

Python	Made	Simple
	

Full	Beginner’s	Guide	to	Mastering	Python
	

	

	

	

	

Project	Syntax

Table	of	Contents	(Python)
	

Legal	notice
About	this	eBook
Who	this	ebook	is	For
About	Project	Syntax
Feedback	and	Questions

Chapter	1:	Introduction	to	Python
Why	Python?
Installing	Python
Installation	directory	and	exercise	files
The	Python	shell
Install	a	text	editor

Chapter	2:	Hello	World	and	the	Basics	of	Python
Interactive	Programming	Mode
Script	Programming	Mode
Python	Identifiers
Reserved	Words
Lines	and	indentation
Comments	in	Python
Quotation	in	Python
Blank	Lines

Chapter	3:	Variables	and	Basic	Operators	in	Python
Types	of	Variables	in	Python
Basic	Operators
Operators	Precedence	in	Python

Chapter	4:	Working	with	Strings	and	Numbers
Strings	in	Python

Numbers	in	Python
Chapter	5:	Lists	and	Tuples	and	Dictionary
Python	Lists	and	Tuples
Python	Dictionaries

Chapter	6:	Input,	Output,	and	Import
Capturing	keyboard	input	using	input()
Printing	to	the	screen	using	the	print()	function
Python	Import

Chapter	7:	Decision	Making	and	Looping
Decision	making	in	Python
Loops	in	Python

Chapter	8:	Functions	and	function	arguments
Defining	a	function	in	Python
Calling	a	function
Function	arguments

Chapter	9:	File	Operations
Opening	a	file
Reading	from	a	file
Writing	to	a	file
Closing	a	file
Python	file	methods

Chapter	10:	Conclusion	and	Further	Reading
Further	learning

Table	of	Contents	(Hacking)
	

Legal	notice
About	this	book
Chapter	1	|	A	Hacker’s	Introduction	to	Ethical	Hacking
Types	of	Hackers
Why	become	an	ethical	hacker?
Setting	up	a	virtual	lab

Chapter	2	|	Reconnaissance
Stages	of	Reconnaissance
1.	Passive	Reconnaissance	of	a	Target	with	Netcraft
2.	Using	Maltego	for	Network	Reconnaissance

Chapter	3	|	Scanning
Purpose	of	the	scanning	process
Network	scanning	with	Nmap
Using	the	Nmap	Scripting	Engine	to	scan	for	vulnerabilities
Scanning	for	vulnerabilities	with	Nessus

Chapter	4	|	Gaining	Access
Developing	an	attack	strategy
Exploiting	a	vulnerable	web	server	using	Psexec	in	Metasploit
SQL	injection	exploit	guide	with	Google	Dork	and	Havij	Pro
Understanding	SQL	injection
Introducing	Google	Dork

Cracking	passwords	using	John	the	Ripper
Chapter	5	|	Maintaining	Access
Why	maintaining	access	to	systems	you	have	already	hacked
Top	5	Kali	Linux	tools	to	use	to	maintain	access
1.	PowerSploit

2.	Sbd
3.	Webshells
4.	DNS2TCP
5.	Weevely
Summary	of	post-exploitation	access

Chapter	6	|	Covering	your	Tracks
Ways	to	cover	your	tracks	after	a	hack
a)	Anti-incident	response
b)	Anti-forensics	actions

Clearing	your	tracks	by	deleting	event	logs
Covering	your	tracks	over	a	network

Chapter	7	|	Getting	started	with	real-world	hacking	(300)

	

Legal	notice
This	 book	 is	 copyright	 protected	 only	 for	 personal	 use.	 You	 cannot	 amend,
distribute,	sell,	use,	quote	or	paraphrase	any	part	or	the	content	within	this	book
without	 the	 consent	 of	 the	 author	 or	 copyright	 owner.	 Legal	 action	 will	 be
pursued	if	this	is	breached.

Please	 note	 the	 information	 contained	within	 this	 document	 is	 for	 educational
and	 entertainment	 purposes	 only.	 Every	 attempt	 has	 been	 made	 to	 provide
accurate,	 up	 to	 date	 and	 reliable,	 complete	 information.	 No	warranties	 of	 any
kind	 are	 expressed	 or	 implied.	 Readers	 acknowledge	 that	 the	 author	 is	 not
engaging	in	the	rendering	of	legal,	financial,	medical	or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we
responsible	for	any	losses,	direct	or	indirect,	which	are	incurred	as	a	result	of	the
use	of	information	contained	within	this	document,	including,	but	not	limited	to,
—errors,	omissions	or	inaccuracies.

About	this	eBook
Do	 you	 feel	 that	 the	 world	 we	 live	 in	 has	 been	 so	 engulfed	 in	 artificial
technology	that	it	is	getting	to	a	point	you	can	barely	relate?	Do	you	ever	wish
you	were	 a	 part	 of	 those	 that	 actually	 contribute	 to	 the	 development	 of	 these
technologies	but	they	seems	so	complicated	that	you	would	not	know	where	to
start?

Well,	 congratulations	 on	 finding	 a	 starting	 point	 if	 you	 are	 a	 newbie	 to
programing.	 There	 is	 no	 better	 way	 to	 start	 being	 a	 part	 of	 the	 solution	 (as
opposed	to	being	part	of	the	ignorant	masses)	than	by	picking	up	this	book	and
starting	to	learn	to	become	a	programmer.

At	 Project	 Syntax,	 we	 are	 on	 a	mission	 to	 equip	 everyone	with	 the	 ability	 to
write	in	computer	language	to	make	the	machines	solve	our	problems	with	less
difficulty.	 This	 Python	 guide	 adopts	 a	 learn-first,	 then-understand	 approach	 to
show	you	the	incredible	power	of	Python.	The	best	way	to	learn	is	to:

1.	 Follow	 the	 guide	 step-by-step	 in	 its	 original	 chapter	 order.
You	will	carry	out	programming	exercises	to	see	how	the	code
works,	then	you	will	learn	why	we	type	the	code	the	way	it	is.

2.	 You	must	pay	attention	to	detail	in	every	exercise.	What	sets	a
good	programmer	apart	from	a	lousy	one	is	how	attentive	they
are	to	every	character,	space,	and	symbol	in	the	code.

3.	 Make	 the	 code	 run	 and	write	 your	 own	 code	 based	 on	 each
example.	Use	the	pointers	provided	to	create	your	own	Python
scripts	 or	 go	 online	 to	 such	 sites	 as	 StackOverflow	 or
CodeFights	to	practice	and	expand	on	what	you	have	learned.

Rinse	 and	 repeat	 for	 the	 next	 exercise.	 Remember,	 the	 key	 to	 progressive
learning	is	consistency	and	persistence.

This	 eBook	 imparts	 all	 the	 essential	 skills	 and	 knowledge	 that	 a	 beginner
programmer	must	master	 to	become	a	proficient	programmer.	 If	you	follow	its
instructions	 to	 the	 latter	 and	 still	 you	 get	 errors	 or	 get	 the	 results	 you	 are	 not
expecting,	go	back	to	the	beginning	of	the	exercise	and	study	your	code	in	detail,

not	just	throw	in	the	towel.	You	must	have	an	eye	for	detail	to	be	able	to	detect
the	tiniest	bugs	in	your	code.

Who	this	ebook	is	For
The	 Full	 Beginner’s	 Guide	 to	 Mastering	 Python	 trains	 you	 by	 demonstrating
what	 is	 happening	 and	 explaining	 it	 so	 you	 are	 able	 to	 replicate	 it	 in	 another
exercise,	rather	than	just	telling	you	how	to	do	something.	If	you	have	the	desire
to	be	the	best	Python	programmer	you	can	be,	this	book	is	for	you.	If	you	have
already	learned	to	write	computer	programs	in	other	languages	–	be	it	a	simple
language	like	HTML5	or	a	more	complex	high-level	language	like	C#	–	then	this
book	is	for	you.

This	book	teaches	the	concepts	and	syntax	of	the	Python	programming	language
and	requires	that	each	exercise	be	typed	in	a	text	editor	manually.	We	strive	to
simplify	the	learning	process	for	those	who	buy	our	book,	and	as	such,	we	also
offer	 practice	 files	 for	 all	 the	 exercises	 in	 the	 .py	 format	 to	 help	 you	 compare
what	you	do	with	what	to	expect.

If	 you	 have	 basic	 computer	 skills,	 some	 time	 to	 study	 (preferably	 one	 to	 two
hours	a	day),	and	a	good	internet	connection,	then	you	have	all	it	takes	to	make
the	most	 of	 this	 eBook.	 This	 is	 a	 stepping	 stone	 to	 a	 future	where	 you	 get	 to
choose	 the	 path	 that	 involves	 using	 the	 skills	 you	 learn	 now	 to	 instruct	 a
computer	how	to	solve	your	problems.

About	Project	Syntax
The	future	of	humanity	is	defined	by	the	code	we	write	now.	That	is	what	we	at
Project	Syntax	believe.	Our	organization	was	founded	on	the	desire	 to	produce
high	quality	yet	simply	 illustrated	and	concise	 learning	materials	 that	will	help
beginners	enter	into	the	world	of	programming	by	‘learning	through	attempting
first’.	 The	 Full	 Beginner’s	 Guide	 to	 Mastering	 Python	 eBook	 is	 one	 of	 the
materials	 that	our	dedicated	 team	of	 experienced	 researchers	 and	programmers
have	created	to	train	complete	beginners	like	you	on	the	art	of	writing	code.

Whether	you	are	a	complete	newbie	to	programming	or	have	experience	writing
code	 in	 some	other	 language	 and	wish	 to	 learn	Python	 to	 expand	 it,	 you	have
chosen	the	right	book.	We	believe	that	most	learning	instructions	on	the	internet
and	 in	 published	 books	 do	 not	 use	 the	 right	 approach,	 which	 is	 to	 show	 the
learner	how	to	do	it	first,	and	after	they	grasp	the	how,	explain	the	why.

Project	Syntax	is	passionate	about	teaching	the	public	to	write	code.	We	believe
that	in	time,	everyone	will	be	able	to	contribute	towards	the	future	of	humanity
by	 learning	 to	write	 computer	programs.	Besides	 the	Full	Beginner’s	Guide	 to
Mastering	Python,	we	also	have	another	eBook	 title	“Full	Beginner’s	Guide	 to
Mastering	Hacking”	in	the	pipeline.

Feedback	and	Questions
We	 always	 welcome	 all	 forms	 of	 feedback	 from	 our	 readers	 –	 compliments,
complaints,	 corrections,	 and	 questions	 –	 regarding	 the	 content	 of	 our	 eBooks.
We	would	like	to	know	what	you	think	about	this	book,	what	you	like	and	what
you	do	not,	as	well	as	what	you	found	useful	and	what	you	did	not.

Your	 feedback	 is	 important	 because	 it	 helps	 us	 create	 titles	 that	will	 best	 help
you	and	others	 learn	the	coding	and	hacking	skills	 they	seek	fast	and	with	 less
difficulty.

Do	not	hesitate	to	contact	us	if	you	have	something	to	say.

Chapter	1:	Introduction	to	Python
Python	is	a	high	level	programming	language.

A	programming	language	is	how	a	computer	programmer	can	issue	instructions
for	the	computer	to	follow	when	solving	a	problem.

Python	was	named	after	the	Monty	Python	Flying	Circus	comedy	group	that	was
popular	in	the	UK	between	1969	and	1974.

There	are	tens	if	not	hundreds	of	programming	languages	in	use	today,	and	they
all	are	different	in	many	ways.	Python	has	grown	to	be	one	of	the	most	popular
for	many	 reasons.	Top	 among	 them	 is	 that	 it	 is	 a	 very	powerful	 language	 that
powers	the	algorithms	of	some	of	the	biggest	global	companies	such	as	Google
and	Yahoo,	and	top	global	websites	including	Reddit.

Despite	this,	Python	is	a	language	that	is	very	easy	to	learn.	Learning	to	become
a	programmer	is	not	as	hard	as	it	used	to	be;	in	fact,	you	will	find	it	fun	and	very
engaging.

The	 best	 part	 about	 learning	 to	 write	 computer	 programs	 with	 the	 Python
language	 is	 that	 compared	 to	 other	 object-oriented	 programming	 languages	 in
use	 today	such	as	C,	C++,	C#,	and	Java,	Python	was	designed	not	 just	 for	 the
end	result,	but	also	to	make	the	process	of	writing	code	an	adventure	on	its	own.
There	 are	 20	 core	 principles	 that	 influenced	 the	 design	 and	 creation	 of	 the
Python	 Programming	 Language,	 dubbed	 the	 Zen	 of	 Python,	 19	 of	 which	 are
written	down.	Here	are	 the	first	10	principles	of	Python	to	help	you	appreciate
why	the	language	was	made	the	way	it	is:

1.	 Beautiful	is	better	than	ugly.
2.	 Explicit	is	better	than	implicit.
3.	 Simple	is	better	than	complex.
4.	 Complex	is	better	than	complicated.
5.	 Flat	is	better	than	nested.
6.	 Sparse	is	better	than	dense.
7.	 Readability	counts.

8.	 Special	cases	are	not	special	enough	to	break	the	rules.
9.	 Practicality	beats	purity.
10.	 Errors	should	never	pass	silently.

While	this	eBook	will	not	magically	transform	you	into	a	a	badass	programmer
ready	to	make	the	big	bucks,	it	is	an	excellent	stepping	stone	whether	you	want
to	pursue	computer	programming	 to	expand	your	career,	 to	start	a	new	one,	or
just	to	know	how	to	build	your	own	programs.

Considering	that	‘fun’	is	a	great	motivator,	every	effort	has	been	taken	to	make
the	process	of	 learning	using	 this	book	engaging	and	enjoyable	 for	all	users	 --
from	 first-time	 programmers	 to	 seasoned	 developers	 looking	 to	 add	 Python	 to
their	belt	of	programming	languages	they	have	mastered.

As	 you	 join	 the	 hundreds	 of	 thousands	 of	 other	 learners	 striving	 to	 master
Python,	the	best	word	of	advice	I	can	leave	you	with	is	this	one	great	quote:	“In
many	ways,	(Python)	is	a	dull	language,	borrowing	solid	old	concepts	and	styles
from	 many	 other	 languages:	 boring	 syntax,	 unsurprising	 semantics,	 few
automatic	coercions,	etc.	But	that's	one	of	the	things	I	like	about	Python.”

-	Tim	Peters

Why	Python?
If	you	did	your	research	well	before	choosing	to	buy	this	eBook,	you	probably
discovered	that	Python	is	by	far	the	most	studied	and	the	most	widely	used	high-
level	 programming	 language	 today.	 This	 is	 not	 just	 because	 it	 emphasizes	 on
code	readability	and	simple	syntax,	or	because	it	requires	fewer	lines	of	code	to
create	 a	 program	compared	 to	 other	 languages;	 here	 are	 the	 top	 seven	 reasons
why	you	should	see	your	decision	to	take	on	Python	programming	studies	to	the
end:

1	Python	opens	up	endless	opportunities	for	programmers

Python	 developers	 are	 making	 a	 killing	 freelancing	 and	 taking	 up	 permanent
jobs	because	the	language	is	very	popular	among	companies	and	organizations.
Once	 you	 get	 comfortable	 with	 coding	 sing	 Python,	 you	 will	 be	 in	 a	 good
position	 to	 consider	 job	opportunities	 and	 even	gigs	 that	 pay	you	 to	 apply	 the
concepts	you	learn	in	this	book.

2.	Python	is	a	preferred	language	for	web	development

The	number	of	websites	 on	 the	World	Wide	Web	 is	 approaching	 the	1	billion
mark	 and	 one	 facet	 of	 this	 evolution	 is	 the	 growing	 scope	 of	 Python	 in	 web
development.	 Python	 brings	 a	 lot	 of	 flexibility	 and	 an	 array	 of	 ready-to-use
framework	 (such	 as	 django,	 Zope2,	 Pylons,	 Grok,	 and	 web.py)	 that	 are
revolutionizing	 how	 the	 front	 and	 back	 end	 of	websites	 are	 built.	 Learning	 to
create	websites	in	Python	is	the	best	way	to	position	yourself	on	the	right	side	of
history.

3.	Learning	computational	thinking	with	Python	is	easy

Python	 is	 a	 high-level	 programming	 language	 that	 reads	 like	 regular	 English.
Because	of	this,	many	English-speaking	learners	find	it	very	easy	to	understand
its	syntax	and	how	to	use	the	various	components	of	the	language	with	minimal
complexity.	If	you	are	a	beginner,	you	will	be	surprised	how	easy	it	is	to	tell	the
computer	what	to	do	in	Python	and	to	think	in	ways	that	helps	you	conceptualize
computer	code.

4.	Python	has	a	rich	and	vibrant	online	community

As	 you	 enter	 the	world	 of	 programming,	 you	will	 discover	 soon	 enough	 how
important	 the	developer	 community	 is	 to	 the	 language	 and	 to	 its	 learners.	The
Python	 community	 is	 the	 5th	 largest	 on	 StackOverflow	 community	 and	 the
fourth	most	 used	 language	on	Github.	When	you	venture	 to	 the	 cyberspace	 to
interact	with	other	 learners	and	with	professionals,	you	will	be	 taken	aback	by
the	huge	number	of	people	ready	to	help	you	learn	by	answering	your	questions
and	checking	your	code.

5.	Python	has	one	of	the	most	mature	package	libraries

Most	 programming,	 as	 you	 will	 discover	 soon,	 is	 repetitive.	 When	 you	 start
writing	code	on	a	commercial	scale,	you	will	appreciate	 the	fact	 that	Python	is
backed	by	repositories	such	as	PyPI	with	hundreds	of	thousands	of	free	modules
and	scripts	 that	you	can	grab	and	use	 in	your	code.	These	modules	and	scripts
bring	pre-packaged	functionality	to	your	Python	environment	to	solve	a	myriad
of	 problems	 that	 you	 would	 otherwise	 have	 to	 deal	 with	 one-by-one.	 With
Python,	there	is	no	need	to	re-invent	the	wheel.

6.	Python	is	cross-platform	and	open	source

Python	has	been	around	for	over	20	years	and	throughout	that	period,	it	has	been
developed	 as	 a	 cross-platform	 and	 open	 source	 software	 that	 runs	 on	 Linux,
Windows,	 and	MacOS.	Besides,	 the	 language	 is	 backed	 by	 over	 2	 decades	 of
kink-straightening	 and	 bug-squashing	 which	 has	 turned	 it	 into	 a	 power	 house
that	makes	your	code	run	like	you	intended	it	on	whichever	platform.

7.	Learning	Python	is	the	ideal	stepping	stone	to	other	languages

There	 aren’t	many	 languages	 today	 that	 offer	 the	 simplicity	 and	 versatility	 of
Python,	 but	 different	 people	 choose	 their	 languages	 of	 specialty	 for	 their	 own
reasons.	Even	if	you	intend	to	specialize	in	some	other	high-level	programming
language	e.g.	C#,	C++,	or	Java,	Python	is	a	great	language	to	learn	first	before
diversifying	into	another	language.

Installing	Python
In	order	to	begin	writing	Python	scripts	and	execute	them	on	your	computer,	you
must	first	set	up	the	right	software	on	your	computer.	Nothing	is	complicated	at
this	 stage,	 just	as	 long	as	you	 follow	 the	 right	 steps.	 If	you	already	know	how
your	 computer	works,	 how	 to	 navigate	 around	 the	 computer	 storage	 structure,
download	 software	 and	 files,	 and	 install	 programs,	 this	 should	 be	 a
straightforward	process.

If	 you	 already	 have	 Python	 3	 installed	 on	 your	 computer,	 you	 can	 skip	 this
section	and	proceed	at	the	next	section,	The	Python	shell.

Download	the	right	software	You	can	download	the	official	Python
programming	tools	from	python.org.	On	your	computer	browser,	go	to
http://www.python.org/download/and	get	the	latest	version	of	Python	(it	should
be	version	3).

Before	you	can	begin	 the	 installation,	 take	 some	 time	 to	 read	 the	 resources	on
https://wiki.python.org/moin/BeginnersGuide	and	make	sure	 that	you	know	 the
operating	system	(and	version)	of	your	computer	and	whether	it	is	a	32-bit	or	a
64-bit.	This	is	important	to	ensure	that	you	download	the	right	software.

http://www.python.org/download/
https://wiki.python.org/moin/BeginnersGuide

The	python.org/downloads/	download	page.

At	the	time	of	writing	this	book,	the	newest	version	of	Python	is	Python	3.6.1.	If
you	are	unsure	which	version	to	download,	click	on	the	name	of	your	operating
system	to	access	more	options.

Windows	installation	Installation	is	pretty	straightforward	on	a	Windows	10	or
7	computer.	Simply	download	the	right	version	of	Python	and	open	the
installation	wizard	when	the	download	is	complete.

When	 the	 installation	 is	 complete,	make	 sure	 that	you	check	 the	“Add	Python
3.6	to	PATH”	option	in	the	last	step	of	setup.

If	 the	 installation	 went	 well,	 you	 can	 launch	 Python	 from	 the	Windows	 Start
menu.	 The	 Python	 Integrated	 Development	 Environment	 (IDLE)	 shortcut	 is
placed	here:	Start	➤ 	Programs	➤ 	Python2	➤ 	IDLE	(Python	GUI).

Linux	and	UNIX

For	 Linux	 and	 most	 Unix-based	 systems	 such	 as	 Mac	 OSX,	 the	 Python
interpreter	comes	pre-loaded	with	the	operating	system.	However,	yours	is	most

likely	an	older	version	of	Python	(version	2)	which	we	will	not	be	using	in	this
guide.	To	find	out	the	version	of	the	Python	Interpreter	on	your	system,	enter	the
following	command	on	the	terminal:

$	python
	

This	 command	 should	 initiate	 the	 interactive	 Python	 interpreter,	 which	 will
display	the	version	and	other	details.

To	find	out	if	Python	3	is	installed,	enter	the	command:

$	python3
	

You	will	probably	get	an	error	“bash:	python:	command	not	found”	if	version	3
of	the	Python	interpreter	is	not	installed	in	your	computer.	This	means	you	will
have	to	download	and	install	it	yourself	but	remember	to	check	the	“Add	Python
3.6	to	PATH”	option	in	the	last	step	of	setup	when	the	installation	is	complete.
Use	the	package	manager	if	you	are	on	a	Debian-based	Linux.

If	you	have	a	Mac,	open	the	terminal	application	and	enter	the	“python”
command	to	start	it.	If	the	older	version	2.x	is	installed,	do	not	tamper	with	it
because	it	used	by	the	operating	system	in	different	ways.	Instead,	you	can
download	the	newest	version	from	python.org/downloads/	or	use	Fink
(http://finkproject.org)	or	MacPorts	(http://macports.org)	distribution	tools.

Installation	directory	and	exercise	files
Note	 the	 installation	 folder	of	your	Python	 interpreter	because	we	are	going	 to
refer	to	that	directory	a	lot	in	this	course.	This	eBook	comes	with	a	set	of	python
script	 files	 (.py	 files)	 bundled	with	 the	 book;	 you	 should	 extract	 the	 folder	 in
Python’s	installation	folder	to	make	it	easily	accessible	from	the	command	line.
If	you	are	a	windows	user,	 the	path	 to	 the	exercises	directory	should	 resemble
this:

C:\Python36-21\ExFiles\

You	 should	 also	make	 it	 a	 habit	 to	 save	your	 .py	 script	 files	 in	 this	 or	 similar
location	for	easier	access	and	execution.

The	Python	shell
Python	 offers	 a	 graphical	 user	 interface	 programming	 environment	 (Python
IDLE)	whose	shortcut	is	placed	on	the	desktop,	start	menu,	or	the	app	dock.	This
environment	includes	a	text	editor	where	you	can	write	your	code.

When	you	properly	set	up	the	Python	Interpreter,	you	should	be	able	to	run	any
python	files	with	the	extension	.py	in	any	location	from	the	command	line.	This
is	the	approach	we	will	use	in	this	eBook.	We	believe	it	is	best	to	learn	using	the
terminal	(command	line)	and	a	text	editor	of	your	choosing	because	it	helps	you
master	concepts	and	even	exercise	them	with	minimal	distractions.

As	an	example,	to	if	you	have	extracted	the	zipped	exercises	that	accompany	this
eBook	in	the	directory	ExFiles	within	the	Python	installation	folder,	you	should
be	able	to	run	the	first	exercise	script	with	the	name	Ex1.py	by	typing:

$	python	ExFilesEx1.py
	

If	you	are	a	Mac	or	Linux	user,	depending	on	the	installed	versions	of	the	Python
interpreter,	you	may	have	to	use	the	command:

$	python3	ExFilesEx1.py
	

Install	a	text	editor
Python	code	is	entered	in	a	plain	text	editor	and	saved	in	a	file	with	the	extension
.py.	There	are	quite	a	number	of	text	editors	popular	with	programmers	that	you
can	 download	 and	 use	 for	 free.	 Word	 processor	 such	 as	 MS	 Word	 or	 WPS
Writer	do	not	work	in	creating	scripts	because	they	introduce	special	characters
in	 the	 code	 that	 interfere	with	 its	 execution.	 Some	 of	 the	 top	 text	 editors	 you
should	consider	are:

Notepad++
Text	Wrangler	(Mac)
Sublime	Text
Vim
Atom

Remember	that	when	Python	3	is	set	up	in	your	computer,	you	have	to	figure	out
which	command	to	use	on	the	command	line	 to	call	 the	 interpreter	(python	for
windows,	 or	 python3	 for	 Linux	 and	 UNIX-based	 systems	 with	 Python	 2.x
installed).	 This	 book	 assumes	 that	 you	 use	 the	 command	 python	 on	 the
command	 line	 to	 initialize	 the	 interpreter.	 If	 this	 is	 not	 the	 case	 for	 your
computer,	simply	substitute	it	with	python3	to	initialize	the	python	interpreter.

Once	you	master	 this	and	have	a	 text	editor	 installed,	you	are	set	and	ready	 to
become	a	budding	programmer.

Chapter	2:	Hello	World	and	the	Basics	of	Python
Python	 shares	 many	 similarities	 with	 other	 object-oriented	 programming
languages	especially	Perl,	C,	C++,	and	Java.

Interactive	Programming	Mode
On	top	of	the	list	of	similarities	that	Python	shares	with	other	top	programming
languages	is	the	Interactive	Programming	Mode.	This	simply	means	that	you
can	invoke	the	Python	interpreter	without	passing	a	script	file	as	a	parameter.

Python	Interactive	Mode	Programming	In	this	mode,	you	can	execute
commands	straight	on	the	interpreter.	For	instance,	when	you	are	on	the	Python

interpreter	enter	the	following	code	and	press	enter:

print	("Hello	World!")	2	+	3
print	("My	name	is	John!")
	

What	 result	 does	 entering	 the	 three	 codes	 above	 give	 you?	 You	 should	 see
something	like	this:

print	("Hello	World!")	‘Hello	World!’
2	+	3
5
print	("My	name	is	John!")	‘My	name	is	John!’
	

As	you	can	 see,	 you	can	execute	 commands	on	 the	Python	 interpreter	without
saving	 your	 syntax	 in	 a	 script	 file.	 The	 Python	 interpreter	 can	 carry	 out
arithmetic	operations	and	other	commands	you	enter	directly	 into	 the	 terminal.
Note,	however,	that	in	this	mode,	nothing	will	be	saved	permanently.

Script	Programming	Mode
For	the	rest	of	this	ebook,	we	will	use	the	script	programming	mode	to	execute
program	instructions	and	commands.	What	 this	means	is	 that	we	will	write	 the
code	 in	 a	 script	 file	 (in	 this	 case	 a	 .py	 file)	 then	 save	 it	 and	 run	 it	 from	 the
interpreter.

Creating	the	HelloWorld.py	script	file	Start	your	text	editor	and	enter	the
following	code	exactly	as	it	appears:	Ex1:	Hello	World

print	("Hello	World!")	print	('I	am	now	a	Python	programmer!')
	

This	 is	 a	 simple	 Python	 script	 with	 two	 lines.	 You	 can	 save	 this	 script	 as
“HelloWorld.py”	in	your	preferred	location	(preferably	in	a	directory	within	the
directory	Python	is	installed	or	somewhere	easily	accessible	like	the	desktop).

Remember	 the	 file’s	 exact	 name	 because	 Python	 is	 case	 sensitive	 and
HelloWorld.py	 is	not	the	same	as	helloworld.py.	Run	the	saved	script	from	the
command	line	(terminal)	as	explained	below.

When	 saving	a	Python	 script,	do	not	 forget	 to	 include	 the	 .py	extension	at	 the
end	of	the	file	name.

Note:	This	exercise	also	assumes	that	you	already	set	the	PATH	variable	in	your
computer	(see	installation	instructions).

The	 demo	 script	 for	 this	 exercise	 is	 saved	 as	Ex1.py	 in	 the	 archive	 of	 Python
scripts	that	came	with	this	book.

Running	the	HelloWorld.py	script	file	Now	run	the	HelloWorld.py	script	from
the	command	line	(terminal)	by	following	these	steps:	When	the	python	script
file	is	saved,	you	can	run	it	by	invoking	the	Python	interpreter	in	the	location
that	the	file	is	stored.	For	instance,	if	you	saved	it	in	the	folder	‘ExFiles’	within
the	installation	directory	of	Python	or	the	desktop,	and	you	invoke	the	Python	3
interpreter	using	the	keyword	python,	your	command	to	run	the	HelloWorld.py
script	on	the	terminal	(command	line)	would	look	like	this:

$	python	HelloWorld.py
	

What	happens	when	you	run	the	saved	script?	Does	the	terminal	display	the	texts
you	entered	after	the	keyword	print	and	between	brackets	and	quotation	marks?
Does	it	matter	that	you	used	single	('')	or	a	double	("")	quotation	marks?

Python	Identifiers
When	 writing	 a	 program	 in	 Python,	 you	 will	 get	 used	 to	 entering	 common
English	words	you	are	used	to	in	everyday	language,	but	with	sometimes	subtle
noticeable	differences	and	rules.	When	specifying	a	variable,	a	class,	a	module,	a
function	 or	 some	 other	 object	 (all	 of	 which	 we	 will	 learn	 later),	 you	 need	 to
assign	it	an	identifying	name	or	simply	an	identifier.

Identifiers	 in	 Python	 must	 begin	 with	 an	 alphabetic	 letter	 (A-Z,	 a-z)	 or	 an
underscore	 (_),	 followed	 by	 other	 letters	 and	 digits	 (0-9)	 or	 underscores.	You
cannot	use	punctuation	characters	and	other	symbols	e.g.	@,	#,	$,	%	and	others
within	the	identifier.

