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The power of indecision

A code book taking you through a small Python Full Stack journey

0. Introduction

The goal of this book is to take you through the journey that I, author of this book, followed.
This journey, despite being initially guided by my indecision, led to a drastic improvement in
my programming skills and an increase in my value as a developer. The point of this book is for
you to be able to replicate the process on your own use case, which you are free to define
according to your own centers of interest or to your latest concerns. If you go through the
following pages, you will learn how to create a Car Price Prediction Web-Application serving the
results of a Machine-Learning model using the following frameworks:

e Python:

o Environment control: Conda, Pip

o Quality control: Mypy, Flake8, Black

o Web crawling/scraping: Selenium

o General data science: Pandas, LightGBM, Scikit-learn

o Web-Applications: Quart (similar to Sanic, Flask, Django, etc.)
¢ DevOps:

o App containerization: Docker

o Deployment: Docker-compose

In 2018, I was looking to buy a second hand car. My professional life had just started, my
student loan was still to be paid back, and I had always heard that buying a brand-new car was
the worst possible investment, as the vehicle loses 10 to 30% of its wvalue from the first
kilometer traveled. My quest for the best possible deal had already lasted several weeks, and
where I started with a precise idea of the car I wanted to acquire, I was later standing
completely crushed under my own indecision. Too many brands, too many models, to many prices,
and way too many offers. I started to feel a lack of knowledge on my end. So many variables were
to be considered that I was never able to asses whether a price was fair or not. The more lost I
was, the more obsessed I became with the idea of making the best possible choice.

Luckily enough, I had already been introduced to the wonders of Data Science, Web Scraping,
Machine Learning and DevOps. And it is faced with the idea of spending a new weekend of active
but fruitless research that I decided to solve my problem in a slightly overkill way. In this
book, I won’t describe the exact development process I followed. Instead, I’11 tell you how
things should have been done in the first place to avoid some snags I encountered along the way.
On this note, step zero should have been to clearly express the problem I was attempting to
solve. From now on, this is the problematic we’re are trying to solve:

How to make sure the price of a second hand car is fair?
1. Working with data

1.0 Scoping the need

Answering this question in a structured way requires a lot of data. But after several weeks of
intensive research on countless websites, the basic variables needed to describe a car are quite
clear.

"brand’ : the brand of this car model  : the model of this car

‘mileage’ : the distance already traveled by this car

‘model year  : the year in which this car was manufactured

‘circulation date’ : the date at which this car was put to circulation

“transmission’ : the kind of transmission of this car (automatic or manual)

‘number of doors’ : the number of doors of this vehicle



"din horsepower : the “Deutsche Industrie Normen” horsepower of this car
‘tax horsepower  : the taxable horsepower of this car

"energy : the type of fuel or energy used by this car

"first hand® : whether this car is a first-hand one

“imported’ : whether this car was imported (to France)

"price’ : and of course the exhibition price of this car

And despite a large number of variables set aside, we still end up with the need to retrieve
thirteen data fields in a structured way, for several thousand announcements.

Of course such an open dataset, representing the current state of the second-hand car market,
doesn’t exist. It has to be created and to do so, we’re going to scrape a website on which those
fields are structured enough that they can be easily retrieved. Finding the perfect website
doesn’t take long, although many websites still allow people to sell second-hand goods in a
completely unstructured way, meaning that the data available from an ad to another are very
inconsistent.

1.1 Acquiring data

Let’s first define two terms, which are very close to one another:

e Web scraping is the fact of automatically downloading web-pages while extracting data from
them.

e Web crawling is the fact of automatically downloading web-pages while extracting hyperlinks
they contain and following those hyperlinks.

While web-scraping and crawling aren’t illegal by themselves, it’s highly probable that using
those techniques on websites you don’t own will be illegal. Sadly, the legislation concerning
scraping and crawling the web is full of gray areas, and whether the website’s Terms of Use are
enforceable, whether you entered a contract with the website or whether fair use can be applied
can only be determined case by case.

So before starting any data gathering based on crawling or scraping web-pages, seek legal
advice, doubt anything you can read, and cover yourself. I don’t think I will ever stop
gathering data this way for very simple reasons:

e I consider this data as being publicly available data.

e Google and all Search Engine Providers have constantly been crawling the web since its
start, indeed, web-pages and their content have to be discovered and indexed if results are
to be displayed in a search engine (although Google gives webmasters the right to decide
whether they want to be indexed on their search engine or not, and most of them want to).

But none of those reasons are legal arguments.

The least that can be done to cover yourself is to use a Virtual Private Network with a Kill-
switch , but I would recommend using Proxy chains , picking proxies in several and politically
opposed countries, even though this would slow the crawling/scraping process.

Whatever the nature of a project, developing sustainably way means controlling your environment.
And by controlling, I don’t mean applying all the possible best practices, but at least a set of
rules to follow and which make your code more readable and maintainable over time. If your
project Dbecomes something greater than you initially forecasted, you, as well as the other
possible contributors, will be grateful that this frame was set early on.

In this case, the programming language we’ll use is Python3, and we’ll use Anaconda to control
our python environments. Anaconda is a free and open-source distribution of Python and R. It’s
build to simplify package version and environment management.

Let’s build a research python environment which we’ll be using for scraping, cleaning, and
modelling:


https://www.anaconda.com/

conda create -n research python=3.7.5 conda activate research

We’ll need several python packages now, including:

» Pandas

¢ Numpy

e Matplotlib
* Seaborn

¢ Jupyter

e Selenium

« LightGBM

pip install pandas numpy matplotlib seaborn jupyter selenium lightgbm

Now that this environment is ready, it is time to create a working directory and to save a
static environment file, which allows us to build environments that consistently support our
code. To do so, the following command can be run:

conda env export > research _env.yml

We’ll start by creating our crawling/scraping code in a Jupyter notebook which we’ll call
crawler.ipynb:

ProjectDir/ F—— research env.yml F—— notebooks/ | F—— crawler.ipynb F—— data/ | F—— website/
The first step to write our crawler script is to map the architecture of the website. In this
case, the car ads are listed on pages having the following URLs:
https://www.website.com/ads?page=<integer:1-N>

Going through the HTML code of the /ads?page=<integer:1-N> on a browser developer tools, it is

easy to isolate the code related to the listing of the car selling ads. In this case, each page
contains 20 HTML div elements of class carAds defined as follows:

<body class= "pageListing" <div class= "carAd" <div class= "ad"
<html lang= "fr" > > > >
<a href= "/car-ad-0000000001.html" class= </div </div </body
"adLink" > > > > </html>

Each div of class carAd element has a div of class ad which itself has the following sub-element
a of class adLink. This a element, holds an href, having a fixed prefix
https://www.website.com/car-ad- and allowing us to build the URL to each of the car ads as
follows:

https://www.website.com/car-ad-<integer>.html

So what we want to do is to crawl each listing page and retrieve the href value of each ad. To
do so, we’ll be using Selenium , running a headless Chrome webdriver . Selenium Webdriver drives
a browser natively, Chrome in our case, as a user would. The reason why Selenium Webdriver and
its python bindings are often used to crawl websites 1is that websites can easily protect
themselves from simple GET Http requests to their pages, while it is much harder to detect a
crawler emulating a user navigating on its browser.

from typing import List from dataclasses import dataclass

from selenium.webdriver import Chrome, ChromeOptions # type: ignore @dataclass class Crawler:


https://selenium-python.readthedocs.io/
https://chromedriver.storage.googleapis.com/index.html?path=78.0.3904.105/

webdriver path: chrome options: element identifer: listing url:

str str str str
def crawl listing page (self , url: str) ->
List[str]: "

Gathers the href of all the car ads present on a listing ""

"

page.

