
Red Hat Enterprise Linux 7

Networking Guide

Configuring and managing networks, network interfaces, and network services in
RHEL 7

Last Updated: 2022-01-19

Red Hat Enterprise Linux 7 Networking Guide

Configuring and managing networks, network interfaces, and network services in RHEL 7

Marc Muehlfeld
Red Hat Customer Content Services
mmuehlfeld@redhat.com

Ioanna Gkioka
Red Hat Customer Content Services

Mirek Jahoda
Red Hat Customer Content Services

Jana Heves
Red Hat Customer Content Services

Stephen Wadeley
Red Hat Customer Content Services

Christian Huffman
Red Hat Customer Content Services

Legal Notice

Copyright © 2019 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Red Hat Enterprise Linux 7 Networking Guide documents relevant information regarding the
configuration and administration of network interfaces, networks and network services in Red Hat
Enterprise Linux. It is oriented towards system administrators with a basic understanding of Linux
and networking.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. BEFORE YOU BEGIN

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS
1.1. COMPARING IP TO NON-IP NETWORKS
1.2. COMPARING STATIC TO DYNAMIC IP ADDRESSING
1.3. CONFIGURING THE DHCP CLIENT BEHAVIOR
1.4. SETTING THE WIRELESS REGULATORY DOMAIN
1.5. CONFIGURING NETCONSOLE
1.6. USING NETWORK KERNEL TUNABLES WITH SYSCTL
1.7. MANAGING DATA USING THE NCAT UTILITY

PART II. MANAGING IP NETWORKING

CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER
2.1. OVERVIEW OF NETWORKMANAGER
2.2. INSTALLING NETWORKMANAGER
2.3. CHECKING THE STATUS OF NETWORKMANAGER
2.4. STARTING NETWORKMANAGER
2.5. NETWORKMANAGER TOOLS
2.6. USING NETWORKMANAGER WITH NETWORK SCRIPTS
2.7. USING NETWORKMANAGER WITH SYSCONFIG FILES
2.8. ADDITIONAL RESOURCES

CHAPTER 3. CONFIGURING IP NETWORKING
3.1. SELECTING NETWORK CONFIGURATION METHODS
3.2. CONFIGURING IP NETWORKING WITH NMTUI
3.3. CONFIGURING IP NETWORKING WITH NMCLI
3.4. CONFIGURING IP NETWORKING WITH GNOME GUI
3.5. CONFIGURING IP NETWORKING WITH IFCFG FILES
3.6. CONFIGURING IP NETWORKING WITH IP COMMANDS
3.7. CONFIGURING IP NETWORKING FROM THE KERNEL COMMAND LINE
3.8. ENABLING IP MULTICAST WITH IGMP
3.9. ADDITIONAL RESOURCES

CHAPTER 4. CONFIGURING STATIC ROUTES AND THE DEFAULT GATEWAY
4.1. INTRODUCTION TO UNDERSTANDING ROUTING AND GATEWAY
4.2. CONFIGURING STATIC ROUTES USING NMCLI
4.3. CONFIGURING STATIC ROUTES WITH GUI
4.4. CONFIGURING STATIC ROUTES WITH IP COMMANDS
4.5. CONFIGURING STATIC ROUTES IN IFCFG FILES
4.6. CONFIGURING THE DEFAULT GATEWAY

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS
5.1. CONFIGURING 802.3 LINK SETTINGS
5.2. CONFIGURING 802.1X SECURITY
5.3. USING MACSEC WITH WPA_SUPPLICANT AND NETWORKMANAGER
5.4. CONFIGURING IPV4 SETTINGS
5.5. CONFIGURING IPV6 SETTINGS
5.6. CONFIGURING PPP (POINT-TO-POINT) SETTINGS

CHAPTER 6. CONFIGURE HOST NAMES
6.1. UNDERSTANDING HOST NAMES
6.2. CONFIGURING HOST NAMES USING TEXT USER INTERFACE, NMTUI

6

7
7
7
8
9
9
11
11

14

15
15
15
15
16
16
16
18

20

21
21
21

24
38
60
63
64
65
66

67
67
67
68
68
69
72

73
73
75
80
81

84
85

86
86
86

Table of Contents

1

. .

. .

. .

. .

. .

6.3. CONFIGURING HOST NAMES USING HOSTNAMECTL
6.4. CONFIGURING HOST NAMES USING NMCLI
6.5. ADDITIONAL RESOURCES

CHAPTER 7. CONFIGURE NETWORK BONDING
7.1. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES
7.2. CONFIGURE BONDING USING THE TEXT USER INTERFACE, NMTUI
7.3. NETWORK BONDING USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
7.4. USING THE COMMAND LINE INTERFACE (CLI)
7.5. VERIFYING NETWORK CONFIGURATION BONDING FOR REDUNDANCY
7.6. OVERVIEW OF BONDING MODES AND THE REQUIRED SETTINGS ON THE SWITCH
7.7. USING CHANNEL BONDING
7.8. CREATING A BOND CONNECTION USING A GUI
7.9. ADDITIONAL RESOURCES

CHAPTER 8. CONFIGURE NETWORK TEAMING
8.1. UNDERSTANDING NETWORK TEAMING
8.2. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES
8.3. COMPARISON OF NETWORK TEAMING TO BONDING
8.4. UNDERSTANDING THE NETWORK TEAMING DAEMON AND THE "RUNNERS"
8.5. INSTALL THE NETWORK TEAMING DAEMON
8.6. CONVERTING A BOND TO A TEAM
8.7. SELECTING INTERFACES TO USE AS PORTS FOR A NETWORK TEAM
8.8. SELECTING NETWORK TEAM CONFIGURATION METHODS
8.9. CONFIGURE A NETWORK TEAM USING THE TEXT USER INTERFACE, NMTUI
8.10. CONFIGURE A NETWORK TEAM USING THE COMMAND LINE
8.11. CONTROLLING TEAMD WITH TEAMDCTL
8.12. VERIFYING NETWORK CONFIGURATION TEAMING FOR REDUNDANCY
8.13. CONFIGURE TEAMD RUNNERS
8.14. CREATING A NETWORK TEAM USING A GUI
8.15. ADDITIONAL RESOURCES

CHAPTER 9. CONFIGURE NETWORK BRIDGING
9.1. CONFIGURE BRIDGING USING THE TEXT USER INTERFACE, NMTUI
9.2. USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
9.3. USING THE COMMAND LINE INTERFACE (CLI)
9.4. CONFIGURE NETWORK BRIDGING USING A GUI
9.5. ETHERNET BRIDGE CONFIGURATION USING IPROUTE
9.6. ADDITIONAL RESOURCES

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING
10.1. SELECTING VLAN INTERFACE CONFIGURATION METHODS
10.2. CONFIGURE 802.1Q VLAN TAGGING USING THE TEXT USER INTERFACE, NMTUI
10.3. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE TOOL, NMCLI
10.4. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE
10.5. CONFIGURE 802.1Q VLAN TAGGING USING A GUI
10.6. VLAN ON BOND AND BRIDGE USING IP COMMANDS
10.7. VLAN ON BOND AND BRIDGE USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
10.8. CONFIGURING VLAN SWITCHPORT MODE
10.9. ADDITIONAL RESOURCES

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING
11.1. NAMING SCHEMES HIERARCHY
11.2. UNDERSTANDING THE DEVICE RENAMING PROCEDURE

87
88
89

90
90
90
95
96

100
101
101

108
113

114
114
115
115
117
117
117
119
119
119

124
132
133
135
142
145

147
147
150
152
155
161

162

163
163
164
165
168
169
172
173
174
174

175
175
176

Networking Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

11.3. UNDERSTANDING THE PREDICTABLE NETWORK INTERFACE DEVICE NAMES
11.4. NAMING SCHEME FOR NETWORK DEVICES AVAILABLE FOR LINUX ON SYSTEM Z
11.5. NAMING SCHEME FOR VLAN INTERFACES
11.6. CONSISTENT NETWORK DEVICE NAMING USING BIOSDEVNAME
11.7. NOTES FOR ADMINISTRATORS
11.8. CONTROLLING THE SELECTION OF NETWORK DEVICE NAMES
11.9. DISABLING CONSISTENT NETWORK DEVICE NAMING
11.10. TROUBLESHOOTING NETWORK DEVICE NAMING
11.11. ADDITIONAL RESOURCES

CHAPTER 12. CONFIGURING POLICY-BASED ROUTING TO DEFINE ALTERNATIVE ROUTES
12.1. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT DEFAULT GATEWAY

PART III. INFINIBAND AND RDMA NETWORKING

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS
13.1. UNDERSTANDING INFINIBAND AND RDMA TECHNOLOGIES
13.2. TRANSFERRING DATA USING ROCE
13.3. CONFIGURING SOFT-ROCE
13.4. INFINIBAND AND RDMA RELATED SOFTWARE PACKAGES
13.5. CONFIGURING THE BASE RDMA SUBSYSTEM
13.6. CONFIGURING THE SUBNET MANAGER
13.7. TESTING EARLY INFINIBAND RDMA OPERATION
13.8. CONFIGURING IPOIB

PART IV. SERVERS

CHAPTER 14. DHCP SERVERS
14.1. WHY USE DHCP?
14.2. CONFIGURING A DHCP SERVER
14.3. DHCP RELAY AGENT
14.4. CONFIGURING A MULTIHOMED DHCP SERVER
14.5. DHCP FOR IPV6 (DHCPV6)
14.6. CONFIGURING THE RADVD DAEMON FOR IPV6 ROUTERS
14.7. COMPARISON OF DHCPV6 TO RADVD
14.8. ADDITIONAL RESOURCES

CHAPTER 15. DNS SERVERS
15.1. INTRODUCTION TO DNS
15.2. BIND

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER
16.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT AUTHENTICATION
16.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP AUTHENTICATION
16.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS AUTHENTICATION
16.4. CONFIGURING A DOMAIN BLACKLIST IN SQUID
16.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC PORT OR IP ADDRESS
16.6. ADDITIONAL RESOURCES

APPENDIX A. RED HAT CUSTOMER PORTAL LABS RELEVANT TO NETWORKING
BRIDGE CONFIGURATION
NETWORK BONDING HELPER
PACKET CAPTURE SYNTAX GENERATOR

APPENDIX B. REVISION HISTORY
B.1. ACKNOWLEDGMENTS

176
177
177
178
179
179
180
181

183

184
184

189

190
190
191

193
195
196

203
205
208

217

218
218
218
224
225
228
229
230
231

233
233
234

261
261

263
266
270
271
271

273
273
273
273

274
274

Table of Contents

3

. .INDEX 275

Networking Guide

4

Table of Contents

5

PART I. BEFORE YOU BEGIN

This documentation part provides an overview of basic concepts of the network services in Red Hat
Enterprise Linux.

Networking Guide

6

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS

1.1. COMPARING IP TO NON-IP NETWORKS

Network is a system of interconnected devices that can communicate sharing information and
resources, such as files, printers, applications, and Internet connection. Each of these devices has a
unique Internet Protocol (IP) address to send and receive messages between two or more devices using
a set of rules called protocol.

Categories of Network Communication

IP Networks

Networks that communicate through Internet Protocol addresses. An IP network is implemented in
the Internet and most internal networks. Ethernet, Cable Modems, DSL Modems, dial up modems,
wireless networks, and VPN connections are typical examples.

non-IP Networks

Networks that are used to communicate through a lower layer rather than the transport layer. Note
that these networks are rarely used. InfiniBand is a non-IP network, described in Chapter 13,
Configure InfiniBand and RDMA Networks .

1.2. COMPARING STATIC TO DYNAMIC IP ADDRESSING

Static IP addressing

When a device is assigned a static IP address, the address does not change over time unless changed
manually. It is recommended to use static IP addressing if you want:

To ensure network address consistency for servers such as DNS, and authentication servers.

To use out-of-band management devices that work independently of other network
infrastructure.

All the configuration tools listed in Section 3.1, “Selecting Network Configuration Methods” allow
assigning static IP addresses manually. The nmcli tool is also suitable, described in Section 3.3.8,
“Adding and Configuring a Static Ethernet Connection with nmcli” .

For more information on automated configuration and management, see the OpenLMI chapter in
the Red Hat Enterprise Linux 7 System Administrators Guide. The Red Hat Enterprise Linux 7
Installation Guide documents the use of a Kickstart file which can also be used for automating the
assignment of network settings.

Dynamic IP addressing

When a device is assigned a dynamic IP address, the address changes over time. For this reason, it is
recommended for devices that connect to the network occasionally because IP address might be
changed after rebooting the machine.

Dynamic IP addresses are more flexible, easier to set up and administer. The dynamic host control
protocol (DHCP) is a traditional method of dynamically assigning network configurations to hosts.
See Section 14.1, “Why Use DHCP?” for more information. You can also use the nmcli tool, described
in Section 3.3.7, “Adding and Configuring a Dynamic Ethernet Connection with nmcli” .

NOTE

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-openlmi
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-kickstart-installations

NOTE

There is no strict rule defining when to use static or dynamic IP address. It depends on
user's needs, preferences and the network environment.

By default, NetworkManager calls the DHCP client, dhclient.

1.3. CONFIGURING THE DHCP CLIENT BEHAVIOR

A Dynamic Host Configuration Protocol (DHCP) client requests the dynamic IP address and
corresponding configuration information from a DHCP server each time a client connects to the
network.

Note that NetworkManager calls the DHCP client, dhclient by default.

Requesting an IP Address
When a DHCP connection is started, a dhcp client requests an IP address from a DHCP server. The time
that a dhcp client waits for this request to be completed is 60 seconds by default. You can configure the
ipv4.dhcp-timeout property using the nmcli tool or the IPV4_DHCP_TIMEOUT option in the
/etc/sysconfig/network-scripts/ifcfg-ifname file. For example, using nmcli:

~]# nmcli connection modify enp1s0 ipv4.dhcp-timeout: 10

If an address cannot be obtained during this interval, the IPv4 configuration fails. The whole connection
may fail, too, and this depends on the ipv4.may-fail property:

If ipv4.may-fail is set to yes (default), the state of the connection depends on IPv6
configuration:

1. If the IPv6 configuration is enabled and successful, the connection is activated, but the IPv4
configuration can never be retried again.

2. If the IPv6 configuration is disabled or does not get configured, the connection fails.

If ipv4.may-fail is set to no the connection is deactivated. In this case:

1. If the autoconnect property of the connection is enabled, NetworkManager retries to
activate the connection as many times as set in the autoconnect-retries property. The
default is 4.

2. If the connection still cannot acquire the dhcp address, auto-activation fails.

Note that after 5 minutes, the auto-connection process starts again and the dhcp client
retries to acquire an address from the dhcp server.

Requesting a Lease Renewal
When a dhcp address is acquired and the IP address lease cannot be renewed, the dhcp client is
restarted for three times every 2 minutes to try to get a lease from the dhcp server. Each time, it is
configured by setting the ipv4.dhcp-timeout property in seconds (default is 60) to get the lease. If you
get a reply during your attempts, the process stops and you get your lease renewed.

After three attempts failed:

If ipv4.may-fail is set to yes (default) and IPv6 is successfully configured, the connection is

Networking Guide

8

If ipv4.may-fail is set to yes (default) and IPv6 is successfully configured, the connection is
activated and the dhcp client is restarted again every 2 minutes.

If ipv4.may-fail is set to no, the connection is deactivated. In this case, if the connection has the
autoconnect property enabled, the connection is activated from scratch.

1.3.1. Making DHCPv4 Persistent

To make DHCPv4 persistent both at startup and during the lease renewal processes, set the ipv4.dhcp-
timeout property either to the maximum for a 32-bit integer (MAXINT32), which is 2147483647, or to
the infinity value:

~]$ nmcli connection modify enps1s0 ipv4.dhcp-timeout infinity

As a result, NetworkManager never stops trying to get or renew a lease from a DHCP server until it is
successful.

To ensure a DHCP persistent behavior only during the lease renewal process, you can manually add a
static IP to the IPADDR property in the /etc/sysconfig/network-scripts/ifcfg-enp1s0 configuration file
or by using nmcli:

~]$ nmcli connection modify enp1s0 ipv4.address 192.168.122.88/24

When an IP address lease expires, the static IP preserves the IP state as configured or partially
configured (you can have an IP address, but you are not connected to the Internet), making sure that
the dhcp client is restarted every 2 minutes.

1.4. SETTING THE WIRELESS REGULATORY DOMAIN

In Red Hat Enterprise Linux, the crda package contains the Central Regulatory Domain Agent that
provides the kernel with the wireless regulatory rules for a given jurisdiction. It is used by certain udev
scripts and should not be run manually unless debugging udev scripts. The kernel runs crda by sending a
udev event upon a new regulatory domain change. Regulatory domain changes are triggered by the
Linux wireless subsystem (IEEE-802.11). This subsystem uses the regulatory.bin file to keep its
regulatory database information.

The setregdomain utility sets the regulatory domain for your system. Setregdomain takes no
arguments and is usually called through system script such as udev rather than manually by the
administrator. If a country code look-up fails, the system administrator can define the COUNTRY
environment variable in the /etc/sysconfig/regdomain file.

See the following man pages for more information about the regulatory domain:

setregdomain(1) man page — Sets regulatory domain based on country code.

crda(8) man page — Sends to the kernel a wireless regulatory domain for a given ISO or IEC
3166 alpha2.

regulatory.bin(5) man page — Shows the Linux wireless regulatory database.

iw(8) man page — Shows or manipulates wireless devices and their configuration.

1.5. CONFIGURING NETCONSOLE

If disk logging fails or using the serial console is not possible, you might need to use kernel debugging.

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS

9

If disk logging fails or using the serial console is not possible, you might need to use kernel debugging.
The netconsole kernel module enables to log kernel messages to another computer over the network.

To be able to use netconsole, you need to have an rsyslog server that is properly configured on your
network.

Procedure 1.1. Configuring an rsyslog server for netconsole

1. Configure the rsyslogd daemon to listen on the 514/udp port and receive messages from the
network by uncommenting the following lines in the MODULES section of the /etc/rsyslog.conf
file:

$ModLoad imudp
$UDPServerRun 514

2. Restart the rsyslogd service for the changes to take effect:

]# systemctl restart rsyslog

3. Verify that rsyslogd is listening on the 514/udp port:

]# netstat -l | grep syslog
udp 0 0 0.0.0.0:syslog 0.0.0.0:*
udp6 0 0 [::]:syslog [::]:*

The 0.0.0.0:syslog and [::]:syslog values in the netstat -l output mean that rsyslogd is
listening on default netconsole port defined in the /etc/services file:

]$ cat /etc/services | grep syslog
syslog 514/udp
syslog-conn 601/tcp # Reliable Syslog Service
syslog-conn 601/udp # Reliable Syslog Service
syslog-tls 6514/tcp # Syslog over TLS
syslog-tls 6514/udp # Syslog over TLS
syslog-tls 6514/dccp # Syslog over TLS

Netconsole is configured using the /etc/sysconfig/netconsole file, which is a part of the initscripts
package. This package is installed by default and it also provides the netconsole service.

If you want to configure a sending machine, follow this procedure:

Procedure 1.2. Configuring a Sending Machine

1. Set the value of the SYSLOGADDR variable in the /etc/sysconfig/netconsole file to match the
IP address of the syslogd server. For example:

SYSLOGADDR=192.168.0.1

2. Restart the netconsole service for the changes to take effect:

]# systemctl restart netconsole.service

3. Enable netconsole.service to run after rebooting the system:

Networking Guide

10

]# systemctl enable netconsole.service

4. View the netconsole messages from the client in the /var/log/messages file (default) or in the
file specified in rsyslog.conf.

]# cat /var/log/messages

NOTE

By default, rsyslogd and netconsole.service use port 514. To use a different port,
change the following line in /etc/rsyslog.conf to the required port number:

$UDPServerRun <PORT>

On the sending machine, uncomment and edit the following line in the
/etc/sysconfig/netconsole file:

SYSLOGPORT=514

For more information about netconsole configuration and troubleshooting tips, see Netconsole Kernel
Documentation.

1.6. USING NETWORK KERNEL TUNABLES WITH SYSCTL

Using certain kernel tunables through the sysctl utility, you can adjust network configuration on a
running system and directly affect the networking performance.

To change network settings, use the sysctl commands. For permanent changes that persist across
system restarts, add lines to the /etc/sysctl.conf file.

To display a list of all available sysctl parameters, enter as root:

~]# sysctl -a

For more details on network kernel tunables using sysctl, see the Using PTP with Multiple Interfaces
section in the System Administrator's Guide.

For more information on network kernel tunables, see the Network Interface Tunables section in the
Kernel Administration Guide.

1.7. MANAGING DATA USING THE NCAT UTILITY

The ncat networking utility replaces netcat in Red Hat Enterprise Linux 7. ncat is a reliable back-end
tool that provides network connectivity to other applications and users. It reads and writes data across
the network from the command line, and uses Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), Stream Control Transmission Protocol (SCTP) or Unix sockets for communication.
ncat can deal with both IPv4 and IPv6, open connections, send packets, perform port scanning, and
supports higher-level features such as SSL, and connection broker.

The nc command can also be entered as ncat, using the identical options. For more information about
the ncat options, see the New networking utility (ncat) section in the Migration Planning Guide and the
ncat(1) man page.

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS

11

https://www.kernel.org/doc/Documentation/networking/netconsole.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-using_ptp_with_multiple_interfaces
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/kernel_administration_guide/#network_interface_tunables
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/migration_planning_guide/sect-red_hat_enterprise_linux-migration_planning_guide-networking#sect-Red_Hat_Enterprise_Linux-Migration_Planning_Guide-Networking-New_network_configuration_utility_ncat

Installing ncat
To install the ncat package, enter as root:

~]# yum install ncat

Brief Selection of ncat Use Cases

Example 1.1. Enabling Communication between a Client and a Server

1. Set a client machine to listen for connections on TCP port 8080:

~]$ ncat -l 8080

2. On a server machine, specify the IP address of the client and use the same port number:

~]$ ncat 10.0.11.60 8080

You can send messages on either side of the connection and they appear on both local and
remote machines.

3. Press Ctrl+D to close the TCP connection.

NOTE

To check a UDP port, use the same nc commands with the –u option. For example:

~]$ ncat -u -l 8080

Example 1.2. Sending Files

Instead of printing information on the screen, as mentioned in the previous example, you can send all
information to a file. For example, to send a file over TCP port 8080 from a client to a server:

1. On a client machine, to listen a specific port transferring a file to the server machine:

~]$ ncat -l 8080 > outputfile

2. On a server machine, specify the IP address of the client, the port and the file which is to be
transferred:

~]$ ncat -l 10.0.11.60 8080 < inputfile

After the file is transferred, the connection closes automatically.

NOTE

Networking Guide

12

NOTE

You can transfer a file in the other direction as well:

~]$ ncat -l 8080 < inputfile

~]$ ncat -l 10.0.11.60 8080 > outputfile

Example 1.3. Creating an HTTP proxy server

To create an HTTP proxy server on localhost port 8080:

~]$ ncat -l --proxy-type http localhost 8080

Example 1.4. Port Scanning

To view which ports are open, use the –z option and specify a range of ports to scan:

~]$ ncat -z 10.0.11.60 80-90
 Connection to 192.168.0.1 80 port [tcp/http] succeeded!

Example 1.5. Setting up Secure Client-Server Communication Using SSL

Set up SSL on a server:

~]$ ncat -e /bin/bash -k -l 8080 --ssl

On a client machine:

~]$ ncat --ssl 10.0.11.60 8080

NOTE

To ensure true confidentiality of the SSL connection, the server requires the --ssl-cert
and --ssl-key options, and the client requires the --ssl-verify and --ssl-trustfile options.
For information on OpenSSL, see the Using OpenSSL section in the Security Guide.

For more examples, see the ncat(1) man page.

CHAPTER 1. OVERVIEW OF NETWORKING TOPICS

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-using_openssl

PART II. MANAGING IP NETWORKING

This documentation part provides detailed instruction on how to configure and manage networking in
Red Hat Enterprise Linux.

Networking Guide

14

CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER

2.1. OVERVIEW OF NETWORKMANAGER

In Red Hat Enterprise Linux 7, the default networking service is provided by NetworkManager, which is
a dynamic network control and configuration daemon to keep network devices and connections up and
active when they are available. The traditional ifcfg type configuration files are still supported. See
Section 2.6, “Using NetworkManager with Network Scripts” for more information.

2.1.1. Benefits of Using NetworkManager

The main benefits of using NetworkManager are:

Making Network management easier: NetworkManager ensures that network connectivity
works. When it detects that there is no network configuration in a system but there are network
devices, NetworkManager creates temporary connections to provide connectivity.

Providing easy setup of connection to the user: NetworkManager offers management through
different tools — GUI, nmtui, nmcli —. See Section 2.5, “NetworkManager Tools”.

Supporting configuration flexibility. For example, configuring a WiFi interface,
NetworkManager scans and shows the available wifi networks. You can select an interface, and
NetworkManager displays the required credentials providing automatic connection after the
reboot process. NetworkManager can configure network aliases, IP addresses, static routes,
DNS information, and VPN connections, as well as many connection-specific parameters. You
can modify the configuration options to reflect your needs.

Offering an API through D-Bus which allows applications to query and control network
configuration and state. In this way, applications can check or configure networking through D-
BUS. For example, the Cockpit web-based interface, which monitors and configures servers
through a web browser, uses the NetworkManager D-BUS interface to configure networking.

Maintaining the state of devices after the reboot process and taking over interfaces which are
set into managed mode during restart.

Handling devices which are not explicitly set unmanaged but controlled manually by the user or
another network service.

2.2. INSTALLING NETWORKMANAGER

NetworkManager is installed by default on Red Hat Enterprise Linux. If it is not, enter as root:

~]# yum install NetworkManager

For information on user privileges and gaining privileges, see the Red Hat Enterprise Linux System
Administrator's Guide.

2.3. CHECKING THE STATUS OF NETWORKMANAGER

To check whether NetworkManager is running:

~]$ systemctl status NetworkManager
NetworkManager.service - Network Manager

CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

 Loaded: loaded (/lib/systemd/system/NetworkManager.service; enabled)
 Active: active (running) since Fri, 08 Mar 2013 12:50:04 +0100; 3 days ago

Note that the systemctl status command displays Active: inactive (dead) when NetworkManager is
not running.

2.4. STARTING NETWORKMANAGER

To start NetworkManager:

~]# systemctl start NetworkManager

To enable NetworkManager automatically at boot time:

~]# systemctl enable NetworkManager

For more information on starting, stopping and managing services, see the Red Hat Enterprise Linux
System Administrator's Guide.

2.5. NETWORKMANAGER TOOLS

Table 2.1. A Summary of NetworkManager Tools and Applications

Application or Tool Description

nmcli A command-line tool which enables users and scripts to interact with
NetworkManager. Note that nmcli can be used on systems without a GUI
such as servers to control all aspects of NetworkManager. It has the same
functionality as GUI tools.

nmtui A simple curses-based text user interface (TUI) for NetworkManager

nm-connection-editor A graphical user interface tool for certain tasks not yet handled by the
control-center utility such as configuring bonds and teaming connections.
You can add, remove, and modify network connections stored by
NetworkManager. To start it, enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

control-center A graphical user interface tool provided by the GNOME Shell, available for
desktop users. It incorporates a Network settings tool. To start it, press the
Super key to enter the Activities Overview, type Network and then press
Enter. The Network settings tool appears.

network connection icon A graphical user interface tool provided by the GNOME Shell representing
network connection states as reported by NetworkManager. The icon has
multiple states that serve as visual indicators for the type of connection you
are currently using.

2.6. USING NETWORKMANAGER WITH NETWORK SCRIPTS

Networking Guide

16

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

This section describes how to run a script and how to use custom commands in network scripts.

The term network scripts refers to the script /etc/init.d/network and any other installed scripts it calls.
Although NetworkManager provides the default networking service, scripts and NetworkManager can
run in parallel and work together. Red Hat recommends to test them first.

Running Network Script
Run a network script only with the systemctl command:

systemctl start|stop|restart|status network

The systemctl utility clears any existing environment variables and ensures correct execution.

In Red Hat Enterprise Linux 7, NetworkManager is started first, and /etc/init.d/network checks with
NetworkManager to avoid tampering with NetworkManager's connections. NetworkManager is
intended to be the primary application using sysconfig configuration files, and /etc/init.d/network is
intended to be secondary.

The /etc/init.d/network script runs:

1. manually - using one of the systemctl commands start|stop|restart network,

or

2. on boot and shutdown if the network service is enabled - as a result of the systemctl enable
network command.

It is a manual process and does not react to events that happen after boot. Users can also call the ifup
and ifdown scripts manually.

NOTE

The systemctl reload network.service command does not work due to technical
limitations of initscripts. To apply a new configuration for the network service, use the
restart command:

~]# systemctl restart network.service

This brings down and brings up all the Network Interface Cards (NICs) to load the new
configuration. For more information, see the Red Hat Knowledgebase solution Reload
and force-reload options for network service.

Using Custom Commands in Network Scripts
Custom commands in the /sbin/ifup-local, ifdown-pre-local, and ifdown-local scripts are only executed
if these devices are controlled by the /etc/init.d/network service. The ifup-local file does not exist by
default. If required, create it under the /sbin/ directory.

The ifup-local script is readable only by the initscripts and not by NetworkManager. To run a custom
script using NetworkManager, create it under the dispatcher.d/ directory. See the section called
“Running Dispatcher scripts”.

IMPORTANT

CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER

17

https://access.redhat.com/solutions/3381101

IMPORTANT

Modifying any files included with the initscripts package or related rpms is not
recommended. If a user modifies such files, Red Hat does not provide support.

Custom tasks can run when network connections go up and down, both with the old network scripts
and with NetworkManager. If NetworkManager is enabled, the ifup and ifdown script will ask
NetworkManager whether NetworkManager manages the interface in question, which is found from
the “DEVICE=” line in the ifcfg file.

Devices managed by NetworkManager:

calling ifup

When you call ifup and the device is managed by NetworkManager, there are two options:

If the device is not already connected, then ifup asks NetworkManager to start the
connection.

If the device is already connected, then nothing to do.

calling ifdown

When you call ifdown and the device is managed by NetworkManager:

ifdown asks NetworkManager to terminate the connection.

Devices unmanaged by NetworkManager:

If you call either ifup or ifdown, the script starts the connection using the older, non-NetworkManager
mechanism that it has used since the time before NetworkManager existed.

Running Dispatcher scripts
NetworkManager provides a way to run additional custom scripts to start or stop services based on the
connection status. By default, the /etc/NetworkManager/dispatcher.d/ directory exists and
NetworkManager runs scripts there, in alphabetical order. Each script must be an executable file
owned by root and must have write permission only for the file owner. For more information about
running NetworkManager dispatcher scripts, see the Red Hat Knowledgebase solution How to write a
NetworkManager dispatcher script to apply ethtool commands.

2.7. USING NETWORKMANAGER WITH SYSCONFIG FILES

The /etc/sysconfig/ directory is a location for configuration files and scripts. Most network configuration
information is stored there, with the exception of VPN, mobile broadband and PPPoE configuration,
which are stored in the /etc/NetworkManager/ subdirectories. For example, interface-specific
information is stored in the ifcfg files in the /etc/sysconfig/network-scripts/ directory.

For global settings, use the /etc/sysconfig/network file. Information for VPNs, mobile broadband and
PPPoE connections is stored in /etc/NetworkManager/system-connections/.

In Red Hat Enterprise Linux 7 if you edit an ifcfg file, NetworkManager is not automatically aware of the
change and has to be prompted to notice the change. If you use one of the tools to update
NetworkManager profile settings, NetworkManager does not implement those changes until you
reconnect using that profile. For example, if configuration files have been changed using an editor,
NetworkManager must read the configuration files again.

Networking Guide

18

https://access.redhat.com/solutions/2841131

To ensure this, enter as root to reload all connection profiles:

~]# nmcli connection reload

Alternatively, to reload only one changed file, ifcfg-ifname:

~]# nmcli con load /etc/sysconfig/network-scripts/ifcfg-ifname

Note that you can specify multiple file names using the above command.

Changes made using tools such as nmcli do not require a reload but do require the associated interface
to be put down and then up again:

~]# nmcli dev disconnect interface-name

~]# nmcli con up interface-name

For more details about nmcli, see Section 3.3, “Configuring IP Networking with nmcli” .

NetworkManager does not trigger any of the network scripts, though the network scripts attempt to
trigger NetworkManager if it is running when the ifup commands are used. See Section 2.6, “Using
NetworkManager with Network Scripts” for the explanation of the network scripts.

The ifup script is a generic script which does a few things and then calls interface-specific scripts such as
ifup-device_name, ifup-wireless, ifup-ppp, and so on. When a user runs ifup enp1s0 manually:

1. ifup looks for a file called /etc/sysconfig/network-scripts/ifcfg-enp1s0;

2. if the ifcfg file exists, ifup looks for the TYPE key in that file to determine which type-specific
script to call;

3. ifup calls ifup-wireless or ifup-device_name based on TYPE;

4. the type-specific scripts do type-specific setup;

5. the type-specific scripts let common functions perform IP-related tasks like DHCP or static
setup.

On bootup, /etc/init.d/network reads through all the ifcfg files and for each one that has
ONBOOT=yes, it checks whether NetworkManager is already starting the DEVICE from that ifcfg file. If
NetworkManager is starting that device or has already started it, nothing more is done for that file, and
the next ONBOOT=yes file is checked. If NetworkManager is not yet starting that device, the initscripts
continue with their traditional behavior and call ifup for that ifcfg file.

The result is that any ifcfg file that has ONBOOT=yes is expected to be started on system bootup,
either by NetworkManager or by the initscripts. This ensures that some legacy network types which
NetworkManager does not handle (such as ISDN or analog dial-up modems) as well as any new
application not yet supported by NetworkManager are still correctly started by the initscripts even
though NetworkManager is unable to handle them.

IMPORTANT

It is recommended to not store the backup files anywhere within the /etc directory, or in
the same location as the live files, because the script literally does ifcfg-*. Only these
extensions are excluded: .old, .orig, .rpmnew, .rpmorig, and .rpmsave.

CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER

19

For more information on using sysconfig files, see Section 3.5, “Configuring IP Networking with ifcfg
Files” and the ifcfg(8) man page.

2.8. ADDITIONAL RESOURCES

man(1) man page — Describes man pages and how to find them.

NetworkManager(8) man page — Describes the network management daemon.

NetworkManager.conf(5) man page — Describes the NetworkManager configuration file.

/usr/share/doc/initscripts-version/sysconfig.txt — Describes ifcfg configuration files and their
directives as understood by the legacy network service.

/usr/share/doc/initscripts-version/examples/networking/ — A directory containing example
configuration files.

ifcfg(8) man page — Describes briefly the ifcfg command.

Networking Guide

20

CHAPTER 3. CONFIGURING IP NETWORKING
As a system administrator, you can configure a network interface either using NetworkManager or not.

3.1. SELECTING NETWORK CONFIGURATION METHODS

To configure a network interface using NetworkManager, use one of the following tools:

the text user interface tool, nmtui. For more details, see Section 3.2, “Configuring IP
Networking with nmtui”.

the command-line tool, nmcli. For more details, see Section 3.3, “Configuring IP Networking
with nmcli”.

the graphical user interface tools, GNOME GUI. For more details, see Section 3.4, “
Configuring IP Networking with GNOME GUI ”.

To configure a network interface without using NetworkManager:

edit the ifcfg files manually. For more details, see Section 3.5, “Configuring IP Networking
with ifcfg Files”.

use the ip commands. This can be used to assign IP addresses to an interface, but changes
are not persistent across reboots; when you reboot, you will lose any changes. For more
details, see Section 3.6, “Configuring IP Networking with ip Commands” .

To configure the network settings when the root filesystem is not local:

use the kernel command-line. For more details, see Section 3.7, “Configuring IP Networking
from the Kernel Command line”.

3.2. CONFIGURING IP NETWORKING WITH NMTUI

As a system administrator, you can configure a network interface using the NetworkManager's tool,
nmtui. See Section 2.5, “NetworkManager Tools”.

This procedure describes how to configure networking using the text user interface tool, nmtui.

Prerequisites

The nmtui tool is used in a terminal window. It is contained in the NetworkManager-tui package,
but it is not installed along with NetworkManager by default. To install NetworkManager-tui:

~]# yum install NetworkManager-tui

To verify that NetworkManager is running, see Section 2.3, “Checking the Status of
NetworkManager”.

Procedure

1. Start the nmtui tool:

~]$ nmtui

The text user interface appears.

CHAPTER 3. CONFIGURING IP NETWORKING

21

Figure 3.1. The NetworkManager Text User Interface starting menu

2. To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a
check box.

To apply changes after a modified connection which is already active requires a reactivation of the
connection. In this case, follow the procedure below:

Procedure

1. Select the Activate a connection menu entry.

Figure 3.2. Activate a Connection

2. Select the modified connection. On the right, click the Deactivate button.

Networking Guide

22

Figure 3.3. Deactivate the Modified Connection

3. Choose the connection again and click the Activate button.

CHAPTER 3. CONFIGURING IP NETWORKING

23

Figure 3.4. Reactivate the Modified Connection

The following commands are also available:

nmtui edit connection-name

If no connection name is supplied, the selection menu appears. If the connection name is
supplied and correctly identified, the relevant Edit connection screen appears.

nmtui connect connection-name

If no connection name is supplied, the selection menu appears. If the connection name is
supplied and correctly identified, the relevant connection is activated. Any invalid command
prints a usage message.

Note that nmtui does not support all types of connections. In particular, you cannot edit VPNs, wireless
network connections using WPA Enterprise, or Ethernet connections using 802.1X.

3.3. CONFIGURING IP NETWORKING WITH NMCLI

The nmcli (NetworkManager Command Line Interface) command-line utility is used for controlling
NetworkManager and reporting network status. It can be utilized as a replacement for nm-applet or
other graphical clients. See Section 2.5, “NetworkManager Tools”. nmcli is used to create, display, edit,

Networking Guide

24

delete, activate, and deactivate network connections, as well as control and display network device
status.

The nmcli utility can be used by both users and scripts for controlling NetworkManager:

For servers, headless machines, and terminals, nmcli can be used to control NetworkManager
directly, without GUI, including creating, editing, starting and stopping network connections and
viewing network status.

For scripts, nmcli supports a terse output format which is better suited for script processing. It is
a way to integrate network configuration instead of managing network connections manually.

The basic format of a nmcli command is as follows:

nmcli [OPTIONS] OBJECT { COMMAND | help }

where OBJECT can be one of the following options: general, networking, radio, connection, device,
agent, and monitor. You can use any prefix of these options in your commands. For example, nmcli con
help, nmcli c help, nmcli connection help generate the same output.

Some of useful optional OPTIONS to get started are:

-t, terse

This mode can be used for computer script processing as you can see a terse output displaying only
the values.

Example 3.1. Viewing a terse output

nmcli -t device
ens3:ethernet:connected:Profile 1
lo:loopback:unmanaged:

-f, field

This option specifies what fields can be displayed in output. For example,
NAME,UUID,TYPE,AUTOCONNECT,ACTIVE,DEVICE,STATE. You can use one or more fields. If you
want to use more, do not use space after comma to separate the fields.

Example 3.2. Specifying Fields in the output

~]$ nmcli -f DEVICE,TYPE device
DEVICE TYPE
ens3 ethernet
lo loopback

or even better for scripting:

~]$ nmcli -t -f DEVICE,TYPE device
ens3:ethernet
lo:loopback

-p, pretty

CHAPTER 3. CONFIGURING IP NETWORKING

25

This option causes nmcli to produce human-readable output. For example, values are aligned and
headers are printed.

Example 3.3. Viewing an output in pretty mode

nmcli -p device
=====================
 Status of devices
=====================
DEVICE TYPE STATE CONNECTION
--
ens3 ethernet connected Profile 1
lo loopback unmanaged --

-h, help

Prints help information.

The nmcli tool has some built-in context-sensitive help:

nmcli help

This command lists the available options and object names to be used in subsequent commands.

nmcli object help

This command displays the list of available actions related to a specified object. For example,

nmcli c help

3.3.1. Brief Selection of nmcli Examples

Example 3.4. Checking the overall status of NetworkManager

~]$ nmcli general status
STATE CONNECTIVITY WIFI-HW WIFI WWAN-HW WWAN
connected full enabled enabled enabled enabled

In terse mode:

~]$ nmcli -t -f STATE general
connected

Example 3.5. Viewing NetworkManager logging status

~]$ nmcli general logging
 LEVEL DOMAINS
 INFO PLATFORM,RFKILL,ETHER,WIFI,BT,MB,DHCP4,DHCP6,PPP,WIFI_SCAN,IP4,IP6,A
UTOIP4,DNS,VPN,SHARING,SUPPLICANT,AGENTS,SETTINGS,SUSPEND,CORE,DEVICE,OL
PC,

Networking Guide

26

WIMAX,INFINIBAND,FIREWALL,ADSL,BOND,VLAN,BRIDGE,DBUS_PROPS,TEAM,CONCHECK
,DC
B,DISPATCH

Example 3.6. Viewing all connections

~]$ nmcli connection show
 NAME UUID TYPE DEVICE
Profile 1 db1060e9-c164-476f-b2b5-caec62dc1b05 ethernet ens3
ens3 aaf6eb56-73e5-4746-9037-eed42caa8a65 ethernet --

Example 3.7. Viewing only currently active connections

~]$ nmcli connection show --active
 NAME UUID TYPE DEVICE
Profile 1 db1060e9-c164-476f-b2b5-caec62dc1b05 ethernet ens3

Example 3.8. Viewing only devices recognized by NetworkManager and their state

~]$ nmcli device status
DEVICE TYPE STATE CONNECTION
ens3 ethernet connected Profile 1
lo loopback unmanaged --

You can also use the following abbreviations of the nmcli commands:

Table 3.1. Abbreviations of some nmcli commands

nmcli command abbreviation

nmcli general status nmcli g

nmcli general logging nmcli g log

nmcli connection show nmcli con show

nmcli connection show --active nmcli con show -a

nmcli device status nmcli dev

For more examples, see the nmcli-examples(5) man page.

3.3.2. Starting and Stopping a Network Interface Using nmcli

The nmcli tool can be used to start and stop any network interface, including masters. For example:

CHAPTER 3. CONFIGURING IP NETWORKING

27

nmcli con up id bond0
nmcli con up id port0
nmcli dev disconnect bond0
nmcli dev disconnect ens3

NOTE

The nmcli connection down command, deactivates a connection from a device without
preventing the device from further auto-activation. The nmcli device disconnect
command, disconnects a device and prevent the device from automatically activating
further connections without manual intervention.

3.3.3. Understanding the nmcli Options

Following are some of the important nmcli property options. See the comprehensive list in the nmcli(1)
man page :

connection.type

A connection type. Allowed values are: adsl, bond, bond-slave, bridge, bridge-slave, bluetooth, cdma,
ethernet, gsm, infiniband, olpc-mesh, team, team-slave, vlan, wifi, wimax. Each connection type has
type-specific command options. You can see the TYPE_SPECIFIC_OPTIONS list in the nmcli(1)
man page. For example:

A gsm connection requires the access point name specified in an apn.

nmcli c add connection.type gsm apn access_point_name

A wifi device requires the service set identifier specified in a ssid.

nmcli c add connection.type wifi ssid My identifier

connection.interface-name

A device name relevant for the connection.

nmcli con add connection.interface-name enp1s0 type ethernet

connection.id

A name used for the connection profile. If you do not specify a connection name, one will be
generated as follows:

connection.type -connection.interface-name

The connection.id is the name of a connection profile and should not be confused with the interface
name which denotes a device (wlp61s0, ens3, em1). However, users can name the connections after
interfaces, but they are not the same thing. There can be multiple connection profiles available for a
device. This is particularly useful for mobile devices or when switching a network cable back and forth
between different devices. Rather than edit the configuration, create different profiles and apply
them to the interface as needed. The id option also refers to the connection profile name.

The most important options for nmcli commands such as show, up, down are:

Networking Guide

28

id

An identification string assigned by the user to a connection profile. Id can be used in nmcli
connection commands to identify a connection. The NAME field in the command output always
denotes the connection id. It refers to the same connection profile name that the con-name does.

uuid

A unique identification string assigned by the system to a connection profile. The uuid can be used in
nmcli connection commands to identify a connection.

3.3.4. Using the nmcli Interactive Connection Editor

The nmcli tool has an interactive connection editor. To use it:

~]$ nmcli con edit

You will be prompted to enter a valid connection type from the list displayed. After entering a
connection type you will be placed at the nmcli prompt. If you are familiar with the connection types you
can add a valid connection type option to the nmcli con edit command and be taken straight to the
nmcli prompt. The format is as follows for editing an existing connection profile:

nmcli con edit [id | uuid | path] ID

For editing a new connection profile:

nmcli con edit [type new-connection-type] [con-name new-connection-name]

Type help at the nmcli prompt to see a list of valid commands. Use the describe command to get a
description of settings and their properties:

describe setting.property

For example:

nmcli> describe team.config

3.3.5. Creating and Modifying a Connection Profile with nmcli

A connection profile contains the connection property information needed to connect to a data source.

To create a new profile for NetworkManager using nmcli:

nmcli c add {ARGUMENTS}

The nmcli c add accepts two different types of parameters:

Property names

the names which NetworkManager uses to describe the connection internally. The most important
are:

connection.type

CHAPTER 3. CONFIGURING IP NETWORKING

29

nmcli c add connection.type bond

connection.interface-name

nmcli c add connection.interface-name enp1s0

connection.id

nmcli c add connection.id "My Connection"

See the nm-settings(5) man page for more information on properties and their settings.

Aliases names

the human-readable names which are translated to properties internally. The most common are:

type (the connection.type property)

nmcli c add type bond

ifname (the connection.interface-name property)

nmcli c add ifname enp1s0

con-name (the connection.id property)

nmcli c add con-name "My Connection"

In previous versions of nmcli, to create a connection required using the aliases. For example, ifname
enp1s0 and con-name My Connection. A command in the following format could be used:

nmcli c add type ethernet ifname enp1s0 con-name "My Connection"

In more recent versions, both the property names and the aliases can be used interchangeably. The
following examples are all valid and equivalent:

nmcli c add type ethernet ifname enp1s0 con-name "My Connection" ethernet.mtu 1600

nmcli c add connection.type ethernet ifname enp1s0 con-name "My Connection" ethernet.mtu 1600

nmcli c add connection.type ethernet connection.interface-name enps1s0 connection.id "My
Connection" ethernet.mtu 1600

The arguments differ according to the connection types. Only the type argument is mandatory for all
connection types and ifname is mandatory for all types except bond, team, bridge and vlan.

type type_name

connection type. For example:

nmcli c add type bond

Networking Guide

30

ifname interface_name

interface to bind the connection to. For example:

nmcli c add ifname interface_name type ethernet

To modify one or more properties of a connection profile, use the following command:

nmcli c modify

For example, to change the connection.id from My Connection to My favorite connection and the
connection.interface-name to enp1s0, issue the command as follows:

nmcli c modify "My Connection" connection.id "My favorite connection" connection.interface-name
enp1s0

NOTE

It is preferable to use the property names. The aliases are used only for compatibility
reasons.

In addition, to set the ethernet MTU to 1600, modify the size as follows:

nmcli c modify "My favorite connection" ethernet.mtu 1600

To apply changes after a modified connection using nmcli, activate again the connection by entering this
command:

nmcli con up con-name

For example:

nmcli con up My-favorite-connection
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/16)

3.3.6. Connecting to a Network Using nmcli

To list the currently available network connections:

~]$ nmcli con show
NAME UUID TYPE DEVICE
Auto Ethernet 9b7f2511-5432-40ae-b091-af2457dfd988 802-3-ethernet --
ens3 fb157a65-ad32-47ed-858c-102a48e064a2 802-3-ethernet ens3
MyWiFi 91451385-4eb8-4080-8b82-720aab8328dd 802-11-wireless wlp61s0

Note that the NAME field in the output always denotes the connection ID (name). It is not the interface
name even though it might look the same. In the second connection shown above, ens3 in the NAME
field is the connection ID given by the user to the profile applied to the interface ens3. In the last
connection shown, the user has assigned the connection ID MyWiFi to the interface wlp61s0.

Adding an Ethernet connection means creating a configuration profile which is then assigned to a device.

CHAPTER 3. CONFIGURING IP NETWORKING

31

Adding an Ethernet connection means creating a configuration profile which is then assigned to a device.
Before creating a new profile, review the available devices as follows:

~]$ nmcli device status
DEVICE TYPE STATE CONNECTION
ens3 ethernet disconnected --
ens9 ethernet disconnected --
lo loopback unmanaged --

3.3.7. Adding and Configuring a Dynamic Ethernet Connection with nmcli

Adding a Dynamic Ethernet Connection
To add an Ethernet configuration profile with dynamic IP configuration, allowing DHCP to assign the
network configuration:

nmcli connection add type ethernet con-name connection-name ifname interface-name

For example, to create a dynamic connection profile named my-office:

~]$ nmcli con add type ethernet con-name my-office ifname ens3
Connection 'my-office' (fb157a65-ad32-47ed-858c-102a48e064a2) successfully added.

To open the Ethernet connection:

~]$ nmcli con up my-office
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/5)

Review the status of the devices and connections:

~]$ nmcli device status
DEVICE TYPE STATE CONNECTION
ens3 ethernet connected my-office
ens9 ethernet disconnected --
lo loopback unmanaged --

Configuring a Dynamic Ethernet Connection
To change the host name sent by a host to a DHCP server, modify the dhcp-hostname property:

~]$ nmcli con modify my-office my-office ipv4.dhcp-hostname host-name ipv6.dhcp-hostname host-
name

To change the IPv4 client ID sent by a host to a DHCP server, modify the dhcp-client-id property:

~]$ nmcli con modify my-office my-office ipv4.dhcp-client-id client-ID-string

There is no dhcp-client-id property for IPv6, dhclient creates an identifier for IPv6. See the dhclient(8)
man page for details.

To ignore the DNS servers sent to a host by a DHCP server, modify the ignore-auto-dns property:

~]$ nmcli con modify my-office my-office ipv4.ignore-auto-dns yes ipv6.ignore-auto-dns yes

Networking Guide

32

See the nm-settings(5) man page for more information on properties and their settings.

Example 3.9. Configuring a Dynamic Ethernet Connection Using the Interactive Editor

To configure a dynamic Ethernet connection using the interactive editor:

~]$ nmcli con edit type ethernet con-name ens3

===| nmcli interactive connection editor |===

Adding a new '802-3-ethernet' connection

Type 'help' or '?' for available commands.
Type 'describe [<setting>.<prop>]' for detailed property description.

You may edit the following settings: connection, 802-3-ethernet (ethernet), 802-1x, ipv4, ipv6, dcb
nmcli> describe ipv4.method

=== [method] ===
[NM property description]
IPv4 configuration method. If 'auto' is specified then the appropriate automatic method (DHCP,
PPP, etc) is used for the interface and most other properties can be left unset. If 'link-local' is
specified, then a link-local address in the 169.254/16 range will be assigned to the interface. If
'manual' is specified, static IP addressing is used and at least one IP address must be given in the
'addresses' property. If 'shared' is specified (indicating that this connection will provide network
access to other computers) then the interface is assigned an address in the 10.42.x.1/24 range
and a DHCP and forwarding DNS server are started, and the interface is NAT-ed to the current
default network connection. 'disabled' means IPv4 will not be used on this connection. This
property must be set.

nmcli> set ipv4.method auto
nmcli> save
Saving the connection with 'autoconnect=yes'. That might result in an immediate activation of the
connection.
Do you still want to save? [yes] yes
Connection 'ens3' (090b61f7-540f-4dd6-bf1f-a905831fc287) successfully saved.
nmcli> quit
~]$

The default action is to save the connection profile as persistent. If required, the profile can be held in
memory only, until the next restart, by means of the save temporary command.

3.3.8. Adding and Configuring a Static Ethernet Connection with nmcli

Adding a Static Ethernet Connection
To add an Ethernet connection with static IPv4 configuration:

nmcli connection add type ethernet con-name connection-name ifname interface-name ip4 address
gw4 address

IPv6 address and gateway information can be added using the ip6 and gw6 options.

For example, to create a static Ethernet connection with only IPv4 address and gateway:

CHAPTER 3. CONFIGURING IP NETWORKING

33

~]$ nmcli con add type ethernet con-name test-lab ifname ens9 ip4 10.10.10.10/24 \
gw4 10.10.10.254

Optionally, at the same time specify IPv6 address and gateway for the device:

~]$ nmcli con add type ethernet con-name test-lab ifname ens9 ip4 10.10.10.10/24 \
gw4 10.10.10.254 ip6 abbe::cafe gw6 2001:db8::1
Connection 'test-lab' (05abfd5e-324e-4461-844e-8501ba704773) successfully added.

To set two IPv4 DNS server addresses:

~]$ nmcli con mod test-lab ipv4.dns "8.8.8.8 8.8.4.4"

Note that this will replace any previously set DNS servers. To set two IPv6 DNS server addresses:

~]$ nmcli con mod test-lab ipv6.dns "2001:4860:4860::8888 2001:4860:4860::8844"

Note that this will replace any previously set DNS servers. Alternatively, to add additional DNS servers
to any previously set, use the + prefix:

~]$ nmcli con mod test-lab +ipv4.dns "8.8.8.8 8.8.4.4"

~]$ nmcli con mod test-lab +ipv6.dns "2001:4860:4860::8888 2001:4860:4860::8844"

To open the new Ethernet connection:

~]$ nmcli con up test-lab ifname ens9
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/6)

Review the status of the devices and connections:

~]$ nmcli device status
DEVICE TYPE STATE CONNECTION
ens3 ethernet connected my-office
ens9 ethernet connected test-lab
lo loopback unmanaged --

To view detailed information about the newly configured connection, issue a command as follows:

~]$ nmcli -p con show test-lab
===

 Connection profile details (test-lab)
===

connection.id: test-lab
connection.uuid: 05abfd5e-324e-4461-844e-8501ba704773
connection.interface-name: ens9
connection.type: 802-3-ethernet
connection.autoconnect: yes
connection.timestamp: 1410428968
connection.read-only: no

Networking Guide

34

connection.permissions:
connection.zone: --
connection.master: --
connection.slave-type: --
connection.secondaries:
connection.gateway-ping-timeout: 0
[output truncated]

The use of the -p, --pretty option adds a title banner and section breaks to the output.

Example 3.10. Configuring a Static Ethernet Connection Using the Interactive Editor

To configure a static Ethernet connection using the interactive editor:

~]$ nmcli con edit type ethernet con-name ens3

===| nmcli interactive connection editor |===

Adding a new '802-3-ethernet' connection

Type 'help' or '?' for available commands.
Type 'describe [>setting<.>prop<]' for detailed property description.

You may edit the following settings: connection, 802-3-ethernet (ethernet), 802-1x, ipv4, ipv6, dcb
nmcli> set ipv4.addresses 192.168.122.88/24
Do you also want to set 'ipv4.method' to 'manual'? [yes]: yes
nmcli>
nmcli> save temporary
Saving the connection with 'autoconnect=yes'. That might result in an immediate activation of the
connection.
Do you still want to save? [yes] no
nmcli> save
Saving the connection with 'autoconnect=yes'. That might result in an immediate activation of the
connection.
Do you still want to save? [yes] yes
Connection 'ens3' (704a5666-8cbd-4d89-b5f9-fa65a3dbc916) successfully saved.
nmcli> quit
~]$

The default action is to save the connection profile as persistent. If required, the profile can be held in
memory only, until the next restart, by means of the save temporary command.

NetworkManager will set its internal parameter connection.autoconnect to yes. NetworkManager
will also write out settings to /etc/sysconfig/network-scripts/ifcfg-my-office where the corresponding
BOOTPROTO will be set to none and ONBOOT to yes.

Note that manual changes to the ifcfg file will not be noticed by NetworkManager until the interface is
next brought up. See Section 2.7, “Using NetworkManager with sysconfig files” , Section 3.5,
“Configuring IP Networking with ifcfg Files” for more information on using configuration files.