Also,	 because	 Python	 is	 case	 sensitive,	 uppercase	 and	 lowercase	 letters	 are
different.	For	instance,	Hello	is	not	the	same	as	hello.

Here	 are	 very	 vital	 conventions	 used	 to	 name	 identifiers	 in	 Python	 that	 you
should	know:

A	 Class	 name	 must	 start	 with	 an	 uppercase	 letter.	 Every	 other
identifier	may	start	with	a	lowercase	letter.
An	identifier	that	starts	with	a	single	leading	underscore	indicates
that	the	identifier	is	private	e.g.	_private.
An	 identifier	 that	 starts	 with	 two	 underscores	 is	 a	 strong	 private
identifier.
If	 an	 identifier	 ends	 with	 two	 trailing	 underscores,	 then	 it	 is	 a
language-defined	special	name.

Reserved	Words
Python	has	a	set	of	English	and	non-English	words	reserved	for	 the	 interpreter
that	you	cannot	use	as	variable,	constant,	or	any	other	identifier	names.	Here	is	a
table	of	these	words:

and as assert break class

continue def del elif else

except exec finally for from

global if Import in is

lambda not or pass print

raise while return try with

Yield 	 	 	 	
Table	1:	Reserved	keywords	in	Python

Lines	and	indentation
In	 other	 programming	 languages,	 curly	 braces	 ({})	 or	 square	 brackets	 ([])	 are
used	to	group	blocks	of	related	code	for	function	or	class	definition.	In	Python,
blocks	of	code	are	denoted	by	a	line	indentation.	This	indentation	rule	is	rigidly
enforced	and	you	can	use	a	 tab	or	a	number	of	 spaces,	 just	as	 long	as	 there	 is
uniformity	and	consistency	in	their	use.	Consider	these	two	blocks	of	code:

if	True:	print	("True")	print	("Proceed")	else:	print	("False")
	

The	statements	print	(“True”)	and	print	(“Proceed”)	are	indented	with	the	same
number	of	spaces.	This	means	they	form	a	block.

Note:	These	are	very	 important	 syntax	 rules,	but	do	not	 struggle	 to	understand
them	all	at	this	point.	Just	make	sure	you	know	what	a	block	of	code	is	and	why
blocks	are	important.

Comments	in	Python
Comments	 in	 a	Python	 script	 are	notes	 left	by	 the	programmer	 for	 later	or	 for
other	programmers	to	understand	the	code.	Comments	in	Python	have	the	#	sign
at	 the	 beginning.	 Anything	 beyond	 the	 #	 sign	 to	 the	 end	 of	 the	 line	 will	 be
ignored	by	the	interpreter.

print	("Hello	World!")	#	Displays	“Hello	World!”	on	the	screen.

#	This	line	will	also	be	ignored	by	the	interpreter.

print	('I	am	now	a	Python	programmer.')	#	This	is	another	comment.

	

A	comment	can	be	typed	on	a	new	line	or	on	the	same	line	after	an	expression	or
a	statement.	You	cannot	write	a	comment	that	spans	multiple	lines	on	Python.

Quotation	in	Python
You	 can	 use	 a	 single	 ('),	 a	 double	 ("),	 or	 triple	 ('''	 or	 """)	 quotation	marks	 to
denote	string	literals	in	Python.	The	only	rule	is	that	you	must	start	and	end	with
the	same	type	of	quotation	on	a	string.

Triple	quotations	are	used	when	the	string	of	text	spans	over	multiple	lines.

print	('Hello	World!')	#	Double	quotation	marks.

print	("I	am	now	a	Python	programmer.")	#	his	line	will	also	be	ignored	by
the	interpreter.

print	("""I	am	now	a	Python	programmer.

This	means	I	should	be	able	to	create	a	simple	Python	Script	and	run	it	with
no	difficulty.''')

	

Blank	Lines
A	blank	line	is	a	line	that	contains	only	whitespace,	commonly	inserted	into	code
for	 aesthetic	 purposes	 and	 to	 keep	 the	 code	 organized.	 The	 Python	 interpreter
completely	ignores	a	blank	line	in	the	script.

There	 must	 be	 a	 blank	 line	 after	 a	 multi-line	 string	 block	 to	 terminate	 the
statement.

Chapter	3:	Variables	and	Basic	Operators	in	Python
Types	of	Variables	in	Python
In	object-oriented	programming,	a	variable	is	a	space	in	computer	memory	that
is	reserved	for	storing	values	of	a	specified	type.	When	you	declare	a	variable	in
your	Python	script,	you	are	essentially	asking	the	interpreter	to	allocate	computer
memory	 for	 the	 type	 of	 data	 expected	 and	 you	 assign	 that	memory	 location	 a
name.	This	name	is	what	we	call	a	variable	name	and	it	may	be	assigned	any	of
the	following	five	data	types	supported	by	Python:

1.	 Numbers
2.	 Strings
3.	 Lists
4.	 Tuples
5.	 Dictionary

We	will	cover	each	of	these	variables	in	detail	in	Chapters	3,	4,	and	5.

The	interpreter	decides	which	data	will	be	stored	in	the	reserved	memory	based
on	the	data	type	declaration.	It	is	therefore	important	to	specify	the	type	of	data
the	 variable	 will	 store	 so	 that	 the	 interpreter	 can	 allocate	 sufficient	 memory
space.

Declaring	a	variable	You	declare	a	variable	in	Python	by	assigning	a	variable
name	a	value.	Unlike	various	other	high	level	programming	languages,	with
Python,	you	do	not	need	to	explicitly	declare	a	memory	space	reservation,	it
happens	automatically	when	a	value	is	assigned	to	the	variable	using	the	equal
sign	(=)	called	the	assignment	operator	in	programming.

Ex2

Enter	the	following	code	in	your	editor	and	run	it	from	the	command	line:

name	=	"Peter"

age	=	22

score	=	97.21

	

print	(name,	"is",	age,	"years	old.")	print	(name,	"scored",	score,	"percent.")

	

The	 print	 statement	 is	 to	 display	 the	 values	 of	 the	 variable	 as	 proof	 of	 the
assignment.	What	does	your	program	display	when	you	run	the	script?

In	 the	 statement	 name	 =	“Peter”,	 the	 operand	 ‘name’	 on	 the	 left	 side	 of	 the
equal	sign	is	the	variable	name	while	that	on	the	right,	in	this	case	“Peter”,	is	the
value	of	the	variable.

You	can	see	that	the	value	of	variable	name	is	enclosed	in	quotation	marks	while
the	values	of	variables	age	and	score	are	not.	Do	not	worry	about	this,	we	will
look	at	why	in	detail	when	discussing	string	and	number	data	types	in	the	next
chapter	of	the	book.

Assigning	a	single	value	to	multiple	variables	One	of	the	things	that	make
Python	such	an	efficient	and	simple	languages	is	that	you	can	assign	several
variables	a	single	value	in	one	statement.

Ex3

x	=	y	=	z	=	10
print	(x)	print	(y)	print	(z)

	

When	you	run	the	code	in	Ex3,	you	will	realize	when	the	values	of	variables	x,
y,	and	z	are	displayed	on	the	screen,	are	all	the	same	(10).	The	integer	objects	x,
y,	and	z	are	created	in	the	same	memory	location	when	the	value	10	is	assigned
to	them.	This	is	how	you	associate	one	value	with	multiple	variables.

Assigning	multiple	variables	multiple	values	Just	the	way	you	can	assign
multiple	variables	one	value	using	one	statement	in	Python,	you	can	also	assign
multiple	objects	to	multiple	variables	with	ease.	Your	code	would	look	like	Ex4:
Ex4

name,	age,	score	=	"Peter",	22,	97.21

print	(age,	"year	old",	name,	"scored",	score,	"percent.")

	

In	 this	 exercise,	 you	 assign	 the	 same	 values	 we	 used	 in	 Ex2	 to	 the	 same
variables,	except	in	a	single	line	of	code.

Basic	Operators
An	operator	 is	 a	 construct	 that	 is	 used	 to	manipulate	 the	 value	 of	 an	 operand.
Most	 of	 the	 operators	 you	 will	 encounter	 while	 learning	 Python	 will	 look
familiar	to	you	from	math	class,	and	most	serve	the	same	purpose	as	it	did	when
you	were	introduced	to	them	in	school.

In	the	expression	5	+	6,	5	and	6	are	the	operands	and	the	+	(plus)	is	the	operator.

The	Python	language	supports	seven	types	of	operators:

Arithmetic	operators
Assignment	operators
Relational	or	comparison	operators
Logical	Operators
Membership	operators
Identity	operators
Bitwise	operators

In	 this	 book,	we	will	 cover	 a	 brief	 introduction	 of	 the	 first	 six	 operators	with
brief	example	scripts	that	put	them	in	practice.

1.	Arithmetic	operators

As	the	name	hints,	arithmetic	operators	are	the	same	ones	you	learned	in	Math,
albeit	with	a	few	changes.	They	are:

Operator Name Function

+
Addition Adds	the	values	of	both	operands.

-
Subtraction Subtracts	 the	 value	 of	 the	 right	 operand

from	the	value	of	the	left	operand.

*
Multiplication Multiplies	the	values	of	both	operands.

/
Division Divides	the	value	of	the	left	operand	by	the

/
value	of	the	right	operand.

%
Modulus Like	 division	 above,	 except	 that	 it	 returns

the	remainder	value	after	division.

//
Floor	Division Like	 division	 above,	 except	 that	 it	 returns

the	 quotient	 value	 without	 the	 decimal
point	digits.

**
Exponent Calculates	 the	 exponential	 calculation

(power)	on	the	operands

Table	2:	Arithmetic	operators	in	Python	Ex5

x	=	12
y	=	8
	
print	("When	x	=	12	and	y	=	8:")
	
z	=	x	+	y
print	("1:	x	+	y	is",	z)
	
z	=	x	-	y
print	("2:	x	-	y	is",	z)
	
z	=	x	*	y
print	("3:	x	*	b	is",	z)
	
z	=	x	/	y
print	("4:	x	/	b	is	",	z)
	
z	=	x	%	y
print	("5:	x	%	y	is	",	z)

	
a,	b	=	3,	2
print	("Given	a,	b	=	3,	2:")
	
c	=	a**b
print	("1:	a**b	is	",	c)
	
c	=	a//b
print	("2:	a//b	is	",	c)

	

2.	Assignment	operators

Assignment	operators	in	Python	do	just	what	the	name	suggests:	assign	values.
An	 assignment	 operator	 will	 assign	 the	 value	 of	 the	 right	 operand	 to	 the	 left
operand.

Symbol Name Function

=
Equal Assigns	the	value	of	the	right	operand	to	the	left

operand.

+=
Add	AND Adds	the	value	of	both	operand	and	assigns	 the

result	to	the	left	operand.

-=
Subtract
AND

Subtracts	 the	 value	 of	 the	 right	 operand	 from
that	of	 the	 left	 and	assigns	 the	 result	 to	 the	 left
operand

*=
Multiply
AND

Multiplies	 the	 value	 of	 both	 operands	 and
assigns	the	result	to	the	left	operand.

/=
Divide
AND

Divides	the	value	of	the	left	operand	with	that	of
the	 right	 and	 assigns	 the	 result	 to	 the	 left
operand.

%=

%= Modulus
AND

It	 takes	 modulus	 using	 the	 two	 operands	 and
assigns	the	result	to	the	left	operand.

**=
Exponent
AND

Finds	the	power	(exponential)	of	the	left	operand
by	 the	 right	 and	 assigns	 the	 result	 to	 the	 left
operand.

//=
Floor
Division

Performs	 a	 floor	 division	 on	 the	 operands	 and
assigns	the

	 AND result	to	the	left	operand.
Table	3:	Assignment	operators	in	Python	Ex6

x	=	10
y	=	5
	
print	("If	x	=	10	and	y	=	5:")
	
z	=	x	+	y
print	("1:	x	+	y	is",	z)
	
z	+=	x
print	("2:	+=	x	is",	z)
	
z	*=	x
print	("3:	*=	x	is",	z)
	
z	/=	x
print	("4:	/=	x	is",	z)
	
a		=	2
	
print	("Given	a,	x	=	2,	10:")

	
a	%=	x
print	("5:	a	%=	x	is",	a)
	
a	**=	x
print	("6:		**=	x	is",	z)
	
a	//=	x
print	("7:	//=	x	is",	a)
	

3.	Relational	(comparison)	operators	A	comparison	operator	simply	compares
the	value	of	the	left	operand	with	that	of	the	right	operand	and	determines	how
they	relate.

Operator Name Function

==
Equal	to Condition	 becomes	 True	 if	 the	 value	 of	 the	 left

operand	is	equal	to	the	value	of	the	right	operand.

!=
Not	 equal
to

Condition	 becomes	 True	 if	 the	 value	 of	 the	 left
operand	 is	 not	 equal	 to	 the	 value	 of	 the	 right
operand.

> Greater
than

Condition	 becomes	 True	 if	 the	 value	 of	 the	 left
operand	 is	 greater	 than	 the	 value	 of	 the	 right
operand.

< Less	than Condition	 becomes	 True	 if	 the	 value	 of	 the	 left
operand	is	less	than	the	value	of	the	right	operand.

>= Equal	 to
or	 greater
than

Condition	 becomes	 True	 if	 the	 value	 of	 the	 left
operand	 is	equal	 to	or	greater	 than	 the	value	of	 the
right	operand.

<= Equal	 to Condition	 becomes	 True	 if	 the	 value	 of	 the	 left

or	 less
than

operand	is	equal	to	or	less	than	the	value	of	the	right
operand.

Table	4:	Relational	(comparison)	operators	in	Python.

Ex7

number1	=	100	>	50;

number2	=	100	<	50;

number3	=	100	==	50;

number4	=	100	!=	50;

number5	=	100	>=	50;

number6	=	100	<=	50;

	

print	 ("1.	 Value	 of	 number1:",	 number1)	 print	 ("2.	 Value	 of	 number2:",
number2)	 print	 ("3.	 Value	 of	 number3:",	 number3)	 print	 ("4.	 Value	 of
number4:",	 number4)	 print	 ("5.	 Value	 of	 number5:",	 number5)	 print	 ("6.
Value	of	number6:",	number6)

	

4.	Logical	operators

Also	called	boolean	operators,	 logical	operators	are	 statements	 that	evaluate	 to
either	 of	 the	 two	 boolean	 conditions:	 True	 or	 False.	 The	 not	 keyword
introduced	as	a	reserved	keyword	earlier	reverses	a	boolean	type,	True	to	False
and	vice	versa.

Operator Function

and Returns	True	if	both	operands	are	True.

or Returns	True	if	either	of	the	operands	are	true.

not Returns	True	if	operand	False	and	False	if	it	is	True.
Table	5:	Logical	operators	in	Python	Ex8

x	=	True

y	=	False

	

print	("x	and	y	is",	x	and	y)

	

print	("x	or	y	is",	x	or	y)

	

print	("Not	x	is",	not	x)

	

5.	Membership	operators

The	two	membership	operators	in	Python	check	for	the	operand’s	presence	in	a
sequence	of	values	such	as	strings	(alphanumeric	characters),	lists,	or	tuples.

Operator Function

in
Returns	True	 if	 the	operand	 is	 found	in	 the	specified	sequence
and	False	if	it	is	not	found.

not	in
Returns	 True	 if	 the	 operand	 is	 not	 found	 in	 the	 specified
sequence	and	False	if	it	is	found.

Table	6:	Membership	operators	in	Python	Ex9

x	=	"Python	Programming"

y	=	{1:"h",	2:"m"}

	

print	("y"	in	x)

	

print	("o"	not	in	x)

	

print	(1	in	y)

	

print	("a"	in	y)

	

6.	Identity	Operators

An	 identity	operator	compares	 the	memory	 locations	of	 two	objects.	There	are
two	identical	operators:

Operator Function

is
Returns	 True	 if	 both	 operands	 point	 to	 the	 same	 object	 and
False	if	they	do	not.

is	not
Returns	 False	 if	 both	 operands	 point	 to	 the	 same	 object	 and
False	if	they	do	not.

	

Table	7:	Identity	operators	in	Python	Ex10

a	=	10

a1	=	10

b	=	"Holla"

b1	=	"holla"

c	=	[1,2,3]

c1	=	[1,2,3]

	

print(a	is	a1)

	

print(b	is	b1)

	

print(c	is	not	c1)

	

7.	Bitwise	operators

Bitwise	 operators	 are	 used	 bit-by-bit	 operators	 that	 execute	 operations	 on
operands	in	binary	form.

Symbol Operator Function

& AND Copies	a	bit	if	found	in	both	operands.

|
OR Copies	a	bit	if	found	in	either	of	the	operands.

~
NOT Complements	an	operand	by	flipping	ones	for	zeros

and	zeros	for	ones

^
XOR Copies	a	bit	if	set	in	only	one	operand.

>>
Shift
right

The	value	of	the	left	operand	is	moved	right	by	the
value	of	bits	in	the	left	operand.

<<
Shift	left The	 value	 of	 the	 left	 operand	 is	moved	 left	 by	 the

number	of	bits	in	the	right	operand.

Table	8:	Bitwise	operators	in	Python

Operators	Precedence	in	Python
The	Python	 interpreter	 follows	a	very	strict	order	of	execution	when	presented
with	multiple	operations.	The	table	below	summarizes	all	the	operations	in	order
of	precedence	from	the	highest	to	the	lowest.

Order Operation Function

1 () Operations	enclosed	in	brackets	are	executed	first.

2 **
Exponentiation	(raise	to	the	power)

3 ~	+	-
Complement,	unary	plus	(+@)	and	minus	(-@)

4 *	%	/ Multiply,	divide,	modulus	and	floor	division

5 +	-
Addition	and	subtraction

6 >>	<< Bitwise	shift	right	and	left

7 & Bitwise	AND

8 |	^
OR	and	Bitwise	exclusive	OR

9 <=	<	>	>= Comparison	operators

10 <>	==	!= Relational	operators

11
=	%=	=	/=
-=	+=	*=
**=

Assignment	operators

12 is	is	not Identity	operators

13 in	not	in Membership	operators

14 not	or	and Logical	operators

Table	9:	Operators	precedence	in	Python

Chapter	4:	Working	with	Strings	and	Numbers
In	Chapter	 2,	we	 touched	 lightly	 on	 the	 five	 basic	 data	 types	 that	 you	will	 be
learning	to	work	with	in	the	course	of	this	book.	By	the	end	of	this	chapter,	you
will	be	able	to	work	with	the	two	most	popular	data	types:	numbers	and	strings.

Strings	in	Python
The	 first	 data	 type	 we	 encountered	 in	 the	 first	 exercise	 of	 this	 book.	 It	 is	 a
sequence	 of	 characters	 including	 symbols	 and	 alphanumeric	 characters.	 In
chapter	2,	you	learned	that	you	can	use	a	single	('),	a	double	("),	or	triple	('''	or
""")	quotation	marks	to	denote	a	string.

If	you	have	been	practicing	what	you	have	 learned	 so	 far,	 I	 am	sure	you	have
created	countless	string	variables	in	your	scripts.	However,	so	far	we	have	only
touched	on	how	to	display	them	using	the	method	print.	In	this	section,	we	will
look	at	a	number	of	other	great	things	you	can	do	with	strings.

Creating	a	string

You	create	a	string	by	enclosing	characters	in	quotation	marks	and	assigning	it	a
variable	name.	In	the	first	exercise,	we	created	a	string	object	and	displayed	its
contents	on	 the	 screen.	 In	Ex2,	we	created	one	 string	object	 called	name	with
value	“Peter”.

You	can	also	create	a	string	object	by	formatting	a	user’s	input	using	the	method
str()	 (we	 will	 cover	 this	 later).	 In	 Ex11	 below,	 for	 instance,	 the	 user	 will	 be
prompted	to	enter	a	string	of	text	which	is	assigned	the	variable	name.

Accessing	the	values	of	a	string	In	Python,	you	can	access	the	individual
characters	of	a	string	using	slicing,	indexing,	and	a	range	of	other	operations.	If
you	try	to	access	a	character	that	is	out	of	index	range,	you	will	get	an
IndexError.	The	indexes	of	the	characters	start	at	0	for	the	first	character	and
you	can	only	use	positive	integers.	If	you	try	to	use	any	other	number	type	such
as	a	decimal	(float)	you	will	encounter	a	TypeError	Ex11

name	=	input("Enter	a	word	longer	than	5	letters:	")	print	(name[0],	"is	the
first	indexed	character.")	print	(name[1],	"is	the	second	indexed	character.")
print	(name[2:4],	"is	the	range	of	third	to	fifth	character.")	print	(name[-1],
"is	the	last	character.")	print	(name[-2],	"is	the	second	to	last	character.")

	

As	 you	 can	 see	 in	 the	 example	 above,	 you	 can	 slice	 the	 characters	 in	 a	 string

using	a	square	bracket	([])	and	even	specify	a	range	of	characters	using	colons
([:]).

Ex12

name	=	"Peter"

print	(name)

name	=	"Peter	Pan"

print	(name)

	

In	Ex12,	first	we	assign	the	variable	name	the	string	Peter	and	to	see	it	we	use
the	print	method.	We	then	re-assign	the	string	Peter	Pan	the	same	variable	and	it
is	updated.

String	concatenation	and	iteration	You	can	join	two	or	more	strings	to	make
them	one	using	the	plus	operator	(+)	or	separating	named	string	variables	with	a
comma.	For	instance,	here	is	another	way	we	could	have	updated	the	name
variable	in	Ex12.py:

name	=	"Peter"

print	(name)

name	=	name[0:4]+"	Pan"

print	(name)

	

You	 can	 repeat	 multiple	 copies	 of	 one	 string	 to	 create	 new	 strings	 using	 the
asterisk	operator	*	as	in	Ex13.

Ex13

string1	=	"Hello"

string2	=	"World"

string3	=	"!"

	

print	 ("string1	 *	 3	 +	 string3	 =	 ",	 string1	 *	 3	 +	 string3)	 print	 ("string1	 +
string2	=	",	string1	+	string2)	print	 ("string1,	string2	=	",	string1,	string2)
print	("string1,	string2	+	string3	=	",	string1,	string2	+	string3)

	

Do	you	notice	how	the	use	of	a	plus	or	comma	determines	whether	a	space	is	put
between	the	two	strings	or	not?

String	escape	sequence

You	 can	 now	 work	 with	 almost	 any	 type	 of	 text,	 after	 all,	 you	 just	 need	 to
enclose	them	in	quotation	marks	and	split,	slice,	iterate	etc.	But	what	do	you	do
when	you	want	to	work	with	a	string	that	has	quotation	marks.	For	instance,	how
would	 you	 print	 a	 text	 that	 reads:	“I	 am	 sorry,”	 he	 said,	 “the	 ‘Transformers’
toys	are	out	of	stock”.

Notice	that	this	sentence	has	both	double	and	single	quotation	marks	that	create
a	string.	 If	you	slap	quotation	marks	on	 this	 string	and	 try	 to	print	 it,	you	will
encounter	a	Syntax	error.	Try	it.

In	such	a	case,	we	can	either	use	triple	quotation	marks	or	escape	sequences	to
get	around	 this	problem.	An	escape	sequence	begins	with	a	backslash	 (\).	You
will	place	the	backslash	in	front	of	all	double	quotes	inside	a	string	if	the	string
is	 created	 with	 double	 quotation	 marks.	 You	 will	 do	 the	 same	 for	 single
quotation	marks	if	the	string	is	created	with	single	quotation	marks.

Ex14

print	("I	am	sorry,\"	he	said,	\"the	‘Transformers’	toys	are	out	of	stock\".")
print	 ('"I	 am	sorry,"	he	 said,	 "the	 \'Transformers\'	 toys	are	out	of	 stock".')
print	("""

"I	am	sorry,”	he	said,	“the	‘Transformers’	toys	are	out	of	stock”.

""")

	

There	are	quite	a	few	of	other	escape	sequences	that	you	will	encounter	as	you
practice	working	with	strings.	Here	is	a	tabulated	list	of	the	most	popular	escape
sequences	you	will	encounter	and	what	they	do.

Character Sequence Description

\\ Backslash
Prints	one	backlash.

\” Double	quote Prints	a	double	quote.

\’ Single	quote Prints	a	single	quote.

\a Bell Sounds	the	system	bell.

\b Backspace Moves	the	cursor	back	one	space

\t Tab Moves	the	cursor	forward	one	tab.

\n Newline
Moves	the	cursor	to	the	beginning	of	the
next	line

Table	10:	String	literal	escape	characters	in	Python.

String	Methods

There	 are	 quite	 a	 number	 of	 methods	 you	 can	 use	 to	 manipulate	 strings	 in
Python.	Some	of	the	most	popular	are	included	in	the	table	below:

Method Description

upper() Returns	the	uppercase	characters	of	a	string.

lower() Returns	the	lowercase	version	of	a	string.

swapcase()
Like	 toggle	 case	 in	word	 processing,	 it	 returns	 a	 new	 string
with	the	case	of	each	character	in	a	string	switched.

capitalize() Capitalizes	the	first	letter	of	string.

title()
Returns	 a	 string	 with	 the	 first	 character	 of	 each	 word
capitalized	and	the	rest	lowercase.

strip()
Returns	 a	 string	 with	 all	 white	 spaces	 including	 spaces,
newlines,	and	tabs	at	the	beginning	and	the	end	removed.

split() Splits	all	words	into	a	list.

join() Joins	all	words	into	a	string.
Table	11:	String	methods	in	Python	Ex15

mytext	=	"Happy	new	year	World!"

	

print	 ("mytext.upper()	 =	 ",	 mytext.upper())	 print	 ("mytext.lower()	 =	 ",
mytext.lower())	 print	 ("mytext.swapcase()	 =	 ",	 mytext.swapcase())	 print
("mytext.capitalize()	 =	 ",	 mytext.capitalize())	 print	 ("mytext.title()	 =	 ",
mytext.title())	 print	 ("mytext.strip()	 =	 ",	 mytext.strip())	 print
("mytext.split()	=	",	mytext.split())

	

String	formatting

In	Python,	you	can	format	a	string	by	placing	the	string	formatting	operator	(%)
to	 the	 left	of	 the	conversion	specifier,	and	 the	values	 to	 the	right.	You	can	use
this	 formatting	 operator	 on	 a	 string	 containing	 different	 data	 types	 including
tuples,	lists,	and	dictionaries.

Ex16

name	=	"Peter"

score	=	75

print	("My	name	is	%s	and	I	scored	%d	percent!"	%(name,	score))

	

In	this	example,	we	use	the	placeholders	%s	and	%d	to	format	the	strings	using
placeholders	%s	for	string	and	%d	for	decimal	integer.	The	table	below	presents
the	format	symbols	you	will	use	on	different	data	types.

Format	Symbol Conversion

%c character

%s string	(converted	using	str()	before	formatting)

%i	or	%d signed	decimal	integer

%u unsigned	decimal	integer

%o octal	integer

%x hexadecimal	integer	(lowercase	characters)

%X hexadecimal	integer	(UPPERcase	characters)

%e exponential	notation	(lowercase	'e')

%E exponential	notation	(UPPERcase	'E')

%f floating	point	real	number

%g the	shorter	of	%f	and	%e

%G the	shorter	of	%f	and	%E
Table	12:	String	formatting	symbols	Checking	membership	in	a	string	The
membership	operators	in	and	not	in	you	were	introduced	to	in	the	previous
chapter	can	be	used	on	sequential	data	types	including	strings.	You	will	learn
how	to	use	these	operators	on	strings	when	we	cover	how	to	apply	them	on	lists

and	tuples	in	the	next	chapter.

Numbers	in	Python
After	strings,	numbers	are	the	next	most	popular	value	types	in	Python.	Python
supports	three	types	of	numbers:	integers,	floating	point	numbers,	and	complex
numbers	 defined	 as	 int,	 float,	 and	 complex	 respectively.	 Just	 like	 strings,
number	data	types	are	immutable.

An	 integer	 is	 a	 whole	 number	 without	 a	 decimal	 point	 while	 a	 floating	 point
number	has	a	decimal.	For	instance,	2	is	an	integer	while	2.0	is	a	floating	point
number.	In	Python,	integers	can	be	of	any	length	and	floats	are	accurate	up	to	15
places.

Complex	numbers	are	in	the	form	x	+	yj	where	x	is	the	real	part	of	the	number
and	y	is	the	imaginary	part.	Complex	numbers	is	beyond	the	scope	of	this	book
so	we	will	cover	only	integers	and	floats.

We	deal	with	decimal	(base	10)	numbers	in	our	everyday	lives.	However,	as	you
become	 a	 proficient	 programmer,	 you	 will	 need	 to	 know	 how	 to	 program
systems	 using	 only	 binary	 (base	 2),	 octal	 (base	 8),	 and	 hexadecimal	 (base16)
numbers.	 Again,	 this	 book	 only	works	with	what	 we	 are	 all	 used	 to:	 base	 10
numbers.

Using	mathematical	operators	on	numbers	With	Python,	you	can	carry	out
almost	any	calculation	with	numbers	without	adding	any	extra	code.	For
instance,	on	IDLE	or	the	Terminal,	you	can	enter	mathematical	operations
directly	and	the	interpreter	will	return	the	results.

Ex17

my_math	=	10	*	-5

print	(my_math)	print	("10	+	12	*	3	=	",	10	+	12	*	3)	print	("15	+	8	=	",	15
+	8)	print	("15	+	8.0	=	",	15	+	8.0)	print	("217	%5	=	",	217	%5)

	

A	number	variable	is	created	by	assigning	a	number	a	name	using	the	equal	sign
(=).	In	the	above	example,	we	created	a	variable	called	my_math	with	the	value
10*-5.

You	can	see	in	Ex17	that	when	you	use	two	integer	operands,	the	result	will	be
an	 integer	 and	when	you	use	 an	 integer	 and	 a	 float	 or	 two	 float	 operands,	 the
result	will	be	a	float.	You	can	get	more	practice	on	 this	by	 trying	 the	different
types	of	operators	we	covered	in	Chapter	3.

Number	coercion	The	process	of	converting	from	one	type	of	number	to
another	is	called	coercion.	You	already	discovered	that	operations	such	as
addition,	subtraction,	division,	multiplication,	and	others	implicitly	coerce	an
integer	to	a	float	if	one	of	the	operands	is	a	float.

You	can	also	use	the	built-in	functions	int(),	float(),	and	complex()	to	explicitly
coerce	between	number	types	and	from	strings.