# Create our Chrome WebDriver with the possibility to run
it with

# or without graphical user interface (headless or if
not) .chrome options:
chrome options = chrome options.add argument (self
ChromeOptions () .chrome options)

driver = Chrome (self .webdriver path, options= else
chrome options) :

driver = Chrome (self # Open the WebPage we want to

.webdriver path) crawl

# Find the HTML elements we're
interested in

elems = driver.find elements by class name (self
.element identifer)

# Return the href attribute of those

elements
return [elem.get attribute("href" ) for elem in
elems]
def crawl listing pages(self , start: int, end: int) -> ""
List[str]: "

Gathers the href of all the car ads on a range of listing ""

"

pages.

# Instanciate our output 1list of all hrefs: list =
hrefs [l

# Iterate through the range of listing pages we want to for page
crawl end) :
try # Retrieve all the hrefs of
: this page

page_hrefs = self .crawl listing page(self .listing url
+ str (page))

# Add them to the all hrefs.extend(page h except
output 1list refs) Exception :
return
all hrefs

Which we can use as follows:

self

in

driver.get (ur

range (start,

pas



webdriver path= "./chromedriver" chrome options= "--headless"

crawler = Crawler( , ,

element identifer= "adLink" listing url= "https://www.website.com/ads?
’ page=" , )
ads_urls = crawler.crawl listing pages(l , 2 )

This would return a list of car ads URLs:

'https://www.website.com/car-ad-9105831530.html’
[ 4

'https://www.website.com/car-ad-7101646302.html"

’

'https://www.website.com/car-ad-6101081682.html"

’

'https://www.website.com/car-ad-9105797990.html’

’

'https://www.website.com/car-ad-7101643178.html"
’ ]

Now for each of those car ads, we want to retrieve the 13 fields defined earlier. Therefore we
explore the ads pages html source code to isolate the html elements of each of those fields.

<body class= '"pageAd" <div class= "datalList"
<html lang= "fr" > > - >
<1li class= "carBrand" > Brand <li class= "carMileage" > 100 </div
here</1i> 000</1i> >
</body
> </html>

All the necessary fields are present inside a div element of class datalList. The text of each of
the sub 1i elements we’re interested in can be easily retrieved using the following script:

from typing import List from dataclasses import dataclass

from selenium.webdriver import Chrome, ChromeOptions # type: ignore

webdriver path:
import pandas as pd # type: ignore @dataclass class Scraper: str

fields identifiers: ads_urls: results path: batch size: int =
dict list str 5
chrome options: str = def scrape_ad page(self , wurl: str) -> ""
nn dlct: ”n
Extracts the data fields of a car "" if self
ad. " .chrome options:
chrome options = chrome options.add argument (self

ChromeOptions () .chrome options)



driver = Chrome (self .webdriver path, options= else
chrome options) :

driver = Chrome (self driver.get (ur data: dict = "url"
.webdriver path) 1) url}
for field in self try

.fields identifiers.keys(): :

element text = self ) .te
driver.find element by class_name ( .fields_identifiers[field] xt
data[field] = except data[field] = return
element text Exception : None data
def scrape ads pages(self ) -> None "" Extracts the data fields of all the car
" ads.
Treats the ads per batch of size

self.batch size.

Saves the extracted data in one csv file per "" ads_batches =
batch. " [

self .ads_urls[i : i + self
.batch_size]

for 1 in range(len(self .ads urls))[:: self
.batch_size] ]

for i, batch in
enumerate (ads_batches) :

results: List[dict] = [self .scrape ad page(page) for page
in batch]

dataframe: pd.Dataframe =
pd.DataFrame (results)

dataframe.to csv(self .results path + f" {i} .csv" , sep= "," ,
index= False )

Which can be used as follows:

webdriver path= "./chromedriver" fields identifiers=
scraper = Scraper( , {
"brand" : "carBrand" "mileage" : }
, "carMileage" , -
ads_urls= ads_urls, # the output of the results path= "../data/website/"
crawler ,
batch size= 5 chrome options= "--headless"

, , ) scraper.scrape_ ads_pages ()

Running those two pieces of code allows us to retrieve several hundred thousand car
with high data consistency.

1.2 Cleaning

ads and this

Consistency doesn’t mean the data is ready to be used. With a new set of data, an important

thing is to make sure we understand what kind of variables we’re looking at. Here

are the two



general types of variables we most commonly observe:

» Categorical

o Ordinal : represent discrete and ordered units, example: “poor, fair, good, very good,
excellent”, note that the difference between “poor” and “fair”, is not necessarilly the
same as between “fair”, and “good”, hence why ordinal variables are used to measure

non-numeric concepts like feelings.

o Nominal : represent discrete units, example: “Dog, Cat, Bird”

o Binary : represent nominal variables with only two states, examples: “0, 17, “False,
True”, “Yes, No”

e Numerical

o Discrete : represent distinct and separate values, which can’t be measured, but can be
counted, example: the number of persons in a room (there can’t be, hopefully, half a
person in the room)

o Continuous : represent measurements, meaning variables which can take any value within
a range, and therefore which can be measured but not counted, example: the weight of a
person

Each type of variable comes with its understanding and cleaning challenges.

All the code defined in this section will be stored in a cleaner.ipynb Jupyter notebook as
follows:

ProjectDir/ |— notebooks/ | — crawler.ipynb | — cleaner.ipynb }— data/

| F—— website/ | | F—— 0.csv | | F—— l.csv | | F——

Let’s load the CSVs with Pandas to take a 1look at them. Pandas is an open-source library
providing simple data structures and analysis tools for Python. A nice alternative to using
Pandas 1is to use Dask , which scales python data science capabilities to clusters with high
parallelization and asynchronous programming.

We’ll load some imports:

import glob import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns

from uuid import uuidl
And load the files:

# Load all our CSVs in one single dataframe

df = pd.concat ([pd.read csv(f) for f in glob.glob("../data/website/*.csv" )], ignore index= True
)

# Sort the columns alphabetically df = df.reindex(sorted(df.columns), axis= 1 )

The df DataFrame would resemble such a table:

circulatio din_horsepowe energ first han mileag mode model_yea number_ of_ door importe

brand

ran n date r v d e 1 r s d
PEUGEO »5,02/2015 150hp Diese s 62 040 505 5015 5 yes
T 1 km
Citroe DIESE 74
A 03/01/2013 181hp L NaN 084Km DS5 2013 5 NaN

From this glimpse at the data, we can immediately spot some issues such as:

e missing values represented by NaN

e numerical variables encoded as strings as 74 084km or 23400 €

» inconsistent formats, see the spaces around units (74 084km versus 62 040 km, words being
inconsistently capitalized, etc.)

Classifying the variables encountered will help us decide on strategies to clean our dataset.

