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The power of indecision

A code book taking you through a small Python Full Stack journey

0. Introduction

The goal of this book is to take you through the journey that I, author of this book, followed.

This journey, despite being initially guided by my indecision, led to a drastic improvement in

my programming skills and an increase in my value as a developer. The point of this book is for

you to be able to replicate the process on your own use case, which you are free to define

according to your own centers of interest or to your latest concerns. If you go through the

following pages, you will learn how to create a Car Price Prediction Web-Application serving the

results of a Machine-Learning model using the following frameworks:

Python:

Environment control: Conda, Pip

Quality control: Mypy, Flake8, Black

Web crawling/scraping: Selenium

General data science: Pandas, LightGBM, Scikit-learn

Web-Applications: Quart (similar to Sanic, Flask, Django, etc.)

DevOps:

App containerization: Docker

Deployment: Docker-compose

In 2018, I was looking to buy a second hand car. My professional life had just started, my

student loan was still to be paid back, and I had always heard that buying a brand-new car was

the worst possible investment, as the vehicle loses 10 to 30% of its value from the first

kilometer traveled. My quest for the best possible deal had already lasted several weeks, and

where I started with a precise idea of the car I wanted to acquire, I was later standing

completely crushed under my own indecision. Too many brands, too many models, to many prices,

and way too many offers. I started to feel a lack of knowledge on my end. So many variables were

to be considered that I was never able to asses whether a price was fair or not. The more lost I

was, the more obsessed I became with the idea of making the best possible choice.

Luckily enough, I had already been introduced to the wonders of Data Science, Web Scraping,

Machine Learning and DevOps. And it is faced with the idea of spending a new weekend of active

but fruitless research that I decided to solve my problem in a slightly overkill way. In this

book, I won’t describe the exact development process I followed. Instead, I’ll tell you how

things should have been done in the first place to avoid some snags I encountered along the way.

On this note, step zero should have been to clearly express the problem I was attempting to

solve. From now on, this is the problematic we’re are trying to solve:

How to make sure the price of a second hand car is fair?

1. Working with data

1.0 Scoping the need

Answering this question in a structured way requires a lot of data. But after several weeks of

intensive research on countless websites, the basic variables needed to describe a car are quite

clear.

`brand` : the brand of this car `model` : the model of this car 

`mileage` : the distance already traveled by this car 

`model_year` : the year in which this car was manufactured 

`circulation_date` : the date at which this car was put to circulation 

`transmission` : the kind of transmission of this car (automatic or manual) 

`number_of_doors` : the number of doors of this vehicle 



`din_horsepower` : the “Deutsche Industrie Normen” horsepower of this car 

`tax_horsepower` : the taxable horsepower of this car 

`energy` : the type of fuel or energy used by this car 

`first_hand` : whether this car is a first-hand one 

`imported` : whether this car was imported (to France) 

`price` : and of course the exhibition price of this car

And despite a large number of variables set aside, we still end up with the need to retrieve

thirteen data fields in a structured way, for several thousand announcements.

Of course such an open dataset, representing the current state of the second-hand car market,

doesn’t exist. It has to be created and to do so, we’re going to scrape a website on which those

fields are structured enough that they can be easily retrieved. Finding the perfect website

doesn’t take long, although many websites still allow people to sell second-hand goods in a

completely unstructured way, meaning that the data available from an ad to another are very

inconsistent.

1.1 Acquiring data

Let’s first define two terms, which are very close to one another:

Web scraping is the fact of automatically downloading web-pages while extracting data from

them.

Web crawling is the fact of automatically downloading web-pages while extracting hyperlinks

they contain and following those hyperlinks.

While web-scraping and crawling aren’t illegal by themselves, it’s highly probable that using

those techniques on websites you don’t own will be illegal. Sadly, the legislation concerning

scraping and crawling the web is full of gray areas, and whether the website’s Terms of Use are

enforceable, whether you entered a contract with the website or whether fair use can be applied

can only be determined case by case.

So before starting any data gathering based on crawling or scraping web-pages, seek legal

advice, doubt anything you can read, and cover yourself. I don’t think I will ever stop

gathering data this way for very simple reasons:

I consider this data as being publicly available data.

Google and all Search Engine Providers have constantly been crawling the web since its

start, indeed, web-pages and their content have to be discovered and indexed if results are

to be displayed in a search engine (although Google gives webmasters the right to decide

whether they want to be indexed on their search engine or not, and most of them want to).

But none of those reasons are legal arguments.

The least that can be done to cover yourself is to use a Virtual Private Network with a Kill-

switch , but I would recommend using Proxy chains , picking proxies in several and politically

opposed countries, even though this would slow the crawling/scraping process.

Whatever the nature of a project, developing sustainably way means controlling your environment.

And by controlling, I don’t mean applying all the possible best practices, but at least a set of

rules to follow and which make your code more readable and maintainable over time. If your

project becomes something greater than you initially forecasted, you, as well as the other

possible contributors, will be grateful that this frame was set early on.

In this case, the programming language we’ll use is Python3, and we’ll use Anaconda to control

our python environments. Anaconda is a free and open-source distribution of Python and R. It’s

build to simplify package version and environment management.

Let’s build a research python environment which we’ll be using for scraping, cleaning, and

modelling:

https://www.anaconda.com/


conda create -n research python=3.7.5 conda activate research

We’ll need several python packages now, including:

Pandas

Numpy

Matplotlib

Seaborn

Jupyter

Selenium

LightGBM

pip install pandas numpy matplotlib seaborn jupyter selenium lightgbm

Now that this environment is ready, it is time to create a working directory and to save a

static environment file, which allows us to build environments that consistently support our

code. To do so, the following command can be run:

conda env export > research_env.yml

We’ll start by creating our crawling/scraping code in a Jupyter notebook which we’ll call

crawler.ipynb:

ProjectDir/ ├── research_env.yml ├── notebooks/ │   ├── crawler.ipynb ├── data/ │   ├── website/

The first step to write our crawler script is to map the architecture of the website. In this

case, the car ads are listed on pages having the following URLs:

https://www.website.com/ads?page=<integer:1-N>

Going through the HTML code of the /ads?page=<integer:1-N> on a browser developer tools, it is

easy to isolate the code related to the listing of the car selling ads. In this case, each page

contains 20 HTML div elements of class carAds defined as follows:

<html lang= "fr" > 

<body class= "pageListing"

>  … 

<div class= "carAd"

>  

<div class= "ad"

>  

<a href= "/car-ad-0000000001.html" class=

"adLink" >  

</div

>  

</div

>  … 

</body

>  </html>

Each div of class carAd element has a div of class ad which itself has the following sub-element

a of class adLink. This a element, holds an href, having a fixed prefix

https://www.website.com/car-ad- and allowing us to build the URL to each of the car ads as

follows:

https://www.website.com/car-ad-<integer>.html

So what we want to do is to crawl each listing page and retrieve the href value of each ad. To

do so, we’ll be using Selenium , running a headless Chrome webdriver . Selenium Webdriver drives

a browser natively, Chrome in our case, as a user would. The reason why Selenium Webdriver and

its python bindings are often used to crawl websites is that websites can easily protect

themselves from simple GET Http requests to their pages, while it is much harder to detect a

crawler emulating a user navigating on its browser.

from typing import List from dataclasses import dataclass 

from selenium.webdriver import Chrome, ChromeOptions  # type: ignore @dataclass class Crawler: 

https://selenium-python.readthedocs.io/
https://chromedriver.storage.googleapis.com/index.html?path=78.0.3904.105/


webdriver_path:

str  

chrome_options:

str  

element_identifer:

str  

listing_url:

str  

def crawl_listing_page(self , url: str) ->

List[str]:  

""

"  

Gathers the href of all the car ads present on a listing

page.  

