 Python
< Linguists

5% ichael
8 /4

Hammond
e —

Python for Linguists

Specifically designed for linguists, this book provides an introduction to pro-
gramming using Python for those with little to no experience with coding.
Python is one of the most popular and widely used programming languages
as it’s also available for free and runs on any operating system. All exam-
ples in the text involve language data and can be adapted or used directly for
language research. The text focuses on key language-related issues: search-
ing, text manipulation, text encoding and internet data, providing an excellent
resource for language research. More experienced users of Python will also
benefit from the advanced chapters on graphical user interfaces and functional
programming.

MICHAEL HAMMOND is Professor of Linguistics and Human Language Tech-
nology at the University of Arizona. His previous titles include Programming
Jor Linguists: Perl for Language Professionals (2003) and Programming for
Linguists: Java Technology for Language Professionals (2002).

Python for Linguists

Michael Hammond

University of Arizona

B3 CAMBRIDGE
&':E5 UNIVERSITY PRESS

CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi — 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108493444
DOI: 10.1017/9781108642408

© Michael Hammond 2020

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2020
Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall
A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49344-4 Hardback
ISBN 978-1-108-73707-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLSs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781108493444
http://dx.doi.org/10.1017/9781108642408

Contents

Preface
Why Do Linguists Need to Learn How to Program?
Why Is Python a Good Choice?
How This Book Is Different
Overview of the Book
How to Use the Book
Acknowledgments

1 Interacting with Python and Basic Functions
1.1 Installing and Using Python
1.2 The Interactive Environment
1.3 Basic Interactions
1.4 Edit and Run
1.5 Summary
1.6 Exercises

2 Data Types and Variables

2.1 Assignment

2.2 Variable Names

2.3 Basic Data Types
2.3.1 Numbers
2.3.2 Booleans
2.3.3 Strings
2.34 Lists
2.3.5 Tuples
2.3.6 Dictionaries

2.4 Mutability

2.5 Exercises

3 Control Structures
3.1 Grouping and Indentation

32 if

3.3 Digression on Printing
34 for

3.5 while

3.6 break and continue

3.7 Making Nonsense Items
3.8 Summary

3.9 Exercises

page ix
ix

X

xi

xi

xii

xii

O 99 W~ =

vi

Contents

Input—Output

4.1 Command-Line Input
4.2 Keyboard Input

4.3 File Input—Output
4.4 Alice in Wonderland
4.5 Summary

4.6 Exercises

Subroutines and Modules

5.1 Simple Functions

5.2 Functions That Return Values

5.3 Functions That Take Arguments
5.4 Recursive and Lambda Functions
5.5 Modules

5.6 Writing Your Own Modules

5.7 Docstrings and Modules

5.8 Analysis of Sentences

5.9 Exercises

Regular Expressions

6.1 Matching

6.2 Patterns

6.3 Backreferences

6.4 Initial Consonant Clusters
6.5 Exercises

Text Manipulation

7.1 String Manipulation Is Costly
7.2 Manipulating Text

7.3 Morphology

7.4 Exercises

Internet Data

8.1 Retrieving Webpages

82 HTML

8.3 Parsing HTML

8.4 Parallelism

8.5 Unicode and Text Encoding
8.6 Bytes and Strings

8.7 What Is the Encoding?

8.8 A Webcrawler

8.9 Exercises

Objects

9.1 General Logic

9.2 Classes and Instances
9.3 Inheritance

9.4 Syllabification

9.5 Exercises

56

56
64
67
72
79
79

81

82
85
87
91
94
96
101
102
115

117

118
122
125
126
136

138

138
139
142
166

167

167
168
172
175
179
182
184
186
204

206

206
207
217
221
231

Contents

10 GUIs

10.1
10.2
10.3
10.4
10.5
10.6
10.7

The General Logic
Some Simple Examples
Widget Options
Packing Options

More Widgets
Stemming with a GUI
Exercises

11 Functional Programming

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Functional Programming Generally
Variables, State, and Mutability
Functions as First-Class Objects
Overt Recursion

Comprehensions

Vectorized Computation

Iterables, Iterators, and Generators
Parallel Programming

Making Nonsense Items Again

11.10 Exercises

Appendix A NLTK

Al
A2
A3
A4
AS
A6

Index

Installing
Corpora
Tokenizing
Stop Words
Tagging
Summary

vii

233

234
236
240
245
249
252
259

261

261
262
265
269
271
273
275
280
288
289

291
291
291
293
294
296
296

297

Preface

This is a book on how to program for linguistic purposes using the Python pro-
gramming language. In this preface we outline our goals, justify using Python
to achieve them, and explain how best to use this book.

Why Do Linguists Need to Learn How to Program?

Programming is an extremely useful skill in many areas of linguistics and in
other language-related fields like speech and hearing sciences, psychology,
psycholinguistics, and quantitative literary studies.

Within linguistics, it used to be the case that programming skills were
required only for computational linguists, but this is far from true these days.
Programming now is used in phonology, syntax, morphology, semantics,
pragmatics, psycholinguistics, phonetics, discourse analysis, essentially every
area of linguistic investigation. This change reflects broader methodological
changes in the field, a response to the fact that (i) more and more data are avail-
able electronically, and (ii) we have much richer techniques for examining and
manipulating massive amounts of electronic data.

Here are some examples of what you can do with fairly modest programming
skills:

® Build a simple list of occurring words from a text file written in some
language along with the frequency of those words.

® Find items for psycholinguistic or phonetic experiments from text resources,
e.g., frequent two-syllable words that begin with a three-consonant cluster
and don’t otherwise contain nasal consonants.

® Construct every possible one-syllable word given a set of possible onsets,
vowels, and codas.

® Construct every possible two-word compound given a list of words.

® Find the average number of words per sentence from a text corpus and find
the longest sentence in that corpus.

X

X Preface

® Build a model of syllabification for some language and syllabify candidate
words.
® Find the average length and amplitude for some set of sound files.

This is just a small sample of the sorts of things that programming might help
you do as part of your work with language.

Why Is Python a Good Choice?

There is a wide variety of programming languages you might choose to learn
and work with. Every language has its virtues, the things that make it a good
choice for this or that purpose. The choice of language is a function of three
basic factors.

First, what is it that you want to do? Some languages are optimized for
different sorts of goals, e.g., writing applications, developing system tools,
and scripting. Second, what kind of programming experience do you have?
Some languages are relatively easy to pick up and others, not so much. Finally,
what kind of programming style do you want to use? Different languages lend
themselves to different kinds of programming approaches, e.g., procedural,
functional, object-oriented, and parallel.

In this book, we assume that you want to write programs that will let you
answer questions about language, programs that may be run only by you. Thus
programming languages like java, objective c, or c# that allow you to write
full applications are not optimal choices. In addition, we assume that you have
little or no prior programming experience. Thus interesting and challenging
programming systems like Haskell, Lisp, or Prolog are best left for later.

Consequently, we will use the Python programming language. There are
specific reasons for this choice:

® Python is extremely widely used, so you most likely have friends, colleagues,
or classmates who use it and so can help you if needed. There are myriad
resources on the web that can help as well.

® Python has stable and clear semantics. This means that the meaning and use
of Python elements is clearly defined, and you can rely on your programs
working as you intend. Similarly, program examples in this text should work
exactly as shown on your system.

® Modules. There are tons of optional modules that others have written with
useful functions and objects to simplify your programming tasks.

® Python is practical. Python is widely used in many areas, so your language-
related programming skills may help you in other domains.

Preface X1

® NLTK. The Natural Language Toolkit is a freely available suite of mod-
ules tailored for working with language. You can use these for high-level
statistical natural language processing or for simple language-related tasks.

There are some challenges to working with Python too. The biggest is that
Python is an object-oriented (OO) programming language, and using it requires
that you at least understand what objects are. The language thus lends itself to
an OO programming style, but you need not use that specific style at first.

Our approach in this book is to first ignore OO aspects of the language. As we
proceed, we introduce what you need to know of the OO system to make use of
the concepts introduced to that point. Finally, in the latter part of the book, we
explain OO programming in depth. Ultimately, we leave it up to you to decide
how much OO programming is necessary for your programming goals.

How This Book Is Different

There are any number of book-length introductions to Python out there. How
is this one different?

First, this book is written for linguists and other people who work with lan-
guage data. What this means is that we give you examples that should make
sense to you. If you have specific programs you want to write right away, you
may even find some snippet here that (almost) does what you want and can be
easily adapted to your purposes.

We continue with the language focus throughout the book. This means that,
rather than trying to learn some programming concept exemplified in a program
that has no relation to your goals, you can learn critical concepts with programs
that are comprehensible and, we hope, useful as well.

Most chapters conclude with an extended example that shows how a larger
program should be developed, using the concepts learned in the chapter,
and with a focus on some language-related task. All chapters conclude with
exercises, and all the exercises are linguistic in their orientation as well.

Another consequence of this approach is that we take a linguistic approach
to the structure of Python. As much as possible, we treat it as a language with
a syntax and a semantics.

Overview of the Book

The structure of this book is roughly as follows.

First, we introduce the basic syntax and semantics of the language: the primi-
tive elements of the language and how those elements can be combined to make
legal statements and larger structures.

Xii Preface

As we introduce those topics, we elaborate the imperative semantics of the
language, how we can use the specific Python language components covered
to achieve different programming goals.

We next consider specific language-related tasks in depth: searching text,
manipulating text, internet data, and text encodings.

Finally, we conclude with more advanced discussions of Python objects and
OO0 programming generally, GUI programming, and functional programming.
There is a brief appendix outlining the NLTK system as well.

How to Use the Book

The most important thing about using this book is that you should run the pro-
grams as you proceed. You can either download them from the book website!
or type them in yourself.

If you have the patience for it, it is much better to type the programs in. This
will really help you to notice aspects of the code you might not otherwise see
and make the coding process more familiar to you. This will be frustrating and
you will make errors as you type things in, but figuring out these errors will
really help you learn the material.

It’s also extremely important that you understand the code. You should make
sure you understand each code snippet that’s given before you go on — how it
works, why it does what it does.

To this end, another really useful thing to do as you proceed is to play with
the code. Tweak it in different ways, either to do something you’d rather it do
or just to see what happens. (As you’ll see below, the only time you don t want
to do this is when you’re performing file input — output operations where you
can accidentally damage or lose things on your computer.)

Acknowledgments

Thanks to Sam Johnston, Dan Jurafsky, Nick Kloehn, and Ben Martin for never
letting me forget the virtues of Python.

Thanks to the students in my Linguistics 408/508 course for letting me try out
this material with them. Thanks to Damian Romero Diaz for helpful comments.

Thanks to Diane Ohala and Joey Rousos-Hammond for their love and
support throughout.

All errors are my own.

! www.u.arizona.edu/~hammond/

www.u.arizona.edu/~hammond/

1 Interacting with Python and Basic Functions

In this chapter, we introduce the different ways you can interact with Python
generally and some simple things you can do right from the get-go.

We start with how to install Python and issues concerned with different
versions of the language. We then turn to how to invoke the interactive environ-
ment and the things you can do there. Finally, we briefly outline what it means
to write a program.

1.1 Installing and Using Python

Python is a programming language. It is a way for you to talk to your computer,
a way for you to get your computer to do things for you. It’s basically a special-
ized language that is optimized for clarity for you and for converting into the
internal language that your computer actually uses. You might think of it as a
solution to a translation problem. You speak one language, and your computer
speaks another. Python is a compromise language between the two. For you to
program, you must translate your intentions into Python. For the computer to
respond appropriately, it must translate Python into its own internal language.

To use Python it is not enough to simply translate your goals into Python.
You must also install specialized software on your computer that will translate
your Python code into what the computer can work with. We will refer to this
software as a Python installation.

Sometimes this software is automatically part of your operating system. For
example, Python is part of every MacOS and Linux installation. Sometimes
this software has to be installed by you. Sometimes this software is free; some
companies charge for it. My recommendation is that you at least start with a
free version. If later on, when you really know what you’re doing with Python,
some proprietary version offers features that you feel are necessary, then that’s
the time a purchase may be warranted.

A related issue here is that there are different versions of Python. The lan-
guage was first released in 1991, and there have been a number of different
versions since then offering changes and improvement. As I write this, the
current version is 3.6.2.

2 Interacting with Python and Basic Functions

When you install Python, you may have a choice about versions. My rec-
ommendation is that you install something in the version 3 family. There are
significant differences between versions 2 and 3, and version 3 is what we use
here.

In general, you want the most recent version possible, but there are some-
times reasons not to do that. Some third-party modules are not available for all
versions, and so if there is a particular module that is important to you, you may
want to make sure you have a version of Python that works with it.

There are a number of free versions of Python that are available for Mac
and Windows. For example, one widely used version is Anaconda.! Another
widely used system is ActiveState.? Python.org® maintains a list of Python dis-
tributions and distribute their own as well. I’ve already mentioned that Python
is part of any MacOS, but if you need a specific version of Python for your
purposes, you can get those from MacPorts* or Homebrew.

1.2 The Interactive Environment
There are at least four ways you can invoke Python:

(i) interactive environment terminal or Python window
(i1) Idle Python integrated development environment
(iii) edit and run write a program that you run in the terminal window
(iv) Jupyter notebooks write code that runs interactively in a web browser

Ultimately, we will want to write programs that we then run in the termi-
nal window, but at this stage we will confine our attention to the interactive
environment. This will allow us to play with Python so we can understand the
basics before we move on to writing programs.

If Python is on your system — or you’ve properly installed it — you can start
the interactive environment by simply typing python in the terminal win-
dow on a Mac or choosing Python from the start menu on Windows. This will
produce a response like this:

> python

Python 3.4.6

Type "help", "copyright", "credits" or
"license" for more information.

>>>

www.continuum.io

www.activestate.com
wiki.python.org/moin/PythonDistributions
WwWww.Mmacports.org

brew.sh

[R VR

www.continuum.io
www.activestate.com
wiki.python.org/moin/PythonDistributions
www.macports.org
http://brew.sh

1.3 Basic Interactions 3

The version of Python that you’re using is displayed along with additional sys-
tem information. All of this is followed by the prompt >>>. Your commands
are typed at that prompt.

Before going any further, let’s set out the most important commands that
work here:

Quit: quit (). Type this at the >>> prompt to exit the interactive environ-
ment. Typing ~d (control-d) has the same effect.

Help: help (). Typing this enters the online help system where you can
get help on many aspects of using Python. While this is extremely helpful, the
responses it provides may not be terribly useful at this stage. You exit the help
system and return to the interactive environment with the return key.

Interrupt: “c (control-c). When we start playing with the system, you
will occasionally get stuck in the middle of a command or while some command
is running. If you do get stuck, or if some command seems to be running forever,
you can often regain control and return to the >>> prompt by typing " c.

1.3 Basic Interactions

We will generally interact with Python by writing programs and then running
them from the command line. At this point, however, let’s try to understand
Python a bit better in the interactive environment. In this environment, you can
type legal Python statements and they are immediately evaluated. For example,
you can perform mathematical calculations like multiplication, addition, and
exponentiation:

>>> 4 *

28

>>> 3 4+ 2.9

5.9

>>> 9 **x -3
0.0013717421124828531
>>> 7 - 15

-8

As linguists, we will want to operate on words and sentences, and these must
be entered in single or double quotes. In general terms, we will refer to these
as character strings.

'This i1s a sentence'
"This is another one"

Interestingly, some of the mathematical operators above can be used with
character strings as well and have different effects. With numbers + is addition,

4 Interacting with Python and Basic Functions

but with strings it concatenates. With numbers * is multiplication, but with a
string and a number it repeats the string:

>>> 'phon' + 'ology'
'phonology!

>>> 'phon' * ©
'phonphonphonphonphonphon'’

There are some functions that operate directly on strings. The len ()
function returns the number of characters in a string.

>>> len ('phonetics')
9

The type () function can operate on strings or numbers and returns the
general “type” of the object it applies to.

>>> type (3)

<class 'int'>

>>> type(7.2)
<class 'float'>
>>> type ('phoneme’)
<class 'str'>

You can see that Python distinguishes integer numbers from floating point
numbers (numbers with a decimal point) and from character strings.

Note now that the quotes surrounding a character string are essential and
distinguish strings from other types. If you leave them out, Python will typically
give you an error:

>>> phoneme
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'phoneme' is not defined

If you put them in with numbers, then you change the basic type of the object.
Consider the difference here:

>>> 7 + 4

11

>>> ' 4+ T4
'74'

1.3 Basic Interactions 5

Recall that the + operator can apply to strings or numbers, but has dif-
ferent effects with each. When it applies to numbers, it performs addition.
When it applies to strings, it performs string concatenation. We see here that
when numbers are put in quotes they are treated as strings rather than as
numbers.

There are functions for converting back and forth between character strings,
integers, and floating point numbers:

>>> int('7")

7

>>> float('3.6")
3.6

>>> str(17)

1171

Operators and functions can be combined as well. For example:

>>> (7 + 4) * 2

22

>>> str(7) + str(4)
l74|

>>> int (str (7)) ** 3
343

The format we’ve used for functions is to invoke the function by putting
parentheses after its name, e.g., str (). There is another kind of function that
we will frequently need that has a different syntax. These are methods, functions
that are very specifically associated with some particular data type. We’ll have
a lot more to say about these in Chapter 10, but for now we just want to alert you
that they exist and show you their syntax. To invoke one of these, the method
name and parentheses are suffixed to the relevant object with a period. For
example, the string method upper () returns an uppercase version of a string.
We invoke it as follows:

>>> 'this is not a pipe'.upper /()
'THIS IS NOT A PIPE'

There are methods that take additional arguments as well. For example, the
method count () returns the number of instances of its argument in the string.

>>> 'this is not a pipe'.count('i'")
3

6 Interacting with Python and Basic Functions

Methods are not the same thing as functions; the different syntax above is
required. Invoking them as if they were normal functions results in errors:

>>> ypper ('this is not a pipe')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'upper' is not defined

>>> count('this is not a pipe','1i")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'count' is not defined

1.4 Edit and Run

In general, one uses Python to write programs to be run from the command
line. For example, we can write a silly little program that concatenates two
strings and prints the output. We would edit a text file, say with the name
interactl.py, to contain the following:

print (4+7)
print ('that should be 11")

interactl.py

Some parts of this are familiar from what we’ve covered so far, but some are
not. We’ve added the print () function here, which simply prints its argu-
ment. Don’t worry yet about the details; at this point, we just want several lines
of code for our program.

It’s important that you create this file with a simple text editor, not a full-on
word processor like Microsoft Word. For writing code, [use Vim on a Mac, but
Emacs (or Aquamacs) is a simple and free alternative. For Windows, there are
various free ports of Emacs as well, but a number of other alternatives exist.
It’s most useful if the editor you use does syntax colorizing. This highlights
different terms and strings in your Python code and makes it easier to spot
errors. There are all sorts of other bells and whistles that different text editors
offer, but the only essential ones at this point are (i) that the program be able to
edit simple text files, and (ii) that it does syntax colorizing for Python.°

Once you’ve created the program with whatever text editor you opt
for, there are a number of ways to invoke it. The simplest is to

© Tstrongly encourage you not to spend money on a text editor, at least at this stage. There are a
huge number of free options.

1.6 Exercises 7

type python interactl.py in the terminal or DOS window as
follows:

> python interactl.py
11
That should be 11

If you invoke the program as above, it’s important that the program be in the
same directory that the terminal window is in. To find out what directory you
are in, you can type pwd at the terminal prompt. To see if this program file is
in that directory, you can use the 1s command at the terminal prompt (dir
for Windows). If it is not, you can either move it there or you can instruct the
terminal to switch to another directory with the cd command (followed by the
path to the directory you want to be in).

One can also add comments to a code file. Comments are lines of code that
remind the programmer of what the code does or should do. Comments are
marked with a # on their left. Everything on the same line after that # has no
effect on the program. For example, we might tweak our program above like
this:

print (4+7) #this does some math

#the following prints a string
print ('that should be 11")

interact2.py

Notice that comments can occur on their own line or on the right side of an
actual line of code.

1.5 Summary

In this chapter we have discussed how to install Python and the different
versions that exist. We’ve also talked about how to run Python code and exem-
plified some basic commands in the interactive environment. We also briefly
showed how to write and run a program.

1.6 Exercises

1.1 Write commands that print out your first name, the number of characters
in that name, your last name, the number of characters in that name, and
then concatenate and print the two names (with a space).

1.2

1.3

1.4
1.5
1.6
1.7

1.8

1.9

1.10

Interacting with Python and Basic Functions

Write a line of code that will calculate how many times the string ‘at’
occurs in this sentence.
What’s the difference between these?

'"This is Mike'.upper () .lower ()
'This is Mike'.lower () .upper ()

Why does upper ('This is a cat') notwork?

What does help (help) do in the interactive environment?

We used the mathematical operator ** on page 3 above without expla-
nation. Play around with it and say what it does.

Inmath, 6 + 2and 2 + 6 mean the same thing. We’ve seen that + and
* can be used with strings too. What happens if arguments are reversed
when strings are involved? Do those expressions mean the same thing?
Use the help () function to find out about the round () command.
Explain and demonstrate how to use it with more than one argument to
produce different results.

For each of the following, explain whether it’s true or false and why:

(@) 'hat' == "hat"
(b) hat == 'hat'
(¢) 1/3 == .33

(d) '"three' > 'two'
) 2 + 2 =14

Web: Snoop around on the web and figure out what Jupyter notebooks
are and how they work. Create a Jupyter notebook that answers one of
the questions above.

2 Data Types and Variables

In this chapter, we look more closely at Python data types and variables. We’ll
discuss the following:

® Numbers: integers and floats
® Strings

® Lists

® Tuples

® Dictionaries

This discussion cannot proceed without considering the notion of mutability.
Basically, some kinds of data cannot be changed once they have been created,
while others can. This fact is really easy to overlook, which can lead to all sorts
of errors.

2.1 Assignment

To fully understand the range of different types, it’s useful to understand
variable assignment first.

We’ve already discussed numbers and functions that apply to numbers. For
example, we can use all the usual mathematical operators:

>>> 3 % 4
12
>>> 7 - 15
-8

We can also store — and later recall — any value. We refer to this as variable
assignment, or variable binding; we take some value and put it into a named
location or receptacle. The syntax is simple: the name occurs on the left, the
value on the right, and = goes in between. For example:

>>> x = 17
>>> bananas = 3.4

10 Data Types and Variables

Note that variable assignment is not the same thing as equality. The equals
sign does not assert that bananas and 3. 4 are the same thing; we’re taking
the value 3.4 and giving it the name bananas. Remember that the name is
always to the left of = and the value is always to the right.'

Once a variable name has been bound to a value, the variable can be used
anywhere a value of that type can be used. For example:

>>> 3 4+ x

20

>>> bananas * 7
23.8

Variable names must begin with a letter or an underline. The remainder of
the name can consist of any additional letters, underlines, or numbers. Variable
names are case-sensitive and should not contain any of the reserved Python
words:

False class finally 1is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

These words have specific interpretations in Python.
The right side of an assignment can include functions and variables. For
example:

>>> oranges = bananas * 4
>>> bananas = bananas - 5

Notice that the latter statement confirms that even though assignment uses the
symbol =, it is not to be confused with some sort of equality test. For how
could bananas be equal to itself minus 5? What this statement does is subtract
5 from whatever value bananas currently has and assign the resulting new
value to bananas. If we instead want to test for actual equality, we use ==,
as exemplified below:

>>> 2 + 2 == 4
True

! We treat equality operators like += later starting on page 40.

2.3 Basic Data Types 11

>>> 'hats' == 'hat' + 's'
True

>>> bananas == bananas - 5
False

2.2 Variable Names

Once we have covered control structures, we’ll see that variables are essential
in programming. For now, note that the choice of variable name is extremely
important. While in principle we can name our variables in many different
ways, we should always give our variables a name that reminds us what kind
of value we are storing in the variable. For example, if we had a variable that
stores somebody’s age, a very convenient name would be something like age.
Far less useful would be a name like theNumber. While the latter does imply
that the variable contains a number, it does nothing to help us remember what
number we have stored. For the same reason, variable names like a are rather
useless.

At the beginning stages of programming, you will be tempted to name your
variables cryptically, e.g., a, or whimsically, e.g., ernie (a recent beloved
pet), but make an effort to avoid this and develop good habits early. The best
practice is to employ variable names that remind you of the variable’s contents.

The best variable names are unambiguous. For example, if we need a variable
to store the age of a student, something like ageOfTheStudent would be
perfect. The problem is that fully explicit variable names are long and perhaps
annoying to type out every time the variable is invoked. It’s human nature to
gravitate to shorter and less descriptive names.

A good rule of thumb is that variable names should be more explicit when
they need to be. A variable that lives on through a program that runs many lines
should probably have a name that describes the data that variable contains. If
at some juncture of a program there are many variables active at the same time,
then again, their names should be more descriptive.

2.3 Basic Data Types

We’ve already discussed basic data types in the previous chapter. Let’s look a
little more closely at them.

2.3.1 Numbers

There are three basic types of numbers: integer, floating point, and complex.
(As linguists, we’re only going to be using the first two, so we focus on them.)
These are all represented in the usual way (though the suffix for complex

12 Data Types and Variables

numbers is j, not i). There are functions for converting numbers to and from
strings as well.

Type Example Convert from string
integer 3 int('3")

float 7.2 float('7.2")
complex 2+47 complex ('2+45")

All of these types of numbers can be converted to strings with the string ()
function.

2.3.2 Booleans

There is also a basic data type for booleans, expressions that are true or false.
This class includes only two basic members: True and False. These can
be manipulated with the basic logical operators: and, or, and not. We can
combine these operators to construct simple logical expressions:

>>> True and False
False

>>> not (False or False)
True

>>> not (not True)

True

Here and elsewhere, we use parentheses to clarify the scope of operations.
The following are not equivalent.

>>> not (False or True)
False

>>> (not False) or True
True

We can also assign boolean values to variables and construct expressions over
them:

>>> x = True

>>> y = False

>>> x and y

False

>>> (y or (not vy))
True

We can also do comparisons on other data types that result in boolean values.
For example, we have the following numerical comparisons:

2.3 Basic Data Types 13

Comparison Example
equality

inequality

greater than

greater than or equal
less than

less than or equal

NN O o d W
Vv
w

< 7/
+ 6 <= 10 * 3

1

These same operations can be used with strings, although with different
interpretations.

Comparison Example

equality 'hat' == 'hat'
inequality 'hat' != 'cat'
follows alphabetically 'hat' > 'cat'
follows alphabetically or equal '"Hat' >= 'hat'
precedes alphabetically 'Hat' < 'hat'

precedes alphabetically or equal 'hat' + 's' <= 'chair'

We can now build up fairly complex expressions. For example:

>>> len('hat') > 7 - 2 or 7 - 2 == 3

False

>>> True and (8 = 4 + 4) and (True or False)
True

We’ve already seen that the type () function returns the type of an element.
For example:

>>> type (3)

<class 'int'>
>>> type('3")
<class 'str'>

There is a boolean version of this as well, isinstance (), that we can use
to test if some element or variable is of a particular type. For example:

>>> isinstance (3, int)

True

>>> isinstance (3.0, float)
True

>>> isinstance('hat',str)
True

>>> isinstance (3 == 4,bool)

True

14 Data Types and Variables

>>> isinstance (3 + 47, complex)
True

2.3.3 Strings

For linguists, strings are an extremely important data type. Linguists are
concerned with sounds, words, and sentences, and these are typically most
naturally represented as strings of characters.

Python offers what looks like two different kinds of strings. First, we have
simple strings marked with single or double quotes. They are interchangeable:

>>> 'hat' == "hat"
True

A second type of string is a triple-quoted string, marked with three single or
double quotes. Triple-quoted strings that employ single quotes allow a string
to continue over multiple lines.

''"'"This is a string
that continues on
more than one line'''

You can use double quotes as well:

"""This is a string
that continues on
more than one line"""

Triple-quoted strings have slightly different behavior than the other types of
strings. If you assign such a string to a variable and then type the variable name,
it looks like a single line:

>>> x = '"'"'This is

more

than one line'''

>>> X

'"this is\nmore\nthan one line'

But that’s not exactly what it is. It’s true that a triple-quoted string is really the
same as any other string; it differs only in that it allows the string to be defined
over multiple lines. It is not the case, however, that the string above is a single
line. The character \n represents a line break and will display as such when
the variable is explicitly printed:

2.3 Basic Data Types 15

>>> print (x)
This is

more

than one line

In fact, you can use single or double quotes to specify a multiline string if you
enter \n directly:

>>> y ='this is more\nthan one\nline too'
>>> print (y)

this is more

than one

line too

Thus the way to think about triple-quoted strings is not that they are a different
kind of string, but rather a convenient way to enter multiline strings.

A similar issue arises with other special characters, e.g., tab. One cannot
enter the tab character directly in either of the string types we’ve discussed
in the interactive environment. Instead, a tab can be typed into either type of
string as \ t. Notice how the tab is not displayed properly when the name of
the variable is typed, but only when the variable is given as an argument to
print ().

>>> x = 'a\tfew\ttabs\there'
>>> X

'a\tfew\ttabs\there'

>>> print (x)

a few tabs here

We’ve now got two cases where backslashes are required to type a special
character, tab or newline, into strings: \t and \n. But what if you actually
want to type a backslash followed by a t or an n? With a single-, double-, or
triple-quoted string, you have to enter a double backslash \\. If you assign
the string to a variable name and then type that name, you see the double
slash; but if you invoke the variable with print (), then only a single slash is
displayed:

>>> x = 'xyz\\nabc'
>>> X
'xyz\\nabc'

>>> print (x)
xyz\nabc

16 Data Types and Variables

If you’re entering strings with lots of special characters that require back-
slashes, the raw string notation becomes useful. If you prefix a single- or
double-quoted string with r, then a backslash is interpreted as an actual
backslash. Thus:

>>> x r'abc\nxyz'
>>> y = r"xyz\nabc"
>>> X

'abc\\nxyz'

>>> print (x)
abc\nxyz

>>> y

'xyz\\nabc'

>>> print (y)
xyz\nabc

Keep in mind that the raw string notation does not create a different kind of
string; rather it is a way of entering the string differently.
We have already seen functions and operators that apply to strings:

>>> x o= 77!
>>> len (X)

2

>>> int (x)
77

We’ve also seen that there are methods that apply specifically to strings.
Recall that there is a different syntax for methods. For example:

>>> x = 'a Hat'
>>> x

'a Hat'

>>> x.count ('a')
2

>>> x.upper ()

'A HAT'

>>> x.lower ()

'a hat'

An extremely useful method for strings is format (). The basic idea is
that you define a string with empty slots and then fill those slots later with the
format () method. Slots are indicated with { }. So we can define a suitable
string with one slot like this:

2.3 Basic Data Types 17

>>> x = '"{} Mike'
We can then fill that slot any number of ways:

>>> y = x.format ('Hello")
>>> vy

'Hello Mike'

>>> z = x.format ('Goodbye")
>>> z

'Goodbye Mike'

A string can have multiple slots. To fill them, the format () method can take
multiple arguments.

>>> x = '"{} Mike. {}?'

>>> x.format ('Hello', "How are you')
'Hello Mike. How are you?'

>>> x.format ("Hwyl', "Sut wyt ti')
'"Hwyl Mike. Sut wyt ti?'

When a string does have multiple slots, they can be numbered (from 0). They
are then filled in that order by the arguments to format ().

>>> x = 'one = {1}; two = {0}’
>>> x.format ('dos', 'uno')
'one = uno; two = dos'

In fact, the slots can be named and specified in the call to format ().

>>> x = 'one = {uno}; two {dos}'
>>> x.format (dos='dau',uno="'un')
'one = un; two = dau'

Notice how the arguments to format () can come in either order since the
naming disambiguates. The following code snippet has the same effect as the
preceding.

>>> x.format (uno='un',dos="dau')
'one = un; two = dau'

One can also do simple spacing and alignment with the string method
format (). You indicate the number of spaces to reserve for the argument

18 Data Types and Variables

with a preceding colon. If the argument supplied by format () is less than
the space reserved, you indicate alignment to the left, right, or center with <, >,
and " respectively.

>>> x = '—{:<10}-"
>>> x.format ('hat')
'-hat =!
>>> x = '—{:>10}~"
>>> x.format ('hat')
' - hat-"'
>>> x = "'—={:710}~-"
>>> x.format ('hat')
' - hat =

Notice that when there is an odd number of remaining spaces, the extra space
goes to the right. There is a lot more that can be done with the format ()
method, but we set it aside for now.

Finally, there is a syntax for extracting part of a string. The syntax is to put
one or more integers in square brackets after the string. Using a single integer
in the square brackets extracts a single character. The characters in a string are
counted from the left, starting at 0.

h a p p i n e s s
0o 1 2 3 4 5 6 7 8
For example:

>>> x = 'happiness'
>>> x[1]

'al

>>> x[5]

ln'

You can also refer to a sequence of characters by using two integers separated
by a colon. The first index is the starting point of the sequence; the second index
is just after the end of the sequence. For example, [2: 4] starts at the item with
index 2 and extends to just before the item with index 4, thus the item with
index 3. Since indexing starts at 0, this span goes from the third character in
the string to the fourth character.

>>> x = 'abcde'
>>> x[2:4]
'Cd'

2.3 Basic Data Types 19

Thus x [n:n+1] isthe same as x [n].If we have x [n:m] wherem < n+1,
we end up with an empty string. For example:

>>> x = 'abcde'
>>> x[2:2]

>>> x[2:1]

Interestingly, we can leave out either integer when the colon is present. Leav-
ing out the second index gives the entire string starting from the first integer
present. Leaving out the first index returns the entire string up to just before the
integer that’s present. For example:

>>> x = 'abcde'!
>>> x[2:]

'cde'!

>>> x[:2]

labl

There are many more things we can do with strings, but these are the most
critical.

2.3.4 Lists

Lists are an extremely important data type: a single structure that holds a
sequence of elements of whatever type you want. You can create a list by simply
listing elements in square brackets. For example:

>>> x = [1,6,4,9]
>>> ['stops', '"fricatives', 'glides']
>>> z = [7,'hats', 56, 'chairs',6.802]

=
Il

The 1len () command applies to lists:

>>> len (x)
4
>>> len (y)
3
>>> len(z)

20 Data Types and Variables

You can also index into a list, as with a string:

>>> x[1]

6

>>> y[0]

'stops'

>>> z[3:]
['chairs',6.802]

There are lots of methods for dealing with lists. For example, the append ()
method adds an element at the end of the list:

>>> x = ['rocks', 'paper']

>>> x

['rocks', '"paper']

>>> x.append('scissors')

>>> x

['rocks', 'paper', 'scissors']

The pop () method removes an element at a specified index position in
a list. The method then returns that element, altering the list at the same
time.

>>> x = ['stops','fricatives', 'glides']
>>> x.pop (1)

'fricatives'

>>> x

["stops', 'glides']

The mirror-image method is insert (), which takes two arguments, the index
and the element to insert. The element is inserted just before the index you
specify.

>>> x = ['stops', 'fricatives', 'glides']
>>> x.insert (1, '"hello!")
>>> x

['stops', 'hello!', "fricatives', 'glides']

A function that will turn out to be quite useful later on is range (). This
takes a single integer argument and returns a range object that represents the
sequence from O up to that argument. This can be directly converted to a list
by using the 1ist () function. For example:

2.3 Basic Data Types 21

>>> x = list (range (4))
>>> x
[0,1,2,3]

We also have the sort () and reverse () methods. The first sorts a list,
and the second reverses it. Note that sort () works only for a list of uniform
objects that are, in fact, sortable.

>>> x = [5,2,8,3]
>>> x.sort ()
>>> x

[2,3,5,8]

>>> x = [5,2,8,
>>> x.reverse ()
>>> x

[3,8,2,5]

3]

Finally, we have the in operator, which we can use to test for membership in
a list:

>>> x = [5,2,8,3]
>>> 8 in x

True

>>> 7 in X

False

235 Tuples

Another data type that you will see quite often is a fuple, a fixed sequence of
elements that is similar to a list in many ways. The key difference is that tuples
are fixed in length and, once created, cannot be changed. (We will discuss this
notion more in Section 2.4 below.)

You create a tuple with parentheses. An empty tuple is just parentheses: ().
Larger tuples separate the members with commas, e.g., (7, "hat',8.2).
Interestingly, a tuple with one element must have a comma, unlike a list with a
single element: (3,) vs. [3].

>>> x = ()
>>> vy = (7,"'"hat',8.2)
>>> z = (3,)

The 1en () function applies to tuples, and you can index tuples just like lists.

22

Data Types and Variables

>>> vy = (7,'hat',8.2)
>>> len (y)

3

>>> y[2]

8.2

The in operator applies to tuples, just as it does to lists:

>>> x = (5,2,8,3)
>>> 8 in x

True

>>> 7 in x

False

Finally, we can convert a list to a tuple with tuple (), or a tuple to a list with
list():

2.3.6

>>> x = [1,2,3]
>>> type (x)
<class 'list'>
>>> y = tuple (x)
>>> type (y)
<class 'tuple'>

>>> a = (1,2,3)
>>> type (a)
<class 'tuple'>
>>> b = list (a)
>>> type (b)
<class 'list'>

Dictionaries

One of the most useful data types for linguists is dictionaries. Dictionaries are
effectively sets of pairs, where the first element in each pair can be used to
“look up” the second element. The first element of each pair must thus be dis-
tinct from the first elements of all the other pairs. A dictionary is marked with
curly brackets within which each pair of elements is separated with a colon.
For example:

>>> d = {'cat':7, 'chair':"hat', 'table':7}

2.3 Basic Data Types 23

Notice how 'cat', "chair',and "table' are distinct, but 7, "hat',
and 7 are not, and do not need to be. We refer to the first member of each pair
as a key and the second as its value. We look up values by putting the key in
square brackets after the name of the dictionary:

>>> d = {'cat':7, 'chair':'"hat', 'table':7}
>>> d['cat']

9

>>> d['chair']

'hat'

The 1len () function applies to a dictionary and returns the number of pairs
in the dictionary:

>>> d = {'cat':7, 'chair':'hat', 'table':7}
>>> len (d)
3

We can add new pairs to a dictionary simply by assigning to a new key:

>>> d = {'cat':7, 'chair':'hat', 'table':7}

>>> d['onion'] = 3.7
>>> len (d)
4

We can test for whether any specific item is a key in a dictionary with in. For
example:

>>> d = {'cat':7,'chair':'"hat', 'table':7}
>>> 'chair' in d

True

>>> 'hat' in d

False

Notice how in tests for membership in the dictionary keys, not the dictionary
values.
Dictionary items can be altered or deleted.

>>> d = {'cat':7, 'chair':'hat', 'table':7}
>>> d['cat'] = d['cat'] + 2

>>> d['cat']

9

>>> del (d['cat'])

24 Data Types and Variables

>>> d
{'chair':'"hat', "table':7}

We can extract the keys, values, or key—value pairs from a dictionary. These are
returned in a specific format we’ve not discussed yet, but all can be converted
to lists by using 1ist (). For example:

>> d = {'cat':7, 'chair':"hat', 'table':7}
>>> list(d.keys())

['chair', 'cat', 'table']

>>> list(d.values())

['hat', 7, 7]

>>> list(d.items())

[('chair', 'hat'), ('cat', 7), ('table', 7)]

Finally, dictionaries can be used directly with the string method format ().
There’s a special operator for this **. (Remember, however, that this means
exponentiation in a numerical context.) The basic idea is that the slots in the
string are named. The values that go in those slots are associated with the
relevant keys of the dictionary. For example:

>>> d = {'uno':'eins', 'dos':'zwei',
'tres':'drei'}

>>> s = 'one = {uno} and three = {tres}'

>>> s.format (**d)

'one = eins and three = drei'

Notice that keys of the dictionary that are not named in the string are simply
not used.

2.4 Mutability

An extremely important and, unfortunately, confusing concept is mutability.
Some objects in Python can be changed and others cannot. To understand this
concept fully though, we must understand a couple other notions: garbage
collection and naming.

Because this subject is potentially confusing and challenging, work through
this section carefully. You may need to return here later as you learn more and
can contextualize this information better.

An element created in Python occupies space in your computer’s memory.
As you create more elements, that memory fills. As you interact with Python,
or as your Python programs run, you run the risk of filling up your computer’s
memory. Python manages this memory for you automatically. As you create and

2.4 Mutability 25

manipulate elements, Python holds them in memory. When you cease to use an
element, Python detects this and removes the element, freeing up memory. This
latter process is called garbage collection.

One way garbage collection applies is to named elements that are no longer
used; for example, if you define i as 35 at some point in a program, use it, and
then stop using it. The garbage collector will detect that and free up that bit of
memory.

Another instance where garbage collection applies is in a situation like the
following:

>>> i =7
>>> 1 = 'hat'

Here we have created an integer and named it i. Later, we create a string
'hat' and name it i. The integer is now, in principle, floating around
unnamed. The garbage collector detects this and frees up that memory accord-
ingly.

In this case, it’s important to be clear that i is not some data element that has
changed. Rather, i is the name of an integer, and that name is reassigned to a
string. The integer element becomes available for garbage collection. Memory
is allocated for the new string, and it takes on the name i.

In this light, let’s now consider mutability. Lists and dictionaries are mutable
elements that can be directly changed. Everything else we’ve discussed, inte-
gers, floating point numbers, complex numbers, booleans, strings, and tuples,
are immutable, elements that cannot be changed.

Given our discussion of memory allocation with respect to the example given
above, mutability can be detected only when an element has multiple parts. The
idea would be that you could change some part of an element and leave the rest
intact. This is possible for lists and dictionaries; they are mutable. Thus, we can
define a list and then add or delete elements in that list, or change elements in
the list. For example:

>>> x = ['Tom','Dick', "Harry']
>>> x[1] = "Mary'
>>> X

['Tom', '"Mary', 'Harry']

>>> x.append('Edna'")

>>> X

['Tom', "Mary', "Harry', 'Edna']

We’ve already seen the list methods insert () and pop () in Section 2.3.4
above, which both allow us to change a list.

26 Data Types and Variables

Dictionaries, as mentioned, also are mutable. We can add, delete, or change
items. For example:

>>>
>>>
>>>
>>>

{'un

-0 0 00

= {'un':'un','deux':'?"', 'trois':'tri'}
["quatre'] = 'pedwar'

['deux'] = 'dau'

:'un', 'deux':'dau', 'trois':'tri',

'quatre': 'pedwar'}

As noted above, for simple data types like numbers and booleans, we cannot
see the effects of their immutability. Superficially, it seems like we can change

them:

>>>
>>>
>>>
7

>>>
>>>
>>>

b

y =

y
y

False

True
False

This is only apparent, however. In both cases above, we are simply reassigning
the names x and y to new elements. The old elements are unchanged, though
available for garbage collection.

Strings and tuples have multiple parts, but they are not mutable. For example,
while we can refer to pieces of each with indexes, we cannot assign new values
to just those indexed segments. For strings:

>>> x = 'abc'

>>> x[1] = 'd’'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not
support item assignment

The same applies to tuples:

>>> x = ('a','b','c")

>>> x[1] = 'd’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

2.5 Exercises 27

TypeError: 'tuple' object does not
support item assignment

Notice that we can reuse a name that initially was assigned to a string or
tuple, but this is reusing the name, not changing the initial data structure.

>>> x 'a first string'
>>> x = 'another string'

Notice that methods for mutable and immutable elements differ in whether
they change the objects of which they are methods or return a new element. For
example, the reverse () method for lists alters the list in place, reversing its
elements. On the other hand, the upper () method for strings returns a new
string with all uppercase letters and leaves the initial string unaffected.

>>> x = [1,2,3]
>>> x.reverse ()
>>> X

[3,2,1]

>>> y = 'letters'
>>> y.upper ()
'LETTERS'

>>> y

'letters'

Mutability may seem like a fine point, but try to keep it in mind as you
proceed. It’s extremely easy to forget, and neglecting it can lead to all sorts of
hidden bugs in your programs.

2.5 Exercises

2.1 What does this code do: isinstance (bool == bool,bool)?
What is the output and why?

2.2 What does this code do: a = 3 == 3? What is the result and
why? What’s the difference between that code snippet and this one:
a == = 37 (Note that the latter produces an error.)

2.3 Write three lines of code that: (i) create a variable with the value 37,
(ii) create another variable with the value 4; (iii) print out the result of
multiplying those together.

2.4 Write three lines of code that: (i) create a string transformational; (ii)
create a string grammar; (iii) concatenate those together and print the
result. (Make sure there is a space between the two words!)

28
2.5

2.6
2.7

2.8

2.9

2.10

2.11

2.12

Data Types and Variables

Explain what the following bit of code does and why it’s a bad idea:

yes = 'no

no = 'yes'

|

Write a single line of code that tests whether 7° is greater than 15 x 16.
Explain what’s going on below; is x mutable?

x = 'abc'
b4 x.upper ()

Semitic morphology involves intercalating vowels and consonants to
express morphological categories. For example, the Arabic root k,t,b
occurs in the following forms:

katab-a ‘he wrote’
kaatab-a ‘he corresponded’
kutib-a ‘it was written’
kitab ‘book’

kuttaab ‘writers’

uktub ‘write!”

etc.

How might you use format () to describe this system? Give a sample
representation for the root k,t,b and show how format () could be used
to express different categories.

We can also use format () to treat vowel harmony. Choose a simple
vowel harmony system and show how this might work.

