstalk instance to not incur additional charges.

This is an important reminder that most of these cloud services are not free. It will ask

you to enter the name of the environment; in my case it is “AWSBeanstalkIntroduction”

(Listing 1-54).

Listing 1-54.  Don’t Forget to Terminate Your EB and Deactivate Your Virtual

Environment

$ eb terminate AWSBeanstalkIntroduction

$ deactivate

It does take a few minutes but will take the site down. It is a good idea to double-

check on your AWS dashboard that all services are indeed turned off. This is easy to do:

simply log into your AWS account at https://aws.amazon.com/ and make sure that your

EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan on

having (Figure 1-27). In case you see an instance that seems to keep coming back to life

after each time you “terminate” it, check under EC2 “Load Balancers” and terminate

those first, then terminate the instances again.

Figure 1-26.  Flask application successfully running on Amazon AWS

Chapter 1 Introduction to Serverless Technologies

https://aws.amazon.com/

34

�Conclusion and Additional Information
No doubt, AWS is the leader in the cloud space. It may not be the simplest or cheapest,

but it would more than likely do anything you ask it to.

For additional information, see the handy post titled “Deploying a Flask
Application to AWS Elastic Beanstalk” on the Amazon’s AWS Docs at https://

docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-

flask.html.

�Introducing Hosting on PythonAnywhere
PythonAnywhere is a great way to rapidly prototype your Python interactive ideas

and models on the Internet. It is integrated and designed for anything Python!

It isn’t serverless in the classic sense, but it is a dedicated Python framework, it

doesn’t require a credit card to sign up, and it can craft a proof-of-concept in no time

(Figure 1-28).

Figure 1-27.  Checking the Amazon AWS dashboard that no unwanted services
are still running

Figure 1-28.  PythonAnywhere

Chapter 1 Introduction to Serverless Technologies

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html

35

Proof is in the pudding; no code is needed for this project as PythonAnywhere

already defaults to a “Hello World” example when you spin up an instance.

�Step 1: Get an Account on PythonAnywhere
Sign up for a free account on PythonAnywhere.com and log into it (you will have to

confirm your email address).

�Step 2: Set Up Flask Web Framework
Let’s create a web server on PythonAnywhere with the Flask web-serving platform. It

is super easy to do. Under the “Web” tab, click the “Add a new web app” blue button.

And accept the defaults until you get to the ‘Select a Python Web framework’ and click

“Flask” and then the latest Python framework (Figure 1-29).

Figure 1-29.  Adding a new web app on PythonAnywhere

Chapter 1 Introduction to Serverless Technologies

http://pythonanywhere.com

36

You will get to the landing configuration page, hit the green “Reload your account.
pythonanywhere.com” button and take your new URL for a spin (Figure 1-30).

You should see a simple but real web page with the “Hello from Flask!” message

right out of the box (Figure 1-31).

Figure 1-31.  Flask application successfully running on PythonAnywhere

Figure 1-30.  Accessing the website configuration under the Web tab

Chapter 1 Introduction to Serverless Technologies

37

�Conclusion and Additional Information
PythonAnywhere may not be a 100% serverless cloud provider but it is free for basic

hosting. It is the easiest to work with and can be run directly from its online dashboard.

This is a great option when traveling.

For a treasure-trove of help docs and step-by-step guides, see https://help.

pythonanywhere.com/pages/.

�Summary
If you made it this far, great job! We’ve covered a very simple, stand-alone web

application using Flask and deployed it on four cloud providers. Please expect some

variance in the methodology of uploading web applications onto each cloud provider,

as they do change things here and there from time to time. Keeping an eye on the

documentation is critical.

It’s time to roll up our sleeves and start tackling some more interesting and more

involved web applications!

Chapter 1 Introduction to Serverless Technologies

https://help.pythonanywhere.com/pages/
https://help.pythonanywhere.com/pages/

39
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_2

CHAPTER 2

Client-Side Intelligence
Using Regression
Coefficients on Azure
Let’s build an interactive web application to understand bike rental demand using

regression coefficients on Microsoft Azure.

For our first project, we’re going to model the Bike Sharing Dataset from the

Capital Bikeshare System using regression modeling and learn how variables such as

temperature, wind, and time affect bicycle rentals in the mid-Atlantic region of the

United States (Figure 2-1).

40

The data is graciously made available through the UCI Machine Learning Repository

of the University of California, Irvine (https://archive.ics.uci.edu/ml/datasets/

bike+sharing+dataset).

Note  Download the files for Chapter 2 by going to www.apress.
com/9781484238721 and clicking the source code button. Open Jupyter
notebook “chapter2.ipynb” to follow along with this chapter’s content.

Figure 2-1.  Our final web application for this chapter

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

41

�Understanding Bike Rental Demand with Regression
Coefficients
We’re going to build a simple and visually intuitive way of interacting with different

environmental factors and see how they affect bike rentals. This is a great way for users

to confirm their intuitive assumptions of what would make people want to bicycle vs.

not, and in some cases, surprise them too (like seeing more riders in the winter than in

the summer—but I’ll let you discover that on your own).

The “brain” behind this web application is a linear regression model. It has the

ability of finding linear relationships between an outcome variable and historical data.

We are going to leverage this skill by having it learn bike rental demand over time and

under different environmental factors, and see if it can help us predict future demand.

Whenever you extend a Python model to the Wweb, it is critical to iron out all

issues and bugs locally before adding the extra layers necessary to build it into a web

application. Get all the easy issues resolved before moving anything to the cloud!

Following this piece of advice will save you from many headaches.

�Exploring the Bike Sharing Dataset
Bike sharing is very popular albeit still new and experimental. Using a mobile phone, a

rider can sign up online, download a phone application, locate bicycles, and rent one.

This model creates an entire ecosystem where nobody needs to talk or meet in person

to start enjoying this service. According to Hadi Fanaee-T of the Laboratory of Artificial

Intelligence and Decision Support (from the liner notes on the UCI Machine Learning

Repository’s Dataset Information):

Opposed to other transport services such as bus or subway, the duration of
travel, departure and arrival position is explicitly recorded in these systems.
This feature turns [a] bike sharing system into a virtual sensor network that can
be used for sensing mobility in the city. Hence, it is expected that most of [the]
important events in the city could be detected via monitoring these data.1

The download contains two datasets: “hour.csv” and “day.csv.” See Table 2.1 for

feature details.2

1�Hadi Fanaee-T and Joao Gama, “Event Labeling Combining Ensemble Detectors and
Background Knowledge,” Progress in Artificial Intelligence 2, no. 2–3 (2013): pp. 113-127.

2�https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

42

Table 2-1.  Bike Sharing Data Legend

Feature Name Description

instant record index

dteday date

season season (1: spring, 2: summer, 3: fall, 4: winter)

yr year (0: 2011, 1:2012)

mnth month (1 to 12)

hr hour (0 to 23)

holiday whether day is holiday or not

weekday day of the week

workingday If day is neither weekend nor holiday it is 1, otherwise it is 0.

weathersit 1.  Clear, Few clouds, Partly cloudy

2. � Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3. �L ight Snow, Light Rain + Thunderstorm + Scattered clouds,

Light Rain + Scattered clouds

4. �H eavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp Normalized temperature in Celsius. The values are derived via (t-t_min)/

(t_max-t_min), t_min = -8, t_max = +39 (only in hourly scale).

atemp Normalized feeling temperature in Celsius. The values are derived via

(t-t_min)/(t_max-t_min), t_min = -16, t_max = +50 (only in hourly scale).

hum Normalized humidity. The values are divided by 100 (max).

windspeed Normalized wind speed. The values are divided by 67 (max).

casual count of casual users

registered count of registered users

cnt count of total rental bikes including both casual and registered

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

43

�Downloading the Data from the UCI Machine Learning
Repository
The dataset can be downloaded directly from UCI’s repository using Python or manually

at: https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset). The

download contains the following three files:

•	 day.csv

•	 hour.csv

•	 Readme.txt

The daily set of bike rentals contains 731 rows and the hourly set, 17,379 records.

�Working with Jupyter Notebooks
Each chapter has a corresponding Jupyter notebook. Let’s go over some of the basics

to get started with the notebook for this chapter. Download the source files, open a

terminal window, and navigate to that folder. In it, you should find two files and a folder

(Figure 2-2).

The “requirements_jupyter.txt” file contains the Python libraries necessary to run

this chapter’s Jupyter notebook. You can quickly install them by running the “pip3”

command (Listing 2-1).

Figure 2-2.  Terminal window

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

44

Listing 2-1.  Installing the Required Files to Run the Notebook

$ pip3 install -r requirements_jupyter.txt

The file named “chapter2.ipynb” is the actual Jupyter notebook for this chapter.

There are different ways of starting a notebook, but one popular way is using the

“jupyter notebook” command (Listing 2-2). If this doesn’t work for you, please refer to

the official Jupyter documentation.

Listing 2-2.  Starting the Jupyter notebook for This Chapter

$ jupyter notebook

This will open a browser window with a file-explorer dashboard pointing to the

same folder where it was launched from. Go ahead and click the “chapter2.ipynb” link

(Figure 2-3).

This will open a new tab and the corresponding notebook containing all the

exploratory code needed to follow along with the chapter’s content. All code in this book

assumes Python 3.x; if you use another version you may have to tweak some parts of

the code. Once you have opened the notebook, you are ready to go. Highlight the first

box and hit the play button to run that portion of the code (Figure 2-4). If you see errors,

please address them before continuing, as each code snippet builds upon the previous

one (errors can be related to Python version compatibility issues or missing libraries that

need to be installed).

Figure 2-3.  Jupyter’s file explorer with this chapter’s notebook link

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

45

The corresponding Jupyter notebook for the chapter shows a way to download and

unzip the data directly using Python (if you are having firewall issues, please download it

manually).

�Exploring the Data
The Python Pandas “head()” function offers a glimpse into the first few rows of the data

shown in Listing 2-3 and Figure 2-5.

Listing 2-3.  First Rows of the Dataset

bikes_hour_df_raw.head()

Figure 2-4.  Jupyter notebook with code highlighted and ready to be run

Figure 2-5.  bike_df.head() output

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

46

Using the “head()” function, we learn that there are dates, integers, and floats. We

also see some redundant features like date (dteday) have already been categorized

through “season,” “yr,” “mnth,” “hr,” etc. Therefore the “dteday” feature is an easy

candidate to drop (though we’re going to hold on to it for a little longer for our

exploration needs). Some other features seem redundant, like “temp” and “atemp” and

may call for closer inspection. We also drop the “casual” and “registered” features, as

those won’t help us model demand from a single user’s perspective, which is the point

of our web application. This could make an interesting outcome variable to forecast

registration based on season, weather, etc. As those don’t fit in the scope of our current

needs, we will drop them.

We only keep the features that we really need, as this will remove clutter and afford

us extra clarity and understanding to reach our data science and web application goals

(Listing 2-4).

Listing 2-4.  Removing Useless Features for Our Ggoals

bikes_hour_df = bikes_hour_df_raw.drop(['casual', 'registered'], axis=1)

The Pandas “info()” function is also a great way of seeing the data types, quantities,

and null counts contained in the data (Listing 2-5).

Listing 2-5.  Getting information about features

Input:

bikes_hour_df.info()

Output:

RangeIndex: 17379 entries, 0 to 17378

Data columns (total 15 columns):

instant 17379 non-null int64

dteday 17379 non-null object

season 17379 non-null int64

yr 17379 non-null int64

mnth 17379 non-null int64

hr 17379 non-null int64

holiday 17379 non-null int64

weekday 17379 non-null int64

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

47

workingday 17379 non-null int64

weathersit 17379 non-null int64

temp 17379 non-null float64

atemp 17379 non-null float64

hum 17379 non-null float64

windspeed 17379 non-null float64

cnt 17379 non-null int64

Using the “info()” function, we see that all the data currently held in memory is

either a float or an integer, and that none of them are nulls. If we did happen to find

nulls, date data types, or text data types, we would need to address them before moving

on to modeling. The majority of models in existence require numerical data and that is

what we have, so we’re looking good so far.

�A Closer Look at Our Outcome Variable
Let’s look at the outcome variable that we’re going to use to train our model, “cnt,” count

of total rental bikes. Pandas “describe()” function is another go-to tool to understand

quantitative data. Let’s apply it to our outcome variable (also known as the model’s

label), as shown in Listing 2-6.

Listing 2-6.  Number Summary of the Bike Rental Count “cnt” Feature

Input:

bikes_hour_df['cnt'].describe()

Output:

count 17379.000000

mean 189.463088

std 181.387599

min 1.000000

25% 40.000000

50% 142.000000

75% 281.000000

max 977.000000

Name: cnt, dtype: float64

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

48

We see that feature “cnt” ranges between a minimum of 1 and maximum of 977

counts. This means that each recorded hour has seen a minimum of 1 bike rental to a

maximum of 977 bike rentals. We also see that the average rental count is 189.5.

We confirm that we are dealing with a continuous numerical variable where a linear

regression (or a linear regression-like model) is the right choice to train and predict

bicycle rental counts. Let’s plot this feature to better understand the data (Listing 2-7 and

Figure 2-6).

Listing 2-7.  Number Summary of the Bike Rental Count “cnt” Feature

fig,ax = plt.subplots(1)

ax.plot(sorted(bikes_hour_df['cnt']), color='blue')

ax.set_xlabel("Row Index", fontsize=12)

ax.set_ylabel("Sorted Rental Counts", fontsize=12)

ax.set_ylabel("Sorted Rental Counts", fontsize=12)

fig.suptitle('Outcome Variable - cnt - Rental Counts')

plt.show()

�Quantitative Features vs. Rental Counts
Let’s create scatter plots of all our float data types. We’ll plot them against rental counts

to visualize potential relationships (Figures 2-7 and 2-8).

Figure 2-6.  Sorted counts of bike rentals reveal that the majority of the rentals
happen in the 0 to 400 range; values higher than that are either rare or outliers

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

49

We can see that there is a somewhat linear relationship between the number of

bikes rented and temperature; the warmer it is, the more bikes get rented. We also see

that both features—“temp” and “atemp” —have similar distributions and may present

redundancy and even multicollinearity. To keep things clean, we will drop feature

“atemp” (Figures 2-9 and 2-10).

Figure 2-7.  Count of all bikes rented vs. “temp” feature

Figure 2-8.  Count of all bikes rented vs. “atemp” feature

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

50

Feature “hum” or humidity looks like a big blob though the edges do show some

sparseness. Feature “windspeed” does show an inverse linear relationship with rentals;

too much wind and bike rentals don’t seem to mix.

�Let’s Look at Categorical Features
In this dataset, with the exception of bicycle rental counts “cnt,” integer data are

categorical features. Categorical data yields a lot of interesting tell-tales when viewed

through histograms (distribution charts; Figure 2-11).

Figure 2-9.  Count of all bikes rented vs. “hum” feature

Figure 2-10.  Count of all bikes rented vs. “windspeed” feature

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

51

Feature “weathersit” shows that people rent more bikes in nice weather and

“season” shows that fall is the top season to rent bikes.

And finally, feature “hr,” or rental hour, clearly shows peak office commute hours

and afternoon rides as very popular bicycling times, and 4 am is the least popular

bicycling time (Figure 2-12).

Figure 2-11.  Counts of bike rentals by “season” and by “weathersit”

Figure 2-12.  Total bike rentals by hour

Even though we can learn a lot by eyeballing charts, more thorough and systematic

testing is required to reach conclusive decisions about features to keep and features to drop.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

52

�Preparing the Data for Modeling
In most data science projects, there is a data wrangling phase where data is assessed

and cleaned in order to be “model ready.” In this case we have already dropped some

useless features, we have no nulls to deal with, and we won’t worry about correlation or

multicollinearity as we are only going to use four simple features in our final model.

�Regression Modeling
In statistical analysis, a regression model attempts to predict the relationships among

variables. It will analyze how independent variables relate to dependent ones. A fitted

model can be used to predict new dependent variables.

�Simple Linear Regression
A linear regression is probably the simplest modeling algorithm. It attempts to explain

the relationship between one dependent variable and one or more independent

variables. See the basic regression equation in Figure 2-13.

In the equation y = estimated dependent variable score, β0 = constant,

β_1 = regression coefficient, and x = score on the independent variable.

�A Simple Model
Let’s start with a simple nultilinear regression model where we input all variables and get

a base root mean squared error (RMSE). RMSE expresses the error in units scaled to the

outcome variable (also known as the y label), so it is easy to see how well the model does

at learning/predicting bike rentals and the error becomes a form of confidence interval.

You want the lowest possible RMSE score, so the goal is to keep tweaking the data and

model until it stops going down. We’ll base all our modeling efforts in this chapter on

the Python scitkit-learn/sklearn library.3 This is a phenomenal library that should satisfy

most of Python users’ modeling needs.

3�http://scikit-learn.org/stable/

Figure 2-13.  The basic linear regression equation

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

http://scikit-learn.org/stable/

53

Even though we’re only going to run a simple linear regression, we’re going to

leverage three functions from the sklearn library: “train_test_split” to create two

random datasets from our original data and separate features from outcomes, “linear_
model” to run our model, and “mean_squared_error” to evaluate how well the model

learned (Listing 2-8).

Listing 2-8.  Snippet of Code to Split the Dataset into Training and Testing

Portions

set outcome variable

outcome = 'cnt'

create feature list

features = [feat for feat in list(bike_df_model_ready) if feat not in

[outcome, 'instant']]

split data into train and test portions

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(bike_df_model_

ready[features],

 �bike_df_model_ready[['cnt']],

test_size=0.3, random_state=42)

The “train_test_split()” function will split the data into two random datasets using

a seed. Setting the “random_state” seed parameter is a good idea whenever you are

testing different approaches and want to ensure that you are always using the same splits

for fair comparison. The “test_size” parameter sets the size of the test split. Here we set it

to .3, or 30%, thus it will randomize the data and assign 70% of the data to the training set

and 30% to the testing set (Listing 2-9).

Listing 2-9.  Linear Regression Code

from sklearn import linear_model

model_lr = linear_model.LinearRegression()

train the model on training portion

model_lr.fit(X_train, y_train)

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

54

We declare a “LinearRegression()” model then call function “fit()” to train the

model using the training data and training labels. Model “model_lr” is now trained and

ready to predict (Listing 2-10).

Listing 2-10.  Predict and Get the RMSE Score

Input:

predictions = model_lr.predict(X_test)

from sklearn.metrics import mean_squared_error

print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

Output:

Root Mean squared error: 143.08

Finally, we call function “predict()” using the 30% of the data earmarked for testing

and feed the predicted labels into function “mean_squared_error()” to get the root

mean squared error score. We get an RMSE of 143.08 and we will use that as our base

benchmark score. This is what we get with the current seeded split (the seed we applied

on the train_test_split function to make sure we always get the same split each time)

and all the features we’ve selected so far. One way to interpret the score, as it is in the

same scale as our outcome variable, is that our model predictions are off by 143 bikes.

Considering that the mean bike rental demand per hour is approximately 190, our model

does a better job than simply picking the overall mean value of bike rentals. But let’s see

if we can improve on this.

�Experimenting with Feature Engineering
Let’s see if we can get a better score by experimenting with a few different techniques,

including polynomials, nonlinear modeling, and leveraging time-series.

�Modeling with Polynomials
Applying polynomial transformations to a series of values can allow for better

separation during linear regression. This is very easy to do in the Python’s “sklearn”

library (Listing 2-11).

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

55

Listing 2-11.  Create Polynomial Features

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(2)

X_train = poly.fit_transform(X_train)

X_test = poly.fit_transform(X_test)

Let’s transform all features to the 2nd degree (Listing 2-12).

Listing 2-12.  2nd-Degree Polynomials

Input:

print("Root Mean squared error with PolynomialFeatures set to 2 degrees:

%.2f" % sqrt(mean_squared_error(y_test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 2 degrees: 122.96

Now transform all features to the 3rd degree (Listing 2-13).

Listing 2-13.  3rd-Degree Polynomials

Input:

print("Root Mean squared error with PolynomialFeatures set to 3 degrees:

%.2f" % sqrt(mean_squared_error(y_test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 3 degrees: 111.65

And now transform all features to the 4th degree (Listing 2-14).

Listing 2-14.  4th-Degree Polynomials

Input:

print("Root Mean squared error with PolynomialFeatures set to 4 degrees:

%.2f" % sqrt(mean_squared_error(y_test, predictions)))

Output:

Root Mean squared error with PolynomialFeatures set to 4 degrees: 114.84

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

56

As you can see, applying polynomials to a dataset is extremely easy with sklearn’s

“PolynomialFeatures()” function. The score does improve using the 2nd and 3rd degree

but then degrades beyond that point.

�Creating Dummy Features from Categorical Data
Another approach worth trying is to dummify categorical data. This means creating

separate columns for each category. Take feature “weathersit”: this isn’t a continuous

variable, instead it is an arbitrary category. If you feed it into a model as such, it will

consider it as linear numerical data, and this doesn’t really make sense in this case;

adding 1 to “mist & cloud” doesn’t equal “snow.” The model will do a better job on

“weathersit” by creating four new columns: “clear,” “mist,” “snow,” and “rain” and

assign each a binary true/false value.

This is easy to do with the Pandas function “get_dummies().” We abstract the code

into a function that will make our web application easier to create (Listing 2-15).

Listing 2-15.  Abstracting the Code to Create Dummy Data

def prepare_data_for_model(raw_dataframe,

 target_columns,

 drop_first = False,

 make_na_col = True):

 # dummy all categorical fields

 �dataframe_dummy = pd.get_dummies(raw_dataframe, columns=target_columns,

drop_first=drop_first,

dummy_na=make_na_col)

 return (dataframe_dummy)

This will break each category out into its own column. In the code snippet below, we

ask to “dummify” the following three columns: “season,” “weekday,” and “weathersit”

(Listing 2-16).

Listing 2-16.  Dummify Categorical Columns

bike_df_model_ready = prepare_data_for_model(bike_df_model_ready,

 �target_columns = ['season', 'weekday', 'weathersit'], drop_first

= True)

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

57

After applying the function to the dataset, each weather category is now in a

separate column (minus the first column, which is redundant—if it isn’t “weathershit_2,”

“weathershit_3,” or “weathershit_4,” then we infer it is “weathershit_1”; Listing 2-17

and Figure 2-14).

Listing 2-17.  A Look at the Dummified Weather Field

bike_df_model_ready[['weathersit_2.0', 'weathersit_3.0',

'weathersit_4.0']].head()

So, does creating dummies out of the categorical data help the model or not?

(Listing 2-18)

Listing 2-18.  RMSE after Dummying the Categorical Data

Input:

print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

Output:

Root Mean squared error: 139.40

This isn’t very impressive, and certainly not enough to justify all that extra work.

Llet’s move on and try other techniques.

Figure 2-14.  A look at the dummied columns of feature “weathersit”

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

58

�Trying a Nonlinear Model
As a final modeling experiment, let’s run our dummied data into a “Gradient Boosting
Regressor” model from sklearn. Switching from one model to another in the sklearn

package is trivial, and we only need to load the appropriate model in memory and

change two lines (Listing 2-19).

Listing 2-19.  Using a GBM Model

Input:

from sklearn.ensemble import GradientBoostingRegressor

model_gbr = GradientBoostingRegressor()

model_gbr.fit(X_train, np.ravel(y_train))

predictions = model_gbr.predict(X_test)

print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

Output:

Root Mean squared error: 68.13

Wow, that is the lowest RMSE score we’ve seen yet; we’ve cut our error rate in two!

�Even More Complex Feature Engineering—Leveraging
Time-Series
Here is one last feature engineering experiment; this idea comes from data scientists

over at Microsoft.4 The data is a ledger of bike rentals over time, so it is a time-series

dataset. Whenever your dataset records events over time, you want to take that into

account as an added feature. For example, an event that happened an hour ago is

probably more important than one that happened a year ago. Time can also capture

trends, changing needs and perceptions, etc. We want to create features that capture all

those time-evolving elements!

4�http://blog.revolutionanalytics.com/2016/05/bike-rental-demand.html

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

http://blog.revolutionanalytics.com/2016/05/bike-rental-demand.html

59

For each row of data, we’ll add two new features: the sum of bicycle rentals for the

previous hour, and the sum of bicycle rentals from two hours ago. The intuition here is

that if we want to understand the current bicycling mood, we can start by looking at what

happened an hour ago. If the rentals were great one hour ago, they’re probably going

to be good now. This time element can be seen as a proxy to prosperous or calamitous

times, good or bad weather, etc.

To create a sum of bicycles per date and hour, we use Pandas extremely powerful

“groupby()” function. We extract three fields, “dteday,” “hr,” and “cnt” and group the

count by date and hour (Listing 2-20 and Figure 2-15).

Listing 2-20.  Looking at Rental Counts in the Previous Period

bikes_hour_df_shift = bikes_hour_df[['dteday','hr','cnt']].

groupby(['dteday','hr']).sum()

bikes_hour_df_shift.head()

This function tallies the counts by hour and date. Next, we create two new features,

one shifted forward 1 row and the other 2 rows, thus giving the current row the total bike

rentals for the past hour and the hour past that. Finally we add it all back to our main

data frame using Pandas “merge()” command (Listing 2-21).

Figure 2-15.  Shifting the date to create new look-back features

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

60

Listing 2-21.  Playing with Time Shifts

prior hours

bikes_hour_df_shift = bikes_hour_df[['dteday','hr','cnt']].

groupby(['dteday','hr']).sum().reset_index()

bikes_hour_df_shift.sort_values(['dteday','hr'])

shift the count of the last two hours forward so the new count can take

in consideration how the last two hours went

bikes_hour_df_shift['sum_hr_shift_1'] = bikes_hour_df_shift.cnt.shift(+1)

bikes_hour_df_shift['sum_hr_shift_2'] = bikes_hour_df_shift.cnt.shift(+2)

merge the date and hour counts back to bike_df_model_ready

bike_df_model_ready = pd.merge(bikes_hour_df, bikes_hour_df_

shift[['dteday', 'hr', 'sum_hr_shift_1', 'sum_hr_shift_2']], how='inner',

on = ['dteday', 'hr'])

After we split this new data and run it into a Gradient Boosted Model (GBM) for

regression (sklearn’s GradientBoostingRegressor), we calculate the RMSE score over the

test dataset (Listing 2-22).

Listing 2-22.  RMSE from Time Shifts

Input:

from sklearn.ensemble import GradientBoostingRegressor

model_gbr = GradientBoostingRegressor()

model_gbr.fit(X_train, np.ravel(y_train))

predictions = model_gbr.predict(X_test)

print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

Output:

Root Mean squared error: 44.43

Wow, crazy, an RMSE of 44.43; even better!!!

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

61

�A Parsimonious Model
Unfortunately, it isn’t always about the best score. Here, we need a simple model in

order to predict using a regression equation. This isn’t something that can easily be

done with complicated models or overly engineered features. GBM isn’t a linear model

and doesn’t give us a handy and lightweight regression equation. Also, the time shifts

we created previously require that we have total counts for the two previous hours of

prediction, something that our web visitors won’t benefit from because we don’t have

access to live data.

This is an important lesson when your goal is to create web applications: if the

most accurate prediction comes from a complicated modeling technique, it just won’t

translate well into a production pipeline.

�Extracting Regression Coefficients from a Simple
Model—an Easy Way to Predict Demand without
Server-Side Computing
A linear regression model is not the most powerful model out there, nor does it advertise

itself as such, but it can distill fairly complex data down to an extremely simple and clear

linear representation. And it is this simple representation that will fuel our application.

A powerful product of regression modeling is the learned model’s coefficients. This

is even more powerful in the context of a web application where we can rely solely on

the coefficients and a simple regression equation to estimate future bike rental demand.

This can potentially enable applications to make complicated decisions entirely on the

client’s front end—lightweight, fast, and useful!

In order to end up with a small set of coefficients and a simple regression equation,

we need to train and test a regression model first. Only when we are happy with the

score, the features used, and quality of the predictions do we extract the coefficients.

We are also going to pare down the features fed into the model to the essential and

illustrative ones. Here is one of the lessons of building web applications: we have to

balance the best modeling scores with production realities. If you build a phenomenal

model but nobody can operate it or it cannot be run in a timely fashion in production, it

is a failure.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

62

We are going to keep things simple for the sake of our web application and only use

four features: “season,” “hr,” “holiday,” and “temp.” These are features that users can

understand, are easy to acquire, and by only having four of them our model will be fast.

Let’s first model these features individually and check their R-squared score.

�R-Squared
R-squared is a statistical measure of how close the data is to the fitted regression

line. It is also known as the coefficient of determination, or the coefficient of

multiple determination for multiple regression. The definition of R-squared is fairly

straightforward; it is the percentage of the response variable variation that is expected by

a linear model (Listing 2-23).

Listing 2-23.  R-squared Formula

R-squared = Expected variation / Total variation

The coefficient of determination can be thought of as a percent. It gives you an

idea of how many data points fall within the results of the line formed by the regression

equation. The higher the coefficient, the more points fall within the line. If the coefficient

is 0.80, then 80% of the points should fall within the regression line.

We want to see that the R-squared is as close to 1 (or 100%) with no negative

numbers. The calculation is easy to do with sklearn’s “r2_score” function (Listing 2-24).

Listing 2-24.  R-squared Score Over Our Features

Input:

from sklearn.metrics import r2_score

for feat in features:

 model_lr = linear_model.LinearRegression()

 model_lr.fit(X_train[[feat]], y_train)

 predictions = model_lr.predict(X_test[[feat]])

 print('R^2 for %s is %f' % (feat, r2_score(y_test, predictions)))

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

63

Output:

R^2 for hr is 0.160161

R^2 for season is 0.034888

R^2 for holiday is -0.001098

R^2 for temp is 0.154656

Every R-squared is positive, and we see that “hr” and “temp” explain more

variance than “season” and “holiday.” Keep in mind that we are looking at each feature

separately; a good next step not covered here would be to calculate the R-squared score

of all of them together (or an adjusted R-square to handle multiple features).

As shown earlier, we will also “dummify” the “season” variable. If we rerun the

R-squared calculating loop on all features including the “dummified” ones, we get the

following scores (Listing 2-25).

Listing 2-25.  R-squared Score over Dummified Features

R^2 for hr is 0.156594

R^2 for holiday is 0.001258

R^2 for temp is 0.154471

R^2 for season_1 is 0.053717

R^2 for season_2 is 0.003657

R^2 for season_3 is 0.016976

R^2 for season_4 is 0.001111

Everything is positive, so we’re looking good to use that set of features in our final

web application.

�Predicting on New Data Using Extracted Coefficients
Now that we have the model’s coefficients, we can predict new rental counts using the

regression equation. The regression equation is the equation of the line-of-best-fit from

our regression model. The formula is common and can be seen in most books covering

statistics (Figure 2-16).

Figure 2-16.  The regression equation

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

64

“y” is the dependent variable, or what we’re trying to predict, in our case, the number

of bike rentals, a is the intercept, “β” is the slope of the line and “x” is the independent

variable. In the case of a multiple linear regression, you simply add more independent

variables.

One important note is that this formula and its coefficients represent the smallest

error possible from the data used in the model. So, we cannot really change all the

independent variables at once when we inject new data into it. This is an important

point to remember, though we will allow the user to play around with all sorts of

environmental settings to affect the number of bike rentals, we will also have a “reset”

button to reset all variables back to their original mean.

After we run our final model, we need to extract intercept and coefficients. This

is trivial to do with sklearn’s “linear_model” function and only requires calling the

“intercept_” and “coef_” parameters to get them (Listings 2-26 and 2-27, and

Figure 2-17).

Listing 2-26.  Getting the Intercepts

Input:

from sklearn import linear_model

model_lr = linear_model.LinearRegression()

model_lr.fit(X_train, y_train)

print('Intercept: %f' % model_lr.intercept_)

Output:

Intercept: -121.029547

Listing 2-27.  Getting the Coefficients

feature_coefficients = pd.DataFrame({'coefficients':model_lr.coef_[0],

 �'features':X_train.columns.values})

feature_coefficients.sort_values('coefficients')

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

65

We can then assign those constants to our web application so that it can in turn make

predictions on bike rental demand (Listing 2-28).

Listing 2-28.  Creating Constants out of Extracted Coefficients

INTERCEPT = -121.029547

COEF_HOLIDAY = -23.426176 # if day is holiday or not

COEF_HOUR = 8.631624 # hour (0 to 23)

COEF_SEASON_1 = 3.861149 # 1: spring

COEF_SEASON_2 = -1.624812 # 2: summer

COEF_SEASON_3 = -41.245562 # 3: fall

COEF_SEASON_4 = 39.009224 # 4: winter

COEF_TEMP = 426.900259 # normalized temp in Celsius -8 to +39

We also need to get the mean historical values in order to build our regression

equation. If the values are categorical, then we pick the highest mean and set that to 1

and the other to 0 (as we do with holiday and season) (Listing 2-29).

Figure 2-17.  A look at the coefficients from the linear-regression model

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

66

Listing 2-29.  Setting our Feature Means

MEAN_HOLIDAY = 0 # if day is holiday or not

MEAN_HOUR = 11.6 # hour (0 to 23)

MEAN_SEASON_1 = 0 # 1: spring

MEAN_SEASON_2 = 0 # 2: summer

MEAN_SEASON_3 = 1 # 3: fall

MEAN_SEASON_4 = 0 # 4: winter

MEAN_TEMP = 0.4967 # normalized temp in Celsius -8 to +39

We now have all we need to predict new rental counts. Let’s see how many rentals we

get at 9 am while all other values are held constant around their mean (Listing 2-30).

Listing 2-30.  Let’s Make a Prediction Using Our Extracted Coefficients

Input:

rental_counts = INTERCEPT + (MEAN_HOLIDAY * COEF_HOLIDAY) \

 + (9 * COEF_HOUR) \

 + �(MEAN_SEASON_1 * COEF_SEASON_1) + (MEAN_SEASON_2 * COEF_

SEASON_2) \

 + �(MEAN_SEASON_3 * COEF_SEASON_3) + (MEAN_SEASON_4 * COEF_

SEASON_4) \

 + (MEAN_TEMP * COEF_TEMP)

print('Estimated bike rental count for selected parameters: %i' %

int(rental_counts))

Output:

Estimated bike rental count for selected parameters: 171

And the result is 171 bikes rented at 9 am (your results may vary slightly). We will

allow users to change multiple features at a time, but keep in mind that too many

changes from the original equation value may degrade the model.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

67

�Designing a Fun and Interactive Web Application
to Illustrate Bike Rental Demand
Now for the fun part, let’s design our web application. We always need to have the end goal

in mind—what is it that we want to share with others and what will others want to see?

We’re going to design an interactive web application that is going to allow users to

customize environmental variables (time, holiday, temperature, and season) and get

visual feedback on the numbers of bicycles rented.

This application needs to be visually compelling in order to attract users and keep

them interested as they play with it. This means that as much thought needs to be

invested into the message, UI, visuals, and interactive controls as was put into gathering

data and modeling.

�Abstracting Code for Readability and Extendibility
As with most of my web applications, I try to abstract the code into logical modules. One

module would be the process of collecting the user data and another, the brains, which

would build the regression equation, run it, and return a bike rental prediction. Keeping

the code in logical units will drastically simplify your life as you build and debug a web

application. This will allow you to unit test each module to make sure everything works

accordingly or as a process of elimination when things don’t.

In the case of this chapter’s web application, most of the “brains” will reside directly

in the main HTML page. Flask is a web-serving framework and mostly used to retrieve,

analyze, and serve back customized content. In this chapter, all we need is the regression

equation to predict bicycle rental demand, so there really isn’t much of a case for going

back and forth between the user and the web server (and this is the only chapter where we

do that; in all others the brain will clearly reside on the server, not the client’s web page).

�Building a Local Flask Application
Before mounting the code into the cloud, it is important to run things locally; this will

save you both headaches and time. First, let’s perform a simple Flask exercise on our

local machine. If you have never run a Flask application locally, you will need to install

the following Python libraries using “pip3 install” or whatever tool your OS and Python

versions support.

•	 Flask

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

68

Once you have installed Flask, open a text editor, type in the following code, and save

it as “hello.py” (Listing 2-31).

Listing 2-31.  Simple Flask Script

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

 return 'Hello, World!'

Then open a terminal/command window and enter the following command on the

Mac or Windows (Listings 2-32 and 2-33).

Listing 2-32.  On the Mac

$ export FLASK_APP=main.py

$ flask run

Listing 2-33.  On Windows

$ export FLASK_APP= main.py

$ python -m flask run

You should see something like Figure 2-18.

Figure 2-18.  Terminal/command window displaying local URL for Flask
application

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

69

Then copy the URL “http://127.0.0.1:5000/” (or whatever is stated in the terminal

window) into your browser and you should see the web application appear. Plenty more

examples and tips can be found at the source, the official Flask quick start guide:

“http://flask.pocoo.org/docs/0.12/quickstart”.

So, what just happened here? If you are new to web-serving frameworks, this may

seem a little daunting (and keep in mind that Flask is one of the simplest frameworks out

there). Let’s break down the approach step-by-step.

In the preceding “Hello world” example, everything happened on the hypothetical

web-server side (which is really just your local machine). Its job is to process commands

and spit out consumable HTML back to the requesting client’s web page.

First, we load the Flask library in memory (Listing 2-34).

Listing 2-34.  Import Flask

from flask import Flask

Then we instantiate the Flask session (Listing 2-35).

Listing 2-35.  Instantiate Flask

app = Flask(__name__)

Finally, we create a function to do something and we decorate it with a routing

parameter, so it knows which commands it will process from the web client. In this case, the

‘/’ simply means either the root page or the root “index.html” page session (Listing 2-36).

Listing 2-36.  Flask Function to Handle Traffic Coming from Root URL

@app.route('/')

def hello_world():

 return 'Hello, World!'

Obviously, very rarely will the function be this simple; it most likely will call a database

or a Representational State Transfer (REST) API call to gather custom information and fire

it back to the client’s web page via an HTML template. This entire process allows intelligent,

customized data to be created and then wrapped into a sophisticated looking web page. For

all intents and purposes, this will look like a handcrafted page, though it was dynamically

created by Flask. We will use Flask throughout this book and you will have a strong grasp on

this tool if you work your way through each chapter.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

http://flask.pocoo.org/docs/0.12/quickstart

70

The final bit of code is only used in local mode (i.e., run from your local machine)

and run’s the web server code and, in this case, turns on the debug flag (Listing 2-37).

Listing 2-37.  Automatically Running the Flask Application Locally

if __name__=='__main__':

 app.run(debug=True)

�Downloading and Running the Bike Sharing GitHub Code
Locally

Download the files for this chapter if you haven’t already done so and navigate to the

“web-application” folder. Your folder should look like Listing 2-38.

Listing 2-38.  Web Application Files

web-application

├── appengine_config.py
├── main.py
├── requirements.txt
├── app.yaml
├── static
└── images
 ├── bike_zero.png
 ├── bike_one.png
 ├── bike_four.png
 ├── bike_nine.png
 └── bike_sixteen.png
└── templates
 └── index.html

Once you have downloaded and unzipped everything, open a command line

window, and change the drive into the “web-application” folder and install all the

required Python libraries by running the “pip install -r” command (Listing 2-39).

Listing 2-39.  Installing Requirements

$ pip3 install -r requirements.txt

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

71

Then run the same commands you ran for the “Hello World” experiment (running

“python3 main.py” will do the trick also; Figure 2-19).

It should look like the following screen shot in Figure 2-20.

Figure 2-20.  Local rending of Flask web application for this chapter

Figure 2-19.  Starting the local web server on this chapter’s web application

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

72

�Debugging Tips
If you do not see the screen shot, then your system has an issue or it’s missing a file or

library. As with anything in this field, debugging is a big part of it. There are two easy

things you can do to help out. If this is a Flask issue and your browser looks like

Figure 2-21, do the following steps.

Turn the Flask debug flag to True in the “main.py” script (this is usually at the end of

the file). This only works when running your application locally (Listing 2-40).

Listing 2-40.  Web Application Files

if __name__=='__main__':

 app.run(debug=True)

If the issue is Flask related, the debugger will catch it and display it in the browser,

and will return a much more helpful message as seen in Figure 2-22.

Figure 2-22.  Flask error log in web browser

Figure 2-21.  Local web site error

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

73

And you will also see the Flask error message in the terminal/command window

regardless of the debug flag, as shown in Figure 2-23.

After you fix all Flask issues, you may still have some front-end bugs to address. Most

browsers will offer some debugging tools. Figure 2-24 shows an example of how to get

the JavaScript debugger up and running in Chrome (you should be easily able to find the

equivalent in whatever browser brand you use).

This will open a nifty little debugging center to the right of the web page listing any

errors or warnings. It is always a good idea to check it just in case there are warning

messages. The same goes with testing your web application in different browser brands

and formats such as computers, phones, and tablets (Figure 2-25).

Figure 2-23.  Flask error log in terminal/command window

Figure 2-24.  Accessing the JavaScript Console in Google Chrome

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

74

�Microsoft Azure—Mounting a Web Application
for the First Time
We’re ready to export our model to Azure. You will need an account on Microsoft Azure,

and at the time of this writing Microsoft offers a convenient $200 credit and 30-day

trial on all services and 12 months access. For more information, see https://azure.

microsoft.com/en-us/free/.

�Git—Getting All Projects in Git
For this project, you will need to have Git installed on your local machine (you can find

the install binaries at https://www.git-scm.com/downloads). As stated earlier, Git is a

source-code versioning tool and it is a fully prepared Git package that we will push out to

Microsoft Azure (see the brief primer on Git in the introduction section).

Open your terminal/command-line window and point it to this chapter’s “web-
application” folder (Listing 2-41).

Listing 2-41.  Code Input

$ git init

It is a great idea to run “git status” a couple of times throughout to make sure you are

tracking the correct files (Listing 2-42).

Listing 2-42.  Running “git status”

Input:

$ git status

Figure 2-25.  JavaScript Console in Google Chrome in action

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://www.git-scm.com/downloads

75

Output:

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 main.py

 ptvs_virtualenv_proxy.py

 requirements.txt

 static/

 templates/

 web.3.4.config

Add all the web-application files from the “web-application” file and check “git
status” again (Listing 2-43).

Listing 2-43.  Adding Web Application Files to Git

Input:

$ git add .

$ git status

Output:

 Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: main.py

 new file: ptvs_virtualenv_proxy.py

 new file: requirements.txt

 new file: static/images/bike_four.png

 new file: static/images/bike_nine.png

 new file: static/images/bike_one.png

 new file: static/images/bike_sixteen.png

 new file: static/images/bike_zero.png

 new file: templates/index.html

 new file: web.3.4.config

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

76

Do a local Git commit and add a comment that makes sense, in case you need to

revisit past actions in the future (Listing 2-44 and Figure 2-26).

Listing 2-44.  Git Commit

$ git commit -am "bike rental web application commit"

For more information on the Git Deployment to Azure App Service, see https://

docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

�The azure-cli Command Line Interface Tool
We will rely on the “azure-cli” tool to get us up and running, as it is a convenient way to

start and control web instances (for more information on setting this up, see the official

docs at https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli).

For Mac:

$ brew update && brew install azure-cli

For all other Operating Systems, refer to the official documentation: https://docs.

microsoft.com/en-us/cli/azure/install-azure-cli.

Figure 2-26.  Committed data ready for Azure upload

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

77

�Step 1: Logging In
After installing the “azure-cli” command-line tool (or using the Azure Cloud Shell

directly if the local command-line tool is giving you trouble), create an “az” session

(Listing 2-45).

Listing 2-45.  Logging into Azure from azure-cli

Input:

az login

Output:

To sign in, use a web browser to open the page https://microsoft.com/

devicelogin and enter the code BTJMDCR34 to authenticate.

Follow the instructions, point a browser to the givenURL address, and enter the code

accordingly (Figure 2-27).

If all goes well (i.e., you have an Azure account in good standing), it will connect the

azure-cli terminal to the cloud server automatically. Also, once you are authorized, you

can safely close the browser window. Make sure your command-line tool is pointing to

this chapter’s “web-application” folder.

Figure 2-27.  Authenticating session

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

78

�Step 2: Create Credentials for Your Deployment User
This user will have appropriate rights for FTP and local Git use. Here I set the user-name

to “flaskuser11” and password to “flask123”. You should only have to do this once, then

you can reuse the same account. In case it gives you trouble, simply create a different

user name (or add a number at the end of the user name and keep incrementing it like I

do (Listing 2-46).

Listing 2-46.  Creating a User

$ az webapp deployment user set --user-name <<REPLACE-WITH-YOUR-USER-NAME>>

--password flask123

As you proceed through each “azure-cli” step, you will get back JSON replies

confirming your settings. In the case of the “az webapp deployment,” most should

have a null value and no error messages. If you have an error message, then you have

a permission issue that needs to be addressed (“conflict” means that name is already

taken so try another, and “bad requests” means the password is too weak).

�Step 3: Create your Resource Group
This is going to be your logical container. Here you need to enter the region closest

to your location (see https://azure.microsoft.com/en-us/regions/). Going with

“West US” for this example isn’t a big deal even if you’re worlds away, but it will make a

difference in a production setting where you want the server to be as close as possible to

your viewership for best performance (Listing 2-47).

Listing 2-47.  Creating a Resource Group and Response

$ az group create --name myResourceGroup --location "West US"

�Step 4: Create Your Azure App Service Plan
Here I set the name to “myAppServicePlan” and select a free instance (sku; Listing 2-48).

Listing 2-48.  Creating a Service Plan and Successful Response

$ az appservice plan create --name myAppServicePlan --resource-group

myResourceGroup --sku FREE

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://azure.microsoft.com/en-us/regions

79

�Step 5: Create Your Web App
Your “webapp” name needs to be unique, and make sure that you “resource-group”

and “plan” names are the same as what you set in the earlier steps. In this case I am

going with “amunateguibike” (Listing 2-49).

Listing 2-49.  Creating a Web App

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan

--name amunateguibike --runtime "python|3.4" --deployment-local-git

For a full list of supported runtimes, see Listing 2-50.

Listing 2-50.  List of Supported runtimes

$ az webapp list-runtimes

The output of “az webapp create” will contain an important piece of information

that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”

(Figure 2-28).

For extracting the local Git configuration URL for your Azure project instance, see

Listings 2-51 and 2-52.

Figure 2-28.  Truncated output of Git URL from “deploymentLocalGitUrl”

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

80

Listing 2-51.  The Extracted Git URL in My Case

https://flaskuser11@amunateguibike.scm.azurewebsites.net/amunateguibike.git

Listing 2-52.  Yours Will Look Like the Following

https://<<REPLACE-WITH-YOUR-USER-NAME>>@<<REPLACE-WITH-YOUR-APP-NAME>>.scm.

azurewebsites.net/<<REPLACE-WITH-YOUR-APP-NAME>>.git

�Step 6: Push git Code to Azure
Append the URL we saved previously with the location of your GIT repository to the “add
azure” command (Listing 2-53).

Listing 2-53.  Final Code Push to Azure

if git remote already exits, run 'git remote remove azure'

$ git remote add azure https://flaskuser11@amunateguibike.scm.

azurewebsites.net/amunateguibike.git

It may prompt for your password; make sure you use the one you created in the

“az webapp deployment user” step (“flask123” in my case; Listing 2-54).

Listing 2-54.  Final Code Push to Azure

$ git push azure master

That’s it! You can get back to your placeholder browser page and hit refresh or open a

new browser page and enter http://amunateguibike.azurewebsites.net

(or in your case http://<<REPLACE-WITH-YOUR-APP-NAME>>.azurewebsites.net)

and you should see “Predict Bicycle Rental Demand” (Figure 2-29).

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

http://amunateguibike.azurewebsites.net

81

On the other hand, if the azure-cli returns error messages, you will have to address

them (see the troubleshooting section). Anytime you update your code and want to

redeploy it, send a “push” command (Listing 2-55).

Figure 2-29.  Enjoy the fruits of your hard work—The “Predict Bicycle Rental
Demand” web application!

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

82

Listing 2-55.  To Update Code

$ git commit -am "updated output"

$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into

Azure and go to App Services (Figure 2-30).

�Important Cleanup!
This is a critical step; you should never leave an application running in the cloud that

you don’t need, as it does incur charges (or use up your free credits if you are on the trial

program). If you don’t need it anymore, take it down (Listing 2-56 and Figure 2-31).

Listing 2-56.  Don’t Forget to Delete Your Azure Instance When Done!

$ az group delete --name myResourceGroup

Or delete it using Azure’s web dashboard under “App Services.”

Figure 2-30.  Microsoft Azure dashboard

Figure 2-31.  Deleting the web application from the Azure cloud

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

83

�Troubleshooting
It can get convoluted to debug web application errors. One thing to do is to turn on

logging through Azure’s dashboard (Figure 2-32).

Figure 2-32.  Turning on Azure’s diagnostics logs

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

84

Then you turn the logging stream on to start capturing activity (Figure 2-33).

Figure 2-34.  Azure’s built-in command line tool

Figure 2-33.  Capturing log information

You can also check your file structure using the handy Console tool built into the

Azure dashboard (Figure 2-34).

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

85

You can even check if your “requirement.txt” file works by using the install

command (Listing 2-57).

Listing 2-57.  Running Commands in the Azure Console

> env\scripts\pip install -r requirements.txt

�Steps Recap

	 1.	 Point your terminal/command window to the right directory

with the chapter’s web application files (and confirm that it runs

locally).

$ cd chapter-2/web-application

	 2.	 Git commit all files.

$ git init

$ git add .

$ git commit -am "bike rental commit"

	 3.	 Log into the Azure command line interface and authenticate the

session.

$ az login

	 4.	 Prepare the Azure web application.

$ az webapp deployment user set --user-name flaskuser11

--password flask123

$ az group create --name myResourceGroup --location

"West US"

$ az appservice plan create --name myAppServicePlan

--resource-group myResourceGroup --sku FREE

$ az webapp create --resource-group myResourceGroup

--plan myAppServicePlan --name amunateguibike --runtime

"python|3.4" --deployment-local-git

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

86

	 5.	 Push the web application to the Azure cloud.

$ git remote add azure https://flaskuser11@amunateguibike.scm.

azurewebsites.net/amunateguibike.git

$ git push azure master

	 6.	 Open the URL in a browser window and enjoy!

http://<<WEBAPP NAME>>.azurewebsites.net

	 7.	 Terminate instance!

$ az group delete --name myResourceGroup

�What’s Going on Here? A Look at the Scripts
and Technology Used in Our Web Application
Let’s do a brief flyover of our web application’s code. There are two important files:

“main.py,” which is the web-serving controlling script and the template file “index.
html,” which is the face of our web application. As most of the processing happens

directly in “index.html,” we’ll spend most of our time there looking at the HTML and

JavaScript running this web application.

�main.py
Under normal circumstances, this would be the brains behind the operation. It can

do about anything a standalone Python script can, with the addition of being able to

generate content for web pages. In this chapter, there really isn’t much going on here

except for passing average feature values and the model’s intercept and coefficients

to the template. In this book, we will use both “main.py” and “application.py.” There

isn’t a right or wrong way of naming the controlling Python web-serving file—the only

exception being some reserved words. If you do opt for a custom name, you will need to

update the YAML file and/or the Web Server Gateway Interface configuration file. Also,

some cloud providers default to different application names; Google Cloud defaults to

“main” and Azure defaults to “application.” But in either case, it is possible to customize

and change.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

87

The one interesting thing that “main.py” is doing here is transmitting starting values

for the intercept, coefficients, and mean values.

The decorator “@app.route” will route any traffic calling the root URL or with the

file name “index.html.” It then simply passes all the default values to the “index.html”

template (Listing 2-58).

Listing 2-58.  Routing to the “index.html”

@app.route("/", methods=['POST', 'GET'])

def index():

 # on load set form with defaults

 return render_template('index.html',

 mean_holiday = MEAN_HOLIDAY,

 mean_hour = MEAN_HOUR,

 mean_sesaon1 = MEAN_SEASON_1,

 mean_sesaon2 = MEAN_SEASON_2,

 mean_sesaon3 = MEAN_SEASON_3,

 mean_sesaon4 = MEAN_SEASON_4,

 mean_temp = MEAN_TEMP,

 model_intercept = INTERCEPT,

 model_holiday = COEF_HOLIDAY,

 model_hour = COEF_HOUR,

 model_season1 = COEF_SEASON_1,

 model_season2 = COEF_SEASON_2,

 model_season3 = COEF_SEASON_3,

 model_season4 = COEF_SEASON_4,

 model_temp = COEF_TEMP)

Flask uses a technology called “Jinja2” to inject those variables directly into the

HTML template form. If you look at the return statement, it calls Flask’s “render_
template” function and passes the intended variables to “index.html.”