""

"  

# Create our Chrome WebDriver with the possibility to run

it with  

# or without graphical user interface (headless or

not)  

if self

.chrome_options:  

chrome_options =

ChromeOptions()  

chrome_options.add_argument(self

.chrome_options)  

driver = Chrome(self .webdriver_path, options=

chrome_options)  

else

:  

driver = Chrome(self

.webdriver_path)  

# Open the WebPage we want to

crawl  

driver.get(ur

l)  

# Find the HTML elements we're

interested in  

elems = driver.find_elements_by_class_name(self

.element_identifer)  

# Return the href attribute of those

elements  

return [elem.get_attribute("href" ) for elem in

elems]  

def crawl_listing_pages(self , start: int, end: int) ->

List[str]:  

""

"  

Gathers the href of all the car ads on a range of listing

pages.  

""

"  

# Instanciate our output list of

hrefs  

all_hrefs: list =

[]  

# Iterate through the range of listing pages we want to

crawl  

for page in range(start,

end):  

try

:  

# Retrieve all the hrefs of

this page  

page_hrefs = self .crawl_listing_page(self .listing_url

+ str(page))  

# Add them to the

output list  

all_hrefs.extend(page_h

refs)  

except

Exception :  

pas

s  

return

all_hrefs

Which we can use as follows:



crawler = Crawler( 

webdriver_path= "./chromedriver"

,  

chrome_options= "--headless"

,  

element_identifer= "adLink"

,  

listing_url= "https://www.website.com/ads?

page=" ,  ) 

ads_urls = crawler.crawl_listing_pages(1 , 2 )

This would return a list of car ads URLs:

[ 

'https://www.website.com/car-ad-9105831530.html'

,  

'https://www.website.com/car-ad-7101646302.html'

,  

'https://www.website.com/car-ad-6101081682.html'

,  

'https://www.website.com/car-ad-9105797990.html'

,  

'https://www.website.com/car-ad-7101643178.html'

,  … ]

Now for each of those car ads, we want to retrieve the 13 fields defined earlier. Therefore we

explore the ads pages html source code to isolate the html elements of each of those fields.

<html lang= "fr" > 

<body class= "pageAd"

>  … 

<div class= "dataList"

>  

<li class= "carBrand" > Brand

here</li>  

<li class= "carMileage" > 100

000</li>  … 

</div

>  … 

</body

>  </html>

All the necessary fields are present inside a div element of class dataList. The text of each of

the sub li elements we’re interested in can be easily retrieved using the following script:

from typing import List from dataclasses import dataclass 

from selenium.webdriver import Chrome, ChromeOptions  # type: ignore 

import pandas as pd  # type: ignore @dataclass class Scraper: 

webdriver_path:

str  

fields_identifiers:

dict  

ads_urls:

list  

results_path:

str  

batch_size: int =

5  

chrome_options: str =

""  

def scrape_ad_page(self , url: str) ->

dict:  

""

"  

Extracts the data fields of a car

ad.  

""

"  

if self

.chrome_options:  

chrome_options =

ChromeOptions()  

chrome_options.add_argument(self

.chrome_options)  



driver = Chrome(self .webdriver_path, options=

chrome_options)  

else

:  

driver = Chrome(self

.webdriver_path)  

driver.get(ur

l)  

data: dict = {"url" :

url}  

for field in self

.fields_identifiers.keys():  

try

:  

element_text =

driver.find_element_by_class_name(  

self

.fields_identifiers[field]  

).te

xt  

data[field] =

element_text  

except

Exception :  

data[field] =

None  

return

data  

def scrape_ads_pages(self ) -> None

:  

""

"  

Extracts the data fields of all the car

ads.  

Treats the ads per batch of size

self.batch_size.  

Saves the extracted data in one csv file per

batch.  

""

"  

ads_batches =

[  

self .ads_urls[i : i + self

.batch_size]  

for i in range(len(self .ads_urls))[:: self

.batch_size]  ] 

for i, batch in

enumerate(ads_batches):  

results: List[dict] = [self .scrape_ad_page(page) for page

in batch]  

dataframe: pd.Dataframe =

pd.DataFrame(results)  

dataframe.to_csv(self .results_path + f" {i} .csv" , sep= "," ,

index= False )

Which can be used as follows:

scraper = Scraper( 

webdriver_path= "./chromedriver"

,  

fields_identifiers=

{  

"brand" : "carBrand"

,  

"mileage" :

"carMileage" ,  … 

}

,  

ads_urls= ads_urls,  # the output of the

crawler  

results_path= "../data/website/"

,  

batch_size= 5

,  

chrome_options= "--headless"

,  ) scraper.scrape_ads_pages()

Running those two pieces of code allows us to retrieve several hundred thousand car ads and this

with high data consistency.

1.2 Cleaning

Consistency doesn’t mean the data is ready to be used. With a new set of data, an important

thing is to make sure we understand what kind of variables we’re looking at. Here are the two



general types of variables we most commonly observe:

Categorical

Ordinal : represent discrete and ordered units, example: “poor, fair, good, very good,

excellent”, note that the difference between “poor” and “fair”, is not necessarilly the

same as between “fair”, and “good”, hence why ordinal variables are used to measure

non-numeric concepts like feelings.

Nominal : represent discrete units, example: “Dog, Cat, Bird”

Binary : represent nominal variables with only two states, examples: “0, 1”, “False,

True”, “Yes, No”

Numerical

Discrete : represent distinct and separate values, which can’t be measured, but can be

counted, example: the number of persons in a room (there can’t be, hopefully, half a

person in the room)

Continuous : represent measurements, meaning variables which can take any value within

a range, and therefore which can be measured but not counted, example: the weight of a

person

Each type of variable comes with its understanding and cleaning challenges.

All the code defined in this section will be stored in a cleaner.ipynb Jupyter notebook as

follows:

ProjectDir/ ├── notebooks/ │   ├── crawler.ipynb │   ├── cleaner.ipynb ├── data/ 

│   ├── website/ │   │   ├── 0.csv │   │   ├── 1.csv │   │   ├── ...

Let’s load the CSVs with Pandas to take a look at them. Pandas is an open-source library

providing simple data structures and analysis tools for Python. A nice alternative to using

Pandas is to use Dask , which scales python data science capabilities to clusters with high

parallelization and asynchronous programming.

We’ll load some imports:

import glob import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns 

from uuid import uuid1

And load the files:

# Load all our CSVs in one single dataframe 

df = pd.concat([pd.read_csv(f) for f in glob.glob("../data/website/*.csv" )], ignore_index= True

)

# Sort the columns alphabetically df = df.reindex(sorted(df.columns), axis= 1 )

The df DataFrame would resemble such a table:

brand
circulatio

n date

din_horsepowe

r

energ

y

first_han

d

mileag

e

mode

l

model_yea

r

number_of_door

s

importe

d
p

PEUGEO

T
25/02/2015 150hp

Diese

l
yes

62 040

km
508 2015 5 yes

1

€

Citroe

n
03/01/2013 181hp

DIESE

L
NaN

74

084km
DS5 2013 5 NaN

2

€

From this glimpse at the data, we can immediately spot some issues such as:

missing values represented by NaN

numerical variables encoded as strings as 74 084km or 23400 €

inconsistent formats, see the spaces around units (74 084km versus 62 040 km, words being

inconsistently capitalized, etc.)