You can use the dictionary data type in conjunction with the format ()
command to do translations between two languages. Choose two lan-
guages, construct a small dictionary for them, then create some strings
with which you can use your dictionary to do translations.

Lists and strings are similar in many ways. Describe and show with code
three ways in which they are not alike.

Web: Snoop around on the web and figure out how the set data type
works. Explain and exemplify.

3 Control Structures

We’ve learned a fair amount of Python, but our code so far is unsatisfying.
Basically, our code at this point can’t really do any more than what we can
type in. There is no savings, no extra bang for our buck. This changes in the
current and following chapters, where we discuss control structures and then
input—output.

In previous chapters a program is just a sequence of statements, executed
one after the other. In this chapter, we show how statements can be executed
conditionally, how some statements can escape being executed, and how others
can be executed any number of times. In effect, this allows for much more effect
than “what you type in.” You’ll see that we can do an infinite amount of stuff
with a finite amount of code. In principle, the control structures we will learn
are simple, but — along with variable assignment (Section 2.1) — they are the
heart and soul of a programming system, almost everything you need to know
to write meaningful and useful programs.

From here on, we will assume that all code is written as a program; that is, the
code is typed into a file, and then that file is run as a program. All programs in
this book are available on the book website, and the relevant filename is given
below each listing.

3.1 Grouping and Indentation

To make full use of control structures, we need to understand how Python
groups statements together. To understand this, let’s look at the if control
structure. This structure, in its simplest form, allows for conditional applica-
tion. There is a test clause and then a block of one or more statements. If the
test clause is true, the statements are executed. If it is not true, the statements
are not executed. Here’s an example:

#single statement on the same line
if 242 == 4: print('that was true')

controll.py
29

30 Control Structures

or:

#single statement indented on next line
if 242 == 4:
print ('that was true')

control2.py

The test is introduced with the keyword i f and terminates with a colon. If
the statement block is a single statement, it can occur on the same line or the
next. If it occurs on the next line, it must be spaced or tabbed in at least one
space or tab. If there is no indentation, an error is produced. The example below
demonstrates. Note that we have added a comment to the code to remind us that
this file does not work. To remind you, comments are indicated with a # on the
left side of the line and have no effect on the code. If you run this or any other
program, comments have no effect.

if 242 == 4:
print ('that was true') #produces an error

control3.py
If there are multiple statements contingent on the test, then they must appear
on separate lines and they must be tabbed or spaced with the same number of

spaces or tabs. Here’s a well-formed example:

#multiple statements correctly indented

if 242 == 4:
print ('that was true')
print('...really true')

control4.py

Here’s an ill-formed example; the second statement has an extra space.

if 242 == 4:
print ('that was true')
print('...really true') #produces error

control5.py

A similar error occurs if the first of the two statements has extra indentation:

3.1 Grouping and Indentation 31

if 242 ==
print ('that was true') #produces error
print('...really true')

control6.py

In principle, you can indent with either spaces or tabs, but be careful and do
not mix them! For example, if you indent one line with a tab and then indent
the next line with the right number of spaces so that they look aligned, this will
typically generate an error. The problem is that Python has no way of knowing
how wide you’ve set your tabs to display in your word processor.

Note that this indentation has semantic consequences. Compare the follow-
ing two programs:

if 2 + 2 == 5: #2-statement block
print ("that shouldn't happen")
print('or this....")

control7.py

if 2 + 2 == 5: #l-statement block
print ("that shouldn't happen")
print('or this....")

control8.py

In both cases, we test if 2 + 2 == 5; that evaluates to false. In the first
example, the two statements are not executed since they are in the block of
contingent statements. In the second case, the second statement is executed.
Since it is not indented, it is evaluated as being outside the if structure and
thus not contingent on the i f test.

This semantic effect also shows itself with nested i f structures. In the fol-
lowing example, we first test if 2+2==4. If that is true, which of course it is,
then we execute the following three statements. We first print ' wow '. Second,
we execute another if structure. This second if structure tests if 7*7==48,
which is false. If it were true, we would print 'wow again'. Finally, the third
statement in the initial i £ structure’s block prints 'wow a third time'.

#nested if with separate statement
if 2+2==4:

print ('wow')

if 7x7==48:

32 Control Structures

print ('wow again')
print ('wow a third time')

control9.py

In the next example, we’ve spaced/tabbed in the final statement so that it is part
of the nested if structure. It will execute only if both i f tests evaluate to true.

#nested 1f with two-statement block

if 242==4:
print ('wow')
if 7*7==48:

print ('wow again')
print('wow a third time')

control10.py

Finally, in this third case, the final statement has no indentation. It therefore is
executed regardless of the two tests.

#nested if, with independent statement

if 2+2==4:
print ('wow')
if 7x7==48:

print ('wow again')
print ('wow a third time')

controlll.py

3.2 if

Let’s now look a little more closely at the options for i £. We’ve already seen
that one or more statements can be contingent on some logical test. If the test
evaluates to true, the block of statements then executes in order. If it is false,
none of them is executed.

A simple augmentation of the 1 f structure is the e 1 se clause. This is a block
of code that executes if the if test evaluates to false. The else statement
follows the first block of code and is at the same level of indentation as the
initial i f clause. For example:

if 242==5: #only else block executes
print("this won't print")

32 1if 33

else:
print ('but this will')
print('...and so will this"')

control12.py

If the i f clause evaluates to true, the e 1 se block will not execute:

if 242==4: #else-block does not execute
print('this will print')

else:
print ("but this won't")
print('...and neither will this"')

control13.py

Finally, one can add any number of e11if clauses to an if structure. These
add additional contingent tests to the structure. The syntax is like this:

if testl
blockl
elif test2
block?2
elif test3
block3
else
blockn

We can represent graphically which blocks in the example just above are
executed depending on which tests evaluate to true:

testl test2 test3 whatapplies?

True True True blockl
True True False blockl
True False True blockl
True False False blockl
False True True block2
False True False block2
False False True block3

False False False blockn

34 Control Structures

Notice how if testl is true, blockl applies regardless of the truth or fal-
sity of any other test. If test1 is false and test?2 is true, block?2 applies
regardless of whether test3 is true. Finally, the e1se block applies only if
all previous tests are false.

A final complication is that it may sometimes be convenient to have an empty
block. Imagine you want to test a string for whether the first letter is 'a ', but
then do something in all other cases. One way to do this is to test for that, but
then put your code in the e 1 se block. The problem with this is that you would
then have an empty block following the i f test, which is not allowed in Python.
To deal with this possibility, Python has the pass statement, which you can
use to fill an empty block. For example:

x = 'hat' #set a variable
if x[0] == 'a':
pass #if clause with empty block
else:
print ('doing something here....'")
control14.py

Here the print statement is executed only when the first letter of the string is
not "a'.

3.3 Digression on Printing

We will spend more time on this topic in Chapter 4, but let’s add a little
detail to how we can explicitly print something in Python using the print ()
command.

We’ve already seen that print () can be given a string as an argument and
displays that string on the screen:

>>> print ('here is a string')
here is a string

It can also be given any number of strings; they are all printed to the screen:

>>> print('one','two', "three')
one two three

Notice that the strings are separated by spaces. We can specify another separator
or, indeed, no separator with the optional sep argument. If we include this
argument, we specify its value with =. For example:

34 for 35

>>> print('one','two', "three',sep="'-")
one-two-three

>>> print('one', 'two', "three',sep="'")
onetwothree

Finally, notice that the default behavior for print () isto printits argument(s)
and begin a new line. We can specify different behavior by giving a value to
the optional end argument.

>>> print('one','two',sep="'-",end="'"!")
one-two!>>>

We will exploit these options in the exemplification of the control structures to
come.

34 for

The for control structure allows for multiple application of some fixed block
of code. You specify a list or sequence of items and then iterate over the list,
applying the block once for each item in the list or sequence. The syntax is
a for clause followed by an indented block of one or more statements. The
for clause begins with the keyword for, then a variable name, then the in
operator, then a list or sequence of items that can be iterated over, and finally a
colon.
Here’s a simple example:

for 1 in [1,2,3]:
print (i)

control15.py

Here we assign the variable i the values from the list [1, 2, 3] one by one.
For each assignment, we apply the block. In this case, the block simply prints
the value of i:

N

Note that nothing requires that we actually use the value i in the block. Thus
the following works as well:

36 Control Structures

for i in [1,2,3]:
print ('wow') #value for 1 not used

control16.py

The variable i again assumes each value in the list, but does nothing with them.
This produces:

wWOow
WOW

WOW

Similarly, nothing prevents us from using the variable more than once per
each iteration. For example:

for 1 in [1,2,3]: #using variable twice
print('{} + 2 = {}'.format (i,1i+2))

control17.py
We can iterate over strings as well. For example:

for 1 in 'tone':

print(i,end="' ") #letters with spaces
print () #add return at end
control18.py

Here we print each letter separately. We end each print operation with a space
rather than a return. Then, after all that printing, we get back to the beginning
of the line by printing nothing. Since the default is to end each printed item
with a return, printing nothing has the effect of starting a new line.

t one
Recall the range () function from Section 2.3.4 above. We can iterate
directly over the sequence of numbers it provides. For example, if we want

to add up all the numbers from 0 to 4, we can do it like this:

total = 0 #set variable
for i in range(DH): #iterate. ..

34 for 37

total = total + i #...add to total
print (total) #print total

control19.py

Here we first define a variable total and set its value to 0. We then create a
sequence from 0 to 4 (the integer value just before the value specified). Then
on each iteration we reset the value of total to be equal to its current value
plus the current value of i.

Let’s chart this out to see how it works. First, we number the lines above so
we can refer to where we are:

total = 0

for i in range (5H):
total = total + i

print (total)

Sw N

Now we step through the code line by line, showing the values of total and
1 at each point.

Line total i
1 0 NA
2 0 0
3 0 0
2 0 1
3 1 1
2 1 2
3 3 2
2 3 3
3 6 3
2 6 4
3 10 4
4 10 4

Notice how we go back and forth between lines 2 and 3 alternately resetting
the values for i and total.

A fairly common programming technique is to create a variable that we
incrementally change in some sort of loop. We can do some fairly interesting
stuff with this. For example, we might do morphological recursion as follows:

prefix = 'anti' #initial prefix
word = 'missile' #initial word
print (word) #print word

38 Control Structures

for i in range (3): #iterate 3 times
word = prefix + '-' + word #add prefix...
print (word) #print new word
control20.py

This produces:

missile

anti-missile
anti-anti-missile
anti-anti-anti-missile

There are a couple of things that distinguish this code from the previous exam-
ple. First, notice that we are doing string concatenation rather than addition.
Second, notice that we are printing the word variable at each iteration rather
than just at the end. This, then, is an instance of the semantic effects of inden-
tation in a real example. If we had not indented the final print statement, this
code would have simply printed the last line above.

As with 1f, we can nest for structures. Thus, we can augment our
prefixation example above so that it prefixes multiple words:

#define prefix and 3 words

prefix = 'anti'

words = ['missile', 'racism', 'music']

for word in words: #iterate over words
print (word) #print word

#for each word, iterate 3 times
for i in range(3):
#add prefix to current word
word = prefix + '-' + word
print (word) #print new word

control21.py

Here we go through the words one by one. We prefix each word three times.
Here’s the output:

missile

anti-missile
anti-anti-missile
anti-anti-anti-missile

34 for 39

racism

anti-racism
anti-anti-racism
anti-anti-anti-racism
music

anti-music
anti-anti-music
anti-anti-anti-music

The other thing to notice here is that for allows us to do potentially massive
calculations with finite means. For example, if we wanted to sum numbers up

to 10,000, this would involve a trivial change to the code above.

#variable to accumulate additions

total = 0

for i in range(10000): #iterate a lot
total = total + 1 #add i to total

print (total) #print total

control22.py

A word to the wise at this point. Imagine you do want to do some mas-
sive looping operation, maybe even with lots of nested loops. A really good
rule of thumb here is to try out such operations first with a much smaller
number of loops, make sure everything behaves as expected (the math works
out, the right things are printed, etc.), then rewrite the code with the larger
iterations.

Now that we have two control structures, i £ and for, we can combine them.
Let’s write some code to count the vowels in a string.

#define vowels

vowels = 'aeiou'

#variable to accumulate count

vowelCount = 0

word = 'Appalachicola' #define word
#go letter by letter

for letter in word:

if letter in vowels: #vowel?
vowelCount = vowelCount + 1 #add 1
print (vowelCount) #print total

control23.py

40 Control Structures

Here we first define vowels. We then set our count of vowels to 0. We define the
word we will count vowels in. Next we iterate through each letter in the word
assigning the current letter to the variable 1etter. We then test if that letter is
a vowel with the in operator. If it is, we augment the value of vowelCount
by one. If it’s not a vowel, that test fails, nothing happens, and we go on to the
next iteration. Finally, we print the value of vowelCount.

The operation where we augment a variable by some specific amount is fre-
quent enough that there is a special operator for it: +=. The following code does
exactly the same thing as the preceding.

vowels = 'aeiou' #define vowels
#variable to accumulate count

vowelCount = 0

word = 'Appalachicola' #define the word

for letter in word: #go letter by letter

if letter in vowels: #check if vowel
vowelCount += 1 #1f so, add 1
print (vowelCount) #print the total

control24.py

There are, in fact, similar equality operators for other simple operators, e.g.,
=, k=, /=

We can also nest a for loop inside an i f structure. Here we set up virtually
the same initial variables. We then test if the first letter of the word is a vowel.
Note that since we’ve defined vowels as lowercase letters, we must first convert
the first letter to lowercase. If the word does begin with a vowel, we count all
the letters. (We could have simply used the 1en () function instead here!)

vowels = 'aeiou' #define vowels
letterCount = 0 #set counter to zero
word = 'Appalachicola' #define word
#is 1lst letter a lowercase vowel?
if word[0O].lower () in vowels:

for letter in word: #go letter by letter

letterCount += 1 #for each letter, add 1

#do this if word is not V-initial

else:
print ('Not vowel-initial')
print (letterCount) #print letter total

control25.py

3.5 while 41

Make sure you understand the semantics of control structures like i f and
for and what it means for them to be nested in different ways. Writing pro-
grams is mostly about figuring out the logic of the problem you want to solve
and then recasting it in terms of nested control structures.

35 while

Technically, the for control structure isn’t necessary. Anything you can do
with for, you can do with while, perhaps a bit awkwardly. The logic of
while is that a statement or block of statements is repeated as long as some
test holds true. The syntax is parallel to what we have seen already. There is
the keyword while, followed by the test (an expression that returns a boolean
value), followed by a colon. There is then an indented block of one or more
statements. If there is only one statement, it can appear on the same line as the
while test. Here it is schematically:

while x ==
dosomething (z)
dosomethingelse (w)

Here we have a test for equality between some variables x and y. We then
have a block of two statements. We first check the test. If it is true, we apply
the statements in the block. We then go back and check the test again. If it is
still true, we apply the statements again. We go through this loop until the test
returns False.

This should seem a bit silly. If the test returns True, then it should always
return True and we should loop forever. That’s not typically what we want!
The way this structure is typically used is that the truth value of the test is
changed during the block of statements so that it eventually becomes false.
Here’s a simple example:

count = 0 #set counter
while count < 3: #check counter value
count += 1 #increment, escape clause!

print (count)
control26.py
First we define a variable count and store the number 0 in it. We then begin

our whi le structure by testing whether count is less than 3, which of course
it is. If we did not alter the value of count in the block of statements, this

42 Control Structures

would iterate forever. What we do, though, is increment the value of count at
each iteration. It will eventually reach 3, the test will then fail, and the iteration

will cease.

Again, we can diagram the program flow to see how this goes. First, we

number lines:

1 count 0

2 while count <
3 count += 1
4

5:

print (count)

Now we can examine the value of count at each step:

count
0

Line
1

B LW WD DR WD

0
1
1
1
2
2
2
3
3
3

[\

Test
NA
True
NA
NA
True
NA
NA
True
NA
NA
False

Printing

It’s important to keep track of what happens when. Small changes can change
the outcome. For example, imagine we reverse lines 3 and 4 like this:

count 0

while count < 3:
print (count)
count += 1

#declare counter
#check value of counter
#print the value
#NOW increment counter

control27.py

With this order, we print the numbers 0, 1, 2 instead.
It’s also easy to get this wrong and inadvertently get an infinite loop. For

example:

count 0
while count < 3:

#error: infinite loop!

3.5 while 43

print (count)
count = 1

control28.py

Here we’ve replaced count += 1 with count = 1. This means that in
every loop, we reset the variable to 1; it will thus a/ways be less than 3.
As with the other control structures we have seen, while can combine with

itself and with other structures. Here is an example of while nested within
while:

word = 'alphabet' #define word
count = 0 #define counter
#iterate while count is less than word length
while count < len (word):
print (word[count]) #print current letter
count += 1 #increment counter
othercount = 1 #start new counter
#check if 2nd counter is less than 1st
while othercount < count+1:
#print ever larger prefixes
print ('\t',word[0:othercount])
othercount += 1 #increment other counter

control29.py

First we assign the string ' a lphabet ' to the variable word and the integer 0
to the variable count. The outer while loop goes through the string letter by
letter and prints each one out. It increments the count variable on each loop
to keep track of the iteration and to determine which letter to print. The inner
while loop is a little more complex. It prints out prefixes (initial substrings)
of the word based on the current letter determined by the outer while loop.
Thus, for example, when the current letteris 'h ', the inner whi1le loops prints

out a, al, alp, and alph. Here’s what the (beginning of the) output looks
like:

44 Control Structures
IS

al
alp

a
al
alp
alph

Notice how the test for the inner while loop refers to the variable count
as well as othercount, which change on the outer and inner loops
respectively.

The while structure can combine with other control structures. For exam-
ple, here is a case of 1 f inside while:

word = 'alphabet' #set word
vowels = 'aeiou' #define vowels
count = 0 #set counter
while count < len(word): #iterate
letter = word[count] #get current letter

#is 1t a non-vowel?
if letter not in vowels:

print (letter) #1f so, print it
count += 1 #increment counter

control30.py

This program collects each letter of the word and checks if it is a vowel. If so,
it is printed.

+ O oo -

The whi le structure is similar to the for structure, and it’s always possible
to translate back and forth. For example, recall the first example of the for
structure (page 35), repeated below:

3.5 while 45

for 1 in [1,2,3]:
print (i)

We can translate this into a while structure as follows:

i =1

while i < 4:
print (i)
i +=1

control31.py

The upshot is that the choice between these alternatives typically depends on
which makes the code more intelligible to you as the programmer.

Finally, we note that the whi 1 e structure also allows for an e 1 se statement
block. This is executed when the whi le test is or becomes false. The general
syntax is as follows:

while
statement (s)

else:
statement (s)

Here’s a simple example:

vowels = 'aeiou' #define vowels
word = 'Winnepesaukee' #set word
#create two counters

counter = 0

vowelcount = 0

#go letter by letter
while counter < len(word) :
#1s current letter a vowel?
if word[counter] in vowels:
vowelcount += 1
#keep track of total number of letters
counter += 1
#when counter is too big, do this:
else:
print ('There are',vowelcount,
'vowels in this word'")

control32.py

46 Control Structures

Here we go through the word letter by letter, asking whether the current letter is
a vowel. If it is, we increment vowelcount. When we have reached the end
of the word, we execute the el se clause and print out the number of vowels.
Logically, this kind of e 1 se clause is not necessary. It exists only because some
programmers find that it clarifies their logic to use it.

3.6 break and continue

We can impose finer control on for and while usingbreakand continue
statements. A break statement exits from the smallest enclosing for or
while loop. The continue statement exits from the current iteration of the
smallest enclosing for or while loop and moves to the next iteration. Here’s
an example of break:

vowels = 'aeiou' #define vowels
word = 'sthenic' #define word
counter = 0 #set up a counter

#iterate through word letter by letter
while counter < len (word):
#if current letter is vowel, exit loop
if word[counter] in vowels:
break
#don't forget to update the counter!
counter += 1
#print value of counter when break occurred
print ('The word begins with',
counter, 'consonant letters')

control33.py

Here we define a specific word and vowel letters. We then check whether each
letter is a vowel. If it is, we break/exit from the while loop. We then print the
value of counter, which is the number of letters iterated through to get to the
break statement.

Note that it’s fairly easy to make errors in getting the right count here. We
start with counter set to 0, which allows us to use it to access each letter of
the word, remembering that the indices of the word begin with 0.

We increment counter after the i f structure. When the i f structure test
is true, the value of counter is the index of the first vowel letter, the index
just past the last consonant letter. Since indices start at 0, this means that the
value of counter when we exit is also the total number of consonants in the
initial span.

3.6 break and continue 47

Let’s go through this line by line to see. First, we number each line:

vowels = 'aeiou'
word = 'sthenic'
counter = 0

while counter < len (word):
if word[counter] in vowels:
break
counter += 1
print ('The word begins with',
counter, 'consonant letters')

O 0 J o U W DN

Now we step through the code, keeping track of the values of counter and
word[counter]. We collapse sequences of steps together if the relevant
values don’t change.

Line counter word[counter]

1-2 NA NA
3-6 0 's!
7 1 Tt
4-6 1 Tt
7 2 'h'
4-6 2 'h'
7 3 'e!
4-6 3 'e!
8-9 3 Te!

We iterate through the while loop three times, incrementing counter to
3. At that point, word [counter] is 'e' and the if test is true and we
break/exit from the while loop. The value of counter at that point is also
the number of consonant characters at the beginning of the word.

The break statement also works with a for loop. For example, here is the
equivalent to the previous example, replacing while with for:

vowels = 'aeiou' #define vowels
word = 'sthenic' #define word
counter = 0 #initialize counter

#go through all letters
for 1 in range(len (word)) :
#is current letter a vowel?
if word[i] in vowels:
break #if so, exit loop
#don't forget to update counter

48 Control Structures

counter += 1

#print result

print ('The word begins with',
counter, 'consonant letters')

control34.py

The logic of the code above is exactly the same as the preceding.

With the break statement available to us to exit the while loop, we can
use while tests that are always true, relying on the break statement to exit
the loop when we want. For example:

vowels = 'aeiou' #define vowels

word = 'sthenic' #define word
counter = 0 #initialize counter
while True: #iterate forever

#1s current letter a vowel?
if word[counter] in vowels:
break #1f so, exit

#remember to increment counter
counter += 1

#print result

print ('The word begins with',
counter, 'consonant letters')

control35.py

Note that the while test will always be true, so the loop will continue forever
unless the 1 f test becomes true at some point so that break can be executed,
exiting the while loop. Thus it’s important that you be sure break is con-
tingent on a test that will be true at some point if the enclosing loop is always
true.

The last few examples involve testing letters for whether they are vowel
letters, thus the right question is what the code would do if it were fed
words with different properties, e.g., a word with no vowel letters. We leave
it as an exercise to determine which examples will terminate gracefully and
which will either not terminate and loop forever, or terminate with some
erTor.

Slightly different behavior is obtained with the continue statement. As
with break, it is used inside a for or while loop. What it does is exit
the current iteration and go on to the next iteration. Schematically, we have
something like this:

3.6 break and continue 49

for ...:
some statements
if
continue
more statements

We have some iterative structure like for. We then have zero or more state-
ments. Somewhere in the body we have a continue statement, typically in
the body of an if structure. Following the if/continue, we have some
number of additional statements. What happens is that the for licenses some
number of iterations. At each iteration, the initial statements apply, then the i £
test occurs. If the i f test is false, the cont inue statement is not executed and
the additional following statements get to apply.

If the if test is true on some iteration, then the continue statement does
apply and the statements following i f/continue do not apply on that itera-
tion. We continue with the next iteration, however, unlike with break where
the iteration ends. Here’s a simple example:

vowels = 'aeiou' #define vowels
word = 'sthenic' #define word
counter = 0 #initialize counter

#go through each letter
for i in range(len(word)) :
#1is current letter a vowel?
if word[i] in vowels:
continue #if so, skip it
#increment counter (only for non-vowels!)
counter += 1
#print result
print ('The word has',
counter, 'consonant letters')

control36.py

Here we set up some initial variables. We then enter a for loop based on the
length of the string variable word. At each iteration, we test whether the current
letter in the string is a vowel. If it is not a vowel, we increment the counter
variable. If it is a vowel, we go to the next iteration, not incrementing the
counter variable. In other words, the counter variable is incremented only
when the current letter is not a vowel. Once we exit the iteration, we print the
value of counter.

50 Control Structures

You can also use a continue statement inside a while structure. The
following relatively inefficient code snippet exemplifies this and has the same
result as the preceding one.

#set up initial variables

vowels = 'aeiou'
word = 'Mississippi'
counter = 0

i=0

#go through word letter by letter
while i < len(word):

#1s current letter a vowel?

if word[i] in vowels:

i +=1 #1f so, increment letter count
continue #...and exit current loop
i 4= 1 #else, increment letter count

counter += 1 #increment consonant count
#print result
print ('The word has',

counter, 'consonant letters')

control37.py

3.7 Making Nonsense Items

Let’s use the control structures we’ve learned here to build a program that does
something useful. A frequent task for psycholinguists is finding items for exper-
iments, either items that directly exemplify some property we want to test or
items that fill out an experiment and can be used to distract subjects from the
true goal of the experiment.

Imagine that what we want is CV monosyllables. We could just try to think of
all possible monosyllables with a CV shape, but another way to go is to generate
these programmatically. If we know what the possible consonants are and what
the possible vowels are, we can generate a list of possible CV monosyllables
quite simply. Here’s a first pass:

vowels = 'aiu' #define vowels
consonants = 'ptk' #define consonants
for v in vowels: #for every vowel

#choose a consonant

3.7 Making Nonsense Items 51

for ¢ in consonants:
#now print them together
print(c,v,sep="'")

control38.py

This program defines a set of consonants and a set of vowels and then prints
out all possible combinations. As such, it’s a bit silly. In the case at hand, there
are only nine possible combinations, and we could just as easily list those out.
This approach becomes more reasonable, though, if the number of consonants
and vowels increases:

vowels = 'aeiou' #define more Vs
consonants = 'ptkbdg' #define more Cs
for v in vowels: #for every vowel

#choose a consonant

for ¢ in consonants:
#now print them together
print(c,v,sep="")

control39.py

We might also want CVC syllables among our items. This is easy to do as
well:

vowels = 'aeiou' #define Vs
consonants = 'ptkbdg' #define Cs
for v in vowels: #for every vowel:

#choose a consonant
for o in consonants:
#now choose another consonant
for ¢ in consonants:
#print them together
print (o,v,c,sep="")

control40.py

Imagine now we want to exclude cases where the two consonants are
the same. That is, we do not want items like dod or bab. Again, this is
straightforward:

52 Control Structures

vowels = 'aeiou' #define Vs
consonants = 'ptkbdg' #define Cs
#for every vowel, onset, coda
for v in vowels:
for o in consonants:
for ¢ in consonants:
if o == c: #skip 1f onset == coda
continue
#print combination
print(o,v,c,sep="")

control41.py

Note that this is an excellent example of the difference between break and
continue. If we had used a break statement here, we would get the wrong
results, exiting the nested for structures the first time we ran into identical
consonants.

We can extend this to items with more complex structure, e.g., complex
onsets, complex codas, and polysyllabic words.

The same kind of logic can be used to construct nonsense sentences. Imagine
we want every possible SVO sentence in some (nonsense) language. We have
a set of nouns and transitive verbs. We can combine them straightforwardly:

nouns = 'bla dor sna' #every possible N
verbs = 'ha mog ge di' #every possible V
#every possible SVO combo
for s in nouns.split():
for v in verbs.split():
for o in nouns.split():
print (s, v, o) #print combination

control42.py

As in the word-based example above, this is kind of silly when the sets of
elements we are combining are so small, but it becomes more useful if we
expand those sets.

What do we do if some of our verbs are intransitive? There are a number of
ways to deal with this; here’s a simple one:

nouns 'bla dor sna'.split() #Ns
verbs = 'ha mog ge di'.split() #Vs

ivs = 'ha ge'.split() #intransitives

3.7 Making Nonsense Items 53

#for every N and V
for s in nouns:
for v in verbs:
#1if V is intransitive
if v in ivs:
print (s, v)
#otherwise it's transitive
else:
for o in nouns:
print(s,v,o0)

control43.py

Notice the careful placement of the i f clause above and how it subverts the
loop for the object if the verb is intransitive.

Finally, imagine the language has a reflexive pronoun vi that replaces the
object if it is identical to the subject. We can incorporate this like this:

nouns = 'bla dor sna'.split() #Ns
verbs = 'ha mog ge di'.split() #Vs
ivs = 'ha ge'.split () #intransitives

#for every S+V combo:
for s in nouns:
for v in verbs:
#if verb 1s Iintransitive:
if v in ivs:
print (s, v)
#otherwise (transitives)
else:
for o in nouns:
#1f subject and object the same

if s ==
#replace obj with reflexive
o= 'vi'

print(s,v,o0)

control44.py

Notice here how the i f-test for whether the subject and object are the same is
within the innermost for loop. In this way, we handle every combination of
subject and object.

54 Control Structures

3.8 Summary

In this chapter, we have introduced and exemplified the main control structures
of Python: 1f, for, and while. In conjunction with variable assignment,
which we covered in Chapter 2, these constitute the heart and soul of program-
ming in Python. Anything that is computable can be expressed with these bits.
The challenge for you in any particular case is to break up the programming
task at hand into small pieces that can be expressed with these structures.

To put it directly, understanding variables and control structures is the most
important part of learning to program. If you’re feeling unsure of these now,
there’s no shame in going back and rereading these chapters to make sure your
foundations are good.

The remainder of this book will provide extensive examples of variables
and control structures, so if you’re ready to proceed, you’ll have lots of
opportunities to reinforce these concepts.

3.9 Exercises

3.1 Why does this fail?

if 2 + 2 == 5:
print ('that shouldn't happen')
print('or this....")

3.2 Augment the recursive prefixation example on page 38 to handle three
distinct prefixes. Assume that only identical prefixes can cooccur.

3.3 Augment the recursive prefixation example above to handle three distinct
prefixes. Assume that all prefixes can cooccur and any word can have up
to three prefixes.

3.4 What’s wrong with the following code snippet?

count = 0

while count < 3:
print (count)
count -= 1

3.5 Make a chart that shows how the following would work step by step if
we define wordtobe 'cat'.

word = 'alphabet'

count = 0

while count < len (word):
print (word[count])
count += 1

g w N

3.6

3.7

3.8

3.9

3.10

3.9 Exercises 55

othercount = 1

while othercount < count+1:
print ('\t',word[0:othercount])
othercount += 1

O 0 J o

Why does the following code fail?

word = 'alphabet'
vowels = 'aeiou'
count = 0

while count < len (word):
letter = word[count]
if letter not in vowels:
print (letter)
count += 1

The five code examples on pages 44, 45, 46, 47, and 48 involve test-
ing letters for whether they are vowel letters. What happens if the word
variable has no vowels?

The program control41.py onpage 52 uses a continue statement.
Using a break instead would be wrong; why?

In Section 3.7 of the text, we develop programs to generate nonsense
words and nonsense sentences that respect certain restrictions, e.g., avoid
identical consonants or replace an identical object with a reflexive.
Amplify one of these programs to include another restriction. Make sure
to explain what the restriction is!

Web: Snoop around the web to find out how the switch control struc-
ture works in other programming languages. Python doesn’t have it; show
how you can simulate its effect with resources Python does have.

4 Input—Output

With variables and control structures, we have the full power of Python avail-
able to us. To do anything useful, however, we must be able to run our programs
on actual data. For us as linguists, this means words, sentences, texts, sounds,
etc.

So far, the only data our programs have been able to manipulate are data that
we’ve coded as part of our programs. For example, the various vowel-counting
programs in the previous chapter required that we code the words in which we
want to count vowels directly in our program. This is a problem in that we want
to write programs like our vowel-counting programs that can count vowels in
any word.

In this chapter, we learn how to write open-ended programs that can respond
to data entered by a user or from a file or set of files. In this chapter, we treat
the following ways of inputting data:

Command-line Data can be entered on the command line when the program
is invoked.

Standard input Our programs can take input from other programs.

Keyboard input A user can enter data when prompted by the program.

File input—output A program can read data from or write data to files. We will
focus on textual data, but this can also include binary data like sound
files.

Web Finally, we will show how we can read data in from web pages.

4.1 Command-Line Input

The simplest way to have your programs respond to new data is to enter that
data on the command line when you invoke the program. This is quite simple
to do. There is a predefined list variable sys.argv that contains a list of all
command-line arguments given when the program is invoked.

The trick to using sys.argv is that it is not, by default, available. To
get access to it, you must import the sys module. As in many other

56

4.1 Command-Line Input 57

programming languages, Python segregates extra functions and variables in
different optional parts of the system. If you want access to these functions or
variables, you must make them available to your program with an import
statement at the beginning of your program. To make sys.argv available,
we start a program with this statement:

import sys

If the relevant module is installed on your system, and the sys module is
a required part of any Python installation, this makes all functions and vari-
ables in that module available in the following program. Here’s a really simple
example:

import sys

print (sys.argv)

iol.py

We can invoke this program from the command line in different ways and
get these results.

> python iol.py

["iol.py']

> python iol.py nouns

['iol.py', "nouns']

> python iol.py 3

['iol.py', '3"]

> python iol.py this is a cat
['iol.py','this','is', 'a', 'cat']
> python iol.py '3 > 1'
["iol.py','3 > 1']

Note first that we are doing this at the terminal (Mac) or DOS (Windows)
prompt, not in the interactive environment. Second, notice that the first item of
the list is always the name of the program. Third, from the quotes, we see that
arguments are always interpreted as strings. Finally, certain characters need to
be quoted on the command line as they have special interpretations there that
we do not want. For example, if we want to enter a command-line argument that
contains a greater-than sign, we must quote it as above to prevent the operating
system from interpreting it as something else, specifically as redirecting output
to a file.

58 Input—Output

We can use this mechanism to make our vowel-counting program completely
flexible. Recall the vowel-counting program control32.py on page 45,
repeated below:

vowels = 'aeiou' #define vowels
word = 'Winnepesaukee' #set word
#create two counters

counter = 0

vowelcount = 0

#go letter by letter
while counter < len (word):
#1s current letter a vowel?
if word[counter] in vowels:
vowelcount += 1
#keep track of total number of letters
counter += 1
#when counter is too big, do this:
else:
print ('There are',vowelcount,
'vowels in this word')

control32.py

We can minimally revise this program as follows so that the relevant word
comes from the command line:

import sys #make sys.argv available
vowels = 'aeiou' #define vowels

word = sys.argv[l] #get word from command-line
counter = 0 #proceed as before...
vowelcount = 0

while counter < len (word) :
if word[counter] in vowels:
vowelcount += 1
counter += 1
else:
print ('There are',vowelcount,
'vowels in this word')

i02.py

4.1 Command-Line Input 59

Here we define word as sys.argv[1], the second item in the list of
command-line arguments. Since the first item is the name of the program,
this will be the first thing entered after that. We can produce results like the
following:

> python io02.py hat

There are 1 vowels in this word
> python io2.py happiness

There are 3 vowels in this word
> python io02.py Appalachicola
There are 5 vowels in this word

The program will throw an error if it gets no additional command-line argu-
ments. If it gets more than one, it will disregard all but the first. We can tweak
the code to accommodate zero or multiple arguments as follows:

import sys #make sys.argv available

vowels = 'aeiou' #define vowels
#iterate over all words in list
for word in sys.argv[l:]:
counter = 0 #proceed as before
vowelcount = 0
while counter < len (word) :
if word[counter] in vowels:
vowelcount += 1
counter += 1
else:
print ('There are',vowelcount,
'vowels in',word)

io3.py

Recall that [1 :] returns all items in a list except the first. This program loops
over every word in sys . argv except for the first, doing the same thing as the
previous program. (Recall that the first word in sys . argv is the name of the
program itself.)

This last program is a nice improvement over the preceding one in that it
allows us to count the (lowercase) vowel letters in any number of words. It
suffers from several problems, however. First, all words must be entered by
hand. If you have a large number of words to treat, this can be prohibitive.
A second problem is that there is, in fact, an upper bound on the number of

60 Input—Output

words that can be entered like this. For example, under Windows, the maximum
number of characters that can be entered on the command line is just over 8000.
It would be quite silly to do that much typing, but our point is that there is an
upper bound.

There is another option available that looks a lot like command-line input but
gets around these limitations: standard input (stdin). Any program can out-
put material as what’s referred to as standard output (stdout). That material
is typically printed to the screen, and all of our programs so far have provided
output of this sort. That output can be read or given as input to other programs.
In other words, we run one program, which produces some output, and directly
feed that output to a second program. As with command-line arguments, the
output of one program is available as input to a second program via a variable
from the sys module: sys.stdin. We gain access to it by again importing
the sys module. Here’s a trivial example:

import sys

for line in sys.stdin:
print (line)

i04.py

Note that sys . stdin is not a string variable. Instead, it is a stream, in effect,
a tunnel down which data come. To access that data, we can read it line by line
using for as in this example.

To use this, we must execute some other command-line program and redirect
its output to 104 . py. On Mac, Linux, and Windows, we do this by invoking
one command and piping its output to our program with the | “pipe” symbol.
The simplest program we can use for this on any of these operating systems
is the echo command. This command takes a string and prints it to standard
output. If we type this with a string argument at the terminal or DOS prompt,
it simply prints that argument:

> echo hat
hat
>

That’s not too interesting in its own right, but that program and argument can
be piped to our 104 .py program as follows:

> echo hat | python io4d.py
hat

4.1 Command-Line Input 61

The outputs are slightly different, as the piped version has an extra empty line.
This is because the echo command adds a line, as does the Python print ()
command.

Notice that echo can send a whole string of words through the pipe, but it
does so as a single string, in a single line:

> echo hat chair table | python iod.py
hat chair table

>

We can revise our vowel-counting program so that it can take multiple words
from stdin if we can split that string of words into individual words and then
operate on each of them independently. This first step can be achieved with the
string method split (). We now tweak i03.py to take multiple words as
input from stdin:

import sys

vowels = 'aeiou' #define vowels
#get each line in stdin
for words in sys.stdin:

for word in words.split(): #break into words
#do same as before to each
counter = 0
vowelcount = 0

while counter < len (word) :
if word[counter] in vowels:
vowelcount += 1
counter += 1
else:
print ('There are',vowelcount,
'vowels in',word)

io5.py

Let’s go through this line by line to understand. First, as in our previous ver-
sions, we define the set of vowels. We next read a line of text from sys . stdin
and store that line in the string variable words. The echo command gives us
only one line of text, so this part will execute only once. We then split that
string into individual words with words.split (), storing those words one
by one in the variable word. The rest of the code here simply repeats the same

62 Input—Output

logic from the previous examples, executed on each word into which the string
is split.

Here we have read from sys.stdin a line at a time using the for struc-
ture. As noted above, however, the echo command, as we’ve invoked it here,
will feed only a single line of text into our program. We can confirm this by
tweaking the code in 105 . py to keep track of what line it’s operating on. We
do thisin i06.py:

import sys

vowels = 'aeiou' #vowels
line = 1 #1line number
#for each line in stdin
for words in sys.stdin:
#print line number
print ('This is line',line)
line += 1 #increment line count
#break line into words
for word in words.split():
counter = 0 #continue as before
vowelcount = 0
while counter < len (word) :
if word[counter] in vowels:
vowelcount += 1
counter += 1

else:
print ('\tThere are ',vowelcount,
' vowels in "',word,'"',sep="")
106.py

There are several changes here. First, we’ve added an integer variable 1ine
to keep track of how many lines we’re working on and what the current line
is. Second, we’ve changed the final print () command so that it puts double
quotes around the word it’s working on.

If we invoke the program again, feeding it input from echo, we can see that
only a single line of text (with three words) is processed.

echo cat chair table | python i06.py
This is line 1
There are 1 vowels in "cat"

4.1 Command-Line Input 63

There are 2 vowels in "chair"
There are 2 vowels in "table"

Notice that this doesn’t help us with the shortcomings of the command-line
approach. First, all words still have to be entered by hand. Second, there is an
upper bound on the number of words we can enter.

There are other programs, however, that we can feed to our programs via
stdin to avoid these issues. Another program that will send its output to
stdout is cat (or type on Windows). This command prints the contents
of a file to stdout (the screen). If the file is a parochial word processing file
like Microsoft Word, the file contents will be largely uninterpretable. On the
other hand, if the file is a plain vanilla text file (typically with the file exten-
sion . txt), then its output via cat is intelligible and can be fed usefully to a
program like 106 .py.

Let’s first create a simple text file. Using a text editor, create a file called
test.txt with these contents:

this is
a definite test

file

If the file is located in the same directory, we can then print its contents to the
screen with this command:

cat test.txt
Under Windows, we would instead type:
type test.txt

We can feed the contents of this file to 106 . py with one of the following
commands:

#mac or linux

cat test.txt | python io6.py
#windows

type test.txt | python io06.py

This produces the following output:

cat test.txt | python io6.py
This is line 1

64 Input—Output

vowels in "this"
vowels in "is"

There are
There are
This is line
There are
There are
There are
This is line
There are

vowels in "a"
vowels in "definite"
vowels in "test"

I N

vowels in "file"

You see here that stdin can accommodate multiple lines when the program
feeding it data contains multiple lines.

You should also see that, since files in principle can contain any amount of
data, this mechanism allows us to feed an unbounded number of words into our
vowel-counting program.

Variable assignment and control structures give us the full power of Python;
unbounded input like this allows us to apply that power to a computational
problem of any size.

4.2 Keyboard Input

Another way to input data is to request it from the user. That is, you can write
programs that pause at some point and wait for the user to enter data. The code
for this is quite simple: there is a function input () that takes a single string
argument. When executed, it prints that string argument and returns what the
user types in response as a string. Here’s an extremely simple example:

theInput = input('Type something: ')
print ('You typed "',thelnput,'"',sep="")

i07.py

The input () command prints its string argument to the screen. The program
then waits for the user to type something. Once the user hits the return key, the
program prints that back with double quotes.

Notice that the string that the input () command types does not end with
a return or final space by default. The program above adds a space explicitly.
If we wanted to, we could add a return instead by explicitly putting that in the
string typed:

theInput = input('Type something:\n')

4.2 Keyboard Input 65

Notice too that whatever the user types is converted to a string. Thus, if the
user types 3, it will be converted to ' 3 '. Hence, if you want the user to enter
numbers or data types other than strings, you must include code to convert
those. Here’s a silly example:

#collect two numbers

nl = input ('Enter a number: ')

n2 = input ('Enter another number: ')
#convert to integers and add

n3 = int(nl) + int(n2)

print ('The sum is:',n3) #return result

i08.py

Entering data like this has similar problems to command-line input: while,
in principle, one can enter any number of strings, the data have to be typed in
by hand.

On the other hand, there is another potentially desirable aspect of entering
data from the keyboard: the number and content of each input item can respond
to the program’s behavior with respect to earlier items. Here’s a silly example
of this:

import random
letters = 'abcdefghijklmnopgrstuvwxyz'

#get random letter
letter = letters|[random.randint (0,25)]

while True: #loop until correct
#prompt them to type a letter
guess = input('Type a lower-case letter: ')

#check that it's actually a letter
if guess not in letters:
print ("That's not a lower-case letter.")

continue

if guess == letter: #1f they're right
print ("That's right!™)
break

#give them a hint if they're wrong
if guess > letter:

66 Input—Output

print ("It's earler in the alphabet.")
else:
print ("It's later in the alphabet.")

109.py

This program is a guessing game for letters of the alphabet. The program ran-
domly selects a letter, and then the user can guess letters. The interest of the
program is that it gives the user feedback on whether their guess is before or
after the selected letter. Thus the number and content of each keyboard input
is dependent on the program’s response to earlier inputs.

There’s a lot of code here, but the structure is fairly simple. First, we
import from the random module to have access to a random number gen-
erator: randint (). This function generates a random integer between the
two integer arguments we give it. Here the range is based on the length of the
letters string, so we can use the output to index into that string, select-
ing a single random letter. Notice that the random number we generate with
random.randint () is immediately fed as an index to letters.

We then have an infinite while loop with a number of if tests. First, we
prompt the user to enter a letter and then test that letter. First, we test if the
user actually entered a letter. If not, we use a continue to exit the current
iteration and prompt again. We then test if the user’s letter matches the selected
letter. If so, we let the user know and exit the loop with a break. If it’s a legal
guess and doesn’t match, we then tell the user whether their guess precedes or
follows the selected letter alphabetically and continue to the next iteration.

There is one context in which input () can be awkward. We’ve seen that
the function returns a string, which we can then convert to a number if appro-
priate. What if we want the user to enter actual Python variables or functions?
For example, imagine we have three variables x, y, and z and we want the
user to select one so that the contents of the variable can be printed. Here’s the
incorrect code:

#not what we want!

x = "Tom'
y = 'Dick'
z = 'Harry'

result = input('Type x, vy, or z: ')
print (result)

i010.py

4.3 File Input—Output 67

Here, we might get an interaction like this:

> '"Type x, y, Or zZ: X
X

To get the right result, we must evaluate what the user enters as a Python
expression. This can be done with the function eval (). Here is the revised

code:

#set up three variables

x = 'Tom'
y = 'Dick'
z = 'Harry'

#collect user input

result = input('Type x, vy, or z: ')
#evaluate and print result

print (eval (result))

ioll.py
Now we get an interaction like this:

> 'Type x, y, Or z: X
Tom

4.3 File Input—Output

The usual way to input or output large amounts of data is from or to files. The
basic idea is that your program is written to respond to any amount of data. The
file contains data of the appropriate sort, and your program reads in that data
and processes it either all at once or chunk by chunk.