M Ny A


https://pandas.pydata.org/
https://dask.org/

Let’s start with our categorical variables. Before we look at any metrics, like the cardinality
of our categorical variables, we’ll apply two cleaning steps:

e lower all the string variables, this way two different strings like PEUGEOT and Peugeot
become the same again.

e strip all the string variables, so we remove useless spacings and can again recover from
peugeot to peugeot

"brand" "model" "finish"
# Treat categorical variables categorical variables = [ , ’ ’

"transmission" "energy" "first hand" "imported"
’ ’ ’ ’ ] for column in categorical_variables:

# Overwrite the Series with 1its lowered df[column] =
version df [column] .str.lower ()

# Overwrite the Series with 1its stripped df [column] =
version df [column] .str.strip()

Then we’ll look at the missing values of our dataframe using Pandas, Matplotlib and Seaborn:

df na = (df.isnull().sum() / len(df)) * 100

df _na df na.drop(df na[df na == 0 ].index).sort_values(ascending= False ) [:30 ]
f, ax = plt.subplots(figsize= (15 , 12 )) plt.xticks(rotation= '90' )
sns.barplot (x= df na.index, y= df na) plt.xlabel('Variables' , fontsize= 15 )

plt.ylabel ('Percentage of missing values' , fontsize= 15 )

plt.title('Percentage of missing values by variable' , fontsize= 15 )

Which outputs the following graph:

Percentage of missing values by variable

100

Percentage of missing values
&
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The cardinality, or number of unique values each categorical value can take, is easily retrieved
using either:

len(df["Column" ].unique())

Or directly using Pandas describe function which returns a table containing statistical insights
(count, unique, top, etc.).

df.describe (include = "all"

At this point we have enough information to determine the type of categorical variable we’re
dealing with:

Cardinalit Data

Variable Example
Yy Type
brand 117 nominal [“peugeot”, “citroen”, ..]
model 1126 nominal [“508”, “dsb5”, ..]
transmissio ) “mecanical” or
2 binary “ .

n automatic
energy 8 nominal [“diesel”, “gasoline”, ..]
first hand 1 binary “yes” or NaN
imported 1 binary “yes” or NaN

Binary variables can now be processed. The transmission variable can be simplified as a boolean
called automatic, while first hand and imported can also be turned into boolean, True for yes
and False otherwise. To do so we’ll just use direct string comparison. Doing so we’ll also solve
our issue of missing values for the first hand and imported variables.

# Create the Automatic column and drop the original

df ["automatic™ ] = df["transmission" ] == "automatic"

df.drop (["transmission" ], axis= 1 , inplace= True )

# Turn the First Hand and Imported columns into booleans

df ["first hand" ] = df["first hand" ] == "yes" df["imported" ] = df["imported" ] == "yes"
Concerning nominal variables, an easy way to simplify the problem is to reduce the number of
categories we want to deal with. In this particular case, selecting a subset of brands of
interest will immediately reduce the cardinality of the brand and model variables. Here we’ll
select a small subset of brands that seem more relevant to my situation. Modeling would also be

improved considering how different the price of a regular car evolves compared to the price of a
premium car.

"audi" "bmw" "citroen" "ds" "ford"
# Filter on brands brands_ of interest = [ , , , , ,
"mercedes" "nissan" "opel" "peugeot" "renault" "seat" "toyota"
, ’ ’ ’ ’ ’ ’ ]
df = df[df["brand" ].isin(brands of interest)]

Here are the updated cardinalities on our dataframe, which has lost less than 20% of its size,
meaning that a tenth of the brands represents 80% of the second-hand car selling ads on the
crawled website:

Variable Cardinalit

brand 12
model 455



Variable Cardinalit

automatic 2
energy 8
first hand2
imported 2
Now that we don’t have columns containing large amounts of NaN values, we can use a simple
Pandas function to remove rows with missing fields. Potentially, if this operation was to remove
too many rows from a dataset, which is not the case here, we could implement strategies to

replace missing values with placeholders determined using statistics (for example replacing
missing horsepowers with the average observed horsepower for the considered car model).

# Removing rows with missing values df.dropna(inplace= True )

Next are the numerical variables, and those come with several issues:
» model year and number of doors are correctly encoded as integers
» mileage, din horsepower, tax horsepower and price are encoded as strings with inconsistent
formats
e circulation date has to be turned into a datetime objects
We’ll be using some regex for the first problem, and Pandas to datetime function for the second
one:
# Treat string like numerical variables

str numerical variables = ["mileage" , "din horsepower" , "tax horsepower" , "price" ]

# Use regex to extract integer values from the
for column in str numerical variables: strings

df [column] = float ("" .join(re.findall (r"\d+" , str(s)))) for s in
[ df [column] .tolist () ]

# Format Circulation date

df ["circulation date" ] = pd.to datetime(df(["circulation date" ], infer datetime format= True )

One additional operation we’ll conduct is removing ads for car models that don’t appear more
than a thousand times in our set. This is to make sure we have enough data points on each car
model to understand how its price evolves.

thresh = 1000 df = df.groupby("model™ ).filter (lambda x: len(x) >= thresh)

The cleaning being done, we can finally look at some statistics and determine the type of data:

Variable Mean Std Min Max Data Type
. 61738.4 60870.5 709293.0 continuou
mileage 1.00
8 3 0 s
Zumber—Of—door 4.68 0.75 2.00  6.00 ordinal
din horsepower 134.91 60.97  5.00  670.00 zontlnuou
tax horsepower 7.35  4.59  1.00  57.00 Z‘mtl“uou
price 22599.9 16064.1 100.00 434.00 continuou
9 5 s
model year 2014.68 4.03 1924.0 5919.00 cORmtinuou

0 s



We can save the data in our data folder:

# Create a uuid for each ad to identify them

df.to_csv("../data/cleanedidata.csv" , index= False )

2. Modeling

In order to answer the question stated previously:
How to make sure the price of a second-hand car is fair?
We could take several approaches such as:

e building a classifier, which goal would be to output a boolean representing whether or not
a price is fair.
e building a regressor, which goal would be to infer the exact market price of a vehicle.

The notion of fairness is tricky though. Indeed, nothing tells us that any of the ads from which
we gathered data comes with a fair price.

In the scenario of a classifier for example, we’d need to build a training target telling us
whether the car price is fair or not. And the only way to do so would be to set subjective
ranges around prices observed for similar vehicles, which considering the number of variables to
take into account, wouldn’t be possible.

Therefore we’ll go for the regressor approach and we’ll let the fairness evaluation to the human
being. Indeed, in this case, the model will output a price representative of what it has
observed in the dataset, and whether the price is fair or not depends on how fair all the ads
were on the website we crawled.

So the entire exercise is based on a strong assumption that a majority of the car ads are fair,
which we can easily accept considering the popularity of the website, and the simple fact that
most of those car ads turn into deals.

Another question we want to ask ourselves is:

Shall we go for one single model capable of predicting the price of any car model within our
dataset, or shall we cut the problem down?

The only way to answer this question was to try both approaches. From my tests, I decided to go
for a general regressor rather than car-model-wise regressors. Despite how different prices
behave depending on the brand or even on the model, modern Machine Learning algorithms are
capable of generalizing a price behavior and to understand those differences. So provided the
correct features, a model can understand that the price of a Mercedes doesn’t decrease as much
with the mileage as the price of a Renault. Keeping one model also simplifies the deployment
stack, as we’ll need to load one single model whatever the prediction we want to make.

2.0 Feature engineering

Feature engineering is the keystone of Machine Learning.

First, it translates the data into understandable inputs for our models. Secondly, it also
allows data scientists to simplify how the model understands the problem. For example, if we
were to predict the biological gender of an animal using its height, providing the model with a
feature built from a comparison with the average height of a given gender can be more insightful
than directly providing the model with the height (is_taller than average female: True or
False) .

For this part, we’ll be working in a new Jjupyter notebook called modeling.ipynb for
visualizations and in a new app folder for production code. Please note that we’re foreseeing
production code at modeling time, as it is very easy to create a model that can be very hard to
put in production.



ProjectDir/ F—— notebooks/ | F—— modeling.ipynb F—— app/ | F—— data/

| | — cleaned data.csv | F— utils/ | | F— init  .py | | — preprocessor.py

| | F—— pipeline.py | F—— __init  .py | F—— ~ _main .py

Target engineering
I like to start my feature engineering work by preparing the target of my problems. In this

particular case, the target of the regression is of course the price column of our Pandas
dataframe.