Classifying the variables encountered will help us decide on strategies to clean our dataset.

https://pandas.pydata.org/
https://dask.org/


Let’s start with our categorical variables. Before we look at any metrics, like the cardinality

of our categorical variables, we’ll apply two cleaning steps:

lower all the string variables, this way two different strings like PEUGEOT and Peugeot

become the same again.

strip all the string variables, so we remove useless spacings and can again recover from

peugeot to peugeot

# Treat categorical variables categorical_variables = [ 

"brand"

,  

"model"

,  

"finish"

,  

"transmission"

,  

"energy"

,  

"first_hand"

,  

"imported"

,  ] for column in categorical_variables: 

# Overwrite the Series with its lowered

version  

df[column] =

df[column].str.lower()  

# Overwrite the Series with its stripped

version  

df[column] =

df[column].str.strip()

Then we’ll look at the missing values of our dataframe using Pandas, Matplotlib and Seaborn:

df_na = (df.isnull().sum() / len(df)) * 100 

df_na = df_na.drop(df_na[df_na == 0 ].index).sort_values(ascending= False )[:30 ] 

f, ax = plt.subplots(figsize= (15 , 12 )) plt.xticks(rotation= '90' ) 

sns.barplot(x= df_na.index, y= df_na) plt.xlabel('Variables' , fontsize= 15 ) 

plt.ylabel('Percentage of missing values' , fontsize= 15 ) 

plt.title('Percentage of missing values by variable' , fontsize= 15 )

Which outputs the following graph:



The cardinality, or number of unique values each categorical value can take, is easily retrieved

using either:

len(df["Column" ].unique())

Or directly using Pandas describe function which returns a table containing statistical insights

(count, unique, top, etc.).

df.describe(include = "all" )

At this point we have enough information to determine the type of categorical variable we’re

dealing with:

Variable
Cardinalit

y

Data

Type
Example

brand 117 nominal [“peugeot”, “citroen”, …]

model 1126 nominal [“508”, “ds5”, …]

transmissio

n
2 binary

“mecanical” or

“automatic”

energy 8 nominal [“diesel”, “gasoline”, …]

first_hand 1 binary “yes” or NaN

imported 1 binary “yes” or NaN

Binary variables can now be processed. The transmission variable can be simplified as a boolean

called automatic, while first_hand and imported can also be turned into boolean, True for yes

and False otherwise. To do so we’ll just use direct string comparison. Doing so we’ll also solve

our issue of missing values for the first_hand and imported variables.

# Create the Automatic column and drop the original 

df["automatic" ] = df["transmission" ] == "automatic" 

df.drop(["transmission" ], axis= 1 , inplace= True ) 

# Turn the First Hand and Imported columns into booleans 

df["first_hand" ] = df["first_hand" ] == "yes" df["imported" ] = df["imported" ] == "yes"

Concerning nominal variables, an easy way to simplify the problem is to reduce the number of

categories we want to deal with. In this particular case, selecting a subset of brands of

interest will immediately reduce the cardinality of the brand and model variables. Here we’ll

select a small subset of brands that seem more relevant to my situation. Modeling would also be

improved considering how different the price of a regular car evolves compared to the price of a

premium car.

# Filter on brands brands_of_interest = [ 

"audi"

,  

"bmw"

,  

"citroen"

,  

"ds"

,  

"ford"

,  

"mercedes"

,  

"nissan"

,  

"opel"

,  

"peugeot"

,  

"renault"

,  

"seat"

,  

"toyota"

,  ] 

df = df[df["brand" ].isin(brands_of_interest)]

Here are the updated cardinalities on our dataframe, which has lost less than 20% of its size,

meaning that a tenth of the brands represents 80% of the second-hand car selling ads on the

crawled website:

Variable
Cardinalit

y

brand 12

model 455



Variable
Cardinalit

y

automatic 2

energy 8

first_hand 2

imported 2

Now that we don’t have columns containing large amounts of NaN values, we can use a simple

Pandas function to remove rows with missing fields. Potentially, if this operation was to remove

too many rows from a dataset, which is not the case here, we could implement strategies to

replace missing values with placeholders determined using statistics (for example replacing

missing horsepowers with the average observed horsepower for the considered car model).

# Removing rows with missing values df.dropna(inplace= True )

Next are the numerical variables, and those come with several issues:

model_year and number_of_doors are correctly encoded as integers

mileage, din_horsepower, tax_horsepower and price are encoded as strings with inconsistent

formats

circulation_date has to be turned into a datetime objects

We’ll be using some regex for the first problem, and Pandas to_datetime function for the second

one:

# Treat string like numerical variables 

str_numerical_variables = ["mileage" , "din_horsepower" , "tax_horsepower" , "price" ] 

for column in str_numerical_variables: 

# Use regex to extract integer values from the

strings  

df[column] =

[  

float("" .join(re.findall(r"\d+" , str(s)))) for s in

df[column].tolist()  ] 

# Format Circulation date 

df["circulation_date" ] = pd.to_datetime(df["circulation_date" ], infer_datetime_format= True )

One additional operation we’ll conduct is removing ads for car models that don’t appear more

than a thousand times in our set. This is to make sure we have enough data points on each car

model to understand how its price evolves.

thresh = 1000 df = df.groupby("model" ).filter(lambda x: len(x) >= thresh)

The cleaning being done, we can finally look at some statistics and determine the type of data:

Variable Mean Std Min Max Data Type

mileage
61738.4

8

60870.5

3
1.00

709293.0

0

continuou

s

number_of_door

s
4.68 0.75 2.00 6.00 ordinal

din_horsepower 134.91 60.97 5.00 670.00
continuou

s

tax_horsepower 7.35 4.59 1.00 57.00
continuou

s

price
22599.9

9

16064.1

5
100.00 434.00

continuou

s

model_year 2014.68 4.03
1924.0

0
2019.00

continuou

s



We can save the data in our data folder:

# Create a uuid for each ad to identify them 

df.to_csv("../data/cleaned_data.csv" , index= False )

2. Modeling

In order to answer the question stated previously:

How to make sure the price of a second-hand car is fair?

We could take several approaches such as:

building a classifier, which goal would be to output a boolean representing whether or not

a price is fair.

building a regressor, which goal would be to infer the exact market price of a vehicle.

The notion of fairness is tricky though. Indeed, nothing tells us that any of the ads from which

we gathered data comes with a fair price.

In the scenario of a classifier for example, we’d need to build a training target telling us

whether the car price is fair or not. And the only way to do so would be to set subjective

ranges around prices observed for similar vehicles, which considering the number of variables to

take into account, wouldn’t be possible.

Therefore we’ll go for the regressor approach and we’ll let the fairness evaluation to the human

being. Indeed, in this case, the model will output a price representative of what it has

observed in the dataset, and whether the price is fair or not depends on how fair all the ads

were on the website we crawled.

So the entire exercise is based on a strong assumption that a majority of the car ads are fair,

which we can easily accept considering the popularity of the website, and the simple fact that

most of those car ads turn into deals.

Another question we want to ask ourselves is:

Shall we go for one single model capable of predicting the price of any car model within our

dataset, or shall we cut the problem down?

The only way to answer this question was to try both approaches. From my tests, I decided to go

for a general regressor rather than car-model-wise regressors. Despite how different prices

behave depending on the brand or even on the model, modern Machine Learning algorithms are

capable of generalizing a price behavior and to understand those differences. So provided the

correct features, a model can understand that the price of a Mercedes doesn’t decrease as much

with the mileage as the price of a Renault. Keeping one model also simplifies the deployment

stack, as we’ll need to load one single model whatever the prediction we want to make.

2.0 Feature engineering

Feature engineering is the keystone of Machine Learning.

First, it translates the data into understandable inputs for our models. Secondly, it also

allows data scientists to simplify how the model understands the problem. For example, if we

were to predict the biological gender of an animal using its height, providing the model with a

feature built from a comparison with the average height of a given gender can be more insightful

than directly providing the model with the height (is_taller_than_average_female: True or

False).

For this part, we’ll be working in a new jupyter notebook called modeling.ipynb for

visualizations and in a new app folder for production code. Please note that we’re foreseeing

production code at modeling time, as it is very easy to create a model that can be very hard to

put in production.



ProjectDir/ ├── notebooks/ │   ├── modeling.ipynb ├── app/ │   ├── data/ 

│   │   ├── cleaned_data.csv │   ├── utils/ │   │   ├── __init__.py │   │   ├── preprocessor.py 

│   │   ├── pipeline.py │   ├── __init__.py │   ├── __main__.py

Target engineering

I like to start my feature engineering work by preparing the target of my problems. In this

particular case, the target of the regression is of course the price column of our Pandas

dataframe.