Writing to files, in principle, is a dangerous operation. If you are not careful,
you can accidentally overwrite important data. Therefore I recommend several
things right at the outset:

(i) Do not experiment with important files. Create toy files to play with.

(il) When you do want to start working on your own files, do not use those
files directly. It’s much safer to create copies of these files and work with
those.

(ii1) Finally, it’s safest to create a new directory to learn file operations in. You
can create new files there and copy (not move!) other files there.

68 Input—Output

These safeguards will reduce the chance of some catastrophic loss of data as
you learn file operations.

In principle, the files you work with can be of any sort, but it is best to start
with simple text files. Let’s begin with writing to a file. The basic logic is that
you create a stream or pathway to a file, print to that stream, and then close the
stream. Here’s a simple example of this:

#open file stream

outFile = open('testfile.txt','w'")
#write to it

outFile.write('some text!\n')

outFile.write('...and some more text!\n'")
outFile.close () #close file stream
i0l2.py

First, we create a stream called out Fi 1e. with the open () function. The first
argument is the name of the file, and the second argument indicates that we are
writing to this file. We then write to that stream twice using the stream method
write (). Notice that we’ve explicitly added returns (\n) at the end of each
write () command so that each bit is on its own line in the file. Notice too
that each successive write () call adds to the existing file. Once we are done
writing to the file, we close the stream with the close () method.

To beat a dead horse, be careful here. The program above creates a file. If you
were to give this file the same name as an existing file in the same directory,
you would overwrite the existing file, destroying its contents. Again, create a
new directory for file operations at this stage. Also, make sure to name your
new test files in a way that is least likely to conflict with your existing files.

Let’s now look at file input. The system is basically the same. You create
a file input stream, read from it, and then close the stream. In the following
example, we read from the file we created in the previous example and print
the result to the screen.

#open file stream

inFile = open('testfile.txt','z")
stuff = inFile.read () #read form it
inFile.close () #close stream
print (stuff) #print contents

i0l3.py

Notice that the read () method reads in the entire context of the file. If you
want to process the contents of the file in chunks, say lines, this is not optimal.

4.3 File Input—Output 69

You have two choices here. One possibility is to break the text into lines after
you’ve read them all in as above. The following program shows how to do this:

#open file

inFile = open('testfile.txt','r")

stuff = inFile.read() #read file contents
inFile.close() #close file

lines = stuff.split('\n'") #split into lines
#print lines and lengths
for line in lines:

print(len(line),': ',line,sep="'")

iol4.py

In this program we read the entire contents of the file in with the read ()
method. We then use the string method split () to break the file contents
into lines. We then go through those lines one by one, calculating their length
and printing the length and line.

The other possibility is to read lines from the stream and process them one
by one.

#open file
inFile = open('testfile.txt','r")
#read from stream line by line
for line in inFile:
#print length of line and the line

print(len(line),': ',line,sep='"',end="")
inFile.close() #close file stream
iol5.py

This second program produces similar output. For large files, this second
approach can be more efficient since you need not hold the entire file in memory
at one time.

So far, we’ve just looked at text files, but Python can handle specialized or
proprietary file formats as well. We give two examples here: wave files and
Microsoft Excel files.

Typically, processing files like these requires access to specialized modules
that may not be part of your basic Python installation. These can be added in
Mac or Linux in two ways, either by general software management programs
like MacPorts or Homebrew (for Mac) or by the Python-specific pip program.
For Windows, pip is the normal route. If you’re using the Anaconda version

70 Input—Output

of Python, then some modules are available with the conda program. In the
following examples, we will make use of two such extra modules.

For example, one module we will use below is openpyx1, which can be
used to read Excel files. To test if the module (or any other) is already on your
system, use the pip command at the system prompt to list all installed modules.
(If you’re using the Anaconda Python distribution, replace pip with conda
below.)

> pip list

You should see a list of all modules currently available on your system.
If this module is not already on your system, you can see if it is available to
be installed by typing the following at the prompt:

> pip search openpyxl
If it is not already installed and you want to install it, you would simply type:
> pip install openpyxl

Note that if your Python installation is systemwide, you may need to do this last
step with admin privileges. For example, on a Mac, you would need to type:

> sudo pip install openpyxl

You would be prompted for your password. We use this particular module
below.

One common file format for linguists is sound files in . wav format. These
files represent a waveform as a sequence of numbers indicating sound pressure
changes over time. In addition, the file contains various sorts of metadata, e.g.,
sample rate, whether the sound is recorded in stereo, and so on.

We can read in a wave file with a function from the scipy library, a spe-
cialized module for efficient math functions. There are a variety of things we
can do with the data, but the simplest here is just to plot it with a function from
matplotlib, a specialized module for plotting.

#import from scipy and matplotlib

import scipy.io.wavfile,matplotlib.pyplot
#read sample rate and wave vector from file
X,y = scipy.io.wavfile.read('mha.wav'")

vdur = len(y)/x #calculate duration
#print duration

4.3 File Input—Output 71

print ('Duration of wave:',vdur)

matplotlib.pyplot.plot(y) #make plot
matplotlib.pyplot.show () #show plot

i016.py

This program reads in a wave file using a function from the scipy module,
which returns the sample rate (in samples per second) and a vector of numbers.
Note that if we want to assign these to two different variables, we simply put
both to the left of the assignment operator =. The example uses a wave file,
mha . wav (from among the files on the book website), which is just a recording
of the author pronouncing the vowel [a]. We calculate the duration of the wave
by dividing the number of samples in the wave by the sample rate. Finally, we
use several functions from the matplotlib module to create and show the
waveform.

We can read in data from other filetypes as well. The following example
shows how to use the openpyx1 package to read in and examine an Excel
spreadsheet.

import openpyxl #to handle xls/xlsx files

#read 1in data
wb = openpyxl.load workbook ('test.xlsx',
read only=True)

#get the names of 'sheets'
print (wb.get sheet names())
#get the first sheet
sheet = wb['Sheetl']
#print contents of cell B2 on sheetl
print (sheet['B2'"] .value)
r =20 #keep track of rows
#go through all rows
for ¢ in sheet.rows:
print (r) #print the row number
#print cells in each row
for i in range(len(c)):
print ('\t',c[i].value)
r += 1

iol7.py

72 Input—Output

Here we first load in a simple spreadsheet we’ve created, test .x1sx, with
a function from the openpyx1 module. Excel spreadsheets contain multiple
pages or sheets with grids of cells that can be filled with data of different types.
We first extract the names of the sheets in this spreadsheet. We then extract the
(only) one named Sheet1 and store that in sheet. We can access individual
cells by name or we can iterate through all rows, printing out the contents of
all cells in those rows.

4.4 Alice in Wonderland

In this section, we write a larger program to do lexical statistics on Alice’s
Adventures in Wonderland by Lewis Carroll.!

Our first step is to make sure we can read in the file. Let’s just do that and
count the lines in the file. Here’s one way to go about it:

count = 0 #counter for lines
f = open('alice.txt','r'") #open the file
for line in f: #read line by line
count += 1
f.close () #close file
print('lines:',count) #print line count
i0l8.py

Let’s now save all the lines in a list:

count = 0 #counter for lines

lines = [] #list for line contents

#open file

f = open('alice.txt','r")

for line in f: #read it line by line
count += 1 #add 1 to counter
#add current line to 1list
lines.append(line)

f.close () #close the file

#print number of lines read

print('lines:',count)

#print number of lines saved

print('saved lines:',len(lines))

i019.py

! The full text is available from Project Gutenberg (http://gutenberg.org) and is
included on the book website.

http://gutenberg.org

4.4 Alice in Wonderland 73

In this latter example, we have created an empty list and then added the lines
one by one to the end of that list. At the end of the program we print out the num-
ber of lines read and the number of lines in the list. If we’ve done everything
correctly, those two numbers should be the same. This is good programming
practice generally. Print out the values of things as you proceed so that you can
make sure the program is behaving as you intend.

Let’s now print out the first few lines:

lines = [] #list to save lines
#open file
f = open('alice.txt','r")
for line in f: #read line by line
#save each line in 1list
lines.append(line)
f.close() #close file
i =20 #print first 100 lines
while 1 < 100:
print (lines[i])
i+=1

1020.py

The result here is not quite right; each line is printed out with an extra line in
between. The problem is that lines are read in with their final return character.
The print () function supplies another return, and each line is then termi-
nated by two return characters. We can get the behavior we want by telling
print () notto append a return.

lines = [] #1list to save lines

#open file

f = open('alice.txt','r")

for line in f: #read line by line
#save lines to 1list
lines.append(line)

f.close() #close file

i=20 #print first 100 lines

while i < 100:
#don't add a return to the line!
print(lines[i],end="")
i+=1

i021.py

74 Input—Output

Notice now that the lines we’re printing out are not part of the Alice story,
but of a header that Project Gutenberg has added to the beginning of the file.
By playing around with the number of lines we print out, we can see that the
header is 255 lines long. Our next version of the program removes this header
and then prints out the beginning of the story:

lines = [] #list for lines

#open file

f = open('alice.txt','c")

for line in f: #read lines one by one
#add lines to list
lines.append(line)

f.close () #close file

#strip off first 255 lines

lines = lines[255:]

i=0 #print first 50 lines

while 1 < 50:
#still don't add a return!
print (lines[i],end="")
i +=1

i022.py

Let’s now do some analysis of the lexical content of the file. As a simple
example, let’s imagine that we are interested in whether there is a correla-
tion between word length and word frequency. It’s generally believed that
more frequent words are shorter than less frequent words. To look at this
with our text, we must break each line into words and then compute the
length of each word. We’ll keep track of how many words we see of each
length.

The next version of the program breaks each line into words and then stores
all the words in a list.

words = [] #list of all words
lines [] #list of all lines

#open file

f = open('alice.txt','r")

for line in f: #save lines one by one
lines.append(line)

f.close () #close file

4.4 Alice in Wonderland 75

#remove Gutenberg header
lines = lines[255:]

#go through lines one by one
for line in lines:
#break each line into words
wds = line.split /()
#add words to 1list
words += wds

i = 0 #print first 100 words
while i < 100:
print (i, words[i])
i+=1

i023.py

This program does indeed get all the words, but it doesn’t strip out irrel-
evant punctuation. Words are returned with adjacent punctuation like period,
question-mark, etc. We need to strip these away before doing our counts if we
want an accurate picture of the relationship between word length and frequency.

There are better ways to do this, as we’ll see in Chapter 6. Our approach here
will be to go through each word character by character, counting only alphabetic
characters and nothing else. To make this task easier, we first convert words to
lowercase.

To test this idea and make sure it’s doing the right thing for us, we’ll first
write some code that does this for the first 100 words and displays the output.
If it works, we then will scale it up for all the words in the file. Here’s a program
that shows how to do this:

words = [] #list of all words
lines [1] #list of all lines

#open file

f = open('alice.txt','r")

for line in f: #save lines one by one
lines.append(line)

f.close() #close file

#remove Gutenberg header
lines = lines[255:]

76

If you inspect the output of this program, you’ll see that it does get the cor-
rect letter count for the first 100 words. Given that that part is doing the right
thing, we can now scale up to doing this for all words and saving the results.
What we want to know is how many words there are of each length. To do this,
we construct a dictionary that we’ll use to store the number of words we’ve
seen for each word length. If, for example, we were to call this dictionary
wordlengths, we would have the number of words that are two letters long

Input—Output

#go through lines one by one

for line in lines:
wds = line.split() #break into words
words += wds #add to 1list

#print first 100 words and letter counts
i=20
while i < 100:
#store the count for the current word
count = 0
#convert the current word to lowercase
word = words[i].lower ()
#go through word letter by letter
#if lowercase, add 1 to count
for 1 in word:
if 1 in "abcdefghijklmnopgrstuvwxyz":
count += 1
print (i,words[i],count) #print it all
i += 1

i024.py

inwordlengths[2], etc.
The following program implements this idea:

words [1] #list of all words
lines = [] #list of all lines
wordlengths = {} #dictionary of word lengths

#open file
f = open('alice.txt','r")
for line in f: #save lines one by one

lines.append(line)
f.close () #close file

4.4 Alice in Wonderland

#remove Gutenberg header
lines = lines[255:]

#go through the lines one by one
for line in lines:
#break each line into words
wds = line.split()
#add the words to the list
words += wds

for wd in words:
count = 0 #count for current word
#convert current word to lowercase
word = wd.lower ()
#go through word letter by letter
#1f lowercase, add 1 to count
for 1 in word:
if 1 in "abcdefghijklmnopgrstuvwxyz":
count += 1
#check if we've seen this length before
if count in wordlengths:
#1if so add 1
wordlengths[count] += 1

else:
#1f not, set to 1
wordlengths[count] = 1

#print out counts for each word length
for ¢ in wordlengths:
print (c,wordlengths[c])

i025.py

Finally, let’s have the program save the results in a file:

words = [] #list of all words
lines = [] #list of all lines
wordlengths = {} #dictionary of word lengths

#open file
f = open('alice.txt','r")
#save lines one by one

78

Input—Output

for line in f:
lines.append(line)
f.close () #close the file

#remove Gutenberg header
lines = lines[255:]

#go through lines one by one
for line in lines:
#break each line into words
wds = line.split ()
#add words to the 1ist
words += wds

for wd in words:
count = 0 #count for current word
#convert current word to lowercase
word = wd.lower ()
#go through word letter by letter
#1f lowercase, add 1 to count
for 1 in word:
if 1 in "abcdefghijklmnopgrstuvwxyz":
count += 1
#check if we've seen this length already
if count in wordlengths:
#1if so add 1
wordlengths[count] += 1

else:
#1f not, set to 1
wordlengths[count] = 1

#open output file

g = open('res26.txt','w")

#print out counts for each word length
for ¢ in wordlengths:

clen = str(wordlengths[c])
res = str(c) + ': ' 4+ clen + "\n'
g.write (res)

g.close () #close output file

1026.py

4.6 Exercises 79

This program does quite a bit, and we have built it up step by step from the
building blocks you have learned thus far. Creating the program in this way
does two things that we need to keep sight of.

First, it shows us the contribution of each program element separately. This
way, we can examine and understand what each is doing.

Second, and more importantly, the stepwise construction of this program is
a model for how you should write your own programs. You should build them
up step by step, checking at each point that your program is doing what you
think it should be doing. You check this by printing the value of variables at
each point and checking that they are what you want. If they are, you strip out
those print statements and go on to the next step, printing out the new variables
of interest.

This style of building programs is not just for beginners. I continue to
use it myself in my own programming practice, and I recommend you get
comfortable with it now and make it part of your programming habits.

4.5 Summary

In this chapter, we’ve talked about how to input data into programs. The basic
idea is to write programs that can respond to novel data and/or any amount of
data. Any number of data items can then be fed into the program.

We considered a number of input forms. First, the number of forms can be
entered on the command line when your program is invoked. Second, programs
can be fed into your program via standard input (stdin). Third, the user can
be prompted for input. Finally, data for your program can come from files of
various sorts. We also saw that you can output your data to files.

4.6 Exercises

4.1 Tweak the 103.py program to accommodate uppercase vowels.

4.2 Tweak the 103 . py program to count both vowels and consonants. Make
sure it can handle both uppercase and lowercase letters.

4.3 Tweak the 103 . py program to count letters from a list the user supplies.
Thus the first command-line argument is a sequence of letters. These are
the letters the program will count. The remaining words on the command
line are those that the counts are performed on.

4.4 What happens if we feed data into i06.py and then again into
i06.py?

| python io6.py | python io6.py

4.5 The programs iol4.py and 1015.py produce slightly different out-
put. Why?

80
4.6

47

4.8

4.9

4.10

Input—Output

Write a program that takes input from stdin and converts what it gets to
lowercase. Show how this program can be used transitively, in between
two other programs, i.e., progl | prog2 | prog3.

Write a program that takes a simple mathematical expression on the
command line like "7 / 45", parses it correctly, and prints the result.
Write a program that goes through the Alice text and prints out all mul-
tiple wh- questions. We define these as questions that begin with a wh-
word and contain at least one more wh- word in the question. (If you
already know what they are, you may not use regular expressions.)
Write a program that:

(a) Reads in the Alice file;

(b) strips off the header;

(c) converts everything to lowercase;

(d) converts all punctuation to spaces;

(e) splits the text into words;

(f) counts up how frequent all words are;

(g) prints out the 10 most frequent words and their counts.

Web: The write () function will also let you append to an existing file.
Snoop around on the web for how to do this and write a brief program
that exemplifies.

5 Subroutines and Modules

We can now write fairly large programs. As they get larger and longer, it
becomes harder to understand them, harder to keep track of what they’re doing,
and harder to make changes when changes are necessary.

There are several ways you’ll see this effect in your actual code. First, code
will become repetitive; you’ll find yourself repeating whole blocks of code in
your programs. This is always a bad idea. The problem is that if you ever need
to change one of these blocks, you’ll typically need to change all of them, and
it’s quite easy to either forget to do that, or to be inconsistent about it.

Another way you’ll see this in a language like Python is that your indentation
for code blocks will become confusing. You’ll be working on some line of code
at the end of a block that’s tabbed/spaced in an unspecified number of times and
not know how many tabs or spaces you need for the next line.

These issues make us want to factor our code, break it into more efficient and
conceptually more reasonable chunks. In this chapter, we introduce two ways
to do this: functions and modules. We’ve already been using functions that are
provided directly by Python along with functions available in modules we’ve
imported. In this chapter, we show you how to write your own functions.

We’ve already seen how to use modules, either those part of your default
Python installation or publicly available modules you add to your installation.
In this chapter, we show you how to write your own modules.

The chapter is organized as follows:

Simple functions We give the basic syntax for functions and show how they
can be used to simplify our code.

Functions that return values We’ve seen functions that can “do” things, like
theprint () function, but there are also functions that give us things,
like the 1en () function. In this section, we show how to write func-
tions that return values.

Functions that take arguments Functions may or may not take arguments,
and here we show how to add required or optional arguments to your
functions.

81

82 Subroutines and Modules

Recursive and lambda functions In this section, we go on to recursive and
anonymous (lambda) functions. These topics are a bit advanced, but
if you’ve had a fair amount of syntax or semantics, they are quite
straightforward.

Modules Next, we show how to package a set of functions and variables into
separate modules that can be used by multiple programs.

Docstrings and comments Finally, we enrich our understanding of comments
and include discussion of docstrings, specialized comments that can
be displayed via Python’s help () function.

5.1 Simple Functions

Functions are defined with the def keyword, followed by a function name
of your choosing, parentheses, and a colon. These are followed by a block of
statements.

def myfunction() :
print ('This is a function')
print ("That's all it does")

funcl.py

We can invoke this function just as we invoke any other function. The invoca-
tion must follow the function definition (but need not follow it immediately).

def myfunction(): #function definition
print ('This is a function')
print ("That's all it does")

myfunction () #invoking the function
func2.py

Functions allow us to simplify repetitive code. Consider the following simple
program:

#print a famous sentence over two lines
print('Colorless green ideas...')
print('...sleep furiously')

#get the user to enter a number

num = input ('Enter a number: ")

5.1 Simple Functions 83

#print the sentence again if it's < 5
if int (num) < 5:

print('Colorless green ideas...')
print('...sleep furiously')
else:

print ('Your number was big enough')

func3.py

Notice how the first and second lines are repeated in the if block. We can
avoid this repetition by defining our own function:

#a function to print that sentence
def myfunc() :
print ('Colorless green ideas...')
print('...sleep furiously')

myfunc () #invoke the function
#collect the number
num = input ('Enter a number: ")
#check 1f the number is < 5
if int (num) < 5:

myfunc () #print sentence again if so
else:

print ('Your number was big enough')

func4.py

Here we factor out the repeated two-line section as a separate function. We then
call that function twice in the following code.

In this case, we have the same number of lines overall, but you can see
that as the number of repetitions increases or as the size of factored-out code
increases, we achieve savings in terms of the number of lines in the overall
program.

Savings in terms of number of lines is not the point, however. First, the new
code in func4 . py makes clear that those repeated parts are the same. The new
code is also easier to maintain in the sense that if we want to change one of the
repeated lines, we can do so once and the change is applied in both applications
of the function.

Functions can be more complex. Here’s a slightly longer bit of code that
takes input from the user.

84 Subroutines and Modules

def myfunc() : #a function
#user supplies a word
word = input ('Word: ")
#print that word
print ('This is your word:',word)
if len(word) > 5: #check 1if > 5
print ('Your word was long.')
else:
print ('Your word was short.')

myfunc () #invoke function

func5.py

Here the function reads user input, prints it, and then does different things
depending on the length of the input.

Notice how the function code creates a variable word. It’s important to note
that that variable is available only inside the function. If we try to refer to a vari-
able created and assigned a value inside some function outside that function,
we get an error. Here’s an example of that:

#this doesn't work!

def myfunc() :
word = input ('Word: ")
print ('This is your word:',word)

myfunc ()
if len(word) < 5:
print ("Your word wasn't long enough")

func6.py

On the other hand, variables outside a function are available inside a
function. Here’s an example:

word = input ('Word: ") #user supplies word
#function refers to previous value!

def myfunc() :
print ('This is your word:',word)

5.2 Functions That Return Values 85

myfunc () #invoke function
#check if word is less than 5 letters
if len(word) < 5:

print ("Your word wasn't long enough")

func7.py

Here the value of word is set outside the function. When the function is called,
it has access to that value. It is generally a had idea to refer to external variables
like this in a function, since it can lead to errors of various sorts. A better and
safer approach is discussed in Section 5.3.

5.2 Functions That Return Values

So far, our functions have taken no arguments and have returned no values. In
this section, we show how to write functions that return a value. The syntax is
simple: the returned value of a function follows the keyword return. Here’s
an example:

def myfunc() : #function definition
print ("This prints.") #prints this
return 6 #return the value 6

#gratuitous print command
print ("This doesn't print!")

#invoke function, assign value to x

x = myfunc ()

#print value of x

print ("Here's the function output:",x)

func8.py

Notice that the string "This prints." is not the value returned by
myfunc (). Rather it is simply something that is printed when the func-
tion runs. The value returned by the function is the one that appears after
the return statement: 6. Notice too how the first print () statement exe-
cutes, but the second does not. The return statement exits the function, so
subsequent statements cannot run.

This does not mean that return must always be last in the function. We
can, for example, embed return in an if structure.

86 Subroutines and Modules

def sillyfunc(): #function definition

#user supplies a word

wd = input ('Type a word: ")

if len(wd) > 4: #check length of word
#return length and exit function
return len (wd)

else: #otherwise. ..
print ('The word is too short!')

res = sillyfunc/() #save value of function
#print value of variable
print ('The result: ',res)

func9.py

Note that this function either returns a value or prints a value. If you use it in a
context where you expect it to return a value, with = for example, you end up
with the non-value None if it does not, in fact, return a value.

Functions can also return more than one value. This is as simple as putting
several values — separated by commas — after the return. Here’s a simple
example:

def myfunc() : #function definition
#collect two strings
x = input ('First string: ')
y = input ('Second string: ")
z =x + ' ' + y #concatenate strings

#return all three
return len(x),len(y),z

#invoke function saving all

a,b,c = myfunc() #3 return values
print('a =',a) #print the 3 values
print('b =',b)
print('c =',c)

func10.py

Here the function prompts for two strings and then returns three values: the
length of the first string, the length of the second string, and the concatenation
of the two strings. Note, incidentally, that the returned values need not be of

5.3 Functions That Take Arguments 87

the same type. Here, the first two returned values are integers and the third is
a string.

53 Functions That Take Arguments

Functions can take arguments as well. This is superficially simple to do, but can
get tricky. Basically, for a function to take an argument, you put new variable
names in the parentheses in the function definition. Here’s a simple example:

#function that takes 2 arguments
def myfunc(a,b):
#return the concatenation
#0OR addition of those values
return a + b

#invoke the function with numbers
print (myfunc(3,10))

#invoke the function with strings
print (myfunc('strings ', "too'))

funcll.py

In this example, we give our function two arguments, a and b. The function
then applies the + operator to those. If we invoke the function with integer
arguments, the result is the addition of the arguments. If we invoke the func-
tion with string arguments, we get the concatenation of those arguments. Thus,
Python generally does not restrict the type of the arguments a function can
take.

Ideally, argument names should be novel, not to be confused with other
variables. Let’s consider this a bit more closely, however. Imagine we have
a function defined in a context like the following:

X =

def afunction (y):

return z

w = afunction (x)

88 Subroutines and Modules

In this schematic example, x and w are global variables — variables defined
outside of any function and available throughout this file and in any functions
defined in this file. The variable z is defined within the function afunction
and is not available outside that function. This, however, does not prevent the
value of z from being returned by the function.

Finally, there is the variable y. This variable is available only within the
function afunction and is not available outside of it. The value of y is taken
from whatever element is given as an argument to afunction when it is
invoked.

Here things get a little tricky, and it’s important to remember our discussion
of mutability in Section 2.4. Consider first the following program:

x = 'a value'

def anotherfunc(a) :
a = 'another wvalue!'
return a

print (x)
print (anotherfunc (x))
print (x)

funcl2.py

Here we assign a string to the variable x. We then define a function that takes
an argument. We reassign a value to that argument inside the function and then
return it. After the function definition we print the variable, print the output
of the function, and then print the variable again. This produces the following
output:

> python funcl2.py
a value

another value!

a value

Recall that strings are immutable. Hence, when we change the value of a
in the function, we’re not really changing the value of a at all; instead, we’re
assigning a new value to a and leaving the old one available for garbage col-
lection. In this case, however, the old value is still attached to x, so it isn’t
collected as garbage. Hence, when we print the value of x after the function
applies, it retains its original value.

5.3 Functions That Take Arguments 89

Compare this with the following program:
x = [4,5,60]

def anotherfunc(a) :
a.append (/)
return a

print (x)
print (anotherfunc (x))
print (x)

funcl3.py

Here, we assign a list to x. We then define a function that takes an argument and
we append 7 to that argument and return the result. After the function definition,
we then print the value of x, print the output of the function, and print x again.
This gives us this output:

> python funcl3.py
(4, 5, 6]

(4, 5, 6, 7]

(4, 5, 6, 7]

Notice here that the value of x changes after the function applies! This is
because lists are mutable. Hence, when the function applies, it forces a to refer
to the same list as x. We then change that list so that when we print x after the
function applies, the x value has changed as well.

The difference between these two programs corresponds to mutability. Muta-
ble objects all work as in the second program; immutable objects work as in
the first one. (If this is murky, it might be a good idea to go back and review
Section 2.4.)

We’ve already seen functions with more than one argument. There is more
than one way to invoke these. Consider this example:

#function definition
def thefunction(x,y):
return x + ' ' + vy

#invoke the function 3 ways
print (thefunction('one', 'way'))

90 Subroutines and Modules

print (thefunction (x="another',y="way'))
print (thefunction (y='way',x="'yet another'))

func14.py

Here we define a function with two arguments and invoke it in three different
ways. One way is to just provide two arguments; these are interpreted as the
two arguments in the function in the same order. A second way is to name
the variables. The names tell us which argument gets associated with which
variable. Note that if we take this option, we can give the names in any order,
as above.

The = can be used in the function declaration as well to give default values
to the function arguments. Here’s an example:

#function with default for 2nd arg

def f(x,y='oops'):
return x + ' ' + vy

print (f('hat')) #invoked 3 ways

print (f(x="'chair'))

print (f("hat', 'chair'))

funcl5.py

Here we define a function that takes two arguments and concatenates them. The
second argument has the default value 'ocops'. We then invoke the function
three times with this output:

> python funclb5.py
hat oops

chair oops

hat chair

In the first invocation, we give the function one argument, which is taken as
the value for x. The argument y takes its default value. The second invocation
has the same effect. In the third invocation, we give two arguments, so x is
associated with the first and y with the second.

Note that if you mix arguments with and without default values in your
function declaration, all the arguments with default values must follow the
arguments without.

You can also write functions with an unspecified number of arguments. If you
want an unspecified number of unnamed arguments, you put the variable name
in the parentheses in your function declaration with a preceding asterisk. This

5.4 Recursive and Lambda Functions 91

variable can then be used as a list in the function body. If you want an unspeci-
fied number of named arguments, you put the variable name in the parentheses
in your function declaration with two preceding asterisks. This variable can be
used as a dictionary in the function body. If you use both, the list variable must
precede the dictionary variable. Here is a simple example with both:

#function with unspecified
#number of unnamed and named arguments
def func(*args, **kwargs) :
for a in args: #print unnamed args
print (a)
for k in kwargs: #print named args
print(k, '"\t',kwargs[k])

#invoked with unnamed FOLLOWED by
#named arguments
func (3,6, 8,hat="wow',chair=3.5)

funcl6.py

This function simply prints out all variables given as unnamed variables and
then prints out all variables given as named variables. The latter are printed
with their names.

5.4 Recursive and Lambda Functions

This section contains some tricky material. This section is nof critical to get-
ting started programming, so it can be safely skipped on a first read. If you’ve
had some formal semantics on the other hand, or background in functional
programming, then enjoy.

A useful feature of Python is that functions can be manipulated just like other
data types. Thus, for example, it’s possible to give functions as arguments to
other functions. Here’s a simple example:

#function with 2 args:
a function f
and something else x
def func(f,x):
return f (x)

print (func(len, '"hat')) #invoking it

funcl7.py

92 Subroutines and Modules

This program defines a function that takes two arguments: a function and
something else. It then applies the first argument, the function, to the second
argument and returns the result. It then applies this function to the arguments
len and 'hat'. Notice here that the argument names are entirely arbitrary.
Here we choose f and x, but we could have just as easily chosen harry and
ernestine. Using f for the function variable just adds a bit of clarity to what
we want this function to do.
Functions can also return other functions. Here is an example:

#function that returns a function
def func(x):
if x == "L':
return len
else:
return type

#invoking the function returns a
#function which we apply to
#'chair'. This may look confusing....
print (func ('L'") ('chair'))

func18.py

This program defines a function that takes a single argument. If that argument
is the character ' 1. ', then the function returns the function 1en () ; otherwise,
it returns the function type (). We then apply this function to the argument
'L " and then apply the result of that application to the string ' chair'.

Functions can, in fact, manipulate themselves. A function definition that
does this is said to be a recursive function. A typical example of this in many
programming languages is a function for calculating factorials.! Recall that
factorials are defined like this:

I =1 = 1
20 = 2x1 = 2
31 = 3x2x1 = 6
4! = 4x3x2x1 = 24
51 = 5x4x3x2x1 = 120

Basically, we define 1! as 1. We then define any higher number n as nx (n—1)!.
Here is a function that does this:
! This may seem like an excessively mathematical example, given our focus on language-related

programming, but in fact factorials do show up in phonological theory. In Optimality Theory,
if you have n constraints, then there are n! possible rankings.

5.4 Recursive and Lambda Functions 93

def fac(n): #function definition
if n == 1: #base case of recursion
return 1
else: #recursive clause

#invokes the function ITSELF
return (n * fac(n-1))

#invoked with base case

print ('1! =",fac (1))
#invoked with recursive case
print ('5! =',fac(5))

funcl19.py

Here we define a recursive function fac (). If its argument is 1, then we
return 1. Ifits argument is anything else (presumably a higher integer), then we
return that value times the result of applying fac () to the next lower integer.
Let’s walk through how this works for the invocation fac (3) in the table
below.

First, we invoke the function with the call fac (3) in line a. Since the argu-
ment is not 1, this is converted to line b. Line b includes the call to fac (2),
which is converted to 2 x fac (1) in line c. Finally, fac (1) is converted to
1 in line d.

a. fac(3) =
b. 3 x fac(2) =
c. 3 x2xfac(l) =
d 3 x2x1 = 6

Finally, Python allows you to create unnamed functions on the fly and
manipulate or apply them. Here’s a simple example:

print ((lambda x: x + x) ('hat'))

func20.py

Here we define an anonymous function that concatenates a string with itself.
We then apply that anonymous function to the string "'hat '. The syntax is
just like a regular function except that the keyword de f and the function name
are replaced with the keyword 1ambda. The resulting expression can then be
used just like any other function by putting parentheses with any arguments
after it.

94 Subroutines and Modules

Here is another more interesting example:

def makeAddN (n) : #function definition
#returns new function
return lambda x: x + n

#invoke twice, making 2 new functions
add?2 = makeAddN (2)

add6 = makeAddN (6)

#apply those two new functions

print (add2(17))

print (adde (17))

func21.py

In this case, we have defined a function that creates and returns new functions.
The function-creating function takes a single integer argument and then returns
a new function that adds that integer to its argument. We then create two new
functions and apply them to 17.

5.5 Modules

We’ve seen that Python has various objects, functions, and methods that are
available from the get-go and that it has other objects, functions, and methods
that are available only when an appropriate import statement has occurred.
For example, we saw that the list of command-line arguments sys.argv is
available only when we have included import sys at the beginning of the
program. Similarly, we saw that the randint () function is available only
when we have imported the random module.

This may seem like a peculiarity, but in fact is deliberate and efficient. The
basic idea is that some programming elements are quite frequently needed
while others are needed only in specific situations. The module system sep-
arates things accordingly. General functions and objects are available in all
cases, but you make more specific functions and objects available only when
you are writing specific sorts of programs.

The alternative would have all programming elements available all the time.
This would amount to thousands of functions being available at once. It would
mean you’d have to be careful not to overwrite them with your own variables
and function definitions. In addition, we would have to have sufficient names
to distinguish everything from each other, which would make for rather long
names as well.

5.5 Modules 95

In this section, we first show how to find out what modules are available to
you and how to get help on any of them. We then show various ways to import
modules. In the next section, we show how to write your own modules.

To find out what modules are installed on your system, go to the interactive
system and type:

>>> help('modules')

This will generate a list of every module installed by default and modules you
have added. In addition, it will list the names of all Python programs in your
current directory. To find out more about any one of these, you first import it
and then use the help system. For example:

>>> import re
>>> help(re)

When you import a module, the objects and functions of that module are
available with the name of the module prefixed on the left separated by a period.
Thus when we make use of sys.argv in the sys module, this is because the
object argv is defined within the sys module. We saw this in the 101 .py
program, repeated below.

import sys

print (sys.argv)

iol.py

Anything within the sys module can be accessed like this. Alternatively, we
can import only specific elements of a module. When we do this, we need not
specify the full module name in naming the object or function. The following
example shows this:

from sys import argv
print (argv)
func22.py

Here we have access to argv from the sys module, but we need not give the
full name when we use it. In addition, nothing else from that module is available

96 Subroutines and Modules

since we have not explicitly imported anything else. Notice that if we do this
sort of restricted import, the full name will not work:

from sys import argv #doesn't work!
print (sys.argv)

func23.py

In fact, we can import everything from a module with this syntax by replacing
argv with *. This is generally not a good idea as it makes everything in the
module available and can create unintended name conflicts.

We have one more option with import. We can create an alias for the
module in the import statement. We can do this as follows:

import sys as s

print (s.argv)

func24.py

This allows us to use a different module prefix for any function or object we
might import. Altogether, the different import options allow us to keep our pro-
gram name space as uncluttered as possible, both by restricting what elements
are available and by letting us control how specific the names of those elements
are.

5.6 Writing Your Own Modules
Writing your own modules that can be imported by other programs is as simple
as writing programs. Let’s create a module with a single function and string
variable in it:

#our own module

myVar = 'hats and lemons' #variable

def myFunc(s) : #function
return len(s)

func25.py

5.6 Writing Your Own Modules 97

We can call import and use this variable and this function in all the ways we
saw above. First, we can import and use full names:

import func25 #import function

#invoke variable with full name
print (func25.myVar)

#invoke both with full names
print (func25.myFunc (func25.myVar))

func26.py

We can also import specific elements or all elements. These can then be used
without the module prefix:

#invoke everything from the module
from func25 import *

#invoke variable without prefix
print (myVar)

#invoke both without prefixes
print (myFunc (myVar))

func27.py
Finally, we can, as above, import the module with a different name:

#import with abbreviated prefix
import func25 as £

#invoke function with f prefix
print (f.myVar)

#invoke both with f prefix
print (f.myFunc (f.myVar))

func28.py

Notice that if we run func25.py on its own, we get nothing, as that file
defines a function and a string variable but does nothing with them. We can,
in fact, write modules that can be imported or be run on their own. When
imported, they provide functions and variables that other programs can use.

98 Subroutines and Modules

When they’re run on their own, they can use those functions and variables
themselves.

To do this, we take advantage ofthe name variable. When a program is
loaded in directly, rather than imported from another program, the name
variable is automatically set to ' main '. We can then use this to allow
a module to behave differently when it is invoked directly versus when it is
imported by another program. Here’s a simple example:

#module that can run on 1its own
myVar = 'hats and lemons' #variable

def myFunc (s) : #function
return len(s)

#1f this 1s loaded on its own...

if name == "' main ':
print (myFunc (myVar)) #do this
func29.py

This program will print out the length of myVar when it is invoked on its own.
On the other hand, when imported by another program, it will behave just like
func25.py.

At this point we need to revisit the notion of commenting our code. So far,
we have used comments in programs as notes to ourselves, or perhaps as notes
to other programmers who might inherit our code. When we start writing mod-
ules, the need for comments changes slightly. We now want comments that
will enable other programmers to use the functions and variables our module
provides.

The standard way to document our functions for other programmers is to
use docstrings. When you are in the interactive environment, you can use the
help () function to find out more about any function. Docstrings are what
allow you to do that. Basically, a docstring is a triple-quoted string that occurs
within a function right after the def line. For example, imagine we write a
module like the following:

def myLen (s) :
''"'This computes the length of a string.

s —-- the string

5.6 Writing Your Own Modules 99

return len(s)

func30.py

The triple-quoted string includes two bits of information: an intuitive state-
ment of what the function does and an explanation of what the argument is. We
can now get help on this function, either in the interactive environment or in a
separate program that imports func30.py:

import func30

help (func30.myLen)

func31.py

A docstring is what you use if you want to make the functions of your modules
usable by others. A comment is what you use for you or others to understand or
alter your code. Thus the functions in your modules should make use of both,
but in different ways. We discuss this further in the next section.

We’ve talked about writing modules that make functions and variables avail-
able for other programs. We’ve also discussed how to document the functions
your modules provide. We also want to consider the case where your module
includes functions or variables that you don ¢ want to make available.

This may seem odd, but in fact is perfectly reasonable. Imagine you’ve writ-
ten a module that is meant to provide some specific functionality, for example,
a function to read in a file and return a list of all words with an even number of
letters and how frequent each of those words is. Your module would then opti-
mally make available a function with a name like evenCount () that takes
a filename as an argument and then returns, for example, a Python dictionary
where each key is a word with an even number of letters and each value is the
frequency of that word.

To make that optimal function work, however, there may be a number of
other “helper” functions that you’ve written. These would be in the module and
called by the evenCount () function, but you don’t really intend other pro-
grammers to have direct access to them. Such private helper functions should
always have names that begin with .

Here’s a simple example. In this program we define a function myF () that
returns the number of words in a string minus one. We’ve written this some-
what clumsily to take advantage of a helper function, mySplit (). This latter
function splits a string into words and returns all the words except the first one.
We’ve written this latter function to be private.

100 Subroutines and Modules

def myF (s): #this uses mySplit()
''"'This calculates the number of
words in a string minus one.

s —-- the string
LI B |

wds = mySplit(s)
return len (wds)

def mySplit(s): #this is private!
''"'"This returns all the words in
a string except the first.
This docstring is pointless!

ws = s.split()
return ws[1l:]

func32.py

When a function is private, it is not available from certain calls to import.
For example, this code produces an error:

from func32 import * #doesn't work!
print (_ mySplit ("This doesn't work"))
func33.py

On the other hand, this code works:

import func32
print (func32. mySplit ("Oh, this does work"))

func34.py

As does this:

from func32 import mySplit
print (mySplit ("Oh, this works too'"))

func35.py

5.7 Docstrings and Modules 101

Effectively, there is a limited amount of privacy granted by using the under-
score prefix. As we’ve seen, some ways of importing will allow one to reach
into a module and make use of something with an underscore prefix. Aside
from how the language works, Python programmers operate on the general
assumption that functions and variables that begin with underscore are intended
to be private and infended not to be imported. If you use underscore in this
way, it will help other programmers understand the logic and intent of your
code.

5.7 Docstrings and Modules

Modules are documented with docstrings as well: triple-quoted strings that
appear at the beginning of a module or as the first line of a function.? Following
is a simple example of both:

'"'"This is a test module.

Author:

Mike Hammond
Version:

1 (11/18)

T

def f£(x):
'"''"This function doubles its argument.

Args:
x: a number to double
Returns:
X*2
y = x * 2
return y

func36.py

The first few lines of the file document the module. These include a description
of what the module does, and it’s good programming practice to include the
author’s name and some indication of what version of the software it is (perhaps
including the date). The first line of a function can also be a docstring. Here it
is a good idea to describe the function and explain what arguments it takes and
what values are returned.

2 They are used in a similar way to document classes and methods; see Chapter 9.

102 Subroutines and Modules

Docstrings are instances of public documentation. They can be displayed
via the help () function whenever the module is loaded. For example, if we
type the following at the prompt in the interactive environment, the docstrings
for the module and any public functions in that module are displayed:

>>> import func36
>>> help (func36)

If your module includes private functions with a prefixed underscore that
have docstrings, they will not be displayed with this call.

Your Python distribution should also include the pydoc command. You can
use this at the command line to display the same information:

> pydoc ./func36.py

Notice that you have to specify the location of the module file in the call to
pydoc. In this case ./ indicates that the file is in the current directory (on a
Mac or Linux machine).

Note that this is not the same thing as commenting your code. Comments
are something you use to remind you how you wrote your program, how the
code is structured. Docstrings are there so that other people can use your
code.

If somebody wants to use your modules and functions, they should be able to
get what they need from the documentation you put in your docstrings. If you
or somebody else wants to adapt your code, the docstrings will not be enough
and your comments will also be necessary.

5.8 Analysis of Sentences

In this section we incrementally develop a larger program that does some super-
ficial analysis of sentence structure. We will again use the Alice text we used
in Chapter 4. The program will be modular in that we will break up our code
into separate functions and modules.

We first write the framing code to read in the whole text. We print out the
number of characters in the text to make sure we’re actually reading the whole
thing in. Note that we’re reading the whole thing in here, rather than reading it
in line by line, because we will ultimately be interested in sentence-sized units
that do not correspond to line breaks.

f = open('alice.txt','r'") #open file
text = f.read() #read it all in
f.close () #close stream

5.8 Analysis of Sentences 103

#check that that worked!
print ('characters:',len (text))

func37.py

Recall that files from Project Gutenberg begin with extra header information,
which we want to remove. If we try various options, we’ll see that that header
comprises 10,840 characters. The following version of the code prints out those
first 10,840 characters. We then remove that and print the first 100 characters
of the remainder.

f = open('alice.txt','r'") #open file

text = f.read() #read whole text
f.close() #close file stream
print (text[:108407) #print the header
text = text[10841:] #remove the header

#something to separate two print statements
print ('NEW START OF FILE:\n'")

#print first 100 letters of what remains
print (text[:1007])

func38.py

Let’s begin modularizing the program. We’ll factor out the file IO part as a
separate function like this:

#function to read in file
#and prune header info
def readfile(filename) :
f = open(filename, 'r")
text = f.read()
f.close()
text = text[10841:]
return text

#invoke the function

t = readfile('alice.txt")
#print the number of letters
#to make sure this worked
print ('characters:',len(t))

func39.py

104 Subroutines and Modules

Let’s now start a new function to split the text into sentences. We will see
better ways to do this in Chapter 6. Our goal here is to develop a large modular
program, so we set aside details of how best to split into sentences. First, we
factor that part out with just a shell that does nothing:

#function to read in file
#and prune header info
def readfile(filename) :
f = open(filename, 'r")
text = f.read()
f.close()
text = text[10841:]
return text

#function to split into sentences
def getsentences(t):

return t

#read in file and strip header

txt = readfile('alice.txt")
#split into sentences (ultimately)
s = getsentences (txt)

#print first 10 sentences
for i in range(10):
print(i,s[i])

func40.py

The function getsentences () does nothing at this point, but our first
step in defining the function is to create a function that does nothing so that we
can be sure that we’re calling the function correctly. We’ll now start fleshing
it out. The next step is to just split the string on period. To do this, we use the
split () method for strings.

#function to read in file
#and prune header info
def readfile(filename) :
f = open(filename, 'r')
text = f.read()
f.close()
text = text[10841:]

5.8 Analysis of Sentences 105

return text

#function to split into sentences
def getsentences(t):

ss = t.split('.")

return ss

#read in file and strip header

txt = readfile('alice.txt")

#split into sentences

s = getsentences (txt)

#print first 10 sentences

for 1 in range(10):
print(i,s[i])

func41.py

This is certainly moving in the right direction, but it falls short in two respects.
First, it fails to separate sentences that terminate with something other than
a period, e.g., question mark and exclamation point. Second, the split ()
method consumes the period, rather than terminating the string with it.

To overcome these shortcomings, we write our own string-splitting function.

