
PowerSpy: Location Tracking using Mobile Device Power Analysis

Yan Michalevsky, Aaron Schulman,
Gunaa Arumugam Veerapandian and Dan Boneh

Computer Science Department

Stanford University

Gabi Nakibly
National Research and Simulation Center

Rafael Ltd.

Abstract

Modern mobile platforms like Android enable applica-
tions to read aggregate power usage on the phone. This
information is considered harmless and reading it re-
quires no user permission or notification. We show that
by simply reading the phone’s aggregate power con-
sumption over a period of a few minutes an application
can learn information about the user’s location. Aggre-
gate phone power consumption data is extremely noisy
due to the multitude of components and applications that
simultaneously consume power. Nevertheless, by using
machine learning algorithms we are able to successfully
infer the phone’s location. We discuss several ways in
which this privacy leak can be remedied.

1 Introduction

Our phones are always within reach and their location is
mostly the same as our location. In effect, tracking the
location of a phone is practically the same as tracking the
location of its owner. Since users generally prefer that
their location not be tracked by arbitrary 3rd parties, all
mobile platforms consider the device’s location as sensi-
tive information and go to considerable lengths to protect
it: applications need explicit user permission to access
the phone’s GPS and even reading coarse location data
based on cellular and WiFi connectivity requires explicit
user permission.

In this work we show that despite these restrictions ap-
plications can covertly learn the phone’s location. They
can do so using a seemingly benign sensor: the phone’s
power meter that measures the phone’s power consump-
tion over a period of time. Our work is based on the ob-
servation that the phone’s location significantly affects
the power consumed by the phone’s cellular radio. The
power consumption is affected both by the distance to
the cellular base station to which the phone is currently
attached (free-space path loss) and by obstacles, such
as buildings and trees, between them (shadowing). The
closer the phone is to the base station and the fewer ob-
stacles between them the less power the phone consumes.

The strength of the cellular signal is a major factor affect-
ing the power used by the cellular radio [29]. Moreover,
the cellular radio is one of the most dominant power con-
sumers on the phone [14].

Suppose an attacker measures in advance the power
profile consumed by a phone as it moves along a set of
known routes or in a predetermined area such as a city.
We show that this enables the attacker to infer the tar-
get phone’s location over those routes or areas by simply
analyzing the target phone’s power consumption over a
period of time. This can be done with no knowledge of
the base stations to which the phone is attached.

A major technical challenge is that power is consumed
simultaneously by many components and applications on
the phone in addition to the cellular radio. A user may
launch applications, listen to music, turn the screen on
and off, receive a phone call, and so on. All these activ-
ities affect the phone’s power consumption and result in
a very noisy approximation of the cellular radio’s power
usage. Moreover, the cellular radio’s power consumption
itself depends on the phone’s activity, as well as the dis-
tance to the base-station: during a voice call or data trans-
mission the cellular radio consumes more power than
when it is idle. All of these factors contribute to the
phone’s power consumption variability and add noise to
the attacker’s view: the power meter only provides ag-
gregate power usage and cannot be used to measure the
power used by an individual component such as the cel-
lular radio.

Nevertheless, using machine learning, we show that
the phone’s aggregate power consumption over time
completely reveals the phone’s location and movement.
Intuitively, the reason why all this noise does not mislead
our algorithms is that the noise is not correlated with the
phone’s location. Therefore, a sufficiently long power
measurement (several minutes) enables the learning al-
gorithm to “see” through the noise. We refer to power
consumption measurements as time-series and use meth-
ods for comparing time-series to obtain classification and
pattern matching algorithms for power consumption pro-
files.

In this work we use machine learning to identify the

1

routes taken by the victim based on previously collected
power consumption data. We study three types of user
tracking goals:

1. Route distinguishability: First, we ask whether an
attacker can tell what route the user is taking among
a fixed set of possible routes.

2. Real-time motion tracking: Assuming the user is
taking a certain known route, we ask whether an at-
tacker can identify her location along the route and
track the device’s position on the route in real-time.

3. New route inference: Finally, suppose a user is
moving along an arbitrary (long) route. We ask if
an attacker can learn the user’s route using the previ-
ously measured power profile of many (short) road
segments in that area. The attacker composes the
power profile of the short road segments to identify
the user’s route and location at the end of the route.

We emphasize that our approach is based on measuring
the phone’s aggregate power consumption and nothing
else. In particular, we do not use the phone’s signal
strength as this data is protected on Android and iOS de-
vices and reading it requires user permission. In contrast,
reading the phone’s power meter requires no special per-
missions.

On Android reading the phone’s aggregate power me-
ter is done by repeatedly reading the following two files:

/sys/class/power supply/battery/voltage now

/sys/class/power supply/battery/current now

Over a hundred applications in the Play Store access
these files. While most of these simply monitor battery
usage, our work shows that all of them can also easily
track the user’s location.

Our contributions. Our work makes the following con-
tributions:

• We show that the power meter available on modern
phones can reveal potentially private information.

• We develop the machine learning techniques needed
to use data collected from the power meter to infer
location information. The technical details of our
algorithms are presented in sections 4, 5 and 6, fol-
lowed by experimental results.

• In sections 8 and 9 we discuss potential continuation
to this work, as well as defenses to prevent this type
of information leakage.

2 Threat Models

We assume a malicious application is installed on the vic-
tim’s device and runs in the background. The application

has no permission to access the GPS or any other loca-
tion data such as the cellular or WiFi components. In
particular, the application has no permission to query the
identity of visible cellular base stations or the SSID of
visible WiFi networks.

We only assume access to power data (which requires
no special permissions on Android) and permission to
communicate with a remote server. Network connectiv-
ity is needed to generate dummy low rate traffic to pre-
vent the cellular radio from going into low power state.
In our setup we also use network connectivity to send
data to a central server for processing. However, it may
be possible to do all processing on the phone.1

As noted earlier, the application can only read the ag-
gregate power consumed by the phone. It cannot mea-
sure the power consumed by the cellular radio alone.
This presents a significant challenge since many compo-
nents on the phone consume variable amounts of power
at any given time. Consequently, all the measurements
are extremely noisy and we need a way to “see” though
the noise.

To locate the phone, we assume the attacker has prior
knowledge of the area or routes through which the victim
is traveling. This knowledge allows the attacker to mea-
sure the power consumption profile of different routes in
that area in advance. Our system correlates this data with
the phone’s measured power usage and we show that, de-
spite the noisy measurements, we are able to correctly lo-
cate the phone. Alternatively, as for many other machine
learning cases, the training data can also be collected af-
ter obtaining the unlabeled query data. For instance, an
attacker obtained a power consumption profile of a user,
the past location of whom it is extremely important to
determine. She can still collect, after the fact, reference
profiles for a limited area in which the user has likely
been driving and carry out the attack.

For this to work we need the tracked phone to be mov-
ing by a car or a bus while being tracked. Our system
cannot locate a phone that is standing still since that only
provides the power profile for a single location. We need
multiple adjacent locations for the attack to work.

Given the resources at our disposal, the focus of this
work is on locating a phone among a set of local routes in
a pre-determined area. A larger effort is needed to scale
the system to cover the entire world by pre-measuring the
power profile of all road segments worldwide. Neverthe-
less, our localized experiments already show that track-
ing users who follow a daily routine is quite possible. For
example, a mobile device owner might choose one of a
small number of routes to get from home to work. The

1It is important to mention here that while a network access per-
mission will appear in the permission list for an installed application,
it does not currently appear in the list of required permissions prior to
application installation.

2

system correctly identifies what route was chosen and in
real-time identifies where the phone is along that route.
This already serves as a cautionary note about the type of
information that can be leaked by a seemingly innocuous
sensor like the power meter.