My first reflex is to look at the distribution of the data. We can do so using Seaborn in our
modeling notebook:

import pandas as pd from scipy import stats import seaborn as sns

import matplotlib.pyplot as plt color = sns.color palette() sns.set style('darkgrid' )
daf = pd.read_csv("../data/cleanedidata.csv” , parse_dates= ["circulation date" ])
# Plot our Price data sns.distplot (df["price" ], fit= norm); # Fit a normal distribution to it

(mu, sigma) = norm.fit(df["price" 1) # Plot the distribution
plt.legend(['Normal dist. ($\mu=$ {:.2f} and S\sigma=$ {:.2f} )' .format (mu, sigma)l],

loc= 'best'
) plt.ylabel ('Frequency' ) plt.title('Price distribution' ) # Create a Q0-plot

fig = plt.figure() res = stats.probplot(df["price" ], plot= plt) plt.show()

1e—5 Price distribution
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A first observation reveals that our data has outliers. This means data points extremely far
from our normal distribution.

We can deal with those either by capping the data or by removing them. Here we’ll choose to
remove the data, as we aren’t interested in predicting the values of super ars, collection cars,
or simple ruins. We’ll do so using filtering based on percentile.

A second observation, which the QQ plot allows us to make, is that our data is skewed. We,
therefore, apply a logarithm transformation to the price column to make it more normally
distributed, which will make any model more robust as it normalizes the magnitude differences.

# We apply loglp to our Price column df["price" ] = np.loglp(df["price" 1)

# Plot the above graphs again sns.distplot(df["price" ] , fit= norm);

(mu, sigma) = norm.fit(df["price" 1)

plt.legend(['Normal dist. ($\mu=$ {:.2f} and S\sigma=$ {:.2f} )' .format (mu, sigma)],

loc= 'best'
) plt.ylabel ('Frequency' ) plt.title('Price distribution' ) fig = plt.figure()

res = stats.probplot(df["price" ], plot= plt) plt.show()



Price distribution

[=a}

—— MNormal dist. (u= 2.38 and o= 0.05)

Freguency
=9

220 225 230 235 240 245 250
price

Probability Plot

26

P P
e un

COrdered Values
'\.J
Lid

22

—4 -2 0 2 4
Theoretical guantiles

We can see that we’ve improved the distribution of our data by making it more approximate to
normal. The QQ plot also shows a better linear behavior, even though we still observe skewness

at both extremes.

To tackle those two issues, we’ll create a function in our script app/utils/preprocessor.py:

from datetime import datetime import pandas as pd import numpy as np

o

"

def process target (df: pd.DataFrame) -> pd.DataFrame:

Removes outliers and applies 1log transform to the ""
target. "

upper lim = df["price" ].quantile(0.99 lower lim = df["price" ].quantile(O.

) )

01



df = df[(df["price" ] < upper_lim) & (df ["price" ] >
lower 1lim)]

df ["price"™ 1 = np.loglp(df["price" return
1) daf

Creating some features

We’ll create some basic features from the dates variable, the model age, the horsepowers, etc.
Those features will help the model understand the meaning of the dates related to a vehicle, and
put this in relationship with how much the car traveled. To do so, we’ll add a function to the
app/utils/preprocessor.py script:

wn Creates wn
def create features(df: pd.DataFrame) -> pd.DataFrame: " features. "
# Number of days since circulation
date
df["circulation days" ] = (datetime.now () - df ["circulation date"
1) .dt.days
# Number of years since model df ["model age" ] = 2019 - df["model year"
creation ]
# Average milesage the car drove per
day
df ["average mileage per day" ] = df ["mileage" ] /
df ["circulation days" ]
# Tax horse per Din horse, "How much bang for the
bucks"
df["tax / din" ] = df ["tax horsepower" ] / return
df ["din_horsepower" ] df

Creating a Model pipeline

The next step is to create a pipeline allowing us to:

create reversible feature transforms so that we can translate features for the model
generate and train a model
make price predictions

Talking about a model, it’s time to choose one, and for our problem, the best solution is
certainly a Gradient Boosting Model. We have to decide which API we go for and the three main
choices we have are:

e XGBoost (Mar 2014)
e LightGBM (Jan 2017)
e CatBoost (Apr 2017)

Those three solutions are extremely similar and easily inter-changeable. If you’re interested in
their differences, vyou’ll find a lot of comparisons online. In this book, we’ll be using
LightGBM.

Then we still need to answer two questions:

First, how do we transform categorical features for our model?

For categorical features, we can use a processing step called One-Hot encoding, which replaces a
categorical feature with as many binary features as 1t has 1labels. So a feature 1like

brand="renault" or "bmw" turns into two features renault=True or False and bmw=True or False. I
recommend that you also investigate Label (or Ordinal) encoding, which simply means converting



string labels to integer values. Generally speaking, One-hot encoding is a better representation
of categorical features, but you need to beware for feature explosion if the cardinality of your
features is high, in which case you might prefer simpler Label encoding.

Second, how do we transform numerical features for our model?

For numerical features, generally used solutions are MinMaxScaler, RobustScaler, StandardScaler,
and many more. We’ll go for the classic StandardScaler which transforms our feature distribution
so that it’s centered on 0 and has a standard deviation of 1. Therefore 68% of the values will
lie between -1 and 1. The reason why we apply such transform is simply that machine learning
algorithms perform better and/or converge faster when features are on a relatively similar scale
and/or close to normally distributed.

Let’s create a function in the script api/utils/pipeline.py to create this pipeline. We’ll make
use of the famous Scikit-learn Pipelines to do so:

from typing import List import pandas as pd from category encoders import OneHotEncoder

from lightgbm import LGBMRegressor from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline, make pipeline

from sklearn.preprocessing import StandardScaler

"

def create pipeline(df: pd.DataFrame) -> Pipeline: "

Creates a sklearn pipeline which takes care of feature model training and
transforms, inference.
m # Define the target target column: str = # Define the categorical
" column "price" columns
categorical cols: List[str] = '"brand" "energy" "first hand" "imported" "model"
[ 4 4 4 r r
"number of doors" "automatic # Define the numerical numerical cols: List[str] =
, " 1 columns [
"din horsepower" "mileage" "tax horsepower" "circulation days" "model age"
’ ’ 4 4 4
"average mileage per day "tax / din # Generate a
", " ] Pipeline
regressor: Pipeline = # Create a Column ColumnTransforme
make pipeline ( Transformer r( [
("num" , StandardScaler (), ("cat" , OneHotEncoder (), )
numerical cols), categorical cols), 1,
# Create a LGBM  LGBMRegresso boosting type= objective=
Regressor r( "gbdt" , "regression"
metric= ["12 root" , "11" ], # Root Mean Squared Error and Mean

Absolute Error

num_leaves= learning rate= feature fraction= bagging fraction=
512 , 0.1, 0.7, 0.7,
reg alpha= 0 reg lambda= verbose= 0 ) # Fit the Column Transformer and the
’ 0.1, , , ) model
regressor.fit (df [categorical cols + numerical cols], return

df [target column]) regressor



Parameters Optimization

If you wonder how those parameters for our LGBM model were defined, I found them using a method
called GridSearchCV. This method makes an exhaustive set of combinations of parameters from a
given parameter space. It then fits an LGBM Regressor on k random folds of divided data, before
scoring the model on the remaining fold. The combination of parameters giving the best score is
kept. This method is compute-intensive, so I recommend that you also investigate RandomSearchCV
and Bayesian search. Here’s a snippet of code to apply Grid search cross-validation:

import lightgbm as lgb from sklearn.model selection import GridSearchCV params = {
"boosting" : "gbdt" , # gdbt, rf, goss or "objective" : "regression"
dart ,
"metrics" : ["12 root"™ , "11" ], # metric(s) to be evaluated on the evaluation
set (s)
"num_ threads" : 2 , # number of threads for LightGBM (set to available real CPU
cores)
"num leaves" : 128 , # max number of leaves 1in one
tree
"max_depth" : -1 , # limit the max depth for tree
model
"learning rate" : 0.1 , # shrinkage
rate
"feature fraction" : 1 , # if you set it to 0.8, LightGBM will select 80% of features

before training each tree

"bagging fraction" : 1 , # like feature fraction, but this will randomly select part of
data without resampling