3.3.9. Locking a Profile to a Specific Device Using nmcli

To lock a profile to a specific interface device:

CHAPTER 3. CONFIGURING IP NETWORKING

35

nmcli connection add type ethernet con-name connection-name ifname interface-name

To make a profile usable for all compatible Ethernet interfaces:

nmcli connection add type ethernet con-name connection-name ifname "*"

Note that you have to use the ifname argument even if you do not want to set a specific interface. Use
the wildcard character * to specify that the profile can be used with any compatible device.

To lock a profile to a specific MAC address:

nmcli connection add type ethernet con-name "connection-name" ifname "*" mac 00:00:5E:00:53:00

3.3.10. Adding a Wi-Fi Connection with nmcli

To view the available Wi-Fi access points:

~]$ nmcli dev wifi list
 SSID MODE CHAN RATE SIGNAL BARS SECURITY
 FedoraTest Infra 11 54 MB/s 98 ▂▄▆█ WPA1
 Red Hat Guest Infra 6 54 MB/s 97 ▂▄▆█ WPA2
 Red Hat Infra 6 54 MB/s 77 ▂▄▆_ WPA2 802.1X
* Red Hat Infra 40 54 MB/s 66 ▂▄▆_ WPA2 802.1X
 VoIP Infra 1 54 MB/s 32 ▂▄__ WEP
 MyCafe Infra 11 54 MB/s 39 ▂▄__ WPA2

To create a Wi-Fi connection profile with static IP configuration, but allowing automatic DNS address
assignment:

~]$ nmcli con add con-name MyCafe ifname wlp61s0 type wifi ssid MyCafe \
ip4 192.168.100.101/24 gw4 192.168.100.1

To set a WPA2 password, for example “caffeine”:

~]$ nmcli con modify MyCafe wifi-sec.key-mgmt wpa-psk
~]$ nmcli con modify MyCafe wifi-sec.psk caffeine

See the Red Hat Enterprise Linux 7 Security Guide for information on password security.

To change Wi-Fi state:

~]$ nmcli radio wifi [on | off]

Changing a Specific Property Using nmcli
To check a specific property, for example mtu:

~]$ nmcli connection show id 'MyCafe' | grep mtu
802-11-wireless.mtu: auto

To change the property of a setting:

~]$ nmcli connection modify id 'MyCafe' 802-11-wireless.mtu 1350

Networking Guide

36

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

To verify the change:

~]$ nmcli connection show id 'MyCafe' | grep mtu
802-11-wireless.mtu: 1350

Note that NetworkManager refers to parameters such as 802-3-ethernet and 802-11-wireless as the
setting, and mtu as a property of the setting. See the nm-settings(5) man page for more information on
properties and their settings.

3.3.11. Configuring NetworkManager to Ignore Certain Devices

By default, NetworkManager manages all devices except the lo (loopback) device. However, you can set
certain devices as unmanaged to configure that NetworkManager ignores these devices. With this
setting, you can manually manage these devices, for example, using a script.

3.3.11.1. Permanently Configuring a Device as Unmanaged in NetworkManager

You can configure devices as unmanaged based on several criteria, such as the interface name, MAC
address, or device type. This procedure describes how to permanently set the enp1s0 interface as
unmanaged in NetworkManager.

To temporarily configure network devices as unmanaged, see Section 3.3.11.2, “Temporarily Configuring
a Device as Unmanaged in NetworkManager”.

Procedure

1. Optional: Display the list of devices to identify the device you want to set as unmanaged:

nmcli device status
DEVICE TYPE STATE CONNECTION
enp1s0 ethernet disconnected --
...

2. Create the /etc/NetworkManager/conf.d/99-unmanaged-devices.conf file with the following
content:

[keyfile]
unmanaged-devices=interface-name:enp1s0

To set multiple devices as unmanaged, separate the entries in the unmanaged-devices
parameter with semicolon:

[keyfile]
unmanaged-devices=interface-name:interface_1;interface-name:interface_2;...

3. Reload the NetworkManager service:

systemctl reload NetworkManager

Verification Steps

Display the list of devices:

CHAPTER 3. CONFIGURING IP NETWORKING

37

nmcli device status
DEVICE TYPE STATE CONNECTION
enp1s0 ethernet unmanaged --
...

The unmanaged state next to the enp1s0 device indicates that NetworkManager does not
manage this device.

Additional Resources
For a list of criteria you can use to configure devices as unmanaged and the corresponding syntax, see
the Device List Format section in the NetworkManager.conf(5) man page.

3.3.11.2. Temporarily Configuring a Device as Unmanaged in NetworkManager

You can configure devices as unmanaged based on several criteria, such as the interface name, MAC
address, or device type. This procedure describes how to temporarily set the enp1s0 interface as
unmanaged in NetworkManager.

Use this method, for example, for testing purposes. To permanently configure network devices as
unmanaged, see Section 3.3.11.1, “Permanently Configuring a Device as Unmanaged in
NetworkManager”.

Procedure

1. Optional: Display the list of devices to identify the device you want to set as unmanaged:

nmcli device status
DEVICE TYPE STATE CONNECTION
enp1s0 ethernet disconnected --
...

2. Set the enp1s0 device to the unmanaged state:

nmcli device set enp1s0 managed no

Verification Steps

Display the list of devices:

nmcli device status
DEVICE TYPE STATE CONNECTION
enp1s0 ethernet unmanaged --
...

The unmanaged state next to the enp1s0 device indicates that NetworkManager does not
manage this device.

Additional Resources
For a list of criteria you can use to configure devices as unmanaged and the corresponding syntax, see
the Device List Format section in the NetworkManager.conf(5) man page.

3.4. CONFIGURING IP NETWORKING WITH GNOME GUI

In Red Hat Enterprise Linux 7, NetworkManager does not have its own graphical user interface (GUI).

Networking Guide

38

The network connection icon on the top right of the desktop is provided as part of the GNOME Shell
and the Network settings configuration tool is provided as part of the new GNOME control-center GUI
which supports the wired, wireless, vpn connections. The nm-connection-editor is the main tool for GUI
configuration. Besides control-center's features, it also applies the functionality which is not provided
by the GNOME control-center such as configuring bond, team, bridge connections. In this section, you
can configure a network interface using:

the GNOME control-center application

the GNOME nm-connection-editor application

3.4.1. Connecting to a Network Using the control-center GUI

There are two ways to access the Network settings window of the control-center application:

Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Network tab on the left-hand side, and the Network settings tool appears. Proceed
to the section called “Configuring New Connections with control-center” .

Click on the GNOME Shell network connection icon in the top right-hand corner of the screen to
open its menu.

Figure 3.5. Network Configuration using the control-center application

When you click on the GNOME Shell network connection icon, you are presented with:

A list of categorized networks you are currently connected to (such as Wired and Wi-Fi).

A list of all Available Networks that NetworkManager has detected.

Options for connecting to any configured Virtual Private Networks (VPNs)

and

CHAPTER 3. CONFIGURING IP NETWORKING

39

An option for selecting the Network Settings menu entry.

If you are connected to a network, this is indicated by a black bullet on the left of the connection name.

If you click on Network Settings, the Network settings tool appears. Proceed to the section called
“Configuring New Connections with control-center”.

3.4.2. Configuring New and Editing Existing Connections Using a GUI

As a system administrator, you can configure a network connection. This enables users to apply or
change settings of an interface. For doing that, you can use one of the following two ways:

the GNOME control-center application

the GNOME nm-connection-editor application

3.4.2.1. Configuring New and Editing Existing Connections Using control-center

You can create and configure a network connection using the GNOME control-center application.

Configuring New Connections with control-center
To configure a new wired, wireless, vpn connection using the control-center application, proceed as
follows:

1. Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Network tab on the left-hand side. The Network settings tool appears on the right-
hand side menu:

Figure 3.6. Opening the Network Settings Window

2. Click the plus button to add a new connection.

Networking Guide

40

To configure:

Wired connections, click the plus button next to Wired entry and proceed to Section 3.4.6,
“Configuring a Wired (Ethernet) Connection with a GUI”.

VPN connections, click the plus button next to VPN entry and proceed to Section 3.4.8.1,
“Establishing a VPN Connection with control-center”

For Wi-Fi connections, click the Wi-fi entry in the Settings menu and proceed to Section 3.4.7,
“Configuring a Wi-Fi Connection with a GUI”

Editing an Existing Connection with control-center
Clicking on the gear wheel icon of an existing connection profile in the Network settings window opens
the Details window, from where you can perform most network configuration tasks such as IP
addressing, DNS, and routing configuration.

Figure 3.7. Configure Networks Using the Network Connection Details Window

For any connection type you add or configure, you can choose NetworkManager to connect to that
network automatically when it is available. For doing that, select Connect automatically to cause
NetworkManager to auto-connect to the connection whenever NetworkManager detects that it is

CHAPTER 3. CONFIGURING IP NETWORKING

41

available. Clear the check box if you do not want NetworkManager to connect automatically. If the
check box is clear, you will have to select that connection manually in the network connection icon's
menu to cause it to connect.

To make a connection available to other users, select the Make available to other users check box.

To apply changes after a connection modification, you can click the Apply button in the top right-hand
corner of the connection window.

You can delete a connection by clicking the Remove Connection Profile red box.

3.4.2.2. Configuring New and Editing Existing Connections Using nm-connection-editor

Using the nm-connection-editor GUI application, you can configure any connection you want with
additional features than control-center provides. In addition, nm-connection-editor applies the
functionality which is not provided by the GNOME control-center such as configuring bond, bridge,
VLAN, team connections.

Configuring a New Connection with nm-connection-editor
To add a new connection type using nm-connection-editor:

Procedure

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

The Network Connections window appears.

2. Click the plus button to choose a connection type:

Networking Guide

42

Figure 3.8. Adding a connection type using nm-connection-editor

Figure 3.9. Choosing a connection type with nm-connection-editor

To create and configure:

Bond connections, click the Bond entry and proceed to Section 7.8.1, “Establishing a Bond
Connection”;

Bridge connections, click the Bridge entry and proceed to Section 9.4.1, “Establishing a
Bridge Connection with a GUI”;

VLAN connections, click the VLAN entry and proceed to Section 10.5.1, “Establishing a
VLAN Connection”; or,

CHAPTER 3. CONFIGURING IP NETWORKING

43

Team connections, click the Team entry and proceed to Section 8.14, “Creating a Network
Team Using a GUI”.

Editing an Existing Connection with nm-connection-editor
For an existing connection type, click the gear wheel icon from the Network Connections dialog, see
the section called “Configuring a New Connection with nm-connection-editor” .

3.4.3. Common Configuration Options Using nm-connection-editor

If you use the nm-connection-editor utility, there are five common configuration options to the most
connection types (ethernet, wifi, mobile broadband, DSL) following the procedure below:

Procedure

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

The Network Connections window appears. Click the plus button to choose a connection type
or the gear wheel icon to edit an existing connection.

2. Select the General tab in the Editing dialog:

Figure 3.10. Configuration options in nm-connection-editor

Connection name — Enter a descriptive name for your network connection. This name is used
to list this connection in the menu of the Network window.

Networking Guide

44

Connection priority for auto-activation — If the connection is set to autoconnect, the number
is activated (0 by default). The higher number means higher priority.

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. See the section called
“Editing an Existing Connection with control-center” for more information.

All users may connect to this network — Select this box to create a connection available to all
users on the system. Changing this setting may require root privileges. See Section 3.4.5,
“Managing System-wide and Private Connection Profiles with a GUI” for details.

Automatically connect to VPN when using this connection — Select this box if you want
NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN
from the drop-down menu.

Firewall Zone — Select the firewall zone from the drop-down menu. See the Red Hat
Enterprise Linux 7 Security Guide for more information on firewall zones.

NOTE

For the VPN connection type, only three of the above configuration options are available:
Connection name, All users may connect to this network and Firewall Zone.

3.4.4. Connecting to a Network Automatically with a GUI

For any connection type you add or configure, you can choose whether you want NetworkManager to
try to connect to that network automatically when it is available. You can use one of the following ways:

the GNOME control-center application

the GNOME nm-connection-editor application

3.4.4.1. Connecting to a Network Automatically with control-center

You can connect to a network automatically using control-center:

Procedure

1. Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Network tab on the left-hand side. The Network settings tool appears on the right-
hand side menu, see the section called “Configuring New Connections with control-center” .

2. Select the network interface from the right-hand-side menu.

3. Click on the gear wheel icon of a connection profile on the right-hand side menu. The Network
details window appears.

4. Select the Details menu entry, see the section called “Editing an Existing Connection with
control-center”.

5. Select Connect automatically to cause NetworkManager to auto-connect to the connection
whenever NetworkManager detects that it is available. Clear the check box if you do not want
NetworkManager to connect automatically. If the check box is clear, you will have to select that
connection manually in the network connection icon's menu to cause it to connect.

CHAPTER 3. CONFIGURING IP NETWORKING

45

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

3.4.4.2. Connecting to a Network Automatically with nm-connection-editor

You can also use the GNOME nm-connection-editor application for connecting to a network
automatically. For doing that, follow the procedure descibed in Section 3.4.3, “Common Configuration
Options Using nm-connection-editor”, and check the Automatically connect to this network when it
is available check box in the General tab.

3.4.5. Managing System-wide and Private Connection Profiles with a GUI

NetworkManager stores all connection profiles . A profile is a named collection of settings that can be
applied to an interface. NetworkManager stores these connection profiles for system-wide use (system
connections), as well as all user connection profiles. Access to the connection profiles is controlled by
permissions which are stored by NetworkManager. See the nm-settings(5) man page for more
information on the connection settings permissions property. You can control access to a connection
profile using the following graphical user interface tools:

the nm-connection-editor application

the control-center application

3.4.5.1. Managing Permissions for a Connection Profile with nm-connection-editor

To create a connection available to all users on the system, follow the procedure descibed in
Section 3.4.3, “Common Configuration Options Using nm-connection-editor” , and check the All users
may connect to this network check box in the General tab.

3.4.5.2. Managing Permissions for a Connection Profile with control-center

To make a connection available to other users, follow the procedure described in the section called
“Editing an Existing Connection with control-center”, and select the Make available to other users
check box in the GNOME control-center Network settings Details window.

Conversely, clear the Make available to other users check box to make the connection user-specific
instead of system-wide.

NOTE

Depending on the system's policy, you may need root privileges on the system in order to
change whether a connection is user-specific or system-wide.

NetworkManager's default policy is to allow all users to create and modify system-wide connections.
Profiles that are available at boot time cannot be private because they will not be visible until the user
logs in. For example, if a user creates a connection profile user-em2 with the Connect Automatically
check box selected but with the Make available to other users not selected, then the connection will
not be available at boot time.

To restrict connections and networking, there are two options which can be used alone or in
combination:

Clear the Make available to other users check box, which changes the connection to be
modifiable and usable only by the user doing the changing.

Use the polkit framework to restrict permissions of general network operations on a per-user
basis.

The combination of these two options provides fine-grained security and control over networking. See

Networking Guide

46

The combination of these two options provides fine-grained security and control over networking. See
the polkit(8) man page for more information on polkit.

Note that VPN connections are always created as private-per-user, since they are assumed to be more
private than a Wi-Fi or Ethernet connection.

3.4.6. Configuring a Wired (Ethernet) Connection with a GUI

You can configure a wired connection using GUI in two ways:

the control-center application

the nm-connection-editor application

3.4.6.1. Configuring a Wired Connection Using control-center

Procedure

1. Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Network menu entry on the left-hand side, and the Network settings tool appears,
see the section called “Configuring New Connections with control-center” .

2. Select the Wired network interface if it is not already highlighted.

The system creates and configures a single wired connection profile called Wired by default. A
profile is a named collection of settings that can be applied to an interface. More than one
profile can be created for an interface and applied as needed. The default profile cannot be
deleted but its settings can be changed.

3. Edit the default Wired profile by clicking the gear wheel icon.

Basic Configuration Options
You can see the following configuration settings in the Wired dialog, by selecting the Identity menu
entry:

CHAPTER 3. CONFIGURING IP NETWORKING

47

Figure 3.11. Basic Configuration options of a Wired Connection

Name — Enter a descriptive name for your network connection. This name will be used to list
this connection in the menu of the Network window.

MAC Address — Select the MAC address of the interface this profile must be applied to.

Cloned Address — If required, enter a different MAC address to use.

MTU — If required, enter a specific maximum transmission unit (MTU) to use. The MTU value
represents the size in bytes of the largest packet that the link layer will transmit. This value
defaults to 1500 and does not generally need to be specified or changed.

Making Further Wired Configurations
You can further configure an existing connection in the editing dialog.

To configure:

IPv4 settings for the connection, click the IPv4 menu entry and proceed to Section 5.4,
“Configuring IPv4 Settings”

or

IPv6 settings for the connection, click the IPv6 menu entry and proceed to Section 5.5,
“Configuring IPv6 Settings”.

port-based Network Access Control (PNAC), click the 802.1X Security menu entry and
proceed to Section 5.2, “Configuring 802.1X Security” ;

Saving Your New (or Modified) Wired Connection
Once you have finished editing your wired connection, click the Apply button to save your customized
configuration. If the profile was in use while being edited, restart the connection to make
NetworkManager apply the changes. If the profile is OFF, set it to ON or select it in the network
connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for
information on using your new or altered connection.

Networking Guide

48

Creating a New Wired Connection
To create a new wired connection profile, click the plus button, see the section called “Configuring New
Connections with control-center”.

When you add a new connection by clicking the plus button, NetworkManager creates a new
configuration file for that connection and then opens the same dialog that is used for editing an existing
connection, see the section called “Editing an Existing Connection with control-center” . The difference
between these dialogs is that an existing connection profile has a Details menu entry.

3.4.6.2. Configuring a Wired Connection with nm-connection-editor

The nm-connection-editor GUI application provides more configuration options than the control-
center GUI application. To configure a wired connection using nm-connection-editor:

1. Enter the nm-connection-editor in a terminal.

~]$ nm-connection-editor

The Network Connections window appears.

2. Select the ethernet connection you want to edit and click the gear wheel icon:

Figure 3.12. Edit a wired connection

The Editing dialog appears.

To connect to a network automatically and restrict connections, click the General tab, see
Section 3.4.3, “Common Configuration Options Using nm-connection-editor” .

To configure the networking settings, click the Ethernet tab, see the section called
“Configuring 802.3 Link Settings with nm-connection-editor”.

CHAPTER 3. CONFIGURING IP NETWORKING

49

To configure 802.1X Security for a wired connection, click the 802.1X Security tab, see
Section 5.2.4, “Configuring 802.1X Security for Wired with nm-connection-editor” .

To configure the IPV4 settings, click the IPV4 Settings tab, see the section called “Setting
the Method for IPV4 Using nm-connection-editor”.

To configure the IPV6 settings, click the IPV6 Settings tab, see Section 5.5, “Configuring
IPv6 Settings”.

3.4.7. Configuring a Wi-Fi Connection with a GUI

This section explains how to use NetworkManager to configure a Wi-Fi (also known as wireless or
802.11a/b/g/n) connection to an Access Point. An Access Point is a device that allows wireless devices to
connect to a network.

To configure a mobile broadband (such as 3G) connection, see Section 3.4.9, “Configuring a Mobile
Broadband Connection with a GUI”.

Connecting Quickly to an Available Access Point
Procedure

1. Click on the network connection icon to activate the network connection icon's menu, see
Section 3.4.1, “Connecting to a Network Using the control-center GUI”.

2. Locate the Service Set Identifier (SSID) of the access point in the list of Wi-Fi networks.

3. Click on the SSID of the network. A padlock symbol indicates the access point requires
authentication. If the access point is secured, a dialog prompts you for an authentication key or
password.

NetworkManager tries to auto-detect the type of security used by the access point. If there are
multiple possibilities, NetworkManager guesses the security type and presents it in the Wi-Fi
security drop-down menu.

For WPA-PSK security (WPA with a passphrase) no choice is necessary.

For WPA Enterprise (802.1X) you have to specifically select the security, because that
cannot be auto-detected.

Note that if you are unsure, try connecting to each type in turn.

4. Enter the key or passphrase in the Password field. Certain password types, such as a 40-bit
WEP or 128-bit WPA key, are invalid unless they are of a requisite length. The Connect button
will remain inactive until you enter a key of the length required for the selected security type. To
learn more about wireless security, see Section 5.2, “Configuring 802.1X Security” .

If NetworkManager connects to the access point successfully, the network connection icon will change
into a graphical indicator of the wireless connection's signal strength.

You can also edit the settings for one of these auto-created access point connections just as if you had
added it yourself. The Wi-Fi page of the Network window has a History button. Clicking it reveals a list
of all the connections you have ever tried to connect to. See the section called “Editing an Existing Wi-Fi
Connection”

Connecting to a Hidden Wi-Fi Network
All access points have a Service Set Identifier (SSID) to identify them. However, an access point may be
configured not to broadcast its SSID, in which case it is hidden, and will not show up in

Networking Guide

50

NetworkManager's list of Available networks. You can still connect to a wireless access point that is
hiding its SSID as long as you know its SSID, authentication method, and secrets. To connect to a hidden
wireless network:

Procedure

1. Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Wi-Fi menu entry on the left-hand side.

2. Select Connect to Hidden Network. There are two options:

If you have connected to the hidden network before:

1. Use the Connection drop-down to select the network.

2. Click Connect.

If not, proceed as follows:

1. Leave the Connection drop-down as New.

2. Enter the SSID of the hidden network.

3. Select its Wi-Fi security method.

4. Enter the correct authentication secrets.

5. Click Connect.

For more information on wireless security settings, see Section 5.2, “Configuring 802.1X Security” .

Configuring a New Wi-Fi Connection
Procedure

1. Select the Wi-Fi menu entry of Settings.

2. Click the Wi-Fi connection name that you want to connect to (by default, the same as the
SSID).

If the SSID is not in range, see the section called “Connecting to a Hidden Wi-Fi Network”
for more information.

If the SSID is in range, click the Wi-Fi connection profile on the right-hand side menu. A
padlock symbol indicates a key or password is required. If requested, enter the
authentication details.

Editing an Existing Wi-Fi Connection
You can edit an existing connection that you have tried or succeeded in connecting to in the past.

Procedure

1. Press the Super key to enter the Activities Overview, type Settings and press Enter.

2. Select Wi-Fi from the left-hand-side menu entry.

3. Select the gear wheel icon to the right of the Wi-Fi connection name that you want to edit, and
the editing connection dialog appears. Note that if the network is not currently in range, click
History to display past connections. The Details window shows the connection details.

CHAPTER 3. CONFIGURING IP NETWORKING

51

Basic Configuration Options for a Wi-Fi Connection
To edit a Wi-Fi connection's settings, select Identity from the editing connection dialog. The following
settings are available:

Figure 3.13. Basic Configuration Options for a Wi-Fi Connection

SSID

The Service Set Identifier (SSID) of the access point (AP).

BSSID

The Basic Service Set Identifier (BSSID) is the MAC address, also known as a hardware address , of the
specific wireless access point you are connecting to when in Infrastructure mode. This field is blank
by default, and you are able to connect to a wireless access point by SSID without having to specify
its BSSID. If the BSSID is specified, it will force the system to associate to a specific access point
only.

For ad-hoc networks, the BSSID is generated randomly by the mac80211 subsystem when the ad-
hoc network is created. It is not displayed by NetworkManager

MAC address

Select the MAC address, also known as a hardware address , of the Wi-Fi interface to use.

A single system could have one or more wireless network adapters connected to it. The MAC
address field therefore allows you to associate a specific wireless adapter with a specific connection
(or connections).

Networking Guide

52

Cloned Address

A cloned MAC address to use in place of the real hardware address. Leave blank unless required.

The following settings are common to the most connection types:

Connect automatically — Select this box if you want NetworkManager to auto-connect to this
connection when it is available. See the section called “Editing an Existing Connection with
control-center” for more information.

Make available to other users — Select this box to create a connection available to all users on
the system. Changing this setting may require root privileges. See Section 3.4.5, “Managing
System-wide and Private Connection Profiles with a GUI” for details.

Making Further Wi-Fi Configurations
You can further configure an existing connection in the editing dialog.

To configure:

security authentication for the wireless connection, click Security and proceed to Section 5.2,
“Configuring 802.1X Security”.

IPv4 settings for the connection, click IPv4 and proceed to Section 5.4, “Configuring IPv4
Settings”

or

IPv6 settings for the connection, click IPv6 and proceed to Section 5.5, “Configuring IPv6
Settings”.

Saving Your New (or Modified) Connection
Once you have finished editing the wireless connection, click the Apply button to save your
configuration. Given a correct configuration, you can connect to your modified connection by selecting it
from the network connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the
control-center GUI” for details on selecting and connecting to a network.

3.4.8. Configuring a VPN Connection with a GUI

IPsec, provided by Libreswan, is the preferred method for creating a VPN. Libreswan is an open-
source, user-space IPsec implementation for VPN. Configuring an IPsec VPN using the command line
is documented in the Red Hat Enterprise Linux 7 Security Guide .

3.4.8.1. Establishing a VPN Connection with control-center

IPsec, provided by Libreswan, is the preferred method for creating a VPN in Red Hat Enterprise Linux 7.
For more information, see Section 3.4.8, “Configuring a VPN Connection with a GUI” .

The GNOME graphical user interface tool described below requires the NetworkManager-libreswan-
gnome package. To install the package, run the following command as root:

~]# yum install NetworkManager-libreswan-gnome

See Red Hat Enterprise Linux System Administrator's Guide for more information on how to install new
packages in Red Hat Enterprise Linux.

CHAPTER 3. CONFIGURING IP NETWORKING

53

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

Establishing a Virtual Private Network (VPN) enables communication between your Local Area Network
(LAN), and another, remote LAN. This is done by setting up a tunnel across an intermediate network
such as the Internet. The VPN tunnel that is set up typically uses authentication and encryption. After
successfully establishing a VPN connection using a secure tunnel, a VPN router or gateway performs the
following actions upon the packets you transmit:

1. it adds an Authentication Header for routing and authentication purposes;

2. it encrypts the packet data; and,

3. it encloses the data in packets according to the Encapsulating Security Payload (ESP) protocol,
which constitutes the decryption and handling instructions.

The receiving VPN router strips the header information, decrypts the data, and routes it to its intended
destination (either a workstation or other node on a network). Using a network-to-network connection,
the receiving node on the local network receives the packets already decrypted and ready for
processing. The encryption and decryption process in a network-to-network VPN connection is
therefore transparent to clients.

Because they employ several layers of authentication and encryption, VPNs are a secure and effective
means of connecting multiple remote nodes to act as a unified intranet.

Adding a New IPsec VPN Connection
Procedure

1. Press the Super key to enter the Activities Overview, type Settings and press Enter. Then,
select the Network menu entry and the Network settings tool appears, see the section called
“Configuring New Connections with control-center”.

2. Click the plus button in the VPN entry.

3. The Add VPN window appears. For manually configuration, select IPsec based VPN.

Figure 3.14. Configuring VPN on IPsec mode

4. In the Identity configuration form, you can specify the fields in the General and Advanced
sections:

Networking Guide

54

Figure 3.15. General and Advanced sections

In General section, you can specify:

Gateway

The name or IP address of the remote VPN gateway.

User name

If required, enter the user name associated with the VPN user's identity for authentication.

User password

If required, enter the password associated with the VPN user's identity for authentication.

Group name

The name of a VPN group configured on the remote gateway. In case it is blank, the IKEv1 Main mode
is used instead of the default Aggressive mode.

Secret

It is a pre-shared key which is used to initialize the encryption before the user's authentication. If

CHAPTER 3. CONFIGURING IP NETWORKING

55

It is a pre-shared key which is used to initialize the encryption before the user's authentication. If
required, enter the password associated with the group name.

The following configuration settings are available under the Advanced section:

Phase1 Algorithms

If required, enter the algorithms to be used to authenticate and set up an encrypted channel.

Phase2 Algorithms

If required, enter the algorithms to be used for the IPsec negotiations.

Domain

If required, enter the Domain Name.

NOTE

Configuring an IPsec VPN without using NetworkManager, see Section 3.4.8,
“Configuring a VPN Connection with a GUI”.

Editing an Existing VPN Connection
Procedure

1. Press the Super key to enter the Activities Overview, type Settings and press Enter. Then,
select the Network menu entry and the Network settings tool appears, see the section called
“Configuring New Connections with control-center”.

2. Select the VPN connection you want to edit and click the gear wheel icon and edit the General
and Advanced sections, see Section 3.4.8.1, “Establishing a VPN Connection with control-
center”.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your new VPN connection, click the Save button to save your
customized configuration. If the profile was in use while being edited, power cycle the connection to
make NetworkManager apply the changes. If the profile is OFF, set it to ON or select it in the network
connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for
information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network window and clicking
Configure to return to the Editing dialog.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”.

3.4.8.2. Configuring a VPN Connection with nm-connection-editor

You can also use nm-connection-editor to add and configure a VPN connection. For doing that,
proceed as follows:

Procedure

1. Enter nm-connection-editor in a terminal. The Network Connections window appears, see

Networking Guide

56

1. Enter nm-connection-editor in a terminal. The Network Connections window appears, see
Section 3.4.3, “Common Configuration Options Using nm-connection-editor” .

2. Click the plus button. The Choose a Connection Type menu opens.

3. Select from the VPN menu entry, the IPsec based VPN option.

4. Click Create to open the Editing dialog and proceed to the section called “Adding a New IPsec
VPN Connection” to edit the General and Advanced sections.

3.4.9. Configuring a Mobile Broadband Connection with a GUI

You can use NetworkManager's mobile broadband connection abilities to connect to the following 2G
and 3G services:

2G — GPRS (General Packet Radio Service), EDGE (Enhanced Data Rates for GSM Evolution), or
CDMA (Code Division Multiple Access).

3G — UMTS (Universal Mobile Telecommunications System), HSPA (High Speed Packet Access),
or EVDO (EVolution Data-Only).

Your computer must have a mobile broadband device (modem), which the system has discovered and
recognized, in order to create the connection. Such a device may be built into your computer (as is the
case on many notebooks and netbooks), or may be provided separately as internal or external hardware.
Examples include PC card, USB Modem or Dongle, mobile or cellular telephone capable of acting as a
modem.

3.4.9.1. Configuring a Mobile Broadband Connection with nm-connection-editor

You can configure a mobile broadband connection using the GNOME nm-connection-editor.

Adding a New Mobile Broadband Connection
Procedure

1. Enter nm-connection-editor in a terminal. The Network Connections window appears, see
Section 3.4.3, “Common Configuration Options Using nm-connection-editor” .

2. Click the plus button. The Choose a Connection Type menu opens.

3. Select the Mobile Broadband menu entry.

4. Click Create to open the Set up a Mobile Broadband Connection assistant.

5. Under Create a connection for this mobile broadband device, choose the 2G- or 3G-
capable device you want to use with the connection. If the drop-down menu is inactive, this
indicates that the system was unable to detect a device capable of mobile broadband. In this
case, click Cancel, ensure that you do have a mobile broadband-capable device attached and
recognized by the computer and then retry this procedure. Click the Continue button.

6. Select the country where your service provider is located from the list and click the Continue
button.

7. Select your provider from the list or enter it manually. Click the Continue button.

8. Select your payment plan from the drop-down menu and confirm the Access Point Name (APN)
is correct. Click the Continue button.

CHAPTER 3. CONFIGURING IP NETWORKING

57

9. Review and confirm the settings and then click the Apply button.

10. Edit the mobile broadband-specific settings by referring to the section called “Configuring the
Mobile Broadband Tab”

Editing an Existing Mobile Broadband Connection
Procedure

1. Enter nm-connection-editor in a terminal. The Network Connections window appears.

2. Select the Mobile Broadband tab.

3. Select the connection you want to edit and click the gear wheel icon. See Section 3.4.3,
“Common Configuration Options Using nm-connection-editor” for more information.

4. Edit the mobile broadband-specific settings by referring to the section called “Configuring the
Mobile Broadband Tab”

Configuring the Mobile Broadband Tab
If you have already added a new mobile broadband connection using the assistant (see the section called
“Adding a New Mobile Broadband Connection” for instructions), you can edit the Mobile Broadband
tab to disable roaming if home network is not available, assign a network ID, or instruct
NetworkManager to prefer a certain technology (such as 3G or 2G) when using the connection.

Number

The number that is dialed to establish a PPP connection with the GSM-based mobile broadband
network. This field may be automatically populated during the initial installation of the broadband
device. You can usually leave this field blank and enter the APN instead.

Username

Enter the user name used to authenticate with the network. Some providers do not provide a user
name, or accept any user name when connecting to the network.

Password

Enter the password used to authenticate with the network. Some providers do not provide a
password, or accept any password.

APN

Enter the Access Point Name (APN) used to establish a connection with the GSM-based network.
Entering the correct APN for a connection is important because it often determines:

how the user is billed for their network usage;

whether the user has access to the Internet, an intranet, or a subnetwork.

Network ID

Entering a Network ID causes NetworkManager to force the device to register only to a specific
network. This can be used to ensure the connection does not roam when it is not possible to control
roaming directly.

Type

Any — The default value of Any leaves the modem to select the fastest network.

Networking Guide

58

3G (UMTS/HSPA) — Force the connection to use only 3G network technologies.

2G (GPRS/EDGE) — Force the connection to use only 2G network technologies.

Prefer 3G (UMTS/HSPA) — First attempt to connect using a 3G technology such as HSPA or UMTS,
and fall back to GPRS or EDGE only upon failure.

Prefer 2G (GPRS/EDGE) — First attempt to connect using a 2G technology such as GPRS or EDGE,
and fall back to HSPA or UMTS only upon failure.

Allow roaming if home network is not available

Uncheck this box if you want NetworkManager to terminate the connection rather than transition
from the home network to a roaming one, thereby avoiding possible roaming charges. If the box is
checked, NetworkManager will attempt to maintain a good connection by transitioning from the
home network to a roaming one, and vice versa.

PIN

If your device's SIM (Subscriber Identity Module) is locked with a PIN (Personal Identification
Number), enter the PIN so that NetworkManager can unlock the device. NetworkManager must
unlock the SIM if a PIN is required in order to use the device for any purpose.

CDMA and EVDO have fewer options. They do not have the APN, Network ID, or Type options.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your mobile broadband connection, click the Apply button to save your
customized configuration. If the profile was in use while being edited, power cycle the connection to
make NetworkManager apply the changes. If the profile is OFF, set it to ON or select it in the network
connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for
information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window
and clicking Edit to return to the Editing dialog.

Then, to configure:

Point-to-point settings for the connection, click the PPP Settings tab and proceed to
Section 5.6, “Configuring PPP (Point-to-Point) Settings” ;

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”; or,

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

3.4.10. Configuring a DSL Connection with a GUI

This section is intended for those installations which have a DSL card fitted within a host rather than the
external combined DSL modem router combinations typical of private consumer or SOHO installations.

3.4.10.1. Configuring a DSL Connection with nm-connection-editor

You can configure a DSL connection using the GNOME nm-connection-editor.

Adding a New DSL Connection

CHAPTER 3. CONFIGURING IP NETWORKING

59

Procedure

1. Enter nm-connection-editor in a terminal. The Network Connections window appears, see
Section 3.4.3, “Common Configuration Options Using nm-connection-editor” .

2. Click the plus button.

3. The Choose a Connection Type list appears.

4. Select DSL and press the Create button.

5. The Editing DSL Connection 1 window appears.

Editing an Existing DSL Connection
Procedure

1. Enter nm-connection-editor in a terminal. The Network Connections window appears.

2. Select the connection you want to edit and click the gear wheel icon. See Section 3.4.3,
“Common Configuration Options Using nm-connection-editor” for more information.

Configuring the DSL Tab

Username

Enter the user name used to authenticate with the service provider.

Service

Leave blank unless otherwise directed by your service provider.

Password

Enter the password supplied by the service provider.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your DSL connection, click the Apply button to save your customized
configuration. If the profile was in use while being edited, power cycle the connection to make
NetworkManager apply the changes. If the profile is OFF, set it to ON or select it in the network
connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for
information on using your new or altered connection.

You can further configure an existing connection by selecting it in the Network Connections window
and clicking Edit to return to the Editing dialog.

To configure:

The MAC address and MTU settings, click the Wired tab and proceed to the section called
“Basic Configuration Options ”.

Point-to-point settings for the connection, click the PPP Settings tab and proceed to
Section 5.6, “Configuring PPP (Point-to-Point) Settings” .

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”.

3.5. CONFIGURING IP NETWORKING WITH IFCFG FILES

Networking Guide

60

As a system administrator, you can configure a network interface manually, editing the ifcfg files.

Interface configuration (ifcfg) files control the software interfaces for individual network devices. As the
system boots, it uses these files to determine what interfaces to bring up and how to configure them.
These files are usually named ifcfg-name, where the suffix name refers to the name of the device that
the configuration file controls. By convention, the ifcfg file's suffix is the same as the string given by the
DEVICE directive in the configuration file itself.

Configuring an Interface with Static Network Settings Using ifcfg Files
For example, to configure an interface with static network settings using ifcfg files, for an interface with
the name enp1s0, create a file with the name ifcfg-enp1s0 in the /etc/sysconfig/network-scripts/
directory, that contains:

For IPv4 configuration

For IPv6 configuration

You do not need to specify the network or broadcast address as this is calculated automatically
by ipcalc.

For more IPv6 ifcfg configuration options, see nm-settings-ifcfg-rh(5) man page.

IMPORTANT

In Red Hat Enterprise Linux 7, the naming convention for network interfaces has been
changed, as explained in Chapter 11, Consistent Network Device Naming . Specifying the
hardware or MAC address using HWADDR directive can influence the device naming
procedure.

Configuring an Interface with Dynamic Network Settings Using ifcfg Files
To configure an interface named em1 with dynamic network settings using ifcfg files:

1. Create a file with the name ifcfg-em1 in the /etc/sysconfig/network-scripts/ directory, that
contains:

2. To configure an interface to send a different host name to the DHCP server, add the following
line to the ifcfg file:

DEVICE=enp1s0
BOOTPROTO=none
ONBOOT=yes
PREFIX=24
IPADDR=10.0.1.27

DEVICE=enp1s0
BOOTPROTO=none
ONBOOT=yes
IPV6INIT=yes
IPV6ADDR=2001:db8::2/48

DEVICE=em1
BOOTPROTO=dhcp
ONBOOT=yes

CHAPTER 3. CONFIGURING IP NETWORKING

61

DHCP_HOSTNAME=hostname

To configure an interface to send a different fully qualified domain name (FQDN) to the DHCP
server, add the following line to the ifcfg file:

DHCP_FQDN=fully.qualified.domain.name

NOTE

Only one directive, either DHCP_HOSTNAME or DHCP_FQDN, should be used
in a given ifcfg file. In case both DHCP_HOSTNAME and DHCP_FQDN are
specified, only the latter is used.

3. To configure an interface to use particular DNS servers, add the following lines to the ifcfg file:

where ip-address is the address of a DNS server. This will cause the network service to update
/etc/resolv.conf with the specified DNS servers specified. Only one DNS server address is
necessary, the other is optional.

4. To configure static routes in the ifcfg file, see Section 4.5, “Configuring Static Routes in ifcfg
files”.

By default, NetworkManager calls the DHCP client, dhclient, when a profile has been set to
obtain addresses automatically by setting BOOTPROTO to dhcp in an interface configuration
file. If DHCP is required, an instance of dhclient is started for every Internet protocol, IPv4 and
IPv6, on an interface. If NetworkManager is not running, or is not managing an interface, then
the legacy network service will call instances of dhclient as required. For more details on
dynamic IP addresses, see Section 1.2, “Comparing Static to Dynamic IP Addressing” .

5. To apply the configuration:

a. Reload the updated connection files:

nmcli connection reload

b. Re-activate the connection:

nmcli connection up connection_name

3.5.1. Managing System-wide and Private Connection Profiles with ifcfg Files

The permissions correspond to the USERS directive in the ifcfg files. If the USERS directive is not
present, the network profile will be available to all users. As an example, the following command in an
ifcfg file will make the connection available only to the users listed:

USERS="joe bob alice"

Also, you can set the USERCTL directive to manage the device:

 PEERDNS=no
 DNS1=ip-address
 DNS2=ip-address

Networking Guide

62

If you set yes, non-root users are allowed to control this device.

If you set no, non-root users are not allowed to control this device.

3.6. CONFIGURING IP NETWORKING WITH IP COMMANDS

As a system administrator, you can configure a network interface using the ip command, but but
changes are not persistent across reboots; when you reboot, you will lose any changes.

The commands for the ip utility, sometimes referred to as iproute2 after the upstream package name,
are documented in the man ip(8) page. The package name in Red Hat Enterprise Linux 7 is iproute. If
necessary, you can check that the ip utility is installed by checking its version number as follows:

~]$ ip -V
ip utility, iproute2-ss130716

The ip commands can be used to add and remove addresses and routes to interfaces in parallel with
NetworkManager, which will preserve them and recognize them in nmcli, nmtui, control-center, and
the D-Bus API.

To bring an interface down:

ip link set ifname down

NOTE

The ip link set ifname command sets a network interface in IFF_UP state and enables it
from the kernel's scope. This is different from the ifup ifname command for initscripts or
NetworkManager's activation state of a device. In fact, NetworkManager always sets an
interface up even if it is currently disconnected. Disconnecting the device through the
nmcli tool, does not remove the IFF_UP flag. In this way, NetworkManager gets
notifications about the carrier state.

Note that the ip utility replaces the ifconfig utility because the net-tools package (which provides
ifconfig) does not support InfiniBand addresses.

For information about available OBJECTs, use the ip help command. For example: ip link help and ip
addr help.

NOTE

ip commands given on the command line will not persist after a system restart. Where
persistence is required, make use of configuration files (ifcfg files) or add the commands
to a script.

Examples of using the command line and configuration files for each task are included after nmtui and
nmcli examples but before explaining the use of one of the graphical user interfaces to
NetworkManager, namely, control-center and nm-connection-editor.

The ip utility can be used to assign IP addresses to an interface with the following form:

ip addr [add | del] address dev ifname

CHAPTER 3. CONFIGURING IP NETWORKING

63

Assigning a Static Address Using ip Commands
To assign an IP address to an interface:

~]# ip address add 10.0.0.3/24 dev enp1s0
You can view the address assignment of a specific device:
~]# ip addr show dev enp1s0
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether f0:de:f1:7b:6e:5f brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.3/24 brd 10.0.0.255 scope global global enp1s0
 valid_lft 58682sec preferred_lft 58682sec
 inet6 fe80::f2de:f1ff:fe7b:6e5f/64 scope link
 valid_lft forever preferred_lft forever

Further examples and command options can be found in the ip-address(8) manual page.

Configuring Multiple Addresses Using ip Commands
As the ip utility supports assigning multiple addresses to the same interface it is no longer necessary to
use the alias interface method of binding multiple addresses to the same interface. The ip command to
assign an address can be repeated multiple times in order to assign multiple address. For example:

~]# ip address add 192.168.2.223/24 dev enp1s0
~]# ip address add 192.168.4.223/24 dev enp1s0
~]# ip addr
3: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:fb:77:9e brd ff:ff:ff:ff:ff:ff
 inet 192.168.2.223/24 scope global enp1s0
 inet 192.168.4.223/24 scope global enp1s0

For more details on the commands for the ip utility, see the ip(8) manual page.

NOTE

ip commands given on the command line will not persist after a system restart.

3.7. CONFIGURING IP NETWORKING FROM THE KERNEL COMMAND
LINE

When connecting to the root file system on an iSCSI target from an interface, the network settings are
not configured on the installed system. For solution of this problem:

1. Install the dracut utility. For information on using dracut, see Red Hat Enterprise Linux System
Administrator's Guide

2. Set the configuration using the ip option on the kernel command line:

ip<client-IP-number>:[<server-id>]:<gateway-IP-number>:<netmask>:<client-hostname>:
<interface>:{dhcp|dhcp6|auto6|on|any|none|off}

dhcp - DHCP configuration

dhpc6 - DHCP IPv6 configuration

Networking Guide

64

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

auto6 - automatic IPv6 configuration

on, any - any protocol available in the kernel (default)

none, off - no autoconfiguration, static network configuration

For example:

ip=192.168.180.120:192.168.180.100:192.168.180.1:255.255.255.0::enp1s0:off

3. Set the name server configuration:

nameserver=srv1 [nameserver=srv2 [nameserver=srv3 […]]]

The dracut utility sets up a network connection and generates new ifcfg files that can be copied to the
/etc/sysconfig/network-scripts/ file.

3.8. ENABLING IP MULTICAST WITH IGMP

The Internet Group Management Protocol (IGMP) enables the administrator to manage routing and
subscription to multicast traffic between networks, hosts, and routers. The kernel in Red Hat Enterprise
Linux supports IGMPv3.

To display multicast information, use the ip maddr show subcommand, for example:

~]$ ip maddr show dev br0
8: br0
 inet 224.0.0.1
 inet6 ff02::1
 inet6 ff01::1
[output truncated]

Alternatively, look for the MULTICAST string in the ip link show command output, for example:

~]$ ip link show br0
8: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode
DEFAULT qlen 1000
 link/ether 6c:0b:84:67:fe:63 brd ff:ff:ff:ff:ff:ff

To disable multicast on a device and to check that multicast is disabled on the br0 device:

~]# ip link set multicast off dev br0
~]$ ip link show br0
8: br0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT qlen
1000
 link/ether 6c:0b:84:67:fe:63 brd ff:ff:ff:ff:ff:ff

The missing MULTICAST string indicates that multicast is disabled.

To enable multicast on the br0 device and to check it is enabled:

~]# ip link set multicast on dev br0
~]$ ip link show br0

CHAPTER 3. CONFIGURING IP NETWORKING

65

8: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode
DEFAULT qlen 1000
 link/ether 6c:0b:84:67:fe:63 brd ff:ff:ff:ff:ff:ff

See the ip Command Cheat Sheet for Red Hat Enterprise Linux article and the ip(8) man page for more
information.

To check current version of IGMP and IP addresses subscribed for multicasting, see the /proc/net/igmp
file:

~]$ cat /proc/net/igmp

NOTE

IGMP is not enabled in firewalld by default. To enable IGMP for a zone:

~]# firewall-cmd --zone=zone-name --add-protocol=igmp

See the Using Firewalls chapter in the Red Hat Enterprise Linux Security Guide for more
information.

3.9. ADDITIONAL RESOURCES

Installed Documentation

ip(8) man page — Describes the ip utility's command syntax.

nmcli(1) man page — Describes NetworkManager's command‐line tool.

nmcli-examples(5) man page — Gives examples of nmcli commands.

nm-settings(5) man page — Describes NetworkManager properties and their settings.

nm-settings-ifcfg-rh(5) man page — Describes ifcfg-rh settings plug-in.

Online Documentation

Red Hat Enterprise Linux 7 Security Guide

Describes IPsec based VPN and its configuration. Describes the use of authenticated DNS queries
using DNSSEC.

RFC 1518 — Classless Inter-Domain Routing (CIDR)

Describes the CIDR Address Assignment and Aggregation Strategy, including variable-length
subnetting.

RFC 1918 — Address Allocation for Private Internets

Describes the range of IPv4 addresses reserved for private use.

RFC 3330 — Special-Use IPv4 Addresses

Describes the global and other specialized IPv4 address blocks that have been assigned by the
Internet Assigned Numbers Authority (IANA).

Networking Guide

66

https://access.redhat.com/articles/ip-command-cheat-sheet
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-using_firewalls
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
http://www.rfc-editor.org/info/rfc1518
http://www.rfc-editor.org/info/rfc1918
http://www.rfc-editor.org/info/rfc3330

CHAPTER 4. CONFIGURING STATIC ROUTES AND THE
DEFAULT GATEWAY
This chapter covers the configuration of static routes and the default gateway.

4.1. INTRODUCTION TO UNDERSTANDING ROUTING AND GATEWAY

Routing is a mechanism that allows a system to find the network path to another system. Routing is
often handled by devices on the network dedicated to routing (although any device can be configured
to perform routing). Therefore, it is often not necessary to configure static routes on Red Hat
Enterprise Linux servers or clients. Exceptions include traffic that must pass through an encrypted VPN
tunnel or traffic that should take a specific route for reasons of cost or security. A host's routing table
will be automatically populated with routes to directly connected networks. The routes examine when
the network interfaces are “up”. In order to reach a remote network or host, the system is given the
address of a gateway to which traffic should be sent.

When a host's interface is configured by DHCP, an address of a gateway that leads to an upstream
network or the Internet is usually assigned. This gateway is usually referred to as the default gateway as
it is the gateway to use if no better route is known to the system (and present in the routing table).
Network administrators often use the first or last host IP address in the network as the gateway address;
for example, 192.168.10.1 or 192.168.10.254. Not to be confused by the address which represents the
network itself; in this example, 192.168.10.0, or the subnet's broadcast address; in this example
192.168.10.255. The default gateway is traditionally a network router. The default gateway is for any and
all traffic which is not destined for the local network and for which no preferred route is specified in the
routing table.

NOTE

To expand your expertise, you might also be interested in the Red Hat System
Administration I (RH124) training course.

4.2. CONFIGURING STATIC ROUTES USING NMCLI

To configure static routes using the nmcli tool, use one of the following:

the nmcli command line

the nmcli interactive editor

Example 4.1. Configuring Static Routes Using nmcli

To configure a static route for an existing Ethernet connection using the command line:

~]# nmcli connection modify enp1s0 +ipv4.routes "192.168.122.0/24 10.10.10.1"

This will direct traffic for the 192.168.122.0/24 subnet to the gateway at 10.10.10.1

Example 4.2. Configuring Static Routes with nmcli Editor

To configure a static route for an Ethernet connection using the interactive editor:

~]$ nmcli con edit ens3

CHAPTER 4. CONFIGURING STATIC ROUTES AND THE DEFAULT GATEWAY

67

http://www.redhat.com/en/services/training/rh124-red-hat-system-administration-i?cr=cp|tr|pdtxt|00004

===| nmcli interactive connection editor |===

Editing existing '802-3-ethernet' connection: 'ens3'

Type 'help' or '?' for available commands.
Type 'describe [<setting>.<prop>]' for detailed property description.

You may edit the following settings: connection, 802-3-ethernet (ethernet), 802-1x, dcb, ipv4, ipv6,
tc, proxy
nmcli> set ipv4.routes 192.168.122.0/24 10.10.10.1
nmcli> save persistent
Connection 'ens3' (23f8b65a-8f3d-41a0-a525-e3bc93be83b8) successfully updated.
nmcli> quit

4.3. CONFIGURING STATIC ROUTES WITH GUI

To set a static route, open the IPv4 or IPv6 settings window for the connection you want to configure.
See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for instructions on how to
do that.

Routes

Address — Enter the IP address of a remote network, sub-net, or host.

Netmask — The netmask or prefix length of the IP address entered above.

Gateway — The IP address of the gateway leading to the remote network, sub-net, or host entered
above.

Metric — A network cost, a preference value to give to this route. Lower values will be preferred over
higher values.

Automatic

When Automatic is ON, routes from RA or DHCP are used, but you can also add additional static
routes. When OFF, only static routes you define are used.

Use this connection only for resources on its network

Select this check box to prevent the connection from becoming the default route. Typical examples
are where a connection is a VPN tunnel or a leased line to a head office and you do not want any
Internet-bound traffic to pass over the connection. Selecting this option means that only traffic
specifically destined for routes learned automatically over the connection or entered here manually
will be routed over the connection.

4.4. CONFIGURING STATIC ROUTES WITH IP COMMANDS

As a system administrator, you can configure static routes using the ip route command.

To display the IP routing table, use the ip route command. For example:

~]$ ip route
default via 192.168.122.1 dev ens9 proto static metric 1024
192.168.122.0/24 dev ens9 proto kernel scope link src 192.168.122.107

Networking Guide

68

192.168.122.0/24 dev enp1s0 proto kernel scope link src 192.168.122.126

The ip route commands take the following form:

ip route [add | del | change | append | replace] destination-address

See the ip-route(8) man page for more details on the options and formats.

To add a static route to a host address, in other words to a single IP address:

~]# ip route add 192.0.2.1 via 10.0.0.1 [dev interface]

where 192.0.2.1 is the IP address of the host in dotted decimal notation, 10.0.0.1 is the next hop address
and interface is the exit interface leading to the next hop.

To add a static route to a network, in other words to an IP address representing a range of IP addresses:

~]# ip route add 192.0.2.0/24 via 10.0.0.1 [dev interface]

where 192.0.2.0 is the IP address of the destination network in dotted decimal notation and /24 is the
network prefix. The network prefix is the number of enabled bits in the subnet mask. This format of
network address slash network prefix length is sometimes referred to as classless inter-domain routing
(CIDR) notation.

To remove the assigned static route:

~]# ip route del 192.0.2.1

Any changes that you make to the routing table using ip route do not persist across system reboots. To
permanently configure static routes, you can configure them by creating a route-interface file in the
/etc/sysconfig/network-scripts/ directory for the interface. For example, static routes for the enp1s0
interface would be stored in the /etc/sysconfig/network-scripts/route-enp1s0 file. Any changes that
you make to a route-interface file do not take effect until you restart either the network service or the
interface. The route-interface file has two formats:

ip command arguments, see the section called “Static Routes Using the IP Command
Arguments Format”.

and

network/netmask directives, see the section called “Static Routes Using the Network/Netmask
Directives Format”.

See the ip-route(8) man page for more information on the ip route command.

4.5. CONFIGURING STATIC ROUTES IN IFCFG FILES

Static routes set using ip commands at the command prompt will be lost if the system is shutdown or
restarted. To configure static routes to be persistent after a system restart, they must be placed in per-
interface configuration files in the /etc/sysconfig/network-scripts/ directory. The file name should be
of the format route-interface. There are two types of commands to use in the configuration files:

Static Routes Using the IP Command Arguments Format

If required in a per-interface configuration file, for example /etc/sysconfig/network-scripts/route-

CHAPTER 4. CONFIGURING STATIC ROUTES AND THE DEFAULT GATEWAY

69

If required in a per-interface configuration file, for example /etc/sysconfig/network-scripts/route-
enp1s0, define a route to a default gateway on the first line. This is only required if the gateway is not
set through DHCP and is not set globally in the /etc/sysconfig/network file:

default via 192.168.1.1 dev interface

where 192.168.1.1 is the IP address of the default gateway. The interface is the interface that is
connected to, or can reach, the default gateway. The dev option can be omitted, it is optional. Note that
this setting takes precedence over a setting in the /etc/sysconfig/network file.

If a route to a remote network is required, a static route can be specified as follows. Each line is parsed as
an individual route:

10.10.10.0/24 via 192.168.1.1 [dev interface]

where 10.10.10.0/24 is the network address and prefix length of the remote or destination network. The
address 192.168.1.1 is the IP address leading to the remote network. It is preferably the next hop address
but the address of the exit interface will work. The “next hop” means the remote end of a link, for
example a gateway or router. The dev option can be used to specify the exit interface interface but it is
not required. Add as many static routes as required.

The following is an example of a route-interface file using the ip command arguments format. The
default gateway is 192.168.0.1, interface enp1s0 and a leased line or WAN connection is available at
192.168.0.10. The two static routes are for reaching the 10.10.10.0/24 network and the 172.16.1.10/32
host:

default via 192.168.0.1 dev enp1s0
10.10.10.0/24 via 192.168.0.10 dev enp1s0
172.16.1.10/32 via 192.168.0.10 dev enp1s0

In the above example, packets going to the local 192.168.0.0/24 network will be directed out the
interface attached to that network. Packets going to the 10.10.10.0/24 network and 172.16.1.10/32 host
will be directed to 192.168.0.10. Packets to unknown, remote, networks will use the default gateway
therefore static routes should only be configured for remote networks or hosts if the default route is not
suitable. Remote in this context means any networks or hosts that are not directly attached to the
system.