#function to read file, prune header info
def readfile(filename) :

f = open(filename, 'r")

text = f.read()

f.close ()

text = text[10841:]

return text

#function to split into sentences
def getsentences(t):

splitters = '.?!'" #characters to split on
ss = [] #put sentences here
i=0

#go character by character

while 1 < len(t):
s = "' #reset current sentence
#read to end of text or
#end of a sentence

106 Subroutines and Modules

while 1 < len(t) and \
t[i] not in splitters:
s += t[i]
i+=1
#1f text isn't over, current character
#is splitter and should be appended
if 1 < len(t):

s += t[i]
i +=1 #go on to next character
ss.append(s) #add sentence to list

return ss

#read in file and strip header

txt = readfile('alice.txt")

#split into sentences

s = getsentences (txt)

#print first 10 sentences

for i in range (10):
print(i,s[i])

func42.py

We’ve fleshed out the getsentences () function quite a bit and the logic
is a bit complex, so let’s go through it. The basic idea is to step through the
text character by character until the end. This is the while i < len(t)
loop. We also set up two variables. One, ss, is the list of sentences we
find. As we find sentences, we add them to this list. The other variable is
the current sentence s. Inside this loop, we examine the current character
to test if it is a sentence-ending character. If it is not, we add it to the cur-
rent sentence and go on to the next character. If, on the other hand, it is
a sentence-ending character, we add it to the sentence, add the sentence to
the list of sentences, reset the current sentence to ' ', and go on to the next
character.

The logic is tricky, so we’ve commented the function extensively above.
Note that we’ve had to spread the second while loop line over two lines.
Python requires that you end the first half of the line with \.

The two functions we’ve written, getsentences () and readfile (),
differ in their generality. The readfile () function is specific to the Alice
text since it trims off a specific number of characters to eliminate the Gutenberg
header. The getsentences () function, however, is more general. We can

5.8 Analysis of Sentences 107

well imagine that we might use it again in some other program where we need
to break a text into sentences.

On this reasoning, it’s appropriate to put getsentences () into its own
module that we can invoke whenever we need to split a text into sentences. This
module is quite simple and merely includes the getsentences () function
on its own:

#function to split into sentences
def getsentences(t):

splitters = '.?!' #characters to split on
ss = [] #put sentences here
i=0

#go character by character
while 1 < len(t):
s = ' #reset current sentence
#read until the end of the text or
#end of a sentence
while 1 < len(t) and \
t[i] not in splitters:
s += t[i]
i+=1
#1f text isn't over, current character
#is splitter and should be appended
if i < len(t):

s += t[i]
i +=1 #go on to next character
ss.append (s) #add sentence to 1list

return ss

func43.py

We can eliminate the function definition from our main program and import it
from func43.py:

import funcé43

#function to read in file
#and prune header info
def readfile(filename) :
f = open(filename, 'r'")
text = f.read()

108 Subroutines and Modules

f.close ()
text = text[10841:]
return text

#read in file and strip header

txt = readfile('alice.txt")

#split into sentences

s = func43.getsentences (txt)

#print first 10 sentences

for i in range(10):
print(i,s[i])

func44.py

Note that if we truly want to make this new module generally useful, we would
name it something appropriate, something mnemonic, e.g., splitter.py or
the like. We’ve chosen to use the name func43.py to keep all the program
files organized.

Note now that the sentences we are printing out have odd spaces, tabs, and
returns interspersed. In particular, there are returns and tabs in each sentence.
In addition, there are instances of multiple spaces. Let’s clean these up. Specif-
ically, we’ll convert all returns and tabs to spaces. We’ll then take all instances
of multiple spaces in a row and convert them to a single space. Finally, we’ll
eliminate any spaces at the beginning or end of a line. The following program
includes a new function, makespaces (), that converts returns and tabs to
spaces and then converts any sequence of spaces to a single space.

import funcé43

#function to read in file, prune header info
def readfile(filename) :

f = open(filename, 'r")

text = f.read()

f.close()

text = text[10841:]

return text

#remove non-space breaks and trim spaces

def makespaces (t):
breaks = '"\n\t' #characters to convert
rl = "' #output of 1st convert
i=0

5.8 Analysis of Sentences 109

while 1 < len(t): #go through 1 by 1
#current char should be converted?
if t[i] in breaks:

rl += " !
else:
rl += t[i]
i +=1
#eliminate space after another space
r2 = rl1[0]
i=1 #start at 2nd char

#go through whole thing
while i1 < len(rl):
#check for two spaces in a row
if r1[i] == "' ' and \
r2[len(xr2)-1] == "' "':
#skip if so
i 4= 1
continue
#otherwise, append current char
else:
r2 += rl[i]
i+=1
return r2

#read in file and strip header
txt = readfile('alice.txt")
#remove non-space breaks and trim spaces
cleanedtext = makespaces (txt)
#split into sentences
s = func43.getsentences (cleanedtext)
#print first 10 sentences
for i in range(10):
print ("\n',i,': ', s[i],sep="")

func45.py

The logic of this new function is as follows. First, we set up an empty output
string r1. The function then goes through the text character by character. If the
current character is a return or tab, then it appends a space to r1. Otherwise,
the current character is appended. We then set up another output string r2 with
just the first character of r1. The function then goes through r1 starting at the

110 Subroutines and Modules

second character. If the current character of r1 is a space and the last character
of r2 is a space, it is skipped; otherwise, the current character of r1 is appended
to r2. We then return r2.

We now need a function to trim extra spaces on the edges of each sentence.
The following program adds this:

import funcé43

#function to read in file, prune header info
def readfile(filename) :

f = open(filename, 'r")

text = f.read()

f.close()

text = text[10841:]

return text

#remove non-space breaks and trim spaces
def makespaces (t):

breaks = "\n\t' #characters to convert
rl = "' #output of 1st convert
i=0

while 1 < len(t): #go through 1 by 1

#current char should be converted?
if t[i] in breaks:

rl += " !
else:
rl += t[i]
i +=1
#eliminate space after another space
r2 = rl1[0]
i=1 #start at 2nd char

#go through the whole thing
while 1 < len(rl):
#check for two spaces Iin a row
if r1[i] == ' ' and \
r2[len(r2)-1] == "' ":
i+=1 #skip if so
continue
#otherwise, append current char
else:
r2 += rl[i]

5.8 Analysis of Sentences 111
i+=1

return r2

#remove spaces at edges of strings
def trimspaces (t):

rl = [] #result 1list
for s in t: #go through 1 by 1
#if first char is a space
if s[0] == "' ':
s = s[1l:]
slast = len(s) - 1

#if last char is a space
if len(s) > 0 and s[slast] == " ':

s = s[:slast]
rl.append(s)
r2 = [] #prune empty sentences
for s in rl: #go through one by one

#check if sentence is empty
if len(s) > 0O:
r2.append(s)
return r2

#read in file and strip header

txt = readfile('alice.txt')

#remove non-space breaks and extra spaces
cleanedtext = makespaces (txt)

#split into sentences

ss = func43.getsentences (cleanedtext)
#trim edges of sentences
ts = trimspaces(ss)

#print first 10 sentences
for 1 in range(10):
print("\n',i,': %', ts[i], 5", sep="")

func46.py

The new trimspaces () function has two loops. The first goes through
and eliminates an initial or final space on all strings. This can now result in
empty strings, so the second loop eliminates these. In both cases, we do this
by creating new lists of strings and only transferring sentences to these new
lists if they satisfy the properties we specify. Notice how we’ve changed the

112

Subroutines and Modules

call to print () at the end so we can see the effects of our string-trimming

function.

The two functions we’ve added, makespaces () and trimspaces (),
are both general, so we will move them both to our separate module. Here is
the revised module:

#function to split into sentences
def getsentences(t):

splitters = '.?!' #characters to split on
ss = [] #where we put sentences
i=0

#go character by character
while i < len(t):
s = ' #reset current sentence
#read to end of text or end of sentence
while i < len(t) and \
t[i] not in splitters:
s += t[i]
i+=1
#1f text isn't over, current character
#is splitter and should be appended
if 1 < len(t):

s += t[i]
i += 1 #go on to next character
ss.append(s) #add current sentence

return ss

#remove non-space breaks and trim spaces
def makespaces (t):

breaks = "\n\t' #characters to convert
rl = "' #output of 1st convert
i =20

#go through 1 by 1
while 1 < len(t):
#current char should be converted?
if t[i] in breaks:
rl += "'
else:
rl += t[i]
i +=1
#eliminate space after another space
r2 = rl1[0]

5.8 Analysis of Sentences 113

i=1 #start at 2nd char
#go through the whole thing
while 1 < len(rl):
#check for two spaces 1in a row
if r1[i] == "' ' and \
r2[len(r2)-1] == "' "':
i4+=1 #skip if so
continue
#otherwise, append current char
else:
r2 += rl[i]
i +=1
return r2

#remove spaces at edges of strings
def trimspaces(t):
#result list
rl =[]
#go through one by one
for s in t:
#if first char is a space

if s[0] == "' ":
s = s[l:]
slast = len(s) - 1

#1f last char is a space
if len(s) > 0 and s[slast] == ' ':
s = s[:slast]
rl.append(s)
#prune empty sentences
r2 = []
#go through one by one
for s in rl:
#check if sentence is empty
if len(s) > O:
r2.append(s)
return r2

func47.py

Here is the revised program that now calls three functions from
func4d7.py:

114

Subroutines and Modules

import funcéd?

#function to read in file, prune header info
def readfile(filename) :

f = open(filename, 'r")
text = f.read()
f.close()
text = text[10841:]

return text

#read in file and strip header
txt = readfile('alice.txt")
#remove non-space breaks and extra spaces
cleanedtext = func47/.makespaces (txt)
#split into sentences
ss = func4d7.getsentences (cleanedtext)
#trim edges of sentences
ts = func47.trimspaces (ss)
#print first 10 sentences
for i in range(10):
print('\n',i,": %',ts[1],'%",sep="")

func48.py

With all this as background, we can now add the functionality we’re really
interested in. What is the distribution of sentences in terms of average number
of words? The code here is actually quite straightforward and similar to the
final bit of code in 1027 . py in Section 4.4.

import func4?

#function to read in file, prune header info
def readfile(filename) :

f = open(filename, 'r')

text = f.read()

f.close()

text = text[10841:]

return text

#read in file and strip header
txt = readfile('alice.txt")
#remove non-space breaks and extra spaces

5.9 Exercises 115

cleanedtext = func47.makespaces (txt)
#split into sentences
ss = func4d7.getsentences (cleanedtext)
#trim edges of sentences
ts = func4d7.trimspaces(ss)
#dictionary to keep track of counts
counts = {}
#go through all sentences
for s in ts:
slength = len(s.split()) #count words
#add 1 to relevant count in dictionary
if slength in counts:
counts[slength] += 1
else:
counts[slength] = 1
for ¢ in sorted(counts): #print counts
print (c,counts(c])

func49.py

Here we define a dictionary, counts, to keep track of the number of occur-
rences of sentences of different lengths. We iterate through all the sentences
adding to count s as appropriate. Finally, we print out all values of counts.
We sort the keys of the dictionary so they are in order.

5.9
5.1

5.2

53

54

Exercises

‘What does this function do?

def f(x):
return x

What happens if we apply the function above like this: £ (£) (£ (3))?
Explain.
What does the following code do? Explain.

(lambda f: f£(3)) (lambda x: x+2)

Write a function that composes two other functions. That is, it takes two
functions as arguments and returns a function that applies the first func-
tion and then the second function to its argument. The two functions
should each take a single argument. (To be clear, your function should
return the composed function, not the result of the composition.)

116
5.5

5.6

5.7
5.8

59

5.10

Subroutines and Modules
Write a function that has the same effect as * in an expression like:
'this' * 3

You are not allowed to use * in your function definition!

Write a function that is helpful to you. It should take at least three
arguments.

Add appropriate docstrings to func47.py and func49.py.

Write a function that takes a filename and a number » as arguments. The
function will open the file and return the first » words of the file. Write the
function so that it recovers from errors: what happens if the file doesn’t
exist, what if the number isn’t a number, what if the file isn’t long enough
to return n words, etc.

Write a function that takes two string arguments. The first argument is a
string to search for and count instances of the second argument. Thus, if
the function were invoked with "Mississippi' and '"is"', it would
return 2. The function must be recursive. Make sure your function can
handle cases where the second argument is of any length.

Web: Snoop around on the web and find a publically available module
that does something useful for you. Explain what it is and write a short
program demonstrating its utility.

6 Regular Expressions

In this chapter we discuss one of the most important aspects of program-
ming for linguists: pattern matching. You will often have to assess whether a
string matches a pattern, contains a certain sequence of characters or a specific
number of characters, etc.

We’ve already seen that we can do this with what we’ve already learned. For
example, if we wanted to know if a string s contained the sequence ab, we
could simply write 'ab' in s, which would return True or False. If, on
the other hand, we wanted to know if a string contained 'z ' and then 'b ' with
material potentially intervening, we would have to do more. We might write a
function like this:

import sys

def mymatch(s) : #a and then b
i=20
#flag to keep track of
#whether we see an 'a'
aFlag = False

while 1 < len(s):

if s[i] == 'a':
aFlag = True
break

i+=1

#look for 'b' where we left off
while i < len(s):
if s[i] == '"b':
#1f we find 'b', return True of
#False depending on whether we
#previously saw 'a'
return aFlag
i +=1

117

118 Regular Expressions

#1f all that fails, return False
return False

print (mymatch (sys.argv[1l]))

rel.py

The function mymatch () can be invoked with a command-line argument, so
we can test out how it applies to different strings. The logic of the function is
that we search the string for the first instance of 'a ' by iterating across the
string with the counter 1. If we find it, we set the value of aFlag to True and
exit the first whi1e loop. Then, without resetting i, we initiate another while
loop to look for "b'. Not resetting the value of i means that the second loop
picks up where the first ended. Hence, the ' b ' must follow the (first) 'a'.

This is fine as far as it goes, but it doesn’t generalize. There are an infinite
number of patterns we might want to search for, and writing a potentially com-
plex matching function for each one is at best tedious and at worst can lead to
programming errors.

Many programming languages, Python included, implement a general pat-
tern matching mechanism that is flexible and efficient: regular expressions.
This is not a book about computational linguistics generally, so we don’t have
time to go into it fully here, but suffice it to say that the theory behind reg-
ular expressions is both fascinating and powerful. We reluctantly set it aside
here and focus on practicalities: how pattern matching with regular expressions
works in Python.

The organization of this chapter is as follows. We first lay out basic pattern-
patching functions in Python. We then turn to how patterns can be specified
using regular expressions. We then discuss pattern-matching devices that go
beyond regular expressions. Finally, we give an extended example show-
ing how pattern matching with regular expressions can be used for linguistic
purposes.

6.1 Matching

Matching a string against some pattern is done with the re module, and most
typically with the search () function in that module. At its simplest, we can
invoke it like this:

import re,sys

if re.search('ab',sys.argv[1l]):
print('a match")

6.1 Matching 119

else:
print ('no match')

re2.py

Here we import from the sy s module to make use of command-line arguments
and from re to use the pattern-matching function search (). This function
takes two arguments: a pattern and a string. In this case, the pattern 'ab'’
matches any string that contains that letter sequence, e.g., 'abc', 'xab',
'ab','xabc'}

We’ll consider the syntax of patterns in depth in the next section, but let’s
consider one slightly more complex pattern here: "a.*b'. This matches a
string that contains 'a' followed anywhere by a 'b'. You can see this by
trying different command-line arguments with the following program:

import re,sys

if re.search('a.*b',sys.argv[1l]):
print('a match')

else:
print ('no match')

re3.py

The search () function actually does not return True or False, but
rather a match object if the string matches or None if it does not. The reason
why the code in the two programs above works is that in an if statement, a
match object will evaluate to True and a None object will evaluate to False.
The following code shows this clearly.

import re

#do two matches
resl = re.search('a.*b', "hat')
res?2 = re.search('a.*b', 'nab'")

#evaluate results of both matches
for s,r in [('hat',resl), ('nab',res2)]:

! The re.search () function can take an additional argument f1ags, which can take a
number of values. The only ones you are likely to use are £lags=re. I, which allows
case-insensitive matching, and flags=re. S, which allows . to match a return in multiline
situations. If you use them both, they must have a pipe in between: flags=re.S|re.I. We
exemplify this below.

120

Regular Expressions

if r: #simple 1if test
print (s, "matches 'a.*b''")
print("r is a match object")
else:
print (s, "does not match 'a.*b'")
print ("r is None")

if r == False: #does match simply fail?
print('r == False')
else:
print('r != False')
if r == None: #1s match a None object?
print ('r == None')
else:
print ('r != None')
red.py

Here we explicitly save the output of the search () function and compare it
against False and against None.

In fact, a match object does more for us than evaluate to True. It is an object
with several methods we can make use of: group (), start (),end (), and
span ().

The group () method simply returns the matched part of the string. In
the case of a pattern like 'a ', this will simply return 'a "' in the case of a
match. In the case of a more interesting pattern like 'a.*b ", the group ()
method returns the entire string from 'a' to 'b'. The following code
exemplifies:

import re,sys

#do a match

res = re.search('a.*b',sys.argv([1l])

if res: #1f match succeeds, print matching
print ("match: '",res.group(),"'",sep="")

else:

print ('no match')

reS.py

If you try this with different command-line argument choices, you’ll see that
the group () method returns the entire string from 'a2"' to 'b'.

6.1 Matching 121

The start (), end (), and span () methods return the starting and end-
ing indices of the matched portion. The span () method returns both. The
following code exemplifies:

import re,sys

#do a match
res = re.search('a.*b',sys.argv([1l])
if res: #if match succeeds, print everything
print ("match: '",res.group(),"'",sep="")
print ('starting index:',res.start())
print ('ending index:',res.end())
print ('both indices:',res.span())
else:
print ('no match')

re6.py

Notice that, as with expressions with :, the ending index is the index of the
character after the final character of the pattern.

These methods allow us to see some other aspects of the code. First, the
match begins at the earliest possible point in the string. In the case at hand, if
there are multiple instances of ' a ', the match begins with the first one. Second,
the match is as greedy as possible. If there are multiple instances of 'b', the
match uses the rightmost one.

Another useful general matching function is findall (). What this does
is return all instances of the match in a string. For example, if you match 'a "
against 'abracadabra’, thisreturns ['a', 'a', 'a', 'a', "a']. The
following code exemplifies:

import re,sys

#find all matches

res = re.findall('a',sys.argv[1l])

if res: #1f at least 1
print ('match:"', res) #print 1ist

else:

print ('no match:',res) #print empty list

re7.py

Note that in the event of no match, findall () returns an empty list rather
than None.

122 Regular Expressions

6.2 Patterns

In this section, we present the general structure and specific syntax of the kinds
of patterns we can specify for the functions covered in the previous section and
those to follow in the next chapter.

Patterns to be matched are defined in terms of regular expressions (REs).
These have a simple syntax that we can specify recursively, like a phrase-
structure grammar.’

(1) A single symbol is an RE. For example: "a', '3", "k ', etc. These will
match a string that consists of just the symbol indicated.

(i) A concatenation or sequence of REs is an RE. For example: "ab', '3g',
"kk ', etc. Such an expression matches if the expressions it is composed
of match in sequence. Thus 'ab ' matches if ' 2 ' matches and then 'b'
matches. Note that the definition is recursive, soif ' ab ' islegaland 'cd '
is legal, then so are "'abcd' and 'cdab'.

(ii1) The union of disjunction of two REs is a regular expression. Union can be
indicated with a tie-bar, e.g.,in 'a |b ', "a | d"'. An expression like this is
matched if either one or the other of the component expressions matches.
Thus, for example, 'z |b ' matches if either 'a' or 'b' matches. This
definition is recursive as well, so we can build up expressions with both
union and concatenation repeatedly. This can result in ambiguity, and we
can use parentheses to disambiguate. For example, in principle, some-
thing like "2 |bc ' is ambiguous and can be rewritten as ' (a|b)c' or
'al (bc) .

(iv) Finally, we have Kleene star. This allows an RE to be matched zero or
more times. It is indicated with a following asterisk and is recursive as
well. We have, for example: a*, a (b*), (ab) *, (a|b) *, etc.

Everything else about REs can be reduced to these simple operations, so let’s
take some time to understand them in more depth.

An RE is a string defined in terms of the recursive operations above:
concatenation, union, and Kleene star. An RE itself is a finite sequence of
symbols, but it defines a potentially infinite set of strings. For example,
the RE ab*c is a finite sequence of symbols, but defines an infinite set:
{ac, abc, abbc, abbbc, ...}. Similarly, (ab) | (c*) defines the infinite set
{ab, €, c, cc, ccc,...}. We use € to indicate the empty string.

The general idea in pattern matching is that if the string we are matching
against contains any of the strings that the relevant RE defines, then there
is a match. For example, if we try to match the RE a|b against the string
pancake, we have a match because the RE defines the string set {a, b} and
pancake contains the substring a. Similarly, the RE a* will match any string

2 Formally, one can show that these are more restricted than a phrase-structure grammar.

6.2 Patterns 123

because the set of strings it defines includes € and every string definitionally
includes the empty string.

The following chart gives examples of simple REs (along the left) and
whether they match various strings (along the top).

a b ab acb ba

a v v v/
ab \/
alb v V VvV
ax v vV Vv v/
al (bc) v v v/
(alb)c v
axip v V VOV
aloy vV
@apm=* v vV vV vV
ar) v v v/
aoyx v vV v/

Most programming languages use REs to do pattern matching because by
using these it is possible to be extremely efficient when checking whether some
string matches some pattern. If we were to enrich our pattern-matching sys-
tem significantly beyond the three operations listed above, we would lose this
efficiency.

There is a tradeoff, however. With this efficient system, there are patterns
we cannot specify. Most programming languages, Python included, thus go
slightly beyond REs in what they allow in pattern-matching syntax. The result-
ing system is still limited in what it allows, but for most purposes is more than
enough for the kinds of pattern matching and string manipulation linguists need.

In the remainder of this section, we will go through some additional nota-
tional conventions available in REs. In most cases, these are for convenience
and do not extend the power of REs.

To play with these, we’ll make use of the following program. This program
takes one command-line argument that specifies a pattern. That pattern is then
matched against the words in the Alice text and printed to the screen.

import sys,re

#read in 'Alice' and break into words

f = open('alice.txt','r")

words = f.read().split()

f.close()

for w in words: #match against each word

124 Regular Expressions

m = re.search(sys.argv[l],w)
if m:
print (w)

re8.py
For example, we might invoke it like this:

> python re8.py ab*c

We will see below that some of the special characters we use in REs also
have an interpretation in some operating systems. We must therefore enter the
pattern in quotes or use other special conventions to make sure the pattern is
passed through the operating system to Python. We note this where relevant
below.

We’ve already seen the notations for concatenation, union, and Kleene star.
We’ve also seen that parentheses can be used to disambiguate.

A simple addition to these notations is ' . ', which matches any single char-
acter. Thus an expression like "a . b ' will match any string where 'b ' follows
"a ' with a single character intervening. Keep in mind that that single charac-
ters can be alphabetic, numeric, space, tab, etc. For example, ' . . . ' matches
any string with at least three letters.

We can add '*' and '$' as well. The former matches the beginning
of the string, and the latter matches the end of the string. Thus "ab'
matches any string that contains that substring, but ' “ab' matches only
strings that begin with that substring. Similarly, '2b$ ' will match any string
that ends with that substring. A pattern like ' “ab$' will only match that
exact string. The RE '~ .. .S will match any string that has exactly three
characters.

We’ve already seen that tie-bar can be used to indicate disjunction or union.
For example, something like ' (a|b|cd|ef)g' will match a string that
contains any of these as substrings: 'ag', 'bg', 'cdg',or "efg’. If the
elements in the union are single characters, then Python offers an alternative
notation using square brackets instead of the tie-bar. For example, something
like "a (b|c|d)e" can also be written 'a [bcd] e . This is not possible if
any of the elements in the union is more than a single character, like the first
example in this paragraph.

Interestingly, the square bracket syntax — but not the tie-bar — can be used
to specify the inverse set of characters. The syntax is to put the caret sym-
bol first inside the square brackets to denote the opposite set of characters.
Thus ' [“abc] " will match a single character other than 'a', 'b', or

6.3 Backreferences 125

"c'. As with simple square brackets, this works only with single individual
characters.

Either square bracket expression can be used with a naturally ordered char-
acter sequence denoted with hyphen. Thus [a-e] is the same as [abcde],
and [0-5] is the same as [012345]. Multiple sequences can be used in the
same square brackets. For example, [a-zA~-Z] denotes a single upper- or low-
ercase letter. Finally, sequences can be used in inverse character classes. Hence

[~a-z] denotes a single character that is not a lowercase letter.

We’ve already discussed Kleene star, which lets an expression be matched
zero or more times. Thus (b | c) * matches zero or more instances of b or c.
There are two related notations: (b | c) + indicates one or more instances of b
or ¢, and (b|c) ? indicates zero or one instance of b or c.

There is a whole set of character classes that are predefined. The most useful
of these include \w “word” characters, \W “nonword” characters, \ s white-
space, \ S nonwhitespace, \d digits (equivalent to [0-91), and \D nondigits
(equivalent to [~0-91). (Note that all of these must occur within quotes when
used on the command line.)

6.3 Backreferences

Backreferences technically move pattern matching beyond regular expressions.
While they provide a lot of power and convenience, they should be used
reluctantly, as they can significantly affect how efficiently your programs run.

The simplest characterization of backreferences is that every time you use
parentheses in a pattern, you can refer back to them later. These can be paren-
theses you’ve used to disambiguate a pattern, e.g., a| (bc) versus (a|b)c,
but they can also be parentheses you’ve simply added with no such effect, e.g.,
.*Faversus (.*)a.

One way you can refer back to them is with a match object. If you’ve
matched a pattern with parentheses, then you can extract that portion from the
match object with the group (), start (), end (), or span () methods.
The following program exemplifies:

import sys,re

#do a match

m = re.search('(.*)b(.*)",sys.argv([1l])

if m: #1f it succeeds, print...
#the whole match
print('all: "',m.group(),'""',sep="")

#the first part
print ('group 1: "',m.group(l),'"',sep="")

126 Regular Expressions

#the second part
print ('group 2: "',m.group(2),'"',sep="")

re9.py

In this program, we invoke the group () method with an integer argument.
The integer refers back to parentheses in the pattern. For example, in an expres-
sion with three sets of parentheses, we can refer back to any of group (1),
group (2), or group (3). In fact, group () is the same as group (0).
The first set of parentheses in re 9. py are of this gratuitous sort.

Note, incidentally, that the parentheses don’t have to be justified to disam-
biguate. Gratuitous parentheses that don’t disambiguate the pattern can also be
used and referred back to with group ().

The other match object methods can also be used with backreferences. The
following code shows how this works.

import sys,re

m = re.search('(.*)b(.*)",sys.argv[1l])

if m:
print('all: "', m.group(),'"',sep="")
print ('group 1: "',m.group(l),'"',sep="")
print ('group 1 start:',m.start (1))
print('group 1 end:',m.end (1))
print ('group 2: "',m.group(2),'""',sep="")
print ('group 2 start:',m.start(2))
print ('group 2 end:',m.end(2))

rel0.py

Here, we print out the start and end indices for groups 1 and 2.

Interestingly, there is a notation that allows us to use backreferences in
the same pattern: \ 1, \2, \ 3, etc. For example, ' (..) \1" will match any
two-letter sequence that is repeated, e.g., abab, bcbc, bbbb. This is an
extremely powerful notation and can move pattern matching beyond simple
regular expressions. Use this one with caution.

6.4 Initial Consonant Clusters

Let’s now exemplify how to use pattern matching to investigate the distribution
of word-initial consonant clusters in A/ice. The basic question is how frequent
different kinds of initial consonant clusters are.

6.4 Initial Consonant Clusters 127

A major challenge here is that English orthography only indirectly reflects
the phonology. We will therefore set aside some issues about which precise
cluster different letter sequences represent. There are several sorts of problems
to deal with. First, we must deal with silent letters. These include cases like
know or gnostic where k and g are silent. Another issue to wrestle with is that
sometimes a single consonant is written with several letters, e.g., [0] as in thim-
ble or [[] as in show. Finally, there are cases where the same letter (sequence)
has multiple pronunciations. For example, ¢ is pronounced [s] in city, but [k]
in coat. Similarly, ch is pronounced [t[] in church, but [k] in chord. Note that
sometimes the difference is predictable, as in the case of ¢, but sometimes it is
not, as in the case of ch. We will therefore set aside the mapping of orthogra-
phy to precise phonological forms, except insofar as we need to decide whether
something is or is not a cluster.

We will, as always, build our code up incrementally. Let’s first write the
framing code to read in the Alice text.

f = open('alice.txt','r") #open the file
text = f.read() #read it all 1in
f.close() #close file stream
#print first 100 letters to make sure

print (text[:1007)

rell.py

We print out the first 100 characters to make sure everything is working.
Anticipating our task, we strip the Gutenberg header, convert the whole text
to lowercase, and then split it into words.

f = open('alice.txt','r") #open file

text = f.read() #read 1t all in
f.close() #close file stream
text = text[10841:] #remove header
#convert to lowercase and split into words
words = text.lower().split()

#print first 50 words
for w in words[:50]:
print (w)
rel2.py

Again, we print out the first 50 words to make sure things are working right.

128 Regular Expressions

Our first challenge is nonalphabetic characters. To see what the problem is
more specifically, we can make use of the re8.py program we wrote above
to see what kinds of nonalphabetic things we’re getting. We do this with the
following command:

> python re8.py '"\W'

We see immediately that many of these are cases where some punctuation like
comma or period is on the right end of the word. Let’s exclude these cases and
see what’s left. We therefore try this:

> python re8.py '"\W\w'

Now what we see are mostly apostrophes, hyphens, and single and double quo-
tation marks. We must clearly exclude initial quotation marks; we don’t want
these to confuse what we take to be an initial consonant cluster.

Hyphens are another matter. It looks like a double hyphen is essentially a
word break; the most reasonable thing would be to convert those to a single
space. Single hyphens as in jury-box are more complex. Do we want to consider
box here in our calculation of initial clusters? This is effectively a theoretical
decision. We’ll therefore simply choose to include cases like box in jury-box
as items that have initial clusters. On this assumption, a single hyphen needs to
be converted to a space as well.

The simplest thing is to simply convert all of these to spaces before we break
the text into words. The following code handles this:

import re

f = open('alice.txt','r") #read in Alice
text = f.read()
f.close()
text = text[10841:] #strip header
#convert to lower case
lowertext = text.lower ()
#punctuation to convert
punc = "[NOANPN=INNF, N (N) NN INT /D
#convert punctuation to space
newtext = "'
for ¢ in lowertext:

if re.search(punc,c):

newtext += ' '
else:

6.4 Initial Consonant Clusters 129

newtext += c
words = newtext.split/() #split into words
#print first 50 words
for w in words[:50]:
print (w)

rel3.py

There are now apostrophes and single quotes to deal with: these we delete.
The following revision does this:

import re

f = open('alice.txt','z") #read in Alice
text = f.read()
f.close ()
text = text[10841:] #strip header
#convert to lower case
lowertext = text.lower ()
#punctuation to convert
punc = "[NANN=INNF, N (N) NN [N /]
#convert punctuation to space
newtext = "'
for ¢ in lowertext:
if re.search(punc,c):
newtext += ' '
else:
newtext += cC
words = newtext.split/() #split into words
#delete single quotes
newwords = []
for w in words:
word = "'
for ¢ in w:
if ¢ !I= """y
word += cC
newwords.append (word)
#print first 50 words
for w in newwords[:50]:
print (w)

rel4.py

130 Regular Expressions

This last version is a little complex, as we’re constructing a new list newwords
by going through the old list word by word and constructing a new word word
by going through each old word letter by letter.

Finally, we can see that there are several words that either are numbers or
contain numbers. We’ll just eliminate these altogether.

import re

f = open('alice.txt','z") #read in Alice
text = f.read()
f.close ()
text = text[10841:] #strip header
#convert to lower case
lowertext = text.lower ()
#punctuation to convert
punc = "[\NAPN=IN2AE, N (V) NN [NT s /T
#convert punctuation to space
newtext = "'
for ¢ in lowertext:
if re.search (punc,c):
newtext += ' '
else:
newtext += c
#split into words
words = newtext.split()
#eliminate single quotes
newwords = []
for w in words:
word = ''
for ¢ in w:
if ¢ = """
word += cC
newwords.append (word)
#eliminate words with numbers
finalwords = []
for w in newwords:
if re.search('[0-9]",w):
continue
else:
finalwords.append (w)
#print first 50 words

6.4 Initial Consonant Clusters 131

for w in finalwords[:50]:
print (w)

relS5.py

Our next step is to identify consonant clusters. We’ve already seen that the
identification of certain consonants is lexical, that the identification of what a
letter stands for sometimes is based on what word it occurs in. For example, g
is [g] in get, but [d3] in gem.

We will therefore aggregate by words before doing counts for individual
clusters. The following code does this:

import re

f = open('alice.txt','r") #read in Alice
text = f.read()
f.close ()
text = text[10841:] #strip header
#convert to lower case
lowertext = text.lower ()
#punctuation to convert
punc = "[\NOANPA=IN2NE, N () NN [NT s /]
#convert punctuation to space
newtext = "'
for ¢ in lowertext:

if re.search(punc,c):

newtext += "' '
else:
newtext += c

#split into words
words = newtext.split()
#eliminate single quotes
newwords = []
for w in words:

word = "'

if ¢ != "'y
word += cC
newwords.append (word)
#eliminate words with numbers
finalwords = []
for w in newwords:

132 Regular Expressions

if re.search('[0-9]",w):
continue
else:
finalwords.append (w)
#do counts for words
wordlist = {}
for w in finalwords:
if len(w) > O:
if w in wordlist:
wordlist[w] += 1
else:
wordlist[w] = 1
#sort the words
keys = sorted(wordlist.keys())
#print out the first 100 words
for i in range(100):
print (keys[i],wordlist[keys[i]])
#print out the number of distinct words
print ('Keys:',len (keys))

rel6.py

This code makes use of a new function, sorted (), which sorts a list of strings
(or numbers). Note that we’ve chosen to aggregate the words into a list before
converting to a dictionary here. This allows us to alter that list in various ways
before doing counts.

Let’s now begin to modularize our code. First, we convert rel6.py into a
module rel7.py that we can call.

import re

def preprocess|():

f = open('alice.txt','r") #read in Alice
text = f.read()

f.close ()

text = text[10841:] #strip header

#convert to lower case
lowertext = text.lower ()
#punctuation to convert

punc = "[\NOANPN=INRNF, N () NN [N /T
#convert punctuation to space
newtext = ''

for ¢ in lowertext:

6.4 Initial Consonant Clusters 133

if re.search(punc,c):
newtext += ' '
else:
newtext += c
#split into words
words = newtext.split ()
#eliminate single quotes
newwords = []
for w in words:
word = '
for ¢ in w:
if ¢ = """y
word += c
newwords.append (word)
#eliminate words with numbers
finalwords = []
for w in newwords:
if re.search('[0-9]"',w):
continue
else:
finalwords.append (w)
#do counts for words
wordlist = {}
for w in finalwords:
if len(w) > O:
if w in wordlist:
wordlist[w] += 1
else:
wordlist[w] = 1
return wordlist

rel7.py

That module contains a single function preprocess () that we can call from
other programs like this:

import rel?

wordlist = rel7.preprocess|()
#sort the words

keys = sorted(wordlist.keys())
#print out the first 100 words
for 1 in range(100):

134 Regular Expressions

print (keys[i],wordlist[keys[i]])
#print out the number of distinct words
print ('Keys:',len (keys))

rel8.py

The first order of business is to find all possible word-initial consonant
clusters. Here’s a first pass just at getting this list:

import re,rel?”

#get the word counts
wordlist = rel7.preprocess|()
#just get the words
words = wordlist.keys()
clusters = [] #strip off onsets
for w in words:
m = re.search('”["aeioul*"',w)
if m:
onset = w[0:m.end()]
clusters.append (onset)
#eliminate duplicate onsets

clusters = sorted(set (clusters))
for ¢ in clusters: #print all onsets
print(ll L} ",C, ma 'l,sep=' ')
print (len(clusters)) f#print number of onsets
rel9.py

This program makes use of the set () function, which converts a list
to a set, the effect of which is to remove duplicates from the list. We then
use sorted () to sort it alphabetically. This results in the following 76
hypothetical onset clusters.

null b bl br by c ch chr chrys
cl cr cry d dr dry f fl fly

fr fry g gl er gryph h hjckrrh hm

] k kn 1 ly m my mys myst
n p pl pr q T s sc sch
scr sh shr shy shyly sk sky sl sm
sn sp spl spr sq st str SW t

th thr tr try tw v W wh why

wr o X y z

6.4 Initial Consonant Clusters 135

There’s a fair amount of noise here that we need to clean up. We can track
down some of it by using our re8 . py program above (remembering that we
converted to lowercase and removed a fair amount of punctuation).

A big source of noise is the treatment of y and other vowels. Specifically, if
we require words to contain a vowel and allow y to count as a vowel when it is
not word-initial, we can eliminate many of these. The following revision does
this:

import re,rel’”

#get the word counts

wordlist = rel7.preprocess|()
words = wordlist.keys() #just get the words
clusters = [] #strip off onsets
for w in words:
m = re.search('" (["aeiouy]*) [aeiouy] ', w)
if m:
if m.end(l) == 0 and w[0] == "y':
onset = 'y'
else:
onset = w[0O:m.end (1)]

clusters.append (onset)
#eliminate duplicate onsets

clusters = sorted(set(clusters))
for ¢ in clusters: #print all onsets
print("| ”,C, " "',Sep:' |l)

#print number of onsets
print (len(clusters))

re20.py

This now produces a reasonable list of 58 hypothetical word onsets.
Our last step is to do counts for all clusters. The following code does this:

import re,rel’”

#get the word counts

wordlist = rel7.preprocess|()
#just get the words

words = wordlist.keys{()

#strip off onsets and do counts
clusters = {}

136

6.5
6.1

6.2
6.3

6.4

6.5
6.6
6.7
6.8

Regular Expressions

for w in words:

m = re.search('” (["aeiouy]*) [aeiouy]',w)
if m:
if m.end(l) == 0 and w[0] == 'y':
ons = 'y'
else:

ons = w[O0:m.end (1)]
if ons in clusters:
clusters[ons] += 1

else:
clusters[ons] = 1
#print onset counts
keys = sorted(clusters.keys())
for ¢ in keys:
print("'",c,"': ",clusters[c],sep="")
re2l.py
Exercises

Write a function that will match a string that contains a.*b.*c.*d
without using regular expressions.

What will the pattern ' . .~ ' match? Explain why.

What’s the difference between (a*) | (b*) and (a|b) *? Explain the
difference and give examples of strings that both will match, only the
first will match, and only the second will match.

Describe in words what each of the following patterns will match:

(@) ' (Tom) | (Dick) | (Harry) '
(b) "(.F)NLT

() "(alral)+"

(d "~ [r0-91+S"

(&) '(alb)*c(d*|e*)"

Write a program that collects the final consonant clusters of English.
Write a regular expression that finds reduplicated words.

Write a program that uses regular expressions to find palindromes.
Some of the work of the string method format () can be done with
regular expressions instead. Write a function that will take arguments
where the first argument is a string in the appropriate format for the
format () method and subsequent arguments are the additional ones

6.9

6.10

6.5 Exercises 137

that format () would take. Your function should, insofar as your
patience takes you, do the work of format ().

For IXTEX users: write a function that does the work of the de tex utility.
It should take a string argument that represents a IXTEX file and strips
the document preamble and any backslash commands. It should print its
output to the terminal.

Web: The symbol ? has another use in regular expressions that we have
not discussed. Snoop around on the web, find out what it is, explain it,
and write a short program showing how it can be used.

7 Text Manipulation

The previous chapter covered regular expressions and pattern matching in
response to the fact that language researchers are often interested in sifting
through texts and finding words or phrases with particular properties.

In this chapter, we focus on manipulating text, converting one string of let-
ters into another. This is another task that comes up quite often when writing
programs that deal with natural language.

We have, in fact, already done some of this in previous chapters. For
example, in Section 6.4, we developed a program that calculated how often
different consonant clusters occurred as word onsets in the Alice text. This pro-
gram effectively translated from words to onsets using pattern matching and
backreferences via the match object methods start () and end ().

In this chapter, we’ll explain more general and powerful ways to do this
using the functions re.sub (), str.translate(), re.split (), and
the string method join (). We conclude the chapter by implementing a large
example program that does a bit of English morphology.

7.1 String Manipulation Is Costly

One thing to keep in mind from the start is that string manipulation of any sort

is computationally intensive. Consider a simple example like the following,

where we go through a string letter by letter, stripping out vowels.

s = '

for i in 'Apalachicola':
if i not in 'aeiou':

s =s + 1
print (s)
Notice how every time we see a nonvowel, we invoke thelines = s + 1.

What this does is create a new string every time it is invoked, save that new
string as s, and make the old string available for garbage collection. If the string

138

7.2 Manipulating Text 139

is long — or if you’re doing this on a lot of strings — this will create a lot of new
strings and call for a lot of garbage collection.

One can try to avoid this in various ways. For example, one might first con-
vert the strings to lists, remove the vowels from the lists, and then convert the
lists back to strings. While this avoids a certain amount of string processing, it
does so by replacing it with conversions to and from lists.

Our point here is simply that string manipulation can be costly and should
be done intelligently. For the small programs we present in this book, the cost
is negligible, but in large programs, one needs to be careful.

7.2 Manipulating Text

The simplest function for manipulating text is sub () in the re module. This
function converts one string into another by pattern matching: whatever part of
the string matches the specified pattern is replaced with the specified replace-
ment. The function takes those three arguments plus two more: a pattern, a
replacement, the string, and a maximum number of replacements count plus
additional flags f1ags. Here is a simple example:

import re

#define a string

sl = '"This is a rather long string'
#replace '.s' with 'WOW'

s2 = re.sub('.s','WOwW',sl)

#print old and new strings
print (sl, "\n',s2)

manipl.py
We can see the count variable at work in the next example:
import re

#a test string

sl = 'This is a rather long string'

pat = '.s' #a pattern

#find how many instances of the pattern
countmax = len(re.findall (pat,sl))

print (sl) #print the string

i=1 #make substitutions 1 by 1
while i < countmax+l:

140 Text Manipulation

#make a change

s2 = re.sub(pat, 'WOW',sl,count=1i)
#print that one change

print ('\t',i,":"',s2)

i 4= 1 #increment counter

manip2.py

Here, we first identify how many instances of the pattern there are in the string
with findall () and we then iterate through different numbers of substitu-
tions. Note that when count = 0, we make all substitutions rather than none
of them.

Finally, the f1ags argument provides several options. The most frequent
one is case-insensitive matching: f1ags=RE. i. Here’s an example:

import re

#a test string

sl = 'This is a rather long string’

#do a replacement

s2 = re.sub('t','wWow',sl)

#do a case-insensitive replacement

s3 = re.sub('t','wWwow',sl, flags=re.I)
#incorporate case directly in the pattern
s4 = re.sub('t|T",'WOW'",sl)

#show all three results

print (sl, "\n',s2,'\n',s3,'\n',s4,sep="")

manip3.py

Notice here how the effect of case-insensitive matching can be achieved by
adjusting the pattern instead.

If your substitutions are all converting single letters to other single letters you
can make use of the efficient translate () string method. You first make
use of the str.maketrans () method to make a translation table, which
specifies which letters are mapped to which; you then use that table to make
the translation. Here’s an example:

#make a translation table

mytab = str.maketrans('aeiou', "happy')
#a test string

s = 'This is my sample string'

7.2 Manipulating Text 141

print (s) #print that string
print (s.translate (mytab)) #print translation

manip4.py

A translation table is implemented as a Python dictionary. Note that the two
string arguments to str.maketrans () must be the same length.

Another function that is quite useful is re . split (). Recall that the string
method split () splits a string up based on some specific delimiter string.
The re.split () function allows you to split a string based on a regular
expression instead. Here’s an example:

import re

#a test string

s = 'First sentence. Second sentence.'

ssl = s.split('e.") #do a regular split
ss2 = re.split('e.',s) #do re.split

print (s) #print sentence

#print split() results
print('s.split () ")
for ss in ssl:
print('\t"',ss,'"",sep="")
#print re.split() results
print('re.split () ")
for ss in ss2:
print ('\t"',ss,'"',sep="")

manip5.py

Here we invoke the string method split () and re.split () withthe string

"e.'.Thestring method split () interprets this literally and splits the string
into three strings; re.split () interprets this as a regular expression and
splits the string into eight strings. Note, too, that the syntax for these is different.
The re.split () function takes two arguments where the string to split is
the second argument. The split () method is instead suffixed to the string it
operates on and takes a single argument.

Finally, we have the string method join (), which joins a list of strings
together with a string infix. The syntax is a bit unintuitive. The string it is suf-
fixed to is the infix. It takes a single argument, which is a list of strings. Here’s
a simple example:

142 Text Manipulation

s = 'This is a sentence.' #a test sentence
wds = s.split () #split into words
hyphen = '-' #define hyphen

#join bits with hyphen
hyphenated = hyphen.join (wds)
#print original sentence
print (s)

#print hyphenated sentence
print (hyphenated)

manip6.py

7.3 Morphology

In this section, we build a stemming program for English. In particular, the pro-
gram will remove suffixes so that words like running, obfuscation, looks, etc.
become run, obfuscate, look, etc. The particular algorithm we will implement
is a classic one: Porter (1980).!

Why do this? A stemming program like this can be viewed in several ways.
One is to think of it as a theory of morphological decomposition: a model of
how speakers break words up into meaningful units. Another way to think of
a stemmer is simply as a practical tool so that we can find words that are mor-
phologically related. For example, if we were searching for documents having
to do with horses, it stands to reason that we would be interested in documents
that contained the word horse or horses.