"lambda 11" : 0.0 , # L1 "lambda 12" : 0.0 , # L2
regularization regularization }
boosting=  params["boosting"

# Create a regressor mdl = lgb.LGBMRegressor( ],

objective= params|["objective" num_threads= params|["num threads"
] 4 ] 4

num_leaves= params['"num leaves" max depth= params["max depth"
Iy 1r

learning rate= params["learning rate" feature fraction= params["feature fraction"
1y 1r

bagging fraction= params["bagging fraction" lambda 11= params["lambda 11"

]l ]I

lambda 12= params|["lambda 12"

1, ) # Create parameters space to search gridParams = ({
"boosting type" : ["gbdt" "objective" : ["regression" "random state" : [501
1, 1, 1,
"num leaves" : [128 , 256 , 512 "learning rate" : [0.005 , 0.05 , 0.1
1 1,
"feature fraction" : [0.7 , 0.8 , 0.9 "bagging fraction" : [0.7 , 0.8 , 0.9
]l ]I
"lambda 11" : [0 , 0.1 , 0.5 "lambda 12" : [0 , 0.1 , 0.5

1, 1, } # Create the grid



grid = GridSearchCV(mdl, gridParams, verbose= 1 , cv= 4 , n jobs= 2 )

# Run the grid search of our training dataset

# (X is our features dataframe after Column transforms as above, # Y is the target price)

grid.fit (X, Y) # Print the best parameters found print(grid.best params_)

print (grid.best score )

Model Evaluation

Let’s look at what kind of errors our model does. In our case, looking at the Root Mean Squared
Error (RMSE or L2-root) or the Mean Absolute Error (L1) we obtain on a testing-set at the end of
training won’t help us figure out how well our model performs. The reason 1is that we have
applied Logarithm transform to our target price, meaning that the metrics will represent errors
on the logarithm scale. So what we can do is:

e Make a train/test split
e Train on training-set
e Predict on testing-set

e Apply exponential to the prediction on the test set and the target in the test set
» Recompute an RMSE between the predictions and the actual prices observed

Let’s do it:

import numpy as np from sklearn.metrics import mean squared error

from sklearn.model selection import train test split

# Make our random train test split (80% / 20%)

train, test = train test split(df, test size= 0.2 )

# Create our regressor using the utils function we've made pipeline = create pipeline(train)

# Predict on the test set log predictions = pipeline.predict (test)

# Turn predictions back to prices predictions = np.expml (log predictions) # Compute target

target = np.expml (test["price" ].tolist()) # Compute RMSE

np.sqrt (mean_squared_error (exp_target, exp_pred))

This calculation tells us that we have a Root Mean Squared Error of 1250 EUR. Not too bad for a
simple model, particularly knowing that one price differentiator for cars is the set of options
and that we don’t have this data in our dataframe. For example the GPS option immediately
increases the price of a car by around 500 EUR. Neither do we know whether the car had an
accident, whether the previous owner was smoking inside, etc.

We can look at brand or even model levels to have a better view of our model performance. For
one of the most frequent models of our dataset (the Renault Clio), we have an RMSE of 545 EUR.
Simple pandas selection allows us to do so, for example: test[test["brand"] == "renault"]

One more thing we can do to understand a bit more what the drivers of price are is to look at
feature importance. LightGBM provides a feature importance method returning scores of how much



By default this importance score 1is based on the number of

each feature impacts the price.
Let’s plot this:

decision tree splits done based on each feature.

import seaborn as sns import matplotlib.pyplot as plt color = sns.color palette()

sns.set_style('darkgrid' ) # Get importance scores from the LGBMRegressor

importance = regressor.steps[l ][l ].feature importances # Retrieve feature names

features_list = numerical cols + list(
regressor.named_steps['columntransformer' ] .named_transformers ['cat'
].get feature names () )

pd.Series (features lis

# Create aa dataframe f importance = pd.concat( [ t),
pd.Series (importanc ] axis=
e) , 1 ) # Set column names
f importance.columns = ['Feature Name' 'Importance' ] # Sort by importance

metrics sorted = f importance.sort values('Importance' , ascending= False ) #Plot

g = sns.barplot (x= "Importance" , y= "Feature Name" data= metrics sorted[:20 ])

g.figure.set size inches (12 , 9 ) plt.show()
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3. Serving our model

In the previous chapter, we’ve built utils functions that create a Scikit-learn pipeline,
allowing us to take raw incoming data, and to train a LightGBM Regressor on it before using it
for actual inference on raw data. Now we’re going to create a Web Application around those utils

function.

We’ll go for a simple single-page WebApp, on which users will be able to fill in a form
describing a vehicle, submit it and get an estimation of the value of the wvehicle.

3.0 WebApp creation

the first step is selecting a framework. Classic frameworks
Sanic, Quart, Tornado, Pyramid, and some more. I recommend
Knowing one simplifies the discovery and learning

When building a WebApp with Python,
for Python WebApps are Flask, Django,
you to be fluent in some of those solutions.



of another one. In this book, we’ll be using Quart. The reason is that Quart mimics another very
popular framework,Flask, with a major difference being default ASGI (Asynchronous Server Gateway
Interface) support as opposed to default WSGI (Web Server Gateway Interface) for Flask.
Asynchronous programming, introduced to Python with the asyncio library, and the async/await
syntax from Python3.5, allow us to write concurrent code which translates in increased
performance for networking, database connectors, web-servers, task-queues, etc.

Let’s recall the project’s structure:

ProjectDir/ F—— notebooks/ | F—— modelling.ipynb F—— app/ | F—— data/
| | F—— cleaned data.csv | F—— utils/ | | F—— __init  .py | | F—— preprocessor.py
| | F—— pipeline.py | F—— __init  .py | F—— __main_ .py

Let’s create our application. In the file called app/ main .py:

# Prepare imports from datetime import datetime import numpy as np import pandas as pd

from quart import Quart, jsonify, render template, request # Import our utils

from utils.pipeline import create pipeline

from utils.preprocessor import create features, process_target # Load our dataframe
df = pd.read csv("data/cleaned data.csv" , parse dates= ["circulation date" ])

# Process the target df = process target (df) # Create features df = create features (df)

# Create model pipeline regressor = create pipeline(df) # Create a Quart app

app = Quart(_name ) # Create a GET route to render our single webpage
mn
@app.route ("/" , methods= ["GET" ]) async def render index(): "
Renders the index.html template "" return await render template("index.html"
file. " )
# Create a GET route to return models @app.route ("/models/" , methods= ["GET" 1)

m Returns a json holding a dictionary binding models to
async def get models(): " brands.

This is used to allow users of the app to select models our model supports for each

that brand.
" models = for brand in
" {} df.brand.unique () :
models [brand] = ", .join (sorted(df [df.brand == return
brand] .model.unique())) jsonify (models)
# Create a POST route to make price predictions Qapp.route ("/" , methods= ["POST" 1)

mn Retrieves a data form, processes the data
async def make prediction(): " fields,



and passes them through our price prediction "" # Retrieve

pipeline. " form
form = await # Process fields which types need to be
request.form changed
form["circulation date"™ ] = datetime.strptime(form["circulation date" 1, "%Y-%m-
sd" )
form["model year" ] = int(form["model year" form["mileage" ] int (form["mileage"
1) 1)
form["din horsepower" ] = int(form["din horsepower"
1)
form["tax horsepower" ] = int(form["tax horsepower"
1)
form["number of doors" ] = int(form["number of doors"
1)
form["imported" ] = True if form["imported" ] == "True" else
False
form["automatic" ] = True if form["automatic" ] == "True" else
False
form["first hand" ] = True if form["first hand" ] == "True" else
False
# Create  prediction row with row = pd.DataFrame (form, index= [0
features 1)
row = # Predict and turn log prediction back into
create features (row) price
prediction = int (np.expml (regressor.predict (row) [0 # Return
1)) response
return Jjsonify ({"price" :
str (prediction) }) # Run our application if name == " main "

app.run(host= "0.0.0.0" , port= 5000 , debug=

True

)

What we just did is:

Now
SO.