For IPv6 configuration, an example of a route6-interface file in ip route format:

2001:db8:1::/48 via 2001:db8::1 metric 2048
2001:db8:2::/48

Specifying an exit interface is optional. It can be useful if you want to force traffic out of a specific
interface. For example, in the case of a VPN, you can force traffic to a remote network to pass through a
tun0 interface even when the interface is in a different subnet to the destination network.

The ip route format can be used to specify a source address. For example:

10.10.10.0/24 via 192.168.0.10 src 192.168.0.2

To define an existing policy-based routing configuration, which specifies multiple routing tables, see
Section 4.5.1, “Understanding Policy-routing” .

IMPORTANT

Networking Guide

70

IMPORTANT

If the default gateway is already assigned by DHCP and if the same gateway with the
same metric is specified in a configuration file, an error during start-up, or when bringing
up an interface, will occur. The follow error message may be shown: "RTNETLINK answers:
File exists". This error may be ignored.

Static Routes Using the Network/Netmask Directives Format
You can also use the network/netmask directives format for route-interface files. The following is a
template for the network/netmask format, with instructions following afterwards:

ADDRESS0=10.10.10.0 is the network address of the remote network or host to be reached.

NETMASK0=255.255.255.0 is the netmask for the network address defined with
ADDRESS0=10.10.10.0.

GATEWAY0=192.168.1.1 is the default gateway, or an IP address that can be used to reach
ADDRESS0=10.10.10.0

The following is an example of a route-interface file using the network/netmask directives format. The
default gateway is 192.168.0.1 but a leased line or WAN connection is available at 192.168.0.10. The two
static routes are for reaching the 10.10.10.0/24 and 172.16.1.0/24 networks:

Subsequent static routes must be numbered sequentially, and must not skip any values. For example,
ADDRESS0, ADDRESS1, ADDRESS2, and so on.

By default, forwarding packets from one interface to another, or out of the same interface, is disabled
for security reasons. This prevents the system acting as a router for external traffic. If you need the
system to route external traffic, such as when sharing a connection or configuring a VPN server, you will
need to enable IP forwarding. See the Red Hat Enterprise Linux 7 Security Guide for more details.

4.5.1. Understanding Policy-routing

Policy-routing also known as source-routing, is a mechanism for more flexible routing configurations.
Routing decisions are commonly made based on the destination IP address of a package. Policy-
routing allows more flexibility to select routes based on other routing properties, such as source IP
address, source port, protocol type. Routing tables stores route information about networks. They are
identified by either numeric values or names, which can be configured in the /etc/iproute2/rt_tables file.
The default table is identified with 254. Using policy-routing, you also need rules. Rules are used to
select a routing table, based on certain properties of packets.

For initscripts, the routing table is a property of the route that can be configured through the table
argument. The ip route format can be used to define an existing policy-based routing configuration,
which specifies multiple routing tables:

ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.1.1

ADDRESS0=10.10.10.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.0.10
ADDRESS1=172.16.1.10
NETMASK1=255.255.255.0
GATEWAY1=192.168.0.10

CHAPTER 4. CONFIGURING STATIC ROUTES AND THE DEFAULT GATEWAY

71

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/security_guide/#bh-Enabling_Packet_Forwarding

10.10.10.0/24 via 192.168.0.10 table 1
10.10.10.0/24 via 192.168.0.10 table 2

To specify routing rules in initscripts, edit them to the /etc/sysconfig/network-scripts/rule-enp1s0 file
for IPv4 or to the /etc/sysconfig/network-scripts/rule6-enp1s0 file for IPv6.

NetworkManager supports policy-routing, but rules are not supported yet. The rules must be
configured by the user running a custom script. For each manual static route, a routing table can be
selected:

ipv4.route-table for IPv4

and

ipv6.route-table for IPv6.

By setting routes to a particular table, all routes from DHCP, autoconf6, DHCP6 are placed in that
specific table. In addition, all routes for subnets that have already configured addresses, are placed in
the corresponding routing table. For example, if you configure the 192.168.1.10/24 address, the
192.168.1.0/24 subnet is contained in ipv4.route-table.

For more details about policy-routing rules, see the ip-rule(8) man page. For routing tables, see the ip-
route(8) man page.

4.6. CONFIGURING THE DEFAULT GATEWAY

The default gateway is determined by the network scripts which parse the /etc/sysconfig/network file
first and then the network interface ifcfg files for interfaces that are “up”. The ifcfg files are parsed in
numerically ascending order, and the last GATEWAY directive to be read is used to compose a default
route in the routing table.

You can specify the default route using the GATEWAY directive, either globally or in interface-specific
configuration files. However, in Red Hat Enterprise Linux the use of the global /etc/sysconfig/network
file is deprecated, and specifying the gateway should now only be done in per-interface configuration
files.

In dynamic network environments, where mobile hosts are managed by NetworkManager, gateway
information is likely to be interface specific and is best left to be assigned by DHCP. In special cases
where it is necessary to influence NetworkManager's selection of the exit interface to be used to reach
a gateway, make use of the DEFROUTE=no command in the ifcfg files for those interfaces which do not
lead to the default gateway.

Networking Guide

72

CHAPTER 5. CONFIGURING NETWORK CONNECTION
SETTINGS
This chapter describes various configurations of the network connection settings and shows how to
configure them by using NetworkManager.

5.1. CONFIGURING 802.3 LINK SETTINGS

You can configure the 802.3 link settings of an Ethernet connection by modifying the following
configuration parameters:

802-3-ethernet.auto-negotiate

802-3-ethernet.speed

802-3-ethernet.duplex

You can configure the 802.3 link settings to three main modes:

Ignore link negotiation

Enforce auto-negotiation activation

Manually set the speed and duplex link settings

Ignoring link negotiation
In this case, NetworkManager ignores link configuration for an ethernet connection, keeping the already
configuration on the device.

To ignore link negotiation, set the following parameters:

802-3-ethernet.auto-negotiate = no
802-3-ethernet.speed = 0
802-3-ethernet.duplex = NULL

IMPORTANT

If the auto-negotiate parameter is set to no, but the speed and duplex values are not
set, that does not mean that auto-negotiation is disabled.

Enforcing auto-negotiation activation
In this case, NetworkManager enforces auto-negotiation on a device.

To enforce auto-negotiation activation, set the following options:

802-3-ethernet.auto-negotiate = yes
802-3-ethernet.speed = 0
802-3-ethernet.duplex = NULL

Manually setting the link speed and duplex
In this case, you can manually configure the speed and duplex settings on the link.

To manually set the speed and duplex link settings, set the aforementioned parameters as follows:

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

73

802-3-ethernet.auto-negotiate = no
802-3-ethernet.speed = [speed in Mbit/s]
802-3-ethernet.duplex = [half |full]

IMPORTANT

Make sure to set both the speed and the duplex values, otherwise NetworkManager
does not update the link configuration.

As a system administrator, you can configure 802.3 link settings using one of the following options:

the nmcli tool

the nm-connection-editor utility

Configuring 802.3 Link Settings with the nmcli Tool
Procedure

1. Create a new ethernet connection for the enp1s0 device.

2. Set the 802.3 link setting to a configuration of your choice. For details, see Section 5.1,
“Configuring 802.3 Link Settings”

For example, to manually set the speed option 100 Mbit/s and duplex to full:

nmcli connection add con-name MyEthernet type ethernet ifname enp1s0 \
802-3-ethernet.auto-negotiate no \
802-3-ethernet.speed 100 \
802-3-ethernet.duplex full

Configuring 802.3 Link Settings with nm-connection-editor
Procedure

1. Enter nm-connection-editor in a terminal.

2. Select the ethernet connection you want to edit and click the gear wheel icon to move to the
editing dialog. See Section 3.4.3, “Common Configuration Options Using nm-connection-
editor” for more information.

3. Select the link negotiation of your choice.

Ignore: link configuration is skipped (default).

Automatic: link auto-negotiation is enforced on the device.

Manual: the Speed and Duplex options can be specified to enforce the link negotiation.

Networking Guide

74

Figure 5.1. Configure 802.3 link settings using nm-connection-editor

5.2. CONFIGURING 802.1X SECURITY

802.1X security is the name of the IEEE standard for port-based Network Access Control (PNAC). It is
also called WPA Enterprise . 802.1X security is a way of controlling access to a logical network from a
physical one. All clients who want to join the logical network must authenticate with the server (a router,
for example) using the correct 802.1X authentication method.

802.1X security is most often associated with securing wireless networks (WLANs), but can also be used
to prevent intruders with physical access to the network (LAN) from gaining entry.

In the past, DHCP servers were configured not to lease IP addresses to unauthorized users, but for
various reasons this practice is both impractical and insecure, and thus is no longer recommended.
Instead, 802.1X security is used to ensure a logically-secure network through port-based authentication.

802.1X provides a framework for WLAN and LAN access control and serves as an envelope for carrying
one of the Extensible Authentication Protocol (EAP) types. An EAP type is a protocol that defines how
security is achieved on the network.

5.2.1. Configuring 802.1X Security for Wi-Fi with nmcli

Procedure

1. Set the authenticated key-mgmt (key management) protocol. It configures the keying

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

75

1. Set the authenticated key-mgmt (key management) protocol. It configures the keying
mechanism for a secure wifi connection. See the nm-settings(5) man page for more details on
properties.

2. Configure the 802-1x authentication settings. For the Transport Layer Security (TLS)
authentication, see the section called “Configuring TLS Settings” .

Table 5.1. The 802-1x authentication settings

802-1x authentication setting Name

802-1x.identity Identity

802-1x.ca-cert CA certificate

802-1x.client-cert User certificate

802-1x.private-key Private key

802-1x.private-key-password Private key password

For example, to configure WPA2 Enterprise using the EAP-TLS authentication method, apply the
following settings:

nmcli c add type wifi ifname wlo61s0 con-name 'My Wifi Network' \
 802-11-wireless.ssid 'My Wifi' \
 802-11-wireless-security.key-mgmt wpa-eap \
 802-1x.eap tls \
 802-1x.identity identity@example.com \
 802-1x.ca-cert /etc/pki/my-wifi/ca.crt \
 802-1x.client-cert /etc/pki/my-wifi/client.crt \
 802-1x.private-key /etc/pki/my-wifi/client.key \
 802-1x.private-key-password s3cr3t

5.2.2. Configuring 802.1X Security for Wired with nmcli

To configure a wired connection using the nmcli tool, follow the same procedure as for a wireless
connection, except the 802-11-wireless.ssid and 802-11-wireless-security.key-mgmt settings.

5.2.3. Configuring 802.1X Security for Wi-Fi with a GUI

Procedure

1. Open the Network window (see Section 3.4.1, “Connecting to a Network Using the control-
center GUI”).

2. Select a Wireless network interface from the right-hand-side menu. If necessary, set the
symbolic power button to ON and check that your hardware switch is on.

3. Either select the connection name of a new connection, or click the gear wheel icon of an
existing connection profile, for which you want to configure 802.1X security. In the case of a new
connection, complete any authentication steps to complete the connection and then click the

Networking Guide

76

gear wheel icon.

4. Select Security.

The following configuration options are available:

Security

None — Do not encrypt the Wi-Fi connection.

WEP 40/128-bit Key — Wired Equivalent Privacy (WEP), from the IEEE 802.11 standard. Uses
a single pre-shared key (PSK).

WEP 128-bit Passphrase — An MD5 hash of the passphrase will be used to derive a WEP key.

LEAP — Lightweight Extensible Authentication Protocol, from Cisco Systems.

Dynamic WEP (802.1X) — WEP keys are changed dynamically. Use with the section called
“Configuring TLS Settings”

WPA & WPA2 Personal — Wi-Fi Protected Access (WPA), from the draft IEEE 802.11i
standard. A replacement for WEP. Wi-Fi Protected Access II (WPA2), from the 802.11i-2004
standard. Personal mode uses a pre-shared key (WPA-PSK).

WPA & WPA2 Enterprise — WPA for use with a RADIUS authentication server to provide
IEEE 802.1X network access control. Use with the section called “Configuring TLS Settings”

Password

Enter the password to be used in the authentication process.

5. From the drop-down menu select one of the following security methods: LEAP, Dynamic WEP
(802.1X), or WPA & WPA2 Enterprise.

See the section called “Configuring TLS Settings” for descriptions of which extensible authentication
protocol (EAP) types correspond to your selection in the Security drop-down menu.

5.2.4. Configuring 802.1X Security for Wired with nm-connection-editor

Procedure

1. Enter the nm-connection-editor in a terminal.

~]$ nm-connection-editor

The Network Connections window appears.

2. Select the ethernet connection you want to edit and click the gear wheel icon, see
Section 3.4.6.2, “Configuring a Wired Connection with nm-connection-editor” .

3. Select Security and set the symbolic power button to ON to enable settings configuration.

4. Select from one of following authentication methods:

Select TLS for Transport Layer Security and proceed to the section called “Configuring TLS
Settings”;

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

77

Select FAST for Flexible Authentication through Secure Tunneling and proceed to the
section called “Configuring Tunneled TLS Settings”;

Select Tunneled TLS for Tunneled Transport Layer Security , otherwise known as TTLS, or
EAP-TTLS and proceed to the section called “Configuring Tunneled TLS Settings” ;

Select Protected EAP (PEAP) for Protected Extensible Authentication Protocol and
proceed to the section called “Configuring Protected EAP (PEAP) Settings” .

Configuring TLS Settings
With Transport Layer Security (TLS), the client and server mutually authenticate using the TLS protocol.
The server demonstrates that it holds a digital certificate, the client proves its own identity using its
client-side certificate, and key information is exchanged. Once authentication is complete, the TLS
tunnel is no longer used. Instead, the client and server use the exchanged keys to encrypt data using
AES, TKIP or WEP.

The fact that certificates must be distributed to all clients who want to authenticate means that the
EAP-TLS authentication method is very strong, but also more complicated to set up. Using TLS security
requires the overhead of a public key infrastructure (PKI) to manage certificates. The benefit of using
TLS security is that a compromised password does not allow access to the (W)LAN: an intruder must
also have access to the authenticating client's private key.

NetworkManager does not determine the version of TLS supported. NetworkManager gathers the
parameters entered by the user and passes them to the daemon, wpa_supplicant, that handles the
procedure. It in turn uses OpenSSL to establish the TLS tunnel. OpenSSL itself negotiates the SSL/TLS
protocol version. It uses the highest version both ends support.

To configure TLS settings, follow the procedure described in Section 5.2.4, “Configuring 802.1X Security
for Wired with nm-connection-editor”. The following configuration settings are available:

Identity

Provide the identity of this server.

User certificate

Click to browse for, and select, a personal X.509 certificate file encoded with Distinguished Encoding
Rules (DER) or Privacy Enhanced Mail (PEM).

CA certificate

Click to browse for, and select, an X.509 certificate authority certificate file encoded with
Distinguished Encoding Rules (DER) or Privacy Enhanced Mail (PEM).

Private key

Click to browse for, and select, a private key file encoded with Distinguished Encoding Rules (DER),
Privacy Enhanced Mail (PEM), or the Personal Information Exchange Syntax Standard (PKCS #12).

Private key password

Enter the password for the private key in the Private key field. Select Show password to make the
password visible as you type it.

Configuring FAST Settings
To configure FAST settings, follow the procedure described in Section 5.2.4, “Configuring 802.1X
Security for Wired with nm-connection-editor”. The following configuration settings are available:

Networking Guide

78

Anonymous Identity

Provide the identity of this server.

PAC provisioning

Select the check box to enable and then select from Anonymous, Authenticated, and Both.

PAC file

Click to browse for, and select, a protected access credential (PAC) file.

Inner authentication

GTC — Generic Token Card.

MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.

Username

Enter the user name to be used in the authentication process.

Password

Enter the password to be used in the authentication process.

Configuring Tunneled TLS Settings
To configure Tunneled TLS settings, follow the procedure described in Section 5.2.4, “Configuring
802.1X Security for Wired with nm-connection-editor”. The following configuration settings are
available:

Anonymous identity

This value is used as the unencrypted identity.

CA certificate

Click to browse for, and select, a Certificate Authority's certificate.

Inner authentication

PAP — Password Authentication Protocol.

MSCHAP — Challenge Handshake Authentication Protocol.

MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.

CHAP — Challenge Handshake Authentication Protocol.

Username

Enter the user name to be used in the authentication process.

Password

Enter the password to be used in the authentication process.

Configuring Protected EAP (PEAP) Settings

To configure Protected EAP (PEAP) settings, follow the procedure described in Section 5.2.4,

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

79

To configure Protected EAP (PEAP) settings, follow the procedure described in Section 5.2.4,
“Configuring 802.1X Security for Wired with nm-connection-editor”. The following configuration
settings are available:

Anonymous Identity

This value is used as the unencrypted identity.

CA certificate

Click to browse for, and select, a Certificate Authority's certificate.

PEAP version

The version of Protected EAP to use. Automatic, 0 or 1.

Inner authentication

MSCHAPv2 — Microsoft Challenge Handshake Authentication Protocol version 2.

MD5 — Message Digest 5, a cryptographic hash function.

GTC — Generic Token Card.

Username

Enter the user name to be used in the authentication process.

Password

Enter the password to be used in the authentication process.

5.3. USING MACSEC WITH WPA_SUPPLICANT AND NETWORKMANAGER

Media Access Control Security (MACsec, IEEE 802.1AE) encrypts and authenticates all traffic in LANs
with the GCM-AES-128 algorithm. MACsec can protect not only IP but also Address Resolution
Protocol (ARP), Neighbor Discovery (ND), or DHCP. While IPsec operates on the network layer (layer 3)
and SSL or TLS on the application layer (layer 7), MACsec operates in the data link layer (layer 2).
Combine MACsec with security protocols for other networking layers to take advantage of different
security features that these standards provide.

To enable MACsec with a switch that performs authentication using a pre-shared Connectivity
Association Key/CAK Name (CAK/CKN) pair:

Procedure

1. Create a CAK/CKN pair. For example, the following command generates a 16-byte key in
hexadecimal notation:

~]$ dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%02x"'

2. Create the wpa_supplicant.conf configuration file and add the following lines to it:

ctrl_interface=/var/run/wpa_supplicant
eapol_version=3
ap_scan=0
fast_reauth=1

Networking Guide

80

network={
 key_mgmt=NONE
 eapol_flags=0
 macsec_policy=1

 mka_cak=0011... # 16 bytes hexadecimal
 mka_ckn=2233... # 32 bytes hexadecimal
}

Use the values from the previous step to complete the mka_cak and mka_ckn lines in the
wpa_supplicant.conf configuration file.

See the wpa_supplicant.conf(5) man page for more information.

3. Assuming you are using wlp61s0 to connect to your network, start wpa_supplicant using the
following command:

~]# wpa_supplicant -i wlp61s0 -Dmacsec_linux -c wpa_supplicant.conf

Instead of creating and editing the wpa_supplicant.conf file, Red Hat recommends using the nmcli
command to configure wpa_supplicant equivalently as in the previous steps. The following example
assumes that you already have a 16-byte hexadecimal CAK ($MKA_CAK) and a 32-byte hexadecimal
CKN ($MKA_CKN):

~]# nmcli connection add type macsec \
 con-name test-macsec+ ifname macsec0 \
 connection.autoconnect no \
 macsec.parent wlp61s0 macsec.mode psk \
 macsec.mka-cak $MKA_CAK \
 macsec.mka-cak-flags 0 \
 macsec.mka-ckn $MKA_CKN

~]# nmcli connection up test-macsec+

After this step, the macsec0 device should be configured and used for networking.

For more details, see the What’s new in MACsec: setting up MACsec using wpa_supplicant and
(optionally) NetworkManager article. In addition, see the MACsec: a different solution to encrypt
network traffic article for more information about the architecture of a MACsec network, use case
scenarios, and configuration examples.

5.4. CONFIGURING IPV4 SETTINGS

Configuring IPv4 Settings with control-center
Procedure

1. Press the Super key to enter the Activities Overview, type Settings and then press Enter. Then,
select the Network tab on the left-hand side, and the Network settings tool appears. Proceed
to the section called “Configuring New Connections with control-center” .

2. Select the connection that you want to edit and click on the gear wheel icon. The Editing dialog
appears.

3. Click the IPv4 menu entry.

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

81

https://developers.redhat.com/blog/2017/06/28/whats-new-in-macsec-setting-up-macsec-using-wpa_supplicant-and-optionally-networkmanager/
https://developers.redhat.com/blog/2016/10/14/macsec-a-different-solution-to-encrypt-network-traffic/

The IPv4 menu entry allows you to configure the method used to connect to a network, to enter IP
address,DNS and route information as required. The IPv4 menu entry is available when you create and
modify one of the following connection types: wired, wireless, mobile broadband, VPN or DSL.

If you are using DHCP to obtain a dynamic IP address from a DHCP server, you can simply set
Addresses to Automatic (DHCP).

If you need to configure static routes, see Section 4.3, “Configuring Static Routes with GUI” .

Setting the Method for IPV4 Using nm-connection-editor
You can use the nm-connection-editor to edit and configure connection settings. This procedure
describes how you can configure the IPv4 settings:

Procedure

1. Enter nm-connection-editor in a terminal.

2. For an existing connection type, click the gear wheel icon.

Figure 5.2. Editing a connection

3. Click IPv4 Settings.

Networking Guide

82

Figure 5.3. Configuring IPv4 Settings

Available IPv4 Methods by Connection Type

When you click the Method drop-down menu, depending on the type of connection you are configuring,
you are able to select one of the following IPv4 connection methods. All of the methods are listed here
according to which connection type, or types, they are associated with:

Wired, Wireless and DSL Connection Methods

Automatic (DHCP) — Choose this option if the network you are connecting to uses a DHCP server to
assign IP addresses. You do not need to fill in the DHCP client ID field.

Automatic (DHCP) addresses only — Choose this option if the network you are connecting to uses a
DHCP server to assign IP addresses but you want to assign DNS servers manually.

Manual — Choose this option if you want to assign IP addresses manually.

Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP
server and you do not want to assign IP addresses manually. Random addresses will be assigned as
per RFC 3927 with prefix 169.254/16.

Shared to other computers — Choose this option if the interface you are configuring is for sharing
an Internet or WAN connection. The interface is assigned an address in the 10.42.x.1/24 range, a
DHCP server and DNS server are started, and the interface is connected to the default network
connection on the system with network address translation (NAT).

Disabled — IPv4 is disabled for this connection.

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

83

http://www.rfc-editor.org/info/rfc3927

Mobile Broadband Connection Methods

Automatic (PPP) — Choose this option if the network you are connecting to assigns your IP address
and DNS servers automatically.

Automatic (PPP) addresses only — Choose this option if the network you are connecting to assigns
your IP address automatically, but you want to manually specify DNS servers.

VPN Connection Methods

Automatic (VPN) — Choose this option if the network you are connecting to assigns your IP address
and DNS servers automatically.

Automatic (VPN) addresses only — Choose this option if the network you are connecting to assigns
your IP address automatically, but you want to manually specify DNS servers.

DSL Connection Methods

Automatic (PPPoE) — Choose this option if the network you are connecting to assigns your IP
address and DNS servers automatically.

Automatic (PPPoE) addresses only — Choose this option if the network you are connecting to
assigns your IP address automatically, but you want to manually specify DNS servers.

If you are using DHCP to obtain a dynamic IP address from a DHCP server, you can simply set Method
to Automatic (DHCP).

If you need to configure static routes, click the Routes button and for more details on configuration
options, see Section 4.3, “Configuring Static Routes with GUI” .

5.5. CONFIGURING IPV6 SETTINGS

To configure IPv6 settings, follow the procedure described in Section 5.4, “Configuring IPv4 Settings”
and click the IPv6 menu entry.

Method

Ignore — Choose this option if you want to ignore IPv6 settings for this connection.

Automatic — Choose this option to use SLAAC to create an automatic, stateless configuration based
on the hardware address and router advertisements (RA).

Automatic, addresses only — Choose this option if the network you are connecting to uses router
advertisements (RA) to create an automatic, stateless configuration, but you want to assign DNS
servers manually.

Automatic, DHCP only — Choose this option to not use RA, but request information from DHCPv6
directly to create a stateful configuration.

Manual — Choose this option if you want to assign IP addresses manually.

Link-Local Only — Choose this option if the network you are connecting to does not have a DHCP
server and you do not want to assign IP addresses manually. Random addresses will be assigned as
per RFC 4862 with prefix FE80::0.

Addresses

DNS servers — Enter a comma separated list of DNS servers.

Networking Guide

84

http://www.rfc-editor.org/info/rfc4862

Search domains — Enter a comma separated list of domain controllers.

If you need to configure static routes, click the Routes button and for more details on configuration
options, see Section 4.3, “Configuring Static Routes with GUI” .

5.6. CONFIGURING PPP (POINT-TO-POINT) SETTINGS

Authentication Methods

In most cases, the provider’s PPP servers supports all the allowed authentication methods. If a
connection fails, the user should disable support for some methods, depending on the PPP server
configuration.

Use point-to-point encryption (MPPE)

Microsoft Point-To-Point Encryption protocol (RFC 3078).

Allow BSD data compression

PPP BSD Compression Protocol (RFC 1977).

Allow Deflate data compression

PPP Deflate Protocol (RFC 1979).

Use TCP header compression

Compressing TCP/IP Headers for Low-Speed Serial Links (RFC 1144).

Send PPP echo packets

LCP Echo-Request and Echo-Reply Codes for loopback tests (RFC 1661).

NOTE

Since the PPP support in NetworkManager is optional, to configure PPP settings, make
sure that the NetworkManager-ppp package is already installed.

CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS

85

http://www.rfc-editor.org/info/rfc3078
http://www.rfc-editor.org/info/rfc1977
http://www.rfc-editor.org/info/rfc1979
http://www.rfc-editor.org/info/rfc1144
http://www.rfc-editor.org/info/rfc1661

CHAPTER 6. CONFIGURE HOST NAMES

6.1. UNDERSTANDING HOST NAMES

There are three classes of hostname: static, pretty, and transient.

The “static” host name is the traditional hostname, which can be chosen by the user, and is stored in the
/etc/hostname file. The “transient” hostname is a dynamic host name maintained by the kernel. It is
initialized to the static host name by default, whose value defaults to “localhost”. It can be changed by
DHCP or mDNS at runtime. The “pretty” hostname is a free-form UTF8 host name for presentation to
the user.

NOTE

A host name can be a free-form string up to 64 characters in length. However, Red Hat
recommends that both static and transient names match the fully-qualified domain name
(FQDN) used for the machine in DNS, such as host.example.com. It is also
recommended that the static and transient names consists only of 7 bit ASCII lower-case
characters, no spaces or dots, and limits itself to the format allowed for DNS domain
name labels, even though this is not a strict requirement. Older specifications do not
permit the underscore, and so their use is not recommended.

The hostnamectl tool will enforce the following: Static and transient host names to
consist of a-z, A-Z, 0-9, “-”, “_” and “.” only, to not begin or end in a dot, and to not have
two dots immediately following each other. The size limit of 64 characters is enforced.

6.1.1. Recommended Naming Practices

The Internet Corporation for Assigned Names and Numbers (ICANN) sometimes adds previously
unregistered Top-Level Domains (such as .yourcompany) to the public register. Therefore, Red Hat
strongly recommends that you do not use a domain name that is not delegated to you, even on a private
network, as this can result in a domain name that resolves differently depending on network
configuration. As a result, network resources can become unavailable. Using domain names that are not
delegated to you also makes DNSSEC more difficult to deploy and maintain, as domain name collisions
require manual configuration to enable DNSSEC validation. See the ICANN FAQ on domain name
collision for more information on this issue.

6.2. CONFIGURING HOST NAMES USING TEXT USER INTERFACE,
NMTUI

The text user interface tool nmtui can be used to configure a host name in a terminal window. Issue the
following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

Networking Guide

86

https://www.icann.org/namecollision

Figure 6.1. The NetworkManager Text User Interface starting menu

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

The NetworkManager text user interface tool nmtui can be used to query and set the static host name
in the /etc/hostname file.

IMPORTANT

In Red Hat Enterprise Linux, NetworkManager uses the systemd-hostnamed service to
read and write the static host name, which is stored in the /etc/hostname file. Due to this,
manual modifications done to the /etc/hostname file are no longer picked up
automatically by NetworkManager; you should change the system host name through
the hostnamectl utility. Also, the use of the HOSTNAME variable in the
/etc/sysconfig/network file is now deprecated.

6.3. CONFIGURING HOST NAMES USING HOSTNAMECTL

The hostnamectl tool is provided for administering the three separate classes of host names in use on a
given system.

6.3.1. View All the Host Names

To view all the current host names, enter the following command:

~]$ hostnamectl status

The status option is implied by default if no option is given.

6.3.2. Set All the Host Names

To set all the host names on a system, enter the following command as root:

CHAPTER 6. CONFIGURE HOST NAMES

87

~]# hostnamectl set-hostname name

This will alter the pretty, static, and transient host names alike. The static and transient host names will
be simplified forms of the pretty host name. Spaces will be replaced with “-” and special characters will
be removed.

6.3.3. Set a Particular Host Name

To set a particular host name, enter the following command as root with the relevant option:

~]# hostnamectl set-hostname name [option...]

Where option is one or more of: --pretty, --static, and --transient.

If the --static or --transient options are used together with the --pretty option, the static and transient
host names will be simplified forms of the pretty host name. Spaces will be replaced with “-” and special
characters will be removed. If the --pretty option is not given, no simplification takes place.

When setting a pretty host name, remember to use the appropriate quotation marks if the host name
contains spaces or a single quotation mark. For example:

~]# hostnamectl set-hostname "Stephen's notebook" --pretty

6.3.4. Clear a Particular Host Name

To clear a particular host name and allow it to revert to the default, enter the following command as root
with the relevant option:

~]# hostnamectl set-hostname "" [option...]

Where "" is a quoted empty string and where option is one or more of: --pretty, --static, and --transient.

6.3.5. Changing Host Names Remotely

To execute a hostnamectl command on a remote system, use the -H, --host option as follows:

~]# hostnamectl set-hostname -H [username]@hostname

Where hostname is the remote host you want to configure. The username is optional. The hostnamectl
tool will use SSH to connect to the remote system.

6.4. CONFIGURING HOST NAMES USING NMCLI

The NetworkManager tool nmcli can be used to query and set the static host name in the
/etc/hostname file.

To query the static host name, issue the following command:

~]$ nmcli general hostname

To set the static host name to my-server, issue the following command as root:

Networking Guide

88

~]# nmcli general hostname my-server

6.5. ADDITIONAL RESOURCES

hostnamectl(1) man page — Describes hostnamectl including the commands and command
options.

hostname(1) man page — Contains an explanation of the hostname and domainname
commands.

hostname(5) man page — Contains an explanation of the host name file, its contents, and use.

hostname(7) man page — Contains an explanation of host name resolution.

machine-info(5) man page — Describes the local machine information file and the environment
variables it contains.

machine-id(5) man page — Describes the local machine ID configuration file.

systemd-hostnamed.service(8) man page — Describes the systemd-hostnamed system
service used by hostnamectl.

CHAPTER 6. CONFIGURE HOST NAMES

89

CHAPTER 7. CONFIGURE NETWORK BONDING
Red Hat Enterprise Linux 7 allows administrators to bind multiple network interfaces together into a
single, bonded, channel. Channel bonding enables two or more network interfaces to act as one,
simultaneously increasing the bandwidth and providing redundancy.

WARNING

The use of direct cable connections without network switches is not supported for
bonding. The failover mechanisms described here will not work as expected without
the presence of network switches. See the Red Hat Knowledgebase article Why is
bonding in not supported with direct connection using crossover cables? for more
information.

NOTE

The active-backup, balance-tlb and balance-alb modes do not require any specific
configuration of the switch. Other bonding modes require configuring the switch to
aggregate the links. For example, a Cisco switch requires EtherChannel for Modes 0, 2,
and 3, but for Mode 4 LACP and EtherChannel are required. See the documentation
supplied with your switch and see
https://www.kernel.org/doc/Documentation/networking/bonding.txt

7.1. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND
SLAVE INTERFACES

When controlling bonded slave interfaces using the NetworkManager daemon, and especially when
fault finding, keep the following in mind:

1. Starting the master interface does not automatically start the slave interfaces.

2. Starting a slave interface always starts the master interface.

3. Stopping the master interface also stops the slave interfaces.

4. A master without slaves can start static IP connections.

5. A master without slaves waits for slaves when starting DHCP connections.

6. A master with a DHCP connection waiting for slaves completes when a slave with a carrier is
added.

7. A master with a DHCP connection waiting for slaves continues waiting when a slave without a
carrier is added.

7.2. CONFIGURE BONDING USING THE TEXT USER INTERFACE,
NMTUI

The text user interface tool nmtui can be used to configure bonding in a terminal window. Issue the



Networking Guide

90

https://access.redhat.com/solutions/202583
https://www.kernel.org/doc/Documentation/networking/bonding.txt

The text user interface tool nmtui can be used to configure bonding in a terminal window. Issue the
following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

1. From the starting menu, select Edit a connection. Select Add, the New Connection screen
opens.

Figure 7.1. The NetworkManager Text User Interface Add a Bond Connection menu

2. Select Bond and then Create; the Edit connection screen for the bond will open.

CHAPTER 7. CONFIGURE NETWORK BONDING

91

Figure 7.2. The NetworkManager Text User Interface Configuring a Bond Connection menu

3. At this point slave interfaces will need to be added to the bond; to add these select Add, the
New Connection screen opens. Once the type of Connection has been chosen select the
Create button.

Networking Guide

92

Figure 7.3. The NetworkManager Text User Interface Configuring a New Bond Slave
Connection menu

4. The slave's Edit Connection display appears; enter the required slave's device name or MAC
address in the Device section. If required, enter a clone MAC address to be used as the bond's
MAC address by selecting Show to the right of the Ethernet label. Select the OK button to
save the slave.

NOTE

If the device is specified without a MAC address the Device section will be
automatically populated once the Edit Connection window is reloaded, but only
if it successfully finds the device.

CHAPTER 7. CONFIGURE NETWORK BONDING

93

Figure 7.4. The NetworkManager Text User Interface Configuring a Bond Slave Connection
menu

5. The name of the bond slave appears in the Slaves section. Repeat the above steps to add
further slave connections.

6. Review and confirm the settings before selecting the OK button.

Networking Guide

94

Figure 7.5. The NetworkManager Text User Interface Completed Bond

See Section 7.8.1.1, “Configuring the Bond Tab” for definitions of the bond terms.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

7.3. NETWORK BONDING USING THE NETWORKMANAGER
COMMAND LINE TOOL, NMCLI

NOTE

See Section 3.3, “Configuring IP Networking with nmcli” for an introduction to nmcli.

To create a bond connection with the nmcli tool, issue the following command:

~]$ nmcli con add type bond ifname mybond0
Connection 'bond-mybond0' (5f739690-47e8-444b-9620-1895316a28ba) successfully added.

Note that as no con-name was given for the bond, the connection name was derived from the interface
name by prepending the type.

NetworkManager supports most of the bonding options provided by the kernel. For example:

CHAPTER 7. CONFIGURE NETWORK BONDING

95

~]$ nmcli con add type bond ifname mybond0 bond.options "mode=balance-rr,miimon=100"
Connection 'bond-mybond0' (5f739690-47e8-444b-9620-1895316a28ba) successfully added.

To add a slave interface:

1. Create a new connection, see Section 3.3.5, “Creating and Modifying a Connection Profile with
nmcli” for details.

2. Set the master property to the bond interface name, or to the name of the master connection:

~]$ nmcli con add type ethernet ifname ens3 master mybond0
Connection 'bond-slave-ens3' (220f99c6-ee0a-42a1-820e-454cbabc2618) successfully added.

To add a new slave interface, repeat the previous command with the new interface. For example:

~]$ nmcli con add type ethernet ifname ens7 master mybond0
Connection 'bond-slave-ens7' (ecc24c75-1c89-401f-90c8-9706531e0231) successfully added.

To activate the slaves, issue a command as follows:

~]$ nmcli con up bond-slave-ens7
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/14)

~]$ nmcli con up bond-slave-ens3
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/15)

When you activate a slave, the master connection also starts. You can see Section 7.1, “Understanding
the Default Behavior of Master and Slave Interfaces” for more information. In this case, it is not
necessary to manually activate the master connection.

It is possible to change the active_slave option and the primary option of the bond at runtime, without
deactivating the connection. For example to change the active_slave option, issue the following
command:

~]$ nmcli dev mod bond0 +bond.options "active_slave=ens7"
Connection successfully reapplied to device 'bond0'.

or to change the primary option:

~]$ nmcli dev mod bond0 +bond.options "primary=ens3"
Connection successfully reapplied to device 'bond0'.

NOTE

The active_slave option sets the currently active slave whereas the primary option of
the bond specifies the active slave to be automatically selected by kernel when a new
slave is added or a failure of the active slave occurs.

7.4. USING THE COMMAND LINE INTERFACE (CLI)

Networking Guide

96

A bond is created using the bonding kernel module and a special network interface called a channel
bonding interface.

7.4.1. Check if Bonding Kernel Module is Installed

In Red Hat Enterprise Linux 7, the bonding module is not loaded by default. You can load the module by
issuing the following command as root:

~]# modprobe --first-time bonding

This activation will not persist across system restarts. See the Red Hat Enterprise Linux Kernel
Administration Guide for an explanation of persistent module loading. Note that given a correct
configuration file using the BONDING_OPTS directive, the bonding module will be loaded as required
and therefore does not need to be loaded separately.

To display information about the module, issue the following command:

~]$ modinfo bonding

See the modprobe(8) man page for more command options.

7.4.2. Create a Channel Bonding Interface

To create a channel bonding interface, create a file in the /etc/sysconfig/network-scripts/ directory
called ifcfg-bondN, replacing N with the number for the interface, such as 0.

The contents of the file can be based on a configuration file for whatever type of interface is getting
bonded, such as an Ethernet interface. The essential differences are that the DEVICE directive is
bondN, replacing N with the number for the interface, and TYPE=Bond. In addition, set
BONDING_MASTER=yes.

Example 7.1. Example ifcfg-bond0 Interface Configuration File

An example of a channel bonding interface.

The NAME directive is useful for naming the connection profile in NetworkManager. ONBOOT says
whether the profile should be started when booting (or more generally, when auto-connecting a
device).

IMPORTANT

DEVICE=bond0
NAME=bond0
TYPE=Bond
BONDING_MASTER=yes
IPADDR=192.168.1.1
PREFIX=24
ONBOOT=yes
BOOTPROTO=none
BONDING_OPTS="bonding parameters separated by spaces"
NM_CONTROLLED="no"

CHAPTER 7. CONFIGURE NETWORK BONDING

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/kernel_administration_guide/

IMPORTANT

Parameters for the bonding kernel module must be specified as a space-separated list in
the BONDING_OPTS="bonding parameters" directive in the ifcfg-bondN interface file.
Do not specify options for the bonding device in /etc/modprobe.d/bonding.conf, or in
the deprecated /etc/modprobe.conf file.

The max_bonds parameter is not interface specific and should not be set when using
ifcfg-bondN files with the BONDING_OPTS directive as this directive will cause the
network scripts to create the bond interfaces as required.

For further instructions and advice on configuring the bonding module and to view the list
of bonding parameters, see Section 7.7, “Using Channel Bonding” .

Note that if the NM_CONTROLLED="no" setting is not present, NetworkManager might
override settings in this configuration file.

7.4.3. Creating SLAVE Interfaces

The channel bonding interface is the “master” and the interfaces to be bonded are referred to as the
“slaves”. After the channel bonding interface is created, the network interfaces to be bound together
must be configured by adding the MASTER and SLAVE directives to the configuration files of the
slaves. The configuration files for each of the slave interfaces can be nearly identical.

Example 7.2. Example Slave Interface Configuration File

For example, if two Ethernet interfaces are being channel bonded, enp1s0 and enp2s0, they can
both look like the following example:

In this example, replace device_name with the name of the interface. Note that if more than one
profile or configuration file exists with ONBOOT=yes for an interface, they may race with each other
and a plain TYPE=Ethernet profile may be activated instead of a bond slave.

NOTE

Note that if the NM_CONTROLLED="no" setting is not present, NetworkManager might
override settings in this configuration file.

7.4.4. Activating a Channel Bond

To activate a bond, open all the slaves. As root, issue the following commands:

DEVICE=device_name
NAME=bond0-slave
TYPE=Ethernet
BOOTPROTO=none
ONBOOT=yes
MASTER=bond0
SLAVE=yes
NM_CONTROLLED="no"

Networking Guide

98

~]# ifup ifcfg-enp1s0
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/7)

~]# ifup ifcfg-enp2s0
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/8)

Note that if editing interface files for interfaces which are currently “up”, set them down first as follows:

ifdown device_name

Then when complete, open all the slaves, which will open the bond (provided it was not set “down”).

To make NetworkManager aware of the changes, issue a command for every changed interface as root:

~]# nmcli con load /etc/sysconfig/network-scripts/ifcfg-device

Alternatively, to reload all interfaces:

~]# nmcli con reload

The default behavior is for NetworkManager not to be aware of the changes and to continue using the
old configuration data. This is set by the monitor-connection-files option in the NetworkManager.conf
file. See the NetworkManager.conf(5) manual page for more information.

To view the status of the bond interface, issue the following command:

~]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp1s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:e9:ce:d2 brd ff:ff:ff:ff:ff:ff
3: enp2s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff
4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP mode DEFAULT
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff

7.4.5. Creating Multiple Bonds

In Red Hat Enterprise Linux, for each bond a channel bonding interface is created including the
BONDING_OPTS directive. This configuration method is used so that multiple bonding devices can
have different configurations. To create multiple channel bonding interfaces, proceed as follows:

Create multiple ifcfg-bondN files with the BONDING_OPTS directive; this directive will cause
the network scripts to create the bond interfaces as required.

Create, or edit existing, interface configuration files to be bonded and include the SLAVE
directive.

Assign the interfaces to be bonded, the slave interfaces, to the channel bonding interfaces by

CHAPTER 7. CONFIGURE NETWORK BONDING

99

Assign the interfaces to be bonded, the slave interfaces, to the channel bonding interfaces by
means of the MASTER directive.

Example 7.3. Example multiple ifcfg-bondN interface configuration files

The following is an example of a channel bonding interface configuration file:

In this example, replace N with the number for the bond interface. For example, to create two bonds
create two configuration files, ifcfg-bond0 and ifcfg-bond1, with appropriate IP addresses.

Create the interfaces to be bonded as per Example 7.2, “Example Slave Interface Configuration File”
and assign them to the bond interfaces as required using the MASTER=bondN directive. For example,
continuing on from the example above, if two interfaces per bond are required, then for two bonds
create four interface configuration files and assign the first two using MASTER=bond0 and the next
two using MASTER=bond1.

7.5. VERIFYING NETWORK CONFIGURATION BONDING FOR
REDUNDANCY

Network redundancy is a process when devices are used for backup purposes to prevent or recover from
a failure of a specific system. The following procedure describes how to verify the network configuration
for bonding in redundancy:

Procedure

1. Ping the destination IP from the bond interface. For example:

~]# ping -I bond0 DSTADDR

2. View which interface is in active mode:

~]# cat /sys/class/net/bond0/bonding/active_slave
enp1s0

enp1s0 is the active slave interface.

3. Set the active slave interface down:

~]# ip link set enp1s0 down

4. Check if the backup interface is up:

DEVICE=bondN
NAME=bondN
TYPE=Bond
BONDING_MASTER=yes
IPADDR=192.168.1.1
PREFIX=24
ONBOOT=yes
BOOTPROTO=none
BONDING_OPTS="bonding parameters separated by spaces"

Networking Guide

100

~]# cat /sys/class/net/bond0/bonding/active_slave
enp2s0

enp2s0 is now the active slave interface.

5. Check if you can still ping the destination IP from the bond interface:

~]# ping -I bond0 DSTADDR

7.6. OVERVIEW OF BONDING MODES AND THE REQUIRED SETTINGS
ON THE SWITCH

The following table describes the required configuration that you must apply to the upstream switch
depending on the bonding mode:

Table 7.1. Switch Configuration Settings Depending on the Bonding Modes

Bonding Mode Configuration on the Switch

0 - balance-rr Requires static Etherchannel enabled (not LACP-negotiated)

1 - active-backup Requires autonomous ports

2 - balance-xor Requires static Etherchannel enabled (not LACP-negotiated)

3 - broadcast Requires static Etherchannel enabled (not LACP-negotiated)

4 - 802.3ad Requires LACP-negotiated Etherchannel enabled

5 - balance-tlb Requires autonomous ports

6 - balance-alb Requires autonomous ports

For configuring these settings on your switch, see the switch documentation.

7.7. USING CHANNEL BONDING

To enhance performance, adjust available module options to ascertain what combination works best.
Pay particular attention to the miimon or arp_interval and the arp_ip_target parameters. See
Section 7.7.1, “Bonding Module Directives” for a list of available options and how to quickly determine
the best ones for your bonded interface.

7.7.1. Bonding Module Directives

It is a good idea to test which channel bonding module parameters work best for your bonded interfaces
before adding them to the BONDING_OPTS="bonding parameters" directive in your bonding
interface configuration file (ifcfg-bond0 for example). Parameters to bonded interfaces can be
configured without unloading (and reloading) the bonding module by manipulating files in the sysfs file
system.

sysfs is a virtual file system that represents kernel objects as directories, files and symbolic links. sysfs

CHAPTER 7. CONFIGURE NETWORK BONDING

101

sysfs is a virtual file system that represents kernel objects as directories, files and symbolic links. sysfs
can be used to query for information about kernel objects, and can also manipulate those objects
through the use of normal file system commands. The sysfs virtual file system is mounted under the
/sys/ directory. All bonding interfaces can be configured dynamically by interacting with and
manipulating files under the /sys/class/net/ directory.

In order to determine the best parameters for your bonding interface, create a channel bonding
interface file such as ifcfg-bond0 by following the instructions in Section 7.4.2, “Create a Channel
Bonding Interface”. Insert the SLAVE=yes and MASTER=bond0 directives in the configuration files for
each interface bonded to bond0. Once this is completed, you can proceed to testing the parameters.

First, open the bond you created by running ifup bondN as root:

~]# ifup bond0

If you have correctly created the ifcfg-bond0 bonding interface file, you will be able to see bond0 listed
in the output of running ip link show as root:

~]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: enp1s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:e9:ce:d2 brd ff:ff:ff:ff:ff:ff
3: enp2s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
bond0 state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff
4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP mode DEFAULT
 link/ether 52:54:00:38:a6:4c brd ff:ff:ff:ff:ff:ff

To view all existing bonds, even if they are not up, run:

~]$ cat /sys/class/net/bonding_masters
bond0

You can configure each bond individually by manipulating the files located in the
/sys/class/net/bondN/bonding/ directory. First, the bond you are configuring must be taken down:

~]# ifdown bond0

As an example, to enable MII monitoring on bond0 with a 1 second interval, run as root:

~]# echo 1000 > /sys/class/net/bond0/bonding/miimon

To configure bond0 for balance-alb mode, run either:

~]# echo 6 > /sys/class/net/bond0/bonding/mode

...or, using the name of the mode:

~]# echo balance-alb > /sys/class/net/bond0/bonding/mode

Networking Guide

102

After configuring options for the bond in question, you can bring it up and test it by running ifup bondN.
If you decide to change the options, take the interface down, modify its parameters using sysfs, bring it
back up, and re-test.

Once you have determined the best set of parameters for your bond, add those parameters as a space-
separated list to the BONDING_OPTS= directive of the /etc/sysconfig/network-scripts/ifcfg-bondN
file for the bonding interface you are configuring. Whenever that bond is brought up (for example, by
the system during the boot sequence if the ONBOOT=yes directive is set), the bonding options
specified in the BONDING_OPTS will take effect for that bond.

The following list provides the names of many of the more common channel bonding parameters, along
with a description of what they do. For more information, see the brief descriptions for each parm in
modinfo bonding output, or for more detailed information, see
https://www.kernel.org/doc/Documentation/networking/bonding.txt.

Bonding Interface Parameters

ad_select=value

Specifies the 802.3ad aggregation selection logic to use. Possible values are:

stable or 0 — Default setting. The active aggregator is chosen by largest aggregate
bandwidth. Reselection of the active aggregator occurs only when all slaves of the active
aggregator are down or if the active aggregator has no slaves.

bandwidth or 1 — The active aggregator is chosen by largest aggregate bandwidth.
Reselection occurs if:

A slave is added to or removed from the bond;

Any slave's link state changes;

Any slave's 802.3ad association state changes;

The bond's administrative state changes to up.

count or 2 — The active aggregator is chosen by the largest number of slaves. Reselection
occurs as described for the bandwidth setting above.

The bandwidth and count selection policies permit failover of 802.3ad aggregations when partial
failure of the active aggregator occurs. This keeps the aggregator with the highest availability, either
in bandwidth or in number of slaves, active at all times.

arp_interval=time_in_milliseconds

Specifies, in milliseconds, how often ARP monitoring occurs.

IMPORTANT

It is essential that both arp_interval and arp_ip_target parameters are specified, or,
alternatively, the miimon parameter is specified. Failure to do so can cause
degradation of network performance in the event that a link fails.

If using this setting while in mode=0 or mode=2 (the two load-balancing modes), the network switch
must be configured to distribute packets evenly across the NICs. For more information on how to
accomplish this, see https://www.kernel.org/doc/Documentation/networking/bonding.txt.

CHAPTER 7. CONFIGURE NETWORK BONDING

103

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

The value is set to 0 by default, which disables it.

arp_ip_target=ip_address[,ip_address_2,…ip_address_16]

Specifies the target IP address of ARP requests when the arp_interval parameter is enabled. Up to
16 IP addresses can be specified in a comma separated list.

arp_validate=value

Validate source/distribution of ARP probes; default is none. Other valid values are active, backup,
and all.

downdelay=time_in_milliseconds

Specifies (in milliseconds) how long to wait after link failure before disabling the link. The value must
be a multiple of the value specified in the miimon parameter. The value is set to 0 by default, which
disables it.

fail_over_mac=value

Specifies whether active-backup mode should set all slaves to the same MAC address at
enslavement (the traditional behavior), or, when enabled, perform special handling of the bond's
MAC address in accordance with the selected policy. Possible values are:

none or 0 — Default setting. This setting disables fail_over_mac, and causes bonding to set
all slaves of an active-backup bond to the same MAC address at enslavement time.

active or 1 — The “active” fail_over_mac policy indicates that the MAC address of the bond
should always be the MAC address of the currently active slave. The MAC address of the
slaves is not changed; instead, the MAC address of the bond changes during a failover.

This policy is useful for devices that cannot ever alter their MAC address, or for devices that
refuse incoming broadcasts with their own source MAC (which interferes with the ARP
monitor). The disadvantage of this policy is that every device on the network must be
updated by gratuitous ARP, as opposed to the normal method of switches snooping
incoming traffic to update their ARP tables. If the gratuitous ARP is lost, communication may
be disrupted.

When this policy is used in conjunction with the MII monitor, devices which assert link up prior
to being able to actually transmit and receive are particularly susceptible to loss of the
gratuitous ARP, and an appropriate updelay setting may be required.

follow or 2 — The “follow” fail_over_mac policy causes the MAC address of the bond to be
selected normally (normally the MAC address of the first slave added to the bond). However,
the second and subsequent slaves are not set to this MAC address while they are in a backup
role; a slave is programmed with the bond's MAC address at failover time (and the formerly
active slave receives the newly active slave's MAC address).

This policy is useful for multiport devices that either become confused or incur a
performance penalty when multiple ports are programmed with the same MAC address.

lacp_rate=value

Specifies the rate at which link partners should transmit LACPDU packets in 802.3ad mode. Possible
values are:

slow or 0 — Default setting. This specifies that partners should transmit LACPDUs every 30
seconds.

Networking Guide

104

fast or 1 — Specifies that partners should transmit LACPDUs every 1 second.

miimon=time_in_milliseconds

Specifies (in milliseconds) how often MII link monitoring occurs. This is useful if high availability is
required because MII is used to verify that the NIC is active. To verify that the driver for a particular
NIC supports the MII tool, type the following command as root:

~]# ethtool interface_name | grep "Link detected:"

In this command, replace interface_name with the name of the device interface, such as enp1s0, not
the bond interface. If MII is supported, the command returns:

Link detected: yes

If using a bonded interface for high availability, the module for each NIC must support MII. Setting
the value to 0 (the default), turns this feature off. When configuring this setting, a good starting point
for this parameter is 100.

IMPORTANT

It is essential that both arp_interval and arp_ip_target parameters are specified, or,
alternatively, the miimon parameter is specified. Failure to do so can cause
degradation of network performance in the event that a link fails.

mode=value

Allows you to specify the bonding policy. The value can be one of:

balance-rr or 0 — Sets a round-robin policy for fault tolerance and load balancing.
Transmissions are received and sent out sequentially on each bonded slave interface
beginning with the first one available.

active-backup or 1 — Sets an active-backup policy for fault tolerance. Transmissions are
received and sent out through the first available bonded slave interface. Another bonded
slave interface is only used if the active bonded slave interface fails.

balance-xor or 2 — Transmissions are based on the selected hash policy. The default is to
derive a hash by XOR of the source and destination MAC addresses multiplied by the modulo
of the number of slave interfaces. In this mode traffic destined for specific peers will always
be sent over the same interface. As the destination is determined by the MAC addresses this
method works best for traffic to peers on the same link or local network. If traffic has to pass
through a single router then this mode of traffic balancing will be suboptimal.

broadcast or 3 — Sets a broadcast policy for fault tolerance. All transmissions are sent on all
slave interfaces.

802.3ad or 4 — Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation
groups that share the same speed and duplex settings. Transmits and receives on all slaves in
the active aggregator. Requires a switch that is 802.3ad compliant.

balance-tlb or 5 — Sets a Transmit Load Balancing (TLB) policy for fault tolerance and load
balancing. The outgoing traffic is distributed according to the current load on each slave
interface. Incoming traffic is received by the current slave. If the receiving slave fails, another

CHAPTER 7. CONFIGURE NETWORK BONDING

105

slave takes over the MAC address of the failed slave. This mode is only suitable for local
addresses known to the kernel bonding module and therefore cannot be used behind a
bridge with virtual machines.

balance-alb or 6 — Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and
load balancing. Includes transmit and receive load balancing for IPv4 traffic. Receive load
balancing is achieved through ARP negotiation. This mode is only suitable for local
addresses known to the kernel bonding module and therefore cannot be used behind a
bridge with virtual machines.

For details about required settings on the upstream switch, see Section 7.6, “Overview of Bonding
Modes and the Required Settings on the Switch”.

primary=interface_name

Specifies the interface name, such as enp1s0, of the primary device. The primary device is the first
of the bonding interfaces to be used and is not abandoned unless it fails. This setting is particularly
useful when one NIC in the bonding interface is faster and, therefore, able to handle a bigger load.

This setting is only valid when the bonding interface is in active-backup mode. See
https://www.kernel.org/doc/Documentation/networking/bonding.txt for more information.

primary_reselect=value

Specifies the reselection policy for the primary slave. This affects how the primary slave is chosen to
become the active slave when failure of the active slave or recovery of the primary slave occurs. This
parameter is designed to prevent flip-flopping between the primary slave and other slaves. Possible
values are:

always or 0 (default) — The primary slave becomes the active slave whenever it comes back
up.

better or 1 — The primary slave becomes the active slave when it comes back up, if the speed
and duplex of the primary slave is better than the speed and duplex of the current active
slave.

failure or 2 — The primary slave becomes the active slave only if the current active slave fails
and the primary slave is up.

The primary_reselect setting is ignored in two cases:

If no slaves are active, the first slave to recover is made the active slave.

When initially enslaved, the primary slave is always made the active slave.

Changing the primary_reselect policy through sysfs will cause an immediate selection of the best
active slave according to the new policy. This may or may not result in a change of the active slave,
depending upon the circumstances

resend_igmp=range

Specifies the number of IGMP membership reports to be issued after a failover event. One
membership report is issued immediately after the failover, subsequent packets are sent in each
200ms interval.

The valid range is 0 to 255; the default value is 1. A value of 0 prevents the IGMP membership report
from being issued in response to the failover event.