We note that scaling the system to cover worldwide
road segments can be done by crowd-sourcing: a popular
app, or perhaps even the core OS, can record the power
profile of streets traveled by different users and report
the results to a central server. Over time the resulting
dataset will cover a significant fraction of the world. On
the positive side, our work shows that service providers
can legitimately use this dataset to improve the accuracy
of location services. On the negative side, tracking apps
can use it to covertly locate users. Given that all that is
required is one widespread application, many actors in
the mobile space are in a position to build the required
dataset of power profiles and use it as they will.

3 Background

In this section we provide technical background on the
relation between a phone’s location and its cellular power
consumption. We start with a description of how loca-
tion is related to signal strength, then we describe how
signal strength is related to power consumption. Fi-
nally, we present examples of this phenomenon, and we
demonstrate how obtaining access to power measure-
ments could leak information about a phone’s location.

3.1 Location affects signal strength and
power consumption

Distance to the base station is the primary factor that de-
termines a phone’s signal strength. The reason for this is,
for signals propagating in free space, the signal’s power
loss is proportional to the square of the distance it travels
over [11]. Signal strength is not only determined by path
loss, it is also affected by objects in the signal path, such
as trees and buildings, that attenuate the signal. Finally,
signal strength also depends on multi-path interference
caused by objects that reflect the radio signal back to the
phone through various paths having different lengths.

In wireless communication theory signal strength is
often modeled as random variation (e.g., log-normal
shadowing [11]) to simulate many different environ-
ments2. However, in one location signal strength can be
fairly consistent as base stations, attenuators, and reflec-
tors are mostly stationary.

A phone’s received signal strength to its base sta-
tion affects its cellular modem power consumption.

2Parameters of the model can be calibrated to better match a specific
environment of interest.

Namely, phone cellular modems consume less instanta-
neous power when transmitting and receiving at high sig-
nal strength compared to low signal strength. Schulman
et. al. [29] observed this phenomenon on several differ-
ent cellular devices operating on different cellular proto-
cols. They showed that communication at a poor signal
location can result in a device power draw that is 50%
higher than at a good signal location.

The primary reason for this phenomenon is the
phone’s power amplifier used for transmission which in-
creases its gain as signal strength drops [11]. This effect
also occurs when a phone is only receiving packets. The
reason for this is cellular protocols which require con-
stant transmission of channel quality and acknowledg-
ments to base stations.

3.2 Power usage can reveal location

The following results from driving experiments demon-
strate the potential of leaking location from power mea-
surements.

We first demonstrate that signal strength in each loca-
tion on a drive can be static over the course of several
days. We collected signal strength measurements from
a smartphone once, and again several days later. In Fig-
ure 1 we plot the signal strength observed on these two
drives. In this figure it is apparent that (1) the segments
of the drive where signal strength is high (green) and low
(red) are in the same locations across both days, and (2)
that the progression of signal strength along the drive ap-
pears to be a unique irregular pattern.

Next, we demonstrate that just like signal strength,
power measurements of a smartphone, while it commu-
nicates, can reveal a stable, unique pattern for a partic-
ular drive. Unlike signal strength, power measurements
are less likely to be stable across drives because power
depends on how the cellular modem reacts to changing
signal strength: a small difference in signal strength be-
tween two drives may put the cellular modem in a mode
that has a large difference in power consumption. For ex-
ample, a small difference in signal strength may cause a
phone to hand-off to a different cellular base station and
stay attached to it for some time (Section 3.3).

Figure 2 shows power measurements for two Nexus 4
phones in the same vehicle, transmitting packets over
their cellular link, while driving on the same path. The
power consumption variations of the Nexus 4 phones
are similar, indicating that power measurements can be
mostly stable across devices.

Finally, we demonstrate that power measurements
could be stable across different models of smartphones.
This stability would allow an attacker to obtain a ref-
erence power measurement for a drive without using
the same phone as the victim’s. We recorded power

3

Figure 1: Signal strength profiles measured on two different days are stable.

200 400 600 800 1000 1200 1400 1600 1800

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time [sec]

P
ow

er
 [W

at
t]

Device 1
Device 2

Figure 2: For two phones of the same model, power vari-
ations on the same drive are similar.

200 400 600 800 1000 1200

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time [sec]

N
or

m
al

iz
ed

 p
ow

er

Nexus 4
Nexus5

Figure 3: For two different phone models, power varia-
tions on the same drive are similar.

measurements, while transmitting packets over cellular,
using two different smartphone models (Nexus 4 and
Nexus 5) during the same ride, and we aligned the power
samples, according to absolute time.

The results presented in Figure 3 indicate that there is
similarity between different models that could allow one
model to be used as a reference for another. This ex-
periment serves as a proof of concept: we leave further
evaluation of such an attack scenario, where the attacker
and victim use different phone models, to future work. In
this paper, we assume that the attacker can obtain refer-
ence power measurements using the same phone model
as the victim.

3.3 Hysteresis

A phone attaches to the base station having the strongest
signal. Therefore, one might expect that the base station
to which a phone is attached and the signal strength will
be the same in one location. Nonetheless, it is shown
in [29] that signal strength can be significantly different
at a location based on how the device arrived there, for
example, the direction of arrival. This is due to the hys-
teresis algorithm used to decide when to hand-off to a
new base station. A phone hands-off from its base sta-
tion only when its received signal strength dips below
the signal strength from the next base station by more
than a given threshold [26]. Thus, two phones that reside
in the same location can be attached to two different base
stations.

Hysteresis has two implications for determining a vic-
tim’s location from power measurements: (1) an attacker
can only use the same direction of travel as a reference
power measurement, and (2) it will complicate inferring
new routes from power measurements collected from in-
dividual road segments (Section 6).

3.4 Background summary and challenges

The initial measurements in this section suggest that the
power consumed by the cellular radio is a side chan-

4

nel that leaks information about the location of a smart-
phone. However, there are four significant challenges
that must be overcome to infer location from the power
meter. First, during the pre-measurement phase the at-
tacker may have traveled at a different speed and en-
countered different stops than the target phone. Second,
the attacker will have to identify the target’s power pro-
file from among many pre-collected power profiles along
different routes. Third, once the attacker determines the
target’s path, the exact location of the target on the path
may be ambiguous because of similarities in the path’s
power profile. Finally, the target may travel along a
path that the attacker only partially covered during the
pre-measurement phase: the attacker may have only pre-
collected measurements for a subset of segments in the
target’s route. In the following sections we describe tech-
niques that address each of these challenges and experi-
ment with their accuracy.

4 Route distinguishability

As a warm-up we show how the phone’s power profile
can be used to identify what route the user is taking from
among a small set of possible routes (say, 30 routes). Al-
though we view it as a warm-up, building towards our
main results, route distinguishability is still quite useful.
For example, if the attacker is familiar with the user’s
routine then the attacker can pre-measure all the user’s
normal routes and then repeatedly locate the user among
those routes.

Route distinguishability is a classification problem:
we collected power profiles associated with known
routes and want to classify new samples based on this
training set. We treat each power profile as a time series
which needs to be compared to other time series. A score
is assigned after each comparison, and based on these
scores we select the most likely matching route. Because
different rides along the same route can vary in speed
at different locations along the ride, and because routes
having the same label can vary slightly at certain points
(especially before getting to a highway and after exiting
it), we need to compare profile features that can vary in
time and length and allow for a certain amount of differ-
ence. We also have to compensate for different baselines
in power consumption due to constant components that
depend on the running applications and on differences in
device models.