Prepare a regressor object using our dataframe and utils functions

Create a Quart application object

Create a first GET Route rendering our single-webpage, which will be made available at the
root endpoint /, which means, in case our application is deployed on the following domain
website.com, that the webapage will be accessible there http://website.com/

Create a second GET Route at /models returning a dictionary of the brands and corresponding
car models at each Http GET request at http://website.com/models/

Create a POST Route at / so that each Http POST request made at http://website.com/ can
send data to our price prediction model and gets a price prediction back

Run the app and make it available at the machine’s local address 0.0.0.0:5000

the index.html file has to be created. We’ll use some very basic HTML and JavaScript to do
We’ll create the file in an app/templates folder, as Quart will automatically look for

templates in this folder.

ProjectDir/ p— notebooks/ | — modelling.ipynb }— app/ | — data/

| — cleaned data.csv | — utils/ | | F— init  .py | | — preprocessor.py



| | F—— pipeline.py | F—— templates/ | | F—— index.html | F—— __init  .py

| F—— __main__ .py

Let’s start with the basic structure of our file, and particularly the head element:

<title> <meta charset= "UTF-8"
<!DOCTYPE html> <html lang= "en" > <head> App</title> >
<meta name= "viewport" content= "width=device-width, initial-
scale=1" >
<link href= "{{ url for('static', filename='css/style.css') }} " rel= "stylesheet" type=
"text/css" />
<script src= "https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js" >
</script>
<link href= "https://cdn.jsdelivr.net/npm/select2@4.0.13/dist/css/select2.min.css" rel=
"stylesheet" />
<script src= "https://cdn.jsdelivr.net/npm/select2@4.0.13/dist/js/select2.min.js" >
</script>
<script src= "https://cdn.jsdelivr.net/npm/sweetalert2@9/dist/sweetalert2.min.js" >
</script>
<link href= "https://cdn.jsdelivr.net/npm/sweetalert2@9/dist/sweetalert?2.min.css" id=

"theme-styles" rel= "stylesheet" >

</head>

In the head, we’re defining some standard meta tags which are usually here to specify a
character set, description, keywords, author, and viewport settings. We then define some 1link
tags which are here to specify paths to some internal and external CSS stylesheets. And we
define some script tags which specify the sources of some JavaScript packages that we will be
using, namely sweetalert2 and select2, respectively used to create good looking alerts and
dropdown lists.

Now for the body of our HTML, we will encapsulate a simple form element in a wrapper div, itself
in a container div for later styling purposes.

<div class= "container" <div class=
<body> > "wrapper" >

<form id= "form pred" class= "form validate-form" method= .. </form </div </div
"post" > . > > >

</body>

Within this form element, we’ll define one input per raw feature expected by our model as
follows:

<span class= "form- Welcome to your Car Price </spa
title™ > Predictor! n>
<div class= "form-input input- <span class= "label-input" > <di
select" > Brand</span> >
<select class= "selection" id= "brand"

name= "brand" >



<option value= "none" > Choose a <option value= "audi" >

brand </option> Audi </option>
<option value= "bmw" > <option value= "citroen" >
Bmw </option> Citroen </option>
<option value= "ford" > <option value= "mercedes" >

Ford </option> Mercedes </option>

<option value= '"nissan" > <option value= ‘'"opel" >
Nissan </option> Opel </option>

<option value= '"peugeot" > <option value= "renault" >
Peugeot </option> Renault </option>

<option value= "toyota" > <option value= "volkswagen"
Toyota </option> Volkswagen </option>

</sele </di <span class= "focus-input" </di
ct> > ></span> >
<div class= "form-input input- <span class= "label-input" > <di

select" > Model</span> >

<select class= "selection" id= "model" <option> Choose above
name= "model" > first</option>

</sele </di <span class= "focus-input" </di
ct> > ></span> >
<div class= "form-input validate-input" data-validate= "Circulation

date required." >

<span class= "label-input" > Circulation
date</span>

<input class= "input" type= "date" id= "circulation date"
"circulation date" placeholder= "31/01/2009" >

<span class= "focus-input" </di
></span> >
<div class= "form-input validate-input" data-validate= "Model

year required." >

<span class= "label-input" > Model
Year</span>

>

name=

<input class= "input" type= "number" step= "1" min= "1900" id= "model year"

name= "model year" placeholder= "2009" >

<span class= "focus-input" </di
></span> >
<div class= "form-input validate-input” data-validate=

"Mileage required." >

<span class= "label-input" >
Mileage</span>

<input class= "input" type= "number" step= "1" min= "O" max= "1000000" id=

"mileage" name= "mileage" placeholder= "145364" >



<span class= "focus-input" </di
></span> >

<div class= "form-input validate-input" data-validate= "DIN
horsepower required."”" >

<span class= "label-input" > DIN
horsepower</span>

<input class= "input" type= "number" step= "1" min= "O" max= "1000"

"din horsepower" name= "din horsepower" placeholder= "130" >
<span class= "focus-input" </di
></span> >
<div class= "form-input validate-input" data-validate= "Tax

horsepower required." >

<span class= "label-input" > Tax
horsepower</span>
<input class= "input" type= "number" step= "1" min= "0" max= "30"
"tax horsepower" name= "tax horsepower" placeholder= "7" >
<span class= "focus-input" </di <div class= "form-input input-
></span> > select" >
<span class= "label-input" > <di

Energie</span> >

<select class= "selection" 1id= "energy"
name= "energy" >

<option value= "diesel" selected= "" >

Diesel </option>

<option value= "essence" > <option value= "electrique"
Gasoline </option> Electric </option>
<option value= "hybride essence électrique" > Hybrid

Gasoline Electric </option>

<option value= "hybride diesel électrique" > Hybrid
Diesel Electric </option>

<option value= "bicarburation essence gpl" >
Gasoline GPL </option>

<option value= '"bicarburation essence bioéthanol” >
Gasoline bioethanol </option>

<option value= "bicarburation essence gnv" > </sele </di
Gasoline GNV </option> ct> >
<span class= "focus-input" </di <div class= "form-input input-
></span> > select" >
<span class= "label-input" > <di
Imported</span> >
<select <class= '"selection" 1id= "imported"

name= "imported" >

id=

id=

>



<option value= "True" > <option value= "False" selected=

Yes </option> "" > No </option>

</sele </di <span class= "focus-input" </di
ct> > ></span> >

<div class= "form-input input- <span class= "label-input" > <di
select" > Automatic</span> >
<select class= T"selection" id= T"automatic"
name= "automatic" >
<option value= "True" > <option value= "False" selected=

Yes </option> "" > No </option>

</sele </di <span class= "focus-input" </di
ct> > ></span> >

<div class= "form-input input- <span class= "label-input" > First <di
select" > hand</span> >
<select «class= '"selection" id= "first hand"
name= "first hand" >
<option value= "True" > <option value= "False" selected=