With Porter’s algorithm, suffixes are removed from words in rule blocks. In
the first block, one set of suffixes is removed; in the next block a different set
of suffixes is removed, and so on. Each block is a set of rules that are organized
disjunctively. Each rule in the block generally removes or rewrites one suffix.
If more than one rule in a block is applicable, then the rule that is most spe-
cific applies and the others do not. For example, a block might contain these
rules:

sses — Ss
ies - 1

SS — ss
S - 0

This would map caresses to caress, carries to cari, looks to look, etc. Note that
the disjunctive requirement entails that caresses is not mapped to caresse, but
to caress, because the first rule is more specific than the last.

I Porter, M. F. (1980) “An algorithm for suffix stripping,” Program 14, 130-137.

7.3 Morphology 143

Finally, rules are subject to conditions. Most often this is a condition on the
size of the stem, but it can include other information as well, e.g., whether the
final consonant is doubled or the identity of the final consonant.

We will take our task to be writing a function that takes a word and stems it.
Once we’ve gotten this function in order, we can then apply it to words in Alice
or, indeed, to anything else. Let’s write some framing code that we can use to
test our stemming function on a command-line argument:

import sys

def stem(w) : #stemming function frame
return w

#get word from command-line
word = sys.argv[l]

root = stem(word) #stem 1it!
#print word and its stem
print (word, ':\t',root,sep="")

manip7.py

This code takes a command-line argument, applies the function stem () to
it, and returns the output. To get a sense of what we’re after, we might enrich
stem () like this:

import re,sys
#stemming function for words in -ed

def stem(w) :
#does the word end in ed?

m = re.search (' (".*)edS'",w)

if m: #if it does...
return m.group (l) #return the stem

else: #if it doesn't...
return w #just return word

#get word from command-I1ine

word = sys.argv[l]

root = stem(word) #stem 1t
#print word and stem

print (word, ':\t', root,sep="")

manip8.py

144 Text Manipulation

This simply examines a word to see if it ends in -ed and, if so, removes it. Other
words are unaffected. This is not a general solution to the stemming problem,
but it shows the general logic of what we want to do.

The first step in our implementation is to code up Porter’s measure function.
Many of his rules depend on the size of the remaining stem when some putative
suffix is removed. The measure of a stem is defined in terms of consonants and
vowels. Specifically a consonant is defined as a letter other than a, e, i, 0, u,
or y. In the case of y, it is a consonant if it is not preceded by a consonant. We
therefore start with a function to determine whether some specific letter in a
string is a consonant.

import re,sys

#test if letter is consonant
#with respect to word!
def consonant(s,i):
letter = s[i] #get relevant letter
#it's not a consonant if it's aeiou
if letter in 'aeiou':
return False
#word-initial y is a consonant
elif letter == 'y' and 1 == 0:
return True
#it's a vowel if it follows a consonant

elif letter == 'y' and consonant(s,i-1):
return False
else: #otherwise it's a consonant

return True

#stemming function frame again
def stem(w):
return w

#get the command-line argument
word = sys.argv|[l]
print (word) #print it
#code to test the consonant () function
for i in range (len (word)) :

if consonant (word, i) :

print ('C',end="")
else:

7.3 Morphology 145

print ('V',end="")
print ()

manip9.py

We’ve added this to the program with the stem () function shell with fram-
ing code so we can test the function on strings given as a command-line
argument.

If we take C to be a consonant and V to be a vowel, Porter treats all stems as
matching this regular expression: C* (V+C+) *V*. The measure of a stem is
defined as the number of times the (V+C+) * part matches. Another, simpler
way to look at this is that the measure of a string is the number of times the
sequence VC occurs. Porter gives these examples:

m=20 tr, ee, tree, y, by
m =1 trouble, oats, trees, ivy
m = 2 troubles, private, oaten, orrery

Our implementation of the measure function converts a stem to Cs and Vs and
then returns the number of times the sequence VC occurs.

import re,sys

#checks 1f some element 1in
#a string is a consonant
def consonant(s,i):
letter = s[i]
if letter in 'aeiou':
return False

elif letter == 'y' and i == 0:
return True

elif letter == 'y' and consonant(s,i-1):
return False

else:

return True

#converts string to Cs and Vs
def cv(w) :
res = "'
for i in range (len(w)) :
if consonant (w,1i):
res += 'C'

146 Text Manipulation

else:
res += 'V'
return res

#returns the measure of a string
def measure (w) :
cvword = cv (w)
vcs = re.findall ('VC', cvword)
return len (vcs)

def stem(w) : #stemming code frame
return w

word = sys.argv[l]
print (word)
print (cv (word))
print (measure (word))

manip10.py

The measure () function uses another function, cv (), which converts a
string into Cs and Vs. We also use this function to display that intermediate
output in the framing code in the program.

We’re now ready to consider the rules of the system. Porter’s rules have three
main components. First, there is a test to see if the form ends in some particular
ending string of letters. Second, there are several tests on the remainder that
precedes that ending string. If those tests are true, the ending is mapped to a
different ending. For example:

(m > 1) ement — @

Here, we first ask if the word ends in the string ement. Second, we ask if the
measure of the remaining material is greater than 1. If both of those hold, we
map ement to null. This rule would fail to apply to happiness because it does
not end in ement. This rule would fail to apply to cement because the measure
of ¢ is 0. Finally, this rule would apply to requirement because the measure of
requir is 2.

Porter’s conditions also include things like the following:

*S — the stem ends with s (and similarly for the other
letters).

*Vx — the stem contains a vowel.

*D — the stem ends with a double consonant (e.g., Z, ss).

*O — the stem ends CVC, where the second C

is not w, x, or y (e.g., -wil, -hop).

7.3 Morphology 147

These are expressed above in a version of Porter’s notation; we will convert
these to regular expressions. The conditions on a rule can be more complex:
multiple separate conditions joined together with and or or. For example:

(m > 1 and (s or *t))

This condition tests for a stem where m > 1 and that ends in s or ¢. Here’s
another:

(*D and not (L or *S or %Z))

This tests for a stem ending with a double consonant other than /, s, or z.
Let’s now add general code for handling such conditions to our system. Here
is a first pass:

import re,sys

#is some element in string a consonant?
def consonant(s,i):
letter = s[1i]
if letter in 'aeiou':
return False

elif letter == 'y' and i ==
return True

elif letter == 'y' and consonant(s,i-1):
return False

else:

return True

#converts string to Cs and Vs
def cv(w) :
res = "'
for i in range(len(w)):
if consonant (w,1i):
res += 'C'
else:
res += 'V'
return res

#returns measure of a string
def measure (w) :
cvword = cv (w)
vcs = re.findall ('VC', cvword)
return len(vcs)

148 Text Manipulation

#general rule framework
def rule(c,e,r,w):

m = re.search (' (.*) "+e+'S",w)
if m:

s = m.group (1)

if c(s):

return s+r
return None

def mlcond(x) : #condition: m > 0
if measure(x) > 0O:
return True
return False

#specific sample rule for -ed
def edrule(w) :
x = rule(mlcond, 'ed', '', w)
return x

def stem(w) : #using -ed rule
res = edrule (w)
if res:
return res
return w

word = sys.argv[l]
print (word)
print (stem(word))

manipll.py

There are four basic changes here. First, we’ve added a general form for rules
called rule (). This function takes four arguments: c: a condition, e: the suf-
fix, r: what the suffix is replaced with, and w: the word we are applying the
rule to. The idea is that any specific rule we want can be defined in terms of
rule ().

We then use this to define a sample rule that we call edrule (). Thisis a
simple example of what a rule might look like. This rule rewrites -ed as null
just in case the measure of the remaining stem is greater than 0. The condition
on the rule is formalized as m1cond ().

Finally, we add the function edrule () to our stem () function. If the
word satisfies edrule (), we return that result. If not, we just return the
word.

7.3 Morphology 149

All of this is called with a command-line argument so we can play around
with different word types.

We’ve got a fair amount of code now, so let’s separate the general code
off into a callable module. The idea would be that we could build different
stemmers that could draw on this code. Here’s the module:

import re,sys

#is some element in string a consonant?
def consonant(s,i):
letter = s[i]
if letter in 'aeiou':
return False

elif letter == 'y' and i == 0:
return True

elif letter == 'y' and consonant(s,i-1):
return False

else:

return True

def cv(w): #convert string to Cs and Vs
res = "'
for i in range (len(w)):
if consonant (w,1i):
res += 'C'
else:
res += 'V'
return res

def measure(w): #returns measure of a string
cvword = cv (w)
vcs = re.findall ('VC', cvword)

return len(vcs)

#general rule framework
def rule(c,e,r,w):
m = re.search (""" (.*) "+e+'S",w)
if m:
s = m.group (1)
if c(s):
return s+r
return None

manipl2.py

150 Text Manipulation
We then call it with something like this:

import re,sys,manipl?2

def mlcond (x): #condition: m > 0
if manipl2.measure(x) > 0O:
return True
return False

def edrule (w) : #sample rule for -ed
T

x = manipl2.rule(mlcond, 'ed', , W)
return x

def stem(w) : #stemming with -ed rule
res = edrule (w)
if res:
return res
return w

word = sys.argv/[l]
print (word)
(

print (stem(word))

manipl13.py

As discussed, Porter’s algorithm divides rules up into eight blocks:

Step 1 a
b
c
Step 2
Step 3
Step 4
Step 5 a
b

Let’s elaborate our system a bit to anticipate this:

import re,sys,manipl?

def mlcond (x) : #condition: m > 0
if manipl2.measure(x) > 0O:
return True
return False

7.3 Morphology 151

def stepla(w):
return w

def steplb (w) :
return w

def steplc(w):
return w

def step2(w):
return w

def step3(w):
return w

def stepd (w):
return w

def stepba(w):
return w

def stepbb(w) :
return w

def stem(w) : #stemming with blocks
sla = stepla (w)
slb = steplb(sla)
slc = steplc(slb)
s2 = step2(slc)
s3 = step3(s2)

s4 = step4 (s3)
sba = stepba(s4)
sbb = stepbb(sba)
return s5b

word = sys.argv[l]
print (word)
print (stem(word))

manipl4.py

Here we’ve simply indicated that the function stem () is a set of blocks that
apply in sequence. We’ve then added placeholders for each of those blocks.

152 Text Manipulation

Porter’s first block — step 1a — is the one we gave above on page 142. We
implement this in the function stepla ().

import re,sys
from manipl2 import *

def mlcond (x) : #condition: m > 0
if measure(x) > 0O:
return True
return False

def nullcond(x) : #a vacuous condition
return True

def stepla(w):

a = rule(nullcond, "sses', 'ss',w)
if a: return a

b = rule(nullcond, "ies', '1',w)
if b: return b

c = rule(nullcond, 'ss', "'ss',w)

if c: return c

d = rule(nullcond, 's','',w)
if d: return d

return w

def steplb (w):
return w

def steplc(w):
return w

def step2(w):
return w

def step3(w):
return w

def step4 (w):
return w

def stepba (w):
return w

7.3 Morphology 153

def stepbb(w) :
return w

def stem(w) : #stemming with blocks
sla = stepla (w)
slb = steplb(sla)
slc = steplc(slb)
s2 = step2(slc)
s3 = step3(s2)
s4 = step4 (s3)

sba = stepba(s4)
sbb = stepbb(sba)
return sbb

word = sys.argv[l]
print (word)
print (stem(word))

manipl5.py

There are a couple of things to note here. First, we import frommanipl2.py
a little differently so we can use its functions without the manipl12. prefix.
Second, our rule format requires a condition, so we’ve implemented a vacuous
condition nullcond () to accommodate cases where Porter’s rules have no
condition. Finally, we’ve implemented the disjunctive property of Porter’s rules
by checking if a rule has applied. If it does, we immediately exit the block with
areturn.
Let’s now go on to the next block Step 1b:

Step 1b

Condition Change Example

m> 0 eed > ee feed — feed
agreed — agree

* Vi ed— 0 plastered — plaster
bled — bled

* Vi ing — @ motoring — motor

sing — sing

Remember that these three rules apply disjunctively. Here is a first pass at
implementing this block:

import re,sys
from manipl?2 import *

def mlcond(x) : #condition: m > 0

154

Text Manipulation

if measure (x)
return True
return False

def nullcond(x) :
return True

def vcond(x) :
cvform = cv (x)

> 0O:

#a vacuous condition

#condition:

if re.search('V',cvform) :

return True
return False

def stepla (w):

contains vowel

a = rule(nullcond, "sses', "'ss',w)
if a: return a
b = rule(nullcond, "ies',"i',w)
if b: return b
c = rule(nullcond, 'ss', "ss',w)
if c: return c
d = rule(nullcond,'s', "', w)
if d: return d
return w
def steplb (w):
a = rule(mlcond, 'eed', 'ee',w)
if a: return a
b = rule(vcond, 'ed','",w)
if b: return b
c = rule(vcond, "ing', "', w)
if c: return c

return w

def steplc(w):
return w

def step2(w):
return w

def step3(w):
return w

7.3 Morphology

def step4d (w) :
return w

def stepba (w) :
return w

def stepbb(w) :
return w

def stem(w) :

sla = stepla (w)
slb = steplb(sla)
slc = steplc(slb)
s2 = step2(slc)
s3 = step3(s2)
s4 = step4 (s3)
sba = stepba(s4)
sbb = stepbb(sba)
return sb5b

word = sys.argv[l]

print (word)

print (stem(word))

manip16.py

155

#stemming with blocks

The steplb () function makes use of the mlcond () condition and a new
condition vcond () . There is another wrinkle, however. If either of the -ed or
-ing rules applies, the following special block applies:

Special block
Condition Change
at — ate
bl — ble
iz — ize
(*D and not ... — single letter

(*1 or *s or *z))

(m =1 and *O)

Example

conflat(ed) — conflate
troubl(ed) — trouble
siz(ed) — size
hopp(ing) — hop

tann(ed) — tan
fall(ing) — fall
hiss(ing) — hiss
fizz(ed) — fizz
fail(ing) — fail
fil(ing) — file

156 Text Manipulation

The fourth rule here is rather complex both in terms of the condition on its
application and in terms of what it does, so we will write a special rule for this.
First, we add a new special block and have it apply just in case the -ed or -ing
rules apply.

import re,sys
from manipl2 import *

def mlcond(x) : #condition: m > 0
if measure(x) > 0O:
return True
return False

def nullcond(x): #a vacuous condition
return True

def vcond (x) : #condition: contains vowel
cvform = cv (X)
if re.search('V',cvform):
return True
return False

def stepla(w):

a = rule(nullcond, "sses', 'ss',w)
if a: return a
b = rule(nullcond, "ies',"i',w)
if b: return b
c = rule(nullcond, "ss', 'ss',w)
if c: return c
d = rule(nullcond, 's', "', w)
if d: return d
return w

def special (w): #special block for ed/ing
return w

def steplb (w):
a = rule(mlcond, 'eed', 'ee',w)
if a: return a
b = rule(vcond, 'ed',"'",w)

if b: return special (b)
c = rule(vcond, "ing',"'",w)

7.3 Morphology 157

if c: return special (c)
return w

def steplc (w):
return w

def step2(w):
return w

def step3(w):
return w

def step4d (w):
return w

def stepba (w):
return w

def stepbb(w):
return w

def stem(w) : #stemming with blocks

sla = stepla(w)

slb = steplb(sla)

slc = steplc(slb)

s2 = step2(slc)

s3 = step3(s2)

s4 = step4d (s3)

sba = stepba(s4)

sbb = stepbb(sba)

return sb5b

word = sys.argv/[l]
print (word)
print (stem(word))

manipl7.py
We now flesh out the contents of the special () block.

import re,sys
from manipl2 import *

158 Text Manipulation

def mlcond(x) : #condition: m > 0
if measure(x) > 0O:
return True
return False

def nullcond(x) : #vacuous condition
return True

def vcond(x) : #condition: contains vowel
cvform = cv (x)
if re.search('V',cvform) :
return True
return False

def stepla (w):

a = rule(nullcond, 'sses', 'ss',w)
if a: return a

b = rule(nullcond, '"ies',"i',w)
if b: return b

c = rule(nullcond, 'ss', "'ss',w)

if c: return c

d = rule(nullcond,'s','',w)
if d: return d

return w

#specialrule
def specialrule (w) :
cvform = cv (w)
m = re.search('CCS$',cvform)
if m:
m2 = re.search ('~ (.*) (["sz1])\\2"',w)
if m2:
return m2.group (1) +m2.group (2)
return None

def mlocond (w) : #mlocond
cvform = cv(w)
if measure (cvform) ==
m = re.search('CVCS$',cvform)
if m:
m2 = re.search('["xyw]S$"',w)
if m2:

7.3 Morphology 159

return True
return False

def special (w): #special block for ed/ing
a = rule(nullcond, 'at', "ate',w)
if a: return a
b = rule(nullcond, 'bl', "ble',w)
if b: return b
c = rule(nullcond, "iz', "ize',w)
if c: return c
d = specialrule (w)
if d: return d
e = rule(mlocond,'','e',w)
if e: return e
return w

def steplb(w) :

a = rule(mlcond, 'eed', 'ee',w)
if a: return a

b = rule(vcond, 'ed', "', w)

if b: return special (b)

c = rule(vcond, "ing',"",w)

if c: return special (c)
return w

def steplc(w):
return w

def step2(w):
return w

def step3(w):
return w

def step4d (w):
return w

def stepba(w) :
return w

def stepbb (w) :
return w

160 Text Manipulation

def stem(w) : #stemming with blocks
sla = stepla (w)
slb = steplb(sla)
slc = steplc(slb)
)

s2 = step2(slc
s3 step3(s2)

s4 = step4 (s3)
sba = stepba(sd)
sb5b = stepbb(sba)
return s5b

word = sys.argv[l]
print (word)
print (stem(word))

manipl8.py

There are a couple of complications in the special () block. First, we
must implement a new condition m1ocond () . Second, the rule that eliminates
final double letters doesn’t really follow our rule () format, so we craft a
special rule for it with the unimaginative name specialrule (). That rule
is interesting because of the complexity of the regular expression it uses. We
need to identify stems where the final letter is doubled, and then we need to
be able to return everything but the final letter. We use a backreference in the
pattern to do this. Note that when a backreference is used in a pattern like this,
we must use an extra backslash: '\ \2".

There are a number of remaining steps to implement, but they are straight-
forward given what we have done so far. The next version of the code is the
complete stemming algorithm with all these additional steps filled in.

import re,sys
from manipl2 import *

def mlcond (x): #condition: m > 0
if measure(x) > 0O:
return True
return False

def m2cond (x) : #condition: m > 1
if measure(x) > 1:
return True
return False

7.3 Morphology 161

def nullcond(x): #vacuous condition
return True

def vcond (x) : #condition: contains vowel
cvform = cv(X)
if re.search('V',cvform) :
return True
return False

def stepla (w):

a = rule(nullcond, "sses', 'ss',w)
if a: return a

b = rule(nullcond,
if b: return b

c = rule(nullcond,
if c: return c

d = rule(nullcond,
if d: return d
return w

v

ies',"1',w)

ss',"'ss',w)

#specialrule
def specialrule(w) :
cvform = cv (w)
m = re.search('CCS$',cvform)
if m:
m2 = re.search (""" (.*) (["szl])\\2",w)
if m2:
return m2.group (l)+m2.group (2)
return None

def mlocond (w) : #m=1 and ends in CV["xyw]
cvform = cv(w)
if measure(cvform) == 1:
m = re.search('CVCS$',cvform)
if m:
m2 = re.search('["xyw]S',w)
if m2:
return True
return False

def special (w): #special block for ed/ing

162 Text Manipulation

a
if a:
b
if b:
c
if c:
d
if d:
e
if e: return e
return w

return a

return b

return c

return d

def steplb(w):

rule (nullcond,

rule (nullcond,

rule (nullcond,

'iz

specialrule (w)

]

tat', 'ate',w)

'bl', "ble", w)

,Tize',w)

rule (mlocond, "', 'e',w)

rule (mlcond, 'eed', "ee',w)

W)

a =
if a: return a

b = rule(vcond, 'ed','",w)
if b: return special (b)

c = rule(vcond, "ing', "'
if c: return special (c)

return w

def steplc(w):
a
if a: return a
return w

def step2(w):
a rule (mlcond,
if a: return a
b rule (mlcond,
if b: return b
c rule (mlcond,
if c: return c
d rule (mlcond,
if d: return d
e rule (mlcond,
if e: return e
£ rule (mlcond,
if f: return f
g rule (mlcond,
if g: return g
h rule (mlcond,

rule (vcond, 'y', "1

|l

rW)

'ational', 'ate',w)

'tional', '"tion',w)

'enci'

'anci'

'izer'

4

14

14

'abli',

'alli’

14

'entli'

'ence',w)

"ance',w)

'ize',w)

'able',w)

'al',w)

,lent ', w)

7.3 Morphology 163

if h: return h

i = rule(mlcond, 'eli', 'e',w)

if i: return i

j = rule(mlcond, '"ousli', 'ous',w)
if j: return j

k = rule(mlcond, "ization', "'ize',w)
if k: return k

1l = rule(mlcond, '"ation', "ate',w)
if 1: return 1

m = rule(mlcond, "ator', "ate',w)

if m: return m

n = rule(mlcond, 'alism', "al',w)

if n: return n

o = rule(mlcond, '"iveness', "ive',w)

if o: return o
p = rule(mlcond, "fulness', '"ful',w)
if p: return p

g = rule(mlcond, 'ousness', 'ous',w)
if g: return g

r = rule(mlcond, 'aliti', 'al',w)

if r: return r

s = rule(mlcond, "iviti', "ive',w)
if s: return s

t = rule(mlcond, 'biliti', "ble',w)

if t: return t
return w

def step3(w):

a = rule(mlcond, "icate','ic',w)
if a: return a

b = rule(mlcond, 'ative', "', w)
if b: return b

c = rule(mlcond, 'alize','al',w)
if ¢: return c

d = rule(mlcond, '"iciti','ic',w)
if d: return d

e = rule(mlcond, '"ical',"ic',w)

if e: return e
f = rule(mlcond, "ful','',w)
if f: return f
g = rule(mlcond, 'ness','',w)
if g: return g

164 Text Manipulation

return w

def m2stcond(w): #m > 1 and ends in [st]
if m2cond (w) :
m = re.search('[st]S$S',w)
if m:

return True
return False

def step4 (w):

a = rule(m2cond, 'al', "', w)
if a: return a

b = rule(m2cond, 'ance','',w)
if b: return b

¢ = rule(m2cond, 'ence', "', w)

if c: return c
d = rule(m2cond, 'er', "', w)
if d: return d

e = rule(m2cond, "ic', "', w)
if e: return e
f = rule (m2cond, "able', "', w)

if f: return f
g = rule (m2cond, "ible','",w)
if g: return g

h = rule(m2cond, 'ant', "', w)
if h: return h

i = rule(m2cond, 'ement','',w)
if i: return i

3 = rule(m2cond, 'ment', "', w)
if j: return j

k = rule(m2cond, 'ent', "', w)
if k: return k

1 = rule(m2stcond, 'tion', "', w)
if 1: return 1

m = rule(m2cond, 'ou', "', w)

if m: return m

n = rule(m2cond, "ism', "', w)
if n: return n

o = rule(m2cond, 'ate','',w)
if o: return o

p = rule(m2cond, "iti', "', w)

if p: return p

7.3 Morphology

g = rule(m2cond, 'ous','',w)
if g: return g
r = rule (m2cond, "ive',"'"',w)
if r: return r
s = rule(m2cond, "ize', "', w)

if s: return s
return w

#m = 1 and not *O
def mlnotocond (w) :
if measure(w) != 1:
return False
cvform = cv (w)
m = re.search('CVCS$',cvform)
if m:
m2 = re.search (' [wxy]S$S',w)
if m2:
return False
return True

def stepba (w):
a = rule(m2cond, 'e', "', w)
if a: return a
b = rule(mlnotocond, 'e','",w)
if b: return b
return w

def stepbb(w) :
if m2cond(w) :

m = re.search (' (*.*1) (1)S$",w)

if m:
return m.group (1)
return w

def stem(w) : #stemming with blocks
sla = stepla (w)
slb = steplb(sla)
slc = steplc(slb)
s2 = step2(slc)
s3 = step3(s2)

s4 = stepd (s3)
sba = stepba(s4)

165

166

Text Manipulation

sbb = stepbb(sba)
return sb5b

word = sys.argv[l]
print (word)
print (stem(word))

manip19.py

This is a fairly large piece of code, but we have tried to modularize it in
several ways. First, we have factored out generic code and put it into a separate
module manipl?2.py. Second, we have posited a general rule format and put
that in manipl2.py as well. Finally, following Porter’s own description of
the algorithm, we have broken it into steps and made each of these its own

function.
7.4 Exercises
7.1 Imagine you have some sentence s and you do this:

7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

" '".join(s.split())

Will that have any effect? If so, what and when?

The stemming algorithm in the previous section suffers from the absence
of a general technique for disjunction: we have to keep repeating
if ...: returnCanyou think ofa way to avoid this?

The code for the stemming algorithm is repetitive in that it calls rule ()
multiple times in each step. Revise the code to avoid this.

Why would the sub () function be harder to use in our stemmer?
Write a program that strips off English prefixes.

Write a program that plays Pig Latin.

Use the translate () method to create a function that does the work
of upper ().

Write your own function that will do the work of translate ().
Write a program that generates verbal paradigms for an inflectional lan-
guage you know. For example, your program might generate the present
tense paradigm for verbs in -ar in Spanish.

Write a program that converts active sentences in English to passive sen-
tences. This means changing the verbal morphology and adjusting word
order as required.

Web: There is also a function re. subn () that we have not discussed.
Snoop around to find out what it does, explain it, and write a program
that makes good use of it.

8 Internet Data

In this chapter, we discuss how to obtain and handle data from the internet. This
is a huge topic, so we can only scratch the surface here.

Specifically, we talk about how to retrieve webpages and extract text or other
information from them. This entails a discussion of the structure of HTML
documents and methods for getting various sorts of information out of them. It
also requires we deal with different text encodings.

Working with web data quickly leads to issues of efficiency. Retrieving any
web page requires interacting with other computers over the web. This means
that your program may have to wait for other systems to respond. We there-
fore introduce some simple methods for parallelizing your code so that these
interactions can be as efficient as possible.'

We then turn to text encodings. Text can be encoded in a web page —and other
documents — in many ways. We must therefore understand those encodings and
know how to work with them.

Finally, we conclude the chapter with a program for a simple webcrawler,
a program that starts from a single webpage and then recursively follows and
retrieves links with particular properties.

8.1 Retrieving Webpages

Retrieving webpages is extremely simple. The urllib.request module
includes a function, ur 1open (), which creates a stream that can be read from.
The following program exemplifies:

import urllib.request

#a url to read from

link = "http://www.u.arizona.edu/~hammond/"
#open a link to the url

f = urllib.request.urlopen (link)

! We deal with parallelism more fully in Chapter 11.

167

168 Internet Data

#read the page

myfile = f.read()

#print the decoded page
print (myfile.decode ('UTE-8"))

webl.py

Here we import the relevant module. We open a connection with urlopen (),
and then read from it with read (). We convert that to a readable text for-
mat with the string method decode ('UTF-8"); we cover this in depth in
Section 8.5 below. We can then print out what is read.

Note that a simple webpage, like the one we read here, is actually
text intermixed with various sorts of formatting commands. If we want
to make sense of what we read in, we need to know a bit about that
formatting.

8.2 HTML

When you surf the web, you are using your browser to retrieve data from other
computers. That data can be in a variety of formats. For example, you can
retrieve pictures, music, movies, pdf documents, etc.

You most commonly see text documents formatted using HTML or hypertext
markup language. Following is an extremely simple example of what such a
document might look like behind the scenes:

<!DOCTYPE html>
<html>
<head>
<title>a title</title>
</head>
<body>
<hl>a heading</hl>
<p>content</p>
</body>
</html>

Such a document, however, doesn’t display like that in your web browser.
Rather, all the things in angled brackets are invisible instructions for how
your browser should display what. The page just shown might display like
this:

8.2 HTML 169

eoe Q, Search or enter website & th o

i GyrA gpc fb gt bt twitter news Duo Netflix Golwg360 S4C » [+

a heading

content

HTML is built around tags, instructions to your web browser that are marked
with angled brackets. For example, <p> marks a paragraph, marks the
end of a span of emphasized text, etc.

Those tags may or may not come in pairs. For example, in the example
above, the document declaration at the beginning that indicates that the doc-
ument is written in HTML (version 5) is unpaired. On the other hand, the
tags marking the head of the document <head> and </head> are paired.
When tags are paired, they typically have that structure; the opening tag is
marked simply with angled brackets, and the closing tag has angled brackets
and a slash after the left bracket. In the example above, we’ve indented lines to
show this structure more clearly, but unlike in Python, this indentation is not
required.

Tags can also have attributes, additional information specified in the tag. For
example, a hyperlink, text that you can click to go to a different web page, has
this structure:

Here is a link.

Go
to Google.

That was a link.

Here there is a paired tag a with an opening and a closing tag. The opening tag
has an attribute hre £, which is specified for a web address. This might display
like this:

170 Internet Data

a8e <> 3 Search or enler website & th| 8 >

B GwrA gee To oL bl twitler news Due Nellik Golwg30 Sac 33 |4

Here is a link. Go to Google. That was a link.

Clicking on the highlighted text would open the specified page.

The general structure of a page marked up with HTML is otherwise a little
underdetermined — a little wild west. There are two reasons for this. First, there
are a number of versions of HTML in use on the web, and they do not all have
the same requirements. Second, individual web browsers sometimes allow for
browser-specific tags, or their own special interpretation of tags in general use.
Our remarks here then should be taken as strongly qualified.

As exemplified above, an HTML document can begin with a document
declaration. It may then delimit the entire remaining document with the tags
<html>...</html>. The document is typically further broken up into two
parts: the head and the body, which are marked with <head>...</head>
and <body>...</body> respectively. The head of the document includes
metadata about the document, the title, javascript code, color and formatting
information, etc. The body of the document includes the text with various sorts
of markup to structure the text or format spans of text.

We can’t cover all the formatting possibilities, but here are some of the main
ones.

Headings Documents can include formatted section headings at different
levels, <h1>, <h2>, <h3>, etc. These occur in pairs: <hl>...</h1>.

Paragraphs Paragraphs are marked with <p>...</p>. Here the closing
tag is not required. Line breaks can be marked with the unpaired tag
.

Lists There are various sorts of lists: ordered lists <o1>...</01> and
unordered lists List items are marked with <1i>...</11i>.
The list item tag need not be paired.

Formatting Text can be formatted in several ways. There is spe-
cific formatting that says precisely how the text is to be formatted, e.g.,
italic <i>...</i> or boldface There is also logical format-
ting where the code leaves it up to the browser how to display the text, e.g.,
... or ... (emphatic).

8.2 HTML 171

Here is a simple HTML document that includes many of these formats:

<!DOCTYPE html>
<html>
<head>
<title>Here's a title</title>
</head>
<body>
<hl>Some examples</hl>
<h2>Text chunks</h2>
<p>This is a paragraph.</p>
<p>This is another paragraph.

with a break in the middle.</p>
<h2>Lists and formatting</h2>

Some strong text.</1li>
Some bold text.
Some emphasized text.
Some <i>italic</i> text.

</body>
</html>

In my own browser, the preceding code displays as follows:

LN] il U sersmammend Dol 2 ol @0 -

Hi Gud gec oot bl imitter rews Dug Netffx Golwgdgd 3+

Some examples

Text chunks
This is a paragraph.

This is another paragraph.
with a break in the middle.

Lists and formatting

1. Some strong text.

2. Some bold text.

3. Some emphasized text.
4. Some italic text.

172 Internet Data

Notice how the settings for my browser render strong text as bold and empha-
sized text as italic. Your browser may display these differently.

Finally, web pages can be dynamic, rendered differently depending on
day, time, location or browser of the user, etc. On the host side, this is
often done with programming languages like php, but since this is han-
dled on the hosting machine, you won’t see this code. On the other hand,
dynamic content can be rendered with javascript on the client side,
which means that you can often find javascript code in webpages you
download.

8.3 Parsing HTML

If you collect data via the web, you will most often be collecting data from text
pages marked up with HTML. It is then necessary to remove or translate some
or all of the markup.

How you do that depends tremendously on your goals. If all you want is the
words on the page and you don’t care about formatting or discourse or syntactic
breaks, simply stripping the HTML may suffice. On the other hand, if you are
interested in the larger structure of the webpage — where the section breaks are,
the difference between line breaks, sentence breaks, and paragraph breaks —
then you can’t simply remove the HTML.

Let’s assume, for convenience, that you want to remove the HTML. A priori,
the simplest thing to do is to write code yourself to remove it. The code files
for the text include my own webpage downloaded as hammond.html. For
convenience, we will operate with this local file.

First, we make sure we can actually open and read the file:

f = open('hammond.html', 'r")
t = f.read()

f.close()

print (t)

web5.py

If you run this program, you’ll see that my own webpage is not exactly in ortho-
dox format. For example, it does not begin with a document declaration. In
addition, the head of the document does not terminate with </head>. There
are many other issues here as well. For example, notice that some of the tags
are capitalized and others are not. Our code for stripping and translating HTML
must accommodate these sorts of issues.

Let’s first remove everything up to the body of the page.

8.3 Parsing HTML 173

import re

#open local file

f = open('hammond.html', "'r")

t = f.read() #read whole thing in
f.close() #close the stream

#do a multi-line substitution, deleting
#everything up to the body of the page

t = re.sub('".*<body>"',"'",t,flags=re.I|re.S)
print (t) #print the result

web6.py

Here we are matching . against any character including a line return, so we
must use the flag re . S. We are also anticipating that some tags are capitalized
and some not, so we use re. I for that. As already noted, when we use both
flags, they must be joined with | .

To remove all remaining tags, we again use re.sub ().

import re

#open local page

f = open('hammond.html', "'r")

t = f.read() #read it all 1in

f.close() #close file stream
#eliminate header up to body of page

t = re.sub('".*<body>"',"',t,flags=re.I|re.S)
#remove all tags

t = re.sub('<[">]*>"," '",t,flags=re.I|re.S)
print (t) #print what's left
web7.py

Here we replace tags with spaces, which generally works, but running the pro-
gram shows that this sometimes puts spaces where they shouldn’t be. If we
were removing punctuation later, this would not be a problem.

Another issue with this code is that it seems to leave the string —-> scat-
tered about the page. This is the right side of an HTML comment. Comments in
HTML are of the form <! -—. . . ——> and it looks like the page source includes
things like<!--......--> where an HTML tag occurs inside a com-
ment, and which our code above parses incorrectly. The following code gets at
least some of these.

174 Internet Data

import re

#open local webpage
f = open('hammond.html', "r")
t = f.read() #read it all 1in
f.close() #close file stream
#get rid of header
t = re.sub("'".*<body>',"',t,flags=re.I|re.S)
#get rid of (at least some) html comments
t = re.sub(
<= =] F >, T, flags=re.I|re.S
)

#get rid of at least some tags

t = re.sub('<[">]*>"," ",t,flags=re.Il|re.S)
print (t) #print what remains
web8.py

This works better, but still doesn’t get all cases.

We can keep tweaking this code to do better, but the lesson should be clear:
it is hard to accurately and exactly translate or strip HTML code. If you want to
write the code to do that yourself, you must pay special attention to why you are
stripping HTML, so that you can focus your efforts on removing or translating
what really needs to be removed or translated. You must also ultimately be
prepared for a certain amount of noise in your data.

There is another way to go here, though. There are existing modules for
parsing HTML. These are also not perfect, but they can often be a lot closer to
perfect that you or I might have patience for!

One very common solution in Python is Beautiful Soup,* a free open-source
module for Python for parsing and manipulating HTML. You have to install it
yourself, but once installed, it can be called like any other module. The mod-
ule is called bs 4 and the relevant function is BeautifulSoup (). What that
does is parse the HTML and build a document model. This is a treelike rep-
resentation of the HTML document that you can extract elements from easily.
The following code exemplifies:

#import for reading urls
import urllib.request

#import for parsing html

from bs4 import BeautifulSoup

2 www.crummy.com/software/BeautifulSoup/

www.crummy.com/software/BeautifulSoup/

8.4 Parallelism 175

#non-local page this time

link = "http://www.u.arizona.edu/~hammond/"
#connect to that page

f = urllib.request.urlopen (link)

myfile = f.read() #read it all in
#build a document model

soup = BeautifulSoup(myfile, 'html.parser'")

print (myfile) #print page verbatim
print (soup.prettify()) #pretty-print html
print (soup.get text()) #extract the text

#got through all the hyperlinks...
for link in soup.find all('a'):
#...and print them
print (link.get ('href'))

web9.py

Here we read in a web page and then parse it with BeautifulSoup (). We
can then print a pretty version of it with prettify (), extract the text with
get text (), or find all instances of a tag with £ind all (). Each tag
found is its own treelike representation, so we can continue to call methods on
them. In the example at hand, we call the get () method to extract the text of
the href attribute for the a tags.

Notice incidentally that the get text () method does a better job of
dealing with HTML comments in this example than the code we wrote
above.

8.4 Parallelism

Once you start using web data as input in your program, you quickly run into a
problem. When your program requests a web page, it relies on the speed of the
network and the other computer you are requesting the page from. If you are
getting a lot of web pages, this can really slow down your program. Here’s an
example of a program that shows this effect:

#import for timing your code
import time

#import for reading webpages

from urllib.request import urlopen

def mytime () : #return time in milliseconds
return round(time.time () * 1000)

176 Internet Data

def myget (url): #read url and time that read
start = mytime ()

data = urlopen (url, timeout=5) .read () [:50]
result = {"url": url, "data": data}

now = str(mytime () - start)

print (url + ": " 4+ now + "ms")

return result

#a random list of urls

urls = ['http://www.google.com/"',
'http://www.yahoo.com/"',
'"http://golwg360.cymru/newyddion’',
'https://news.google.com/news',
'https://tartarus.org/martin/PorterStemmer/"',
'https://en.wikipedia.org/wiki/Main Page',
'"http://www.u.arizona.edu']

#start overall timing
start = mytime ()
results = [] #list to collect results
#go through urls 1 by 1
for i in range(len(urls)):
#get url and text read
result = myget (urls[i])
#append those to results
results.append (result)
#get end time

now = str(mytime() - start)

#print overall time

print ("Total = " 4+ now + " ms\n")
webl10.py

This program imports from the ur11ib. request module to get access to
the urlopen () function. It also uses the time () function from the time
module, which returns the current time (calculated from a specific and irrele-
vant time of origin). We can use the t ime () function to determine how long
it takes our code to run. First, we define a function mytime (), which gets the
current time in milliseconds. We also define a function myget (), which takes
aurl as an argument, reads the first 50 characters of that file, and then prints out
how long it took to get that done. Note how the urlopen () function takes an
additional argument that specifies how long it will wait for a webpage before

8.4 Parallelism 177

moving on. We then define a fairly random list of urls and run through them
withmyget (). We also return the total amount of time for the whole program
to run.

If you run this program, you’ll see that the total run time is roughly the sum
of the time it takes to retrieve each page. This is perhaps unsurprising. Notice,
though, that most of the time your computer is simply waiting for the webpages
to be delivered. That is, for each request, your program sends the request and
then sits idle while it waits for the other machine to send its response.

A more efficient system would have your computer do something else while
waiting for the other computer to respond.

A related issue is that most modern computers have a multiprocessor archi-
tecture, which means that at the processing level, setting aside hardware
bottlenecks, they can do more than one thing at once.

We don’t want to get into the nitty gritty of processes, threads, paral-
lelism, etc., but we can do substantially better if we take advantage of these
ideas.> The basic logic is that, with the multiprocessing module, you
can do more than one thing at once, depending on your own computer
hardware.

The following bit of code shows this:

import time #for timing info
#to read webpages

from urllib.request import urlopen
#to do more than one thing at once
from multiprocessing import Pool

#current time in milliseconds
def mytime () :

return round(time.time () * 1000)

def myget (url): #50 characters of a webpage
start = mytime ()
data = urlopen (url, timeout=5) .read() [:50]
result = {"url": url, "data": data}
now = str(mytime() - start)
print (url + ": " + now + "ms")

return result

#some random urls
urls = ['http://www.google.com/',

3 We return to this topic in Chapter 11.

178 Internet Data

'http://www.yahoo.com/",
'"http://golwg360.cymru/newyddion’',
'https://news.google.com/news',
'https://tartarus.org/martin/PorterStemmer/"',
'https://en.wikipedia.org/wiki/Main Page',
'"http://www.u.arizona.edu']

#print urls in order accessed
for i in range(len(urls)):

print (i+1,"': '",urls([i],sep="'")
print ()
mypool = Pool () #multiple processes

start = mytime () #start the clock
#separate process for each url
results = mypool.map (myget, urls)
#print total elapsed

now = str(mytime() - start)
print ("Total = " 4+ now + " ms\n")
webl1.py

We import from the t ime module so we can keep track of how long the code
takes to run. We import fromurllib.request to open and read web pages.
Finally, we import from multiprocessing so we can do more than one
thing at a time.

We define the same functions mytime () and myget () asinwebl0.py
We also use the same urls. We now print out the urls in order.

The next part of the code handles the parallelism. First, we create a Pool
that keeps track of how many things we can do at once. This will vary depend-
ing on what kind of machine you run this on. The relevant bit of code is
mypool.map (), which applies myget () to all the urls. Each of these appli-
cations of myget () proceeds in parallel, so if any page is slow to load, the
other requests proceed unaffected. Since myget () prints out its run time as
it finishes, you can see each process terminate. Finally, the program prints out
the total run time.

If you run the code several times, you’ll see that the total run time varies as a
function of the speed of the internet, your connection, and the other machines
you are interacting with.

You should see immediately that this program runs much more quickly than
the web10.py program. You should also see that the run time for this code

8.5 Unicode and Text Encoding 179

is not the sum of the length of the individual calls to myget (). How much
faster it runs than that depends on your own computational resources, but the
best-case scenario is that total run time is roughly equivalent to the slowest call
tomyget ().

Finally, you should also see that the order in which each call to myget ()
terminates is not necessarily the same order as in the initial list. Rather, assum-
ing they all run in parallel, the order in which they finish is based on how
long each one takes to complete. If your resources are limited, then you
won’t be able to sustain as many parallel processes, and this may not be quite
true.

8.5 Unicode and Text Encoding

As linguists, we are often concerned with textual representations of language.
The problem is that computers don’t really process text directly. Rather, for
computers, text is represented internally as numbers. This has consequences
for us as programmers, and we deal with them in this section.

In the next sections, we discuss generally how characters are represented
internally and the major character encodings you may run across. We then
discuss methods for reading, writing, and converting different encodings.
Finally, we discuss methods for deducing the encoding of some document or
resource.

As above, the computer represents characters internally as numbers. In turn,
numbers are represented as binary, or base-2, numbers.

Decimal Binary

0

1

10

11
100
101
110
111
1000
1001
1010

O O 0NN R W~ O

[u—

Thus, we might imagine a system like the following for representing letters:

180 Internet Data

Decimal Binary Letters

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
0 1010

N = 50 -0 &0 C o

1

This is fine for individual letters, but presents a problem when we get to
letter sequences. Using the hypothetical encoding above, a sequence like 101
is multiply ambiguous:

101 f
1+0+1 bab
10+1 cb

The problem is that the edges between encoded letters are not marked. One
solution is to pad the numbers so they are of the same width, say, like
this:

Decimal Binary Padded Letters

0 0 0000 a
1 1 0001 b
2 10 0010 c
3 11 0011 d
4 100 0100 e
5 101 0101 f
6 110 0110 g
7 111 0111 h
8 1000 1000 i
9 1001 1001 j
10 1010 1010 k

Doing this, the three interpretations for 101 above would be disambiguated like
this:

8.5 Unicode and Text Encoding 181

ambiguous letter sequence unambiguous

101 f 0101
1+0+1 bab 000100000001
10+1 cb 00100001

The trick here is that we know every character has exactly four digits.
This solution requires that we know how much padding needs to be added.
In other words, we need to calculate from a finite set of characters what the
“widest” binary number we will need is. From that, we can calculate how much
padding to add. If we only needed to represent the letters above, we know that
the biggest binary number we will need is 1010: four digits wide. Smaller
numbers are padded accordingly. We refer to each of these digit slots as a
bit.

When transmitting data encoded like this it is possible for errors to occur. For
example, imagine you’ve got an encoding where every character is four digits
wide, but the string of digits you’re looking at is 43 digits wide. Something
is wrong, but how do you find where the problem is? One strategy to detect
errors is to suffix one more slot on each letter that helps detect errors: a parity
bit.

One of the earliest approaches to character encoding is ASCII, and it has
essentially this structure. It used 7 bits to encode each letter (plus an additional
parity bit). An 8-bit unit of this sort is referred to as a byte.

If you do the math, you will see that with only seven binary bits to encode
letters, this allows for a maximum of 27 = 128 distinct characters. While this
may suffice for a language like English, it doesn’t do for all the characters of all
the languages of the world. It certainly doesn’t accommodate documents with
multiple character sets.

Historically, at this point, we enter the wild west of character encoding. A
huge variety of different approaches were adopted to deal with character sets
beyond the 128 that ASCII could accommodate. Eventually, the Unicode stan-
dard was proposed, a uniform numerical value for every character in virtually
every language. A growing majority of web resources that you will encounter
make use of this standard.