We use a classification method based on Dynamic
Time Warping (DTW) [23], an algorithm for measur-
ing similarity between temporal sequences that are mis-
aligned and vary in time or speed. We compute the DTW
distance3 between the new power profile and all refer-

3In fact we compute a normalized DTW distance, as we have to

ence profiles associated with known routes, selecting the
known route that yields the minimal distance. More for-
mally, if the reference profiles are given by sequences
{X}n

i=1, and the unclassified profile is given by sequence
Y , we choose the route i such that

i = argmin
i

DTW(Y,Xi)

which is equivalent to 1-NN classification given DTW
metric.

Because the profiles might have different baselines
and variability, we perform the following normalization
for each profile prior to computing the DTW distance:
we calculate the mean and subtract it, and divide the re-
sult by the standard deviation. We also apply some pre-
processing in the form of smoothing the profiles using
a moving average (MA) filter in order to reduce noise
and obtain the general power consumption trend, and we
downsample by a factor of 10 to reduce computational
complexity.

5 Real-time mobile device tracking

In this section we consider the following task: the at-
tacker knows that a mobile user is traveling along a par-
ticular route and our objective is to track the mobile de-
vice as it is moving along the route. We do not assume
a particular starting point along the route, meaning, in
probabilistic terms, that our prior on the initial location
is uniform. The attacker has reference power profiles col-
lected in advance for the target route, and constantly re-
ceives new power measurements from an application in-
stalled on the target phone. Its goal is to locate the device
along the route, and continue tracking it in real-time as it
travels along the route.

5.1 Tracking via Dynamic Time Warping
This approach is similar to that of route distinguishabil-
ity, but we use only the measurements collected up to this
point, which comprise a sub-sequence of the entire route
profile. We use the Subsequence DTW algorithm [23],
rather than the classic DTW, to search a sub-sequence in
a larger sequence, and return a distance measure as well
as the corresponding start and end offsets.

We search for the sequence of measurements we have
accumulated since the beginning of the drive in all our
reference profiles and select the profile that yields the
minimal DTW distance. The location estimate corre-
sponds to the location associated with the end offset re-
turned by the algorithm.

compensate for difference in lengths of different routes - a longer route
might yield larger DTW distance despite being more similar to the
tested sequence.

5

5.2 Improved tracking via a motion model

While the previous approach can make mistakes in loca-
tion estimation due to a match with an incorrect location,
we can further improve the estimation by imposing rules
based on a sensible motion model. We first need to know
when we are “locked” on the target. For this purpose we
define a similarity threshold so that if the minimal DTW
distance is above this threshold, we are in a locked state.
Once we are locked on the target, we perform a simple
sanity check at each iteration: “Has the target displaced
by more than X?”

If the sanity check does not pass we consider the esti-
mate unlikely to be accurate, and simply output the pre-
vious estimate as the new estimated location. If the sim-
ilarity is below the threshold, we switch to an unlocked
state, and stop performing this sanity check until we are
“locked” again. Algorithm 1 presents this logic as pseu-
docode.

Algorithm 1 Improved tracking using a simple motion
model

locked← f alse . Are we locked on the target?
while target moving do

loc[i],score← estimateLocation()
d← getDistance(loc[i], loc[i−1])
if locked and d > MAX DISP then

loc[i]← loc[i−1] . Reuse previous estimate
end if
if score > T HRESHOLD then

locked← true
end if

end while

5.3 Tracking using Optimal Subsequence
Bijection

Optimal Subsequence Bijection (OSB) [17] is a tech-
nique, similar to DTW, that enables aligning two se-
quences. In DTW, we align the query sequence with the
target sequence without skipping elements in the query
sequence, thereby assuming that the query sequence con-
tains no noise. OSB, on the other hand, copes with
noise in both sequences by allowing to skip elements.
A fixed jump-cost is incurred with every skip in either
the query or the target sequence. This extra degree of
freedom has potential for aligning noisy subsequences
more efficiently in our case. In the evaluation section we
present results obtained by using OSB and compare them
to those obtained using DTW.

6 Inference of new routes

In Section 4 we addressed the problem of identifying
the route traversed by the phone, assuming the poten-
tial routes are known in advance. This assumption al-
lowed us to train our algorithm specifically for the po-
tential routes. As previously mentioned, there are indeed
many real-world scenarios where it is applicable. Nev-
ertheless, in this section we set out to tackle a broader
tracking problem, where the future potential routes are
not explicitly known. Here we specifically aim to iden-
tify the final location of the phone after it traversed an
unknown route. We assume that the area in which the
mobile device owner moves is known, however the num-
ber of all possible routes in that area may be too large to
practically pre-record each one. Such an area can be, for
instance, a university campus, a neighborhood, a small
town or a highway network.

We address this problem by pre-recording the power
profiles of all the road segments within the given area.
Each possible route a mobile device may take is a con-
catenation of some subset of these road segments. Given
a power profile of the tracked device, we will reconstruct
the unknown route using the reference power profiles
corresponding to the road segments. The reconstructed
route will enable us to estimate the phone’s final loca-
tion. Note that, due to the hysteresis of hand-offs be-
tween cellular base stations, a power consumption is not
only dependent on the traveled road segment, but also on
the previous road segment the device came from.

In Appendix A we formalize this problem as a hid-
den Markov model (HMM) [27]. In the following we
describe a method to solve the problem using a particle
filter. The performance of the algorithm will be exam-
ined in the next section.

6.1 Particle Filter

A particle filter [1] is a method that estimates the state
of a HMM at each step based on observations up to that
step. The estimation is done using a Monte Carlo approx-
imation where a set of samples (particles) is generated at
each step that approximate the probability distribution of
the states at the corresponding steps. A comprehensive
introduction to particle filters and their relation to gen-
eral state-space models is provided in [28].

We implement the particle filter as follows. We denote
Or =

{
or

xyz
}

, where or
xyz is a power profile prerecorded

over segment (y,z) while the segment (x,y) had been tra-
versed just before it. We use a discrete time resolution
τ = 3 seconds. We denote ∆

yz
min and ∆

yz
max to be the min-

imum and maximum time duration to traverse road seg-
ment (y,z), respectively. We assume these bounds can be
derived from prerecordings of the segments. At each it-

6

eration i we have a sample set of N routes Pi = {(Q,T)}.
The initial set of routes P0 are chosen according to Π. At
each step, we execute the following algorithm:

Algorithm 2 Particle filter for new routes estimation
for all route p in P do

tend← end time of p
(x,y)← last segment of p
z← next intersection to traverse (distributed by A)

Wp← min
t∈[∆yz

min,∆
yz
max]

or
xyz∈Or

xyz

{
DTW(O[tend,tend+t],o

r
xyz)

}
p← p||(y,z)
Update the end time of p

end for
Resample P according to the weights Wp

At each iteration, we append a new segment, chosen
according to the prior A, to each possible route (repre-
sented by a particle). Then, the traversal time of the new
segment is chosen so that it will have a minimal DTW
distance to the respective time interval of the tracked
power profile. We take this minimal distance as the
weight of the new route. After normalizing the weights
of all routes, a resampling phase takes place. N routes
are chosen from the existing set of routes according to
the particle weights distribution4. The new resampled set
of routes is the input to the next iteration of the particle
filter. The total number of iterations should not exceed an
upper bound on the number of segments that the tracked
device can traverse. Note however that a route may ex-
haust the examined power profile before the last iteration
(namely, the end time of that route reached tmax). In such
a case we do not update the route in all subsequent itera-
tions (this case is not described in Algorithm 2 to facili-
tate fluency of exposition).