All a template needs to do to receive those variables is use the double curly bracket

command. To see all of this, refer to the web-application “index.htm” full script

(Listing 2-59).

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

88

Listing 2-59.  Using Jinja2 to Set Python Variables into JavaScript

<SCRIPT>

 var HOLIDAY = {{mean_holiday}} // day is holiday or not

 var HOUR = {{mean_hour}} // hour (0 to 23)

 var HOUR = {{mean_hour}} // hour (0 to 23)

 var SEASON_1 = {{mean_sesaon1}} // 1:spring

 var SEASON_2 ={{mean_sesaon2}} // 2:summer

 var SEASON_3 = {{mean_sesaon3}} // 3:fall

 var SEASON_4 = {{mean_sesaon4}} // 4:winter

 var TEMP = {{mean_temp}} // norm temp in Celsius -8 to +39

 var INTERCEPT = {{model_intercept}}

 var COEF_HOLIDAY = {{model_holiday}} // day is holiday or not

 var COEF_HOUR = {{model_hour}} // hour (0 to 23)

 var COEF_SEASON_1 = {{model_season1}} // 1:spring

 var COEF_SEASON_2 = {{model_season2}} // 2:summer

 var COEF_SEASON_3 = {{model_season3}} // 3:fall

 var COEF_SEASON_4 = {{model_season4}} // 4:winter

 var COEF_TEMP = {{model_temp}} // norm temp in Celsius -8 to +39

...

�/static/ folder
The static folder, as its name implies, holds static, nonchanging files. This is where you

store images, files, and other shareable data for our web application.

�/templates/index.html folder and script
The templates folder holds all the templates required for our web application. In the

subsequent chapters there are usually two html files, an “index.html” and a response

html file. It is better to break these files apart instead of trying to cram everything into a

single html file with complex “if then” forks.

Most of the action in this chapter happens inside “index.html,” so let’s take a deeper

look. Open the full “index.html” file in your editor to follow along. As mentioned earlier,

the “brains” of this chapter aren’t Flask but the “index.html” front-end page—and mostly

all inside of the JavaScript snippet at the end of the page. JavaScript brings a great level of

interactivity to a web page.

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

89

In the case of this web application, it listens for button click events and recalculates

bike rental demand by running the regression equation with the selected features. It

doesn’t end there; once it gets a new demand estimate, it will weigh that number and

decide which bicycle picture collage to show—if it’s a small estimate it returns a single

bicycle, if it’s a huge one, all sixteen.

First the user clicks a feature button to get a new bike rental estimate using that

particular feature (Listing 2-60).

Listing 2-60.  Calling for Predictions Using the HTML “<button>” event.

<button type="button" onclick="calculateBikeDemand(this)" id="season_

spring" class="btn btn-info btn-circle btn-xl"><i class="fa fa-

check">Spring</i></button>

The “onclick()” function inside the “<button>” tag will send the Id “season_spring”

to the main JavaScript function “calculateBikeDemand().” This is telling the function

that the user wants to recalculate the regression equation with the season’s variable set

as seen in Listing 2-61.

Listing 2-61.  The “calculateBikeDemand()” Modeling JavaScript Function

function calculateBikeDemand(elem) {

 // apply new value to stored variables

 ...

 // recalculate the regression equation

 rental_counts = INTERCEPT + (HOLIDAY * COEF_HOLIDAY)

 + (HOUR * COEF_HOUR)

 + (SEASON_1 * COEF_SEASON_1) + (SEASON_2 * COEF_SEASON_2)

 + (SEASON_3 * COEF_SEASON_3) + (SEASON_4 * COEF_SEASON_4)

 + (TEMP * COEF_TEMP)if (rental_counts < 0)

 // figure out which image to show

 if (rental_counts < 0) {

 bike_out = 'static/images/bike_sixteen.png'

 if (rental_counts < 0) {

 bike_out = 'static/images/bike_zero.png'

 } else if (rental_counts < 100) {

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

90

 bike_out = 'static/images/bike_one.png'

 } else if (rental_counts < 200) {

 bike_out = 'static/images/bike_four.png'

 } else if (rental_counts < 300) {

 bike_out = 'static/images/bike_nine.png'}

 // build a new string that is readable with variables select by user

 // and new bike rental estimate

 �output = 'For ' + season + ' + ' + holiday + ' + ' + temp + ' +

' + hour + ', demand = ' + Math.round(rental_counts) + ' bikes';

 // inject new value and image source directly into the HTML tag

 document.getElementById("query").innerHTML = output;

 document.getElementById('bike_out').src = bike_out

}

�Conclusion
That’s it for our first project! Though this was a simple one with little back and forth

between the web-client and web-server, it fulfills the definition of a real web application.

In this chapter we introduced the concept of extending standalone scripts into

interactive web applications by using Flask and web controls. We also saw how easy

Python and Python libraries can communicate with the Flask web framework, making

the leap into web computing almost seamless.

The process started by planning what our web application should be and what would

be of interest to the viewer. This step can’t be emphasized enough: if it isn’t of interest to

anybody, then there is no need to bother building it. Too often we start by modeling and

then attempt to retrofit it to make it work around a web application story.

We then explored the Bike Sharing Dataset from Capital Bikeshare System,5

experimented with different modeling approaches to predict rental demand under

environmental factors and chose the final features and model coefficients to use in our

web application.

5�https://www.capitalbikeshare.com/system-data

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

https://www.capitalbikeshare.com/system-data

91

We ran a local version of the Flask application and finally deployed it to the Microsoft

Azure cloud. If you follow these steps in this order, you should be fine. Always start by

designing the web application story, build and run as much of it as you can locally, and

only then deploy to the cloud.

�Additional Resources
If you want to learn more about Flask, Google it; there’s so much material on this topic.

For more information on:

•	 Flask: Go to the source, the official portal: http://flask.pocoo.org/

•	 CSS: See the tutorial on the great w3schools site (CSS and everything

else web related): www.w3schools.com/css/

•	 Bootstrap: See the portal: https://getbootstrap.com/

•	 JQuery: Check out their portal: https://jquery.com/

•	 YAML: Check out their streamlined portal: http://yaml.org/

•	 Jinja2: See the official documentation: http://jinja.pocoo.org/

docs/

Chapter 2 Client-Side Intelligence Using Regression Coefficients on Azure

http://flask.pocoo.org/
http://www.w3schools.com/css
https://getbootstrap.com/
https://jquery.com/
http://yaml.org/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/

93
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_3

CHAPTER 3

Real-Time Intelligence
with Logistic Regression
on GCP
Let’s understand who survived the Titanic shipwreck by building an interactive

passenger profile builder on Google Cloud.

In this chapter, we revisit the classic and dramatic Titanic dataset, favored by

modeling text books and educational blogs all over the world. We will analyze the

passenger manifest and attempt to understand why some did, and others didn’t, survive

this tragic accident. We will explore the dataset, prepare it for modeling, and extend it

into an interactive web application that will allow users to create a fictional passenger,

tweak parameters, and visualize how well he or she fared on the voyage (Figure 3-1).

94

The Vanderbilt University Department of Biostatistics1 is graciously hosting the data

(along with many other interesting datasets) and can be conveniently downloaded using

a direct call from the Pandas Python library.

Note  Download the files for Chapter 3 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter3.ipynb” to follow along with this chapter’s content.

1�http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

Figure 3-1.  The final web application for this chapter

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets

95

�Planning our Web Application
Our first step is to get our Titanic concept fully thought out and working as a web

application on our local machine.

The brain behind our application is a simple logistic regression model from the

“sklearn Python library.”2 After we prepare the data by removing nonpredictive

features, creating dummy columns for categorical data, and applying basic natural-

language processing on text fields, we train the model to identify the common patterns

around those who survived the trip and those who didn’t.

We verify the accuracy of our model by following the standard modeling procedure

of splitting the data into chunks, one to train the model and the other to validate it. Once

we are satisfied with the model’s abilities, we have it predict the probability of survival on

a fictional passenger. This probability, a number between 0 and 1, represents the chance

for the fictional passenger to make it out alive from the shipwreck—the closer to 1, the

better the chances of surviving.

Finally, we will abstract and generalize this entire process to run in the constructor

of our web application. This means that the entire process of ingesting, preparing, and

modeling data will only happen once during deployment of the model (and whenever

the web server is rebooted). This ensures that when a user wants to interact with the web

application, it quickly yields a prediction from the trained model because it is already

loaded in memory. But we’re jumping the gun here; let’s first finish the local version of

the project.

�Data Wrangling
As this is a classic data science exercise and a famously recorded event, we already know

(or have an intuition of) which features are of interest in understanding who survived the

voyage (see the Vanderbilt Biostat for additional information3). Go ahead and download

the files for this chapter into a folder called “chapter-3.” Open up the Jupyter notebook

to follow along. Let’s look at the data legend from the host (Table 3-1).

2�http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

3�http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/Ctitanic3.html

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/Ctitanic3.html

96

A first pass at exploring data can be done programmatically using the Pandas

“head()” function that will return the top five rows (Listing 3-1 and Figure 3-2). You can

also use the “tail()” function to see the bottom five.

Listing 3-1.  Quick Look at the Top Five Rows

titanic_df.head()

Table 3-1.  Dataset Legend

Feature Description

pclass Ticket class comprised of 3 levels

sex Gender

age Age

sibsp Number of siblings/spouses aboard

parch Number of parents/children aboard

fare Passenger fare

cabi Cabin number

embarked Point of embarkation

name Passenger name

Figure 3-2.  The first five rows of the raw data

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

97

The data does conform to Vanderbilt Biostat’s data legend. Things that should jump

out at you are the missing values in the “body” column, a lot of text data in the “name”

and “home.dest” columns, and some mix content in the “cabin” column.

Functions “info(),” “describe(),” and “isnull()” are also key for quick data

exploration. It is highly recommended to run these whenever facing a new dataset or

after any data transformation work.

The Pandas “info()” function tells you the data types and non-null counts contained

in the dataset (Listing 3-2).

Listing 3-2.  Quick Look Feature Data Types

Input:

titanic_df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1309 entries, 0 to 1308

Data columns (total 1 columns):

pclass 1309 non-null int64

survived 1309 non-null int64

name 1309 non-null object

sex 1309 non-null object

age 1046 non-null float64

sibsp 1309 non-null int64

parch 1309 non-null int64

ticket 1309 non-null object

fare 1308 non-null float64

cabin 295 non-null object

embarked 1307 non-null object

boat 486 non-null object

body 121 non-null float64

home.dest 745 non-null object

dtypes: float64(3), int64(4), object(7)

memory usage: 143.2+ KB

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

98

Data labeled as “non-null object” from the “info()” function output can be

considered as text based, and we need to figure out what type of text it is. This is a bit of a

subjective art, as there are various ways to approach this (more on this shortly).

The Pandas “describe()” function gives you an aggregate summary of all

quantitative fields. Right off the bat, we can see that the “survived” feature has a mean of

0.38. This means that only 38% of the passengers survived and, as we will use that feature

as our outcome label to train the model, that the dataset is skewed toward nonsurvivors

(i.e., most passengers did not survive the voyage; Listing 3-3 and Figure 3-3).

Listing 3-3.  Summary of Quantitative Data

titanic_df.describe()

The “isnull()” function can be wrapped into a counter to find out how many missing

values we are dealing with. Books have been written on the topic of imputation and how

best to deal with missing data in modeling scenarios. Here we will drop a few features

and impute others (Listing 3-4 and Figure 3-4).

Listing 3-4.  Analyzing Missing Data

titanic_missing_count = titanic_df.isnull().sum().sort_

values(ascending=False)

pd.DataFrame({'Percent Missing':titanic_missing_count/len(titanic_df)})

Figure 3-3.  Description output of the titanic data frame

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

99

Upon analyzing the function outputs, we gather that the data includes numerical,

categorical, and text-based features. The dataset contains a total of 1,309 rows. We also

see that 90% of the entries in feature “body” are missing; this makes for an easy feature to

drop. There are other features that we will ignore, as they are either hard to work with or

of little help to model survivorship (such as the passenger’s last name).

Figure 3-4.  Percent missing data per feature in the titanic data frame

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

100

�Dealing with Categorical Data
Working with categorical data is an important topic, and some aspects are subjective

while others aren’t. A good rule of thumb is to find out how many values for a particular

text-based column are unique or repeated. Checking the frequency is a good place to

start. Let’s combine Pandas “groupby()” and “count()” functions call on feature “cabin.”

This will tell if values are shared among passengers and thus should be considered

categories or free-form text entries (Listing 3-5 and Figure 3-5).

Listing 3-5.  Counting Repeats in the “cabin” Feature

titanic_feature_count = titanic_df.groupby('cabin')['cabin'].count().reset_

index(name = "Group_Count")

titanic_feature_count.sort_values('Group_Count', ascending=False).head(20)

Figure 3-5.  Cabins are concatenated and can benefit from being decoupled

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

101

The resulting output confirms that these values are categories, as they are often

repeated (this follows the intuition that there can be more than one passenger per

cabin). Let’s run the same experiment on another text-based column, the “name”

feature (and we already know how many repeats we’ll see; Listing 3-6 and Figure 3-6).

Listing 3-6.  Counting Repeats in the “name” Feature

titanic_feature_count = titanic_df.groupby('name')['name'].count().reset_

index(name = "Group_Count")

titanic_feature_count.sort_values('Group_Count', ascending=False).head(10)

As intuition would have it, the majority of names are unique. This just isn’t a good

column to be considered categorical nor is it a good column for modeling in general

(you need repeating data to find patterns, and unique text entries don’t serve that

purpose in their raw state).

Categories can be found in both Integer and Text data types; therefore, it is important

to consider each feature individually and determine how best to model. For example,

the feature “sex” is categorical and binary, so fractions of that data won’t help us. We

will change it to a single column named “isFemale.” The feature “cabin” does repeat as

shown before, but we can get it to repeat much more with a little help (Listing 3-7).

Figure 3-6.  How many times is a name repeated?

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

102

Listing 3-7.  “Head()” of Cabin Features

Input:

titanic_df['cabin'].head()

Output:

0 B5

1 C22 C26

2 C22 C26

3 C22 C26

4 C22 C26

Name: cabin, dtype: object

By extracting a sample of that feature, we notice a commonality with the data: each

number is preceded by a letter representing the ship deck level (Figure 3-7).

Figure 3-7.  Cutout of the Titanic with labels representing the cabin levels
(Illustration by Lucas Amunategui)

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

103

So, one way to leverage that data is to take the first letter and drop the number. This

gives us an interesting feature to work with: what floor was the passenger on and was

there a relationship between the distance from the floor and the lifeboats on the top deck

regarding survivorship? Maybe there is, and you can find out by using the application we

are about to build (Listing 3-8).

Listing 3-8.  Using Only the First Character from Each Cabin Name

Input:

titanic_df['cabin'] = titanic_df['cabin'].replace(np.NaN, 'U')

titanic_df['cabin'] = [ln[0] for ln in titanic_df['cabin'].values]

titanic_df['cabin'] = titanic_df['cabin'].replace('U', 'Unknown')

titanic_df['cabin'].head()

Output:

0 B

1 C

2 C

3 C

4 C

Name: cabin, dtype: object

And let’s do a “groupby()” and “count()” as we did previously to count frequency

(Listing 3-9 and Figure 3-8).

Listing 3-9.  Counting Each Cabin First Letter Groups

titanic_feature_count = titanic_df.groupby('cabin')['cabin'].count().reset_

index(name = "Group_Count")

titanic_feature_count.sort_values('Group_Count', ascending=False).head(10)

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

104

Wow, there are a lot more repeats than previously observed. This should be more

useful as a feature than in its previous format. We will do the same to the passenger’s

“name” feature and extract only the title: “Mrs.” or “Mr.”, etc. and drop the other parts

(see the Jupyter notebook for more details).

This isn’t to say that raw, free-form text (the nonrepeating kind) can’t be useful

for modeling. On the contrary, most data in the world is unstructured and very rich

in potential—think doctor notes, or store reviews! This can be modeld but requires

more advanced approaches such as natural language processing, singular vector

decomposition, word vectoring, etc. We will see some of these techniques in later

chapters of the book.

�Creating Dummy Features from Categorical Data
Once we have identified our categorical features and transformed those that needed

transformation, we still need to turn them into a numerical form so our models can use

them. One great function from the Pandas library is “get_dummies().” This will break

each category out into its own column.

Figure 3-8.  Total counts of our new “cabin” feature

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

105

Here is an example of using the “get_dummies()” function and its output

(Listing 3-10 and Figure 3-9).

Listing 3-10.  Creating Dummies out of the “cabin” Feature

pd.get_dummies(titanic_df['cabin'], columns=['cabin'], drop_first=False).

head(10)

It takes a feature and breaks out each unique value into a separate column and drops

the original. Keep in mind that not all noncontinuous numbers should be made into

dummy fields. Think about zip codes in the United States; if you dummify them, you

will be adding an additional 43,000 features of extremely sparse data to your dataset—not

always a good idea. In the case of zip codes, a better approach may be larger categorical

groupings like modeling at the town or state level.

Figure 3-9.  The cabin feature transformed into binary data (dummified)

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

106

�Modeling
Keeping things simple for our second project will allow us to focus on the big picture and

spend equal time on each piece involved in building a web application. We will use the

Logistic Regression model from the “sklearn” library. If you recall from the last chapter,

we used a linear regression, which attempts to predict a continuous variable. A logistic

regression, on the other hand, attempts to predict a binary outcome such as true or

false, happy or sad, etc. These are both extremely common models, but you need to use

the correct one depending on the type of outcome variable you are trying to model and

predict.

�Train/Test Split
We leverage the “train_test_split()” function from sklearn that will split the data into

two random datasets with seed. Setting the “random_state” parameter is a good idea

whenever you are testing different approaches and want to ensure that you are always

using the same splits for fair comparison. The “test_size” parameter sets the size of the

test split. Here we set it to .5, or 50%, thus it will randomize the data and split it in half

between training and testing. We’ll use the training portion to model the data, and the

testing portion to evaluate how well our model performed. It is easy to use (Listing 3-11

and Figure 3-10).

Listing 3-11.  Splitting the Data into Train and Test portions

from sklearn.model_selection import train_test_split

features = [feat forfeat in list(titanic_ready_df) if feat != 'survived']

X_train, X_test, y_train, y_test = train_test_split(titanic_ready_

df[features],

�titanic_ready_df[['survived']], test_size=0.5, random_state=42)

print(X_train.head(3))

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

107

It splits out the outcome variables into “y_train” and “y_test”; the model will only

have access to “y_train” (Listing 3-12).

Listing 3-12.  Top Outcome Values from Training Dataset

Input:

print(y_train.head(3))

Output:

 survived

455 0

83 1

1228 1

�Logistic Regression
It is time to decide on what model to use and set it up. As we are predicting a binary

outcome, whether a passenger survived the voyage or not, a logistic regression is a

good and lightweight choice—perfect for a web application. It is always good to keep the

endgame in mind (Listing 3-13).

Figure 3-10.  Training split of the titanic data frame ready for modeling

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

108

Listing 3-13.  Sklearn’s Logistic Regression Model

from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression()

ravel() simply creates a flattened array

lr_model.fit(X_train, y_train.values.ravel())

The data is fairly straightforward, and the patterns of survivorship are well known

and can stand out with most modeling algorithms. The Sklearn Logistic Regression

model makes it very easy to peek into the model’s resulting coefficients to help us

interpret which features are deemed important for surviving the Titanic trip

(Listing 3-14).

Listing 3-14.  Extracting Our Model’s Coefficients

coefs = pd.DataFrame({'Feature':features, 'Coef':lr_model.coef_[0]})

coefs.sort_values('Coef', ascending=False)

Figure 3-11 shows the top-positive and bottom-negative influencers in predicting

survivorship. Clearly, on this particular trip, you were better off being female and rich

than male and poor (see the notebook for the full list of coefficients).

Figure 3-11.  Top-positive and bottom-negative feature inf luencers

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

109

�Predicting Survivorship
Once we have a trained model, we can validate its accuracy by using the testing portion

of the data we earmarked earlier to validate the model (using the “train_test_split()”

function mentioned). This data should never be used in the training phase! It therefore

guaranties a fresh look at the model and an objective way of getting a performance score

(Listing 3-15).

Listing 3-15.  Predict Using the Testing Portion of the Dataset

Input:

y_pred = lr_model.predict(X_test)

print('Accuracy of logistic regression classifier on test set: {:.2f}%'

 .format(lr_modl.score(X_test, y_test)*100))

Output:

Accuracy of logistic regression classifier on test set: 79.35%

The model with the validation dataset scored almost an 80% accuracy rate in

predicting who did survive the trip. This isn’t a bad score, considering we are using a

simple model and a small dataset.

We’re almost done with the Python script; we just need to make sure we can predict

using fictional data. This is an important step, as we want our users to be able to come up

with their own data and run it through the trained model. OK, so let’s try a 50-year old

male in third class score (Listing 3-16).

Listing 3-16.  Setting Up a Custom Prediction by Creating a Fictional Passenger

x_predict_pclass = 'Third'

x_predict_is_female=0

x_predict_age=50

x_predict_sibsp=3

x_predict_parch = 0

x_predict_fare = 200

x_predict_cabin = 'A'

x_predict_embarked = 'Q'

x_predict_title = 'Mr.'

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

110

If you are familiar with this dataset and historic event, you know that our fictional

passenger won’t fare well. After we run it through the model, we present the results using

a simple comparative chart that shows the average survival rate next to our fictional

passenger. Being male and in third class is a bad combination (Figure 3-12).

�Abstracting Everything in Preparation for the Cloud
Now that we have confirmed that our model works, that we can create fictional

passengers and predict their probability of survivorship, we can package the code into

two functions for our web application. Keeping things clean and neat will reduce the

complexities and debugging headaches in the process of moving from a stand-alone

scripting project and into a cloud-based environment.

Figure 3-12.  Average survival rate vs. our fictional traveler

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

111

�Function startup( )
We create a “startup()” function that will take care of loading the data in memory,

perform all the feature engineering, create dummy columns, and train the model. This

function only gets called once when the web server is brought online and whenever it is

rebooted. Preloading as much of the work as possible into memory will offer a faster and

more responsive experience with the users interacting with the web application.

�Function submit_new_profile( )
The second function is called “submit_new_profile().” This function handles the new

fictional passenger profile, formats the data into the same shape as the real training

data, creates the needed dummy columns, and asks the model to predict and yield a

probability of survivorship.

That’s it; most of the brain processing that we need will be handled by those two

functions. All the rest of the code is used for communicating between the web server and

the HTML page, displaying results, and making the whole thing look professional. But

we’re jumping ahead of ourselves; let’s now get more acquainted with Flask.

A great reason for using Flask is that it allows us to link stand-alone Python scripts

functions to server-side web controls without leaving the Python language. This makes

passing data between a model and the web a whole lot easier!

�Interactivity with HTML Forms
Besides Flask, a critical front-end web technology is the “HTML Form.”4 Though this

is basic stuff, it is the critical link between a user and our application. The HTML Form

allows the user to interact with information on the web page, then hit the submit button

to send that customized data back to the Flask web server (Listing 3-17).

Listing 3-17.  Interacting with Users

<FORM id='submit_params' method="POST" action="{{ url_for('submit_new_

profile') }}">

...

4�https://www.w3schools.com/html/html_forms.asp

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

https://www.w3schools.com/html/html_forms.asp

112

<SELECT class="selectpicker" name="selected_embarked">

 �<option value="{{selected_embarked}}" selected>{{selected_

embarked}}</option>

 <option>Cherbourg</option>

 <option>Queenstown</option>

</SELECT>

...

<BUTTON type="submit>Submit</BUTTON>

</FORM>

�Creating Dynamic Images
Here we use an important technique to translate images created on the fly in Python into

strings, so they can be dynamically fed and understood by an HTML interpreter. This is

offered through the “base64” Python module:

This module provides data encoding and decoding as specified in RFC
3548. This standard defines the Base16, Base32, and Base64 algorithms for
encoding and decoding arbitrary binary strings into text strings that can be
safely sent by email, used as parts of URLs, or included as part of an HTTP
POST request. The encoding algorithm is not the same as the uuencode
program.5

In the following simplified code snippet, we create an image in Python using the

“matplotlib.pyplot” library (Listing 3-18).

Listing 3-18.  Creating Dynamic Images

import matplotlib.pyplot as plt

fig = plt.figure()

plt.bar(y_pos, performance, align='center', color = colors, alpha=0.5)

img = io.BytesIO()

plt.savefig(img, format='png')

img.seek(0)

plot_url = base64.b64encode(img.getvalue()).decode()

5�https://docs.python.org/2/library/base64.html

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

https://docs.python.org/2/library/base64.html

113

Then the variable “plot_url” can be injected into the HTML code using Flask Jinja2

template notation as such (Listing 3-19).

Listing 3-19.  Plotting the Dynamic Image from Flask to Jinja2

model_plot = Markup(''.format(plot_url))

...

<div>{{model_plot}}</div>

And if you look at the HTML source output, you will see that the HTML image

tag is made up of long string of characters (drastically truncated in the image shown).

The interpreter will know how to translate that into an image (Figure 3-13).

�Downloading the Titanic Code
Let’s download the files for Chapter 3 and save them on your local machine if you

haven’t already done so. Once you have downloaded, open a command line window,

and change drive to the “web-application” folder. The folder structure should look like

Listing 3-20.

Figure 3-13.  Image transformed into string of characters

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

114

Listing 3-20.  Web Application Files

web-application/

├── main.py
├── static/
 └── images/
 ├── small_cabin_location.png
 └── small_titanic.jpg
├── templates/
 └── index.html
├── titanic3.csv
├── requirements.txt
├── app.yaml
└── appengine_config.py

Once you have downloaded and unzipped everything, open a command line

window, change drive into the “web-application” folder, and install all the required

Python libraries by running the “pip install -r” command (Listing 3-21).

Listing 3-21.  Installing Requirements

$ pip3 install -r requirements.txt

As with the previous local Flask applications, run the “Python3 main.py” command.

It should look like the following screen shot in Figure 3-14.

Figure 3-14.  Command/terminal window output stating URL address of local
Flask web page

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

115

Then copy the URL “http://127.0.0.1:5000/” (or whatever is stated in the terminal

window) into your browser and you should see the Titanic web application appear. If it

doesn’t, open “main.py” in your favorite code editor (sublime on the Mac or notepad++

on Windows are my favorites) and switch the Boolean flag on the last line to “True.”

Rerun it and address whatever issues the logger complains about.

See the local version of the web application in Figure 3-15.

�Google Cloud Flexible App Engine
Now, this is the other fun part, getting our application into the serverless cloud for the

world to see! In the introduction chapter we looked at the Standard App Engine, this

time around we’ll have to use the Flexible App Engine in order to run more sophisticated

Python libraries.

Figure 3-15.  Local version of our web application

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

116

�Google App Engine
The Google App Engine is serverless, so you don’t have to think about any of the

hardware behind your web application. You don’t have to know what OS your

application is running under, it will scale accordingly, Google will take care of security

patches, and you only pay for what you consume.

There are two types of App Engines you can opt for: one is very simple but less

customizable, while the other isn’t. We used the Standard Environment in Chapter 1;

here we’ll need to use the Flexible Environment due to the need of certain Python libraries

(Figure 3-16).

Figure 3-16.  Differences between App Engine’s Standard and Flexible
environments (may have changed by the time you read this)

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

117

�Deploying on Google App Engine
There are multiple ways of deploying a web application on the Google App Engine.

In this chapter we’ll use the built-in shell terminal on the dashboard itself. This is

something you use for quick jobs; for longer ones, you will need to open a terminal

session from your local computer and initiate a connection to your Google Cloud

account with the appropriate authentication. The other ways include linking a GitHub

(or BitBucket) directly into your Google Cloud account, using a terminal session directly

off your local machine, and there is also an experimental code editor directly in the

dashboard (see https://cloudplatform.googleblog.com/2016/10/introducing-

Google-Cloud-Shels-new-code-editor.html).

If you don’t already have an account on Google Cloud, you can go to Google Cloud

Getting Started (https://console.cloud.google.com/getting-started) and set one

up. At the time of this writing, Google is offering a 12 month and $300 credit to get you

started (Figure 3-17).

�Step 1: Fire Up Google Cloud Shell
Log into your instance of Google Cloud and create or select the project you want your

App Engine to reside in. Start the cloud shell command line tool by clicking on the

upper-right caret button. This will open a familiar-looking command line window in the

bottom half of the GCP dashboard (Figure 3-18).

Figure 3-17.  Google Cloud Platform special offerings

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

https://cloudplatform.googleblog.com/2016/10/introducing-Google-Cloud-Shels-new-code-editor.html
https://cloudplatform.googleblog.com/2016/10/introducing-Google-Cloud-Shels-new-code-editor.html
https://console.cloud.google.com/getting-started

118

�Step 2: Zip and Upload All Files to the Cloud
There are many ways to proceed: you can upload the files one by one, clone a GitHub

repository, or you can zip them into one archive file and upload the zip. We’ll go with the

latter. So, zip the 11 files in the “web-application” folder (Figure 3-19).

Upload it using the “Upload file” option (this is found on the top right side of the

shell window under the three vertical dots; Figure 3-20).

Figure 3-18.  Accessing the Google Cloud shell

Figure 3-19.  Zipping web application files for upload to Google Cloud

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

119

�Step 3: Create Working Directory on Google Cloud
and Unzip Files
Once the file is successfully uploaded, create a new directory called “chapter-3” for

example, then move the compressed files into it and unzip them (Listing 3-22).

Listing 3-22.  Getting the GCP Directory Ready for Deployment

$ mkdir chapter-3

$ cd chapter-3/

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

Figure 3-20.  Uploading files via Google Cloud shell

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

120

�Step 4: Creating Lib Folder
We’re almost there. If you look in the requirements.txt file, you will see one or more

Python libraries that are required to run the application. When you build your own

application, this is where you list all the libraries needed; you then run the script to

actually install them the lib folder. A word of caution, the Standard Environment version

of the Google App Engine only supports a minimal set of libraries; for anything more

complicated, you will need to use the Flexible Environment (this is because it needs to

be closer to the Python interpreter). So, run the following command to install all the

needed additional libraries to the lib folder. When you deploy your web app, the lib

folder will travel along with the needed libraries (Listing 3-23).

Listing 3-23.  Loading All Required Python Libraries into the “lib” Folder

$ pip install -t lib -r requirements.txt

�Step 5: Deploying the Web Application
Finally, deploy it to the world using the deploy command. It will prompt a confirmation

screen in order to proceed (Listing 3-24).

Listing 3-24.  Deploying the Web Application to the Cloud

$ gcloud app deploy app.yaml

That is it! Sit back and let the serverless tool deploy our site. This is the Flexible

App Engine, so it can take up to 20 minutes to be fully deployed. Once it is done setting

everything, it will offer a clickable link to jump directly to the deployed web application

or you can get there with the “browse” command (Listing 3-25).

Listing 3-25.  Getting the Location URL of Our Web Application

$ gcloud app browse

Enjoy the fruits of your labor, and make sure to experiment with the web application

by designing different passengers (Figure 3-21).

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

121

�Troubleshooting
There will be cases where you will have issues and the Google Cloud logs will be your

best friends. You can easily reach them either directly in the Google Cloud dashboard or

with the logs URL (Listing 3-26).

Listing 3-26.  GCP Log Page

https://console.cloud.google.com/logs

Or you can stream the log’s tail by calling the “app logs tail” command in the cloud

shell (Listing 3-27).

Listing 3-27.  Following Deployment Logs

$ gcloud app logs tail -s default

Figure 3-21.  Our web application on Google Cloud

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

122

�Closing-Up Shop
One last thing: before we are done with our web application: don’t forget to stop or

delete your App Engine Cloud instance. Even if you are using free credits, the meter is

still running and there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as

the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this

can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click on your active version and stop it

(Figure 3-22). If you have multiple versions, you can delete the old ones; you won’t be

able to delete the default one, but stopping it should be enough (if you really don’t want

any trace of it, just delete the entire project).

Figure 3-22.  Stopping and/or deleting your App Engine version

�What’s Going on Here?
Let’s take a brief look at some noteworthy pieces in the code.

�main.py
The “main.py” file is a bit different than the Jupyter notebook we tackled for the chapter.

It is always better to not rely too much on processing when running a web application.

That is why we did away with any Pandas code, opting instead to use NumPy arrays

(Listing 3-28).

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

123

Listing 3-28.  Creating a Matrix Array from a CSV File

from numpy import genfromtxt

titanic_array = genfromtxt('titanic3.csv', delimiter=',')

For example, when a user designs a new passenger profile, those values are simply

added to the list (in the correct order) and fed into the logistic regression model directly.

The fields aren’t being dummified, instead they are created in a dummy state from the

start (basically, we are dummying them manually; Listing 3-29).

Listing 3-29.  Dummying Categories Manually

if (selected_cabin=='B'):

 cabin_B = 1

if (selected_cabin=='C'):

 cabin_C = 1

if (selected_cabin=='D'):

 cabin_D = 1

if (selected_cabin=='E'):

 cabin_E = 1

if (selected_cabin=='F'):

 cabin_F = 1

if (selected_cabin=='G'):

 cabin_G = 1

if (selected_cabin=='T'):

 cabin_T = 1

if (selected_cabin=='Unknown'):

 cabin_Unknown = 1

�user_designe_passenger = [[age, sibsp, parch, fare, isfemale, pclass_

Second, pclass_Third, pclass_nan, cabin_B, cabin_C, cabin_D, cabin_E,

cabin_F, cabin_G, cabin_T, cabin_Unknown, cabin_nan, embarked_Q,

embarked_S, embarked_Unknown, embarked_nan, title_Master, title_Miss,

title_Mr, title_Mrs, title_Rev, title_Unknown, title_nan]]

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

124

In this snippet of code, the “cabin” feature is stored directly as an integer. This saves

us a few processing steps, such as avoiding the call to the Pandas “get_dummies()”

function.

�app.yaml
YAML is a serialization language relied upon by many frameworks to configure and store

program settings. The “app.yaml” file holds configuration settings such as setting the

App Engine environment to “flex,” the name of the Python starter script to “main,” and

information on hardware needed (Listing 3-30).

Listing 3-30.  A Look Inside the App Engine Flexible “app.yaml” File

runtime: python

env: flex

entrypoint: gunicorn -b :$PORT main:app

runtime_config:

 python_version: 3

This sample incurs costs to run on the App Engine flexible environment.

�The settings below are to reduce costs during testing and are not

appropriate

for production use. For more information, see:

�https://cloud.google.com/appengine/docs/flexible/python/configuring-your-

app-with-app-yaml

manual_scaling:

 instances: 1

resources:

 cpu: 1

 memory_gb: 0.5

 disk_size_gb: 10

The App Engine Flexible requires a disk size with a minimum of 10GB of space.

For more information on the “yaml” file for App Engines, see https://cloud.google.

com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml.

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

https://cloud.google.com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml
https://cloud.google.com/appengine/docs/flexible/python/configuring-your-app-with-app-yaml

125

�appengine_config.py & lib folder
The “appengine_config.py” file and the “lib” folder work together to handle all extra

Python libraries needed to get the web application running (Listing 3-31).

Listing 3-31.  A Look Inside the “appengine_config.py” Script

from google.appengine.ext import vendor

Add any libraries installed in the "lib" folder

vendor.add('lib')

The “lib” folder is populated with needed Python libraries by calling “pip install”

(Listing 3-32).

Listing 3-32.  Populating the “lib” Folder

pip install -t lib -r requirements.txt

If you look inside the “lib” folder after running this command, you will see all sorts of

Python libraries deployed and ready to serve. This folder will get deployed with all your

web application files to get them to function properly. The “appengine_config.py” does

a whole lot more than what was shown here for the Google App Engine; see the official

docs for more details.

Note  For more information on the appengine_config.py, see the Google docs
at: https://cloud.google.com/appengine/docs/standard/python/
tools/appengineconfig.

�requirements.txt
Here is a look at all the Python libraries needed to get the Titanic web application up and

running (your version numbers will vary; Listing 3-33).

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

https://cloud.google.com/appengine/docs/standard/python/tools/appengineconfig
https://cloud.google.com/appengine/docs/standard/python/tools/appengineconfig

126

Listing 3-33.  Python Libraries Needed to Run Our Web Application

click==6.7

Flask==0.12.2

itsdangerous==0.24

Jinja2==2.10

MarkupSafe==1.0

numpy==1.14.2

scikit-learn

scipy

python-dateutil==2.7.2

pytz==2018.4

six==1.11.0

Werkzeug==0.14.1

Pillow>=1.0

matplotlib

gunicorn>=19.7.1

�Steps Recap
Let’s power through the steps needed to get the Titanic web application deployed on

Google Cloud.

	 1.	 Check that the web application runs locally, zip up all the web

application files, create destination folder on the Google Cloud,

and unzip the files:

$ mkdir chapter-3

$ cd chapter-3/

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

	 2.	 Create “lib” folder:

pip install -t lib -r requirements.txt

	 3.	 Deploy the web application:

gcloud app deploy app.yaml

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

127

	 4.	 Get the URL to your web application:

gcloud app browse

Close up shop, go to your GCP dashboard into App Engine, and terminate any

running version.

�Conclusion
Regarding the Titanic dataset, we learned that being rich and female gave you the best

odds of survival while poor and male, the worst.

Even though this project was fairly straightforward, this chapter introduced a lot of

concepts and new technologies. The first takeaway is to always think a couple of steps

ahead whenever you are developing local Python ideas and models, to foresee ways

to extended to the cloud. This includes keeping things simple, working on intuitive

concepts, and keeping the code clean and efficient.

Chapter 3 Real-Time Intelligence with Logistic Regression on GCP

129
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_4

CHAPTER 4

Pretrained Intelligence
with Gradient Boosting
Machine on AWS
What makes a top-rated wine? Find out with a hard-to-resist real-time web dashboard

on Amazon Web Services.

In this chapter, we are going to learn about wine quality with the help of the powerful

“Gradient Boosting Classifier”1 algorithm from the “sklearn” library. It can classify

data into multiple classes, and that is what we’ll use to group our wines into “quality”

buckets. We will highlight that power in our web dashboard with the help of real-time

sliders (Figure 4-1).

1�http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

130

This will invite visitors to interact with the model in a fun, responsive, and

educational way. The data was collected for a paper called “Modeling wine preferences
by data mining from physicochemical properties.”2 It is graciously made available

through the UCI Machine Learning Repository of the University of California, Irvine.3

Note  Download the files for Chapter 4 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter4.ipynb” to follow along with this chapter’s content.

2�P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling Wine Preferences by Data
Mining from Physicochemical Properties,” Decision Support Systems 47, no. 4 (2009): 547-553.

3�https://archive.ics.uci.edu/ml/index.php

Figure 4-1.  The final web application for this chapter

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://archive.ics.uci.edu/ml/index.php

131

�Planning our Web Application: What Makes a
Top-Rated Wine?
As is the case with any web application, it is critical to get the simple issues figured

out first before extending it out onto the web. We will start by exploring the data,

experimenting with the modeling, building a local Flask application, and only once

everything is in working order will we then extend it to Amazon Web Services (AWS)

Elastic Beanstalk.4

�Exploring the Wine-Quality Dataset
The Wine-Quality dataset can be downloaded directly from the UCI Machine Learning

Repository using the Python “Pandas” library. It is made up of two datasets, 1,599

instances of red wine and 4,898 instances of white wine. The data represents chemical

readings “related to red and white variants of the Portuguese “Vinho Verde” wine.”5 Go

ahead and download the files for this chapter into a folder called “chapter-4.” Fire up the

Jupyter notebook to follow along.

According to UCI’s data description, there are 11 attributes based on

physicochemical tests and one output column based on sensory data:

•	 Input

•	 fixed acidity

•	 volatile acidity

•	 citric acid

•	 residual sugar

•	 chlorides

•	 free sulfur dioxide

•	 total sulfur dioxide

•	 density

4�https://aws.amazon.com/elasticbeanstalk/
5�https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
winequality.names

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://aws.amazon.com/elasticbeanstalk
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality.names
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality.names

132

•	 pH

•	 sulphates

•	 alcohol

•	 Output

•	 quality (score between 0 and 10)

We will create a new feature called “color” to describe whether the wine is white or

red, and concatenate both datasets into a single one. Being good web citizens, we also

save a local copy of the finished and combined dataset for our web application, so we

don’t hit the servers every time a user interacts with it (Listing 4-1).

Listing 4-1.  Create a New Wine Color Feature and Concatenate White and Red

Together

white['color'] = 0

red['color'] = 1

wine_df = pd.concat([white, red], ignore_index=True)

Now that we have our dataset ready to go, let’s dig into it and see what we have

(Listing 4-2).

Listing 4-2.  A look at the Feature Data Types

Input:

wine_df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 6497 entries, 0 to 6496

Data columns (total 13 columns):

fixed acidity 6497 non-null float64

volatile acidity 6497 non-null float64

citric acid 6497 non-null float64

residual sugar 6497 non-null float64

chlorides 6497 non-null float64

free sulfur dioxide 6497 non-null float64

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

133

total sulfur dioxide 6497 non-null float64

density 6497 non-null float64

pH 6497 non-null float64

sulphates 6497 non-null float64

alcohol 6497 non-null float64

quality 6497 non-null int64

color 6497 non-null int64

dtypes: float64(11), int64(2)

memory usage: 659.9 KB

The “info()” function tells us a lot about the data. We see that we have 13 columns,

all floats except for two integers, “quality” and “color.” The “color” feature is the one we

added and keeps track of whether the wine is red or white. The “quality” feature is the

outcome label and represents the quality level of a particular wine. This is an important

feature, as it clusters the data by quality and is what our model will attempt to learn

(Listing 4-3).

Listing 4-3.  Total Rating Counts of Wine Quality in Wine Data Frame

Input:

wine_df['quality'].value_counts()

Output:

6 2836

5 2138

7 1079

4 216

8 193

3 30

9 5

Name: quality, dtype: int64

The “value_counts()” function counts the frequency of values for a particular

categorical feature. In the case of “quality,” we see that there are 7 different quality types

and that most are of quality “6.” This feature could potentially be used as a continuous

variable, meaning we are assuming some form of linearity between the lowest and

highest quality. As this quality is based on a vote, we just can’t assume it is a continuous

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

134

numerical scale, along with the fact that some numbers are missing (the official data

description states that quality is between 0 and 10, but we only see numbers between

3 and 9).

We’ll play it safe and assume it is a categorical variable and use a multiclassification

model instead of a regression model.

Another great way of visualizing a categorical variable is to use a histogram plot. This

can easily be done within the Pandas library learn (Listing 4-4 and Figure 4-2).

Listing 4-4.  Histogram of Wine Quality Ratings by Groups and Votes

wine_df['quality'].hist()

plt.suptitle('Historgram of Wine Quality')

plt.xlabel('Quality Groups')

plt.ylabel('Number of Votes')

plt.show()

It’s the same information as “value_counts()” but in an easier way to digest. We see

a normal distribution in the middle ranges, which is intuitive as most wines are average

and few are either very bad or very good.

According to the “info()” function, there are no null values nor text or text-based

categorical data. The two integer features, “quality” and “color,” are numerical

categories and should be treated as such during modeling.

Figure 4-2.  Histogram of wine quality ratings in wine data frame

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

135

�Working with Imbalanced Classes
Referring to the wine quality histogram, we see that most of the quality resides within

buckets 5, 6, and 7. This will make predicting edge quality buckets more challenging,

as the model won’t benefit from sufficient cases to learn from. For critical modeling

projects, you would either balance the dataset by removing some of the middle classes

or get more edge cases. In the Jupyter notebook for this chapter you see the rebalancing

process.

Another approach is to remove weaker features. In some cases weak features can

confuse the model, and by removing them you not only improve the score but make

the model run faster. This can easily be done with tree-based models that return some

form of variable importance. You get the list of features sorted in descending value of

importance and try the model with only the best feature. You keep adding features until

the score doesn’t improve anymore and you end up with a good set of features to work

with (this is known as forward-feature selection).

Let’s see what would happen if we capped all classes to a maximum of 500 rows of

data (Listing 4-5 and Figure 4-3).

Listing 4-5.  Numerical Distribution of Capped Wine Quality

Input:

wine_balanced_df['quality'].value_counts()

Output:

7 500

6 500

5 500

4 216

8 193

3 30

9 5

Name: quality, dtype: int64

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

136

It does flatten out around the center classes, but the edges are still extremely

imbalanced. A much better way to proceed is to reclassify the quality class. We will group

them down into only three quality groupings. Quality classes 3, 4, 5 will now belong

to group 3, quality 6 will stay with 6, and quality classes 7, 8, 9 will belong to class 9

(Figure 4-4).

In essence, we are creating three super groups: “bad,” “average,” and “good.” After

applying these new groupings, we get a much more balanced distribution (Listing 4-6

and Figure 4-5).

Figure 4-3.  Histogram of capped wine quality

Figure 4-4.  Simplified wine quality super-groups

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

137

Listing 4-6.  Aggregating Wine Quality Down to Three Groups

Input:

wine_df['quality'].value_counts()

Output:

6 2836

3 2384

9 1277

Name: quality, dtype: int64

When we plot the quality groupings in a histogram chart, the classes are much better

balanced, ranging from 1,200 to 2,800.

�Modeling with Gradient Boosting Classifiers
Another way to improve working with an unbalanced dataset is to use models that can

deal with them. A very popular one is sklearn’s “Gradient Boosting Classifier,” which

is a powerful tree-based boosted model. It creates groups of trees and optimizes them

according to their predictive strengths.

Figure 4-5.  Histogram distribution of wine quality in smaller set of buckets

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

138

To use the sklearn GradientBoostingClassifier algorithm, you will need to install

“scikit-learn” and “scipy” if you have never used them before (use the installation tool

appropriate to your OS and software). To make things easier, you can simply run the

“requirements_jupyter.txt” file containing all the necessary Python libraries for this

chapter. You can quickly install them by running the “pip3” command (Listing 4-7).

Listing 4-7.  Installing the Required Files to Run the Notebook

$ pip3 install -r requirements_jupyter.txt

We cast the “quality” feature as a categorical type the Pandas “Categorical()”

function. This will allow us to use the “cat.codes” of that feature instead of the actual

values. We do this because the real quality categories are 3-6-9, and by using the “cat.
codes” we shift the range down between 0 and 2. We then use the sklearn “train_test_
split” functions (like we did in the previous chapter) to randomly split the data into a

training chunk and a testing/validation chunk. If you look at the code, we set “test_size”

to 0.2, meaning we are allocating 20% of the data for testing, and we set a seed using

“random_state” to guarantee that our splits are always the same (Listing 4-8).

Listing 4-8.  Preparing Our Training and Testing Datasets

from sklearn.model_selection import train_test_split

wine_df['quality'] = pd.Categorical(wine_df['quality'])wine_df['quality_

class'] = wine_df['quality'].cat.codes

outcome = 'quality_class'

outcome_buckets = len(set(wine_df['quality_class']))

X_train, X_test, y_train, y_test = train_test_split(wine_df[features],

wine_df[outcome], test_size=0.2, random_state=42)

And now we can feed that training data into the “GradientBoostingClassifier” for

modeling (Listing 4-9).

Listing 4-9.  Modeling with GBM

from sklearn.ensemble import GradientBoostingClassifier

gbm_model = GradientBoostingClassifier(random_state=10, learning_rate=0.1,

max_depth=10)

gbm_model.fit(X_train[features], y_train)

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

139

As you can see from the snippet, “GradientBoostingClassifier” takes various

parameters, and playing around with them is important and referred to as hyper-

parameter tuning.

Here are some of the critical parameters to tune the GBM model (for more detailed

information, see the scikit-learn help6)

•	 learning_rate: The learning rate determines the contribution

of each tree.

•	 n_estimators: The number of boosting stages to perform

•	 max_depth: Maximum depth of the regression estimators

•	 max_features: Number of features to consider in each split

•	 random_state: The seed to use for reproducibility

The best way to train a “GradientBoostingClassifier” model is to run it multiple

times with different parameter settings. See if adding the “n_estimators” parameter

increases accuracy or not, and how a larger or smaller “learning_rate” or “max_depth”

affects accuracy. For those who want to delve deeper into model tuning, there are many

additional tools to help, such as cross-validation, hyper-parameter tuners, etc. One of

my favorite aspects of the GradientBoostingClassifier is that it is very fast and can handle

fairly large datasets, so you can easily write your own looping mechanism to try all sorts

of variations and compare accuracy.

See the documentation for more granular details on Python API Reference.7

�Evaluating the Model
If you refer to the Jupyter notebook for this chapter, you will see that after we run the

model, we evaluate it by asking it to predict wine quality on the out-of-sample data—our

20% chunk of test data (Listing 4-10). This is an important concept to remember: the

model never gets to see the testing data, and this allows us to evaluate the model’s

performance with a fresh set of data.

6�http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

7�http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

140

Listing 4-10.  Predicting Using the Testing Data Split

preds = gbm_model.predict_proba(X_test)

The “preds” variable contains a list of three probabilities for every row, describing

the probability of belonging to each of the wine quality classes (that’s a mouthful).

The probability of each row sums up to 1. For example, let’s look at the predicted

probabilities for the first row (Listing 4-11).

Listing 4-11.  Looking at One Wine’s Prediction

Input:

preds[0]

Output:

array([0.50623207, 0.48718144, 0.00658649])

For the data at row 0 (i.e., the chemical readings for that particular wine), the model

predicted the highest probability around index number 0 at 0.56, so quality bucket “3.”

This can be easily done using NumPy’s “argmax” to get the index of the largest number

in that list and then using that index position to get the bucket number (Listing 4-12).

Listing 4-12.  Using NumPy’s “argmax()” Function to Get the Largest Number in

the Array

Input:

print('Argmax: %i' % np.argmax(preds[0]))

print('Quality class: %i' % list(wine_df['quality'].cat.categories)

[np.argmax(preds[0])])

Output:

Argmax: 0

Quality class: 3

We can do the same for every wine in the test data and compare it with the actual

“ground truth” classes using the sklearn.metrics “precision_score()” function. This will

return a number between 0 and 1, where 0 is the worst score and 1, the best. Precision

is better than accuracy in this case because we aren’t talking about a simple binary

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

141

prediction of a well-balanced dataset. Instead we want to know how well the model

chooses between three quality classes for a particular wine on an imbalanced dataset—

no easy feat! (Listing 4-13)

The precision is the ratio tp / (tp + fp) where tp is the number of true posi-
tives and fp the number of false positives. The precision is intuitively the
ability of the classifier not to label as positive a sample that is negative.8

Listing 4-13.  Get the Highest Probability for Each Predicted Quality Class

Input:

from sklearn.metrics import precision_score

best_preds = np.asarray([np.argmax(line) for line in preds])

print ("Precision_score: %0.2f" % precision_score(y_test, best_preds,

average='macro'))

Output:

Precision_score: 0.74

Another useful way of looking at the big picture with multiclass models is by using

a confusion matrix. This will plot a large square matrix that shows the model’s best

predictions against the ground truth (Listing 4-14 and Figure 4-6). Using a graphical

confusion matrix instead of a printed one comes in handy when dealing with large

amounts of data. The code to produce these graphical matrices comes directly from

scikit-learn.org help files on confusion matrices.9

Listing 4-14.  Wine-Quality Predictions Shown on a Confusion Matrix

from sklearn.metrics import confusion_matrix

cnf_matrix = confusion_matrix(y_test, best_preds)

plt.figure()

plot_confusion_matrix(cnf_matrix, classes=set(wine_df['quality']),

 title='Confusion matrix, without normalization')

plt.show()

8�http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
9�http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_
matrix.html

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

142

It is worth spending a little time analyzing this chart. The y-axis represents

the ground truth and the x-axis represents the best predictions from the

GradientBoostingClassifier model.

In an ideal situation, all numbers would be 0 except for a single diagonal line

going from the chart’s top left all the way to the bottom right. That would mean all the

predictions are correct (see the fabricated chart in Figure 4-7).

Figure 4-6.  Predictions vs. actual confusion matrix

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

143

Our model’s confusion matrix tells us a few interesting things about our data. First,

it is doing a pretty good job, as the diagonal line going from top left to bottom right does

contain the biggest numbers. Where the data falls away from the diagonal line (i.e.,

incorrect predictions), it still stays close to its group. This is why the edges, where the

model predicted 3 and it actually was 9 or the model predicted 9 and it was actually 3,

are very small. This can be seen as a small consolation: whenever the prediction is

wrong, it probably isn’t that far off and the incorrect prediction is only as far as the

adjacent bucket.