There is an obvious issue, however. There are well over a million distinct
characters in the Unicode standard. This means that if you want distinct bitwise
representations of a constant width, each character will have to be substantially
“wider” than 8 bits (1 byte).

There are two broad solutions to this that you will encounter. The first is
UTF-16 (Unicode Transformation Format), an encoding that bites the bullet
and encodes (almost) every character with 16 bits (2 bytes).

The other more common solution is UTF-8. This approach encodes each
character with a variable number of bytes: 1 to 4. The trick is that each byte is

182 Internet Data

marked so that you can tell whether it is the start of some new multibyte char-
acter or a continuation of the multibyte sequence. The basic idea is as follows,
where x indicates a bit that can be used for character values:

Byte 1 Byte 2 Byte 3 Byte 4

OXXXXXXX

110xxxxx 10XXXXXX

1110xxxx 10xxxxxx 10XXXXXX

4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

W N~

The really interesting part of UTF-8, however, is that the one-byte case is
identical to ASCII. That is, any ASCII-encoded text is a legal subcase of UTF-8.
The most frequent encoding seen on the web today is UTF-8.

8.6 Bytes and Strings

Python is natively UTF-8. What this means is that file IO and the interactive
environment handle UTF-8 characters directly. For example, we might enter
the following in the interactive environment:

>>> x 'pycckui 93bIk’
>>> y = "

>>> len (X)

12

>>> len (y)

2

Note that the Russian and Chinese characters are displayed properly and their
lengths are calculated correctly. This also works from a program file:

X = 'pyccKuy A3HK'

y = |[|1'>‘L‘v

print(x,': ',len(x),sep="")

print(y,"': ',len(y),sep="")
webl12.py

Similarly, if a file is encoded as UTF-8, it can be read from directly. The
following program exemplifies:

f = open('enc/russian.txt','r")
r = f.read()
f.close()

print ('Some Russian:',r,end="")

8.6 Bytes and Strings 183

|l

f = open('enc/chinese.txt','r'")
c = f.read()
f.close()

print ('Some Chinese:',c,end="")

web13.py

In this case, the two files read from contain Russian and Chinese characters
and are both encoded as UTF-8. (These files are included among the text
program files.)

On the other hand, if a file is encoded in some other way, this will fail. Here
we try to read Chinese from a file encoded in the Big5 encoding, and it fails.

f = open('enc/cb5.txt','r")
f.read()

UnicodeDecodeError

A similar problem occurs if we try to read Russian from a file encoded in
Windows-1251 encoding:

f = open('enc/rl251.txt','r")
f.read()

UnicodeDecodeError

To read files in other encodings like this, we must first read in the raw bytes
and then explicitly convert the encodings using the bytes method decode () .
The following program exemplifies:

#open a file to read bytes

f = open('enc/cb5.txt', 'rb")

c = f.read() #read the bytes
#convert from big5 to utf8 characters

c = c.decode('bigh")

print ('Chinese: ', c) #print characters

#open a file to read bytes

f = open('enc/rl1251.txt', "rb'")

r = f.read() #read the bytes
#convdert from windows-1251 to utf8

r = r.decode('1251")

print ('Russian:', r) #print characters

webl4.py

184 Internet Data

In both cases, we invoke the open () function with the argument 'rb' so
that we read raw bytes. The read () command is then executed without argu-
ments. To display these strings we must then convert from bytes to UTF-§,
and to do that we must explicitly convert from the relevant encodings with the
decode () method.

If you want to write to a file in an encoding other than UTF-§, you must
also use raw bytes. The second argument in this case is 'wb '. The following
program writes out strings in UTF-8 converted to Windows-1251 and Big5
encodings using the bytes method encode ().

r = 'pycckuy SG3BIK' #a string in Russian
#open a connection to write bytes

f = open('enc/routl251.txt', "wb')

#write bytes in windows-1251
f.write(r.encode ('1251"))

f.close() #close connection

#a string in chinese

c = "

#open a connection to write bytes
f = open('enc/coutbb.txt", "wb")

#write bytes in bigh

f.write(c.encode ('bigb"))
f.close() #close connection

webl5.py

8.7 What Is the Encoding?

The biggest challenge to working with character encodings is that you may
have a document you want to read in and simply not know what the encoding
is. In this section, we discuss ways to deal with this.

The first “solution” to the encoding problem is to make sure that it’s really
a problem for you! In Section 8.8 we develop a webcrawler program. That
program crawls the web looking for webpages in Welsh. It includes a function
to do language identification that assumes the page is encoded in UTF-8. A
side effect of this is that web pages in other encodings are assumed to be not in
Welsh. This probably misses some pages that are in Welsh, but it also simplifies
the language identification problem. Pages in other encodings are taken to be
not in Welsh, and that’s generally true.

The point is that — for that application — we don’t need to figure out what
encoding a page is in.

8.7 What Is the Encoding? 185

Another option for web pages specifically is that the encoding is specified
in the document itself. In more recent versions of HTML this occurs in the
<meta> tag. For example, the following in the head of an HTML document
indicates that the document is encoded in UTF-8§.

<head>
<meta charset="UTF-8">
</head>

Unfortunately, this is not a required part of every HTML page. In addition, this
doesn’t help with determining the encoding of a document that is not in HTML.

Another solution is to attempt to figure out what the encoding is. The basic
logic is that there are only a finite number of encodings out there, and they have
specific structures in terms of what kinds of bytes and byte sequences occur.
In addition, certain encodings are tailored to specific languages. Thus we can
examine a document to see what encodings are possible and whether the text
produced is consistent with the languages we expect to see.

One module that does this is chardet (not part of the default Python
distribution). If we run this on our Russian file, it succeeds:

>>> import chardet

>>> f = open('enc/r1251.txt',"rb")
>>> r = f.read()

>>> chardet.detect (r)

{'language': 'Russian',
'encoding': 'windows-1251",
'confidence': 0.99}

Here we import the chardet module and invoke its detect () function on
bytes read from the short Russian file. That function returns a dictionary with
three records indicating language, encoding, and its confidence in determining
those.

This technique fails with our Chinese file:

>>> import chardet
>>> f = open('enc/cb5.txt', "rb'")
>>> ¢ = f.read()
>>> chardet.detect (c)
{'language': '',
'encoding': 'IS0O-8859-1",
'confidence': 0.73}

186 Internet Data

Presumably this is because the Chinese file is only two characters long and
does not provide enough information for the detect () function. If we do
this with longer downloaded web pages in the same languages and encodings,
the function is successful in both cases:

>>> f = open('enc/rnd.html", 'rb")
>>> r f.read()
>>> chardet.detect (r)
{'language': 'Russian',
'encoding': 'windows-1251",
'confidence': 0.9596062000298741}

>>> f = open('enc/dh.html', 'rb")

>>> ¢ f.read()

>>> chardet.detect (c)

{'"language': 'Chinese',
'encoding': 'Bigb',
'confidence': 0.99}

The bs4 module also includes a method for guessing the encoding of a
document. This method works in conjunction with chardet and filters away
HTML markup to make it more effective. Using the same downloaded HTML
pages as above, we get:

>>> from bs4 import UnicodeDammit
>>> dr = UnicodeDammit (r)

>>> dr.original encoding
'windows-1251"

>>> dc = UnicodeDammit (c)

>>> dc.original encoding

'bigh’

8.8 A Webcrawler

In this section we program a simple webcrawler: a program that searches the
web for webpages of interest and collects relevant data. In our case, we will
search for webpages in Welsh and save the text.

As usual, we build our program up in stepwise fashion to model good
programming habits. Let’s start by reading in one page from a Welsh news
site.

8.8 A Webcrawler 187

from urllib.request import urlopen

#welsh news site

url = 'http://golwg360.cymru’
w = urlopen (url, timeout=5) #open connection
t = w.read() #read whole page

#print number of words
print (len(t.split()))

web16.py

What we will ultimately want is a program that iterates through a list of urls.
If a webpage satisfies some criterion — in this case, say, that it’s in Welsh — then
we save the text and add the links from that page to our list of links. We then
continue. Let’s add this general logic to our program.

from urllib.request import urlopen

#seed for 1list of urls

urls = ['http://golwg360.cymru’,
'http://www.u.arizona.edu/~hammond']

res = [] #results

i=1 #iterate through list

while urls and i < 100:
u = urls.pop (0) #open/read url
w = urlopen (u, timeout=5)
t = w.read()
#placeholder: count words

print(i,': ',len(t.split()),sep="")
i +=1

#check i1f page is in Welsh

if True:

res.append([u, t])
#extract links and append

webl17.py

We converted our url to a list of two urls. I’ve deliberately put one clearly Welsh
url in the list and one that is clearly not Welsh. We’ve also created a list to store
the results of our crawling. We then iterate through the list as long as there are
urls on the list and our counter doesn’t reach 100. We will ultimately be adding
links to the list and then removing them as we work through them. We need to

188 Internet Data

check at each iteration that there are actually items still on the list. We add the
counter so that the program stops at some point.

We then go through and read each page on our list. In this version of the
program we print the length of the page, but that’s just a placeholder. We will
ultimately be checking each page to see if it’s in Welsh. If it is, we save it and
add its links to the list of urls.

Next, let’s use BeautifulSoup to extract the text and the links.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#seed for list of urls
urls = ['http://golwg360.cymru',
'http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through 1list
while urls and i < 100:

u = urls.pop (0) #open/read url

w = urlopen (u, timeout=bH)

h = w.read()

#parse html
s = BeautifulSoup (h, "'html.parser")
t = s.body.get text()

i +=1
#check if page is in Welsh
if True:
res.append([u, t])
print(u,': ',len(t.split()),sep="")

#extract links
links = s.find all('a")
for 1 in links:
print ('\t',l.get ("href'))

webl18.py

We will ultimately want to follow links, so we need to be mindful of
what kind of links we see here. There are two distinctions of interest. First,
we have relative and absolute links. Absolute links begin with http://
or https:// and relative links do not. Relative links are, as you might
expect, urls relative to the current page. For example, if we are on a page
http://www.where.edu and we find the relative link /wales.html,

http://
https://
http://www.where.edu
http://wales.html

8.8 A Webcrawler 189

we would need to convertitto http://www.where.edu/wales.html.
Thus, if we want to follow relative links, we will need to convert them to
absolute links.

Another kind of link is a local link, which can occur in either an abso-
lute or a relative link. These include the # symbol and might look like
wales.htmlf#ymaorhttp://www.where.edu#lle. These link to the
same pages as the two preceding links, but position the browser window in spe-
cific locations. If we are interested only in the content of web pages, we should
prune the local link information.

The next version of the code strips out local links and converts relative links
to absolute links.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#fix relative and local 1links
def fixlinks(u,1l):

res = re.sub('"#.*$',"", 1)
m = re.search('"http', res)
if m:

return res
res =u + '/'" + res
res = re.sub (' ([~:1/)/+',"\\1"', res)
return res

#seed for 1list of urls

urls = ['http://golwg360.cymru’,
'http://www.u.arizona.edu/~hammond']

res = [] #results

i =1 #iterate through list

while urls and 1 < 100:

u = urls.pop(0) #open/read url
w = urlopen (u, timeout=5)
h = w.read()

#parse html
s = BeautifulSoup (h, "html.parser"')
t = s.body.get text()
i+=1
#check if page is in Welsh
if True:
res.append([u,t])

http://www.where.edu/wales.html
http://wales.html#yma
http://www.where.edu#lle

190 Internet Data

print(u,': ',len(t.split()),sep="")
#extract links
links = s.find all('a')
for 1 in links:
link = l.get('href')
if link:
print ('\t',link)
fixedlink = fixlinks (u, link)
print ("\t\t', fixedlink)

web19.py

The next issue to sort out is what happens if a link doesn’t work or times
out. The code as currently written stops if that occurs. What would be better
is if the code simply skips over bad links. We address this with a new control
structure try/except. Here commands in the try block are executed. If no
error occurs, the program continues. If an error does occur, the commands in
the except block apply. Here’s a simple example:

print ('Before the first try block:'")
try:

print ('\tthree' + 3)
except:

print ("\tThat math doesn't work.")
print ('Before the second try block:'")
try:

print ("\tthree' + ' + 3.7)
except:

print ("That math doesn't work.")
print ('All done.")

web20.py

Here the first t ry block fails because + is not defined for strings and numbers
together and its except block applies. The second try block does succeed,
so its except block does not apply.

Let’s now use this in our webcrawler code:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

8.8 A Webcrawler 191

#fix relative and local 1links
def fixlinks(u,1l):

res = re.sub("#.*s','",1)
m = re.search('"http',res)
if m:

return res
res =u + '/'" + res
res = re.sub (' ([~:]1/)/+"',"\\1"', res)
return res

#seed for 1list of urls

urls = ['http://golwg360.cymru',
'http://bad',
'http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through 1list
while urls and i < 100:
u = urls.pop (0) #open/read url
i+=1
try:
w = urlopen (u, timeout=5)
h = w.read()
except:
print ('bad url:",u)
continue

#parse html

s = BeautifulSoup (h, "html.parser')
t = s.body.get text()

#check if the page is in Welsh

if True:
res.append ([u, t])
print(u,': ',len(t.split()),sep='")

#extract links
links = s.find all('a"')
for 1 in links:
link = l.get('href'")
if link:
print ('\t',link)
fixedlink = fixlinks (u,link)
print ("\t\t', fixedlink)

web21.py

192 Internet Data

Here if the url fails to open or we can’t read from it, we print out the name of
the url and go on to the next one.

Another issue we have to face is that we may encounter nontextual data.
Sometimes it will be apparent from the url, i.e., it ends in . au, . zip, or some
other suffix. Sometimes, however, it will not. To accommodate this, we use
the same conversion string conversion utility as above: decode ('UTF-8").
This will succeed if the webpage is appropriate text. The following version of
the code adds this.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#fix relative and local links
def fixlinks(u,1l):
res = re.sub('#.*5',"",1)
m = re.search('”“http',res)
if m:
return res
res =u + '/' + res
res = re.sub (' ([":]/)/+","\\1', res)
return res

#seed for list of urls

urls = ['http://golwg360.cymru',

'http://bad',
'http://www.u.arizona.edu/~hammond/greeting.au’',
'"http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through 1list
while urls and i < 100:
u = urls.pop (0) #open/read url
i 4+=1
try:
w = urlopen (u, timeout=5)

h = w.read()
h = h.decode ('UTE-8")

except:
print ('bad url:",u)
continue

#parse html
s = BeautifulSoup (h, "html.parser')

8.8 A Webcrawler 193

t = s.body.get text()
#check if the page is in Welsh

if True:
res.append ([u,t])
print(u,': ',len(t.split()),sep="")

print ('Stored pages:',len(res))
web22.py

Our next step is to implement the check for whether the page is in Welsh.
There are sophisticated ways to do this, but we will use an intuitive simple
strategy. First, we calculate what are the most common words of Welsh. We then
score documents by what percentage of the document are potentially instances
of these words.

First, we use the CEG corpus* to find the 20 most common word forms of
Welsh. We set aside forms marked with apostrophes and forms with accents.

yn y i a 0
el ar yr bod ac
am wedi hi ond eu

fel na un ni mewn

We now write a function that computes what percentage of a webpage’s words
are on this list. Our goal is to find a separation point between pages in Welsh
and pages in other languages.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

welshwords = ['yn','y','1','a','o",
'ei', 'ar','yr', 'bod', 'ac',

'am', 'wedi', 'hi', 'ond', 'eu',
'fel','na','un', 'ni', "'mewn']

def welsh(u,t):

n = t.lower ()
= re.sub('["a-z]"'," '",n)
= re.sub (' +', " T, n)
wds = n.split()
total = len (wds)

e}

4 Ellis, N. C., C. O’Dochartaigh, W. Hicks, M. Morgan, and N. Laporte. 2001. Cronfa
Electroneg o Gymraeg (CEG), www .bangor.ac.uk/canolfanbedwyr/ceg.php.en

www.bangor.ac.uk/canolfanbedwyr/ceg.php.en

Internet Data

wcount = 0
for w in wds:
if w in welshwords:
wcount += 1
percent = wcount/total
print (u, "\n\t',wcount,'/",total, \
' ('",percent, ") ",sep="")
return True

#fix relative and local 1links
def fixlinks(u,1):
res = re.sub("#.*5',"", 1)
m = re.search('*http', res)
if m:
return res
res =u + '"/' + res
res = re.sub (' ([~:]/)/+"',"\\1', res)
return res

#seed for list of urls

urls = ['http://golwg360.cymru',
'https://cy.wikisource.org/wiki/Hafan',
'http://haciaith.com',
'http://techiaith.cymru',
'"https://www.bbc.co.uk/cymru',
'https://www.yahoo.com',
'https://news.google.com/news/"',
'https://en.wikipedia.org/wiki/Main Page',
'http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through list
while urls and 1 < 100:
u = urls.pop (0) #open/read url
i 4=1
try:
w = urlopen (u, timeout=5)
h = w.read()
h = h.decode ('UTE-8")
except:
print ('bad url:"',u)
continue

#parse html

8.8 A Webcrawler 195

s = BeautifulSoup (h, 'html.parser")
t = s.get text()
#check if the page is in Welsh
if welsh(u,t):
res.append([u,t])
print ('\t',len(t.split()),sep="")
print ('Stored pages:',len(res))

web23.py

We’ve changed our list of urls here so that we have pages we know are in
Welsh and others that we know are in English. What we see when we run this is
that when the words above comprise 9 percent or more of the words on the page,
we can be pretty sure the page is in Welsh. This misses some pages, but it’s a
reasonable starting point. The following code alters the welsh () function to
do this.

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#most frequent Welsh words
welshwords = ['yn','y',"1","'a','o",
'ei ,'yr','bod', 'ac',

'am', 'wedi', 'hi', 'ond', 'eu',

'fel', 'na', 'un',' , 'mewn ']

', 'ar
]

ni

#function to test for Welsh
def welsh(u,t):

n = t.lower ()

n = re.sub('["a-z]"'," ',n)
n = re.sub (' +', " ', n)
wds = n.split()

total = len (wds)

wcount = 0

for w in wds:
if w in welshwords:
wcount += 1
percent = wcount/total
if percent > .08:
return True
else:
return False

196 Internet Data

#fix relative and local 1links
def fixlinks(u,1):
res = re.sub('"#.*s',"'",1)
m = re.search('"http',res)
if m:
return res
res =u + '/' + res
res = re.sub (' ([~:]1/)/+"',"\\1',res)
return res

#seed for list of urls

urls = ['http://golwg360.cymru',
'https://cy.wikisource.org/wiki/Hafan',
'http://haciaith.com',
'http://techiaith.cymru',
'"https://www.bbc.co.uk/cymru',
'https://www.yahoo.com',
'https://news.google.com/news/ ",
'https://en.wikipedia.org/wiki/Main Page',
'"http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through 1ist
while urls and 1 < 100:
u = urls.pop (0) #open/read url
i+=1
try:
w = urlopen (u, timeout=5)
h = w.read()
h = h.decode ('UTE-8")
except:
print ('bad url:"',u)
continue

#parse html
s = BeautifulSoup (h, 'html.parser")
t = s.get text()
#check if page is in Welsh
if welsh(u,t):
res.append([u,t])
print(u,': ',len(t.split()),sep='")
print ('Stored pages:',len(res))

web24.py

8.8 A Webcrawler 197

The next step is to add urls to our list if the page they are on is in Welsh. The
following code does this:

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#most frequent Welsh words
welshwords = ['yn','y',"'1",'a','o",
'ei', 'ar', 'yr', 'bod', 'ac',
'am', 'wedi', 'hi', 'ond', 'eu',

'fel','na','un', 'ni', 'mewn']

#function to test for Welsh
def welsh(u,t):

n = t.lower()
n = re.sub('["a-z]"'," '",n)
n =re.sub(' +',' ',n)

wds = n.split()
total = len (wds)
wcount = 0
for w in wds:
if w in welshwords:
wcount += 1
percent = wcount/total
if percent > .08:
return True
else:
return False

#fix relative and local links
def fixlinks(u,1):
res = re.sub("#.*5',"",1)
m = re.search('”“http',res)
if m:
return res
res = u + '/'" 4+ res
res = re.sub (' ([*:1/)/+","\\1", res)
return res

#seed for list of urls
urls = ['http://golwg360.cymru',

198 Internet Data

'https://cy.wikisource.org/wiki/Hafan',
'http://haciaith.com’',
'http://techiaith.cymru',
'https://www.bbc.co.uk/cymru',
'https://www.yahoo.com',
'https://news.google.com/news/",
'https://en.wikipedia.org/wiki/Main Page',
'"http://www.u.arizona.edu/~hammond']

res = [] #results
i=1 #iterate through list
while urls and i < 20:

u = urls.pop (0) #open/read url

i +=1

try:

w = urlopen (u, timeout=>5)
h = w.read()
h = h.decode ('UTE-8")

except:
print ('bad url:",u)
continue

#parse html
s = BeautifulSoup (h, 'html.parser")
t = s.get text()
#check if the page is in Welsh
if welsh(u,t):
res.append([u,t])
print(u,': ',len(t.split()),sep="'")
links = s.find all('a')
for 1 in links:
lu = l.get('href")
if lu:
urls.append (fixlinks (u,lu))
print ('Stored pages:',len(res))

web25.py

Notice that we must test if we were actually able to extract the href attribute
from the a tag before trying to append it to our list.

This works fine but fails in an important respect. The program so far adds
links regardless of whether they are already in the list or we have already looked
at them and popped them off the list. The following code implements these
checks.

8.8 A Webcrawler 199

from urllib.request import urlopen
from bs4 import BeautifulSoup
import re

#most frequent Welsh words
welshwords = ['yn','y',"1","a’,'o"
',V'yr', 'bod', 'ac'

'am', 'wedi', 'hi', 'ond', 'eu',
'fel','na','un', 'ni', "'mewn']

'ei', 'ar

#function to test for Welsh
def welsh(u, t):

n = t.lower ()

n re.sub('["a-z]"," ",n)
re.sub (' +',' ',n)
wds = n.split ()
total = len (wds)
wcount = 0
for w in wds:

if w in welshwords:

wcount += 1
percent = wcount/total
if percent > .08:

return True
else:

return False

n

#fix relative and local 1links
def fixlinks(u,1l):

res = re.sub('"#.*$',"", 1)
m = re.search('"http', res)
if m:

return res
res =u + '/'" + res
res = re.sub (' ([~:]1/)/+"',"\\1', res)
return res

#seed for 1list of urls

urls = ['http://golwg360.cymru',
'https://cy.wikisource.org/wiki/Hafan',
'http://haciaith.com',
'http://techiaith.cymru',

200 Internet Data

'https://www.bbc.co.uk/cymru',
'https://www.yahoo.com',
'https://news.google.com/news/ ",
'https://en.wikipedia.org/wiki/Main Page',
'http://www.u.arizona.edu/~hammond']

res = [] #results
already = [] #urls already checked
i=1 #iterate through 1list
while urls and 1 < 20:
u = urls.pop (0) #open/read url
already.append (u)
i 4=1
try:
w = urlopen (u, timeout=5)
h = w.read()
h = h.decode ('UTF-8")
except:
print ('bad url:",u)
continue

#parse html
s = BeautifulSoup (h, "html.parser')
t = s.get text()
#check if the page is in Welsh
if welsh(u,t):
res.append([u,t])
print(u,': ',len(t.split()),sep='")
links = s.find all('a')
for 1 in links:
lu = l.get('href")
if lu:
lufixed = fixlinks (u, lu)
if lu not in already \
and lu not in urls:
urls.append (lufixed)
print ('Stored pages:',len(res))

web26.py

Finally, the program must save results when it’s done. The following code adds
this feature:

from urllib.request import urlopen
from bs4 import BeautifulSoup

8.8 A Webcrawler 201

import re

#most frequent Welsh words
welshwords = ['yn','y',"'1",'a','o",
'ei', 'ar yr', 'bod', 'ac',

'am', 'wedi', 'hi', 'ond', 'eu',
'fel','na','un', 'ni', 'mewn']

1]
4

#function to test for Welsh
def welsh(u,t):
n = t.lower()
n re.sub('["a-z]"," ",n)
n = re.sub (' +', " ", n)
wds = n.split()
total = len (wds)
wcount = 0
for w in wds:
if w in welshwords:
wcount += 1
percent = wcount/total
if percent > .08:
return True
else:
return False

#fix relative and local 1links
def fixlinks(u,1l):

res = re.sub("#.*5',"",1)
m = re.search('"http',res)
if m:

return res
res = u + '/'" + res
res = re.sub (' ([~:]/)/+"',"\\1', res)
return res

#seed for list of urls

urls = ['http://golwg360.cymru’',
'https://cy.wikisource.org/wiki/Hafan',
'http://haciaith.com’',
'http://techiaith.cymru',
'https://www.bbc.co.uk/cymru',
'https://www.yahoo.com',

202 Internet Data

'https://news.google.com/news/"',
'https://en.wikipedia.org/wiki/Main Page',
'"http://www.u.arizona.edu/~hammond']

res = [] #results
already = [] #urls already checked
i=1 #iterate through 1list
while urls and 1 < 20:
u = urls.pop (0) #open/read url
already.append (u)
i+=1
try:

w = urlopen (u, timeout=5)
h = w.read()
h = h.decode ('UTEF-8")

except:
print ('bad url:"',u)
continue

#parse html
s = BeautifulSoup (h, 'html.parser")
t = s.get text()
#check if the page is in Welsh
if welsh(u,t):
res.append([u, t])
print(u,': ',len(t.split()),sep='")
links = s.find all('a')
for 1 in links:
lu = l.get('href'")
if lu:
lufixed = fixlinks (u, 1u)
if lu not in already \
and lu not in urls:
urls.append (lufixed)
print ('Stored pages:',len(res))
#save results
f = open('already.txt','w') #already
for u in already:
f.write(u+'\n'")
f.close ()
f = open('urls.txt','w") #urls
for u in urls:
f.write(u+'\n'")
f.close()

8.8 A Webcrawler 203

f = open('resuts.txt','w") #results
f.write('<results>\n")
for r in res:

.write(t+'\n'")
.write('</text>\n")

f.write('</record>\n")
f.write('</results>\n")
f.close()

f.write('<record>\n")
u = r[0]

t = r[l]
f.write('<url>\n")
f.write(u+'\n")
f.write('</url>\n'")

f

f

f

(

(

(
.write('<text>\n")

(

(

web27.py

The code simply writes the three data structures to files: urlstourls. txt,
already to already.txt, and res to results. txt. The only com-
plication is that the res list is a list of lists that we want to make easy use
of.

To allow for this we’ve written the results.txt file as an XML file.
XML is a language-independent general format for structuring data of all sorts.
The basic idea is that we have tags, much like in HTML, but the tags can be
whatever we want. In our case, we have tags for <results>: the whole file,
<record>: a url-text pair, <url>: the url, and <text>: the text of the url.
Here is a schematic view:

<results>
<record>
<url>
</url>
<text>
</text>
</record>

</results>

204

Internet Data

In fact, the bs4 module has simple functions for dealing with XML data,
which we leave as an exercise. There are, in fact, a number of other things
that can be done to improve this program, but all of them are left as

exercises.
8.9 Exercises
8.1 Augment the webcrawler code so that you can restart the system with

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

existing files. The basic idea is that you might want to add urls and
additional data.

The webcrawler is slow. Rewrite it so that it uses parallel techniques and
runs faster. This is hard!

The webcrawler is designed to search for Welsh webpages. Convert it to
a different language.

The welsh () function in the webcrawler program can be revised in
many ways. Can you come up with another approach? Design a test pro-
gram so that your new function can be compared against the one in the
text.

Write a function that takes a url as an argument and returns any items on
the page marked with the tag.

Write a function that takes a url as an argument and extracts and prints
any ordered lists marked with <o1>. Note that individual items in such a
list are marked with <11>. Also, make sure each item in the list is clearly
separated and numbered appropriately. Use BeautifulSoup to do this.
Do the same thing as in the previous exercise but without using
BeautifulSoup.

Write a function that takes a webpage in some encoding as an argument.
Your function should apply the chardet.detect () function to the
page incrementally and report back how much of the page in bytes had to
be read to reach a certain confidence level (that you specify) to identify
the encoding.

Do the same thing as in the previous exercise but use UnicodeDammit.
Which does better?

Choose a language and do some research on what encodings are typically
used for it on the web. Then find examples of each on the web.

Tweak the webcrawler program from the preceding chapter so that it
reports whether it finds the <meta charset=...> tag and what
value it returns. Your code should save this as a separate field in the XML
results file.

What special challenges occur with respect to text encoding when a lan-
guage is written right to left? Explain the problem and show how it can
be solved with Python.

8.9 Exercises 205

8.13 Web: Snoop around the web to find examples of at least one character
encoding that we have not exemplified here. Find a web page that uses the
encoding and write a program that loads the page, handles the encoding
properly, and builds and displays a concordance.

9 Objects

In this chapter we introduce the general logic and structure of object-oriented
(OO) programming. So far, we have treated programs as sequences or groups
of commands. In this chapter, we will instead treat programs as networks of
objects or things.

Some tasks really lend themselves to this sort of approach, others less so.
Regardless, OO programming forces programmers to think about their pro-
grams differently and allows for separating the different parts of a program in
a different way as well.

We first introduce the general logic of classes and objects. We then treat
the basic syntax of classes, focusing on the difference between classes and
instances of classes. We then treat the mechanism of inheritance. Finally, we
conclude with an extended example: syllabification.

9.1 General Logic

How do we go about treating a programming problem as a network of objects
rather than a sequence of commands? Let’s take a concrete example. Imagine
we want to read in some text file and parse it into sentences. Up to this point,
we might do it like this:

import re

#open and read file
f = open('alice.txt','r")
t = f.read()
f.close()
t = t[10841:] #strip header
#split into sentences
ss = re.split (' ([\.2!])",t)
i=0 #show first 10
while i < 20:

s = ss[i] + ss[i+1l] + "\n'

206

9.2 Classes and Instances 207

print (s)
i 4= 2

objl.py

Here we take advantage of the fact that when we use re.split () and
mark the match with parentheses, the splitting string is returned as well. This
returns a list of the sentences alternating with the terminating punctuation
marks.

We might instead conceptualize this differently. We want to take a File
object, which represents the file; create a Text object, which represents the
text, from that; and then extract Sentence objects from it. At the highest
level, this might look like this:

#0nly schematic; generates errors!

f File('alice.txt")

t = Text (f)
ss = t.getSentences|()

for s in ss[:10]:
print (s)

obj2.py

Ultimately, the same work has to be done in both cases. The difference is in
how we organize the code.

In general, we’ll see that OO code, on the one hand, tends to be longer. On
the other hand, it can often have a clearer logic. This means that when choosing
whether to program in OO style, you often are choosing between writing less
code that is less clear or more code that is more clear.

We come back to this program below after we’ve introduced the logic and
syntactic sugar for objects.

9.2 Classes and Instances

When we create objects, we must distinguish the general from the specific.
Thus, if we were to create word objects, we would want a general characteri-
zation of what a word is and then specific instances of that. The terminology
used is that we create a general class of which we can have instances. At the
simplest level, we might define a word class like this:

208 Objects

class Word: #a class definition
#this class has a variable
info = "I'm a word."
w = Word() #create instance of class

#access variable from instance
print('w:',w.info)

#access variable from class
print ('Word:',Word.info)

obj3.py

We define a class with the keyword class followed by the class name
and a colon. Class names are customarily capitalized. Properties of that
class occur in the following indented block. These properties include vari-
ables and methods. In our Word class, we have only the variable info.
A class is instantiated by invoking its name with parentheses. We can then
extract the variable in the class body by suffixing that variable name to the
instance w or to the class name Word itself. A variable like this that can be
accessed from the class name or from any specific instance is referred to as a
class variable.

Class definitions can include function definitions. A function defined in a
class definition is a method. Here’s a simple example:

class Word: #class def
def whatami () : #method def
return "I'm a word." #method body

#invoke method from class name
print ('Word:',Word.whatami ())

obj4.py

The method definition uses the keyword def just like a function definition,
except that a method definition is within a class definition.

We invoke the method by suffixing it to the class name with a period and
adding parentheses. This does not work with an instance of the Word class.
Thus an expression like w. whatami () would generate an error. The problem
is that w.whatami () is actually equivalent to something we might think of
asw.whatami (w). When you invoke a method from an instance of the class,
it’s as if the first argument to the method is the instance itself. Here’s a version
of the same program that uses this.

9.2 Classes and Instances 209

class Word: #class definition
def whatami (self) : #instance method
return "I'm a word."

#create instance of class
w = Word()

#call instance method
print ('w:',w.whatami ())

obj5.py

Here we define the whatami () method to take an argument that is never used.
Now, when we call that method on the w instance of the class Word, everything
works fine. It is customary to use the variable name self in just this case to
indicate a variable that is bound to the instance of the class. In this case then,
self is effectively a reference to w. In this case, we say that whatami ()
is an instance method because it refers to the particular instantiation of Word
indirectly through the variable self.

We have seen class methods, instance methods, and class variables. There
are instance variables too. These are created and accessed in a fashion similar
to that for instance methods: by invoking the particular instance. The trick is
that instance variables are created and accessed only through instance methods.
Here’s an example:

class Word: #class definition
#instance method
def whatami (self):
#creating an instance variable

self.x = "I'm a noun!"
w = Word() #create instance of class
w.whatami () #call the instance method
print (w.x) #print the instance variable
obj6.py

Here we define the class Word to include the instance method whatami ().
We know it’s an instance method because it is defined with the custom-
ary instance variable self. When that method is invoked, it creates an
instance variable self.x and assigns it a string value. We know that that’s
an instance variable because it is defined in an instance method and has the
prefix self. We instantiate our class in the usual way and call the instance

210 Objects

method whatami (). Since it is an instance method, it must be invoked with
the instantiated variable as a prefix. Finally, we print out the value of the
instance variable, again using the instantiated variable as a prefix.

This is a fair bit of terminology, so let’s review and make sure we understand
the terms and concepts.

Class definition. A class definition specifies a type of object. When speci-
fied, it has the word class followed by a (capitalized) word, a colon, and then
an indented block.

class MyClass:

Object or instance of a class. An object is an instance of some class. It is
created by invoking the class name followed by parentheses.

x = MyClass ()

Class method. A class method is a method specific to some class, but not
specific to any instance of that class. It is defined in the body of a class definition
and it does not refer to self. It is invoked with the class names as a prefix.
For example:

class MyClass:
def myMethod() :
print ('wow')

MyClass.myMethod ()

Instance method. An instance method is specific to some instance of a class.
It is defined in a class definition body and includes self as its first argument.
It is invoked with an instance of the class as a prefix. For example:

class MyClass:
def myMethod (self) :
print ('wow')

x = MyClass ()
x.myMethod ()

Class variable. A class variable is information relevant for an entire class. It
is defined in the body of the class definition. It is invoked with the class name
as a prefix. For example:

9.2 Classes and Instances 211

class MyClass:
myVariable = 'wow

print (MyClass.myVariable)

Instance variable. Finally, an instance variable is information relevant for
some particular instance of a class. It is always created and manipulated through
instance methods. It will always have self as a prefix in an instance method.
If it is accessed directly from outside the class, it will have a class instance as
a prefix. For example:

class MyClass:
def setVal (self,x):
self.n = x
def getVal (self):
return self.n

x = MyClass ()
x.setVal (3)
print (x.getVval())

obj7.py

This last example shows an additional, not unexpected feature we haven’t
seen yet: instance methods may take other arguments as well. Here we define
two instance methods, setVal () and getVal (). The setVal () method
takes two arguments, self and one other, and creates an instance variable n
with the value of its second argument. The other method getval () retrieves
the value of that instance variable.

Let’s now make sense of the distinction between instance and class variables.
Imagine we want to extend our Word class to distinguish parts of speech and
to keep track of how many words we have. We might do that as follows:

class Word: #class definition
count = 0 #class variable
#instance method
def setPOS (self,x):
#create instance variable and
#set to x
self.pos = x
#increment class variable count
Word.count += 1

212 Objects

a = Word() #make class instance
#set its instance variable to 'noun'
a.setPOS ('noun')

b = Word() #make another instance
#set its instance variable to 'verb'
b.setPOS('verb')

#print the value of count associated with a
print('a count:',a.count)

#print the value of count associated with b
print ('b count:',b.count)

#print value of count associated with the class
print ('Word count:',Word.count)

print ('a POS:',a.pos) #print pos of a

print ('b POS:',b.pos) #print pos of b

obj8.py

Here we define a class Word with a class variable count and an instance
method set POS () . The latter creates an instance variable pos and increments
the value of count. We then instantiate the class twice for a noun and a verb.
We then print the value of count associated with each instance and the class
and the value of pos associated with each instance. As we expect, the values
for pos are different, but the values for count are not; it is 2 in both cases.

Here, the class variable count keeps track of information relevant to the
entire class: how many instances of it are there. On the other hand, the instance
variable pos keeps track of information relevant to a specific instance of a
class: its own part of speech. This is a fairly typical structure and logic.

There is a more customary way to implement something like the above. You
can define your class so that when you instantiate it, it does some sort of auto-
matic setting up. When a class is instantiated, Python automatically invokes a
specific instance method if itexists: init (). Ifyou include a definition
for that method in your class definition, then that function will be run when the
class is instantiated. Since it is an instance method, its first or only argument is
self. Here’s a simple example:

class MyClass:
def init (self):
print ('Instantiating MyClass!')

x = MyClass ()
= MyClass ()

~
I

obj9.py

9.2 Classes and Instances 213

We can do more interesting work with this, however. The following is a revision
of obj8.py

class Word: #class definition
count = 0 #class variable
#initializer takes an extra arg
def init (self,x):
#create instance variable, set to x
self.pos = x
#increment class count variable
Word.count += 1
a = Word('noun') #instantiate with 'noun'
b = Word('verb") #instantiate with 'verb'
#continue as before
print ('a count:',a.count)

print ('b count:',b.count)
print('a POS:',a.pos)
print('b POS:',b.pos)
obj10.py
Here we’ve defined the init () method to take an extra argument,

which we use to set a value for the instance variable pos. We also increment
the class variable count. Now we instantiate the class twice with different
arguments. We get the same results when we print the contents of the variables
associated with the two objects.

Let’s now return to our example obj 2. py on page 207. We can now flesh
that out. We start by setting up preliminary class definitions so that the code at
least runs:

class File: #class def for File
#initialize with arg
def init (self,s):
#instance variable for filename from arg
self.filename = s

#method that will eventually extract text
def getText (self):
return 'some text'

class Text: #class def for Text
#initialize by getting text from File arg

214 Objects

def init (self,f):
self.strings = f.getText ()
#method that will eventually
#return a list of sentences
def getSentences(self):
return ['1','2","'3","4","'5"]

#instantiate File with filename

f = File('alice.txt")

#instantiate Text with file instance
t = Text (f)

#extract sentences from Text

ss = t.getSentences|()
for s in ss[:3]: #print the first 3
print(s)
objl1.py

We start with a File class. We know that it has to be created with a string
argument that represents the name of the file to be read. We therefore set up an
__init () method that takes a string argument and saves it as an instance
variable filename.

The File object will be an argument to the Text object, so we create a
function getText () that Text will call to extract the text from the File
object.

We next create a Tex t object. It has to be instantiated with the Fi1e object
as an argument, so we define an _init () method that takes a File
object as an argument. It then invokes that Fi1e object’s get Text () method
to extract the text of the file and assigns that to an instance variable strings.

Finally, we know that we want to extract sentences from the Text object
with a method getSentences (), so we create an instance method with that
name that returns a list of dummy sentences.

This code runs, but does nothing interesting yet. It is the frame that we will
build our code on. Note that the code that invokes these classes — in the last few
lines of the program — is fairly simple and that the real work of reading files,
extracting text, etc., will be done “behind the scenes” in the definitions of the
classes.

Let’s now flesh out the Fi 1e class to actually open the file, read in the text,
and remove the header.

class File: #File class def
#initialize with string argument
def init (self,s):

9.2 Classes and Instances 215

#open connection to file

f = open(s,'r")

#read it all in and assign to

#instance variable

self.text = f.read()

f.close() #close connection

#strip header

self.text = self.text[10841:]

#temp placeholder message!

print('<file read in>")
#instance method to return the text
def getText (self):

return self.text

class Text: #Text class def
#initialize with File arg
def init (self,f):
#set instance variable
self.strings = f.getText ()
#return sentences
def getSentences (self):
return ['1','2","'3","4","5"]

#create an instance of File

f = File('alice.txt")

#create Text instance from File instance
t = Text (f)

#get the sentences

ss = t.getSentences|()
for s in ss[:3]: #print the first 3
print (s)
obj12.py
Here we’ve fleshed out the init () method for File to read the file

and strip the header. We’ve also added some temporary code to print out that
this initialization has happened. We will of course delete this when we’re

Let’s now flesh out Text:

import re

class File: #File def

216 Objects

#initialize with file name
def init (self,s):

#read in file

f = open(s,'r")

self.text = f.read()

f.close ()

#strip header

self.text = self.text[10841:]
#return text of the file
def getText (self):

return self.text

class Text: #Text class def
#initialize with File instance arg
def init (self,f):
#get the text from File instance
text = f.getText ()
#split on sentence breaks
#saving split letter with parens!
bits = re.split (' ([\.!?])", text)
#instance variable list to save sentences
self.sentences = []
#assemble each sentence and add to list
i=0
while i < len(bits)-1:
self.sentences.append
bits[i]+bits[1i+1]
)
i 4= 2
#return the sentences
def getSentences (self):
return self.sentences

#instance of File
f = File('alice.txt")

t = Text (f) #instance of Text

#get sentences

ss = t.getSentences()

for s in ss[:10]: #print the first 10
print (s)

obj13.py

9.3 Inheritance 217

We first transfer the text from the File object via its getText () method
to a variable text in the Text object. This variable has no prefix, so it is
entirely local to this function. We then split the text into sentence-sized units
with re.split (). Since we’ve marked the splitting elements with parenthe-
ses, they are also in the resulting list, so we then concatenate sentences and their
final punctuation in pairs and put them in an instance variable sentences.
Since this is prefixed with self, it is preserved in the instance outside the
~init () function and available to the getSentences () instance
method.

9.3 Inheritance

When you start writing fairly large programs in OO style, you end up with
classes that are related. Python allows you to express and simplify these rela-
tionships with inheritance. The basic idea is that if some class is specified to
inherit from some other class, then the methods and variables of that latter class
are available to the former. The syntax for this is for the inheriting class to spec-
ify the classes it inherits from in parentheses after the class name in the class
definition. For example:

class MyParent:

class MyChild (MyParent) :

Here the methods and variables of MyParent are available from MyChi1d.
Here’s a working example:

class MyParent: #parent class def
def wow() : #class method
print ('wow!")
#instance method with arg
def printthis(self,x):
print (x)

#child class def inherits from MyParent
class MyChild (MyParent) :
pass #nothing in the body

a = MyChild() #make instance of child
#inherits parent class method

218 Objects

MyChild.wow ()
#inherits parent instance method
a.printthis('oh?")

objl4.py

Here we define a class MyParent with a class method wow () and an instance
method printthis (). We then define a class MyChi1d that inherits from
MyParent and has no methods or variables itself; we indicate an empty class
body with pass. We can call the methods of MyParent from MyChild as
if they were part of MyChild.

The same is true of variables:

class MyParent: #parent class def
info = 'wow!' #class variable
def oh(self): #instance method
#creates an instance variable
self.oh = 'yippee!'

#child class def
class MyChild (MyParent) :
pass #nothing in the body

#create instance of child

a = MyChild()

#inherits parent class variable
print (MyChild.info)

#inherits parent instance method
a.oh ()

#inherits parent instance variable
print (a.oh)

objl15.py

Here we’ve defined a class variable info for MyParent. We’ve also cre-
ated an instance variable for it via the instance method oh (). These are all
available to the inheriting class MyChi 1d. First we instantiate that class as a.
We then print out the value of info, inherited from MyParent. We then run
the oh () instance method, also inherited from MyParent. That creates an
instance variable oh in a, which we access in the usual way.

Inheritance is transitive as well. The methods and variables of classes more
than one “generation” back are also available. For example:

9.3 Inheritance 219

class MyGrandparent: #grandparent class def

info = 'wow' #class variable
def hm(self, x): #instance method
self.oh = x #instance variable

#parent class inherits from MyGrandparent
class MyParent (MyGrandparent) :
pass #nothing in body

#child class inherits from MyParent
class MyChild (MyParent) :
pass #nothing in body

#an instance of the child class

a = MyChild()

#inherits grandparent class variable
print(a.info)

#inherits grandparent instance method
a.hm('bummer")

#inherits grandparent instance variable
print (a.oh)

obj16.py

Here we define a class MyGrandparent. The class MyParent inherits from
that, and the class MyCh i 1d inherits from MyParent. Methods and variables
of MyGrandparent are then available to MyChild

You can override inherited methods and variables by defining them locally.
Here’s a simple example:

class MyParent: #parent class def
info = 'wow' #class variable
#instance method
def mySet (self,x):
self.oh = x #instance variable
#initializing method
def init (self,x):
#another instance variable
self.var = x

#child class def
class MyChild (MyParent) :
#instance method overrides parent method!