Ex18

number1	=	12

number2	=	2.5

string1	=	"10"

	

print	 (float(number1))	 #convert	 number1	 to	 float	 and	 print	 print
(int(number2))	#Convert	number2	 to	 integer	and	print	print	 (int(string1)	*
number2)	YoB	=	 int(input("Enter	 your	year	of	 birth	 as	YYYY:	 "))	 age	=
2017	-	YoB

	

print	("You	are	%d	years	old!"	%age)

	

In	Ex18,	the	variable	number1	is	an	integer,	number2	is	a	float,	and	string1	is	a
string.	 The	 5th	 line	 of	 the	 script	 converts	 number1	 to	 the	 type	 float,	 the	 next
converts	number2	to	an	integer,	and	the	7th	line	converts	string1	into	an	integer
before	 multiplying	 by	 number2.	 Note	 that	 when	 converting	 a	 number	 from	 a
float	to	an	integer,	it	gets	truncated	at	the	decimal	point,	not	truncated.

In	the	same	example,	notice	that	we	created	the	variable	YoB	by	asking	the	user

to	“Enter	your	year	of	birth	as	YYYY:	”	 then	converting	it	 to	an	integer	before
working	with	it.

Mathematical	Functions	There	are	many	inbuilt	Python	functions	that	perform
mathematical	operations	on	numbers.	To	use	mathematical	functions	in	the
standard	module,	you	will	have	to	import	the	math	module	using	import	math.

Some	 of	 the	most	 common	 you	 should	 know	 about	 are	 tabulated	 in	 Table	 13
below:

Function Description

fabs(x) Returns	the	absolute	value	of	x	(positive	distance	between
0	and	x)

ceil(x) Returns	 the	ceiling	value	of	x	 (the	 smallest	 integer	 that	 is
not	less	than	x)

floor(x) Returns	 the	 floor	 value	 of	 x	 (largest	 integer	 that	 is	 not
greater	than	x)

cmp(x,	y) Compares	x	and	y	and	returns	1	(if	x	>	y),	0	if	x	==	y,	or	-1
if	x	<	y

exp(x) Returns	the	exponential	of	x	(ex)

Pow(x,y) Returns	the	value	of	x**y

min(x,y) Returns	the	smallest	of	the	numbers	x	and	y

max(x,y) Returns	the	largest	of	the	numbers	x	and	y

sqrt(x) Returns	the	square	root	of	x	when	x	>	0.

pi Mathematical	constant	pi

e Mathematical	constant	e

Table	13:	Mathematical	Functions

Chapter	5:	Lists	and	Tuples	and	Dictionary
Lists	 and	 tuples	 are	 popular	 compound	 data	 types	 that	 generally	 fall	 into	 the
sequences	 category	 alongside	 strings,	 byte	 sequences,	 byte	 arrays,	 and	 range
objects	(you	will	learn	about	these	at	intermediate	and	advanced	stages).	Strings
may	 look	 a	 lot	 different	 from	 lists	 and	 tuples	 as	 you	will	 notice,	 but	 they	 are
similar	in	that:

Their	elements	are	placed	in	a	defined	sequence.
The	elements	can	be	accessed	via	indices.
They	can	be	manipulated	via	slicing	using	[]

Python,	 unlike	 other	 object-oriented	 programming	 languages,	 uses	 the	 same
syntax	 and	 function	 names	 to	 manipulate	 list	 and	 tuple	 sequential	 data	 types.
These	 operations	 include	 indexing,	 slicing,	 iteration,	 concatenation,	 and
checking	 for	membership.	We	will	cover	each	of	 these	 in	greater	detail	 in	 this
section.

Python	Lists	and	Tuples
A	 list	 in	 Python	 is	 a	mutable	 type	 that	 is	made	 up	 of	 a	 collection	 of	 ordered
objects.	The	objects	contained	 in	a	 list	do	not	have	 to	be	of	 the	same	type	and
may	include	other	lists	(nested	sublists).

A	tuple,	on	the	other	hand,	unlike	a	list,	is	an	immutable	type.	This	means	that
the	objects	(items)	in	a	tuple	cannot	be	changed	once	created.	Just	like	a	list,	the
objects	in	a	tuple	can	be	of	different	types.

Creating	a	list	and	tuple	A	list	is	created	by	placing	all	the	objects	(or	items)
inside	a	square	bracket	[]	and	separated	by	commas.	A	tuple	is	created	by
separating	its	values	with	a	comma	only	but	it	is	a	good	practice	to	enclose	them
in	parentheses	(brackets).

Ex19

list1	=	["March",	"Five",	2012,	19.25,	"Heaven"]

tuple1	 =	 ("a",	 "Sydney",	 "1900",	 3.142,	 0.01,	 "Python")	 tuple2	 =	 "x",
"empire",	"lego",	1,	2.0,	7

	

print	(list1)	print	(tuple1)	print	(tuple2)

	

You	can	also	create	a	list	by	splitting	the	elements	of	a	string	as	we	saw	in	Ex15.

Accessing	values	in	lists	and	tuples	You	access	the	values	of	lists	and	tuples
(separated	by	commas)	the	same	way	we	did	the	characters	of	a	string:	using
indices	and	slicing	with	square	brackets.	Consider	the	operations	in	Ex20:	Ex20

list1	=	["March",	"Five",	2012,	19.25,	"Heaven"]

tuple1	 =	 ("a",	 "Sydney",	 "1900",	 3.142,	 0.01,	 "Python")	 tuple2	 =	 "x",
"empire",	"lego",	1,	2.0,	7

	

print	(list1[0:2])	print	(list1[2:])	print	(tuple1[1:5])	print	(tuple2[0:-1])

	

You	can	see	that	we	use	the	same	slicing	operations	and	indexes	on	list1,	tuple1,
and	tuple2	as	we	did	strings.	You	will	also	remember	that	indexes	start	at	0	but
you	can	use	negative	indexes	to	count	from	the	last	object	(-1).

Updating	list	objects	Because	lists	in	Python	are	a	mutable	type,	you	can	update
a	single	or	multiple	elements	using	the	assignment	operator	(=).	You	can	also
add	new	items	on	the	list	using	the	append()	method	as	in	Ex21.

Ex21

list1	=	["March",	"Five",	2012,	19.25,	"Heaven"]

	

print	("Old	list1:	",	list1)	list1[0]	=	"December"

list1[-1]	=	"Hell"

list1.append("Computer")	print	("New	list1:	",	list1)

	

You	 can	 see	 in	 the	 example	 above	 that	 we	 updated	 list1	 with	 new	 items	 at
positions	 [0]	 (first)	 and	 [-1]	 (last)	 then	 added	 a	 new	 item	 after	 the	 last	 using
list.append().

Tuples	are	immutable	and	cannot	be	updated.	However,	you	can	take	the	values
of	 a	 tuple	 and	 create	 a	 new	 tuple	 by	 adding	 new	 items	 or	 combining	with	 an
existing	tuple.

Deleting	list	objects	There	are	two	ways	to	delete	items	from	a	list	in	Python.	If
you	know	the	exact	items	to	delete,	you	can	use	the	del	statement	but	if	you
don’t	know	you	can	use	the	remove()	method.	Consider	their	application	in	Ex22
below:	Ex22

list1	=	["March",	"Five",	2012,	19.25,	"Heaven"]

	

print	("Old	list1:	",	list1)	del	list1[3]

list1.remove("Five")	print	("New	list1:	",	list1)

	

Basic	list	and	tuple	operations	Much	like	strings,	lists	and	tuples	respond	to	the
concatenation	(+)	and	iteration	(*)	operations.

Ex23

list1	=	["March",	"Five",	2012,	19.25,	"Heaven"]

list2	=	["Mayday",	"rocket",	-60]

tuple1	 =	 ("a",	 "Sydney",	 "1900",	 3.142,	 0.01,	 "Python")	 print	 (len(list1))
print	(len(tuple1))	list3	=	list1	+	list2

	

print	(list3)	print	(list*2)

	

Python	comes	with	a	range	of	in-built	functions	that	you	can	use	to	manipulate
lists	 and	 tuples,	 a	 good	 example	 being	 the	 len(),	 (len(list1),	 and	 len(tuple1))
functions	in	Ex23	above.	Others	are:

Function Description

cmp() Compares	the	objects	of	two	lists	or	tuples.

len() Returns	the	total	length	of	a	sequence.

max() Returns	the	item	with	the	highest	value	in	a	sequence

min() Returns	the	item	with	the	lowest	value	in	a	sequence

list(seq) Converts	from	a	tuple	type	to	a	list.

tuple(seq) Converts	from	a	list	type	to	a	tuple.
Table	14:	List	and	tuple	functions.

Python	list	methods	As	far	as	list	methods	go,	we	have	only	used	two	so	far:
append()	in	Ex21	and	remove()	in	Ex22.	There	are	more	you	should	play	around

with	when	practicing	what	you	have	learned	about	lists.	Here	is	a	table	of	list
methods	in	Python	and	what	they	do.

Method Definition

append() Adds	an	item	to	the	end	of	the	list

remove() Removes	an	item	from	the	list

extend() Adds	all	elements	of	a	list	to	another	list

insert() Inserts	an	item	at	the	defined	index

copy() Returns	a	shallow	copy	of	a	list

pop() Removes	an	item	at	the	given	index	and	returns	it

index() Returns	the	index	of	the	first	matched	item

clear() Removes	all	items	on	a	list

count() Returns	the	number	of	items	passed	as	an	argument

reverse() Reverses	the	order	of	items	in	a	list

sort() Sorts	items	in	a	list	in	ascending	order

Table	15:	List	methods	in	Python	Can	you	apply	these	methods	to	strings	and
tuples	to	find	out	which	ones	work	(and	why)?

Advantages	of	tuples	over	lists	We	have	established	that	lists	and	tuples	are
similar	in	many	ways,	and	they	can	be	used	interchangeably	in	many	situations.
Considering	that	lists	are	mutable	while	tuples	are	not,	most	beginners	often
wonder	under	what	situations	a	tuple	is	more	applicable	compared	to	a	list.
There	are	four:

1.	 When	working	with	heterogeneous	(different)	types	of	data,	it	is
better	to	use	a	tuple.	A	list	is	more	practical	when	sequencing
data	of	the	same	type.

2.	 Where	the	sequence	will	be	iterated,	it	is	more	advantageous	to
use	a	tuple	because	it	is	immutable	and	will	be	iterated	faster	by

the	interpreter.
3.	 A	tuple	can	be	used	as	a	dictionary	key	because	its	data	is

immutable.	A	list	cannot	be	used	as	a	dictionary	key.
4.	 When	you	have	data	that	does	not	change,	the	best	way	to	make

sure	that	it	does	not	change	is	to	implement	it	as	a	tuple.

Python	Dictionaries
It	 would	 be	 impractical	 to	 write	 a	 functional	 computer	 program	 in	 Python
without	using	the	sequential	data	types	we	have	covered	so	far	(strings,	lists,	and
tuples)	and	dictionaries.

Like	 lists,	 dictionaries	 are	 a	 mutable	 data	 type	 whose	 objects	 can	 easily	 be
deleted,	updated,	and	added	at	runtime	and	they	can	also	contain	different	types
of	 data	 (including	 lists).	 The	 difference	 between	 the	 two	 is	 that	 dictionaries
contain	items	not	in	any	order,	unlike	lists	whose	items	are	ordered.	This	means
that	the	items	on	a	dictionary	are	accessed	using	keys	and	not	their	positions.

We	can	therefore	say	that	a	dictionary	in	python	is	an	associative	array	or	hash
in	which	each	value	is	mapped	to	(associated	with)	a	key.

Creating	a	dictionary	A	dictionary	in	Python	is	created	by	pairing	values	with
keys	using	a	colon	in	the	format	(key:value).	The	key:value	pairs	of	items	are
separated	by	commas	and	are	enclosed	in	curly	braces	({}).	A	dictionary	can
also	be	created	or	converted	from	another	data	type	using	the	built	in	function
dict().	In	Ex23,	we	have	created	three	dictionaries	called	myDict,	dict1,	and
class_performance	Ex23

myDict	=	{"ID":12,	"name":"John	Daniel",	"score":95,	"Grade":"A"}

	

dict1	=	dict([(1,	"cars"),	(2,	"computers"),	(3,	"planes")])	class_performance
=	 dict({1:"Mark",	 2:"Janet",	 3:"Simon",	 4:"Arthur",	 5:"Lee"})	 print
(myDict)	print	(dict1)	print	(class_performance)

	

Accessing	dictionary	elements	As	mentioned	earlier,	while	indexing	is	used	to
access	the	values	of	sequential	data	types,	keys	are	used	to	access	the	values	of	a
dictionary.	You	can	use	just	the	key	inside	a	square	bracket	but	it	is
recommended	that	you	make	it	a	habit	to	use	the	get()	method.

Ex24

myDict	=	{"ID":12,	"name":"John	Daniel",	"score":95,	"Grade":"A"}

	

print	(myDict["name"])	print	(myDict.get("score"))

	

Using	get()	has	the	advantage	of	returning	a	None	value	when	a	key	is	missing
and	not	a	KeyError	you	would	encounter	using	the	keys	in	square	brackets.

Updating	the	dictionary	Because	the	dictionary	is	a	mutable	type,	you	can	add
new	items,	delete	existing	ones,	or	update	keys	and	values	using	the	assignment
operator	(=).

Ex25

myDict	=	{"ID":12,	"name":"John	Daniel",	"score":95,	"Grade":"A"}

	

print	("Old	myDict:	",	myDict)	myDict["YOB"]	=	1995

myDict["Grade"]	=	"B"

del	myDict["ID"]

	

print	("New	myDict:	",	myDict)

	

In	 the	 example,	 we	 added	 a	 new	 dictionary	 key:value	 pair	 “YOB”:1995	 and
updated	“Grade”	key	value	to	B.	We	also	used	del	 to	delete	 the	“ID”:12	pair.
To	clear	all	the	dictionary	entries,	you	can	use	dict.clear	function	or	del	dict	to
delete	the	entire	dictionary.

Dictionary	methods	Here	is	a	table	of	the	methods	available	with	the	dictionary
type	in	Python	alongside	their	definitions.	Be	sure	to	try	out	each	of	them	to	see
that	it	does	what	is	described.

Method Description

dict.clear() Removes	all	items	form	the	dictionary.

dict.copy() Returns	a	shallow	copy	of	the	dictionary.

dict.items() Returns	 a	 new	 key:value	 view	 of	 the	 items	 in	 the
dictionary.

dict.keys() Returns	a	new	view	of	the	dictionary's	keys.

dict.pop(key[,d]) Removes	the	item	with	key	and	return	its	value	or	d	if	key
is	not	found.

dict.popitem() Removes	and	returns	an	arbitary	key:value	item).

dict.update() Updates	 the	 dictionary	 with	 the	 key:value	 pairs,
overwriting	existing	keys.

dict.values() Returns	a	new	view	of	the	dictionary's	values
Table16:	Dictionary	methods	in	Python.

Dictionary	functions	Python	comes	with	a	number	of	built-in	dictionary
functions	that	you	can	practice	with	to	gain	a	deeper	understanding	what	they	do.
They	are:

Function Description

all() Returns	 True	 if	 all	 dictionary	 keys	 are	 true	 or	 if	 the
dictionary	is	empty.

any() Returns	True	if	any	key	of	the	dictionary	is	true	and	False
if	the	dictionary	is	empty.

len() Returns	the	length	of	the	dictionary	(the	number	of	items).

cmp() Compares	the	items	of	two	dictionaries.

sorted() Returns	a	new	sorted	list	of	keys	in	the	dictionary.

type(var) Returns	 dictionary	 type	 if	 passed	 variable	 is	 of	 type
dictionary.

str() Produces	a	printable	string	of	the	dictionary	items.
Table	17:	Dictionary	functions	in	Python.

Properties	of	dictionary	keys	in	Python	Dictionary	values	can	be	arbitrary
objects	-	standard	or	user-defined	-	there	are	no	restrictions.	However,	there	are
two	vital	considerations	to	bear	in	mind	about	dictionary	keys:

1.	 You	cannot	have	two	or	more	similar	keys.	Keys	must	be
unique.	When	there	are	more	than	one	similar	keys,	the	last	to
be	assigned	is	the	only	valid	one.

2.	 Dictionary	keys	must	be	immutable.	You	can	use	numbers,
strings,	or	tuples	as	keys	but	you	cannot	use	something	like
[‘key’].

Chapter	6:	Input,	Output,	and	Import
Python	comes	with	numerous	built-in	 functions	 readily	available	at	 the	Python
prompt	 to	 enable	 you	 write	 programs	 that	 accept	 user	 input	 and	 can	 output
processed	information.	From	the	very	first	Hello	World!	program	we	wrote,	we
have	 used	 the	 print()	 output	 function	 and	 in	 Example11	 we	 introduced	 the
input()	function	to	capture	the	user’s	keyboard	input.

In	this	short	chapter,	we	will	go	into	detail	on	how	to	code	the	I/O	processes	in
Python.

Capturing	keyboard	input	using	input()
The	input()	function	reads	data	from	the	keyboard	as	a	string,	no	matter	whether
it	 is	 enclosed	 in	 quotes	 (“”	 or	 ‘’).	 You	 can	 convert	 the	 captured	 text	 into	 a
specified	data	type	using	a	casting	function	(see	Example18	script)	or	using	the
eval	function.

When	 the	 input()	 function	 is	 called,	 the	 interpreter	will	 stop	 the	program	 flow
until	 the	 user	 provides	 an	 input	 and	 ends	 it	 by	 pressing	 the	 return	 key.	 The
function	offers	an	optional	[prompt]	parameter	of	text	to	print	on	the	screen.

input([prompt])

	

The	prompt	text	will	be	displayed	to	the	left	of	the	line	where	the	user	will	need
to	 enter	 keyboard	 characters.	 It	 is	 a	 good	 habit	 to	 end	 the	 prompt	 text	with	 a
colon	and	a	space	(:)	to	properly	format	the	input	area	for	the	end	user.

Ex26

name	=	input("Enter	your	name?:	")

age	=	int(input("Enter	your	age:	"))

gender	=	 input	 ("Are	 you	Male	 or	Female?:	 ")	 print	 ("Hello,",	 name	+	 ".
You	are	a",	age,	"year	old",	gender	+	".")

	

There	is	more	you	can	do	with	input()	besides	capturing	a	single	string	of	text.
For	instance,	you	can	capture	a	sequence	of	data	and	save	it	as	a	list.

Ex27

my_cities	=	input("Name	three	cities	you	have	lived	in:	")	city1,	city2,	city3
=	my_cities.split()

	

print	 ("Here	 are	 the	 cities	 you	 have	 lived	 in:	 \n1.	 ",	 city1,	 "\n2.	 ",	 city2,

"\n3.	",	city3)

	

As	 you	 can	 see	 in	 this	 example,	 you	 can	 request	 user	 input	 using	 the	 input()
function	and	perform	further	functions	with	the	captured	data	such	as	split	it	to
create	a	mutable	sequential	data	type	(list).

Printing	to	the	screen	using	the	print()	function
Throughout	this	course,	we	have	used	the	print()	statement	to	display	text	on	the
computer	screen.	In	principle,	for	any	computer	program	to	be	useful,	it	must	be
able	 to	 communicate	with	 the	user	by	displaying	 requested	 information	on	 the
screen.

In	 Python	 3,	 we	 use	 the	 print()	 function	 to	 convert	 expressions	 separated	 by
commas	into	a	string	and	display	the	result	to	the	standard	console	output.

Arguments	of	the	print	function

The	print	function	takes	the	following	arguments:

print(value1,	value2..,	sep='',	end='')

	

You	can	print	an	arbitrary	number	of	values	separated	by	commas	as	you	can	see
in	 almost	 all	 the	 examples	 so	 far.	 The	 separator	 (sep)	 argument	 defines	what
separates	 the	 printed	 values	 and	 the	 end	 argument	 defines	 what	 characters	 or
symbols	 are	placed	 at	 the	 end	of	 the	 string	 to	print.	Other	 arguments	you	will
discover	in	the	advanced	stages	of	learning	to	write	code	in	Python	are	file	and
flush.

Ex28

name	=	input("What	is	your	name?	")

my_cities	=	input("Name	three	cities	you	have	lived	in:	")	city1,	city2,	city3
=	my_cities.split()	print	("\nIs	your	name	really",	name,	end	=	"?\n\n")	print
(name	+	",	you	have	lived	in:",	city2,	city3,	city1,	sep	=	"\n",	end	=	".\n")

	

A	print	call	is	ended	with	a	new	line	by	default,	but	including	the	end	argument
overrides	this.

Python	Import
So	far,	the	program	examples	we	have	been	creating	have	been	very	small,	only
a	few	lines	long.	As	you	create	longer	scripts	and	bigger	programs,	you	will	find
it	necessary	to	break	it	into	modules.

A	module	 is	a	python	 file	containing	statements	and	definitions.	Every	Python
module	has	a	filename	and	ends	with	the	.py	extension,	just	like	the	scripts	you
have	 been	 creating	 so	 far.	 There	 are	 countless	 modules	 distributed	 with	 the
standard	Python	installation	package	or	created	by	individuals	and	downloadable
from	the	internet.

To	import	a	module	in	Python,	you	use	the	keyword	import.

Ex29

import	 math	 r	 =	 float(input("Enter	 the	 radius	 of	 the	 circle:	 \n"))	 area	 =
(math.pi	r	r)	circumference	=	(2	math.pi	r)	print	("Radius",	r,	sep	=	":	",	end
=	"cm.\n")	print	("Pi",	math.pi,	sep	=	":	",	end	=	".\n")	print	("Area",	area,
sep	=	":	",	end	=	"	sq.	cm.\n")	print	("Circumference",	circumference,	sep	=
":	",	end	=	"	cm.\n")

	

In	Ex29,	we	 imported	 the	math	module	using	 the	 statement	 import	math	 from
which	we	found	math.pi.	Here,	we	use	the	value	of	pi	to	calculate	the	area	and
circumference	 of	 a	 circle	 whose	 radius	 the	 user	 is	 prompted	 to	 enter	 and
converted	to	a	float	number.

When	we	 import	 a	 module,	 all	 the	 definitions	 it	 contains	 are	 available	 in	 the
program’s	scope.	As	you	practice	using	 import,	you	will	discover	 that	you	can
also	import	specific	attributes	or	functions	using	keywords.	For	instance,	in	our
above	example,	we	could	have	just	imported	the	value	of	pi	using	the	statement:

import	math	pi

	

You	can	also	write	the	import	statement	like	this:

from	math	import	pi
	

Python	 searches	 all	 the	 directory	 locations	 defined	 in	 sys.path.	 You	 can	 also
import	more	than	one	module	in	one	import	statement.	For	instance,	to	view	the
list	of	directories	defined	 in	 sys.path	 import	 the	sys	modules	 and	use	 the	print
statement	to	display	the	path	values.

Can	you	see	the	list	of	directories	defined	in	the	sys.path?

Chapter	7:	Decision	Making	and	Looping
When	writing	a	program,	you	will	have	to	include	decision	making	structures	in
anticipation	of	conditions	that	will	occur	during	the	execution	of	the	program.	In
this	chapter,	you	will	 learn	how	to	use	 the	 if	statement	 to	write	a	program	that
makes	decisions	and	how	to	create	a	program	that	iterate	particular	block	of	code
until	or	when	a	condition	is	met.

Decision	making	in	Python
Decision	making	structures	evaluate	one	or	multiple	expressions	that	can	return
True	or	False	outcomes	then	use	the	response	to	determine	which	action	to	take
or	block	of	code	to	execute	when	the	outcome	is	True	or	False.

The	general	most	basic	decision	making	 structure	 found	 in	most	programming

languages	take	this	format:	

If	the	condition	test	returns	any	non-zero	or	non-null	value,	Python	registers	it
as	True.	Null	 and	Zero	 values	 are	 considered	False.	 The	 following	 types	 of
decision	making	statements	are	available	in	Python:

1.	 if
2.	 if...else
3.	 if...elif...else
4.	 Nested	if

The	if	statement	The	if	statement	tests	a	condition	such	as	if	two	variables	are
equal,	then	executes	a	block	of	code	if	the	result	is	True.	The	most	basic	syntax
of	this	statement	is:

if	<condition>:	statement(s)
	

Take	note	of	the	trailing	colon	(:)	after	the	test	condition	and	the	indentation	of
the	next	line	of	statement(s).

The	statement(s)	in	this	case	is	an	indented	block	that	may	be	made	up	of	one	or
more	 statements.	 The	 indentation	 is	 very	 important	 in	 Python	 because	 this	 is
how	the	interpreter	determines	which	lines	of	code	belong	to	what	block.	Make
it	a	habit	to	indent	your	lines	of	code	to	one	level	using	a	Tab	or	four	spaces.

The	 if	 statement	 tests	 the	 <condition>	 Boolean	 expression	 which	 will	 return
either	a	True	or	False.	If	the	condition	is	True,	the	statement(s)	are	executed	and
if	 it	 is	False,	 the	 interpreter	 will	 ignore	 the	 indented	 statements	 and	 continue
with	 the	 program	 execution	 at	 the	 first	 line	 after	 the	 indented	 block	 of
statement(s).

Ex30

number	=	int(input("Enter	a	number	to	check	if	it	is	EVEN:	"))	if	number	%
2	==	0:	print	(number,	"is	an	even	number.")

	

Notice	 that	 in	 our	 example,	 when	 you	 enter	 a	 value	 that	 when	 tested	 returns
False,	the	program	quits	because	there	are	no	statements	to	execute.

The	condition	can	have	more	than	one	conditions	to	be	evaluated	using	logical
operators	as	in	our	next	example.

Ex31

age	=	int(input("How	old	are	you?	"))	gender	=	str(input("Is	your	gender	M
or	F?	"))	if	age	>=	18	and	gender	==	"M":	print	("You	are	an	adult	male.")

	

The	condition	 in	 this	 exercise	 checks	 if	 the	value	of	 age	 is	 equal	 to	or	greater
than	18	and	the	value	of	gender	is	M	to	display	the	indented	string	statement.

The	if...else	statement	The	if	statement	has	one	downside:	that	there	is	only	one
block	of	code	to	execute	when	the	test	condition	evaluates	to	True.	The	if...else

statement	takes	this	structure:	

Here	is	the	Python	syntax	for	this	decision	making	structure:

if	<condition>:	statement(s)	else:	statement(s)

	

If	the	test	condition	returns	True,	the	first	block	of	statements	is	executed,	and	if
the	test	condition	returns	False,	the	block	of	statements	under	the	else:	statement
are	executed.

For	 instance,	 the	 program	 in	 Example30	 would	 be	 much	 more	 practical	 if	 it
could	tell	us	that	number	being	evaluated	is	odd	when	it	is	not	even	rather	than
just	terminating.	To	achieve	this,	we	use	the	if...else	statement	instead	of	just	if.

Ex32

number	 =	 int(input("Check	 this	 number	 if	 it	 is	 EVEN	 or	 ODD:	 "))	 if
number	%	2	==	0:	print	(number,	"is	an	even	number.")	else:	print	(number,
"is	an	odd	number.")

	

The	if...elif	statement	The	if...elif	statement	is	a	complex	construct	of	the
if...else	conditional	statement,	elif	being	a	shorthand	for	else	if.

With	the	if...elif	statement,	there	are	more	than	one	conditions	to	test	and	at	the

end	of	 the	 tests	 is	an	optional	else:	 statement.	Beneath	else:,	 just	 like	with	 the
previous	 if...else	 statement,	 is	 a	 block	 of	 code	 to	 execute	 if	 all	 the	 previous
conditions	return	False.

The	syntax	for	the	if...elif	decision	making	structure	looks	like	this:

if	<condition>:	statement(s)	elif:	statement(s)

	

Ex33

age	=	int(input("How	old	are	you?	"))	if	age	<	0:	print	("Age	cannot	be	less
than	0.")	elif	age	<	13:	print	("You	are	a	child.")	elif	age	<	20:	print	("You
are	a	 teenager.")	elif	age	<	60:	print	 ("You	are	an	adult.")	elif	age	<	120:
print	("You	are	a	senior	citizen.")	else:	print	("You	have	entered	an	invalid
age.")

	

Note	 that	 the	 if...elif	 structure	 of	 decision	making	 is	 equivalent	 to	 a	 series	 of
nested	if...else	statements,	except	more	elegant	and	easier	to	work	with.

Nested	If	statements	When	you	begin	creating	even	more	complex	programs	in
Python,	you	may	find	it	necessary	to	place	any	of	the	three	if	decision	making
structures	inside	another	if	structure	to	form	a	structure	of	nested	if	statements.

Because	nesting	if	statements	can	form	a	complex,	even	confusing	structure,	you
will	need	to	pay	close	attention	to	indentation	to	differentiate	the	levels	of	each	if
statement.	 The	 syntax	 of	 this	 type	 of	 conditional	 statement	 would	 take	 a
structure	like	this:

if	 <condition1>:	 statement(s)	 if	 <condition2>:	 statement(s)	 elif
<condition3>	statement(s)	else:	statement(s)	elif	<condition4>:	statement(s)
else:	statement(s)

	

Ex34

x	=	int(input("Enter	a	positive	number	x:	"))	y	=	int(input("Enter	a	positive
number	y:	"))	if	x	>=	0	and	y	>=	0:	if	x	>	y:	print	("x	is	greater	than	y.")	elif
x==y:	print	 ("x	 and	y	 are	 equal.")	 else:	print	 ("y	 is	greater	 than	x.")	 else:
print	("Either	or	both	x	and	y	are	not	positive	integers.")

	

Here	is	a	good	example	of	a	simple	nested	if	statement.	Can	you	identify	which
if	statement	is	inside	the	other?

Loops	in	Python
Loops	 or	 loop	 statements	 are	 used	 to	 iterate	 one	 or	 more	 statements	multiple
times.	 Python	 offers	 three	 mechanisms	 for	 repeatedly	 executing	 one	 or	 more
blocks	 of	 code	 either	 for	 a	 defined	 number	 of	 times	 or	 continuously	 until	 a
defined	condition	is	met.

The	three	types	of	loops	we	will	cover	in	this	section	are:	the	for	loop,	the	while
loop,	and	the	nested	loop.

The	for	loop	The	for	loop	is	the	most	popular	loop	structure	in	Python	used	to
iterate	over	a	sequence	such	as	a	list,	string,	tuple,	or	range	(this	is	discussed
further	at	the	end	of	the	chapter).	The	for	loop	takes	the	following	general	form:

for	var_name	in	sequence:	statement

	

In	the	syntax	above,	var_name	is	the	variable	that	assumes	the	value	of	the	item
inside	the	sequence	in	every	round	of	iteration.	The	loop	will	continue	until	the
last	item	in	the	sequence	is	reached.