�Persisting the Model
In Chapter 3, the constructor of our web application trained the model (whenever the

web server is restarted, it trains it). Here we’re going to pretrain it, pickle it, and use that

as our modeling engine. It isn’t often that you have a dataset and model that are small

enough that it’s OK to train it directly in the cloud and on the web server. Most models

are big and take a long time to train, or even take special hardware. By saving a copy

of the fully trained model, we can then move it wherever we need it and in a ready-to-

predict state. “Pickling,” if you are not familiar with that Python term, is a tool to save

Figure 4-7.  What a perfect confusion matrix looks like (if you see this level of
perfection for a real model, be suspicious, as modeling is never perfect)

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

144

an object in its current state to file.10 Just like a comma delimited file (CSV) is used

to move data around, a pickled file is used to move a Python object around. You can

pickle anything you want, including a trained model. A note on Python versions, AWS

Beanstalk defaults to Python 3.x, and pickle has compatibility issues between Python 2.x

and 3.x versions so please stick to Python 3.x for this chapter.

This is called model persistence and it should be used in most production scenarios,

and we will also use this approach in most chapters of this book11 (Listing 4-15).

Listing 4-15.  Pickling Our Trained GBM Model

with open('gbm_model_dump.p', 'wb') as f:

 pickle.dump(gbm_model, f, 2)

�Predicting on New Data
Just like we did in the previous chapter, we need to make sure we can run our model and

extract predictions on new data. This is an important step in building an interactive web

application where the goal of the application is to offer new predictions based on user-

inputted data.

To get us started, we calculate the mean values for each feature and use those values

to predict the quality of the wine (Listing 4-16).

Listing 4-16.  Get Mean Values of Each Feature and Store in Data Frame

fixed_acidity = 7.215307

volatile_acidity = 0.339666

citric_acid = 0.318633

residual_sugar = 5.443235

chlorides = 0.056034

free_sulfur_dioxide = 30.525319

total_sulfur_dioxide = 115.744574

density = 0.994697

pH = 3.218501

sulphates = 0.531268

10�https://wiki.python.org/moin/UsingPickle
11�http://scikit-learn.org/stable/modules/model_persistence.html

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://wiki.python.org/moin/UsingPickle
http://scikit-learn.org/stable/modules/model_persistence.html

145

alcohol = 10.491801

color = 0

create data set of new data

x_test_tmp = pd.DataFrame([[fixed_acidity,

 volatile_acidity,

 citric_acid,

 residual_sugar,

 chlorides,

 free_sulfur_dioxide,

 total_sulfur_dioxide,

 density,

 pH,

 sulphates,

 alcohol,

 color]], columns = X_test.columns.values)

After creating a new data frame to store the customized wine chemical readings, we

pass it to the model’s “predict” function. We can add any outcome variable, as the model

will ignore it when it makes a prediction (Listing 4-17).

Listing 4-17.  Predict the Quality of a Wine Based on Our Mean Values

preds = gbm_model.predict_proba(x_test_tmp)

Because we used mean values as our new wine, the predicted quality value should

be close to the ground truth/actual wine quality—we basically created a boring wine,

neither good nor bad (Listing 4-18).

Listing 4-18.  Get Wine-Quality Prediction

Input:

print(('Predicted wine quality: %i') % list(wine_df['quality'].cat.

categories)[np.argmax(preds)])

print(('Actual mean wine quaity: %0.2f') % np.mean(wine_df['quality'].

values))

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

146

Output:

Predicted wine quality: 6

Actual mean wine quality: 5.49

Not bad! The model predicted group 6 and the mean is 5.49. Keep in mind that this

model will do better predicting average wines vs. edge ones. So, it shouldn’t be a surprise

that it nailed this. If we look at the prediction array, we see that the model struggled a

tiny bit with putting this wine in quality 3 or quality 6 (35% 3, and 64% 6) but that quality

group 6 won out (Listing 4-19).

Listing 4-19.  Predicted Probabilities of Our Average Wine

array([[0.34124871, 0.63933304, 0.01941825]])

�Designing a Web Application to Interact
and Evaluate Wine Quality
Building a fully functioning Flask version on our local model is a common theme and a

proper next step throughout all chapters in this book. With enough practice you may skip

this step but, in the meantime, it will save you plenty of time and headaches to iron out

issues locally than on the cloud.

A good first step is to generalize the code into a big function. This will allow us to

pass it new values and get a nice prediction in return with as little hassle as possible.

Once you have downloaded all the files for this chapter, open a command line

window, and change the drive to the “web-application” folder. Your folder should

look like Listing 4-20. Here we are showing the hidden folder “.ebextensions”

needed for AWS EB. You can either use it as-is or create your own in the “Fix the
WSGIApplicationGroup” section (don’t worry about this when running the local

version of the site, as it isn’t affected by this fix).

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

147

Listing 4-20.  Web Application Files

web-application

├── application.py
├── requirements.txt
├── static \
 └── images
 ├── quality_wine_logo.jpg
 ├── wine_red_9.jpg
 ├── wine_white_9.jpg
 ├── wine_red_3.jpg
 ├── wine_white_3.jpg
 ├── wine_red_6.jpg
 └── wine_white_6.jpg
├── pickles
 └── gbm_model_dump.p
└──templates
 └── index.html
└── .ebextensions <-- hidden folder
 └── wsgi_fix.config

Of note here, in some chapters we call our main Flask Python file “main.py” but here

we use “application.py”—this is Amazon’s Elastic Beanstalk default naming convention

(there are always ways around this, but it requires editing the configuration file). From

here on we’ll work in a virtual environment.

Introducing AJAX – Dynamic Server-Side
Web Rendering
In this chapter, we’re going to start using Ajax, a really cool technology that will allow us

to update web content without rebuilding the entire page. This works great for highly

interactive web applications that perform a lot of micro-updates. Ajax is also very easy

to use and consists of two pieces, a front-end script function calling “$.ajax” and a

back-end Flask function to catch and process the calls. We will dive a little deeper into

Ajax in Chapter 10.

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

148

�Working in a Virtual Environment—a Sandbox
for Experimentation, Safety and Clarity
Using a virtual environment offers many advantages:

•	 Creates an environment with no installed Python libraries

•	 Knows exactly which Python libraries are required for your

application to run

•	 Keeps the rest of your computer system safe from any Python

libraries you install in this environment

•	 Encourages experimentation

To start a virtual environment, you use the “venv” command. If it isn’t installed on

your computer, it is recommended you do so (it is available through installs with pip3,

conda, brew, etc). For more information on installing virtual environments for your OS,

see the “venv - Creation of virtual environments” user guide: https://docs.python.

org/3/library/venv.html

In the command line window, navigate to the “web-application” folder if you

aren’t already there. Call the Python 3 “venv” function on the command line to create

a sandbox area in Python 3 for our development work and a folder called “wineenv”

(Listing 4-21).

Listing 4-21.  Starting a Virtual Environment

$ python3 -m venv wineenv

$ source wineenv/bin/activate

You are now ready to work in your virtual environment. Let’s see if we can run the

web application locally by calling “python3” (or use the commands that work for your

OS; Listing 4-22).

Listing 4-22.  Run a local version of the web application

$ python3 application.py

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

149

It won’t work, as we are in a clean virtual environment with no specialized Python

libraries loaded. You will need to install all the libraries it is complaining about

(substitute with the appropriate installation commands for your OS and software). The

easiest is to “pip3 install” the included “requirements.txt” file (Listing 4-23).

Listing 4-23.  Installing Requirements

$ pip3 install -r requirements.txt

We have a comprehensive requirements.txt file containing all the Python libraries

needed to run our web application. This really isn’t of use for this local version of our web

application but will be required for our cloud-based version.12 Whenever you deploy your

application, whether on Amazon, Google, or Microsoft’s cloud, it uses the requirements

file to install all the needed Python libraries wherever it runs your web application from.

Getting back to our local version experiment, run the same commands you ran for

our previous Flask experiments (Listing 4-24).

Listing 4-24.  Run a Local Version of the Web Application

$ python3 application.py

Then copy the URL: “http://127.0.0.1:5000/” (or whatever is stated in the terminal

window) into your browser and you should see the web Wine Quality Designer

application appear (Figure 4-8). Hopefully it worked; if not, read the output errors and

address them accordingly (remember that this chapter requires Python 3.x).

12�https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-
requirements.html

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-requirements.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/python-configuration-requirements.html

150

�Amazon Web Services (AWS) Elastic Beanstalk
For our cloud-based portion of this chapter, we are going to host our application on

Amazon’s Elastic Beanstalk. It’s a convenient hosting solution that packages your

site, deploys, scales, and balances it automatically. It offers logging, traffic and health

monitoring stats in a convenient web-based dashboard to keep you informed on what

is going on. This should allow you to focus on your application and forget about site

administration almost entirely.

You will need an Amazon Web Service account and setup security credentials. If you

already have an Amazon.com account, you should be able to transfer it with little trouble

to AWS. If you are new to this service, you can create a free-tier account that will give you

access to basic Beanstalk features. Go to AWS Free Tier (https://portal.aws.amazon.

com/gp/aws/developer/registration/index.html).

Figure 4-8.  Web application running on local server

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

151

�Create an Access Account for Elastic Beanstalk
Once you have your AWS account, it is time to setup your security credentials in order

to interact with AWS Elastic Beanstalk from your computer. A great guide to step

you through that permission process is Amazon’s Getting Started tutorial (https://

aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-

beanstalk/).

Log into the AWS web console and go to the Identity and Access Management (IAM)

console. A quick way there is to simply type “IAM” in the AWS services search box on the

landing page. Select “Users” in the navigation section and click the “Add user” button

(Figure 4-9).

Figure 4-9.  Creating a user in AWS

Select a user name—here we enter “ebuser” and check “Access type: Programmatic
access” (Figure 4-10).

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk
https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk
https://aws.amazon.com/getting-started/tutorials/set-up-command-line-elastic-beanstalk

152

Click the blue “Next: Permissions” button. This will take you to the “Set
permissions” page; click the “Add user to group” large menu button, then click “Create
group” (Figure 4-11).

Figure 4-11.  Giving WSElasticBeanstalkFullAccess to new user

Figure 4-10.  Assigning programmatic access to our new user

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

153

Create a group name, “ebadmins” in this case, and assign it the policy name

“WSElasticBeanstalkFullAccess.” Then click the “Create group” button to finalize the

group. Click the “Next: review” blue button and, on the following page, click the blue

“Create user” button (Figure 4-12).

Figure 4-12.  Download access key after successfully creating a user

Once you see the “Success” message, this means you have successfully created the

“ebuser” account. Make sure you download the “.csv” file to your local machine by

clicking on the “Download .csv” button. This file is important, as it holds your key and

secret code. Store it in a known location on your local machine, as you will need that

information to connect and Secure Shell (SSH) into your EB.

�Elastic Beanstalk
We’ll refer to the Elastic Beanstalk as EB going forward. We need to install the “awsebcli”

library to interact and manage our EB service on AWS.

For Mac and Linux users (if it complains about the “user” parameter, try without it).

See Listing 4-25.

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

154

Listing 4-25.  Installing “awsebcli”

$ pip install awscli

$ pip install awsebcli

For windows (if it complains about the “user” parameter, try without it).

See Listing 4-26.

Listing 4-26.  Installing “awsebcli” on Windows

$ pip install awscli --user

$ pip install awsebcli --user

For more information on installing and troubleshooting the “awsebcli” library,

refer to Amazon’s help document: https://docs.aws.amazon.com/elasticbeanstalk/

latest/dg/eb-cli3-install.html.

�EB Command Line Interface
From the AWS help files:

EB is a command line interface (CLI) tool that asks you a series of questions
and uses your answers to deploy and manage Elastic Beanstalk applica-
tions. This section provides an end-to-end walkthrough using EB to launch
a sample application, view it, update it, and then delete it.13

This is a handy command-line set to commands to initialize, push, control, and

terminate our EB instance.

•	 eb init: initializes the EB service14

•	 eb create: creates a new EB instance

•	 eb open: opens a web page pointing to your EB instance

•	 eb deploy: deploys any changes to code or configuration

•	 eb config: opens EB instance configuration file for reading and

editing

13�https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-
started.html

14�https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-init.html

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-install.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-install.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-init.html

155

•	 eb logs: pulls various log files for the open EB instance

•	 eb terminate: kills the EB instance (always terminate if you don’t

want to keep accruing charges)

For more complete information on EB commands, see https://docs.aws.amazon.

com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html.

We waited until now to install the “awsebcli” library, as we didn’t want any of it to

make it into our requirements.txt file (Listing 4-27).

Listing 4-27.  Initializing “awsebcli”

$ eb init -i

This will ask you a series of questions and you can go with most of the defaults.

Under “Enter Application name” enter “winetest” (Figure 4-13).

If this is your first time running AWS on your computer, it will ask for your

credentials. Open the “credentials.csv” that was downloaded on your machine when

you created a user and enter the two fields required (Figure 4-14).

Figure 4-13.  Creating an application name

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html

156

Go with the Python defaults (it needs to be a 3.x version) but say yes setting up SSH

(Figure 4-15).

Go with the default settings for all the other questions it may ask. Before we create

the web application, you need to customize the WSGI configuration file to inform it that

you will be requiring the Python sub-interpreter mode.

�Fix the WSGIApplicationGroup
When using Python libraries like NumPy, Pandas, or any other Python-heavy libraries,

you need to tell the WSGI to enter a special Python sub-interpreter mode. This is done

because these libraries are more complicated to load and require more threading, etc,

thus are turned off by default (for more information see Python Simplified GIL State

API15). The switch entails adding the variable in Listing 4-28 to the configuration file (this

is from a Stackoverflow solution16). A copy of the file is included in the downloads or

you can use the one provided in the folder (this is a hidden folder that you may or may

not be able to see—if you aren’t sure, try creating the folder as per instructions and if it

complains, that means you already have it).

15�http://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.
html#python-simplified-gil-state-api

16�https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-
timed-out-before-returning-headers-application-p

Figure 4-15.  Creating an SSH key

Figure 4-14.  Entering your credentials

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

http://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.html#python-simplified-gil-state-api
http://modwsgi.readthedocs.io/en/develop/user-guides/application-issues.html#python-simplified-gil-state-api
https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-timed-out-before-returning-headers-application-p
https://stackoverflow.com/questions/41812497/aws-elastic-beanstalk-script-timed-out-before-returning-headers-application-p

157

Listing 4-28.  Adding the ‘WSGIApplicationGroup’ Variable

'WSGIApplicationGroup %{GLOBAL}'

To turn this on, you need to create a new folder under the “web-application”

folder called “.ebextensions.” Enter the command in Listing 4-29 in your local terminal

window.

Listing 4-29.  Creating the “wsgi_fix” File

$ mkdir .ebextensions

This will create a new folder called “.ebextensions” and open a “vi” window, which

is a simple text editor. Hit the “i” key to switch from read-only to “insert” mode and

paste the following line at the end of the document (a text file of this fix is also included

in the folder with the documents for this chapter). The process reading this file is very

finicky; if there are added spaces or tabs, it will fail. Keep a close eye for any errors during

the deployment process relating to the file and address accordingly.

Open “vi” from your local terminal window (Listing 4-30).

Listing 4-30.  Open a “vi” Session and Hit “i” to Enter Insert Mode

$ vi .ebextensions/wsgi_fix.config

Paste the following code into it (the code can be copied from file “ebextensions_fix.
txt” in the downloads for this chapter). This is very finicky; a misplaced tab will break

this process, so I recommend getting the content from the downloads or using the

default file already provided (Listing 4-31).

Listing 4-31.  Paste the Following Code into Your “vi” Session

#add the following to wsgi_fix.config

files:

 "/etc/httpd/conf.d/wsgi_custom.conf":

 mode: "000644"

 owner: root

 group: root

 content: |

 WSGIApplicationGroup %{GLOBAL}

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

158

Now hit “escape” to exit “insert” mode and enter read-only mode, and type “:wq” to

write and quit “vi” (Listing 4-32).

Listing 4-32.  Save and Quit “vi” Session

:wq

Next you need to create your EB.

�Creating the EB
Now we are ready to create our web application. Run the “eb create” command with the

name of the application created earlier (Listing 4-33).

Listing 4-33.  Initializing “awsebcli”

$ eb create winetest

This will take a few minutes, and you should get a success message if all goes well.

Then you can simply use the “eb open” command to view the web application live.

�Take if for a Spin
It may take a little bit of time to run the application the first time around and it may

even timeout. If that is the case, try the “eb open” command one more time (Listing 4-34

and Figure 4-16).

Listing 4-34.  Open Web Site with the Following Command

$ eb open

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

159

�Don’t Forget to Turn It Off!
Finally, we need to terminate the Beanstalk instance so as not to incur additional

charges. This is an important reminder that most of these cloud services are not free

(Listing 4-35).

Listing 4-35.  Terminate Your Instance

$ eb terminate winetest

It does take a few minutes but will take the site down. It is a good idea to double-

check on your AWS dashboard that all services are indeed turned off. This is easy to do:

simply log into your AWS account at https://aws.amazon.com/ and make sure that your

EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan on

having. In case you see an instance that seems to keep coming back to life after each time

you “terminate” it, check under EC2 “Load Balancers” and terminate those first, then

Figure 4-16.  The Wine quality designer running on AWS elastic beanstalk

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://aws.amazon.com/

160

terminate the instances again. Once you are done, you can also deactivate your virtual

session (Listing 4-36).

Listing 4-36.  Deactivate Your Virtual Environment

$ deactivate

It is always a good idea (essential idea really) to log into your account in the cloud

and make sure everything is turned off (be warned: if you don’t, you may get an ugly

surprise at the end of the billing cycle). Log into your AWS account and make sure that

your EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan

on having (Figures 4-17 and 4-18).

Figure 4-17.  Checking for any active and unwanted instances on the AWS
dashboard

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

161

In case you see an instance that seems to keep coming back to life after each time

you “Delete application,” check under EC2 “Load Balancers” and terminate those first,

then go back and terminate the rogue instance again (Figure 4-19).

Figure 4-18.  Locate the instance you want to terminate or delete and select your
choice using the “Actions” dropdown button

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

162

�Steps Recap
Let’s power through the steps to get the Wine Quality Designer web application deployed

on Amazon Web Services.

Step 1: Start virtual environment

$ python3 -m venv wineenv

$ source wineenv/bin/activate

Step 2: Install Python libraries

$ pip3 install -r requirements.txt

Step 3: Test web application locally

$ python3 application.py

Figure 4-19.  “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

163

Step 4: Create the wsgi_fix.config file

$ mkdir .ebextensions

$ vi .ebextensions/wsgi_fix.config

#add the following to wsgi_fix.config

files:

 "/etc/httpd/conf.d/wsgi_custom.conf":

 mode: "000644"

 owner: root

 group: root

 content: |

 WSGIApplicationGroup %{GLOBAL}

Step 5: Elastic Beanstalk

$ eb init -i

$ eb create winetest

$ eb open

Step 6: Terminate web application

$ eb terminate

Step 7: Exit virtual environment

$ deactivate

�Troubleshooting
There are all sorts of things that can go wrong between your working local web

application and a working one in the cloud. The first stop if you are not seeing what you

were expecting is the logs!

�Access the Logs
If you are having issues, check the logs and look for any errors. Logs can be accessed

directly in the terminal window with the following command in Listing 4-37.

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

164

Listing 4-37.  Accessing the Logs

$ eb logs

Logs also can be accessed on the Amazon Elastic Beanstalk dashboard page

(Figure 4-20).

Select the last 100 lines of logs (Figure 4-21).

�SSH into your Instance
If you want to SSH directly into your new instance, see Listing 4-38 and Figure 4-22.

Listing 4-38.  SSH into Your Instance

$ eb ssh

Figure 4-20.  Accessing the logs

Figure 4-21.  Requesting the last 100 lines

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

165

It will ask you if you want to SSH into your instance; type “yes” (Figure 4-23).

You’re in! This is the AWS Beanstalk instance that you just created with the

“eb create” command.

�Conclusion
In this chapter we created a web application around wine quality using colorful images

and inviting sliders (who can resist a slider?). The backend processing relied on real-time

processing using Ajax for instant feedback without having to refresh the whole

page—pretty cool.

There is plenty of great free material on the web regarding AWS Elastic Beanstalk and

EB with Flask.

•	 Getting started with EB: https://docs.aws.amazon.com/

elasticbeanstalk/latest/dg/command-reference-get-started.html

Figure 4-22.  SSH’ing directly into your Elastic Beanstalk instance

Figure 4-23.  Instance ready

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-get-started.html

166

•	 Deploying a Flask Application to AWS Elastic Beanstalk: simple

Flask example on AWS Beanstalk: https://docs.aws.amazon.com/

elasticbeanstalk/latest/dg/create-deploy-python-flask.

html#python-flask-

•	 Managing Elastic Beanstalk Environments with the EB CLI:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/

eb-cli3-getting-started.html

Amazon Web Services is the leader in the cloud space today. It has over a decade

of market dominance and that is one of its strengths. Some reasons users may look

elsewhere are for diversity, redundancy, and cost savings.

Chapter 4 Pretrained Intelligence with Gradient Boosting Machine on AWS

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html#python-flask-
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html

167
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_5

CHAPTER 5

Case Study Part 1:
Supporting Both Web
and Mobile Browsers
Predicting the stock market with web and mobile platforms support on

PythonAnywhere.com.

For the first part of our case study, we are going to create a simple trade alerting

system. The tool will scan a number of stocks and alert the viewer of any interesting

trade setups. The design will be kept simple to work well on both regular and mobile web

pages (Figure 5-1).

Figure 5-1.  The final web application for this chapter

168

Machine learning and quantitative trading go hand in hand. This shouldn’t come

as a surprise, as the premise of machine learning is about unearthing patterns, and who

doesn’t want to find patterns in the stock market? In this chapter we start working on the

book’s case study, where we develop the core trading signal strategy and dissemination

application (keep in mind that this isn’t a real trading system, just another interesting

applied example of a web application). We will continue to improve this application in

subsequent chapters. We’ll base our fictional trading system on a popular pair-trading

approach.

Note  Download the files for Chapter 5 by going to www.apress.
com/9781484238721 and clicking the source code button. Open Jupyter
notebook “chapter5.ipynb” to follow along with this chapter’s content.

�The Pair-Trading Strategy
The idea behind pair trading is that related stocks tend to move together, so when we

find stocks behaving abnormally by moving away from each other, we short the highest

and buy the lowest in hopes that they revert to the mean. Another advantage to pairs

trading is that you are removing the market’s volatility by being both long and short in

the market at the same time. Obviously, a real pair-trading strategy would have a lot

more checks and safeguards before considering a trade, and there is never any guarantee

that two values will move in the intended direction. For example, if the company is being

investigated for fraud or a particular business model just doesn’t make sense anymore,

then buying it in hope that it increases in value may be a wishful proposition.

In our case and in a nutshell, we will use the last 90 trading periods to track an

index-member stock against the index itself. Then we will consider the stock with the

widest positive spread for a “short” trade. This is when we borrow a stock and sell it on

the market. If it goes down, we repurchase it, return it to its original owner, and pocket

the difference. Of course, the borrowed stock can rise and you will lose money when you

have to repurchase it to return it to its owner.

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

169

And we will consider the stock with the widest negative spread as a “long” trade.

Let’s take a look at an example where Boeing Co (“BA”) is strong and above the Dow

Jones Index (“^DJI”) and 3M Co (“MMM”) is weak and below the Dow Jones Index

(“^DJI”). So the trade would be to buy “MMM” and short “BA” (Figure 5-2).

�Downloading and Preparing the Data
We will compare a subset of stocks that are part of the Dow Jones Industrial Average
Index (^DJI) against the index itself, and buy the lowest stock and short the highest one.

The DJI, is an index based on 30 large publicly traded stocks in the US. The weighting is

calculated on the sum price of the share of each company.

For our case study, we are going to keep things simple by focusing only on the top

ten, highest weighted stocks contained in the Dow Jones Industrial Average Index,

shown in Table 5-1. Go ahead and download the files for this chapter into a folder called

“chapter-5.” Open up the Jupyter notebook to follow along.

Figure 5-2.  An example of a spread between BA, MMM, and the Dow Jones Index

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

170

You can access a snapshot of this data in the repository for this chapter. And if you

want to access current data, you can manually download the files from Yahoo Finance.

For example, if you wanted to get the latest historical prices for Apple, simply enter the

following link:

https://finance.yahoo.com/quote/AAPL/history?p=AAPL.

Select the “Time Period” desired (one year’s worth should do the trick), click

“Apply,” and finally, click the “Download Data” link. This will download a CSV file onto

your machine with the requested data. This is a great free service currently offered by

Yahoo Finance. You can also use other financial data services if this one doesn’t work for

you, as stock data is pretty much universal.

Let’s take a look at one the CSV files included for this project. We’ll load “^DJI,”

which is the Dow Jones index and the benchmark we’ll use to understand the movement

of our ten stocks (Listing 5-1 and Figure 5-3).

Listing 5-1.  Top Rows of the DJI CSV

DJI = pd.read_csv('^DJI.csv')

DJI.head()

Table 5-1.  Top 10 Highest Weighted Stocks Contained

in the Dow Jones Industrial Average Index

Company Name Stock Symbol

Boeing BA

Goldman Sachs GS

UnitedHealth Group UNH

3M MMM

Home Depot HD

Apple AAPL

McDonalds MCD

IBM IBM

Caterpillar CAT

Travelers TRV

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

https://finance.yahoo.com/quote/AAPL/history?p=AAPL

171

Figure 5-3.  First five rows from the DJI CSV

�Preparing the Data
We automate the loading of all stocks and index CSV files. This should allow you to add

and remove stock files with ease (Listing 5-2).

Listing 5-2.  Loop Through Each CSV and Create on Data Frame

stock_data_list = []

for stock in index_symbol + stock_symbols:

 tmp = pd.read_csv(stock + '.csv')

 tmp['Symbol'] = stock

 tmp = tmp[['Symbol', 'Date', 'Adj Close']]

 stock_data_list.append(tmp)

stock_data = pd.concat(stock_data_list)

The code snippet loops through each stock “CSV” file, pulls the data into a Pandas

dataframe, adds a new column to hold the stock-symbol name, and appends it to the

“stock_data_list” list. Once it has collected all the files, it uses the Pandas “concat()”

function to create a single data frame containing all ten stocks and the index (Listing 5-3

and Figure 5-4).

Listing 5-3.  Top Rows of the “stock_data” Data Frame

stock_data.head()

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

172

�Pivoting by Symbol
To make working with multiple stocks a bit easier, we are going to drop all fields except

for “Date” and “Adj Close.” We’ll then pivot them all into one big table (see the Jupyter

notebook for this chapter for more details on this process). This approach scales well,

as I’ve successfully concatenated over 3,000 stocks with ten years of data for analysis

(Listing 5-4 and Figure 5-5).

Listing 5-4.  Pivot and Make Symbol Column Header and Date Row Index

stock_data = stock_data.pivot('Date','Symbol')

stock_data.columns = stock_data.columns.droplevel()

stock_data.head()

Figure 5-4.  Concatenated data frame with symbol feature added

Figure 5-5.  Final stock data frame with each stock pivoted into its own column

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

173

This is going to make working with this data and comparing each symbol against the

index a lot easier to automate.

�Scaling the Price Market Data
In order to compare moves between differently priced assets, we need to normalize the

data. In essence, we are going to rescale all the prices into a common scale. There are

many ways of achieving this, and in this web application we will use the percent change

and cumulative sum.

�Percent Change and Cumulative Sum
A very simple way to do this is to transform our price data into percentage changes and

apply a rolling sum, known as a cumulative sum (Listing 5-5 and Figure 5-6).

Listing 5-5.  Applying Percent Change and Cumulative Sum to APPL

pd.DataFrame({"Price":stock_data['AAPL'], "PercentChange":stock_

data['AAPL'].pct_change().cumsum()}).head()

Figure 5-6.  Price, percentage change, and percent change cumulative sum

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

174

The first price in the transformation at date “2017-11-22” is lost to a non-number

value, or “NaN,” as we have nothing prior to it to compare against. The second price

of 174.259521 has a positive percentage change, as it is up from the previous price of

174.249573. The cumulative change column sums all these changes in temporal order.

The “PercentChangeCumSum” column becomes a series of data that we can compare

against any other stock series, regardless of their values and ranges—a very useful

transformation for comparative analysis.

�Plotting the Spread
Now that we have the percentage change cumulative sum, we can easily plot the

difference between the index and one of its stocks.

We’ll start with the cumulative sum percentage difference between the “DJI” and

“BA” (Boeing) and the “DJI” and “AAPL” (Apple). “BA” is showing a lot of positive

strength against the “DJI” index for the period tracked (90 trading days between

11/22/1017 and 4/4/2018). The way to read the chart is to think of the green “0” line as

the stabilized index and the blue squiggly line as the difference in the stock member

(Figure 5-7).

Figure 5-7.  Cumulative spread between the Dow Jones Index and Boeing, where
the stock is showing a lot of strength compared with the index

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

175

The opposite is happening for “AAPL”; it is showing strong negative weakness

compared with the “DJI” index for the same period (Figure 5-8).

And now let’s imagine a fictional trade. What if we went short on “BA” around

12/29/2017 and went long on “AAPL” around the same time. Obviously this is picking stocks

in hindsight, but you would have lost money on “BA” and made a lot more on “AAPL”,

making this pair trade profitable. Of course, you will have to make sure you are invested in

equivalent dollar quantities on both sides for this to work (more on this shortly).

�Serving up Trading Ideas
Now that we have a basic idea of the type of trades we’re after, let’s find some active

setups to offer to our readers.

�Finding Extreme Cases
Let’s assume that the financial data we’re holding is up to date. In order to find the

strongest positive and strongest negative stocks against the “DJI,” we simply need to

create a data frame to hold all our stocks for the desired 90 day look-back period, apply

percentage and cumulative sum to all of them, then look for the largest and smallest last-

day trading price. Let’s walk through this in more detail.

Figure 5-8.  Cumulative spread between the Dow Jones Index and Apple, where
the stock is showing weakness compared with the index

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

176

Let’s apply this to all of our stocks. As we will track differences only over the last 90

trading days (this can be adjusted for experimentation), we will drop older data

(Listing 5-6).

Listing 5-6.  Only Using the Last 90 Trading Days of Data

stock_data = stock_data.tail(90)

Let’s loop through each symbol and compare the last percentage change cumulative

sum against the DJI and store them for comparison in the dictionary “last_distance_
from_index” (Listing 5-7).

Listing 5-7.  Getting the Distance Between Stocks and the Index

stock1 = '^DJI'

last_distance_from_index = {}

temp_series1 = stock_data[stock1].pct_change().cumsum()

for stock2 in list(stock_data):

 # no need to process itself

 if (stock2 != stock1):

 temp_series2 = stock_data[stock2].pct_change().cumsum()

 �# �we subtract the stock minus the index, if stock is strong

compared

 # to index, it will show a positive value

 diff = list(temp_series2 - temp_series1)

 last_distance_from_index[stock2] = diff[-1]

Let’s see what we caught in our dictionary (Listing 5-8).

Listing 5-8.  Analyzing the Distances Between Our Stocks and the Index

Input:

print(last_distance_from_index)

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

177

Output:

{'AAPL': -0.042309986580456815,

 'BA': 0.1960194615751124,

 'CAT': 0.03379845694757866,

 'GS': 0.047454711281622486,

 'HD': 0.014178592951754165,

 'IBM': -0.003376107031365594,

 'MCD': -0.06239853566933862,

 'MMM': -0.08366228603707737,

 'TRV': 0.04601871807501723,

 'UNH': 0.060732956928879145}

Just by looking at the dictionary, we see that “BA” has the highest value and that

“MMM” has the lowest.

�Making Recommendations
We need to pull these values programmatically if we want to automate the process or

scale this up to thousands of stocks. Let’s use the convenient lambda functions. This is a

style of function that can easily be nested into dictionaries and apply transformations or,

in our case, finding the minimum and maximum values in a dictionary (Listings 5-9

and 5-10).

Listing 5-9.  Applying a Lambda Function to Find the Minimum Value in Our

Dictionary

Input:

weakest_symbol = min(last_distance_from_index.items(), key=lambda x: x[1])

print('Weakest symbol: %s' % weakest_symbol[0])

Output:

Weakest symbol: MMM

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

178

Listing 5-10.  Applying a Lambda Function to Find the Maximum Value in Our

Dictionary

Input:

strongest_symbol = max(last_distance_from_index.items(), key=lambda x: x[1])

print('Strongest symbol: %s' % strongest_symbol[0])

Output:

Strongest symbol: BA

Let’s visualize the two extreme cases: “BA” and “MMM” (Figures 5-9 and 5-10).

Figure 5-9.  The strongest stock of the set vs. the Dow Jones Index

Figure 5-10.  The weakest stock of the set vs. the Dow Jones Index

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

179

We now have our two recommendations and what they look like plotted on a graph

(Figure 5-11).

	 1.	 Buy “MMM”

	 2.	 Short “BA”

�Calculating the Number of Shares to Trade
You want to get into the market with equal dollar amounts on your long and short

positions. In other words, you want to be dollar neutral (granted this is harder with

smaller budgets or stocks that trade at big values).

You need to set a budget value, the total number of dollars that you are willing to

use for the trade (though I refer to dollars for this use-case, any other currency can be

substituted). For this example, we’ll go with $10,000 (Listing 5-11).

Listing 5-11.  Setting Our Trading Budget

trading_budget = 10000

As we are dealing with dollar amounts, we need to use the actual stock price, not our

percent change and cumulative sums. We will continue working with “BA” and “MMM”

(Listing 5-12).

Figure 5-11.  Recommendation from our algorithm: short BA, buy MMM

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

180

Listing 5-12.  Getting the Last Trading Price for Both Recommended Stocks

Input:

short_symbol = strongest_symbol[0]

short_last_close = stock_data[strongest_symbol[0]][-1]

print('Strongest symbol %s, last price: $%f' % (strongest_symbol[0],

short_last_close))

long_symbol = weakest_symbol[0]

long_last_close = stock_data[weakest_symbol[0]][-1]

print('Weakest symbol %s, last price: $%f' % (weakest_symbol[0],

long_last_close))

Output:

Strongest symbol BA, last price: $327.440002

Weakest symbol MMM, last price: $217.559998

Let’s apply the trading budget and figure out how many shares of each we can trade.

The formula is simply to divide half the budget against the price of the stock (Listing 5-13

and Listing 5-14).

Listing 5-13.  Getting the Last Trading Price for the First Recommended Stock

Input:

print('For %s, at $%f, you need to short %i shares' %

 �(short_symbol, short_last_close, (trading_budget * 0.5) /

short_last_close))

Output:

For BA, at $327.440002, you need to short 15 shares

Listing 5-14.  Getting the Last Trading Price for the Second Recommended Stock

Input:

print('For %s, at $%f, you need to buy %i shares' %

 �(long_symbol, long_last_close, (trading_budget * 0.5) /

long_last_clse))

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

181

Output:

For MMM, at $217.559998, you need to buy 22 shares

So, in order to make a dollar-neutral pair trade, we need to short 15 shares of “BA”

and buy 22 shares of “MMM.” This should make sense, as 327 times 15 is a around

$5,000, and 217 times 22 is around $5,000 as well.

�Designing a Mobile-Friendly Web Application
to Offer Trading Ideas
Let’s get to work and build our local Flask application that will offer trading

recommendations. As usual, we have to ask ourselves what is it that we want our end

users to experience.

This is going to be a simple application. In the first part of our case study, we’ll

simply offer up trading ideas based on the strategy in a visually pleasant manner using

large colored arrows and clear instructions. The user will be able to input their total

budget for the trade and the application will calculate the quantity of shares to buy and

sell in order to remain dollar neutral.

�Fluid Containers
The application also needs to be mobile friendly. This means it needs to make use of

“responsive fluid containers” from Bootstrap. Bootstrap 3 is mobile friendly out of the

box1 but we can enhance and control specific behavior by using the right tagging.

Most scripts in this book follow some of the “responsive” behavior recommended,

such as offering proper page rendering and touch zooming that you will see in each

project’s headers (Listing 5-15).

1�https://getbootstrap.com/docs/3.3/css/

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

https://getbootstrap.com/docs/3.3/css/

182

Listing 5-15.  Handling Different Web Viewing Devices

<meta name="viewport" content="width=device-width, initial-scale=1">

We will add fluid containers to create smart rendering, depending on the device

or size of web page used to view the site. In normal mode, we see the wide version

where the green and red arrows are drawn on the right and left sides of the page

(Figure 5-12).

And when the application is viewed on a mobile or narrow page, we see a version

where the green and red arrows render above and below the “Budget Limit:” text box

(Figure 5-13).

Figure 5-12.  Web application in wide mode for computers and tablets

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

183

This ensures that the application is always easy to use no matter the format. For more

on this topic, see “Bootstrap Grid Examples” on w3schools at https://www.w3schools.

com/bootstrap/bootstrap_grid_examples.asp.

�Running the Local Flask Version
Download the files for Chapter 5 to your local machine if you haven’t done so already.

In a command/terminal window, enter the “web-application” folder. Your file structure

should look like Listing 5-16.

Figure 5-13.  Web application in narrow mode for mobile devices

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

https://www.w3schools.com/bootstrap/bootstrap_grid_examples.asp
https://www.w3schools.com/bootstrap/bootstrap_grid_examples.asp

184

Listing 5-16.  Our Web Application’s File Structure

web-application

├── ^DJI.csv
├── AAPL.csv
├── BA.csv
├── CAT.csv
├── GS.csv
├── HD.csv
├── IBM.csv
├── main.py
├── MCD.csv
├── MMM.csv
├── TRV.csv
├── UNH.csv
├── static
 ├── images:
 ├── down-arrow.png
 ├── ticker-title.png
 └── up-arrow.png
└── templates:
 └── index.html

You can install all the required Python libraries by running the “pip3 install -r”

command (Listing 5-17).

Listing 5-17.  Installing Requirements

$ pip3 install -r requirements.txt

Go ahead and take if for a spin by typing the “python3 main.py” command in your

terminal window (Listing 5-18).

Listing 5-18.  Our Local Web Application

$ python3 main.py

You should see the “Pair Trading Booth” web application (Figure 5-14).

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

185

�What’s Going on Here?
Compared with the other sites we’ve built so far, this chapter is fairly straightforward. We

did implement some mobile-friendly tags that were discussed earlier, and here are two

more things worthy of mention.

�Bootstrap Input Field Validation
Bootstrap has great form-validation features that are trivial to implement. By just telling

Bootstrap what the data type of an input field is, it can handle it automatically for you

and save you a lot of coding and form processing headaches (Listing 5-19).

Listing 5-19.  Bootstrap Field Validation

<input type="number" class="form-control" value="" name=...>

To see it in action, try entering a non-numeric character in the “Budget Limit” input

box and you will see the front end pop up a message box stating that you can only enter

numbers. This is a phenomenal feature to leverage, especially in this day-and-age of text

injection attacks (Figure 5-15).

Figure 5-14.  Local rendering of the web application

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

186

For more information on these form validators, check out the Bootstrap

documentation at: https://getbootstrap.com/docs/4.0/components/forms/.

We will keep building out the “Pair Trading Booth” web application in the next

sections, so keep the code handy.

�Running on PythonAnywhere
Log into your PythonAnywhere account you used in Chapter 1. Navigate to the “Files”

button on the top right of the dashboard. Create a new folder on PythonAnywhere called

“pair-trading-booth.” Click on the “Files” link in the top menu bar, then enter “pair-
trading-booth” in the directories text box and hit “New Directory” (Figure 5-16).

Figure 5-16.  Creating our site’s root directory

Figure 5-15.  Form-validation in action and rejecting a non-numeric character

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

https://getbootstrap.com/docs/4.0/components/forms

187

Enter the “pair-trading-booth” folder and create two more folders under it: “static”

and “templates.”

Right under the “pair-trading-booth” directory, hit the “Upload a file” button

and upload all “CSV” files and the “main.py” file under the “web-application” folder

for this chapter. Unfortunately you will need to do this once for every file, so 12 times

(Figure 5-17).

Your folder structure should look like Listing 5-20.

Listing 5-20.  File Structure on PythonAnywhere

^DJI.csv

AAPL.csv

BA.csv

CAT.csv

GS.csv

HD.csv

IBM.csv

main.py

MCD.csv

MMM.csv

TRV.csv

Figure 5-17.  Uploading files manually to the cloud

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

188

UNH.csv

├── static
└── templates

Next, enter the “static” folder and create an “images” folder. Enter the “images”

folder and upload all the “PNG” files. Your folder should look like Listing 5-21.

Listing 5-21.  File Structure on PythonAnywhere

└── static:
 └── images:
 ├── down-arrow.png
 ├── ticker-title.png
 └── up-arrow.png

Backtrack to the “templates” folder and enter it and upload; you guessed it, the

“index.html” file. The final full structure should look like Listing 5-22.

Listing 5-22.  File Structure on PythonAnywhere

^DJI.csv

AAPL.csv

BA.csv

CAT.csv

GS.csv

HD.csv

IBM.csv

main.py

MCD.csv

MMM.csv

TRV.csv

UNH.csv

└── static:
 └── images:
 ├── down-arrow.png
 ├── ticker-title.png
 └── up-arrow.png

└── templates:
 └── index.html

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

189

The file structure is exactly the way we want it. Now we need to work on the web

settings to tell PythonAnywhere what to serve and how. Click the “Web” tab.

�Fixing the WSGI File
We need to set up the Web Server Gateway Interface file (WSGI). The WSGI file is a

common interface between different web frameworks and the Python programming

language.

�Source Code
Click on the “Web” menu button on PythonAnywhere (Figure 5-18).

Scroll down to the “Code” section and change the “Source code” path to end with

“pair-trading-booth” (Listing 5-23).

Listing 5-23.  Find the “mysite” Source Code Link

Source code: /home/<YOUR-ACCOUNT-NAME>/mysite

Change “mysite” to “pair-trading-booth” (Listing 5-24).

Listing 5-24.  Update the Source Code Link with Our Web Application Path

Source code: /home/<YOUR-ACCOUNT-NAME>/pair-trading-booth

This way, PythonAnywhere knows where to find the source code (Figure 5-19).

Figure 5-18.  Enter the Web tab on PythonAnywhere

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

190

�WSGI Configuration
Next, and in the same section, update the “WSGI configuration file.” Click on the link

shown in Figure 5-20.

There are two edits to perform on this file. Update the “project_home” variable to

include your account name (which it should do automatically), and change the folder

name to “pair-trading-booth.” This informs the web server that the “pair-trading-
booth” folder is where it will find all the files needed to serve the web application. Next,

update the last line of the script to import from “main” (short for main.py) as shown in

Listing 5-25.

Listing 5-25.  Updating the WSGI Configuration File

This file contains the WSGI configuration required to serve up your

web application at http://<your-username>.pythonanywhere.com/

It works by setting the variable 'application' to a WSGI handler of some

description.

#

The below has been auto-generated for your Flask project

Figure 5-20.  Click on the “WSGI configuration file” link to update the
configuration file

Figure 5-19.  You should end up with the correct application name in the source
code text box

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

191

import sys

add your project directory to the sys.path

project_home = u'/home/<YOUR-ACCOUNT-NAME>/pair-trading-booth'

if project_home not in sys.path:

 sys.path = [project_home] + sys.path

import flask app but need to call it "application" for WSGI to work

from main import app as application

After editing the file, hit the green “Save” button in the upper right corner and click

on the “Web” tab again (Figure 5-21).

�Reload Web Site
There’s only one more thing to do and that is the to hit the big green “Reload <<YOUR
ACCOUNT>>.pythonanywhere .com” button. Click on your website URL and you

should see the “Pair Trading Booth” web application (Figure 5-22).

Figure 5-21.  Saving the WSGI configuration file

Figure 5-22.  The big green reload button to update the web server after any changes

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

192

Go ahead, change the “Budget Limit” size and get trades. Also resize the web site’s

window to see the wide vs. mobile display change (Figure 5-23).

�Troubleshooting PythonAnywhere
If you see the “Something went wrong :-(” page (Figure 5-24) instead of the web

application, click on the error log. This will help you pinpoint what went wrong and how

to fix it. Anytime you make a change to server-side scripts, you will need to hit the big

green “Reload <<YOUR ACCOUNT>>.pythonanywhere .com” button.

Figure 5-23.  The pair trading booth web application is live!

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

193

�Conclusion
PythonAnywhere.com is not only extremely simple to use, it is intuitive and, in some

instances, free! This makes it a strong contender to extend simple Python ideas on the

World Wide Web and reach anybody with access to the Internet!

One more thing: because we are only using a free instance on PythonAnywhere,

there is no urgency to terminate the service whenever not in use. You can let this run and

show your friends and family. This won't be the case for some of the bigger providers—if

you leave your page up and running on some of them, you will incur charges.

And I’ll relentlessly keep reminding you to turn the services off after each chapter.

Figure 5-24.  Link to the error and server log files in case something isn’t right

Chapter 5 Case Study Part 1: Supporting Both Web and Mobile Browsers

http://pythonanywhere.com

195
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_6

CHAPTER 6

Displaying Predictions
with Google Maps
on Azure
Where will crime happen next in San Francisco? Let’s build an interactive predictive

mapping dashboard using Google Maps and Microsoft Azure.

We step up our game once more by displaying information using the powerful

Google Maps API. We will build a web dashboard to predict, map, and visualize

crime in San Francisco (Figure 6-1). We will use a dataset from “DataSF | San
Francisco Open Data” derived from the real and regularly updated SFPD Crime

Incident Reporting System. With minimal work, we can benefit from the world’s

most popular mapping framework.

196

Figure 6-1.  The final web application for this chapter

Note  Download the files for Chapter 6 by going to www.apress.com/
9781484238721 and clicking the source code button. Open the Jupyter notebook
“chapter6.ipynb” to follow along with this chapter’s content.

Chapter 6 Displaying Predictions with Google Maps on Azure

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

197

�Planning our Web Application
This is an ambitious project, as we’re going to build an application that will predict and

visualize where crime will happen in the future. Not only does it require a modeling

layer around crime data and time, but also a visualization layer that needs to be intuitive,

inviting, and appealing.

�Exploring the Dataset on SF Crime Heat Map
on DataSF
If you want to access some up-to-date crime data for a big city, look no further than DataSF.1

It actually offers a lot more than just crime data; as of the last time I checked, it had over 462

published datasets available on a variety of topics around the city of San Francisco.

We will be using the SF Crime Heat Map; it has fairly current data, usually updated

at the end of each month. The DataSF also has a dashboard where you can visualize the

data on a map—cool stuff (see it at https://data.sfgov.org/Public-Safety/SF-Crime-

Heat-Map/q6gg-sa2p/data). Go ahead and download the files for this chapter into a

folder called “chapter-6” and open up the Jupyter notebook to follow along.

This is a fairly large dataset (over 250 MB); so let’s download the data only once

and run off a local copy during subsequent runs. In the Jupyter notebook, run the data-

downloading code and then turn the flag “already_have_the_data” to “True” once the

code has been successfully downloaded and saved locally. This will ensure that any

subsequent run of the notebook will pull the data from your local machine.

The dataset may be different when you download it, as they keep adding data to it.

We use the Pandas “read_csv()” to download it and save it locally. From a cursory look

at the data, we see that it contains 14 columns and over 1.7 million rows (Listing 6-1).

Listing 6-1.  Get Dataset Shape

Input:

crime_df.shape

Output:

(2192062, 12)

1�https://datasf.org/about/

Chapter 6 Displaying Predictions with Google Maps on Azure

https://data.sfgov.org/Public-Safety/SF-Crime-Heat-Map/q6gg-sa2p/data
https://data.sfgov.org/Public-Safety/SF-Crime-Heat-Map/q6gg-sa2p/data
https://datasf.org/about

198

We see that we have data from 2003 to 2018 (Listing 6-2).

Listing 6-2.  Years Covered by Data

Input:

years = [int(dte.split("/")[2]) for dte in crime_df['Date']]

print('Max year %i, min year %i' % (max(years), min(years)))

Output:

Max year 2018, min year 2003

We also notice that it contains both interesting and not-so-interesting fields

(Listing 6-3).

Listing 6-3.  Feature Names (before any cleanup)

Input:

list(crime_df)

Output:

['IncidntNum',

 'Category',

 'Descript',

 'DayOfWeek',

 'Date',

 'Time',

 'PdDistrict',

 'Resolution',

 'Address',

 'X',

 'Y',

 'Location']

Chapter 6 Displaying Predictions with Google Maps on Azure

199

�Data Cleanup
To make the data easier to work with and more intuitive, we’ll only keep “Category,”

“DayOfWeek,” “Date,” “Time,” “X,” “Y,” and we will rename the “X” and “Y” to

“Longitude” and “Latitude” (Listing 6-4 and Figure 6-2).

Listing 6-4.  Drop Unwanted Features and Rename Columns

crime_df = crime_df[['Category', 'DayOfWeek', 'Date', 'Time', 'X', 'Y']]

crime_df.columns = ['Category', 'DayOfWeek', 'Date', 'Time', 'Latitude',

'Longitude']

crime_df.head()

�Rebalancing the Dataset
Let’s take an exploratory detour and learn more about this data. We’ll start by looking at

the categories and how many reports each contains (Listing 6-5).

Listing 6-5.  Categories in Dataset

Input:

crime_df['Category'].value_counts()

Figure 6-2.  Keeping only useful features with better column header names

Chapter 6 Displaying Predictions with Google Maps on Azure

200

Output:

LARCENY/THEFT 473842

OTHER OFFENSES 306575

NON-CRIMINAL 235669

ASSAULT 192459

VEHICLE THEFT 125983

DRUG/NARCOTIC 118911

VANDALISM 114688

WARRANTS 100512

BURGLARY 90495

SUSPICIOUS OCC 79618

MISSING PERSON 64332

ROBBERY 55332

FRAUD 41104

SECONDARY CODES 25495

FORGERY/COUNTERFEITING 22938

WEAPON LAWS 21991

TRESPASS 19195

PROSTITUTION 16669

STOLEN PROPERTY 11771

SEX OFFENSES, FORCIBLE 11554

DISORDERLY CONDUCT 9988

DRUNKENNESS 9781

RECOVERED VEHICLE 8716

DRIVING UNDER THE INFLUENCE 5629

KIDNAPPING 5307

RUNAWAY 4403

LIQUOR LAWS 4078

ARSON 3887

EMBEZZLEMENT 2961

LOITERING 2420

SUICIDE 1285

FAMILY OFFENSES 1177

BAD CHECKS 921

BRIBERY 804

Chapter 6 Displaying Predictions with Google Maps on Azure

201

EXTORTION 733

SEX OFFENSES, NON FORCIBLE 425

GAMBLING 343

PORNOGRAPHY/OBSCENE MAT 57

TREA 14

Beyond the fact that these are scary categories, you will also notice that the top ones

have the majority of counts. We may need to reorder things into new categories, smaller

and more balanced categories. This is easy to do with Python Pandas. Let’s create the

following logical groups (at least they made sense to me; Listing 6-6).

Listing 6-6.  Higher Level Groupings

THEFT = ["LARCENY/THEFT", "VEHICLE THEFT", "BURGLARY", "ROBBERY", "STOLEN

PROPERTY"]

IMPAIRED = ["DRUNKENNESS", "DRIVING UNDER THE INFLUENCE", "LIQUOR LAWS",

"DISORDERLY CONDUCT", "DRUG/NARCOTIC", "LOITERING"]

VIOLENCE = ["ASSAULT", "VANDALISM", "SUSPICIOUS OCC", "TRESPASS",

"SEX OFFENSES,

FORCIBLE" , "SEX OFFENSES, NON FORCIBLE"]

OTHER = ["OTHER OFFENSES", "NON-CRIMINAL"]

Using NumPy’s handy “select()” function, we can create new super categories

(Listing 6-7).

Listing 6-7.  Using NumPy’s “select()” Feature to Create New Categories

selections = [

 (crime_df['Category'].isin(THEFT)),

 (crime_df['Category'].isin(IMPAIRED)),

 (crime_df['Category'].isin(VIOLENCE)),

 (crime_df['Category'].isin(OTHER))]

new_categories = ['THEFT', 'IMPAIRED', 'VIOLENCE', 'OTHER']

crime_df['CAT'] = np.select(selections, new_categories, default='OTHER')

If we look at our categories by counts, we see that we have a somewhat better

balanced, and more importantly, much shorter set to deal with (Listing 6-8).