My first reflex is to look at the distribution of the data. We can do so using Seaborn in our

modeling notebook:

import pandas as pd from scipy import stats import seaborn as sns 

import matplotlib.pyplot as plt color = sns.color_palette() sns.set_style('darkgrid' ) 

df = pd.read_csv("../data/cleaned_data.csv" , parse_dates= ["circulation_date" ]) 

# Plot our Price data sns.distplot(df["price" ], fit= norm); # Fit a normal distribution to it 

(mu, sigma) = norm.fit(df["price" ]) # Plot the distribution 

plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )' .format(mu, sigma)], 

loc= 'best'

)  plt.ylabel('Frequency' ) plt.title('Price distribution' ) # Create a QQ-plot 

fig = plt.figure() res = stats.probplot(df["price" ], plot= plt) plt.show()



A first observation reveals that our data has outliers. This means data points extremely far

from our normal distribution.

We can deal with those either by capping the data or by removing them. Here we’ll choose to

remove the data, as we aren’t interested in predicting the values of super ars, collection cars,

or simple ruins. We’ll do so using filtering based on percentile.

A second observation, which the QQ plot allows us to make, is that our data is skewed. We,

therefore, apply a logarithm transformation to the price column to make it more normally

distributed, which will make any model more robust as it normalizes the magnitude differences.

# We apply log1p to our Price column df["price" ] = np.log1p(df["price" ]) 

# Plot the above graphs again sns.distplot(df["price" ] , fit= norm); 

(mu, sigma) = norm.fit(df["price" ]) 

plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )' .format(mu, sigma)], 

loc= 'best'

)  plt.ylabel('Frequency' ) plt.title('Price distribution' ) fig = plt.figure() 

res = stats.probplot(df["price" ], plot= plt) plt.show()



We can see that we’ve improved the distribution of our data by making it more approximate to

normal. The QQ plot also shows a better linear behavior, even though we still observe skewness

at both extremes.

To tackle those two issues, we’ll create a function in our script app/utils/preprocessor.py:

from datetime import datetime import pandas as pd import numpy as np 

def process_target(df: pd.DataFrame) -> pd.DataFrame: 

""

"  

Removes outliers and applies log transform to the

target.  

""

"  

upper_lim = df["price" ].quantile(0.99

)  

lower_lim = df["price" ].quantile(0.01

)  



df = df[(df["price" ] < upper_lim) & (df["price" ] >

lower_lim)]  

df["price" ] = np.log1p(df["price"

])  

return

df

Creating some features

We’ll create some basic features from the dates variable, the model age, the horsepowers, etc.

Those features will help the model understand the meaning of the dates related to a vehicle, and

put this in relationship with how much the car traveled. To do so, we’ll add a function to the

app/utils/preprocessor.py script:

def create_features(df: pd.DataFrame) -> pd.DataFrame: 

""

"  

Creates

features.  

""

"  

# Number of days since circulation

date  

df["circulation_days" ] = (datetime.now() - df["circulation_date"

]).dt.days  

# Number of years since model

creation  

df["model_age" ] = 2019 - df["model_year"

]  

# Average milesage the car drove per

day  

df["average_mileage_per_day" ] = df["mileage" ] /

df["circulation_days" ]  

# Tax horse per Din horse, "How much bang for the

bucks"  

df["tax_/_din" ] = df["tax_horsepower" ] /

df["din_horsepower" ]  

return

df

Creating a Model pipeline

The next step is to create a pipeline allowing us to:

create reversible feature transforms so that we can translate features for the model

generate and train a model

make price predictions

Talking about a model, it’s time to choose one, and for our problem, the best solution is

certainly a Gradient Boosting Model. We have to decide which API we go for and the three main

choices we have are:

XGBoost (Mar 2014)

LightGBM (Jan 2017)

CatBoost (Apr 2017)

Those three solutions are extremely similar and easily inter-changeable. If you’re interested in

their differences, you’ll find a lot of comparisons online. In this book, we’ll be using

LightGBM.

Then we still need to answer two questions:

First, how do we transform categorical features for our model?

For categorical features, we can use a processing step called One-Hot encoding, which replaces a

categorical feature with as many binary features as it has labels. So a feature like

brand="renault" or "bmw" turns into two features renault=True or False and bmw=True or False. I

recommend that you also investigate Label (or Ordinal) encoding, which simply means converting



string labels to integer values. Generally speaking, One-hot encoding is a better representation

of categorical features, but you need to beware for feature explosion if the cardinality of your

features is high, in which case you might prefer simpler Label encoding.

Second, how do we transform numerical features for our model?

For numerical features, generally used solutions are MinMaxScaler, RobustScaler, StandardScaler,

and many more. We’ll go for the classic StandardScaler which transforms our feature distribution

so that it’s centered on 0 and has a standard deviation of 1. Therefore 68% of the values will

lie between -1 and 1. The reason why we apply such transform is simply that machine learning

algorithms perform better and/or converge faster when features are on a relatively similar scale

and/or close to normally distributed.

Let’s create a function in the script api/utils/pipeline.py to create this pipeline. We’ll make

use of the famous Scikit-learn Pipelines to do so:

from typing import List import pandas as pd from category_encoders import OneHotEncoder 

from lightgbm import LGBMRegressor from sklearn.compose import ColumnTransformer 

from sklearn.pipeline import Pipeline, make_pipeline 

from sklearn.preprocessing import StandardScaler 

def create_pipeline(df: pd.DataFrame) -> Pipeline: 

""

"  

Creates a sklearn pipeline which takes care of feature

transforms,  

model training and

inference.

""

"  

# Define the target

column  

target_column: str =

"price"  

# Define the categorical

columns  

categorical_cols: List[str] =

[  

"brand"

,  

"energy"

,  

"first_hand"

,  

"imported"

,  

"model"

,  

"number_of_doors"

,  

"automatic

"  ] 

# Define the numerical

columns  

numerical_cols: List[str] =

[  

"din_horsepower"

,  

"mileage"

,  

"tax_horsepower"

,  

"circulation_days"

,  

"model_age"

,  

"average_mileage_per_day

" ,  

"tax_/_din

"  ] 

# Generate a

Pipeline  

regressor: Pipeline =

make_pipeline(  

# Create a Column

Transformer  

ColumnTransforme

r(  [ 

("num" , StandardScaler(),

numerical_cols),  

("cat" , OneHotEncoder(),

categorical_cols),  ] 

)

,  

# Create a LGBM

Regressor  

LGBMRegresso

r(  

boosting_type=

"gbdt" ,  

objective=

"regression" ,  

metric= ["l2_root" , "l1" ],  # Root Mean Squared Error and Mean

Absolute Error  

num_leaves=

512 ,  

learning_rate=

0.1 ,  

feature_fraction=

0.7 ,  

bagging_fraction=

0.7 ,  

reg_alpha= 0

,  

reg_lambda=

0.1 ,  

verbose= 0

,  

)

,  ) 

# Fit the Column Transformer and the

model  

regressor.fit(df[categorical_cols + numerical_cols],

df[target_column])  

return

regressor



Parameters Optimization

If you wonder how those parameters for our LGBM model were defined, I found them using a method

called GridSearchCV. This method makes an exhaustive set of combinations of parameters from a

given parameter space. It then fits an LGBM Regressor on k random folds of divided data, before

scoring the model on the remaining fold. The combination of parameters giving the best score is

kept. This method is compute-intensive, so I recommend that you also investigate RandomSearchCV

and Bayesian search. Here’s a snippet of code to apply Grid search cross-validation:

import lightgbm as lgb from sklearn.model_selection import GridSearchCV params = { 

"boosting" : "gbdt" ,  # gdbt, rf, goss or

dart  

"objective" : "regression"

,  

"metrics" : ["l2_root" , "l1" ],  # metric(s) to be evaluated on the evaluation

set(s)  

"num_threads" : 2 ,  # number of threads for LightGBM (set to available real CPU

cores)  