The	 flowchart	 diagram	 below	 simplifies	 how	 the	 for	 loop	 works:	

Ex35

for	x	in	range(0,10):	print("x	=	",	x)

	

In	this	exercise,	we	use	the	for	statement	to	print	 the	incremental	value	of	x	in
the	range	0	to	10.

The	while	loop	The	while	loop	is	used	to	iterate	over	a	block	of	code	as	long	as
a	test	condition	returns	True.	The	while	loop	is	used	when	you	do	not	know	the
number	of	times	to	iterate	in	advance.	The	syntax	of	the	while	loop	takes	this
form:

while	<condition>:	statements

	

With	 the	while	 loop,	 the	 test	 condition	 is	 checked	 first	 and	 the	 body	 executed
only	 if	 the	 test	 condition	 evaluates	 to	True.	 This	 type	 of	 loop	 checks	 the	 test
condition	after	each	cycle	of	iteration	until	the	test	condition	evaluates	to	False.
The	 figure	 below	 is	 a	 flowchart	 diagram	 of	 the	 while	 loop:	

Ex36

total	=	0

	

x	=	1

xmax=eval(input("Enter	 the	 maximum	 integer	 for	 total:	 "))	 while	 x	 <=
xmax:	total+=	x	print	(total)	x+=1

	

print	("The	total	is",	total)

	

In	this	example,	the	value	of	variable	x	increases	from	1	to	the	value	entered	by
the	user	assigned	variable	name	xmax.	Note	that	because	the	range	command	is
not	used	in	this	iteration,	xmax	is	used	directly	as	a	parameter	in	the	loop.

In	Ex37,	we	 use	 the	while	 loop	 to	 iterate	 a	 string	 a	 number	 of	 times	 the	 user
specifies.

Ex37

my_text	=	input("Enter	a	word	to	iterate:	")	loops	=	int(input("Enter	times
to	iterate:	"))	x	=	1

	

while	x	<=	loops:	print	(my_text,	"X",	x)	x	=	x+1

	

Nested	loop	Just	the	way	we	put	an	if	statement	inside	another	to	create	a	nested
if	structure,	we	can	also	put	a	loop	a	while	or	for	loop	inside	another	loop.	The
rules	and	structure	for	a	nested	loop	in	Python	is	pretty	much	the	same	as	the
rules	of	nested	if.

An	important	note	about	nesting	loops	is	that	you	can	put	any	type	of	loop	inside
any	other	type	of	loop.	This	means	a	for	loop	can	fit	inside	another	for	loop	or
while	loop	and	vice	versa.	The	syntax	of	a	basic	nested	loop	would	look	like	any
of	these:

for	var	in	sequence:	for	var	in	sequence	statements	statement

	

for	var	in	sequence:	while	<condition>:	statements	statementsr

	

while	<condition>:	for	var	in	sequence:	statements	statements

	

while	<condition>:	While	<condition>:	statements	statements

	

Study	 Ex38,	 which	 finds	 and	 prints	 prime	 numbers	 between	 2	 and	 100,	 to
understand	how	a	nested	loop	is	structured.

Ex38

x	=	2

	

while	(x	<	100):	y	=	2

while	(y	<=	(x/y)):	if	not(x%y):	break	y	=	y	+	1

if	(y	>	x/y):	print	(x,	"	is	a	prime	number.")	x	=	x	+	1

	

print	("Maximum	number	100	reached.")

	

Loop	control	statements	In	the	previous	section,	we	learned	that	loops	iterate
over	a	block	of	code	until	a	certain	condition	is	met,	or	until	the	test	condition
returns	False.	However,	sometimes,	you	may	wish	your	program	to	terminate	an
ongoing	iteration	or	an	entire	loop	without	necessarily	checking	the	test
condition.	In	such	a	case,	you	use	a	loop	control	statement.

Loop	control	statements	are	used	to	alter	 the	normal	flow	of	a	 looped	block	of
code.	Python	supports	three	control	statements:	break,	continue,	and	pass.

The	break	statement	The	break	statement	terminates	the	loop	it	is	contained	in

and	 transfers	 the	 flow	of	execution	 to	 the	statement	 immediately	 following	 the
body	of	the	loop.	If	the	break	statement	is	contained	inside	a	nested	loop,	its	use
will	cause	the	innermost	loop	to	terminate.

The	syntax	for	the	break	statement	is	simply	break.

Ex39

for	letter	in	"Success":	print	("Current	letter:",	letter)	if	letter	==	"e":	break
print	("Found	letter:",	letter)

	

In	this	example,	the	interpreter	iterates	through	the	letters	in	the	word	“Success”
until	 it	 finds	 letter	“e”,	after	which	it	breaks	 the	cycle	and	the	program	flow	is
transferred	to	the	last	line	outside	the	loop.

The	continue	statement	Unlike	break,	the	continue	statement	does	not	terminate
the	 loop	 and	 instead	 breaks	 the	 current	 loop	 and	 skips	 the	 remaining	 loop
statements.	It	then	moves	control	back	to	the	beginning	of	the	loop	to	retest	the
condition	and	resume	iteration.

The	syntax	for	this	loop	control	is	continue.

Ex40

for	 letter	 in	 "Success":	 if	 letter	 ==	 "e":	 continue	 print	 ("Current	 letter:",
letter)

	

Ex40	is	a	lot	like	Example39,	except	that	we	use	continue	instead	of	break.	Can
you	explain	the	effect	this	change	has	on	the	output	of	the	script?

The	pass	statement	 In	Python,	 the	pass	statement	 is	a	null	 statement	such	 that
nothing	happens	when	it	 is	executed	(a	state	called	NOP	or	no	operation).	It	 is
used	as	a	placeholder	where	a	statement	is	required	syntactically	but	there	is	no
code	or	command	to	execute.

Pass	 is	 used	 as	 a	 placeholder	 for	 a	 future	 function	 or	 loop	 that	 has	 not	 been
implemented	 yet.	 Note,	 however,	 that	 unlike	 a	 comment	 that	 is	 completely

ignored,	the	pass	statement	is	not	ignored	by	the	interpreter.

Using	else:	with	loops	in	Python	The	else	statement	that	we	used	in	decision
making	structure	if	can	also	be	optionally	used	with	both	the	for	and	while	loops.
Just	like	with	the	if	statement,	loops	can	have	the	else:	block	that	is	executed
when	test	conditions	return	a	False.

The	syntax	for	the	for	and	while	loop	with	else:	would	look	like	these:

for	var_name	in	sequence:	statement	else:	statement

	

while	<condition>:	statement	else:	statement

	

The	range	command	In	the	examples	we	used	in	this	chapter,	we	ask	the
interpreter	to	loop	over	a	specified	range	of	integers	or	characters.	The	range
command	is	used	with	the	for	loop	to	iterate	the	loop	a	fixed	number	of	times.
There	are	three	ways	to	use	the	range	command:	range(i):	This	generates	a
sequence	of	integers	that	begin	at	0	and	end	at	i-1	(not	i),	increasing	by	1	with
each	iteration.

range(i,	 j):	 This	 command	 generates	 a	 sequence	 of	 integers	 starting	 at	 i	 and
ending	at	i-j,	increasing	by	1	with	each	iteration.

range(i,j,k):	This	range	command	generates	a	sequence	of	integers	that	start	at	i
and	end	at	j-1,	increasing	by	k	with	each	iteration.

Chapter	8:	Functions	and	function	arguments
When	 you	 create	 a	 block	 of	 code	 that	 carries	 out	 a	 specific	 calculation	 or	 an
action,	a	useful	way	to	refer	to	it	is	a	function.	In	Python,	you	will	be	able	to	call
one	 instance	of	 code	many	 times	 and	 reuse	 it	 to	 avoid	having	 to	write	 similar
code	over	and	over	in	one	or	more	programs	you	create.

A	function	takes	some	input,	referred	to	as	 input	parameters	or	arguments,	and
do	 something	with	 it.	 It	may	 or	may	 not	 return	 a	 result	 (value)	 depending	 on
what	you	wrote	it	for.	Consider	it	a	way	to	break	down	a	complex	program	into
modular	or	smaller	chunks	for	better	organization	and	manageability.

Predefined	 functions	 such	 as	 sqrt()	 and	 cos()	 are	 good	 examples	 of	 in-built
functions	that	come	with	Python.	You	can	also	define	your	own	functions.	This
is	what	we	will	learn	in	this	chapter.

Defining	a	function	in	Python
A	function	is	defined	using	the	keyword	def	and	assigning	it	a	name.	Its	syntax
takes	the	following	format:

def	function_name(arguments):	"""docstring"""

statement(s)

	

The	 keyword	def	marks	 the	 beginning	 of	 the	 function	 header	 followed	 by	 the
function	name,	a	unique	identifier	that	must	follow	the	standard	rules	of	writing
identifiers	in	Python.	The	arguments	section	in	parentheses	is	where	the	optional
values	or	parameters	are	passed	to	the	function	.	Note	that	the	end	of	the	function
header	is	marked	by	a	colon	(:).

The	optional	documentation	string	(docstring)	describes	what	the	function	does.
The	 statements	 that	 make	 up	 the	 body	 of	 the	 function	 are	 entered	 below	 the
docstring	 and	 must	 be	 indented	 at	 the	 same	 level,	 typically	 one	 tab	 or	 four
spaces.

The	return	statement	at	the	very	end	of	the	function	exits	the	function	back	to	the
last	 position	 from	 where	 it	 was	 called.	 Note	 that	 return	 may	 contain	 an
expression	or	expressions	that	get	evaluated	and	a	value	returned.

Ex41

def	ODDorEVEN(x):

"""This	is	a	function	to	determine	whether	a	number	is	even	or	odd"""

if	(x%2	==	0):

print	(x,	"is	an	even	number.")	else:

print	(x,	"is	an	odd	number.")	return

	

Calling	a	function
Once	you	define	a	function,	you	can	call	it	from	the	Python	prompt,	program,	or
another	function	by	simply	typing	its	name	with	appropriate	parameters.

To	call	the	ODDorEVEN	function	we	defined	in	Example41	and	test	a	number
(10)	whether	it	is	even	or	odd,	you	can	enter	this	command	on	the	shell:

>>>	ODDorEVEN(10)
	

Ex42

def	ODDorEVEN(x):	"""This	is	a	function	to	determine	whether	a	number
is	even	or	odd"""

if	(x%2	==	0):	print	(x,	"is	an	even	number.")	else:

print	(x,	"is	an	odd	number.")	return

	

x	=	eval(input("Enter	a	number	to	evaluate:	"))	ODDorEVEN(x)

	

In	 this	 example,	 we	 have	 used	 the	ODDorEVEN	 function	 from	 the	 previous
example	to	demonstrate	how	to	call	a	function	with	one	argument.

Function	arguments
You	learned	in	the	previous	section	how	you	can	define	your	own	function	and
how	to	call	 it.	Our	ODDorEVEN	 function	in	Example41	and	Example42	takes
one	argument	or	value	(x).	If	the	function	is	run	without	the	argument	it	expects,
the	interpreter	will	return	an	error.	Try	it.	The	same	will	happen	if	you	provide
two	arguments	when	the	function	needs	only	one.

Therefore,	by	default,	function	arguments	are	required,	and	they	must	be	passed
to	the	function	in	the	correct	positional	order.

However,	 Python	 offers	 multiple	 options	 for	 passing	 arguments	 of	 functions
including:	1.	Positional	arguments

Compared	 to	 many	 other	 languages,	 Python	 handles	 function	 arguments	 in	 a
very	 flexible	 manner.	 We	 already	 saw	 in	 the	 previous	 two	 examples	 that
arguments	 are	 assigned	 values	 in	 the	 format	 “parameter=value”	 using	 the
assignment	 operator.	 With	 positional	 arguments,	 the	 values	 are	 assigned	 to
function	 parameters	 in	 order	 of	 their	 location.	 Consider	 the	 example	 below:
Ex43

def	user_details(age,	sex,	location):

"""Practicing	positional	arguments

in	Python."""

	

print	("User	is",	age,	"year	old",	sex,	"from",	location)	return

	

user_details	(21,	"male",	"Nairobi")

user_details	("male",	"Nairobi",	21)

	

In	 the	 last	 two	 lines	 of	 the	 example	 above,	 the	 interpreter	 assigns	 the	 three
supplied	 parameters	 to	 the	 user_details	 function	 parameters	 age,	 sex,	 and

location	 in	 that	order.	Supplying	 the	argument	values	 in	 incorrect	order	causes
the	 function	parameters	 to	be	assigned	 incorrect	argument	values	as	 in	 the	 last
line.

2.	Optional	or	defaulted	arguments

You	can	provide	default	values	to	arguments	that	a	function	needs	to	run	using
the	assignment	operator	(=).	Ex44	demonstrates	how	to	achieve	this:	Ex44

def	greeting	(name,	 timeofday	=	"morning"):	"""This	 function	generates	a
user	 greeting	 including	 the	 user	 name.	 The	 user	 can	 enter	 the	 time	 of
day."""

	

print	("Good"	+	timeofday,	name	+	"!")

	

return

	

greeting	 (name	 =	 "Arthur",	 timeofday	 =	 "afternoon")	 greeting	 (name	 =
"Moses")

greeting	(name	=	"Hawk",	timeofday	=	"night")

	

In	 our	 example	 above,	 the	 function	 greeting	 requires	 two	 arguments	 for
parameters	name	and	timeofday.	However,	we	have	set	the	default	value	for	the
timeofday	parameter	as	“morning”.	You	can	see	in	the	second	execution	of	the
function	that	when	the	value	for	timeofday	is	not	provided,	the	default	value	was
used.	Because	of	 this,	our	 example	does	not	 encounter	 an	error	when	only	 the
required	argument	is	provided.

Assigning	a	function	argument	a	default	value	is	also	the	most	practical	way	of
making	an	argument	an	optional	argument.

3.	Keyword	arguments

Positional	 arguments	 cause	 a	 lot	 of	 confusion	 but	 you	 can	 avoid	 all	 that	 by
specifying	the	arguments	of	a	function	by	their	corresponding	parameter	names
even	if	they	are	in	a	different	order	in	the	function	definition	header.	When	the
function	 arguments	 have	 defined	 parameters,	 you	 can	 assign	 argument	 values
without	worrying	about	their	positions.

Ex45

def	user_details(age,	sex,	location):

"""More	about	keyword	arguments

in	Python"""

print	("User	is",	age,	"year	old",	sex,	"from",	location)	return

	

user_details	(location	=	"New	York",	age	=	32,	sex	=	"female")	user_details
(sex	=	"male",	location	=	"Nairobi",	age	=	21)

	

You	 can	 see	 in	 the	 above	 example	 that	 this	 approach	 even	 lets	 you	 mix
positional	and	keyword	arguments.	However,	note	that	if	your	function	has	both
positional	 and	 keyword	 arguments,	 you	 will	 need	 to	 arrange	 the	 positional
arguments	in	their	order	first.

4.	Arbitrary	number	of	arguments

We	have	established	that	keyword	arguments	allow	a	lot	of	flexibility	especially
when	 calling	 the	 function.	 It	 allows	 you	 to	 create	 a	 function	 that	 can	 handle
numerous	situations	including	when	reused	in	other	scripts.	However,	no	matter
what	order	you	supply	the	required	arguments,	you	must	provide	a	fixed	number
of	arguments	as	specified	in	the	function.

With	 Python,	 you	 can	 create	 a	 function	 that	 accepts	 a	 sequence	 of	 arbitrary
arguments	by	placing	an	asterisk	in	front	of	the	argument.

Ex46

def	user_details(name,	age,	*comments):

"""Assigning	an	arbitrary	number	of	arguments	to	a	function"""

print	 ("User	 name:",	 name,	 "|	 Age:",	 age,	 "|	 Comments:",	 comments)
user_details("Mariah",	 25,	 "Website:	 mariah.com")	 user_details("James",
30,	 "Plays	 basketball",	 "email:	 james@email.com")	 user_details(name	 =
"Mr.	King",	age	=	50)

	

In	 this	 demonstration,	 by	 placing	 an	 asterisk	 (*)	 before	 the	 *comments
parameter,	 we	 have	 enabled	 it	 to	 take	 any	 extra	 arguments	 passed	 to	 the
function.	The	second	to	last	line	of	the	script	calls	the	function	and	supplies	four
arguments	when	only	 three	are	defined	 in	 the	 function	header	but	 the	program
runs	without	an	error.	Can	you	find	out	how	many	more	arguments	you	can	add?

5.	Arbitrary	number	of	keyword	arguments

Besides	 enabling	 your	 functions	 to	 accept	 an	 arbitrary	 number	 of	 undefined
arguments,	 you	 can	 also	 create	 functions	 in	 Python	 that	 accept	 an	 arbitrary
number	of	keyword	arguments.

Ex47

def	products(prod_name,	price,	**kwargs):

"""Assigning	an	arbitrary	number	of	keyword	arguments	to	a	function"""

	

print	("Product	name:",	prod_name,	"|	Price:",	price)	print	("Description:",
kwargs)

	

products("Cup",	 "$10",	 color	 =	 "Red",	 manufacturer	 =	 "ABC	 co.")
products("Plate",	 "$5",	material	 =	 "China	 ceramic",	 size	=	 "Family	 size")
products("Cuttlery",	 "$25",	 set_no	 =	 "P87439",	 spoons	 =	 12,	 forks	 =	 12,
knives	=	2)

	

As	you	can	see	in	this	example,	adding	*kwargs	means	that	an	arbitrary	number
of	other	parameter=value	pairs	can	be	added	during	run	time.

Chapter	9:	File	Operations
You	have	 learned	a	 lot	 so	 far,	 but	 all	 the	 examples	we	have	been	using	 either
have	static	data	(the	data	types	that	we	typed	into	the	script	for	demonstration)	or
can	 take	 temporary	 user	 input	 that	 is	 lost	 when	 we	 exit	 the	 shell.	 Practical
programming	 involves	working	with	 files	 to	 read	and	store	permanent	data	 for
the	program	scripts.	This	is	what	you	will	be	introduced	to	in	this	chapter.

A	computer	file	can	be	defined	as	a	named	storage	location	on	a	volatile	memory
device,	 such	 as	 the	 hard	 disk,	 where	 data	 is	 recorded	 to	 be	 accessed	 and/or
modified	later.	File	operations	or	file	handling	in	Python	is	a	three-step	process
that	includes:

1.	 Open	a	file	object.
2.	 Using	the	file	object	to	read	and	write	data.
3.	 Closing	the	file	object.

Before	we	proceed,	we	need	a	file	to	work	with	in	this	chapter.	Use	a	text	editor
application	on	your	computer	to	create	a	text	file	called	days.txt	with	a	list	of	the
days	of	the	week	in	a	directory	you	can	access	with	ease	such	as	the	desktop	or
the	location	of	the	Example	files.

Opening	a	file
A	file	must	be	opened	before	it	can	be	read	or	written	into.	Python	comes	with
the	 inbuilt	open()	 function	 that	 returns	 the	 file	object	or	handle	 that	 is	used	 to
read	and	write	the	file.	The	syntax	for	opening	a	file	is:

file	object	=	open(file_name,	[access_mode],	[buffering],	[encoding])

	

File	 object:	Using	 the	 open()	 function	 creates	 a	 file	 object	 that	 is	 used	 to	 call
other	associated	methods.

file_name:	This	is	a	string	argument	that	contains	the	name	of	the	file	you	want
to	open.

access_mode:	 Access	mode	 is	 an	 optional	 parameter	 that	 determines	 how	 the
file	 will	 be	 accessed	 or	 manipulated.	 The	 table	 below	 presents	 the	 list	 of
access_mode	argument	values	and	what	they	mean:

Mode Mode	description

r
This	 is	 the	 default	 mode.	 Opens	 the	 file	 for	 reading	 only	 and
places	the	file	pointer	at	the	beginning	of	the	file.

rb
Opens	the	file	 in	binary	format	for	reading	only	with	the	pointer
placed	at	the	beginning	of	the	file.	This	is	the	default	mode	when
the	file	is	opened	in	binary.

r+
Opens	 the	 file	 for	 reading	and	writing	with	 the	pointer	placed	at
the	beginning	of	the	file.

rb+
Opens	 the	 file	 in	binary	 format	 for	 reading	and	writing	with	 the
pointer	placed	at	the	beginning	of	the	file.

w
Opens	the	file	for	writing	only.	It	creates	a	new	file	if	it	does	not
already	exists	or	overwrites	it	if	it	already	exists.

wb
Opens	the	file	in	binary	format	for	writing	only.	If	the	file	exists,
it	is	overwritten	and	if	it	does	not	then	new	one	is	created.

w+
Opens	 the	 file	 for	 reading	 and	 writing.	 If	 the	 files	 exists,	 it	 is
overwritten	and	if	it	does	not	then	a	new	one	is	created	for	reading
and	writing.

wb+
Opens	the	file	in	binary	format	for	reading	and	writing.	If	the	files
exists,	it	is	overwritten	and	if	it	does	not	then	a	new	one	is	created
for	reading	and	writing.

a
Opens	the	file	for	appending	with	the	file	pointer	at	the	end	of	the
file.	If	the	file	does	not	exist,	a	new	one	is	created	for	writing.

ab
Opens	the	file	in	binary	for	appending	with	the	file	pointer	at	the
end	of	the	file.	If	the	file	does	not	exist,	a	new	one	is	created	for
writing.

a+
Opens	the	file	for	both	reading	and	appending.	If	the	file	exists	it
is	opened	in	append	mode	with	the	pointer	placed	at	the	end	of	the
file	if	it	does	not	a	new	one	is	created	for	reading	and	writing.

ab+

Opens	the	file	in	binary	format	for	both	reading	and	appending.	If
the	file	exists	it	is	opened	in	append	mode	with	the	pointer	placed
at	the	end	of	the	file	if	it	does	not	a	new	one	is	created	for	reading
and	writing.
Table	18:	Descriptions	of	file	open()	access	modes	in	Python

	 [buffering]:	 If	 a	 value	 of	 1	 is	 set,	 the	 interpreter	 will	 buffer	 lines	 while
accessing	 the	 file.	 If	 the	 value	 is	 greater	 than	 1,	 buffering	will	 depend	 on	 the
buffer	size.	When	the	value	is	set	to	0	or	a	negative	number,	the	default	action
which	is	no	buffering	will	run.

[encoding]:	This	option	 is	 included	 in	 this	 list	 but	 it	 only	 applies	 to	 text	 files.
Different	operating	 systems	use	different	 encoding	 standards	 for	 text	 files.	For
instance,	 Linux	 uses	 “utf-8”	 while	 Windows	 uses	 “cp1252”.	 It	 is	 a	 good
programming	 practice	 to	 specify	 the	 type	 of	 encoding	when	manipulating	 text
files.

Let	us	try	to	open	our	file,	days.txt:

Ex48

my_text	=	open	("homeComputer/Python36-21/Examples/days.txt")

	

Remember	to	replace	the	path	on	Ex48	with	the	path	to	your	text	file.

Reading	from	a	file
To	read	the	content	of	a	file,	you	must	open	it	in	reading	mode	first	and	assign
the	object	created	to	a	variable.	Python	offers	three	ways	to	read	the	data	stored
in	 in	 the	 file:	 Using	 the	 <file>.read()	 method	 This	 method	 returns	 all	 the
content	 of	 the	 file	 as	 a	 single	 string.	 To	 view	 the	 content	 of	 our	 days.txt	 file
using	this	method,	we	would	write	the	code	as	follows:

my_text	 =	 open	 ("homeComputer/Python36-21/Examples/days.txt")
My_text.read()

	

Using	the	<file>.readline()	method	This	method	reads	the	opened	file	one	line
at	a	time	and	returns	the	content	up	to	and	including	the	next	newline	character.

my_text	 =	 open	 ("homeComputer/Python36-21/Examples/days.txt")
My_text.readline()

	

Using	<file>.readlines()	method	This	method	returns	the	list	of	lines	in	the	file,
each	item	on	the	list	representing	one	line	in	the	file.

my_text	 =	 open	 ("homeComputer/Python36-21/Examples/days.txt")
My_text.readlines()

	

Writing	to	a	file
A	file	must	be	opened	 in	write	 (‘w’),	append	(‘a’),	or	exclusive	creation	mode
(‘x’)	 to	 be	written	 into.	 It	 is	 important	 to	 know	 that	 opening	 the	 file	 in	write
mode	(‘w’)	will	result	in	overwriting	the	contents	of	the	file	if	it	already	exists.

The	<file>.write()	method	is	used	to	write	a	string	into	the	file.

Ex49

my_text	 =	 open	 ("homeComputer/Python36-21/Examples/Seasons.txt")
my_text.write("Seasons	of	the	Year:\n")	my_text.write("Fall.\n")

my_text.write("Summer.\n")

my_text.write("Spring.\n")

my_text.write("Winter.\n")

The	script	 in	 this	example	will	create	a	new	text	 file	called	Seasons.txt	 if	does
not	already	exist.

Closing	a	file
Your	program	must	properly	close	a	file	when	the	user	is	done	with	reading	or
updating	the	contents.	Closing	a	file	is	important	because	it	frees	up	the	memory
and	processing	resources	used	by	the	open	file.	A	file	is	closed	using	the	close()
method.

Ex50

Seasons	=	open	("path/Seasons.txt")	#File	operations	seasons.close()

	

The	 close()	 method	 is	 not	 entirely	 safe	 because	 if	 an	 exception	 occurs	 in	 the
process,	the	code	will	exit	without	closing	the	file.	In	the	later	stages	of	studying
or	practicing	Python,	you	will	be	introduced	to	the	try...finally	approach.

Python	file	methods
There	are	quite	a	number	of	methods	that	come	with	the	Python	file	object,	some
of	which	we	have	already	 looked	at	 in	 this	chapter.	There	are	many	more	 that
you	 will	 encounter	 when	 practicing	 what	 you	 have	 learned	 here	 and	 in	 the
intermediate	 and	advanced	 stages	of	 studying	 to	program	 in	Python.	The	 table
below	describes	a	few	of	the	most	common.

Method Description

flush() Flushes	the	write	buffer	of	the	file	stream.

readable() Returns	True	if	the	file	stream	can	be	read	from.

writable() Returns	True	if	the	file	stream	can	be	written	to.

seekable() Returns	 True	 if	 the	 file	 stream	 supports	 random
access.

tell() Returns	the	current	file	location.

truncate(size=None) Resizes	the	file	stream	to	the	specified	“size”	bytes.	If
“size”	is	not	specified,	it	resizes	to	current	location.
Table	19:	File	methods	in	Python

Chapter	10:	Conclusion	and	Further	Reading
That	you	have	reached	the	last	chapter	of	this	book	is	a	testament	that	you	have
paid	 the	 initial	 price	 of	 becoming	 a	 proficient	 Python	 programmer.
Congratulations!

This	coursebook	walked	you	through	all	the	most	important	topics	for	a	beginner
in	 programming	 with	 Python,	 along	 with	 50	 Examples	 that	 we	 hope	 made	 it
easier	 to	understand	what	 you	 learned.	We	hope	 that	 in	 your	 case,	 it	 achieved
what	we	intended.

Python	 is	 currently	 the	 most	 popular	 programming	 language	 and	 millions	 of
newbies	 and	 programmers	 proficient	 in	 other	 languages	 are	 taking	 the	 time	 to
learn	it.

Being	 a	 general	 purpose	 program,	 Python	 is	 used	 almost	 everywhere	 today	 --
from	 front-end	 game	 development	 and	 back-end	 web	 server	 systems	 to
automotive	 autonomous	 systems	 and	 home	 appliances	 and	 everything	 in
between.	Having	Python	coding	experience	under	your	belt	 certainly	 advances
your	marketability	and	value	in	the	modern	world.

The	 process	 of	 learning	 the	 basics	 of	 Python	 must	 have	 been	 daunting,	 even
frustrating,	for	you,	but	you	have	earned	the	bragging	rights	of	a	programmer	(or
developer,	whichever	you	fancy).	We	have	attempted	to	make	this	book	easy	to
understand,	 practical,	 and	more	 importantly,	 fun.	 However,	 everything	 in	 this
book	 can	 only	 take	 you	 half	 the	 way	 to	 proficiency;	 the	 rest	 of	 the	 learning
process	will	demand	your	effort.

Further	learning
Now	that	you	have	reached	the	end	of	the	book,	what	next?	We	will	not	abandon
you.	Here	are	a	few	pointers	that	you	will	find	highly	beneficial.

Check	out	the	official	Python	tutorials

The	 official	 Python	 tutorials	 on	 python.org	 are	 a	 goldmine	 for	 enthusiastic
learners	 who	want	 a	 technical	 and	 professional	 explanation	 of	 anything	 to	 do
with	the	language.	Make	a	point	of	checking	out	what	it	has	to	offer	you.

Make	Wikibooks	your	friends

One	 of	 the	 best	 sources	 to	 learning	 anything	 new	 on	 the	 internet	 is	 through
wikibooks.	Wikibooks	on	Python	provide	solid,	accurate,	and	concise	assistance
to	learners	seeking	answers	to	almost	any	question	without	getting	too	technical.

Online	tutorials

Everything	you	have	learned	thus	far	is	explained	in	at	least	one	other	tutorial	on
the	internet,	albeit	with	a	different	approach	or	examples.	Most	tutorials	feature
screenshots	or	diagrams,	and	even	live	online	IDLE	platforms	that	enable	you	to
test	your	code	right	from	the	browser.	They	include	the	Nettuts+'s	Python	from
Scratch	 resource	 (https://code.tutsplus.com/series/python-from-scratch--net-
20566)	and	Tutorials	Point	(http://tutorialspoint.com/python3/)

Move	on	to	the	next	book

Investing	in	a	carefully	created	book	such	as	this	one	is	by	far	the	most	reliable
way	to	learn	a	topic	such	as	Python	programming.	Now	that	you	have	completed
all	 the	basics,	perhaps	your	next	step	will	be	to	find	a	book	for	intermediate	to
advanced	Python	learners.

Get	all	answes	at	StackOverflow

If	you	have	not	created	an	account	at	StackOverflow,	do	so	now.	This	is	the	one
place	where	millions	of	developers	ask	and	answer	questions	 to	any	and	every
problem	 you	will	 ever	 face.	 Encountered	 a	 new	 error	 you	 do	 not	 understand?
Someone	 at	 StackOverflow	 will	 explain	 it	 to	 you.	 Most	 often	 you	 will	 find

someone	 else	 already	 asked	 your	 type	 of	 question	 and	 received	 the	 right
answer(s).