Chapter 6 Displaying Predictions with Google Maps on Azure

202

Listing 6-8.  Counts of New Categories

Input:

crime_df_tmp['CAT'].value_counts()

Output:

OTHER 865893

THEFT 757423

VIOLENCE 417939

IMPAIRED 150807

�Exploring by Day-of-the-Week
Let’s break down some of these categories by day-of-the-week. Theft happens most

prevalently on Fridays, followed by Saturdays (Listing 6-9 and Figure 6-3).

Listing 6-9.  Theft by Day-of-the-Week

crime_df_tmp = crime_df[crime_df['CAT'] == 'THEFT']

crime_df_tmp['DayOfWeek'].value_counts().plot(kind='bar')

plt.suptitle('Category: THEFT')

Figure 6-3.  Theft by day-of-the-week

Chapter 6 Displaying Predictions with Google Maps on Azure

203

Let’s break down some of these categories by day-of-the-week. Being “Impaired”

surprisingly happens the most on week days (Figure 6-4).

�Feature Engineering
Let’s transform some of this data into simpler groups that will help us model this in a

more generalizable way.

�Creating a Month-of-the-Year Feature
We’ll start with an easy one and create a month-of-the-year feature. We aren’t interested

in the year, just the month; we’re making the assumption that most Januarys over the

years are similar. This simply entails pulling the first two digits from the date field. Had

it not been in such a clean format, we would have had to cast it as a date field and use

some specialized function (Listing 6-10 and Figure 6-5).

Listing 6-10.  Aggregating by Months

crime_df["Month_of_year"] = [int(dte.split("/")[0]) for dte in crime_

df['Date']]

crime_df["Month_of_year"].value_counts()

Figure 6-4.  Impaired by day-of-the-week

Chapter 6 Displaying Predictions with Google Maps on Azure

204

As expected, we have 12 groups. Let’s plot them and see what month has the most

reported crime (Listing 6-11 and Figure 6-6).

Listing 6-11.  Reported Crime Counts by Month

plt.barh(crime_by_month.index, crime_by_month['Month_of_year'],

align='center', alpha=0.5)

objects = ['Jan','Feb','Mar','Apr','Ma','Jun','Jul','Aug','Sept','Oct',

'Nov','Dec']

plt.yticks(crime_by_month.index, objects)

plt.xlabel('Crime Reports')

plt.title('Total Crime By Month')

plt.show()

Figure 6-5.  Month-of-the-year total reported crime counts table

Chapter 6 Displaying Predictions with Google Maps on Azure

205

We can dig deeper by segmenting the data by crime category (Figure 6-7).

Figure 6-6.  Month-of-the-year total reported crime counts

Figure 6-7.  Month-of-the-year reported crime counts for category “IMPAIRED”

�Creating Time Segments
To simplify our time data, we’re going to segment it into three categories:

•	 Morning

•	 Afternoon

•	 Night

Chapter 6 Displaying Predictions with Google Maps on Azure

206

We’ll reuse our “np.select()” function but there are plenty of other ways of

achieving the same results, like using “np.where()” or comprehensions. We first create

a new feature called “Hour” that extracts the hour of the reported crime from the full

timestamp. We then simply create three time zones on a 24-hour timeline and filter out

which hour fits into which time segment. We end up with three categories that are fairly

well balanced, with a slight skew toward non-am reported crimes (Listing 6-12).

Listing 6-12.  Transform Time Using Categories “AM,” “AFT,” and “NT”

Input:

create AM, AFT, NT

crime_df["Hour"] = [int(hr.split(":")[0]) for hr in crime_df['Time']]

crime_df["Hour"]

create new groups

selections = [

 (crime_df['Hour'] > 5) & (crime_df['Hour'] <=13),

 (crime_df['Hour'] > 13) & (crime_df['Hour'] <= 19),

 (crime_df['Hour'] > 18) & (crime_df['Hour'] <= 5)]

new_categories = [0, 1, 2] # ['AM', 'AFT', 'NIT']

crime_df['Day_Segment'] = np.select(selections, choices, default=2)

crime_df['Day_Segment'].value_counts()

Output:

2 683804

1 674292

0 620236

�Exploring by Time Segment
Reported “IMPAIRED” crimes seem to be more prevalent in the afternoons, while

reported “VIOLENCE” crime seem more prevalent at night (Figures 6-8 and 6-9).

Chapter 6 Displaying Predictions with Google Maps on Azure

207

Note R efer to the Jupyter notebook for this chapter for more graphs.

Figure 6-8.  Breakdown of “IMPAIRED” Reported Crimes by Time Segment

Figure 6-9.  Breakdown of “VIOLENCE” Reported Crimes by Time Segment

Chapter 6 Displaying Predictions with Google Maps on Azure

208

�Visualizing Geographical Data
A great feature of the dataset is that it includes the latitude and longitude of the location

where the crime was reported. This is great for creating location-based models but also

great for visualization. As a matter of fact, you can simply plot the latitude and longitude

in Matplotlib as x and y and get a decent visual representation of the data. Let’s try it

(Listing 6-13 and Figure 6-10).

Listing 6-13.  Plotting Crime by Longitude and Latitude

plt.plot(crime_df['Longitude'].head(50000),

 crime_df['Latitude'].head(50000),

 linestyle='none', marker='.')

plt.show()

As you can see from the plot, we can easily make out the Golden Gate Park, Presidio,

and Lake Merced Park by looking at the space areas (Figure 6-11).

Figure 6-10.  Raw plotting of the longitude and latitude of where the crime was
reported

Chapter 6 Displaying Predictions with Google Maps on Azure

209

�Rounding Geocoordinates to Create Zone Buckets
A trick to working with geocoordinates is that you can round them easily and they

will create a comprehensive grid—for a tighter grid, round less, for a looser one, round

more. We create a simple “rounding_factor” variable to help us better find the proper

perspective needed. Let’s take a look (Listings 6-14 and 6-15; Figures 6-12 and 6-13).

Listing 6-14.  Rounding Geocoordinates

rounding_factor = 4

plt.plot(np.round(crime_df['Longitude'].head(10000),rounding_factor),

 np.round(crime_df['Latitude'].head(10000),rounding_factor),

 linestyle='none', marker='.')

Figure 6-11.  Comparative satellite plot for the same area from Google Maps
(source Google Maps)

Chapter 6 Displaying Predictions with Google Maps on Azure

210

Listing 6-15.  Rounding Geocoordinates

rounding_factor = 2

plt.plot(np.round(crime_df['Longitude'].head(10000),rounding_factor),

 np.round(crime_df['Latitude'].head(10000),rounding_factor),

 linestyle='none', marker='.')

Figure 6-12.  Rounding the longitude and latitude to four numbers after the
decimal point

Figure 6-13.  Rounding the longitude and latitude to two numbers after the
decimal point

Chapter 6 Displaying Predictions with Google Maps on Azure

211

We will go with the last case, rounding the number down to only two numbers after

the decimal point. As you can see from the corresponding figure, it forms a clean and

evenly spaced grid perfect for a generalized perspective of reported crime activities.

As a final Matplotlib experiment, we can create a heat map of crime (Listing 6-16 and

Figure 6-14).

Listing 6-16.  Experimenting with Heatmaps

from matplotlib.colors import LogNorm

x = np.round(crime_df['Longitude'].head(10000),rounding_factor)

y = np.round(crime_df['Latitude'].head(10000),rounding_factor)

fig = plt.figure()

plt.suptitle('Reported Crime Heatmap')

plt.xlabel('Latitude')

plt.ylabel('Longitude')

H, xedges, yedges, img = plt.hist2d(x, y, norm=LogNorm())

extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]]

Figure 6-14.  Heat map of reported crime; clearly, the brightest area is in the
north-east of San Francisco

Chapter 6 Displaying Predictions with Google Maps on Azure

212

�Using the Past to Predict the Future
We are going to aggregate the essential features we’ve created so far into a generalized,

time-based representation. Let’s take a look (Listing 6-17 and Figure 6-15).

Listing 6-17.  Capping the Data Down to Only Essential Features

crime_df = crime_df[['CAT', 'Day_of_month','Month_of_year', 'Day_Segment',

'Longitude', 'Latitude']]

crime_df.head()

The data holds a generalized location portion with the longitude and latitude, and a

generalized time-based portion with the month-of-year, day-of-month, day-segment. We

need to aggregate this information down to the time and location level. This will allow

us to sum up reports and build intensity maps depending on quantity of reports for a

period.

We start by adding a “Count” feature and apply the handy Pandas “groupby()”

function (Listing 6-18 and Figure 6-16).

Listing 6-18.  Aggregating Information by Time and Location

crime_df['Count'] = 0

crime_df_agg = crime_df.groupby(['CAT', 'Day_of_month', 'Month_of_

year', 'Day_Segment', 'Longitude', 'Latitude',]).count().reset_index()

crime_df_agg.tail()

Figure 6-15.  A look at the data that we will feed into our web application

Chapter 6 Displaying Predictions with Google Maps on Azure

213

Now we can ask for a particular date signature and get all the reported crimes per

location (Listing 6-19 and Figure 6-17).

Listing 6-19.  Information Aggregated by Date Signature

Day_of_month = 1

Month_of_year = 1

Day_Segment = 1

crime_df_agg_tmp = crime_df_agg[(crime_df_agg['Day_of_month'] ==

Day_of_month) &

 �(crime_df_agg['Month_of_year'] ==

Month_of_year) &

 �(crime_df_agg['Day_Segment'] ==

Day_Segment)]

crime_df_agg_tmp.head()

Figure 6-16.  Information aggregated down to time and location level

Figure 6-17.  Information aggregated by date signature

Chapter 6 Displaying Predictions with Google Maps on Azure

214

And we can plot this information as well (Figure 6-18).

This chart doesn’t discriminate on count intensity; let’s fix that. We’ll switch from

Matplotlib’s “plot()” to “scatter()” and use the “s” or size parameter (Listing 6-20 and

Figure 6-19).

Listing 6-20.  Scatter Plot of Crime Data Using Dot Sizing

plt.scatter(crime_df_agg_tmp['Longitude'],

 crime_df_agg_tmp['Latitude'], s=crime_df_agg_tmp['Count'])

plt.suptitle(title)

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.show()

Figure 6-18.  Crime estimates for January 1st at night by longitude and latitude

Chapter 6 Displaying Predictions with Google Maps on Azure

215

And for good measure, let’s dial up a completely different time (Figure 6-20).

To conclude our quick estimates, there is more reported crime on January 1st at

night than June 6th in the morning.

Figure 6-19.  Plotting with Matplotlib’s Scatter function and passing the “Count”
feature to adjust dot size for January 1st at night

Figure 6-20.  Looking at reported crime aggregates for June 6th in the morning

Chapter 6 Displaying Predictions with Google Maps on Azure

216

�Google Maps Introduction
If there is one great and easily customizable visualization tool, it’s got to be Google Maps!

Let’s change gears and try our data using Google Maps instead of plain old Matplotlib.

For this part and to get the web application working, you will need to create a free Google

Maps API Key at https://developers.google.com/maps/documentation/javascript/

get-api-key.

In the past you could get Google Maps to work without it, but these days you need it,

and for moderate use you can get away with the free tier.

So, get that key and try this simple example where you input an address and API

key in order to get all sorts of corollary information regarding that location. Enter the

following address and URL link into your browser: “1600 Amphitheatre Parkway,
Mountain View, CA” (Listing 6-21).

Listing 6-21.  If Your API Key Is Valid and the URL Is Well Formed, You Should

See a Long XML Response with Similar Data

Input:

https://maps.googleapis.com/maps/api/geocode/xml?address=1600+Amphitheatre+

Parkway,+Mountain+View,+CA&key=<<ADD YOUR GOOGLE MAP API KEY>>

Output:

<GeocodeResponse>

<status>OK</status>

<result>

<type>premise</type>

<formatted_address>

Google Building 41, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

</formatted_address>

...

<geometry>

<location>

<lat>37.4224082</lat>

<lng>-122.0856086</lng>

</location>

...

Chapter 6 Displaying Predictions with Google Maps on Azure

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

217

�Heatmap Layer
A heatmap is a way of visualizing information by intensity. This is a very useful tool to

overlay on top of maps, as it can relay where things are happening a lot vs. happening

only a little—great for reporting crime!

For a great example of creating heatmaps on Google Maps (Figure 6-21), check out

the Google Maps API example from Google’s documentation at: https://developers.

google.com/maps/documentation/javascript/examples/layer-heatmap.

Figure 6-21.  Example script from Google Maps API; you will need an API key for
this

Chapter 6 Displaying Predictions with Google Maps on Azure

https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap
https://developers.google.com/maps/documentation/javascript/examples/layer-heatmap

218

�Google Maps with Crime Data
Let’s inject our crime data into a Google Map. First, we need to understand the format

expected by the Google Maps “LatLng” function in JavaScript on an HTML page

(Listing 6-22).

Listing 6-22.  The “getPoints()” JavaScript Function

 <script>

 function getPoints() {

 return [

 new google.maps.LatLng(37.782551, -122.445368),

 new google.maps.LatLng(37.782745, -122.444586),

 ...

];}

</script>

Therefore, we need to extract our latitudes and longitudes from our “crime_df_
agg_tmp” and format them into the correct format expected by Google Maps. We then

concatenate each into a long string that we can pass using Flask into the HTML script

(Listing 6-23).

Listing 6-23.  Creating New Google Maps “LatLng()” Objects in a Loop

LatLngString = "

for index, row in crime_df_agg_tmp.iterrows():

 �LatLngString += "new google.maps.LatLng(" + str(row['Latitude']) + ","

+ str(row['Longitude']) + "),"

As an example, I manually pasted the “LatLngString” output into a sample HTML

page and this is the result (Figure 6-22).

Chapter 6 Displaying Predictions with Google Maps on Azure

219

�Abstracting Our Crime Estimator
As usual, we need to organize our web application’s engine in a clean and

simple manner, so we can drop it into our main Flask script. We’ll create the

“GetCrimeEstimates()” function that will take in a date and “time_segment”

(whether it is in the morning, afternoon, or night; Listing 6-24).

Listing 6-24.  The “GetCrimeEstimates()” Function

def GetCrimeEstimates(horizon_date, horizon_time_segment):

 Day_of_month = int(horizon_date.split('/')[1])

 Month_of_year = int(horizon_date.split('/')[0])

 Day_Segment = int(horizon_time_segment) # 0,1,2

 crime_horizon_df_tmp = crime_horizon_df[

 (crime_horizon_df['Day_of_month'] == Day_of_month) &

 (crime_horizon_df['Month_of_year'] == Month_of_year) &

 (crime_horizon_df['Day_Segment'] == Day_Segment)]

Figure 6-22.  Some San Francisco crime data plotted into Google Maps

Chapter 6 Displaying Predictions with Google Maps on Azure

220

 # build latlng string for google maps

 LatLngString = "

 for index, row in crime_horizon_df_tmp.iterrows():

 LatLngString += "new �google.maps.LatLng(" + str(row['Latitude'])

+ "," + str(row['Longitude']) + "),"

 return (LatLngString)

The “GetCrimeEstimates()” is the brains of the application. It takes in a date that the

user selects via the slider on the web application along with a time segment, and returns

all the aggregated crime for that date.

For example, when calling the “GetCrimeEstimates(),” we get back a string of

concatenated “google.maps.LatLng” coordinates ready to be fed into Google Maps

(Listing 6-25).

Listing 6-25.  Calling “GetCrimeEstimates()”

Input:

GetCrime('10/10/2018', 0)

Output:

new google.maps.LatLng(37.764,-122.508),

new google.maps.LatLng(37.781,-122.49),

new google.maps.LatLng(37.711,-122.469),

new google.maps.LatLng(37.764,-122.46700000000001),

new google.maps.LatLng(37.763000000000005,-122.464),

...

�Designing a Web Application to Enable Viewers
to Enter a Future Date and Visualize Crime Hotspots
Go ahead and download the code for the web application for this chapter. Open a

command line window and change the drive to the “web-application” folder. It should

contain the following files (Listing 6-26).

Chapter 6 Displaying Predictions with Google Maps on Azure

221

Listing 6-26.  Web Application Files

web-application

 ├── main.py
 ├── ptvs_virtualenv_proxy.py
 ├── requirements.txt
 ├── web.3.4.config
 ├── static
 ├── sf-crime-horizon.csv
 └── images
 ├── cop.jpg
 ├── thief.jpg
 ├── morning.jpg
 ├── afternoon.jpg
 └── night.jpg

 └── templates
 └── index.html

As usual, we’ll start a virtual environment to segregate our Python library installs

(Listing 6-27).

Listing 6-27.  Starting a Virtual Environment

$ python3 -m venv predictingcrimeinsanfrancisco

$ source predictingcrimeinsanfrancisco/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”

command (Listing 6-28).

Listing 6-28.  Code Input

$ pip3 install -r requirements.txt

�Add Your Google API Key
In an editor, open up the file “index.html” and add in your own API key where it says

“ADD_YOUR_API_KEY_HERE”. You will need to update the code in order to see Google

Maps, otherwise you will get an error message.

Chapter 6 Displaying Predictions with Google Maps on Azure

222

�Take It for a Spin
As usual, take the site for a spin on a local Flask instance (Listing 6-29).

Listing 6-29.  Code Input

$ python3 main.py

You should see the web application with a working Google Map if all went well. Go

ahead and take it for a spin and look at crime predictions for future dates (Figure 6-23).

Figure 6-23.  Running the local version of our web application

Chapter 6 Displaying Predictions with Google Maps on Azure

223

�Git for Azure
Initialize a Git session (Listing 6-30).

Listing 6-30.  Initialize Git

$ git init

It is a great idea to run “git status” a couple times throughout to make sure you are

tracking the correct files (Listing 6-31).

Listing 6-31.  Running “git status”

Input:

$ git status

Output:

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 main.py

 predictingcrimeinsanfrancisco/

 ptvs_virtualenv_proxy.py

 requirements.txt

 sf-crime-horizon.csv

 static/

 templates/

 web.3.4.config

Add all the web-application files from the “web-application” file using the

“git add .” command and check “git status” again (Listing 6-32).

Listing 6-32.  Adding to Git

Input:

$ git add .

$ git status

Chapter 6 Displaying Predictions with Google Maps on Azure

224

Output:

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: main.py

 new file: predictingcrimeinsanfrancisco/bin/activate

 new file: predictingcrimeinsanfrancisco/bin/activate.csh

 new file: predictingcrimeinsanfrancisco/bin/activate.fish

 new file: predictingcrimeinsanfrancisco/bin/easy_install

 new file: predictingcrimeinsanfrancisco/bin/easy_install-3.6

...

You may have noticed that we have added a lot of files to our “git add .” command.

As per instructions from “git status,” it tells us how to remove files that we don’t want to

commit to Git with the “rm” command. Let’s remove all files and folders from the virtual

environment “predictingcrimeinsanfrancisco” that aren’t needed for the project

(Listing 6-33).

Listing 6-33.  Removing “predictingcrimeinsanfrancisco” from Git

Input:

$ git rm -r --cached predictingcrimeinsanfrancisco

$ git status

Output:

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: main.py

 new file: ptvs_virtualenv_proxy.py

 new file: requirements.txt

 new file: sf-crime-horizon.csv

 new file: static/images/afternoon.jpg

 new file: static/images/cop.jpg

 new file: static/images/morning.jpg

 new file: static/images/night.jpg

 new file: static/images/thief.jpg

Chapter 6 Displaying Predictions with Google Maps on Azure

225

 new file: templates/index.html

 new file: web.3.4.config

We now only have the files we need. So, do a local “git commit” and add a comment

that makes sense in case you need to revisit past actions in the future (Listing 6-34).

Listing 6-34.  Git Commit

Input:

$ git commit -am 'where crime happens'

Output:

[master (root-commit) 1b87606] where will crime happen next

 11 files changed, 120065 insertions(+)

 create mode 100644 main.py

 create mode 100644 ptvs_virtualenv_proxy.py

 create mode 100644 requirements.txt

 create mode 100644 sf-crime-horizon.csv

 create mode 100644 static/images/afternoon.jpg

 create mode 100644 static/images/cop.jpg

 create mode 100644 static/images/morning.jpg

 create mode 100644 static/images/night.jpg

 create mode 100644 static/images/thief.jpg

 create mode 100644 templates/index.html

 create mode 100644 web.3.4.config

For more information on the Git Deployment to Azure App Service, see https://

docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

�The azure-cli Command Line Interface Tool
We will use the “azure-cli” tool to deploy our web application on Microsoft Azure (if you

don’t already have it installed, refer back to Chapter 2).

Chapter 6 Displaying Predictions with Google Maps on Azure

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

226

�Step 1: Logging In
Create an “az” session (Listing 6-35 and Figure 6-24).

Listing 6-35.  Code Input

$ az login

Follow the instructions, point a browser to the given URL address, and enter the code

accordingly (Figure 6-25).

If all goes well (i.e., you have an Azure account in good standing), it will connect the

azure-cli terminal to the cloud server. Also, once you are authorized, you can safely close

the browser window.

Make sure your command-line tool is pointing inside this chapter’s “web-application”

folder.

Figure 6-24.  Logging into Azure from azure-cli

Figure 6-25.  Authenticating session

Chapter 6 Displaying Predictions with Google Maps on Azure

227

�Step 2: Create Credentials for Your Deployment User
This user will have appropriate rights for FTP and local Git use. Here I set the user-name

to “flaskuser10” and password to “flask123.” You should only have to do this once, then

you can reuse the same account. In case it gives you trouble, simply create a different

user name (or add a number at the end of the user name and keep incrementing it like I

usually do; Listing 6-36).

Listing 6-36.  Code Input

$ az webapp deployment user set --user-name flaskuser10 --password flask123

As you proceed through each “azure-cli” steps, you will get back JSON replies

confirming your settings. In the case of the “az webapp deployment” most should

have a null value and no error messages. If you have an error message, then you have

a permission issue that needs to be addressed (“conflict” means that name is already

taken so try another, and “bad requests” means the password is too weak).

�Step 3: Create Your Resource Group
This is going to be your logical container. Here you need to enter the region closest

to your location (see https://azure.microsoft.com/en-us/regions/). Going with

“West US” for this example isn’t a big deal even if you’re worlds away, but it will make a

difference in a production setting where you want the server to be as close as possible to

your viewership for best performance.

Here I set the name to “myResourceGroup” (Listing 6-37).

Listing 6-37.  Code Input

$ az group create --name myResourceGroup --location "West US"

Chapter 6 Displaying Predictions with Google Maps on Azure

https://azure.microsoft.com/en-us/regions

228

�Step 4: Create your Azure App Service Plan
Here I set the name to “myAppServicePlan” and select a free instance (sku)

(Listing 6-38).

Listing 6-38.  Code Input

$ az appservice plan create --name myAppServicePlan --resource-group

myResourceGroup --sku FREE

�Step 5: Create your Web App
Your “webapp” name needs to be unique, and make sure your “resource-group” and

“plan” names are the same as what you set in the earlier steps. In this case I am going

with “amunateguicrime.” For a full list of supported runtimes, run the “list-runtimes”

command (Listing 6-39).

Listing 6-39.  Code Input

$ az webapp list-runtimes

To create the web application, use the “create” command (Listing 6-40).

Listing 6-40.  Code Input

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan

--name amunateguicrime --runtime "python|3.4" --deployment-local-git

The output of “az webapp create” will contain an important piece of information

that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”

(Figure 6-26).

Chapter 6 Displaying Predictions with Google Maps on Azure

229

�Step 6: Push Git Code to Azure
Now that you have a placeholder web site, you need to push out your Git code to Azure

(Listing 6-41).

Listing 6-41.  Code Input

if git remote is say already exits, run 'git remote remove azure'

$ git remote add azure https://flaskuser10@amunateguicrime.scm.

azurewebsites.net/amunateguicrime.git

Finally, push it out to Azure (Listing 6-42).

Listing 6-42.  Code Input

$ git push azure master

It will prompt you for the “webapp deployment user” password you set up

earlier. If all goes well, you should be able to enjoy the fruits of your labor. Open a web

browser and enter your new URL that is made of your “webapp” name followed by

“.azurewebsites.net” (Figure 6-27).

Figure 6-26.  “webapp create” command and resulting “deployment
LocalGitUrl” value

Chapter 6 Displaying Predictions with Google Maps on Azure

http://azurewebsites.net

230

Figure 6-27.  Enjoy the fruits of your hard work!

Chapter 6 Displaying Predictions with Google Maps on Azure

231

On the other hand, if the Azure-cli returns error messages, you will have to address

them (see the troubleshooting section).

Anytime you update your code and want to redeploy it, see Listing 6-43.

Listing 6-43.  For Code Updates

$ git commit -am "updated output"

$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into

Azure and go to App Services (Figure 6-28).

�Troubleshooting
It can get convoluted to debug web application errors. One thing to do is to turn on

logging through Azure’s dashboard (Figure 6-29).

Figure 6-28.  Microsoft Azure dashboard

Chapter 6 Displaying Predictions with Google Maps on Azure

232

Then you turn the logging stream on to start capturing activity (Figure 6-30).

Figure 6-29.  Turning on Azure’s Ddiagnostics logs

Figure 6-30.  Capturing log information

Chapter 6 Displaying Predictions with Google Maps on Azure

233

You can also check your file structure using the handy Console tool built into the

Azure dashboard (Figure 6-31).

You can also access the tail of the log in your command window (Listing 6-44).

Listing 6-44.  Code Input

$ az webapp log tail --resource-group myResourceGroup --name

amunateguicrime

You can even check if your “requirement.txt” file works by calling the “env\scripts\
pip” function (Listing 6-45).

Listing 6-45.  Code Input

$ env\scripts\pip install -r requirements.txt

Figure 6-31.  Azure’s built-in command line tool

Chapter 6 Displaying Predictions with Google Maps on Azure

234

�Don’t Forget to Turn It Off!
As usual, stop and delete anything that you don’t need anymore. Go to “All
resources” in the Azure dashboard and check anything you don’t need, and delete

away (Figure 6-32).

Figure 6-32.  Turning everything off once finished

And finally, deactivate your virtual environment (Listing 6-46).

Listing 6-46.  Code Input

$ deactivate predictingcrimeinsanfrancisco

�Conclusion
This chapter introduces an obvious great piece of technology, Google Maps. There is so

much that can be done with this front-end dashboard. You can get user’s location (with

their consent), you can visualize geographical data in many different ways from satellite

to street views, and the list keeps going on. The best part is that very little is required in

terms of programming. The Google Maps API is mature and abstracts a lot of the heavy

lifting for you. If you end up building a high-traffic site using Google Maps, you will most

likely need a paid account.

Chapter 6 Displaying Predictions with Google Maps on Azure

235

Those with a sharp eye may have noticed that the Jupyter code uses data frames to

analyze the crime data, while the Flask application uses a NumPy array. This isn’t the

only time we will use this trick. The Panda library is such a large and complex library that

it is sometimes hard to get it to play nice with serverless instances that don’t like libraries

with deep tentacles into the OS and file system. As a rule of thumb, the least amount of

imports you need to declare at the top of your Flask application, the better.

Chapter 6 Displaying Predictions with Google Maps on Azure

237
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_7

CHAPTER 7

Forecasting with Naive
Bayes and OpenWeather
on AWS
Will I golf tomorrow? Find out using naive Bayes and real-time weather forecasts on

Amazon Web Services.

In this chapter, we will take a look at the famed “Golf|Weather Dataset” from

Gerardnico’s blog.1 I say “famed” because it seems that whenever somebody does an

introductory piece on the Bayes, they use this dataset. It makes sense, as it is a very

simple and intuitive collection of environmental readings, and whether or not a player

ends up playing golf. It is to the point and very amiable to modeling with the Bayes

Theorem without a computer or even a calculator. But don’t fear, we’ll be using the

sklearn library as usual. We will model what it takes to go golfing, incorporating the

OpenWeatherMap2 to pull real forecast based on user-selected locations (Figure 7-1).

1�https://gerardnico.com/data_mining/weather
2�https://openweathermap.org/

https://gerardnico.com/data_mining/weather
https://openweathermap.org/

238

Note  Download the files for Chapter 7 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter7.ipynb” to follow along with this chapter’s content.

�Exploring the Dataset
Go ahead and download the files for this chapter into a folder called “chapter-7.” Open

up the Jupyter notebook to follow along.

Figure 7-1.  The final web application for this chapter

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

239

As it is a very small dataset, there is nothing to download and we will recreate it

manually in Python. It contains only 14 rows (Listing 7-1 and Figure 7-2).

Listing 7-1.  Let’s Load Our Dataset into a Pandas Data Frame, Create Column

Names and Cast the Boolean Fields into Integers

golf_data_header = ['Outlook', 'Temperature_Numeric', 'Temperature_

Nominal', 'Humidity_Numeric', 'Humidity_Nominal', 'Windy', 'Play']

golf_data_set = [['overcast',83,'hot',86,'high',False,True],

['overcast',64,'cool',65,'normal',True,True],

['overcast',72,'mild',90,'high',True,True],

['overcast',81,'hot',75,'normal',False,True],

['rainy',70,'mild',96,'high',False,True],

['rainy',68,'cool',80,'normal',False,True],

['rainy',65,'cool',70,'normal',True,False],

['rainy',75,'mild',80,'normal',False,True],

['rainy',71,'mild',91,'high',True,False],

['sunny',85,'hot',85,'high',False,False],

['sunny',80,'hot',90,'high',True,False],

['sunny',72,'mild',95,'high',False,False],

['sunny',69,'cool',70,'normal',False,True],

['sunny',75,'mild',70,'normal',True,True]]

golf_df = pd.DataFrame(golf_data_set, columns=golf_data_header)

golf_df[['Windy','Play']] = golf_df[['Windy','Play']].astype(int)

golf_df.head()

Figure 7-2.  First few rows of the “Golf|Weather” Dataset

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

240

The “Outlook” field is an overall take on the weather, like a super category. It is made

up of three values: “Overcast,” “Rainy,” and “Sunny.” The temperature reading comes in

two flavors: “Temperature_Numeric,” which is the numeric temperature in Fahrenheit,

and “Temperature_Nominal,” which is a categorical representation broken into three

values: “hot,” “mild,” and “cold.” Humidity also comes in two flavors: “Humidity_
Numeric,” which is the percent humidity reading, and “Humidity_Nominal,” which

is a categorical variable with two values: “high” and “normal.” “Windy” is a Boolean

variable that states whether it is windy or not. Finally, “Play” is the outcome variable and

the resulting truth whether the player did or didn’t play golf according to said conditions.

�Naive Bayes
Naive Bayes is a group of algorithms based on Bayes Theorem and conditional

probabilities (Figure 7-3). It considers predictors independently to determine the

probability of an outcome. It is called “naive” because it assumes independence

between the predictors, but short of each predictor happening on a different planet, it is

hard to know for sure. That said, such assumption simplifies the model tremendously;

it makes the model simple, fast, and transparent. It is perfect for working with large

datasets in distributed environments.

In very simple terms, Naive Bayes classification creates a frequency table cataloging

every possible value combination from some historical dataset, including both positive

and negative outcomes. Its simpler to visualize by thinking of simple categorical

features, but it can handle any data type. The Bayes theorem can then use the collected

frequencies to yield new probabilities.

Figure 7-3.  Bayesian probabilistic formula

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

241

Which states that:

•	 P(A|B) is the probability of the outcome happening given certain

equal values

•	 P(B|A) is the probability for those values for that outcome multiplied

•	 P(A) is the the probability for that outcome regardless of the values

divided

•	 P(B) is the probability for those values regardless of the outcome

•	 If this isn’t clear, check out a brief and funny video from the

good folks at RapidMiner at https://www.youtube.com/

watch?v=IlVINQDk4o8.

�Sklearn’s GaussianNB
As mentioned in the introduction to this chapter, we’re going to use the “sklearn.
naive_bayes” “GaussianNB” library. This is a simple model that does offer a few tunable

parameters: see http://scikit-learn.org/stable/modules/generated/sklearn.

naive_bayes.GaussianNB.html for more information.

It is straightforward to use, and here is an example on calling the Naive Bayes model

for classification and how to extract probabilities and predictions. The “predict()”

function returns a true/false prediction based on what it trained on. A “1” means the

model predicts that golfing will happen (Listing 7-2).

Listing 7-2.  Calling predict() on the GaussianNB Model

Input:

from sklearn.naive_bayes import GaussianNB

naive_bayes = GaussianNB()

naive_bayes.fit(X_train[features], y_train))

print(naive_bayes.predict(X_test))

Output:

[0 0 1 0 0 0 1]

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://www.youtube.com/watch?v=IlVINQDk4o8
https://www.youtube.com/watch?v=IlVINQDk4o8
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

242

The “predict_proba()” function returns a pair of values. The first value represents

the probability of being false, while the second value is the probability of being true

(Listing 7-3).

Listing 7-3.  Getting Probabilities out of the GaussianNB Model

Input:

print(naive_bayes.predict_proba(X_test))

Output:

array([[9.99994910e-01, 5.09005696e-06],

 [9.99968916e-01, 3.10842486e-05],

 [0.00000000e+00, 1.00000000e+00],

 [8.84570501e-01, 1.15429499e-01],

 [8.00907988e-01, 1.99092012e-01],

 [9.99932094e-01, 6.79055800e-05],

 [0.00000000e+00, 1.00000000e+00]])

Obviously, you can use either value; just remember which means what. In our case

we’ll use the second value, as we aren’t that interested in the probability of not golfing vs.

the probability of golfing. Both numbers add up to 1.

�Realtime OpenWeatherMap
We’re going use real weather forecasts into our “Will I Golf Tomorrow” web application.

Go ahead and sign up for an API from openweathermap.org; it’s free (Figure 7-4)! A big

thanks to the folks over at Open Weather—love the service!

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

243

They will send you an email confirmation containing your API key, along with an

example. It states that it can take up to ten minutes to authorize the new key. For me, it

took more like 30 minutes. Then run the example with your new key to double-check

that your account is working (Listing 7-4).

Listing 7-4.  URL for Weather—Add Your API Key

http://api.openweathermap.org/data/2.5/weather?q=London,uk&APPID=<<YOU

R_API_KEY>>

It does indeed take a little while to propagate on their system, but it does work,

and the example returns the following JSON string (of course yours will have different

weather data; Listing 7-5).

Figure 7-4.  OpenWeatherMap.org sign up screen

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

244

Listing 7-5.  Raw JSON String

{"coord":{"lon":-0.13,"lat":51.51},"weather":[{"id":803,"main":"Clouds",

"description":"broken clouds","icon":"04n"}],"base":"stations","main":{"temp":

284.37,"pressure":1014,"humidity":76,"temp_min":283.15,"temp_max":285.15},

"visibility":10000,"wind":{"speed":6.7,"deg":240},"clouds":{"all":75},"dt":

1524531000,"sys":{"type":1,"id":5091,"message":0.0065,"country":"GB","sunrise":

1524545173,"sunset":1524597131},"id":2643743,"name":"London","cod":200}

But a better way to access REST API JSON data is to do it all in Python. This allows

you to make the call to the API and process the return data in a fully programmatic

manner. Let’s take a look (Listing 7-6).

Listing 7-6.  Bringing in Real Weather Data Using “api.openweathermap.org”

from urllib.request import urlopen

weather_json = json.load(urlopen("http://api.openweathermap.org/data/2.5/

weather?q=Barcelona&appid=<<YOUR_API_KEY>>"))

In return, we get a JSON object that can be easily accessed via key pair calls

(Listing 7-7).

Listing 7-7.  JSON Content

Input:

print(weather_json)

Output:

{'base': 'stations',

 'clouds': {'all': 0},

 'cod': 200,

 'coord': {'lat': 41.38, 'lon': 2.18},

 'dt': 1524538800,

 'id': 3128760,

 'main': {'humidity': 72,

 'pressure': 1018,

 'temp': 287.15,

 'temp_max': 288.15,

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

245

 'temp_min': 286.15},

 'name': 'Barcelona',

 'sys': {'country': 'ES',

 'id': 5470,

 'message': 0.0034,

 'sunrise': 1524545894,

 'sunset': 1524595276,

 'type': 1},

 'visibility': 10000,

 'weather': [{'description': 'clear sky',

 'icon': '01n',

 'id': 800,

 'main': 'Clear'}],

 'wind': {'deg': 330, 'speed': 2.6}}

Individual elements can easily be access by appending key names, just like you

would with a Pandas object (Listing 7-8).

Listing 7-8.  JSON “main” Content

Input:

weather_json['main']

Output:

{'humidity': 72,

 'pressure': 1018,

 'temp': 287.15,

 'temp_max': 288.15,

 'temp_min': 286.15}

�Forecasts vs. Current Weather Data
We want to use forecasts for the following day, and “OpenWeatherMap” does offer a

five-day forecast API service. It returns data in three-hour increments. Let’s see how this

works (Listing 7-9).

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

246

Listing 7-9.  URL for Forecast—Add Your API Key. This Will Return a Large Amount

of Text with Five-Days’ Worth of Three-Hour Increment Weather Forecasts

Input:

http://api.openweathermap.org/data/2.5/forecast?q=Barcelona&APPID=<<YOUR

API KEY>>

Output:

{“dt":1524679200,"main":{"temp":293.08,"temp_min":291.228,"temp_max":293.08

,"pressure":1021.76,"sea_level":1030.11,"grnd_level":1021.76,"humidity":83,

"temp_kf":1.85},"weather":[{"id":802,"main":"Clouds","description":"scatter

ed clouds","icon":"03d"}],"clouds":{"all":48},"wind":{"speed":0.98,"deg":31

.502},"sys":{"pod":"d"},"dt_txt":"2018-04-25 18:00:00"}

The key pair “dt_txt” is the start time for the contained weather forecast. So, in this

example, for April the 24th in Barcelona between 6 pm and 9 pm, there will be scattered

clouds. Being able to access three-hour forecasts offers a great level of granularity for

our golfing predictions. See the corresponding Jupyter notebook for ways of pulling

specific dates.

�Translating OpenWeatherMap to “Golf|Weather Data”
There are a couple of data transformations needed to get the “OpenWeatherMap” data

into the correct “Golf|Weather Dataset” format. Let’s go ahead, change some scales, and

fix some categorical data.

Outlook
The “outlook” categorical feature in the golf set has three possible values:

“Overcast,” “Rainy,” and “Sunny.” A close equivalent in the “OpenWeatherMap” is the

“weather.main,” variable, which offers nine possible values:3

•	 Clear Sky

•	 Few Clouds

•	 Scattered Clouds

3�https://openweathermap.org/weather-conditions

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://openweathermap.org/weather-conditions

247

•	 Broken Clouds

•	 Shower Rain

•	 Rain

•	 Thunderstorm

•	 Snow

•	 Mist

Though this a subjective endeavor, we need to make a decision as to what goes

where. Let’s group these and build a function to handle equivalencies (and please

change them around if you don’t like mine).

Sunny

•	 Clear Sky

•	 Few Clouds

Overcast

•	 Scattered Clouds

•	 Broken Clouds

•	 Mist

Rainy

•	 Shower Rain

•	 Rain

•	 Thunderstorm

•	 Snow

We package our groupings into a clean function that can handle the equivalencies

between “OpenWeatherMap” and “Golf|Weather Data” (Listing 7-10). We also leverage

a neat offering by “OpenWeatherMap” to supply graphic icons of the weather that we

will display on our web application (see the complete list of icons at

https://openweathermap.org/weather-conditions).

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://openweathermap.org/weather-­conditions

248

Listing 7-10.  Function “GetWeatherOutlookAndWeatherIcon”

def GetWeatherOutlookAndWeatherIcon(main_weather_icon):

 # truncate third char - day or night not needed

 main_weather_icon = main_weather_icon[0:2]

 # return "Golf|Weather Data" variable and daytime icon

 if (main_weather_icon in ["01", "02"]):

 return("sunny", main_weather_icon + "d.png")

 elif (main_weather_icon in ["03", "04", 50]):

 return("overcast", main_weather_icon + "d.png")

 else:

 return("rain", main_weather_icon + "d.png")

Numeric Temperature

You may have noticed that temperature isn’t in Fahrenheit or Celsius but in Kelvins.

So, we need to filter it through the following formula for Fahrenheit (though you can

have the API do this for you, we will do it ourselves):

Fahrenheit = T × 1.8 - 459.67

And for Celsius:

Celsius = K - 273.15

Nominal Temperature

Nominal temperature is a categorical variable made up of three values “cool,” “mild,”

and “hot.” As these are subjective groupings, we’re going to infer the ranges so we can

create new ones based on the live forecast from “OpenWeatherMap” (Listing 7-11).

Listing 7-11.  Nominal Temperatures

Input:

golf_df[['Temperature_Numeric', 'Temperature_Nominal']].

groupby('Temperature_Nominal').agg({'Temperature_Numeric' : [np.min,

np.max]})

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

249

Output:

 Temperature_Numeric

 amin amax

Temperature_Nominal

cool 64 69

hot 80 85

mild 70 75

“Cool” ranges from 64 to 69 degrees Fahrenheit while “mild” ranges from 70 to 75.

This is easy, as there is no gap between both values. “Hot,” on the other hand, starts at 80.

So, we have a gap between 75 and 80 to account for. To keep things simple, we’ll extend

the “mild” range to 80. And we end up with the following function (Listing 7-12).

Listing 7-12.  Nominal Temperatures

def GetNominalTemparature(temp_fahrenheit):

 if (temp_fahrenheit < 70):

 return "cool"

 elif (temp_fahrenheit < 80):

 return "mild"

 else:

 return "hot"

Humidity Numeric

Humidity is given in percentages on “OpenWeatherMap” so we’ll use it in its exact

numerical form.4

Humidity Nominal

Just like we did with the categorical nominal temperature, we will have to apply the

same logic on the nominal humidity. There are definitely different ways to slice this one,

but a choice has to be made to translate a percentage into a category that exists in the

current “Golf|Weather Data” dataset (Listing 7-13).

4�https://openweathermap.org/current

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://openweathermap.org/current

250

Listing 7-13.  Humidity

Input:

golf_df[['Humidity_Numeric', 'Humidity_Nominal']].groupby('Humidity_

Nominal').agg({'Humidity_Numeric' : [np.min, np.max]})

Output:

 Humidity_Numeric

 amin amax

Humidity_Nominal

high 85 96

normal 65 80

According to our historical data, we only have two choices: “normal” or “high.” We’ll

take the easy route and consider 81% and higher as high, and everything else as normal

(Listing 7-14).

Listing 7-14.  Function “GetNominalHumidity”

def GetNominalHumidity(humidity_percent):

 if (humidity_percent > 80):

 return "high"

 else:

 return "normal"

Windy
“OpenWeatherMap” states that wind speeds are in meters per second.5 We’ll use the

Beaufort scale, a scale that relates wind speeds to different land and sea conditions, and

its definition of a “strong breeze” category to determine what is and what isn’t windy

(Figure 7-5) and abstract a function (Listing 7-15). The midpoint of the scale is at wind

speeds above 10.8 meters per second, considered “strong breeze.”

5�https://openweathermap.org/current

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://openweathermap.org/current

251

Listing 7-15.  Function “GetWindyBoolean”

def GetWindyBoolean(wind_meter_second):

 if (wind_meter_second > 10.8):

 return(True)

 else:

 return(False)

�Designing a Web Application “Will I Golf
Tomorrow?” with Real Forecasted Weather Data
As usual, we want our application to be intuitive, visual, and fun. This will be the go-to

application for all golfers around the world (yeah right!). It is also a powerful application

that will use real weather forecasts from anywhere around the world while remaining

extremely simple to build. This is the beauty of a Bayesian model: it is simple and fast

and makes for a great real-time and scalable modeling option for web applications.

Our web page only needs two input boxes so the user can enter his or her location

and tomorrow’s time they wish to golf. The application will attempt to find a weather

forecast for the location and time, translate the “OpenWeatherMap” JSON data into

the required “Golf|Weather Dataset” format, and return a “yes” or “no” to the question

“will I golf tomorrow.” Pretty straightforward, right?

�Download the Web Application
Go ahead and download the code for this chapter, open a command line window,

and change the drive to the “web-application” folder. It should contain the same

files as in Listing 7-16. Here we are showing the hidden folder “.ebextensions”

needed for AWS EB. You can either use it as-is or create your own in the “Fix the
WSGIApplicationGroup” section (don’t worry about this when running the local

version of the site, as it isn’t affected by this fix).

Figure 7-5.  Beaufort wind scale (source Wikipedia)

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

252

Listing 7-16.  Web Application Files

web-application

 ├── application.py
 ├── requirements.txt
 ├── static
 └── images
 ├── go-golf.jpg
 └── no-golf.jpg

 └── templates
 └── index.html
 └── .ebextensions ← hidden folder

 └── wsgi_fix.config

You should run this application in Python 3.x and, even better, in a virtual

environment so you can isolate exactly what is needed to run the web application from

what you already have installed on your machine.

Make sure your command window is pointing to the “web-application” folder for

this chapter and start a virtual environment. Start a virtual environment name “willigolf
tomorrow” to insure we’re in Python 3 and to install all required libraries (Listing 7-17).

Listing 7-17.  Starting a Virtual Environment

$ python3 -m venv willigolftomorrow

$ source willigolftomorrow/bin/activate

Then install all the required Python libraries by running the “pip install -r”

command (Listing 7-18).

Listing 7-18.  Install Requirements

$ pip3 install -r requirements.txt

Next you have to open “application.py” and add your “OpenWeatherMap” API key.

Look for “<<YOUR_API_KEY>>” in the PlayGolf() function (Listing 7-19).

Listing 7-19.  Adding Your “OpenWeatherMap” API Key

openweathermap_url = "http://api.openweathermap.org/data/2.5/forecast?q=" +

selected_location + "&mode=json&APPID=<<YOUR_API_KEY>>"

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

253

Once you have added your API key, you should be ready to run your local web

application as per usual (Listing 7-20).

Listing 7-20.  Take It for a Spin

$ python3 application.py

You should see something along the lines of Figure 7-6 (bummer, no golfing

tomorrow at the North Pole).

Figure 7-6.  Running the Flask application locally

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

254

After you have confirmed that the web application is correctly running on your local

machine, “ctrl-c” out of it but stay in the virtual environment session.

�Running on AWS Elastic Beanstalk
Still in the “willigolftomorrow” virtual environment session, install the latest “awsebcli”

(Listing 7-21). We are skipping a few steps, as you should already have all the security

layers set up by now (if not, refer back to Chapters 1 and 4).

Listing 7-21.  Pip3 Command (you may not need the upgrade command because

you are in a virtual environment, but it won’t hurt anything)

$ pip3 install awscli --upgrade

$ pip3 install awsebcli --upgrade

Initializes the EB service and go with your usual settings as per previous AWS

projects (Listing 7-22).

Listing 7-22.  EB Initialize Command

$ eb init -i

Create a project with the “willigolftomorrow” name, say yes to “SSH,” and go with

defaults or whatever you liked during the AWS EB runs we did in the previous chapters

(Listing 7-23).

Listing 7-23.  EB Create Command

$ eb create willigolftomorrow

�Fix the WSGIApplicationGroup
Just like we did in the Top-Rated Wine, you need to create a new folder under the “web-
application” folder (Listing 7-24) or you can use the one provided (this is a hidden folder

that you may or may not be able to see—if you aren’t sure, try creating the folder as per

instructions and if it complains, that means you already have it).

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

255

Listing 7-24.  Create wsgi_fix File

$ mkdir .ebextensions

$ vi .ebextensions/wsgi_fix.config

This will create a new folder called “.ebextensions” and open a VI window (known

in Unix speak as visual instrument), which is a simple text editor. Hit the “i” key to switch

from read-only to “insert” mode and paste the following line at the end of the document

(a text file of this fix is also included in the folder with the documents for this chapter).

The process reading this file is very finicky; if there are added spaces or tabs, it will fail.

Keep a close eye for any errors during the deployment process relating to the file and

address accordingly (Listing 7-25).

Listing 7-25.  Add Fix

#add the following to wsgi_fix.config

files:

 "/etc/httpd/conf.d/wsgi_custom.conf":

 mode: "000644"

 owner: root

 group: root

 content: |

 WSGIApplicationGroup %{GLOBAL}

Now hit “escape” to exit “insert” mode and enter read-only mode, and type “:wq” to

write and quit “vi” (Listing 7-26).

Listing 7-26.  Quit “vi”

:wq

�Take It for a Spin
Open web site with the “open” command (Listing 7-27).

Listing 7-27.  Taking the Cloud Version of the Web Application for a Spin

$ eb open willigolftomorrow

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

256

It may take a little bit of time to run the application the first time around and may

even timeout. If that is the case, try “eb open” one more time (see Figure 7-7).

Figure 7-7.  The “Will I Golf Tomorrow?” web application running on Elastic
Beanstalk

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

257

�Don’t Forget to Turn It Off!
Finally, we need to terminate the Beanstalk instance as not to incur additional

charges. This is an important reminder that most of these cloud services are not

free (if it states that names do not match, try it again). It will ask you to confirm your

decision (Listing 7-28).

Listing 7-28.  Terminate EB

$ eb terminate willigolftomorrow

In case you need to do any edits to the code, you simply perform them in your local

directory and call the “eb deploy” function (Listing 7-29).

Listing 7-29.  To Deploy Fixes or Updates

$ eb deploy willigolftomorrow

Finally, once you’ve confirmed that your instance is terminated, you can get out of

your virtual environment by calling the command (Listing 7-30).

Listing 7-30.  Kill the Virtual Environment

$ deactivate

It is always a good idea (essential idea really) to log into your account in the cloud

and make sure everything is turned off (be warned: if you don’t, you may get an ugly

surprise at the end of the billing cycle). Log into your AWS account and make sure that

your EC2 and Elastic Beanstalk accounts don’t have any active services you didn’t plan

on having (Figures 7-8 and 7-9).

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

258

In case you see an instance that seems to keep coming back to life after each time

you “Delete application,” check under EC2 “Load Balancers” and terminate those first,

then go back and terminate the rogue instance again (Figure 7-10).

Figure 7-9.  Locate the instance you want to terminate or delete, and select your
choice using the “Actions” dropdown button

Figure 7-8.  Checking for any active and unwanted instances on the AWS dashboard

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

259

�Conclusion
On the surface, this may seem like a slight variation from what we’ve built in the past,

with the exception of the dataset and model, but that really isn’t the case. Let’s take a

look at some of the highlights.

�Accessing OpenWeatherMap Data
Unlike how we called the REST API service in Jupyter using urllib.request’s “urlopen,” in

Flask we use the “requests” library (Listings 7-31 and 7-32).

Listing 7-31.  Instead of

from urllib.request import urlopen

import json

weather_json = json.load(urlopen(openweathermap_url))

Figure 7-10.  “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

260

Listing 7-32.  We call it This Way

import requests

weather_json = requests.get(openweathermap_url).json()

This is a slightly more popular way of calling REST APIs and has the advantage of

having JSON built inside of it, thus bringing us down to one function call instead of two.

�Try/Catch
We also use a try/catch (or in this case a try/error) to capture missing locations. It is

critical that the application not crash on a user, and it is also important that an issue,

whether an error or not, is handled properly. If you pass an unknown location to

“OpenWeatherMap,” it will return an error. This is easy to catch, leverage, and return an

informative message to the user to try something else (Listing 7-33).

Listing 7-33.  Try/Catch to Handle Missing Locations

try:

 weather_json = requests.get(openweathermap_url).json()

except:

 # couldn't find location

 e = sys.exc_info()[0]

 message = "Cannot find that location, please try again"

Even though we capture the error message through the exception variable “e,” we

aren’t doing anything with it here. I am leaving it in so you know how to access it, so you

can extend it into your own applications via logging or smart displaying.

�Handling User-Entered-Data
This is an important topic that isn’t really addressed in this book. Depending on the

type of application you are building, you need to make sure that user-entered data won’t

harm your application, your data, or your hardware. Things like “SQL injection”6 where

a user can transit a system command through a text box to delete all files come to mind.

6�https://en.wikipedia.org/wiki/SQL_injection

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

https://en.wikipedia.org/wiki/SQL_injection

261

Instead, here we are making sure that the user-entered text will work with

“OpenWeatherMap.” If you take the raw http string and add spaces into it, it will fail to

work (Listing 7-34).

Listing 7-34.  Handling Spaces in URLs

http://api.openweathermap.org/data/2.5/weather?q=New York City&appid...