"num_leaves" : 128 ,  # max number of leaves in one

tree  

"max_depth" : -1 ,  # limit the max depth for tree

model  

"learning_rate" : 0.1 ,  # shrinkage

rate  

"feature_fraction" : 1 ,  #  if you set it to 0.8, LightGBM will select 80% of features

before training each tree

"bagging_fraction" : 1 ,  # like feature_fraction, but this will randomly select part of

data without resampling

"lambda_l1" : 0.0 ,  # L1

regularization  

"lambda_l2" : 0.0 ,  # L2

regularization  } 

# Create a regressor mdl = lgb.LGBMRegressor( 

boosting= params["boosting"

],  

objective= params["objective"

],  

num_threads= params["num_threads"

],  

num_leaves= params["num_leaves"

],  

max_depth= params["max_depth"

],  

learning_rate= params["learning_rate"

],  

feature_fraction= params["feature_fraction"

],  

bagging_fraction= params["bagging_fraction"

],  

lambda_l1= params["lambda_l1"

],  

lambda_l2= params["lambda_l2"

],  ) # Create parameters space to search gridParams = { 

"boosting_type" : ["gbdt"

],  

"objective" : ["regression"

],  

"random_state" : [501

],  

"num_leaves" : [128 , 256 , 512

],  

"learning_rate" : [0.005 , 0.05 , 0.1

],  

"feature_fraction" : [0.7 , 0.8 , 0.9

],  

"bagging_fraction" : [0.7 , 0.8 , 0.9

],  

"lambda_l1" : [0 , 0.1 , 0.5

],  

"lambda_l2" : [0 , 0.1 , 0.5

],  } # Create the grid 



grid = GridSearchCV(mdl, gridParams, verbose= 1 , cv= 4 , n_jobs= 2 ) 

# Run the grid search of our training dataset 

# (X is our features dataframe after Column transforms as above, # Y is the target price) 

grid.fit(X, Y) # Print the best parameters found print(grid.best_params_) 

print(grid.best_score_)

Model Evaluation

Let’s look at what kind of errors our model does. In our case, looking at the Root Mean Squared

Error (RMSE or L2-root) or the Mean Absolute Error (L1) we obtain on a testing-set at the end of

training won’t help us figure out how well our model performs. The reason is that we have

applied Logarithm transform to our target price, meaning that the metrics will represent errors

on the logarithm scale. So what we can do is:

Make a train/test split

Train on training-set

Predict on testing-set

Apply exponential to the prediction on the test set and the target in the test set

Recompute an RMSE between the predictions and the actual prices observed

Let’s do it:

import numpy as np from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

# Make our random train test split (80% / 20%) 

train, test = train_test_split(df, test_size= 0.2 ) 

# Create our regressor using the utils function we've made pipeline = create_pipeline(train) 

# Predict on the test set log_predictions = pipeline.predict(test) 

# Turn predictions back to prices predictions = np.expm1(log_predictions) # Compute target 

target = np.expm1(test["price" ].tolist()) # Compute RMSE 

np.sqrt(mean_squared_error(exp_target, exp_pred))

This calculation tells us that we have a Root Mean Squared Error of 1250 EUR. Not too bad for a

simple model, particularly knowing that one price differentiator for cars is the set of options

and that we don’t have this data in our dataframe. For example the GPS option immediately

increases the price of a car by around 500 EUR. Neither do we know whether the car had an

accident, whether the previous owner was smoking inside, etc.

We can look at brand or even model levels to have a better view of our model performance. For

one of the most frequent models of our dataset (the Renault Clio), we have an RMSE of 545 EUR.

Simple pandas selection allows us to do so, for example: test[test["brand"] == "renault"]

One more thing we can do to understand a bit more what the drivers of price are is to look at

feature importance. LightGBM provides a feature_importance method returning scores of how much



each feature impacts the price. By default this importance score is based on the number of

decision tree splits done based on each feature. Let’s plot this:

import seaborn as sns import matplotlib.pyplot as plt color = sns.color_palette() 

sns.set_style('darkgrid' ) # Get importance scores from the LGBMRegressor 

importance = regressor.steps[1 ][1 ].feature_importances_ # Retrieve feature names 

features_list = numerical_cols + list( 

regressor.named_steps['columntransformer' ].named_transformers_['cat'

].get_feature_names()  ) 

# Create aa dataframe f_importance = pd.concat( [ 

pd.Series(features_lis

t),  

pd.Series(importanc

e)  

]

,  

axis=

1  ) # Set column names 

f_importance.columns = ['Feature Name' , 'Importance' ] # Sort by importance 

metrics_sorted = f_importance.sort_values('Importance' , ascending= False ) #Plot 

g = sns.barplot(x= "Importance" , y= "Feature Name" , data= metrics_sorted[:20 ]) 

g.figure.set_size_inches(12 , 9 ) plt.show()

3. Serving our model

In the previous chapter, we’ve built utils functions that create a Scikit-learn pipeline,

allowing us to take raw incoming data, and to train a LightGBM Regressor on it before using it

for actual inference on raw data. Now we’re going to create a Web Application around those utils

function.

We’ll go for a simple single-page WebApp, on which users will be able to fill in a form

describing a vehicle, submit it and get an estimation of the value of the vehicle.

3.0 WebApp creation

When building a WebApp with Python, the first step is selecting a framework. Classic frameworks

for Python WebApps are Flask, Django, Sanic, Quart, Tornado, Pyramid, and some more. I recommend

you to be fluent in some of those solutions. Knowing one simplifies the discovery and learning



of another one. In this book, we’ll be using Quart. The reason is that Quart mimics another very

popular framework,Flask, with a major difference being default ASGI (Asynchronous Server Gateway

Interface) support as opposed to default WSGI (Web Server Gateway Interface) for Flask.

Asynchronous programming, introduced to Python with the asyncio library, and the async/await

syntax from Python3.5, allow us to write concurrent code which translates in increased

performance for networking, database connectors, web-servers, task-queues, etc.

Let’s recall the project’s structure:

ProjectDir/ ├── notebooks/ │   ├── modelling.ipynb ├── app/ │   ├── data/ 

│   │   ├── cleaned_data.csv │   ├── utils/ │   │   ├── __init__.py │   │   ├── preprocessor.py 

│   │   ├── pipeline.py │   ├── __init__.py │   ├── __main__.py

Let’s create our application. In the file called app/__main__.py:

# Prepare imports from datetime import datetime import numpy as np import pandas as pd 

from quart import Quart, jsonify, render_template, request # Import our utils 

from utils.pipeline import create_pipeline 

from utils.preprocessor import create_features, process_target # Load our dataframe 

df = pd.read_csv("data/cleaned_data.csv" , parse_dates= ["circulation_date" ]) 

# Process the target df = process_target(df) # Create features df = create_features(df) 

# Create model pipeline regressor = create_pipeline(df) # Create a Quart app 

app = Quart(__name__ ) # Create a GET route to render our single webpage 

@app.route ("/" , methods= ["GET" ]) async def render_index(): 

""

"  

Renders the index.html template

file.  

""

"  

return await render_template("index.html"

)  

# Create a GET route to return models @app.route ("/models/" , methods= ["GET" ]) 

async def get_models(): 

""

"  

Returns a json holding a dictionary binding models to

brands.  

This is used to allow users of the app to select models

that  

our model supports for each

brand.  

""

"  

models =

{}  

for brand in

df.brand.unique():  

models[brand] = "," .join(sorted(df[df.brand ==

brand].model.unique()))  

return

jsonify(models)  

# Create a POST route to make price predictions @app.route ("/" , methods= ["POST" ]) 

async def make_prediction(): 

""

"  

Retrieves a data form, processes the data

fields,  



and passes them through our price prediction

pipeline.  