Practice	at	Project	Euler	and	CodeFights

With	 what	 you	 know	 so	 far,	 you	 can	 barely	 create	 a	 functional	 application
program.	The	only	way	to	reinforce	what	you	have	learned	is	through	practice.
Two	 of	 the	 most	 popular	 places	 to	 flex	 your	 coding	 skills	 are	 Project	 Euler
(http://projecteuler.net)	and	CodeFights	(http://codefights.com).	Check	them	out.

Build	a	Game

Nothing	 is	 as	 satisfying	 to	a	budding	developer	as	building	his/her	own	game.
The	 learning	curve	 to	developing	a	playable	game	may	be	steep,	but	 it	will	be
very	 rewarding	 in	 the	 process.	 You	 can	 start	 using	 the	 PyGame
(http://www.pygame.org/news)	library	with	one	of	the	thousands	of	free	tutorials
to	develop	a	simple	Python	game	to	reinforce	what	you	have	learned	and	put	it
in	practical	application.

Familiarize	yourself	with	common	Python	tools	and	libraries

There	is	a	seemingly	endless	supply	of	Python	tools	and	libraries	for	almost	any
purpose	on	the	internet.	To	get	you	started	check	out	PyPy	(http://pypy.org/),
NumPy	+	SciPy	(http://numpy.scipy.org),	BeautifulSoup
(https://www.crummy.com/software/BeautifulSoup/),	The	Python	Image	Library
(http://www.pythonware.com/products/pil/),	and	the	Django	framework
(http://djangoproject.com).

Get	involved	in	open	source	projects

If	you	believe	you	have	a	decent	grasp	of	the	Python	language	and	can	apply	it
to	 real	 life	 applications,	 the	 best	way	 to	 learn	while	 doing	 is	 by	 joining	 open
source	developers	on	Github	or	Bitbucket	and	contributing	to	ongoing	projects.
You	will	be	able	 to	see	 the	approaches	other	developers	use	 to	solve	problems
and	sharpen	your	coding	skills	with	every	line	of	code	you	write.

These	are	just	a	few	of	the	best	places	to	go	to	next,	now	that	you	are	armed	with
the	essential	Python	coding	 skills	 that	you	must	continually	build	on	until	you
become	a	pro.

	

-end-

	

HACKING	MADE	SIMPLE
	

Full	Beginners	Guide	To	Master	Hacking
	

	

	

[Project	Syntax]

Legal	notice
This	 book	 is	 copyright	 protected	 only	 for	 personal	 use.	 You	 cannot	 amend,
distribute,	sell,	use,	quote	or	paraphrase	any	part	or	the	content	within	this	book
without	 the	 consent	 of	 the	 author	 or	 copyright	 owner.	 Legal	 action	 will	 be
pursued	if	this	is	breached.

Please	 note	 the	 information	 contained	within	 this	 document	 is	 for	 educational
and	 entertainment	 purposes	 only.	 Every	 attempt	 has	 been	 made	 to	 provide
accurate,	 up	 to	 date	 and	 reliable,	 complete	 information.	 No	warranties	 of	 any
kind	 are	 expressed	 or	 implied.	 Readers	 acknowledge	 that	 the	 author	 is	 not
engaging	in	the	rendering	of	legal,	financial,	medical	or	professional	advice.

By	reading	this	document,	the	reader	agrees	that	under	no	circumstances	are	we
responsible	for	any	losses,	direct	or	indirect,	which	are	incurred	as	a	result	of	the
use	of	information	contained	within	this	document,	including,	but	not	limited	to,
errors,	omissions	or	inaccuracies.

About	this	book
The	 most	 sophisticated	 approach	 to	 looking	 for	 security	 vulnerabilities	 in	 a
computer	 system	 or	 a	 computer	 network	 is	 penetration	 testing	 or	 simply
pentesting.

An	 ethical	 hacker	 uses	 pentesting	 techniques	 to	 test	 the	 IT	 security	 and	 find
vulnerabilities	in	an	organization’s	computer	system	or	network.	This	is	never	a
casual	 undertaking.	 Penetration	 testing	 involves	 a	 lot	 of	 planning,	 paperwork,
repeated	scanning,	collecting	data	scattered	on	the	internet	even	before	the	actual
test.

This	ebook	goes	 in	depth	 to	highlight	all	 the	necessary	 steps	an	ethical	hacker
must	 take	 during	 a	 hack.	 By	 following	 this	 guide,	 you	 have	 made	 the	 right
decision	 to	 lay	 the	 foundation	 of	 a	 proven	 hacking	 process	 that	 involves	 five-
phases:

1.	 Reconnaissance
2.	 Scanning
3.	 Gaining	Access
4.	 Maintaining	Access
5.	 Covering	Tracks

Each	 of	 these	 five	 phases	 of	 pentesting	 is	 summarized	 and	 exhaustively
explained	with	demonstration	guides	with	tools	available	for	free	on	the	internet.
Because	this	book	is	meant	for	absolute	beginners	who	want	to	be	just	as	good
as	professionals	in	hacking,	the	first	chapter	goes	in	detail	to	define	the	different
types	 of	 hackers.	 You	 must	 never	 be	 lose	 sight	 of	 who	 you	 are	 learning	 to
become.

The	first	chapter	will	also	guide	you	set	up	a	safe	lab	where	you	can	learn	and
practice	your	hacking	exploits	in	safety.

Chapter	1	|	A	Hacker’s	Introduction	to	Ethical
Hacking
You	want	to	be	a	hacker.	No	matter	your	motivations	or	whatever	your	reasons
to	pursue	a	simplified	course	 to	become	one,	 it	 is	very	 important	 that	you	first
understand	what	being	hacker	really	is.

Hacking	 is	 the	 process	 of	 identifying	 vulnerabilities	 in	 a	 computer	 or	 network
system	with	the	intent	to	exploit	the	weaknesses	to	gain	access	into	the	system’s
data	and	control	resources.

It	 is	a	 fact	 that	computers	have	become	an	 integral	part	of	our	daily	 lives.	We
rely	on	 them	for	work	 just	as	much	as	we	need	 them	at	home	 to	connect	with
friends	and	 family	and	 to	simplify	our	 lives	 in	many	ways.	 It	 is	not	enough	 to
have	 an	 isolated	 computer	 system;	 computer	 networking	 is	 essential	 in
facilitating	 communication	 with	 other	 computers	 to	 share	 data	 and	 send
messages	to	the	people	we	interact	with.

It	is	because	computers	are	networked	that	they	are	exposed	to	the	outside	world,
hence	the	threats	posed	by	malicious	hackers	and	the	tools	they	use.	Today	there
are	career	hackers	who	have	developed	sophisticated	tools	that	scan	the	internet
and	even	 isolated	networks	 for	vulnerabilities	 to	 exploit	with	 intent	 to	 commit
fraudulent	 acts	 such	 as	 theft	 of	 personal	 or	 corporate	 data,	 encrypting	 and
ransoming	 user	 data,	 using	 vulnerable	 computers	 as	 botnets,	 or	 many	 other
cybercrimes.

Then	 again,	 there	 are	 the	 good	 hackers	 that	 replicate	 methods	 that	 the	 bad
hackers	 use	with	 the	 intention	 to	 expose	 and	 fix	 potential	 vulnerabilities.	This
enables	 the	 owners	 to	 stay	 a	 step	 ahead	 of	 the	malicious	 hackers	 and	 prevent
future	 attacks	 from	 happening.	 Before	 we	 can	 go	 further,	 we	 should	 first
understand	the	different	types	of	hackers	out	there	and	the	most	commonly	used
terminologies	in	the	world	of	hacking.

Types	of	Hackers
We	 have	 already	 defined	 a	 hacker	 as	 a	 person	 who	 finds	 and	 exploits
vulnerabilities	 in	 a	 computer	 or	 network	 system	 to	 gain	 access	 to	 data	 and
information.	 A	 hacker	 us	 typically	 a	 skilled	 computer	 programmer	 or
information	 security	 professional	with	 extensive	 knowledge	 of	 how	 computers
and	computer	networks	work	and	how	data	is	secured	in	a	network.

Hackers	can	be	classified	based	on	the	intent	of	their	actions.	They	fall	into	five
broad	categories:

White	hat	hacker	(ethical	hacker)
This	 is	 a	 hacker	 who	 gains	 access	 into	 a	 system	 with
permission,	with	a	view	to	find	and	fix	vulnerabilities.	A
white	hat	hacker	may	get	paid	for	carrying	out	penetration
testing	and	vulnerability	assessments.

Black	hat	hacker	(cracker)
This	 is	 a	 hacker	 who	 gains	 unauthorized	 access	 into	 a
computer	 system	 for	 personal	 or	 financial	 gain.	A	 black
hat	 hacker	 oftentimes	 exploits	 vulnerabilities	 in	 a
computer	 or	 network	 system	 to	 steal	 data,	 violate	 user
privacy	rights,	steal	money	or	information,	or	just	to	earn
bragging	rights.

Grey	hat	hacker
Somewhere	between	a	black	and	a	white	hat	hacker	 is	a
grey	hat	hacker.	This	is	a	hacker	edged	between	an	ethical
and	 a	 criminal	 hacker	 in	 that	 he/she	 breaks	 into	 a
vulnerable	computer	system	or	network	without	authority,
but	with	the	intent	to	alert	the	authority	on	the	weaknesses
discovered	 or	 identify	 vulnerabilities	 for	 a	 reward	 or	 a
job.

Script	kiddie
A	 non-skilled	 hacker	 who	 can	 penetrate	 obvious
vulnerabilities	 in	 a	 computer	 or	 network	 system	 using
ready-made	 tools	 easily	 downloadable	 on	 the	 internet	 is
called	a	script	kiddie.	Many	skilled	hackers	today	start	of
as	 script	 kiddies	 and	 hone	 their	 craft	 with	 each	 hack

http://cdn.guru99.com/images/EthicalHacking/img1.png
http://cdn.guru99.com/images/EthicalHacking/img2.jpg
http://cdn.guru99.com/images/EthicalHacking/img3.jpg

attempt.
Hacktivist

A	 hacktivist	 is	 a	 hacker	 with	 a	 social,	 religious,	 or
political	 motive.	 Hacktivists	 often	 target	 very	 public
websites	of	companies,	individuals,	or	organizations	they
deem	 as	 the	 enemy	 and	 they	 often	 hijack	 them	 to	 leave
messages	on	the	sites,	 take	down	their	servers,	or	launch
distributed	denial	of	service	attacks.

	

Why	become	an	ethical	hacker?
Ethical	Hacking	is	legal.	It	is	fun,	challenging,	and	very	informative	if	you	know
your	ways	around	 it.	Being	a	hacker	 is	a	 lot	 like	being	a	 lock	picker;	 the	next
challenge	is	always	a	mission	to	look	forward	to.

It	takes	a	lot	of	effort	and	time	to	become	a	proficient	hacker	who	can	create	his
own	 routine	 and	 techniques	 to	 find	 weaknesses	 in	 a	 computer	 system	 and
networks,	and	exploit	them.	This	may	be	your	first	step,	but	at	the	end	of	it,	what
separates	 you	 (the	 good	 guy)	 from	 the	 black	 hats	 (the	 bad	 guys)	 is	 how	 you
apply	your	hacking	skills.

As	an	ethical	hacker,	must	abide	by	the	following	rules:

1.	 Before	you	start	looking	for	vulnerabilities	in	a	computer	system
or	network,	you	must	get	written	permission	from	the	owner.

2.	 Always	strive	to	protect	the	privacy	of	the	information	and	systems
of	the	organization	you	hack.

3.	 Create	a	transparent	report	that	identifies	the	processes	used	and
the	weaknesses	identified	in	the	client’s	computer	system	or
network	after	each	hach.

4.	 Inform	hardware	and	software	vendors	of	any	vulnerabilities
found.

Information	 is	 among	 the	most	valuable	assets	 to	businesses	and	organizations
today.	 As	 an	 ethical	 hacker,	 your	 mission	 is	 to	 abide	 by	 the	 above	 rules
stipulated	 by	 the	 EC-Council	 (International	 Council	 of	 E-Commerce
Consultants).

If	 you	 are	willing	 to	 abide	 by	 these	 rules,	 and	 are	 ready	 to	 learn	 to	 become	 a
hacker,	you	are	choosing	to	join	the	army	of	hackers	who	in	their	own	ways	help
businesses,	organizations,	and	individuals	protect	their	information	and	systems
from	hackers	and	stay	a	step	ahead	of	the	cyber	criminals.

Setting	up	a	virtual	lab
Hacking	into	a	computer	or	a	network	without	authorization	is	a	crime.	Practice
your	hacks	without	putting	your	budding	hacking	career	in	jeopardy	by	investing
in	a	home	penetration	testing	lab.	This	is	basically	a	good	computer	with	all	the
software,	network	hardware,	and	configurations	that	you	can	use	to	practice	your
skills	safely	and	legally.

If	you	ever	want	to	pursue	professional	courses	in	ethical	hacking	such	as	with
ECSA	or	CEH,	you	must	learn	to	set	up	your	own	virtual	or	physical	lab	to	carry
out	hacks.

Network	requirements

That	you	have	invested	time,	effort,	and	money	to	learn	to	become	a	hacker	is	a
testament	of	how	resourceful	and	determined	you	are	 to	acquire	 the	skills.	The
good	 thing	 is	 that	 there	 are	 no	 set	minimum	network	 requirements	 to	 learn	 or
practice	hacking;	 in	fact,	you	can	simply	use	a	virtualization	 tool	 to	simulate	a
second	computer	in	the	network,	and	you	will	just	as	effectively	practice	many
steps	you	will	learn	in	this	book.

However,	 for	 efficiency,	 it	 is	 recommended	 that	 you	 have	 a	 computer	 with	 a
good	internet	connection.	The	good	people	of	 the	Internet	have	made	available
many	 vulnerable	 servers	 that	 learners	 such	 as	 yourself	 can	 use	 as	 target
computers.	If	possible,	get	permission	to	practice	your	skills	on	local	wired	and
wireless	connections	because	some	hacking	skills	in	the	book	are	best	practiced
offline.

Hardware	requirements

You	need	a	computer	with	a	processor	that	supports	virtualization	such	as	Intel-
VT	and	AMD-V.	It	should	have	at	least	4GB	of	RAM	(8GB	would	be	ideal)	and
at	 least	100GB	hard	disk	space.	A	second	monitor	 is	not	 required	but	 it	would
make	 your	work	 a	 lot	 easier	 because	 you	may	 need	 to	 run	multiple	 processes
concurrently.

Your	computer	must	have	a	reliable	internet	connection	to	download	and	install
software	 and	 to	 practice	 the	 step-by-step	 hacking	 guides	 documented	 in	 this

book.

Software	requirements

The	Kali	Linux	operating	 system	 is	 an	 advanced	 pentesting	Linux	distribution
that	you	can	install	as	a	stand-alone	operating	system	on	your	computer	or	run
from	a	workstation	or	a	player.

If	you	can	spare	two	machines,	it	is	recommended	that	you	set	up	Kali	Linux	as
the	main	operating	system	on	the	exploit	machine	and	another	operating	system
on	the	target	machine	for	your	practice.

Setting	up	a	virtual	machine	using	tools	such	as	VMware,	KVM,	VirtualBox,	or
Microsoft’s	Virtual	PC	is	a	great	way	to	set	up	a	lab	in	a	computer	you	use	for
everyday	activities.

Follow	 the	 following	 steps	 to	 set	 up	 a	 virtual	 player	 and	Kali	 Linux	 on	 your
computer.

Step	 1:	 Go	 to	 [https://www.virtualbox.org/wiki/Downloadsand	 download	 a
VirtualBox	 player	 for	 your	 operating	 system.	 Alternatively,	 you	 can	 try	 the
VMware	 Player	 on	 this	 link	 [https://my.vmware.com/web/vmware/free/].
VirtualBox	and	VMware	can	be	installed	on	Windows,	OS	X,	Linux,	and	Solaris
hosts.	Be	sure	to	choose	the	right	installation	package.

Install	the	virtualization	system	on	your	computer.

Step	 2:	 Download	Kali	 Linux	 images	 provided	 by	Offensive	 Security	 on	 this
link	 [https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-
download/].	 With	 these	 images,	 you	 can	 easily	 run	 Kali	 Linux	 OS	 without
creating	virtual	machines.	Unzip	the	downloaded	images	and	open	the	VMware
or	VirtualBox	file	for	the	player	you	downloaded.

The	image	should	load	on	to	the	player	and	simulate	a	separate	machine	running
on	Kali	Linux	operating	system.	Note,	however,	that	because	the	system	shares
resources	 with	 your	 primary	 OS,	 it	 may	 be	 slower	 and	 may	 require	 further
configurations	to	use	the	network	or	other	resources.

Step	3:	Download	and	 install	 targets.	Most	 learners	choose	 to	 install	Windows

https://www.virtualbox.org/wiki/Downloads
https://my.vmware.com/web/vmware/free/
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/

XP	or	Windows	7	systems	on	target	machines,	or	run	these	systems	in	a	different
virtual	 environment	 within	 the	 same	 computer.	 You	 can	 also	 download	 old
applications	with	known	vulnerabilities	 that	you	can	 try	 to	exploit	during	your
own	practice	time.

Chapter	2	|	Reconnaissance
Reconnaissance	 is	 the	 task	 of	 gathering	 information	 before	 any	 real	 hacks	 are
planned	 and	 executed.	 The	 idea	 behind	 this	 stage	 of	 penetration	 testing	 is	 to
collect	 as	 much	 interesting	 information	 as	 possible	 about	 the	 intended	 target.
There	are	many	tools	that	come	with	Kali	Linux	distribution	that	will	allow	you
to	 extract	 information	 from	public	 sources,	 sift	 and	 filter	 it	 to	get	 insights	 and
details	about	the	target	system.

Stages	of	Reconnaissance
As	 an	 ethical	 hacker,	 it	 is	 a	 good	 practice	 to	 use	 the	 same	 processes	 that	 any
other	hacker	would	use	to	examine	the	target.	This	process	typically	starts	with
the	pre-test	phases	of	footprinting,	scanning,	and	enumerating.	These	three	steps
are	 so	 vital	 that	 they	 can	make	 the	 difference	 between	 a	 successful	 hack	 that
unveils	just	how	exposed	a	client’s	system	is	and	one	that	does	not.

The	reconnaissance	process	involves	the	following	seven	steps:

1.	 Gather	initial	information.
2.	 Determine	the	range	of	the	network.
3.	 Identify	active	machines	in	the	network.
4.	 Discover	access	points	and	open	ports	in	a	network.
5.	 Fingerprint	the	operating	systems	and	versions.
6.	 Uncover	services	on	ports.
7.	 Map	the	network.

Footprinting	This	is	the	process	of	blueprinting	the	security	profile	of	the	target
organization	or	network	and	it	involves	gathering	information	about	the	network
to	create	a	unique	profile	that	will	be	a	basis	for	the	hack.	Footprinting	is	a	great
way	for	you	to	passively	gain	information	about	the	organization	and	the
network	without	the	knowledge	of	the	target	organization.	Footprinting	involves
the	first	two	steps	of	the	reconnaissance	phase:	gathering	initial	information
about	the	target	and	determining	the	range	of	the	network.	The	most	popular
Kali	Linux	tools	to	use	in	this	phase	are:

1.	 NsLookup
2.	 SmartWhois
3.	 Whois

Footprinting	also	may	require	manual	research	such	as:

Collecting	contact	names,	phone	numbers,	and	email	addresses	of
employees.

Gathering	company	branches	and	locations.
Collecting	news	pieces	such	as	mergers	and	acquisitions.
Finding	other	companies	with	which	the	target	partners	or	deals	with.
Finding	links	to	company-related	sites	and	privacy	policies	which	will
help	in	discovering	the	type	of	information	security	in	use.

You	 may	 also	 get	 a	 bit	 more	 active	 in	 the	 footprinting	 stage	 to	 collect	 data
directly	 from	 the	 target	organization.	For	 instance,	you	can	call	 the	company’s
help	 desk	 and	 use	 social	 engineering	 techniques	 to	 get	 an	 employee	 to	 reveal
privileged	information	that	will	be	useful	to	the	hack.

Scanning	Scanning	to	identify	active	machines,	open	ports,	active	access	points,
and	fingerprinting	the	operating	system	are	carried	out	during	the	scanning
phase.	The	goal	at	this	point	is	to	discover	open	ports,	applications,	and
vulnerabilities	using	specialized	tools.	Scanning	may	involve	pinging	active
machines,	internal	or	external	network	scanning,	port	scanning,	and	determining
network	ranges.

Scanning	 is	more	 active	 than	 footprinting.	At	 this	 stage	 of	 recon,	 you	will	 be
able	 to	 collect	 more	 detailed	 information	 to	 refine	 the	 target	 profile	 you	 are
hacking.	 Some	 of	 the	 most	 common	 tools	 used	 in	 this	 phase	 are:	 NMap,
Traceroute,	Netcat,	and	Superscan.

Enumerating	The	last	step	in	the	recon	phase	of	hacking	is	mapping	the	target
network	using	results	from	the	footprinting	and	scanning	stages.	Enumeration	is
carried	out	to	draw	a	fairly	complete	picture	of	the	target	network	and	to	zero	in
on	individual	vulnerabilities.

This	 may	 involve	 identifying	 valid	 user	 accounts,	 finding	 poorly	 protected
resources	 shared	 on	 the	 network,	 and	 determining	 the	 weakest	 areas	 of	 the
network	 to	 prod	 further.	 Specialized	 tools	 that	 come	 bundled	with	Kali	 Linux
will	 help	 you	 obtain	 active	 directory	 information	 and	 identify	 vulnerable
accounts	 on	 the	 network,	 employ	 Windows	 DNS	 queries,	 and	 set	 up	 null
sessions	and	connections.

Note	that	being	a	white	hat	hacker,	you	are	required	to	document	every	step	of
finding	vulnerabilities,	not	just	for	the	final	report,	but	also	to	alert	the	target	of

any	immediate	and	serious	vulnerabilities	that	you	discover.

1.	Passive	Reconnaissance	of	a	Target	with	Netcraft
There	are	two	ways	to	carry	out	a	recon	before	a	hack:	active	or	passive.	Active
reconnaissance	involves	interacting	with	the	target	computer	or	network	system
to	gather	information	about	it.	It	is	always	best	to	begin	a	mission	with	passive
reconnaissance	 because	 an	 active	 approach,	 while	 useful	 and	 can	 gather
actionable	and	accurate	information	in	a	short	time,	carries	the	risk	of	the	hacker
being	made	out	and	may	even	be	blocked	from	the	system.

The	Netcraft	tool	is	a	web-based	passive	information	gathering	tool	that	you	can
use	for	web-based	targets.	Here	is	how	to	use	it:

Step	1:	Go	to	the	Netcraft	homepage

Start	 your	 browser	 and	 navigate	 to	 Netcraft.com.	 You	 should	 see	 a	 page	 that
looks	like	this:

You	will	learn	that	Netcraft	is	a	company	that	tracks	virtually	all	websites	on	the
internet	 to	 calculate	 web	 server	 market	 share,	 store	 uptime	 information,	 and
provide	 essential	 cyber	 security	 services	 such	 as	 anti-phishing.	The	 amount	 of
information	Netcraft	stores	can	be	invaluable	to	a	hacker.

Step	2:	Search	a	domain’s	information

After	choosing	the	right	type	of	machine	to	footprint,	the	next	step	is	to	choose	a
target.	At	this	point,	I	must	remind	you	that	you	must	have	written	permission	to
scan	 a	 target	 network	 or	 computer.	 For	 your	 own	 practice,	 and	 for	 this
demonstration,	 you	 can	 free	 vulnerable	 sites	 made	 available	 for	 people
practicing	to	become	hackers.	A	simple	search	online	should	give	you	plenty	of
results	 to	 choose	 from.	 My	 favorite	 sites	 are	 sans.org,	 gameofhacks.com,
hackthis.co.uk,	hackthissite.org,	and	hellboundhackers.org.

Under	 the	 section	 ‘What’s	 that	 site	 running?’	 section	 on	 the	 right	 pane	 of	 the
homepage,	you	can	enter	a	domain	name	to	scan	and	Netcraft	will	do	the	rest	for
you.	Simply	enter	the	domain	name	of	the	target	and	click	the	forward	arrow.

Depending	on	the	search	parameters	you	choose	(contains,	starts	with,	ends	with,
or	subdomain	matches)	you	will	likely	get	multiple	search	results	for	your	scan.
For	our	scan	hackthissite.org,	the	search	returned	four	results.

Step	3:	Open	the	site	report

Click	on	the	Site	Report	icon	on	your	target	domain	or	subdomain	to	view	an	in
depth	 report	 about	 the	 domain.	 The	 information	 may	 include	 background
information	 about	 the	 target,	 network	 information	 including	 IP	 addresses	 and
domain	registrars,	hosting	history	of	the	site,	and	even	security	in	place.

There	are	many	ways	you	can	use	the	information	you	collect	at	this	point.	For
starters,	once	you	know	the	technologies	and	software	versions	the	servers	run,
the	last	update	time	information	can	help	you	determine	which	publicly	known
software	 patches	 may	 not	 have	 been	 applied	 to	 the	 system	 yet,	 hence	 which
vulnerabilities	the	system	may	have.

Step	4:	Explore	site	technologies

At	 the	 bottom	 of	 the	 report	 page,	 you	 will	 see	 an	 exhaustive	 list	 of	 site
technologies	 including	 server-side	 and	 client-side	 technologies,	 scripting
frameworks,	browser	targeting,	and	document	type	declaration.

All	 these	 categorized	 information	 is	 invaluable	 to	 a	 hacker	with	 experience	 in
finding	vulnerabilities	in	different	locations.	It	means	you	do	not	have	to	guess
what	 technologies	 run	 the	 target	 site	 and	 only	 focus	 on	 finding	 vulnerabilities
specific	to	a	technology	on	the	system.

It	 is	 important	 to	 remember	 that	 Netcraft,	 despite	 how	 useful	 it	 is,	 is	 not
foolproof.	 Not	 all	 the	 reports	 you	 view	 on	 the	 site	 report	 page	 are	 100%
accurate;	 note	 the	 valuable	 data	 categories	 in	 your	 notebook	 to	 verify	 each
individually	at	a	later	stage	to	verify	their	accuracy.

2.	Using	Maltego	for	Network	Reconnaissance

Maltego	is	one	of	the	most	popular	tools	used	by	hackers	and	penetration	testers.
It	was	 developed	 by	Paterva	 and	 can	 execute	multiple	 tasks	with	 just	 a	 single
scan.	The	version	installed	on	your	Kali	Linux	is	a	community	edition	that	you
can	scan	with	up	to	12	times	without	subscription.

In	this	guide,	you	will	be	able	to	follow	simple	instructions	to	gather	information
about	 an	 individual,	 a	 company,	 or	 a	 network.	We	will	 be	 looking	 at	 how	 to
gather	 information	 on	 an	 online	 target,	 gathering	 information	 such	 as
subdomains,	 IP	 address	 range,	WHOIS	 information,	 email	 addresses,	 and	 how
the	target	relates	with	other	domains.

Step	 1:	 Start	 Maltego	 and	 register	 an	 account	 On	 your	 Kali	 Linux	 hacking
platform,	 start	 Maltego	 by	 going	 to	 Applications	 >	 Kali	 Linux	 >	 Top	 10
Security	Tools	>	Maltego.

You	may	need	to	wait	for	a	few	seconds	for	Maltego	to	initialize.	When	the	tool
is	loaded,	you	will	be	prompted	to	register	or	log	into	Maltego	on	the	welcome
screen.	Register	an	account,	noting	the	username	and	password	you	use	because

you	will	need	it	the	next	time.

Step	2:	Select	a	machine	and	set	 the	scan	parameters	Log	 into	Maltego	after
your	 registration	 is	 successful	 and	 begin	 setting	 the	 parameters	 for	 your
reconnaissance.	To	‘Start	a	Machine’	in	Maltego	lingo	is	essentially	setting	the
type	of	footprint	you	want	to	do	against	the	target.	In	this	demonstration,	we	will
focus	on	network	footprinting.	This	tool	will	offer	us	four	options:

1.	 Company	stalker	(to	gather	email	information)
2.	 Footprint	L1	(This	is	the	basic	information	gathering)
3.	 Footprint	L2	(This	gathers	a	moderate	amount	of	information)
4.	 Footprint	L3	(Choose	this	for	intense	and	most	in	depth

information	gathering)

For	 this	 demo,	we	will	 choose	 L3	 footprint	 to	 gather	 as	much	 information	 as
possible	 about	 the	 target.	 Note	 that	 this	 selection	 will	 mean	 more	 scan	 time,
which	may	run	into	minutes	or	hours	depending	on	the	target.

Step	3:	Choose	a	 target	Enter	 the	 target	domain	name	on	 the	‘Domain	Name”
section	and	click	on	Finish	to	let	Maltelgo	do	its	thing.

Step	4:	Results	During	 the	scan,	Maltego	will	gather	 information	on	 the	 target
domain	and	display	it	on	the	screen.	This	information	will	include	some	that	we
talked	 about	 at	 the	 beginning	 of	 this	 chapter	 such	 as	 subdomains,	 email
addresses,	nameservers,	mail	servers,	and	others.

Click	on	the	‘Bubble	View’	tab	on	the	report	screen	to	view	all	the	relationships
between	 the	 target	 (the	 domain	 we	 scanned)	 and	 other	 linked	 sites	 including
subdomains.	This	 is	 the	 kind	 of	 information	 you	will	 need	 in	 the	 next	 step	 of
hacking,	scanning.

Maltego	is	 just	one	of	 the	many	excellent	 tools	that	come	with	Kali	Linux	that
you	can	use	to	carry	out	recon	on	a	target,	and	gather	a	ton	of	useful	information
with	 a	 single	 scan.	 Finding	 the	 information	 that	 this	 tool	 can	 present	 you	 is
typically	a	difficult	job	for	beginner	hackers,	but	for	you	it	took	just	a	few	clicks.

Ready	to	proceed	to	the	next	phase?

Chapter	3	|	Scanning
During	the	scanning	phase	of	pentesting,	you	will	use	technical	tools,	not	unlike
those	we	used	in	the	previous	stage,	to	gather	further	intelligence	about	the	target
and	the	configuration	of	their	computer	and	network	systems.

After	 collecting	 and	 analyzing	 all	 the	 information	 in	 the	 recon	 phase	 and
investigating	 whether	 the	 target	 is	 vulnerable,	 you	 should	 have	 sufficient
knowledge	 about	 your	 target	 to	 decide	 how	 to	 analyze	 the	 potential
vulnerabilities	discovered	so	 far.	The	scope	of	 the	vulnerability	 test	may	cover
web	services,	discovered	ports,	vulnerable	web	applications,	and	others.