One easy way of handling these issues is to use the “quote_plus()” function from the

urllib.parse library. It will take any text input and render it HTML friendly so that it can

be added to URLs without interfering with HTML commands. Let’s look at an example

(Listing 7-35).

Listing 7-35.  Handling Spaces in URLs

import urllib.parse

urllib.parse.quote_plus('New York City!')

'New+York+City%21'

This is easily extended to our Flask script by adding right after the “request.form”

call and filtering the user data through it before proceeding further (Listing 7-36).

Listing 7-36.  Handling Spaces in URLs

selected_location = request.form['selected_location']

selected_location = urllib.parse.quote_plus(selected_location)

Chapter 7 Forecasting with Naive Bayes and OpenWeather on AWS

263
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_8

CHAPTER 8

Interactive Drawing
Canvas and Digit
Predictions Using
TensorFlow on GCP
Let’s build an interactive drawing canvas to enable visitors to draw and predict digits

using TensorFlow image classification on Google Cloud.

Be forewarned, this is such a fun and interactive chapter that I ended up wasting too

much time playing with the final product (Figure 8-1). This is one of the inherent risks of

creating web applications using machine learning!

264

Here, we’re going to leverage the awesome power of TensorFlow1 to model the

famous MNIST database. Unless you’ve been living under a rock, you’ve most likely

heard of both (and if you haven’t, don’t worry, you will by the end of this chapter). The

final web application will have a canvas to allow visitors to draw a digit between 0 and 9

with their mouse or finger and have our trained TensorFlow model predict it.

1�https://www.tensorflow.org/

Figure 8-1.  The final web application for this chapter

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://www.tensorflow.org/

265

Note  Download the files for Chapter 8 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter8.ipynb” to follow along with this chapter’s content.

�The MNIST Dataset
The MNIST database contains 60,000 training images and 10,000 testing images. It’s

the “Hello World” of image recognition classification. It is made up of single digits

between “0” and “9” written by both high school students and employees from the US

Census Bureau. The best way to understand the data is to take a look at a few examples.

Download the files for this chapter into a directory called “chapter-8” and open the

Jupyter notebook to follow along. When you install Tensorflow, you will have the

ability to download the MNIST directly from the “input_data()” function within the

“tensorflow.examples.tutorials.mnist” library. This will make training our model that

much easier, as they have already split the data into training and testing sets. Let’s load

MNIST in memory and pull out a few samples (Listing 8-1).

Listing 8-1.  Loading MNIST

Input:

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

Output:

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

This will automatically download and unpack four files: two sets of images and

two sets of corresponding labels. Let’s open a couple of digits and labels. We’ll start by

looking at the very first image in the training dataset and pull the corresponding label

(Listing 8-2 and Figure 8-2).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

266

Listing 8-2.  Viewing Digit

import matplotlib.pyplot as plt

first_digit = mnist.train.images[0]

first_digit = np.array(first_image, dtype='float')

first_digit = first_digit.reshape((28, 28))

plt.imshow(sample_digit)

plt.show()

We can also see the corresponding label; the format is an array of 1ten0 digits that

each represents a value from 0 to 9 (Listing 8-3).

Listing 8-3.  Viewing Digit

Input:

mnist.train.labels[0]

Output:

array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])

Figure 8-2.  A Matplotlib visual render of one of the digits in MNIST

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

267

By using an “argmax()” function, we can get the index of the largest value and,

as they are conveniently sorted in ascending order, we automatically get the digit in

question (Listing 8-4).

Listing 8-4.  Listing Digit

Input:

np.argmax(mnist.train.labels[0])

Output:

4

And just for kicks, we’ll use another way of sifting through the data by using the built-

in “next_batch()” function that we will rely on later to feed the data into our TensorFlow

model for training (Listing 8-5 and Figure 8-3).

Listing 8-5.  Viewing Digit

batch = mnist.train.next_batch(1)

sample_digit = batch[0]

sample_digit = sample_digit.reshape(28, 28)

plt.imshow(sample_digit)

plt.show()

Figure 8-3.  A Matplotlib visual render of one of the digits in MNIST

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

268

The digits are in gray scale and are all 28 by 28 pixels; there really isn’t much more to

say about the data, as it is self-explanatory.

�TensorFlow
TensorFlow is an open-source library made available by the kind folks at Google and

is designed for high-performance numerical computation. It uses a data flow graph

to represent mathematical operations that can then easily be computed on local or

distributed devices. It has plenty of functionality for computation, number crunching,

and normal to deep modeling. It was released under the Apache 2.0 Open Source

License in November of 2015.

There is so much material out there on this topic that I will not rehash the subject but

instead dive right into our task at hand: modeling handwritten digits! So, go ahead and

download the files for this chapter into a folder called “chapter-8” if you haven’t already

done so. Open up the Jupyter notebook to follow along.

�Modeling with TensorFlow and Convolutional
Networks
The MNIST dataset has probably been modeled with every single model on earth,2 but

a powerful and relatively easy one to use is convolutional networks known as “CNN”s or

“Covnets.” This is an extremely powerful approach that can be as easy or as complicated

as you want it to be. They were originally designed to model images but have proved to

be very useful in many other areas such as natural language processing and time-series

modeling. We’ll leverage the code from TensorFlow’s suite of tutorials entitled: “Deep
MNIST for Experts.”3 It isn’t the simplest model that they offer, but it is still considered

an introductory level approach.

The model gets an incredible 99% accuracy at classifying handwritten digits. This

is even more interesting when we contrast it to Yann LeCun’s journey with this dataset.

He is one of the fathers of vision modeling and convolutional neural networks and the

Director of AI research at Facebook. He benchmarked this data over a few decades and

2�http://yann.lecun.com/exdb/mnist/
3�https://tensorflow.org/versions/r1.1/get_started/mnist/pros

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

http://yann.lecun.com/exdb/mnist
http://tensorflow.org/versions/r1.1/get_started/mnist/pros

269

worked closely at increasing the modeling recognition accuracy from 12% all the way

up to a tiny fraction of a percent. Even more incredible is that today we can open up a

tutorial on this topic and get this incredible score with fewer than 50 lines of code.

Let’s take a brief look at the model we will use for this web application. Here are

some of the highlights from the tutorial (see the full tutorial for more details, at

https://www.tensorflow.org/versions/r1.1/get_started/mnist/pros).

�Placeholders (tf.placeholder)
These are conduits for our image and label data streams. This is an important concept in

TensorFlow, where you build a functioning graph before you feed any actual data into it

(Listing 8-6).

Listing 8-6.  Code Input

x = tf.placeholder(tf.float32, shape=[None, 784])

y_ = tf.placeholder(tf.float32, shape=[None, 10])

Variables (tf.Variable)

Variables are made to hold values and you can initialize them with actual values

(Listing 8-7).

Listing 8-7.  Function “weight_variable()”

def weight_variable(shape):

 initial = tf.truncated_normal(shape, stddev=0.1)

 return tf.Variable(initial)

�Building Modeling Layers
We can define our specialized network layers as functions and be able to reuse them

however many times we want, depending on the complexity of the neural network

(Listing 8-8).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://www.tensorflow.org/versions/r1.1/get_started/mnist/pros

270

Listing 8-8.  Abstracting Functions “conv2d()” and “max_pool_2x2()”.

def conv2d(x, W):

 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):

 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],

 strides=[1, 2, 2, 1], padding='SAME')

We then can create as many layers as needed by calling the conv2d() and max_

pool_2x2() (Listing 8-9).

Listing 8-9.  Creating Layers

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_pool1 = max_pool_2x2(h_conv1)

�Loss Function
The original tutorial model uses the “tf.nn.softmax_cross_entroy_with_logits()”

function, which is a mouth full. Softmax returns a probability over n classes that sums to 1,

and cross entropy handles data from different distributions (Listing 8-10).

Listing 8-10.  Getting the Cross Entropy

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_

logits(labels=y_, logits=y))

The documentation states that it will be deprecated in a later version (and get used

to that—it happens in TensorFlow and most libraries in Python), so we’ll use a similar

approach that is more generic (see the Jupyter notebook for details).

�Instantiating the Session
Once we are ready to run our model, we instantiate the session with the “sess.run”

command. This turns on all the graphs we set up earlier (Listing 8-11).

Listing 8-11.  Firing-Up the Session

 sess.run(tf.global_variables_initializer())

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

271

�Training
We set an arbitrary number of loops, in this case 1,000, and feed the data as batches into

our model (Listing 8-12).

Listing 8-12.  Setting Model Iterations

for _ in range(1000):

 batch = mnist.train.next_batch(100)

 train_step.run(feed_dict={x: batch[0], y_: batch[1]})

�Accuracy
In order to not fly blind, we add an accuracy measure to monitor how well our model is

training that will print out the progress every 100 steps (Listing 8-13).

Listing 8-13.  Accessing the Accuracy During Training

print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.

test.labels, keep_prob: 1.0}))

There’s plenty more going on in this script, so please go over to the actual

TensorFlow Tutorial, as it’s well worth it if you’re interested in deep learning

(https://www.tensorflow.org/versions/r1.2/get_started/mnist/pros).

�Running the Script
Running it 2,000 times gives us a decent score but leaves plenty of room for improvement

(Listing 8-14).

Listing 8-14.  Accuracy Output During 2,000 Iterations

0 0.0997

100 0.8445

200 0.905

300 0.9264

400 0.9399

500 0.9492

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://www.tensorflow.org/versions/r1.2/get_started/mnist/pros

272

600 0.9509

700 0.9587

800 0.9596

900 0.9623

1000 0.9668

1100 0.9688

1200 0.9706

1300 0.9719

1400 0.9683

1500 0.9708

1600 0.9754

1700 0.9751

1800 0.9753

1900 0.9738

2000 0.9776

If you keep modeling over 20,000 steps like the tutorial suggests, you can achieve

that elusive 99.2%! But this can take up to 30 minutes depending on your machine (if you

have a GPU, you will zip right through it; Listing 8-15).

Listing 8-15.  Accuracy Output During 20,000 Iterations

 ...

19300 0.9935

19400 0.9928

19500 0.9926

19600 0.9923

19700 0.9932

19800 0.993

19900 0.9926

20000 0.9927

Once the model has finished training, we save it to file so we can run predictions at a

later time (and more importantly in our web application; Listing 8-16).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

273

Listing 8-16.  Saving the Trained Weights

saver = tf.train.Saver()

save_path = saver.save(sess, save_file)

print ("Model saved in file: ", save_path)

�Running a Saved TensorFlow Model
This ability of instantiating trained models is an important aspect of applied modeling

and building commercial pipelines. The model we are developing here doesn’t take that

long to train (2 to 30 minutes depending on the number of steps you use), but no user

would be willing to wait that long on a web page if you had to train it on each request.

The good news is that it is easy to save and reload a trained model. The key is to call the

“save()” function of “tf.train.Saver” before exiting the TensorFlow session (Listing 8-17).

Listing 8-17.  Saving Model

Input:

saver = tf.train.Saver()

save_path = saver.save(sess, save_file)

print ("Model saved in file: ", save_path)

Output:

Model saved in file: /Users/manuel/apress-book-repository/chapter-8/model.ckpt

Next time you want to run the trained model, all you have to do is set up all your

graph variables and call the “restore()” function of “tf.train.Saver” in a TensorFlow

session (Listing 8-18).

Listing 8-18.  Restoring a Saved Model

Input:

saver = tf.train.Saver()

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 saver.restore(sess, save_file)

 print("Model restored.")

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

274

Output:

INFO:tensorflow:Restoring parameters from /Users/manuel/apress-book-

repository/chapter-8/model.ckpt

Model restored.

�Save That Model!
You will find an already trained model ready to go in the downloads for this chapter.

If you want to use your own, see the Jupyter notebook and save the trained weight files

(that’s how I did it). You will end up with three files that represent the saved mode and

that are needed in order to load the model. TensorFlow is smart enough to load the latest

version from the files you give (you could store multiple checkpoint files for example and

it will use the latest one; Listing 8-19).

Listing 8-19.  Pretrained Model Files in Downloads for This Chapter if You Don’t

Want to Train It Yourself

checkpoint

model.ckpt.data-00000-of-00001

model.ckpt.index

�Drawing Canvas
The canvas is a critical part of the application, as it will allow anybody to get a taste, and

a fun one at that, in understanding MNSIT, character-recognition, and convolutional

modeling. These are usually difficult concepts associated with advanced classes and

industrial modeling tools, but they can be fun too! The canvas is part of HTML5 (for

more information on this cool feature, see https://www.w3schools.com/html/html5_

canvas.asp) and allows the creation of a space where a user can interact and create

drawings on a web page (Figure 8-4).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://www.w3schools.com/html/html5_canvas.asp
https://www.w3schools.com/html/html5_canvas.asp

275

Using this approach, we can take the content the user drew on the canvas and

translate it into an image that our TensorFlow model can ingest and attempt to predict.

�From Canvas to TensorFlow
This part isn’t complicated but requires a few transformations, so hang on. When the

visitor hits the “Predict” button, it calls the “toDataURL()” function of the canvas

HTML5 control. This translates whatever data is contained within the canvas tags into

text representation of the image in PNG format.

This is a concept we’ve seen before and will see again in this book. Remember

Chapter 3? We relied on image data in text representation to easily pass it from server a

client. In this case, we’re doing it the other way around—client to server (Figure 8-5).

Figure 8-4.  Finger painting with HTML5 and the <canvas> tag

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

276

Note  Code partially based on a great snippet found at https://
stackoverflow.com/questions/2368784/draw-on-html5-canvas-
using-a-mouse. Whenever you have questions about coding or problems and
need a solution, StackOverflow.com should be your first stop!

�Testing on New Handwritten Digits
This is a critical part of our pipeline (and web application). We need to be able to pass

new handwritten digits to the model for prediction.

Processing a Real Image

The difference between testing using the MNIST dataset and a real image is that the

MNIST data has already been processed for us. We therefore need to apply the same

processing on the new image, so it can be compatible with our trained model’s. Imagine

you create an image file with a digit; this is how you would pass it to the model. We

leverage the PIL and NumPy Python libraries to perform most of the image processing

(Listing 8-20).

Listing 8-20.  Importing an Image

from PIL import Image

img = Image.open('my-own-4.png')

Figure 8-5.  Image data represented as text

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse
https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse
https://stackoverflow.com/questions/2368784/draw-on-html5-canvas-using-a-mouse

277

We resize it to the official 28 by 28 required pixel size. As we will be working with

transparent images (only the number will show, not the background), we need to add a

white background to comply with the trained MNIST data (Listing 8-21).

Listing 8-21.  Processing New Image

img = img.resize([28,28])

add white background

corrected_img = Image.new("RGBA", (28, 28), "white")

paste both images together

corrected_img.paste(img, (0,0), img)

Next, we cast the image into arrays, remove the extra color dimensions that we won’t

need here as we are working with black and white images, and finally invert the whole

thing so that the empty pixels are zeros (Listing 8-22).

Listing 8-22.  Processing New Image

remove color dimensions

corrected_img = np.asarray(corrected_img)

remove color layers

corrected_img = corrected_img[:, :, 0]

invert colors

corrected_img = np.invert(corrected_img)

Finally, we flatten the image from a matrix of 28 by 28 to a flat vector of size 784 and

center the data between 0 and 1 instead of 0 and 255. That’s it; it is now ready to be fed

into our TensorFlow model for prediction (Listing 8-23 and Figure 8-6).

Listing 8-23.  Flattening the Data

corrected_img = corrected_img.reshape([784])

center around 0-1

img = np.asarray(corrected_img, dtype=np.float32) / 255.

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

278

�Designing a Web Application
We are now at the fun part of the chapter; we get to design our web application! We are

going to keep things extremely simple. This is meant to be fun and intuitive, and by

keeping the buttons and options to a minimum, will allow our visitor to immediately

understand and interact with the tool. We’ll add a central canvas in the middle, so the

visitor can draw a digit between “0” and “9”, and two buttons: one to predict the number

and the other to clear the canvas. Finally, we’ll also add a drop-down menu to control

the thickness of the paint brush—that’s it!

On the graphical end of things, we are using a large picture that we cut up into

different sections: a top portion that contains the head of the fortune teller and two side

portions that contain the arms. It is cut up in order to accommodate the drawing canvas

in the center of the web application.

�Download the Web Application
Go ahead and download the code for this chapter if you haven’t already done so, open a

command line window, and change the drive to the “web-application” folder. It should

contain the usual files along with our saved checkpoint files (Listing 8-24).

Figure 8-6.  Partial final output of the transformed image data ready for modeling

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

279

Listing 8-24.  Web Application Files

web-application

 ├── app.yaml
 ├── appengine_config.py
 ├── main.py
 ├── requirements.txt
 ├── checkpoint
 ├── model.ckpt.data-00000-of-00001
 ├── model.ckpt.index
 ├── static
 └── images
 ├── left.png
 ├── right.png
 └── top.png

 └── templates
 └── index.html

First, you will need to install TensorFlow on your Python 3.x instance (or install the

requirements file in the next step). As usual, we’ll start a virtual environment to segregate

our Python library installs (Listing 8-25).

Listing 8-25.  Starting Virtual Environment and Install TensorFlow

$ python3 -m venv whatsmynumber

$ source whatsmynumber/bin/activate

$ pip3 install tensorflow

Then install all the required Python libraries by running the “pip install -r”

command (Listing 8-26).

Listing 8-26.  Installing Requirements and Running Local Version

$ pip3 install -r requirements.txt

$ python3

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

280

Run the web application the usual way, and you should see the fortune teller appear.

This can take a while to get started, depending on your computing muscle. Go ahead

and take it for a spin, and make sure his predictions are worth his salt! (Figure 8-7)

Figure 8-7.  Blank canvas of the “What’s my Number” web application

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

281

�Google Cloud Flexible App Engine
We’ll use the Flexible App Engine in order to run the more demanding Python Libraries

like TensorFlow and PIL. We will need to use a slightly more powerful instance in order

to handle TensorFlow and our saved model. If you take a peek into the “app.yaml” file

under the “web-application” folder for this chapter, you will see that we upped the

memory and disk size (Listings 8-27 and 8-28).

Listing 8-27.  Now We’re Using the Larger Setup

resources:

 cpu: 1

 memory_gb: 3

 disk_size_gb: 20

Listing 8-28.  Previously We Ran with Fewer Resource Settings

resources:

 cpu: 1

 memory_gb: 0.5

 disk_size_gb: 10

A word to the wise: the bigger the machine you provision, the bigger the charge.

So, make sure you terminate your instance after you’re done with it!

�Deploying on Google App Engine
By now you should have some experience with the Google Flexible App Engine, so this

will be a quick guide to get this web application up and running.

�Step 1: Fire Up Google Cloud Shell
Log into your instance of Google Cloud and create or select the project in which you

want your App Engine to reside (if you don’t have one, you will be prompted to create

one—see Creating and Managing Projects4). Start the cloud shell command line tool by

clicking on the upper right caret button. This will open a familiar-looking command line

window in the bottom half of the GCP dashboard (Figure 8-8).

4�https://cloud.google.com/resource-manager/docs/creating-managing-projects

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

https://cloud.google.com/resource-manager/docs/creating-managing-projects

282

�Step 2: Zip and Upload All Files to the Cloud
Zip the files in the “web-application” folder but don’t zip the virtual environment folder

“whatsmynumber” as it’s not needed (Figure 8-9).

Figure 8-8.  Accessing the Google Cloud shell

Figure 8-9.  Zipping web application files for upload to Google Cloud

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

283

Upload it using the “Upload file” option (this is found on the top right side of the

shell window under the three vertical dots; Figure 8-10).

�Step 3: Create Working Directory on Google Cloud
and Unzip Files
Once the file is successfully uploaded, create a new directory named “chapter-8”

(Listing 8-29).

Listing 8-29.  Creating the Cloud Directory

$ mkdir chapter-8

$ cd chapter-8

Transfer all of the zip Archive into the new folder and unzip it (Listing 8-30).

Figure 8-10.  Uploading files via Google Cloud shell

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

284

Listing 8-30.  Moving and Unzipping Web Application Files

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

Your folder on Google Cloud should look something like Listing 8-31.

Listing 8-31.  Confirming That All Files Are Correctly Uploaded by Running the

‘ls’ Command

Input:

amunategui@cloudshell:~/chapter-8 (apt-memento-192717)$ ls

Output:

appengine_config.py main.py static

app.yaml model.ckpt.data-00000-of-00001 templates

Archive.zip model.ckpt.index

checkpoint requirements.txt

�Step 4: Creating Lib Folder
So, run the following command to install all the needed additional libraries to the lib

folder. When you deploy your web app, the lib folder will travel along with the needed

libraries (Listing 8-32).

Listing 8-32.  Installing All Needed Python Libraries into the “lib” Folder

$ sudo pip3 install -t lib -r requirements.txt

�Step 5: Deploying the Web Application
Finally, deploy it to the world with the “gcloud app deploy” command (Listing 8-33).

Listing 8-33.  Deploying Web Application

$ gcloud app deploy app.yaml

That’s it! Sit back and let the tool deploy the web site. This is the Flexible App

Engine, so it can take up to 30 minutes to be fully deployed. Once it is done setting

everything up, it will offer a clickable link to jump directly to the deployed web

application (Listing 8-34).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

285

Listing 8-34.  You Can Also Get There with the Following Command

$ gcloud app browse

Enjoy the fruits of your labor, and make sure to experiment with it by drawing

recognizable and nonrecognizable digits (Figure 8-11).

Figure 8-11.  The web application on Google Cloud

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

286

�Troubleshooting
There will be cases where you will have issues and the Google Cloud logs will be your

best friends. You can easily reach them either directly in the Google Cloud dashboard or

by calling the logs URL (Listing 8-35).

Listing 8-35.  Logs URL

https://console.cloud.google.com/logs

Or you can stream the log’s tail by entering in the cloud shell the following command

in Listing 8-36.

Listing 8-36.  Viewing Logs in Terminal Window

$ gcloud app logs tail -s default

�Closing Up Shop
One last thing before we conclude this chapter: don’t forget to stop or delete your App

Engine Cloud instance. Even if you are using free credits, the meter is still running and

there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as

the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this

can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click on your active version and stop it

(Figure 8-12). If you have multiple versions, you can delete the old ones; you won’t be

able to delete the default one, but stopping it should be enough (if you really don’t want

any trace of it, just delete the entire project).

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

287

That’s it! Don’t forget to deactivate the virtual environment if you are all done

(Listing 8-37).

Listing 8-37.  Deactivating the vVirtual Environment

$ deactivate

�Conclusion
In this chapter, we got to try out some new and old technology.

�HTML5 <canvas> tag
The new “canvas” tag in HTML5 is a lot of fun and opens all sorts of new ways of

inputting data to devices and into Flask.

�TensorFlow
Working with TensorFlow and having the ability of loading pretrained models into Flask

is big. Training these models takes a lot of processing and time, so being able to leverage

already trained models allows implementing deep models into web application in a

heartbeat. One word of caution here is that you will need a machine commiserate to

Figure 8-12.  Stopping and/or deleting your App Engine version

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

288

your TensorFlow needs, the basic simple setup we used in previous chapters won’t do

the trick (see the app.yaml files for required settings).

�Design
Splitting background image into four sections is a fun an easy way of interlacing large

images with input controls, such as the canvas in our case (Figure 8-13).

Figure 8-13.  Adding extra “cellpadding” in the front-end design to see the splits
needed to accommodate the drawing canvas

Chapter 8 Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP

289
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_9

CHAPTER 9

Case Study Part 2:
Displaying Dynamic
Charts
Displaying dynamic stock charts on PythonAnywhere.

Let’s add a few more features to the original case study web application (make sure

you are familiar with “Running on PythonAnywhere” in Chapter 5). The idiom “a

picture is worth a thousand words” is absolutely applicable here and by offering visual

chart support of the price action surrounding the recommended pair trade, will go a

long way to help the user evaluate things. We will add three charts (Figure 9-1), a chart

for each stock in play and the differential showing the percent-change, cumulative sum

subtraction between the strong stock minus the weak stock.

290

The charts are created dynamically in Flask and transformed into PNG files for

viewing. This is the same technique we used to build the Titanic web application that

allows you to conveniently build dynamic plots using the Matplotlib library and translate

them from binary to text for web publishing. This allows the creation of dynamic images

at will without having to save anything to file.

Figure 9-1.  The final web application for this chapter

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

291

Note D ownload the files for Chapter 9 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter9.ipynb” to follow along with this chapter’s content.

�Creating Stock Charts with Matplotlib
Let’s get started; download the files for this chapter into a folder called “chapter-9” and

open up the Jupyter notebook to follow along. This is a method we’ve used in previous

chapters and that we will continue to use. This approach allows us to create images

using Matplotlib then translate them into strings, so they can be dynamically fed and

understood by an HTML interpreter.

In the following simplified code snippet, we create an image in Python using the

“matplotlib.pyplot” library (Listing 9-1).

Listing 9-1.  Creating Encoded String Images

import matplotlib.pyplot as plt

fig = plt.figure()

plt.bar(y_pos, performance, align='center', color = colors, alpha=0.5)

img = io.BytesIO()

plt.savefig(img, format='png')

img.seek(0)

plot_url = base64.b64encode(img.getvalue()).decode()

Then the variable “plot_url” can be injected into the HTML code using Flask Jinja2

template notation as such (Listing 9-2).

Listing 9-2.  Injecting Dynamic Images Using Flask and Jinja2

model_plot = Markup(''.format(plot_url))

...

<div>{{model_plot}}</div>

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

292

And if you look at the HTML source output, you will see that the HTML image tag

is made of an enormous string output (drastically truncated here) that the interpreter

knows to translate into an image (Figure 9-2).

�Exploring the Pair-Trading Charts
Go ahead and download the files for this chapter into a folder called “chapter-9.” Open

up the Jupyter notebook to follow along. You will see a lot of repeated code in this

notebook in order to load and process all the financial data needed to get to the charting

part.

We’re going to offer our visitors three charts, a chart for each stock in play and the

differential showing the percent-change, cumulative sum subtraction between the strong

stock minus the weak stock. The first half of the Jupyter notebook is a repeat of Chapter 9.

We need to keep repeating the code, as we’re building these charts onto the previous

foundation. Scroll down to “Part 2.”

Let’s run one chart through the different steps needed to get it into a textual format

to be properly served from a web server to a web client. We build it just like we would

build any chart in Matplotlib. We create the subplots to initiate a plot object, pass it our

financial data, create a title, and rotate the x-axis date field (Listing 9-3 and Figure 9-3).

Listing 9-3.  Plotting Price Difference

fig, ax = plt.subplots()

ax.plot(temp_series1.index , long_trade_df)

plt.suptitle('Overly Bearish - Buy: ' + weakest_symbol[0])

Figure 9-2.  Image transformed into string of characters

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

293

rotate dates

myLocator = mticker.MultipleLocator(2)

ax.xaxis.set_major_locator(myLocator)

fig.autofmt_xdate()

We also do a little extra work to properly format labels on the x-axis. The rotation

does help, but we need to prune out some of the dates. There are many ways of

approaching this, but we will remove all dates except the first and last ones (to be

specific, we are going to keep the second date and the second-to-last date only;

Listing 9-4).

Listing 9-4.  Fixing Label to Only Show First and Last Date

Input:

labels = [" for item in ax.get_xticklabels()]

labels[1] = temp_series1.index[0]

labels[-2] = temp_series1.index[-1]

labels = [" for item in ax.get_xticklabels()]

labels[1] = temp_series1.index[0]

labels[-2] = temp_series1.index[-1]

ax.set_xticklabels(labels)

Figure 9-3.  Raw plot with x-axis rotated but still unreadable

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

294

Output:

[Text(0,0,"),

 Text(0,0,'2017-11-22'),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 ...

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,"),

 Text(0,0,'2018-04-04'),

 Text(0,0,")]

This yields a much more readable and breezy chart showing only two titled dates, the

second and second-to-last (Figure 9-4).

Figure 9-4.  A more readable chart showing only the extreme dates

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

295

Finally, we translate the image date into text using the “BytesIO()” function from the

io library. We call the “savefig()” function from Matplotlib to specify the output format

(though this isn’t being saved to file) and finally call the “b64encode()” function of the

base64 library. At this point, our “plot_url” variable holds a textual representation of

our image that we can easily pass using Flask to a web client. This is a very clever way of

creating dynamic images in a scalable and session-free manner (Listing 9-5).

Listing 9-5.  Sampling Encoded Output

Input:

img = io.BytesIO()

plt.savefig(img, format='png')

img.seek(0)

plot_url = base64.b64encode(img.getvalue()).decode()

plot_url

Output:

'iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlw

SFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9u

IDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl4lOXV+PHvJJP

Jvu9MAlkmhBCWAImAK7JFUWMVyiaCVqVaW1vfWrGtYtVX5bWtb1+r/hS1EhSNiEoQZ

ccFRIEgwUBYEkgg+77vs/...

�Designing a Web Application
Go ahead and download the code for this chapter if you haven’t already done so; open a

command line window and change the drive to the “web-application” folder. It should

contain the following files as shown in Listing 9-6.

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

296

Listing 9-6.  Web Application Files

web-application

 ├── main.py
 ├── requirements.txt
 ├── static
 └── images
 ├── ticker-title.png
 ├── up-arrow.png
 └── down-arrow.png

 ├── templates
 ├── charts.html
 └── index.html
 ├── ^DJI.csv
 ├── AAPL.csv
 ├── BA.csv
 ├── CAT.csv
 ├── GS.csv
 ├── HD.csv
 ├── IBM.csv
 ├── MCD.csv
 ├── MMM.csv
 ├── TRV.csv
 ├── UNH.csv
 ├── requirements.txt
 └── main.py

As usual, we’ll start a virtual environment to segregate our Python library installs and

create the “requirements.txt” file if needed (Listing 9-7).

Listing 9-7.  Starting Virtual Environment

$ python3 -m venv pairtrading

$ source pairtrading/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”

command (Listing 9-8).

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

297

Listing 9-8.  Installing Requirements and Run a Local Version of the Web

Application

$ pip3 install -r requirements.txt

$ python3 main.py

Run the web application in the usual manner and make sure it works as advertised.

This may be a little slow the first time running but should get more nimble thereafter.

Also try the various options on the page to make sure everything works as it should.

�Mobile Friendly with Tables
We are keeping the web application mobile friendly by plotting the charts in table cells to

ensure that they resize properly regardless of the screen size. We use percentage sizes in

the width and height parameters of the “” tag (you can cap the height if you want,

but we need the width to be a percentage if we want it to adjust automatically) and wrap

each image in a “<td>” cell (Listing 9-9).

Listing 9-9.  Friendly Tables

Input:

chart1_plot = Markup('<img style="padding:1px; border:1px solid #021a40;

width: 80%; height: 300px" src="data:image/png;base64,{}">'.format(plot_url))

Output:

<table>

...

 <tr>

 <td align="center">

 {{chart1_plot}}

 </td>

 </tr>

 <tr>

 <td align="center">

 {{chart2_plot}}

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

298

 </td>

 </tr>

 <tr>

 <td align="center">

 {{chart_diff_plot}}

 </td>

 </tr>

...

</table>

This is an easy way of leveraging the flexibility of images in HTML to resize according

its holding frame (Figure 9-5).

Figure 9-5.  The narrow view of the stock chart automatically resizes according to
the client’s web page size

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

299

�Uploading our Web Application to PythonAnywhere
Let’s upload our updated code to PythonAnywhere. This chapter’s project is a

continuation of Chapter 5—please tackle the case studies in that order, as we are going

to build upon our previous PythonAnywhere work. Log in to your PythonAnywhere

account and find the folder “pair-trading-booth” that we created previously. Click

on the “Files” link in the top menu bar and enter the “pair-trading-booth” directory

(Figure 9-6).

All the financial CSV files needed should already be there (if not, run through

Chapter 5 again), and all we need to do is update the “main.py” and “index.html” files

and add a new “charts.html” file to display our stock and derived charts. The best way to

proceed is to simply open those files in a local editor and copy and paste the content into

PythonAnywhere.

Figure 9-6.  Our pair trading application on PythonAnywhere

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

300

For example, let’s update “main.py”, open the file in your local editor and open the

file in PythonAnywhere, then copy and paste the new version into your “main.py” file on

PythonAnywhere. Don’t forget to click the green “Save” button before moving on to the

other files (Figure 9-7).

Figure 9-7.  Updating the “main.py” code base on PythonAnywhere to handle the
creation of dynamic charts

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

301

Proceed in the same way in the templates folder for file “index.html” and also create

a new HTML file called “charts.html” (Figure 9-8).

Figure 9-8.  Creating a new file called “charts.html” on PythonAnywhere to
handle the creation of dynamic charts

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

302

Now you are ready to refresh your web service and fire up the web application.

Click on the “Web” menu tab and hit the big, green button to reload the application

(Figure 9-9).

Figure 9-9.  Hit the “Reload” button to update your web server

Figure 9-10.  The new “Pair Trading Booth” site enhanced with charts

If you enter the URL of your PythonAnywhere site into your browser, you should see

the new “Pair Trading Booth” site in all its glory. Go ahead and take it through its paces

by clicking on the “Get Trade” and “View Charts” buttons (Figure 9-10).

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

303

�Conclusion
In this chapter, we took a second pass at the “Pair Trading Booth” web application

and enhanced it with charting capabilities. Though we haven’t introduced any new

technology, we successfully enhanced it with extra features while preserving its mobile

viewing capabilities. We used table and dynamic image sizing using percentages instead

of fixed sizes; sometimes it is the simple things that are the most powerful.

Chapter 9 Case Study Part 2: Displaying Dynamic Charts

305
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_10

CHAPTER 10

Recommending
with Singular Value
Decomposition on GCP
What to watch next? Let’s recommend movie options using SVD and the Wikipedia API

on Google Cloud.

In this chapter, we’re going to build a movie recommender web application

(Figure 10-1) using the MovieLens datasets containing, “100,000 ratings and 1,300
tag applications applied to 9,000 movies by 700 users.”1 We will explore different

similarity-measurement techniques and design a recommender application using

singular value decomposition (SVD) and collaborative filtering to make great movie

recommendations.

1�https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens

306

Note  Download the files for Chapter 10 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter10.ipynb” to follow along with this chapter’s content.

�Planning Our Web Application
We will be focusing on collaborative filtering using movie ratings found in the

MovieLens dataset.2 This is probably the most popular dataset to learn about this topic.

We’re basically going to leverage the wisdom of the crowds to come up with movie

recommendations. We’ll build a web application where a user can select a couple of

2�https://grouplens.org/datasets/movielens/

Figure 10-1.  The final web application for this chapter

Chapter 10 Recommending with Singular Value Decomposition on GCP

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://grouplens.org/datasets/movielens

307

movies and the application will return a related movies recommendations. And to make

it even more informative and fun, we will also pull related information and images from

Wikipedia regarding top movie recommendations.

�A Brief Overview of Recommender Systems
Recommender systems are a big deal on the web and in e-commerce. Anytime a

site makes a recommendation based on something you are looking at or on your

preferences, it is using some form of recommender model. The types of recommender

systems vary widely depending on the tool used and the availability of customized and

intelligent data. Two popular areas are “content based” and “collaborative filtering.”

In this chapter, we will focus on collaborative filtering instead of content-based

filtering. The data from MovieLens contains user ratings for various movies. The

reasoning behind applying CF using this data is if you and a reviewer liked the same

movie, then there is a good chance you’ll like other movies reviewed by that person.

�Exploring the MovieLens Dataset
Let’s take a look at the MovieLens data. According to MovieLens liner notes3 on the ml-

latest-small dataset, the dataset contains 100,004 ratings across 9,125 movies and was

created by 671 users between 1995 and 2016.

�More from the MovieLens Dataset’s Liner Notes
Ratings Data File Structure (“ratings.csv”):

•	 All ratings are contained in the file “ratings.csv.” Each line of this file

after the header row represents one rating of one movie by one user,

and has the following format: userId, movieId, rating, timestamp.

•	 The lines within this file are ordered first by userId, then, within user,

by movieId.

•	 Ratings are made on a 5-star scale, with half-star increments

(0.5 stars–5.0 stars).

3�F. Maxwell Harper and Joseph A. Konstan, 2016. “The MovieLens Datasets: History and Context,”
ACM Transactions on Interactive Intelligent Systems (TiiS) 5 no. 4, Article 19 (January 2016), 19
pages. DOI = https://doi.org/10.1145/2827872

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://doi.org/10.1145/2827872

308

•	 Timestamps represent seconds since midnight Coordinated

Universal Time (UTC) of January 1, 1970.

Movies Data File Structure (“movies.csv”):

•	 Movie information is contained in the file “movies.csv.” Each line

of this file after the header row represents one movie, and has the

following format: movieId, title, genres.

•	 Movie titles are entered manually or imported from https://www.

themoviedb.org/ and include the year of release in parentheses.

Errors and inconsistencies may exist in these titles.

•	 Genres are a pipe-separated list, and are selected from the following:

•	 Action

•	 Adventure

•	 Animation

•	 Children’s

•	 Comedy

•	 Crime

•	 Documentary

•	 Drama

•	 Fantasy

•	 Film-Noir

•	 Horror

•	 Musical

•	 Mystery

•	 Romance

•	 Sci-Fi

•	 Thriller

•	 War

•	 Western

•	 (no genres listed)

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://www.themoviedb.org/
https://www.themoviedb.org/

309

Go ahead and download the files for this chapter into a folder called “chapter-10.”

Download the “ml-latest-small.zip” dataset (http://files.grouplens.org/datasets/

movielens/ml-latest-small.zip) and unzip it into your “chapter-10” folder. We will

only use “ratings.csv” and “movies.csv” datasets. You should have everything you need

to follow along in the Jupyter notebook for this chapter.

�Overview of “ratings.csv” and “movies.csv”
Take a quick look at the Pandas “shape” and “tail()” functions of “ratings.csv.”

It is a narrow and long table and its timestamp is in Unix time, which is an integer

representation of time in the form of seconds from January 1st, 1970 UTC. We’re going

to fix that. Here we have the CSV files in a folder called “ml-latest-small”; adjust yours

accordingly (Listing 10-1 and Figure 10-2).

Listing 10-1.  A look at “ratings.csv”

Input:

pd.read_csv('ml-latest-small/ratings.csv')

print('Shape:', ratings_df.shape)

print('Tail:', ratings_df.tail())

Output:

Shape: (100004, 4)

Figure 10-2.  Raw output of “ratings.csv”

Chapter 10 Recommending with Singular Value Decomposition on GCP

http://files.grouplens.org/datasets/movielens/ml-latest-small.zip
http://files.grouplens.org/datasets/movielens/ml-latest-small.zip

310

We’ll use the datetime’s “fromtimestamp()” function to cast Unix time into actual

and readable timestamp. Using the “describe()” we can confirm the change and see that

the ratings range from January 1995 to October 2016 (Listing 10-2).

Listing 10-2.  A Look at Timestamps

Input:

import datetime

ratings_df['timestamp'] = [datetime.datetime.fromtimestamp(dt) for dt in

ratings_df['timestamp'].values]

ratings_df['timestamp'].describe()

Output:

count 100004

unique 78141

top 2016-07-23 05:54:42

freq 87

first 1995-01-09 03:46:49

last 2016-10-16 10:57:24

Name: timestamp, dtype: object

When we run Pandas’ “describe()” on the “ratings.csv,” we see that the minimum

rating is 0.5 and the maximum is 5, with an average of 4 (Listing 10-3 and Figure 10-3).

Listing 10-3.  Function “describe()” on “ratings_df”

ratings_df.describe()

Chapter 10 Recommending with Singular Value Decomposition on GCP

311

For our needs, it doesn’t really matter how many movies are in the movies data frame;

we care about how many movies have been rated in the ratings data (Listing 10-4).

Listing 10-4.  Count of Unique Movies

Input:

print('Unique number of rated movies: %i' % len(set(ratings_df['movieId'])))

Output:

Unique number of rated movies: 9066

So, we really only have 9,066 movies to work with, not 9,125 as the liner notes

mention. And the number of unique reviews is 671 (Listing 10-5).

Listing 10-5.  Unique User Count with Ratings

Input:

print('Unique user count with ratings: %i' % len(set(ratings_df['userId'])))

Output:

Unique user count with ratings: 671

Figure 10-3.  “Describe()” Output of Data Frame “ratings_df”

Chapter 10 Recommending with Singular Value Decomposition on GCP

312

Let’s take a look at “movies.csv.” Feature “title” is straightforward and “genres” is an

interesting category that we will explore further (Listing 10-6 and Figure 10-4).

Listing 10-6.  A Look at “movies.csv”

Input:

movies_df = pd.read_csv('ml-latest-small/movies.csv')

print('Shape:', movies_df.shape)

movies_df.tail()

Output:

Shape: (9125, 3)

When we run “describe(),” we notice that feature “movieId” doesn’t match the data

frame’s index. The maximum movieId is 164,979, and there are only 9,124 rows. It is most

likely a universal MovieLens identifier. This is something we’ll need to adjust, to ensure

that the movieId follows the table’s index; it will make our lives a lot easier once we move

from data frames to matrices (Listing 10-7 and Figure 10-5).

Listing 10-7.  Running Function “describe()” on “movies_df”

movies_df.describe()

Figure 10-4.  Raw Output of “movies.csv”

Chapter 10 Recommending with Singular Value Decomposition on GCP

313

�Understanding Reviews and Review Culture
Now that we have a basic understanding of the two data frames, we’re going to focus on

what they contain. Let’s start with the number of reviews per user Ids (Listing 10-8 and

Figure 10-6).

Listing 10-8.  Plot Reviews per Users

plt.plot(sorted(ratings_df['userId'].value_counts(normalize=False)),

marker='o')

plt.suptitle('Number of Reviews per UserId', fontsize=16)

plt.xlabel('Reviewer User ID', fontsize=14)

plt.ylabel('Number of Reviews', fontsize=14)

plt.grid()

plt.show()

Figure 10-5.  The “describe()” output

Chapter 10 Recommending with Singular Value Decomposition on GCP

314

We see that the majority of the reviewers have fewer than 200 reviews, but one reviewer

has almost 2,500! Let’s look at the distribution of actual ratings (Listing 10-9 and Figure 10-7).

Listing 10-9.  Count of Unique Movies

ratings_df['rating'].plot.hist()

plt.suptitle('Rating Histogram', fontsize=16)

plt.xlabel('Rating Category', fontsize=14)

plt.ylabel('Rating Frequency', fontsize=14)

plt.grid()

plt.show()

Figure 10-6.  Total number of reviews per user ID

Figure 10-7.  Histogram of total ratings per category

Chapter 10 Recommending with Singular Value Decomposition on GCP

315

This chart is important, as it shows the type of ratings our reviewers like to use. On a

scale of 1 to 5, you would think that an even distribution would make a rating of “3” the

most used. We clearly see that isn’t the case and that a rating of “4” is the favorite rating,

followed by “3” and “5.” Taking some time to think about this is critical. We are about to

build models around user ratings and we need to be able to compare each reviewer on

equal footing. How can we generalize each user’s ratings to be comparable to all others?

One technique is to center each user’s reviews around the mean of that user’s ratings.

This creates a central “0” point that will align with all other reviewers’ central points—the

neutral review level. Of course, this system won’t work if a reviewer only has one review.

The categorical “genres” field of the movie dataset is interesting to get a quick idea

of the type of movies the dataset contains. Drama and comedy seem to be the biggest

categories (Figure 10-8).

We can also look at the breakdown of movie “genres” over the years they were

reviewed, by joining both the ratings and movie data frames. This is easily done with

Pandas “merge()” function. We join on the common index field “movieId” and then

pull the year from the “timestamp” feature (Listing 10-10).

Listing 10-10.  Merging Movies and Reviews by Year

reviews_by_genres = pd.merge(movies_df, ratings_df, how = 'inner', on

='movieId')

reviews_by_genres['year'] = reviews_by_genres['timestamp'].dt.year

Figure 10-8.  Overall top movie genres

Chapter 10 Recommending with Singular Value Decomposition on GCP

316

Now we can plot data made up of features from both tables broken down by year,

such as the most popular “genres” reviewed each year. We have to perform a slightly

more involved “groupby()” function call to get a “genres” total count by year

(Listing 10-11 and Figure 10-9).

Listing 10-11.  Top Genres by Year Reviewed

def top_category_count(x, n=1):

 return x.value_counts().head(n)

reviews_by_genres = reviews_by_genres.groupby(['year']).genres.apply(top_

category_count).reset_index()

plt.figure(figsize=(20,5))

g = sns.barplot(reviews_by_genres['year'], reviews_by_genres['genres'],

alpha=0.8)

plt.title('Top Genres Count by Year Reviewed')

plt.ylabel('Number of Occurrences', fontsize=12)

plt.xlabel('Genres', fontsize=12)

plt.xticks(rotation=45)

for index, row in reviews_by_genres.iterrows():

 �g.text(row.name, row.genres, row.level_1, ha="center", rotation=45,

color='blue', verticalalignment='bottom', fontsize=10)

plt.show()

Figure 10-9.  Top genres count by year reviewed

Chapter 10 Recommending with Singular Value Decomposition on GCP

317

It shouldn’t come as a surprise that “Drama” is the most common, with some

pockets of “Comedy.” Year 2000 seems to have been a good year for “Drama” movies.

�Getting Recommendations
By now you should have a clear understanding of the data we are using, and this should

make the following sections on modeling that much more approachable.

In order to streamline our filtering process, we are going to create a “matrix” made

with only three fields from the ratings data frame: “userId,” “movieId,” and “ratings”

(Listing 10-12).

Listing 10-12.  Creating User by Movie Ratings Matrix

Input:

ratings_df.set_index(['userId', 'movieId'], inplace=True)

ratings_matrix = sps.csr_matrix((ratings_df.rating,

 �(ratings_df.index.labels[0], ratings_df.index.

labels[1]))).todense()

print('shape ratings_matrix:', ratings_matrix.shape)

Output:

shape ratings_matrix: (671, 9066)

This is done by setting the index to be both “userId” and “movieId,” then creating

a matrix out of it using one index for rows and the other for columns. Because a lot of

the ratings will be zeros, we use the “scipy.sparse.csr_matrix()” function to create an

efficient sparse matrix (for more information, see the official docs at https://docs.scipy.

org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html).

The matrix will look like Figure 10-10.

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.sparse.csr_matrix.html

318

Using this matrix will make our querying, measuring similarities, and final SVD

model run much faster.

We also need to create a movie list with consecutive indexing sorted in the same

order as the original movie Ids from the movies data frame. This can easily be done

by dropping the original “movieId” field and replacing it with the row index. Then we

merge it to the ratings table and adopt the new Id for both ratings and movies (Listing 10-13

and Figure 10-11).

Listing 10-13.  Fixing Movie Ids

movies_df_raw = pd.read_csv('ml-latest-small/movies.csv')

movies_df_raw['movieId_new'] = movies_df_raw.index

movies_df_raw.tail()

We’ll rely on this row indexing to pull similarities. By looking at the tail, we confirm

that there is a total of 9,066 unique movies. We need to apply this new movie Id to both the

ratings and movies data frames and rename it “movieId” for consistency (Listing 10-14).

Figure 10-10.  The very important “Users” by “Rated Movies” matrix

Figure 10-11.  The old spotty “movieId” versus the new incremental
“movieId_new”

Chapter 10 Recommending with Singular Value Decomposition on GCP

319

Listing 10-14.  Applying Fixed Movie Id

ratings_df_raw = ratings_df_raw.merge(movies_df_raw[['movieId', 'movieId_

new']], on='movieId', how='inner')

ratings_df_raw = ratings_df_raw[['userId', 'movieId_new', 'rating']]

ratings_df_raw.columns = ['userId', 'movieId', 'rating']

movies_df_raw = movies_df_raw[['movieId_new', 'title', 'genres']]

movies_df_raw.columns = ['movieId', 'title', 'genres']

One last thing we need to do before diving into similarity metrics is to pull a base

movie that we will use in all subsequent similarity algorithms. We’ll put the ratings data

from the ratings table at index “0”; this represents all the ratings for the original Toy Story

movie (Listing 10-15).

Listing 10-15.  Basing Reviews on Toy Story

Input:

movie_toy_story = (mat[:,0])

movie_toy_story[0:20]

Output:

matrix([[0.],

 [0.],

 [0.],

 [0.],

 [0.],

 [0.],

 [3.],

 [0.],

 [4.],

 [0.],

 [0.],

 [0.],

 [5.],

 [0.],

 [2.],

Chapter 10 Recommending with Singular Value Decomposition on GCP

320

 [0.],

 [0.],

 [0.],

 [3.],

 [3.5]])

�Collaborative Filtering
Collaborative filtering is a popular type of recommendation system based on leveraging

the taste of other users who share similarities.

�Similarity/Distance Measurement Tools
There is a whole slew of distance measuring formulas to measure the similarity or

dissimilarity between two lists of numbers. This can be extremely handy when you

want to compare various sets of numbers against others. Here we will compare movies

by using user recommendations with the Euclidean distance and cosine similarity

measures.

We will once again leverage the great Scipy library and use its distance computations

“scipy.spatial.distance()” function for most of our needs in this chapter.

�Euclidean Distance
Simply put, the Euclidean distance is the distance between two points and probably

the most popular distance algorithm. Here we will use Scipy’s “spatial.distance.
euclidean()” function to calculate the Euclidean distance from our seed row of Toy Story

against all other rows (Listing 10-16 and Figure 10-12).

Listing 10-16.  Getting Similar Movies

distances_to_movie = []

for other_movies in mat.T:

 �distances_to_movie.append(scipy.spatial.distance.euclidean(movie_toy_

story, other_movies.tolist()))

Chapter 10 Recommending with Singular Value Decomposition on GCP

321

create dataframe of movie and distance scores to Toy Story

distances_to_movie = pd.DataFrame({'movie':movies_df['title'],'distance':

distances_to_movie})

sort by ascending distance (i.e. closest to movie_toy_story)

distances_to_movie = distances_to_movie.sort_values('distance')

distances_to_movie.head(10)

Euclidean distance does a good job linking Toy Story with “Toy Story 2” and “A Bug’s
Life”; intuitively, it makes sense.

�Cosine Similarity Distance
The cosine similarity measures the cosine angle between two vectors.4 This is a more

sophisticated form of measurement over the Euclidian distance and one we will be using

throughout this chapter.

4�http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/
sphilip/cos.html

Figure 10-12.  Movies with shortest Euclidean distance to Toy Story (1995)

Chapter 10 Recommending with Singular Value Decomposition on GCP

http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sphilip/cos.html
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sphilip/cos.html

322

Let’s repeat the previous exercise using Scipy’s “spatial.distance.cosine()” function

to calculate the cosine distance from our seed row of Toy Story against all other rows

(Listing 10-17 and Figure 10-13).

Listing 10-17.  Getting Similar mMovies

distances_to_movie = []

for other_movies in mat.T:

 �distances_to_movie.append(scipy.spatial.distance.cosine(movie_toy_

story, other_movies.tolist()))

create dataframe of movie and distance scores to Toy Story

distances_to_movie = pd.DataFrame({'movie':movies_df['title'],'distance':di

stances_to_movie})

sort by ascending distance (i.e. closest to movie_toy_story)

distances_to_movie = distances_to_movie.sort_values('distance')

distances_to_movie.head(10)

Cosine distance links Toy Story with “Toy Story 2” along with other family movies. It

is interesting that cosine distance comes up with a different list than Euclidean distance.

Figure 10-13.  Movies with shortest cosine distance to Toy Story (1995)

Chapter 10 Recommending with Singular Value Decomposition on GCP

323

�Singular Value Decomposition
You could easily build a system with collaborative filtering using any of the distance

approaches covered, but it won’t scale to larger datasets, handle sparse data, or know

what to do in cases of cold starts (where there is little or no intersecting user/movie

data). A model like SVD is designed to alleviate some of those problems by using lower

rank approximation and has the ability of estimating matches on compressed data.5

This is definitely not simple stuff, but in a nutshell, it attempts to reduce the data

and make the important themes and connections bubble up and lets the noise or

the outliers drop to the bottom. It will remove the noisy and irregular information to

build a clearer map of what fits where, and what is close and what is far away. SVD will

decompose our matrix of movie ratings arranged by genres and users into three parts,

a matrix of users, a matrix of movies, and a vector of relationship between both. We can

then use the relationship vector to match different users and reviews that are close to

each other and collect the surrounding information as potential recommendations.

SVD returns a matrix representing the feature space of users and another representing

the feature space of movies. We then apply the dot product to find similarities and

recommendations.