Before calculating the DTW distance of a pair of
power profiles the profiles are preprocessed to remove
as much noise as possible. We first normalize the power
profile by subtracting its mean and dividing by the stan-
dard deviation of all values included in that profile. Then,
we zero out all power values below a threshold per-
centile. This last step allows us to focus only on the peaks
in power consumption where the radio’s power consump-
tion is dominant while ignoring the lower power values
for which the radio’s power has a lesser effect. The per-
centile threshold we use in this paper is 90%.

Upon its completion, the particle filter outputs a set
of N routes of various lengths. To select the best esti-
mate route the simple approach is to choose the route
that appears the most number of times in the output set

4Note that the resampling of the new routes can have repetitions.
Namely, the same route can be chosen more than one time

as it has the highest probability to occur. Nonetheless,
since a route is composed of multiple segments chosen
at separate steps, at each step the weight of a route is de-
termined solely based on the last segment added to the
route. Therefore, the output route set is biased in favor
of routes ending with segments that were given higher
weights, while the weights of the initial segments have
a diminishing effect on the route distribution with every
new iteration. To counter this bias, we choose another es-
timate route using a procedure we call iterative majority
vote, described is Appendix B.

7 Experiments

7.1 Data collection
Our experiments required collecting real power con-
sumption data from smartphone devices along different
routes. We developed the PowerSpy android applica-
tion5 that collects various measurements including signal
strength, voltage, current, GPS coordinates, temperature,
state of discharge (battery level) and cell identifier. The
recordings were performed using Nexus 4, Nexus 5 and
HTC mobile devices.

7.2 Assumptions and limitations
Exploring the limits of our attack, i.e. establishing the
minimal necessary conditions for it to work, is beyond
our resources. For this reason, we state the assumptions
on which we rely in our methods.

We assume there is enough variability in power con-
sumption along a route to exhibit unique features. Lack
of variability may be due to high density of cellular an-
tennas that flatten the signal strength profile. We also
assume that enough communication is occurring for the
signal strength to have an effect on power consumption.
This is a reasonable assumption, since background syn-
chronization of data happens frequently in smartphone
devices. Moreover, the driver might be using navigation
software or streaming music. However, at this stage, it
is difficult to determine how inconsistent phone usage
across different rides will affect our attacks.

Identifying which route the user took involves under-
standing which power measurements collected from her
mobile device occurred during driving activity. Here
we simply assume that we can identify driving activity.
Other works (e.g., [22]) address this question by using
data from other sensors that require no permissions, such
as gyroscopes and accelerometers.

Some events that occur while driving, such as an in-
coming phone call, can have a significant effect on power

5Source code can be obtained from
https://bitbucket.org/ymcrcat/powerspy.

7

50 100 150 200

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time [sec]

P
ow

er
 [W

at
t]

Figure 4: Power profile with a phone call occurring be-
tween 50-90 seconds. Profile region during phone call is
marked in red.

consumption. Figure 4 shows the power profile of a
device at rest when a phone call takes place (the part
marked in red). The peak immediately after the phone
call is caused by using the phone to terminate the phone
call and turn off the display. We can see that this event
appears prominently in the power profile and can cope
with such transient effects by identifying and truncating
peaks that stand out in the profile. In addition, smooth-
ing the profile by a moving average should mitigate these
transient effects.

7.3 Route distinguishability
To evaluate the algorithm for distinguishing routes (sec-
tion 4) we recorded reference profiles for multiple differ-
ent routes. The profiles include measurements from both
Nexus 4 and Nexus 5 models. In total we had a dataset
of 294 profiles, representing 36 unique routes. Driving
in different directions along the same roads (from point
A to B vs. from point B to A) is considered two differ-
ent routes. We perform cross validation using multiple
iterations (100 iterations), each time using a random por-
tion of the profiles as a training set, and requiring equal
number of samples for each possible class. The sizes of
the training and test sets depend on how many reference
routes per profile we require each time. Naturally, the
more reference profiles we have, the higher the identifi-
cation rate.

One evaluation round included 29 unique routes, with
only 1 reference profile per route in the training set, and
211 test routes. It resulted in correct identification rate
of 40%. That is compared to the random guess prob-
ability of only 3%. Another round included 25 unique
routes, with 2 reference profiles per route in the training
set and 182 routes in the test set, and resulted in cor-
rect identification rate of 53% (compared to the random
guess probability of only 4%). Having 5 reference pro-
files per route (for 17 unique routes) raises the identifi-

cation rate to 71%, compared to the random guess prob-
ability of 5.8%. And finally, for 8 reference profiles per
route we get 85% correct identification. The results are
summarized in table 1.

We can see that an attacker can have a significant ad-
vantage in guessing the route taken by a user.

7.4 Real-time mobile device tracking

We evaluate the algorithm for real-time mobile device
tracking (section 5) using a set of 10 training profiles
and an additional test profile. The evaluation simulates
the conditions of real-time tracking by serially feeding
samples to the algorithm as if they are received from an
application installed on the device. We calculate the esti-
mation error, i.e. the distance between the estimated co-
ordinates and the true location of the mobile device at
each step of the simulation. We are interested in the con-
vergence time, i.e. the number of samples it takes until
the location estimate is close enough to the true loca-
tion, as well as in the distribution of the estimation errors
given by a histogram of the absolute values of the dis-
tances.

Figure 5 illustrates the performance of our tracking al-
gorithm for one of the routes, which was about 19 kilo-
meters long. At the beginning, when there are very few
power samples, the location estimation is extremely inac-
curate, but after two minutes we lock on the true location.
We obtained a precise estimate from 2 minutes up until
20 minutes on the route, where our estimate slightly di-
verges, due to increased velocity on a freeway segment.
Around 26 minutes (in figure 5a) we have a large esti-
mation error, but as we mentioned earlier, these kind of
errors are easy to prevent by imposing a simple motion
model (section 5.2). Most of the errors are small com-
pared to the length of the route: 80% of the estimation
errors are less than 1 km.

We also tested the improved tracking algorithm ex-
plained in section 5.2. Figure 5b presents the estimation
error over time, and we can see that the big errors towards
the end of the route that appeared in 5a are not present in
fig. 5b. Moreover, now almost 90% of the estimation er-
rors are below 1 km (fig. 6).

We provide animations visualizing our results for real-
time tracking at the following links. The animations,
generated using our estimations of the target’s location,
depict a moving target along the route and our estimation
of its location. The first one corresponds to the method
described in 5.1, and the second to the one described in
5.2 that uses the motion model based correction:
crypto.stanford.edu/powerspy/tracking1.mov

crypto.stanford.edu/powerspy/tracking2.mov

8

Unique Routes # Ref. Profiles/Route # Test Routes Correct Identification % Random Guess %
8 10 55 85 13

17 5 119 71 6
17 4 136 68 6
21 3 157 61 5
25 2 182 53 4
29 1 211 40 3

Table 1: Route distinguishability evaluation results. First column indicates the number of unique routes in the training
set. Second column indicates the number of training samples per route at the attacker’s disposal. Number of test routes
indicates the number of power profiles the attacker is trying to classify. Correct identification percentage indicates the
percentage of correctly identified routes as a fraction of the third column (test set size), which could be then compared
to the expected success of random guessing in the last column.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [sec]

0

2000

4000

6000

8000

10000

12000

14000

16000

E
rr

or
 [m

et
er

s]

(a) Convergence to true location.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [sec]

0

2000

4000

6000

8000

10000

12000

14000

16000

E
rr

or
 [m

et
er

s]

(b) Location estimation error for improved tracking
algorithm.

Figure 5: Location estimation error for online tracking.

0 2000 4000 6000 8000 10000 12000 14000 16000

Error [meters]

0

100

200

300

400

500

600

700

800

E
rr

or
 C

ou
nt

(a) Errors histogram. Almost 90% of the errors are
less than 1 km.