Yes </option> """ > No </option>

</sele </di <span class= "focus-input" </di
ct> > ></span> >

<div class= "form-input validate-input" data-validate= "Number of

doors required." >

<span class= "label-input" > Number of

doors</span>
<input class= "input" type= "text" id= "number of doors" name=
"number of doors" placeholder= "5" >
<span class= "focus-input" </di <div class= "container-form-
></span> > btn" >
<div class= "wrap- <div class= "form-

form-btn" > bgbtn" ></div>

<button id= "predict" class= <spa Evalua </sp </butt </di </di
"form-btn" > n> te ! an> on> > >

At the end of our body, we now have to define some scripts for the dropdown lists to make use of
select?2:

<diwv id= "dropDownSelectl" > <script $ (".selection" ).select?2
</div> > ({
minimumResultsForSearch : dropdownParent : $ ) </script
20 , ('#dropbDownSelectl' ) ) ; >

We also need a script to get the car models from the GET /models route we’ve created:



<script> $ ("#brand" ).change (function () var $dropdown = $ (this

{ ) i

$  .getJSON  ("/models" , function var key = S$dropdown .val
(data) { 0);

var vals = datalkey].split var SsecondChoice = S SsecondChoice
(", ) ("#model" ) ; ()

$ .each (vals, function (index,
value)
$secondChoice .append ("<option>" + value + " } } } </script

</option>" ); )i )i )i >

And finally we need some script to actually call our POST / route when the user pushes the form

button to evaluate the price of a car. We’ll make this call using ajax:

<script type= "text/Jjavascript" S (function () S ("button#predict"
> { (function (e) {
e .preventDefault /*Get variables from var brand = $ ("#brand"
O; form*/ ) .val ();
var model = $ ("#model" var circulation date = $ ("#circulation date"
).val () ).val ()
var model year = $ ("#model year" var mileage = $ ("#mileage"
) .val () ) .val ()7
var din_horsepower = $ ("#din horsepower"
).val ()7
var tax_horsepower = $ ("f#tax_horsepower"
).val ()
var energy = S ("#energy" ) .val ), ext color = §
("#ext color™ ).val ();
var imported = $ ("#imported" var automatic = $ ("#automatic"
) .val () ) .val ()7
var first hand = $ ("#first hand"
).val ()7
var number_of doors = $ ("#number of doors" /*Create the JSON var
) .val () payload*/ = {
"brand" brand, "model" model, "circulation date"
circulation date,
"model year" model year, "mileage" mileage, "din horsepower"
din_horsepower,
"tax_horsepower" tax_horsepower, "energy" energy,
"imported" imported,
"automatic" automatic, "first hand" first hand,

"number of doors" number of doo

rs,

.empty

) .click

data



/*Send the ajax request and fire a sweetalert S .ajax method

on success*/ ({ "POST" ,
url : window .location data : success : function
.href , data, (result) {
var Jjson_result = var price =
result; json_result['price' ];
Swal .fire ('Estimated Price: ' + price+ ' EUR' } error
, "' , 'success' ) , function () {
console .log } } } </script
("error" ) b)) ) ) >

The HTML of our webpage is now ready. All we need to do is style it a little as it currently
looks like that:

Welcome to your Car Price Predictor!
Brand

Choosea ... ~
Model

Choose abov... ~
Circulation date mm/dd/yyyy
Model Year 2009
Mileage 145364
DIN horsepower 130
Tax horsepower 7
Energie

Diesel v
Imported

N.x>
Automatic

N.Y
First hand

.
Number of doors 5

| Evaluate ! |

So let’s create a new file in app/static/css/ called style.css, which you can see we import in
the head of our HTML. Quart will automatically look for stylesheets in this folder. Let’s start



by importing a font and restyling the basic tags:

@import url ('https://fonts.googleapis.com/css2?
family=Roboto+Condensed:wght@300;400;700&display=swap’' );

margin : Opx padding : Opx box-sizing : border-box height : 100%
* {0 ; ; } body, html { ;
font-family : "Roboto Condensed" , sans- font-family : "Roboto Condensed"
serif ; pa {
font-size : 14px line-height : 1.7 color : #666666 margin : Opx transition : all 0.4s
-webkit-transition : all 0.4s -o-tramsition : all 0.4s -moz-transition : all 0.4s
; ; ; }
outline : none !important text-decoration : none
a:focus { ; } a:hover { ; } hl, h2, h3, h4, h5,
margin : Opx font-family : "Roboto Condensed" font-size : 14px
hé { ; e i ;
line-height : 1.7 color : #666666 margin : Opx margin : Opx
; ; ; }ul, 1i {5
list-style-type : none outline : none border : none
; } input { ; ; } textarea {
outline : none border : none

; ; } textarea:focus , input:focus ({

border-color : transparent !important
; } input:focus:: -webkit-input-placeholder {
color : transparent color : transparent
; } input:focus: -moz-placeholder { ; }
color : transparent
input:focus:: -moz-placeholder { ; } input:focus: -ms-input-placeholder {
color : transparent color : transparent
; } textarea:focus:: -webkit-input-placeholder { ; }
color : transparent
textarea:focus: -moz-placeholder { ; } textarea:focus:: -moz-placeholder {
color : transparent color : transparent
; } textarea:focus: -ms-input-placeholder { ; }
color : #adadad
input:: -webkit-input-placeholder { ; } input: -moz-placeholder ({
color : #adadad color : #adadad
; } input:: -moz-placeholder { ; }
color : +#adadad
input: -ms-input-placeholder { ; } textarea:: -webkit-input-placeholder {
color : #adadad color : +#adadad
; } textarea: -moz-placeholder { ; }
color : #adadad
textarea:: -moz-placeholder { ; } textarea: -ms-input-placeholder ({

color : #adadad outline : none !important border : none
; } button { ; ;



background transparent cursor pointer
; } button:hover { ; } iframe {
border none !important
; }
Now we can restyle our main container div:
width 100% min-height 100vh display -webkit- display -webkit-
.container { ; ; box; flex;
display -moz- display -ms- display flex-wrap
box; flexbox; flex; wrap;
justify-content center align-items center padding 15px background #a64bf4
background -webkit-linear-gradient (45deg , #03ce9b , #10abdl
) i
background -o-linear-gradient (45deg , #03ce9> , #10abdl
) i
background : -moz-linear-gradient (45deg , #03ce9b , #10abdl
) i
background linear-gradient (45deg , #03ce9> , #10abdl
) i }
Our wrapper div:
width #fff border-radius hidden

500px background
.wrapper { ;

’ ’ ’

padding 42px 55px 45px 55px
; }

’

Our form element, its inputs and button:

width 100% display bloc
.form { ; } .form-title { ;
font-size 39px color #333333 line-height 1
44px width 100%

padding-bottom
; }

; .form-input { ;

10px overflow

’

position

’

border-bottom 2px solid #d9d9d9 padding-bottom 13px margin-bottom 27px
; ; ; }
font-family "Roboto Condensed" font-size lépx color #666666

.label-input { ; ; ;

line-height 1.5 padding-left S5px display block width 100%
; ; } .input { ; ;

background transparent font-family "Roboto Condensed" font-size 18px

color 0 5px position

#333333 line-height

’

1.2 padding

’ ’

} .focus-input {

’

k  font-family "Roboto Condensed"
.2 text-align center
relative

absolute



display block width 100% height 100% top 0 left
content "" display block position

.focus-input ::before { ; ; ;

left 0 width 0 height 2px  -webkit-transition all O

-moz-transition all 0.4s transition

all 0.4s background

’

0 pointer-events none
i }
absolute bottom -2px
.4s -o-transition all 0.4s
#7E£7£7E