Also, this isn’t meant to be a course on SVD specifics, as it can get complicated. PhDs

have been written on this topic and hundreds of tutorials are available on the web for

those with a desire to dig deeper. I also recommend the blog post on which this code

is based (https://beckernick.github.io/matrix-factorization-recommender/),

and for a clear and simple example of SVDs in action, Recommendation Engines for

Dummies (http://zwmiller.com/projects/simple_recommender.html).

�Centering User Ratings Around Zero
As this dataset has been studied for quite a few years now, some interesting tricks have

been proved useful and we will apply them here as well. We will subtract each user’s

recommendations against their mean recommendation. This ensures that all users are

scaled accordingly and around zero. If a user’s max rating is a 5 and minimum rating is

a 3, while other users rate using the whole range, taking each mean and subtracting it

against its recommendation will allow both to be comparable (Listing 10-18).

5�http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://beckernick.github.io/matrix-factorization-recommender/
http://zwmiller.com/projects/simple_recommender.html
http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm

324

Listing 10-18.  Centering All Reviews Around Mean

user_ratings_mean = np.mean(ratings_mat, axis = 1)

ratings_mat_centered = ratings_mat - user_ratings_mean.reshape(-1, 1)

�A Look at SVD in Action
Let’s finish analyzing the SVD code found in the Jupyter notebook (to follow along,

refer to e section “Singular Value Decomposition”). This is an important piece, as it

represents the brains behind our recommender engine.

The first thing we do is build a matrix of users versus rated movies (Figure 10-14). In

our case it entails cleaning up a few things like rebuilding the movie Ids to start at zero,

making them sequential with no gaps, and resetting the rating Ids to also start at zero.

One way to make our recommender work on new data is to add our visitor’s

movie taste as a new “UserId” to the matrix. We then rebuild the matrix using the

“Compressed Sparse Row matrix” function “sps.csr_matrix(),” which will transform

the matrix into an SVD-friendly format taking into account the information from our

new visitor (Listing 10-19).

Listing 10-19.  Getting Recommendations for our New User

create a new user id - add 1 to current largest

new_user_id = np.max(ratings_df_cp['userId']) + 1

add movie preference to matrix and assign 5-star votes

to all of them

new_user_movie_ids = user_history_movie_ids

Figure 10-14.  The very important “Users” by “Rated Movies” matrix

Chapter 10 Recommending with Singular Value Decomposition on GCP

325

new_user_ratings = [5] * len(new_user_movie_ids)

fix index to be multilevel with userId and movieId

ratings_df_cp.set_index(['userId', 'movieId'], inplace=True)

add new movie rating as a pandas series and insert new row

at end of ratings_df_cp

for idx in range(len(new_user_movie_ids)):

 row_to_append = pd.Series([new_user_ratings[idx]])

 cols = ['rating']

 ratings_df_cp.loc[(new_user_id, new_user_movie_ids[idx]), cols]

= row_to_append.values

create new ratings_matrix

ratings_matrix_plus = sps.csr_matrix((ratings_df_cp.rating,

(ratings_df_cp.index.labels[0], ratings_df_cp.index.labels[1]))).todense()

We then send our matrix to the “GetSparseSVD” function that performs the matrix

decomposition, and return the three matrices needed to get the dot product for our new

user and other users with similar interests. This uses the Sparse linear algebra SVDS

library “scipy.sparse.linalg.svds,” which does a great job handling large matrices with

lots of zeros (most folks have only seen a handful of movies, so when you build a matrix

of users to movies, most cells are blanks; Listing 10-20).

Listing 10-20.  Getting the SVD

Ua, sigma, Vt = GetSparseSVD(ratings_matrix_centered, K=50)

all_user_predicted_ratings = np.dot(np.dot(Ua, sigma), Vt) + user_ratings_

mean.reshape(-1, 1)

We run the dot product on the returned matrices (Ua and sigma in our case) and

package everything into a data frame called “predictions_df.” This data leverages SVD’s

magic to organize the users and their interests into various dimensions (Listing 10-21

and Figure 10-15).

Listing 10-21.  Viewing “head()” of Dot Matrix

predictions_df = pd.DataFrame(all_user_predicted_ratings, columns = movies_

df.index)

predictions_df.head()

Chapter 10 Recommending with Singular Value Decomposition on GCP

326

I certainly won’t pretend to understand the logic behind these groupings but it

works, so I’ll trust SVD and I’d recommend you do the same.

The last phase of getting the recommendations for our new user is to extract the

SVD’s dot product data from “predictons_df” for that user only, then append the movie

information, and simply pick a handful of new movies that the user hasn’t already seen.

For example, let’s pretend that our new user really likes the following three drama/war

movies (Figure 10-16).

Figure 10-16.  Our user’s preferences

Figure 10-15.  The dot matrix output organizing our users by similarities on
multiple dimensions

Chapter 10 Recommending with Singular Value Decomposition on GCP

327

We pass this new user’s choices as a new user in our “Users” by “Rated Movies”

matrix and add those three choices with high ratings. We then run SVD and pull the

predictions for this new user (Figure 10-17).

Obviously, we will not recommend “Schindler’s List” to this user as it is one they

have already seen’ instead, we recommend “Forest Gump,” “Saving Private Ryan,” and

“The Shawshank Redemption.” Okay, enough on the code; let’s build this thing!

�Downloading and Running the “What to Watch
Next?” Code Locally
Let’s download the files for Chapter 10 and unzip them on your local machine if you

haven’t already done so. You will need to copy the CSV files “movies.csv” and “ratings.
csv” created earlier to the root directory of the web application files—in the same folder

as main.py. Your “web-application” folder should contain the following files as shown

in Listing 10-22.

Figure 10-17.  The sorted recommendations for our new user

Chapter 10 Recommending with Singular Value Decomposition on GCP

328

Listing 10-22.  Web Application Files

web-application

 ├── appengine_config.py
 ├── app.yaml
 ├── main.py
 ├── requirements.txt
 ├── movies.csv
 ├── ratings.csv
 ├── static
 └──images
 ├── curtain-left.png
 └── curtain-right.png
 └──templates
 └── index.html

As is customary, we’ll start a virtual environment to segregate our Python library

installs (Listing 10-23).

Listing 10-23.  Starting Virtual Environment

$ python3 -m venv whattowatchnext

$ source whattowatchnext/bin/activate

Then install all the required Python libraries by running the “pip install -r”

command (Listing 10-24).

Listing 10-24.  Install Requirements and Take the Site for a Local Spin

$ pip3 install -r requirements.txt

$ python3 main.py

You can run the application on your local machine just like we did in the previous

exercises. Open a command line window, change the drive into the “web-application”

folder, and run the same commands you ran previous times (such as running “python3
main.py”). It should look like the following screen shot in Figure 10-18.

Chapter 10 Recommending with Singular Value Decomposition on GCP

329

�What’s Going on Here?
Let’s take a closer look at some of the interesting things going on in our Flask web

application.

�main.py
Let’s go over “main.py.” The movie genres that were extracted during data exploration

are copied and hard-coded as a constant list in the script. There is no real value in

calculating it dynamically from the data each time, as it tied to the historical data and

won’t change (Listing 10-25).

Figure 10-18.  “What to Watch Next?” running locally

Chapter 10 Recommending with Singular Value Decomposition on GCP

330

Listing 10-25.  Hardcoding Movie Genres

MOVIE_GENRES = ["Action", "Adventure", "Animation", "Children", "Comedy",

"Crime",

 "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror",

 �"IMAX", "Musical", "Mystery", "Romance", "Sci-Fi",

"Thriller",

 "War", "Western"]

This list of genres is used to populate the first drop-down box of the web application.

That drop-down box is the only prepopulated field on the page and whenever a user

changes it, it automatically populates the other drop downs with movie titles for that genre.

This helps focus the application and drastically reduce the number of available choices.

The script contains four convenience functions that are called at different times

during a visitor’s interaction with the site.

•	 GetMoviesByGenres (movies_df, genre)

•	 Is the function that will return a list of all movies and movie IDs

for a particular genre. It is called whenever a user changes the

“Movie Genre” drop-down box.

•	 GetSparseSVD (ratings_centered_matrix, K)

•	 Is the SVD algorithm we looked at earlier. It takes a ratings/

movieids matrix and “K,” the number of singular values to

compute, and returns a matrix of users, a vector of relationship

between both (a diagonal matrix), and a matrix of movies.

•	 GetRecommendedMovies (ratings_df, movies_df, user_history_
movie_ids)

•	 This is a critical function that will take the ratings and movies

data frames, the history of movies the user has watched and liked

(the movies selected by the user in the three drop-down boxes). It

will append a few new rows on the ratings data frame consisting

of the movies our visitor has selected along with a top rating (we

assume the user really liked). It will call the “GetSparseSVD”

function and get an SVD decomposition using the original data

Chapter 10 Recommending with Singular Value Decomposition on GCP

331

along with the append new movies from our visitor. Now that

we know the user’s movie taste, we can find similar movies from

SVD using dot products. The function will return the top three

recommended movies.

•	 GetWikipediaData (title_name)

•	 This function takes a movie title, will pass it on to the Wikipedia

API, and return the first paragraph about the movie along with

the first image associated with that movie (usually the movie’s

poster).

The script also contains three Flask specific functions:

•	 startup()

•	 The “startup()” function is called whenever the flask server is

started—in other words it is a constructor function. This is done by

adding the decorator “@app.before_first_request.” It loads both

datasets: “movies.csv” and “ratings.csv.” It then cleans them

just like we did in the exploration Jupyter notebook by removing

unused “movieId” and resets all indexes to start at zero.

•	 ready()

•	 The “ready()” function is called whenever the page is first

loaded, refreshed, or when a movie genre is changed. This

function sets variable defaults for the “index.html” page

whenever called for the first time. If it isn’t the first time (i.e. it

is a form submit via a genre value change and the “if” function

for “request.method == ‘POST’” returns true), the function

will preserve any value set by a user and get a fresh list of

movies choices via the “GetMoviesByGenres()” function

call. It also checks that the user has at least selected one

movie from the three drop downs and passes those Ids to the

“GetRecommendedMovies()” function. This will return three

new movie recommendations. The top movie recommendation

is passed to the “GetWikipediaData()” function for a description

snippet and poster image of said movie.

Chapter 10 Recommending with Singular Value Decomposition on GCP

332

•	 background_process()

•	 This function is tied to the front-end AJAX function in “index.
html.” This is called whenever the user clicks one of the three

recommended movie links. It takes the name of the movie and

passes it to the “GetWikipediaData()” function just like the

“ready()” function does. This gets a description snippet and

poster image for the movie in focus.

�index.html
Let’s take a look at some of the interesting things going on in the front-end side in the

“index.html” script (Listing 10-26).

Listing 10-26.  On the JavaScript Side

<script>

$(document).on("click", "a", function(){

 var move_title = this.innerHTML;

 $(this).text(move_title);

 document.getElementById("movie_poster").innerHTML = move_title;

 fetchdata(move_title);

});

function fetchdata(move_title)

{

 $.ajax({

 type : "GET",

 url:'{{ url_for('background_process') }}',

 data:{ 'movie_title': move_title},

 success: function(data){

 �update_dashboard(data.wiki_movie_description, data.wiki_movie_

poster);

 }

 });

}

Chapter 10 Recommending with Singular Value Decomposition on GCP

333

function update_dashboard(wiki_movie_description, wiki_movie_poster){

 �document.getElementById('movie_description').innerHTML = wiki_movie_

description;

 document.getElementById('image_poster').src = wiki_movie_poster;

}

</script>

We have three functions:

•	 $(document).on(“click”, “a”…)

•	 This function listens to anchor tags and, when clicked, takes the

inner text and passes it to function “fetchdata().”

•	 fetchdata(move_title)

•	 This function uses AJAX to pass a GET post to the server to get a

movie description from Wikipedia and a movie poster, and passes

the results to function “update_dashboard().”

•	 update_dashboard(wiki_movie_description, wiki_movie_poster)

•	 This function gets results from function “fecthdata()” and

replaces the HTML content description text and the movie poster

with whatever is returned.

�Deploying on Google App Engine
By now, you should have some experience with the Google Flexible App Engine, so this

will be a quick guide to get this web application up and running.

�Step 1: Fire Up Google Cloud Shell
Log into your instance of Google Cloud and create or select the project in which you

want your App Engine to reside (if you don’t have one, you will be prompted to create

one—see Creating and Managing Projects6). Start the cloud shell command line tool by

clicking the upper right caret button. This will open a familiar-looking command line

window in the bottom half of the GCP dashboard (Figure 10-19).

6�https://cloud.google.com/resource-manager/docs/creating-managing-projects

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://cloud.google.com/resource-manager/docs/creating-managing-projects

334

�Step 2: Zip and Upload All Files to The Cloud
Zip the files in the “web-application” folder but don’t zip the virtual environment folder

“whattowatchnext” as it’s not needed (Figure 10-20).

Figure 10-19.  Accessing the Google Cloud shell

Figure 10-20.  Zipping web application files for upload to Google Cloud

Chapter 10 Recommending with Singular Value Decomposition on GCP

335

Upload it using the “Upload file” option (this is found on the top right side of the

shell window under the three vertical dots; Figure 10-21).

�Step 3: Create Working Directory on Google Cloud and
Unzip Files
Once the file is successfully uploaded, create a new directory, like “chapter-10” for

example (Listing 10-27).

Listing 10-27.  Creating Folder on Cloud

$ mkdir chapter-10

$ cd chapter-10

Figure 10-21.  Uploading files via Google Cloud shell

Chapter 10 Recommending with Singular Value Decomposition on GCP

336

Transfer all the zip Archive into the new folder and unzip it (Listing 10-28).

Listing 10-28.  Loading Needed Files

$ mv ../Archive.zip Archive.zip

$ unzip Archive.zip

Your folder on Google Cloud should look something like Listing 10-29.

Listing 10-29.  Checking Unzipped Content

Input:

$ ls

Output:

appengine_config.py app.yaml Archive.zip lib main.py movies.csv ratings.csv

requirements.txt static templates

�Step 4: Creating Lib Folder
Run the following command to install all the needed additional libraries to the lib folder.

When you deploy your web app, the lib folder will travel along with the needed libraries

(Listing 10-30).

Listing 10-30.  Installing Required Libraries

$ sudo pip3 install -t lib -r requirements.txt

�Step 5: Deploying the Web Application
Finally, deploy it to the world with the “gcloud app deploy” command (Listing 10-31).

Chapter 10 Recommending with Singular Value Decomposition on GCP

337

Listing 10-31.  Deploying Web Application and Confirming We Want to Deploy

Our Application (yes, please)

Input:

$ gcloud app deploy app.yaml

Output:

Services to deploy:

descriptor: [/home/amunategui/chapter-10/app.yaml]

source: [/home/amunategui/chapter-10]

target project: [apt-memento-192717]target service: [default]

target version: [20180702t150114]

target url: [https://apt-memento-192717.appspot.com]

Do you want to continue (Y/n)?

That’s it! Sit back and let the tool deploy the web site. This is the Flexible App Engine,

so it can take up to 30 minutes to be fully deployed. Once it is done setting everything

up, it will offer a clickable link to jump directly to the deployed web application

(Listing 10-32).

Listing 10-32.  You Can Also Get There with the Following Command:

$ gcloud app browse

Enjoy the fruits of your labor, and make sure to experiment with it by asking for some

movie recommendations! (Figure 10-22).

Chapter 10 Recommending with Singular Value Decomposition on GCP

338

�Troubleshooting
There will be cases where you will have issues and the Google Cloud logs will be your

best friends. You can easily reach them either directly in the Google Cloud dashboard or

by calling the logs URL (Listing 10-33).

Listing 10-33.  Logs URL

https://console.cloud.google.com/logs

Or you can stream the log’s tail by entering in the cloud shell the following command

in Listing 10-34.

Figure 10-22.  The web application on Google Cloud

Chapter 10 Recommending with Singular Value Decomposition on GCP

339

Listing 10-34.  Viewing Logs in Terminal Window

$ gcloud app logs tail -s default

�Closing Up Shop
One last thing before we conclude this chapter: don’t forget to stop or delete your App

Engine Cloud instance. Even if you are using free credits, the meter is still running and

there is no need to waste money or credits.

Things are a little different with the Flexible App Engine over the Standard one, as

the Flexible costs more money. So, it is important to stop it if you aren’t using it. Also, this

can all be conveniently done via the Google Cloud dashboard.

Navigate to App Engine, then Versions. Click your active version and stop it

(Figure 10-23). If you have multiple versions, you can delete the old ones; you won’t be

able to delete the default one, but stopping it should be enough (if you really don’t want

any trace of it just delete the entire project).

That’s it! Don’t forget to deactivate the virtual environment if you are all done

(Listing 10-35).

Figure 10-23.  Stopping and/or deleting your App Engine version

Chapter 10 Recommending with Singular Value Decomposition on GCP

340

Listing 10-35.  Deactivating the virtual environment

$ deactivate

�Conclusion
Collaborative filtering for recommender systems are great and really popular in many

commercial applications. This was definitely not an easy chapter, as the inner workings

of SDVs are rather murky, but the point here is we can build a web application with some

serious modeling muscle behind it.

Though SVDs have been around for a while and are still actively in use, interesting

advances have been made using convolutional neural networks (CNN).7

7�https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-
d66ae0681775

Chapter 10 Recommending with Singular Value Decomposition on GCP

https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775
https://medium.com/@libreai/a-glimpse-into-deep-learning-for-recommender-systems-d66ae0681775

341
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_11

CHAPTER 11

Simplifying Complex
Concepts with NLP and
Visualization on Azure
Let's build a simple interactive dashboard to understand the cost of eliminating spam

messages using natural language processing on Microsoft Azure.

In this chapter, we will use natural language processing (NLP) on the classic SMS

Spam Collection Dataset. We will classify text messages as either ham or spam (i.e.,

intended messages vs. advertisements) using feature engineering, term frequency–

inverse document frequency (TFIDF) and random forests (RF). But the key takeaway will

be building a web application to illustrate and learn how to tune a prediction-probability

threshold in order to achieve a variety of predictive goals beyond the traditional 0.5

cutoff (Figure 11-1).

342

Note  Download the files for Chapter 11 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter11-ipynb” to follow along with this chapter’s content.

�Planning our Web Application—the Cost
of Eliminating Spam
Our web application will include an interactive receiver operating characteristic (ROC)

chart where the visitor can click on different thresholds and visualize how many ham

and spam messages get correctly classified. This will help visualize the compromise

between catching all spam messages and the amount of ham messages that get

Figure 11-1.  The final web application for this chapter

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

343

mislabeled as spam in the process. It will highlight the importance of finding the right

threshold to satisfy a particular business requirement. For example, in healthcare, if

resources are limited, they may prefer to identify only high-probability patients and

accept that lower risk patients may fall through the cracks. While in a ham/spam

example, users would rather have some spam and never lose any ham messages. The

tolerance for mislabeled predictions needs to be understood through business-domain

expertise, but also through modeling know-how and visuals like our web application for

this chapter.

�Data Exploration
The classic SMS Spam Collection Dataset is graciously hosted by the University of

California’s UCI Machine Learning Repository.1 Go ahead and download the files for this

chapter into a folder called “chapter-11.” Open up the Jupyter notebook to follow along.

According to the UCI Dataset Description, this is a collection of 425 SMS spam messages

from the Grumbletext web site and 322 spam messages from the SMS Spam Corpus v.01.

Another 4,827 SMS messages from various sources were added as ham messages.2

If we call the Pandas “groupby()” function on the outcome variable (whether the

message is ham or spam), we can understand how balanced the dataset is (Listing 11-1

and Figure 11-2).

Listing 11-1.  Function “groupby()” on the Outcome Variable

sms_df.groupby('outcome').describe()

1�https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
2�https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

Figure 11-2.  The “groupby()” output for variable “outcome”

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

344

This simple command reveals a whole lot of information. We learn that the dataset

is comprised of 4,827 ham and 747 spam messages. Some of them are duplicates and

will need to be removed. It also shows that data is skewed, with 85% of the messages

being ham. This skewness makes sense in the real world but makes modeling more

challenging.

�Cleaning Text
Our first step is easy and obvious: we need to remove the duplicate rows identified

previously. This can efficiently be done with the Pandas “drop_duplicates()” function.

By setting the “keep” parameter to “first”, we keep the first occurrence and delete all

other subsequent repeats (Listing 11-2).

Listing 11-2.  Removing Duplicate Rows

Input:

print('Duplicates found before clean-up: %i ' % sum(sms_df.duplicated()))

sms_df = sms_df.drop_duplicates(keep='first')

print('Duplicates found after clean-up: %i ' % sum(sms_df.duplicated()))

Output:

Duplicates found before clean-up: 403

Duplicates found after clean-up: 0

�Text-Based Feature Engineering
It is important to remember that the majority of models out there, including NLP

models, can only work with quantitative data. This means that we need to transform

this textual SMS data into numbers. We are going to use various known tricks such as

counting words and characters.

Let’s start by counting the number of words in each SMS text message. We can use a

simple “comprehension,” which is a fancy Python term for a one-liner loop. We then use

those counts as a new feature in our SMS data frame called “word_count” (Listing 11-3

and Figure 11-3).

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

345

Listing 11-3.  Plot Word-Count per SMS

sms_df['word_count'] = [len(x.split()) for x in sms_df['sms']]

sms_df['word_count'].hist().plot()

Figure 11-3.  Histogram output of word counts in dataset

Panda has a handy “hist().plot” function that plots the histogram of a data frame

series; here we apply it to our new “word_count” feature to get a quick feel of the

word-count distribution in the dataset. It is clear that the majority of messages contain

between 0 and 20 words.

Why would we want to use a word count as a feature? Well, we are hoping that there

is an apparent pattern between real messages and spam messages. Maybe real messages

range between 5 and 30 words, while spam messages only range between 10 and 20

words. Whatever the case, any differentiating pattern will help our model. Let’s find out

(Listing 11-4 and Figure 11-4).

Listing 11-4.  Differences Between Real and Spam Messages

sms_df[['outcome', 'word_count']].groupby('outcome').describe()

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

346

So, there it is; a spam message, according to the data, never exceeds 35 words! Right

off the bat, any message exceeding 35 words can be labeled as ham—an easy win for the

good guys!

We can continue measuring the text data in this manner; for example, instead of

counting the number of words, let’s count characters. Same idea: Maybe spam messages

tend to use words within a certain character count range (Listing 11-5 and Figure 11-5).

Listing 11-5.  Character cCounts per SMS

sms_df['character_count'] = [len(x) for x in sms_df['sms']]

sms_df['character_count'].hist().plot()

Figure 11-4.  Summary counts of “outcome” variable using “describe()”
function

Figure 11-5.  Character count range histogram

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

347

Here we see that most messages are less than 100 characters long. And how does this

break down between ham and spam messages? (Figure 11-6)

Figure 11-6.  The “character_count“ summary of “outcome” variable

Interestingly, spam messages, according to our historical data, are never shorter than

13 characters—kind of hard selling something when using fewer than 13 characters…

See the corresponding Jupyter notebook for more measurements applied to the

SMS data, such as counting punctuation and capital letters. If we can keep highlighting

differentiating behavior between both types of messages, our model will keep getting

better.

�Text Wrangling for TFIDF
A popular and powerful technique for modeling text is term frequency–inverse

document frequency (TFIDF). This is a calculation of the frequency of a word within a

document and also within all documents in the corpus. In our case, TFIDF will count

the frequency of words in each SMS message and rank them by importance, but will also

penalize that importance if it finds that the word is overall too common and not useful in

pattern discovery. Before being able to feed our data into TFIDF, we need to wrangle (i.e.,

prepare) the data a bit more.

A question we need to ask ourselves, and this is relevant to any NLP project, is

how much data wrangling is required. When you have a lot of text data and use word

vectorization tools such as word2vec,3 it is recommended to not do any cleaning at all.

This is because the model will learn more using raw data than any watered-down version

weakened by human assumptions. In those cases, the model will learn best by having

3�https://radimrehurek.com/gensim/models/word2vec.html

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://radimrehurek.com/gensim/models/word2vec.html

348

access to misspellings or considering words starting with a capital letter and one without

as being different, etc. Unfortunately, in order for such approach to be successful, you

need lots and lots of data; think Wikipedia-size.

In the case of the SMS dataset, we just don’t have enough of it and need to squeeze

as much mileage out of it as possible. Take the words “Won,” “won,” and “won!”;

computationally, these are different, but in the hunt for spam, they are the same.

Therefore, if we flatten everything down to lower case and remove anything that isn’t

one of the 26 words of the alphabet (i.e., special characters, numbers, punctuation, etc.),

we help the model understand them better by seeing more instances of that word in

different situations.

�NLP and Regular Expressions
There are many ways of reducing text data but a popular one is RegEx or Regular

expressions. RegEx is a language all unto itself but has been incorporated into many

other languages including Python. It uses clever character expression groups to find

matches in bodies of text.

Here we will use the Pandas “str.replace” function with the regular expression

pattern “[^\w\s],” which translates to find any (‘[‘) non (‘^’) word character (‘\w’)

followed by a space character (‘\s’) and replace them with (“"”) nothing. This finds

anything that isn’t a word and removes it. Pretty simple and efficient (for more on this,

see JavaScript RegExp Reference on w3schools.com4). Then we use the Pandas “str.
lower()” function to force all the remaining words to lower case (Listing 11-6).

Listing 11-6.  Remove All Special Characters, Numbers, Punctuation and Force

to Lower Case

Input:

sms_df["sms_clean"] = sms_df['sms'].str.replace('[^\w\s]',")

sms_df["sms_clean"] = sms_df['sms_clean'].str.lower()

sms_df["sms_clean"].head()

4�https://www.w3schools.com/jsref/jsref_obj_regexp.asp

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://www.w3schools.com/jsref/jsref_obj_regexp.asp

349

Output:

0 go until jurong point crazy available only in ...

1 ok lar joking wif u oni

2 free entry in 2 a wkly comp to win fa cup fina...

3 u dun say so early hor u c already then say

4 nah i dont think he goes to usf he lives aroun...

Name: sms_clean, dtype: object

We end up with funny looking sentences that aren’t very easy to read, at least not for

humans.

The list of additional things we could do in the wrangling department is long. Even

though we won’t use them here, good next steps are “stemming” and “lemmatization”

to reduce words even further down to a common root. For example, if you feed it the

words “organize,” “organizes,” and “organizing,” it will reduce them all down to

“organi.”5 We are getting close to feeding our cleaned data into TFIDF and RF, but there

is one easier win for us to claim before modeling.

�Using an External List of Typical Spam Words
Spam has been around for a long time and examples are plentiful. Many services and

amateurs collect and curate lists of words, sentences, and even full messages deemed as

spam-like. I have curated a simple list of my own, containing words such as baldness,

cash, cure, guaranteed, lifetime, opportunity, wealth, winning, etc.

I included this simple list in this chapter’s downloads, and we will use it to compare

against each SMS message and tally how many spam words are contained in them. The

idea is that most normal, everyday messages won’t contain words such as winning or

cash, but many spam messages do. And, as with most of our feature engineering, we’ll

end up with a numerical feature that is what we need for our models.

The comprehension we use here to count the intersecting words between an SMS

message and the external spam word list is long. But what it does is simple, loop through

and create a list of words for each SMS message, then intersect it with the spam list and

count occurrences (Listing 11-7).

5�https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.
html

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

350

Listing 11-7.  Create Counts of Spam Words

sms_df["external_spam_word_count"] = [len([(x) for x in sent.split() if x

in spam_list]) for sent in sms_df["sms_clean"].values]

And is it going to help our model? (Listing 11-8 and Figure 11-7)

Listing 11-8.  Does It Help Predicting Spam?

sms_df[["outcome", "external_spam_word_count"]].groupby('outcome').describe()

Figure 11-7.  Spam word counts by “outcome” variable

Yes, it will! If you look at the mean count of ham vs. spam words, spam has more than

twice the amount of external spam words than ham does.

�Feature Extraction with Sklearn’s TfidfVectorizer
At this point we have gathered enough quantitative features. Let’s run the TFIDF

vectorizer, which is like one massive feature engineering calculation of every word in our

dataset against every other (Listing 11-9 and Figure 11-8).

Listing 11-9.  Vectorizing the Data

vectorizer = TfidfVectorizer()

vectors = vectorizer.fit_transform(sms_df['sms_clean'])

vectorized_df = pd.DataFrame(vectors.toarray())

vectorized_df.head()

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

351

Wow! “TfidfVectorizer” created 9,546 new features and did it pretty quickly! There

are a few things to remember here: “TfidfVectorizer” is a powerful feature engineering

tool, as it considers not only every word but the entire context as well. It results in a very

sparse matrix, so this may be a problem for very large corpuses, but it will work just fine

in our case. If that is a problem, it can also limit the number of words it will consider in

its vectors by feeding it a limited set of vocabulary words.

Now we just need to join these new features to the previous features we created earlier.

�Preparing the Outcome Variable
With all supervised models, we need to be clear on what we are trying to predict. Here

we want to predict whether a message is ham or not ham. So, ham messages need to be

labeled as 1, while spam messages need to be labeled as 0. This can easily be done using

the Pandas “Categorical()” function (Listing 11-10).

Listing 11-10.  Removing Duplicate Rows

Input:

print(all_df[outcome].head())

all_df[outcome] = pd.Categorical(all_df[outcome],

categories=["spam","ham"])

all_df[outcome] = all_df[outcome].cat.codes

print(all_df[outcome].head())

Figure 11-8.  TfidfVectorizer output

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

352

Output:

0 ham

1 ham

2 spam

3 ham

4 ham

Name: outcome, dtype: object

0 1

1 1

2 0

3 1

4 1

Name: outcome, dtype: int8

By printing a before and after transformation of our outcome feature, we confirm

that hams use the digit “1” and spams use “0.”

�Modeling with Sklearn’s RandomForestClassifier
We have now collected all the quantitative features needed to start running our random

forest classifier. Random forest, as its name implies, will create many sets of random

feature-trees and train and predict using those trees against the outcome variable. It

then will bring all those predictions back together (i.e., ensemble them back), with the

assumption that it will catch many more nuances than a single model would. In essence,

a random forest isn’t really “a” single model but a collection of many, with differing

views and understanding of the data.

The “sklearn.ensemble” library has an efficient and easy-to-use random forest

classifier, aptly named RandomForestClassifier. Here we ask it to run two parallel jobs,

as most computers today have at least two CPUs and the model will run much faster,

and 100 decision tree classifiers (the official documentation lists plenty more powerful

options to explore6). See listing 11-11.

6�http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

353

Listing 11-11.  Running the Random Classifier Model

rf_model = RandomForestClassifier(n_jobs=2, random_state=0, n_estimators=100)

rf_model.fit(X_train, y_train)

Once we have the “rf_model” trained, we can run predictions on the test set to

measure the model’s performance. The model offers predictions in both class and

probability formats (Listings 11-12 and 11-13).

Listing 11-12.  Predicting Spam vs. Ham

Input:

prediction_classes = rf_model.predict(X_test)

Output:

[1 1 1 ... 1 1 1]

Listing 11-13.  Getting Probabilities for Spam vs. Ham

Input:

prediction_probas = rf_model.predict_proba(X_test)

Output:

[[0.08 0.92]

 [0.14 0.86]

 [0. 1.]

 ...

 [0.01 0.99]

 [0. 1.]

 [0. 1.]]

�Measuring the Model’s Performance
The sklearn.metrics library has a large amount of functions to help us measure how well

a model is performing. We’ll start with the “classification_report” (Listing 11-14).

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

354

Listing 11-14.  Getting Model Metrics

Input:

sklearn.metrics import classification_report

print(classification_report(y_test, prediction_classes))

Output:

 precision recall f1-score support

 0 0.92 0.40 0.56 302

 1 0.92 0.99 0.96 2108

avg / total 0.92 0.92 0.91 2410

We see that our model does a great job predicting ham messages (second row) and

does really well on “precision” (how well you did among what you labeled) for spam

messages. The model struggles a bit on “recall” (how well you did among the full test

set) and “f1-score” (score between 1 and 0 based on precision and recall) for spam

messages. This is to be expected because the data is skewed, and we don't have as many

spam messages to train on.

The “confusion matrix” is another powerful tool to visualize how well a model

performs. It is related to the precision and recall but uses a different terminology: true

positive, false positive, true negative, and false negative (Figure 11-9).

Figure 11-9.  How to read a confusion matrix

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

355

The sklearn.metrics “confusion_matrix” function takes the ground truth outcome

labels, the predicted classes, and the label order. It is important to state you want the

positive label first (i.e., is ham). It makes interpreting the confusion matrix much easier

(Listing 11-15).

Listing 11-15.  Getting Confusion Matrix Metrics

Input:

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, prediction_classes, [1,0])

print('Total length of test set: %i' % len(y_test))

print('total hams in test set: %i' % sum(y_test==1))

print('total spams in test set: %i' % sum(y_test==0))cm

Output:

Total length of test set: 2410

total hams in test set: 2108

total spams in test set: 302

array([[2097, 11],

 [180, 122]])

In the upper left corner of the array, we see that the model succeeded in correctly

predicting 2,097 ham messages out of 2,108 (2,097 + 11) and succeeded in predicting

122 spam messages out of 302 (180 + 122). Those are the “TP” and “TN.” TP means true

positive where it’s succeeded in predicting a message is ham (ham = 1), and TN means

true negative where it succeeded in predicting that a message isn’t ham (ham = 0).

Digging deeper, “FN” is when the model labels a message a spam when it is in fact

ham (ham = 0 but really ham =1). In the array, the ham row is the top one, and the model

predicted 11 messages as ham when they were in fact spam messages. In the context

of ham vs. spam, this number is the one that hurts a lot, as it’s when a user’s personal

messages get dumped into the spam folder.

“FP” is when the model labels a message as ham when it is in fact spam (setting ham

= 1 when in reality ham = 0). In the first cell of the ham array, array at the bottom, the

model predicted 180 messages as ham when they were in fact spam.

The concept of the confusion matrix is very important, as a model will give you

additional flexibility beyond the base accuracy at a probability threshold of 0.5, where

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

356

anything below is 0 and anything above is 1. By playing around with this threshold, you

can squeeze more use out of it depending on whether more FN or more FP is better for

your business needs than a middle-of-the-road threshold. After all, this is what our web

application dashboard is all about.

The ROC chart is a great tool to understand the value of a binary classifier and how

we can vary the threshold for different effects (Figure 11-10).

Let’s consider the ROC curve for our model. Overall, its doing really well with an area

under the curve (AUC) score of 0.93. The AUC score ranges between 0.5 and 1, where 0.5

Figure 11-10.  The ROC curve of our ham vs. spam model

is random and 1 is perfect. So, an ideal AUC of 1 would make the green line in the chart

go from the bottom left at 0 straight up to 1, then straight across from left to right (in

other words, it covers the entire upper left triangle).

The AUC represents an area where the score is constant but, by sliding up or down

the outer edge of the curve, you can play with the “true positive rate” and “false

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

357

positive rate.” This may seem like a strange concept that you have flexibility with a

model without affecting its AUC score. At a high level, part of the reason for this flexibility

is that it really isn’t a “flexibility” as much as a “compromise.” The higher up the

curve you go (higher up the green line), the more your predicted positive outcomes are

accurate but the fewer of them you end up with, as those you’ve traveled over switch

from positive to negative outcomes.

This goes back to our earlier example that an emergency room with limited

resources may rather have higher precision predictions and fewer of them, thus sliding

up the green AUC line. While in our case with ham vs. spam, an email user wouldn’t

tolerate having good messages disappear in the spam box, thus sliding down the AUC

line would be preferable (knowing that more negative messages would be relabeled as

positive, therefore accepting that more real spam messages would end up in the inbox).

�Interacting with the Model’s Threshold
Let’s take a look at how our dashboard will illustrate the flexibility of the probability

threshold. If we take a standard probability cutoff of 0.5 (i.e., in our case anything above

0.5 is ham and below is spam). See Listing 11-16 and Figure 11-11.

Listing 11-16.  Confusion Matrix with 0.5 Cutoff

prediction_tmp = [1 if x >= 0.5 else 0 for x in prediction_probas[:, 1]]

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

358

We get the following graphical confusion matrix, and we read that the model

correctly identified 2,097 as ham and 120 as spam but mislabeled 11 ham messages as

spam—not good! Now if we lower our threshold to 0.3, let’s see how many ham messages

get labeled as spam. See Listing 11-17 and Figure 11-12.

Listing 11-17.  Confusion Matrix with 0.3 Cutoff

prediction_tmp = [1 if x >= 0.3 else 0 for x in prediction_probas[:, 1]]

Figure 11-11.  A Confusion Matrix with a Simple 0.5 Cutoff

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

359

With a threshold cutoff of 0.3, the model didn’t mislabel any ham messages as spam!

But the cost is that we went from only mislabeling 182 spam messages as ham up to 284

(i.e., advertisements making it into the user’s inbox). And the spam folder only received

ten correctly labeled spam messages instead of 120. There you have it; that is the cost. In

situations like ham vs. spam, that cost is trivial because nobody wants to lose any personal

messages and they are willing to tolerate a lot of spam in order to achieve that goal.

�Interacting with Web Graphics
A nice feature we are going to implement here is to allow the users to click on the AUC

image to experiment with the model’s threshold. This is a very intuitive way of getting your

users to interact with the web page and the concepts surrounding this chapter. Capturing a

user’s click event is easily done using JavaScript and capturing “event offsets” (code based

Figure 11-12.  A confusion Matrix with a Custom Cutoff of 0.3

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

360

on Emanuele Feronato post;, see http://www.emanueleferonato.com/2006/09/02/

click-image-and-get-coordinates-with-javascript/ for more information on this

approach) and passing it back to Flask for processing (Listing 11-18).

Listing 11-18.  JavaScript Code to Capture a User’s Clicks on AUC Chart

function point_it(event)

{

 �cur_x_coord = event.offsetX?(event.offsetX):event.pageX-document.

getElementById("pointer_div").offsetLeft;

 �cur_y_coord = event.offsetY?(event.offsetY):event.pageY-document.

getElementById("pointer_div").offsetTop;

 <!-- send coordinates back to Flask application -->

 fetchdata(cur_x_coord, cur_y_coord)

}

And this is translated in Flask to a new threshold using a series of if/then statements

(Listing 11-19).

Listing 11-19.  Translating User Clicks into Cutoff Thresholds

x_image_coord = int(request.args.get('new_x_coord'))

y_image_coord = int(request.args.get('new_y_coord'))

new_thres = 0.0

translate coordinates to threshold

if (y_image_coord >= 360 and y_image_coord < 390):

 new_thres = 0.1

elif (y_image_coord >= 340 and y_image_coord < 360):

 new_thres = 0.2

elif (y_image_coord >= 290 and y_image_coord < 340):

 new_thres = 0.3

elif (y_image_coord >= 260 and y_image_coord < 290):

 new_thres = 0.4

elif (y_image_coord >= 220 and y_image_coord < 260):

 new_thres = 0.5

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

http://www.emanueleferonato.com/2006/09/02/click-image-and-get-coordinates-with-javascript/
http://www.emanueleferonato.com/2006/09/02/click-image-and-get-coordinates-with-javascript/

361

elif (y_image_coord >= 185 and y_image_coord < 220):

 new_thres = 0.6

elif (y_image_coord >= 150 and y_image_coord < 185):

 new_thres = 0.7

elif (y_image_coord >= 115 and y_image_coord < 150):

 new_thres = 0.8

elif (y_image_coord >= 75 and y_image_coord < 115):

 new_thres = 0.9

elif (y_image_coord < 75):

 new_thres = 1

�Building Our Web Application—Local Flask Version
We thought through our model and dashboard concept, so now it is time to build it. Let’s

start by building a local Flask version.

Let’s download the files for Chapter 11 onto your local machine. Once you have

downloaded and unzipped everything, open a command line window, and change the

drive into the “web-application” folder. Your “web-application” folder should contain

the following files as shown in Listing 11-20.

Listing 11-20.  Web aApplication Files

web-application

 ├── main.py
 ├── ptvs_virtualenv_proxy.py
 ├── requirements.txt
 ├── static:
 └── images:
 ├── 00.png
 ├── 01.png
 ├── 02.png
 ├── 04.png
 ├── 06.png
 ├── 08.png
 ├── 10.png
 ├── 12.png

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

362

 ├── 14.png
 ├── 16.png
 ├── 18.png
 ├── ham.png
 ├── roc-chart.png
 └──spam.png
 ├── pickles:
 └──spam_model_output.p
 ├── templates:
 └──index.html
 └──web.3.4.config

Start a virtual environment (see Listing 11-21).

Listing 11-21.  Starting Up the Virtual Environment

$ python3 -m venv hamspamenv

$ source hamspamenv/bin/activate

Then install all the required Python libraries by running the “pip3 install -r”

command (Listing 11-22).

Listing 11-22.  Installing Required Libraries

$ pip3 install -r requirements.txt

And run the web application on your local machine (Listing 11-23 and Figure 11-13).

Listing 11-23.  Taking the Web Application for a Spin

$ python3 main.py

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

363

�Deploying to Microsoft Azure
It’s time to deploy our web application to the cloud. We’ll do a very brief fly-by, as we’ve

seen these steps a bunch of times already.

�Git for Azure
Initialize a Git session (Listing 11-24).

Listing 11-24.  Initializing Git

$ git init

Figure 11-13.  Local version of our web application

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

364

It is a great idea to run “git status” a couple times throughout to make sure you are

tracking the correct files (Listing 11-25).

Listing 11-25.  Running “git status”

Input:

$ git status

Output:

On branch master

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 hamspamenv/

 main.py

 ptvs_virtualenv_proxy.py

 requirements.txt

 static/

 templates/

 web.3.4.config

Add all the web-application files from the “web-application” file using the “git add,”

command and check “git status” again (Listing 11-26).

Listing 11-26.  Adding to Git

Input:

$ git add .

$ git status

Output:

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

365

 new file: hamspamenv/lib/python3.6/site-packages/werkzeug/urls.py

 new file:   hamspamenv/lib/python3.6/site-packages/werkzeug/useragents.py

 new file: hamspamenv/lib/python3.6/site-packages/werkzeug/utils.py

 new file:  hamspamenv/lib/python3.6/site-packages/werkzeug/websocket.py

 new file: hamspamenv/lib/python3.6/site-packages/werkzeug/wrappers.py

 new file: hamspamenv/lib/python3.6/site-packages/werkzeug/wsgi.py

...

You may have noticed that we have added a lot of files to our “git add.” command.

As per instructions from “git status,” it tells us how to remove files that we don’t want to

commit to Git with the “rm” command. Let’s remove all files and folder from the virtual

environment “hamspamenv” that aren’t needed for the project (Listing 11-27).

Listing 11-27.  Removing “hamspamenv” from Git

Input:

$ git rm -r --cached hamspamenv

$ git status

Output:

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: main.py

 new file: ptvs_virtualenv_proxy.py

 new file: requirements.txt

 new file: static/images/00.png

 new file: static/images/01.png

 new file: static/images/02.png

 new file: static/images/04.png

 new file: static/images/06.png

 new file: static/images/08.png

 new file: static/images/10.png

 new file: static/images/12.png

 new file: static/images/14.png

 new file: static/images/16.png

 new file: static/images/18.png

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

366

 new file: static/images/ham.png

 new file: static/images/roc-chart.png

 new file: static/images/spam.png

 new file: static/pickles/spam_model_output.p

 new file: templates/index.html

 new file: web.3.4.config

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 hamspamenv/

We now have only the files we need. So, do a local “git commit” and add a comment

that makes sense in case you need to revisit past actions in the future (Listing 11-28).

Listing 11-28.  Git Commit

Input:

$ git commit -am 'hamspamenv deployment on Azure'

Output:

[master (root-commit) 8c03a49] hamspamenv deployment on Azure

 20 files changed, 450 insertions(+)

 create mode 100644 main.py

 create mode 100644 ptvs_virtualenv_proxy.py

 create mode 100644 requirements.txt

 create mode 100644 static/images/00.png

 create mode 100644 static/images/01.png

 create mode 100644 static/images/02.png

 create mode 100644 static/images/04.png

 create mode 100644 static/images/06.png

 create mode 100644 static/images/08.png

 create mode 100644 static/images/10.png

 create mode 100644 static/images/12.png

 create mode 100644 static/images/14.png

 create mode 100644 static/images/16.png

 create mode 100644 static/images/18.png

 create mode 100644 static/images/ham.png

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

367

 create mode 100644 static/images/roc-chart.png

 create mode 100644 static/images/spam.png

 create mode 100644 static/pickles/spam_model_output.p

 create mode 100644 templates/index.html

 create mode 100644 web.3.4.config

For more information on the Git Deployment to Azure App Service, see https://

docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git.

�The azure-cli Command Line Interface Tool

�Step 1: Logging In
Create an “az” session (Listing 11-29 and Figure 11-14).

Listing 11-29.  Logging into “az”

$ az login

Figure 11-15.  Authenticating session

Figure 11-14.  Logging into Azure from azure-cli

Follow the instructions, point a browser to the given URL address, and enter the code

accordingly (Figure 11-15).

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/app-service-deploy-local-git

368

If all goes well (i.e., you have an Azure account in good standing), it will connect the

azure-cli terminal to the cloud server. Also, once you are authorized, you can safely close

the browser window.

Make sure your command-line tool is pointing to this chapter’s “web-application”

folder.

�Step 2: Create Credentials for Your Deployment User
This user will have appropriate rights for FTP and local Git use. Here I set the user-name

to “flaskuserXX” and password to “flask123”. You should only have to do this once; then

you can reuse the same account. In case it gives you trouble, simply create a different

user name (or add a number at the end of the user name and keep incrementing it like I

do; Listing 11-30).

Listing 11-30.  Setting Deployment User

$ az webapp deployment user set --user-name flaskuser30 --password flask123

As you proceed through each “azure-cli” step, you will get back JSON replies

confirming your settings. In the case of the “az webapp deployment,” most should

have a null value and no error messages. If you have an error message, then you have

a permission issue that needs to be addressed (“conflict” means that name is already

taken so try another, and “bad requests” means the password is too weak).

�Step 3: Create Your Resource Group
This is going to be your logical container. Here you need to enter the region closest

to your location (see https://azure.microsoft.com/en-us/regions/). Going with

“West US” for this example isn’t a big deal even if you’re worlds away, but it will make a

difference in a production setting where you want the server to be as close as possible to

your viewership for best performance.

Here I set the name to https://azure.microsoft.com/en-us/regions/

myResourceGroup (Listing 11-31).

Listing 11-31.  Creating Group

$ az group create --name myResourceGroup --location "West US"

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://azure.microsoft.com/en-us/regions
https://azure.microsoft.com/en-us/regions/myResourceGroup
https://azure.microsoft.com/en-us/regions/myResourceGroup

369

�Step 4: Create Your Azure App Service Plan
Here I set the name to “myAppServicePlan” and select a free instance (sku) (Listing 11-32).

Listing 11-32.  Creating Service Plan

$ az appservice plan create --name myAppServicePlan --resource-group

myResourceGroup --sku FREE

�Step 5: Create Your Web App
Your “webapp” name needs to be unique, and make sure your “resource-group”

and “plan” names are the same as what you set in the earlier steps. In this case I am

going with “amunateguihamspam.” For a full list of supported runtimes, run the

“list-runtimes” command (Listing 11-33).

Listing 11-33.  Supported Runtimes

$ az webapp list-runtimes

To create the web application, use the “create” command (Listing 11-34).

Listing 11-34.  Creating the Webapp

$ az webapp create --resource-group myResourceGroup --plan myAppServicePlan

--name amunateguihamspam --runtime "python|3.4" --deployment-local-git

The output of “az webapp create” will contain an important piece of information

that you will need for subsequent steps. Look for the line “deploymentLocalGitUrl”

(Figure 11-16).

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

370

Start “Git” if you haven’t already (and install it if you never used it before at https://

git-scm.com/book/en/v2/Getting-Started-Installing-Git).

�Step 6: Push Git Code to Azure
Now that you have a placeholder web site, you need to push out your Git code to Azure

(Listing 11-35).

Listing 11-35.  Adding Remote User

if git remote is say already exits, run 'git remote remove azure'

$ git remote add azure "https://flaskuser30@amunateguihamspam.scm.

azurewebsites.net/amunateguihamspam.git"

Finally, push it out to Azure (Listing 11-36).

Listing 11-36.  Push It Out (enter the “webapp deployment user” password

when prompted)

$ git push azure master

Figure 11-16.  Output of “az webapp create”; note your deployment Git URL

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

371

It will prompt you for your “webapp deployment user” password you set up earlier.

This may take a while, as we have to upload a bunch of corollary files like images and

dataset. If all goes well, you should be able to enjoy the fruits of your labor. Open a web

browser and enter your new URL that is made of your “webapp” name followed by

“.azurewebsites.net” (http://amunateguihamspam.azurewebsites.net).

On the other hand, if the azure-cli returns error messages, you will have to address

them (see the “Troubleshooting” section). Anytime you update your code and want to

redeploy it, see Listing 11-37.

Listing 11-37.  Committing and Pushing Out

$ git commit -am "updated output"

$ git push azure master

You can also manage your application directly on Azure’s web dashboard. Log into

Azure and go to App Services (Figure 11-17).

Figure 11-17.  Managing your application directly in the Microsoft Azure
dashboard

�Important Cleanup!
This is a critical step; you should never leave an application running in the cloud that

you don’t need, as it does incur charges (or use up your free credits if you are on the trial

program). If you don’t need it anymore, take it down (Listing 11-38).

Listing 11-38.  Tear-Down Time (you will be asked to confirm this action)

$ az group delete --name myResourceGroup

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

http://azurewebsites.net
http://amunateguihamspam.azurewebsites.net

372

Or delete it using Azure’s web dashboard under “App Services.” And finally,

deactivate your virtual environment (Listing 11-39).

Listing 11-39.  End Your Virtual Session if You Didn’t Do So Earlier

$ deactivate hamspamenv

�Troubleshooting
It can get convoluted to debug web application errors. One thing to do is to turn on

logging through Azure’s dashboard (Figure 11-18).

Figure 11-18.  Turning on Azure’s Diagnostics logs

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

373

Then you turn the logging stream on to start capturing activity (Figure 11-19).

Figure 11-19.  Capturing log information

You can also check your file structure using the handy Console tool built into the

Azure dashboard (Figure 11-20).

Figure 11-20.  Azure’s built-in command line tool

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

374

You can also access the tail of the log in your command window (Listing 11-40).

Listing 11-40.  Access the Log

$ az webapp log tail --resource-group myResourceGroup --name

amunateguihamspam

You can even check if your “requirement.txt” file works by calling the “env\scripts\
pip” function (Listing 11-41).

Listing 11-41.  Checking That You Can Install Your Python Libraries

$ env\scripts\pip install -r requirements.txt

�Conclusion and Additional Resources
Azure is one of the top three web hosting platforms currently available and thus a great

choice for enterprise and machine learning solutions.

For additional information on the Azure deployment process, see the detailed and

clear Azure document “Create a Python web ap in Azure.”7

7�https://docs.microsoft.com/en-us/azure/app-service/
app-service-web-get-started-python

Chapter 11 Simplifying Complex Concepts with NLP and Visualization on Azure

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-get-started-python

375
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_12

CHAPTER 12

Case Study Part 3:
Enriching Content
with Fundamental
Financial Information
Predicting the stock market with fundamental financial data aggregation on

PythonAnywhere.

We’re going to keep adding features to our “Pair Trading Booth” web application

(Figure 12-1).

376

Figure 12-1.  The final web application for this chapter

So far, we told our visitors about the best pair trade to make, showed them the related

financial charts, and now we’re going to give them critical fundamental details about the

companies behind the stocks mentioned.

•	 Full name of the company

•	 Short introduction of the company from Wikipedia.com

•	 Market capitalization

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

377

•	 Market sector

•	 Market industry

•	 Dynamic link to financial site: Finviz.com

Note D ownload the files for Chapter 12 by going to www.apress.com/
9781484238721 and clicking the source code button. Open Jupyter notebook
“chapter12.ipynb” to follow along with this chapter’s content.

�Accessing Listed Stocks Company Lists
A stock symbol is short and vague and can mean different things if you drop it into a web

browser for Internet searches. We need to tie it to its full company name to guarantee

its uniqueness. The Nasdaq website1 offers a great series of CSV files for us to use that

matches the symbol to additional corollary information including the full company

name. Point your browser to

https://www.nasdaq.com/screening/company-list.aspx.