0 500 1000 1500 2000 2500 3000 3500 4000

Error [meters]

0.0

0.2

0.4

0.6

0.8

1.0

(b) Error cumulative distribution.

Figure 6: Estimation errors distribution for motion-model tracking.

9

0 500 1000 1500 2000

Time [sec]

0

500

1000

1500

2000

2500

3000

3500

E
rr

or
 [m

et
er

s]

DTW
OSB

0 200 400 600 800 1000 1200 1400 1600

Time [sec]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
rr

or
 [m

et
er

s]

DTW
OSB

Figure 7: Comparison of DTW and OSB for real-time
tracking.

7.4.1 OSB vs. DTW

We compare the performance of Dynamic Time Warping
to that of Optimal Subsequence Bijection (section 5.3).
Figure 7 present such a comparison for the same route,
using two different recordings. The tracking was per-
formed without compensating for errors using a motion
model, to evaluate the performance of the subsequence
matching algorithms as they are. We can see that, in both
cases, Optimal Subsequence Bijection outperforms the
standard Subsequence-DTW most of the time. There-
fore, we suggest that further experimentation with OSB
could potentially be beneficial for this task.

7.5 Inference of new routes
7.5.1 Setup

For the evaluation of the particle filter presented in Sec-
tion 6 we considered an area depicted in Figure 8. The
area has 13 intersections having 35 road segments6. The
average length of a road segment is about 400 meters.
The average travel time over the segments is around 70
seconds. The area is located in the center of Haifa, a city
located in northern Israel, having a population density
comparable to Philadelphia or Miami. Traffic conges-
tion in this area varies across segments and time of day.
For each power recording, the track traversed at least one

6Three of the segments are one way streets.

Figure 8: Map of area and intersections for route infer-
ence.

congested segment. Most of the 13 intersections have
traffic lights, and about a quarter of the road segments
pass through them.

We had three pre-recording sessions which in total
covered all segments. Each road segment was entered
from every possible direction to account for the hystere-
sis effects. The pre-recording sessions were done using
the same Nexus 4 phone.

We set the following parameters of the HMM (as they
are defined in Appendix A):

1. A – This set defines the transition probabil-
ities between the road segments. We set
these probabilities to be uniformly distributed
over all possible transitions. Namely, axyz ={

1/|Iy| |Iy = {w|(y,w) ∈ R,w 6= x}
}

.

2. B – This set defines the distribution of power pro-
file observations over each state. These probabili-
ties depend on the road segments and their location
relative to the nearby based stations. We do not need
an explicit formulation of these probabilities to em-
ploy the particle filter. The likelihood of a a power
profile to be associated with a road segment is esti-
mated by the DTW distance of the power profile to
prerecorded power profiles of that segment.

3. Π – This set defines the initial state distribution.
We assume that the starting intersection of the
tracked device is known. This applies to scenar-
ios where the tracking begins from well-known lo-
cations, such as the user’s home, office, or another
location the attacker knows in advance.

For testing, we used 4 phones: two Nexus 4 (differ-
ent from the one used for the pre-recordings), a Nexus 5

10

Phone Track
Nexus 4 #1 8-5-6-7-1-2-3-4-5-6-4-3-2-1-7-8
Nexus 4 #2 7-1-2-3-4-5-8-7-6-5-4-2-1-7-8

Nexus 5 3-2-4-9-10-12-11-9-4-5-6-4-3-2-1-7-6-5-8-7
HTC Desire 10-12-11-9-4-2-1-7-6-5-8

Table 2: Test Routes

and an HTC Desire. Each phone was used to record
the power profile of a different route. The four routes
combined cover almost all of the road segments in the
area. Table 2 details the routes by their corresponding
sequences of intersection identifiers. These route record-
ings were done on different days, different time of day
and varying weather conditions.

As noted, we can only measure the aggregate power
consumption which can be significantly affected by ap-
plications that run continuously. To have a better sense
of the effects of these applications the phones were
run with different number of background applications.
Nexus 4 #1, Nexus 5 and HTC Desire have a relatively
modest number of applications which included (beyond
the default Android apps): Email (corporate account),
Gmail, and Google Calender. Nexus 4 #2 has a much
higher number of application which included on top of
the applications of phone #1: Facebook, Twitter, Skype,
Waze, and WhatsApp. All those applications periodi-
cally send and receive traffic.

For each of the four tracks we derived all possible sub-
tracks having 3 to 7 road segments. We estimated each
such sub-track. In total we estimated around 200 sub-
tracks. For each sub-track we employed Algorithms 2
and 3 to get two best estimates for the sub-track.

Tables 3 to 5 summarize the results of route estimation
for each of the four phones. For each route we have two
alternatives for picking an estimate (1) the most frequent
route in the particle set as output by Algorithm 2; (2)
the route output by Algorithm 3. For each alternative we
note the road segment in which the phone is estimated to
be after the completion of its track and compare it with
the final road segment of the true route. This allows us to
measure the accuracy of the algorithm for estimating the
location of the user’s destination (the end of the track).
This is the most important metric for many attack sce-
narios where the attacker wishes to learn the destination
of the victim.

In some cases it may also be beneficial for the attacker
to know the actual route through which the victim tra-
versed on his way to the destination. For this purpose,
we also calculate for each alternative estimate the Leven-
shtein distance between it and the true route. The Leven-
shtein distance is a standard metric for measuring the dif-
ference between two sequences [18]. It equals the mini-
mum number of updates required in order to change one

random frequent Alg. 3 combined
Nexus 4 #1 33% 65% 48% 80%
Nexus 4 #2 31% 48% 56% 72%

Nexus 5 20% 33% 32% 55%
HTC Desire 22% 40% 41% 65%

Table 3: Destination localization

sequence to the next. In this context, we treat a route as
a sequence of intersections. The distance is normalized
by the length of the longer route of the two. This allows
us to measure the accuracy of the algorithm for estimat-
ing the full track the user traversed. For each estimate
we also note whether it is an exact fit with the true route
(i.e., zero distance). The percentage of successful local-
ization of destination, average Levenshtein distance and
percentage of exact full route fits are calculated for each
type of estimated route. We also calculate these metrics
for both estimates combined while taking into account
for each track the best of the two estimates. To bench-
mark the results we note in each table the performance
of a random estimation algorithm which simply outputs
a random, albeit feasible, route.

The results in Table 3 show the accuracy of destination
identification. It is evident that the performance of the
most frequent route output by the particle filter is com-
parable to the performance of the best estimate output by
Algorithm 3. However, their combined performance is
significantly better than either estimates alone and pre-
dict more accurately the final destination of the phone.
This result suggests that Algorithm 3 extracts significant
amount of information from the routes output by the par-
ticle filter beyond the information gleaned from the most
frequent route.

Table 3 indicates that for Nexus 4 #1 the combined
route estimates were able to identify the final road seg-
ment for 80% of all scenarios. For Nexus 4 #2 which was
running many applications the final destination estimates
are somewhat less accurate (72%). This is attributed to
the more noisy measurements of the aggregate power
consumption. The accuracy for the two models – Nexus
5 and HTC Desire – is lower than the accuracy achieved
for Nexus 4. Remember that all our pre-recordings were
done using a Nexus 4. These results may indicate that the
power consumption profile of the cellular radio is depen-
dent on the phone’s model. Nonetheless, for both phones
we achieve significantly higher accuracy of destination
localization (55% and 65%) as compared to the random
case (about 20%).