""

"  

# Retrieve

form  

form = await

request.form  

# Process fields which types need to be

changed  

form["circulation_date" ] = datetime.strptime(form["circulation_date" ], "%Y-%m-

%d" )  

form["model_year" ] = int(form["model_year"

])  

form["mileage" ] = int(form["mileage"

])  

form["din_horsepower" ] = int(form["din_horsepower"

])  

form["tax_horsepower" ] = int(form["tax_horsepower"

])  

form["number_of_doors" ] = int(form["number_of_doors"

])  

form["imported" ] = True if form["imported" ] == "True" else

False  

form["automatic" ] = True if form["automatic" ] == "True" else

False  

form["first_hand" ] = True if form["first_hand" ] == "True" else

False  

# Create prediction row with

features  

row = pd.DataFrame(form, index= [0

])  

row =

create_features(row)  

# Predict and turn log prediction back into

price  

prediction = int(np.expm1(regressor.predict(row)[0

]))  

# Return

response  

return jsonify({"price" :

str(prediction)})  # Run our application if __name__ == "__main__" : 

app.run(host= "0.0.0.0" , port= 5000 , debug=

True )

What we just did is:

Prepare a regressor object using our dataframe and utils functions

Create a Quart application object

Create a first GET Route rendering our single-webpage, which will be made available at the

root endpoint /, which means, in case our application is deployed on the following domain

website.com, that the webapage will be accessible there http://website.com/

Create a second GET Route at /models returning a dictionary of the brands and corresponding

car models at each Http GET request at http://website.com/models/

Create a POST Route at / so that each Http POST request made at http://website.com/ can

send data to our price prediction model and gets a price prediction back

Run the app and make it available at the machine’s local address 0.0.0.0:5000

Now the index.html file has to be created. We’ll use some very basic HTML and JavaScript to do

so. We’ll create the file in an app/templates folder, as Quart will automatically look for

templates in this folder.

ProjectDir/ ├── notebooks/ │   ├── modelling.ipynb ├── app/ │   ├── data/ 

│   │   ├── cleaned_data.csv │   ├── utils/ │   │   ├── __init__.py │   │   ├── preprocessor.py 



│   │   ├── pipeline.py │   ├── templates/ │   │   ├── index.html │   ├── __init__.py 

│   ├── __main__.py

Let’s start with the basic structure of our file, and particularly the head element:

<!DOCTYPE html> <html lang= "en" > <head> 

<title>

App</title>  

<meta charset= "UTF-8"

>  

<meta name= "viewport" content= "width=device-width, initial-

scale=1" >  

<link href= "{{ url_for('static', filename='css/style.css') }} " rel= "stylesheet" type=

"text/css" />

<script src= "https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js" >

</script>  

<link href= "https://cdn.jsdelivr.net/npm/select2@4.0.13/dist/css/select2.min.css" rel=

"stylesheet" />

<script src= "https://cdn.jsdelivr.net/npm/select2@4.0.13/dist/js/select2.min.js" >

</script>  

<script src= "https://cdn.jsdelivr.net/npm/sweetalert2@9/dist/sweetalert2.min.js" >

</script>  

<link href= "https://cdn.jsdelivr.net/npm/sweetalert2@9/dist/sweetalert2.min.css" id=

"theme-styles" rel= "stylesheet" >

</head>

In the head, we’re defining some standard meta tags which are usually here to specify a

character set, description, keywords, author, and viewport settings. We then define some link

tags which are here to specify paths to some internal and external CSS stylesheets. And we

define some script tags which specify the sources of some JavaScript packages that we will be

using, namely sweetalert2 and select2, respectively used to create good looking alerts and

dropdown lists.

Now for the body of our HTML, we will encapsulate a simple form element in a wrapper div, itself

in a container div for later styling purposes.

<body> 

<div class= "container"

>  

<div class=

"wrapper" >  

<form id= "form_pred" class= "form validate-form" method=

"post" >  

..

.  

</form

>  

</div

>  

</div

>  

</body>

Within this form element, we’ll define one input per raw feature expected by our model as

follows:

<span class= "form-

title" >  

Welcome to your Car Price

Predictor!  

</spa

n>  

<div class= "form-input input-

select" >  

<span class= "label-input" >

Brand</span>  

<di

v>  

<select class= "selection" id= "brand"

name= "brand" >  



<option value= "none" > Choose a

brand </option>  

<option value= "audi" >

Audi </option>  

<option value= "bmw" >

Bmw </option>  

<option value= "citroen" >

Citroen </option>  

<option value= "ford" >

Ford </option>  

<option value= "mercedes" >

Mercedes </option>  

<option value= "nissan" >

Nissan </option>  

<option value= "opel" >

Opel </option>  

<option value= "peugeot" >

Peugeot </option>  

<option value= "renault" >

Renault </option>  

<option value= "toyota" >

Toyota </option>  

<option value= "volkswagen" >

Volkswagen </option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input input-

select" >  

<span class= "label-input" >

Model</span>  

<di

v>  

<select class= "selection" id= "model"

name= "model" >  

<option> Choose above

first</option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate= "Circulation

date required." >  

<span class= "label-input" > Circulation

date</span>  

<input class= "input" type= "date" id= "circulation_date" name=

"circulation_date" placeholder= "31/01/2009" >

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate= "Model

year required." >  

<span class= "label-input" > Model

Year</span>  

<input class= "input" type= "number" step= "1" min= "1900" id= "model_year"

name= "model_year" placeholder= "2009" >

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate=

"Mileage required." >  

<span class= "label-input" >

Mileage</span>  

<input class= "input" type= "number" step= "1" min= "0" max= "1000000" id=

"mileage" name= "mileage" placeholder= "145364" >



<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate= "DIN

horsepower required." >  

<span class= "label-input" > DIN

horsepower</span>  

<input class= "input" type= "number" step= "1" min= "0" max= "1000" id=

"din_horsepower" name= "din_horsepower" placeholder= "130" >

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate= "Tax

horsepower required." >  

<span class= "label-input" > Tax

horsepower</span>  

<input class= "input" type= "number" step= "1" min= "0" max= "30" id=

"tax_horsepower" name= "tax_horsepower" placeholder= "7" >

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input input-

select" >  

<span class= "label-input" >

Énergie</span>  

<di

v>  

<select class= "selection" id= "energy"

name= "energy" >  

<option value= "diesel" selected= "" >

Diesel </option>  

<option value= "essence" >

Gasoline </option>  

<option value= "electrique" >

Electric </option>  

<option value= "hybride essence électrique" > Hybrid

Gasoline Electric </option>  

<option value= "hybride diesel électrique" > Hybrid

Diesel Electric </option>  

<option value= "bicarburation essence gpl" >

Gasoline GPL </option>  

<option value= "bicarburation essence bioéthanol" >

Gasoline bioethanol </option>  

<option value= "bicarburation essence gnv" >

Gasoline GNV </option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input input-

select" >  

<span class= "label-input" >

Imported</span>  

<di

v>  

<select class= "selection" id= "imported"

name= "imported" >  



<option value= "True" >

Yes </option>  

<option value= "False" selected=

"" > No </option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input input-

select" >  

<span class= "label-input" >

Automatic</span>  

<di

v>  

<select class= "selection" id= "automatic"

name= "automatic" >  

<option value= "True" >

Yes </option>  

<option value= "False" selected=

"" > No </option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input input-

select" >  

<span class= "label-input" > First

hand</span>  

<di

v>  

<select class= "selection" id= "first_hand"

name= "first_hand" >  

<option value= "True" >

Yes </option>  

<option value= "False" selected=

"" > No </option>  

</sele

ct>  

</di

v>  

<span class= "focus-input"

></span>  

</di

v>  

<div class= "form-input validate-input" data-validate= "Number of

doors required." >  

<span class= "label-input" > Number of

doors</span>  

<input class= "input" type= "text" id= "number_of_doors" name=

"number_of_doors" placeholder= "5" >

<span class= "focus-input"

></span>  

</di

v>  

<div class= "container-form-

btn" >  

<div class= "wrap-

form-btn" >  

<div class= "form-

bgbtn" ></div>  

<button id= "predict" class=

"form-btn" >  

<spa

n>  

Evalua

te !  