Purpose	of	the	scanning	process
The	 primary	 goal	 of	 the	 scanning	 phase	 in	 penetration	 testing	 is	 to	 learn	 the
grittier	 information	 about	 the	 target,	 its	 environment,	 and	 to	 find	 any
vulnerabilities	 in	 the	 system	 through	 direct	 interaction	 with	 the	 system	 or
network	components.

Scanning	 often	 leads	 to	 the	 revelation	 of	 new	 items	 that	 may	 not	 have	 been
captured	 in	 the	 reconnaissance	 phase	 of	 the	 test	 and	may	 require	 that	 you	 use
multiple	 scanning	 techniques	 and	 tools	 to	 maximize	 the	 efficiency	 of	 the
process.	They	may	include:

Network	sweeping:	This	is	a	general	scan	aimed	at	identifying	which	hosts	are
live.	 It	 involves	 sending	packets	 to	 all	 the	 network	 addresses	within	 the	 range
discovered	in	the	recon	phase.

Port	scanning:	Port	scanning	is	carried	out	on	any	live	hosts	discovered	during
network	 sweeping	 to	 discern	 all	 the	 potential	 vulnerabilities	 in	 the	 target
network.	 Port	 scanning	 involves	 the	 use	 of	 special	 tools	 to	 listen	 on	TCP	 and
UDP	ports.

OS	 fingerprinting:	 Scanning	 reveals	 the	 operating	 system	 types	 and	 even
versions	 of	 the	 computers	 on	 a	 network.	Kali	Linux	has	 just	 the	 right	 tools	 to
determine	this	information	with	accuracy	based	on	network	behavior.

Service	 detection:	 Service	 detection,	 much	 like	 OS	 fingerprinting,	 determines
both	 the	 type	 and	 version	 of	 service	 bound	 to	 the	 listening	 port	 of	 a	 network
system.

Vulnerability	scanning:	The	actual	vulnerability	scanning	process	factors	in	the
results	 of	 all	 other	 scans	 to	 determine	 whether	 the	 target	 machine	 could	 be
affected	 by	 any	 of	 the	 tens	 of	 thousands	 of	 potential	 vulnerabilities	 already
documented.	 Vulnerability	 scanning	 may	 include	 a	 scan	 of	 misconfigurations
and	unpatched	services.

Depending	 on	 whether	 the	 data	 discovered	 during	 the	 previous	 phase	 is
actionable,	accurate,	or	even	relevant,	you	can	then	choose	the	right	tool	in	the
Kali	 toolbox	 to	 scan	 for	 specific	 vulnerabilities	 on	 the	 network	 or	 server.

Vulnerability	assessment	may	be	automated	or	done	manually.

To	demonstrate	 how	effective	 scanning	 should	 be	 carried	 out,	we	will	 use	 the
powerful	 and	 universal	 Nmap	 tool	 that	 you	 can	 find	 in	 the	 Vulnerability
Analysis	group	of	tools	in	your	Kali	platform	toolbox.	The	tools	in	this	category
come	in	handy	when	you	need	to	scan	and	find	any	vulnerabilities	in	the	network
or	system.	With	reference	to	their	databases,	they	can	determine	with	dependable
accuracy	how	effective	a	vulnerable	is	for	exploitation.

Network	scanning	with	Nmap
Nmap,	 an	 acronym	 for	 Network	 Mapper,	 is	 another	 of	 the	 most	 useful	 and
popular	network	mapping	tools	that	comes	bundled	with	Kali	Linux.	This	tool	is
maintained	by	Gordon	Lyon	and	has	been	used	for	many	years	by	hackers	and
security	professionals	all	over	the	world.

Nmap	 is	 a	 command	 line-driven	 tool	 that	 also	 comes	 with	 a	 user-friendly
graphical	 frontend	 known	 as	 Zenmap.	 If	 you	 are	 not	 proficient	 with	 Linux’s
Terminal,	you	may	want	 to	have	a	 look	at	how	Zenmap	works	after	you	grasp
the	vital	functionality	of	the	tool	in	this	section.

With	Nmap,	you	will	easily,	quickly,	and	thoroughly	discover	vital	information
about	 the	vulnerabilities	you	have	identified	on	a	network	or	computer	system,
hence	the	name	Network	Mapper.	You	will	use	this	tool	to	find	live	hosts	and	its
associated	services	and	even	extend	it	further	with	its	scripting	engine	known	as
NSE	(Nmap	Scripting	Engine)	for	added	functionality.

1.	Finding	live	hosts	on	a	network	In	this	demonstration,	we	are	using	two
machines	within	the	same	private	network	192.168.1.0/200	to	demonstrate	how
to	find	live	hosts	on	a	network	using	Nmap.	The	Kali	machine	has	an	IP	address
of	192.168.1.101.	If	you	are	using	a	single	machine	in	your	lab,	you	may	have
set	up	Kali	Linux	on	a	virtual	player.	In	such	a	case,	you	can	set	up	another
virtual	machine	to	use	as	the	target	computer.

Start	 Nmap	 on	 Kali	 Linux	 Start	 the	 terminal	 on	 your	 Kali	 Linux	 hacking
environment.

Assuming	that	 the	IP	address	 information	on	target	machine	is	unavailable,	we
will	use	Nmap	to	find	which	other	computers	on	the	network	are	live	and	what
their	IP	addresses	are.	This	scan	is	popularly	known	as	a	‘simple	list	scan’,	hence
the	reason	we	use	the	-sL	argument	on	the	nmap	command.

root@kali:	~#	nmap	-sL	192.168.56.0/24
	

When	the	scan	is	complete,	you	should	see	a	message:

http://insecure.org/fyodor/

root@kali:	~#	nmap	-sL	192.168.56.0/24
Nmap	done:	256	IP	addresses	(1	hosts	up)	scanned	in	0.002	seconds
	

Note	 that	 at	 times,	 live	 hosts	 may	 not	 be	 discovered	 by	 Nmap	 because	 how
different	 operating	 systems,	 network	 interface	 cards,	 and	 firewalls	 handle	 port
scan	network	traffic	vary.

2.	Find	and	ping	live	hosts	on	a	network	To	a	hacker,	finding	live	hosts	on	a
target	network	like	we	did	on	the	previous	step	is	exciting	news,	but	what
happens	when	you	need	a	little	more	than	a	list	of	live	hosts?	With	the	-sn	flag,
you	can	command	Nmap	to	not	only	scan	for	live	hosts	but	to	also	try	to	ping	all
live	IP	addresses	on	the	specified	network	range.	The	command	to	use	is:

root@kali:	~#	nmap	-sn	192.168.56.0/24
	

You	can	see	in	the	above	screenshotthat	Nmap	returned	quite	elaborate	details	of
hosts	active	at	the	time	of	scanning.	The	–sn	flag	in	the	command	automatically
disables	port	scans	on	hosts,	Nmap’s	default	behavior,	and	instead	simply	pings
the	IP	address	to	determine	if	the	host	is	up	and	responsive.

3.	Finding	open	ports	on	hosts	Another	great	feature	of	Nmap	that	makes	it	the
ideal	scanning	tool	for	a	hacker	is	that	you	can	use	it	to	scan	specific	hosts	to	see
what	kind	of	information	it	can	fetch	about	a	host.	The	default	port	scan
behavior	will	not	be	disabled	when	you	use	regular	scanning	with	no	flags,
meaning	that	it	will	also	scan	the	ports	and	even	services	of	active	hosts	on	the

network.

You	can	 specify	 the	 range	of	 IP	addresses	 to	 scan	by	 separating	values	with	a
hyphen	as	in	our	next	command:

root@kali:	~#	nmap	-sn	192.168.56.0-200
	

If	 you	 are	 lucky	 (like	we	get	 lucky	 in	 the	demonstration	 above)	 you	 can	 even
land	multiple	open	network	ports	on	target	hosts.

Note,	however,	that	when	you	land	many	open	ports	in	a	machine,	the	deal	may
be	too	good	to	be	true.	It	is	wise	to	investigate	why	a	machine	connected	to	such
a	network	can	have	such	an	abnormally	high	number	of	open	ports	–	it	could	be
a	 honeypot.	 If	 your	 client	 has	 not	 set	 up	 a	 honeypot,	 then	 someone	may	 have
forgotten	to	configure	services	and	security	on	the	local	machine;	you	must	alert
the	system	administrator	the	soonest	possible.

4.	Finding	host	services	listening	on	ports	If	you	wish	to	find	out	what	services
may	be	listening	on	a	particular	(or	any)	port	on	a	host	computer,	you	can	use

the	–sV	flag	with	Nmap	on	the	terminal	to	begin	the	scan.	This	is	particularly
beneficial	if	a	previous	reconnaissance	uncovered	multiple	ports	and	network
services	on	the	target	system.	Nmap	will	scan	for	and	probe	all	open	ports	and
even	attempt	banner-grabbing	information	from	the	running	services	on	the
scanned	ports.

root@kali:	~#	nmap	-sV	192.168.1.0-200
	

You	will	notice	in	the	scan	results	that	Nmap	goes	the	extra	length	to	offer	some
suggestions	on	what	services	may	be	running	on	the	scanned	and	probed	ports.
In	some	cases,	Nmap	may	even	return	 invaluable	system	information	based	on
port	 scan	 responses	 including	 the	 type	and	version	of	 the	operating	system	 the
host	is	running	and	even	its	hostname.

5.	Finding	anonymous	FTP	logins	on	hosts	There	is	no	harm	in	pushing	your
luck	as	far	as	it	can	go,	provided	you	have	a	handy	and	powerful	tool	like	Nmap.
After	scanning	a	network	or	a	server,	you	can	command	this	tool	to	run	its
default	script	on	an	FTP	port	found	on	a	host	on	the	network	and	it	will	attempt
to	log	in	anonymously.	The	command	for	making	Nmap	Scripting	Engine	run
the	default	script	is	–sC	while	the	target	ftp	port	number	can	be	specified	with	–
p.

root@kali:	~#	nmap	-sn	192.168.1.0/200
	

At	a	 later	 stage,	you	will	even	be	able	 to	write	your	own	scripts	 to	 run	on	 the
Nmap	Scripting	Engine	 to	 test	various	 logins	besides	anonymous	whenever	an
open	ftp	port	is	found.

Using	the	Nmap	Scripting	Engine	to	scan	for
vulnerabilities
The	whole	 point	 of	 the	 scanning	 phase	 in	 penetration	 testing	 is	 to	 uncover	 as
many	 existing	 vulnerabilities	 on	 a	 system	 or	 network	 as	 possible.	 The	 Nmap
Scripting	 Engine	 (NSE)	 is	 hands	 down	 the	 most	 powerful,	 convenient,	 and
flexible	feature	that	you	must	learn	to	use	to	uncover	vulnerabilities.

With	 the	 Nmap	 scripting	 engine,	 you	 can	 write	 your	 own	 simple	 scripts	 that
automate	the	various	scanning	and	discovery	tasks	and	even	share	your	scripts	or
download	pre-created	scripts	available	 for	 free	on	 the	 internet	and	use	 them	 in
your	scripted	scans.

Some	of	the	great	things	that	Nmap’s	scripting	engine	can	do	are:

1.	Network	discovery

Network	discovery,	as	we	have	 learned	so	 far	 in	 this	chapter,	 is	Nmap’s	bread
and	butter.	With	the	scripting	engine,	you	can	automate	the	process	of	scanning
for	 and	 finding	WhoIs	 data	 of	 the	 target	 domain,	 querying	 APNIC,	 RIPE,	 or
ARIN	of	the	target	IP	address	to	determine	the	ownership,	and	repeated	scanning
of	 open	 ports,	 sending	 SNMP	 queries,	 and	 listing	 services	 that	 are	 activated
intermittently.

Considering	that	you	are	a	newbie	to	hacking,	mastering	all	the	flag	commands
can	be	a	bit	of	a	challenge.	You	can	download	and	install	Zenmap	on	your	Kali
Linux	 environment	 to	 be	 able	 to	 utilize	 the	 advanced	 features	 of	 Nmap	 on	 a
graphical	user	interface.

2.	Vulnerability	detection

Nmap	may	not	be	a	comprehensive	vulnerability	scan,	but	the	scripting	engine	is
powerful	and	flexible	enough	 to	be	used	for	demanding	vulnerability	detection
processes.	We	recommend	 that	you	do	a	quick	search	on	 the	 internet	 to	 find	a
few	of	 the	 thousands	of	vulnerability	detection	scripts	already	written	by	other
hackers	and	try	out	how	well	they	can	detect	vulnerabilities	on	a	target	system.

3.	Backdoor	detection

In	chapter	5	of	this	book,	we	will	talk	more	about	backdoors	and	you	will	rely	on
them	 to	maintain	access	 to	a	 system	after	 exploiting	 it.	At	 this	point,	 just	note
that	 you	 can	 automate	 an	Nmap	 script	 to	 leave	 backdoors	 on	 a	 system.	Many
intruders	 and	 even	 worms	 use	 Nmap’s	 scripting	 engine	 to	 leave	 all	 kinds	 of
holes	in	a	computer	or	network’s	security	system.

4.	Vulnerability	exploitation

Not	only	can	NSE	be	used	to	scan	and	vulnerabilities	on	a	host	or	network,	it	can
also	 be	written	 to	 exploit	 them	 rather	 than	 just	 find	 them.	Advanced	 users	 of
Nmap	write	or	download	custom	exploit	scripts	for	express	exploitation	of	some
forms	 of	 vulnerabilities	when	 discovered.	As	 you	will	 discover	while	 on	 your
hacking	 practice,	 Nmap	 does	 not	 come	 close	 to	 advanced	 tools	 such	 as
Metasploit	but	the	scripting	engine	extends	its	powers	to	make	it	a	lot	more	than
just	a	scanner.

Scanning	for	vulnerabilities	with	Nessus
A	 hacker	 who	 is	 proficient	 with	 multiple	 tools	 that	 at	 times	 overlap	 in
functionality	will	have	higher	rates	of	exploitation	success	than	another	who	is	a
stickler	 for	 a	 single	 tool.	 Now	 that	 you	 are	 familiar	 with	 Nmap,	 the	 other
amazing	 tool	 that	 you	 should	 master	 is	 Nessus.	 This	 tool	 can	 scan	 local	 and
remote	 targets	 with	 ease,	 relying	 on	 its	 rich	 database	 to	 detect	 known	 and
vulnerabilities	on	a	system.

Nessus	 has	 grown	 over	 the	 years	 to	 become	 the	 standard	 for	 vulnerability
scanners	and	is	one	of	the	most	widely	used	tools	by	pentesters	and	hackers.	The
creators	 say	 that	 this	 is	 a	 ‘high-speed,	 in-depth	 assessments	 and	 agentless
scanning	convenience’	that	you	will	enjoy.

Nessus	started	off	as	an	open	source	project	but	it	is	now	a	commercial	product
owned	by	Tenable.	As	a	learner,	you	will	download	the	free	‘home’	version	of
the	popular	 tool	 that	allows	you	 to	scan	about	 two	dozen	IP	addresses	with	no
limitation.

One	 of	 the	 biggest	 problem	 you	 will	 discover	 with	 many	 network	 and
vulnerability	 scanners	 as	 you	 try	 them	 is	 that	 they	 are	 “noisy”	 and	 can	 be
detected	by	vigilant	network	security	tools	or	administrators.	Nessus	is	different.
The	US	government	 just	recently	switched	to	using	it	 to	scan	their	systems	for
vulnerabilities.	 That	 is	 how	 good	 it	 is	 and	 you	 have	 the	 opportunity	 to	 try	 it
while	learning.

Step	1:	Downloading	and	installing	Nessus

Nessus	is	a	commercial	product	that	is	not	included	in	your	Kali	Linux	platform.

You	will	need	to	download	the	software	from	Tenable	website.	You	will	also	be
required	 to	 register	 the	 free	 application	 (with	 a	 valid	 email	 address	 to	 receive
activation	code)	before	you	can	download	the	tool.

Be	sure	to	download	Nessus	for	the	operating	system	you	are	using.	If	you	are
running	Kali	Linux	on	a	VirtualBox	or	VMware	player,	check	to	make	sure	that
you	 download	 a	 version	 for	 your	 system	 architecture	 as	well.	 The	 installation
process	is	pretty	much	like	any	other	software	you	download	and	install	on	your
local	machine.

Should	 you	 encounter	 difficulties,	 you	 can	 seek	 answers	 online	 on	 the	Nessus
documentation	page.

Step	2:	Getting	Nessus	working

When	installation	of	Nessus	is	complete,	fire	it	up.	Because	Nessus	is	built	with
client/server	 architecture,	 it	 installs	 on	 localhost	 and	 can	 be	 accessed	with	 the
browser	as	the	client.	Furthermore,	because	of	this,	you	will	most	likely	get	an
insecure	 connection	 error	 message	 when	 the	 browser	 navigates	 to
localhost:8834/.	You	can	ignore	the	message	each	time	or	add	the	address	to	the
exception	list	on	your	browser	once	and	for	all.

Step	3:	Setting	up	Nessus

The	process	of	setting	up	a	Nessus	account	may	involve	a	few	more	steps	than
you	are	used	to,	but	it	is	a	one-time	routine	that	is	worth	the	effort.	The	account
you	create	will	be	used	on	 the	 local	service	as	well	as	 logging	 into	 the	Nessus
server.	Follow	 the	 instructions	 to	 set	up	your	account	by	providing	your	email
address	 and	 creating	 a	 username	 and	 password.	 You	 can	 activate	 Nessus	 by
retrieving	 an	 activation	 sent	 to	 your	 email	 addresses	 and	 entering	 it	 when
prompted.

http://www.tenable.com/products/nessus-home/
https://docs.tenable.com/nessus/

Nessus	 will	 download	 the	 necessary	 plugins	 and	 updates	 when	 set	 up	 is
complete.	 Note	 that	 this	 may	 take	 a	 while,	 be	 patient	 and	 let	 it	 complete	 the
process.

	

Step	4:	Vulnerability	Scanning	with	Nessus

A	landing	screen	like	the	screenshot	below	will	greet	you	when	Nessus	is	fully
updated	and	ready	for	use.

Click	on	“New	Scan”	to	begin.	A	new	screen	with	options	to	choose	the	type	of
scan	will	open.

Choose	 the	 “Basic	Network	 Scan”	 and	 in	 the	 next	window,	 assign	 the	 scan	 a
relevant	 name	 and/or	 a	 description,	 and	 enter	 the	 parameters	 of	 the	 targets	 to
scan.	Click	on	“Save”	then	on	“Launch”	to	initiate	the	basic	vulnerability	scan.

Step	5:	The	scan	results

When	the	scan	 is	complete,	Nessus	will	provide	a	complete	report	of	 the	hosts
scanned	(listed	by	IP	address)	along	with	color-coded	risks	associated	with	 the
host.	Risks	colored	burnt	orange	are	the	most	critical	followed	by	medium	risk
vulnerabilities	 colored	 orange	 and	 low	 risk	 ones	 colored	 green.	 The	 items
colored	blue	may	not	even	be	risks	at	all,	just	alerts	and	further	information.

On	 the	 right	 of	 the	 page	 is	 a	 pane	 with	 “Scan	 Details”	 and	 a	 pie	 chart	 of
discovered	vulnerabilities	 that	may	be	 ready	 for	 exploitation	or	 require	 further
investigation.

Click	on	the	Vulnerabilities	tab	on	the	topline	menu	of	the	results	page	to	view
the	list	of	all	the	discovered	vulnerabilities	on	the	network	along	with	associated
plugins	and	plugin	families.	Clicking	on	individual	vulnerabilities	reveals	more
in	depth	details	about	it.

You	can	export	vulnerability	scan	results	from	a	Nessus	scan	session	for	further
analysis,	 documentation,	 or	 to	 use	 it	 with	 a	 vulnerability	 exploit	 tool.	 Simply
click	 on	 the	 “Export”	 tab	 and	 on	 the	 pull	 down	menu	 select	 from	 the	Nessus,
PDF,	HTML,	CSV,	or	Nessus	DB	report	format	options.

Once	you	choose	a	format,	choose	a	save	location	and	save	the	file.

If	you	executed	each	of	these	five	steps	meticulously,	congratulations,	you	now
know	have	earned	the	rights	to	brag	about	being	familiar	with	Nessus,	the	most
formidable	 vulnerability	 scanner	 there	 is,	 used	 by	 professionals	 and	 big
companies.

In	the	next	chapter	of	this	book,	we	will	cover	how	we	can	import	such	a	report
and	use	to	exploit	vulnerabilities	discovered	in	a	network	or	computer.

Chapter	4	|	Gaining	Access
A	modern	 day	 hack	 is	 only	 considered	 successful	 when	 a	 hacker	 exploits	 the
vulnerabilities	discovered	in	the	recon	and	scanning	phases	to	gain	access	to	the
resources	 of	 the	 target.	 The	 primary	 goal	 of	 hacking	 is	 to	 either	 extract
information	of	value	stored	or	used	in	the	system	or	to	take	control	of	devices	on
the	system.	Our	nemeses	the	black	hat	hackers	spread	terror	on	the	internet	today
because	 they	 can	 access	 victim	 information	 and	 they	 can	 control	 computers
remotely	to	use	them	to	launch	attacks	on	even	more	victim	computers.

Luckily	for	beginners	like	us,	the	Kali	Linux	distro	comes	with	a	large	number
of	 tools	 that	 you	 can	 use	 to	 exploit	 vulnerabilities	 on	 a	 remote	 computer	 or	 a
network.	The	success	of	this	phase	of	penetration	testing	heavily	relies	on	how
actionable	 the	 data	 you	 collected	 in	 the	 previous	 step	 is.	 In	 some	 cases,	 a
successful	 hack	 may	 have	 nothing	 to	 do	 with	 the	 potential	 vulnerabilities
gathered	 during	 recon	 and	 scanning	 because	 the	 exploits	 are	 developed	 for
specific	 loopholes	 in	 the	 target	 system,	 some	 of	 which	 are	 only	 discovered
during	exploitation.

At	this	point,	you	should	have	taken	some	time	to	try	out	the	many	other	great
reconnaissance	techniques	and	scanning	tools	that	come	with	Kali	Linux.	Some
of	the	top	reconnaissance	tools	in	the	open	market	today	that	you	should	have	at
least	 tested	 at	 this	 point	 are	SPARTA,	 theHarvester,	 and	Wireshark.	The	most
popular	 scanners	 are	 Nexpose,	 OpenVAS,	 Grabber	 (for	 scanning	 vulnerable
websites),	and	Oscanner.

You	can	see	a	complete	categorized	list	on	the	Tools	page	of	Kali	Linux	official
website.

http://tools.kali.org/tools-listing/

Developing	an	attack	strategy
You	need	strategy	when	attacking	a	 target.	Exploiting	a	modern	well-protected
system	is	not	an	easy	automated	process.	The	tools	you	will	use	may	be	manual
or	automated,	but	only	your	attack	strategy	will	determine	the	success	of	a	hack.

In	 this	 chapter,	 we	 will	 discover,	 through	 demonstrations,	 which	 tools	 on	 the
Kali	Linux	toolbox	you	can	use	to:

1.	 Exploit	the	vulnerabilities	discovered	in	the	reconnaissance	and
scanning	phases.

2.	 Using	social	engineering	strategies	to	gain	access.
3.	 How	to	gain	access	to	vulnerable	systems.
4.	 How	to	capture	data	on	the	target	system.
5.	 Launching	attacks	on	other	systems	from	the	victim	systems.

These	 are	 just	 a	 few	 of	 the	 long	 list	 of	 strategy	 goals	 that	 should	 shape	 your
choice	of	the	tools	to	use	in	the	exploitation	stage.

An	 important	 point	 to	 note	 is	 that	 the	 results	 you	 achieved	 during	 the
reconnaissance	 and	 scanning	 phases,	 in	 addition	 to	 any	 information	 you	 may
have	collected	through	other	means,	such	as	social	engineering,	can	be	exported
from	their	respective	apps	then	read	by	other	exploit	tools.	For	instance,	the	scan
results	you	export	from	Nessus,	Wireshark,	or	Nmap	tools	in	the	previous	phases
and	import	them	to	use	in	Metasploit,	Armitage,	or	John	The	Ripper	tools.

Exploiting	a	vulnerable	web	server	using	Psexec	in
Metasploit
There	mere	mention	of	“pentesting”,	“penetration	testing”	or	“penetration	testing
tool”	 to	most	 computer	 and	 information	 security	 experts	 and	 blackhat	 hackers
brings	to	mind	Metasploit.	This	is	because	Metasploit,	the	world’s	largest	Ruby
project,	features	close	to	a	million	lines	of	code	and	has	grown	to	become	one	of
the	most	powerful	tools	used	by	penetration	testers	and	hackers.

Remember	how	we	mentioned	that	Nessus	has	set	the	standard	for	vulnerability
scanning?	Well,	the	Metasploit	framework	has	become	the	de-facto	standard	for
vulnerability	development	and	penetration	testing.

Many	beginner	hackers	cutting	shortcuts	(especially	those	that	are	very	keen	to
break	 the	 law	and	grow	 their	egos	spreading	 terror	 through	binge	hacking)	are
known	to	focus	on	studying	how	to	use	a	single	hacking	tool.	It	is	a	no-brainer
why	Metasploit	is	often	their	weapon	of	choice.	It	is	no	wonder	that	it	gets	over
a	 million	 unique	 downloads	 annually	 and	 boasts	 of	 the	 largest	 most	 reliable
public	vulnerabilities	and	exploits.

Now	 that	 we	 have	 boring	 but	 important	 stuff	 out	 of	 the	 way,	 we	 can	 begin
hacking!

Step	1:	Start	Metasploit

Fire	 up	Metasploit.	Metasploit,	 considering	 that	 it	 is	 a	 platform	 and	 not	 just	 a
convenient	tool,	has	countless	capabilities	to	detect	and	exploit	vulnerabilities	in
a	 computer	 or	 network.	 You	 will	 find	 a	 shortcut	 to	 the	 interface	 on	 the
‘Application	 menu’	 on	 Kali	 Linux	 or	 you	 can	 enter	 this	 command	 on	 the
terminal:

root@kali:	~#	msfconsole
	

When	Metasploit	starts,	we	can	then	star	tthe	psecec	module	that	it	comes	with.
It	 is	 located	 in	 the	 exploit/windows/smb/	 directory,	 therefore	 you	will	 need	 to
enter	this	command	on	the	terminal	to	initialize	it:

root@kali:	~#	use	exploit/windows/smb/psexec
	

You	should	see	this	message	on	the	command	line	when	Psexec	is	ready	for	use:

msf	exploit(psexec)	>	_
	

The	next	step	will	be	to	define	our	parameters	and	set	the	options	that	Metsploit
needs	to	execute	commands.

Step	2:	Configuring	Psexec	exploit

Psexec	 exploit	 offers	 four	 options	 that	 determine	 which	 payload	 will	 be	 used
first	in	the	attack	attempt.	These	options	are:

1.	Binding	the	remote	host	(the	target	system	referred	to	as	RHOST	in	payload
delivery	 lingo)	with	a	TCP	Payload	using	meterpreter.	The	command	 to	use	 is
this:

msf	exploit(psexec)	>	set	PAYLOAD	windows/meterpreter/bind_tcp
	

2.	 Setting	 up	 the	 remote	 host	 using	 a	 SMB	 username	 and	 password.	 SMB
(Server	 Message	 Block)	 is	 an	 application	 layer	 protocol	 used	 by	 networked
computers	 to	 share	network	 resources	 such	as	printers	 and	 files.	SMB	 runs	on
Port	 445	 and	 is	 typically	 one	 of	 the	 most	 popular	 attack	 points	 in	 remote
hacking.

To	 use	 a	 username	 and	 password	 you	 captured	 during	 the	 reconnaissance	 and
scanning	phases	of	the	test,	use	the	following	commands,	‘administrator’	being
the	placeholder	in	this	case:

msf	exploit(psexec)	>	set	SMBUser	administrator
	

Next,	set	the	password	using	the	command:

msf	exploit(psexec)	>	set	SMBUser	password

	

Step	3:	Launch	exploit

After	you	have	set	the	username	and	password	details,	use	the	command	exploit
to	launch	the	attack.

msf	exploit(psexec)	>	exploit
	

If	you	entered	the	correct	data	in	the	previous	two	commands,	you	should	see	a
progress	screen	like	this:

Note	 that	 at	 this	 stage,	meterpreter	will	 have	 taken	 command	 of	 the	 terminal.
You	should	see	whether	the	hack	was	a	success	based	on	meterpreter’s	success
or	 failure	 message.	 If	 the	 process	 fails,	 you	 should	 be	 able	 to	 trace	 in	 the
process’s	history	where	the	failure	occurred.	If	it	succeeds,	just	as	you	can	see	at
the	 bottom	of	 the	 above	 screenshot,	meterpreter	 running	on	 the	 host	 computer
will	be	ready	the	next	step.

Step	4:	Hijacking	service	and	resource	tokens

The	 hack	 is	 a	 success	when	 the	meterpreter	 is	 deployed	 on	 the	 remote	 target.

When	the	meterpreter	command	prompt	is	ready	for	the	next	command,	you	own
that	 computer	 and	 what	 you	 can	 do	 to	 or	 from	 it	 at	 this	 point	 is	 virtually
unlimited.	For	this	practice	session,	we	will	look	at	how	you	can	steal	resource
and	service	authentication	tokens.

Most	operating	systems	and	especially	Windows	use	tokens	(also	referred	to	as
tickets)	 to	 determine	 which	 user	 can	 use	 what	 resources	 or	 services	 in	 the
computer.	 When	 a	 user	 (such	 as	 yourself	 now)	 logs	 into	 the	 system,	 the
operating	system	runs	a	one-time	check	to	determine	what	resources	or	services
you	 are	 authorized	 to	 use.	 It	 then	 issues	 a	 token	 that	 authorized	you	 to	 access
them.

In	 this	 step,	 you	will	 grab	 a	 token	 for	 a	 particular	 resource	 or	 service	 such	 as
svchost,	 file	management,	or	SQL	Service.	As	 long	as	you	are	 logged	 into	 the
system,	you	will	have	as	much	privileges	over	the	resource	or	service	as	the	user
who	 was	 issued	 it.	 For	 instance,	 if	 your	 hack	 account	 is	 determined	 to	 be	 a
limited	user,	what	you	can	do	with	 the	resources	 is	 limited	compared	to	 if	you
set	up	a	system	admin	account.