Download all three files to your local machine. Make sure to rename them in the

following format, otherwise they will all be called “companylist.csv”:

•	 companylist_NASDAQ.csv

•	 companylist_AMEX.csv

•	 companylist_NYSE.csv

Let’s find matches between our ten stock symbols and their location in the

downloaded files. This is easily done by using the list of the ten symbols we are interested

in and looping through each symbol in the company lists (Listing 12-1). Because these

stocks are very well known, you will find a match for each one of them (this may not be

the case for smaller cap companies).

1�https://www.nasdaq.com/

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://www.nasdaq.com/screening/company-list.aspx
https://www.nasdaq.com/

378

Listing 12-1.  Checking Stock Symbols in “companylist”

Input:

stock_symbols = ['BA','GS','UNH','MMM','HD','AAPL','MCD','IBM','CAT','TRV']

print('Symbols found in the Nasdaq list:')

list(set(stock_symbols) & set(list(stock_company_info_nasdaq['Symbol'])))

Output:

Symbols found in the Nasdaq list:

['AAPL']

We found out that the “companylist_NASDAQ.csv” list contains one symbol,

“AAPL”. We can now pull that row out of the company list “CSV” file and save it. We

proceed in the same manner for the other symbols in the other two company lists

(Listing 12-2 and Figure 12-2).

Listing 12-2.  Querying “companylist”

stock_company_info_nasdaq[stock_company_info_nasdaq['Symbol'] == 'AAPL']

Figure 12-2.  The extra intelligence we extract from the Nasdaq company list

We now know that “AAPL” equates to “Apple Inc.” and we can also get the market

cap, IPO year, sector, and industry for that stock symbol. All this information is of great

use to our users. Also, we now have the exact spelling of the company name, which we

can use to pull additional information about this company from www.wikipedia.org.

As mentioned before, some of these symbol names are too simple and won’t necessarily

return the correct information from a web search, but if we combine a symbol name with

the actual company name, we have a much better chance of pulling exactly what we’re

looking for. (Keep in mind you may still find edge cases where you will pull something

unrelated.)

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

http://www.wikipedia.org

379

�Pulling Company Information with the
Wikipedia API
Wikipedia has a great and easy to use API in Python that we will leverage to add to depth

to our application. We will pull the introductory paragraph for each company that we

are recommending (the introductory paragraph is simply the first paragraph returned;

Listing 12-3).

Listing 12-3.  Wikipedia Query

Input:

import wikipedia

description = wikipedia.page("Apple Inc.").content

description = description.split('\n')[0]

description

Output:

"Apple Inc. is an American multinational technology company headquartered

in Cupertino, California, that designs, develops, and sells consumer

electronics, computer software, and online services. The company's hardware

products include the iPhone smartphone, the iPad tablet computer, the

Mac personal computer, the iPod portable media player, the Apple Watch

smartwatch, the Apple TV digital media player, and the HomePod smart

speaker. Apple's software includes the macOS and iOS operating systems,

the iTunes media player, the Safari web browser, and the iLife and iWork

creativity and productivity suites, as well as professional applications

like Final Cut Pro, Logic Pro, and Xcode. Its online services include

the iTunes Store, the iOS App Store and Mac App Store, Apple Music, and

iCloud."

�Building a Dynamic FinViz Link
FinViz.com is a treasure trove of financial fundamental data. We are not going to scrape

from them; instead we’re going to build dynamic links so that our users can opt to go

there for the additional information. This ensures we’re not stealing information from

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

380

others. It is my recommendation to always open a link in a new page; this ensures

that the user still has an easy way for getting back to your property (Listing 12-4 and

Figure 12-3).

Listing 12-4.  Finviz Link Making

Input:

predictions_df = pd.DataFrame(all_user_predicted_ratings, columns = movies_

df.index)

symbol = 'AAPL'

url = r'http://finviz.com/quote.ashx?t={}'.format(symbol.lower())

url

Output:

http://finviz.com/quote.ashx?t=aapl

Figure 12-3.  Finviz output link for Apple, Inc

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

381

�Exploring Fundamentals
Go ahead and download the files for this chapter into a folder called “chapter-12.” Open

up the Jupyter notebook to follow along.

Let’s abstract our three fundamental offerings into three clean and simple-to-use

functions that can be easily integrated into our web application. We’ll start with the

“GetCorollaryCompanyInfo()” function. This function will pull the company name,

the sector, the industry, and the market capitalization of both the long and short stock

symbols in our trade (Listing 12-5).

Listing 12-5.  Abstracting by Creating the “GetCorollaryCompanyInfor()”

Function

def GetCorollaryCompanyInfo(symbol):

 CompanyName = "No company name"

 Sector = "No sector"

 Industry = "No industry"

 MarketCap = "No market cap"

 if (symbol in list(stock_company_info_nasdaq['Symbol'])):

 �data_row = stock_company_info_nasdaq[stock_company_info_

nasdaq['Symbol'] == symbol]

 CompanyName = data_row['Name'].values[0]

 Sector = data_row['Sector'].values[0]

 Industry = data_row['industry'].values[0]

 MarketCap = data_row['MarketCap'].values[0]

 elif (symbol in list(stock_company_info_amex['Symbol'])):

 �data_row = stock_company_info_amex[stock_company_info_

amex['Symbol'] == symbol]

 CompanyName = data_row['Name'].values[0]

 Sector = data_row['Sector'].values[0]

 Industry = data_row['industry'].values[0]

 MarketCap = data_row['MarketCap'].values[0]

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

382

 elif (symbol in list(stock_company_info_nyse['Symbol'])):

 �data_row = stock_company_info_nyse[stock_company_info_

amex['Symbol'] == symbol]

 CompanyName = data_row['Name'].values[0]

 Sector = data_row['Sector'].values[0]

 Industry = data_row['industry'].values[0]

 MarketCap = data_row['MarketCap'].values[0]

 return (CompanyName, Sector, Industry, MarketCap)

We’ll also build a function to handle the pulling of Wikipedia information using the

company we got out of the “GetCorollaryCompanyInfo()” function. This function will

return the first paragraph of the entry found (Listing 12-6).

Listing 12-6.  Abstracting by Creating the “GetWikipediaIntro()” Function

def GetWikipediaIntro(symbol):

 description = wikipedia.page("Apple Inc.").content

 return(description.split('\n')[0])

Finally, we’ll build a function to create a link to the Finviz.com financial website.

This function doesn’t do much but append the stock symbol to the end of the link

(Listing 12-7).

Listing 12-7.  Abstracting by Creating the “GetFinVizLink()” function

def GetFinVizLink(symbol):

 return(r'http://finviz.com/quote.ashx?t={}'.format(symbol.lower()))

�Designing a Web Application
Go ahead and download the code for this chapter if you haven’t already done so; open

a command line window and change the drive to the “web-application” folder. Your

“web-application” folder should contain the following files as shown in Listing 12-8.

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

http://finviz.com

383

Listing 12-8.  Web Application Files

web-application

 ├── main.py
 ├── requirements.txt
 ├── companylist_AMEX.csv
 ├── companylist_NASDAQ.csv
 ├── companylist_NYSE.csv
 ├── static
 └── images
 ├── ticker-title.png
 ├── up-arrow.png
 └── down-arrow.png

 ├── templates
 ├── charts.html
 ├── fundamentals.html
 └── index.html
 ├── ^DJI.csv
 ├── AAPL.csv
 ├── BA.csv
 ├── CAT.csv
 ├── GS.csv
 ├── HD.csv
 ├── IBM.csv
 ├── MCD.csv
 ├── MMM.csv
 ├── TRV.csv
 ├── UNH.csv
 ├── requirements.txt
 └── main.py

As usual, we’ll start a virtual environment to segregate our Python library installs and

create the “requirements.txt” file if needed (Listing 12-9).

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

384

Listing 12-9.  Starting the Virtual Environment

$ python3 -m venv pairtrading

$ source pairtrading/bin/activate

Then install all the required Python libraries by running the “pip install -r” command

(Listing 12-10).

Listing 12-10.  Installing Requirements and Taking the Web Application for a

Local Spin

$ pip3 install -r requirements.txt

$ python3 main.py

Run the web application, as per usual, and make sure it works. Also, try the various

options on the page to make sure everything works as advertised, especially the “Access
Fundamentals” button (Figure 12-4).

Figure 12-4.  The local version of the pair-trading application

Deactivate out of your virtual environment when finished (Listing 12-11).

Listing 12-11.  Deactivating Virtual Environment

deactivate pairtrading

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

385

�Uploading Web Application to PythonAnywhere
Let’s upload our updated code to PythonAnywhere. Log in to your PythonAnywhere

account and find the folder “pair-trading-booth” that we created previously. Click

the “Files” link in the top menu bar and enter the “pair-trading-booth” directory

(Figure 12-5).

Figure 12-5.  Our pair-trading application on PythonAnywhere

All the stock financial CSV files needed should already be there (if not, run through

Chapter 5 again). You will need to upload the Nasdaq, Amex, and NYSE company files

under the main “pair-trading-booth” directory, along with the ten-stock CSV files

already there.

•	 companylist_AMEX.csv

•	 companylist_NASDAQ.csv

•	 companylist_NYSE.csv

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

386

You will also need to update the “main.py” and “index.html” files and upload

the new “fundamentals.html” file to display our stock and derived charts (or create

it as a new file on PythonAnywhere and copy/paste the code into it). The best way to

proceed is to simply open those files in a local editor and copy and paste the content into

PythonAnywhere.

For example, let’s update “main.py,” open the file in your local editor and open the

file in PythonAnywhere, then copy and paste the new version into your “main.py” file on

PythonAnywhere. Don’t forget to click the green “Save” button before moving on to the

other files (Figure 12-6).

Figure 12-6.  Updating the “main.py” code base on PythonAnywhere to handle
the creation of dynamic charts

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

387

Proceed in the same way in the templates folder for file “index.html” and also create

a new HTML file called “fundamentals.html” (Figure 12-7).

Figure 12-7.  Creating a new file called “fundamentals.html” on
PythonAnywhere to handle the creation of dynamic charts

Next you need to “pip3” install Wikipedia as it isn’t included in the base Python 3

build on PythonAnywhere (Figure 12-8).

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

388

Once the bash console is open you are ready to pip install any needed libraries.

Go ahead and install the Wikipedia library with the following command (you need to

add two dashes and user to override permission denied messages; Listing 12-12 and

Figure 12-9).

Listing 12-12.  Installing Requirements

$ pip3 install wikipedia --user

Figure 12-8.  Opening a bash console to pip install libraries not included in the
original Python build

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

389

Close your bash console by using the “exit” command. You can also kill the console

completely if you don’t need it anymore by going back to the console page in the

PythonAnywhere dashboard and clicking the “x” under the bash console you opened

(Figure 12-10).

Figure 12-9.  Installing Wikipedia library on PythonAnywere

Figure 12-10.  Closing the bash control if you don’t need it anymore

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

390

Now you are ready to refresh your web service and fire up the web application. Click

the “Web” menu tab and hit the big, green button to reload the application. That is very

easy to do; click on the “Consoles” button and open a bash console (Figure 12-11).

Figure 12-12.  The new “Pair Trading Booth” site enhanced with charts

Figure 12-11.  Hit the “Reload” button to update your web server

If you enter the URL of your PythonAnywhere site into your browser, you should see

the new “Pair Trading Booth” site in all its glory. Go ahead and take it through its paces

(Figure 12-12).

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

391

�Conclusion
In this chapter, we took a third pass at the “Pair Trading Booth” web application and

enhanced it with collateral fundamental information. We joined the current data with

additional external data from Nasdaq. We plugged into the Wikipedia API to extract a

high-level description of each company. We also created dynamic links for even more

information if the user chooses.

Chapter 12 Case Study Part 3: Enriching Content with Fundamental Financial Information

393
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_13

CHAPTER 13

Google Analytics
Advanced intelligence for free.

Let’s look at a simple tool to better understand how our users interact with our

web applications. This is a huge boon to web application developers. Building our own

analytic tracker would require adding a lot of custom Flask code to every page to track

users, along with a database to save those interactions and an analytical engine to make

sense of it. That’s a lot of work! Instead, with Google Analytics, all we have to do is add

a JavaScript snippet of code at the top of each page. That’s it; add a few generic lines to

every page, no editing required, and Google Analytics will handle everything else.

Google Analytics will tell us where users came from, how much time they spend on

the site and on each page, the paths they take, etc. This is a must tool to not only better

understand users, but also to refactor and create new content. There is a free version and

a costly premium version—we’ll focus on the free one here. The free version gives you

plenty of insight for small web applications like the one we’re building here.

Note  There are no downloads for this chapter.

�Create a Google Analytics Account
Navigate to Google Analytics to create a free account at https://analytics.google.com/

analytics/web/provision.

This will show a simple graphic of the process of tracking a web page and the

“Sign up” button (Figure 13-1).

https://analytics.google.com/analytics/web/provision
https://analytics.google.com/analytics/web/provision

394

Where it asks for a website name, enter you PythonAnywhere.com account (the Pair

Trading one; don’t worry you can track up to 100 accounts). It will ask you a few basic

questions and you can go with the defaults (Figure 13-2).

Finally, click the blue button at the bottom of the page “Get Tracking ID” and accept

the terms of service.

Figure 13-1.  The Google Analytics process and sign up

Figure 13-2.  My answers on Google Analytics

Chapter 13 Google Analytics

http://pythonanywere.com

395

�JavaScript Tracker
The first page you will see once you log into your Google Analytics dashboard is the

“Admin” tab with the key snippet of JavaScript needed to track a web page (Listing 13-1).

This is the heart of the tracking system. You just need to add your API key where it says

“<<ADD-YOUR-GOOGLE-ANALYTICS-TRACKING-ID>>” and drop this on all your

pages.

Listing 13-1.  The JavaScript Tracking Snippet

<!-- Google Analytics -->

<script>

(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

})(window,document,'script','https://www.google-analytics.com/analytics.

js','ga');

ga('create', '<<ADD-YOUR-GOOGLE-ANALYTICS-TRACKING-ID>>', 'auto');

ga('send', 'pageview');

</script>

<!-- End Google Analytics -->

Copy it and drop it in the “<head>” section of any website you own and want to

track. The head of every HTML template for the Pair Trading Booth should look like

Listing 13-2 (make sure you enter yours, as this one will collect traffic analytics for my

account).

Listing 13-2.  This is Mine

<head>

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <meta charset="UTF=8">

 <title>Pair Trading Booth</title>

 <!-- Google Analytics -->

 <script>

Chapter 13 Google Analytics

396

 �(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||

function(){

 �(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.create

Element(o),

 �m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insert

Before(a,m)

 �})(window,document,'script','https://www.google-analytics.com/

analytics.js','ga');

 ga('create', 'UA-118908159-1', 'auto');

 ga('send', 'pageview');

 </script>

 <!-- End Google Analytics -->

 </script>

</head>

�Reading Your Analytics Report
After adding your Google Analytics tracking code to your site, save it and propagate the

“Pair Trading Booth.” Point a browser to your site, view the source to make sure the new

code is there, then refresh your Google Analytics Dashboard. You should see that one

active user is on the site—that is you (Figure 13-3).

Figure 13-3.  Google Analytics home showing 1 active user

Chapter 13 Google Analytics

397

If you click on the “REAL-TIME” tab in the left-hand pane, you will even get to see

where that active user is located. I was in Spain when I took the screenshot—pretty cool,

right? (Figure 13-4)

Obviously, you will have to run your web application for many days and have actual

traffic to start looking for interesting patterns. You will also need to add your tracking

code for the “Pair Trading Booth” on all HTML template pages to start seeing who goes

where and for how long.

�Traffic Sources
Once you have collected traffic patterns, you can find out where you users came from.

There is a great training course from the Google Analytics training team: https://

analytics.google.com/analytics/academy/ (screen shot from the demo account

provided by the Google Analytics training team; Figure 13-5).

Figure 13-4.  My real-time, active user—me in Spain!

Chapter 13 Google Analytics

https://analytics.google.com/analytics/academy/
https://analytics.google.com/analytics/academy/

398

�Pages
Once you have collected traffic patterns, you can find out when users visited a particular

page, the total hit counts, and how much time they spent (from the demo account

provided in the Google Analytics training; Figure 13-6).

Figure 13-5.  Screen shot from the Google Analytics course that shows multiple
active users and where they came from

Chapter 13 Google Analytics

399

�Conclusion and Additional Resources
As a quick recap, you need the Google Analytics JavaScript tracker on all HTML pages

you want to track. Google Analytics will collect a wide range of behaviors such as traffic

source, language, browser type, etc. It considers one session to be any activity followed

by 30 minutes of inactivity. You can customize all sorts of aspects and the information

you access is always anonymous. This is a highly recommended tool for anyone who

wants to understand the value of a particular page in comparison witho others, to get

ideas of what your users like and don’t like, and to gauge interest and upsell potentials.

For additional information on customizing your Google Analytics data, I highly

recommend Google’s Google Analytics Academy free course at https://analytics.

google.com/analytics/academy/.

Figure 13-6.  Page view information

Chapter 13 Google Analytics

https://analytics.google.com/analytics/academy/
https://analytics.google.com/analytics/academy/

401
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_14

CHAPTER 14

A/B Testing on
PythonAnywhere
and MySQL
This is an ambitious chapter, so we’ll limit the scope in order to distill the essence of this

rich topic without going overboard. We’ll start by building a simple MySQL database

and table to track whether a visitor liked or didn’t like the art work on the landing page.

Because this is A/B Testing, we’re going to create two landing pages and switch them

randomly when users visit the site (Figure 14-1).

Figure 14-1.  The final web application for this chapter

402

Note  Download the files for Chapter 14 by going to www.apress.com/
9781484238721 and clicking the source code button. You will need to install
MySQL on your local machine in order to follow along with the Jupyter notebook
“chapter14.ipynb.”

In analytics, A/B testing means using two different versions of something and

measuring how people react to each. This is commonly used in websites to try out

new designs, products, sales, etc. In our case, we’re going to expose our visitors to two

different versions of our landing page. The versions are going to be assigned randomly

and the visitor will be offered the opportunity to give the page a thumbs-up if they liked

it. In the background, we’re going to be tracking this traffic and whether or not a user

gives a thumbs-up. If the user doesn’t give the thumbs-up, we’ll assume that it was a

down vote.

This is an important topic and can yield valuable knowledge about your business

and your users. There is a famous anecdote where Marisa Meyer, while at Google, ran an

A/B test to determine which shade of blue, out of 40, the users preferred.1 Obviously, one

can go overboard with these types of tests.

�A/B Testing
The goal of A/B testing is to expose different products to the public and measure their

reactions. In our web application, we’re going to show a web page with two different

images: an angry face and a friendly one. We will add a simple label to the page asking

the visitor to give the image a thumbs-up if they liked it. In the background we’re going

to count each visit and count each thumbs-up. To keep things simple, we’ll count an

initial visit as a thumbs-down and update it to a thumbs-up if the visitor clicks the voting

button. See Figures 14-2 and 14-3 for a version of each image.

1�https://iterativepath.wordpress.com/2012/10/29/testing-40-shades-of-blue-ab-testing/

Chapter 14 A/B Testing on PythonAnywhere and MySQL

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://iterativepath.wordpress.com/2012/10/29/testing-40-shades-of-blue-ab-testing/

403

Figure 14-2.  Image one

Figure 14-3.  Image two

Chapter 14 A/B Testing on PythonAnywhere and MySQL

404

�Tracking Users
There are various ways of tracking anonymous visitors. Popular methods include the

usage of cookies and databases. Each has its advantage and purpose. A cookie offers the

advantage of tracking a user over longer periods regardless of whether they closed their

browser or turned their computer off. A web page can easily check the visitor’s computer

for previous cookies and compare it with their database to determine if this is a repeat

visitor or not.

We won’t need to use cookies, as we will only consider single visits. Instead, we’ll

keep track of users using an HTML hidden tag and send that tag back using a post

request. When a visitor first visits the page, we’ll insert a row in the database with the

page background image, a timestamp, and a unique identifier (a very long string that is

unique to that user; the odds of creating two of the same are infinitesimal) referred to as a

UUID. As mentioned, we assume that a first page visit is a thumbs-down and write it to the

database. As we build the page, we insert a hidden HTML tag containing the UUID so that

if the user interacts with the page by clicking the thumbs-up button, we’ll pass the UUID

back to the web server, so we can update the row previously entered in the database. This

approach allows us to serve many visitors at the same time without worrying about who

has what page. There are many ways you can tweak and improve this process depending

on your needs. You can even pass that UUID from client to server and back as many times

as you want and always know which session and user you are dealing with.

�UUID
The Universally Unique Identifier (UUID) is 128 bits long strong, and is guaranteed

to be unique. We’ll use the handy “uuid” Python library to automatically generate a

guaranteed unique identifier (Listing 14-1).

Listing 14-1.  The “uuid” Kibrary

Input:

import uuid

str(uuid.uuid4())

Output:

'e7b1b80e-1eca-43a7-90a3-f01927ace7c9'

Chapter 14 A/B Testing on PythonAnywhere and MySQL

405

In the “uuid” library, the “uuid4()” function generates a new random ID without

relying on your computer’s identifier, so it is unique and private. Check out the docs

for additional UUID details and options at https://docs.python.org/3/library/

uuid.html.

�MySQL
We’re going to use the MySQL Community Server, which is a great and popular free

database. It is perfect to support our A/B testing needs. It is an open-source relational

database that can support a wide range of needs and is being used by big players

including WordPress, and large media companies like Google and Facebook.

Go ahead and download the version of MySQL Community Server for your OS at

https://dev.mysql.com/downloads. You will also find the installation instruction for

your OS if you have any questions or issues. We won’t use any front end, though there are

quite a few of them available in case you want to use one (Figure 14-4).

Figure 14-4.  Find and download the correct version for your operating system

Chapter 14 A/B Testing on PythonAnywhere and MySQL

https://docs.python.org/3/library/uuid.html
https://docs.python.org/3/library/uuid.html
https://dev.mysql.com/downloads

406

You will be prompted with a series of questions including setting up root password

and password encryption type (Figure 14-5).

You can also start and stop your database through the control center for your

operating system (this can also be done through the command line; Figure 14-6).

Figure 14-5.  Keeping it simple and using the legacy password system

Chapter 14 A/B Testing on PythonAnywhere and MySQL

407

�Command Line Controls
To start and stop MySQL (in most cases it should start automatically after your install

it and restart your machine). Check out the docs for other operating systems, changes

since this book was published, and additional commands at https://dev.mysql.com/doc/.

Let’s see how to start MySQL (Listings 14-2 and 14-3, and Figure 14-7).

Listing 14-2.  Starting MySQL on the Mac

$ sudo /usr/local/mysql/support-files/mysql.server start

Listing 14-3.  Starting MySQL on Windows

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"

Figure 14-6.  Setting MySQL server to start automatically when the computer
starts

Chapter 14 A/B Testing on PythonAnywhere and MySQL

https://dev.mysql.com/doc/

408

Let’s see how to stop MySQL (Listings 14-4 and 14-5).

Listing 14-4.  Stopping MySQL on the Mac

$ sudo /usr/local/mysql/support-files/mysql.server stop

Listing 14-5.  Stopping MySQL on Windows

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqladmin" -u root

shutdown

�MySQL Command Line Monitor
The command-line monitor is a handy tool that allows you to manage users and

permissions, create databases and tables, and much more (see the docs for other

operating systems and additional commands at https://dev.mysql.com/doc/).

To enter the monitor, change the drive to your MySQL directory or export a path,

then enter the “mysql -u root -p” command and you will be prompted for your

password that you created during the installation process (Listing 14-6 and Figure 14-8).

Listing 14-6.  Code Input

$ export PATH=$PATH:/usr/local/mysql/bin

$ mysql -u root -p

Figure 14-7.  Starting MySQL using the command line

Chapter 14 A/B Testing on PythonAnywhere and MySQL

https://dev.mysql.com/doc/

409

You will know that you entered the monitor once your prompt changes to “mysql>.”

Let’s create a user, a database, and a table for our A/B testing.

�Creating a Database
Let’s create a database named “ABTesting” (Listing 14-7).

Listing 14-7.  Creating a Database

mysql> CREATE DATABASE ABTesting;

�Creating a Table
Let’s create a new table using the “CREATE TABLE” statement. Whenever you are

creating a new table, it is a good idea to drop it first, otherwise you will get an error

(but make sure that you really do want to drop it as you will lose all data contained

therein). We will create a table called “tblFrontPageOptions” that will have a unique

identifier field called “uuid,” a Boolean flag called “liked” to hold whether or not the user

clicked the thumbs up, a page_id to mark whether this was an “A” or “B” page, and an

automated timestamp field (Listing 14-8).

Figure 14-8.  Running the MySQL Command Line Monitor

Chapter 14 A/B Testing on PythonAnywhere and MySQL

410

Listing 14-8.  Creating a Table

mysql> DROP TABLE ABTesting.tblFrontPageOptions;

mysql> CREATE TABLE ABTesting.tblFrontPageOptions (

 uuid VARCHAR(40) NOT NULL,

 liked BOOLEAN NOT NULL DEFAULT 0,

 pageid INT NOT NULL,

 time_stamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP);

You can easily test that your table is working by inserting some data into it using an

“INSERT INTO” statement (Listing 14-9).

Listing 14-9.  Inserting Data

mysql> INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked, pageid)

VALUES(9999, 1, 2);

To check that the data did indeed make it into the table, we use a “SELECT *”

statement (Listing 14-10).

Listing 14-10.  Querying Data

Input:

mysql> SELECT * FROM ABTesting.tblFrontPageOptions;

Output:

+------+-------+---------+---------------------+

| uuid | liked | page_id | time_stamp |

+------+-------+---------+---------------------+

| 9999 | 1 | 2 | 2018-05-19 14:28:44 |

+------+-------+---------+---------------------+

1 row in set (0.00 sec)

We’re looking good; the table now has a new row in it. If you want to start with a

clean state, you can drop and re-create the table with the previous code. There are plenty

of great primers on SQL syntax on the Internet, but a great place to start is the w3schools

at https://www.w3schools.com/sql. Exit out of the “mysql>” prompt and open up the

Jupyter notebook for the chapter to practice inserting data into our table and reading it

out through the “mysql.connector” Python library.

Chapter 14 A/B Testing on PythonAnywhere and MySQL

https://www.w3schools.com/sql

411

�Creating A Database User
We are going to create a user dedicated to our A/B testing web application. It is a bad

idea to use your root password in your Flask code. Our user will be called “webuser” and

its password will be “thesecre” (Listing 14-11).

Listing 14-11.  Creating a user

mysql> CREATE USER 'webuser'@'localhost' IDENTIFIED BY 'thesecret';

Next, we will grant this user all privileges, and once you are more comfortable with

MySQL (no, not my SQL, the MySQL product… you know they’re probably joking like

that all day long over at the MySQL headquarters…), you can tone this down to just read/

write permissions for specific tables). See Listing 14-12.

Listing 14-12.  Granting Rights

mysql> GRANT ALL PRIVILEGES ON ABTesting.* TO 'webuser'@'localhost' WITH

GRANT OPTION;

Finally, you can check that the “webuser” user was successfully added with the

following handy command (Listing 14-13).

Listing 14-13.  Checking Users

mysql> SELECT User FROM mysql.user;

+------------------+

| User |

+------------------+

| mysql.infoschema |

| mysql.session |

| mysql.sys |

| root |

| webuser |

+------------------+

5 rows in set (0.00 sec)

You can exit out of the MySQL command line tool by simply entering the “exit”

command.

Chapter 14 A/B Testing on PythonAnywhere and MySQL

412

�Python Library: mysql.connector
Most of the interaction with our database will be done through Python and Flask using

the handy “mysql.connector” library. Here you can refer to the corresponding Jupyter

notebook for Chapter 14 to follow along (please install the “requirements_jupyter.txt”

file to get the libraries needed). Keep in mind that in this chapter we will not create a

local Flask version, so get familiar with the commands using the notebook, then we’ll

jump directly to the cloud.

We will program three types of functions using the “SELECT,” “INSERT,” and

“UPDATE” SQL functions. If you are not familiar with these classic SQL functions,

check out the great primer from w3schools (I know, I keep pushing that site; it’s that

good and I swear that I have no relations with them whatsoever) at https://www.

w3schools.com/sql.

�SELECT SQL Statement
“SELECT” is the most common SQL command and is used to read data from a table.

This is easily done using the “mysql.connector” library. You first create a connection to

the database by calling the “connect()” function and passing permissioned credentials

for a database. The connection returns a cursor to communicate and send orders to

the database. This is done using a query string holding the “SELECT” statement. We

will use this approach for all our SQL statements. The difference with this statement

versus “INSERT” and “UPDATE” is that we are expecting to receive data back from the

database. After executing our query string through the “execute()” function, we can

access the returned data through a loop. Each loop represents one row of data. Notice

that an open cursor and connection are both closed at the end of the call, as we don’t

want to hold onto resources longer than we need to (Listing 14-14).

Listing 14-14.  “select” Statement with Cursor

Input:

cnx = mysql.connector.connect(user='webuser', password='thesecret',

database='ABTesting')

cursor = cnx.cursor()

query = "SELECT * FROM ABTesting.tblFrontPageOptions"

cursor.execute(query)

Chapter 14 A/B Testing on PythonAnywhere and MySQL

https://www.w3schools.com/sql
https://www.w3schools.com/sql

413

for (uuid, liked, pageid, time_stamp) in cursor:

 �print("uuid: {} liked:{} pageid: {} on {:%m/%d/%Y %H:%M:%S}".format(

 uuid, liked, pageid, time_stamp))

cursor.close()

cnx.close()

Output (example, your output will only contain what's in the table so far):

uuid: 704a44d0-29f4-4a2d-bc6a-fe679017f7e9 liked:1 pageid: 2 on 05/19/2018

17:03:29

�INSERT SQL Statement
The “INSERT” statement allows us to insert data into the ABTesting table of our

database. The first time a visitor hits the web page, we insert a row containing the

following fields, a “UUID,” a “liked” flag turned to false, the “pageid” representing which

of the two background images the user is viewing, and a “timestamp.” As done in the

“SELECT” statement, we first open a connection to the database, then create a cursor

and pass it our query statement. In this case, our query statement isn’t a “SELECT” but

an “INSERT.” We also use the handy “%s” statement as a variable placeholder to then be

filled by whatever value is held in the “args” tuple. Here we are inserting a new unique

ID, with “liked” set to false (or thumbs down), and the page ID viewed.

Also, whenever you are inserting or updating a table, don’t forget to call the

“commit()” function to commit your inserts before closing the connection. If you don’t

commit, your changes will get ignored (Listing 14-15).

Listing 14-15.  SQL “INSERT” Statement with Cursor

cnx = mysql.connector.connect(user='webuser', password='thesecret',

database='ABTesting')

cursor = cnx.cursor()

query = "INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked, pageid)

VALUES (%s, %s, %s);"

args = ("704a44d0-29f4-4a2d-bc6a-fe679017f7e9", 0, 1)

cursor.execute(query, args)

cursor.close()

cnx.commit()

cnx.close()

Chapter 14 A/B Testing on PythonAnywhere and MySQL

414

�UPDATE SQL Statement
The “UPDATE” statement is similar to the “INSERT” statement, but instead of adding

a new row at the end of the table, you are updating an existing row. In order to update a

specific row, you have to be able to find the correct row before updating it. In this case,

as we have the handy “UUID” that is guaranteed unique, we can easily find that specific

row and not have to worry about updating another in error. In order to properly build

the “UPDATE” statement, we have to pass it two values, the “UUID” of “704a44d0-29f4-
4a2d-bc6a-fe679017f7e9” and the “liked” flag set to true (Listing 14-16).

Listing 14-16.  SQL “update” Statement with Cursor

cnx = mysql.connector.connect(user='webuser', password='thesecret',

database='ABTesting')

cursor = cnx.cursor()

query = "UPDATE ABTesting.tblFrontPageOptions SET liked = %s WHERE uuid = %s;"

args = (1, "704a44d0-29f4-4a2d-bc6a-fe679017f7e9")

cursor.execute(query, args)

cursor.close()

cnx.commit()

cnx.close()

Again, don’t forget to call the “commit()” function to commit your changes before

closing the connection (if you don’t, your changes will get ignored).

�Abstracting the Code into Handy Functions
We need to abstract all our SQL code into simple to use functions. We start by creating

two global variables to hold the MySQL user account and password. This enables us to

only have to set it once and not worry about it during subsequent SQL calls. It also comes

in handy whenever you need to change user accounts (Listing 14-17).

Listing 14-17.  Abstracting Account Data

mysql_account = 'webuser'

mysql_password = 'thesecret'

mysql_database = 'ABTesting'

mysql_host = 'localhost'

Chapter 14 A/B Testing on PythonAnywhere and MySQL

415

We also can abstract the Uuid-generating code to keep things clean and simple

(Listing 14-18).

Listing 14-18.  Abstracting “GetUUID()” function

def GetUUID():

 return (str(uuid.uuid4()))

Next, we create a function to insert new visits into the database. This function will

get a new UUID from “GetUUID(),” set the “liked” to false as we assume all new visits

don’t like or don’t want to interact with the site, the “pageid” representing the image that

was randomly selected for them, and the timestamp that is automatically generated by

MySQL (Listing 14-19).

Listing 14-19.  Abstracting “InsertInitialVisit()” Function

def InsertInitialVisit(uuid_, pageid):

 try:

 �cnx = mysql.connector.connect(user=mysql_account, password=mysql_

password, database=mysql_database, host=mysql_host)

 cursor = cnx.cursor()

 �query = "INSERT INTO ABTesting.tblFrontPageOptions (uuid, liked,

pageid) VALUES (%s,%s,%s);"

 args = (uuid_, 0, pageid)

 cursor.execute(query, args)

 cursor.close()

 cnx.commit()

 cnx.close()

 except mysql.connector.Error as err:

 app.logger.error("Something went wrong: {}".format(err))

When a user interacts with the page and clicks the thumbs-up button, Flask uses the

“UpdateVisitWithLike()” function to update the row using the unique identifier for the

session and turns the “liked” flag to true (Listing 14-20).

Chapter 14 A/B Testing on PythonAnywhere and MySQL

416

Listing 14-20.  Abstracting “UpdateVisitWithLike()” Function

def UpdateVisitWithLike(uuid_):

 try:

 �cnx = mysql.connector.connect(user=mysql_account, password=mysql_

password, database=mysql_database, host=mysql_host)

 cursor = cnx.cursor()

 �query = "UPDATE ABTesting.tblFrontPageOptions SET liked = %s WHERE

uuid = %s;"

 args = (1, uuid_)

 cursor.execute(query, args)

 cursor.close()

 cnx.commit()

 cnx.close()

 except mysql.connector.Error as err:

 app.logger.error("Something went wrong: {}".format(err))

Finally, we create the administrative dashboard to view how the A/B testing is going

by offering total visit counts, total thumbs up and down, and how many thumbs up for

each image. We also offer a log view where we dump all the content from the ABTesting

table (Listing 14-21).

Listing 14-21.  Abstracting “GetVoteResults()” Function

def GetVoteResults():

 results = "

 total_votes = 0

 total_up_votes = 0

 total_up_votes_page_1 = 0

 total_up_votes_page_2 = 0

 try:

 �cnx = mysql.connector.connect(user=mysql_account, password=mysql_

password, database=mysql_database, host=mysql_host)

 cursor = cnx.cursor()

 query = "SELECT * FROM ABTesting.tblFrontPageOptions"

 cursor.execute(query)

 for (uuid_, liked, pageid, time_stamp) in cursor:

Chapter 14 A/B Testing on PythonAnywhere and MySQL

417

 total_votes += 1

 if liked==1 and pageid==1:

 total_up_votes_page_1 += 1

 if liked==1 and pageid==2:

 total_up_votes_page_2 += 1

 if liked == 1:

 total_up_votes += 1

 �results += ("uuid: {} liked:{} pageid: {} on {:%m/%d/%Y

%H:%M:%S}".format(uuid_, liked, pageid, time_stamp)) + "
"

 cursor.close()

 cnx.close()

 except mysql.connector.Error as err:

 app.logger.error("Something went wrong: {}".format(err))

 �return (results, total_votes, total_up_votes, total_up_votes_page_1,

total_up_votes_page_2)

�Designing a Web Application
Let’s download the files for Chapter 14 and unzip them on your local machine if you

haven’t already done so. Your “web-application” folder should contain the following

files as shown in Listing 14-22.

Listing 14-22.  Web Application Files

web-application

 ├── main.py
 ├── static
 └──images
 ├── background1.jpg
 ├── background2.jpg
 └── templates
 ├── admin.html
 └── index.html

Chapter 14 A/B Testing on PythonAnywhere and MySQL

418

�Running a Local Version
Sorry folks, there’s no local version this time. Instead, we’ll use the PythonAnywhere

wizard to create a MySQL instance in the cloud and upload all the needed data, file by

file, as we’ve done previously.

�Setting Up MySQL on PythonAnywhere
It is really easy to set up MySQL on PythonAnywhere using the built-in wizard. Click the

“Databases” link in the upper right hand of the dashboard and proceed through the

setup just like we did earlier on the local version (Figure 14-9).

Figure 14-9.  Setting up MySQL on PythonAnywhere

Chapter 14 A/B Testing on PythonAnywhere and MySQL

419

After you initialize MySQL, you will be able to create a database and get into

the MySQL console to create the “tblFrontPageOptions.” There are two caveats

you will have to contend with. First, PythonAnywhere appends your account

name in front of the database name. In my case, database “ABTesting” becomes

“amunateguioutloo$ABTesting.” This isn’t a big deal, but we will have to update any

code that talks to the database. The second issue is that the user it creates for you is the

one you will have to add to your script, as it won’t let you create additional users using

the “CREATE USER” command (Figure 14-10).

Figure 14-10.  Creating the ABTesting database and clicking the console link to set
things up

Chapter 14 A/B Testing on PythonAnywhere and MySQL

420

Click the console link for the “…$ABTesting” database and create the

“tblFrontPageOptions” table and “webuser” account. Make sure to update the database

to reflect your database name (Listing 14-23).

Listing 14-23.  Create Table Command and PythonAnywhere Confirming That

the Table “tblFrontPageOptions” was Successfully Created

Input:

CREATE TABLE amunateguioutloo$ABTesting.tblFrontPageOptions (

 uuid VARCHAR(40) NOT NULL,

 liked BOOLEAN NOT NULL DEFAULT 0,

 pageid INT NOT NULL,

 time_stamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP);

Output:

mysql> CREATE TABLE amunateguioutloo$ABTesting.tblFrontPageOptions (

 -> uuid VARCHAR(40) NOT NULL,

 -> liked BOOLEAN NOT NULL DEFAULT 0,

 -> pageid INT NOT NULL,

 -> time_stamp TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP);

Query OK, 0 rows affected (0.03 sec)

That is all we need to do in the console; everything else will be done through Python.

�A/B Testing on PythonAnywhere
Let’s upload and update all the code to work with our new database on

PythonAnywhere. Under “Files” create a new folder called “ABTesting” (Figure 14-11).

Figure 14-11.  Creating the new folder to host our ABTesting site

Chapter 14 A/B Testing on PythonAnywhere and MySQL

421

Next, we need to upload all the files, one-by-one, up to the site just like we did with

the other PythonAnywhere projects we already did (Figures 14-12 through 14-14).

Figure 14-12.  Upload “main.py” under the “ABTesting” folder

Figure 14-14.  Upload both HTML files under “ABTesting/templates/”

Figure 14-13.  Upload both images under “ABTesting/static/”

Once you have uploaded all files, you need to go into “main.py” and update

the database account and all table references. You will need to update the following

variables with the ones assigned to you by PythonAnywhere. Click “Databases” in the

upper right corner of your PythonAnywhere dashboard to access the variables

(Listing 14-24).

Chapter 14 A/B Testing on PythonAnywhere and MySQL

422

Listing 14-24.  Assigned account data

mysql_account='<<ENTER-YOUR-DATABASE-USERNAME>>'

mysql_password='thesecret'

mysql_database='<<ENTER-YOUR-DATABASE-USERNAME>>$ABTesting'

mysql_host="<<ENTER-YOUR-DATABASE-USERNAME>>.mysql.pythonanywhere-services.com"

Make sure to replace in the “main.py” code all the “<<ENTER-YOUR-DATABASE-
USERNAME>>” with your database user name, otherwise it will not work.

Hit the big green button on the web tab and take the web application for a spin.

Go ahead and vote away (then check the administrative page; Figure 14-15).

Figure 14-15.  The “Do You Like Me?” web application running on
PythonAnywhere

Chapter 14 A/B Testing on PythonAnywhere and MySQL

423

�A/B Testing Results Dashboard
In order to view the results of our A/B testing operation, we need to create a dashboard.

Though this isn’t essential, and you could just as well query the results directly through

MySQL using SQL statements, a dashboard will allow anybody to look at the results

throughout your testing without needing SQL knowledge or querying permissions to the

ABTesting table (Figure 14-16).

We will keep things simple here and offer the total votes, the total up and down votes,

the up votes per image, and the full log of all participants.

Figure 14-16.  A simple dashboard with the latest results of our A/B test

Chapter 14 A/B Testing on PythonAnywhere and MySQL

424

�Conclusion
A/B testing is one of the popular tools to better understand your users. It is also a loaded

science with many ways to approach it. Here, we made the assumption that any new visit

doesn’t like the site, thus defaults with a thumbs-down. This doesn’t necessarily mean

they thought the page was bad, as it could also mean they didn’t have time to read the

question. So, in this scenario, I would look closer at the number of up votes per image

rather than worry about the down votes; in either case you can extract which image was

favored by the majority.

Another tool we introduced here is MySQL; it is a great open-source and free

relational database that is widely used and supported.

Chapter 14 A/B Testing on PythonAnywhere and MySQL

425
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_15

CHAPTER 15

From Visitor to Subscriber
A look at some simple authentication schemes.

In this chapter, we’re going to briefly look at different ways to handle subscribers.

We’ll look at a simple login mechanisms but quickly move on to plugins. The gist of this

book is to quickly get your ideas up and running, so having to build your own subscriber

mechanisms goes against the book’s core philosophy. If you have the time, knowledge,

and/or staff to do it, then you’ll probably save some money but it is not an easy task.

Whenever you are dealing with other people’s personal and financial data, a whole new

layer of responsibility is required. I prefer and recommend pushing this out to those that

do it well and lease it out in the form of plugins. They are easy to use and allow you to

focus on the important stuff—your business ideas!

We’ll look at different ways of getting payments from visitors using a very simple site

model.

•	 Text-based authentication (a concept to extend using a database for a

home rolled solution—not recommended)

•	 Memberful—simple subscription or product purchase; unlocks access

to videos in sites like vimeo

•	 Paypal donations

•	 Stripe payments

In the next chapter, we’ll look at an example of a more robust style of paywall for

subscribers using our pair-trading web application along with Memberful.com.

426

Note  Download the files for Chapter 15 by going to www.apress.
com/9781484238721 and clicking the source code button. There is no Jupyter
notebook for this chapter, but there are a series of HTML and Flask files to
experiment with.

�Text-Based Authentication
One way of monetizing an online presence is to convert visitors into subscribers. If your

content is exclusive and/or is frequently updated, then visitors may be willing to pay to

access this on a regular basis and at a deeper level. This can be done in different ways

and at different levels. At a high level, you need to separate your free content from your

paid content by employing an authentication process to restrict access to certain areas.

The simplest approach is to hard-code a universal account/password into Flask

Directly, or use a text file to handle multiple accounts.

Warning  This approach is only suitable for demos and/or short-term projects
where security isn’t an issue. You should never use such an approach to store
anything private, valuable, and certainly nothing having anything remotely to do
with money—hold on to those ideas until next chapter.

�Flask-HTTPAuth—Hard-Coded Account
We’ll start with the base Flask-HTTPAuth example from the documentation1

(Listing 15-1).

Listing 15-1.  Simple Authentication

from flask import Flask

from flask_httpauth import HTTPBasicAuth

app = Flask(__name__)

auth = HTTPBasicAuth()

1�https://flask-httpauth.readthedocs.io/en/latest/

Chapter 15 From Visitor to Subscriber

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721
https://flask-httpauth.readthedocs.io/en/latest/

427

users = {

 "john": "hello",

 "susan": "bye"

}

@auth.get_password

def get_pw(username):

 if username in users:

 return users.get(username)

 return None

@app.route('/')

@auth.login_required

def index():

 return "Hello, %s!" % auth.username()

if __name__ == '__main__':

 app.run()

It doesn’t get much simpler than this. Save the code into a Python script (or

download the files for this chapter and run the Flask script “authentication-simple.py”).

If you are missing Python libraries, pip3 install via the associated “authentication_
requirements.txt” file as we’ve done in previous chapters).

Enter either account “john” with password “hello” or “susan” with password “bye”

(Listing 15-2 and Figure 15-1).

Listing 15-2.  Running Local Flask Script “authentication-simple.py”

$ python3 authentication-simple.py

Chapter 15 From Visitor to Subscriber

428

�Digest Authentication Example
In order to get a session authenticated (i.e., offer the user the ability to move between

pages within your domain without having to sign in on each page), you need to use a

form of authenticated cookie. Once the user for a session is authenticated, you simple

pass the “@auth.login_required” before any Flask function and it will only let the

session proceed if the visitor is authenticated; otherwise it will pop-up the login box. The

code can be found under script “authentication-digest.py” (Listing 15-3).

Listing 15-3.  Digest Authentication

from flask import Flask

from flask_httpauth import HTTPDigestAuth

app = Flask(__name__)

app.config['SECRET_KEY'] = 'secret key here'

auth = HTTPDigestAuth()

users = {

 "john": "hello",

 "susan": "bye"

}

@auth.get_password

def get_pw(username):

 if username in users:

Figure 15-1.  Username and password required to proceed

Chapter 15 From Visitor to Subscriber

429

 return users.get(username)

 return None

@app.route('/')

@auth.login_required

def index():

 return "Hello, %s!" % auth.username()

@app.route('/paywall')

@auth.login_required

def paywall():

 return "%s, you are on page 2!" % auth.username()

if __name__ == '__main__':

 app.run()

Give it a whirl and run Flask script “authentication-digest.py” and enter account

“john” with password “hello” or “susan” with password “bye” (Listing 15-4).

Listing 15-4.  Digest Authentication

$ python3 authentication-digest.py

Once you are authenticated, add to the end of the URL, “/paywall.” This will show

you that you are now using and authenticated session where a subscriber only has to

login once (Figure 15-2).

Figure 15-2.  Navigating through the site while authenticated

Chapter 15 From Visitor to Subscriber

430

�Digest Authentication Example with an External Text File
This is very much the same concept as before, but now we read the data from an external

text file instead of a dictionary inside the Flask script. This will allow an administrator

(or you) to add and remove names and passwords without having to affect the source

or restart the web server, as the file is ready at each authentication. Keep in mind the

username/passwords are written in the text file without quotes or comas, and one per

line. The code can be found under script “authentication-digest-external.py”

(Listing 15-5).

Listing 15-5.  Digest Authentication with External File

from flask import Flask

from flask_httpauth import HTTPDigestAuth

app = Flask(__name__)

app.config['SECRET_KEY'] = 'secret key here'

auth = HTTPDigestAuth()

@auth.get_password

def get_pw(username):

 for user in open("users-file.txt","r").readlines():

 if username in user:

 user={user.split(':')[0]:user.split(':')[1].rstrip()}

 return user.get(username)

 return None

@app.route('/')

@auth.login_required

def index():

 return "Hello, %s!" % auth.username()

@app.route('/paywall')

@auth.login_required

def paywall():

 return "%s, you are on page 2!" % auth.username()

if __name__ == '__main__':

 app.run()

Chapter 15 From Visitor to Subscriber

431

Give it a whirl and run Flask script “authentication-digest-external.py” and

enter either account “john” with password “hello” or “susan” with password “bye”

(Listing 15-6).

Listing 15-6.  Digest Authentication with External File

$ python3 authentication-digest-external.py

Once you are authenticated, add to the end of the URL, “/paywall.” This will show

you that you are now using an authenticated session where a subscriber only has to log

in once (Figure 15-3)

Note  The code seen so far in this chapter should be used carefully, as it doesn’t
use security features to adequately store user credentials. This should only be used
for prototypes, one-offs, or internal presentations on secure intranets. The next
section will show a much more robust and recommended approach.

Figure 15-3.  Navigating through the site while authenticated from text file

Chapter 15 From Visitor to Subscriber

432

�Simple Subscription Plugin Systems
Using a professional and externally managed plugin is the approach I recommend when

building commercial-grade paywalls or subscription-only pages. Let the professionals

deal with encryption, security, storing sensitive information, credit-card payment, etc.,

so you can focus on building great content and services! This is the way to go for us

“weekend warriors.”

�Memberful
Memberful is the plugin we will work with and implement. I personally like Memberful2

and think it is a great choice for anybody looking for an easy way to manage a

paywall section of a website. It offers credit card payment through Stripe,3 offers user-

management features, and is discreet. Memberful has a series of educational videos

to help you better understand how things work on their end, as this could become an

important tool toward your web monetization goals.

Let’s look at a simple example of purchasing something from Memberful. Here we

will only look at buying items; we’ll worry about subscriptions and paywalls in the next

chapter. To set up a product for purchase, you simply go to your Memberful dashboard

and set up an item for sale there and they will give you a simple URL to put on your page.

When a visitor goes through the purchasing process, they will see a pop-up box appear

inside your site. This is the beauty of Memberful: your visitors never feel like they’re

leaving the site to do the purchase. Big A+.

So, go ahead and sign up for a free account at Memberful. You will not need to use a

credit card in this chapter (Figure 15-4).

2�https://memberful.com/
3�http://stripe.com/

Chapter 15 From Visitor to Subscriber

https://memberful.com/
http://stripe.com/

433

Figure 15-4.  Signing up for a free Memberful account—no credit card required in
this chapter

Chapter 15 From Visitor to Subscriber

434

When you create a free account, they will set you up with a test URL to simulate

the process of asking for membership without having to use a real credit card. This will

show you how the tool works by putting you in the shoes of a subscriber. Sign up for

an account and, when it asks you whether you are using WordPress, select “I’m using
something else” (Figure 15-5).

Next, you will see a page with some code and a video. I would highly recommend

watching the video, as it explains things well. Enter you PythonAnywhere website

address and copy the HTML JavaScript code. The JavaScript creates the popup window,

so the user never leaves your site (Figure 15-6).

Figure 15-5.  Sign up for an account and select “I’m using something else” when
asked if you are using WordPress

Chapter 15 From Visitor to Subscriber

435

In return, you will get a “Purchase link HTML code” (Listing 15-7).

Listing 15-7.  Fake Product Purchase Link

<a href="https://<<ADD-YOUR-ACCOUNT>>.memberful.com/

checkout?plan=30287">Buy Sample Plan for $25/month.

Let’s create a very simple test web page (no Flask required) to house our purchase

link. Once done, click on it and make that fake purchase. You can use any of the fake test

credit card numbers listed in the help docs, or simply use “4242 4242 4242 4242.”

Figure 15-6.  Enter you PythonAnywhere URL and copy the HTML code

Chapter 15 From Visitor to Subscriber

436

�Create a Real Web Page to Sell a Fake Product
Build the simple HTML shown in Listing 15-8 and make sure to replace the purchase link

with yours (i.e., with a valid account). You can find the base script in the directory for this

chapter called “memberful-purchase.html.” Do the edit and run it and you should see a

page like Figure 15-7.

Listing 15-8.  Purchase a product script

<html>

<script type="text/javascript">

 �window.MemberfulOptions = {site: "https://manuelamunategui.memberful.com"};

 (function() {

 var s = document.createElement('script');

 s.type = 'text/javascript';

 s.async = true;

 s.src = 'https://d35xxde4fgg0cx.cloudfront.net/assets/embedded.js';

 setup = function() { window.MemberfulEmbedded.setup(); }

 s.addEventListener("load", setup, false);

 �(document.getElementsByTagName('head')[0] || document.getElementsBy

TagName('body')[0]).appendChild(s);

 })();

</script>

<body>

<h1>Membership</h1>

<p><a href="https://<<ADD-YOUR-ACCOUNT>>.memberful.com/

checkout?plan=30287">Buy Sample Plan for $25/month.</p>

</body>

</html>

Chapter 15 From Visitor to Subscriber

437

Figure 15-7.  Memberful pop-up on your site; go ahead make the order using the
fake credit card number

Chapter 15 From Visitor to Subscriber

438

�Checking Your Vendor Dashboard
After the fake purchase, log into your Memberful account and click the “Dashboard”

button on the top navigation bar. There is our order! Yeah! We’ll leave Memberful alone

until the next chapter. Obviously, if you were selling real products, you would create

many of these purchasing links with your own product descriptions and pictures.