220 Objects

def mySet (self,x):
self.oh = x+x #instance variable

a = MyChild('ok") #create child instance
#invoke child instance method
(overriding parent)
a.mySet ('hm'")
#invoke parent class variable
print (MyChild.info)
#parent instance variable
print (a.var)
#child instance variable
print (a.oh)

obj17.py

Here we define MyParent with a class variable info. We also have an
instance method mySet, which sets a value for the instance variable oh.
Finally, we havethe init () method, which sets a value for var.

These are all inherited by MyChild, but the mySet () method of
MyParent is overridden by a new definition in MyChild. We now instan-
tiate MyChild with the argument 'ok'. Since the init () method
is inherited and not overridden, this sets the value of the instance variable
var. We then invoke the mySet () method, but since there is a local ver-
sion in MyChild, that is the version that is used. This means that there is
now an instance variable with the value 'hmhm'. We then print out these
values.

Finally, Python allows for multiple inheritance. You can specify more than
one class to inherit from. Here’s a simple example:

class MyMom: #parent class def
info = 'wow' #class variable
#instance method
def mySet(self,x):

self.oh = x #instance variable
class MyDad: #other parent class def
#initializer method
def init (self,x):
#instance variable
self.var = x

#child class def multiply inherits

9.4 Syllabification 221

class MyChild (MyMom,MyDad) :
pass #nothing in body

#make an instance of the child
#uses initializer from MyDad
a = MyChild('ok")

#instance method from MyMom
a.mySet ('hm")

#class variable from MyMom
print (MyChild.info)

#instance variable from MyDad
print (a.var)

#instance variable from MyMom
print (a.oh)

obj18.py

Here we define a class MyMom with a class variable, an instance method, and
a consequent instance variable. We define another class MyDad with its own
__init () method that creates an instance variable. The class MyChild
is specified to inherit from both of these, so all of those variables and methods
are available to it.

9.4 Syllabification

We illustrate OO in more detail with syllabification. We’re going to build up a
set of types that we can use to represent syllable structure. We might use these
in a model of syllabification, as part of a program that hyphenates, etc.

Let’s assume our model of syllabification includes syllables, onsets, nuclei,
codas, rhymes, and segments. We might think of a word like complete [khom-
plit] as being parsed like this:

Word
Syllable Syllable
Onset Rhyme Onset

Rhyme
‘ PN o~ P
Seg Nuc Coda Seg Seg Nuc Coda
\ \ \ \ \ \ \
k" Seg Seg p 1 Seg Seg
\ \ \ \

9 m 1 t

222 Objects

Let’s begin with the idea that all of these elements are classes.

class Syllable:
pass

class Onset:
pass

class Nucleus:
pass

class Coda:
pass

class Rhyme:
pass

class Segment:
pass

obj19.py

It would be reasonable to assume that any element in this hierarchy can be
pronounced and spelled. Rather than encode this in each, let’s put this into a
single class that all of these inherit from:

class Speech: #parent class def
#initialize with spelling, pronunciation
def init (self,s,p):
self.spelling = s
self.pronunciation = p
def spell(self): #return spelling
return self.spelling
#return pronunciation
def pronounce (self):
return self.pronunciation

#all classes inherit from Speech
class Syllable (Speech) :
pass
class Onset (Speech) :
pass
class Nucleus (Speech) :
pass
class Coda (Speech) :
pass

9.4 Syllabification 223

class Rhyme (Speech) :
pass

class Segment (Speech) :
pass

0bj20.py

Notice that inheritance here allows for clear savings in that we need not repeat
these method definitions for the inheriting daughter classes.

For Segment, the lowest level of the hierarchy, this will suffice. We treat
ob3j20.py as a module and instantiate it like this:

from obj20 import *

a = Segment ('ng','n'")
print(a.spell())
print (a.pronounce ())

obj21.py

For higher levels, there are two problems. First, some elements of the hierarchy
allow more than one element in a row. For example, an onset can be comprised
of zero or more consonants. Another issue is that there is a hierarchy. While
onsets are comprised of segments, syllables, etc., they are not directly made up
of segments.

Let’s address the first issue and revise the arguments to the _ init ()
method. First, we remove it from Speech. We then implement it in Segment
to specify two string arguments.

class Speech: #Speech class def
def spell(self): #return spelling
return self.spelling
#return pronunciation
def pronounce (self):
return self.pronunciation

#everybody inherits from Speech
class Syllable(Speech):

pass
class Onset (Speech) :

pass

224 Objects

class Nucleus (Speech) :

pass

class Coda (Speech) :
pass

class Rhyme (Speech) :
pass

class Segment (Speech) :
#initializer from spelling,pronunciation
def init (self,s,p):
#check that args are strings!
if type(s) != str or type(p) != str:
raise Exception (
'Usage: Segment (str,str)’
)
#set instance variables
self.spelling = s
self.pronunciation = p

obj22.py

We use the t ype () function to check the type forargumentsto init ().
We use the raise statement to generate an exception, an error, just in case
either of the arguments is not a string.

We now turn to the elements that are built on top of segments: onsets, nuclei,
and codas. These all have the same general structure in that they are built on
segments. Rather than repeat this in each of these classes, we create a new class
Subsyl that specifies this. The Subsy1 class will inherit from Speech and
then Onset, Nucleus, and Coda will inherit from it.

class Speech: #Speech class def
def spell(self): #return spelling
return self.spelling
#return pronunciation
def pronounce (self):
return self.pronunciation

#Segment class def
class Segment (Speech) :
#initialize from spelling and pronunciation
def init (self,s,p):
#those have to be strings!

9.4 Syllabification 225

if type(s) != str or type(p) != str:
raise Exception (
'Usage: Segment (str,str)’
)
#set instance variables
self.spelling = s
self.pronunciation = p

#general class for elements above segments
class Subsyl (Speech) :
#daughter elements are segments
daughters = Segment
#initializer from a list of segments
def init (self,xs):
#set instance variables
self.spelling = "'
self.pronunciation =
#got through the argument 1ist 1 by 1
for x in xs:
#check that they are segments
if type(x) != self.daughters:
raise Exception('Type error!")
#concatenate spellings
self.spelling += x.spelling
#concatenate pronunciations
self.pronunciation += x.pronunciation

#now inheriting from Subsyl
class Onset (Subsyl) :
pass
class Nucleus (Subsyl) :
pass
class Coda (Subsyl):
pass
#still inheriting from Speech
class Rhyme (Speech) :
pass
class Syllable (Speech):
pass

obj23.py

226 Objects

Here the Subsy1 class defines what its daughters must look like: they must be
of the class Segment. Its init () method takes a list as an argument.
It then checks the type of each element in the list. If they are segments, then it
extracts their spelling and pronunciation and adds them to its own spelling and
pronunciation.

We can import this and test it out like this:

from obj23 import *

c = Segment('c','k")

1l = Segment('1l',"1")

o Onset ([c,1])

print (o.spelling)
print (o.pronunciation)

obj24.py

We see that Onset functions correctly, inheriting from Subsyl directly and
indirectly from Speech.

Nothing more need be done for Onset, Nucleus, and Coda. We turn
then to rhymes and syllables. Rhymes require a nucleus and an optional coda.
We capture this with anew init () method for Rhyme that takes an
optional argument.

class Speech: #speech class def
#return spelling and pronunciation
def spell (self):
return self.spelling
def pronounce (self):
return self.pronunciation

class Segment (Speech) : #segment class def
#initialize from strings
def init (self,s,p):
if type(s) != str or type(p) != str:
raise Exception/(
'Usage: Segment (str,str)

)
self.spelling = s
self.pronunciation = p

class Subsyl (Speech) : #Subsyl class def

9.4 Syllabification 227

#daughters are segments
daughters = Segment
#initialize from list of segments
def init (self,xs):
self.spelling = "'
self.pronunciation = "'
#check each element in list
for x in xs:
if type(x) != self.daughters:
raise Exception (
'Type error for Subsyl!'
)
#concatenate instance variables
self.spelling += x.spelling
self.pronunciation += x.pronunciation

#inherit from Subsyl

class Onset (Subsyl) :
pass

class Nucleus (Subsyl) :
pass

class Coda (Subsyl):
pass

class Rhyme (Speech) : #Rhyme class def
#initialize from Nucleus and optional Coda
def init (self,n,c="'"):
#check type of Nucleus
if type(n) != Nucleus:
raise Exception/(
'Type error for Rhyme!'
)
#set instance variables
self.spelling = n.spelling
self.pronunciation = n.pronunciation
#check if a coda argument is present
if ¢ = "":
#check that it's the right type
if type(c) !'= Coda:
raise Exception
'Type error for Rhyme!'

228 Objects

#set instance variables
self.spelling += c.spelling
self.pronunciation += c.pronunciation

#still inherits from Speech
class Syllable (Speech) :
pass

obj25.py

Again, for caution’s sake, we test this immediately:

from obj25 import *

v

' ' 1)

1 1 l

= Segment ('a

= Segment ('r
Segment('t' ")

= Nucleus ([a])

= Coda([xr,t])

= Rhyme (n, c)

print (r.spelling)

print (r.pronunciation)

]

B Q3 B8 ®
Il

0bj26.py

We create three segments and then build a nucleus and a coda from them. We
then assemble them into a rhyme and extract the spelling and pronunciation to
make sure everything worked.

We now turn to Syllable, which is straightforwardly similar to Rhyme:

class Speech: #Speech class def
#return spelling and pronunciation
def spell (self):
return self.spelling
def pronounce (self):
return self.pronunciation

class Segment (Speech) : #Segment class def
#initialize from strings
def init (self,s,p):
if type(s) != str or type(p) != str:
raise Exception (

9.4 Syllabification 229

'Usage: Segment (str,str)
)
#set instance variables
self.spelling = s
self.pronunciation = p

class Subsyl (Speech) : #Subsyl class def
#daughters are Segment type
daughters = Segment
#initialize from list of Segments
def init (self,xs):
self.spelling = "'
self.pronunciation =
for x in xs:
if type(x) != self.daughters:
raise Exception (
'Type error for Subsyl!'

T

)

#set instance variables by concatenating
self.spelling += x.spelling
self.pronunciation += x.pronunciation

#all inherit from Subsyl

class Onset (Subsyl) :
pass

class Nucleus (Subsyl) :
pass

class Coda (Subsyl) :
pass

class Rhyme (Speech) : #Rhyme class def
#initialize from Nucleus and optional Coda
def init (self,n,c="'"):
if type(n) != Nucleus:
raise Exception
'Type error for Rhyme!'
)
self.spelling = n.spelling
self.pronunciation = n.pronunciation
if ¢ !I'= "":
if type(c) != Coda:
raise Exception (

230 Objects

'Type error for Rhyme!'
)
self.spelling += c.spelling
self.pronunciation += c.pronunciation

class Syllable(Speech): #Syllable class def
#initialize from Rhyme and optional Onset
def init (self,r,o=""):
#check Rhyme type
if type(r) != Rhyme:
raise Exception (
'Type error for Syllable!'
)
#set instance variables
self.spelling = r.spelling
self.pronunciation = r.pronunciation
#1f onset arg is present
if o I= "':
#check that it's an onset
if type (o) != Onset:
raise Exception (
'Type error for Syllable!'
)
#concatenate with existing
#instance variables
self.spelling = o.spelling + \
self.spelling
self.pronunciation = o.pronunciation \
+ self.pronunciation

obj27.py

The only odd part is that we must order the arguments to init ()
for Syllable counterintuitively. This is because the onset is optional,
and optional arguments must occur on the right. Again, we test this
immediately:

from obj27 import *

k = Segment ('c', 'kh")
a = Segment('a','a'")
r Segment ('r',

9.5 Exercises 231

= Segment ('t',"'t")

= Onset ([k])

Nucleus ([a])

= Coda([r,t])

= Rhyme (n, c)

= Syllable(r,0)
print (s.spelling)
print (s.pronunciation)

w8 Q3 O f
Il

0bj28.py

There’s obviously a lot more we could do here, but this is sufficient to
establish the basics of what object-oriented syllabification might look like.

There’s a lot of code here, and it doesn’t obviously do a whole lot. On
the other hand, what it does do, it does clearly. This is typical of an OO
approach: it allows you to lay out a higher-level structure and semantics that is
clear.

9.5 Exercises

9.1 Rewrite obj13.py using functions instead of classes.

9.2 What happens if a method with the same name appears in two classes
and some other class inherits from both?

9.3 Give an example showing how multiple inheritance interacts with multi-
generation inheritance. Explain how it works.

9.4 In our syllabification example above, the code we wrote for Syllable
and Rhyme is redundant. This could be addressed by enriching the class
hierarchy and factoring out the common parts here. Do this.

9.5 Write a class system to handle simple morphology in some language.
You will want classes for Stem, Prefix, Suffix, Morpheme, and
the like.

9.6 Use a class system and inheritance to model historical change. The idea
is that languages inherit from other languages but can innovate as well.
Build a toy system with the right properties. (This is fun, but tricky. There
are lots of ways to make this work.)

9.7 Rewrite the final program from any of the previous chapters using
classes. What advantages or disadvantages does this present?

9.8 Write an object-oriented program that parses some amount of HTML.
Your program should read in a web page and convert it to a nested set
of objects that represent HTML entities. Make sure your program can
“print” the web page in some suitable fashion.

232 Objects

9.9 Write an OO program that builds up regular expressions from basic ele-
ments. The smallest element should be € and single characters, and your
system should allow for union, concatenation, and Kleene star.

9.10 Web: Snoop around the web and figure out what the method
__str () does. Explain it and write a program that makes use of it.

10 GUIs

So far, all of our programs have been text-based. This means you run them from
the terminal window, and the output is either some text in that window or text
in some file.

In this chapter we briefly describe how to write Python programs with
a graphical user interface (GUI). These are programs where your interac-
tion with the program occurs through input modes other than simply typ-
ing text, e.g., buttons, menus, dialogs, and other mouse- or trackpad-based
operations.

There are many systems you can use to do this with Python, but we will use
tkinter. There are a number of reasons for this choice.

(i) Tkinter is the oldest GUI for Python and quite stable, so code using it
works and is not subject to a lot of version dependencies.

(i) Tkinter is included in any Python distribution, so it is available regardless
of what version of Python you’re working with or what your operating
system is.

(iii) Tkinter works “out of the box.” There are no additional packages required
to make it work.

(iv) Tkinter is relatively easy. While it may not have every GUI bell and
whistle we might want, it’s a good entry point for GUI programming
generally.

(v) Finally, there are a number of other languages that have essentially the
same system for GUIs, e.g., Perl, Ruby, and Tcl.

There are some limitations of tkinter.

(i) Some versions of tkinter run only if you also have the X11 windowing sys-
tem installed. (This is available for all operating systems, and you should
see a warning if this is the case.)

(i1) Tkinter programs may not have a local “look and feel”; that is, while you
can have windows, labels, and buttons, they may not look quite like the
normal elements of those sorts on your computer.

233

234 GUIs

(ii1) Tkinter is limited. Not all GUI widgets are available.

(iv) Finally, tkinter applications are interpreted programs just like other Python
programs, so they will usually not be as fast as other non-Python native
GUI applications on your system.

In this chapter we will outline the general logic of GUI programming and
how it is done with tkinter. We will cover some of the more usual GUI ele-
ments — widgets — and how to enable your program to use those. We conclude
with a GUI-version of our stemmer program from Section 7.3.

10.1 The General Logic

We have seen two general models for programming so far. The first is procedu-
ral. We see programs as a sequence of commands executed in sequence, with
control structures to govern that sequence.

The second model, introduced in the preceding chapter, is object-oriented.
Here we see programs as a network of objects. A program is a set of class
definitions, and then, as much as possible, instantiation of those classes makes
the program work.

In this chapter, we consider a third model: event-driven programming. On
this view, we create a set of GUI elements or widgets. Those elements are then
laid out and “wait” for user input.

The best way to understand this perhaps is to run an example. If you run the
following program, it will generate the window below. (This is on a Mac, using
XI11.)

from tkinter import *

r = Tk() #start tkinter
f = Frame (r) #make a window
f.pack()
b = Button/(#make a button
£,
padx=20,
pady=10,
text="Quit",
command=quit
)
b.pack (#position the button

side=LEFT,
padx=20,

10.1 The General Logic 235

pady=20
)

mainloop () #wait for something to happen

guil.py

000X

Quit \

P

The program does nothing until you click/press the button. When you do, the
program ends.

The general structure of the code is as follows. First, we import from the
tkinter module so we can use GUI elements. We then start the GUI with
the Tk () command. We then create GUI elements: a Frame (or window)
and a Button. We position them with the pack () method. In the case of
the button, there are a number of variables that control its size, shape, and
what it does. In addition, when we invoke pack () on it, there are additional
variables that govern where it goes. The important point is that one of the
variables we specify when we create the button is what it does, in this case
command=quit.

Once those elements are specified and located on the screen we tell the pro-
gram to wait for something to happen mainloop (). The program simply sits
and waits for the user to do something. Any activity of the user is noticed by
mainloop (), but our program is written so that only a button click in the
right location is attended to. In this case, a button click invokes the quit ()
function, which quits the program.

This then is the standard structure for a GUI-based program:

(i) You create a set of GUI elements (widgets).
(i1) The widgets are specified for what functions apply if the user interacts
with them.
(iii) You lay your widgets out in some fashion. This includes where they are
in the window, whether they are “active” and available for user input,
whether they are visible at all, etc.

236 GUIs

(iv) Finally, you initiate the event loop, instructing the program to wait for user
input.

There are complications that can occur, but this general view will suffice for
our purposes.

One other issue is worth mentioning at this point. Tkinter is an interesting
system because it actually uses another programming language. The Tcl pro-
gramming language (Tool Command Language) includes a set of extensions
for creating graphical user interfaces called Tk (widget toolkit). Tkinter makes
the Tk widgets usable from Python. As we noted above, there are a number of
other programming languages that do this as well. The important consequence
of this is that GUI commands thus don’t always look like other Python com-
mands. Tkinter tries to minimize this, but it’s still a fundamental reality of this
system.

10.2 Some Simple Examples

In this section we describe a set of basic widgets, their properties, and options
for how they can be placed in a window.

The simplest thing you can do with tkinter is nothing. You simply start the
GUI system and wait for something to happen. If you do that, you’ll get a blank
window. The program ends when you close that window.

from tkinter import *
Tk ()
mainloop ()

gui2.py

0@ [Xtk

4

A simple widget that you can add to your window is a label. It allows you to
display some text in a window. Here’s an example:

10.2 Some Simple Examples 237

from tkinter import *

w = Tk{()
1 = Label(
W,
text="Hello world!",
padx=30,
pady=30
)
1.pack()
mainloop ()
guild.py
® 0 e X tk

Hello world!

You can also have both labels and buttons:

from tkinter import *

w = Tk()
1 = Label(
W,
text="'Press the button!'’
)
1.pack ()
b = Button/(
wl
text="Quit',
command=quit
)
b.pack()
mainloop ()

gui4.py

238

Notice how, in the absence of further specification, buttons and labels are just
big enough to hold the text you specify. Similarly, the window is just big enough
to hold them. Also note that, unless you specify otherwise, the widgets are laid

GUIs

000X

Press the button!

Quit |

out top to bottom in the window.

So far, we’ve seen only buttons that can quit the program, but if you can write
a function for it, your button can initiate it. Here’s a simple example where

pressing a button prints something.

from tkinter import *

#function to print something

def wow(): print ('wow!")

w = Tk() #start GUI

1 = Label(#make a label
W,

text='Press either button!'
)
1.pack() #place the label
bl = Button(#make a button

w,

text="Wow',

command=wow

)
bl.pack() #place the button

b2 = Button(#make another button

Wy
text="Quit’',
command=quit

)

b2.pack () #place the other button

mainloop () #go. ..
guis.py

10.2 Some Simple Examples 239

® 00
Press either button!

In fact, you can alter the content of your GUI while it’s running with a button
press by using the configure () method:

from tkinter import *

#variable to store number of button presses
count = 0

#function to update button presses

def wow() :
#we're updating the variable above, so
#we have to specify that
global count
count += 1 #update the variable
#reset the label below
l.configure (text=count)

w = Tk() #start the GUI

#make and place a label

1 = Label (w, text=count)

1.pack()

bl = Button/(#make and place a button
Wy

text="Wow',
command=wow

bl.pack()

b2 = Button (#make/place another button
Wy
text="Quit"',
command=quit

240 GUIs

b2.pack ()

mainloop () #go...

Here the upper button changes the value of the label every time you press
it. To do this, we first declare a variable count and assign it the value 0. We
then define a function wow () that changes the value of that variable and then
assigns the new value as the text of the label. There is an interesting quirk of
Python here. If you try to change the value of a variable from outside a function
(that you have not passed as an argument to the function) you must declare that
it is an external variable with the gl obal keyword. Interestingly, even though
you are changing the value of the text of the label as well, you need not declare
it as global. The rest of the program is as in the previous example.

10.3 Widget Options

Widgets like buttons and labels have a number of shared options that can be
set. We won’t go through them all here, but they include:

background (bg) The background color.

foreground (fg) The foreground color. In the case of buttons and labels, this
is the color of the text.

font What font to display the text in. The font is specified as a triple of name,
size, and (optionally) style, e.g., ('times', 14, 'italic').

10.3 Widget Options 241

anchor What edge of the widget to align the text to. This only has a visible
effect if you force the widget to be bigger than the text. It takes the
values: N, NE, E, SE, S, SW, W, NW. The default is CENTER.

command What command to execute, only relevant for buttons so far.

padx How much extra space to leave on the x-axis.

pady How much extra space to leave on the y-axis.

textvariable This can be specified as a particular variable. If the value of
the variable changes, the text will change without having to invoke
configure().

To see some of these in action, the following program dynamically manipulates
foreground, background, and font of a label.

from tkinter import *

cs = ['red','blue', '"green'] #1list of colors
fs = [('"times',14,'italic'), #list of fonts
('monaco', 24),

('Comic Sans MS',30)]

#current foreground, background, and color
fgval =
bgval =
fontval = 0

0
0

#change the *val variables to next leval value
def switch(x):

if x < 2: x += 1
else: x =0
return x
def fval(): #change font
global fontval
fontval = switch (fontval)

l.configure (font=fs[fontval])

#change foreground

def fgcol():
global fgval
fgval = switch(fgval)
l.configure (fg=cs[fgvall)

242 GUIs

#change background

def bgcol():
global bgval
bgval = switch (bgval)
l.configure (bg=cs[bgval])

w = Tk() #start GUI
#make and place a label
1 = Label(

w,

text='I am a label',
fg=cs[fgval],
bg=cs[bgvall],
font=fs[fontval],
padx=30,
pady=30

)

1l.pack()

#button to change foreground

bl = Button/(
Wy
text='Foreground',
command=fgcol

)

bl.pack()

#button to change background

b2 = Button (
W,
text='Background',
command=bgcol

)

b2.pack ()

#button to change font

b3 = Button (
WI
text="Font',
command=fval

)

b3.pack ()

b4 = Button (
Wy,
text="Quit',

10.3 Widget Options 243

command=quit
)
b4 .pack ()

mainloop () #go. ..

gui7.py

L JoN] L3

First we define a set of three colors and a set of three fonts. (Note that the
fonts available may vary from system to system.) We then define three vari-
ables to keep track of the current colors for foreground and background and
the current font. If you look down at the values for the label, you’ll see we
use these variables as indices into the lists of colors and fonts. For example,
cs[fgval] gives the current value of the foreground color. The first three
buttons rotate through those values every time you click the button. Thus the
three buttons together allow you to see all combinations of these values for
foreground, background, and font.

The three buttons call the functions fval (), fgcol (), and bgcol (),
which all work the same way, so we’ll just talk about fval (). When the rel-
evant button is pressed, this function collects the current value of fontval
which, tells us what the current font is. We then use the switch () function
to increment the value of fontval.If fontval is already at its maximum of
2,the switch () function sets it to 0. We then use configure () to update
the font of the label. The other two functions, fgcol (), and bgcol (), work
the same way.

Let’s now look at the textvariable property. This allows us to dynami-
cally alter the content of a widget without using configure (). To use it you
must set up a special tkinter variable. When that variable is associated with
some widget’s textvariable and that variable changes, the widget will
automatically update without having to invoke configure ().

This has to be a special tkinter variable, e.g., an integer IntVar, or a string
StringVar. To use one of these, it must be declared in advance, but after

244 GUIs

the GUI has started. For example, x = IntVar (). In addition, to access the
value of one of these you must use a special method, i.e., x . get () . Similarly,
to set the value, you must use another special method, i.e., x.set (...).The
following program exemplifies:

from tkinter import *
w = Tk() #start gui

#create a tkinter integer variable
count = IntVar (w)
count.set (0) #set it to 0

#function to increment count variable
def wow () :

#get the current value + 1

c = count.get () + 1

count.set (c) #reset count variable

#a label that's tagged for the count variable

1 = Label (w, textvariable=count)
1l.pack()
bl = Button/(#a button

Wy

text="Wow',
command=wow

bl.pack()

b2 = Button (#another button
Wy
text="Quit',
command=quit

)

b2.pack ()

mainloop () #go. ..
gui8.py
Here we declare count as an IntVar and then set its value with set () . The

relevant button calls the function wow () . That function simply increments the
value of count, which automatically updates the displayed value of the label.

10.4 Packing Options 245

104 Packing Options

We’ve discussed some simple widgets and their basic attributes. We now turn
to laying widgets out in a window or other container.

There are three basic ways to lay things out. The place () method allows
you to specify precise pixel locations in a window. The grid () method splits
a window into a grid and lets you place widgets in any specific cell. In this sec-
tion, we consider the easiest and most common method: pack () . This method
has a number of basic options:

expand Can be set to TRUE or FALSE. If TRUE, the widget moves to fill
available space.

fill Does the widget fill space allocated to it: NONE default, X fill horizontally,
Y fill vertically, or BOTH fill both.

side What side of the container does the widget pack against: TOP default,
BOTTOM, LEFT, or RIGHT.

padx, pady How much extra space on the x- or y-axis should there be outside
the widget?

ipadx, ipady How much extra space on the x- or y-axis should there be
“inside” the widget?

Here is a simple example of a GUI with a label and two buttons packed using
default values.

from tkinter import *

w = Tk() #start GUI
#make and place label

246 GUIs

1 = Label (text='This is a label')

1.pack()

bl = Button/(#make and place button
text="wow',
command=lambda: print ('wow")

)

bl.pack ()

#make and place another button

b2 = Button (text="'quit', command=quit)

b2.pack ()
mainloop () #go...
gui9.py
| N N (X tk
This Is a label
wow |
00 g

This is a label

=

Note how the three widgets are sized proportionally to the text they display.
Notice too that they are organized top-down in the order they were packed.
Finally, notice how when we make the window bigger by dragging the lower
right corner, the three widgets stay pressed against the upper edge.

Let’s now set expand to TRUE for one of the buttons:

from tkinter import *

w = Tk() #start GUI
#make and place a label
1 = Label (text='This is a label')
1.pack ()
bl = Button/(#make a button
text="wow',
command=lambda: print ('wow")

10.4 Packing Options 247

)

#place with expand=TRUE

bl.pack (expand=TRUE)

#make and place another button

b2 = Button (text="'quit', command=quit)

b2 .pack ()
mainloop () #go. ..
guil0.py
o000 Xtk
This Is a label

o0
This s a label

i

Vi

We see no difference when the window initially displays, but when we resize
it, we see that the area around b1 expands to fill the available space pushing

b2 to the bottom.
We can also change what side widgets line up against. Here we set side to

RIGHT for bl:

from tkinter import *

#all the same except pack for bl

w = Tk ()
1 = Label (text='This is a label')
1l.pack ()

bl = Button/(
text="wow',
command=lambda: print ('wow')

)
bl.pack (side=RIGHT) #here's the difference

248 GUIs
b2 = Button (text='quit', command=quit)

b2.pack ()

mainloop ()

guill.py

eoeoe (X tic
This is a label

quit

wow
o909
This s a label

quit mmJ
Bl) Y,

Here, packing b1 to the right puts it next to b2 when the window initially
displays, but all the way to the right when the window is resized.

Let’s now look at the padding options. In the following program, we set
padx for bl and ipady for b2:

from tkinter import *

w = Tk() #start GUI
#make and place label
1 = Label (text="This 1is a label')
1.pack ()
bl = Button (#make a button
text="wow',
command=lambda: print ('wow')
)
bl.pack (padx=30) #padding on x-axis
#make another button
b2 = Button (text="'quit', command=quit)
b2.pack (ipady=20) #padding on y-axis

mainloop () #go0. ..

guil2.py

10.5 More Widgets 249

[NN] [X] tk

This is a label
wWow
quit

LN N
This is a label

oo |

Here padx puts extra space to the left and right of b1, making the initial win-
dow wider. The setting for ipady for b2 makes the button itself taller. When
the window is resized, we no longer see the effect of padx.

10.5 More Widgets

Let’s now consider just a couple more widgets. First, we have the specialized
messagebox widget. This comes in three varieties: error, warning, and info.
The following program exemplifies:

from tkinter import *
#special import for messageboxes!
from tkinter import messagebox

root = Tk() #start GUI

root.withdraw () #hide main window

messagebox.showerror (#error message
"Error",

"An error occurred"
)
messagebox.showwarning (#warning message
"Warning",
"You are warned!"
)
messagebox.showinfo (#info message
"Info",
"You are informed."
)
quit () #quit
guil3.py

250 GUIs

@80 [\ Emr ® ® © K| Warning e® T ik

° An error occurred & You are viarned! Q You are informed.

Note that we have used the withdraw () method so that the main window is
not displayed.

One useful widget is Entry, which allows you to enter text. The following
program creates an Ent ry field bound to a textvariable t. When b1 is pressed,
the value of t is printed. The value of t is whatever text is in the Ent ry widget
when b1 is pressed.

from tkinter import *

#function to print Entry contents
def printit():
print ('Entry:',t.get())

r = Tk() #start GUI
#set up stringvar AFTER GUI starts
t = StringVar ()
#set value of t
t.set ('Type something here')
#Entry field linked to t variable
e = Entry(r,textvariable=t)
e.pack ()
#button to print contents of Entry
bl = Button(
text="Print',
command=printit
)
bl.pack()
b2 = Button(#quit button
text="Quit’',
command=quit
)
b2.pack ()

mainloop ()

guil4.py

10.5 More Widgets 251

| @ ® @ X tk |
Type something here

Print

Quit

One useful feature for an Entry widget is to invoke a function if the user
types return after typing in something. It’s a little tricky to do this: you
have to bind the return to the entry field. One complication is that the name
of the return key is ' <return>"'. The other complication is that the bind ()
method automatically passes the “event,” in this case '<return>', as an
argument to the function. In this case, our printit () function does not take
an argument, so we have a conflict. To resolve this, we use a 1ambda expres-
sion to capture the '<return>"' argument as x and then, effectively, discard
it before invoking printit (). Here’s the code:

from tkinter import *

#function to print contents of Entry
def printit():
print ('Entry:',t.get())

r = Tk() #start GUI
t = StringVar() #string variable for Entry
#set value of variable
t.set ('Type something here')
#Entry field
e = Entry(r,textvariable=t)
e.pack ()
#1ink Entry to return key!
e.bind('<Return>', lambda x: printit())
bl = Button/(#one button
text="Print',
command=printit
)
bl.pack ()
b2 = Button(#another button
text="Quit"',
command=quit

252 GUIs

b2.pack ()

mainloop () #go...

guil5.py

The window looks the same here as in the previous case.

10.6 Stemming with a GUI

Recall the stemming program we built in Section 7.3. The final version of the
code manipl9.py starting on page 160 assembled everything together in a
function stem () and then called that function on a word given as a command-
line argument. Here we recast that program in a GUIL.

Our first step is to remove the code that runs stem () on a command-line
argument (the last three lines). This new program, guil6.py (not shown
here), can then be imported by the GUI we will develop below.

Let’s build up our GUI in steps. First, we want a window and a button to quit
the program:

from tkinter import *
import guilé

r = Tk()
bl = Button (text="'Quit', command=quit)
bl.pack()

mainloop ()

guil 7.py

Let’s have a Labe that displays instructions to the user, an Entry that the
user will type a word into, another button that will apply stem () to the word
typed in the entry, and finally another Labe1 to display the result:

10.6 Stemming with a GUI 253

from tkinter import *
import guilé6 #import stemmer code

r = Tk() #start GUI

#label for instructions

linfo = Label (text='instructions...")
linfo.pack()

e = Entry() #entry for word to stem
e.pack ()

#where we'll put the result

lres = Label (text="'result...")
lres.pack ()

#apply the stemmer code

bstem = Button (text='Stem')

bstem.pack ()
#quit
bquit = Button (text='Quit', command=quit)
bquit.pack()
mainloop () #go. ..
guil8.py
o090 |tk
instructions...
result...
stem
e Y
T —

Only the bquit button does anything at this stage, but we can assess whether
we have all the elements we need and whether they are laid out to our satisfac-
tion. The following revision tweaks the widgets and their placement to match
my own personal esthetic.

from tkinter import *
import guilé6 #import stemmer code

254

f = ('times',18) #a pleasing font

r = Tk() #start GUI

#instructions in pleasing font

linfo = Label (text='instructions...', font=f)
#put some space on all sides

linfo.pack (pady=10,padx=10)

#entry in the same font

e = Entry(font=f)

e.pack (padx=10) #a little space on the side
#result goes here in the same font

lres = Label (text="'result...', font=f)

#a little space above and below

lres.pack (pady=10)

#the button to do everything

bstem = Button (text='Stem')

bstem.pack ()

#quit button

bgquit = Button (text='Quit', command=quit)
bguit.pack (pady=10)

mainloop () #go. ..

guil9.py

eoce® X tk
instructions...

result...

Stem
Quit

This is a fairly typical step in the GUI programming process. Lay out the GUI
to your satisfaction before attaching the real functions you need. A word of
caution: it’s easy to get distracted by the visual display, making everything look
justright in terms of what goes where, fonts, colors, exact placement of widgets,

etc.

10.6 Stemming with a GUI 255

Let’s now add the text of our instructions and textvariables for the Entry
and second Label:

from tkinter import *
import guilé6 #the stemming code

#more verbose instructions

instructions = '''This is a demo of the
Porter stemmer. Type a

word in the box, press

enter or press the button

and the stem form will be

displayed.'''

f

("times', 18) #that pleasing font again
r = Tk() #start the GUI

#text variable for the entry
ev = StringVar ()

ev.set ('Type your word here')
#text variable for the result
lv = StringVar ()

lv.set ('result....")

#instruction label

linfo = Label (text=instructions, font=f)
linfo.pack (pady=10,padx=10)

#entry variable tied to ev

e = Entry(font=f, textvariable=ev)
e.pack (padx=10)

#result variable tied to 1v

lres = Label (textvariable=1lv, font=f)
lres.pack (pady=10)

#the button that does everything

bstem = Button (text='Stem')
bstem.pack ()

#quit button

bquit = Button (text='Quit', command=quit)
bguit.pack (pady=10)

mainloop () #go. ..

gui20.py

256 GUIs

L LN [X] th

This is a demo of the
Porter stemmer. Type a
word in the box, press
enter or press the button
and the stem form will be
displayed.

‘Typc your word here
result....

We now add the function called by bstem to invoke the stemmer.

from tkinter import *

import guilé #import for stemming code
#instructions
instructions = '''This is a demo of the

Porter stemmer. Type a
word in the box, press
enter or press the button
and the stem form will be

displayed.'"''

f = ('times',18) #pleasing font

def guistem() : #invoking stemming function
w = ev.get() #get what the user entered

#stem it
res = guil6.stem(w)

lv.set (res) #display the result
r = Tk() #start the gui
ev = StringVar () #entry textvariable
ev.set ('Type your word here')
lv = StringVar () #result textvariable

lv.set ('result....")

#make and place instructoins

10.6 Stemming with a GUI 257

linfo = Label (text=instructions, font=f)
linfo.pack (pady=10,padx=10)

#make and place user entry

e = Entry(font=f, textvariable=ev)

e.pack (padx=10)

#make and place result label

lres = Label (textvariable=1lv, font=f)
lres.pack (pady=10)

#stemming button

bstem = Button (text='Stem', command=guistem)
bstem.pack ()

#quit button

bquit = Button (text='Quit', command=quit)
bquit.pack (pady=10)

mainloop () #go. ..

gui2l.py

[NN [X] tk

This is a demo of the
Porter stemmer. Type a
word in the box, press
enter or press the button
and the stem form will be
displayed.

[happincsy |
happi

Stem

Quit

The function is actually quite simple. It collects the content of the Entry,
applies the stem () function to it, and then sets the value of the second
label.

Finally, we add some error checking. What happens if the user enters nothing
in the entry box, enters more than one word, or enters nonalphabetic letters? We
expand the guistem () function to respond to these errors.

from tkinter import *
#import specifically for messagebox
from tkinter import messagebox

258 GUIs

import guilé #import for stemming code

#the instructions

instructions = '''This is a demo of the
Porter stemmer. Type a

word in the box, press

enter or press the button

and the stem form will be

displayed.'"''

#an error message

error = '"''You must enter a single
word with only letters

of the alphabet.'''

f = ('times',18) #the pleasing font

#function for the stemming button
def guistem() :
w = ev.get () #get what user entered
#check if it's a single word
if re.search('"[a-zA-Z]+5",w):
#1if so stem it
res = guil6.stem(w)
#display result
lv.set (res)

else: #1f not...
#set result to nothing
lv.set ("'")

#display the error message
messagebox.showerror ('Error',error)

r = Tk() #start the GUI

ev = StringVar () #textvariable for entry
ev.set ('Type your word here')

lv = StringVar () #textvariable for result

lv.set ('result....")

#label for instructions
linfo = Label (text=instructions, font=f)
linfo.pack (pady=10,padx=10)

10.7 Exercises 259

#entry for the word to stem

e = Entry(font=f, textvariable=ev)

e.pack (padx=10)

#label for result

lres = Label (textvariable=1lv, font=f)
lres.pack (pady=10)

#button to trigger stemming

bstem = Button (text='Stem', command=guistem)
bstem.pack ()

#quit button

bgquit = Button (text='Quit', command=quit)
bquit.pack (pady=10)

mainloop () #go. ..

gui22.py

Ntk
This is a demo of the
Porter stemmer. Type a
word in the box, press
enter or press thg k=

) {
and the stem fi I e 5
i You must enter a single
display word with only letters
of the alphabet.

1957

Quit

The change is fairly simple. We retrieve whatever is in the Entry and check
if it is entirely letters of the alphabet. If so, we proceed as before. If not, we set
the result Label to ' ' and we display an error messagebox.

10.7 Exercises

10.1 There are a number of other widgets we haven’t discussed. Research
these on the web, choose one, and write a program that uses it.

10.2 Tweak the code for gui22.py so that if the user enters more than one
word, each one will be stemmed and displayed.

10.3 Our final program in this chapter created a GUI for a big program from
a preceding chapter. Do this for another of those larger programs.

10.4 Buttons can be active or inactive. Inactive buttons cannot be pressed.
Write a program that manipulates this.

10.5 Web: There is a datatype called BooleanVar that we have not dis-
cussed. Find out what it does, explain it, and use it in a program.

260
10.6

10.7

10.8

10.9

GUIs

Write a GUI-based program that conducts a psycholinguistic judgment
task experiment. Specifically, your experiment will present a set of words
to subjects, and subjects will enter the number of syllables they think each
word has. Items will be read from a file, and subjects will press buttons
to give their response. At the end of the experiment, responses and items
are written to a file.

Web: One alternative to the pack () method is grid (). Find out how
it works, explain it, and write a simple program that uses it.

Write a GUI-based program where there is a single button. When you
click the button, it moves to a different part of the window, rotating
around the window with each button press.

Web: There are many other GUI systems for Python. Snoop around on
the web to find an interesting one, describe how it works, and exemplify
it in a program. (Keep it simple here; if you try to create a GUI with a
complex system, this can get out of hand quickly.)

11 Functional Programming

In this chapter, we introduce functional programming, a style of programming
that grows out of the lambda calculus. Some aspects of functional program-
ming are commonly used in Python, and so it’s useful to understand the general
principles, if only to make sense of code written by others. This style of pro-
gramming also lends itself easily to parallel programming and the resulting
efficiencies, so this is an additional benefit.

This chapter focuses on advanced material, so if you’re new to programming
or feel unsure of your foundations at this stage, proceed carefully!

11.1 Functional Programming Generally

Functional programming is an ideal and in practice exists at various approx-
imations to this ideal. The ideal is lambda calculus: everything is a function.
What this means is two things. First, everything else goes: variables, state-
ments, numbers, strings, etc. Second, functions are really functions; some set
of values is mapped to some other value, with no side effects, no variability in
what the function maps to.

Python is not the perfect vehicle for functional programming, so the ideal
is not completely reached with it, or at least not easily. In practice, what this
means is the following:

® We avoid global variables.

® Variables are not used mutably.

® Functions are freely used as arguments to other functions and can be returned
from functions.

® Functions can be created anonymously with 1ambda when needed.

® Recursion, overt or covert, is used widely.

® Control structures are avoided or not used at all. Their work is done by
functions and comprehensions.

We’ve covered some of these topics to varying degrees already, but let’s go
through each of them now in the context of functional programming generally.

261

262 Functional Programming

11.2 Variables, State, and Mutability

State refers to the value of variables at any particular point in the execution
of a program. When we program in pure functional style, the only variables
that can exist are those inside functions. When we approximate that style, we
reduce the number of variables outside functions and reduce access to those
variables. Ideally, any variables outside functions exist only as a convenience,
to pass values from each function call to the next. Consider a program like the
following:

gv = 0 #create global variable

def f1l(x): #function to manipulate global
global gv
gv += X

print (gv) #print initial value of global
£1(3) #invoke the function
print (gv) #print the new global value

fpl.py

Here, we define a global variable gv and assign it an initial value of 0. We
define a function that takes an argument and adds it to the global variable.
Since the function manipulates a global variable, we must declare that with the
global keyword. We then print the initial value of the variable, run the func-
tion, and print the updated value of the variable. This produces the following
output:

> python fpl.py
0
3

What this means is that, as we trace the flow of the program, we must keep
track of not just what the function might do and the variables it binds, but the
state of global variables that exist outside the current function. Contrast this
with the following alternative:

gv = 0 #create global variable

def fl(g,x): #function to manipulate global
g += x
return g

11.2 Variables, State, and Mutability 263

print (gv) #print initial value of global

gv = £f1(3,g9v) #invoke the function

print (gv) #print the new global value
fp2.py

This produces exactly the same output, but by different means. Specifically,
here we do not alter the global variable directly in the function. Instead, the
function takes the global variable as an argument and then returns the aug-
mented value. As a consequence, the state of the program is local to the function
while it is operating. This is a much more functional style and a programming
style that is less likely to produce errors. The basic lesson here is not to use the
global keyword.

Unfortunately, mutability produces essentially the same situation without the
red flag of the global keyword. Consider the following program:

gv = [] #create global 1list variable
gv.append (0)

def fl(x): #function to manipulate global
gv[0] += x

print(gv[0]) #print initial value of global
£1(3) #invoke the function
print (gv[0]) #print the new global value

p3.py

Here, we’ve replaced the integer variable with a list. The key difference is that
an integer is not mutable, but a list is mutable. As a consequence, we can refer
to the list variable in the function without using the global keyword. The
effect is exactly the same and the output is the same. As with the first program
above, this is to be avoided. Writing code like this means that at any point in
our program, we have to inspect what functions are running and what the state
of any mutable global variable is to figure out what the program is doing at that
time.

As above, we can replace this with code without access to a global (list)
variable:

gv = [] #create a global list variable
gv.append (0)

def fl(g,x): #function to manipulate global

264 Functional Programming

gl0] += x
return g

print(gv([0]) #print initial value of global
gv = fl(gv,3) #invoke the function
print (gv([0]) #print the new global value

fp4.py

As with £p2 . py above, we make the global variable an argument to the func-
tion and return the changed list variable as the output of the function. The
overall output of the program is again the same.

Strictly speaking, we should not have to return the changed value of gv;
it’s a mutable variable, so its value is updated automatically without explicitly
returning it. Treating it as immutable like this is a more functional style and
less likely to produce errors. The only variables that change value are explicitly
changed. In other words, when the £1 () function returns its result, we know
precisely what the function has done.

In both cases above, we have moved toward a more functional style by avoid-
ing mutability and manipulating variables globally. Both examples, however,
still include a global variable gv. We can move to a completely functional style
by replacing the global variable with a function as follows:

#simulate global variable with a function
def gv():
return 0O

#function that manipulates the global
def fl(g,x):
return gv() + x

#print initial value of the global
print (gv())

#print the new global value

print (£1(gv(),3))

pS.py

Here we’ve replaced the global variable gv with a function gv () that produces
the same initial value. We then redefine our £1 () function to take a function
as its first argument and augment its output with its second argument.

11.3 Functions as First-Class Objects 265

Restructuring the program like this means that there are no global variables.
This may seem like a meaningless technical move, but it has two important
consequences. From an abstract perspective, it’s a simpler program because
there are only functions (and the constant 3). More importantly, from a practical
perspective, when we trace the flow of the program from start to finish, we need
not keep track of any global variables; we only need to keep track of what the
current function is doing. This avoids errors and is much easier to implement
using parallel resources, as we’ll see in Section 11.8 below.

This final step is not typical of Python programming generally, but it is the
ideal in functional programming.

11.3 Functions as First-Class Objects

Another important aspect of functional programming is that functions can be
manipulated programmatically. This means you can pass functions as argu-
ments to other functions, and that functions can return functions as values. (We
introduced this briefly in Section 5.4.)