You	do	not	need	 to	know	 the	details	of	every	 token	you	grab,	 just	grab	 it	 and
present	 it	 to	 the	 selected	 service	 and	 you	 are	 done.	 Experienced	 hackers	 have
created	 their	 own	 scripts	 that	 accesses	 all	 the	 vulnerable	 tokens	 and	 analyses
each	to	determine	its	usefulness	before	grabbing	it.

On	the	meterpreter	command	line,	enter	the	following	command:

meterpreter	>	ps
	

If	 you	 are	 familiar	with	 the	Linux	Shell,	 you	will	 know	 that	 the	 ps	 command
meterpreter	 uses	 is	 a	 Linux	 command	 that	 lists	 running	 services.	 In	 our
screenshot	below,	you	can	see	that	 inetinfo.exe,	sqlservr.exe,	and	snmp.exe	are
some	of	the	services	running	on	our	target	server	which	runs	Windows	operating
system.

Step	5:	Exploiting	vulnerable	tokens

Once	you	determine	the	name,	type,	and	PID	of	a	running	service	or	resource	on
meterpreter,	 you	 can	 steal	 its	 token	 using	meterpreter’s	 steal_token	 command.
As	 the	 name	 shows,	 this	 command	 attempts	 to	 steal	 a	 token	 from	 a	 running
service.

The	 sqlsrvr.exe	 is	 an	 Administrator	 service	 on	 the	 2K3TARGET	 computer
assigned	PID	(Process	 ID)	of	1432	 in	our	demo.	Therefore,	 to	steal	 it,	we	will
enter	 the	 token	 theft	 command	 followed	 by	 the	 PID	 of	 the	 process	 using	 the
service.

meterpreter	>	steal_token	1432
As	 you	 can	 see,	 the	 syntax	 for	 executing	 an	 exploit	 is	 pretty	 straightforward.
What	you	need	is	the	PID	of	the	services	using	the	token	you	want	to	steal.

Our	 attempt	 to	 steal	 the	 SQL	Server	 token	 on	 the	 compromised	 computer	 has
been	successful	in	the	demo	above.	This	means	that	we	have	as	much	access	and
control	over	the	SQL	Server	service	and	its	databases	almost	as	if	we	are	logged
as	a	user	in	the	target	computer.

You	can	repeat	 the	process	of	stealing	 tokens	from	the	compromised	computer
using	psexec	via	meterpreter	as	we	did	with	the	sqlsrvr.exe	token	in	the	demo.

Important:	Note	that	psexec	is	just	one	of	the	hundreds	of	many	modules	that
come	with	Metasploit.	You	 can	only	use	psexec	 if	 you	uncover	 username	and

password	 combinations	 of	 a	 user	 with	 sysadmin	 credentials	 during	 the
reconnaissance	and	scanning	phases.	There	are	databases	of	different	username
and	password	combinations	you	can	download	on	the	internet	to	use	with	psexec
such	as	default	usernames	and	passwords	for	various	system	user	types.

Many	 hackers	 use	 password	 detection	 tools	 such	 as	 THC-Hydra	 and	 network
sniffers	on	 the	 first	 two	phases	 to	gather	enough	data	 for	psexec	 to	use	 in	 this
phase.

SQL	injection	exploit	guide	with	Google	Dork	and
Havij	Pro
How	valuable	is	data?

While	this	question	is	obviously	vague,	you	must	agree	with	me	that	individuals,
businesses,	 and	 organizations	 consider	 their	 data	 highly	 valuable	 being	 one	 of
the	essential	components	of	an	information	system.	This	explains	why	data	and
information	 security	 has	 spawn	 from	 the	 information	 technology	 backbone	 to
become	a	multi-billion	industry	pitching	hackers	against	everyone	else.

Most	 computer	 data	 that	 inspire	 hackers	 to	 attempt	 to	 penetrate	 a	 computer
system	is	stored	in	databases.	These	databases	are	powered	by	web	applications
that	 interact	with	 the	databases	on	one	end	and	 the	user	and	other	applications
and	 resources	 of	 the	 computer	 system	 on	 the	 other.	 You	 have	 probably	 come
across	 one	 of	 these	 applications	 called	SQL	 (Structured	Query	Language)	 that
websites	use	to	save,	retrieve,	update,	and	manipulate	data	stored	in	a	computer
database.

Understanding	SQL	injection

SQL	 injection	 (SQLi)	 is	 one	 of	 the	most	 common	 attack	 techniques	 that	 new
entrants	into	the	hacking	cult	choose	to	reinforce	their	budding	skills.

Simply	put,	SQL	injection	is	poisoning	accessible	dynamic	SQL	statements	such
as	 commenting	 out	 parts	 of	 it	 or	 appending	 conditions	 on	 certain	 sections	 to
ensure	that	a	condition	always	resolves	to	True.	This	exploit	takes	advantage	of
vulnerabilities	 in	 poorly	 designed	 web	 applications	 to	 launch	 malicious	 SQL
code.

The	 servers	 and	 websites	 that	 you	 can	 exploit	 through	 SQL	 injection	 is
dependent	 on	 the	 database	 engine	 type.	 This	 type	 of	 attack	 only	 works	 on
dynamic	SQL	statements	which	means	statements	 that	 the	database	application
generates	during	runtime	using	parameters	supplied	by	the	URL	query	string,	a
web	cookie,	or	a	web	form	on	the	website.

Simple	SQL	injections	such	as	this	we	will	look	at	in	this	section	mostly	play	out

in	two	stages,	the	first	similar	to	the	recon	and	scanning	phases	of	pentesting	we
covered	in	chapters	2	and	3	and	the	other	the	actual	attack:

Stage	1.	Research	and	data	collection

If	your	focus	is	to	execute	a	SQL	injection	efficiently,	you	should	research	and
gather	 the	right	data	 in	 the	recon	and	scanning	phases.	This	may	involve	using
automated	tools	such	as	the	SQLi	exploit	tool	and	Veracode	or	Kali	Linux	tools
such	as	nikto	or	adopt	proven	techniques	such	as	Google	Dorking.

2.	The	exploit	stage

You	 will	 use	 the	 carefully	 filtered	 values	 collected	 in	 the	 previous	 step	 to
determine	 what	 arguments	 to	 inject	 into	 the	 target	 website’s	 SQL	 command.
Note	that	while	there	are	countless	scripts	and	tools	you	can	use	to	automate	the
previous	stage,	you	may	need	to	formulate	or	modify	SQL	commands	manually
while	attempting	attacks.

!Important:	The	 success	 of	 a	SQL	 injection	 exploit	 is	 dependent	 on	 so	many
factors	 that	 there	 is	 no	 guarantee	 an	 attempt	 that	 works	 today	 will	 work
tomorrow.	Therefore,	exercise	patience	and	persistence	if	most	of	your	attempts
are	unsuccessful;	if	you	did	the	research	and	scanning	the	right	way,	an	attempt
will	be	successful.

When	demonstrating	an	SQL	injection	exploit	 to	a	client,	your	objectives	for	a
hack	may	include:

To	control	the	behavior	of	an	application	that	relies	on	the	data
from	a	SQL	database	such	as	tricking	an	application	to	allow
accessing	protected	content	without	a	valid	username	and
password	combination.
To	alter	data	in	the	database	such	as	creating	new	records	for
products,	adding	new	users,	deleting	database	records,	or	giving
certain	users	higher	access	levels	without	logging	into	the	system.
Stealing	critical	and	sensitive	information	such	as	user	credit	card
information	and	username	(or	email)	and	password	combinations.

In	our	demonstration	below,	we	will	use	Google	dork	to	gather	the	information

we	need.	Therefore,	we	first	must	know	what	Google	dork	is.

Introducing	Google	Dork

Google	is	the	giant	of	internet	search,	everyone	knows	this.	People	use	it	to	find
ordinary	 computer	 content	 and	 data	 such	 as	 news,	 images,	 videos,	 notes,	 and
books	etc.	However,	as	a	hacker,	there	is	a	way	you	can	extend	its	functionality
to	include	finding	vulnerable	websites,	web	content,	and	even	connected	devices
such	as	security	cameras.

Google’s	 search	 tool	 works	 by	 using	 spider	 bots	 that	 crawl	 from	 one	 link	 to
another	indexing	billions	of	website	pages	on	the	internet.	Developers	and	web
masters	 specify	which	pages	 the	crawlers	 should	 index	and	which	ones	 should
not	be	indexed	because	of	the	sensitive	information	they	contain	by	defining	the
parameters	in	a	robots.txt	file	or	on	the	site’s	meta	tag.

However,	 by	 ignorance,	 accident,	 or	 incompetence,	many	web	 developers	 and
webmasters	 fail	 to	 properly	 optimize	 the	 robots.txt	 file,	 putting	 vital	 corporate
and	 personal	 information	 at	 risk	 because	 they	 may	 be	 accessible	 by	 search
engines.	Therefore,	a	Google	dork	is	the	webmaster	or	developer	whose	actions
result	in	Google	indexing	the	wrong	content	or	links.

Take	 some	 time	 to	 learn	 how	 to	 use	Google	 dork	 before	 you	 can	 proficiently
make	use	of	it.	You	will	also	need	to	learn	about	how	to	use	search	operators	to
refine	Google	search	results.	 In	summation,	you	will	need	 to	use	advanced	but
straightforward	 Google	 search	 queries	 that	 combine	 search	 operators	 such	 as
intitle:,	filetype:,	intext:,	inurl:,	or	site:	to	find	these	vulnerabilities	and	sensitive
information	 that	 may	 include	 usernames	 and	 passwords,	 credit	 card	 and	 user
billing	details,	and	email	addresses	among	others.

Step	1:	Use	Google	Dorks	to	find	potentially	vulnerable	web	pages

Fair	warning:	 considering	 that	 you	 are	 still	 new	 to	hacking,	 you	will	 probably
have	 slim	chances	 to	 find	 lame	and	obvious	 exploits	on	websites	 that	you	can
exploit;	however,	with	accurate	and	most	up	to	date	information	on	such	hacks
available	freely	on	forums,	blogs,	and	other	hacking	community	meeting	places,
you	could	get	lucky	on	the	first	attempt.

You	could	also	 take	a	 shortcut	 and	download	 ready-made	vulnerable	 sites	 that
some	 automated	 tools	 and	 dedicated	 hackers	 compile	 from	 time	 to	 time.	 Try
googling	it,	you	may	get	lucky	even	now.

For	our	hack,	we	will	use	a	dork	that	returns	a	list	of	dynamic	.asp	or	.php	web
pages	with	parameters	such	as	?category=,	?id=,	or	?decl_id=	 tailing	the	page
extension.	Here	are	some	search	paramters	you	can	use	on	your	query	to	get	the
right	Google	Dorks:

inurl:/articles.php?id=

inurl:product.php?mid=

inurl:php?id=	

When	you	search	these	parameters,	you	will	get	results	such	as	the	ones	on	this
screenshot:

	

Step	2:	Test	each	potentially	vulnerable	page

Next,	 test	 each	 of	 the	 search	 result	 urls	 one	 at	 a	 time	 for	 vulnerability.	Add	 a

quotation	mark	(‘)	or	a	quotation	mark	and	equal	sign	(‘=)	at	the	end	of	the	url
and	visit	the	site.	If	a	page	redirects	you	to	the	homepage	or	generates	an	SQL
syntax	 error,	 you	will	 have	 found	 a	website	 vulnerable	 to	SQL	 injection.	This
test	attempts	to	invalidate	a	SQL	query	request	for	data	tied	to	a	specific	url.

In	 our	 demonstration,	 the	 first	 search	 engine	 result	 portalabre.com.br	 may	 be
vulnerable	to	a	SQLi.

	

Note:	You	need	hard	code	knowledge	of	SQL	commands	to	effectively	carry	out
an	SQL	 injection	 attack.	However,	 you	 can	 also	use	 ready-made	 tools	 such	 as
the	Havij	tool	specially	developed	for	SQL	injection.	The	pro	version	of	the	tool
can	even	help	you	search	for	SQLi	vulnerabilities	on	websites.

Step	3:	Exploiting	a	vulnerability	through	SQL	injection

Hajiv,	the	tool	we	will	use	here	does	not	come	pre-installed	on	Kali	Linux	and
you	 may	 have	 to	 download	 the	 installation	 files,	 extract	 the	 archive,	 and
configure	the	software	if	necessary.

Start	Hajiv	from	the	application	menu	or	inside	the	folder	in	which	you	extracted
application	 files.	 On	 the	 application	 window,	 paste	 the	 complete	 url	 to	 the
vulnerable	page	in	the	‘Target’	textbox	then	click	Analyze	to	begin	the	injection
process.

Havij	 displays	 the	 analysis	 progress	 as	 it	 analyzes	 target	 information	 such	 as
PHP	 version,	MySQL	 database	 version,	web	 server	 details,	 and	website	 IP.	 It
then	 inserts	 the	 quotation	mark	we	 used	 in	 step	 1	 to	 uncover	 database	 details
such	as	number	of	columns,	column	strings,	and	database	name.

If	the	query	returns	an	error	such	as	404	page	not	found,	it	means	the	url	is	not
vulnerable.

When	 it	 finds	 the	database	name	 (in	 this	demo	radiomir_radio),	Havij	changes
status	to	“I’m	IDLE”.

Step	4:	Access	database	data

From	Havij’s	analysis	results,	you	can	then	select	a	one	database	and	retrieve	its
list	of	tables	in	it	by	clicking	Get	Tables	under	the	Tables	tab.	This	tool	should
fetch	 a	 list	 of	 tables	 in	 the	 database	 from	 which	 you	 can	 select	 the	 most

important	 then	 click	 on	Get	Columns	 button	 to	 retrieve	 table	 column	 headers.
This	should	reveal	all	the	columns	that	the	selected	table	has.

Step	5:	Manipulate	table	data

Finally,	you	can	select	the	most	important	table	columns	relevant	to	the	hack	and
click	on	Get	Data	button	 to	 retrieve	 the	content	of	 the	 selected	 table	columns.
Depending	on	the	type	of	table	and	the	data	it	contains,	you	may	find	very	useful
website,	business,	or	user	data.

Hacking	a	website	through	SQL	injection	may	be	a	straightforward	process,	but
it	 takes	experience	 to	 test	 for	many	other	uncommon	vulnerabilities.	There	are
many	 tools	 such	 as	 Havij	 that	 will	 make	 your	 job	 easier	 but	 a	 good	 hacker
should	be	able	to	issue	SQL	queries	right	on	the	target	page	url.

Cracking	passwords	using	John	the	Ripper
John	 the	Ripper	 is	 a	password	cracking	 tool	 that	 is	 commonly	 featured	among
the	top	ten	tools	that	come	pre-installed	in	Kali	Linux.	It	was	initially	built	to	run
on	Unix-based	operating	systems	but	it	grew	so	popular	that	it	now	runs	on	15
different	 platforms.	 What	 makes	 John	 the	 Ripper	 a	 unique	 and	 powerful
password	 testing	and	breaking	 tool	 is	 that	 it	brings	 together	multiple	password
cracking	tools	into	a	single	package.

The	username	 /	password	combination	 remains	 the	primary	user	authentication
system	 for	 software	 programs	 and	 computer	 services.	 As	 a	 hacker,	 you	 will
constantly	 run	 into	 passwords	 that	 block	 your	 hack	 progresses	 or	 restrict	 data
and	 services.	 It	 is	 therefore	 important	 that	 you	 adopt	 one	 or	 two	 reliable
password	 hacking	 and	 cracking	 techniques	 that	 you	 can	 sharpen	 and	 improve
over	time.

What	makes	John	the	Ripper	unique	and	effective?

Hydra,	 another	 popular	 password	 cracking	 tool	 that	 comes	 with	 Kali	 Linux,
works	 by	 blind	 brute	 force	 which	 means	 it	 tries	 hundreds	 to	 hundreds	 of
thousands	of	username	 /	password	combinations.	 John	 the	Ripper	on	 the	other
hand	 autodetects	 password	 hash	 types	 to	 significantly	 speed	 up	 the	 cracking
process.	It	also	offers	a	variety	of	cracking	modes	to	choose	from	including	the
popular	 dictionary	 and	brute	 force	modes	 and	 advanced	options	 to	 personalize
individual	hack	instances	to	match	the	specific	cracking	attempt	case.

John	the	Ripper	uses	these	two	files	in	a	2-step	process	to	crack	a	password:

etcpasswd	etcshadow
	

Step	1:	It	uses	the	passwd	and	shadow	files	to	create	an	output	file.

Step	2:	 cracking	 is	 initiated,	 it	 uses	 the	dictionary	 attack	method	 to	 attempt	 to
crack	the	file.

John	 the	 Ripper	 also	 boasts	 of	 additional	 modules	 that	 you	 can	 download	 to
extend	its	capabilities	including	loading	passwords	stored	in	MySQL	and	LDAP

and	 ability	 to	 hack	 MD4-based	 password	 hashes.	 It	 has	 been	 praised	 as	 a
‘straight	 forward’,	 ‘intuitive’,	 and	 ‘easy-to-use’	 GUI-based	 password	 cracker
that	an	enthusiastic	student	hacker	like	yourself	would	master	without	difficulty.

The	greatest	challenge	to	using	John	the	Ripper	is	getting	the	hash	required	for
cracking.	 Luckily,	 there	 are	 countless	 easy-to-crack	 hashes	 that	 use	 rainbow
tables	that	you	can	download	and	use	with	John	the	Ripper.

As	you	consider	starting	the	search	for	your	favorite	password	cracker,	there	is
no	better	 place	 to	 start	 than	with	 John	 the	Ripper	 tool.	Here	 are	 the	 steps	you
should	follow	to	use	it	on	Kali	Linux.

Step	1:	Create	a	superuser	account	with	crackable	details	Linux	stores
password	has	in	the	etcshadow	file	we	touched	on	above.	However,	for	this
demonstration,	you	can	create	some	simple	username	/	password	combinations
that	you	can	practice	cracking.	In	preparation	for	this	demonstration,	a	few	extra
steps	are	necessary:

First	add	a	simple	username	e.g.	mary	to	the	superuser	group	in
Kali	Linux	and	assign	it	the	binbash	shell	using	this	command:

root@kali:~#
root@kali:~#	useradd	–m	mary	–G	sudo	–s	binbash
	

Set	a	simple	password	e.g.	‘password’	for	the	new	user	account:

root@kali:~#
root@kali:~#	useradd	–m	mary	–G	sudo	–s	binbash	 root@kali:~#	passwd
mary	 Enter	 new	 UNIX	 password:	 <password>	 Retype	 new	 UNIX
password:	 <password>	 Passwd:	 password	 updated	 successfully
root@kali:~#
	

Check	to	make	sure	that	the	home	directory	for	the	new	user	is
created.	If	you	are	unsure	how	to	create	a	superuser	account	on
Linux	you	can	get	help	from	linux.com.

Step	2:	Unshadow	the	new	user	account	password	We	have	created	a	victim

account	we	attempt	to	crack	with	John	the	Ripper	but	first,	we	must	unshadow
user	password.	Use	the	unshadow	command	to	combine	username	/	password
entries	of	the	etcpasswd	file	and	the	etcshadow	file	in	a	new	list	file	called
mary_pass.

root@kali:~#	unshadow	Usage:	unshadow	PASSWORD-FILE	SHADOW-
FILE
root@kali:~#
root@kali:~#unshadow	 etcpasswd	 etcshadow	 >	 rootmary_pass
root@kali:~#
root@kali:~#ls	–ltrah	usrshare/mary/password.lst	-rw-r—r—1	root	root	X-
PC	Jun	01	12:50	usrshare/mary/passwords.lst	root@kali:~#
	

If	 you	 feel	 lost,	 just	 enter	 the	 shadow	 command	 and	 it	will	 guide	 you	how	 to
complete	these	steps.

Step	3:	Password	cracking	with	John	the	Ripper	To	begin	the	password
cracking	process,	you	need	a	dictionary	file	which	we	saved	as	passwords.lst	in
the	directory	usrshare/mary/.	You	can	use	password	lists	from	other	sources	as
well	if	you	come	across	one	that	offers	higher	chances	of	success	and	results	in
faster	cracking.	Use	the	following	command	to	initialize	the	crack	with	John	the
Ripper:

root@kali:~#
root@kali:~#	mary	–wordlists=usrshare/mary/password.lst	rootmary_pass
	

When	you	execute	the	command,	you	should	see	something	like	this:

root@kali:~#
root@kali:~#	 mary	 –wordlists=usrshare/mary/password.lst	 rootmary_pass
Created	 directory:	 rootmary	Warning:	 hash	 type	 "sha512crypt”	 detected,
but	the	string	is	recognized	as	"crypt"
Use	 the	 "--format=crypt"	 option	 to	 force	 loading	 type	 instead	 of	 default
Using	default	input	encoding:	UTF-8
Loaded	 2	 password	 hashes	 with	 2	 different	 salts	 (crypt(3)	 6	 [SHA512

128/128	SSE2	 2x],	 sha512crypt)	Will	 run	 2	OpenMP	 threads	 Press	 'q'	 or
Ctrl-C	to	abort,	almost	any	other	key	for	status	password	 	 	 	 	 	 	 	 	 (john)	1g
0:00:00:10	 DONE	 (2017-06-01	 12:30)	 0.1610g/s	 735.9c/s	 571.0p/s
735.9C/s	 Use	 the	 "--show"	 option	 to	 view	 all	 the	 cracked	 passwords
reliably	Session	completed	root@kali:~#
	

Step	4:	View	the	cracked	password	Use	the	--show	command	as	tipped	by	the
tool	in	the	previous	screen.	Simply	enter	this:

root@kali:~#	 mary	 --show	 rootmary_pass
mary:password:1000:1001::/home/mary:binbash	 1	 password	 hash	 cracked,
0	left	root@kali:~#
In	this	demonstration,	our	password	cracking	attempt	worked	as	you	can	see	in
the	--show	action	window	above.	The	main	reason	for	 this	 is	 that	we	created	a
simple	username	/	password	combination	that	John	the	Ripper	had	no	difficulty
cracking.	 In	 the	future,	you	will	be	attempting	 to	crack	complicated	passwords
using	much	bigger	dictionaries	and	you	will	learn	that	the	process	may	require	a
lot	of	time	to	complete—sometimes	even	days	or	weeks.

What	 is	 important	 now	 is	 that	 you	 are	 familiar	 with	 the	 general	 process	 that
hackers	use	to	crack	passwords	with	John	the	Ripper.

Step	5:	learn	John	the	Ripper’s	advanced	options	and	commands	There	is	a
lot	that	this	guide	does	not	go	in	detail	to	explain	for	obvious	reasons,	although
we	wish	we	could	cover	everything	a	budding	hacker	should	need	to	know	about
all	the	tools	we	introduce.	However,	it	is	important	to	know	that	with	John	the
Ripper,	you	can	greatly	improve	the	rates	of	success	and	speed	up	the	cracking
completion	time	by	selecting	the	right	preferences	starting	with	the	password
cracking	modes.

These	most	basic	two	are	the	‘Wordlist	mode’	that	requires	you	have	a	wordlist
text	 file	 and	 the	 ‘Single	 crack	 mode’	 that	 prioritizes	 details	 such	 as	 UNIX’s
GECOS	 field,	 and	 user	 names	 and	 home	 directory	 information	 as	 password
candidates.	 The	 ‘Incremental	 mode’	 is	 the	 most	 powerful	 because	 it	 tries	 all
possible	 password	 character	 combinations	 but	 takes	 longer,	 and	 the	 ‘External
mode’	that	allows	you	to	extend	its	capabilities	using	a	configuration	file.

John	 the	 Ripper	 also	 has	 a	 long	 list	 of	 great	 commands	 and	 flags	 in	 its
documentation	file	that	you	will	find	highly	invaluable	in	your	efforts	to	learn	to
use	and	to	master	using	John	the	Ripper	in	cracking	passwords.

Chapter	5	|	Maintaining	Access
Gaining	access	into	a	computer	or	network	by	exploiting	existing	vulnerabilities
is	only	one	half	of	what	it	takes	to	be	a	proficient	white	hat	hacker;	the	other	is
creating	new	and	discovering	any	existing	entry	points	that	you	can	use	to	easily
gain	 access	 into	 the	 system	 the	 next	 time.	 This	 fourth	 phase	 of	 penetration
testing	 is	even	more	 important	 to	 the	white	hat	hacker.	This	 is	because	getting
easier	 and	 faster	 access	 into	 the	 victim	 computer	 or	 network	 will	 be	 vital	 to
fixing	existing	vulnerabilities	and	documenting	findings.

Why	maintaining	access	to	systems	you	have	already
hacked
This	phase	 is	 important	 not	 only	because	 it	 is	 necessary	 for	demonstrating	 the
system’s	 security	vulnerabilities	 to	 the	client	 as	well	 as	make	 it	 easier	 to	 trace
already-discovered	vulnerabilities.	The	success	last	of	the	five-phase	penetration
testing	 process—covering	 your	 tracks	 and	 getting	 rid	 of	 intrusion	 evidence,
client	demonstration,	and	generating	reports—will	entirely	depend	on	how	well
you	maintain	access	to	the	systems	you	have	already	successfully	hacked.

Because	 of	 how	most	 computer	 and	 network	 security	 tools	 are	 built,	 it	 is	 not
uncommon	 for	 a	 hacker	 to	 succeed	 in	 exploiting	 a	 vulnerability	 only	 to	 be
locked	 out	 by	 the	 system	 right	 about	 the	 moment	 he	 sighs	 in	 relief.	 If	 this
happens	to	you	before	you	poke	or	find	another	access	loophole	different	from
your	primary	path,	you	may	never	be	able	to	prove	to	the	client	how	successful
your	penetration	test	actually	was.

One	good	hacking	etiquette	you	should	practice	to	make	a	habit	is	this:	the	first
thing	 you	 should	 do	 as	 soon	 as	 an	 attempt	 to	 exploit	 a	 vulnerability	 to	 gain
access	 to	 the	 target	 system	 is	 successful	 is	 to	 create	 fallback	 access	methods.
Some	of	the	most	popular	techniques	hackers	use	today	include:

Setting	up	backdoors	in	the	compromised	system.
Creating	secret	encrypted	channels	that	you	can	use	at	a	later	time.
Creating	new	administrative	accounts	with	the	highest	user
privileges.
Setting	up	new	network	channels	etc.

Top	5	Kali	Linux	tools	to	use	to	maintain	access
Kali	Linux	has	 a	 category	of	 tools	 aptly	 called	“Maintaining	Access”	 that	you
will	 use	 to	 maintain	 your	 foothold	 in	 the	 computer	 or	 network	 system	 you
successfully	 hack.	 In	 this	 chapter,	 we	 will	 cover	 five	 of	 the	 top	 tools	 every
student	hacker	should	learn	to	use	and	practice	with	until	he	has	a	favorite	one
that	meets	his	requirements	and	suits	his	preferences.

1.	PowerSploit
If	you	are	good	in	noticing	patterns,	you	have	probably	deduced	that	most	of	the
top	hacking	tools,	especially	those	that	come	bundled	with	Kali	Linux,	are	either
open	 source	 tools	 or	 started	 off	 open	 source	 before	 the	maintaining	 company
took	it	over.	PowerSploit	 is	another	open	source	offense-focused	tool	based	on
Microsoft’s	 PowerShell	 toolkit	 that	 can	 be	 used	 in	 any	 phase	 of	 penetration
testing.

While	 you	 can	 use	 PowerSploit	 for	 reconnaissance,	 scanning,	 and	 even	 actual
exploitation,	 today	 you	 will	 discover	 how	 you	 can	 use	 it	 to	 elevate	 your
privileges	 in	 a	 Windows	 computer	 you	 have	 already	 hacked	 to	 maintain
backdoor	access.	To	help	us	understand	just	what	 it	can	help	you	achieve,	first
let	us	discover	what	it	can	do.

Features	of	PowerSploit	PowerSploit	has	modules	that	you	can	use	to	execute
arbitrary	code,	perform	AV	bypass,	and	carry	out	low-level	code	execution	such
as	injection	and	modification.	You	can	even	use	it	to	invoke	DLL	injection,
install	new	security	support	providers	(SSP)	dll	and	exfiltrate	data	on	the	remote
windows	PC	or	server.	Once	installed	on	the	victim	computer,	PowerSploit	can
be	configured	to	provide	access	to	the	victim	machine	via	the	Windows
Powershell.

Some	of	its	top	features	include:

Antivirus	bypass	capabilities	largely	because	it	is	based	on	Windows
Powershell.
Data	exfiltration	capabilities	to	a	remote	machine	over	LAN,	wireless
network,	or	the	Internet.
Can	be	used	to	cause	general	mayhem	with	Powershell	on	the
compromised	machine	such	as	master	boot	record	alteration	and
manipulating	critical	processes.
PowerSploit	comes	with	Privesc	tools	that	can	be	used	to	escalate
user	privileges	on	the	target	computer	including	PowerUp.

Setting	up	PowerSploit	on	a	hacked	Windows	system	Because	PowerSploit
uses	individual	scripts	that	do	not	need	external	dependencies	to	run,	you	would

not	need	to	set	up	the	entire	PowerSploit	framework	on	the	target	machine	to	run
it.

The	 most	 effective	 way	 to	 set	 up	 PowerSploit	 is	 to	 create	 a	 web	 server	 then
download	it	on	to	the	victim	machine	using	this	command:

root@kali:	usrshare/powersploit#	python	–m	SimpleHTTPServer
	

This	command,	when	successfully	executed,	should	show	such	a	message	as	this
below:

root@kali:	 usrshare/powersploit#	 python	 –m	 SimpleHTTPServer	 Serving
HTTP	on	0.0.0.0	port	8000	...
	

You	can	then	start	your	web	browser	and	access	 the	remote	machine	using	the
machine’s	IP	address	on	port	8000	displayed	above.

To	initiate	PowerSploit	from	the	terminal	and	navigate	to	its	directory,	type	the
following	command:

root@kali:~#	cd	usrshare/powersploit/
	

At	 this	 point,	 PowerSploit	will	 present	 you	with	 a	 directory	 listing	 options	 of
actions	you	can	perform	remotely	on	the	target	computer.