</sp

an>  

</butt

on>  

</di

v>  

</di

v>

At the end of our body, we now have to define some scripts for the dropdown lists to make use of

select2:

<div id= "dropDownSelect1" >

</div>  

<script

>  

$ (".selection" ).select2

({  

minimumResultsForSearch :

20 ,  

dropdownParent : $

('#dropDownSelect1' )  

}

);  

</script

>

We also need a script to get the car models from the GET /models route we’ve created:



<script> $ ("#brand" ).change (function ()

{  

var $dropdown = $ (this

);  

$ .getJSON ("/models" , function

(data) {  

var key = $dropdown .val

();  

var vals = data[key].split

("," );  

var $secondChoice = $

("#model" );  

$secondChoice .empty

();  

$ .each (vals, function (index,

value) {  

$secondChoice .append ("<option>" + value + "

</option>" );  

}

);  

}

);  

}

);  

</script

>

And finally we need some script to actually call our POST / route when the user pushes the form

button to evaluate the price of a car. We’ll make this call using ajax:

<script type= "text/javascript"

>  

$ (function ()

{  

$ ("button#predict" ).click

(function (e){  

e .preventDefault

();  

/*Get variables from

form*/  

var brand = $ ("#brand"

).val ();  

var model = $ ("#model"

).val ();  

var circulation_date = $ ("#circulation_date"

).val ();  

var model_year = $ ("#model_year"

).val ();  

var mileage = $ ("#mileage"

).val ();  

var din_horsepower = $ ("#din_horsepower"

).val ();  

var tax_horsepower = $ ("#tax_horsepower"

).val ();  

var energy = $ ("#energy" ).val (), ext_color = $

("#ext_color" ).val ();  

var imported = $ ("#imported"

).val ();  

var automatic = $ ("#automatic"

).val ();  

var first_hand = $ ("#first_hand"

).val ();  

var number_of_doors = $ ("#number_of_doors"

).val ();  

/*Create the JSON

payload*/  

var data

= {  

"brand" : brand, "model" : model, "circulation_date" :

circulation_date,  

"model_year" : model_year, "mileage" : mileage, "din_horsepower"

: din_horsepower,  

"tax_horsepower" : tax_horsepower, "energy" : energy,

"imported" : imported,  

"automatic" : automatic, "first_hand" : first_hand,

"number_of_doors" : number_of_doors,  

}

;  



/*Send the ajax request and fire a sweetalert

on success*/  

$ .ajax

({  

method :

"POST" ,  

url : window .location

.href ,  

data :

data,  

success : function

(result){  

var json_result =

result;  

var price =

json_result['price' ];  

Swal .fire ('Estimated Price: ' + price+ ' EUR'

, '' , 'success' )  

}

,  

error :

function (){  

console .log

("error" )  } 

}

)  

}

)  

}

);  

</script

>

The HTML of our webpage is now ready. All we need to do is style it a little as it currently

looks like that:

So let’s create a new file in app/static/css/ called style.css, which you can see we import in

the head of our HTML. Quart will automatically look for stylesheets in this folder. Let’s start



by importing a font and restyling the basic tags:

@import url('https://fonts.googleapis.com/css2?

family=Roboto+Condensed:wght@300;400;700&display=swap' );

* { 

margin : 0px

;  

padding : 0px

;  

box-sizing : border-box

;  } body, html { 

height : 100%

;  

font-family : "Roboto Condensed" , sans-

serif ;  } a { 

font-family : "Roboto Condensed"

;  

font-size : 14px

;  

line-height : 1.7

;  

color : #666666

;  

margin : 0px

;  

transition : all 0.4s

;  

-webkit-transition : all 0.4s

;  

-o-transition : all 0.4s

;  

-moz-transition : all 0.4s

;  } 

a:focus { 

outline : none !important

;  } a:hover { 

text-decoration : none

;  } h1, h2, h3, h4, h5,

h6 { 

margin : 0px

;  } p { 

font-family : "Roboto Condensed"

;  

font-size : 14px

;  

line-height : 1.7

;  

color : #666666

;  

margin : 0px

;  } ul, li { 

margin : 0px

;  

list-style-type : none

;  } input { 

outline : none

;  

border : none

;  } textarea { 

outline : none

;  

border : none

;  } textarea:focus , input:focus { 

border-color : transparent !important

;  } input:focus:: -webkit-input-placeholder { 

color : transparent

;  } input:focus: -moz-placeholder { 

color : transparent

;  } 

input:focus:: -moz-placeholder { 

color : transparent

;  } input:focus: -ms-input-placeholder { 

color : transparent

;  } textarea:focus:: -webkit-input-placeholder { 

color : transparent

;  } 

textarea:focus: -moz-placeholder { 

color : transparent

;  } textarea:focus:: -moz-placeholder { 

color : transparent

;  } textarea:focus: -ms-input-placeholder { 

color : transparent

;  } 

input:: -webkit-input-placeholder { 

color : #adadad

;  } input: -moz-placeholder { 

color : #adadad

;  } input:: -moz-placeholder { 

color : #adadad

;  } 

input: -ms-input-placeholder { 

color : #adadad

;  } textarea:: -webkit-input-placeholder { 

color : #adadad

;  } textarea: -moz-placeholder { 

color : #adadad

;  } 

textarea:: -moz-placeholder { 

color : #adadad

;  } textarea: -ms-input-placeholder { 

color : #adadad

;  } button { 

outline : none !important

;  

border : none

;  



background : transparent

;  } button:hover { 

cursor : pointer

;  } iframe { 

border : none !important

;  }

Now we can restyle our main container div:

.container { 

width : 100%

;  

min-height : 100vh

;  

display : -webkit-

box;  

display : -webkit-

flex;  

display : -moz-

box;  

display : -ms-

flexbox;  

display :

flex;  

flex-wrap :

wrap;  

justify-content : center

;  

align-items : center

;  

padding : 15px

;  

background : #a64bf4

;  

background : -webkit-linear-gradient(45deg , #03ce9b , #10abd1

);  

background : -o-linear-gradient(45deg , #03ce9b , #10abd1

);  

background : -moz-linear-gradient(45deg , #03ce9b , #10abd1

);  

background : linear-gradient(45deg , #03ce9b , #10abd1

);  }

Our wrapper div:

.wrapper { 

width : 500px

;  

background : #fff

;  

border-radius : 10px

;  

overflow : hidden

;  

padding : 42px 55px 45px 55px

;  }

Our form element, its inputs and button:

.form { 

width : 100%

;  } .form-title { 

display : block

;  

font-family : "Roboto Condensed"

;  

font-size : 39px

;  

color : #333333

;  

line-height : 1.2

;  

text-align : center

;  

padding-bottom : 44px

;  } .form-input { 

width : 100%

;  

position : relative

;  

border-bottom : 2px solid #d9d9d9

;  

padding-bottom : 13px

;  

margin-bottom : 27px

;  } 

.label-input { 

font-family : "Roboto Condensed"

;  

font-size : 16px

;  

color : #666666

;  

line-height : 1.5

;  

padding-left : 5px

;  } .input { 

display : block

;  

width : 100%

;  

background : transparent

;  

font-family : "Roboto Condensed"

;  

font-size : 18px

;  

color : #333333

;  

line-height : 1.2

;  

padding : 0 5px

;  } .focus-input { 

position : absolute

;  



display : block

;  

width : 100%

;  

height : 100%

;  

top : 0

;  

left : 0

;  

pointer-events : none

;  } 

.focus-input ::before { 

content : ""

;  

display : block

;  

position : absolute

;  

bottom : -2px

;  

left : 0

;  

width : 0

;  

height : 2px

;  

-webkit-transition : all 0.4s

;  

-o-transition : all 0.4s

;