The last example above, fp5 . py, includes a function that can take a func-
tion as an argument. The following is a silly example of a function that takes
another function as an argument and applies that function to a second argument.

x = [5,7,2,6,3] #arbitrary 1list of numbers

#a silly function that applies a function
#to an argument
def fl(f,a):

return f (a)

#testing the function
print ('max:"',fl (max, x))
print ('min:',f1 (min,x))

fp6.py

Here the function £1 () simply takes a function as a first argument and applies
it to its second argument.

Here’s an example of a function that returns a function. Here we are simply
converting a string that names a function to that function:

x = [5,7,2,6,3] #arbitrary list of numbers

#a silly function that returns the max

266 Functional Programming

#function or the min function
def f(n):
if n == "max':
return max
if n == '"min':
return min
return None

#testing the function
print (‘max:',f('max") (x))
print ('min:', £('min") (x))

fp7.py

When we allow ourselves to manipulate functions like this, it helps to be
able to create functions on the fly. We already introduced 1ambda functions in
Section 5.4. To review, we can create an anonymous function with the keyword
lambda like this: lambda x: x + 3. This is an anonymous version of a
function that adds 3 to its argument. We invoke it by putting it in parentheses
and putting an argument after it in parentheses:

>>> (lambda x: x + 3) (2)
5

There is, in fact, a set of useful built-in functions that manipulate other func-
tions: zip (), map (), filter (),and reduce (). The use of functions like
these is typical for functional programming and common in Python.

The zip () function takes a set of sequences and constructs a sequence
of tuples, drawing one element from each sequence in turn. It returns an
object that can be iterated over or that can be converted into a list. Here’s an
example:

x = zip('cat','dog') #make pairs object
print (list (x)) #convert to list
x = zip('cat','dog') #make pairs again
for p in x: #iterate through pairs
print (p)
p8.py

Here we create a pairs object from the strings 'cat ' and 'dog'. We convert
that object to a list and print it. We then recreate the pairs object and iterate
through it, printing each pair. This produces:

11.3 Functions as First-Class Objects 267

[(*c', 'd"), ('a', 'o'), ('t', 'g")]
(IC', 'dl)
('a', 'Ol)
('t', 'g")

Note that if we did not create the pairs object a second time, it would be empty
when we tried to iterate through it after making a list from it. This is a general
property of such objects, and we return to this below in Section 11.7. Note also
that if the length of the two sequences is different, the pairing terminates at
the end of the shorter sequence. Thus if we tried to zip together 'cat ' and
"dogs ', we’d get the same output as above.

Another extremely useful function in this family is map (). The map ()
function applies some function to every element in a sequence, returning the
output for each application in a list. Here’s an example:

#a list of strings

x = ['Tom', 'Dick', "Harry']

#create a map object where len()

#is applied to each string

y = map(len, x)

#print map object (not too useful)

print (y)

print (list(y)) #convert map object to a list

y = map (len,x) #recreate map object

for i in y: #iterate through map object
print (i)

p9.py

Here we create a list of strings and then use map () to apply the 1en () func-
tion to each element of the list. The output is given below. Notice how printing
the result of map () directly is not too useful. We must either convert it to a list
or iterate through it.

<map object at 0x1092744e0>
[3, 4, 5]

3
4
5
The filter () function is rather similar; it applies a boolean test to every

element in a sequence and returns only those elements for which the test returns
True. Here’s an example:

268 Functional Programming

#a list of strings

a = ['Tom', 'Dick', 'Harry', 'Mike', "Abby"']
#create a filter object where a lambda
#function is applied to each element

b = filter (lambda x: len(x) == 4,a)
#convert map object to a list

print (list (b))

fp10.py

Here we create a list of strings and then filter it with a 1ambda function.
The lambda function tests whether the length of a string is four charac-
ters long. This returns a £i1lter object, which we then convert to a list and
print:

['Dick', 'Mike', 'Abby']

Finally, we have the reduce () function from the functools module.
This function allows you to reduce a sequence of elements to one element by
applying a function that takes two arguments. For example, imagine you have a
numerical sequence like [1, 2, 3, 4] and you apply addition to this. It would
first add the first two numbers, producing 3; then add that to the third num-
ber, producing 6; then add that to the fourth number, producing 1 0. Here’s a
program that does this:

from functools import reduce

a = list(range(10)) #create list of numbers
#reduce with addition

b = reduce (lambda x,y: x+y,a)

print (b) #print result

fpll.py

This produces the result 45."

The reduce () function allows for an optional third argument, which is
prefixed to the beginning of the sequence before the reduction takes place. For
example:

from functools import reduce

a = list(range (D)) #create 1list of numbers

I The sum () function will achieve the same effect directly.

11.4 Overt Recursion 269

#reduce with addition

b = reduce(lambda x,y: x+ty,a,?9)
print (b) #print result
#another reudction

c = reduce(lambda x,y: x+ty,[],9)
print (c) #print result

fpl2.py

The first reduction sums (((9 + 1) + 2) + 3) + 4; the second
reduction just produces the single default value specified as the third
argument: 9.

11.4 Overt Recursion

A hallmark of functional programming is recursion: functions that are defined
with respect to themselves. We’ve already given an example of this in Sec-
tion 5.4 above, and we repeat it below:

def fac(n): #function definition
if n == 1: #base case of recursion
return 1
else: #recursive clause
#invokes the function ITSELF
return (n * fac(n-1))

#invoked with base case

print('1! =",fac (1))
#invoked with recursive case
print ('5! =", fac(5))

funcl19.py

Here we define a function to compute factorials. There is a base case for when
the argument is 1. Higher integers are then defined inductively, each one in
terms of the next smaller integer. This works because eventually we hit the
base case and the self-definition terminates.

Interestingly, most cases of overt recursion like this can be achieved indi-
rectly and more simply using one of the second-order functions we discussed
in the preceding section. For example:

270

Functional Programming

from functools import reduce

def mult(x,Vy): #multiplication function
return x*y

def fac(n): #factorial with reduce ()
return reduce (mult,range(l,n+1l),1)

#example of the base case

print('1! =',fac (1))

#another example

print ('5! =',fac(5))
fpl3.py

Here we define a function for multiplication and then invoke it with reduce ()
in the definition of fac ().

Here’s another, more linguistic example. We first define a recursive func-
tion for printing out all prefix strings of a word p£x1 (). The function prints
out its current argument and then invokes itself on the same string minus
the last character. The function terminates when the string has no characters

left.

The nonrecursive version uses map () . We define a range of numbers from
the length of the string down to 0. We then apply map () to that sequence of

numbers to print out all prefixes of the string.

#recursive function to find prefixes
def pfxl(s):
if len(s) > 0O:
print (s)
pfxl(s[:-1])

def pfx2(s): #same function using map ()
list (map (
lambda x: print(s[:x]),
range (len(s),0,-1)

))

pfxl ('happyv') #comparing
pfx2 ("happy')

fpld.py

11.5 Comprehensions 271

A curious fact about recursion is that, as one might expect, beginning pro-
grammers tend to avoid it. Then, as they get more experience, they use it a lot.
Interestingly, however, experienced programmers use it less and less, replac-
ing overt recursive techniques with second-order functions like map () and
reduce ().

11.5 Comprehensions

Comprehensions are a powerful tool in Python. They allow you to create lists,
sets, or dictionaries from other sequences. They enable us to create various
sequences while avoiding overt control structures. The basic syntax for a list
comprehension is:

[x for y in z if ...]

Here, z is some sequence of elements, vy is a variable name, and x is a (poten-
tially vacuous) operation applied to y. This may be followed by a condition
ony.

Here’s an example:

#create list comprehension

a = [x+x for x in 'happy' 1if x+x != 'aa'l
for i in a: #iterate through 1list
print (i)
fpl5.py

Here we create a list comprehension from the string 'happy ' by concatenat-
ing every letter with itself unless that concatenation produces 'aa '. Here’s the
output:

hh

pp
pp
Yy

The comprehension can draw from multiple sequences. The following
example demonstrates:

#create a comprehension from two sequences

a = [x+y for x in 'hat' for y in 'dog']
for i in a: #iterate through result
print (i)

fpl6.py

272 Functional Programming

Here we concatenate two letters where the first is drawn from 'hat ' and the
second from 'dog'. Here’s the output:

hd
ho
hg
ad
ao
ag
td
to

tg

Notice how the effect is to concatenate every possible combination of letters
from the two sequences.

We can nest things in more complex ways as well. The following program
exemplifies:

a = ['Tom', '"Ann', 'Bess"'] #list of strings

#nested comprehension

b = [let for wd in a for let in wd]

for i in b: #iterate through
print (i)

fpl7.py

Here we flatten a list of strings into a list of letters by nesting two for-clauses.
Here’s the output:

nwwn O w33 P30 4

This structure may seem a bit mysterious, but it makes sense if we translate
it into nested for-loops:

11.6 Vectorized Computation 273

a = ['"Tom','Ann', 'Bess'] #list of strings
b =[] #nested for loops
for wd in a:
for let in wd:
b.append(let)
for i in b: #iterate through
print (i)

fp18.py

This produces the same output. Notice how the for-loops are nested in the
same order as the for-clauses in the comprehension.

We can create dictionary comprehensions as well. The syntax is essentially
the same except that the entire expression is enclosed in curly braces and the
leftmost expression must be a key—value pair. Here’s an example:

#make a list of strings
a = ['"Tom', 'Dick', "Harry']
#dictionary comprehension with strings
#as keys and lengths as values
b = {w:len(w) for w in a}
for w in b:
print('{:>5}: {}'.format(w,b[w]))

fp19.py

Here we first construct a list of strings. We then use that list to create a dictio-
nary comprehension where each string is a key and the value is the length of
the string. This produces the following output:

Tom: 3
Dick: 4
Harry: 5

11.6 Vectorized Computation

Second-order functions, recursion, and comprehensions can all be used to
avoid control structures and move us toward the functional programming ideal.
Another way to do this is vectorized computation or vectorization. Computation
is vectorized when operations on a sequence of elements can be performed in a

274 Functional Programming

single step. Consider the problem of adding together the numbers in two lists.
For example:

a=[1,2,3] #create two lists

b = [4,5,6]

print (a+b) #plus concatenates them
c = [] #make a new 1list

#go through old lists

for i in range (0, len(a)):
#add current values together
c.append(al[il+b[i])

print (c) #print result

p20.py

Here we first create two lists of integers. We first see that + concatenates the
lists, rather than summing the values. To do that, we must go through the lists
and add each pair of elements. The program produces the following output:

(1, 2, 3, 4, 5, 6]
(5, 7, 9]

One way to avoid thisis touse zip () and map () :

a=1[1,2,3] #create two 1ists
b = [4,5,6]
c = zip(a,b) #zip each pair together

#sum elements of each pair
d = list (map (sum,c))
print (d) #print result

fp21.py

This produces the same result.

The numpy module provides this same functionality for all mathemati-
cal operations. What we do is convert our lists to numpy arrays, and then
mathematical operators have their vectorized effects. For example:

import numpy as np

#create two numpy arrays
a = np.array([1,2,3])
b = np.array([4,5,6])

11.7 Iterables, Iterators, and Generators 275

c=a+b #vectorized addition
d=a*b #vectorized multiplication
print (c) #print results
print (d)

p22.py

Here we cast our lists as numpy arrays. We then add and multiply them together
and print the results:

[5 7 9]
[4 10 18]

This is quite convenient and efficient but works for only mathematical oper-
ations. For string operations, we must use either the usual control structures or
solutions like the one above with zip () and map ().

11.7 Iterables, Iterators, and Generators

In this section, we look more closely at iteration. We start with iterables. These
are data structures that can be iterated over with control structures like for or
while and include lists, dictionary keys, strings, and files. All of these can be
used with higher-order functions as well. For example:

from functools import reduce

a=[1,2,3,4,5] #lists
#add pairs
print (reduce (lambda x,y: x+y,a,0))

#dictionaries

b = {'Tom':14, 'Dick':25, '"Harry':8}
#length of each key

print (list (map(len,b)))

¢ = 'happy' #strings
#double each letter
print (list (map (lambda x: x+x,cC)))

f = open('test.txt','r") #files
#length of each line

276 Functional Programming

print (list (map(len,f)))
f.close ()

fp23.py

An iterator is a special kind of iterable. They come in two forms. One form
uses OO programming and is based on the next () method:

#an iterator that represents a sequence
#of integers
class Sequence:
#initialize endpoints
def init (self,low,high):
self.now = low
self.high = high
#required for iterators
def iter (self):
return self
#gets the next item
def next (self):
#must throw this error at 1limit
if self.now > self.high:
raise Stoplteration
#return current value and increment
else:
i = self.now
self.now += 1
return i

s = Sequence(3,10) #create a new sequence
#iterate through the sequence
for 1 in s:

print (i)

fp24.py

Here we define an iterator as a new class Sequence. To work as an iterator,
it must have several key bits. First, it musthavean _iter () method that
returns the class instance. Second, it must have a _next () method that
returns the next element in the sequence. Third, if the sequence is bounded,
the next () method must raise a StopIteration error when the
bound is reached.

11.7 Iterables, Iterators, and Generators 277

The other kind of iterator is built around the getitem () method.
The basic idea here is to build a list that we can index into. Here’s an
example:

#a different kind of iterator
class Students:
#initialize with 1list of names
def init (self,listofstudents):
self.students = listofstudents
#how to change a name
def setitem (self,n,name):
self.students[n] = name
#how to retrieve names
def getitem (self,n):
return self.students[n]
#returns number of names
def len (self):
return len(self.students)
#adds a name to the list
def append(self,name) :
self.students.append (name)
#deletes an item
def delitem (self,n):
del self.students[n]

#create a new student 1ist
s = Students (['Mike', "Joey'])

s[1] = 'Diane' #change name of 2nd student

s.append('Bob') #add a student

del s[0] #delete a student

for n in s: #iterate through final 1list

print (n)
p25.py

The essential method hereis getitem (), but we’ve added a few oth-
ers for extra functionality. The setitem () method lets us change an
item. The len () method lets an instance of the class respond appropri-
ately to the 1en () function. We define append () so that we can append
names on the end of the list and delitem () so that we can delete

items.

278 Functional Programming

There are virtues in both approaches. The getitem () approach
allows us to use indexing with our iterator, which would seem to be an advan-
tage. On the other hand, the next () approach allows us to have infinite
iterators. Here’s a simple example:

#an iterator that represents an
#infinite sequence of integers
class Sequence:
#initialize starting point
def init (self,low):
self.now = low
#required for iterators
def iter (self):
return self
#gets the next item
def next (self):
#return current value and increment
i = self.now
self.now += 1
return i

s = Sequence (3) #create a new sequence
for i in range(5): #iterate through sequence
print (next (s))

fp26.py

Here we tweak the code from £p24 . py by eliminating the endpoint. We can
now iterate through a Sequence object infinitely. Note that we do not want
to convert one of these to a list with 1ist (). Since the list would be infinite,
this does not terminate!

Here’s an interesting example where we use the same technique to calculate
the Fibonacci numbers. This is the sequence of numbers where the first two
numbers are 1 and 1, but each subsequent number in the series is the sum of
the preceding two numbers, i.e., (1,1,2,3,5,8,...).

class Fibonacci: #an iterator for Fibonacci
#initialize starting point
def init (self):
self.now = [1,1]
#required for iterators
def iter (self):
return self

11.7 Iterables, Iterators, and Generators 279

#gets the next item
def next (self):
#return current value and increment
i = self.now([-2]
self.now.append (
self.now[-2]+self.now[-1]

)

return 1

f = Fibonacci () #create a new sequence
#iterate through sequence
for 1 in range(10):

print (next (f))

p27.py

Here we populate the internal list with two numbers. The trick is that we return
the second number from the right on every instance of next ().

Iterators are useful but, as you can see, take a fair amount of work to
code. There is another method available, though: generators. Generators typ-
ically involve less coding but can be mysterious. Compare the following with
fp24.py above:

def sequence (low,high): #sequence generator
while low <= high:
yield low
low += 1
s = sequence (3, 10) #create new sequence
for i in s: #go through sequence
print (i)
p28.py

Generators are functions with two differences. First, the return keyword is
replaced with yield. Second, if the generator function is called a second time,
execution resumes where it left off the first time. In the case above, this means
that the while loop inside the sequence () function continues right after
the yield statement, thus incrementing the value of 1 ow and starting the loop
again.

If we think of yield as analogous to return, then a generator function
looks rather odd with statements following the yield statement. This makes

280 Functional Programming

sense, however, if we keep in mind that, on a subsequent application of the
function, execution resumes affer the yield.
The same technique will work to generate the Fibonacci series:

def fibonacci () : #fibonacci generator
res = [1,1]
while True:
res.append(res[-1]+res[-2])
yield res[-3]

3 =0 #iterate through values
for 1 in fibonacci () :

print (i)

3 o4= 1

if § == 10: break

p29.py

Here we build the sequence just as we did with fp27.py above. The dif-
ference is that we embed this in an infinite while loop in the generator
function. Every time the function is invoked, the loop resumes. Again, notice
that the generator code is much more succinct than the OO-based iterator
technique.

11.8 Parallel Programming

Most modern personal computers have multiple processors or cores. What this
means is that they can do more than one thing at a time. Python by default
does not take advantage of multiple processors, but the multiprocessing
module lets you do this. This can result in dramatic improvements in how long
your programs run.

Not all tasks lend themselves to parallel programming. Even tasks that can
be recast in parallel must be carefully structured to do this. It turns out that
adopting a functional programming style makes this relatively easy.

Imagine you have a programming task that you are interested in using paral-
lel programming for. The key question is whether you can break it into subtasks
that can proceed independently of each other. This is not always an easy thing
to determine.

Consider, for example, reading in a file and building a concordance of the
words in that file. It would be difficult to parallelize the file-reading part of this
task. The problem is that, no matter how many processors your computer has,

11.8 Parallel Programming 281

it probably has only one hard drive. If you tried to parallelize the file-reading
part of the program, you’d have bottleneck from the one hard drive.?

Let’s assume then that the file has been read in with a single process. Is
there any way to parallelize the process of making a concordance? If we had
a single process, we would define a dictionary and would then go through the
words of the file one by one, adding words and/or incrementing counts for each
word as we went. Viewed like this, this would be a difficult task to parallelize
as well. The problem here is that the dictionary is a bottleneck. Each process
would need to be able to make changes to a single shared dictionary. We would
need to make sure that the independent processes did not create conflicts. For
example, imagine two separate processes attempted to augment the value for
some entry at the same time.

To solve challenges like these, we need to separate our program into separate
tasks that are not subject to hardware or software bottlenecks. Accessing the
same shared drive at the same time is a hardware bottleneck. Accessing the
same dictionary at the same time is a software bottleneck.

In the hypothetical example we’ve been discussing, the way to proceed might
be as follows:

(1) Read in the file.

(i) Break it into words.

(iii) Partition those words into n separate lists.

(iv) Construct separate concordances as dictionaries for each list in parallel.
(v) Merge the dictionaries.

Notice how we have solved both the hardware and software bottlenecks with
this plan. The hardware bottleneck is resolved by reading in the file in a single
process. The software bottleneck is resolved by having separate dictionaries for
each of the parallel processes.

While the strategy above resolves the bottlenecks, it’s not actually the best
way to proceed. There are two efficiency issues. The first is how much time
we would save by this process. Breaking our dictionary construction process
into separate smaller processes that can proceed independently will surely save
time. On the other hand, there is overhead. First, we have to break our list of
words into separate lists, which takes time. Second, once we have constructed
these separate dictionaries, we have to merge them together, which also takes
time. It may well be the case that these overhead steps cancel out the advantages
of the parallel steps.

There is a second, cruder, efficiency question to address as well. Imagine that
indeed parallelizing like this saves us 10 minutes in runtime. Imagine, however,
that this program will need to be run only once and that it takes you half an hour

2 Solid-state hard drives do not have this property and we exploit this below.

282 Functional Programming

to convert your program into one that will run in parallel. This is probably not
a good tradeoff.

As a general rule of thumb then, you can parallelize some process when you
can efficiently break it into subtasks that can proceed simultaneously without
hardware or software bottlenecks and that can efficiently be merged together
again.

From a practical perspective, you can parallelize your program if some or all
of it can be treated with map () . Recall that map () allows you to apply some
function to some sequence. If you can write your code with map (), then you
can parallelize your program by replacing map () with the method of the same
name from the multiprocessing module.

We’ve already given an example of this in Section 8.4 with a program that
retrieves webpages. The program is repeated below:

import time #for timing info
#to read webpages

from urllib.request import urlopen
#to do more than one thing at once
from multiprocessing import Pool

#current time in milliseconds
def mytime () :

return round(time.time () * 1000)

def myget(url): #50 characters of a webpage
start = mytime ()
data = urlopen (url,timeout=5) .read() [:50]
result = {"url": url, "data": data}
now = str(mytime() - start)
print (url + ": " 4+ now + "ms")

return result

#some random urls

urls = ['http://www.google.com/"',
'http://www.yahoo.com/"',
'http://golwg360.cymru/newyddion',
'https://news.google.com/news"',
'https://tartarus.org/martin/PorterStemmer/",
'https://en.wikipedia.org/wiki/Main Page',
'http://www.u.arizona.edu']

#print urls in order accessed

11.8 Parallel Programming 283

for 1 in range(len(urls)):

print (i+1,': ',urls[i],sep="")
print ()
mypool = Pool () #multiple processes

start = mytime () #start the clock
#separate process for each url
results = mypool.map (myget, urls)
#print total elapsed

now = str(mytime () - start)
print ("Total = " + now + " ms\n")
webl1.py

This program retrieves several web pages in parallel using map () from the
multiprocessing module. The key here is that each retrieval can proceed
independently. There is no software bottleneck because the different retrievals
do not share any data structures. There is no hardware bottleneck either because
each retrieval depends on other computers. In fact, given that the other com-
puters can take unpredictable amounts of time to respond, the task lends itself
quite well to a parallel implementation.

This same technique would seem to work with our hypothetical concordance
example above. Here is a nonparallel version of it.

import re,time

def mytime () : #gets time in milliseconds
return round(time.time () * 1000)

start = mytime () #start the clock

#read file

f = open('alice.txt','r")

t = f.read()

f.close()

t = t[11000:] #strip header
t = t.lower () #normalize

t = re.sub('["a-z]+'," ',t)

#split into words

284 Functional Programming

ws = t.split(' ")

d = {} #build concordance
for w in ws:
if w in d:
dlw] += 1
else:
dlw] = 1

print (len(d))
print (sum(d.values()))

#print total elapsed

now = str(mytime() - start)
print ("Total = " + now + " ms")
p30.py

This program retrieves the contents of the Alice text, strips the header info,
normalizes it, breaks it into words, and then uses a dictionary to build a con-
cordance. We’ve added code to time the execution. On my own laptop, this
takes about 15 msec.

Here now is a parallelized version of the same code:

import re,time
import multiprocessing as mp

def mytime () : #gets time in milliseconds
return round(time.time () * 1000)

start = mytime () #start the clock

def myconc (wds) : #build concordance
da= {}

for w in wds:
if w in d:
diw] += 1
else:
dlw] = 1
return d

#read file

11.8 Parallel Programming 285

f = open('alice.txt','r")
f.read()
f.close()

o+
Il

t = t[11000:] #strip header
t = t.lower () #normalize
t = re.sub('["a-z]+'," ',t)

ws = t.split(' ") #split into words

#partition words
ws = [ws[:9000],ws[9000:18000],ws[18000:71]

#start multiprocessing
mypool = mp.Pool ()
res = mypool.map (myconc, ws)

d = res[0] #merge results
for dx in res[l:]:
for w in dx:
if w in d:
dlw] += dx[w]
else:

print (len(d))
print (sum(d.values()))

#print total elapsed

now = str(mytime() - start)
print ("Total = " + now + " ms")
fp31.py

The difference here is that after we have split the text into words, we partition
those words into three lists and then use map () frommultiprocessingto
make three separate dictionaries in parallel from those lists. We then assemble
those dictionaries into a single dictionary. On my own laptop, this takes about
45 msec.

As we speculated above, any advantage in parallelizing is offset by other
costs here, either the time taken to split the list into three sublists, the time

286 Functional Programming

taken to merge the dictionaries, or the time taken by Python to manage
the multiprocessing. The moral is that parallel processing does not always
help.

If we tilt the balance, then the parallel treatment becomes the better one. Fol-
lowing is an example of a program that searches through a set of program files
looking for words where pairs of letters are repeated in overlapping fashion.
For example, prepend repeats the letters e and p in this way.

import re,time,glob

def mytime () : #time in milliseconds
return round (time.time () * 1000)
start = mytime () #start the clock

#names of files that end in .py
filenames = glob.glob('*.py")

def countwords (filename) :
f = open(filename, 'r')

t = f.read()

f.close()

t t.lower ()

t = re.sub('["a-z]+"," ', %)

ws = t.split ()

wds = []

for w in ws:
m = re.search (" (.).*(.).*\\L.*\\2",w)
if m:

wds .append (w)
return len (wds)

#map function to all filenames
wds = map (countwords, filenames)

print (sum(wds)) #print total
#stop the clock

now = str(mytime() - start)

#total elapsed time

print ("Total time = " + now + " ms")

p32.py

11.8 Parallel Programming 287

First, we use the glob () function from the glob module to list all files
matching a specific pattern. We then define a function countwords () that
reads a file, normalizes the text, splits it into words, and finds the words that fit
the interlocking pattern described above. This pattern matching requires back-
references and is rather time-consuming. We then use the map () function to
apply the countwords () function to each filename and collect the results.

Following is a parallel version of the same program. Here, we simply replace
map () with the method of the same name from the multiprocessing
module.

import multiprocessing as mp
import re,time,glob

def mytime () : #time in milliseconds
return round(time.time () * 1000)
start = mytime () #start the clock

#names of files that end in .py
filenames = glob.glob('*.pyv")

def countwords (filename) :

f = open(filename, 'r')

t = f.read()

f.close()

t = t.lower ()

t = re.sub('["a-z]+"'," ',t)

ws = t.split()

wds = []

for w in ws:
m = re.search (" (.).*(.).*\\1.*\\2'",w)
if m:

wds . append (w)
return len (wds)

#start multiprocessing

mypool = mp.Pool (processes=4)

#map function to all filenames

wds = mypool.map (countwords, filenames)

print (sum(wds)) #print total
#stop the clock

288 Functional Programming

now = str (mytime() - start)

#total elapsed time

print ("Total time = " + now + " ms")
p33.py

Here, running these on the program files from the text, the parallel version
of the program performs slightly better on my own laptop. In principle, we
might expect a hardware bottleneck because of the hard disk access in the
countwords () function, but my hard disk is solid state, which, in principle,
allows parallel access.

11.9 Making Nonsense Items Again

Let’s now use some of the techniques we’ve learned here to tackle the problem
of generating nonsense items again as we did in Chapter 3. Let’s try something
a little more difficult though and build a function that will give us an infinite
number of nonsense items.

The idea would be to have a function that takes a list of letters as an argument
and then generates every possible combination of those letters with no upper
bound.

To make an infinite sequence, we need a generator, so the basic template for
our function would be like this:

def items(ls):

yield item

We define a generator function items () that takes a string argument 1s. The
function would then yield individual items on each application.

We’ll do this recursively. We define a base set of strings [' '] and then
generate every concatenation of this with the letters in the function argument.
We yield those one at a time. When we’ve exhausted that list of strings, we
redefine that list as the base, concatenate every member of the new base with
the function argument, and loop.

For example, if our argument was 'zb ', then every concatenation with the
base gives [2", 'b']. Weyield each of those and then do the concatenation
again giving ['aa', 'ab', "ba', "bb']. To do this concatenation we use
a list comprehension.

This is exemplified in the following program. The items () function is as
described. We then iterate through the first ten items just as we did above when

11.10 Exercises 289

we introduced generators. We also make use of the islice () function from
the itertools module, which lets us extract a sequence of values from the
generator.

import itertools

#generate all combinations of letters
def items (ls):
n=[""]
while True:
nn = [x+y for x in n for y in 1s]
for x in nn:
yield x
n = nn

3 =0 #iterate up to a specific point
for 1 in items('abc'):
print (i)
jo+=1
if §J == 10:
break

#extract a sequence from the iteration
myslice = itertools.islice(items('ab'),100,105)
print (list (myslice))

fp34.py

11.10 Exercises

11.1 Convert a program from an earlier chapter to a fully functional version
of the same program. There should be no variables outside of functions
(unless they are immediately passed to the next function).

11.2 Function composition of two functions f and g is when we create a new
function that does the same thing as applying £ to the output of g. Write
a function that does this. Your function should take two arguments: the
two functions. Your function should return a new composed function.

11.3 Write a program that calculates the sum of the number of characters in
some set of text files. Your program should take the name of a file direc-
tory as a name. Your program should use the reduce () function from
the functools module to do this.

290
11.4

11.5

11.6

11.7

11.8

11.9

Functional Programming

Take a program from the chapter on control structures that has nested
loops and rewrite it using a list comprehension.

Root Mean Square (RMS) Amplitude is the square root of the average
of the squared values of a waveform. Write a function that loads in a
wave and calculates this using vectorized calculations from the numpy
module.

Write a generator function to create nonsense words. The function should
take a list of syllables as input and return any number of concatenations.
Find a programming problem that is more efficiently solved with parallel
programming. Demonstrate that this is so with a sequential and a parallel
version of the same program.

Create an iterator class for syllables in English. Your class should be able
to be instantiated with the IPA representation of a word and you should
be able to index into it for the syllables of the word. Note that this entails
that, in the background, your class will syllabify the word when the class
is instantiated.

Create an iterator class for phrases. You should be able to instantiate the
class with a string to be tokenized into words. You should create addi-
tional specific classes for NP, VP, etc. that inherit from your Phrase
class and that can be assembled into a Sentence.

11.10 Web: There is a function iter () that can be useful for functional pro-

gramming. Snoop around on the web, find out what it does, explain, and
exemplify in a program.

Appendix A
NLTK

The Natural Language Toolkit (NLTK) is a huge, publicly available module
that includes a number of extremely useful tools for working with language. It
also includes a number of text resources that you can use to try out these tools
or for your own research.

In this appendix, we very briefly introduce NLTK. Our goal is to give a brief
overview of what you can do with it. To find out more, you should consult the
module website: http://nltk.org.

Al Installing

Installing NLTK is straightforward with pip or conda. The trick is that after
you do the install, you should install additional optional components. To do
this, go to the interactive environment and type:

import nltk
nltk.download ()

This will open a separate window that lets you choose additional components
to install. Installing all the optional components takes slightly less than two
gigabytes (version 3.2.3).

A2 Corpora

Once you’ve installed the optional components, a number of corpora are
installed as well. You have access to them through the nltk.corpus sub-
module. For example, the names corpus is a corpus of 7,944 English personal
names separated into male and female categories. The following program
shows how to load these and then calculate the average number of letters in
male and female names:

from nltk.corpus import names

291

http://nltk.org

292 NLTK

male = names.words ('male.txt")
female = names.words ('female.txt')

mavg = sum(map (len,male))/len (male)
favg sum (map (len, female)) /len (female)

s = '"{:>6} names: {:>5} {:>3}"
print(s.format (
'Male',
len (male),
round (mavg, 3)
))
print (s.format (
'Female',
len (female),
round (favg, 3)
))
nltk1.py

First, we import the corpus from nltk.corpus. We then extract the male
and female names into separate lists, calculate averages for each, and print the
results.

Many other corpora are available as well. If you want to see what’s available,
go to the interactive environment and type:

from nltk.corpus import names
names.root

This will import the names corpus and then report where it is located on your
system. Go to that directory and scroll through the directories listed under
corpora. Some of the files here are helper programs for n1tk.corpus,
but most are corpora. Here are a few that I have on my own system:

® inaugural Fifty-six presidential inaugural addresses

® gutenberg Eighteen novels, plays, and poetry collections from Project
Gutenberg

® brown A tagged version of the Brown corpus: 1,161,192 words

® shakespeare Eight of Shakespeare’s plays

® timit A sample of the TIMIT corpus including recordings and transcrip-
tions of 160 sentences

® wordnet A dictionary resource indicating a variety of semantic relation-
ships between words for English

There are many others.

A.3 Tokenizing 293
A3 Tokenizing

One of the simplest things you can do with a corpus is to tokenize it, break it
into words or sentences. This has already been done for many of the corpora
that come with NLTK. The following code loads the brown corpus and prints
out the first five sentences and the first five words:

from nltk.corpus import brown

words = brown.words () #get the words

for w in words[:5]: #print first 5 words
print (w)

#get the sentences

sentences = brown.sents/()

#print the first 5 sentences

#(with extra spaces)

for s in sentences[:5]:
print (s, "\n")

nltk2.py

NLTK also offers utilities for tokenizing your own texts. The following code
loads the Alice text and extracts the first 10 sentences:

from nltk.tokenize import sent tokenize

f = open('alice.txt','r") #read in alice
t = f.read()

f.close()

t = t[11000:] #strip header
#break into sentences

ss = sent tokenize (t)

#how many sentences
print (len(ss))
#print first 10 with extra spaces
for s in ss[:10]:
print (s, "\n")

nltk3.py

You can also tokenize words. The following code normalizes and tokenizes
the words of the Alice text and then plots the most frequent ones:

294 NLTK

import nltk
from nltk.tokenize import word tokenize

f = open('alice.txt','r") #read in alice

t = f.read()

f.close ()

t = t[11000:] #strip header

t = t.lower () #normalize

ws = word tokenize(t) #break into words

#create a frequency distribution
fd = nltk.FregDist (ws)

#print the 50 most frequent items
fd.plot (50, cumulative=False)

nltk4.py

Here we use the word tokenize () function to extract the words and the
FregDist class to create the distribution. We use the plot () method of that
class to plot the 50 most frequent items. (Run the code yourself and notice the
zipfian distribution.)

The word tokenize () function can take an optional second argument,
which allows tokenization in a number of other languages as well.

A4 Stop Words

The frequency display for nltk4.py above is dominated by function
words. We can remove these from the display using the stopwords cor-
pus. This includes sets of function words from a number of languages. For
example:

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize

f = open('alice.txt','r") #read in alice

t = f.read()

f.close ()

t = t[11000:] #strip header

t = t.lower () #normalize

ws = word tokenize (t) #break into words

#get stop words

A.4 Stop Words 295

sws = stopwords.words ('english')
#remove stop words
ws = [w for w in ws if not w in sws]

#create a frequency distribution
fd = nltk.FregDist (ws)

#print the 50 most frequent items
fd.plot (50, cumulative=False)

nltk5.py

Notice that this does not remove punctuation.

We can use this to do fairly crude language identification. The basic idea is
to check a bit of text to see how much it overlaps with the different stopword
sets. The following program exemplifies:

from nltk.corpus import stopwords
from nltk.tokenize import wordpunct tokenize

#sample sentences
sl 'Here is a short sentence for you.'

s2 = 'Voici une phrase courte pour vous.'
s3

'BOT KOpPOTKOE MIpenjioXeHMe mnjs Bac. '

def identify(s): #to count stop words
print (s)
wds = wordpunct tokenize(s.lower())
wdsset = set (wds)
for 1 in stopwords.fileids():
stopwordsset = set (stopwords.words (1))
score = len(
wdsset.intersection (stopwordsset)
)
print ('\t',score, 1,
len (stopwords.words (1))

identify(sl) #test on the 3 sentences
identify (s2)
identify (s3)

nltko6.py

296 NLTK

A.S Tagging

Finally, NLTK offers several mechanisms to obtain or produce tagged text: text
with part of speech indicated.

The simplest is to use one of the corpora that are already tagged, e.g., the
brown corpus. The following code shows how to get tagged sentences from
the brown corpus:

from nltk.corpus import brown

for s in brown.tagged sents() [:5]:
print (s, '"\n")

nltk7.py

Here each sentence is output as a list of pairs where the first member of the pair
is a word and the second member is a part of speech tag.

NLTK can also tag text for you. The following code shows this for the first
few sentences of Alice:

from nltk import pos tag
from nltk.tokenize import sent tokenize
from nltk.tokenize import word tokenize

f = open('alice.txt','r") #read in alice
t = f.read()

f.close()

t = t[11000:] #strip header
#break into sentences

ss = sent tokenize (t)

#go through the first 5 sentences

for s in ss[:5]:
ws = word tokenize(s) #break into words
print (pos_tag(ws), '\n') #tag and print

nltk8.py

A.6 Summary

In this appendix we’ve presented some easy things you can do with the NLTK
module. This only scratches the surface.

Index

\, 106 backreferences, 125-126, 287
\1, 126 BeautifulSoup (), 174,175
\2, 126 BeautifulSoup, 188, 204
\3, 126 b, 240, 241, 243
\D, 125 Big5, 183, 184
\s, 125 bind(), 251
\w, 125 booleans, 1213, 25, 26
\d, 125 BooleanVar, 259
\s, 125 BOTH, 245
\w, 125 BOTTOM, 245
€,122,123 break, 46-50 52, 66
|, 60, 122, 124, 173 brown, 292, 293, 296
*=, 40 bs4, 204
+=, 10 bs4, 174, 186
+=,40 Button, 235
-, 125 buttons, 233, 235, 237-241, 243-246, 249,
-=,40 252,253,259
., 124,173 bytes, 181
/=,40
=, 86,90
=9,10,34,71 c#, X
2,125 cat, 63
#,7 cd, 7
$, 124 CENTER, 241
*, 4,90, 122, 125 chardet, 185, 186
*% 24,91 Chinese, 182, 183, 185, 186
+, 3, 87,125, 190 class, 208,210
~, 124 classes, 207-217
close(), 68

command, 235, 241
command line, 56-65
comments, 7, 30, 82, 98-99, 173, 175

ActiveState, 2
Anaconda, 2, 69, 70

anchor, 240
complex, 11
and, 12
nd (). 20,277 complex number, 25
appe cT comprehensions, 261, 271-273
arrays, 274

concatenation, 122, 124, 232
conda, 70, 291

configure (), 239,241,243
continue, 52, 66
continue, 46-50
background, see bg control-c,3

ASCII, 181, 182
assignment, 9-10
attributes, 169

297

298 Index

count (), 5
count, 139

decode (), 168, 183, 184, 192

def, 82,93, 98, 208

del(),277

__delitem_ (),277

detect (), 185,186

dictionaries, 22-26, 99, 115, 185, 271, 275,
281, 284

dir,7

docstrings, 82, 98-99, 101-102

E, 241

echo, 60—62

elif,33

else, 32-34,45,46

encode (), 184

end (), 120, 121, 125, 138

end, 35

English, 127, 136, 138, 142, 166, 181, 195,
291, 292

Entry, 250-252, 255, 257, 259

eval (), 67

event loop, 236

event-driven programming, 234

Excel, 72

except, 190

expand, 245, 246

factorials, 92, 269

FALSE, 245

False, 12,41, 117,119, 120

fg, 240, 241, 243

Fibonacci numbers, 278, 280

file input—output, see file IO

file 10, 67-72, 103

£il1,245

filter (), 266,267

filter, 268

find all(), 175

findall (), 121, 140

flags, 119, 139, 140

float(),5

floating point number, 11, 25

font, 240, 241, 243

for, 35-41, 41, 44, 46-49, 52, 53, 60, 62,
272,273,275

foreground, see £g

format (), 16-18, 24

Frame, 235

FregDist, 294

functional programming, 261-290

Functions, 261

functions, 5, 82-94, 101, 261, 262, 265-269,
275
functools, 268, 289

garbage collection, 24-26, 88
generators, 275-280, 288
get (), 175,244

get text (), 175
__getitem (),277,278
glob (), 287

glob, 287

global, 88, 240, 262, 263
graphical user interface, see GUI
greedy, 121

grid(), 245,260

group (), 120, 125, 126
GUI, 233-260

gutenberg, 292

Haskell, x

help(),3,98,102

Homebrew, 2, 69

href, 169, 175

HTML, 167-175

hyperlink, 169

hypertext markup language, see HTML

idle, 2

if,29-34,38-41, 44, 46-49, 53, 54, 66, 83,
85

import, 57, 60, 94, 96, 100

in, 21-23, 35, 40

inaugural, 292

inheritance, 217-221

_init (),212-215,217, 220, 221, 223,
224,226,230

input (), 64, 66

insert (), 20,25

instances, 207-217

int(),5

integer, 11

integers, 25, 274

IntVar, 243, 244

ipadx, 245

ipady, 248, 249

ipady, 245

isinstance (), 13

islice (), 289

_diter (),276

iter(),290

iterables, 275-280

iterators, 275-280

itertools, 289

java, X

Index

javascript, 170
javascript, 172
join (), 138, 141
jupyter, 2

key, 23
keyboard input, 64—67
Kleene star, 122, 124, 125, 232

labels, 236-238, 240, 241, 243-245, 252, 255,
257,259

lambda, 91-94, 251, 261, 266, 268

lambda calculus, 261

LEFT, 245
len(),4,19,21,23,40,92,267,277
~len (),277

Lisp, X

list(),20,22,24,278
lists, 19-21, 25, 73, 271, 274, 275, 281, 288
1s,7

MacPorts, 2, 69

mainloop (), 235

map (), 178,266, 267,270, 271, 274, 275,
282,283, 285, 287

match, 119, 125, 138

matplotlib, 70, 71

messagebox, 249, 259

methods, 5, 207-217

modules, 94-102

multiprocessing, 178, 280, 282, 283,
285,287

mutability, 24-27, 88, 261-265

N, 241

\n, 14, 15

__name_ ,98

name space, 96

names, 291, 292
naming, 24

NE, 241

__next_ (),276,278,279
NLTK, xi, 291-296
nltk.corpus, 291,292
NONE, 245

None, 86, 119-121

not, 12

numbers, 11-12, 26, 261
numpy, 274, 275, 290
NW, 241

object-oriented programming, xi, 206-232,
276

objective ¢, x

0O, see object-oriented programming

299

open (), 68, 184
openpyxl, 70-72
Optimality Theory, 92
or, 12

pack (), 235, 245-249, 260
padx, 241, 245, 248, 249
pady, 241, 245

parallel programming, 261, 265, 280-288, 290
parentheses, 124

parity bit, 181

pass, 34,218

php, 172

Pig Latin, 166

pip, 69, 70, 291

pipe, see |

place (), 245

plot (),294

Pool, 178

pop (), 20,25

prettify (), 175

print (), 6, 15,34, 35, 61, 62, 73, 85, 112
Project Gutenberg, 103
Prolog, X

pwd, 7

pydoc, 102

quit (), 3,235
quotes, 4, 14-15

raise, 276

randint (), 66, 94

random, 66, 94

range (), 20, 36

re, 119, 139

re.I, 119,140,173

re.S, 119,173

re.split (), 138, 141,207,217
re.sub (), 173

re.subn (), 166

read (), 68, 69, 168, 184
recursion, 37, 261, 269-271, 273
recursive function, 92

reduce (), 266, 268, 270, 271, 289
regular expressions, 117-136
return, 85, 86, 153, 251, 279
reverse (), 21,27

RIGHT, 245, 247

Russian, 182, 183, 185

S, 241

scipy, 70, 71

SE, 241

search (), 118-120
self,209-212,217

300 Index

sep, 34 tkinter, 233-260

set (), 134,244 tokenizing, 293-294

set, 28 TOP, 245

~setitem (),277 translate (), 140, 166
sets, 271 TRUE, 245, 246
shakespeare, 292 True, 12, 41, 117-120, 267
side, 245, 247 try, 190

sort (), 21 tuple(),22

sorted (), 132, 134 tuples, 21-22, 25-27

span (), 120, 121, 125 type(),4,13,92,224
split(), 61,69, 104,105, 141 type, 63

split (), 61

standard input, see stdin unicode, 179-186

standard output, see stdout UnicodeDammit, 204
start (), 120, 121, 125, 138 union, 122, 124, 232

state, 262-265 upper (), 5,27, 166
stdin, 60-64, 79, 80 urllib.request, 167,176, 178
stdout, 60, 63 urlopen (), 167,168, 176
stemming, 142-166 UTF-16, 181

stop words, 294-296 UTF-8, 181-185
StopIteration, 276

stopwords, 294 value, 23

str(),5 variables, 84, 261-265
str.maketrans (), 140, 141 vectorization, 273-275
str.translate (), 138

stream, 60, 68 W, 241

string(), 12 Welsh, 184, 186-188, 193, 195, 197, 204
strings, 3, 4, 14-19, 25-27, 261, 275 while, 41-50 66, 106, 118,275, 279, 280
StringVar, 243 widgets, 234, 235

sub (), 138,139 windows, 236, 238, 245-250, 252, 291
sum (), 268 Windows-1251, 183, 184
Sw, 241 withdraw (), 250

sys, 56, 57, 60,95, 119 word tokenize(),294
sys.argv, 56, 57,59, 94, 95 wordnet, 292
sys.stdin, see stdin write (), 68, 80

\t, 15 X, 245

tags, 169 X11, 233,234

Tel, 236 XML, 203, 204

text encodings, 167, 179-186

textvariable, 241,243 Y, 245

time (), 176 yield, 279, 280

time, 176,178

timit, 292 zip (), 266,274, 275

Tk (), 235 zipfian distribution, 294

	Cover
	Frontmatter
	Contents
	Preface
	Interacting with Python and Basic Functions
	Data Types and Variables
	Control Structures
	InputOutput
	Subroutines and Modules
	Regular Expressions
	Text Manipulation
	Internet Data
	Objects
	GUIs
	Functional Programming
	NLTK
	Index