Networking Guide

106

https://www.kernel.org/doc/Documentation/networking/bonding.txt

This option is useful for bonding modes balance-rr (mode 0), active-backup (mode 1), balance-tlb
(mode 5) and balance-alb (mode 6), in which a failover can switch the IGMP traffic from one slave to
another. Therefore a fresh IGMP report must be issued to cause the switch to forward the incoming
IGMP traffic over the newly selected slave.

updelay=time_in_milliseconds

Specifies (in milliseconds) how long to wait before enabling a link. The value must be a multiple of the
value specified in the miimon parameter. The value is set to 0 by default, which disables it.

use_carrier=number

Specifies whether or not miimon should use MII/ETHTOOL ioctls or netif_carrier_ok() to
determine the link state. The netif_carrier_ok() function relies on the device driver to maintains its
state with netif_carrier_on/off; most device drivers support this function.

The MII/ETHTOOL ioctls tools utilize a deprecated calling sequence within the kernel. However, this
is still configurable in case your device driver does not support netif_carrier_on/off.

Valid values are:

1 — Default setting. Enables the use of netif_carrier_ok().

0 — Enables the use of MII/ETHTOOL ioctls.

NOTE

If the bonding interface insists that the link is up when it should not be, it is possible
that your network device driver does not support netif_carrier_on/off.

xmit_hash_policy=value

Selects the transmit hash policy used for slave selection in balance-xor and 802.3ad modes. Possible
values are:

0 or layer2 — Default setting. This parameter uses the XOR of hardware MAC addresses to
generate the hash. The formula used is:

(source_MAC_address XOR destination_MAC) MODULO slave_count

This algorithm will place all traffic to a particular network peer on the same slave, and is
802.3ad compliant.

1 or layer3+4 — Uses upper layer protocol information (when available) to generate the hash.
This allows for traffic to a particular network peer to span multiple slaves, although a single
connection will not span multiple slaves.

The formula for unfragmented TCP and UDP packets used is:

((source_port XOR dest_port) XOR
 ((source_IP XOR dest_IP) AND 0xffff)
 MODULO slave_count

For fragmented TCP or UDP packets and all other IP protocol traffic, the source and
destination port information is omitted. For non-IP traffic, the formula is the same as the
layer2 transmit hash policy.

CHAPTER 7. CONFIGURE NETWORK BONDING

107

This policy intends to mimic the behavior of certain switches; particularly, Cisco switches with
PFC2 as well as some Foundry and IBM products.

The algorithm used by this policy is not 802.3ad compliant.

2 or layer2+3 — Uses a combination of layer2 and layer3 protocol information to generate
the hash.

Uses XOR of hardware MAC addresses and IP addresses to generate the hash. The formula
is:

(((source_IP XOR dest_IP) AND 0xffff) XOR
 (source_MAC XOR destination_MAC))
 MODULO slave_count

This algorithm will place all traffic to a particular network peer on the same slave. For non-IP
traffic, the formula is the same as for the layer2 transmit hash policy.

This policy is intended to provide a more balanced distribution of traffic than layer2 alone,
especially in environments where a layer3 gateway device is required to reach most
destinations.

This algorithm is 802.3ad compliant.

7.8. CREATING A BOND CONNECTION USING A GUI

You can use the GNOME control-center utility to direct NetworkManager to create a Bond from two
or more Wired or InfiniBand connections. It is not necessary to create the connections to be bonded first.
They can be configured as part of the process to configure the bond. You must have the MAC addresses
of the interfaces available in order to complete the configuration process.

7.8.1. Establishing a Bond Connection

Procedure 7.1. Adding a New Bond Connection_Using nm-connection-editor

Follow the below steps to create a new bond connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Click the Add button. The Choose a Connection Type window appears. Select Bond and click
Create. The Editing Bond connection 1 window appears.

Networking Guide

108

Figure 7.6. The NetworkManager Graphical User Interface Add a Bond menu

3. On the Bond tab, click Add and select the type of interface you want to use with the bond
connection. Click the Create button. Note that the dialog to select the slave type only comes up
when you create the first slave; after that, it will automatically use that same type for all further
slaves.

4. The Editing bond0 slave 1 window appears. Use the Device MAC address drop-down menu
to select the MAC address of the interface to be bonded. The first slave's MAC address will be
used as the MAC address for the bond interface. If required, enter a clone MAC address to be
used as the bond's MAC address. Click the Save button.

CHAPTER 7. CONFIGURE NETWORK BONDING

109

Figure 7.7. The NetworkManager Graphical User Interface Add a Bond Connection menu

5. The name of the bonded slave appears in the Bonded connections window. Click the Add
button to add further slave connections.

6. Review and confirm the settings and then click the Save button.

7. Edit the bond-specific settings by referring to Section 7.8.1.1, “Configuring the Bond Tab” below.

Procedure 7.2. Editing an Existing Bond Connection

Follow these steps to edit an existing bond connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Select the connection you want to edit and click the Edit button.

3. Select the General tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Five settings in the Editing dialog are common to all connection types, see the General tab:

Connection name — Enter a descriptive name for your network connection. This name will
be used to list this connection in the menu of the Network window.

Automatically connect to this network when it is available — Select this box if you want

Networking Guide

110

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. See the section
called “Editing an Existing Connection with control-center” for more information.

All users may connect to this network — Select this box to create a connection available
to all users on the system. Changing this setting may require root privileges. See
Section 3.4.5, “Managing System-wide and Private Connection Profiles with a GUI” for
details.

Automatically connect to VPN when using this connection — Select this box if you want
NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN
from the drop-down menu.

Firewall Zone — Select the firewall zone from the drop-down menu. See the Red Hat
Enterprise Linux 7 Security Guide for more information on firewall zones.

5. Edit the bond-specific settings by referring to Section 7.8.1.1, “Configuring the Bond Tab” below.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your bond connection, click the Save button to save your customized
configuration.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”

or

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

7.8.1.1. Configuring the Bond Tab

If you have already added a new bond connection (see Procedure 7.1, “Adding a New Bond
Connection_Using nm-connection-editor” for instructions), you can edit the Bond tab to set the load
sharing mode and the type of link monitoring to use to detect failures of a slave connection.

Mode

The mode that is used to share traffic over the slave connections which make up the bond. The
default is Round-robin. Other load sharing modes, such as 802.3ad, can be selected by means of the
drop-down list.

Link Monitoring

The method of monitoring the slaves ability to carry network traffic.

The following modes of load sharing are selectable from the Mode drop-down list:

Round-robin

Sets a round-robin policy for fault tolerance and load balancing. Transmissions are received and sent
out sequentially on each bonded slave interface beginning with the first one available. This mode
might not work behind a bridge with virtual machines without additional switch configuration.

Active backup

CHAPTER 7. CONFIGURE NETWORK BONDING

111

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

Sets an active-backup policy for fault tolerance. Transmissions are received and sent out through
the first available bonded slave interface. Another bonded slave interface is only used if the active
bonded slave interface fails. Note that this is the only mode available for bonds of InfiniBand devices.

XOR

Sets an XOR (exclusive-or) policy. Transmissions are based on the selected hash policy. The default
is to derive a hash by XOR of the source and destination MAC addresses multiplied by the modulo of
the number of slave interfaces. In this mode traffic destined for specific peers will always be sent over
the same interface. As the destination is determined by the MAC addresses this method works best
for traffic to peers on the same link or local network. If traffic has to pass through a single router then
this mode of traffic balancing will be suboptimal.

Broadcast

Sets a broadcast policy for fault tolerance. All transmissions are sent on all slave interfaces. This
mode might not work behind a bridge with virtual machines without additional switch configuration.

802.3ad

Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the
same speed and duplex settings. Transmits and receives on all slaves in the active aggregator.
Requires a network switch that is 802.3ad compliant.

Adaptive transmit load balancing

Sets an adaptive Transmit Load Balancing (TLB) policy for fault tolerance and load balancing. The
outgoing traffic is distributed according to the current load on each slave interface. Incoming traffic
is received by the current slave. If the receiving slave fails, another slave takes over the MAC address
of the failed slave. This mode is only suitable for local addresses known to the kernel bonding module
and therefore cannot be used behind a bridge with virtual machines.

Adaptive load balancing

Sets an Adaptive Load Balancing (ALB) policy for fault tolerance and load balancing. Includes
transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through ARP
negotiation. This mode is only suitable for local addresses known to the kernel bonding module and
therefore cannot be used behind a bridge with virtual machines.

The following types of link monitoring can be selected from the Link Monitoring drop-down list. It is a
good idea to test which channel bonding module parameters work best for your bonded interfaces.

MII (Media Independent Interface)

The state of the carrier wave of the interface is monitored. This can be done by querying the driver,
by querying MII registers directly, or by using ethtool to query the device. Three options are available:

Monitoring Frequency

The time interval, in milliseconds, between querying the driver or MII registers.

Link up delay

The time in milliseconds to wait before attempting to use a link that has been reported as up. This
delay can be used if some gratuitous ARP requests are lost in the period immediately following
the link being reported as “up”. This can happen during switch initialization for example.

Link down delay

Networking Guide

112

The time in milliseconds to wait before changing to another link when a previously active link has
been reported as “down”. This delay can be used if an attached switch takes a relatively long time
to change to backup mode.

ARP

The address resolution protocol (ARP) is used to probe one or more peers to determine how well the
link-layer connections are working. It is dependent on the device driver providing the transmit start
time and the last receive time.

Two options are available:

Monitoring Frequency

The time interval, in milliseconds, between sending ARP requests.

ARP targets

A comma separated list of IP addresses to send ARP requests to.

7.9. ADDITIONAL RESOURCES

Installed Documentation

nmcli(1) man page — Describes NetworkManager's command‐line tool.

nmcli-examples(5) man page — Gives examples of nmcli commands.

nm-settings(5) man page — Description of settings and parameters of NetworkManager
connections.

Online Documentation

Red Hat Enterprise Linux System Administrator's Guide

Explains the use of kernel module capabilities.

https://access.redhat.com/site/node/28421/Configuring_VLAN_devices_over_a_bonded_interface

A Red Hat Knowledgebase article about Configuring VLAN devices over a bonded interface.

CHAPTER 7. CONFIGURE NETWORK BONDING

113

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
https://access.redhat.com/site/node/28421/Configuring_VLAN_devices_over_a_bonded_interface

CHAPTER 8. CONFIGURE NETWORK TEAMING

8.1. UNDERSTANDING NETWORK TEAMING

The combining or aggregating of network links to provide a logical link with higher throughput, or to
provide redundancy, is known by many names, for example channel bonding, Ethernet bonding, port
trunking, channel teaming, NIC teaming, or link aggregation. This concept as originally implemented in the
Linux kernel is widely referred to as bonding. The term Network Teaming has been chosen to refer to
this new implementation of the concept. The existing bonding driver is unaffected, Network Teaming is
offered as an alternative and does not replace bonding in Red Hat Enterprise Linux 7.

NOTE

Regarding the Mode 4 Link Aggregation Control Protocol (LACP) teaming mode,
requires configuring the switch to aggregate the links. For more details, see
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Network Teaming, or Team, is designed to implement the concept in a different way by providing a small
kernel driver to implement the fast handling of packet flows, and various user-space applications to do
everything else in user space. The driver has an Application Programming Interface (API), referred to as
“Team Netlink API”, which implements Netlink communications. User-space applications can use this API
to communicate with the driver. A library, referred to as “lib”, has been provided to do user space
wrapping of Team Netlink communications and RT Netlink messages. An application daemon, teamd,
which uses the libteam library is also available. One instance of teamd can control one instance of the
Team driver. The daemon implements the load-balancing and active-backup logic, such as round-robin,
by using additional code referred to as “runners”. By separating the code in this way, the Network
Teaming implementation presents an easily extensible and scalable solution for load-balancing and
redundancy requirements. For example, custom runners can be relatively easily written to implement
new logic through teamd, and even teamd is optional, users can write their own application to use
libteam.

The teamdctl utility is available to control a running instance of teamd using D-bus. teamdctl provides a
D-Bus wrapper around the teamd D-Bus API. By default, teamd listens and communicates using Unix
Domain Sockets but still monitors D-Bus. This is to ensure that teamd can be used in environments
where D-Bus is not present or not yet loaded. For example, when booting over teamd links, D-Bus would
not yet be loaded. The teamdctl utility can be used during run time to read the configuration, the state
of link-watchers, check and change the state of ports, add and remove ports, and to change ports
between active and backup states.

Team Netlink API communicates with user-space applications using Netlink messages. The libteam
user-space library does not directly interact with the API, but uses libnl or teamnl to interact with the
driver API.

To sum up, the instances of Team driver, running in the kernel, do not get configured or controlled
directly. All configuration is done with the aid of user space applications, such as the teamd application.
The application then directs the kernel driver part accordingly.

NOTE

In the context of network teaming, the term port is also known as slave. Port is preferred
when using teamd directly while slave is used when using NetworkManager to refer to
interfaces which create a team.

Networking Guide

114

https://www.kernel.org/doc/Documentation/networking/bonding.txt

8.2. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND
SLAVE INTERFACES

When controlling teamed port interfaces using the NetworkManager daemon, and especially when fault
finding, keep the following in mind:

1. Starting the master interface does not automatically start the port interfaces.

2. Starting a port interface always starts the master interface.

3. Stopping the master interface also stops the port interfaces.

4. A master without ports can start static IP connections.

5. A master without ports waits for ports when starting DHCP connections.

6. A master with a DHCP connection waiting for ports completes when a port with a carrier is
added.

7. A master with a DHCP connection waiting for ports continues waiting when a port without a
carrier is added.

WARNING

The use of direct cable connections without network switches is not supported for
teaming. The failover mechanisms described here will not work as expected without
the presence of network switches. See the Red Hat Knowledgebase article Why is
bonding not supported with direct connection using crossover cables? for more
information.

8.3. COMPARISON OF NETWORK TEAMING TO BONDING

Table 8.1. A Comparison of Features in Bonding and Team

Feature Bonding Team

broadcast Tx policy Yes Yes

round-robin Tx policy Yes Yes

active-backup Tx policy Yes Yes

LACP (802.3ad) support Yes (active only) Yes

Hash-based Tx policy Yes Yes

User can set hash function No Yes



CHAPTER 8. CONFIGURE NETWORK TEAMING

115

https://access.redhat.com/solutions/202583

Tx load-balancing support (TLB) Yes Yes

LACP hash port select Yes Yes

load-balancing for LACP support No Yes

Ethtool link monitoring Yes Yes

ARP link monitoring Yes Yes

NS/NA (IPv6) link monitoring No Yes

ports up/down delays Yes Yes

port priorities and stickiness
(“primary” option enhancement)

No Yes

separate per-port link monitoring
setup

No Yes

multiple link monitoring setup Limited Yes

lockless Tx/Rx path No (rwlock) Yes (RCU)

VLAN support Yes Yes

user-space runtime control Limited Full

Logic in user-space No Yes

Extensibility Hard Easy

Modular design No Yes

Performance overhead Low Very Low

D-Bus interface No Yes

multiple device stacking Yes Yes

zero config using LLDP No (in planning)

NetworkManager support Yes Yes

Feature Bonding Team

8.4. UNDERSTANDING THE NETWORK TEAMING DAEMON AND THE

Networking Guide

116

8.4. UNDERSTANDING THE NETWORK TEAMING DAEMON AND THE
"RUNNERS"

The Team daemon, teamd, uses libteam to control one instance of the team driver. This instance of the
team driver adds instances of a hardware device driver to form a “team” of network links. The team
driver presents a network interface, team0 for example, to the other parts of the kernel. The interfaces
created by instances of the team driver are given names such as team0, team1, and so forth in the
documentation. This is for ease of understanding and other names can be used. The logic common to all
methods of teaming is implemented by teamd; those functions that are unique to the different load
sharing and backup methods, such as round-robin, are implemented by separate units of code referred
to as “runners”. Because words such as “module” and “mode” already have specific meanings in relation
to the kernel, the word “runner” was chosen to refer to these units of code. The user specifies the
runner in the JSON format configuration file and the code is then compiled into an instance of teamd
when the instance is created. A runner is not a plug-in because the code for a runner is compiled into an
instance of teamd as it is being created. Code could be created as a plug-in for teamd should the need
arise.

The following runners are available at time of writing.

broadcast (data is transmitted over all ports)

round-robin (data is transmitted over all ports in turn)

active-backup (one port or link is used while others are kept as a backup)

loadbalance (with active Tx load balancing and BPF-based Tx port selectors)

lacp (implements the 802.3ad Link Aggregation Control Protocol)

In addition, the following link-watchers are available:

ethtool (Libteam lib uses ethtool to watch for link state changes). This is the default if no other
link-watcher is specified in the configuration file.

arp_ping (The arp_ping utility is used to monitor the presence of a far-end hardware address
using ARP packets.)

nsna_ping (Neighbor Advertisements and Neighbor Solicitation from the IPv6 Neighbor
Discovery protocol are used to monitor the presence of a neighbor's interface)

There are no restrictions in the code to prevent a particular link-watcher from being used with a
particular runner, however when using the lacp runner, ethtool is the only recommended link-watcher.

8.5. INSTALL THE NETWORK TEAMING DAEMON

The networking teaming daemon, teamd, is not installed by default. To install teamd, issue the following
command as root:

~]# yum install teamd

8.6. CONVERTING A BOND TO A TEAM

It is possible to convert existing bonding configuration files to team configuration files using the
bond2team tool. It can convert bond configuration files in ifcfg format to team configuration files in
either ifcfg or JSON format. Note that firewall rules, alias interfaces, and anything that might be tied to

CHAPTER 8. CONFIGURE NETWORK TEAMING

117

the original interface name can break after the renaming because the tool will only change the ifcfg file,
nothing else.

To see some examples of the command format, issue the following command:

~]$ bond2team --examples

New files will be created in a directory whose name starts with /tmp/bond2team.XXXXXX/, where
XXXXXX is a random string. After creating the new configuration files, move the old bonding files to a
backup folder and then move the new files to the /etc/sysconfig/network-scripts/ directory.

Example 8.1. Convert a Bond to a Team

To convert a current bond0 configuration to team ifcfg, issue a command as root:

~]# /usr/bin/bond2team --master bond0

Note that this will retain the name bond0. To use a new name to save the configuration, use the --
rename as follows:

~]# /usr/bin/bond2team --master bond0 --rename team0

add the --json option to output JSON format files instead of ifcfg files. See the teamd.conf(5) man
page for examples of JSON format.

Example 8.2. Convert a Bond to a Team and Specify the File Path

To convert a current bond0 configuration to team ifcfg, and to manually specify the path to the ifcfg
file, issue a command as root:

~]# /usr/bin/bond2team --master bond0 --configdir /path/to/ifcfg-file

add the --json option to output JSON format files instead of ifcfg files.

Example 8.3. Create a Team Configuration Using Bond2team

It is also possible to create a team configuration by supplying the bond2team tool with a list of
bonding parameters. For example:

~]# /usr/bin/bond2team --bonding_opts "mode=1 miimon=500"

Ports can also be supplied on the command line as follows:

~]# /usr/bin/bond2team --bonding_opts "mode=1 miimon=500 primary=enp1s0 \
 primary_reselect-0" --port enp1s0 --port enp2s0 --port enp3s0 --port enp4s0

See the bond2team(1) man page for further details. For an explanation of bonding parameters, see
Section 7.7, “Using Channel Bonding”

8.7. SELECTING INTERFACES TO USE AS PORTS FOR A NETWORK

Networking Guide

118

8.7. SELECTING INTERFACES TO USE AS PORTS FOR A NETWORK
TEAM

To view the available interfaces, issue the following command:

~]$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP > mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP > mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000
 link/ether 52:54:00:6a:02:8a brd ff:ff:ff:ff:ff:ff
3: em2: <BROADCAST,MULTICAST,UP,LOWER_UP > mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000
link/ether 52:54:00:9b:6d:2a brd ff:ff:ff:ff:ff:ff

From the available interfaces, determine which are suitable for adding to your network team and then
proceed to Section 8.8, “Selecting Network Team Configuration Methods”

8.8. SELECTING NETWORK TEAM CONFIGURATION METHODS

To configure a network team using NetworkManager's text user interface tool, nmtui, proceed to
Section 8.9, “Configure a Network Team Using the Text User Interface, nmtui”

To create a network team using the command-line tool, nmcli, proceed to Section 8.10.1, “Configure
Network Teaming Using nmcli”.

To create a network team using the Team daemon, teamd, proceed to Section 8.10.2, “Creating a
Network Team Using teamd”.

To create a network team using configuration files, proceed to Section 8.10.3, “Creating a Network
Team Using ifcfg Files”.

To configure a network team using a graphical user interface, see Section 8.14, “Creating a Network
Team Using a GUI”

8.9. CONFIGURE A NETWORK TEAM USING THE TEXT USER
INTERFACE, NMTUI

The text user interface tool nmtui can be used to configure teaming in a terminal window. Issue the
following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

1. From the starting menu, select Edit a connection. Select Add, the New Connection screen
opens.

CHAPTER 8. CONFIGURE NETWORK TEAMING

119

Figure 8.1. The NetworkManager Text User Interface Add a Team Connection menu

2. Select Team, the Edit connection screen opens.

Networking Guide

120

Figure 8.2. The NetworkManager Text User Interface Configuring a Team Connection menu

3. To add port interfaces to the team select Add, the New Connection screen opens. Once the
type of Connection has been chosen select the Create button to cause the team's Edit
Connection display to appear.

CHAPTER 8. CONFIGURE NETWORK TEAMING

121

Figure 8.3. The NetworkManager Text User Interface Configuring a new Team Port
Interface Connection menu

4. Enter the required slave's device name or MAC address in the Device section. If required, enter
a clone MAC address to be used as the team's MAC address by selecting Show to the right of
the Ethernet label. Select the OK button.

NOTE

If the device is specified without a MAC address the Device section will be
automatically populated once the Edit Connection window is reloaded, but only
if it successfully finds the device.

Networking Guide

122

Figure 8.4. The NetworkManager Text User Interface Configuring a Team's Port Interface
Connection menu

5. The name of the teamed slave appears in the Slaves section. Repeat the above steps to add
further slave connections.

6. If custom port settings are to be applied select the Edit button under the JSON configuration
section. This will launch a vim console where changes may be applied. Once finished write the
changes from vim and then confirm that the displayed JSON string under JSON configuration
matches what is intended.

7. Review and confirm the settings before selecting the OK button.

CHAPTER 8. CONFIGURE NETWORK TEAMING

123

Figure 8.5. The NetworkManager Text User Interface Configuring a Team Connection menu

See Section 8.13, “Configure teamd Runners” for examples of JSON strings. Note that only the relevant
sections from the example strings should be used for a team or port configuration using nmtui. Do not
specify the “Device” as part of the JSON string. For example, only the JSON string after “device” but
before “port” should be used in the Team JSON configuration field. All JSON strings relevant to a port
must only be added in the port configuration field.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

8.10. CONFIGURE A NETWORK TEAM USING THE COMMAND LINE

8.10.1. Configure Network Teaming Using nmcli

To view the connections available on the system:

~]$ nmcli connection show
NAME UUID TYPE DEVICE
enp2s0 0e8185a1-f0fd-4802-99fb-bedbb31c689b 802-3-ethernet --
enp1s0 dfe1f57b-419d-4d1c-aaf5-245deab82487 802-3-ethernet --

To view the devices available on the system:

~]$ nmcli device status

Networking Guide

124

DEVICE TYPE STATE CONNECTION
virbr0 bridge connected virbr0
ens3 ethernet connected ens3

To create a new team interface, with name ServerA:

~]$ nmcli connection add type team ifname ServerA
Connection 'team-ServerA' (b954c62f-5fdd-4339-97b0-40efac734c50) successfully added.

NetworkManager will set its internal parameter connection.autoconnect to yes and as no IP address
was given ipv4.method will be set to auto. NetworkManager will also write a configuration file to
/etc/sysconfig/network-scripts/ifcfg-team-ServerA where the corresponding ONBOOT will be set to
yes and BOOTPROTO will be set to dhcp.

Note that manual changes to the ifcfg file will not be noticed by NetworkManager until the interface is
next brought up. See Section 2.7, “Using NetworkManager with sysconfig files” for more information on
using configuration files.

To view the other values assigned:

~]$ nmcli con show team-ServerA
connection.id: team-ServerA
connection.uuid: b954c62f-5fdd-4339-97b0-40efac734c50
connection.interface-name: ServerA
connection.type: team
connection.autoconnect: yes
…
ipv4.method: auto
[output truncated]

As no JSON configuration file was specified the default values apply. See the teamd.conf(5) man page
for more information on the team JSON parameters and their default values. Notice that the name was
derived from the interface name by prepending the type. Alternatively, specify a name with the con-
name option as follows:

~]$ nmcli connection add type team con-name Team0 ifname ServerB
Connection 'Team0' (5f7160a1-09f6-4204-8ff0-6d96a91218a7) successfully added.

To view the team interfaces just configured, enter a command as follows:

~]$ nmcli con show
NAME UUID TYPE DEVICE
team-ServerA b954c62f-5fdd-4339-97b0-40efac734c50 team ServerA
enp2s0 0e8185a1-f0fd-4802-99fb-bedbb31c689b 802-3-ethernet --
enp1s0 dfe1f57b-419d-4d1c-aaf5-245deab82487 802-3-ethernet --
Team0 5f7160a1-09f6-4204-8ff0-6d96a91218a7 team ServerB

To change the name assigned to a team, enter a command in the following format:

nmcli con mod old-team-name connection.id new-team-name

To load a team configuration file for a team that already exists:

nmcli connection modify team-name team.config JSON-config

CHAPTER 8. CONFIGURE NETWORK TEAMING

125

You can specify the team configuration either as a JSON string or provide a file name containing the
configuration. The file name can include the path. In both cases, what is stored in the team.config
property is the JSON string. In the case of a JSON string, use single quotes around the string and paste
the entire string to the command line.

To review the team.config property:

nmcli con show team-name | grep team.config

When the team.config property is set, all the other team properties are updated accordingly.

It is also possible a more flexible way of exposing and setting particular team options without modifying
directly the corresponding JSON string. You can do this by using the other available team properties to
set the related team options one by one to the required values. As a result, the team.config property is
updated to match the new values.

For example, to set the team.link-watchers property which allows to specify one or multiple link-
watchers, enter a command in the following format:

nmcli connection modify team-name team.link-watchers "name=ethtool delay-up=5,
name=nsna_ping target-host=target.host"

The required link-watchers are separated by comma and the attributes which belong to the same link-
watcher are separated by space.

To set the team.runner and the team.link-watchers properties, enter a command in the following
format:

nmcli connection modify team-name team.runner activebackup team.link-watchers
"name=ethtool delay-up=5, name=nsna_ping target-host=target.host"

This is equivalent to set the team.config property to the corresponding JSON string:

nmcli connection modify team-name team.config '{"runner": {"name": "activebackup"},
"link_watch": [{"name": "ethtool", "delay_up": 5},{"name": "nsna_ping", "target_host ":
"target.host"}]'

To add an interface enp1s0 to Team0, with the name Team0-port1, issue a command as follows:

~]$ nmcli con add type ethernet con-name Team0-port1 ifname enp1s0 slave-type team master
Team0
Connection 'Team0-port1' (ccd87704-c866-459e-8fe7-01b06cf1cffc) successfully added.

Similarly, to add another interface, enp2s0, with the name Team0-port2, issue a command as follows:

~]$ nmcli con add type ethernet con-name Team0-port2 ifname enp2s0 slave-type team master
Team0
Connection 'Team0-port2' (a89ccff8-8202-411e-8ca6-2953b7db52dd) successfully added.

nmcli only supports Ethernet ports.

To open a team, the ports must be brought up first as follows:

Networking Guide

126

~]$ nmcli connection up Team0-port1
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/2)

~]$ nmcli connection up Team0-port2
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/3)

You can verify that the team interface was brought up by the activation of the ports, as follows:

~]$ ip link
3: Team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode
DEFAULT
 link/ether 52:54:00:76:6f:f0 brd ff:ff:ff:ff:ff:f

Alternatively, issue a command to open the team as follows:

~]$ nmcli connection up Team0
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/4)

See Section 3.3, “Configuring IP Networking with nmcli” for an introduction to nmcli

8.10.2. Creating a Network Team Using teamd

NOTE

Configurations created using teamd are not persistent, and as such it may be necessary
to create a team using the steps defined in Section 8.10.1, “Configure Network Teaming
Using nmcli” or Section 8.10.3, “Creating a Network Team Using ifcfg Files” .

To create a network team, a JSON format configuration file is required for the virtual interface that will
serve as the interface to the team of ports or links. A quick way is to copy the example configuration files
and then edit them using an editor running with root privileges. To list the available example
configurations, enter the following command:

~]$ ls /usr/share/doc/teamd-*/example_configs/
activebackup_arp_ping_1.conf activebackup_multi_lw_1.conf loadbalance_2.conf
activebackup_arp_ping_2.conf activebackup_nsna_ping_1.conf loadbalance_3.conf
activebackup_ethtool_1.conf broadcast.conf random.conf
activebackup_ethtool_2.conf lacp_1.conf roundrobin_2.conf
activebackup_ethtool_3.conf loadbalance_1.conf roundrobin.conf

To view one of the included files, such as activebackup_ethtool_1.conf, enter the following command:

~]$ cat /usr/share/doc/teamd-*/example_configs/activebackup_ethtool_1.conf
{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch": {"name": "ethtool"},
 "ports": {
 "enp1s0": {

CHAPTER 8. CONFIGURE NETWORK TEAMING

127

 "prio": -10,
 "sticky": true
 },
 "enp2s0": {
 "prio": 100
 }
 }
}

Create a working configurations directory to store teamd configuration files. For example, as normal
user, enter a command with the following format:

~]$ mkdir ~/teamd_working_configs

Copy the file you have chosen to your working directory and edit it as necessary. As an example, you
could use a command with the following format:

~]$ cp /usr/share/doc/teamd-*/example_configs/activebackup_ethtool_1.conf \
~/teamd_working_configs/activebackup_ethtool_1.conf

To edit the file to suit your environment, for example to change the interfaces to be used as ports for
the network team, open the file for editing as follows:

~]$ vi ~/teamd_working_configs/activebackup_ethtool_1.conf

Make any necessary changes and save the file. See the vi(1) man page for help on using the vi editor or
use your preferred editor.

Note that it is essential that the interfaces to be used as ports within the team must not be active, that is
to say, they must be “down”, when adding them into a team device. To check their status, issue the
following command:

~]$ ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000
 link/ether 52:54:00:d5:f7:d4 brd ff:ff:ff:ff:ff:ff
3: em2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode
DEFAULT qlen 1000
 link/ether 52:54:00:d8:04:70 brd ff:ff:ff:ff:ff:ff

In this example we see that both the interfaces we plan to use are “UP”.

To take down an interface, issue a command as root in the following format:

~]# ip link set down em1

Repeat for each interface as necessary.

To create a team interface based on the configuration file, as root user, change to the working
configurations directory (teamd_working_configs in this example):

~]# cd /home/userteamd_working_configs

Networking Guide

128

Then issue a command in the following format:

~]# teamd -g -f activebackup_ethtool_1.conf -d
Using team device "team0".
Using PID file "/var/run/teamd/team0.pid"
Using config file "/home/user/teamd_working_configs/activebackup_ethtool_1.conf"

The -g option is for debug messages, -f option is to specify the configuration file to load, and the -d
option is to make the process run as a daemon after startup. See the teamd(8) man page for other
options.

To check the status of the team, issue the following command as root:

~]# teamdctl team0 state
setup:
 runner: activebackup
ports:
 em1
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 em2
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
runner:
 active port: em1

To apply an address to the network team interface, team0, issue a command as root in the following
format:

~]# ip addr add 192.168.23.2/24 dev team0

To check the IP address of a team interface, issue a command as follows:

~]$ ip addr show team0
4: team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 16:38:57:60:20:6f brd ff:ff:ff:ff:ff:ff
 inet 192.168.23.2/24 scope global team0
 valid_lft forever preferred_lft forever
 inet6 2620:52:0:221d:1438:57ff:fe60:206f/64 scope global dynamic
 valid_lft 2591880sec preferred_lft 604680sec
 inet6 fe80::1438:57ff:fe60:206f/64 scope link
 valid_lft forever preferred_lft forever

To activate the team interface, or to bring it “up”, issue a command as root in the following format:

~]# ip link set dev team0 up

To temporarily deactivate the team interface, or to take it “down”, issue a command as root in the

CHAPTER 8. CONFIGURE NETWORK TEAMING

129

To temporarily deactivate the team interface, or to take it “down”, issue a command as root in the
following format:

~]# ip link set dev team0 down

To terminate, or kill, an instance of the team daemon, as root user, issue a command in the following
format:

~]# teamd -t team0 -k

The -k option is to specify that the instance of the daemon associated with the device team0 is to be
killed. See the teamd(8) man page for other options.

For help on command-line options for teamd, issue the following command:

~]$ teamd -h

In addition, see the teamd(8) man page.

8.10.3. Creating a Network Team Using ifcfg Files

To create a networking team using ifcfg files, create a file in the /etc/sysconfig/network-scripts/
directory as follows:

DEVICE=team0
DEVICETYPE=Team
ONBOOT=yes
BOOTPROTO=none
IPADDR=192.168.11.1
PREFIX=24
TEAM_CONFIG='{"runner": {"name": "activebackup"}, "link_watch": {"name": "ethtool"}}'

This creates the interface to the team, in other words, this is the master.

To create a port to be a member of team0, create one or more files in the /etc/sysconfig/network-
scripts/ directory as follows:

DEVICE=enp1s0
HWADDR=D4:85:64:01:46:9E
DEVICETYPE=TeamPort
ONBOOT=yes
TEAM_MASTER=team0
TEAM_PORT_CONFIG='{"prio": 100}'

Add additional port interfaces similar to the above as required, changing the DEVICE and HWADDR field
to match the ports (the network devices) being added. If port priority is not specified by prio it defaults
to 0; it accepts negative and positive values in the range -32,767 to +32,767.

Specifying the hardware or MAC address using the HWADDR directive will influence the device naming
procedure. This is explained in Chapter 11, Consistent Network Device Naming .

To open the network team, issue the following command as root:

~]# ifup team0

Networking Guide

130

To view the network team, issue the following command:

~]$ ip link show

8.10.4. Add a Port to a Network Team Using iputils

To add a port em1 to a network team team0, using the ip utility, issue the following commands as root:

~]# ip link set dev em1 down
~]# ip link set dev em1 master team0

Add additional ports as required. Team driver will bring ports up automatically.

8.10.5. Listing the ports of a Team Using teamnl

To view or list the ports in a network team, using the teamnl utility, issue the following command as root:

~]# teamnl team0 ports
em2: up 100 fullduplex
em1: up 100 fullduplex

8.10.6. Configuring Options of a Team Using teamnl

To view or list all currently available options, using the teamnl utility, issue the following command as
root:

~]# teamnl team0 options

To configure a team to use active backup mode, issue the following command as root:

~]# teamnl team0 setoption mode activebackup

8.10.7. Add an Address to a Network Team Using iputils

To add an address to a team team0, using the ip utility, issue the following command as root:

~]# ip addr add 192.168.252.2/24 dev team0

8.10.8. open an Interface to a Network Team Using iputils

To activate or “open” an interface to a network team, team0, using the ip utility, issue the following
command as root:

~]# ip link set team0 up

8.10.9. Viewing the Active Port Options of a Team Using teamnl

To view or list the activeport option in a network team, using the teamnl utility, issue the following
command as root:

CHAPTER 8. CONFIGURE NETWORK TEAMING

131

~]# teamnl team0 getoption activeport
0

8.10.10. Setting the Active Port Options of a Team Using teamnl

To set the activeport option in a network team, using the teamnl utility, issue the following command as
root:

~]# teamnl team0 setoption activeport 5

To check the change in team port options, issue the following command as root:

~]# teamnl team0 getoption activeport
5

8.11. CONTROLLING TEAMD WITH TEAMDCTL

In order to query a running instance of teamd for statistics or configuration information, or to make
changes, the control tool teamdctl is used.

To view the current team state of a team team0, enter the following command as root:

~]# teamdctl team0 state view

For a more verbose output:

~]# teamdctl team0 state view -v

For a complete state dump in JSON format (useful for machine processing) of team0, use the following
command:

~]# teamdctl team0 state dump

For a configuration dump in JSON format of team0, use the following command:

~]# teamdctl team0 config dump

To view the configuration of a port em1, that is part of a team team0, enter the following command:

~]# teamdctl team0 port config dump em1

8.11.1. Add a Port to a Network Team

To add a port em1 to a network team team0, issue the following command as root:

~]# teamdctl team0 port add em1

IMPORTANT

Networking Guide

132

IMPORTANT

If using teamdctl directly to enslave a port, the slave port must be set to down. Otherwise
the teamdctl team0 port add em1 command will fail.

8.11.2. Remove a Port From a Network Team

To remove an interface em1 from a network team team0, issue the following command as root:

~]# teamdctl team0 port remove em1

8.11.3. Apply a Configuration to a Port in a Network Team

To apply a JSON format configuration to a port em1 in a network team team0, issue a command as root
in the following format:

~]# teamdctl team0 port config update em1 JSON-config-string

Where JSON-config-string is the configuration as a string of text in JSON format. This will update the
configuration of the port using the JSON format string supplied. An example of a valid JSON string for
configuring a port would be the following:

{
 "prio": -10,
 "sticky": true
}

Use single quotes around the JSON configuration string and omit the line breaks.

Note that the old configuration will be overwritten and that any options omitted will be reset to the
default values. See the teamdctl(8) man page for more team daemon control tool command examples.

8.11.4. View the Configuration of a Port in a Network Team

To copy the configuration of a port em1 in a network team team0, issue the following command as root:

~]# teamdctl team0 port config dump em1

This will dump the JSON format configuration of the port to standard output.

8.12. VERIFYING NETWORK CONFIGURATION TEAMING FOR
REDUNDANCY

Network redundancy is a process when devices are used for backup purposes to prevent or recover from
a failure of a specific system. The following procedure describes how to verify the network configuration
for teaming in redundancy:

Procedure

1. Ping the destination IP from the team interface. For example:

~]# ping -I team0 DSTADDR

CHAPTER 8. CONFIGURE NETWORK TEAMING

133

2. View which interface is in active mode:

~]# teamdctl team0 state
setup:
 runner: activebackup
ports:
 enp1s0
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 down count: 0
 enp2s0
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 down count: 0
runner:
 active port: enp1s0

enp1s0 is the active interface.

3. Set the active slave interface down:

~]# ip link set enp1s0 down

4. Check if the backup interface is up:

~]# teamdctl team0 state
setup:
 runner: activebackup
ports:
 enp1s0
 link watches:
 link summary: down
 instance[link_watch_0]:
 name: ethtool
 link: down
 down count: 1
 enp2s0
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 down count: 0
runner:
 active port: enp2s0

enp2s0 is now the active interface.

5. Check if you can still ping the destination IP from the team interface:

Networking Guide

134

~]# ping -I team0 DSTADDR

8.13. CONFIGURE TEAMD RUNNERS

Runners are units of code which are compiled into the Team daemon when an instance of the daemon is
created. For an introduction to the teamd runners, see Section 8.4, “Understanding the Network
Teaming Daemon and the "Runners"”.

8.13.1. Configure the broadcast Runner

To configure the broadcast runner, using an editor as root, add the following to the team JSON format
configuration file:

{
 "device": "team0",
 "runner": {"name": "broadcast"},
 "ports": {"em1": {}, "em2": {}}
}

Please see the teamd.conf(5) man page for more information.

8.13.2. Configure the random Runner

The random runner behaves similarly to the round-robin runner.

To configure the random runner, using an editor as root, add the following to the team JSON format
configuration file:

{
 "device": "team0",
 "runner": {"name": "random"},
 "ports": {"em1": {}, "em2": {}}
}

Please see the teamd.conf(5) man page for more information.

8.13.3. Configure the Round-robin Runner

To configure the round-robin runner, using an editor as root, add the following to the team JSON format
configuration file:

{
 "device": "team0",
 "runner": {"name": "roundrobin"},
 "ports": {"em1": {}, "em2": {}}
}

A very basic configuration for round-robin.

Please see the teamd.conf(5) man page for more information.

8.13.4. Configure the activebackup Runner

The active backup runner can use all of the link-watchers to determine the status of links in a team. Any

CHAPTER 8. CONFIGURE NETWORK TEAMING

135

The active backup runner can use all of the link-watchers to determine the status of links in a team. Any
one of the following examples can be added to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

This example configuration uses the active-backup runner with ethtool as the link watcher. Port em2
has higher priority. The sticky flag ensures that if em1 becomes active, it stays active as long as the link
remains up.

{
 "device": "team0",
 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true,
 "queue_id": 4
 },
 "em2": {
 "prio": 100
 }
 }
}

This example configuration adds a queue ID of 4. It uses active-backup runner with ethtool as the link
watcher. Port em2 has higher priority. But the sticky flag ensures that if em1 becomes active, it will stay
active as long as the link remains up.

To configure the activebackup runner using ethtool as the link watcher and applying a delay, using an
editor as root, add the following to the team JSON format configuration file:

{
 "device": "team0",

Networking Guide

136

 "runner": {
 "name": "activebackup"
 },
 "link_watch": {
 "name": "ethtool",
 "delay_up": 2500,
 "delay_down": 1000
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

This example configuration uses the active-backup runner with ethtool as the link watcher. Port em2
has higher priority. But the sticky flag ensures that if em1 becomes active, it stays active while the link
remains up. Link changes are not propagated to the runner immediately, but delays are applied.

Please see the teamd.conf(5) man page for more information.

8.13.5. Configure the loadbalance Runner

This runner can be used for two types of load balancing, active and passive. In active mode, constant re-
balancing of traffic is done by using statistics of recent traffic to share out traffic as evenly as possible. In
passive mode, streams of traffic are distributed randomly across the available links. This has a speed
advantage due to lower processing overhead. In high volume traffic applications this is often preferred
as traffic usually consists of multiple stream which will be distributed randomly between the available
links, in this way load sharing is accomplished without intervention by teamd.

To configure the loadbalance runner for passive transmit (Tx) load balancing, using an editor as root,
add the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "loadbalance",
 "tx_hash": ["eth", "ipv4", "ipv6"]
 },
 "ports": {"em1": {}, "em2": {}}
}

Configuration for hash-based passive transmit (Tx) load balancing.

To configure the loadbalance runner for active transmit (Tx) load balancing, using an editor as root, add
the following to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "loadbalance",

CHAPTER 8. CONFIGURE NETWORK TEAMING

137

 "tx_hash": ["eth", "ipv4", "ipv6"],
 "tx_balancer": {
 "name": "basic"
 }
 },
 "ports": {"em1": {}, "em2": {}}
}

Configuration for active transmit (Tx) load balancing using basic load balancer.

Please see the teamd.conf(5) man page for more information.

8.13.6. Configure the LACP (802.3ad) Runner

To configure the LACP runner using ethtool as a link watcher, using an editor as root, add the following
to the team JSON format configuration file:

{
 "device": "team0",
 "runner": {
 "name": "lacp",
 "active": true,
 "fast_rate": true,
 "tx_hash": ["eth", "ipv4", "ipv6"]
 },
 "link_watch": {"name": "ethtool"},
 "ports": {"em1": {}, "em2": {}}
}

Configuration for connection to a link aggregation control protocol (LACP) capable counterpart. The
LACP runner should use ethtool to monitor the status of a link. Note that only ethtool can be used for
link monitoring because, for example in the case of arp_ping, the link would never come up. The reason
is that the link has to be established first and only after that can packets, ARP included, go through.
Using ethtool prevents this because it monitors each link layer individually.

Active load balancing is possible with this runner in the same way as it is done for the loadbalance
runner. To enable active transmit (Tx) load balancing, add the following section:

"tx_balancer": {
 "name": "basic"
}

Please see the teamd.conf(5) man page for more information.

8.13.7. Configure Monitoring of the Link State

The following methods of link state monitoring are available. To implement one of the methods, add the
JSON format string to the team JSON format configuration file using an editor running with root
privileges.

8.13.7.1. Configure Ethtool for link-state Monitoring

To add or edit an existing delay, in milliseconds, between the link coming up and the runner being
notified about it, add or edit a section as follows:

Networking Guide

138

"link_watch": {
 "name": "ethtool",
 "delay_up": 2500
}

To add or edit an existing delay, in milliseconds, between the link going down and the runner being
notified about it, add or edit a section as follows:

"link_watch": {
 "name": "ethtool",
 "delay_down": 1000
}

8.13.7.2. Configure ARP Ping for Link-state Monitoring

The team daemon teamd sends an ARP REQUEST to an address at the remote end of the link in order
to determine if the link is up. The method used is the same as the arping utility but it does not use that
utility.

Prepare a file containing the new configuration in JSON format similar to the following example:

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch":{
 "name": "arp_ping",
 "interval": 100,
 "missed_max": 30,
 "source_host": "192.168.23.2",
 "target_host": "192.168.23.1"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

This configuration uses arp_ping as the link watcher. The missed_max option is a limit value of the
maximum allowed number of missed replies (ARP replies for example). It should be chosen in
conjunction with the interval option in order to determine the total time before a link is reported as
down.

To load a new configuration for a team port em2, from a file containing a JSON configuration, issue the
following command as root:

~]# teamdctl port config update em2 JSON-config-file

Note that the old configuration will be overwritten and that any options omitted will be reset to the
default values. See the teamdctl(8) man page for more team daemon control tool command examples.

CHAPTER 8. CONFIGURE NETWORK TEAMING

139

8.13.7.3. Configure IPv6 NA/NS for Link-state Monitoring

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch": {
 "name": "nsna_ping",
 "interval": 200,
 "missed_max": 15,
 "target_host": "fe80::210:18ff:feaa:bbcc"
 },
 "ports": {
 "em1": {
 "prio": -10,
 "sticky": true
 },
 "em2": {
 "prio": 100
 }
 }
}

To configure the interval between sending NS/NA packets, add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "interval": 200
}

Value is positive number in milliseconds. It should be chosen in conjunction with the missed_max option
in order to determine the total time before a link is reported as down.

To configure the maximum number of missed NS/NA reply packets to allow before reporting the link as
down, add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "missed_max": 15
}

Maximum number of missed NS/NA reply packets. If this number is exceeded, the link is reported as
down. The missed_max option is a limit value of the maximum allowed number of missed replies (ARP
replies for example). It should be chosen in conjunction with the interval option in order to determine
the total time before a link is reported as down.

To configure the host name that is resolved to the IPv6 address target address for the NS/NA packets,
add or edit a section as follows:

"link_watch": {
 "name": "nsna_ping",
 "target_host": "MyStorage"
}

The “target_host” option contains the host name to be converted to an IPv6 address which will be used
as the target address for the NS/NA packets. An IPv6 address can be used in place of a host name.

Networking Guide

140

Please see the teamd.conf(5) man page for more information.

8.13.8. Configure Port Selection Override

The physical port which transmits a frame is normally selected by the kernel part of the team driver, and
is not relevant to the user or system administrator. The output port is selected using the policies of the
selected team mode (teamd runner). On occasion however, it is helpful to direct certain classes of
outgoing traffic to certain physical interfaces to implement slightly more complex policies. By default
the team driver is multiqueue aware and 16 queues are created when the driver initializes. If more or less
queues are required, the Netlink attribute tx_queues can be used to change this value during the team
driver instance creation.

The queue ID for a port can be set by the port configuration option queue_id as follows:

{
 "queue_id": 3
}

These queue ID's can be used in conjunction with the tc utility to configure a multiqueue queue
discipline and filters to bias certain traffic to be transmitted on certain port devices. For example, if
using the above configuration and wanting to force all traffic bound to 192.168.1.100 to use enp1s0 in
the team as its output device, issue commands as root in the following format:

~]# tc qdisc add dev team0 handle 1 root multiq
~]# tc filter add dev team0 protocol ip parent 1: prio 1 u32 match ip dst \
 192.168.1.100 action skbedit queue_mapping 3

This mechanism of overriding runner selection logic in order to bind traffic to a specific port can be used
with all runners.

8.13.9. Configure BPF-based Tx Port Selectors

The loadbalance and LACP runners uses hashes of packets to sort network traffic flow. The hash
computation mechanism is based on the Berkeley Packet Filter (BPF) code. The BPF code is used to
generate a hash rather than make a policy decision for outgoing packets. The hash length is 8 bits giving
256 variants. This means many different socket buffers (SKB) can have the same hash and therefore
pass traffic over the same link. The use of a short hash is a quick way to sort traffic into different streams
for the purposes of load balancing across multiple links. In static mode, the hash is only used to decide
out of which port the traffic should be sent. In active mode, the runner will continually reassign hashes to
different ports in an attempt to reach a perfect balance.

The following fragment types or strings can be used for packet Tx hash computation:

eth — Uses source and destination MAC addresses.

vlan — Uses VLAN ID.

ipv4 — Uses source and destination IPv4 addresses.

ipv6 — Uses source and destination IPv6 addresses.

ip — Uses source and destination IPv4 and IPv6 addresses.

l3 — Uses source and destination IPv4 and IPv6 addresses.

tcp — Uses source and destination TCP ports.

CHAPTER 8. CONFIGURE NETWORK TEAMING

141

udp — Uses source and destination UDP ports.

sctp — Uses source and destination SCTP ports.

l4 — Uses source and destination TCP and UDP and SCTP ports.

These strings can be used by adding a line in the following format to the load balance runner:

"tx_hash": ["eth", "ipv4", "ipv6"]

See Section 8.13.5, “Configure the loadbalance Runner” for an example.

8.14. CREATING A NETWORK TEAM USING A GUI

8.14.1. Establishing a Team Connection

You can use nm-connection-editor to direct NetworkManager to create a team from two or more
Wired or InfiniBand connections. It is not necessary to create the connections to be teamed first. They
can be configured as part of the process to configure the team. You must have the MAC addresses of
the interfaces available in order to complete the configuration process.

Procedure 8.1. Adding a New Team Connection Using nm-connection-editor

Follow the below steps to add a new team connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Click the Add button. The Choose a Connection Type window appears. Select Team and click
Create. The Editing Team connection 1 window appears.

Networking Guide

142

Figure 8.6. The NetworkManager Graphical User Interface Add a menu

3. On the Team tab, click Add and select the type of interface you want to use with the team
connection. Click the Create button. Note that the dialog to select the port type only comes up
when you create the first port; after that, it will automatically use that same type for all further
ports.

4. The Editing team0 slave 1 window appears.

CHAPTER 8. CONFIGURE NETWORK TEAMING

143

Figure 8.7. The NetworkManager Graphical User Interface Add a Slave Connection

5. If custom port settings are to be applied, click on the Team Port tab and enter a JSON
configuration string or import it from a file.

6. Click the Save button.

7. The name of the teamed port appears in the Teamed connections window. Click the Add
button to add further port connections.

8. Review and confirm the settings and then click the Save button.

9. Edit the team-specific settings by referring to Section 8.14.1.1, “Configuring the Team Tab”
below.

Procedure 8.2. Editing an Existing Team Connection

Follow the below steps to edit an existing team connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Select the connection you want to edit and click the Edit button.

3. Select the General tab.

4. Five settings in the Editing dialog are common to the most connection types. See the General
tab:

Connection name — Enter a descriptive name for your network connection. This name is

Networking Guide

144

Connection name — Enter a descriptive name for your network connection. This name is
used to list this connection in the menu of the Network window.

Connection priority for auto-activation — If the connection is set to autoconnect, the
number is activated (0 by default). The higher number means higher priority.

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. See the section
called “Editing an Existing Connection with control-center” for more information.

All users may connect to this network — Select this box to create a connection available
to all users on the system. Changing this setting may require root privileges. See
Section 3.4.5, “Managing System-wide and Private Connection Profiles with a GUI” for
details.

Automatically connect to VPN when using this connection — Select this box if you want
NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN
from the drop-down menu.

Firewall Zone — Select the firewall zone from the drop-down menu. See the Red Hat
Enterprise Linux 7 Security Guide for more information on firewall zones.

5. Edit the team-specific settings by referring to Section 8.14.1.1, “Configuring the Team Tab”
below.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your team connection, click the Save button to save your customized
configuration.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”

or

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

8.14.1.1. Configuring the Team Tab

If you have already added a new team connection you can enter a custom JSON configuration string in
the text box or import a configuration file. Click Save to apply the JSON configuration to the team
interface.

For examples of JSON strings, see Section 8.13, “Configure teamd Runners”

See Procedure 8.1, “Adding a New Team Connection Using nm-connection-editor” for instructions on
how to add a new team.

8.15. ADDITIONAL RESOURCES

Installed Documentation

teamd(8) man page — Describes the teamd service.

CHAPTER 8. CONFIGURE NETWORK TEAMING

145

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

teamdctl(8) man page — Describes the teamd control tool.

teamd.conf(5) man page — Describes the teamd configuration file.

teamnl(8) man page — Describes the teamd Netlink library.

bond2team(1) man page — Describes a tool to convert bonding options to team.

Online Documentation

http://www.w3schools.com/js/js_json_syntax.asp

An explanation of JSON syntax.

Networking Guide

146

http://www.w3schools.com/js/js_json_syntax.asp

CHAPTER 9. CONFIGURE NETWORK BRIDGING
A network bridge is a link-layer device which forwards traffic between networks based on MAC
addresses. It makes forwarding decisions based on a table of MAC addresses which it builds by listening
to network traffic and thereby learning what hosts are connected to each network. A software bridge
can be used within a Linux host in order to emulate a hardware bridge, for example in virtualization
applications for sharing a NIC with one or more virtual NICs.

Note that a bridge cannot be established over Wi-Fi networks operating in Ad-Hoc or Infrastructure
modes. This is due to the IEEE 802.11 standard that specifies the use of 3-address frames in Wi-Fi for
the efficient use of airtime.

9.1. CONFIGURE BRIDGING USING THE TEXT USER INTERFACE,
NMTUI

The text user interface tool nmtui can be used to configure bridging in a terminal window. Issue the
following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

1. From the starting menu, select Edit a connection. Select Add, the New Connection screen
opens.

Figure 9.1. The NetworkManager Text User Interface Add a Bridge Connection menu

2. Select Bridge, the Edit connection screen opens.

CHAPTER 9. CONFIGURE NETWORK BRIDGING

147

3. To add slave interfaces to the bridge select Add, the New Connection screen opens. Once the
type of Connection has been chosen select the Create button to cause the bridge's Edit
Connection display to appear.

Figure 9.2. The NetworkManager Text User Interface Adding a new Bridge Slave
Connection menu

4. Enter the required slave's device name or MAC address in the Device section. If required, enter
a clone MAC address to be used as the bridge's MAC address by selecting Show to the right of
the Ethernet label. Select the OK button.

NOTE

If the device is specified without a MAC address the Device section will be
automatically populated once the Edit Connection window is reloaded, but only
if it successfully finds the device.

Networking Guide

148

Figure 9.3. The NetworkManager Text User Interface Configuring a Bridge Slave
Connection menu

5. The name of the bridge slave appears in the Slaves section. Repeat the above steps to add
further slave connections.

6. Review and confirm the settings before selecting the OK button.

CHAPTER 9. CONFIGURE NETWORK BRIDGING

149

Figure 9.4. The NetworkManager Text User Interface Configuring a Bridge menu

See Section 9.4.1.1, “Configuring the Bridge Tab” for definitions of the bridge terms.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

9.2. USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI

To create a bridge, named bridge-br0, issue a command as follows as root:

~]# nmcli con add type bridge ifname br0
Connection 'bridge-br0' (6ad5bba6-98a0-4f20-839d-c997ba7668ad) successfully added.

If no interface name is specified, the name will default to bridge, bridge-1, bridge-2, and so on.