Tables 4 and 5 present measures – Levenshtein dis-
tance and exact full route fit – of the accuracy of esti-
mates for the full route the phone took to its destination.
Here, again, the algorithm presented for Nexus 4 #1 su-
perior performance. It was able to exactly estimate 45%

11

random frequent Alg. 3 combined
Nexus 4 #1 0.61 0.38 0.27 0.24
Nexus 4 #2 0.63 0.61 0.59 0.52

Nexus 5 0.68 0.6 0.55 0.45
HTC Desire 0.65 0.59 0.5 0.45

Table 4: Levenshtein distance
random frequent Alg. 3 combined

Nexus 4 #1 4% 38% 22% 45%
Nexus 4 #2 5% 8.5% 5% 15%

Nexus 5 3% 15% 9% 20%
HTC Desire 5% 10% 12% 17%

Table 5: Exact full route fit

of the full route to the destination. On the other hand, for
the more busy Nexus 4 #2 and the other model phones
the performance was worse. It is evident from the re-
sults that for these three phones the algorithm had diffi-
culties producing an accurate estimate of the full route.
Nonetheless, in all cases the accuracy is always markedly
higher than that of the random case.

To have a better sense of the distance metric used
to evaluate the quality of the estimated routes Figure 9
depicts three cases of estimation errors and their corre-
sponding distance values in increasing order. It can be
seen that even estimation error having relatively high dis-
tances can have a significant amount of information re-
garding the true route.

8 Future directions

In this section we discuss ideas for further research, im-
provements, and additions to our method.

8.1 Power consumption inference

While new (yet very common) smartphone models con-
tain an internal ampere-meter and provide access to cur-
rent data, other models (for instance Galaxy S III) sup-
ply voltage but not current measurements. Therefore on
these models we cannot directly calculate the power con-
sumption. V-edge [31] proposes using voltage dynamics
to model a mobile device’s power consumption. That and
any other similar technique would extend our method
and make it applicable to additional smartphone models.

Ref. [33] presents PowerTutor, an application that es-
timates power consumption by different components of
the smartphone device based on voltage and state of dis-
charge measurements. Isolating the power consumed
by the cellular connectivity will improve our method by
eliminating the noise introduced by other components
such as audio/Bluetooth/WiFi etc. that do not directly
depend on the route.

8.2 State of Discharge (SOD)

The time derivative of the State-of-Discharge (the bat-
tery level) is basically a very coarse indicator of power
consumption. While it seemed to be too inaccurate for
our purpose, there is a chance that extracting better fea-
tures from it or having few possible routes may ren-
der distinguishing routes based on SOD profiles feasi-
ble. Putting it to the test is even more interesting given
the HTML 5 Battery API that enables obtaining certain
battery statistics from a web-page via JavaScript. Our
findings demonstrate how future increases in the sam-
pling resolution of the battery stats may turn this API
even more dangerous, allowing web-based attacks.

8.3 Choice of reference routes

Successful classification depends among other factors
on good matching between the power profile we want
to classify and the reference power profiles. Optimal
matching might be a matter of month, time of day, traffic
on the road, and more. We can possibly improve our clas-
sification if we tag the reference profiles with those asso-
ciated conditions and select reference profiles matching
the current conditions when trying to distinguish a route.
That of course requires collecting many more reference
profiles.

8.4 Collecting a massive dataset

Collecting a massive dataset of power profiles associated
with GPS coordinates is a feasible task given vendors’
capability to legally collect analytics about users’ use of
their smartphones. Obtaining such big dataset will en-
able us to better understand how well our approach can
scale and whether it can be used with much less prior
knowledge about the users.

9 Defenses

9.1 Non-defenses

One might think that by adding noise or limiting the sam-
pling rate or the resolution of the voltage and current
measurements one could protect location privacy. How-
ever, our method does not rely on high sampling fre-
quency or resolution. In fact, our method works well
with profiles much coarser than what we can directly get
from the raw power data, and for the route distinguish-
ing task we actually performed smoothing and downsam-
pling of the data yet obtained good results. Our method
also works well with signal strength, which is provided

12

2

1

5

8

4

6

3

7

(a) Distance = 0.125

5

8

6

7

2

1

2

1

8

6

7

(b) Distance = 0.25

2

1

5

8

4

6

3

7

(c) Distance = 0.43
Figure 9: Examples of estimation errors and their corresponding distances (partial map is depicted). The true route is
green and the estimated route is red.

with much lower resolution and sampling frequency7.

9.2 Risky combination of power data and
network access

One way of reporting voltage and current measurements
to the attacker is via a network connection to the at-
tacker’s server. Warning the user of this risky combi-
nation may somewhat raise the bar for this attack. There
are of course other ways to leak this information. For
instance, a malicious application disguised as a diagnos-
tic software can access power data and log it to a file,
without attempting to make a network connection, while
another, seemingly unrelated, application reads the data
from that file and sends it over the network.

9.3 Secure hardware design
The problem with access to total power consumption is
that it leaks the power consumed by the transceiver cir-
cuitry and communication related tasks that indicate sig-
nal strength. While power measurements can be useful
for profiling applications, in many cases, examining the
power consumed by the processors executing the soft-
ware logic might be enough. We therefore suggest that
supplying only measurements of the power consumed by
the processors (excluding the power consumed by the
TX/RX chain) could be a reasonable trade-off between
functionality and privacy.

9.4 Requiring superuser privileges
A simple yet effective prevention may be requiring su-
peruser privileges (or being root) to access power supply
data on the phone. Thus, developers and power-users
can install diagnostic software or run a version of their

7In fact, since it reflects more directly the environmental conditions,
signal strength data can provide even better route identification and
tracking. We did not focus on signal strength since accessing it re-
quires access permissions and has already drawn research attention to
it as useful for localization.

application that collects power data on a rooted phone,
whereas the release version of the software excludes this
functionality. This would of course prevent the collection
of anonymous performance statistics from the install-
base, but as we have shown, such data can indicate much
more than performance.

9.5 Power consumption as a coarse loca-
tion indicator

Same as the cell identifier is defined as a coarse location
indicator, and requires appropriate permissions to be ac-
cessed, power consumption data can also be defined as
one. The user will then be aware, when installing ap-
plications that access voltage and current data, of the
application’s potential capabilities, and the risk poten-
tially posed to her privacy. This defense may actually
be the most consistent with the current security policies
of smartphone operating systems like Android and iOS,
and their current permission schemes.

10 Related work

Power analysis is known to be a powerful side-channel.
The most well-known example is the use of high sam-
ple rate (∼20 MHz) power traces from externally con-
nected power monitors to recover private encryption keys
from a cryptographic system [15]. Prior work has also
established the relationship between signal strength and
power consumption in smartphones [6,29]. Further, Bar-
tendr [29] demonstrated that paths of signal strength
measurements are stable across several drives.

PowerSpy combines these insights on power analy-
sis and improving smartphone energy efficiency to re-
veal a new privacy attack. Specifically, we demonstrate
that an attacker can determine a user’s location simply by
monitoring the cellular modem’s changes in power con-
sumption with the smartphone’s alarmingly unprotected
∼100 Hz internal power monitor.

13

10.1 Many sensors can leak location

Prior work has demonstrated that data from cellular
modems can be used to localize a mobile device (an ex-
tensive overview appears in Gentile et al. [10]). Similar
to PowerSpy, these works fingerprint the area of interest
with pre-recorded radio maps. Others use signal strength
to calculate distances to base stations at known loca-
tions. All of these methods [16, 24, 25, 30] require sig-
nal strength measurements and base station ID or WiFi
network name (SSID), which is now protected on An-
droid and iOS. Our work does not rely on the signal
strength, cell ID, or SSID. PowerSpy only requires ac-
cess to power measurements, which are currently unpro-
tected on Android.