-moz-transition : all 0.4s

;  

transition : all 0.4s

;  

background : #7f7f7f

;  } input.input { 

height : 40px

;  } textarea.input { 

min-height : 110px

;  

padding-top : 9px

;  

padding-bottom : 13px

;  } .input :focus +.focus-input ::before { 

width : 100%

;  } 

.has-val.input +.focus-input ::before { 

width : 100%

;  } .container-form-btn { 

display : -webkit-

box;  

display : -webkit-

flex;  

display : -moz-

box;  

display : -ms-

flexbox;  

display :

flex;  

flex-wrap :

wrap;  

justify-content : center

;  

padding-top : 13px

;  } 

.wrap-form-btn { 

width : 100%

;  

display : block

;  

position : relative

;  

z-index : 1

;  

border-radius : 25px

;  

overflow : hidden

;  

margin : 0 auto

;  } .form-bgbtn { 

position : absolute

;  

z-index : -1

;  

width : 300%

;  

height : 100%

;  

background : #a64bf4

;  

background : -webkit-linear-gradient(left , #03ce9b , #10abd1 , #03ce9b ,

#10abd1 );  

background : -o-linear-gradient(left , #03ce9b , #10abd1 , #03ce9b ,

#10abd1 );  

background : -moz-linear-gradient(left , #03ce9b , #10abd1 , #03ce9b ,

#10abd1 );  

background : linear-gradient(left , #03ce9b , #10abd1 , #03ce9b ,

#10abd1 );  

top : 0

;  

left : -100%

;  

-webkit-transition : all 0.4s

;  

-o-transition : all 0.4s

;  

-moz-transition : all 0.4s

;  

transition : all 0.4s

;  } .form-btn { 

display : -webkit-

box;  

display : -webkit-

flex;  

display : -moz-

box;  

display : -ms-

flexbox;  

display :

flex;  

justify-content : center

;  

align-items : center

;  

padding : 0 20px

;  

width : 100%

;  

height : 50px

;  

font-family : "Roboto Condensed"

;  

font-size : 16px

;  

color : #fff

;  



line-height : 1.2

;  } .wrap-form-btn :hover .form-bgbtn { 

left : 0

;  } .form-btn i { 

-webkit-transition : all 0.4s

;  

-o-transition : all 0.4s

;  

-moz-transition : all 0.4s

;  

transition : all 0.4s

;  } .form-btn :hover i { 

-webkit-transform : translateX(10px

);  

-moz-transform : translateX(10px

);  

-ms-transform : translateX(10px

);  

-o-transform: translateX(10px

);  

transform : translateX(10px

);  }

And now our webpage looks much better!

3.1 Containerization

From now on, we want to deploy this application. My favorite way of doing this is using Docker.

Docker is your best friend. Docker is based on so-called Containers which are standardized units

of software allowing developers to isolate applications from their environments. To put it

simply, by containerizing your application, create a standard piece of software that can run on

any machine equipped with Docker. This means no more cases where your code runs on a given

machine but not on another one. Docker is compatible with most of the Operating Systems out

there, meaning that it simplifies passing from an OS to another. You can now proudly program on

Windows and deploy on Ubuntu server without a headache (but I still recommend you to go for

Linux).

So how does docker create a container? Docker uses so-called images, which you can see as a

snapshot of your application’s software and its required environment. So let’s create a

Dockerfile next to our app folder:

ProjectDir/ ├── notebooks/ │   ├── modeling.ipynb ├── app/ │   ├── data/ 

│   │   ├── cleaned_data.csv │   ├── utils/ │   │   ├── __init__.py │   │   ├── preprocessor.py 



│   │   ├── pipeline.py │   ├── static/ │   │   ├── css/ │   │   │   ├── style.css 

│   ├── templates/ │   │   ├── index.html │   ├── __init__.py │   ├── __main__.py ├── Dockerfile

In our Dockerfile we will:

specify an image, meaning the operating system in which we’ll run our application. In our

case, we can go for miniconda3

FROM continuumio/miniconda3 as base

RUN apt-get update && apt install -y build-essential

create a python environment and install the required packages

RUN conda create -n app python

RUN export PIP_CACHE_DIR="/opt/cache/pip"

RUN echo "source activate app" > ~/.bashrc

ENV PATH /opt/conda/envs/app/bin:$PATH

RUN pip install \

        'quart==0.11.5' \

        'pandas==1.0.1' \

        'numpy==1.18.1' \

        'lightgbm==2.3.1'

create a production image of our app using just the minimally required python environment:

# PRODUCTION IMAGE

FROM continuumio/miniconda3 as prod

COPY --from=base /opt/conda/envs /opt/conda/envs

RUN echo "source activate app" > ~/.bashrc

ENV PATH /opt/conda/envs/app/bin:$PATH

COPY . .

WORKDIR /app

create a test image of our app which will run flake8 linting of our code during the image

creation process:

# TESTING IMAGE

FROM continuumio/miniconda3 as test

COPY --from=base /opt/conda/envs /opt/conda/envs

RUN echo "source activate app" > ~/.bashrc

ENV PATH /opt/conda/envs/app/bin:$PATH

RUN pip install \

        'flake8==3.8.1'

COPY . .

WORKDIR /app

RUN flake8

Talking about flake8 our python linter, let’s define a small .flake8 file in our app folder and

in which we specify some code standards like the maximum line length:

[flake8]

max-line-length = 88

Once done, we can use the Docker CLI to build our test image by running:

docker build --target test .

This build command point at the Dockerfile and aims particularly at the test image. Docker will

download create the base miniconda3 image and its python environment, before switching to the

test image by copying the base one and installing and running flake8 also. We could do the same

with Pytest, which means adding it to the python environment before running Pytest during the

image creation process. Doing so, any failing test would cancel the image creation, which is a

very valuable feature to have in a Continuous Integration / Continuous Deployment pipeline.

3.2 Deployment



Now that we have a ready Dockerfile, we will use an even better tool called Docker Compose.

Docker Compose is a tool used to define and run multi-container Docker applications. Modern

applications tend to be more and more microservice-based. We can now build simple YAML files to

define and run all the services of an application. Let’s create a docker-compose.dev.yml file

next to our existing Dockerfile. In this file, we will define two services, namely:

our price prediction web app

a reverse proxy, which we place in front of our web app to deal with incoming requests, and

therefore acting as an intermediary between the web and our web app. We’ll use Traefik, a

docker compliant Edge router to do so.

Here’s our docker-compose.dev.yml file:

version: "3.5" services: 

traefik

:  

image:

"traefik:v2.2"  

container_name:

"traefik"  

restart:

always  

command

:  

- "--

providers.docker=true"  

- "--

providers.docker.exposedbydefault=false"  

- "--

entrypoints.web.address=:80"  

ports

:  

-

"80:80"

volumes

:  

-

"/var/run/docker.sock:/var/run/docker.sock:ro"  

webapp

:  

build

:  

context:

.  

target:

prod

container_name:

"webapp"  

restart:

always  

labels

:  

-

"traefik.enable=true"  

-

"traefik.http.routers.pwrouter.rule=Host(`localhost`)"  

-

"traefik.http.routers.pwrouter.entrypoints=web"  

ports

:  

-

5000  

command: python3

__main__.py

Let’s run this configuration using the Docker Compose CLI:

docker-compose -f docker-compose.dev.yml up --build

Docker will then automatically create a local docker network in which all our services will be

able to interact. Then it will download the specified Traefik image and boot a container with

the specified commands, which are standard configurations to expose our docker application on

port 80 to the rest of the world. Once done, it will build the prod image of our web app, boot a

container of this image, set some labels for Traefik, and launch the application by running the

command python3 __main__.py before exposing the port 5000 (see __main__.py). Once done, if you

open your browser and go to localhost, you should see the web app up and running:



Let’s make a price prediction for a random ad we’ve found:



Congrats, your web app is running, and it serves the results of a Machine Learning model!

4. Conclusion

After deploying locally, we are just one step away from deploying to the web. All it would take

is just a domain name and a virtual machine. SSH in the machine, and run a similar docker-

compose file with your domain URL as Host instead of localhost. Some more complexities might

occur with getting Https certificates. But we’ll cover more complex deployments, using

Kubernetes, in another ebook.

I hope this book convinced you of the power of mastering Data Science, Machine Learning, and

DevOps with Python. Whatever the questions you want to answer, there is a way to answer them and

to share your insights using a similar process as the one we went through.
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