There	are	quite	a	number	of	useful	commands	that	you	can	use	on	the	Terminal
to	 make	 the	 most	 of	 PowerSploit’s	 capabilities,	 most	 of	 which	 are	 Linux’s
terminal	 commands.	 For	 instance,	 once	 you	 have	 installed	 it	 on	 the	Windows
computer	you	hacked,	you	can	use	the	command	ls	to	view	the	directory	listing
of	the	remote	computer.

root@kali:~#	cd	usrshare/powersploit/
root@kali:	 usrshare/powersploit#	 ls	 AntivirusBypass	 Persistence
PowerSploit.psml	 ReverseEngineering	 CodeExecution	 PETools
Readme.md	ScriptModification	Exfiltration	PowerSploit.psdl	Recon
	

You	can	discover	more	on	what	you	can	use	PowerSploit	for	to	make	the	most
of	it	in	PowerSploit’s	official	documentation.

https://readthedocs.org/projects/powersploit/

2.	Sbd
Sbd	command	is	a	clone	of	Netcat	with	extended	capabilities	that	a	hacker	will
find	highly	invaluable	such	as	command	execution	and	compatibility	with	Linux
and	Windows	systems.	It	is	a	portable	tool	that	offers	AES-CBC-128	+	HMAC-
SHA1	encryption	capabilities	that	can	be	executed	on	the	victim	computer.

Features	of	Sbd	One	of	the	best	things	about	Sbd	is	its	simple	and	easy	to	use
command	which	was	developed	to	provide	encrypted	bind	connections	and
encrypted	reverse	connections	with	a	single	command.

With	 simple	 configuration,	 a	 hacker	 can	 connect	 to	 the	victim	computer	 using
Sbd	and	have	the	power	to	send	commands	to	the	target	machine	via	a	specific
port	at	any	time.

Using	Sbd	to	maintain	access	Open	Sbd	by	entering	the	following	code	on	your
Kali	Linux	terminal:

root@kali:~#	sbd	-l	-p	<port>
	

When	 the	 server	 accepts	 the	 connecting	 request,	 you	 should	 see	 this	 landing
screen:	

If,	for	instance,	you	want	to	listen	on	port	44	using	Sbd,	your	command	would

look	exactly	like	this:

root@kali:~#	sbd	-l	-p	44	-v	listening	on	port	44
	

You	can	set	up	the	channel	to	send	remote	commands	to	the	victim	computer	or
website	by	typing	the	command	sbd	<server	IP>	<port>.	This	command	would
look	like	this	on	your	terminal:

root@kali:~#	sbd	172.63.34.112	8080
	

When	 a	 connection	 is	 established,	 you	 should	 see	 a	 message	 showing	 the	 IP
addresses	and	ports	of	the	localhost	(the	machine	you	are	using	for	pentesting)	as
well	as	those	of	the	remote	computer.

You	 can	 then	 begin	 sending	 the	 specific	 commands	 to	manipulate	 the	 files	 or
resources	of	the	target	computer.

3.	Webshells
Webshells	 is	 a	 set	 of	 tools	 offered	 with	 Kali	 Linux	 more	 popularly	 used	 for
exploiting	 websites	 with	 php	 vulnerabilities	 with	 minimal	 effort.	 These	 tools
also	happen	to	be	potent	reverse	shells	and	backdoors	that	you	can	use	to	send
system	commands	to	a	compromised	computer	directly	via	a	web	interface.

Features	of	Webshells	Leveraging	interactive	shells	is	one	of	the	oldest	yet	still
the	most	preferable	way	for	a	hacker	to	connect	back	to	a	remote	machine	they
have	already	hacked.	Note	that	because	Webshells	are	powered	by	the	C99	php
shell,	they	are	easily	detected	and	flagged	as	malware	by	any	modern	antivirus
program.	They	are	not	ideal	for	use	in	discrete	operations.

There	 are	 several	 great	 reverse	 shells	 offered	 on	 the	Kali	 Linux	 platform	 that
offer	 php	 vulnerability	 assessment	 and	 remote	 host	 command	 control
capabilities.	 They	 include	 the	 Cold	 Fusion	 shell,	 ASP	 shell,	 multiple	 ASPX
shells,	the	Kali	Perl	Reverse	shell,	and	the	JSP	Reverse	shell	just	to	name	a	few.

Maintaining	access	with	Webshells	Generally	speaking,	the	primary	function
of	the	Webshells	tool	that	keeps	it	relevant	in	the	hacking	environment	today	is
its	usefulness	in	controlling	a	remote	machine	on	the	Shell	via	a	local	connection
or	the	Internet.

Open	Webshells	by	typing	the	following	command	on	the	terminal:

root@kali:~/usr/share/webshells/#
	

When	 you	 list	 the	 directories	 of	 this	 backdoor,	 you	 will	 notice	 that	 they	 are
grouped	 in	 these	 classes	 based	 on	 the	 programming	 language	 used	 to	 develop
them:	ASP,	ASPX,	CFM,	JSP,	Perl,	and	PHP.	You	should	see	a	listing	such	as
the	 one	 below	 when	 you	 enter	 the	 directory	 listing	 command	 (ls)	 on	 your
terminal.

root@kali:~/usr/share/webshells/#	 ls	 asp	 aspx	 cfm	 jsp	 perl	 php
root@kali:~/usr/share/webshells/#
	

Should	you	open	a	specific	directory	in	the	listing	above,	you	will	have	access	to
all	 the	 webshells	 developed	 in	 and	 offered	 for	 that	 particular	 language.	 For
instance,	the	PHP	folder	may	contain	such	files	as	these:

root@kali:~/usr/share/webshells/#	 cd	 php
root@kali:~/usr/share/webshells/php#	 ls	 findsock.c	 php-findsock-shell.php
qsd-php-backdoor.php	 php-backdoor.php	 php-reverse-shell.php	 mystic-
backdoor.php
	

To	use	a	webshell	on	a	remote	host	of	which	you	already	have	control,	you	will
just	need	to	upload	the	specific	shell	you	want	to	deploy	from	the	web	server	by
opening	its	webpage	URL	right	from	your	browser.

For	instance,	to	deploy	the	‘mystic-backdoor.php’	in	our	demo	screenshot	above,
the	URL	will	comprise	of	the	target	computer	IP	address	and	port	and	the	name
of	the	webshell.	You	can	include	any	additional	commands	to	pass	on	to	the
shell	at	startup	by	adding	“cmd=<command>”	on	the	url	i.e.
192.168.100.10:1080/mystic-backdoor.php?cmd=systeminfo.

4.	DNS2TCP
Tunneling	is	the	most	effective	way	to	bypass	most,	 if	not	all,	TCP	connection
security	 features	 that	 may	 detect	 and	 prevent	 or	 terminate	 the	 connection
between	 you	 and	 the	 remote	 host.	DNS2TCP,	 as	 the	 name	 says,	 is	 a	 tool	 that
bypasses	 TCP	 traffic	 using	 by	 DNS	 port	 53	 to	 communicate	 with	 and	 send
commands	to	the	target	computer.

Features	of	DNS2TCP

DNS2TCP	 is	more	 of	 a	 network	 tool	 than	 a	 backdoor	 that	 is	 designed	 to	 use
DNS	traffic	to	relay	TCP	connections.	Because	its	encapsulation	is	carried	out	at
the	TCP	level,	there	are	no	special	drivers	such	as	TUN/TAP	to	be	installed	on
the	client	 computers	before	 it	 can	be	used.	As	a	matter	of	 fact,	 the	DNS2TCP
client	does	not	even	need	to	be	initiated	with	special	privileges	for	it	to	work.

There	 are	 two	 parts	 of	 the	DNS2TCP	 tool:	 the	 client-side	 and	 the	 server-side
parts:

The	server-side	part:	this	part	comes	with	a	list	of	resources
detailed	in	its	configuration	file	to	be	used	with	the	TCP	listening
service	locally	or	remotely	to	facilitate	the	relay	of	traffic.
The	client	part:	this	part	of	the	DNS2TCP	tool	is	configured	to
listen	on	a	pre-set	TCP	port	and	to	relay	any	incoming	connections
through	the	DNS	service	to	the	final	service.

Using	DNS2TCP	to	maintain	access	To	initialize	DNS2TCP,	enter	the
“dns2tcpd”	command	on	the	client-side	part	of	the	tool	on	your	Kali	Linux	shell:

root@kali:~#	dns2tcpd	Usage:	dns2tcpd	[-1	IP]	[-F]	[-d	debug_level]	[-
f	config-file]	[-p	pidfile]
	

As	 you	 can	 see	 in	 the	 demonstration	 above,	 DNS2TCP	 pretty	 much	 explains
how	to	use	it	the	moment	it	is	initialized.

The	commands	to	use	to	configure	the	client	and	server	sides	of	the	DNS2TCP
tool	are	pretty	straight	 forward.	To	demonstrate	what	you	would	need	 to	do	 to

set	up	a	tunnel	between	the	two	parts	of	DNS2TCP,	study	the	commands	listed
in	the	demo	terminal	screens	below.

Configuration	details	to	enter	on	the	client-side	of	DNS2TCP:

root@kali:~#	dns2tcprc	domain	=	[your	domain]
resource	=	ssh	local_port	=	7891
key	=	[enter	secret	key]
	

Configuration	details	to	enter	on	the	server-side	of	DNS2TCP:

root@kali:~#	dns2tcpd	listen	=	[enter	IP	address]
port	=	53	user=[username]
chroot	 =	 rootdns2tcp	 pid_file	 =	 varrun/dns2tcp.pid	 domain	 =	 [your
domain]	key	=	[enter	secret	key]
resources	=	ssh:127.0.0.1:22
	

If	 you	 enter	 the	 correct	 configuration	 details	 of	 the	 client	 and	 server	 sides	 of
DNS2TCP,	 you	 should	 establish	 a	 tunnel	 connection	 between	 the	 client	 (the
local	computer	you	are	using)	and	the	server	(the	remote	computer	you	hacked).

5.	Weevely
Weevely	is	another	post	exploitation	web	shell	that	is	used	by	hackers	to	set	up	a
backdoor	 in	 a	 compromised	 computer	 by	 simulating	 a	 telnet-like	 connection
with	the	target	remotely.	It	is	a	very	powerful	tool	that	is	often	used	by	system
and	 network	 admins	 to	 manage	 legitimate	 web	 accounts	 and	 even	 hosted
accounts	remotely.

Features	of	Weevely	Just	like	some	of	the	shells	we	touched	on	briefly	earlier,
Weevely	is	a	web	application	developed	in	PHP.	However,	unlike	those	other
shells,	it	is	built	to	be	stealthy,	which	makes	it	the	ideal	backdoor	into	a
computer	system.

Weevely	works	 by	 creating	 a	 terminal	 on	 the	 target	 computer	 as	 a	 server	 that
allows	the	local	machine	to	transmit	code	actions	and	commands	using	a	small
footprint	 PHP	 agent.	 It	 comes	 with	 over	 30	 modules	 developed	 and	 used	 by
network	 administrators	 mainly	 for	 network	 maintenance.	 With	 simple
commands,	 you	 can	use	Weevely	 to	 execute	 a	wide	 range	of	 actions	 remotely
from	escalating	user	account	privileges	to	network	lateral	movements.

How	to	use	Weevely	To	open	Weevely,	open	the	Linux	shell	on	your	Kali
Linux	platform	and	enter	“weevely”	to	see	its	usage	screen.

root@kali:~#	weevely	[+]	weevely	3.2.1
[!]	Error:	too	few	arguments	[+]	Run	terminal	to	the	target	weevely	<URL>
<password>	 [+]	 Load	 session	 file	 weevely	 session	 <path>	 [+]	 Generate
backdoor	agent	weevely	generate	<password>	<path>
	

You	 can	 then	 go	 ahead	 and	 generate	 the	 shell	 using	 the	 command	 structure
described	in	the	“Generate	backdoor	agent”	section	of	the	usage	screen	above.
The	 command	will	 include	unique	<password>	 and	 a	<path>	where	 the	PHP
shell	will	be	placed.	The	original	 file	will	be	created	on	 the	Desktop	directory
then	uploaded	on	 to	 the	web	server	 (the	 target	computer)	 to	necessitate	 remote
access	to	the	system.

When	the	backdoor	shell	 is	uploaded	on	to	the	remote	computer,	you	will	 then

establish	a	connection	with	it	on	the	command	line	using	the	weevely	command
along	with	the	IP	address	or	url	of	the	target	and	the	password	you	generated	in
the	previous	step.	The	general	format	of	the	command	looks	like	this:

root@kali:~#	weevely	URL	password
	

Weevely	will	display	connection	attempt	progress	on	the	terminal	and	in	the	end,
whether	the	connection	is	successful	or	not.

Summary	of	post-exploitation	access
There	 are	 countless	 ways	 that	 a	 hacker	 can	 use	 to	 maintain	 access	 into	 a
computer	or	network	system	that	we	do	not	touch	on	in	this	book.

The	use	of	rootkits,	for	instance,	is	one	of	the	most	popular	ways	that	blackhat
hackers	use	to	infiltrate	and	use	victim	computers.	This	is	because	a	rootkit	is	a
“smart”	backdoor	typically	deployed	with	a	Trojan	horse	with	meager	user-level
access	 that	 learns	 from	 the	 host	 and	 spies	 on	 users.	 It	 may	 then	 use	 its
keylogging	features	extract	login	details	such	as	passwords	which	it	uses	to	grant
itself	higher	administrator-level	access.	However,	creating	or	even	configuring	a
ready-made	rootkit	requires	superior	programming	skills	that	a	beginner	hacker
does	not	have.

These	 five	 tools	discussed	 in	 this	chapter	are	more	of	 recommendations	of	 the
tools	 you	 can	 learn	 and	 practice	with	 as	 you	 gain	 the	 skills	 and	 experience	 to
discover	many	other	tools	within	and	outside	the	Kali	Linux	platform.

With	time,	you	will	discover	many	other	techniques	to	ensure	that	you	only	have
to	 hack	 a	 target	 once.	 HTTP	 tunneling,	 which	 involves	 creating	 bidirectional
virtual	 data	 streams,	 using	 worms	 and	 resident	 RAM	 virus,	 colocation,	 and
setting	up	botnets	are	just	a	few	of	the	most	popular	ways	that	you	will	discover
and	learn	as	you	put	your	skills	in	practice	in	the	real	world.

Chapter	6	|	Covering	your	Tracks
No	matter	what	type	of	hacker	you	grow	to	become,	it	is	very	important	that	you
make	it	a	habit	 to	remove	all	evidence	of	penetration	and	any	digital	footprints
you	 leave	 from	 the	 computer	 systems	 and	 networks	 you	 successfully	 or
unsuccessfully	 hack.	 Many	 computer	 security	 experts	 even	 consider	 covering
your	tracks	and	disappearing	into	the	dark	the	most	important	step	of	the	hack.

This	last	phase	of	penetration	testing	is	particularly	important	for	ethical	hackers.
This	is	because	this	phase	typically	ends	with	making	a	documented	report	of	the
hack	 that	 the	 client	 needs	 to	 implement	 the	 right	 measures	 to	 secure	 the
computer	or	network	system.	Therefore,	you	must	take	this	phase	of	pentesting
just	as	serious	as	the	first	four	phases.

Unfortunately,	 many	 beginner	 hacks	 typically	 overlook	 this	 phase,	 forgetting
that	the	whole	point	of	proving	that	a	client’s	system	is	vulnerable	is	if	they	can
get	 in	 and	 out	 without	 being	 detected.	 As	 a	 hacker,	 when	 you	 are	 detected
intruding	into	a	computer	system,	you	are	finished.

Ways	to	cover	your	tracks	after	a	hack
Covering	your	tracks	after	a	hack	may	include	many	actions,	all	of	which	can	be
broadly	categorized	into	two:

a)	Anti-incident	response

This	 involves	 putting	measures	 in	 place	 to	 prevent	 real-time	 detection	 of	 your
presence	 and	 activities.	 Good	 example	 of	 this	 approach	 of	 remaining	 stealthy
during	and	after	penetrating	a	target	include	tunneling	(discussed	in	the	previous
chapter)	 and	 steganography,	 a	 fancy	 word	 for	 the	 act	 of	 hiding	 data	 such	 as
image	and	sound	files	to	make	them	undetectable	or	unreadable.

b)	Anti-forensics	actions

Actions	that	will	eliminate	any	evidence	of	the	penetration	that	may	be	collected
post-exploitation	fall	under	this	category.	These	include	masking	existing	access
channels	and	backdoors,	deleting	user	logs	from	the	system,	and	clearing	traces
of	exploitation	(e.g.	error	messages	generated	during	file	exfiltration).

Clearing	your	tracks	by	deleting	event	logs
Kali	Linux	comes	with	quite	a	number	of	great	 tools	designed	 to	help	you	get
away	clean	after	hacking	a	computer	system.	Some	of	the	tools	we	have	touched
on	 so	 far	 in	 the	 previous	 phases	 of	 penetration	 testing	 are	 just	 as	 effective	 in
getting	rid	of	the	evidence	generated	in	the	process.

Using	Metasploit’s	meterpreter	to	clear	your	tracks

Metasploit’s	meterpreter	comes	with	the	clear	evidence	(clearev)	script	that	you
can	use	to	clear	all	event	logs—including	event	and	Windows	system	logs—on	a
Windows	 system.	 While	 this	 means	 the	 system	 administrator	 may	 suspect
intrusion	from	the	missing	logs,	logs	of	all	attempted	and	successful	connections
will	be	removed.

To	 use	 the	 clearev	 script,	 start	 Metasploit	 then	 switch	 to	 the	 meterpreter
command	prompt	after	compromising	the	target	and	enter	the	clearev	command:

meterpreter	>	clearev
[*]	Wiping	31	records	from	System...
[*]	Wiping	38	records	from	Security...
[*]	Wiping	17	records	from	Application
meterpreter> █
	

In	this	instance,	the	meterpreter	cleared	all	events	logs	in	the	victim	computer’s
System,	Security,	and	Application	log	files.

Clearing	event	logs	on	a	Windows	computer

The	 clearlogs.exe	 application	 that	 you	 can	 download	 from	 ntsecurity.nu	 is	 a
great	 tool	 to	clear	 logs	on	a	Windows	computer	 if	you	have	physical	access	 to
the	system.	Simply	download,	install,	and	run	the	application	then	choose	which
logs	to	clear.	From	the	PowerShell,	you	can	use	the	command:

clearlogs.exe	-sec
	

Verify	 that	 the	 logs	 are	 deleted	 by	 checking	 the	 Security	 section	 of	 the	Event
Viewer.	Do	not	forget	to	remove	the	clearlogs.exe	file	before	logging	out	of	the
system	as	it	is	evidence	on	its	own.

Clearing	event	logs	on	a	Linux	computer

If	you	hacked	a	Linux	or	any	other	UNIX-based	system,	the	system	log	files	you
will	need	to	clear	are	stored	in	the	varlog/	directory.	These	logs	are	in	plain	text
file	formats	that	you	can	open	to	view,	modify,	or	delete	using	any	text	editor.

The	Linux	bash	shell	stores	up	to	500	last	commands	that	you	should	also	erase
from	 the	 system	 if	 you	 used	 its	 terminal.	 This	 is	 a	 lot	 of	 evidence	 for	 a	 good
system	admin	who	may	be	enthusiastic	about	deciphering	your	exploits	and	even
tracking	you	down.

Enter	this	command	to	view	your	command	history:

more	~/.bash_history
	

The	 number	 of	 commands	 saved	 depends	 on	 the	 HISTSIZE	 environment
variable.	You	can	check	it	using	the	command:

echo	$HISTSIZE
	

If	you	are	too	careful	and	want	to	set	this	value	to	none,	use	this	command:

export	HISTSIZE=0
	

Logging	out	after	setting	the	value	to	zero	means	that	the	command	history	will
be	cleared	on	system	log	out	and	there	will	be	none	on	log	in.	To	simply	shred
the	history	file,	use	this	command:

shred	-zu	root/.bash_history
	

The	–zu	flag	used	with	the	shred	command	overwrites	the	command	history	with
zeroes	then	deletes	the	history	file.

Covering	your	tracks	over	a	network
It	is	easier	to	get	rid	of	hacking	evidence	when	you	have	physical	access	to	the
computer.	However,	most	hackers	execute	their	hacks	over	a	network	and	every
phase—including	this—is	done	over	a	network.	Here	are	a	few	more	ways	to	get
rid	of	the	evidence	remotely.

Using	reverse	HTTP	shells

You	will	need	 to	 install	a	 reverse	HTTP	shell	on	 the	victim	computer	 to	cover
your	 tracks	 and	 get	 rid	 of	 the	 evidence	 using	 this	method.	 The	 reverse	HTTP
shell	is	scripted	to	receive	commands	remotely	at	regular	intervals	to	appear	just
like	HTTP	requests	and	responses.

When	 you	 need	 to	 clear	 logs	 and	 remove	 specific	 evidence,	 you	will	 need	 to
send	 specific	 commands	 to	 the	 victim	 computer	 for	 the	 shell	 to	 execute	 pre-
determined	sets	of	steps.	When	you	become	an	advanced	hacker,	you	will	also
be	 able	 to	 program	 HTTP	 reverse	 shells	 to	 bypass	 authentication	 steps	 and
devices	such	as	the	firewall	in	a	network.

Using	ICMP	Tunnels

HTTP	 reverse	 shells	 are	 very	 popular	 among	blackhat	 hackers	 and	 because	 of
this,	 businesses	 and	 organizations	 have	 implement	 tighter	 security	 features	 to
scrutinize	 all	 HTTP	 requests	 out	 of	 and	 responses	 into	 their	 networked
computers.	A	great	way	to	beat	this	and	send	crazy	traffic	out	of	and	to	a	secured
computer	you	can	use	ICMP	packets	sent	via	covert	channels.

Businesses	 and	 companies	 typically	 block	 only	 incoming	 ICMP	 packets	 but
completely	forget	to	monitor	or	block	the	outgoing.	This	configuration	makes	it
easier	 for	 a	 hacker	 to	 use	 ICMP	 packets	 to	 send	 payloads	 via	 TCP.	 This
effectively	creates	covert	tunnels	to	send	and	receive	commands	that	appear	like
simple	ICMP	packets.

There	are	quite	a	few	tools	you	can	try	to	learn	and	practice	this	payload	delivery
approach	including	ICMPCmd,	ICMPShell,	PingChat,	Ptunnel,	and	Loki.

Kali	Linux,	I	will	reiterate,	offers	all	 the	tools	an	upcoming	hacker	would	ever

need	to	nurture	his	skills	to	become	a	proficient	hacker.	As	far	as	covering	your
tracks	go,	some	of	the	top	reconnaissance,	scanning,	and	even	exploitation	tools
you	will	get	to	discover	during	your	pentesting	practice	sessions	can	also	be	used
to	find	and	get	rid	of	the	evidence	they	generate	in	action.

Chapter	7	|	Getting	started	with	real-world	hacking
(300)
There	 is	 a	 saying	 that	 the	 best	 defense	 is	 a	 good	 offense.	When	 it	 comes	 to
computer,	network,	and	application	security,	a	good	offense	is	a	big	factor	that
individuals,	small	businesses,	 large	companies,	and	organization	can	rely	on	 to
stay	ahead	of	malicious	hackers.

By	making	the	decision	to,	and	investing	in	learning	hacking	skills	that	you	can
use	for	good,	you	are	already	halfway	to	being	a	proficient	hacker	who	can	use
the	most	advanced	penetration	testing	techniques	and	the	latest	tools	to	enhance
the	computer	and	data	security	of	whoever	needs	it	–	friends,	employers,	private
clients,	 and	 yourself.	 You	 are	 just	 about	 to	 discover	 how	 big	 of	 a	 difference
ethical	hackers	make	in	global	cyber	security,	but	how	should	you	go	about	it?

Understand	the	basic	security	techniques	and	concepts

This	book	 is	written	 for	 absolute	beginners	 in	 the	world	of	 computer	 and	data
security.	This	means	you	do	not	need	to	be	a	programmer,	a	web	designer,	or	a
hardware	engineer;	your	basic	computer	skills	and	the	will	to	pursue	mastery	of
what	this	book	teaches,	are	sufficient	fundamental	steps	to	get	you	started	in	the
journey	 to	 becoming	 a	 proficient	 hacker.	 However,	 before	 you	 get	 started,	 it
would	 pay	 off	 to	 invest	 more	 time	 getting	 familiar	 with	 common	 and	 new
computer	security	terminologies,	techniques,	and	concepts.

This	book	is	not	long	enough	to	explain	all	the	details	you	need	to	know	about
being	 a	 hacker;	 most	 of	 it	 is	 dependent	 on	 the	 effort	 you	 put	 to	 widen	 your
skillset.	 Ethical	 hacking	 is	 a	 serious	 undertaking	 that	 requires	 a	 solid	 base	 to
make	all	the	other	skills	–	jargon,	pentesting	techniques,	and	use	of	free	tools	–
practical	and	useful.

There	are	many	websites,	blogs,	and	communities	where	seasoned	and	upcoming
ethical	 hackers	 share	 the	 knowledge	 they	 have	 and	 offer	 great	 resources	 for
newbies	 like	yourself.	OWASP	 is	 a	great	 place	 to	 start	 if	 you	 could	use	 some
fantastic	 resources	 and	 a	 supportive	 community	 made	 up	 of	 hackers	 from	 all
over	the	world.

https://www.owasp.org/index.php/Testing_Guide_Introduction/

Toolswatch.org	is	an	ethical	hackers	resource	website	where	you	can	even	find
out	where	to	practice	your	hacking	skills,	what	tools	other	newbies	like	you	have
tried	and	liked	or	disliked,	and	other	ethical	hacking-related	news	and	trends.

Practice!	Practice!	Practice!	It	is	the	only	way	to	get	better	at	hacking

Having	 a	 solid	 understanding	 of	 the	 hacking	 techniques	 such	 as	 pentesting
presented	in	this	book	or	a	myriad	of	security	concepts	and	tools	is	not	enough	to
become	 a	 good	 hacker.	 It	 is	 even	more	 important	 that	 you	 put	 the	 theory	 you
grasp	into	practice	–	both	attacking	and	defending.	As	with	everything	else,	the
most	 persistent	 learners	 who	 practice	 their	 skills	 regularly	 will	 go	 ahead	 to
become	the	best	at	what	they	learn.

OWASP,	 for	 instance,	offers	 a	virtual	machine	with	 top	10	vulnerabilities	 that
learners	 can	 practice	 hacking	 and	 defending.	 Various	 other	 web	 apps,	 virtual
machines,	 and	 even	 mobile	 apps	 are	 platforms	 on	 which	 you	 can	 practice
hacking	 legally.	Make	 use	 of	 such	 resources	 every	 day	 until	 you	 are	 the	 best
hacker	you	know.

Choose	your	tools

You	 now	 have	 received	 the	 right	 foundation	 on	 computer	 and	 information
security.	 You	 understand	 defense	 and	 offense	 strategies	 and	 have	 been
introduced	to	the	sophisticated	tools	of	the	hacking	trade.	Whether	you	intend	to
pursue	specialization	in	the	field	of	penetration	testing	or	have	another	career	or
lifestyle	choice	in	mind,	it	is	important	that	you	choose	your	tools	set.

This	book	introduces	some	of	the	best	and	most	effective	penetration	testing	and
hacking	tools	on	the	market,	but	it	does	not	mean	you	have	to	stick	to	only	those
we	 tried.	Explore	 the	 thousands	of	 tools	 that	 come	with	Kali	Linux	and	check
out	others	that	the	black	hats	use.	The	more	you	interact	with	diverse	tools,	the
better	choice	you	will	make	for	your	hacks.

Every	ethical	hacker	has	a	list	of	favorite	tools	for	every	task.	Because	you	are	a
beginner,	before	you	can	get	to	that	point,	it	will	take	a	bit	of	trial	and	error	and	a
lot	 of	 research	 as	 you	 start	 using	 the	 different	 tools.	 Such	 tools	 as	 Nmap,
Metasploit,	 and	Nessus	 have	 set	 the	 industry	 standards	 vulnerability	 discovery
and	exploitation,	but	they	may	not	be	best	for	you.	They	are	a	great	way	to	get

introduced	 into	 the	 trade	 but	 do	 not	 assume	 you	 have	 to	 stick	 to	 using	 them
forever;	there	is	a	world	of	options	you	should	check	out.

	

The	End.

#

	Legal notice
	About this eBook
	Who this ebook is For
	About Project Syntax
	Feedback and Questions

	Chapter 1: Introduction to Python
	Why Python?
	Installing Python
	Installation directory and exercise files
	The Python shell
	Install a text editor

	Chapter 2: Hello World and the Basics of Python
	Interactive Programming Mode
	Script Programming Mode
	Python Identifiers
	Reserved Words
	Lines and indentation
	Comments in Python
	Quotation in Python
	Blank Lines

	Chapter 3: Variables and Basic Operators in Python
	Types of Variables in Python
	Basic Operators
	Operators Precedence in Python

	Chapter 4: Working with Strings and Numbers
	Strings in Python
	Numbers in Python

	Chapter 5: Lists and Tuples and Dictionary
	Python Lists and Tuples
	Python Dictionaries

	Chapter 6: Input, Output, and Import
	Capturing keyboard input using input()
	Printing to the screen using the print() function
	Python Import

	Chapter 7: Decision Making and Looping
	Decision making in Python
	Loops in Python

	Chapter 8: Functions and function arguments
	Defining a function in Python
	Calling a function
	Function arguments

	Chapter 9: File Operations
	Opening a file
	Reading from a file
	Writing to a file
	Closing a file
	Python file methods

	Chapter 10: Conclusion and Further Reading
	Further learning

	Legal notice
	About this book
	Chapter 1 | A Hacker’s Introduction to Ethical Hacking
	Types of Hackers
	Why become an ethical hacker?
	Setting up a virtual lab

	Chapter 2 | Reconnaissance
	Stages of Reconnaissance
	1. Passive Reconnaissance of a Target with Netcraft
	2. Using Maltego for Network Reconnaissance

	Chapter 3 | Scanning
	Purpose of the scanning process
	Network scanning with Nmap
	Using the Nmap Scripting Engine to scan for vulnerabilities
	Scanning for vulnerabilities with Nessus

	Chapter 4 | Gaining Access
	Developing an attack strategy
	Exploiting a vulnerable web server using Psexec in Metasploit
	SQL injection exploit guide with Google Dork and Havij Pro
	Understanding SQL injection
	Introducing Google Dork

	Cracking passwords using John the Ripper

	Chapter 5 | Maintaining Access
	Why maintaining access to systems you have already hacked
	Top 5 Kali Linux tools to use to maintain access
	1. PowerSploit
	2. Sbd
	3. Webshells
	4. DNS2TCP
	5. Weevely
	Summary of post-exploitation access

	Chapter 6 | Covering your Tracks
	Ways to cover your tracks after a hack
	a) Anti-incident response
	b) Anti-forensics actions

	Clearing your tracks by deleting event logs
	Covering your tracks over a network

	Chapter 7 | Getting started with real-world hacking (300)