PowerSpy builds on a large body of work that has
shown how a variety of unprotected sensors can leak lo-
cation information. Zhou et al. [34] reveal that audio
on/off status is a side-channel for location tracking with-
out permissions. In particular, they extract a sequence
of intervals where audio is on and off while driving in-
structions are being played by Google’s navigation ap-
plication. By comparing these intervals with reference
sequences, the authors were able to identify routes taken
by the user. SurroundSense [3] demonstrates that ambi-
ent sound and light can be used for mobile phone local-
ization. They focus on legitimate use-cases, but the same
methods could be leveraged for breaching privacy. AC-
Complice [12] demonstrates how continuous measure-
ments from unprotected accelerometers in smartphones
can reveal a user’s location. Hua et al. [13] extend AC-
Complice by showing that accelerometers can also reveal
where a user is located in a metropolitan train system.

10.2 Other private information leaked
from smartphone sensors

An emerging line of work shows that various phone sen-
sors can leak private information other than location. In
future work we will continue analyzing power measure-
ments to determine if other private information is leaked.

Prior work has demonstrated how smartphone sensors
can be used to fingerprint specific devices. AccelPrint [9]
shows that smartphones can be fingerprinted by tracking
imperfections in their accelerometer measurements. Fin-
gerprinting of mobile devices by the characteristics of
their loudspeakers is proposed in [7, 8]. Further, Boji-
nov et. al. [4] showed that various sensors in smart-
phones can be used to identify a mobile device by its
unique hardware characteristics. Lukas et. al. [20] pro-
posed a method for digital camera fingerprinting by noise
patterns present in the images. [19] enhances the method
enabling identification of not only the model but also par-
ticular cameras.

Sensors can also reveal a user’s input such as speech
and touch gestures. The Gyrophone study [21] showed
that gyroscopes on smartphones can be used for eaves-
dropping on a conversation in the vicinity of the phone
and identifying the speakers. Several works [2, 5, 32]
have shown that the accelerometer and gyroscope can
leak information about touch and swipe inputs to a fore-
ground application.

11 Conclusion

PowerSpy shows that applications with access to a smart-
phone’s power monitor can gain information about the
location of a mobile device – without accessing the GPS
or any other coarse location indicators. Our approach
enables known route identification, real-time tracking,
and identification of a new route by only analyzing the
phone’s power consumption. We evaluated PowerSpy on
real-world data collected from popular smartphones that
have a significant mobile market share, and demonstrated
their effectiveness. We believe that with more data, our
approach can be made more accurate and reveal more in-
formation about the phone’s location.

Our work is an example of the unintended conse-
quences that result from giving 3rd party applications ac-
cess to sensors. It suggests that even seemingly benign
sensors need to be protected by permissions, or at the
very least, that more security modeling needs to be done
before giving 3rd party applications access to sensors.

Acknowledgments

We would like to thank Gil Shotan and Yoav Shecht-
man for helping to collect the data used for evaluation,
Prof. Mykel J. Kochenderfer from Stanford University
for providing advice regarding location tracking tech-
niques, Roy Frostig for providing advice regarding clas-
sification and inference on graphs, and finally Katharina
Roesler for proofreading the paper. This work was sup-
ported by NSF and the DARPA SAFER program. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of NSF or DARPA.

References
[1] ARULAMPALAM, M. S., MASKELL, S., GORDON, N., AND

CLAPP, T. A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. Signal Processing, IEEE Transac-
tions on 50, 2 (2002), 174–188.

[2] AVIV, A. J., SAPP, B., BLAZE, M., AND SMITH, J. M. Practi-
cality of accelerometer side channels on smartphones. In Pro-
ceedings of the 28th Annual Computer Security Applications
Conference (2012), ACM, pp. 41–50.

14

[3] AZIZYAN, M., CONSTANDACHE, I., AND ROY CHOUDHURY,
R. Surroundsense: mobile phone localization via ambience fin-
gerprinting. In Proceedings of the 15th annual international
conference on Mobile computing and networking (2009), ACM,
pp. 261–272.

[4] BOJINOV, H., MICHALEVSKY, Y., NAKIBLY, G., AND BONEH,
D. Mobile device identification via sensor fingerprinting. arXiv
preprint arXiv:1408.1416 (2014).

[5] CAI, L., AND CHEN, H. Touchlogger: Inferring keystrokes on
touch screen from smartphone motion. In Usenix HotSec (2011).

[6] CARROLL, A., AND HEISER, G. An analysis of power consump-
tion in a smartphone. In USENIX Annual Technical Conference
(2010).

[7] CLARKSON, W. B., AND FELTEN, E. W. Breaking assump-
tions: distinguishing between seemingly identical items using
cheap sensors. Tech. rep., Princeton University, 2012.

[8] DAS, A., AND BORISOV, N. Poster: Fingerprinting smartphones
through speaker. In Poster at the IEEE Security and Privacy Sym-
posium (2014).

[9] DEY, S., ROY, N., XU, W., CHOUDHURY, R. R., AND
NELAKUDITI, S. Accelprint: Imperfections of accelerometers
make smartphones trackable. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2014).

[10] GENTILE, C., ALSINDI, N., RAULEFS, R., AND TEOLIS, C.
Geolocation Techniques. Springer New York, New York, NY,
2013.

[11] GOLDSMITH, A. Wireless communications. Cambridge univer-
sity press, 2005.

[12] HAN, J., OWUSU, E., NGUYEN, L. T., PERRIG, A., AND
ZHANG, J. ACComplice: Location inference using accelerom-
eters on smartphones. In Proceedings of the 2012 International
Conference on COMmunication Systems & NETworkS (2012).

[13] HUA, J., SHEN, Z., AND ZHONG, S. We can track you if you
take the metro: Tracking metro riders using accelerometers on
smartphones. arXiv:1505.05958 (2015).

[14] HUANG, J., QIAN, F., GERBER, A., MAO, Z. M., SEN, S.,
AND SPATSCHECK, O. A close examination of performance and
power characteristics of 4G LTE networks. In MobiSys (2012).

[15] KOCHER, P., JAFFE, J., AND JUN, B. Differential power analy-
sis. In Advances in Cryptology – CRYPTO’99 (1999), Springer,
pp. 388–397.

[16] KRUMM, J., AND HORVITZ, E. Locadio: Inferring motion and
location from wi-fi signal strengths. In MobiQuitous (2004),
pp. 4–13.

[17] LATECKI, L., WANG, Q., KOKNAR-TEZEL, S., AND MEGA-
LOOIKONOMOU, V. Optimal subsequence bijection. In Data
Mining, 2007. ICDM 2007. Seventh IEEE International Confer-
ence on (Oct 2007), pp. 565–570.

[18] LEVENSHTEIN, V. I. Binary codes capable of correcting dele-
tions, insertions and reversals. In Soviet physics doklady (1966),
vol. 10, p. 707.

[19] LI, C.-T. Source camera identification using enhanced sensor
pattern noise. Information Forensics and Security, IEEE Trans-
actions on 5, 2 (2010), 280–287.

[20] LUKAS, J., FRIDRICH, J., AND GOLJAN, M. Digital camera
identification from sensor pattern noise. Information Forensics
and Security, IEEE Transactions on 1, 2 (2006), 205–214.

[21] MICHALEVSKY, Y., BONEH, D., AND NAKIBLY, G. Gyro-
phone: Recognizing speech from gyroscope signals. In Proc.
23rd USENIX Security Symposium (SEC14), USENIX Associa-
tion (2014).

[22] MOHAN, P., PADMANABHAN, V. N. V., AND RAMJEE, R. Ner-
icell: rich monitoring of road and traffic conditions using mobile
smartphones. In . . . of the 6th ACM conference on . . . (New York,
New York, USA, Nov. 2008), ACM Press, p. 323.