To view the connections, issue the following command:

~]$ nmcli con show
NAME UUID TYPE DEVICE
bridge-br0 79cf6a3e-0310-4a78-b759-bda1cc3eef8d bridge br0
enp1s0 4d5c449a-a6c5-451c-8206-3c9a4ec88bca 802-3-ethernet enp1s0

Spanning tree protocol (STP) is enabled by default. The values used are from the IEEE 802.1D-1998
standard. To disable STP for this bridge, issue a command as follows as root:

Networking Guide

150

~]# nmcli con modify bridge-br0 bridge.stp no

To re-enable 802.1D STP for this bridge, issue a command as follows as root:

~]# nmcli con modify bridge-br0 bridge.stp yes

The default bridge priority for 802.1D STP is 32768. The lower number is preferred in root bridge
selection. For example, a bridge with priority of 28672 would be selected as the root bridge in
preference to a bridge with priority value of 32768 (the default). To create a bridge with a non-default
value, issue a command as follows:

~]$ nmcli con add type bridge ifname br5 stp yes priority 28672
Connection 'bridge-br5' (86b83ad3-b466-4795-aeb6-4a66eb1856c7) successfully added.

The allowed values are in the range 0 to 65535.

To change the bridge priority of an existing bridge to a non-default value, issue a command in the
following format:

~]$ nmcli connection modify bridge-br5 bridge.priority 36864

The allowed values are in the range 0 to 65535.

To configure a bridge connection to forward group addresses in the range from 01:80:C2:00:00:00 to
01:80:C2:00:00:0F, change the group-forward-mask property. This property is a mask of 16 bits. Each
bit corresponds to a group address in the above-mentioned range that must be forwarded. For
example:

~]$ nmcli connection modify bridge-br5 bridge.group-forward-mask 8

IMPORTANT

The group-forward-mask property cannot have any of the 0, 1, 2 bits set to 1 because
those addresses are used for Spanning tree protocol (STP), Link Aggregation Control
Protocol (LACP) and Ethernet MAC pause frames.

To view the bridge settings, issue the following command:

~]$ nmcli -f bridge con show bridge-br0

Further options for 802.1D STP are listed in the bridge section of the nmcli(1) man page.

To add, or enslave an interface, for example enp1s0, to the bridge bridge-br0, issue a command as
follows:

~]$ nmcli con add type ethernet ifname enp1s0 master bridge-br0
Connection 'bridge-slave-enp1s0' (70ffae80-7428-4d9c-8cbd-2e35de72476e) successfully added.

To enslave an existing connection to a bridge, proceed as follows:

1. Change its master and slave-type properties. For example to enslave an existing VLAN
connection named vlan100:

CHAPTER 9. CONFIGURE NETWORK BRIDGING

151

~]$ nmcli connection modify vlan100 master bridge-br0 slave-type bridge

2. Reactivate the connection to apply the changes:

~]$ nmcli connection up vlan100

To change a value using interactive mode, issue the following command:

~]$ nmcli connection edit bridge-br0

You will be placed at the nmcli prompt.

nmcli> set bridge.priority 4096
nmcli> save
Connection 'bridge-br0' (79cf6a3e-0310-4a78-b759-bda1cc3eef8d) successfully saved.
nmcli> quit

See Section 3.3, “Configuring IP Networking with nmcli” for an introduction to nmcli.

9.3. USING THE COMMAND LINE INTERFACE (CLI)

9.3.1. Check if Bridging Kernel Module is Installed

In Red Hat Enterprise Linux 7, the bridging module is loaded by default. If necessary, you can make sure
that the module is loaded by issuing the following command as root:

~]# modprobe --first-time bridge
modprobe: ERROR: could not insert 'bridge': Module already in kernel

To display information about the module, issue the following command:

~]$ modinfo bridge

See the modprobe(8) man page for more command options.

9.3.2. Create a Network Bridge

To create a network bridge, create a file in the /etc/sysconfig/network-scripts/ directory called ifcfg-
brN, replacing N with the number for the interface, such as 0.

The contents of the file is similar to whatever type of interface is getting bridged to, such as an Ethernet
interface. The differences in this example are as follows:

The DEVICE directive is given an interface name as its argument in the format brN, where N is
replaced with the number of the interface.

The TYPE directive is given an argument Bridge. This directive determines the device type and
the argument is case sensitive.

The bridge interface configuration file is given an IP address whereas the physical interface
configuration file must only have a MAC address (see below).

An extra directive, DELAY=0, is added to prevent the bridge from waiting while it monitors

Networking Guide

152

An extra directive, DELAY=0, is added to prevent the bridge from waiting while it monitors
traffic, learns where hosts are located, and builds a table of MAC addresses on which to base its
filtering decisions. The default delay of 15 seconds is not needed if no routing loops are possible.

Example 9.1. Example ifcfg-br0 Interface Configuration File

The following is an example of a bridge interface configuration file using a static IP address:

To complete the bridge another interface is created, or an existing interface is modified, and pointed to
the bridge interface.

Example 9.2. Example ifcfg-enp1s0 Interface Configuration File

The following is an example of an Ethernet interface configuration file pointing to a bridge interface.
Configure your physical interface in /etc/sysconfig/network-scripts/ifcfg-device_name, where
device_name is the name of the interface

Optionally specify a name using the NAME directive. If no name is specified, the NetworkManager
plug-in, ifcfg-rh, will create a name for the connection profile in the form “Type Interface”. In this
example, this means the bridge will be named Bridge br0. Alternately, if NAME=bridge-br0 is added to
the ifcfg-br0 file the connection profile will be named bridge-br0.

NOTE

For the DEVICE directive, almost any interface name could be used as it does not
determine the device type. TYPE=Ethernet is not strictly required. If the TYPE directive
is not set, the device is treated as an Ethernet device (unless its name explicitly matches a
different interface configuration file).

The directives are case sensitive.

Specifying the hardware or MAC address using the HWADDR directive will influence the device naming
procedure as explained in Chapter 11, Consistent Network Device Naming .

DEVICE=br0
TYPE=Bridge
IPADDR=192.168.1.1
PREFIX=24
BOOTPROTO=none
ONBOOT=yes
DELAY=0

DEVICE=device_name
TYPE=Ethernet
HWADDR=AA:BB:CC:DD:EE:FF
BOOTPROTO=none
ONBOOT=yes
BRIDGE=br0

CHAPTER 9. CONFIGURE NETWORK BRIDGING

153

WARNING

If you are configuring bridging on a remote host, and you are connected to that host
over the physical NIC you are configuring, consider the implications of losing
connectivity before proceeding. You will lose connectivity when restarting the
service and may not be able to regain connectivity if any errors have been made.
Console, or out-of-band access is advised.

To open the new or recently configured interfaces, issue a command as root in the following format:

ifup device

This command will detect if NetworkManager is running and call nmcli con load UUID and then call
nmcli con up UUID.

Alternatively, to reload all interfaces, issue the following command as root:

~]# systemctl restart network

This command will stop the network service, start the network service, and then call ifup for all ifcfg files
with ONBOOT=yes.

NOTE

The default behavior is for NetworkManager not to be aware of changes to ifcfg files
and to continue using the old configuration data until the interface is next brought up.
This is set by the monitor-connection-files option in the NetworkManager.conf file. See
the NetworkManager.conf(5) manual page for more information.

9.3.3. Network Bridge with Bond

An example of a network bridge formed from two or more bonded Ethernet interfaces will now be given
as this is another common application in a virtualization environment. If you are not very familiar with the
configuration files for bonded interfaces, see Section 7.4.2, “Create a Channel Bonding Interface”

Create or edit two or more Ethernet interface configuration files, which are to be bonded, as follows:

NOTE

Using interface_name as the interface name is common practice but almost any name
could be used.



DEVICE=interface_name
TYPE=Ethernet
SLAVE=yes
MASTER=bond0
BOOTPROTO=none
HWADDR=AA:BB:CC:DD:EE:FF

Networking Guide

154

Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-bond0, as follows:

For further instructions and advice on configuring the bonding module and to view the list of bonding
parameters, see Section 7.7, “Using Channel Bonding” .

Create or edit one interface configuration file, /etc/sysconfig/network-scripts/ifcfg-brbond0, as
follows:

We now have two or more interface configuration files with the MASTER=bond0 directive. These point
to the configuration file named /etc/sysconfig/network-scripts/ifcfg-bond0, which contains the
DEVICE=bond0 directive. This ifcfg-bond0 in turn points to the /etc/sysconfig/network-scripts/ifcfg-
brbond0 configuration file, which contains the IP address, and acts as an interface to the virtual
networks inside the host.

To open the new or recently configured interfaces, issue a command as root in the following format:

ifup device

This command will detect if NetworkManager is running and call nmcli con load UUID and then call
nmcli con up UUID.

Alternatively, to reload all interfaces, issue the following command as root:

~]# systemctl restart network

This command will stop the network service, start the network service, and then call ifup for all ifcfg files
with ONBOOT=yes.

NOTE

The default behavior is for NetworkManager not to be aware of changes to ifcfg files
and to continue using the old configuration data until the interface is next brought up.
This is set by the monitor-connection-files option in the NetworkManager.conf file. See
the NetworkManager.conf(5) manual page for more information.

9.4. CONFIGURE NETWORK BRIDGING USING A GUI

When starting a bridge interface, NetworkManager waits for at least one port to enter the “forwarding”
state before beginning any network-dependent IP configuration such as DHCP or IPv6
autoconfiguration. Static IP addressing is allowed to proceed before any slaves or ports are connected
or begin forwarding packets.

DEVICE=bond0
ONBOOT=yes
BONDING_OPTS='mode=1 miimon=100'
BRIDGE=brbond0

DEVICE=brbond0
ONBOOT=yes
TYPE=Bridge
IPADDR=192.168.1.1
PREFIX=24

CHAPTER 9. CONFIGURE NETWORK BRIDGING

155

9.4.1. Establishing a Bridge Connection with a GUI

Procedure 9.1. Adding a New Bridge Connection Using nm-connection-editor

Follow the below instructions to create a new bridge connection:

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Click the Add button. The Choose a Connection Type window appears. Select Bridge and
click Create. The Editing Bridge connection 1 window appears.

Networking Guide

156

Figure 9.5. Editing Bridge Connection 1

3. Add slave devices by referring to Procedure 9.3, “Adding a Slave Interface to a Bridge” below.

Procedure 9.2. Editing an Existing Bridge Connection

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

CHAPTER 9. CONFIGURE NETWORK BRIDGING

157

2. Select the Bridge connection you want to edit.

3. Click the Edit button.

Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings
Five settings in the Editing dialog are common to all connection types, see the General tab:

Connection name — Enter a descriptive name for your network connection. This name will be
used to list this connection in the menu of the Network window.

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. See the section called
“Editing an Existing Connection with control-center” for more information.

All users may connect to this network — Select this box to create a connection available to all
users on the system. Changing this setting may require root privileges. See Section 3.4.5,
“Managing System-wide and Private Connection Profiles with a GUI” for details.

Automatically connect to VPN when using this connection — Select this box if you want
NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN
from the dropdown menu.

Firewall Zone — Select the Firewall Zone from the dropdown menu. See the Red Hat
Enterprise Linux 7 Security Guide for more information on Firewall Zones.

9.4.1.1. Configuring the Bridge Tab

Interface name

The name of the interface to the bridge.

Bridged connections

One or more slave interfaces.

Aging time

The time, in seconds, a MAC address is kept in the MAC address forwarding database.

Enable IGMP snooping

If required, select the check box to enable IGMP snooping on the device.

Enable STP (Spanning Tree Protocol)

If required, select the check box to enable STP.

Priority

The bridge priority; the bridge with the lowest priority will be elected as the root bridge.

Forward delay

The time, in seconds, spent in both the Listening and Learning states before entering the Forwarding
state. The default is 15 seconds.

Hello time

The time interval, in seconds, between sending configuration information in bridge protocol data

Networking Guide

158

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

The time interval, in seconds, between sending configuration information in bridge protocol data
units (BPDU).

Max age

The maximum time, in seconds, to store the configuration information from BPDUs. This value should
be twice the Hello Time plus 1 but less than twice the Forwarding delay minus 1.

Group forward mask

This property is a mask of group addresses that allows group addresses to be forwarded. In most
cases, group addresses in the range from 01:80:C2:00:00:00 to 01:80:C2:00:00:0F are not
forwarded by the bridge device. This property is a mask of 16 bits, each corresponding to a group
address in the above range, that must be forwarded. Note that the Group forward mask property
cannot have any of the 0, 1, 2 bits set to 1 because those addresses are used for Spanning tree
protocol (STP), Link Aggregation Control Protocol (LACP) and Ethernet MAC pause frames.

Procedure 9.3. Adding a Slave Interface to a Bridge

1. To add a port to a bridge, select the Bridge tab in the Editing Bridge connection 1 window. If
necessary, open this window by following the procedure in Procedure 9.2, “Editing an Existing
Bridge Connection”.

2. Click Add. The Choose a Connection Type menu appears.

3. Select the type of connection to be created from the list. Click Create. A window appropriate to
the connection type selected appears.

Figure 9.6. The NetworkManager Graphical User Interface Add a Bridge Connection

CHAPTER 9. CONFIGURE NETWORK BRIDGING

159

4. Select the Bridge Port tab. Configure Priority and Path cost as required. Note the STP priority
for a bridge port is limited by the Linux kernel. Although the standard allows a range of 0 to 255,
Linux only allows 0 to 63. The default is 32 in this case.

Figure 9.7. The NetworkManager Graphical User Interface Bridge Port tab

5. If required, select the Hairpin mode check box to enable forwarding of frames for external
processing. Also known as virtual Ethernet port aggregator (VEPA) mode.

Then, to configure:

An Ethernet slave, click the Ethernet tab and proceed to the section called “Basic Configuration
Options ”, or;

A Bond slave, click the Bond tab and proceed to Section 7.8.1.1, “Configuring the Bond Tab”, or;

A Team slave, click the Team tab and proceed to Section 8.14.1.1, “Configuring the Team Tab”,
or;

An VLAN slave, click the VLAN tab and proceed to Section 10.5.1.1, “Configuring the VLAN Tab”,
or;

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your new bridge connection, click the Save button to save your
customized configuration. If the profile was in use while being edited, power cycle the connection to
make NetworkManager apply the changes. If the profile is OFF, set it to ON or select it in the network
connection icon's menu. See Section 3.4.1, “Connecting to a Network Using the control-center GUI” for
information on using your new or altered connection.

Networking Guide

160

You can further configure an existing connection by selecting it in the Network window and clicking
Options to return to the Editing dialog.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”, or;

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

Once saved the Bridge will appear in the Network settings tool with each slave showing in the display.

Figure 9.8. The NetworkManager Graphical User Interface with Bridge

9.5. ETHERNET BRIDGE CONFIGURATION USING IPROUTE

The iproute package can be used as an alternative to the bridge-utils. It allows to set bridge port options
such as priority, cost or state.

To set port options for an interface enp1s0 enslaved in a bridge device, using the ip utility, issue the
following command as root:

~]# ip link set enp1s0 type bridge_slave option

To select the available options, using the ip utility, issue the following command as root:

~]# ip link help bridge_slave
 Usage: ... bridge_slave [state STATE] [priority PRIO] [cost COST]
 [guard {on | off}]
 [hairpin {on | off}]
 [fastleave {on | off}]
 [root_block {on | off}]
 [learning {on | off}]
 [flood {on | off}]

CHAPTER 9. CONFIGURE NETWORK BRIDGING

161

For more details on the port options, see the ip-link(8) man page.

9.6. ADDITIONAL RESOURCES

nmcli(1) man page — Describes NetworkManager's command‐line tool.

nmcli-examples(5) man page — Gives examples of nmcli commands.

nm-settings(5) man page — Description of settings and parameters of NetworkManager
connections.

ip-link(8) man page — Description of the bridge port options.

Networking Guide

162

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING
To create a VLAN, an interface is created on top of another interface referred to as the parent interface.
The VLAN interface will tag packets with the VLAN ID as they pass through the interface, and returning
packets will be untagged. VLAN interface can be configured similarly to any other interface. The parent
interface does not need to be an Ethernet interface. An 802.1Q VLAN tagging interface can be created
on top of bridge, bond, and team interfaces, however there are some things to note:

In the case of VLANs over bonds, it is important that the bond has slaves and that they are “up”
before opening the VLAN interface. Adding a VLAN interface to a bond without slaves does not
work.

A VLAN slave cannot be configured on a bond with the fail_over_mac=follow option, because
the VLAN virtual device cannot change its MAC address to match the parent's new MAC
address. In such a case, traffic would still be sent with the now incorrect source MAC address.

Sending VLAN tagged packets through a network switch requires the switch to be properly
configured. For example, ports on Cisco switches must be assigned to one VLAN or be
configured as trunk ports to accept tagged packets from multiple VLANs. Some vendor
switches allow untagged frames of the native VLAN to be processed by a trunk port. Some
devices allow you to enable or disable the native VLAN, other devices have it disabled by default.
Consequence of this disparity may result in native VLAN misconfiguration between two different
switches, posing a security risk. For example:

One switch uses native VLAN 1 while the other uses native VLAN 10. If the frames are allowed to
pass without the tag being inserted, an attacker is able to jump VLANs - this common network
penetration technique is also known as VLAN hopping.

To minimize security risks, configure your interface as follows:

Switches

Unless you need them, disable trunk ports.

If you need trunk ports, disable native VLAN, so that untagged frames are not allowed.

Red Hat Enterprise Linux server

Use the nftables or ebtables utilities to drop untagged frames in ingress filtering.

Some older network interface cards, loopback interfaces, Wimax cards, and some InfiniBand
devices, are said to be VLAN challenged, meaning they cannot support VLANs. This is usually
because the devices cannot cope with VLAN headers and the larger MTU size associated with
tagged packets.

NOTE

Bonding on top of VLAN is not supported by Red Hat. See the Red Hat Knowledgebase
article Whether configuring bond on top of VLAN as slave interfaces is a valid
configuration? for more information.

10.1. SELECTING VLAN INTERFACE CONFIGURATION METHODS

To configure a VLAN interface using NetworkManager's text user interface tool, nmtui,

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

163

https://access.redhat.com/solutions/483803

To configure a VLAN interface using NetworkManager's text user interface tool, nmtui,
proceed to Section 10.2, “Configure 802.1Q VLAN tagging Using the Text User Interface, nmtui”

To configure a VLAN interface using NetworkManager's command-line tool, nmcli, proceed
to Section 10.3, “Configure 802.1Q VLAN Tagging Using the Command Line Tool, nmcli”

To configure a network interface manually, see Section 10.4, “Configure 802.1Q VLAN
Tagging Using the Command Line”.

To configure a network using graphical user interface tools, proceed to Section 10.5,
“Configure 802.1Q VLAN Tagging Using a GUI”

10.2. CONFIGURE 802.1Q VLAN TAGGING USING THE TEXT USER
INTERFACE, NMTUI

The text user interface tool nmtui can be used to configure 802.1Q VLANs in a terminal window. Issue
the following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

From the starting menu, select Edit a connection. Select Add, the New Connection screen opens.

Figure 10.1. The NetworkManager Text User Interface Add a VLAN Connection menu

Select VLAN, the Edit connection screen opens. Follow the on-screen prompts to complete the

Networking Guide

164

Select VLAN, the Edit connection screen opens. Follow the on-screen prompts to complete the
configuration.

Figure 10.2. The NetworkManager Text User Interface Configuring a VLAN Connection menu

See Section 10.5.1.1, “Configuring the VLAN Tab” for definitions of the VLAN terms.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

10.3. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE
TOOL, NMCLI

To view the available interfaces on the system, issue a command as follows:

~]$ nmcli con show
NAME UUID TYPE DEVICE
System enp2s0 9c92fad9-6ecb-3e6c-eb4d-8a47c6f50c04 802-3-ethernet enp2s0
System enp1s0 5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03 802-3-ethernet enp1s0

Note that the NAME field in the output always denotes the connection ID. It is not the interface name
even though it might look the same. The ID can be used in nmcli connection commands to identify a
connection. Use the DEVICE name with other applications such as firewalld.

To create an 802.1Q VLAN interface on Ethernet interface enp1s0, with VLAN interface VLAN10 and ID
10, issue a command as follows:

~]$ nmcli con add type vlan ifname VLAN10 dev enp1s0 id 10
Connection 'vlan-VLAN10' (37750b4a-8ef5-40e6-be9b-4fb21a4b6d17) successfully added.

Note that as no con-name was given for the VLAN interface, the name was derived from the interface
name by prepending the type. Alternatively, specify a name with the con-name option as follows:

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

165

~]$ nmcli con add type vlan con-name VLAN12 dev enp1s0 id 12
Connection 'VLAN12' (b796c16a-9f5f-441c-835c-f594d40e6533) successfully added.

Assigning Addresses to VLAN Interfaces
You can use the same nmcli commands to assign static and dynamic interface addresses as with any
other interface.

For example, a command to create a VLAN interface with a static IPv4 address and gateway is as
follows:

~]$ nmcli con add type vlan con-name VLAN20 dev enp1s0 id 20 ip4 10.10.10.10/24 \
gw4 10.10.10.254

To create a VLAN interface with dynamically assigned addressing, issue a command as follows:

~]$ nmcli con add type vlan con-name VLAN30 dev enp1s0 id 30

See Section 3.3.6, “Connecting to a Network Using nmcli” for examples of using nmcli commands to
configure interfaces.

To review the VLAN interfaces created, issue a command as follows:

~]$ nmcli con show
NAME UUID TYPE DEVICE
VLAN12 4129a37d-4feb-4be5-ac17-14a193821755 vlan enp1s0.12
System enp2s0 9c92fad9-6ecb-3e6c-eb4d-8a47c6f50c04 802-3-ethernet enp2s0
System enp1s0 5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03 802-3-ethernet enp1s0
vlan-VLAN10 1be91581-11c2-461a-b40d-893d42fed4f4 vlan VLAN10

To view detailed information about the newly configured connection, issue a command as follows:

~]$ nmcli -p con show VLAN12
===

 Connection profile details (VLAN12)
===

connection.id: VLAN12
connection.uuid: 4129a37d-4feb-4be5-ac17-14a193821755
connection.interface-name: --
connection.type: vlan
connection.autoconnect: yes
…

802-3-ethernet.port: --
802-3-ethernet.speed: 0
802-3-ethernet.duplex: --
802-3-ethernet.auto-negotiate: yes
802-3-ethernet.mac-address: --
802-3-ethernet.cloned-mac-address: --
802-3-ethernet.mac-address-blacklist:
802-3-ethernet.mtu: auto
…
vlan.interface-name: --

Networking Guide

166

vlan.parent: enp1s0
vlan.id: 12
vlan.flags: 0 (NONE)
vlan.ingress-priority-map:
vlan.egress-priority-map:

===

 Activate connection details (4129a37d-4feb-4be5-ac17-14a193821755)
===

GENERAL.NAME: VLAN12
GENERAL.UUID: 4129a37d-4feb-4be5-ac17-14a193821755
GENERAL.DEVICES: enp1s0.12
GENERAL.STATE: activating
[output truncated]

Further options for the VLAN command are listed in the VLAN section of the nmcli(1) man page. In the
man pages the device on which the VLAN is created is referred to as the parent device. In the example
above the device was specified by its interface name, enp1s0, it can also be specified by the connection
UUID or MAC address.

To create an 802.1Q VLAN connection profile with ingress priority mapping on Ethernet interface
enp2s0, with name VLAN1 and ID 13, issue a command as follows:

~]$ nmcli con add type vlan con-name VLAN1 dev enp2s0 id 13 ingress "2:3,3:5"

To view all the parameters associated with the VLAN created above, issue a command as follows:

~]$ nmcli connection show vlan-VLAN10

To change the MTU, issue a command as follows:

~]$ nmcli connection modify vlan-VLAN10 802.mtu 1496

The MTU setting determines the maximum size of the network layer packet. The maximum size of the
payload the link-layer frame can carry in turn limits the network layer MTU. For standard Ethernet
frames this means an MTU of 1500 bytes. It should not be necessary to change the MTU when setting
up a VLAN as the link-layer header is increased in size by 4 bytes to accommodate the 802.1Q tag.

At time of writing, connection.interface-name and vlan.interface-name have to be the same (if they
are set). They must therefore be changed simultaneously using nmcli's interactive mode. To change a
VLAN connections name, issue commands as follows:

~]$ nmcli con edit vlan-VLAN10
nmcli> set vlan.interface-name superVLAN
nmcli> set connection.interface-name superVLAN
nmcli> save
nmcli> quit

The nmcli utility can be used to set and clear ioctl flags which change the way the 802.1Q code
functions. The following VLAN flags are supported by NetworkManager:

0x01 - reordering of output packet headers

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

167

0x02 - use GVRP protocol

0x04 - loose binding of the interface and its master

The state of the VLAN is synchronized to the state of the parent or master interface (the interface or
device on which the VLAN is created). If the parent interface is set to the “down” administrative state
then all associated VLANs are set down and all routes are flushed from the routing table. Flag 0x04
enables a loose binding mode, in which only the operational state is passed from the parent to the
associated VLANs, but the VLAN device state is not changed.

To set a VLAN flag, issue a command as follows:

~]$ nmcli connection modify vlan-VLAN10 vlan.flags 1

See Section 3.3, “Configuring IP Networking with nmcli” for an introduction to nmcli.

10.4. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE

In Red Hat Enterprise Linux 7, the 8021q module is loaded by default. If necessary, you can make sure
that the module is loaded by issuing the following command as root:

~]# modprobe --first-time 8021q
modprobe: ERROR: could not insert '8021q': Module already in kernel

To display information about the module, issue the following command:

~]$ modinfo 8021q

See the modprobe(8) man page for more command options.

10.4.1. Setting Up 802.1Q VLAN Tagging Using ifcfg Files

1. Configure the parent interface in /etc/sysconfig/network-scripts/ifcfg-device_name, where
device_name is the name of the interface:

DEVICE=interface_name
TYPE=Ethernet
BOOTPROTO=none
ONBOOT=yes

2. Configure the VLAN interface configuration in the /etc/sysconfig/network-scripts/ directory.
The configuration file name should be the parent interface plus a . character plus the VLAN ID
number. For example, if the VLAN ID is 192, and the parent interface is enp1s0, then the
configuration file name should be ifcfg-enp1s0.192:

DEVICE=enp1s0.192
BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.1.1
PREFIX=24
NETWORK=192.168.1.0
VLAN=yes

If there is a need to configure a second VLAN, with for example, VLAN ID 193, on the same

Networking Guide

168

If there is a need to configure a second VLAN, with for example, VLAN ID 193, on the same
interface, enp1s0, add a new file with the name enp1s0.193 with the VLAN configuration details.

3. Restart the networking service in order for the changes to take effect. As root issue the
following command:

~]# systemctl restart network

10.4.2. Configure 802.1Q VLAN Tagging Using ip Commands

To create an 802.1Q VLAN interface on Ethernet interface enp1s0, with name VLAN8 and ID 8, issue a
command as root as follows:

~]# ip link add link enp1s0 name enp1s0.8 type vlan id 8

To view the VLAN, issue the following command:

~]$ ip -d link show enp1s0.8
4: enp1s0.8@enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP mode DEFAULT
 link/ether 52:54:00:ce:5f:6c brd ff:ff:ff:ff:ff:ff promiscuity 0
 vlan protocol 802.1Q id 8 <REORDER_HDR>

Note that the ip utility interprets the VLAN ID as a hexadecimal value if it is preceded by 0x and as an
octal value if it has a leading 0. This means that in order to assign a VLAN ID with a decimal value of 22,
you must not add any leading zeros.

To remove the VLAN, issue a command as root as follows:

~]# ip link delete enp1s0.8

To use multiple interfaces belonging to multiple VLANs, create locally enp1s0.1 and enp1s0.2 with the
appropriate VLAN ID on top of a physical interface enp1s0:

~]# ip link add link enp1s0 name enp1s0.1 type vlan id 1
 ip link set dev enp1s0.1 up
~]# ip link add link enp1s0 name enp1s0.2 type vlan id 2
 ip link set dev enp1s0.2 up

Note that running a network sniffer on a physical device, you can capture the tagged frames reaching
the physical device, even if no VLAN device is configured on top of enp1s0. For example:

tcpdump -nnei enp1s0 -vvv

NOTE

VLAN interfaces created using ip commands at the command prompt will be lost if the
system is shutdown or restarted. To configure VLAN interfaces to be persistent after a
system restart, use ifcfg files. See Section 10.4.1, “Setting Up 802.1Q VLAN Tagging
Using ifcfg Files”

10.5. CONFIGURE 802.1Q VLAN TAGGING USING A GUI

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

169

10.5.1. Establishing a VLAN Connection

You can use nm-connection-editor to create a VLAN using an existing interface as the parent interface.
Note that VLAN devices are only created automatically if the parent interface is set to connect
automatically.

Procedure 10.1. Adding a New VLAN Connection Using nm-connection-editor

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Click the Add button. The Choose a Connection Type window appears. Select VLAN and click
Create. The Editing VLAN connection 1 window appears.

3. On the VLAN tab, select the parent interface from the drop-down list you want to use for the
VLAN connection.

4. Enter the VLAN ID

5. Enter a VLAN interface name. This is the name of the VLAN interface that will be created. For
example, enp1s0.1 or vlan2. (Normally this is either the parent interface name plus “.” and the
VLAN ID, or “vlan” plus the VLAN ID.)

6. Review and confirm the settings and then click the Save button.

7. To edit the VLAN-specific settings see Section 10.5.1.1, “Configuring the VLAN Tab”.

Networking Guide

170

Figure 10.3. Adding a New VLAN Connection Using nm-connection-editor

Procedure 10.2. Editing an Existing VLAN Connection

Follow these steps to edit an existing VLAN connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Select the connection you want to edit and click the Edit button.

3. Select the General tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

These settings in the Editing dialog are common to all connection types:

Connection name — Enter a descriptive name for your network connection. This name will

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

171

Connection name — Enter a descriptive name for your network connection. This name will
be used to list this connection in the VLAN section of the Network window.

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. Refer to the
section called “Editing an Existing Connection with control-center” for more information.

Available to all users — Select this box to create a connection available to all users on the
system. Changing this setting may require root privileges. Refer to Section 3.4.5, “Managing
System-wide and Private Connection Profiles with a GUI” for details.

5. To edit the VLAN-specific settings see Section 10.5.1.1, “Configuring the VLAN Tab”.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your VLAN connection, click the Save button to save your customized
configuration.

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”.

or

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

10.5.1.1. Configuring the VLAN Tab

If you have already added a new VLAN connection (see Procedure 10.1, “Adding a New VLAN
Connection Using nm-connection-editor” for instructions), you can edit the VLAN tab to set the parent
interface and the VLAN ID.

Parent Interface

A previously configured interface can be selected in the drop-down list.

VLAN ID

The identification number to be used to tag the VLAN network traffic.

VLAN interface name

The name of the VLAN interface that will be created. For example, enp1s0.1 or vlan2.

Cloned MAC address

Optionally sets an alternate MAC address to use for identifying the VLAN interface. This can be used
to change the source MAC address for packets sent on this VLAN.

MTU

Optionally sets a Maximum Transmission Unit (MTU) size to be used for packets to be sent over the
VLAN connection.

10.6. VLAN ON BOND AND BRIDGE USING IP COMMANDS

Networking Guide

172

To use VLANs over bonds and bridges, proceed as follows:

1. Add a bond device as root:

ip link add bond0 type bond
ip link set bond0 type bond miimon 100 mode active-backup
ip link set em1 down
ip link set em1 master bond0
ip link set em2 down
ip link set em2 master bond0
ip link set bond0 up

2. Set VLAN on the bond device:

ip link add link bond0 name bond0.2 type vlan id 2
ip link set bond0.2 up

3. Add the bridge device and attach VLAN to it:

ip link add br0 type bridge
ip link set bond0.2 master br0
ip link set br0 up

10.7. VLAN ON BOND AND BRIDGE USING THE NETWORKMANAGER
COMMAND LINE TOOL, NMCLI

To use VLANs over bonds and bridges, proceed as follows:

1. Add a bond device:

~]$ nmcli connection add type bond con-name Bond0 ifname bond0 bond.options
"mode=active-backup,miimon=100" ipv4.method disabled ipv6.method ignore

Note that in this case a bond connection serves only as a "lower interface" for VLAN, and does
not get any IP address. Therefore, the ipv4.method disabled and ipv6.method ignore
parameters have been added on the command line.

2. Add slaves to the bond device:

~]$ nmcli connection add type ethernet con-name Slave1 ifname em1 master bond0 slave-
type bond
~]$ nmcli connection add type ethernet con-name Slave2 ifname em2 master bond0 slave-
type bond

3. Add a bridge device:

~]$ nmcli connection add type bridge con-name Bridge0 ifname br0 ip4 192.0.2.1/24

4. Add a VLAN interface on top of bond, enslaved to the bridge device:

~]$ nmcli connection add type vlan con-name Vlan2 ifname bond0.2 dev bond0 id 2 master
br0 slave-type bridge

CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING

173

5. View the created connections:

~]$ nmcli connection show
 NAME UUID TYPE DEVICE
 Bond0 f05806fa-72c3-4803-8743-2377f0c10bed bond bond0
 Bridge0 22d3c0de-d79a-4779-80eb-10718c2bed61 bridge br0
 Slave1 e59e13cb-d749-4df2-aee6-de3bfaec698c 802-3-ethernet em1
 Slave2 25361a76-6b3c-4ae5-9073-005be5ab8b1c 802-3-ethernet em2
 Vlan2 e2333426-eea4-4f5d-a589-336f032ec822 vlan bond0.2

10.8. CONFIGURING VLAN SWITCHPORT MODE

Red Hat Enterprise Linux machines are often used as routers and enable an advanced VLAN
configuration on their network interfaces. You need to set switchport mode when the Ethernet
interface is connected to a switch and there are VLANs running over the physical interface. A Red Hat
Enterprise Linux server or workstation is usually connected to only one VLAN, which makes switchport
mode access suitable, and the default setting.

In certain scenarios, multiple tagged VLANs use the same physical link, that is Ethernet between the
switch and Red Hat Enterprise Linux machine, which requires switchport mode trunk to be configured
on both ends.

For example, when a Red Hat Enterprise Linux machine is used as a router, the machine needs to
forward tagged packets from the various VLANs behind the router to the switch over the same physical
Ethernet, and maintain separation between those VLANs.

With the setup described, for example, in Section 10.3, “Configure 802.1Q VLAN Tagging Using the
Command Line Tool, nmcli”, use the Cisco switchport mode trunk. If you only set an IP address on an
interface, use Cisco switchport mode access.

10.9. ADDITIONAL RESOURCES

ip-link(8) man page — Describes the ip utility's network device configuration commands.

nmcli(1) man page — Describes NetworkManager's command‐line tool.

nmcli-examples(5) man page — Gives examples of nmcli commands.

nm-settings(5) man page — Description of settings and parameters of NetworkManager
connections.

nm-settings-ifcfg-rh(5) man page — Description of ifcfg-rh settings in the
/etc/sysconfig/network-scripts/ifcfg-* files.

Networking Guide

174

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING
Red Hat Enterprise Linux provides methods for consistent and predictable network device naming for
network interfaces. These features change the name of network interfaces on a system in order to make
locating and differentiating the interfaces easier.

Traditionally, network interfaces in Linux are enumerated as eth[0123…]s0, but these names do not
necessarily correspond to actual labels on the chassis. Modern server platforms with multiple network
adapters can encounter non-deterministic and counter-intuitive naming of these interfaces. This affects
both network adapters embedded on the motherboard (Lan-on-Motherboard, or LOM) and add-in
(single and multiport) adapters.

In Red Hat Enterprise Linux, udev supports a number of different naming schemes. The default is to
assign fixed names based on firmware, topology, and location information. This has the advantage that
the names are fully automatic, fully predictable, that they stay fixed even if hardware is added or
removed (no re-enumeration takes place), and that broken hardware can be replaced seamlessly. The
disadvantage is that they are sometimes harder to read than the eth or wla names traditionally used. For
example: enp5s0.

WARNING

Do not disable consistent network device naming because it allows the system using
ethX style names, where X is a unique number corresponding to a specific interface
and may have different names of network interfaces during the boot process. For
more details, see Section 11.10, “Troubleshooting Network Device Naming” .

11.1. NAMING SCHEMES HIERARCHY

By default, systemd will name interfaces using the following policy to apply the supported naming
schemes:

Scheme 1: Names incorporating Firmware or BIOS provided index numbers for on-board
devices (example: eno1), are applied if that information from the firmware or BIOS is applicable
and available, else falling back to scheme 2.

Scheme 2: Names incorporating Firmware or BIOS provided PCI Express hotplug slot index
numbers (example: ens1) are applied if that information from the firmware or BIOS is applicable
and available, else falling back to scheme 3.

Scheme 3: Names incorporating physical location of the connector of the hardware (example:
enp2s0), are applied if applicable, else falling directly back to scheme 5 in all other cases.

Scheme 4: Names incorporating interface's MAC address (example: enx78e7d1ea46da), is not
used by default, but is available if the user chooses.

Scheme 5: The traditional unpredictable kernel naming scheme, is used if all other methods fail
(example: enp1s0).

This policy, the procedure outlined above, is the default. If the system has biosdevname enabled, it will
be used. Note that enabling biosdevname requires passing biosdevname=1 as a kernel command-line
parameter, except in the case of a Dell system, where biosdevname will be used by default as long as it



CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING

175

is installed. If the user has added udev rules which change the name of the kernel devices, those rules
will take precedence.

11.2. UNDERSTANDING THE DEVICE RENAMING PROCEDURE

The device name procedure in detail is as follows:

1. A rule in /usr/lib/udev/rules.d/60-net.rules instructs the udev helper utility,
/lib/udev/rename_device, to look into all /etc/sysconfig/network-scripts/ifcfg-suffix files. If it
finds an ifcfg file with a HWADDR entry matching the MAC address of an interface it renames
the interface to the name given in the ifcfg file by the DEVICE directive.

2. A rule in /usr/lib/udev/rules.d/71-biosdevname.rules instructs biosdevname to rename the
interface according to its naming policy, provided that it was not renamed in a previous step,
biosdevname is installed, and biosdevname=0 was not given as a kernel command on the boot
command line.

3. A rule in /lib/udev/rules.d/75-net-description.rules instructs udev to fill in the internal udev
device property values ID_NET_NAME_ONBOARD, ID_NET_NAME_SLOT,
ID_NET_NAME_PATH, ID_NET_NAME_MAC by examining the network interface device. Note,
that some device properties might be undefined.

4. A rule in /usr/lib/udev/rules.d/80-net-name-slot.rules instructs udev to rename the interface,
provided that it was not renamed in step 1 or 2, and the kernel parameter net.ifnames=0 was
not given, according to the following priority: ID_NET_NAME_ONBOARD,
ID_NET_NAME_SLOT, ID_NET_NAME_PATH. It falls through to the next in the list, if one is
unset. If none of these are set, then the interface will not be renamed.

Steps 3 and 4 are implementing the naming schemes 1, 2, 3, and optionally 4, described in Section 11.1,
“Naming Schemes Hierarchy”. Step 2 is explained in more detail in Section 11.6, “Consistent Network
Device Naming Using biosdevname”.

11.3. UNDERSTANDING THE PREDICTABLE NETWORK INTERFACE
DEVICE NAMES

The names have two-character prefixes based on the type of interface:

1. en for Ethernet,

2. wl for wireless LAN (WLAN),

3. ww for wireless wide area network (WWAN).

The names have the following types:

o<index>

on-board device index number

s<slot>[f<function>][d<dev_id>]

hotplug slot index number. All multi-function PCI devices will carry the [f<function>] number in the
device name, including the function 0 device.

x<MAC>

MAC address

Networking Guide

176

[P<domain>]p<bus>s<slot>[f<function>][d<dev_id>]

PCI geographical location. In PCI geographical location, the [P<domain>] number is only mentioned
if the value is not 0. For example:

ID_NET_NAME_PATH=P1enp5s0

[P<domain>]p<bus>s<slot>[f<function>][u<port>][..][c<config>][i<interface>]

USB port number chain. For USB devices, the full chain of port numbers of hubs is composed. If the
name gets longer than the maximum number of 15 characters, the name is not exported. If there are
multiple USB devices in the chain, the default values for USB configuration descriptors (c1) and USB
interface descriptors (i0) are suppressed.

11.4. NAMING SCHEME FOR NETWORK DEVICES AVAILABLE FOR
LINUX ON SYSTEM Z

Use the bus-ID to create predictable device names for network interfaces in Linux on System z
instances. The bus-ID identifies a device in the s390 channel subsystem. A bus ID identifies the device
within the scope of a Linux instance. For a CCW device, the bus ID is the device's device number with a
leading 0.n, where n is the subchannel set ID. For example, 0.1.0ab1.

Network interfaces of device type Ethernet are named as follows:

enccw0.0.1234

CTC network devices of device type SLIP are named as follows:

slccw0.0.1234

Use the znetconf -c command or the lscss -a command to display available network devices and their
bus-IDs.

Table 11.1. Device Name Types for Linux on System z

Format Description

enccwbus-ID device type Ethernet

slccwbus-ID CTC network devices of device type
SLIP

11.5. NAMING SCHEME FOR VLAN INTERFACES

Traditionally, VLAN interface names in the format: interface-name.VLAN-ID are used. The VLAN-ID
ranges from 0 to 4096, which is a maximum of four characters and the total interface name has a limit of
15 characters. The maximum interface name length is defined by the kernel headers and is a global limit,
affecting all applications.

In Red Hat Enterprise Linux 7, four naming conventions for VLAN interface names are supported:

VLAN plus VLAN ID

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING

177

The word vlan plus the VLAN ID. For example: vlan0005

VLAN plus VLAN ID without padding

The word vlan plus the VLAN ID without padding by means of additional leading zeros. For example:
vlan5

Device name plus VLAN ID

The name of the parent interface plus the VLAN ID. For example: enp1s0.0005

Device name plus VLAN ID without padding

The name of the parent interface plus the VLAN ID without padding by means of additional leading
zeros. For example: enp1s0.5

11.6. CONSISTENT NETWORK DEVICE NAMING USING BIOSDEVNAME

This feature, implemented through the biosdevname udev helper utility, will change the name of all
embedded network interfaces, PCI card network interfaces, and virtual function network interfaces from
the existing eth[0123…] to the new naming convention as shown in Table 11.2, “The biosdevname
Naming Convention”. Note that unless the system is a Dell system, or biosdevname is explicitly enabled
as described in Section 11.6.2, “Enabling and Disabling the Feature” , the systemd naming scheme will
take precedence.

Table 11.2. The biosdevname Naming Convention

Device Old Name New Name

Embedded network interface
(LOM)

eth[0123…] em[1234…][a]

PCI card network interface eth[0123…] p<slot>p<ethernet port>[b]

Virtual function eth[0123…] p<slot>p<ethernet port>_<virtual interface>[c

]

[a] New enumeration starts at 1.

[b] For example: p3p4

[c] For example: p3p4_1

11.6.1. System Requirements

The biosdevname program uses information from the system's BIOS, specifically the type 9 (System
Slot) and type 41 (Onboard Devices Extended Information) fields contained within the SMBIOS. If the
system's BIOS does not have SMBIOS version 2.6 or higher and this data, the new naming convention
will not be used. Most older hardware does not support this feature because of a lack of BIOSes with the
correct SMBIOS version and field information. For BIOS or SMBIOS version information, contact your
hardware vendor.

For this feature to take effect, the biosdevname package must also be installed. To install it, issue the

Networking Guide

178

For this feature to take effect, the biosdevname package must also be installed. To install it, issue the
following command as root:

~]# yum install biosdevname

11.6.2. Enabling and Disabling the Feature

To disable this feature, pass the following option on the boot command line, both during and after
installation:

biosdevname=0

To enable this feature, pass the following option on the boot command line, both during and after
installation:

biosdevname=1

Unless the system meets the minimum requirements, this option will be ignored and the system will use
the systemd naming scheme as described in the beginning of the chapter.

If the biosdevname install option is specified, it must remain as a boot option for the lifetime of the
system.

11.7. NOTES FOR ADMINISTRATORS

Many system customization files can include network interface names, and thus will require updates if
moving a system from the old convention to the new convention. If you use the new naming convention,
you will also need to update network interface names in areas such as custom iptables rules, scripts
altering irqbalance, and other similar configuration files. Also, enabling this change for installation will
require modification to existing kickstart files that use device names through the ksdevice parameter;
these kickstart files will need to be updated to use the network device's MAC address or the network
device's new name.

NOTE

The maximum interface name length is defined by the kernel headers and is a global limit,
affecting all applications.

11.8. CONTROLLING THE SELECTION OF NETWORK DEVICE NAMES

Device naming can be controlled in the following manner:

By identifying the network interface device

Setting the MAC address in an ifcfg file using the HWADDR directive enables it to be identified by
udev. The name will be taken from the string given by the DEVICE directive, which by convention is
the same as the ifcfg suffix. For example, ifcfg-enp1s0.

By turning on or off biosdevname

The name provided by biosdevname will be used (if biosdevname can determine one).

By turning on or off the systemd-udev naming scheme

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING

179

The name provided by systemd-udev will be used (if systemd-udev can determine one).

11.9. DISABLING CONSISTENT NETWORK DEVICE NAMING

To disable consistent network device naming, is only recommended for special scenarios. See Chapter 11,
Consistent Network Device Naming and Section 11.10, “Troubleshooting Network Device Naming” for
more information.

To disable consistent network device naming, choose from one of the following:

Disable the assignment of fixed names by "masking" udev's rule file for the default policy. This
can be done by creating a symbolic link to /dev/null. As a result, unpredictable kernel names will
be used. As root, enter the following command:

~]# ln -s /dev/null /etc/udev/rules.d/80-net-name-slot.rules

Create your own manual naming scheme, for example by naming your interfaces internet0,
dmz0 or lan0. To do that, create your own udev rules file and set the NAME property for the
devices. Make sure to order the new file above the default policy file, for example by naming it
/etc/udev/rules.d/70-my-net-names.rules.

Alter the default policy file to pick a different naming scheme, for example to name all
interfaces after their MAC address by default. As root, copy the default policy file as follows:

~]# cp /usr/lib/udev/rules.d/80-net-name-slot.rules /etc/udev/rules.d/80-net-name-slot.rules

Edit the file in the /etc/udev/rules.d/ directory and change the lines as necessary.

Open the /etc/default/grub file and find the GRUB_CMDLINE_LINUX variable.

NOTE

GRUB_CMDLINE_LINUX is a variable that includes entries which are added to
the kernel command line. It might already contain additional configuration
depending on your system settings.

Add both net.ifnames=0 and biosdevname=0 as kernel parameter values to the
GRUB_CMDLINE_LINUX variable:

 ~]# cat /etc/default/grub
 GRUB_TIMEOUT=5
 GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
 GRUB_DEFAULT=saved
 GRUB_DISABLE_SUBMENU=true
 GRUB_TERMINAL_OUTPUT="console"
 GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel_7/swap rd.luks.uuid=luks-cc387312-6da6-469a-
8e49-b40cd58ad67a crashkernel=auto vconsole.keymap=us vconsole.font=latarcyrheb-
sun16 rd.lvm.lv=rhel_7/root rhgb quiet net.ifnames=0 biosdevname=0"
 GRUB_DISABLE_RECOVERY="true"

Rebuild the /boot/grub2/grub.cfg file by running the grub2-mkconfig command:

 ~]# grub2-mkconfig -o /boot/grub2/grub.cfg

Networking Guide

180

NOTE

For systems booted using UEFI:

~]# grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

View the current device name. For example, eno1:

~]# nmcli connection show
NAME UUID TYPE DEVICE
Wired 63cba8b2-60f7-4317-bc80-949e800a23cb 802-3-ethernet eno1

Modify the device name to enp1s0, and reboot the system:

~]# nmcli connection modify Wired connection.interface-name enp1s0

~]# reboot

The grubby utility is used for updating and displaying information about the configuration files
for the grub boot loader. See the grubby(8) man page for more details. For more information
about working with GRUB 2, see the Red Hat Enterprise Linux System Administrator's Guide .

11.10. TROUBLESHOOTING NETWORK DEVICE NAMING

Predictable interface names will be assigned for each interface, if applicable, as per the procedure
described in Section 11.2, “Understanding the Device Renaming Procedure” . To view the list of possible
names udev will use, issue a command in the following form as root:

~]# udevadm info /sys/class/net/ifname | grep ID_NET_NAME

where ifname is one of the interfaces listed by the following command:

~]$ ls /sys/class/net/

One of the possible names will be applied by udev according to the rules as described in Section 11.2,
“Understanding the Device Renaming Procedure”, and summarized here:

/usr/lib/udev/rules.d/60-net.rules - from initscripts,

/usr/lib/udev/rules.d/71-biosdevname.rules - from biosdevname,

/usr/lib/udev/rules.d/80-net-name-slot.rules - from systemd

From the above list of rule files it can be seen that if interface naming is done through initscripts or
biosdevname it always takes precedence over udev native naming. However if initscripts renaming is
not taking place and biosdevname is disabled, then to alter the interface names copy the 80-net-name-
slot.rules from /usr to /etc and edit the file appropriately. In other words, comment out or arrange
schemes to be used in a certain order.

Example 11.1. Some Interfaces Have Names from the Kernel Namespace (eth[0,1,2...]) While
Others Are Successfully Renamed by udev

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING

181

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

Mixed up schemes most likely means that either for some hardware there is no usable information
provided by the kernel to udev, thus it could not figure out any names, or the information provided to
udev is not suitable, for example non-unique device IDs. The latter is more common and the solution
is to use a custom naming scheme in ifcfg files or alter which udev scheme is in use by editing 80-
net-name-slot.rules.

Example 11.2. In /var/log/messages or the systemd Journal, Renaming Is Seen to Be Done Twice
for Each Interface

Systems with the naming scheme encoded in ifcfg files but which do not have a regenerated initrd
image are likely to encounter this issue. The interface name is initially assigned (through
biosdevname or udev or dracut parameters on the kernel command line) during early-boot while still
in initrd. Then after switching to real rootfs, renaming is done a second time and a new interface
name is determined by the /usr/lib/udev/rename_device binary spawned by udev because of
processing 60-net.rules. You can safely ignore such messages.

Example 11.3. Using Naming Scheme in ifcfg Files with ethX Names Does Not Work

Red Hat Enterprise Linux does not provide a way to consistently apply the ethX naming convention
except under very specific circumstances.

The udev rules, which set an interface to a specific name, fail if the requested name is already in use
by some other interface. This includes the functionality provided by the /usr/lib/udev/rules.d/60-
net.rules file.

Kernel uses the ethX naming convention at boot time when it enumerates network devices. The eth X
names are inconsistent across various reboots, and thus they are unpredictable. Consequently,
attempting to use udev to rename an interface to a predictable name or to reorder the unpredictable
ethX names given by the kernel fails.

Using the ethX names works correctly for the following scenarios:

The system has only one network interface.

When used for virtio NICs in Red Hat Enterprise Linux 7 virtual machine guests. See the KVM
Paravirtualized (virtio) Drivers and Network Configuration chapters in the Virtualization
Deployment and Administration Guide

Example 11.4. Setting net.ifnames=0 Results in Inconsistent enpXxX Names

If both systemd predictable interface naming (net.ifnames) and biosdevname naming schemes are
disabled, network interfaces continue to use the unpredictable and potentially inconsistent ethX
name originally given by the kernel.

Kernel always uses the enpXxX naming convention at boot when it enumerates network devices. Due
to parallelization, the order of the kernel interface enumeration is expected to vary across reboots.
Red Hat Enterprise Linux relies on either systemd predictable interface naming scheme or the
biosdevname naming scheme to rename the kernel unpredictable eth X interfaces in a predictable
way to a name which is always consistent across reboots.

For more information about network adapter naming conventions, see the Is it safe to set
net.ifnames=0 in RHEL7? Knowledge Centered Support article on the Red Hat Customer Portal.

Networking Guide

182

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/index.html
https://access.redhat.com/solutions/2435891

Example 11.5. Limitations for Prefixes of Ethernet Interfaces

The prefix that you choose must meet the following requirements:

It consists of ASCII characters.

It is an alpha-numeric string.

It is shorter than 16 characters.

It does not conflict with any other well-known prefix used for network interface naming, such
as eth, eno, ens, and em.

11.11. ADDITIONAL RESOURCES

Installed Documentation

udev(7) man page — Describes the Linux dynamic device management daemon, udevd.

systemd(1) man page — Describes systemd system and service manager.

biosdevname(1) man page — Describes the utility for obtaining the BIOS-given name of a
device.

Online Documentation

The IBM Knowledge Center Publication SC34-2710-00 Device Drivers, Features, and
Commands on Red Hat Enterprise Linux 7 includes information on “Predictable network device
names” for IBM System z devices and attachments.

CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING

183

http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_rhdd.html

CHAPTER 12. CONFIGURING POLICY-BASED ROUTING TO
DEFINE ALTERNATIVE ROUTES
By default, the kernel in RHEL decides where to forward network packets based on the destination
address using a routing table. Policy-based routing enables you to configure complex routing scenarios.
For example, you can route packets based on various criteria, such as the source address, packet
metadata, or protocol.

This section describes of how to configure policy-based routing using NetworkManager.

NOTE

On systems that use NetworkManager, only the nmcli utility supports setting routing
rules and assigning routes to specific tables.

12.1. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT
DEFAULT GATEWAY

This section describes how to configure RHEL as a router that, by default, routes all traffic to internet
provider A using the default route. Using policy-based routing, RHEL routes traffic received from the
internal workstations subnet to provider B.

The procedure assumes the following network topology:

Figure 12.1. Activate a Connection

Prerequisites

The RHEL router you want to set up in the procedure has four network interfaces:

The enp7s0 interface is connected to the network of provider A. The gateway IP in the
provider’s network is 198.51.100.2, and the network uses a /30 network mask.

The enp1s0 interface is connected to the network of provider B. The gateway IP in the
provider’s network is 192.0.2.2, and the network uses a /30 network mask.

Networking Guide

184

The enp8s0 interface is connected to the 10.0.0.0/24 subnet with internal workstations.

The enp9s0 interface is connected to the 203.0.113.0/24 subnet with the company’s
servers.

Hosts in the internal workstations subnet use 10.0.0.1 as default gateway. In the procedure, you
assign this IP address to the enp8s0 network interface of the router.

Hosts in the server subnet use 203.0.113.1 as default gateway. In the procedure, you assign this
IP address to the enp9s0 network interface of the router.

The firewalld service is enabled and active, which is the default.

Procedure

1. Configure the network interface to provider A:

nmcli connection add type ethernet con-name Provider-A ifname enp7s0 ipv4.method
manual ipv4.addresses 198.51.100.1/30 ipv4.gateway 198.51.100.2 ipv4.dns 198.51.100.200
connection.zone external

The nmcli connection add command creates a NetworkManager connection profile. The
following list describes the options of the command:

type ethernet: Defines that the connection type is Ethernet.

con-name connection_name: Sets the name of the profile. Use a meaningful name to
avoid confusion.

ifname network_device: Sets the network interface.

ipv4.method manual: Enables to configure a static IP address.

ipv4.addresses IP_address/subnet_mask: Sets the IPv4 addresses and subnet mask.

ipv4.gateway IP_address: Sets the default gateway address.

ipv4.dns IP_of_DNS_server: Sets the IPv4 address of the DNS server.

connection.zone firewalld_zone: Assigns the network interface to the defined firewalld
zone. Note that firewalld automatically enables masquerading interfaces assigned to the
external zone.

2. Configure the network interface to provider B:

nmcli connection add type ethernet con-name Provider-B ifname enp1s0 ipv4.method
manual ipv4.addresses 192.0.2.1/30 ipv4.routes "0.0.0.0/1 192.0.2.2 table=5000, 128.0.0.0/1
192.0.2.2 table=5000" connection.zone external

This command uses the ipv4.routes parameter instead of ipv4.gateway to set the default
gateway. This is required to assign the default gateway for this connection to a different routing
table (5000) than the default. NetworkManager automatically creates this new routing table
when the connection is activated.