It is also in the Dashboard where you would manage users, products, refunds, etc.

(Figures 15-8 and 15-9).

Figure 15-8.  Viewing order activities

Chapter 15 From Visitor to Subscriber

439

�Taking Donations with PayPal
Setting up a donation button from PayPal is one of the easiest things you can do to raise

funds for personal and nonprofit efforts (read the disclaimers or find another type of

PayPal option www.paypal.com/buttons). Obviously, you need an account in good

standing, and all you need to do is drop the HTML forms code into your web page and it

will take care of everything else—it will even display the button for you. This is a painless

option where you don’t even need Flask, as this payment option just requires HTML—

nothing else (Listing 15-9).

Listing 15-9.  Paypal Donation Code

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">

 <input type="hidden" name="business" value="amunategui@gmail.com">

 <input type="hidden" name="cmd" value="_donations">

 �<input type="hidden" name="item_name" value="Donate to support these

great blog posts!">

 <input type="hidden" name="item_number" value="Support">

Figure 15-9.  Managing orders

Chapter 15 From Visitor to Subscriber

http://www.paypal.com/buttons

440

 <input type="hidden" name="currency_code" value="USD">

 <input type="image" name="submit"

 src="https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif"

 alt="Donate">

 <img alt="" width="1" height="1"

 src="https://www.paypalobjects.com/en_US/i/scr/pixel.gif">

 </form>

Once you have the code inside your web page, you will see the yellow “Donate”

button. When you click on it using a valid PayPal account, it will take you to PayPal and

ask the donator a series of questions to get the financial donation completed

(Figures 15-10 and 15-11).

Figure 15-10.  PayPal donation button on your site

Chapter 15 From Visitor to Subscriber

441

Figure 15-11.  PayPal donation dashboard with your site and email
information

Chapter 15 From Visitor to Subscriber

442

You can view an example of this code in the downloads for this chapter under the

name “paypal.html,” you will need to have an account and get your own code if you

want to use this type of method for your own fundraising needs.

�Making a Purchase with Stripe
Stripe is a simple, powerful, and widely used payment platform with a lot of Flask

support. It is also widely trusted, which is important if you want visitors to give you

money. We will follow a simple example from the official docs (https://stripe.com/

docs/checkout/flask).

First sign up for a free account and it won’t require any payment information if you

only want to test it out using the developer tools.

Sign up for a free Stripe account, navigate to the “Developers” section and click on

“API Keys” (Figure 15-12).

Figure 15-12.  The developer section showing the publishable and secret keys

Chapter 15 From Visitor to Subscriber

https://stripe.com/docs/checkout/flask
https://stripe.com/docs/checkout/flask

443

The code to get a test purchase is very simple and we will follow along with their

example (https://stripe.com/docs/checkout/flask). They recommend taking the

“Publishable key” and “Secret key” and creating OS variables out of them so you

don’t hardcode them (a great practice). Use the “export” command in your terminal

on the MAC, the control panel on Windows, or add the variables directly into Flask

(Listing 15-10).

Listing 15-10.  Exporting Your API Keys

$ export SECRET_KEY="<<YOUR-SECRET-KEY>>"

$ export PUBLISHABLE_KEY="<<YOUR-PUBLISHABLE-KEY>>”

You also need to pip3 install Stripe and Flask (Listing 15-11).

Listing 15-11.  Installing Needed Libraries

$ sudo pip3 install --upgrade stripe

$ sudo pip3 install flask

The “main.py,” our Flask controller, imports Stripe, sets the secret and publishable

keys, and offers two pages—the “index.html” page where you would put your items for

sale, and the “charge.html” where you process the purchase for items using the “stripe.
Charge.create()” function—and offers a confirmation page. This is fairly straightforward

and therein lies its effectiveness (Listing 15-12).

Listing 15-12.  A Look at “Main.py”

import os

from flask import Flask, render_template, request

import stripe

stripe_keys = {

 'secret_key': os.environ['SECRET_KEY'],

 'publishable_key': os.environ['PUBLISHABLE_KEY']

}

Chapter 15 From Visitor to Subscriber

https://stripe.com/docs/checkout/flask

444

stripe.api_key = stripe_keys['secret_key']

app = Flask(__name__)

@app.route('/')

def index():

 �return render_template('index.html', key=stripe_keys['publishable_key'])

@app.route('/charge', methods=['POST'])

def charge():

 # Amount in cents

 amount = 500

 customer = stripe.Customer.create(

 email='customer@example.com',

 source=request.form['stripeToken']

)

 charge = stripe.Charge.create(

 customer=customer.id,

 amount=amount,

 currency='usd',

 description='Flask Charge'

)

 return render_template('charge.html', amount=amount)

if __name__ == '__main__':

 app.run(debug=True)

The templates also use a neat trick of using a layout file (“layout.html”). This

allows you to create a skeleton HTML page that you can reuse throughout your site. For

example, you only need to create branding and drop-down links once, and have every

page inherit it.

You then leverage the Jinja2 tags “{% block content %}{% endblock %}” in the

HTML to ingest new code (Listing 15-13).

Chapter 15 From Visitor to Subscriber

445

Listing 15-13.  Using a Template HTML Page—“layout.html”

<!DOCTYPE html>

<html>

<head>

 <title>Stripe</title>

 <style type="text/css" media="screen">

 form article label {

 display: block;

 margin: 5px;

 }

 form .submit {

 margin: 15px 0;

 }

 </style>

</head>

<body>

 {% block content %}{% endblock %}

</body>

</html>

And any code that wants to be housed in the layout file uses the Jinja2 tag

“{% extends “layout.html” %}” (Listing 15-14).

Listing 15-14.  Jinja2 Tag for “layout.html” and Variable “key”

{% extends "layout.html" %}

{% block content %}

 <form action="/charge" method="post">

 <article>

 <label>

 Amount is $5.00

 </label>

 </article>

 �<script src="https://checkout.stripe.com/checkout.js" class="stripe-

button"

Chapter 15 From Visitor to Subscriber

446

 data-key="{{ key }}"

 data-description="A Flask Charge"

 data-amount="500"

 data-locale="auto"></script>

 </form>

{% endblock %}

Create a free account on Stripe.com and export your API keys as shown previously.

Then run the sample code (you can find it in the downloads for this chapter under

formerly named “stripe-payments”). Go ahead and run the code locally (Listing 15-15

and Figure 15-13).

Listing 15-15.  Running the Stripe Flask Sample

$ python3 main.py

Figure 15-13.  Your own Stripe.com purchase button

If you go through the sample purchase (you should be able to enter any fake credit

card number) and then log into your Stripe.com dashboard, you should see the order

(Figure 15-14).

Chapter 15 From Visitor to Subscriber

http://stripe.com
http://stripe.com

447

�Conclusion
This chapter provided a very brief introduction to some of the authentication, donation,

and purchase plugins that can be used with your web application. I will reiterate that any

of the “roll-your-on” solutions presented here are not for any serious use and certainly

not for anything remotely commercial. In Chapters 16 and 17, we will look at a real

solution you can tailor for your paywall and subscription needs.

Figure 15-14.  Your own Stripe.com purchase button

Chapter 15 From Visitor to Subscriber

449
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_16

CHAPTER 16

Case Study Part 4:
Building a Subscription
Paywall with Memberful
Let’s finalize our case study with a subscription-based paywall using Memberful and

credit card payments on PythonAnywhere.

In this chapter, we will hide all trading content behind a paid-only subscription

paywall (Figure 16-1). This is our last project, let’s make it a special one! Let’s extend our

pair-trading site with a real paywall subscription system using Memberful.com. This is

more involved than what we’ve seen in the previous chapter. Earlier we saw how to sell

products or charge for subscriptions. These are one-step processes. Instead, we want a

way of allowing paying customers to navigate the entire site, including content behind

the paywall, and only have to log in once during each session.

Figure 16-1.  The final web application for this chapter

450

We’re assuming here that the pretend trading advice is valuable enough to get

people to pay for it. These are the tools needed to pull that off. Also, because this chapter

is a paywall and it requires tying up a specific address to Memberful, we will not be

able to run this locally. The Pair Trading Booth code we are going to use is the same as

in the previous sections; all we will do here is add an additional landing page and the

Memberful paywall features. In simple terms, no Jupyter or local Flask code is used in

this chapter.

Note  Download the files for Chapter 16 by going to www.apress.com/
9781484238721 and clicking the source code button.

�Upgrading Your Memberful and PythonAnywhere
Pay Accounts
In order to build this paywall, you will need to use paid accounts. You need to upgrade

your Memberful.com account to the “Pro plan,” which requires a valid credit card

number and costs $25 a month. This is required so that you can access the API and

webhooks, which are disabled on the free account. You will also need to upgrade your

PythonAnywhere account to the lowest paid level—at the time of writing it is referred to

“Hacker $5/month.” This is required because the authentication needs to use custom

ports and it is only allowed on paid accounts. I recommend turning it on for a few days

to try it out, and if you don’t think it is useful, downgrade back to free accounts before

incurring the second month charges.

In a nutshell, we want to offer members the ability to buy subscriptions using

Memberful (so we don’t have to deal with any user or payment data), have them log into

their account only once during a session, then allow them to peruse the site freely until

they log out.

�Upgrading Memberful
Let’s upgrade our account in order to get a handle on the OAuth state and custom

ports. This will allow our application to let visitors log in and access the pages behind

the paywall. Go to the Memberful website, then to “Account” and “Plans and billing”

(Figure 16-2).

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

http://www.apress.com/9781484238721
http://www.apress.com/9781484238721

451

Go ahead and upgrade to the “Pro plan.” In the “Application Details” pane, check

all the checkboxes and add a landing membership page. This is critical, as it is where

Memberful will redirect visitors once they’ve signed up or signed in (Listings 16-1 and

16-2, and Figure 16-3).

Listing 16-1.  You Application Name in Memberful is Your PyhonAnywhere.com

account. It Should Look Like

http://<<YOUR PYTHON ANYWHERE SITE>>.pythonanywhere.com/

Listing 16-2.  Your “OAuth Redirect URL” Should Look Like

https://<<YOUR PYTHON ANYWHERE SITE>>.pythonanywhere.com/member

Figure 16-2.  Accessing the “Pro plan”

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

452

Next copy your OAuth “Identifier” and “Secret” keys. These are the keys we will use

in the Flask portion of the web application (Figure 16-4).

Figure 16-3.  Settings for the paywall of our web application

Figure 16-4.  What your page should look like after creating a custom
application

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

453

Under the “Custom Apps” tab, set your “Login application” to the site in the drop

down (it should already contain your PythonAnywhere account you added earlier in the

“Custom Application” automatic login application; Figure 16-5).

Figure 16-5.  Select your “Login application” to reflect your PythonAnywhere
account

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

454

�Upgrading PythonAnywhere
Under your account tab in PythonAnywhere, opt for the first paid plan (i.e., cheapest),

the “Hacker” plan (Figure 16-6).

�Pip Install Flask-SSLify
We need to install “Flask-SSLify” because it isn’t part of the Python 3 build on

PythonAnywhere. Flask-SSLify will force all pages to use “HTTPS” and give you

enhanced security. You already used “pip3 install” earlier with Wikipedia’s API. Click

on the “Consoles” link at the top of the PythonAnywhere account and access a bash

console (Figure 16-7).

Figure 16-6.  Choices of paid PythonAnywhere accounts; the cheapest paid
account will allow you to follow along with this chapter’s project

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

455

Once the bash console is open, you are ready to pip install needed libraries. Go

ahead and install the Flask-SSLify library with the following command (you need to add

two dashes and “user” to override permission denied messages; Listing 16-3).

Listing 16-3.  Installing Additional Libraries

$ pip3 install Flask-SSLify --user

�Memberful Authentication
Memberful supports the OAuth 2.0 protocol for authentication but because it requires

you to tie your application directly to your Memberful account, creating a paywall is

much easier than if you rolled your own. For more information, please refer to the

official Memberful docs at https://memberful.com/help/integrate/advanced/

memberful-api/.

Figure 16-7.  Opening a bash console to pip install libraries not included in the
original Python build

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

https://memberful.com/help/integrate/advanced/memberful-api
https://memberful.com/help/integrate/advanced/memberful-api

456

�Two-Step Process and Flask Session Mechanism
The Flask session is a data holding object that can maintain state between pages using

cookies. When you think about it, there are times when you want to remember what a

user is doing, what is in their shopping cart, or who they are even if they jump from page

to page. You could pass data back and forth using form variables, but that would get

messy and confusing quickly (and not very secure). The Flask session remedies that by

storing data on the client’s computer using cookies. For this to work, cookies have to be

enabled.

The system we will create to authenticate a user is easy to implement thanks to

Memberful’s powerful membership functions and integrated UI. When a visitor enters a

page that is behind the paywall, our Flask application will check that the user is indeed

a paying customer. We only need to check that once during a session, then rely on the

session variable to remember that s/he has a right to see pages behind the paywall.

�Authentication Step 1
The first step is to get the authentication “code” from the Memberful site. This code is a

temporary key that allows you to ask for a user’s information. The code is automatically

returned whenever a user clicks on the web application’s Memberful authentication

“sign_in” link (Listing 16-4).

Listing 16-4.  Authentication Sign-in Link

<a href="https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_in">Log in

Once Memberful recognizes the querying URL as a valid Memberful client site, it

returns a code attached to the redirect URL (Listing 16-5).

Listing 16-5.  Authentication Code

https://manuelamunategui.pythonanywhere.com/member/?code=483294e65b5dd2e65

862e3c1ba454dee&redirect_to=http%3A%2F%2Fmanuelamunategui.pythonanywhere.

com%2Fmember%2F

Our application reads the code “code=483294e65b5dd2e65862e3c1ba454dee” as a

“GET” variable and holds on to it to build the second authentication step.

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

457

�Authentication Step 2
Our custom “IsSubscriberLoggedIn()” function does most of the authentication work.

It first builds the “access_token_req” dictionary that holds the temporary “code” from

the previous step, the application’s Memberful Id and secret keys, and the redirect URL

(all these can be found in your Memberful account under “Settings” ➤ “Integrate” ➤

“Custom Apps”).

It then passes the access token dictionary as a “POST” to the “oauth/token” URL

(Listing 16-6).

Listing 16-6.  The auth/token URL

https://<<YOUR-ACCOUNT>>.memberful.com/oauth/token

If all is correct, it will return the “access_token”; this is the real key that will unlock

our visitor’s personal data, like whether or not they are an actual member of our web

application and whether or not their subscription is currently active (Listing 16-7).

Listing 16-7.  This Data Can Be Queried Using the Following URL

https://<<YOUR-ACCOUNT>>.memberful.com/api/graphql/member?access_

token=999999999

Everything in step 2 of the authentication process is done via form “POST” so as not

to show sensitive information as a readable URL. This type of work is easily abstracted in

our function “IsSubscriberLoggedIn(),” which will enable our web application to easily

check each visitor’s member status (Listing 16-8).

Listing 16-8.  The Function “IsSubscriberLoggedIn()”

def IsSubscriberLoggedIn(code):

 # build the access token dictionary

 access_token_req = {

 "code": code,

 "client_id": MEMBERFUL_KEY,

 "client_secret": MEMBERFUL_SECRET,

 "redirect_uri": redirect_uri,

 "grant_type": "authorization_code" }

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

458

 # build the oauth/token to access visitor's data

 content_length=len(urlencode(access_token_req))

 access_token_req['content-length'] = str(content_length)

 �r = requests.post(MEMBERFUL_SITE + '/oauth/token', data=access_token_req)

 data = json.loads(r.text)

 # build the graphql query to query specific values needed

 �r = requests.get(MEMBERFUL_SITE + '/api/graphql/

member?access_token=' + data['access_token'] +

'&query={%20currentMember%20{%20fullName%20subscriptions%20{%20

active%20expiresAt%20}%20}%20}')

An area worth mentioning is graphQL (see the “Queries and Mutations” section of

the Memberful API docs for more details at https://memberful.com/help/integrate/

advanced/memberful-api/#queries-and-mutations). This tool, after a successful

authentication, allows for the querying of specific subscriber information (Listing 16-9).

Listing 16-9.  From the Official Help Docs

Input:

query {

 member(id: 1) {

 id

 fullName

 email

 subscriptions {

 id

 plan {

 id

 name

 }

 }

 }

}

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

https://memberful.com/help/integrate/advanced/memberful-api/#queries-and-mutations
https://memberful.com/help/integrate/advanced/memberful-api/#queries-and-mutations

459

Output:

{

 "data": {

 "member": {

 "id": "1",

 "fullName": "John Doe",

 "email": "john.doe@example.com",

 "subscriptions": [

 {

 "id": "1",

 "plan": {

 "id": "1",

 "name": "Monthly"

 }

 }

]

 }

 }

}

In our case, we are only interested with two pieces of information: what is the user’s

name and whether their subscription is active (Listing 16-10).

Listing 16-10.  We Append the Following Variables to Our “GET” URL

query={%20currentMember%20{%20fullName%20subscriptions%20{%20active%20

expiresAt%20}%20}%20}

This translates to: give us the full name of this member along with whether their

subscription is active and when it expires. Here we only use whether or not the

subscription is active, but you could easily extend this by checking the expiration date

and reminding the member to renew soon (Listing 16-11).

Listing 16-11.  If We Run It and Peek At Our graphQL Response, We Get

{"data":{"currentMember":{"fullName":"Manuel", "subscriptions":[{"active":true,

"expiresAt":1529879538}]}}}

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

460

�Calling Memberful Functions
This is the beauty of Memberful, it is trivial to use and they do all the hard work for us by

storing user data and managing payments, refunds, renewals, etc. There are four URLs

offered by Memberful that can be embedded on your website.

To sign in:

https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_in

To buy a subscription (plan number will vary):

https://<<YOUR-ACCOUNT>>.memberful.com/checkout?plan=29504

To log out:

https://<<YOUR-ACCOUNT>>.memberful.com/auth/sign_out

To manage your account:

https://<<YOUR-ACCOUNT>>.memberful.com/account

By adding a simple JavaScript snippet at the beginning of each page along with login/

signup/purchase links, you’ll automatically inherit the customer pop-up management

system. This is extremely powerful, as the visitor feels that it is all built inside our web

application (Listing 16-12).

Listing 16-12.  Memberful JavaScript Code to Manage the In-site Pop-ups

<script type="text/javascript">

 window.MemberfulOptions = {site: "https://amunategui.memberful.com"};

 (function() {

 var s = document.createElement('script');

 s.type = 'text/javascript';

 s.async = true;

 s.src = 'https://d35xxde4fgg0cx.cloudfront.net/assets/embedded.js';

 setup = function() { window.MemberfulEmbedded.setup(); }

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

461

 s.addEventListener("load", setup, false);

 �(document.getElementsByTagName('head')[0] || document.getElements

ByTagName('body')[0]).appendChild(s);

 })();

</script>

You can find the JavaScript snippet on the Memberful site by clicking on the settings

button on the top right corner, and then the ‘Your Website” tab (Figure 16-8).

Figure 16-8.  Accessing the “MemberfulOptions” JavaScript Snippet

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

462

When the user accesses the web application and clicks on “Log in,” they get that

professional and integrated pop-up box that we all have come to expect on serious web

sites (the fact that we aren’t managing or storing any of the user data or financial data is

our own little dirty secret; Figure 16-9).

Figure 16-9.  Signing in like a pro!

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

463

�Designing a Subscription Plan on Memberful.com
In order to create a membership, a visitor has to come to the site and click on “Sign up.”

When they do so, they will see a subscription window. This can be customized in many

ways, including different prices, tiers, and subscription lengths. We’ll go with the defaults

offered by the demo account (Figure 16-10).

Figure 16-10.  A new visitor creating a membership to the Pair Trading Booth site;
yes!!!

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

464

A membership plan can easily be created on the Memberful dashboard. Log in to

your account and navigate to Plans ➤ Sample Plan ➤ Plan settings, copy the generated

URL plan purchase link, and paste it in your sign-up button (Figure 16-11).

Figure 16-11.  Creating a sample plan; here we go with the defaults

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

465

If you take the “Plan purchase link” and drop it into a browser, you will see what it

offers (of course, we won’t access it that way normally because we want it to appear as

a pop-up inside our own web application). It is live, and you can create a test account

using one of the fake credit card numbers supplied (Figure 16-12).

Use any of the following fake credit card numbers (from the official docs at

https://memberful.com/help/general/using-test-credit-cards/).

•	 Visa: 4242 4242 4242 4242

•	 Mastercard: 5555 5555 5555 4444

•	 American Express: 3782 822463 10005

Figure 16-12.  Don’t forget to use a testing credit card number!

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

https://memberful.com/help/general/using-test-credit-cards/

466

�Uploading the Web Application to PythonAnywhere
As there is no local Flask version to run in this chapter, let’s get it up to PythonAnywhere

without further ado. If you have been following along with the previous “Pair Trading
Booth” case studies, you will only need to update the following files:

•	 main.py

•	 index.html

•	 charts.html

•	 fundamentals.html

And you will need to add the new landing page that hides all trading information

from all the nonmembers and those not logged in:

•	 welcome.html

Log into your PythonAnywhere account and replace the five files with the new

versions found in the downloads for this chapter.

�Replacing Memberful and MySQL with Your Own
Credentials
You will need to replace a few things in “main.py” before you can run the web

application. There are three Memberful constants and one PythonAnywhere constant to

set (Listing 16-13).

Listing 16-13.  Change the Following Constants in “main.py” on

PythonAnywhere with Your Credentials

MEMBERFUL_KEY='<<ENTER-YOUR-MEMBERFUL-KEY-HERE>>'

MEMBERFUL_SECRET='<<ENTER-YOUR-MEMBERFUL-SECRET-HERE>>'

MEMBERFUL_SITE='<<ENTER-YOUR-MEMBERFUL-SITE-HERE>>'

PYTHONANYWHERE_SITE = '<<ENTER-YOUR-PYTHON-ANYWHERE-SITE-HERE>>'

Once everything is up, hit the big, green button to refresh the web application and

take it for a spin. You will need to go through the sign-up process once with the fake

credit card numbers; then you will be able to log in with those credentials (Figure 16-13).

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

467

�What’s Going on Here?
Let’s take a high-level look at some of the interesting elements going on in our paywall.

�main.py
This is the brains behind our web application; thus it will take the brunt of the

Memberful additions. We need to add a handler to handle the landing page “welcome.
html” where users go before logging in. Once they have logged in, they are directed

to the “/member/” path where they can be directed through the following three

authentication paths:

Did the member request a logout?
Check the “request.args.get(‘action’)” variable and look for the “logout” value. If

that is the case, log them out by clearing that member’s session variable.

Is the member already logged in?
Check the session variable to see if there is a user name in it; if so, there’s no need to

authenticate again. Let them keep browsing behind the paywall.

Did this visitor just arrive and is trying to log in?
Get the “request.args.get(‘code’)” and pass it to the “IsSubscriberLoggedIn()”

function to make sure they have an active subscription. If they do, add their user name to

the session object and they’re good to browse behind the paywall.

Figure 16-13.  Last step in the process before turning our paywall live

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

468

The rest of the code in “main.py” is the same as the previous case studies.

It has code to look for the most extreme stocks in our list of ten Dow 30 stocks, code

to create dynamic price charts, and the ability to pull corollary information on the

companies in play.

�welcome.html
The “welcome.html” page is the new landing page (Figure 16-14).

It is a simple HTML page that follows the look and feel of the “Pair Trading Booth”

web site. It offers two buttons: one to log in and the other to sign up.

�index.html
The “index.html” page gets two new buttons: one to log out and another to manage the

user’s account (Figure 16-15).

Figure 16-14.  The new landing page

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

469

�Conclusion
There you have it: all the tools you need to create your own paywall to monetize your

machine learning ideas. Being able to push out the management of subscribers and

credit card payments in such an integrated manner is simply amazing. This is something

that would have been a whole lot harder to achieve just a few years ago. You now can

focus fully on your machine learning ideas, and let the membership pros, do the rest.

Figure 16-15.  Two new buttons: one to log out and one to access account info

Chapter 16 Case Study Part 4: Building a Subscription Paywall with Memberful

471
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8_17

CHAPTER 17

Conclusion
The coverage in this book is ambitious and sacrifices had to be made, sections had

to be omitted. What it may lack in technology introductions is hopefully made up for

by quickly getting you up and running, and providing pointers on where to look for

additional information. We only briefly covered databases and didn’t cover custom

domain names; thankfully plenty of others have written about that already.

I hope you found these chapters inspiring and that the gears in your head are

spinning when thinking about all the things you could do with the Memberful paywall

implementation.

Remember that “compete agreement”? Yes, the opposite of a non-compete

agreement that I mentioned in the introduction of the book. So, its time to take anything

you need from the book and take it on the road with you! We can’t wait to see what you

come up with!

�Turning It Off!
Let’s quickly review how to turn off cloud instances as well as Memberful and

PythonAnywhere accounts. Recall that in many cases you can turn instances off using

command-line commands, but it is always a good idea (essential idea, really) to log into

your account in the cloud and make sure everything is turned off. (Be warned: if you

don’t, you may get an ugly surprise at the end of the billing cycle.)

�Google Cloud (App Engine)
Navigate to your GCP account, to the “App Engine” dashboard, and to “Versions.” Click

your active version and stop it (Figure 17-1). If you have multiple versions, you can

delete the old ones; you won’t be able to delete the default one, but stopping it should be

enough (if you really don’t want any trace of it, just delete the entire project).

472

�Amazon Web Services (Beanstalk)
Log into your AWS account and make sure that your EC2 and Elastic Beanstalk accounts

don’t have any active services you didn’t plan on having (Figures 17-2 and 17-3).

Figure 17-1.  Stopping and/or deleting your App Engine version

Figure 17-2.  Checking for any active and unwanted instances on the AWS
dashboard

Chapter 17 Conclusion

473

In case you see an instance that seems to keep coming back to life after each time

you “Delete application,” check under EC2 “Load Balancers” and terminate those first,

then go back and terminate the rogue instance again (Figure 17-4).

Figure 17-3.  Locate the instance you want to terminate or delete, and select your
choice using the “Actions” dropdown button

Chapter 17 Conclusion

474

�Microsoft Azure (AWS)
Log into the Azure Dashboard, enter “All resources” in the search bar, and delete

everything you created (Figure 17-5).

Figure 17-4.  “Load Balancers” can prevent an application from terminating;
this can kick in if you inadvertently start multiple instances with the same name.

Figure 17-5.  Deleting unwanted resources under the “All resources” view

Chapter 17 Conclusion

475

�PythonAnywhere.com
If you have opted for a paid account and want to downgrade back to a free account,

simply log into your PythonAnywhere dashboard and click the “Account” tab in the

upper-right corner. This is where you can upgrade and downgrade your account

depending on your needs. Click the “Downgrade to a free account” and your’e back

into the free tier (Figure 17-6).

Figure 17-6.  Downgrading to a free account on PythonAnywhere

�Memberful.com
If you have gone through Chapter 16 and set up the paywall but would like to not incur

additional charges, you can easily downgrade back into the free tier. Log into your

Memberful account and click the “Account” button in the top-right corner, then choose

the “Plans and billing” tab. On this page you will find an option to “Downgrade to
Starter” link; click it and follow the instructions (Figure 17-7).

Chapter 17 Conclusion

476

That’s it! And a huge thanks for reading this book!

Figure 17-7.  Downgrading to a starter account on Memberful

Chapter 17 Conclusion

477
© Manuel Amunategui, Mehdi Roopaei 2018
M. Amunategui and M. Roopaei, Monetizing Machine Learning, https://doi.org/10.1007/978-1-4842-3873-8

Index

A
A/B testing, 401–424
Ajax, xxvii, xxxiv, 165, 332, 333
Alerting system, 167
Amazon Web Service (AWS)

deploying, 26, 34, 166
Eb commands, 154–156
Elastic Beanstalk, 26–34, 131, 150–159,

165–166, 254, 472
WSGI, 156–158

Analytics, xxxvi, 5, 393–399, 402
Analytics report, 396–397
Azure-cli, 76–82, 225–231, 367–371
Azure dashboard, 8–9, 16, 82, 84, 231, 233,

234, 371, 373, 474

B
Balancing data, 199–202
Beaufort scale, 250, 251
Bike Sharing Dataset, 39–42
Bootstrap, xxvii, xxxiv–xxxv, 91, 181, 183,

185–186

C
Cascading Style Sheets (CSS), xxxi–xxxii,

xxxiv, xxxv, 91
Categorical features, 50–51, 104, 133,

240, 246

Cloud-based services
Amazon AWS, 1, 26–34
Google Cloud, 1, 16–25, 86, 93,

115–127, 263, 281–287, 305,
333–340, 471–472

Microsoft Azure, xxxvii, 1, 5–16, 39, 74,
82, 91, 195, 225, 231, 341, 363–367,
371, 474

PythonAnywhere, 1, 34–37, 186–189,
192–193, 289, 299–302, 375,
385–390, 401–423, 434–435,
449–455, 466, 475

Collaborative filtering
centering, 323–324
cosine similarity distance, 321–322
Euclidean distance, 320–321
similarity/distance measurement

tools, 320
Compressed Sparse Row matrix, 324

D
DataSF, 195, 197–198
Data wrangling

categorical data
count(), 100, 103
groupby(), 100, 103

describe(), 97, 98
dummy feature

get_dummies(), 56, 104–105

https://doi.org/10.1007/978-1-4842-3873-8

478

head(), 96
info(), 97, 98
isnull(), 97, 98
missing data, 98–99
tail(), 96

describe(), 47, 97, 98, 310–313, 346
Dow Jones Index (DJI), 169–171, 174–176
drop_duplicates(), 344

E
External spam datasets, 349–350

F
Feature engineering

np.select(), 206
np.where(), 206
time segments, 205–206

FinViz, 379–380
Flask, xxvii, xxxi–xxxiii, xxxvi, xxxix, 1–7,

12, 15–18, 20–23, 26, 33, 35–36,
67–73, 87, 88, 91, 111, 113, 114,
131, 146, 147, 149, 165, 166, 181,
183–185, 218, 219, 222, 235, 253,
259, 261, 287, 290, 291, 295,
331–332, 360–363, 393, 411, 412,
415, 426–431, 439, 442, 443, 446,
450, 452, 454–459, 466

fromtimestamp(), 310

G
Geocoordinates

rounding, 209–211
Git, xxxvii–xxxviii, 7–8, 10, 12–14, 74–76,

78–80, 85, 223–225, 227, 229–231,
363–368, 370–371

Git for Azure
az login, 77, 85, 226, 367
azure-cli, 71–82, 225–234, 367–374
git add, 223–224, 364–366
git commit, 8, 76, 85, 225, 366–367
git push, 15, 80, 82, 86, 229, 231,

370, 371
git status, 74–75, 223–224, 364–365

Golf|Weather Data Set, 237–261
Google Analytics, xxxvi, 393–399
Google App Engine

Google Cloud shell, 19–20, 117–118,
281–282, 333–334

Google Cloud
Flexible App Engine, 115–127, 281–287,

333–340
Google Cloud shell, 19–20, 117–118,

281–282, 333–334
Google Cloud Flexible App Engine

appengine_config.py, 18, 20, 125
app.yaml, 18, 20, 24, 124, 281
GCP cloud shell, 117–118, 281–282
lib folder, 18, 120, 125, 126, 284, 336
main.py, 122–124

Google Map API
Google API key, 221
heatmap layer, 217

Graphical data, 208–209, 234
groupby(), 59, 100, 103, 212, 316, 343

H
head(), 45, 46, 96, 102, 325
Histogram, 50, 134–137, 314, 345, 346
HTML, xxvii, xxxi–xxxv, 18, 67, 69, 86, 87,

89, 111–113, 218, 261, 291, 292,
298, 301, 333, 387, 395, 397, 399,
404, 421, 426, 434–436, 439, 444,
445, 468

Data wrangling (cont.)

Index

479

HTML5 Canvas, 274–276, 287
HTML forms

dynamic images, 112–113

I
Imbalanced classes, 135–137
info(), 46, 97, 132
Interactive web application

flask, 90
io.BytesIO(), 112, 291, 295

J, K
JavaScript, xxvii, xxxiii–xxxvi, 73, 74, 86,

88–90, 218, 332, 348, 393, 434,
460–461

JavaScript events, 359–360
JavaScript tracker, 395–396, 399
Jinja2, xxxii–xxxiii, 87–88, 91, 113, 291,

444–446
JQuery, xxxiv, 91
Jupyter notebooks, xxviii–xxx, 43–45, 95,

104, 122, 131, 135, 139, 169, 172,
197, 238, 246, 265, 268, 270, 274,
291, 292, 309, 324, 331, 343, 347,
381, 410, 412

L
Lemmatization, 349

M
Machine learning, xxiii–xxix, 40, 41, 43,

130, 131, 168, 263, 343, 374, 469
Mailing lists, xxxvii, 35

main.py, 2, 4–7, 18–20, 71, 72, 86–87, 114,
115, 122–124, 147, 184, 187, 190,
299, 300, 327–332, 386, 421, 422,
443, 466–468

Matplotlib, 112, 208, 211, 214–216, 266,
267, 290–292, 295

Memberful, xxxv, xxxvi, 425, 432–438,
449–469, 471, 475–476

Memberful authentication
/account, 460
/auth/sign_in, 456, 460
/auth/sign_out, 460
/checkout, 435, 436, 460
flask session mechanism, 456
graphql, 457–459

Membership platforms, xxxv–xxxvi, 463–464
Message boards, xxxvi, 30, 32, 36, 153, 158
Microsoft Azure, xxxvii, 1, 5–8, 16, 39,

74–86, 91, 195, 225, 231, 341, 363,
371, 474

Azure-cli, 76–82, 225–231, 367–371
MNIST dataset, 265–268, 276
Mobile web application

Bootstrap, 181, 183
fluid container, 181–183
form-validation, 185, 186

Modeling
cross-validation, 109, 139
gradient boosting, 58, 129–166
linear regression, 41, 48, 52–54, 61, 64,

65, 106
linear_regression(), 54
logistic regression, 93–127
model’s coefficient, 61, 63, 108
nonlinear regression, 54, 58
PolynomialFeatures(), 56
polynomial regression, 54–56
predictive survivorship, 108–110

Index

480

RMSE, 52, 54, 57, 58, 60
sklearn, 52–54, 56, 58, 60, 62, 64, 95,

106, 108, 129, 137, 138, 140, 237,
241–242, 350–357

time-series, 54, 58–60, 268
train_test_split(), 53, 106–107

Modeling with gradient boosting
confusion matrix, 141–143
evaluating the model, 139–143
gradient boosting classifier, 137–139
ground truth, 140–142, 145
learning rate, 139
persisting the model, 143–144
precision score, 140
predicting on new data, 144–146

Model’s performance
area under the curve, 356–357
confusion matrix, 354–355
f1-score, 354
model’s threshold, 357–359
precision, 354
recall, 106, 354
receiving operating characteristic,

342, 356
Movie genres, 315, 329–331
MovieLens dataset

movieId, 307, 308, 312, 315, 317–319,
330, 331

ratings, 307–315, 317–319, 323–327,
330, 331

userId, 307, 317–320, 324
MySQL

command line monitor, 408–409
create database, 409
create table, 409–410
create user, 411
drop table, 410

mysql.connector
connect(), 412
INSERT, 412, 413
SELECT, 412–413
UPDATE, 412, 414

N
Naive Bayes

sklearn’s GaussianNB, 241–242
Nasdaq’s company list, 377–378
Nasdaq website, 377–378, 385
Natural language processing (NLP), 95,

104, 268, 341–374

O
OpenWeatherMap, 237, 242–252, 259–261
OpenWeatherMap API, 252

P
Pair trading, 168–169, 175, 184, 186–187,

189–192, 292–295, 299, 302, 375–
376, 384, 385, 390, 394–397, 425,
449, 450, 463, 466, 468

Parsimonious model, 61–66
Payment platform, xxxvi, 442
PayPal, xxxvi, 439–442
pd.Categorical(), 138, 351
Plots, 48, 113, 134, 137, 141, 174–175, 179,

204, 208, 209, 214, 219, 290, 293,
297, 313, 316, 345

Preparing the data
concat(), 171
cumulative sum, 173–174
percent change, 173–174
pivot(), 172
scaling the data, 173

Modeling (cont.)

Index

481

PythonAnywhere
bash pip install, 388, 455
Flask-SSLify, 454–455
PythonAnywhere MySQL settings,

418–420, 466–467
WSGI, 189–192
WSGI configuration, 190–191

Q
Quantitative features, 48–50, 350, 352
Quantitative trading

pair trading strategy, 168–169
stock behavior, 168

R
Random forest classifier, 352–353
Rating Category, 314
Rating Frequency, 314
Rating Histogram, 314
readlines(), 430
Recommender systems, 307, 340
Recommending movies, 305–307
Regression coefficients, 39–91
Regular expression, 348–349
requirements.txt, xxxix–xli, 2, 7, 18, 20, 22,

149, 296, 383, 427
Review culture, 313–317
R-squared, 62–63

S
Secure Shell (SSH), 30–32, 153, 156,

164–165, 254
Serverless cloud, xxv, xxvii, 7, 37, 115
Serverless technologies, 1–37
SF Crime Heat Map, 197–198

Singular value decomposition (SVD),
305–340

SMS Spam Collection Data Set, 341, 343
Static, xxv, xxxvi, xxxvii, 18, 88, 187, 188
Stemming, 349
Stock charts, 289, 291–292, 298
Stripe, xxxv, xxxvi, 425, 432, 442–447
Subscriber

@auth.login_required, 428
Flask-HTTPAuth, 426–428
HTTPBasicAuth, 426
HTTPDigestAuth, 428, 430
subscribing system, 432
text-based authentication, 425, 426

Subscription paywall, 449–469

T
templates/index.html, 88–90
TensorFlow

accuracy, 271
checkpoint, 274, 278
conv2d(), 270
convolutional neural

network, 268
cross entropy, 270
loss function, 270
max_pool(), 270
modelling layers, 269–270
Saver(), 273
softmax, 270
tf.nn, 270
tf session, 273

Term frequency–inverse
document frequency
(TFIDF), 341, 347–350

Text wrangling, 347–348
TfidfVectorizer, 350–351

Index

482

Titanic dataset, 93
Tracking ID, 394, 395
Tracking users, 404
Trading ideas, 175–183
Traffic sources, 397–398

U
Universally Unique Identifier (UUID),

404–405, 413–415
User reviews, 315

V
Virtual environments, xxxviii–xl, 2, 5, 7,

30, 33, 148–150, 221, 224, 234,
 252, 254, 257, 279, 282, 287, 296,
328, 334, 339, 340, 362, 365, 372,
383, 384

Visualizing, 134, 208–209, 217

W, X, Y, Z
Weather forecasts, 237, 242, 246, 251
Web application

awscli, 254
awsebcli, 254
eb, 254, 255
eb open, 255, 256
Elastic Beanstalk, 254, 257
HTML Tables, 297–298
Sandbox, xxxviii, xxxix, 148–150
virtual environment, xxxviii–xxxix,

148–150
WSGIApplicationGroup, 254–255

Web plugins, xxix, xxxv, 447
Wikipedia API, 305, 331, 379, 391
Wine-quality dataset

info(), 133, 134
value_counts(), 133, 134

Word count, 344, 345, 350

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Serverless Technologies
	A Simple Local Flask Application
	Step 1: Basic “Hello World!” Example
	Step 2: Start a Virtual Environment
	Step 3: Install Flask
	Step 4: Run Web Application
	Step 5: View in Browser
	Step 6: A Slightly Faster Way
	Step 7: Closing It All Down

	Introducing Serverless Hosting on Microsoft Azure
	Step 1: Get an Account on Microsoft Azure
	Step 2: Download Source Files
	Supporting Files

	Step 3: Install Git
	Step 4: Open Azure Cloud Shell
	Step 5: Create a Deployment User
	Step 6: Create a Resource Group
	Step 7: Create an Azure Service Plan
	Step 8: Create a Web App

	Check Your Website Placeholder
	Step 9: Pushing Out the Web Application
	Step 10: View in Browser
	Step 11: Don’t Forget to Delete Your Web Application!
	Conclusion and Additional Information

	Introducing Serverless Hosting on Google Cloud
	Step 1: Get an Account on Google Cloud
	Step 2: Download Source Files
	Step 3: Open Google Cloud Shell
	Step 4: Upload Flask Files to Google Cloud
	Step 5: Deploy Your Web Application on Google Cloud
	Step 6: Don’t Forget to Delete Your Web Application!
	Conclusion and Additional Information

	Introducing Serverless Hosting on Amazon AWS
	Step 1: Get an Account on Amazon AWS
	Step 2: Download Source Files
	Step 3: Create an Access Account for Elastic Beanstalk
	Step 4: Install Elastic Beanstalk (EB)
	Step 5: EB Command Line Interface
	Step 6: Take if for a Spin
	Step 7: Don’t Forget to Turn It Off!
	Conclusion and Additional Information

	Introducing Hosting on PythonAnywhere
	Step 1: Get an Account on PythonAnywhere
	Step 2: Set Up Flask Web Framework
	Conclusion and Additional Information

	Summary

	Chapter 2: Client-Side Intelligence Using Regression Coefficients on Azure
	Understanding Bike Rental Demand with Regression Coefficients
	Exploring the Bike Sharing Dataset
	Downloading the Data from the UCI Machine Learning Repository
	Working with Jupyter Notebooks
	Exploring the Data

	A Closer Look at Our Outcome Variable
	Quantitative Features vs. Rental Counts
	Let’s Look at Categorical Features
	Preparing the Data for Modeling
	Regression Modeling
	Simple Linear Regression
	A Simple Model

	Experimenting with Feature Engineering
	Modeling with Polynomials
	Creating Dummy Features from Categorical Data
	Trying a Nonlinear Model
	Even More Complex Feature Engineering—Leveraging Time-Series

	A Parsimonious Model
	Extracting Regression Coefficients from a Simple Model—an Easy Way to Predict Demand without Server-Side Computing
	R-Squared
	Predicting on New Data Using Extracted Coefficients

	Designing a Fun and Interactive Web Application to Illustrate Bike Rental Demand
	Abstracting Code for Readability and Extendibility
	Building a Local Flask Application
	Downloading and Running the Bike Sharing GitHub Code Locally
	Debugging Tips

	Microsoft Azure—Mounting a Web Application for the First Time
	Git—Getting All Projects in Git
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create your Resource Group
	Step 4: Create Your Azure App Service Plan
	Step 5: Create Your Web App
	Step 6: Push git Code to Azure
	Important Cleanup!
	Troubleshooting
	Steps Recap

	What’s Going on Here? A Look at the Scripts and Technology Used in Our Web Application
	main.py
	/static/ folder
	/templates/index.html folder and script

	Conclusion
	Additional Resources

	Chapter 3: Real-Time Intelligence with Logistic Regression on GCP
	Planning our Web Application
	Data Wrangling
	Dealing with Categorical Data
	Creating Dummy Features from Categorical Data

	Modeling
	Train/Test Split
	Logistic Regression
	Predicting Survivorship

	Abstracting Everything in Preparation for the Cloud
	Function startup()
	Function submit_new_profile()

	Interactivity with HTML Forms
	Creating Dynamic Images
	Downloading the Titanic Code
	Google Cloud Flexible App Engine
	Google App Engine

	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to the Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing-Up Shop
	What’s Going on Here?
	main.py
	app.yaml
	appengine_config.py & lib folder
	requirements.txt

	Steps Recap
	Conclusion

	Chapter 4: Pretrained Intelligence with Gradient Boosting Machine on AWS
	Planning our Web Application: What Makes a Top-Rated Wine?
	Exploring the Wine-Quality Dataset
	Working with Imbalanced Classes
	Modeling with Gradient Boosting Classifiers
	Evaluating the Model
	Persisting the Model
	Predicting on New Data

	Designing a Web Application to Interact and Evaluate Wine Quality
	Introducing AJAX – Dynamic Server-Side Web Rendering
	Working in a Virtual Environment—a Sandbox for Experimentation, Safety and Clarity
	Amazon Web Services (AWS) Elastic Beanstalk
	Create an Access Account for Elastic Beanstalk
	Elastic Beanstalk
	EB Command Line Interface
	Fix the WSGIApplicationGroup
	Creating the EB
	Take if for a Spin

	Don’t Forget to Turn It Off!
	Steps Recap
	Troubleshooting
	Access the Logs
	SSH into your Instance

	Conclusion

	Chapter 5: Case Study Part 1: Supporting Both Web and Mobile Browsers
	The Pair-Trading Strategy
	Downloading and Preparing the Data
	Preparing the Data
	Pivoting by Symbol

	Scaling the Price Market Data
	Percent Change and Cumulative Sum

	Plotting the Spread
	Serving up Trading Ideas
	Finding Extreme Cases
	Making Recommendations

	Calculating the Number of Shares to Trade
	Designing a Mobile-Friendly Web Application to Offer Trading Ideas
	Fluid Containers

	Running the Local Flask Version
	What’s Going on Here?
	Bootstrap Input Field Validation

	Running on PythonAnywhere
	Fixing the WSGI File
	Source Code
	WSGI Configuration
	Reload Web Site

	Troubleshooting PythonAnywhere
	Conclusion

	Chapter 6: Displaying Predictions with Google Maps on Azure
	Planning our Web Application
	Exploring the Dataset on SF Crime Heat Map on DataSF
	Data Cleanup
	Rebalancing the Dataset
	Exploring by Day-of-the-Week
	Feature Engineering
	Creating a Month-of-the-Year Feature
	Creating Time Segments
	Exploring by Time Segment

	Visualizing Geographical Data
	Rounding Geocoordinates to Create Zone Buckets

	Using the Past to Predict the Future
	Google Maps Introduction
	Heatmap Layer

	Google Maps with Crime Data
	Abstracting Our Crime Estimator
	Designing a Web Application to Enable Viewers to Enter a Future Date and Visualize Crime Hotspots
	Add Your Google API Key
	Take It for a Spin

	Git for Azure
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create Your Resource Group
	Step 4: Create your Azure App Service Plan
	Step 5: Create your Web App
	Step 6: Push Git Code to Azure

	Troubleshooting
	Don’t Forget to Turn It Off!
	Conclusion

	Chapter 7: Forecasting with Naive Bayes and OpenWeather on AWS
	Exploring the Dataset
	Naive Bayes
	Sklearn’s GaussianNB
	Realtime OpenWeatherMap
	Forecasts vs. Current Weather Data
	Translating OpenWeatherMap to “Golf|Weather Data”

	Designing a Web Application “Will I Golf Tomorrow?” with Real Forecasted Weather Data
	Download the Web Application

	Running on AWS Elastic Beanstalk
	Fix the WSGIApplicationGroup
	Take It for a Spin
	Don’t Forget to Turn It Off!

	Conclusion
	Accessing OpenWeatherMap Data
	Try/Catch
	Handling User-Entered-Data

	Chapter 8: Interactive Drawing Canvas and Digit Predictions Using TensorFlow on GCP
	The MNIST Dataset
	TensorFlow
	Modeling with TensorFlow and Convolutional Networks
	Placeholders (tf.placeholder)
	Building Modeling Layers
	Loss Function
	Instantiating the Session
	Training
	Accuracy
	Running the Script

	Running a Saved TensorFlow Model
	Save That Model!
	Drawing Canvas
	From Canvas to TensorFlow

	Testing on New Handwritten Digits
	Designing a Web Application
	Download the Web Application
	Google Cloud Flexible App Engine
	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to the Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing Up Shop
	Conclusion
	HTML5 <canvas> tag
	TensorFlow
	Design

	Chapter 9: Case Study Part 2: Displaying Dynamic Charts
	Creating Stock Charts with Matplotlib
	Exploring the Pair-Trading Charts
	Designing a Web Application
	Mobile Friendly with Tables
	Uploading our Web Application to PythonAnywhere
	Conclusion

	Chapter 10: Recommending with Singular Value Decomposition on GCP
	Planning Our Web Application
	A Brief Overview of Recommender Systems
	Exploring the MovieLens Dataset
	More from the MovieLens Dataset’s Liner Notes

	Overview of “ratings.csv” and “movies.csv”
	Understanding Reviews and Review Culture
	Getting Recommendations
	Collaborative Filtering
	Similarity/Distance Measurement Tools
	Euclidean Distance
	Cosine Similarity Distance
	Singular Value Decomposition
	Centering User Ratings Around Zero
	A Look at SVD in Action
	Downloading and Running the “What to Watch Next?” Code Locally
	What’s Going on Here?
	main.py
	index.html
	Deploying on Google App Engine
	Step 1: Fire Up Google Cloud Shell
	Step 2: Zip and Upload All Files to The Cloud
	Step 3: Create Working Directory on Google Cloud and Unzip Files
	Step 4: Creating Lib Folder
	Step 5: Deploying the Web Application

	Troubleshooting
	Closing Up Shop
	Conclusion

	Chapter 11: Simplifying Complex Concepts with NLP and Visualization on Azure
	Planning our Web Application—the Cost of Eliminating Spam
	Data Exploration
	Cleaning Text
	Text-Based Feature Engineering
	Text Wrangling for TFIDF
	NLP and Regular Expressions
	Using an External List of Typical Spam Words
	Feature Extraction with Sklearn’s TfidfVectorizer
	Preparing the Outcome Variable
	Modeling with Sklearn’s RandomForestClassifier
	Measuring the Model’s Performance
	Interacting with the Model’s Threshold

	Interacting with Web Graphics
	Building Our Web Application—Local Flask Version
	Deploying to Microsoft Azure
	Git for Azure
	The azure-cli Command Line Interface Tool
	Step 1: Logging In
	Step 2: Create Credentials for Your Deployment User
	Step 3: Create Your Resource Group
	Step 4: Create Your Azure App Service Plan
	Step 5: Create Your Web App
	Step 6: Push Git Code to Azure

	Important Cleanup!
	Troubleshooting
	Conclusion and Additional Resources

	Chapter 12: Case Study Part 3: Enriching Content with Fundamental Financial Information
	Accessing Listed Stocks Company Lists
	Pulling Company Information with the Wikipedia API
	Building a Dynamic FinViz Link

	Exploring Fundamentals
	Designing a Web Application
	Uploading Web Application to PythonAnywhere
	Conclusion

	Chapter 13: Google Analytics
	Create a Google Analytics Account
	JavaScript Tracker
	Reading Your Analytics Report
	Traffic Sources
	Pages
	Conclusion and Additional Resources

	Chapter 14: A/B Testing on PythonAnywhere and MySQL
	A/B Testing
	Tracking Users
	UUID

	MySQL
	Command Line Controls
	MySQL Command Line Monitor
	Creating a Database
	Creating a Table
	Creating A Database User

	Python Library: mysql.connector
	SELECT SQL Statement
	INSERT SQL Statement
	UPDATE SQL Statement

	Abstracting the Code into Handy Functions
	Designing a Web Application
	Running a Local Version

	Setting Up MySQL on PythonAnywhere
	A/B Testing on PythonAnywhere
	A/B Testing Results Dashboard
	Conclusion

	Chapter 15: From Visitor to Subscriber
	Text-Based Authentication
	Flask-HTTPAuth—Hard-Coded Account
	Digest Authentication Example
	Digest Authentication Example with an External Text File

	Simple Subscription Plugin Systems
	Memberful
	Create a Real Web Page to Sell a Fake Product
	Checking Your Vendor Dashboard

	Taking Donations with PayPal
	Making a Purchase with Stripe
	Conclusion

	Chapter 16: Case Study Part 4: Building a Subscription Paywall with Memberful
	Upgrading Your Memberful and PythonAnywhere Pay Accounts
	Upgrading Memberful
	Upgrading PythonAnywhere
	Pip Install Flask-SSLify

	Memberful Authentication
	Two-Step Process and Flask Session Mechanism
	Authentication Step 1
	Authentication Step 2
	Calling Memberful Functions

	Designing a Subscription Plan on Memberful.com
	Uploading the Web Application to PythonAnywhere
	Replacing Memberful and MySQL with Your Own Credentials

	What’s Going on Here?
	main.py
	welcome.html
	index.html

	Conclusion

	Chapter 17: Conclusion
	Turning It Off!
	Google Cloud (App Engine)
	Amazon Web Services (Beanstalk)
	Microsoft Azure (AWS)
	PythonAnywhere.com
	Memberful.com

	Index