} input.input {

height 40px min-height 110px padding-top 9px
; } textarea.input { ; ;
padding-bottom 13px width 100%
; } .input :focus +.focus-input ::before { ; )
width 100%
.has-val.input +.focus-input ::before { ; } .container-form-btn {
display -webkit- display -webkit- display -moz- display -ms-—
box; flex; box; flexbox;
display flex-wrap justify-content center padding-top 13px
flex; wrap; ; ; }
width 100% display block position relative z-index 1
.wrap-form-btn { ; ; ; ;
border-radius 25px overflow hidden margin 0 auto
; ; ; } .form-bgbtn {
position absolute z-index -1 width 300% height 100% background #a64bf4
background -webkit-linear-gradient (left , #03ce% , #10abdl , #03ce9% ,
#10abdl ) ;
background -o-linear-gradient (left , #03ce9% , #10abdl , #03ce% ,
#10abdl );
background -moz-linear—-gradient (left , #03ce9 , #10abdl , #03ce% ,
#10abdl );
background linear-gradient (left , #03ce9% , #10abdl , #03ce% , top 0
#10abdl ); ;
left -100% -webkit-transition all 0.4s -o-transition all 0.4s
-moz-transition all 0.4s transition all 0.4s display -webkit-
; ; } .form-btn { box;
display -webkit- display -moz- display -ms—- display
flex; box; flexbox; flex;
justify-content center align-items center padding 0 20px width 100%
50px "Roboto Condensed" font-size l6px color #£££

height

’

font-family

’ ’

’



line-height : 1.2 left : O

; } .wrap-form-btn :hover .form-bgbtn { ; } .form-btn i {
-webkit-transition : all 0.4s -o-transition : all 0.4s -moz-transition : all 0.4s
transition : all 0.4s -webkit-transform : translateX (10px

; } .form-btn :‘hover i { );

-moz-transform : translateX(10px -ms-transform : translateX(1l0px
)i )7

-o-transform: translateX (10px transform : translateX(10px
)7 )7 }

And now our webpage looks much better!

Welcome to your Car
Price Predictor!

Brand

Model

Choose above ... ~

Circulation date

mm/dd/yyyy

Model Year
2009

Mileage
145364

DIN horsepower

130

3.1 Containerization

From now on, we want to deploy this application. My favorite way of doing this is using Docker.
Docker is your best friend. Docker is based on so-called Containers which are standardized units
of software allowing developers to isolate applications from their environments. To put it
simply, by containerizing your application, create a standard piece of software that can run on
any machine equipped with Docker. This means no more cases where your code runs on a given
machine but not on another one. Docker is compatible with most of the Operating Systems out
there, meaning that it simplifies passing from an OS to another. You can now proudly program on
Windows and deploy on Ubuntu server without a headache (but I still recommend you to go for
Linux) .

So how does docker create a container? Docker uses so-called images, which you can see as a
snapshot of your application’s software and its required environment. So let’s create a
Dockerfile next to our app folder:

ProjectDir/ F—— notebooks/ | F—— modeling.ipynb F—— app/ | F—— data/

| | F—— cleaned data.csv | F—— utils/ | | F—— __init  .py | | F—— preprocessor.py



| | F—— pipeline.py | F—— static/ | | F—— css/ | | | F—— style.css

| F—— templates/ | | F—— index.html | F—— __init  .py | F—— __main_  .py F—— Dockerfile

In our Dockerfile we will:

e specify an image, meaning the operating system in which we’ll run our application. In our
case, we can go for miniconda3

FROM continuumio/miniconda3 as base
RUN apt-get update && apt install -y build-essential

create a python environment and install the required packages

RUN conda create -n app python
RUN export PIP_CACHE DIR="/opt/cache/pip"
RUN echo "source activate app" > ~/.bashrc
ENV PATH /opt/conda/envs/app/bin:S$PATH
RUN pip install \
'quart==0.11.5" \
'pandas==1.0.1" \
'numpy==1.18.1" \
'lightgbm==2.3.1"

create a production image of our app using just the minimally required python environment:

# PRODUCTION IMAGE

FROM continuumio/miniconda3 as prod

COPY --from=base /opt/conda/envs /opt/conda/envs
RUN echo "source activate app" > ~/.bashrc

ENV PATH /opt/conda/envs/app/bin:S$PATH

COPY

WORKDIR /app

e create a test image of our app which will run flake8 linting of our code during the image
creation process:

# TESTING IMAGE
FROM continuumio/miniconda3 as test
COPY --from=base /opt/conda/envs /opt/conda/envs
RUN echo "source activate app" > ~/.bashrc
ENV PATH /opt/conda/envs/app/bin:S$PATH
RUN pip install \
'flake8==3.8.1"
COPY
WORKDIR /app
RUN flakeS8

Talking about flake8 our python linter, let’s define a small .flake8 file in our app folder and
in which we specify some code standards like the maximum line length:

[flake8]
max-line-length = 88

Once done, we can use the Docker CLI to build our test image by running:

docker build --target test .

This build command point at the Dockerfile and aims particularly at the test image. Docker will
download create the base miniconda3 image and its python environment, before switching to the
test image by copying the base one and installing and running flake8 also. We could do the same
with Pytest, which means adding it to the python environment before running Pytest during the
image creation process. Doing so, any failing test would cancel the image creation, which is a
very valuable feature to have in a Continuous Integration / Continuous Deployment pipeline.

3.2 Deployment



Now that we have a ready Dockerfile, we will use an even better tool called Docker Compose.
Docker Compose is a tool used to define and run multi-container Docker applications. Modern
applications tend to be more and more microservice-based. We can now build simple YAML files to
define and run all the services of an application. Let’s create a docker-compose.dev.yml file
next to our existing Dockerfile. In this file, we will define two services, namely:

e our price prediction web app

e a reverse proxy, which we place in front of our web app to deal with incoming requests, and
therefore acting as an intermediary between the web and our web app. We’ll use Traefik, a
docker compliant Edge router to do so.

Here’s our docker-compose.dev.yml file:

traefik  image: container name:
version: "3.5" services: : "traefik:v2.2" "traefik"
restart: command - "=
always : providers.docker=true"

_ n__ - "-- ports -
providers.docker.exposedbydefault=false" entrypoints.web.address=:80" : "80:80"
volumes - webapp build context: target:

"/var/run/docker.sock:/var/run/docker.sock:ro" : prod
container name: restart: labels -
"webapp" always : "traefik.enable=true"
"traefik.http.routers.pwrouter.rule=Host ( localhost )"
- ports - command : python3

"traefik.http.routers.pwrouter.entrypoints=web" : 5000 ~ _main .py

Let’s run this configuration using the Docker Compose CLI:

docker-compose -f docker-compose.dev.yml up --build

Docker will then automatically create a local docker network in which all our services will be
able to interact. Then it will download the specified Traefik image and boot a container with
the specified commands, which are standard configurations to expose our docker application on
port 80 to the rest of the world. Once done, it will build the prod image of our web app, boot a
container of this image, set some labels for Traefik, and launch the application by running the
command python3 _ main .py before exposing the port 5000 (see _ main_ .py). Once done, if you
open your browser and go to localhost, you should see the web app up and running:



C | @ localhost

Apps

Welcome to your Car
Price Predictor!

Brand

Model

Choose above ... ¥

Circulation date

mm/dd/yyyy

Model Year
2009

Mileage
145364

DIN horsepower

130

Let’s make a price prediction for a random ad we’ve found:



Estimated Price: 10807 EUR

Congrats, your web app is running, and it serves the results of a Machine Learning model!
4. Conclusion

After deploying locally, we are just one step away from deploying to the web. All it would take
is just a domain name and a virtual machine. SSH in the machine, and run a similar docker-
compose file with your domain URL as Host instead of localhost. Some more complexities might
occur with getting Https certificates. But we’ll cover more complex deployments, using
Kubernetes, in another ebook.

I hope this book convinced you of the power of mastering Data Science, Machine Learning, and
DevOps with Python. Whatever the questions you want to answer, there is a way to answer them and
to share your insights using a similar process as the one we went through.
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