NOTE

CHAPTER 12. CONFIGURING POLICY-BASED ROUTING TO DEFINE ALTERNATIVE ROUTES

185

NOTE

The nmcli utility does not support using 0.0.0.0/0 for the default gateway in
ipv4.gateway. To work around this problem, the command creates separate
routes for both the 0.0.0.0/1 and 128.0.0.0/1 subnets, which covers also the full
IPv4 address space.

3. Configure the network interface to the internal workstations subnet:

nmcli connection add type ethernet con-name Internal-Workstations ifname enp8s0
ipv4.method manual ipv4.addresses 10.0.0.1/24 ipv4.routes "10.0.0.0/24 src=192.0.2.1
table=5000" ipv4.routing-rules "priority 5 from 10.0.0.0/24 table 5000" connection.zone
trusted

This command uses the ipv4.routes parameter to add a static route to the routing table with ID
5000. This static route for the 10.0.0.0/24 subnet uses the IP of the local network interface to
provider B (192.0.2.1) as next hop.

Additionally, the command uses the ipv4.routing-rules parameter to add a routing rule with
priority 5 that routes traffic from the 10.0.0.0/24 subnet to table 5000. Low values have a high
priority.

Note that the syntax in the ipv4.routing-rules parameter is the same as in an ip route add
command, except that ipv4.routing-rules always requires specifying a priority.

4. Configure the network interface to the server subnet:

nmcli connection add type ethernet con-name Servers ifname enp9s0 ipv4.method manual
ipv4.addresses 203.0.113.1/24 connection.zone trusted

Verification Steps

1. On a RHEL host in the internal workstation subnet:

1. Install the traceroute package:

yum install traceroute

2. Use the traceroute utility to display the route to a host on the internet:

traceroute redhat.com
traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 10.0.0.1 (10.0.0.1) 0.337 ms 0.260 ms 0.223 ms
 2 192.0.2.1 (192.0.2.1) 0.884 ms 1.066 ms 1.248 ms
 ...

The output of the command displays that the router sends packets over 192.0.2.1, which is
the network of provider B.

2. On a RHEL host in the server subnet:

1. Install the traceroute package:

yum install traceroute

Networking Guide

186

2. Use the traceroute utility to display the route to a host on the internet:

traceroute redhat.com
traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 203.0.113.1 (203.0.113.1) 2.179 ms 2.073 ms 1.944 ms
 2 198.51.100.2 (198.51.100.2) 1.868 ms 1.798 ms 1.549 ms
 ...

The output of the command displays that the router sends packets over 198.51.100.2, which
is the network of provider A.

Troubleshooting Steps
On the RHEL router:

1. Display the rule list:

ip rule list
0: from all lookup local
5: from 10.0.0.0/24 lookup 5000
32766: from all lookup main
32767: from all lookup default

2. Display the routes in table 5000:

ip route list table 5000
0.0.0.0/1 via 192.0.2.2 dev enp1s0 proto static metric 100
10.0.0.0/24 dev enp8s0 proto static scope link src 192.0.2.1 metric 102
128.0.0.0/1 via 192.0.2.2 dev enp1s0 proto static metric 100

3. Display which interfaces are assigned to which firewall zones:

firewall-cmd --get-active-zones
external
 interfaces: enp1s0 enp7s0
trusted
 interfaces: enp8s0 enp9s0

4. Verify that the external zone has masquerading enabled:

firewall-cmd --info-zone=external
external (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp1s0 enp7s0
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: yes
 ...

Additional Resources

For further details about the ipv4.* parameters you can set in the nmcli connection add

CHAPTER 12. CONFIGURING POLICY-BASED ROUTING TO DEFINE ALTERNATIVE ROUTES

187

For further details about the ipv4.* parameters you can set in the nmcli connection add
command, see the IPv4 settings section in the nm-settings(5) man page.

For further details about the connection.* parameters you can set in the nmcli connection
add command, see the Connection settings section in the nm-settings(5) man page.

For further details about managing NetworkManager connections using nmcli, see the
Connection management commands section in the nmcli(1) man page.

Networking Guide

188

PART III. INFINIBAND AND RDMA NETWORKING

This part discusses how to set up RDMA, InfiniBand, and IP over InfiniBand network connections.

PART III. INFINIBAND AND RDMA NETWORKING

189

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA
NETWORKS

13.1. UNDERSTANDING INFINIBAND AND RDMA TECHNOLOGIES

InfiniBand refers to two distinct things. The first is a physical link-layer protocol for InfiniBand networks.
The second is a higher level programming API called the InfiniBand Verbs API. The InfiniBand Verbs API
is an implementation of a remote direct memory access (RDMA) technology.

RDMA provides direct access from the memory of one computer to the memory of another without
involving either computer’s operating system. This technology enables high-throughput, low-latency
networking with low CPU utilization, which is especially useful in massively parallel computer clusters.

In a typical IP data transfer, application X on machine A sends some data to application Y on machine B.
As part of the transfer, the kernel on machine B must first receive the data, decode the packet headers,
determine that the data belongs to application Y, wake up application Y, wait for application Y to
perform a read syscall into the kernel, then it must manually copy the data from the kernel's own internal
memory space into the buffer provided by application Y. This process means that most network traffic
must be copied across the system's main memory bus at least twice (once when the host adapter uses
DMA to put the data into the kernel-provided memory buffer, and again when the kernel moves the
data to the application's memory buffer) and it also means the computer must execute a number of
context switches to switch between kernel context and application Y context. Both of these things
impose extremely high CPU loads on the system when network traffic is flowing at very high rates and
can make other tasks to slow down.

RDMA communications differ from normal IP communications because they bypass kernel intervention
in the communication process, and in the process greatly reduce the CPU overhead normally needed to
process network communications. The RDMA protocol allows the host adapter in the machine to know
when a packet comes in from the network, which application should receive that packet, and where in the
application's memory space it should go. Instead of sending the packet to the kernel to be processed
and then copied into the user application's memory, it places the contents of the packet directly in the
application's buffer without any further intervention necessary. However, it cannot be accomplished
using the standard Berkeley Sockets API that most IP networking applications are built upon, so it must
provide its own API, the InfiniBand Verbs API, and applications must be ported to this API before they
can use RDMA technology directly.

Red Hat Enterprise Linux 7 supports both the InfiniBand hardware and the InfiniBand Verbs API. In
addition, there are two additional supported technologies that allow the InfiniBand Verbs API to be
utilized on non-InfiniBand hardware:

The Internet Wide Area RDMA Protocol (iWARP)

iWARP is a computer networking protocol that implements remote direct memory access
(RDMA) for efficient data transfer over Internet Protocol (IP) networks.

The RDMA over Converged Ethernet (RoCE) protocol, which later renamed to InfiniBand over
Ethernet (IBoE).

RoCE is a network protocol that allows remote direct memory access (RDMA) over an Ethernet
network.

Prerequisites
Both iWARP and RoCE technologies have a normal IP network link layer as their underlying technology,
and so the majority of their configuration is actually covered in Chapter 3, Configuring IP
Networking. For the most part, once their IP networking features are properly configured, their RDMA

Networking Guide

190

features are all automatic and will show up as long as the proper drivers for the hardware are
installed. The kernel drivers are always included with each kernel Red Hat provides, however the user-
space drivers must be installed manually if the InfiniBand package group was not selected at machine
install time.

Since Red Hat Enterprise Linux 7.4, all RDMA user-space drivers are merged into the rdma-core
package. To install all supported iWARP, RoCE or InfiniBand user-space drivers, enter as root:

~]# yum install libibverbs

If you are using Priority Flow Control (PFC) and mlx4-based cards, then edit
/etc/modprobe.d/mlx4.conf to instruct the driver which packet priority is configured for the “no-drop”
service on the Ethernet switches the cards are plugged into and rebuild the initramfs to include the
modified file. Newer mlx5-based cards auto-negotiate PFC settings with the switch and do not need any
module option to inform them of the “no-drop” priority or priorities.

To set the Mellanox cards to use one or both ports in Ethernet mode, see Section 13.5.4, “Configuring
Mellanox cards for Ethernet operation”.

With these driver packages installed (in addition to the normal RDMA packages typically installed for any
InfiniBand installation), a user should be able to utilize most of the normal RDMA applications to test and
see RDMA protocol communication taking place on their adapters. However, not all of the programs
included in Red Hat Enterprise Linux 7 properly support iWARP or RoCE/IBoE devices. This is because
the connection establishment protocol on iWARP in particular is different than it is on real InfiniBand
link-layer connections. If the program in question uses the librdmacm connection management library, it
handles the differences between iWARP and InfiniBand silently and the program should work. If the
application tries to do its own connection management, then it must specifically support iWARP or else it
does not work.

13.2. TRANSFERRING DATA USING ROCE

RDMA over Converged Ethernet (RoCE) is a network protocol that enables remote direct memory
access (RDMA) over an Ethernet network. There are two RoCE versions, RoCE v1 and RoCE v2,
depending on the network adapter used.

RoCE v1

The RoCE v1 protocol is an Ethernet link layer protocol with ethertype 0x8915 that enables
communication between any two hosts in the same Ethernet broadcast domain. RoCE v1 is the
default version for RDMA Connection Manager (RDMA_CM) when using the ConnectX-3 network
adapter.

RoCE v2

The RoCE v2 protocol exists on top of either the UDP over IPv4 or the UDP over IPv6 protocol. The
UDP destination port number 4791 has been reserved for RoCE v2. Since Red Hat Enterprise Linux
7.5, RoCE v2 is the default version for RDMA_CM when using the ConnectX-3 Pro, ConnectX-4,
ConnectX-4 Lx and ConnectX-5 network adapters. Hardware supports both RoCE v1 and RoCE v2.

RDMA Connection Manager (RDMA_CM) is used to set up a reliable connection between a client and a
server for transferring data. RDMA_CM provides an RDMA transport-neutral interface for establishing
connections. The communication is over a specific RDMA device, and data transfers are message-based.

Prerequisites
An RDMA_CM session requires one of the following:

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

191

Both client and server support the same RoCE mode.

A client supports RoCE v1 and a server RoCE v2.

Since a client determines the mode of the connection, the following cases are possible:

A successful connection:

If a client is in RoCE v1 or in RoCE v2 mode depending on the network card and the driver used, the
corresponding server must have the same version to create a connection. Also, the connection is
successful if a client is in RoCE v1 and a server in RoCE v2 mode.

A failed connection:

If a client is in RoCE v2 and the corresponding server is in RoCE v1, no connection can be established.
In this case, update the driver or the network adapter of the corresponding server, see Section 13.2,
“Transferring Data Using RoCE”

Table 13.1. RoCE Version Defaults Using RDMA_CM

Client Server Default setting

RoCE v1 RoCE v1 Connection

RoCE v1 RoCE v2 Connection

RoCE v2 RoCE v2 Connection

RoCE v2 RoCE v1 No connection

That RoCE v2 on the client and RoCE v1 on the server are not compatible. To resolve this issue, force
both the server and client-side environment to communicate over RoCE v1. This means to force
hardware that supports RoCE v2 to use RoCE v1:

Procedure 13.1. Changing the Default RoCE Mode When the Hardware Is Already Running in Roce v2

1. Change into the /sys/kernel/config/rdma_cm directory to et the RoCE mode:

~]# cd /sys/kernel/config/rdma_cm

2. Enter the ibstat command with an Ethernet network device to display the status. For example,
for mlx5_0:

~]$ ibstat mlx5_0
 CA 'mlx5_0'
 CA type: MT4115
 Number of ports: 1
 Firmware version: 12.17.1010
 Hardware version: 0
 Node GUID: 0x248a0703004bf0a4
 System image GUID: 0x248a0703004bf0a4
 Port 1:
 State: Active

Networking Guide

192

 Physical state: LinkUp
 Rate: 40
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x04010000
 Port GUID: 0x268a07fffe4bf0a4
 Link layer: Ethernet

3. Create a directory for the mlx5_0 device:

~]# mkdir mlx5_0

4. Display the RoCE mode in the default_roce_mode file in the tree format:

~]# cd mlx5_0

~]$ tree
└── ports
 └── 1
 ├── default_roce_mode
 └── default_roce_tos

~]$ cat /sys/kernel/config/rdma_cm/mlx5_0/ports/1/default_roce_mode
 RoCE v2

5. Change the default RoCE mode:

~]# echo "RoCE v1" > /sys/kernel/config/rdma_cm/mlx5_0/ports/1/default_roce_mode

6. View the changes:

~]$ cat /sys/kernel/config/rdma_cm/mlx5_0/ports/1/default_roce_mode
 RoCE v1

13.3. CONFIGURING SOFT-ROCE

RoCE can be implemented both in the hardware and in the software. Soft-RoCE is the software
implementation of the RDMA transport.

Prerequisites
Since Red Hat Enterprise Linux 7.4, the Soft-RoCE driver is already merged into the kernel. The user-
space driver also is merged into the rdma-core package. Soft-RoCE is also known as RXE. To start, stop
and configure RXE, use the rxe_cfg script. To view options for rxe_cfg, enter rxe_cfg help.

Procedure 13.2. Configuring Soft-RoCE

1. As the root user, enter the following command to display the current configuration status of
RXE:

~]# rxe_cfg
 rdma_rxe module not loaded

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

193

 Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
 igb_1 yes igb
 mlx4_1 no mlx4_en
 mlx4_2 no mlx4_en

2. To load the RXE kernel module and start RXE, enter as root:

~]# rxe_cfg start
 Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
 igb_1 yes igb
 mlx4_1 no mlx4_en
 mlx4_2 no mlx4_en

Optionally, to verify that the RXE kernel module is loaded, enter:

~]# lsmod |grep rdma_rxe
 rdma_rxe 111129 0
 ip6_udp_tunnel 12755 1 rdma_rxe
 udp_tunnel 14423 1 rdma_rxe
 ib_core 236827 15
rdma_cm,ib_cm,iw_cm,rpcrdma,mlx4_ib,ib_srp,ib_ucm,ib_iser,ib_srpt,ib_umad,ib_uverbs,rdma
_rxe,rdma_ucm,ib_ipoib,ib_isert

3. Before adding a new RXE device over an Ethernet interface, the corresponding interface should
be opened and has a valid IP address assigned. To add a new RXE device, for example igb_1:

~]# rxe_cfg add igb_1

~]# rxe_cfg status
 Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
 igb_1 yes igb rxe0 1024 (3)
 mlx4_1 no mlx4_en
 mlx4_2 no mlx4_en

The rxe0 in the RDEV column indicates that rxe is enabled for the igb_1 device.

4. To verify the status of an RXE device, use the ibv_devices command:

~]# ibv_devices
 device node GUID
 ------ ----------------
 mlx4_0 0002c90300b3cff0
 rxe0 a2369ffffe018294

Alternatively, enter the ibstat for a detailed status:

~]# ibstat rxe0
CA 'rxe0'
 CA type:
 Number of ports: 1
 Firmware version:
 Hardware version:
 Node GUID: 0xa2369ffffe018294
 System image GUID: 0x0000000000000000

Networking Guide

194

 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 2.5
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00890000
 Port GUID: 0xa2369ffffe018294
 Link layer: Ethernet

Removing an RXE device
If you want to remove an RXE device, enter:

~]# rxe_cfg remove igb_1

Verifying Connectivity of an RXE device
The following examples show how to verify connectivity of an RXE device on the server and client side.

Example 13.1. Verifying Connectivity of an RXE device on the Server Side

~]$ ibv_rc_pingpong -d rxe0 -g 0
 local address: LID 0x0000, QPN 0x000012, PSN 0xe2965f, GID fe80::290:faff:fe29:486a
 remote address: LID 0x0000, QPN 0x000011, PSN 0x4bf206, GID fe80::290:faff:fe29:470a
8192000 bytes in 0.05 seconds = 1244.06 Mbit/sec
1000 iters in 0.05 seconds = 52.68 usec/iter

Example 13.2. Verifying Connectivity of an RXE device on the Client Side

~]$ ibv_rc_pingpong -d rxe0 -g 0 172.31.40.4
 local address: LID 0x0000, QPN 0x000011, PSN 0x4bf206, GID fe80::290:faff:fe29:470a
 remote address: LID 0x0000, QPN 0x000012, PSN 0xe2965f, GID fe80::290:faff:fe29:486a
 8192000 bytes in 0.05 seconds = 1245.72 Mbit/sec
 1000 iters in 0.05 seconds = 52.61 usec/iter

13.4. INFINIBAND AND RDMA RELATED SOFTWARE PACKAGES

Because RDMA applications are so different from Berkeley Sockets based applications, and from normal
IP networking, most applications that are used on an IP network cannot be used directly on an RDMA
network. Red Hat Enterprise Linux 7 comes with a number of different software packages for RDMA
network administration, testing and debugging, high level software development APIs, and performance
analysis.

In order to utilize these networks, some or all of these packages need to be installed (this list is not
exhaustive, but does cover the most important packages related to RDMA).

Required packages:

rdma — responsible for kernel initialization of the RDMA stack.

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

195

libibverbs — provides the InfiniBand Verbs API.

opensm — subnet manager (only required on one machine, and only if there is no subnet
manager active on the fabric).

user space driver for installed hardware — one or more of: infinipath-psm, libcxgb3, libcxgb4,
libehca, libipathverbs, libmthca, libmlx4, libmlx5, libnes, and libocrdma. Note that libehca is only
available for IBM Power Systems servers.

Recommended packages:

librdmacm, librdmacm-utils, and ibacm — Connection management library that is aware of
the differences between InfiniBand, iWARP, and RoCE and is able to properly open connections
across all of these hardware types, some simple test programs for verifying the operation of the
network, and a caching daemon that integrates with the library to make remote host resolution
faster in large clusters.

libibverbs-utils — Simple Verbs based programs for querying the installed hardware and
verifying communications over the fabric.

infiniband-diags and ibutils — Provide a number of useful debugging tools for InfiniBand fabric
management. These provide only very limited functionality on iWARP or RoCE as most of the
tools work at the InfiniBand link layer, not the Verbs API layer.

perftest and qperf — Performance testing applications for various types of RDMA
communications.

Optional packages:

These packages are available in the Optional channel. Before installing packages from the Optional
channel, see Scope of Coverage Details. Information on subscribing to the Optional channel can be
found in the Red Hat Knowledgebase solution How to access Optional and Supplementary channels .

dapl, dapl-devel, and dapl-utils — Provide a different API for RDMA than the Verbs API. There
is both a runtime component and a development component to these packages.

openmpi, mvapich2, and mvapich2-psm — MPI stacks that have the ability to use RDMA
communications. User-space applications writing to these stacks are not necessarily aware that
RDMA communications are taking place.

13.5. CONFIGURING THE BASE RDMA SUBSYSTEM

Startup of the rdma service is automatic. When RDMA capable hardware, whether InfiniBand or iWARP
or RoCE/IBoE is detected, udev instructs systemd to start the rdma service.

~]# systemctl status rdma
● rdma.service - Initialize the iWARP/InfiniBand/RDMA stack in the kernel
 Loaded: loaded (/usr/lib/systemd/system/rdma.service; disabled; vendor preset: disabled)
 Active: inactive (dead)
 Docs: file:/etc/rdma/rdma.conf

Users need not enable the rdma service, but they can if they want to force it on all the time. To do that,
enter the following command as root:

~]# systemctl enable rdma

Networking Guide

196

https://access.redhat.com/site/support/offerings/production/scope_moredetail
https://access.redhat.com/site/solutions/392003

13.5.1. Configuration of the rdma.conf file

The rdma service reads /etc/rdma/rdma.conf to find out which kernel-level and user-level RDMA
protocols the administrator wants to be loaded by default. Users should edit this file to turn various
drivers on or off.

The various drivers that can be enabled and disabled are:

IPoIB — This is an IP network emulation layer that allows IP applications to run over InfiniBand
networks.

SRP — This is the SCSI Request Protocol. It allows a machine to mount a remote drive or drive
array that is exported through the SRP protocol on the machine as though it were a local hard
disk.

SRPT — This is the target mode, or server mode, of the SRP protocol. This loads the kernel
support necessary for exporting a drive or drive array for other machines to mount as though it
were local on their machine. Further configuration of the target mode support is required before
any devices will actually be exported. See the documentation in the targetd and targetcli
packages for further information.

ISER — This is a low-level driver for the general iSCSI layer of the Linux kernel that provides
transport over InfiniBand networks for iSCSI devices.

RDS — This is the Reliable Datagram Service in the Linux kernel. It is not enabled in Red Hat
Enterprise Linux 7 kernels and so cannot be loaded.

13.5.2. Usage of 70-persistent-ipoib.rules

The rdma package provides the file /etc/udev.d/rules.d/70-persistent-ipoib.rules. This udev rules file
is used to rename IPoIB devices from their default names (such as ib0 and ib1) to more descriptive
names. Users must edit this file to change how their devices are named. First, find out the GUID address
for the device to be renamed:

~]$ ip link show ib0
8: ib0: >BROADCAST,MULTICAST,UP,LOWER_UP< mtu 65520 qdisc pfifo_fast state UP mode
DEFAULT qlen 256
 link/infiniband 80:00:02:00:fe:80:00:00:00:00:00:00:f4:52:14:03:00:7b:cb:a1 brd
00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff

Immediately after link/infiniband is the 20 byte hardware address for the IPoIB interface. The final 8
bytes of the address, marked in bold above, is all that is required to make a new name. Users can make up
whatever naming scheme suits them. For example, use a device_fabric naming convention such as
mlx4_ib0 if a mlx4 device is connected to an ib0 subnet fabric. The only thing that is not recommended
is to use the standard names, like ib0 or ib1, as these can conflict with the kernel assigned automatic
names. Next, add an entry in the rules file. Copy the existing example in the rules file, replace the 8 bytes
in the ATTR{address} entry with the highlighted 8 bytes from the device to be renamed, and enter the
new name to be used in the NAME field.

13.5.3. Relaxing memlock restrictions for users

RDMA communications require that physical memory in the computer be pinned (meaning that the
kernel is not allowed to swap that memory out to a paging file in the event that the overall computer
starts running short on available memory). Pinning memory is normally a very privileged operation. In

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

197

order to allow users other than root to run large RDMA applications, it will likely be necessary to increase
the amount of memory that non-root users are allowed to pin in the system. This is done by adding a file
in the /etc/security/limits.d/ directory with contents such as the following:

~]$ more /etc/security/limits.d/rdma.conf
configuration for rdma tuning
* soft memlock unlimited
* hard memlock unlimited
rdma tuning end

13.5.4. Configuring Mellanox cards for Ethernet operation

Certain hardware from Mellanox is capable of running in either InfiniBand or Ethernet mode. These cards
generally default to InfiniBand. Users can set the cards to Ethernet mode. There is currently support for
setting the mode only on ConnectX family hardware (which uses either the mlx5 or mlx4 driver).

To configure Mellanox mlx5 cards, use the mstconfig program from the mstflint package. For more
details, see the Configuring Mellanox mlx5 cards in Red Hat Enterprise Linux 7 Knowledge Base article
on the Red Hat Customer Portal.

To configure Mellanox mlx4 cards, use mstconfig to set the port types on the card as described in the
Knowledge Base article. If mstconfig does not support your card, edit the /etc/rdma/mlx4.conf file and
follow the instructions in that file to set the port types properly for RoCE/IBoE usage. In this case is also
necessary to rebuild the initramfs to make sure the updated port settings are copied into the initramfs.

Once the port type has been set, if one or both ports are set to Ethernet and mstconfig was not used to
set the port types, then users might see this message in their logs:

mlx4_core 0000:05:00.0: Requested port type for port 1 is not supported on this HCA

This is normal and does not affect operation. The script responsible for setting the port type has no way
of knowing when the driver has finished switching port 2 to the requested type internally, and from the
time that the script issues a request for port 2 to switch until that switch is complete, the attempts to set
port 1 to a different type get rejected. The script retries until the command succeeds or until a timeout
has passed indicating that the port switch never completed.

13.5.5. Connecting to a Remote Linux SRP Target

The SCSI RDMA Protocol (SRP) is a network protocol that enables a system to use RDMA to access
SCSI devices that are attached to another system. To allow an SRP initiator to connect an SRP target on
the SRP target side, you must add an access control list (ACL) entry for the host channel adapter (HCA)
port used in the initiator.

ACL IDs for HCA ports are not unique. The ACL IDs depend on the GID format of the HCAs. HCAs that
use the same driver, for example ib_qib, can have different format of GIDs. The ACL ID also depends on
how you initiate the connection request.

Connecting to a Remote Linux SRP Target: High-Level Overview

1. Prepare the target side:

1. Create storage back end. For example get the /dev/sdc1 partition:

/> /backstores/block create vol1 /dev/sdc1

Networking Guide

198

https://access.redhat.com/articles/3082811
https://access.redhat.com/articles/3082811

2. Create an SRP target:

/> /srpt create 0xfe80000000000000001175000077dd7e

3. Create a LUN based on the back end created in step a:

/> /srpt/ib.fe80000000000000001175000077dd7e/luns create /backstores/block/vol1

4. Create a Node ACL for the remote SRP client:

/> /srpt/ib.fe80000000000000001175000077dd7e/acls create
0x7edd770000751100001175000077d708

Note that the Node ACL is different for srp_daemon and ibsrpdm.

2. Initiate an SRP connection with srp_daemon or ibsrpdm for the client side:

[root@initiator]# srp_daemon -e -n -i qib0 -p 1 -R 60 &

[root@initiator]# ibsrpdm -c -d /dev/infiniband/umad0 > /sys/class/infiniband_srp/srp-qib0-
1/add_target

3. Optional. It is recommended to verify the SRP connection with different tools, such as lsscsi or
dmesg.

Procedure 13.3. Connecting to a Remote Linux SRP Target with srp_daemon or ibsrpdm

1. Use the ibstat command on the target to determine the State and Port GUID values. The HCA
must be in Active state. The ACL ID is based on the Port GUID:

[root@target]# ibstat
CA 'qib0'
 CA type: InfiniPath_QLE7342
 Number of ports: 1
 Firmware version:
 Hardware version: 2
 Node GUID: 0x001175000077dd7e
 System image GUID: 0x001175000077dd7e
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 40
 Base lid: 1
 LMC: 0
 SM lid: 1
 Capability mask: 0x0769086a
 Port GUID: 0x001175000077dd7e
 Link layer: InfiniBand

2. Get the SRP target ID, which is based on the GUID of the HCA port. Note that you need a
dedicated disk partition as a back end for a SRP target, for example /dev/sdc1. The following
command replaces the default prefix of fe80, removes the colon, and adds the new prefix to
the remainder of the string:

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

199

[root@target]# ibstatus | grep '<default-gid>' | sed -e 's/<default-gid>://' -e 's/://g' | grep
001175000077dd7e
fe80000000000000001175000077dd7e

3. Use the targetcli tool to create the LUN vol1 on the block device, create an SRP target, and
export the LUN:

[root@target]# targetcli

/> /backstores/block create vol1 /dev/sdc1
Created block storage object vol1 using /dev/sdc1.
/> /srpt create 0xfe80000000000000001175000077dd7e
Created target ib.fe80000000000000001175000077dd7e.
/> /srpt/ib.fe80000000000000001175000077dd7e/luns create /backstores/block/vol1
Created LUN 0.
/> ls /
o- / ... [...]
 o- backstores .. [...]
 | o- block .. [Storage Objects: 1]
 | | o- vol1 [/dev/sdc1 (77.8GiB) write-thru activated]
 | o- fileio ... [Storage Objects: 0]
 | o- pscsi .. [Storage Objects: 0]
 | o- ramdisk .. [Storage Objects: 0]
 o- iscsi .. [Targets: 0]
 o- loopback ... [Targets: 0]
 o- srpt ... [Targets: 1]
 o- ib.fe80000000000000001175000077dd7e [no-gen-acls]
 o- acls .. [ACLs: 0]
 o- luns .. [LUNs: 1]
 o- lun0 ... [block/vol1 (/dev/sdc1)]
/>

4. Use the ibstat command on the initiator to check if the state is Active and determine the Port
GUID:

[root@initiator]# ibstat
CA 'qib0'
 CA type: InfiniPath_QLE7342
 Number of ports: 1
 Firmware version:
 Hardware version: 2
 Node GUID: 0x001175000077d708
 System image GUID: 0x001175000077d708
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 40
 Base lid: 2
 LMC: 0
 SM lid: 1
 Capability mask: 0x07690868
 Port GUID: 0x001175000077d708
 Link layer: InfiniBand

Networking Guide

200

5. Use the following command to scan without connecting to a remote SRP target. The target
GUID shows that the initiator had found remote target. The ID string shows that the remote
target is a Linux software target (ib_srpt.ko).

[root@initiator]# srp_daemon -a -o
IO Unit Info:
 port LID: 0001
 port GID: fe80000000000000001175000077dd7e
 change ID: 0001
 max controllers: 0x10

 controller[1]
 GUID: 001175000077dd7e
 vendor ID: 000011
 device ID: 007322
 IO class : 0100
 ID: Linux SRP target
 service entries: 1
 service[0]: 001175000077dd7e / SRP.T10:001175000077dd7e

6. To verify the SRP connection, use the lsscsi command to list SCSI devices and compare the
lsscsi output before and after the initiator connects to target.

[root@initiator]# lsscsi
[0:0:10:0] disk IBM-ESXS ST9146803SS B53C /dev/sda

7. To connect to a remote target without configuring a valid ACL for the initiator port, which is
expected to fail, use the following commands for srp_daemon or ibsrpdm:

[root@initiator]# srp_daemon -e -n -i qib0 -p 1 -R 60 &
[1] 4184

[root@initiator]# ibsrpdm -c -d /dev/infiniband/umad0 > /sys/class/infiniband_srp/srp-qib0-
1/add_target

8. The output of the dmesg shows why the SRP connection operation failed. In a later step, the
dmesg command on the target side is used to make the situation clear.

[root@initiator]# dmesg -c
[1230.059652] scsi host5: ib_srp: REJ received
[1230.059659] scsi host5: ib_srp: SRP LOGIN from
fe80:0000:0000:0000:0011:7500:0077:d708 to fe80:0000:0000:0000:0011:7500:0077:dd7e
REJECTED, reason 0x00010006
[1230.073792] scsi host5: ib_srp: Connection 0/2 failed
[1230.078848] scsi host5: ib_srp: Sending CM DREQ failed

9. Because of failed LOGIN, the output of the lsscsi command is the same as in the earlier step.

[root@initiator]# lsscsi
[0:0:10:0] disk IBM-ESXS ST9146803SS B53C /dev/sda

10. Using the dmesg on the target side (ib_srpt.ko) provides an explanation of why LOGIN failed.

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

201

10. Using the dmesg on the target side (ib_srpt.ko) provides an explanation of why LOGIN failed.
Also, the output contains the valid ACL ID provided by srp_daemon:
0x7edd770000751100001175000077d708.

[root@target]# dmesg
[1200.303001] ib_srpt Received SRP_LOGIN_REQ with i_port_id
0x7edd770000751100:0x1175000077d708, t_port_id
0x1175000077dd7e:0x1175000077dd7e and it_iu_len 260 on port 1
(guid=0xfe80000000000000:0x1175000077dd7e)
[1200.322207] ib_srpt Rejected login because no ACL has been configured yet for initiator
0x7edd770000751100001175000077d708.

11. Use the targetcli tool to add a valid ACL:

[root@target]# targetcli
targetcli shell version 2.1.fb41
Copyright 2011-2013 by Datera, Inc and others.
For help on commands, type 'help'.

/> /srpt/ib.fe80000000000000001175000077dd7e/acls create
0x7edd770000751100001175000077d708
Created Node ACL for ib.7edd770000751100001175000077d708
Created mapped LUN 0.

12. Verify the SRP LOGIN operation:

a. Wait for 60 seconds to allow srp_daemon to re-try logging in:

[root@initiator]# sleep 60

b. Verify the SRP LOGIN operation:

[root@initiator]# lsscsi
[0:0:10:0] disk IBM-ESXS ST9146803SS B53C /dev/sda
[7:0:0:0] disk LIO-ORG vol1 4.0 /dev/sdb

c. For a kernel log of SRP target discovery, use:

[root@initiator]# dmesg -c
[1354.182072] scsi host7: SRP.T10:001175000077DD7E
[1354.187258] scsi 7:0:0:0: Direct-Access LIO-ORG vol1 4.0 PQ: 0 ANSI: 5
[1354.208688] scsi 7:0:0:0: alua: supports implicit and explicit TPGS
[1354.215698] scsi 7:0:0:0: alua: port group 00 rel port 01
[1354.221409] scsi 7:0:0:0: alua: port group 00 state A non-preferred supports TOlUSNA
[1354.229147] scsi 7:0:0:0: alua: Attached
[1354.233402] sd 7:0:0:0: Attached scsi generic sg1 type 0
[1354.233694] sd 7:0:0:0: [sdb] 163258368 512-byte logical blocks: (83.5 GB/77.8 GiB)
[1354.235127] sd 7:0:0:0: [sdb] Write Protect is off
[1354.235128] sd 7:0:0:0: [sdb] Mode Sense: 43 00 00 08
[1354.235550] sd 7:0:0:0: [sdb] Write cache: disabled, read cache: enabled, doesn't
support DPO or FUA
[1354.255491] sd 7:0:0:0: [sdb] Attached SCSI disk
[1354.265233] scsi host7: ib_srp: new target: id_ext 001175000077dd7e ioc_guid
001175000077dd7e pkey ffff service_id 001175000077dd7e sgid

Networking Guide

202

fe80:0000:0000:0000:0011:7500:0077:d708 dgid
fe80:0000:0000:0000:0011:7500:0077:dd7e
xyx

13.6. CONFIGURING THE SUBNET MANAGER

13.6.1. Determining Necessity

Most InfiniBand switches come with an embedded subnet manager. However, if a more up to date
subnet manager is required than the one in the switch firmware, or if more complete control than the
switch manager allows is required, Red Hat Enterprise Linux 7 includes the opensm subnet manager. All
InfiniBand networks must have a subnet manager running for the network to function. This is true even
when doing a simple network of two machines with no switch and the cards are plugged in back to back,
a subnet manager is required for the link on the cards to come up. It is possible to have more than one, in
which case one will act as master, and any other subnet managers will act as slaves that will take over
should the master subnet manager fail.

13.6.2. Configuring the opensm master configuration file

The opensm program keeps its master configuration file in /etc/rdma/opensm.conf. Users may edit this
file at any time and edits will be kept on upgrade. There is extensive documentation of the options in the
file itself. However, for the two most common edits needed, setting the GUID to bind to and the
PRIORITY to run with, it is highly recommended that the opensm.conf file is not edited but instead edit
/etc/sysconfig/opensm. If there are no edits to the base /etc/rdma/opensm.conf file, it will get
upgraded whenever the opensm package is upgraded. As new options are added to this file regularly,
this makes it easier to keep the current configuration up to date. If the opensm.conf file has been
changed, then on upgrade, it might be necessary to merge new options into the edited file.

13.6.3. Configuring the opensm startup options

The options in the /etc/sysconfig/opensm file control how the subnet manager is actually started, as
well as how many copies of the subnet manager are started. For example, a dual port InfiniBand card,
with each port plugged into physically separate networks, will need a copy of the subnet manager
running on each port. The opensm subnet manager will only manage one subnet per instance of the
application and must be started once for each subnet that needs to be managed. In addition, if there is
more than one opensm server, then set the priorities on each server to control which are to be slaves
and which are to be master.

The file /etc/sysconfig/opensm is used to provide a simple means to set the priority of the subnet
manager and to control which GUID the subnet manager binds to. There is an extensive explanation of
the options in the /etc/sysconfig/opensm file itself. Users need only read and follow the directions in
the file itself to enable failover and multifabric operation of opensm.

13.6.4. Creating a P_Key definition

By default, opensm.conf looks for the file /etc/rdma/partitions.conf to get a list of partitions to create
on the fabric. All fabrics must contain the 0x7fff subnet, and all switches and all hosts must belong to
that fabric. Any other partition can be created in addition to that, and all hosts and all switches do not
have to be members of these additional partitions. This allows an administrator to create subnets akin to
Ethernet’s VLANs on InfiniBand fabrics. If a partition is defined with a given speed, such as 40 Gbps, and
there is a host on the network unable to do 40 Gbps, then that host will be unable to join the partition
even if it has permission to do so as it will be unable to match the speed requirements, therefore it is

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

203

recommended that the speed of a partition be set to the slowest speed of any host with permission to
join the partition. If a faster partition for some subset of hosts is required, create a different partition
with the higher speed.

The following partition file would result in a default 0x7fff partition at a reduced speed of 10 Gbps, and a
partition of 0x0002 with a speed of 40 Gbps:

~]$ more /etc/rdma/partitions.conf
For reference:
IPv4 IANA reserved multicast addresses:
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.txt
IPv6 IANA reserved multicast addresses:
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xml
#
mtu =
1 = 256
2 = 512
3 = 1024
4 = 2048
5 = 4096
#
rate =
2 = 2.5 GBit/s
3 = 10 GBit/s
4 = 30 GBit/s
5 = 5 GBit/s
6 = 20 GBit/s
7 = 40 GBit/s
8 = 60 GBit/s
9 = 80 GBit/s
10 = 120 GBit/s

Default=0x7fff, rate=3, mtu=4, scope=2, defmember=full:
 ALL, ALL_SWITCHES=full;
Default=0x7fff, ipoib, rate=3, mtu=4, scope=2:
 mgid=ff12:401b::ffff:ffff # IPv4 Broadcast address
 mgid=ff12:401b::1 # IPv4 All Hosts group
 mgid=ff12:401b::2 # IPv4 All Routers group
 mgid=ff12:401b::16 # IPv4 IGMP group
 mgid=ff12:401b::fb # IPv4 mDNS group
 mgid=ff12:401b::fc # IPv4 Multicast Link Local Name Resolution group
 mgid=ff12:401b::101 # IPv4 NTP group
 mgid=ff12:401b::202 # IPv4 Sun RPC
 mgid=ff12:601b::1 # IPv6 All Hosts group
 mgid=ff12:601b::2 # IPv6 All Routers group
 mgid=ff12:601b::16 # IPv6 MLDv2-capable Routers group
 mgid=ff12:601b::fb # IPv6 mDNS group
 mgid=ff12:601b::101 # IPv6 NTP group
 mgid=ff12:601b::202 # IPv6 Sun RPC group
 mgid=ff12:601b::1:3 # IPv6 Multicast Link Local Name Resolution group
 ALL=full, ALL_SWITCHES=full;

ib0_2=0x0002, rate=7, mtu=4, scope=2, defmember=full:
 ALL, ALL_SWITCHES=full;
ib0_2=0x0002, ipoib, rate=7, mtu=4, scope=2:
 mgid=ff12:401b::ffff:ffff # IPv4 Broadcast address

Networking Guide

204

 mgid=ff12:401b::1 # IPv4 All Hosts group
 mgid=ff12:401b::2 # IPv4 All Routers group
 mgid=ff12:401b::16 # IPv4 IGMP group
 mgid=ff12:401b::fb # IPv4 mDNS group
 mgid=ff12:401b::fc # IPv4 Multicast Link Local Name Resolution group
 mgid=ff12:401b::101 # IPv4 NTP group
 mgid=ff12:401b::202 # IPv4 Sun RPC
 mgid=ff12:601b::1 # IPv6 All Hosts group
 mgid=ff12:601b::2 # IPv6 All Routers group
 mgid=ff12:601b::16 # IPv6 MLDv2-capable Routers group
 mgid=ff12:601b::fb # IPv6 mDNS group
 mgid=ff12:601b::101 # IPv6 NTP group
 mgid=ff12:601b::202 # IPv6 Sun RPC group
 mgid=ff12:601b::1:3 # IPv6 Multicast Link Local Name Resolution group
 ALL=full, ALL_SWITCHES=full;

13.6.5. Enabling opensm

Users need to enable the opensm service as it is not enabled by default when installed. Issue the
following command as root:

~]# systemctl enable opensm

13.7. TESTING EARLY INFINIBAND RDMA OPERATION

NOTE

This section applies only to InfiniBand devices. Since iWARP and RoCE/IBoE devices are
IP based devices, users should proceed to the section on testing RDMA operations once
IPoIB has been configured and the devices have IP addresses.

Once the rdma service is enabled, and the opensm service (if needed) is enabled, and the proper user-
space library for the specific hardware has been installed, user space rdma operation should be possible.
Simple test programs from the libibverbs-utils package are helpful in determining that RDMA operations
are working properly. The ibv_devices program will show which devices are present in the system and
the ibv_devinfo command will give detailed information about each device. For example:

~]$ ibv_devices
 device node GUID
 ------ ----------------
 mlx4_0 0002c903003178f0
 mlx4_1 f4521403007bcba0
~]$ ibv_devinfo -d mlx4_1
hca_id: mlx4_1
 transport: InfiniBand (0)
 fw_ver: 2.30.8000
 node_guid: f452:1403:007b:cba0
 sys_image_guid: f452:1403:007b:cba3
 vendor_id: 0x02c9
 vendor_part_id: 4099
 hw_ver: 0x0
 board_id: MT_1090120019
 phys_port_cnt: 2

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

205

 port: 1
 state: PORT_ACTIVE (4)
 max_mtu: 4096 (5)
 active_mtu: 2048 (4)
 sm_lid: 2
 port_lid: 2
 port_lmc: 0x01
 link_layer: InfiniBand

 port: 2
 state: PORT_ACTIVE (4)
 max_mtu: 4096 (5)
 active_mtu: 4096 (5)
 sm_lid: 0
 port_lid: 0
 port_lmc: 0x00
 link_layer: Ethernet
~]$ ibstat mlx4_1
CA 'mlx4_1'
 CA type: MT4099
 Number of ports: 2
 Firmware version: 2.30.8000
 Hardware version: 0
 Node GUID: 0xf4521403007bcba0
 System image GUID: 0xf4521403007bcba3
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 56
 Base lid: 2
 LMC: 1
 SM lid: 2
 Capability mask: 0x0251486a
 Port GUID: 0xf4521403007bcba1
 Link layer: InfiniBand
 Port 2:
 State: Active
 Physical state: LinkUp
 Rate: 40
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x04010000
 Port GUID: 0xf65214fffe7bcba2
 Link layer: Ethernet

The ibv_devinfo and ibstat commands output slightly different information (such as port MTU exists in
ibv_devinfo but not in ibstat output, and the Port GUID exists in ibstat output but not in ibv_devinfo
output), and a few things are named differently (for example, the Base local identifier (LID) in ibstat
output is the same as the port_lid output of ibv_devinfo)

Simple ping programs, such as ibping from the infiniband-diags package, can be used to test RDMA
connectivity. The ibping program uses a client-server model. You must first start an ibping server on
one machine, then run ibping as a client on another machine and tell it to connect to the ibping server.
Since we are wanting to test the base RDMA capability, we need to use an RDMA specific address
resolution method instead of IP addresses for specifying the server.

Networking Guide

206

On the server machine, the user can use the ibv_devinfo and ibstat commands to print out the port_lid
(or Base lid) and the Port GUID of the port they want to test (assuming port 1 of the above interface, the
port_lid/Base LID is 2 and Port GUID is 0xf4521403007bcba1)). Then start ibping with the necessary
options to bind specifically to the card and port to be tested, and also specifying ibping should run in
server mode. You can see the available options to ibping by passing -? or --help, but in this instance we
will need either the -S or --Server option and for binding to the specific card and port we will need either
-C or --Ca and -P or --Port. Note: port in this instance does not denote a network port number, but
denotes the physical port number on the card when using a multi-port card. To test connectivity to the
RDMA fabric using, for example, the second port of a multi-port card, requires telling ibping to bind to
port 2 on the card. When using a single port card, or testing the first port on a card, this option is not
needed. For example:

~]$ ibping -S -C mlx4_1 -P 1

Then change to the client machine and run ibping. Make note of either the port GUID of the port the
server ibping program is bound to, or the local identifier (LID) of the port the server ibping program is
bound to. Also, take note which card and port in the client machine is physically connected to the same
network as the card and port that was bound to on the server. For example, if the second port of the first
card on the server was bound to, and that port is connected to a secondary RDMA fabric, then on the
client specify whichever card and port are necessary to also be connected to that secondary fabric.
Once these things are known, run the ibping program as a client and connect to the server using either
the port LID or GUID that was collected on the server as the address to connect to. For example:

~]$ ibping -c 10000 -f -C mlx4_0 -P 1 -L 2
--- rdma-host.example.com.(none) (Lid 2) ibping statistics ---
10000 packets transmitted, 10000 received, 0% packet loss, time 816 ms
rtt min/avg/max = 0.032/0.081/0.446 ms

or

~]$ ibping -c 10000 -f -C mlx4_0 -P 1 -G 0xf4521403007bcba1 \
--- rdma-host.example.com.(none) (Lid 2) ibping statistics ---
10000 packets transmitted, 10000 received, 0% packet loss, time 769 ms
rtt min/avg/max = 0.027/0.076/0.278 ms

This outcome verifies that end to end RDMA communications are working for user space applications.

The following error may be encountered:

~]$ ibv_devinfo
libibverbs: Warning: no userspace device-specific driver found for
/sys/class/infiniband_verbs/uverbs0
No IB devices found

This error indicates that the necessary user-space library is not installed. The administrator will need to
install one of the user-space libraries (as appropriate for their hardware) listed in section Section 13.4,
“InfiniBand and RDMA related software packages”. On rare occasions, this can happen if a user installs
the wrong arch type for the driver or for libibverbs. For example, if libibverbs is of arch x86_64, and
libmlx4 is installed but is of type i686, then this error can result.

NOTE

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

207

NOTE

Many sample applications prefer to use host names or addresses instead of LIDs to open
communication between the server and client. For those applications, it is necessary to
set up IPoIB before attempting to test end-to-end RDMA communications. The ibping
application is unusual in that it will accept simple LIDs as a form of addressing, and this
allows it to be a simple test that eliminates possible problems with IPoIB addressing from
the test scenario and therefore gives us a more isolated view of whether or not simple
RDMA communications are working.

13.8. CONFIGURING IPOIB

13.8.1. Understanding the role of IPoIB

As mentioned in Section 1.1, “Comparing IP to non-IP Networks” , most networks are IP networks.
InfiniBand is not. The role of IPoIB is to provide an IP network emulation layer on top of InfiniBand RDMA
networks. This allows existing applications to run over InfiniBand networks unmodified. However, the
performance of those applications is considerably lower than if the application were written to use
RDMA communication natively. Since most InfiniBand networks have some set of applications that really
must get all of the performance they can out of the network, and then some other applications for which
a degraded rate of performance is acceptable if it means that the application does not need to be
modified to use RDMA communications, IPoIB is there to allow those less critical applications to run on
the network as they are.

Because both iWARP and RoCE/IBoE networks are actually IP networks with RDMA layered on top of
their IP link layer, they have no need of IPoIB. As a result, the kernel will refuse to create any IPoIB
devices on top of iWARP or RoCE/IBoE RDMA devices.

13.8.2. Understanding IPoIB communication modes

IPoIB devices can be configured to run in either datagram or connected mode. The difference is in what
type of queue pair the IPoIB layer attempts to open with the machine at the other end of the
communication. For datagram mode, an unreliable, disconnected queue pair is opened. For connected
mode, a reliable, connected queue pair is opened.

When using datagram mode, the unreliable, disconnected queue pair type does not allow any packets
larger than the InfiniBand link-layer’s MTU. The IPoIB layer adds a 4 byte IPoIB header on top of the IP
packet being transmitted. As a result, the IPoIB MTU must be 4 bytes less than the InfiniBand link-layer
MTU. As 2048 is a common InfiniBand link-layer MTU, the common IPoIB device MTU in datagram
mode is 2044.

When using connected mode, the reliable, connected queue pair type allows messages that are larger
than the InfiniBand link-layer MTU and the host adapter handles packet segmentation and reassembly
at each end. As a result, there is no size limit imposed on the size of IPoIB messages that can be sent by
the InfiniBand adapters in connected mode. However, there is still the limitation that an IP packet only
has a 16 bit size field, and is therefore limited to 65535 as the maximum byte count. The maximum
allowed MTU is actually smaller than that because we have to account for various TCP/IP headers that
must also fit in that size. As a result, the IPoIB MTU in connected mode is capped at 65520 in order to
make sure there is sufficient room for all needed TCP headers.

The connected mode option generally has higher performance, but it also consumes more kernel
memory. Because most systems care more about performance than memory consumption, connected
mode is the most commonly used mode.

However, if a system is configured for connected mode, it must still send multicast traffic in datagram

Networking Guide

208

mode (the InfiniBand switches and fabric cannot pass multicast traffic in connected mode) and it will
also fall back to datagram mode when communicating with any hosts not configured for connected
mode. Administrators should be aware that if they intend to run programs that send multicast data, and
those programs try to send multicast data up to the maximum MTU on the interface, then it is necessary
to configure the interface for datagram operation or find some way to configure the multicast
application to cap their packet send size at a size that will fit in datagram sized packets.

13.8.3. Understanding IPoIB hardware addresses

IPoIB devices have a 20 byte hardware addresses. The deprecated utility ifconfig is unable to read all
20 bytes and should never be used to try and find the correct hardware address for an IPoIB device. The
ip utilities from the iproute package work properly.

The first 4 bytes of the IPoIB hardware address are flags and the queue pair number. The next 8 bytes
are the subnet prefix. When the IPoIB device is first created, it will have the default subnet prefix of
0xfe:80:00:00:00:00:00:00. The device will use the default subnet prefix (0xfe80000000000000)
until it makes contact with the subnet manager, at which point it will reset the subnet prefix to match
what the subnet manager has configured it to be. The final 8 bytes are the GUID address of the
InfiniBand port that the IPoIB device is attached to. Because both the first 4 bytes and the next 8 bytes
can change from time to time, they are not used or matched against when specifying the hardware
address for an IPoIB interface. Section Section 13.5.2, “Usage of 70-persistent-ipoib.rules” explains how
to derive the address by leaving the first 12 bytes out of the ATTR{address} field in the udev rules file
so that device matching will happen reliably. When configuring IPoIB interfaces, the HWADDR field of
the configuration file can contain all 20 bytes, but only the last 8 bytes are actually used to match
against and find the hardware specified by a configuration file. However, if the TYPE=InfiniBand entry
is not spelled correctly in the device configuration file, and ifup-ib is not the actual script used to open
the IPoIB interface, then an error about the system being unable to find the hardware specified by the
configuration will be issued. For IPoIB interfaces, the TYPE= field of the configuration file must be
either InfiniBand or infiniband (the entry is case sensitive, but the scripts will accept these two specific
spellings).

13.8.4. Understanding InfiniBand P_Key subnets

An InfiniBand fabric can be logically segmented into virtual subnets by the use of different P_Key
subnets. This is highly analogous to using VLANs on Ethernet interfaces. All switches and hosts must be
a member of the default P_Key subnet, but administrators can create additional subnets and limit
members of those subnets to subsets of the hosts or switches in the fabric. A P_Key subnet must be
defined by the subnet manager before a host can use it. See section Section 13.6.4, “Creating a P_Key
definition” for information on how to define a P_Key subnet using the opensm subnet manager. For
IPoIB interfaces, once a P_Key subnet has been created, we can create additional IPoIB configuration
files specifically for those P_Key subnets. Just like VLAN interfaces on Ethernet devices, each IPoIB
interface will behave as though it were on a completely different fabric from other IPoIB interfaces that
share the same link but have different P_Key values.

There are special requirements for the names of IPoIB P_Key interfaces. All IPoIB P_Keys range from
0x0000 to 0x7fff, and the high bit, 0x8000, denotes that membership in a P_Key is full membership
instead of partial membership. The Linux kernel’s IPoIB driver only supports full membership in P_Key
subnets, so for any subnet that Linux can connect to, the high bit of the P_Key number will always be
set. That means that if a Linux computer joins P_Key 0x0002, its actual P_Key number once joined will
be 0x8002, denoting that we are full members of P_Key 0x0002. For this reason, when creating a
P_Key definition in an opensm partitions.conf file as depicted in section Section 13.6.4, “Creating a
P_Key definition”, it is required to specify a P_Key value without 0x8000, but when defining the P_Key
IPoIB interfaces on the Linux clients, add the 0x8000 value to the base P_Key value.

13.8.5. Configure InfiniBand Using the Text User Interface, nmtui

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

209

The text user interface tool nmtui can be used to configure InfiniBand in a terminal window. Issue the
following command to start the tool:

~]$ nmtui

The text user interface appears. Any invalid command prints a usage message.

To navigate, use the arrow keys or press Tab to step forwards and press Shift+Tab to step back
through the options. Press Enter to select an option. The Space bar toggles the status of a check box.

From the starting menu, select Edit a connection. Select Add, the New Connection screen opens.

Figure 13.1. The NetworkManager Text User Interface Add an InfiniBand Connection menu

Select InfiniBand, the Edit connection screen opens. Follow the on-screen prompts to complete the
configuration.

Networking Guide

210

Figure 13.2. The NetworkManager Text User Interface Configuring a InfiniBand Connection menu

See Section 13.8.9.1, “Configuring the InfiniBand Tab” for definitions of the InfiniBand terms.

See Section 3.2, “Configuring IP Networking with nmtui” for information on installing nmtui.

13.8.6. Configure IPoIB using the command-line tool, nmcli

First determine if renaming the default IPoIB device(s) is required, and if so, follow the instructions in
section Section 13.5.2, “Usage of 70-persistent-ipoib.rules” to rename the devices using udev renaming
rules. Users can force the IPoIB interfaces to be renamed without performing a reboot by removing the
ib_ipoib kernel module and then reloading it as follows:

~]$ rmmod ib_ipoib
~]$ modprobe ib_ipoib

Once the devices have the name required, use the nmcli tool to create the IPoIB interface(s). The
following examples display two ways:

Example 13.3. Creating and modifying IPoIB in two separate commands.

~]$ nmcli con add type infiniband con-name mlx4_ib0 ifname mlx4_ib0 transport-mode connected
mtu 65520
Connection 'mlx4_ib0' (8029a0d7-8b05-49ff-a826-2a6d722025cc) successfully added.
~]$ nmcli con edit mlx4_ib0

===| nmcli interactive connection editor |===

Editing existing 'infiniband' connection: 'mlx4_ib0'

Type 'help' or '?' for available commands.
Type 'describe [>setting<.>prop<]' for detailed property description.

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

211

You may edit the following settings: connection, infiniband, ipv4, ipv6
nmcli> set infiniband.mac-address 80:00:02:00:fe:80:00:00:00:00:00:00:f4:52:14:03:00:7b:cb:a3
nmcli> save
Connection 'mlx4_ib3' (8029a0d7-8b05-49ff-a826-2a6d722025cc) successfully updated.
nmcli> quit

or you can run nmcli c add and nmcli c modify in one command, as follows:

Example 13.4. Creating and modifying IPoIB in one command.

nmcli con add type infiniband con-name mlx4_ib0 ifname mlx4_ib0 transport-mode connected mtu
65520 infiniband.mac-address 80:00:02:00:fe:80:00:00:00:00:00:00:f4:52:14:03:00:7b:cb:a3

At these points, an IPoIB interface named mlx4_ib0 has been created and set to use connected mode,
with the maximum connected mode MTU, DHCP for IPv4 and IPv6. If using IPoIB interfaces for cluster
traffic and an Ethernet interface for out-of-cluster communications, it is likely that disabling default
routes and any default name server on the IPoIB interfaces will be required. This can be done as follows:

~]$ nmcli con edit mlx4_ib0

===| nmcli interactive connection editor |===

Editing existing 'infiniband' connection: 'mlx4_ib0'

Type 'help' or '?' for available commands.
Type 'describe [>setting<.>prop<]' for detailed property description.