[23] MÜLLER, M. Information Retrieval for Music and Motion.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[24] MUTHUKRISHNAN, K., VAN DER ZWAAG, B. J., AND
HAVINGA, P. Inferring motion and location using WLAN RSSI.
In Mobile Entity Localization and Tracking in GPS-less Environ-
nments. Springer, 2009, pp. 163–182.

[25] OUYANG, R. W., WONG, A.-S., LEA, C.-T., AND ZHANG,
V. Y. Received signal strength-based wireless localization via
semidefinite programming. In Global Telecommunications Con-
ference, 2009. GLOBECOM 2009. IEEE (2009), IEEE, pp. 1–6.

[26] POLLINI, G. P. Trends in handover design. Communications
Magazine, IEEE 34, 3 (1996), 82–90.

[27] RABINER, L. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE
(1989).

[28] RISTIC, B., ARULAMPALAM, S., AND GORDON, N. Beyond
the kalman filter. IEEE AEROSPACE AND ELECTRONIC SYS-
TEMS MAGAZINE 19, 7 (2004), 37–38.

[29] SCHULMAN, A., SPRING, N., NAVDA, V., RAMJEE, R., DESH-
PANDE, P., GRUNEWALD, C., PADMANABHAN, V. N., AND
JAIN, K. Bartendr: a practical approach to energy-aware cellular
data scheduling. MOBICOM (2010).

[30] SOHN, T., VARSHAVSKY, A., LAMARCA, A., CHEN, M. Y.,
CHOUDHURY, T., SMITH, I., CONSOLVO, S., HIGHTOWER, J.,
GRISWOLD, W. G., AND DE LARA, E. Mobility detection using
everyday gsm traces. In UbiComp 2006: Ubiquitous Computing.
Springer, 2006, pp. 212–224.

[31] XU, F., LIU, Y., LI, Q., AND ZHANG, Y. V-edge: fast self-
constructive power modeling of smartphones based on battery
voltage dynamics. Presented as part of the 10th USENIX . . .
(2013).

[32] XU, Z., BAI, K., AND ZHU, S. Taplogger: Inferring user inputs
on smartphone touchscreens using on-board motion sensors. In
Proceedings of the fifth ACM conference on Security and Privacy
in Wireless and Mobile Networks (2012), ACM, pp. 113–124.

[33] ZHANG, L., TIWANA, B., QIAN, Z., AND WANG, Z. Accurate
online power estimation and automatic battery behavior based
power model generation for smartphones. Proceedings of the . . .
(2010).

[34] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: inferring your secrets from android
public resources. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security - CCS ’13
(2013), pp. 1017–1028.

A Formal model of new route inference

In this section we formalize the problem of the new route
inference (Section 6) as a hidden Markov model (HMM)
[27]. Let I denote the set of intersections in an area in
which we wish to track a mobile device. A road segment
is given by an ordered pair of intersections (x,y), defined
to be a continuous road between intersection x and inter-
section y. We denote the set of road segments as R.

15

We assume that once a device starts to traverse a road
segment it does not change the direction of its movement
until it reaches the end of the segment. We define a state
for each road segment. We say that the tracked device
is in state sxy if the device is currently traversing a road
segment (x,y), where x,y ∈ I. We denote the route of the
tracked device as a (Q,T), where

Q =
{

q1 = sx1x2 ,q2 = sx2x3 , ...
}

T = {t1, t2, ...}

For such a route the device has traversed from xi to
xi+1 during time interval [ti−1, ti] (t0 = 0, ti−1 < ti ∀i > 0).

Let A =
{

axyz|∀x,y,z ∈ I
}

be the state transition prob-
ability distribution, where

axyz = p
{

qi+1 = syz|qi = sxy
}

(1)

Note that axyz = 0 if there is no road between intersec-
tions x and y or no road between intersections y and z.
A traversal of the device over a road segment yields a
power consumption profile of length equal to the dura-
tion of that movement. We denote a power consumption
profile as an observation o. Let B be the probability dis-
tribution of yielding a given power profile while the de-
vice traversed a given segment. Due to the hysteresis of
hand-offs between cellular base stations, this probability
depends on the previous segment the device traversed.
Finally, let Π =

{
πxy

}
be the initial state distribution,

where πxy is the probability that the device initially tra-
versed segment (x,y). If there is no road segment be-
tween intersections x and y, then πxy = 0. In our model
we treat this initial state as the state of the device before
the start of the observed power profile. We need to take
this state into account due to the hysteresis effect. Note
that an HMM is characterized by A, B, and Π.

The route inference problem is defined as follows.
Given an observation of a power profile O over time in-
terval [0, tmax], and given a model A, B and Π, we need
to find a route (Q,T) such that p{(Q,T)|O} is maxi-
mized. In the following we denote the part of O which
begins at time t ′ and ends at time t ′′ by O[t ′,t ′′]. Note that
O = O[0,tmax]. We consider the time interval [0, tmax] as
having a discrete resolution of τ .

B Choosing the best inferred route

Upon its completion, the particle filter described in sec-
tion 6.1 outputs a set of N routes of various lengths. We
denote this set by Pfinal. This set exhibits an estimate
of the distribution of routes given the power profile of
the tracked device. The simple approach to select the
best estimate is to choose the route that appears most fre-
quently in Pfinal as it has the highest probability to occur.
Nonetheless, since a route is composed of multiple seg-
ments chosen at separate steps, at each step the weight

of a route is determined solely based on the last segment
added to the route. Therefore, in Pfinal there is a bias
in favor of routes ending with segments that were given
higher weights, while the weights of the initial segments
have a diminishing effect on the route distribution with
every new iteration.

To counter this bias, we choose another estimate using
a procedure we call iterative majority vote. This proce-
dure ranks the routes based on the prevalence of their pre-
fixes. At each iteration i the procedure calculates – Pre-
fix[i] – a list of prefixes of length i ranked by their preva-
lence out of the all routes that has a prefix in Prefix[i-1].
Prefix[i][n] denotes the prefix of rank n. The operation
p|| j – where p is a route and j is an intersection – denotes
the appending of j to p. At each iteration i algorithm 3 is
executed. In the following we denote RoutePrefixed(R,
p) to be the subset of routes out of the set R having p as
their prefix.

Algorithm 3 Iterative majority vote
I′← I
while not all prefixes found do

Prf← next prefix from Prefix[i].
Find j ∈ I′ that maximizes

RoutePrefixed(RoutePrefixed(Pfinal,Prf),Prf|| j)
if no such j is found then

I′ = I
continue loop

end if
Prefix[i+1]← Prefix[i+1]∪{Prf|| j}
I′ = I′−{ j}

end while

At each iteration i we rank the prefixes based on the
ranks of the previous iteration. Namely, prefixes which
are extensions of a shorter prefix having a higher rank in
a previous iteration will always get higher ranking over
prefixes which are extensions of a lower rank prefix. At
each iteration the we first find the most common prefixes
of length i+ 1, which start with the most common pre-
fix of length i found in the previous iteration, and rank
them according to their prevalence. Then we look for
common prefixes of length i+ 1, that start with the sec-
ond most common prefix of length i found in the previ-
ous iteration, and so on until all prefixes of length i+ 1
are found. The intuition is as follows. The procedure
prefers routes traversing segments that are commonly
traversed by other routes. Those received a high score
when were chosen. Since we cannot pick the most com-
mon segments separately from each step (a continuous
route probably will not emerge), we iteratively pick the
most common segment out of the routes that are prefixed
with the segments that were already chosen.

16