You may edit the following settings: connection, infiniband, ipv4, ipv6
nmcli> set ipv4.ignore-auto-dns yes
nmcli> set ipv4.ignore-auto-routes yes
nmcli> set ipv4.never-default true
nmcli> set ipv6.ignore-auto-dns yes
nmcli> set ipv6.ignore-auto-routes yes
nmcli> set ipv6.never-default true
nmcli> save
Connection 'mlx4_ib0' (8029a0d7-8b05-49ff-a826-2a6d722025cc) successfully updated.
nmcli> quit

If a P_Key interface is required, create one using nmcli as follows:

~]$ nmcli con add type infiniband con-name mlx4_ib0.8002 ifname mlx4_ib0.8002 parent mlx4_ib0 p-
key 0x8002
Connection 'mlx4_ib0.8002' (4a9f5509-7bd9-4e89-87e9-77751a1c54b4) successfully added.
~]$ nmcli con modify mlx4_ib0.8002 infiniband.mtu 65520 infiniband.transport-mode connected
ipv4.ignore-auto-dns yes ipv4.ignore-auto-routes yes ipv4.never-default true ipv6.ignore-auto-dns yes
ipv6.ignore-auto-routes yes ipv6.never-default true

13.8.7. Configure IPoIB Using the command line

First determine if renaming the default IPoIB device(s) is required, and if so, follow the instructions in
section Section 13.5.2, “Usage of 70-persistent-ipoib.rules” to rename the devices using udev renaming

Networking Guide

212

rules. Users can force the IPoIB interfaces to be renamed without performing a reboot by removing the
ib_ipoib kernel module and then reloading it as follows:

~]$ rmmod ib_ipoib
~]$ modprobe ib_ipoib

Once the devices have the name required, administrators can create ifcfg files with their preferred
editor to control the devices. A typical IPoIB configuration file with static IPv4 addressing looks as
follows:

~]$ more ifcfg-mlx4_ib0
DEVICE=mlx4_ib0
TYPE=InfiniBand
ONBOOT=yes
HWADDR=80:00:00:4c:fe:80:00:00:00:00:00:00:f4:52:14:03:00:7b:cb:a1
BOOTPROTO=none
IPADDR=172.31.0.254
PREFIX=24
NETWORK=172.31.0.0
BROADCAST=172.31.0.255
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
MTU=65520
CONNECTED_MODE=yes
NAME=mlx4_ib0

The DEVICE field must match the custom name created in any udev renaming rules. The NAME entry
need not match the device name. If the GUI connection editor is started, the NAME field is what is used
to present a name for this connection to the user. The TYPE field must be InfiniBand in order for
InfiniBand options to be processed properly. CONNECTED_MODE is either yes or no, where yes will use
connected mode and no will use datagram mode for communications (see section Section 13.8.2,
“Understanding IPoIB communication modes”).

For P_Key interfaces, this is a typical configuration file:

~]$ more ifcfg-mlx4_ib0.8002
DEVICE=mlx4_ib0.8002
PHYSDEV=mlx4_ib0
PKEY=yes
PKEY_ID=2
TYPE=InfiniBand
ONBOOT=yes
HWADDR=80:00:00:4c:fe:80:00:00:00:00:00:00:f4:52:14:03:00:7b:cb:a1
BOOTPROTO=none
IPADDR=172.31.2.254
PREFIX=24
NETWORK=172.31.2.0
BROADCAST=172.31.2.255
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
MTU=65520
CONNECTED_MODE=yes
NAME=mlx4_ib0.8002

For all P_Key interface files, the PHYSDEV directive is required and must be the name of the parent

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

213

device. The PKEY directive must be set to yes, and PKEY_ID must be the number of the interface
(either with or without the 0x8000 membership bit added in). The device name, however, must be the
four digit hexadecimal representation of the PKEY_ID combined with the 0x8000 membership bit using
the logical OR operator as follows:

NAME=${PHYSDEV}.$((0x8000 | $PKEY_ID))

By default, the PKEY_ID in the file is treated as a decimal number and converted to hexadecimal and
then combined using the logical OR operator with 0x8000 to arrive at the proper name for the device,
but users may specify the PKEY_ID in hexadecimal by prepending the standard 0x prefix to the
number.

13.8.8. Testing an RDMA network after IPoIB is configured

Once IPoIB is configured, it is possible to use IP addresses to specify RDMA devices. Due to the
ubiquitous nature of using IP addresses and host names to specify machines, most RDMA applications
use this as their preferred, or in some cases only, way of specifying remote machines or local devices to
connect to.

To test the functionality of the IPoIB layer, it is possible to use any standard IP network test tool and
provide the IP address of the IPoIB devices to be tested. For example, the ping command between the
IP addresses of the IPoIB devices should now work.

There are two different RDMA performance testing packages included with Red Hat Enterprise Linux,
qperf and perftest. Either of these may be used to further test the performance of an RDMA network.

However, when using any of the applications that are part of the perftest package, or using the qperf
application, there is a special note on address resolution. Even though the remote host is specified using
an IP address or host name of the IPoIB device, it is allowed for the test application to actually connect
through a different RDMA interface. The reason for this is because the process of converting from the
host name or IP address to an RDMA address allows any valid RDMA address pair between the two
machines to be used. If there are multiple ways for the client to connect to the server, then the programs
might choose to use a different path if there is a problem with the path specified. For example, if there
are two ports on each machine connected to the same InfiniBand subnet, and an IP address for the
second port on each machine is given, it is likely that the program will find the first port on each machine
is a valid connection method and use them instead. In this case, command-line options to any of the
perftest programs can be used to tell them which card and port to bind to, as was done with ibping in
Section 13.7, “Testing Early InfiniBand RDMA operation” , in order to ensure that testing occurs over the
specific ports required to be tested. For qperf, the method of binding to ports is slightly different. The
qperf program operates as a server on one machine, listening on all devices (including non-RDMA
devices). The client may connect to qperf using any valid IP address or host name for the server. Qperf
will first attempt to open a data connection and run the requested test(s) over the IP address or host
name given on the client command line, but if there is any problem using that address, qperf will fall back
to attempting to run the test on any valid path between the client and server. For this reason, to force
qperf to test over a specific link, use the -loc_id and -rem_id options to the qperf client in order to
force the test to run on a specific link.

13.8.9. Configure IPoIB Using a GUI

To configure an InfiniBand connection using a graphical tool, use nm-connection-editor

Procedure 13.4. Adding a New InfiniBand Connection Using nm-connection-editor

1. Enter nm-connection-editor in a terminal:

Networking Guide

214

~]$ nm-connection-editor

2. Click the Add button. The Choose a Connection Type window appears. Select InfiniBand and
click Create. The Editing InfiniBand connection 1 window appears.

3. On the InfiniBand tab, select the transport mode from the drop-down list you want to use for
the InfiniBand connection.

4. Enter the InfiniBand MAC address.

5. Review and confirm the settings and then click the Save button.

6. Edit the InfiniBand-specific settings by referring to Section 13.8.9.1, “Configuring the InfiniBand
Tab”.

Procedure 13.5. Editing an Existing InfiniBand Connection

Follow these steps to edit an existing InfiniBand connection.

1. Enter nm-connection-editor in a terminal:

~]$ nm-connection-editor

2. Select the connection you want to edit and click the Edit button.

3. Select the General tab.

4. Configure the connection name, auto-connect behavior, and availability settings.

Five settings in the Editing dialog are common to all connection types, see the General tab:

Connection name — Enter a descriptive name for your network connection. This name will
be used to list this connection in the menu of the Network window.

Automatically connect to this network when it is available — Select this box if you want
NetworkManager to auto-connect to this connection when it is available. See the section
called “Editing an Existing Connection with control-center” for more information.

All users may connect to this network — Select this box to create a connection available
to all users on the system. Changing this setting may require root privileges. See
Section 3.4.5, “Managing System-wide and Private Connection Profiles with a GUI” for
details.

Automatically connect to VPN when using this connection — Select this box if you want
NetworkManager to auto-connect to a VPN connection when it is available. Select the VPN
from the drop-down menu.

Firewall Zone — Select the Firewall Zone from the drop-down menu. See the Red Hat
Enterprise Linux 7 Security Guide for more information on Firewall Zones.

5. Edit the InfiniBand-specific settings by referring to the Section 13.8.9.1, “Configuring the
InfiniBand Tab”.

Saving Your New (or Modified) Connection and Making Further Configurations
Once you have finished editing your InfiniBand connection, click the Save button to save your
customized configuration.

CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS

215

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

Then, to configure:

IPv4 settings for the connection, click the IPv4 Settings tab and proceed to Section 5.4,
“Configuring IPv4 Settings”

or

IPv6 settings for the connection, click the IPv6 Settings tab and proceed to Section 5.5,
“Configuring IPv6 Settings”.

13.8.9.1. Configuring the InfiniBand Tab

If you have already added a new InfiniBand connection (see Procedure 13.4, “Adding a New InfiniBand
Connection Using nm-connection-editor” for instructions), you can edit the InfiniBand tab to set the
parent interface and the InfiniBand ID.

Transport mode

Datagram or Connected mode can be selected from the drop-down list. Select the same mode the
rest of your IPoIB network is using.

Device MAC address

The MAC address of the InfiniBand capable device to be used for the InfiniBand network traffic.This
hardware address field will be pre-filled if you have InfiniBand hardware installed.

MTU

Optionally sets a Maximum Transmission Unit (MTU) size to be used for packets to be sent over the
InfiniBand connection.

13.8.10. Additional Resources

Installed Documentation

/usr/share/doc/initscripts-version/sysconfig.txt — Describes configuration files and their
directives.

Online Documentation

https://www.kernel.org/doc/Documentation/infiniband/ipoib.txt

A description of the IPoIB driver. Includes references to relevant RFCs.

Networking Guide

216

https://www.kernel.org/doc/Documentation/infiniband/ipoib.txt

PART IV. SERVERS

This part discusses how to set up servers normally required for networking.

NOTE

To monitor and administer servers through a web browser, see the Red Hat Enterprise
Linux Getting Started with Cockpit.

PART IV. SERVERS

217

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_cockpit/

CHAPTER 14. DHCP SERVERS
Dynamic Host Configuration Protocol (DHCP) is a network protocol that automatically assigns TCP/IP
information to client machines. Each DHCP client connects to the centrally located DHCP server, which
returns the network configuration (including the IP address, gateway, and DNS servers) of that client.

14.1. WHY USE DHCP?

DHCP is useful for automatic configuration of client network interfaces. When configuring the client
system, you can choose DHCP instead of specifying an IP address, netmask, gateway, or DNS servers.
The client retrieves this information from the DHCP server. DHCP is also useful if you want to change
the IP addresses of a large number of systems. Instead of reconfiguring all the systems, you can just edit
one configuration file on the server for the new set of IP addresses. If the DNS servers for an
organization changes, the changes happen on the DHCP server, not on the DHCP clients. When you
restart the network or reboot the clients, the changes go into effect.

If an organization has a functional DHCP server correctly connected to a network, laptops and other
mobile computer users can move these devices from office to office.

Note that administrators of DNS and DHCP servers, as well as any provisioning applications, should
agree on the host name format used in an organization. See Section 6.1.1, “Recommended Naming
Practices” for more information on the format of host names.

14.2. CONFIGURING A DHCP SERVER

The dhcp package contains an Internet Systems Consortium (ISC) DHCP server. Install the package as
root:

~]# yum install dhcp

Installing the dhcp package creates a file, /etc/dhcp/dhcpd.conf, which is merely an empty configuration
file. As root, issue the following command:

~]# cat /etc/dhcp/dhcpd.conf
#
DHCP Server Configuration file.
see /usr/share/doc/dhcp*/dhcpd.conf.example
see dhcpd.conf(5) man page
#

The example configuration file can be found at /usr/share/doc/dhcp-version;/dhcpd.conf.example.
You should use this file to help you configure /etc/dhcp/dhcpd.conf, which is explained in detail below.

DHCP also uses the file /var/lib/dhcpd/dhcpd.leases to store the client lease database. See
Section 14.2.2, “Lease Database” for more information.

14.2.1. Configuration File

The first step in configuring a DHCP server is to create the configuration file that stores the network
information for the clients. Use this file to declare options for client systems.

The configuration file can contain extra tabs or blank lines for easier formatting. Keywords are case-
insensitive and lines beginning with a hash sign (#) are considered comments.

Networking Guide

218

There are two types of statements in the configuration file:

Parameters — State how to perform a task, whether to perform a task, or what network
configuration options to send to the client.

Declarations — Describe the topology of the network, describe the clients, provide addresses
for the clients, or apply a group of parameters to a group of declarations.

The parameters that start with the keyword option are referred to as options. These options control
DHCP options; whereas, parameters configure values that are not optional or control how the DHCP
server behaves.

Parameters (including options) declared before a section enclosed in curly brackets ({ }) are considered
global parameters. Global parameters apply to all the sections below it.

IMPORTANT

If the configuration file is changed, the changes do not take effect until the DHCP
daemon is restarted with the command systemctl restart dhcpd.

NOTE

Instead of changing a DHCP configuration file and restarting the service each time, using
the omshell command provides an interactive way to connect to, query, and change the
configuration of a DHCP server. By using omshell, all changes can be made while the
server is running. For more information on omshell, see the omshell man page.

In Example 14.1, “Subnet Declaration” , the routers, subnet-mask, domain-search, domain-name-
servers, and time-offset options are used for any host statements declared below it.

For every subnet which will be served, and for every subnet to which the DHCP server is connected,
there must be one subnet declaration, which tells the DHCP daemon how to recognize that an address
is on that subnet. A subnet declaration is required for each subnet even if no addresses will be
dynamically allocated to that subnet.

In this example, there are global options for every DHCP client in the subnet and a range declared.
Clients are assigned an IP address within the range.

Example 14.1. Subnet Declaration

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;
 option domain-search "example.com";
 option domain-name-servers 192.168.1.1;
 option time-offset -18000; # Eastern Standard Time
 range 192.168.1.10 192.168.1.100;
}

To configure a DHCP server that leases a dynamic IP address to a system within a subnet, modify the
example values from Example 14.2, “Range Parameter” . It declares a default lease time, maximum lease
time, and network configuration values for the clients. This example assigns IP addresses in the range
192.168.1.10 and 192.168.1.100 to client systems.

CHAPTER 14. DHCP SERVERS

219

Example 14.2. Range Parameter

default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.254;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-search "example.com";
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.100;
}

To assign an IP address to a client based on the MAC address of the network interface card, use the
hardware ethernet parameter within a host declaration. As demonstrated in Example 14.3, “Static IP
Address Using DHCP”, the host apex declaration specifies that the network interface card with the
MAC address 00:A0:78:8E:9E:AA always receives the IP address 192.168.1.4.

Note that you can also use the optional parameter host-name to assign a host name to the client.

Example 14.3. Static IP Address Using DHCP

host apex {
 option host-name "apex.example.com";
 hardware ethernet 00:A0:78:8E:9E:AA;
 fixed-address 192.168.1.4;
}

Red Hat Enterprise Linux 7 supports assigning static IP addresses to InfiniBand IPoIB interfaces.
However, as these interfaces do not have a normal hardware Ethernet address, a different method of
specifying a unique identifier for the IPoIB interface must be used. The standard is to use the option
dhcp-client-identifier= construct to specify the IPoIB interface’s dhcp-client-identifier field. The
DHCP server host construct supports at most one hardware Ethernet and one dhcp-client-identifier
entry per host stanza. However, there may be more than one fixed-address entry and the DHCP server
will automatically respond with an address that is appropriate for the network that the DHCP request
was received on.

Example 14.4. Static IP Address Using DHCP on Multiple Interfaces

If a machine has a complex configuration, for example two InfiniBand interfaces, and P_Key
interfaces on each physical interface, plus an Ethernet connection, the following static IP construct
could be used to serve this configuration:

Host apex.0 {
 option host-name “apex.example.com”;
 hardware ethernet 00:A0:78:8E:9E:AA;
 option dhcp-client-identifier=ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:31:7b:11;
 fixed-address 172.31.0.50,172.31.2.50,172.31.1.50,172.31.3.50;
}

host apex.1 {
 option host-name “apex.example.com”;

Networking Guide

220

 hardware ethernet 00:A0:78:8E:9E:AB;
 option dhcp-client-identifier=ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:31:7b:12;
 fixed-address 172.31.0.50,172.31.2.50,172.31.1.50,172.31.3.50;
}

In order to find the right dhcp-client-identifier for your device, you can usually use the prefix
ff:00:00:00:00:00:02:00:00:02:c9:00 and then add the last 8 bytes of the IPoIB interface (which
happens to also be the 8 byte GUID of the InfiniBand port the IPoIB interface is on). On some older
controllers, this prefix is not correct. In that case, we recommend using tcpdump on the DHCP server
to capture the incoming IPoIB DHCP request and gather the right dhcp-client-identifier from that
capture. For example:

]$ tcpdump -vv -i mlx4_ib0
tcpdump: listening on mlx4_ib0, link-type LINUX_SLL (Linux cooked), capture size 65535 bytes
23:42:44.131447 IP (tos 0x10, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 328)
 0.0.0.0.bootpc > 255.255.255.255.bootps: [udp sum ok] BOOTP/DHCP, Request, length 300,
htype 32, hlen 0, xid 0x975cb024, Flags [Broadcast] (0x8000)
 Vendor-rfc1048 Extensions
 Magic Cookie 0x63825363
 DHCP-Message Option 53, length 1: Discover
 Hostname Option 12, length 10: "rdma-qe-03"
 Parameter-Request Option 55, length 18:
 Subnet-Mask, BR, Time-Zone, Classless-Static-Route
 Domain-Name, Domain-Name-Server, Hostname, YD
 YS, NTP, MTU, Option 119
 Default-Gateway, Classless-Static-Route, Classless-Static-Route-Microsoft, Static-Route
 Option 252, NTP
 Client-ID Option 61, length 20: hardware-type 255,
00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:02:00:21:ac:c1

The above dump shows the Client-ID field. The hardware-type 255 corresponds to the initial ff: of
the ID, the rest of the ID is then quoted exactly as it needs to appear in the DHCP configuration file.

All subnets that share the same physical network should be declared within a shared-network
declaration as shown in Example 14.5, “Shared-network Declaration” . Parameters within the shared-
network, but outside the enclosed subnet declarations, are considered to be global parameters. The
name assigned to shared-network must be a descriptive title for the network, such as using the title
“test-lab” to describe all the subnets in a test lab environment.

Example 14.5. Shared-network Declaration

shared-network name {
 option domain-search "test.redhat.com";
 option domain-name-servers ns1.redhat.com, ns2.redhat.com;
 option routers 192.168.0.254;
 #more parameters for EXAMPLE shared-network
 subnet 192.168.1.0 netmask 255.255.252.0 {
 #parameters for subnet
 range 192.168.1.1 192.168.1.254;
 }
 subnet 192.168.2.0 netmask 255.255.252.0 {
 #parameters for subnet

CHAPTER 14. DHCP SERVERS

221

 range 192.168.2.1 192.168.2.254;
 }
}

As demonstrated in Example 14.6, “Group Declaration” , the group declaration is used to apply global
parameters to a group of declarations. For example, shared networks, subnets, and hosts can be
grouped.

Example 14.6. Group Declaration

group {
 option routers 192.168.1.254;
 option subnet-mask 255.255.255.0;
 option domain-search "example.com";
 option domain-name-servers 192.168.1.1;
 option time-offset -18000; # Eastern Standard Time
 host apex {
 option host-name "apex.example.com";
 hardware ethernet 00:A0:78:8E:9E:AA;
 fixed-address 192.168.1.4;
 }
 host raleigh {
 option host-name "raleigh.example.com";
 hardware ethernet 00:A1:DD:74:C3:F2;
 fixed-address 192.168.1.6;
 }
}

NOTE

You can use the provided example configuration file as a starting point and add custom
configuration options to it. To copy this file to the proper location, use the following
command as root:

~]# cp /usr/share/doc/dhcp-version_number/dhcpd.conf.example /etc/dhcp/dhcpd.conf

... where version_number is the DHCP version number.

For a complete list of option statements and what they do, see the dhcp-options(5) man page.

14.2.2. Lease Database

On the DHCP server, the file /var/lib/dhcpd/dhcpd.leases stores the DHCP client lease database. Do
not change this file. DHCP lease information for each recently assigned IP address is automatically
stored in the lease database. The information includes the length of the lease, to whom the IP address
has been assigned, the start and end dates for the lease, and the MAC address of the network interface
card that was used to retrieve the lease.

All times in the lease database are in Coordinated Universal Time (UTC), not local time.

The lease database is recreated from time to time so that it is not too large. First, all known leases are

Networking Guide

222

The lease database is recreated from time to time so that it is not too large. First, all known leases are
saved in a temporary lease database. The dhcpd.leases file is renamed dhcpd.leases~ and the
temporary lease database is written to dhcpd.leases.

The DHCP daemon could be killed or the system could crash after the lease database has been
renamed to the backup file but before the new file has been written. If this happens, the dhcpd.leases
file does not exist, but it is required to start the service. Do not create a new lease file. If you do, all old
leases are lost which causes many problems. The correct solution is to rename the dhcpd.leases~
backup file to dhcpd.leases and then start the daemon.

14.2.3. Starting and Stopping the Server

IMPORTANT

When the DHCP server is started for the first time, it fails unless the dhcpd.leases file
exists. You can use the command touch /var/lib/dhcpd/dhcpd.leases to create the file if
it does not exist. If the same server is also running BIND as a DNS server, this step is not
necessary, as starting the named service automatically checks for a dhcpd.leases file.

Do not create a new lease file on a system that was previously running. If you do, all old
leases are lost which causes many problems. The correct solution is to rename the
dhcpd.leases~ backup file to dhcpd.leases and then start the daemon.

To start the DHCP service, use the following command:

systemctl start dhcpd.service

To stop the DHCP server, type:

systemctl stop dhcpd.service

By default, the DHCP service does not start at boot time. For information on how to configure the
daemon to start automatically at boot time, see Red Hat Enterprise Linux System Administrator's Guide .

If more than one network interface is attached to the system, but the DHCP server should only listen for
DHCP requests on one of the interfaces, configure the DHCP server to listen only on that device. The
DHCP daemon will only listen on interfaces for which it finds a subnet declaration in the
/etc/dhcp/dhcpd.conf file.

This is useful for a firewall machine with two network cards. One network card can be configured as a
DHCP client to retrieve an IP address to the Internet. The other network card can be used as a DHCP
server for the internal network behind the firewall. Specifying only the network card connected to the
internal network makes the system more secure because users cannot connect to the daemon through
the Internet.

To specify command-line options, copy and then edit the dhcpd.service file as the root user. For
example, as follows:

~]# cp /usr/lib/systemd/system/dhcpd.service /etc/systemd/system/
~]# vi /etc/systemd/system/dhcpd.service

Edit the line under section [Service]:

CHAPTER 14. DHCP SERVERS

223

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/

ExecStart=/usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.conf -user dhcpd -group dhcpd --no-pid
your_interface_name(s)

Then, as the root user, restart the service:

~]# systemctl --system daemon-reload
~]# systemctl restart dhcpd

Command line options can be appended to ExecStart=/usr/sbin/dhcpd in the
/etc/systemd/system/dhcpd.service unit file under section [Service]. They include:

-p portnum — Specifies the UDP port number on which dhcpd should listen. The default is port
67. The DHCP server transmits responses to the DHCP clients at a port number one greater
than the UDP port specified. For example, if the default port 67 is used, the server listens on
port 67 for requests and responds to the client on port 68. If a port is specified here and the
DHCP relay agent is used, the same port on which the DHCP relay agent should listen must be
specified. See Section 14.3, “DHCP Relay Agent” for details.

-f — Runs the daemon as a foreground process. This is mostly used for debugging.

-d — Logs the DHCP server daemon to the standard error descriptor. This is mostly used for
debugging. If this is not specified, the log is written to /var/log/messages.

-cf filename — Specifies the location of the configuration file. The default location is
/etc/dhcp/dhcpd.conf.

-lf filename — Specifies the location of the lease database file. If a lease database file already
exists, it is very important that the same file be used every time the DHCP server is started. It is
strongly recommended that this option only be used for debugging purposes on non-
production machines. The default location is /var/lib/dhcpd/dhcpd.leases.

-q — Do not print the entire copyright message when starting the daemon.

14.3. DHCP RELAY AGENT

The DHCP Relay Agent (dhcrelay) enables the relay of DHCP and BOOTP requests from a subnet with
no DHCP server on it to one or more DHCP servers on other subnets.

When a DHCP client requests information, the DHCP Relay Agent forwards the request to the list of
DHCP servers specified when the DHCP Relay Agent is started. When a DHCP server returns a reply, the
reply is broadcast or unicast on the network that sent the original request.

The DHCP Relay Agent for IPv4, dhcrelay, listens for DHCPv4 and BOOTP requests on all interfaces
unless the interfaces are specified in /etc/sysconfig/dhcrelay with the INTERFACES directive. See
Section 14.3.1, “Configure dhcrelay as a DHCPv4 and BOOTP relay agent” . The DHCP Relay Agent for
IPv6, dhcrelay6, does not have this default behavior and interfaces to listen for DHCPv6 requests must
be specified. See Section 14.3.2, “Configure dhcrelay as a DHCPv6 relay agent” .

dhcrelay can either be run as a DHCPv4 and BOOTP relay agent (by default) or as a DHCPv6 relay
agent (with -6 argument). To see the usage message, issue the command dhcrelay -h.

14.3.1. Configure dhcrelay as a DHCPv4 and BOOTP relay agent

To run dhcrelay in DHCPv4 and BOOTP mode specify the servers to which the requests should be
forwarded to. Copy and then edit the dhcrelay.service file as the root user:

Networking Guide

224

~]# cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/
~]# vi /etc/systemd/system/dhcrelay.service

Edit the ExecStart option under section [Service] and add one or more server IPv4 addresses to the
end of the line, for example:

ExecStart=/usr/sbin/dhcrelay -d --no-pid 192.168.1.1

If you also want to specify interfaces where the DHCP Relay Agent listens for DHCP requests, add them
to the ExecStart option with -i argument (otherwise it will listen on all interfaces), for example:

ExecStart=/usr/sbin/dhcrelay -d --no-pid 192.168.1.1 -i em1

For other options see the dhcrelay(8) man page.

To activate the changes made, as the root user, restart the service:

~]# systemctl --system daemon-reload
~]# systemctl restart dhcrelay

14.3.2. Configure dhcrelay as a DHCPv6 relay agent

To run dhcrelay in DHCPv6 mode add the -6 argument and specify the “lower interface” (on which
queries will be received from clients or from other relay agents) and the “upper interface” (to which
queries from clients and other relay agents should be forwarded). Copy dhcrelay.service to
dhcrelay6.service and edit it as the root user:

~]# cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/dhcrelay6.service
~]# vi /etc/systemd/system/dhcrelay6.service

Edit the ExecStart option under section [Service] add -6 argument and add the “lower interface” and
“upper interface” interface, for example:

ExecStart=/usr/sbin/dhcrelay -d --no-pid -6 -l em1 -u em2

For other options see the dhcrelay(8) man page.

To activate the changes made, as the root user, restart the service:

~]# systemctl --system daemon-reload
~]# systemctl restart dhcrelay6

14.4. CONFIGURING A MULTIHOMED DHCP SERVER

A multihomed DHCP server serves multiple networks, that is, multiple subnets. The examples in these
sections detail how to configure a DHCP server to serve multiple networks, select which network
interfaces to listen on, and how to define network settings for systems that move networks.

Before making any changes, back up the existing /etc/dhcp/dhcpd.conf file.

The DHCP daemon will only listen on interfaces for which it finds a subnet declaration in the
/etc/dhcp/dhcpd.conf file.

CHAPTER 14. DHCP SERVERS

225

The following is a basic /etc/dhcp/dhcpd.conf file, for a server that has two network interfaces, enp1s0
in a 10.0.0.0/24 network, and enp2s0 in a 172.16.0.0/24 network. Multiple subnet declarations allow you
to define different settings for multiple networks:

default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option routers 10.0.0.1;
 range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option routers 172.16.0.1;
 range 172.16.0.5 172.16.0.15;
}

subnet 10.0.0.0 netmask 255.255.255.0;

A subnet declaration is required for every network your DHCP server is serving. Multiple subnets
require multiple subnet declarations. If the DHCP server does not have a network interface in a
range of a subnet declaration, the DHCP server does not serve that network.

If there is only one subnet declaration, and no network interfaces are in the range of that subnet, the
DHCP daemon fails to start, and an error such as the following is logged to /var/log/messages:

dhcpd: No subnet declaration for enp1s0 (0.0.0.0).
dhcpd: ** Ignoring requests on enp1s0. If this is not what
dhcpd: you want, please write a subnet declaration
dhcpd: in your dhcpd.conf file for the network segment
dhcpd: to which interface enp2s0 is attached. **
dhcpd:
dhcpd:
dhcpd: Not configured to listen on any interfaces!

option subnet-mask 255.255.255.0;

The option subnet-mask option defines a subnet mask, and overrides the netmask value in the
subnet declaration. In simple cases, the subnet and netmask values are the same.

option routers 10.0.0.1;

The option routers option defines the default gateway for the subnet. This is required for systems
to reach internal networks on a different subnet, as well as external networks.

range 10.0.0.5 10.0.0.15;

The range option specifies the pool of available IP addresses. Systems are assigned an address from
the range of specified IP addresses.

For further information, see the dhcpd.conf(5) man page.

Networking Guide

226

WARNING

To avoid misconfiguration when DHCP server gives IP addresses from one IP range
to another physical Ethernet segment, make sure you do not enclose more subnets
in a shared-network declaration.

14.4.1. Host Configuration

Before making any changes, back up the existing /etc/sysconfig/dhcpd and /etc/dhcp/dhcpd.conf
files.

Configuring a Single System for Multiple Networks

The following /etc/dhcp/dhcpd.conf example creates two subnets, and configures an IP address for the
same system, depending on which network it connects to:

default-lease-time 600;
max-lease-time 7200;
subnet 10.0.0.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option routers 10.0.0.1;
 range 10.0.0.5 10.0.0.15;
}
subnet 172.16.0.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option routers 172.16.0.1;
 range 172.16.0.5 172.16.0.15;
}
host example0 {
 hardware ethernet 00:1A:6B:6A:2E:0B;
 fixed-address 10.0.0.20;
}
host example1 {
 hardware ethernet 00:1A:6B:6A:2E:0B;
 fixed-address 172.16.0.20;
}

host example0

The host declaration defines specific parameters for a single system, such as an IP address. To
configure specific parameters for multiple hosts, use multiple host declarations.

Most DHCP clients ignore the name in host declarations, and as such, this name can be anything, as
long as it is unique to other host declarations. To configure the same system for multiple networks,
use a different name for each host declaration, otherwise the DHCP daemon fails to start. Systems
are identified by the hardware ethernet option, not the name in the host declaration.

hardware ethernet 00:1A:6B:6A:2E:0B;

The hardware ethernet option identifies the system. To find this address, run the ip link command.

fixed-address 10.0.0.20;



CHAPTER 14. DHCP SERVERS

227

The fixed-address option assigns a valid IP address to the system specified by the hardware
ethernet option. This address must be outside the IP address pool specified with the range option.

If option statements do not end with a semicolon, the DHCP daemon fails to start, and an error such as
the following is logged to /var/log/messages:

/etc/dhcp/dhcpd.conf line 20: semicolon expected.
dhcpd: }
dhcpd: ^
dhcpd: /etc/dhcp/dhcpd.conf line 38: unexpected end of file
dhcpd:
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting

Configuring Systems with Multiple Network Interfaces

The following host declarations configure a single system, which has multiple network interfaces, so that
each interface receives the same IP address. This configuration will not work if both network interfaces
are connected to the same network at the same time:

host interface0 {
 hardware ethernet 00:1a:6b:6a:2e:0b;
 fixed-address 10.0.0.18;
}
host interface1 {
 hardware ethernet 00:1A:6B:6A:27:3A;
 fixed-address 10.0.0.18;
}

For this example, interface0 is the first network interface, and interface1 is the second interface. The
different hardware ethernet options identify each interface.

If such a system connects to another network, add more host declarations, remembering to:

assign a valid fixed-address for the network the host is connecting to.

make the name in the host declaration unique.

When a name given in a host declaration is not unique, the DHCP daemon fails to start, and an error
such as the following is logged to /var/log/messages:

dhcpd: /etc/dhcp/dhcpd.conf line 31: host interface0: already exists
dhcpd: }
dhcpd: ^
dhcpd: Configuration file errors encountered -- exiting

This error was caused by having multiple host interface0 declarations defined in /etc/dhcp/dhcpd.conf.

14.5. DHCP FOR IPV6 (DHCPV6)

The ISC DHCP includes support for IPv6 (DHCPv6) since the 4.x release with a DHCPv6 server, client,
and relay agent functionality. The agents support both IPv4 and IPv6, however the agents can only
manage one protocol at a time; for dual support they must be started separately for IPv4 and IPv6. For

Networking Guide

228

example, configure both DHCPv4 and DHCPv6 by editing their respective configuration files
/etc/dhcp/dhcpd.conf and /etc/dhcp/dhcpd6.conf and then issue the following commands:

~]# systemctl start dhcpd
~]# systemctl start dhcpd6

The DHCPv6 server configuration file can be found at /etc/dhcp/dhcpd6.conf.

The example server configuration file can be found at
/usr/share/doc/dhcp-version/dhcpd6.conf.example.

A simple DHCPv6 server configuration file can look like this:

subnet6 2001:db8:0:1::/64 {
 range6 2001:db8:0:1::129 2001:db8:0:1::254;
 option dhcp6.name-servers fec0:0:0:1::1;
 option dhcp6.domain-search "domain.example";
}

To assign a fixed-address to a client, based on the MAC address of the network interface card, use the
hardware ethernet parameter:

host otherclient {
 hardware ethernet 01:00:80:a2:55:67;
 fixed-address6 3ffe:501:ffff:100::4321;
 }

The configuration options in the shared-network, and group declaration for IPv6 are the same as IPV4.
For more details, see the examples as demonstrated in Example 14.5, “Shared-network Declaration” , and
Example 14.6, “Group Declaration” .

14.6. CONFIGURING THE RADVD DAEMON FOR IPV6 ROUTERS

The router advertisement daemon (radvd) sends router advertisement messages which are required for
IPv6 stateless autoconfiguration. This allows users to automatically configure their addresses, settings,
routes and choose a default router based on these advertisements. To configure the radvd daemon:

1. Install the radvd daemon:

~]# sudo yum install radvd

2. Set up the /etc/radvd.conf file. For example:

interface enp1s0
{
AdvSendAdvert on;
MinRtrAdvInterval 30;
MaxRtrAdvInterval 100;
prefix 2001:db8:1:0::/64
{
AdvOnLink on;
AdvAutonomous on;
AdvRouterAddr off;

CHAPTER 14. DHCP SERVERS

229

};

};

NOTE

If you want to additionally advertise DNS resolvers along with the router
advertisements, add the RDNSS <ip> <ip> <ip> { }; option in the
/etc/radvd.conf file. To configure a DHCPv6 service for your subnets, you can
set the AdvManagedFlag to on, so the router advertisements allow clients to
automatically obtain an IPv6 address when a DHCPv6 service is available. For
more details on configuring the DHCPv6 service, see Section 14.5, “DHCP for
IPv6 (DHCPv6)”

3. Enable the radvd daemon:

~]# sudo systemctl enable radvd.service

4. Start the radvd daemon immediately:

~]# sudo systemctl start radvd.service

To display the content of router advertisement packages and the configured values sent by the radvd
daemon, use the radvdump command:

~]# radvdump
Router advertisement from fe80::280:c8ff:feb9:cef9 (hoplimit 255)
 AdvCurHopLimit: 64
 AdvManagedFlag: off
 AdvOtherConfigFlag: off
 AdvHomeAgentFlag: off
 AdvReachableTime: 0
 AdvRetransTimer: 0
 Prefix 2002:0102:0304:f101::/64
 AdvValidLifetime: 30
 AdvPreferredLifetime: 20
 AdvOnLink: off
 AdvAutonomous: on
 AdvRouterAddr: on
 Prefix 2001:0db8:100:f101::/64
 AdvValidLifetime: 2592000
 AdvPreferredLifetime: 604800
 AdvOnLink: on
 AdvAutonomous: on
 AdvRouterAddr: on
 AdvSourceLLAddress: 00 80 12 34 56 78

For more information on the radvd daemon, see the radvd(8), radvd.conf(5), radvdump(8) man pages.

14.7. COMPARISON OF DHCPV6 TO RADVD

Dynamic Host configuration for IPv4 is mainly applied with DHCPv4. However, for IPv6 the following
options are available:

Networking Guide

230

Manually

Using the radvd daemon

Using the DHCPv6 server

Manually
Manual addressing is always available. You can assign IPv6 addresses to a system using the tools
described in Section 3.3.6, “Connecting to a Network Using nmcli” , Section 7.2, “Configure Bonding
Using the Text User Interface, nmtui”, Section 3.6, “Configuring IP Networking with ip Commands” .

Using the radvd Daemon
A standards-compliant IPv6 network must provide router advertisements, thus IPv6 configuration
options can be applied running the router advertisement daemon (radvd). The router advertisements
provide the on-link information on which prefix is actually available locally on a physical LAN. On top of
router advertisements, you can select either manual IPv6 configuration, automatic IPv6 configuration
through router advertisements or the Dynamic Host Configuration Protocol (DHCPv6). For more
details on configuring the radvd daemon, see Section 14.6, “Configuring the radvd daemon for IPv6
routers”.

Using the DHCPv6 Server
When address management is under central administration, the user can set up a DHCPv6 server. The
availability of DHCPv6 is announced by flags in the router advertisement packets.

Table 14.1. Comparison of DHCPv6 to radvd

DHCPv6 radvd

Guarantee random addresses to
protect privacy.

Provide information on a default gateway.

Send further network configuration
options to clients. For example,
Network Time Protocol (NTP) servers,
Session Initiation Protocol (SIP)
servers, Preboot Execution
Environment (iPXE) configuration.

Map MAC addresses to IPv6
addresses.

NOTE

To correctly configure a network, use DHCPv6 in conjunction with radvd, as only router
advertisements provide information on a default gateway.

14.8. ADDITIONAL RESOURCES

dhcpd(8) man page — Describes how the DHCP daemon works.

dhcpd.conf(5) man page — Explains how to configure the DHCP configuration file; includes
some examples.

CHAPTER 14. DHCP SERVERS

231

dhcpd.leases(5) man page — Describes a persistent database of leases.

dhcp-options(5) man page — Explains the syntax for declaring DHCP options in dhcpd.conf;
includes some examples.

dhcrelay(8) man page — Explains the DHCP Relay Agent and its configuration options.

/usr/share/doc/dhcp-version/ — Contains example files, README files, and release notes for
current versions of the DHCP service.

Networking Guide

232

CHAPTER 15. DNS SERVERS
DNS (Domain Name System), is a distributed database system that is used to associate host names with
their respective IP addresses. For users, this has the advantage that they can refer to machines on the
network by names that are usually easier to remember than the numerical network addresses. For
system administrators, using a DNS server, also known as a name server , enables changing the IP address
for a host without ever affecting the name-based queries. The use of the DNS databases is not only for
resolving IP addresses to domain names and their use is becoming broader and broader as DNSSEC is
deployed.

15.1. INTRODUCTION TO DNS

DNS is usually implemented using one or more centralized servers that are authoritative for certain
domains. When a client host requests information from a name server, it usually connects to port 53. The
name server then attempts to resolve the name requested. If the name server is configured to be a
recursive name servers and it does not have an authoritative answer, or does not already have the
answer cached from an earlier query, it queries other name servers, called root name servers , to
determine which name servers are authoritative for the name in question, and then queries them to get
the requested name. Name servers configured as purely authoritative, with recursion disabled, will not
do lookups on behalf of clients.

15.1.1. Name server Zones

In a DNS server, all information is stored in basic data elements called resource records (RR). Resource
records are defined in RFC 1034. The domain names are organized into a tree structure. Each level of
the hierarchy is divided by a period (.). For example: The root domain, denoted by ., is the root of the
DNS tree, which is at level zero. The domain name com, referred to as the top-level domain (TLD) is a
child of the root domain (.) so it is the first level of the hierarchy. The domain name example.com is at
the second level of the hierarchy.

Example 15.1. A Simple Resource Record

An example of a simple resource record (RR):

example.com. 86400 IN A 192.0.2.1

The domain name, example.com, is the owner for the RR. The value 86400 is the time to live (TTL).
The letters IN, meaning “the Internet system”, indicate the class of the RR. The letter A indicates the
type of RR (in this example, a host address). The host address 192.0.2.1 is the data contained in the
final section of this RR. This one line example is a RR. A set of RRs with the same type, owner, and
class is called a resource record set (RRSet).

Zones are defined on authoritative name servers through the use of zone files, which contain definitions
of the resource records in each zone. Zone files are stored on primary name servers (also called master
name servers), where changes are made to the files, and secondary name servers (also called slave name
servers), which receive zone definitions from the primary name servers. Both primary and secondary
name servers are authoritative for the zone and look the same to clients. Depending on the
configuration, any name server can also serve as a primary or secondary server for multiple zones at the
same time.

Note that administrators of DNS and DHCP servers, as well as any provisioning applications, should
agree on the host name format used in an organization. See Section 6.1.1, “Recommended Naming
Practices” for more information on the format of host names.

CHAPTER 15. DNS SERVERS

233

http://www.rfc-editor.org/rfc/rfc1034.txt

15.1.2. Name server Types

There are two name server configuration types:

authoritative

Authoritative name servers answer to resource records that are part of their zones only. This
category includes both primary (master) and secondary (slave) name servers.

recursive

Recursive name servers offer resolution services, but they are not authoritative for any zone. Answers
for all resolutions are cached in a memory for a fixed period of time, which is specified by the
retrieved resource record.

Although a name server can be both authoritative and recursive at the same time, it is recommended
not to combine the configuration types. To be able to perform their work, authoritative servers should
be available to all clients all the time. On the other hand, since the recursive lookup takes far more time
than authoritative responses, recursive servers should be available to a restricted number of clients only,
otherwise they are prone to distributed denial of service (DDoS) attacks.

15.1.3. BIND as a Name server

BIND consists of a set of DNS-related programs. It contains a name server called named, an
administration utility called rndc, and a debugging tool called dig. See Red Hat Enterprise Linux System
Administrator's Guide for more information on how to run a service in Red Hat Enterprise Linux.

15.2. BIND

This section covers BIND (Berkeley Internet Name Domain), the DNS server included in Red Hat
Enterprise Linux. It focuses on the structure of its configuration files, and describes how to administer it
both locally and remotely.

15.2.1. Empty Zones

BIND configures a number of “empty zones” to prevent recursive servers from sending unnecessary
queries to Internet servers that cannot handle them (thus creating delays and SERVFAIL responses to
clients who query for them). These empty zones ensure that immediate and authoritative NXDOMAIN
responses are returned instead. The configuration option empty-zones-enable controls whether or not
empty zones are created, whilst the option disable-empty-zone can be used in addition to disable one
or more empty zones from the list of default prefixes that would be used.

The number of empty zones created for RFC 1918 prefixes has been increased, and users of BIND 9.9
and above will see the RFC 1918 empty zones both when empty-zones-enable is unspecified (defaults
to yes), and when it is explicitly set to yes.

15.2.2. Configuring the named Service

When the named service is started, it reads the configuration from the files as described in Table 15.1,
“The named Service Configuration Files”.

Table 15.1. The named Service Configuration Files

Networking Guide

234

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
http://www.rfc-editor.org/info/rfc1918
http://www.rfc-editor.org/info/rfc1918

Path Description

/etc/named.conf The main configuration file.

/etc/named/ An auxiliary directory for configuration files that are included in the
main configuration file.

The configuration file consists of a collection of statements with nested options surrounded by opening
and closing curly brackets ({ and }). Note that when editing the file, you have to be careful not to make
any syntax error, otherwise the named service will not start. A typical /etc/named.conf file is organized
as follows:

statement-1 ["statement-1-name"] [statement-1-class] {
 option-1;
 option-2;
 option-N;
};
statement-2 ["statement-2-name"] [statement-2-class] {
 option-1;
 option-2;
 option-N;
};
statement-N ["statement-N-name"] [statement-N-class] {
 option-1;
 option-2;
 option-N;
};

NOTE

CHAPTER 15. DNS SERVERS

235

NOTE

If you have installed the bind-chroot package, the BIND service will run in the chroot
environment. In that case, the initialization script will mount the above configuration files
using the mount --bind command, so that you can manage the configuration outside this
environment. There is no need to copy anything into the /var/named/chroot/ directory
because it is mounted automatically. This simplifies maintenance since you do not need to
take any special care of BIND configuration files if it is run in a chroot environment. You
can organize everything as you would with BIND not running in a chroot environment.

The following directories are automatically mounted into the /var/named/chroot/
directory if the corresponding mount point directories underneath /var/named/chroot/
are empty:

/etc/named

/etc/pki/dnssec-keys

/run/named

/var/named

/usr/lib64/bind or /usr/lib/bind (architecture dependent).

The following files are also mounted if the target file does not exist in
/var/named/chroot/:

/etc/named.conf

/etc/rndc.conf

/etc/rndc.key

/etc/named.rfc1912.zones

/etc/named.dnssec.keys

/etc/named.iscdlv.key

/etc/named.root.key

IMPORTANT

Editing files which have been mounted in a chroot environment requires creating a
backup copy and then editing the original file. Alternatively, use an editor with “edit-a-
copy” mode disabled. For example, to edit the BIND's configuration file,
/etc/named.conf, with Vim while it is running in a chroot environment, issue the following
command as root:

~]# vim -c "set backupcopy=yes" /etc/named.conf

15.2.2.1. Installing BIND in a chroot Environment

To install BIND to run in a chroot environment, issue the following command as root:

~]# yum install bind-chroot

Networking Guide

236

To enable the named-chroot service, first check if the named service is running by issuing the following
command:

~]$ systemctl status named

If it is running, it must be disabled.

To disable named, issue the following commands as root:

~]# systemctl stop named

~]# systemctl disable named

Then, to enable the named-chroot service, issue the following commands as root:

~]# systemctl enable named-chroot

~]# systemctl start named-chroot

To check the status of the named-chroot service, issue the following command as root:

~]# systemctl status named-chroot

15.2.2.2. Common Statement Types

The following types of statements are commonly used in /etc/named.conf:

acl

The acl (Access Control List) statement allows you to define groups of hosts, so that they can be
permitted or denied access to the nameserver. It takes the following form:

acl acl-name {
 match-element;
 ...
};

The acl-name statement name is the name of the access control list, and the match-element option
is usually an individual IP address (such as 10.0.1.1) or a Classless Inter-Domain Routing (CIDR)
network notation (for example, 10.0.1.0/24). For a list of already defined keywords, see Table 15.2,
“Predefined Access Control Lists”.

Table 15.2. Predefined Access Control Lists

Keyword Description

any Matches every IP address.

localhost Matches any IP address that is in use by the local system.

localnets Matches any IP address on any network to which the local system is connected.

CHAPTER 15. DNS SERVERS

237

none Does not match any IP address.

Keyword Description

The acl statement can be especially useful in conjunction with other statements such as options.
Example 15.2, “Using acl in Conjunction with Options” defines two access control lists, black-hats and
red-hats, and adds black-hats on the blacklist while granting red-hats normal access.

Example 15.2. Using acl in Conjunction with Options

acl black-hats {
 10.0.2.0/24;
 192.168.0.0/24;
 1234:5678::9abc/24;
};
acl red-hats {
 10.0.1.0/24;
};
options {
 blackhole { black-hats; };
 allow-query { red-hats; };
 allow-query-cache { red-hats; };
};

include

The include statement allows you to include files in the /etc/named.conf, so that potentially
sensitive data can be placed in a separate file with restricted permissions. It takes the following form:

include "file-name"

The file-name statement name is an absolute path to a file.

Example 15.3. Including a File to /etc/named.conf

include "/etc/named.rfc1912.zones";

options

The options statement allows you to define global server configuration options as well as to set
defaults for other statements. It can be used to specify the location of the named working directory,
the types of queries allowed, and much more. It takes the following form:

options {
 option;
 ...
};

For a list of frequently used option directives, see Table 15.3, “Commonly Used Configuration
Options” below.

Networking Guide

238

Table 15.3. Commonly Used Configuration Options

Option Description

allow-query Specifies which hosts are allowed to query the nameserver for authoritative
resource records. It accepts an access control list, a collection of IP addresses,
or networks in the CIDR notation. All hosts are allowed by default.

allow-query-cache Specifies which hosts are allowed to query the nameserver for non-
authoritative data such as recursive queries. Only localhost and localnets
are allowed by default.

blackhole Specifies which hosts are not allowed to query the nameserver. This option
should be used when a particular host or network floods the server with
requests. The default option is none.

directory Specifies a working directory for the named service. The default option is
/var/named/.

disable-empty-zone Used to disable one or more empty zones from the list of default prefixes that
would be used. Can be specified in the options statement and also in view
statements. It can be used multiple times.

dnssec-enable Specifies whether to return DNSSEC related resource records. The default
option is yes.

dnssec-validation Specifies whether to prove that resource records are authentic through
DNSSEC. The default option is yes.

empty-zones-enable Controls whether or not empty zones are created. Can be specified only in the
options statement.

forwarders Specifies a list of valid IP addresses for nameservers to which the requests
should be forwarded for resolution.

forward Specifies the behavior of the forwarders directive. It accepts the following
options:

first — The server will query the nameservers listed in the forwarders
directive before attempting to resolve the name on its own.

only — When unable to query the nameservers listed in the
forwarders directive, the server will not attempt to resolve the name
on its own.

listen-on Specifies the IPv4 network interface on which to listen for queries. On a DNS
server that also acts as a gateway, you can use this option to answer queries
originating from a single network only. All IPv4 interfaces are used by default.

CHAPTER 15. DNS SERVERS

239

listen-on-v6 Specifies the IPv6 network interface on which to listen for queries. On a DNS
server that also acts as a gateway, you can use this option to answer queries
originating from a single network only. All IPv6 interfaces are used by default.

max-cache-size Specifies the maximum amount of memory to be used for server caches. When
the limit is reached, the server causes records to expire prematurely so that the
limit is not exceeded. In a server with multiple views, the limit applies separately
to the cache of each view. The default option is 32M.

notify Specifies whether to notify the secondary nameservers when a zone is
updated. It accepts the following options:

yes — The server will notify all secondary nameservers.

no — The server will not notify any secondary nameserver.

master-only — The server will notify primary server for the zone only.

explicit — The server will notify only the secondary servers that are
specified in the also-notify list within a zone statement.

pid-file Specifies the location of the process ID file created by the named service.

recursion Specifies whether to act as a recursive server. The default option is yes.

statistics-file Specifies an alternate location for statistics files. The
/var/named/named.stats file is used by default.

Option Description

NOTE

The directory used by named for runtime data has been moved from the BIND default
location, /var/run/named/, to a new location /run/named/. As a result, the PID file has
been moved from the default location /var/run/named/named.pid to the new
location /run/named/named.pid. In addition, the session-key file has been moved to
/run/named/session.key. These locations need to be specified by statements in the
options section. See Example 15.4, “Using the options Statement” .

IMPORTANT

To prevent distributed denial of service (DDoS) attacks, it is recommended that you
use the allow-query-cache option to restrict recursive DNS services for a particular
subset of clients only.

See the BIND 9 Administrator Reference Manual referenced in Section 15.2.8.1, “Installed
Documentation”, and the named.conf manual page for a complete list of available options.

Example 15.4. Using the options Statement

options {

Networking Guide

240

 allow-query { localhost; };
 listen-on port 53 { 127.0.0.1; };
 listen-on-v6 port 53 { ::1; };
 max-cache-size 256M;
 directory "/var/named";
 statistics-file "/var/named/data/named_stats.txt";

 recursion yes;
 dnssec-enable yes;
 dnssec-validation yes;

 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";
};

zone

The zone statement allows you to define the characteristics of a zone, such as the location of its
configuration file and zone-specific options, and can be used to override the global options
statements. It takes the following form:

zone zone-name [zone-class] {
 option;
 ...
};

The zone-name attribute is the name of the zone, zone-class is the optional class of the zone, and
option is a zone statement option as described in Table 15.4, “Commonly Used Options in Zone
Statements”.

The zone-name attribute is particularly important, as it is the default value assigned for the $ORIGIN
directive used within the corresponding zone file located in the /var/named/ directory. The named
daemon appends the name of the zone to any non-fully qualified domain name listed in the zone file.
For example, if a zone statement defines the namespace for example.com, use example.com as
the zone-name so that it is placed at the end of host names within the example.com zone file.

For more information about zone files, see Section 15.2.3, “Editing Zone Files”.

Table 15.4. Commonly Used Options in Zone Statements

Option Description

allow-query Specifies which clients are allowed to request information about this zone. This
option overrides global allow-query option. All query requests are allowed by
default.

allow-transfer Specifies which secondary servers are allowed to request a transfer of the
zone's information. All transfer requests are allowed by default.

CHAPTER 15. DNS SERVERS

241

allow-update Specifies which hosts are allowed to dynamically update information in their
zone. The default option is to deny all dynamic update requests.

Note that you should be careful when allowing hosts to update information
about their zone. Do not set IP addresses in this option unless the server is in
the trusted network. Instead, use TSIG key as described in Section 15.2.6.3,
“Transaction SIGnatures (TSIG)”.

file Specifies the name of the file in the named working directory that contains the
zone's configuration data.

masters Specifies from which IP addresses to request authoritative zone information.
This option is used only if the zone is defined as type slave.

notify Specifies whether to notify the secondary nameservers when a zone is
updated. It accepts the following options:

yes — The server will notify all secondary nameservers.

no — The server will not notify any secondary nameserver.

master-only — The server will notify primary server for the zone only.

explicit — The server will notify only the secondary servers that are
specified in the also-notify list within a zone statement.

type Specifies the zone type. It accepts the following options:

delegation-only — Enforces the delegation status of infrastructure
zones such as COM, NET, or ORG. Any answer that is received without
an explicit or implicit delegation is treated as NXDOMAIN. This
option is only applicable in TLDs (Top-Level Domain) or root zone
files used in recursive or caching implementations.

forward — Forwards all requests for information about this zone to
other nameservers.

hint — A special type of zone used to point to the root nameservers
which resolve queries when a zone is not otherwise known. No
configuration beyond the default is necessary with a hint zone.

master — Designates the nameserver as authoritative for this zone. A
zone should be set as the master if the zone's configuration files
reside on the system.

slave — Designates the nameserver as a slave server for this zone.
Master server is specified in masters directive.

Option Description

Most changes to the /etc/named.conf file of a primary or secondary nameserver involve adding,
modifying, or deleting zone statements, and only a small subset of zone statement options is usually
needed for a nameserver to work efficiently.

In Example 15.5, “A Zone Statement for a Primary nameserver” , the zone is identified as
example.com, the type is set to master, and the named service is instructed to read the

Networking Guide

242

/var/named/example.com.zone file. It also allows only a secondary nameserver (192.168.0.2) to
transfer the zone.

Example 15.5. A Zone Statement for a Primary nameserver

zone "example.com" IN {
 type master;
 file "example.com.zone";
 allow-transfer { 192.168.0.2; };
};

A secondary server's zone statement is slightly different. The type is set to slave, and the masters
directive is telling named the IP address of the master server.

In Example 15.6, “A Zone Statement for a Secondary nameserver” , the named service is configured
to query the primary server at the 192.168.0.1 IP address for information about the example.com
zone. The received information is then saved to the /var/named/slaves/example.com.zone file.
Note that you have to put all slave zones in the /var/named/slaves/ directory, otherwise the service
will fail to transfer the zone.

Example 15.6. A Zone Statement for a Secondary nameserver

zone "example.com" {
 type slave;
 file "slaves/example.com.zone";
 masters { 192.168.0.1; };
};

15.2.2.3. Other Statement Types

The following types of statements are less commonly used in /etc/named.conf:

controls

The controls statement allows you to configure various security requirements necessary to use the
rndc command to administer the named service.

See Section 15.2.4, “Using the rndc Utility” for more information on the rndc utility and its usage.

key

The key statement allows you to define a particular key by name. Keys are used to authenticate
various actions, such as secure updates or the use of the rndc command. Two options are used with
key:

algorithm algorithm-name — The type of algorithm to be used (for example, hmac-md5).

secret "key-value" — The encrypted key.

See Section 15.2.4, “Using the rndc Utility” for more information on the rndc utility and its usage.

logging

CHAPTER 15. DNS SERVERS

243

The logging statement allows you to use multiple types of logs, so called channels. By using the
channel option within the statement, you can construct a customized type of log with its own file
name (file), size limit (size), version number (version), and level of importance (severity). Once a
customized channel is defined, a category option is used to categorize the channel and begin
logging when the named service is restarted.

By default, named sends standard messages to the rsyslog daemon, which places them in
/var/log/messages. Several standard channels are built into BIND with various severity levels, such
as default_syslog (which handles informational logging messages) and default_debug (which
specifically handles debugging messages). A default category, called default, uses the built-in
channels to do normal logging without any special configuration.

Customizing the logging process can be a very detailed process and is beyond the scope of this
chapter. For information on creating custom BIND logs, see the BIND 9 Administrator Reference
Manual referenced in Section 15.2.8.1, “Installed Documentation” .

server

The server statement allows you to specify options that affect how the named service should
respond to remote nameservers, especially with regard to notifications and zone transfers.

The transfer-format option controls the number of resource records that are sent with each
message. It can be either one-answer (only one resource record), or many-answers (multiple
resource records). Note that while the many-answers option is more efficient, it is not supported by
older versions of BIND.

trusted-keys

The trusted-keys statement allows you to specify assorted public keys used for secure DNS
(DNSSEC). See Section 15.2.6.4, “DNS Security Extensions (DNSSEC)” for more information on this
topic.

view

The view statement allows you to create special views depending upon which network the host
querying the nameserver is on. This allows some hosts to receive one answer regarding a zone while
other hosts receive totally different information. Alternatively, certain zones may only be made
available to particular trusted hosts while non-trusted hosts can only make queries for other zones.

Multiple views can be used as long as their names are unique. The match-clients option allows you to
specify the IP addresses that apply to a particular view. If the options statement is used within a
view, it overrides the already configured global options. Finally, most view statements contain
multiple zone statements that apply to the match-clients list.

Note that the order in which the view statements are listed is important, as the first statement that
matches a particular client's IP address is used. For more information on this topic, see
Section 15.2.6.1, “Multiple Views” .

15.2.2.4. Comment Tags

Additionally to statements, the /etc/named.conf file can also contain comments. Comments are ignored
by the named service, but can prove useful when providing additional information to a user. The
following are valid comment tags:

//

Any text after the // characters to the end of the line is considered a comment. For example:

Networking Guide

244

notify yes; // notify all secondary nameservers

#

Any text after the # character to the end of the line is considered a comment. For example:

notify yes; # notify all secondary nameservers

/* and */

Any block of text enclosed in /* and */ is considered a comment. For example:

notify yes; /* notify all secondary nameservers */

15.2.3. Editing Zone Files

As outlined in Section 15.1.1, “Name server Zones”, zone files contain information about a namespace.
They are stored in the named working directory located in /var/named/ by default. Each zone file is
named according to the file option in the zone statement, usually in a way that relates to the domain in
and identifies the file as containing zone data, such as example.com.zone.

Table 15.5. The named Service Zone Files

Path Description

/var/named/ The working directory for the named service. The
nameserver is not allowed to write to this directory.

/var/named/slaves/ The directory for secondary zones. This directory is
writable by the named service.

/var/named/dynamic/ The directory for other files, such as dynamic DNS
(DDNS) zones or managed DNSSEC keys. This
directory is writable by the named service.

/var/named/data/ The directory for various statistics and debugging
files. This directory is writable by the named service.

A zone file consists of directives and resource records. Directives tell the nameserver to perform tasks
or apply special settings to the zone, resource records define the parameters of the zone and assign
identities to individual hosts. While the directives are optional, the resource records are required in order
to provide name service to a zone.

All directives and resource records should be entered on individual lines.

15.2.3.1. Common Directives

Directives begin with the dollar sign character ($) followed by the name of the directive, and usually
appear at the top of the file. The following directives are commonly used in zone files:

$INCLUDE

The $INCLUDE directive allows you to include another file at the place where it appears, so that

CHAPTER 15. DNS SERVERS

245

The $INCLUDE directive allows you to include another file at the place where it appears, so that
other zone settings can be stored in a separate zone file.

Example 15.7. Using the $INCLUDE Directive

$INCLUDE /var/named/penguin.example.com

$ORIGIN

The $ORIGIN directive allows you to append the domain name to unqualified records, such as those
with the host name only. Note that the use of this directive is not necessary if the zone is specified in
/etc/named.conf, since the zone name is used by default.

In Example 15.8, “Using the $ORIGIN Directive” , any names used in resource records that do not end
in a trailing period (the . character) are appended with example.com.

Example 15.8. Using the $ORIGIN Directive

$ORIGIN example.com.

$TTL

The $TTL directive allows you to set the default Time to Live (TTL) value for the zone, that is, how
long is a zone record valid. Each resource record can contain its own TTL value, which overrides this
directive.

Increasing this value allows remote nameservers to cache the zone information for a longer period of
time, reducing the number of queries for the zone and lengthening the amount of time required to
propagate resource record changes.

Example 15.9. Using the $TTL Directive

$TTL 1D

15.2.3.2. Common Resource Records

The following resource records are commonly used in zone files:

A

The Address record specifies an IP address to be assigned to a name. It takes the following form:

hostname IN A IP-address

If the hostname value is omitted, the record will point to the last specified hostname.

In Example 15.10, “Using the A Resource Record” , the requests for server1.example.com are pointed
to 10.0.1.3 or 10.0.1.5.

Example 15.10. Using the A Resource Record

Networking Guide

246

server1 IN A 10.0.1.3
 IN A 10.0.1.5

CNAME

The Canonical Name record maps one name to another. Because of this, this type of record is
sometimes referred to as an alias record . It takes the following form:

alias-name IN CNAME real-name

CNAME records are most commonly used to point to services that use a common naming scheme,
such as www for Web servers. However, there are multiple restrictions for their usage:

CNAME records should not point to other CNAME records. This is mainly to avoid possible
infinite loops.

CNAME records should not contain other resource record types (such as A, NS, MX, and so
on). The only exception are DNSSEC related records (RRSIG, NSEC, and so on) when the
zone is signed.

Other resource records that point to the fully qualified domain name (FQDN) of a host (NS,
MX, PTR) should not point to a CNAME record.

In Example 15.11, “Using the CNAME Resource Record” , the A record binds a host name to an IP
address, while the CNAME record points the commonly used www host name to it.

Example 15.11. Using the CNAME Resource Record

server1 IN A 10.0.1.5
www IN CNAME server1

MX

The Mail Exchange record specifies where the mail sent to a particular namespace controlled by this
zone should go. It takes the following form:

IN MX preference-value email-server-name

The email-server-name is a fully qualified domain name (FQDN). The preference-value allows
numerical ranking of the email servers for a namespace, giving preference to some email systems
over others. The MX resource record with the lowest preference-value is preferred over the others.
However, multiple email servers can possess the same value to distribute email traffic evenly among
them.

In Example 15.12, “Using the MX Resource Record” , the first mail.example.com email server is
preferred to the mail2.example.com email server when receiving email destined for the
example.com domain.

Example 15.12. Using the MX Resource Record

example.com. IN MX 10 mail.example.com.
 IN MX 20 mail2.example.com.

CHAPTER 15. DNS SERVERS

247

NS

The Nameserver record announces authoritative nameservers for a particular zone. It takes the
following form:

IN NS nameserver-name

The nameserver-name should be a fully qualified domain name (FQDN). Note that when two
nameservers are listed as authoritative for the domain, it is not important whether these nameservers
are secondary nameservers, or if one of them is a primary server. They are both still considered
authoritative.

Example 15.13. Using the NS Resource Record

IN NS dns1.example.com.
IN NS dns2.example.com.

PTR

The Pointer record points to another part of the namespace. It takes the following form:

last-IP-digit IN PTR FQDN-of-system

The last-IP-digit directive is the last number in an IP address, and the FQDN-of-system is a fully
qualified domain name (FQDN).

PTR records are primarily used for reverse name resolution, as they point IP addresses back to a
particular name. See Section 15.2.3.4.2, “A Reverse Name Resolution Zone File” for examples of PTR
records in use.

SOA

The Start of Authority record announces important authoritative information about a namespace to
the nameserver. Located after the directives, it is the first resource record in a zone file. It takes the
following form:

@ IN SOA primary-name-server hostmaster-email (
 serial-number
 time-to-refresh
 time-to-retry
 time-to-expire
 minimum-TTL)

The directives are as follows:

The @ symbol places the $ORIGIN directive (or the zone's name if the $ORIGIN directive is
not set) as the namespace being defined by this SOA resource record.

The primary-name-server directive is the host name of the primary nameserver that is
authoritative for this domain.

The hostmaster-email directive is the email of the person to contact about the namespace.

Networking Guide

248

The serial-number directive is a numerical value incremented every time the zone file is
altered to indicate it is time for the named service to reload the zone.

The time-to-refresh directive is the numerical value secondary nameservers use to determine
how long to wait before asking the primary nameserver if any changes have been made to
the zone.

The time-to-retry directive is a numerical value used by secondary nameservers to determine
the length of time to wait before issuing a refresh request in the event that the primary
nameserver is not answering. If the primary server has not replied to a refresh request before
the amount of time specified in the time-to-expire directive elapses, the secondary servers
stop responding as an authority for requests concerning that namespace.

In BIND 4 and 8, the minimum-TTL directive is the amount of time other nameservers cache
the zone's information. In BIND 9, it defines how long negative answers are cached for.
Caching of negative answers can be set to a maximum of 3 hours (3H).

When configuring BIND, all times are specified in seconds. However, it is possible to use
abbreviations when specifying units of time other than seconds, such as minutes (M), hours (H), days
(D), and weeks (W). Table 15.6, “Seconds compared to other time units” shows an amount of time in
seconds and the equivalent time in another format.

Table 15.6. Seconds compared to other time units

Seconds Other Time Units

60 1M

1800 30M

3600 1H

10800 3H

21600 6H

43200 12H

86400 1D

259200 3D

604800 1W

31536000 365D

Example 15.14. Using the SOA Resource Record

@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours

CHAPTER 15. DNS SERVERS

249

 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day

15.2.3.3. Comment Tags

Additionally to resource records and directives, a zone file can also contain comments. Comments are
ignored by the named service, but can prove useful when providing additional information to the user.
Any text after the semicolon character to the end of the line is considered a comment. For example:

 604800 ; expire after 1 week

15.2.3.4. Example Usage

The following examples show the basic usage of zone files.

15.2.3.4.1. A Simple Zone File

Example 15.15, “A simple zone file” demonstrates the use of standard directives and SOA values.

Example 15.15. A simple zone file

$ORIGIN example.com.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day
;
;
 IN NS dns1.example.com.
 IN NS dns2.example.com.
dns1 IN A 10.0.1.1
 IN AAAA aaaa:bbbb::1
dns2 IN A 10.0.1.2
 IN AAAA aaaa:bbbb::2
;
;
@ IN MX 10 mail.example.com.
 IN MX 20 mail2.example.com.
mail IN A 10.0.1.5
 IN AAAA aaaa:bbbb::5
mail2 IN A 10.0.1.6
 IN AAAA aaaa:bbbb::6
;
;
; This sample zone file illustrates sharing the same IP addresses
; for multiple services:
;
services IN A 10.0.1.10

Networking Guide

250

 IN AAAA aaaa:bbbb::10
 IN A 10.0.1.11
 IN AAAA aaaa:bbbb::11

ftp IN CNAME services.example.com.
www IN CNAME services.example.com.
;
;

In this example, the authoritative nameservers are set as dns1.example.com and dns2.example.com,
and are tied to the 10.0.1.1 and 10.0.1.2 IP addresses respectively using the A record.

The email servers configured with the MX records point to mail and mail2 through A records. Since
these names do not end in a trailing period, the $ORIGIN domain is placed after them, expanding them
to mail.example.com and mail2.example.com.

Services available at the standard names, such as www.example.com (WWW), are pointed at the
appropriate servers using the CNAME record.

This zone file would be called into service with a zone statement in the /etc/named.conf similar to the
following:

zone "example.com" IN {
 type master;
 file "example.com.zone";
 allow-update { none; };
};

15.2.3.4.2. A Reverse Name Resolution Zone File

A reverse name resolution zone file is used to translate an IP address in a particular namespace into a
fully qualified domain name (FQDN). It looks very similar to a standard zone file, except that the PTR
resource records are used to link the IP addresses to a fully qualified domain name as shown in
Example 15.16, “A reverse name resolution zone file” .

Example 15.16. A reverse name resolution zone file

$ORIGIN 1.0.10.in-addr.arpa.
$TTL 86400
@ IN SOA dns1.example.com. hostmaster.example.com. (
 2001062501 ; serial
 21600 ; refresh after 6 hours
 3600 ; retry after 1 hour
 604800 ; expire after 1 week
 86400) ; minimum TTL of 1 day
;
@ IN NS dns1.example.com.
;
1 IN PTR dns1.example.com.
2 IN PTR dns2.example.com.
;
5 IN PTR server1.example.com.
6 IN PTR server2.example.com.

CHAPTER 15. DNS SERVERS

251

;
3 IN PTR ftp.example.com.
4 IN PTR ftp.example.com.

In this example, IP addresses 10.0.1.1 through 10.0.1.6 are pointed to the corresponding fully qualified
domain name.

This zone file would be called into service with a zone statement in the /etc/named.conf file similar to
the following:

zone "1.0.10.in-addr.arpa" IN {
 type master;
 file "example.com.rr.zone";
 allow-update { none; };
};

There is very little difference between this example and a standard zone statement, except for the zone
name. Note that a reverse name resolution zone requires the first three blocks of the IP address
reversed followed by .in-addr.arpa. This allows the single block of IP numbers used in the reverse name
resolution zone file to be associated with the zone.

15.2.4. Using the rndc Utility

The rndc utility is a command-line tool that allows you to administer the named service, both locally and
from a remote machine. Its usage is as follows:

rndc [option...] command [command-option]

15.2.4.1. Configuring the Utility

To prevent unauthorized access to the service, named must be configured to listen on the selected port
(953 by default), and an identical key must be used by both the service and the rndc utility.

Table 15.7. Relevant files

Path Description

/etc/named.conf The default configuration file for the named service.

/etc/rndc.conf The default configuration file for the rndc utility.

/etc/rndc.key The default key location.

The rndc configuration is located in /etc/rndc.conf. If the file does not exist, the utility will use the key
located in /etc/rndc.key, which was generated automatically during the installation process using the
rndc-confgen -a command.

The named service is configured using the controls statement in the /etc/named.conf configuration file
as described in Section 15.2.2.3, “Other Statement Types” . Unless this statement is present, only the
connections from the loopback address (127.0.0.1) will be allowed, and the key located in /etc/rndc.key
will be used.

Networking Guide

252

For more information on this topic, see manual pages and the BIND 9 Administrator Reference Manual
listed in Section 15.2.8, “Additional Resources”.

IMPORTANT

To prevent unprivileged users from sending control commands to the service, make sure
only root is allowed to read the /etc/rndc.key file:

~]# chmod o-rwx /etc/rndc.key

15.2.4.2. Checking the Service Status

To check the current status of the named service, use the following command:

~]# rndc status
version: 9.7.0-P2-RedHat-9.7.0-5.P2.el6
CPUs found: 1
worker threads: 1
number of zones: 16
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/0/1000
tcp clients: 0/100
server is up and running

15.2.4.3. Reloading the Configuration and Zones

To reload both the configuration file and zones, type the following at a shell prompt:

~]# rndc reload
server reload successful

This will reload the zones while keeping all previously cached responses, so that you can make changes
to the zone files without losing all stored name resolutions.

To reload a single zone, specify its name after the reload command, for example:

~]# rndc reload localhost
zone reload up-to-date

Finally, to reload the configuration file and newly added zones only, type:

~]# rndc reconfig

NOTE

CHAPTER 15. DNS SERVERS

253

NOTE

If you intend to manually modify a zone that uses Dynamic DNS (DDNS), make sure you
run the freeze command first:

~]# rndc freeze localhost

Once you are finished, run the thaw command to allow the DDNS again and reload the
zone:

~]# rndc thaw localhost
The zone reload and thaw was successful.

15.2.4.4. Updating Zone Keys

To update the DNSSEC keys and sign the zone, use the sign command. For example:

~]# rndc sign localhost

Note that to sign a zone with the above command, the auto-dnssec option has to be set to maintain in
the zone statement. For example:

zone "localhost" IN {
 type master;
 file "named.localhost";
 allow-update { none; };
 auto-dnssec maintain;
};

15.2.4.5. Enabling the DNSSEC Validation

To enable the DNSSEC validation, issue the following command as root:

~]# rndc validation on

Similarly, to disable this option, type:

~]# rndc validation off

See the options statement described in Section 15.2.2.2, “Common Statement Types” for information
on how to configure this option in /etc/named.conf.

The Red Hat Enterprise Linux 7 Security Guide has a comprehensive section on DNSSEC.

15.2.4.6. Enabling the Query Logging

To enable (or disable in case it is currently enabled) the query logging, issue the following command as
root:

~]# rndc querylog

To check the current setting, use the status command as described in Section 15.2.4.2, “Checking the

Networking Guide

254

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

To check the current setting, use the status command as described in Section 15.2.4.2, “Checking the
Service Status”.

15.2.5. Using the dig Utility

The dig utility is a command-line tool that allows you to perform DNS lookups and debug a nameserver
configuration. Its typical usage is as follows:

dig [@server] [option...] name type

See Section 15.2.3.2, “Common Resource Records” for a list of common values to use for type.

15.2.5.1. Looking Up a Nameserver

To look up a nameserver for a particular domain, use the command in the following form:

dig name NS

In Example 15.17, “A sample nameserver lookup” , the dig utility is used to display nameservers for
example.com.

Example 15.17. A sample nameserver lookup

~]$ dig example.com NS

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com NS
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57883
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com. IN NS

;; ANSWER SECTION:
example.com. 99374 IN NS a.iana-servers.net.
example.com. 99374 IN NS b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:04:06 2010
;; MSG SIZE rcvd: 77

15.2.5.2. Looking Up an IP Address

To look up an IP address assigned to a particular domain, use the command in the following form:

dig name A

In Example 15.18, “A sample IP address lookup”, the dig utility is used to display the IP address of
example.com.

CHAPTER 15. DNS SERVERS

255

Example 15.18. A sample IP address lookup

~]$ dig example.com A

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> example.com A
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4849
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com. IN A

;; ANSWER SECTION:
example.com. 155606 IN A 192.0.32.10

;; AUTHORITY SECTION:
example.com. 99175 IN NS a.iana-servers.net.
example.com. 99175 IN NS b.iana-servers.net.

;; Query time: 1 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:07:25 2010
;; MSG SIZE rcvd: 93

15.2.5.3. Looking Up a Host Name

To look up a host name for a particular IP address, use the command in the following form:

dig -x address

In Example 15.19, “A Sample Host Name Lookup” , the dig utility is used to display the host name
assigned to 192.0.32.10.

Example 15.19. A Sample Host Name Lookup

~]$ dig -x 192.0.32.10

; <<>> DiG 9.7.1-P2-RedHat-9.7.1-2.P2.fc13 <<>> -x 192.0.32.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29683
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 6

;; QUESTION SECTION:
;10.32.0.192.in-addr.arpa. IN PTR

;; ANSWER SECTION:
10.32.0.192.in-addr.arpa. 21600 IN PTR www.example.com.

;; AUTHORITY SECTION:
32.0.192.in-addr.arpa. 21600 IN NS b.iana-servers.org.
32.0.192.in-addr.arpa. 21600 IN NS c.iana-servers.net.

Networking Guide

256

32.0.192.in-addr.arpa. 21600 IN NS d.iana-servers.net.
32.0.192.in-addr.arpa. 21600 IN NS ns.icann.org.
32.0.192.in-addr.arpa. 21600 IN NS a.iana-servers.net.

;; ADDITIONAL SECTION:
a.iana-servers.net. 13688 IN A 192.0.34.43
b.iana-servers.org. 5844 IN A 193.0.0.236
b.iana-servers.org. 5844 IN AAAA 2001:610:240:2::c100:ec
c.iana-servers.net. 12173 IN A 139.91.1.10
c.iana-servers.net. 12173 IN AAAA 2001:648:2c30::1:10
ns.icann.org. 12884 IN A 192.0.34.126

;; Query time: 156 msec
;; SERVER: 10.34.255.7#53(10.34.255.7)
;; WHEN: Wed Aug 18 18:25:15 2010
;; MSG SIZE rcvd: 310

15.2.6. Advanced Features of BIND

Most BIND implementations only use the named service to provide name resolution services or to act as
an authority for a particular domain. However, BIND version 9 has a number of advanced features that
allow for a more secure and efficient DNS service.

IMPORTANT

Before attempting to use advanced features like DNSSEC, TSIG, or IXFR (Incremental
Zone Transfer), make sure that the particular feature is supported by all nameservers in
the network environment, especially when you use older versions of BIND or non-BIND
servers.

All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference
Manual referenced in Section 15.2.8.1, “Installed Documentation” .

15.2.6.1. Multiple Views

Optionally, different information can be presented to a client depending on the network a request
originates from. This is primarily used to deny sensitive DNS entries from clients outside of the local
network, while allowing queries from clients inside the local network.

To configure multiple views, add the view statement to the /etc/named.conf configuration file. Use the
match-clients option to match IP addresses or entire networks and give them special options and zone
data.

15.2.6.2. Incremental Zone Transfers (IXFR)

Incremental Zone Transfers (IXFR) allow a secondary nameserver to only download the updated portions
of a zone modified on a primary nameserver. Compared to the standard transfer process, this makes the
notification and update process much more efficient.

Note that IXFR is only available when using dynamic updating to make changes to master zone records.
If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.

CHAPTER 15. DNS SERVERS

257

15.2.6.3. Transaction SIGnatures (TSIG)

Transaction SIGnatures (TSIG) ensure that a shared secret key exists on both primary and secondary
nameservers before allowing a transfer. This strengthens the standard IP address-based method of
transfer authorization, since attackers would not only need to have access to the IP address to transfer
the zone, but they would also need to know the secret key.

Since version 9, BIND also supports TKEY, which is another shared secret key method of authorizing
zone transfers.

IMPORTANT

When communicating over an insecure network, do not rely on IP address-based
authentication only.

15.2.6.4. DNS Security Extensions (DNSSEC)

Domain Name System Security Extensions (DNSSEC) provide origin authentication of DNS data,
authenticated denial of existence, and data integrity. When a particular domain is marked as secure, the
SERVFAIL response is returned for each resource record that fails the validation.

Note that to debug a DNSSEC-signed domain or a DNSSEC-aware resolver, you can use the dig utility
as described in Section 15.2.5, “Using the dig Utility”. Useful options are +dnssec (requests DNSSEC-
related resource records by setting the DNSSEC OK bit), +cd (tells recursive nameserver not to validate
the response), and +bufsize=512 (changes the packet size to 512B to get through some firewalls).

15.2.6.5. Internet Protocol version 6 (IPv6)

Internet Protocol version 6 (IPv6) is supported through the use of AAAA resource records, and the
listen-on-v6 directive as described in Table 15.3, “Commonly Used Configuration Options” .

15.2.7. Common Mistakes to Avoid

The following is a list of recommendations on how to avoid common mistakes users make when
configuring a nameserver:

Use semicolons and curly brackets correctly

An omitted semicolon or unmatched curly bracket in the /etc/named.conf file can prevent the
named service from starting.

Use period (the . character) correctly

In zone files, a period at the end of a domain name denotes a fully qualified domain name. If omitted,
the named service will append the name of the zone or the value of $ORIGIN to complete it.

Increment the serial number when editing a zone file

If the serial number is not incremented, the primary nameserver will have the correct, new
information, but the secondary nameservers will never be notified of the change, and will not attempt
to refresh their data of that zone.

Configure the firewall

If a firewall is blocking connections from the named service to other nameservers, the recommended
practice is to change the firewall settings.

Networking Guide

258

WARNING

Using a fixed UDP source port for DNS queries is a potential security
vulnerability that could allow an attacker to conduct cache-poisoning attacks
more easily. To prevent this, by default DNS sends from a random ephemeral
port. Configure your firewall to allow outgoing queries from a random UDP
source port. The range 1024 to 65535 is used by default.

15.2.8. Additional Resources

The following sources of information provide additional resources regarding BIND.

15.2.8.1. Installed Documentation

BIND features a full range of installed documentation covering many different topics, each placed in its
own subject directory. For each item below, replace version with the version of the bind package
installed on the system:

/usr/share/doc/bind-version/

The main directory containing the most recent documentation. The directory contains the BIND 9
Administrator Reference Manual in HTML and PDF formats, which details BIND resource
requirements, how to configure different types of nameservers, how to perform load balancing, and
other advanced topics.

/usr/share/doc/bind-version/sample/etc/

The directory containing examples of named configuration files.

rndc(8)

The manual page for the rndc name server control utility, containing documentation on its usage.

named(8)

The manual page for the Internet domain name server named, containing documentation on
assorted arguments that can be used to control the BIND nameserver daemon.

lwresd(8)

The manual page for the lightweight resolver daemon lwresd, containing documentation on the
daemon and its usage.

named.conf(5)

The manual page with a comprehensive list of options available within the named configuration file.

rndc.conf(5)

The manual page with a comprehensive list of options available within the rndc configuration file.



CHAPTER 15. DNS SERVERS

259

15.2.8.2. Online Resources

https://access.redhat.com/site/articles/770133

A Red Hat Knowledgebase article about running BIND in a chroot environment, including the
differences compared to Red Hat Enterprise Linux 6.

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/

The Red Hat Enterprise Linux 7 Security Guide has a comprehensive section on DNSSEC.

https://www.icann.org/namecollision

The ICANN FAQ on domain name collision.

Networking Guide

260

https://access.redhat.com/site/articles/770133
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
https://www.icann.org/namecollision

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY
SERVER
Squid is a proxy server that caches content to reduce bandwidth and load web pages more quickly. This
chapter describes how to set up Squid as a proxy for the HTTP, HTTPS, and FTP protocol, as well as
authentication and restricting access.

16.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT
AUTHENTICATION

This section describes a basic configuration of Squid as a caching proxy without authentication. The
procedure limits access to the proxy based on IP ranges.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid package.
If you edited this file before, remove the file and reinstall the package.

Procedure

1. Install the squid package:

yum install squid

2. Edit the /etc/squid/squid.conf file:

a. Adapt the localnet access control lists (ACL) to match the IP ranges that should be allowed
to use the proxy:

acl localnet src 192.0.2.0/24
acl localnet 2001:db8::/32

By default, the /etc/squid/squid.conf file contains the http_access allow localnet rule
that allows using the proxy from all IP ranges specified in localnet ACLs. Note that you must
specify all localnet ACLs before the http_access allow localnet rule.

IMPORTANT

Remove all existing acl localnet entries that do not match your environment.

b. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

c. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

261

resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

d. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.

If you do not set a cache_dir directive, Squid stores the cache in memory.

3. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

4. Open the 3128 port in the firewall:

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

5. Start the squid service:

Networking Guide

262

systemctl start squid

6. Enable the squid service to start automatically when the system boots:

systemctl enable squid

Verification Steps
To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" -x "proxy.example.com:3128"

If curl does not display any error and the index.html file was downloaded to the current directory, the
proxy works.

16.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP
AUTHENTICATION

This section describes a basic configuration of Squid as a caching proxy that uses LDAP to authenticate
users. The procedure configures that only authenticated users can use the proxy.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid package.
If you edited this file before, remove the file and reinstall the package.

An service user, such as uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com exists
in the LDAP directory. Squid uses this account only to search for the authenticating user. If the
authenticating user exists, Squid binds as this user to the directory to verify the authentication.

Procedure

1. Install the squid package:

yum install squid

2. Edit the /etc/squid/squid.conf file:

a. To configure the basic_ldap_auth helper utility, add the following configuration entry to
the top of /etc/squid/squid.conf:

auth_param basic program /usr/lib64/squid/basic_ldap_auth -b
"cn=users,cn=accounts,dc=example,dc=com" -D
"uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com" -W
/etc/squid/ldap_password -f "(&(objectClass=person)(uid=%s))" -ZZ -H
ldap://ldap_server.example.com:389

The following describes the parameters passed to the basic_ldap_auth helper utility in the
example above:

-B base_DN sets the LDAP search base.

-D proxy_service_user_DN sets the distinguished name (DN) of the account Squid
uses to search for the authenticating user in the directory.

-W path_to_password_file sets the path to the file that contains the password of the

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

263

-W path_to_password_file sets the path to the file that contains the password of the
proxy service user. Using a password file prevents that the password is visible in the
operating system's process list.

-f LDAP_filter specifies the LDAP search filter. Squid replaces the %s variable with the
user name provided by the authenticating user.

The (&(objectClass=person)(uid=%s)) filter in the example defines that the user
name must match the value set in the uid attribute and that the directory entry contains
the person object class.

-ZZ enforces a TLS-encrypted connection over the LDAP protocol using the
STARTTLS command. Omit the -ZZ in the following situations:

The LDAP server does not support encrypted connections.

The port specified in the URL uses the LDAPS protocol.

The -H LDAP_URL parameter specifies the protocol, the host name or IP address, and
the port of the LDAP server in URL format.

b. Add the following ACL and rule to configure that Squid allows only authenticated users to
use the proxy:

acl ldap-auth proxy_auth REQUIRED
http_access allow ldap-auth

IMPORTANT

Specify these settings before the http_access deny all rule.

c. Remove the following rule to disable bypassing the proxy authentication from IP ranges
specified in localnet ACLs:

http_access allow localnet

d. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

e. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access
resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

Networking Guide

264

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

f. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.

If you do not set a cache_dir directive, Squid stores the cache in memory.

3. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

4. Store the password of the LDAP service user in the /etc/squid/ldap_password file, and set
appropriate permissions for the file:

echo "password" > /etc/squid/ldap_password
chown root:squid /etc/squid/ldap_password
chmod 640 /etc/squid/ldap_password

5. Open the 3128 port in the firewall:

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

265

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

6. Start the squid service:

systemctl start squid

7. Enable the squid service to start automatically when the system boots:

systemctl enable squid

Verification Steps
To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" -x
"user_name:password@proxy.example.com:3128"

If curl does not display any error and the index.html file was downloaded to the current directory, the
proxy works.

Troubleshooting Steps
To verify that the helper utility works correctly:

1. Manually start the helper utility with the same settings you used in the auth_param parameter:

/usr/lib64/squid/basic_ldap_auth -b "cn=users,cn=accounts,dc=example,dc=com" -D
"uid=proxy_user,cn=users,cn=accounts,dc=example,dc=com" -W /etc/squid/ldap_password -
f "(&(objectClass=person)(uid=%s))" -ZZ -H ldap://ldap_server.example.com:389

2. Enter a valid user name and password, and press Enter:

user_name password

If the helper utility returns OK, authentication succeeded.

16.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS
AUTHENTICATION

This section describes a basic configuration of Squid as a caching proxy that authenticates users to an
Active Directory (AD) using Kerberos. The procedure configures that only authenticated users can use
the proxy.

Prerequisites

The procedure assumes that the /etc/squid/squid.conf file is as provided by the squid package.
If you edited this file before, remove the file and reinstall the package.

The server on which you want to install Squid is a member of the AD domain. For details, see
Setting up Samba as a Domain Member in the Red Hat Enterprise Linux 7 System Administrator's
Guide.

Procedure

1. Install the following packages:

Networking Guide

266

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-file_and_print_servers#setting_up_samba_as_a_domain_member

1. Install the following packages:

yum install squid krb5-workstation

2. Authenticate as the AD domain administrator:

kinit administrator@AD.EXAMPLE.COM

3. Create a keytab for Squid and store it in the /etc/squid/HTTP.keytab file:

export KRB5_KTNAME=FILE:/etc/squid/HTTP.keytab
net ads keytab CREATE -U administrator

4. Add the HTTP service principal to the keytab:

net ads keytab ADD HTTP -U administrator

5. Set the owner of the keytab file to the squid user:

chown squid /etc/squid/HTTP.keytab

6. Optionally, verify that the keytab file contains the HTTP service principal for the fully-qualified
domain name (FQDN) of the proxy server:

klist -k /etc/squid/HTTP.keytab
Keytab name: FILE:/etc/squid/HTTP.keytab
KVNO Principal
---- --
...
 2 HTTP/proxy.ad.example.com@AD.EXAMPLE.COM
...

7. Edit the /etc/squid/squid.conf file:

a. To configure the negotiate_kerberos_auth helper utility, add the following configuration
entry to the top of /etc/squid/squid.conf:

auth_param negotiate program /usr/lib64/squid/negotiate_kerberos_auth -k
/etc/squid/HTTP.keytab -s HTTP/proxy.ad.example.com@AD.EXAMPLE.COM

The following describes the parameters passed to the negotiate_kerberos_auth helper
utility in the example above:

-k file sets the path to the key tab file. Note that the squid user must have read
permissions on this file.

-s HTTP/host_name@kerberos_realm sets the Kerberos principal that Squid uses.

Optionally, you can enable logging by passing one or both of the following parameters to
the helper utility:

-i logs informational messages, such as the authenticating user.

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

267

-d enables debug logging.

Squid logs the debugging information from the helper utility to the
/var/log/squid/cache.log file.

b. Add the following ACL and rule to configure that Squid allows only authenticated users to
use the proxy:

acl kerb-auth proxy_auth REQUIRED
http_access allow kerb-auth

IMPORTANT

Specify these settings before the http_access deny all rule.

c. Remove the following rule to disable bypassing the proxy authentication from IP ranges
specified in localnet ACLs:

http_access allow localnet

d. The following ACL exists in the default configuration and defines 443 as a port that uses the
HTTPS protocol:

acl SSL_ports port 443

If users should be able to use the HTTPS protocol also on other ports, add an ACL for each
of these port:

acl SSL_ports port port_number

e. Update the list of acl Safe_ports rules to configure to which ports Squid can establish a
connection. For example, to configure that clients using the proxy can only access
resources on port 21 (FTP), 80 (HTTP), and 443 (HTTPS), keep only the following acl
Safe_ports statements in the configuration:

acl Safe_ports port 21
acl Safe_ports port 80
acl Safe_ports port 443

By default, the configuration contains the http_access deny !Safe_ports rule that defines
access denial to ports that are not defined in Safe_ports ACLs.

f. Configure the cache type, the path to the cache directory, the cache size, and further cache
type-specific settings in the cache_dir parameter:

cache_dir ufs /var/spool/squid 10000 16 256

With these settings:

Squid uses the ufs cache type.

Squid stores its cache in the /var/spool/squid/ directory.

Networking Guide

268

The cache grows up to 10000 MB.

Squid creates 16 level-1 sub-directories in the /var/spool/squid/ directory.

Squid creates 256 sub-directories in each level-1 directory.

If you do not set a cache_dir directive, Squid stores the cache in memory.

8. If you set a different cache directory than /var/spool/squid/ in the cache_dir parameter:

a. Create the cache directory:

mkdir -p path_to_cache_directory

b. Configure the permissions for the cache directory:

chown squid:squid path_to_cache_directory

c. If you run SELinux in enforcing mode, set the squid_cache_t context for the cache
directory:

semanage fcontext -a -t squid_cache_t "path_to_cache_directory(/.*)?"
restorecon -Rv path_to_cache_directory

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

9. Open the 3128 port in the firewall:

firewall-cmd --permanent --add-port=3128/tcp
firewall-cmd --reload

10. Start the squid service:

systemctl start squid

11. Enable the squid service to start automatically when the system boots:

systemctl enable squid

Verification Steps
To verify that the proxy works correctly, download a web page using the curl utility:

curl -O -L "https://www.redhat.com/index.html" --proxy-negotiate -u : -x
"proxy.ad.example.com:3128"

If curl does not display any error and the index.html file exists in the current directory, the proxy works.

Troubleshooting Steps
To manually test Kerberos authentication:

1. Obtain a Kerberos ticket for the AD account:

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

269

kinit user@AD.EXAMPLE.COM

2. Optionally, display the ticket:

klist

3. Use the negotiate_kerberos_auth_test utility to test the authentication:

/usr/lib64/squid/negotiate_kerberos_auth_test proxy.ad.example.com

If the helper utility returns a token, the authentication succeeded.

Token: YIIFtAYGKwYBBQUCoIIFqDC...

16.4. CONFIGURING A DOMAIN BLACKLIST IN SQUID

Frequently, administrators want to block access to specific domains. This section describes how to
configure a domain blacklist in Squid.

Prerequisites

Squid is configured, and users can use the proxy.

Procedure

1. Edit the /etc/squid/squid.conf file and add the following settings:

acl domain_blacklist dstdomain "/etc/squid/domain_blacklist.txt"
http_access deny all domain_blacklist

IMPORTANT

Add these entries before the first http_access allow statement that allows
access to users or clients.

2. Create the /etc/squid/domain_blacklist.txt file and add the domains you want to block. For
example, to block access to example.com including subdomains and to block example.net,
add:

.example.com
example.net

IMPORTANT

If you referred to the /etc/squid/domain_blacklist.txt file in the squid
configuration, this file must not be empty. If the file is empty, Squid fails to start.

3. Restart the squid service:

systemctl restart squid

Networking Guide

270

16.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC
PORT OR IP ADDRESS

By default, the Squid proxy service listens on the 3128 port on all network interfaces. This section
describes how to change the port and configuring Squid to listen on a specific IP address.

Prerequisites

Squid is installed.

Procedure

1. Edit the /etc/squid/squid.conf file:

To set the port on which the Squid service listens, set the port number in the http_port
parameter. For example, to set the port to 8080, set:

http_port 8080

To configure on which IP address the Squid service listens, set the IP address and port
number in the http_port parameter. For example, to configure that Squid listens only on the
192.0.2.1 IP address on port 3128, set:

http_port 192.0.2.1:3128

Add multiple http_port parameters to the configuration file to configure that Squid listens on
multiple ports and IP addresses:

http_port 192.0.2.1:3128
http_port 192.0.2.1:8080

2. If you configured that Squid uses a different port as the default (3128):

a. Open the port in the firewall:

firewall-cmd --permanent --add-port=port_number/tcp
firewall-cmd --reload

b. If you run SELinux in enforcing mode, assign the port to the squid_port_t port type
definition:

semanage port -a -t squid_port_t -p tcp port_number

If the semanage utility is not available on your system, install the policycoreutils-python-
utils package.

3. Restart the squid service:

systemctl restart squid

16.6. ADDITIONAL RESOURCES

See the /usr/share/doc/squid-<version>/squid.conf.documented file for a list of all

CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER

271

See the /usr/share/doc/squid-<version>/squid.conf.documented file for a list of all
configuration parameters you can set in the /etc/squid/squid.conf file together with a detailed
description.

Networking Guide

272

APPENDIX A. RED HAT CUSTOMER PORTAL LABS RELEVANT
TO NETWORKING
Red Hat Customer Portal Labs are tools designed to help you improve performance, troubleshoot
issues, identify security problems, and optimize configuration. This appendix provides an overview of
Red Hat Customer Portal Labs relevant to networking. All Red Hat Customer Portal Labs are available
at https://access.redhat.com/labs/.

BRIDGE CONFIGURATION
The Bridge Configuration is designed to configure a bridged network interface for applications such as
KVM using Red Hat Enterprise Linux 5.4 or later.

NETWORK BONDING HELPER
The Network Bonding Helper allows administrators to bind multiple Network Interface Controllers
together into a single channel using the bonding kernel module and the bonding network interface.

Use the Network Bonding Helper to enable two or more network interfaces to act as one bonding
interface.

PACKET CAPTURE SYNTAX GENERATOR
The Packet capture syntax generator helps you to capture network packets.

Use the Packet capture syntax generator to generate the tcpdump command that selects an
interface and then prints information to the console. You need root access to enter the command.

APPENDIX A. RED HAT CUSTOMER PORTAL LABS RELEVANT TO NETWORKING

273

https://access.redhat.com/labs/
https://access.redhat.com/labsinfo/kvmbridgeconfiguration/
https://access.redhat.com/labs/networkbondinghelper/
https://access.redhat.com/labs/nptcpdump/

APPENDIX B. REVISION HISTORY

Revision 0.10-06 Tue 03 Mar 2020 Marc Muehlfeld
Added the Configuring Policy-based Routing to Define Alternative Routes section.

Revision 0.10-05 Fri 22 Nov 2019 Marc Muehlfeld
Rewrote the Configuring the Squid Caching Proxy Server chapter.

Revision 0.10-04 Tue 06 Aug 2019 Marc Muehlfeld
Version for 7.7 GA publication.

Revision 0.10-03 Thu 22 Mar 2018 Ioanna Gkioka
Version for 7.5 GA publication.

Revision 0.10-02 Mon 14 Aug 2017 Ioanna Gkioka
Async release with misc. updates

Revision 0.10-01 Tue 25 Jul 2017 Mirek Jahoda
Version for 7.4 GA publication.

Revision 0.9-30 Tue 18 Oct 2016 Mirek Jahoda
Version for 7.3 GA publication.

Revision 0.9-25 Wed 11 Nov 2015 Jana Heves
Version for 7.2 GA release.

Revision 0.9-15 Tue 17 Feb 2015 Christian Huffman
Version for 7.1 GA release

Revision 0.9-14 Fri Dec 05 2014 Christian Huffman
Updated the nmtui and NetworkManager GUI sections.

Revision 0.9-12 Wed Nov 05 2014 Stephen Wadeley
Improved IP Networking, 802.1Q VLAN tagging, and Teaming.

Revision 0.9-11 Tues Oct 21 2014 Stephen Wadeley
Improved Bonding, Bridging, and Teaming.

Revision 0.9-9 Tue Sep 2 2014 Stephen Wadeley
Improved Bonding and Consistent Network Device Naming.

Revision 0.9-8 Tue July 8 2014 Stephen Wadeley
Red Hat Enterprise Linux 7.0 GA release of the Networking Guide.

Revision 0-0 Wed Dec 12 2012 Stephen Wadeley
Initialization of the Red Hat Enterprise Linux 7 Networking Guide.

B.1. ACKNOWLEDGMENTS

Certain portions of this text first appeared in the Red Hat Enterprise Linux 6 Deployment Guide ,
copyright © 2014 Red Hat, Inc., available at https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html.

Networking Guide

274

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

INDEX

Symbols

/etc/named.conf (see BIND)

A

authoritative name server (see BIND)

B

Berkeley Internet Name Domain (see BIND)

BIND

additional resources, Online Resources

installed documentation, Installed Documentation

common mistakes, Common Mistakes to Avoid

configuration

acl statement, Common Statement Types

comment tags, Comment Tags

controls statement, Other Statement Types

include statement, Common Statement Types

key statement, Other Statement Types

logging statement, Other Statement Types

options statement, Common Statement Types

server statement, Other Statement Types

trusted-keys statement, Other Statement Types

view statement, Other Statement Types

zone statement, Common Statement Types

directories

/etc/named/, Configuring the named Service

/var/named/, Editing Zone Files

/var/named/data/, Editing Zone Files

/var/named/dynamic/, Editing Zone Files

/var/named/slaves/, Editing Zone Files

features

Automatic Zone Transfer (AXFR), Incremental Zone Transfers (IXFR)

DNS Security Extensions (DNSSEC), DNS Security Extensions (DNSSEC)

Incremental Zone Transfer (IXFR), Incremental Zone Transfers (IXFR)

Internet Protocol version 6 (IPv6), Internet Protocol version 6 (IPv6)

multiple views, Multiple Views

Transaction SIGnature (TSIG), Transaction SIGnatures (TSIG)

INDEX

275

files

/etc/named.conf, Configuring the named Service, Configuring the Utility

/etc/rndc.conf, Configuring the Utility

/etc/rndc.key, Configuring the Utility

resource record, Name server Zones

types

authoritative name server, Name server Types

primary (master) name server, Name server Zones, Name server Types

recursive name server, Name server Types

secondary (slave) name server, Name server Zones, Name server Types

utilities

dig, BIND as a Name server, Using the dig Utility, DNS Security Extensions (DNSSEC)

named, BIND as a Name server, Configuring the named Service

rndc, BIND as a Name server, Using the rndc Utility

zones

$INCLUDE directive, Common Directives

$ORIGIN directive, Common Directives

$TTL directive, Common Directives

A (Address) resource record, Common Resource Records

CNAME (Canonical Name) resource record, Common Resource Records

comment tags, Comment Tags

description, Name server Zones

example usage, A Simple Zone File, A Reverse Name Resolution Zone File

MX (Mail Exchange) resource record, Common Resource Records

NS (Nameserver) resource record, Common Resource Records

PTR (Pointer) resource record, Common Resource Records

SOA (Start of Authority) resource record, Common Resource Records

bonding (see channel bonding)

C

channel bonding

configuration, Using Channel Bonding

description, Using Channel Bonding

parameters to bonded interfaces, Bonding Module Directives

channel bonding interface (see kernel module)

D

DHCP, DHCP Servers

Networking Guide

276

additional resources, Additional Resources

command-line options, Starting and Stopping the Server

dhcpd.conf, Configuration File

dhcpd.leases, Starting and Stopping the Server

dhcpd6.conf, DHCP for IPv6 (DHCPv6)

DHCPv6, DHCP for IPv6 (DHCPv6)

dhcrelay, DHCP Relay Agent

global parameters, Configuration File

group, Configuration File

options, Configuration File

reasons for using, Why Use DHCP?

Relay Agent, DHCP Relay Agent

server configuration, Configuring a DHCP Server

shared-network, Configuration File

starting the server, Starting and Stopping the Server

stopping the server, Starting and Stopping the Server

subnet, Configuration File

dhcpd.conf, Configuration File

dhcpd.leases, Starting and Stopping the Server

dhcrelay, DHCP Relay Agent

dig (see BIND)

DNS

definition, DNS Servers

(see also BIND)

Dynamic Host Configuration Protocol (see DHCP)

K

kernel module

bonding module, Using Channel Bonding

description, Using Channel Bonding

parameters to bonded interfaces, Bonding Module Directives

module parameters

bonding module parameters, Bonding Module Directives

M

Multihomed DHCP

host configuration, Host Configuration

server configuration, Configuring a Multihomed DHCP Server

INDEX

277

N

name server (see DNS)

named (see BIND)

NIC

binding into single channel, Using Channel Bonding

P

primary name server (see BIND)

R

recursive name server (see BIND)

resource record (see BIND)

rndc (see BIND)

root name server (see BIND)

S

secondary name server (see BIND)

Networking Guide

278

	Table of Contents
	PART I. BEFORE YOU BEGIN
	CHAPTER 1. OVERVIEW OF NETWORKING TOPICS
	1.1. COMPARING IP TO NON-IP NETWORKS
	Categories of Network Communication

	1.2. COMPARING STATIC TO DYNAMIC IP ADDRESSING
	1.3. CONFIGURING THE DHCP CLIENT BEHAVIOR
	Requesting an IP Address
	Requesting a Lease Renewal
	1.3.1. Making DHCPv4 Persistent

	1.4. SETTING THE WIRELESS REGULATORY DOMAIN
	1.5. CONFIGURING NETCONSOLE
	1.6. USING NETWORK KERNEL TUNABLES WITH SYSCTL
	1.7. MANAGING DATA USING THE NCAT UTILITY
	Installing ncat
	Brief Selection of ncat Use Cases

	PART II. MANAGING IP NETWORKING
	CHAPTER 2. GETTING STARTED WITH NETWORKMANAGER
	2.1. OVERVIEW OF NETWORKMANAGER
	2.1.1. Benefits of Using NetworkManager

	2.2. INSTALLING NETWORKMANAGER
	2.3. CHECKING THE STATUS OF NETWORKMANAGER
	2.4. STARTING NETWORKMANAGER
	2.5. NETWORKMANAGER TOOLS
	2.6. USING NETWORKMANAGER WITH NETWORK SCRIPTS
	Running Network Script
	Using Custom Commands in Network Scripts
	Running Dispatcher scripts

	2.7. USING NETWORKMANAGER WITH SYSCONFIG FILES
	2.8. ADDITIONAL RESOURCES

	CHAPTER 3. CONFIGURING IP NETWORKING
	3.1. SELECTING NETWORK CONFIGURATION METHODS
	3.2. CONFIGURING IP NETWORKING WITH NMTUI
	3.3. CONFIGURING IP NETWORKING WITH NMCLI
	3.3.1. Brief Selection of nmcli Examples
	3.3.2. Starting and Stopping a Network Interface Using nmcli
	3.3.3. Understanding the nmcli Options
	3.3.4. Using the nmcli Interactive Connection Editor
	3.3.5. Creating and Modifying a Connection Profile with nmcli
	3.3.6. Connecting to a Network Using nmcli
	3.3.7. Adding and Configuring a Dynamic Ethernet Connection with nmcli
	Adding a Dynamic Ethernet Connection
	Configuring a Dynamic Ethernet Connection

	3.3.8. Adding and Configuring a Static Ethernet Connection with nmcli
	Adding a Static Ethernet Connection

	3.3.9. Locking a Profile to a Specific Device Using nmcli
	3.3.10. Adding a Wi-Fi Connection with nmcli
	Changing a Specific Property Using nmcli

	3.3.11. Configuring NetworkManager to Ignore Certain Devices
	3.3.11.1. Permanently Configuring a Device as Unmanaged in NetworkManager
	Procedure
	Verification Steps
	Additional Resources
	3.3.11.2. Temporarily Configuring a Device as Unmanaged in NetworkManager
	Procedure
	Verification Steps
	Additional Resources

	3.4. CONFIGURING IP NETWORKING WITH GNOME GUI
	3.4.1. Connecting to a Network Using the control-center GUI
	3.4.2. Configuring New and Editing Existing Connections Using a GUI
	3.4.2.1. Configuring New and Editing Existing Connections Using control-center
	3.4.2.2. Configuring New and Editing Existing Connections Using nm-connection-editor

	3.4.3. Common Configuration Options Using nm-connection-editor
	3.4.4. Connecting to a Network Automatically with a GUI
	3.4.4.1. Connecting to a Network Automatically with control-center
	3.4.4.2. Connecting to a Network Automatically with nm-connection-editor

	3.4.5. Managing System-wide and Private Connection Profiles with a GUI
	3.4.5.1. Managing Permissions for a Connection Profile with nm-connection-editor
	3.4.5.2. Managing Permissions for a Connection Profile with control-center

	3.4.6. Configuring a Wired (Ethernet) Connection with a GUI
	3.4.6.1. Configuring a Wired Connection Using control-center
	3.4.6.2. Configuring a Wired Connection with nm-connection-editor

	3.4.7. Configuring a Wi-Fi Connection with a GUI
	Connecting Quickly to an Available Access Point
	Connecting to a Hidden Wi-Fi Network
	Configuring a New Wi-Fi Connection
	Editing an Existing Wi-Fi Connection
	Basic Configuration Options for a Wi-Fi Connection
	Making Further Wi-Fi Configurations
	Saving Your New (or Modified) Connection

	3.4.8. Configuring a VPN Connection with a GUI
	3.4.8.1. Establishing a VPN Connection with control-center
	3.4.8.2. Configuring a VPN Connection with nm-connection-editor

	3.4.9. Configuring a Mobile Broadband Connection with a GUI
	3.4.9.1. Configuring a Mobile Broadband Connection with nm-connection-editor

	3.4.10. Configuring a DSL Connection with a GUI
	3.4.10.1. Configuring a DSL Connection with nm-connection-editor

	3.5. CONFIGURING IP NETWORKING WITH IFCFG FILES
	Configuring an Interface with Static Network Settings Using ifcfg Files
	Configuring an Interface with Dynamic Network Settings Using ifcfg Files
	3.5.1. Managing System-wide and Private Connection Profiles with ifcfg Files

	3.6. CONFIGURING IP NETWORKING WITH IP COMMANDS
	Assigning a Static Address Using ip Commands
	Configuring Multiple Addresses Using ip Commands

	3.7. CONFIGURING IP NETWORKING FROM THE KERNEL COMMAND LINE
	3.8. ENABLING IP MULTICAST WITH IGMP
	3.9. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 4. CONFIGURING STATIC ROUTES AND THE DEFAULT GATEWAY
	4.1. INTRODUCTION TO UNDERSTANDING ROUTING AND GATEWAY
	4.2. CONFIGURING STATIC ROUTES USING NMCLI
	4.3. CONFIGURING STATIC ROUTES WITH GUI
	4.4. CONFIGURING STATIC ROUTES WITH IP COMMANDS
	4.5. CONFIGURING STATIC ROUTES IN IFCFG FILES
	Static Routes Using the IP Command Arguments Format
	Static Routes Using the Network/Netmask Directives Format
	4.5.1. Understanding Policy-routing

	4.6. CONFIGURING THE DEFAULT GATEWAY

	CHAPTER 5. CONFIGURING NETWORK CONNECTION SETTINGS
	5.1. CONFIGURING 802.3 LINK SETTINGS
	Ignoring link negotiation
	Enforcing auto-negotiation activation
	Manually setting the link speed and duplex
	Configuring 802.3 Link Settings with the nmcli Tool
	Configuring 802.3 Link Settings with nm-connection-editor

	5.2. CONFIGURING 802.1X SECURITY
	5.2.1. Configuring 802.1X Security for Wi-Fi with nmcli
	5.2.2. Configuring 802.1X Security for Wired with nmcli
	5.2.3. Configuring 802.1X Security for Wi-Fi with a GUI
	5.2.4. Configuring 802.1X Security for Wired with nm-connection-editor
	Configuring TLS Settings
	Configuring FAST Settings
	Configuring Tunneled TLS Settings
	Configuring Protected EAP (PEAP) Settings

	5.3. USING MACSEC WITH WPA_SUPPLICANT AND NETWORKMANAGER
	5.4. CONFIGURING IPV4 SETTINGS
	Configuring IPv4 Settings with control-center
	Setting the Method for IPV4 Using nm-connection-editor

	5.5. CONFIGURING IPV6 SETTINGS
	5.6. CONFIGURING PPP (POINT-TO-POINT) SETTINGS

	CHAPTER 6. CONFIGURE HOST NAMES
	6.1. UNDERSTANDING HOST NAMES
	6.1.1. Recommended Naming Practices

	6.2. CONFIGURING HOST NAMES USING TEXT USER INTERFACE, NMTUI
	6.3. CONFIGURING HOST NAMES USING HOSTNAMECTL
	6.3.1. View All the Host Names
	6.3.2. Set All the Host Names
	6.3.3. Set a Particular Host Name
	6.3.4. Clear a Particular Host Name
	6.3.5. Changing Host Names Remotely

	6.4. CONFIGURING HOST NAMES USING NMCLI
	6.5. ADDITIONAL RESOURCES

	CHAPTER 7. CONFIGURE NETWORK BONDING
	7.1. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES
	7.2. CONFIGURE BONDING USING THE TEXT USER INTERFACE, NMTUI
	7.3. NETWORK BONDING USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
	7.4. USING THE COMMAND LINE INTERFACE (CLI)
	7.4.1. Check if Bonding Kernel Module is Installed
	7.4.2. Create a Channel Bonding Interface
	7.4.3. Creating SLAVE Interfaces
	7.4.4. Activating a Channel Bond
	7.4.5. Creating Multiple Bonds

	7.5. VERIFYING NETWORK CONFIGURATION BONDING FOR REDUNDANCY
	7.6. OVERVIEW OF BONDING MODES AND THE REQUIRED SETTINGS ON THE SWITCH
	7.7. USING CHANNEL BONDING
	7.7.1. Bonding Module Directives

	7.8. CREATING A BOND CONNECTION USING A GUI
	7.8.1. Establishing a Bond Connection
	Saving Your New (or Modified) Connection and Making Further Configurations
	7.8.1.1. Configuring the Bond Tab

	7.9. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 8. CONFIGURE NETWORK TEAMING
	8.1. UNDERSTANDING NETWORK TEAMING
	8.2. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES
	8.3. COMPARISON OF NETWORK TEAMING TO BONDING
	8.4. UNDERSTANDING THE NETWORK TEAMING DAEMON AND THE "RUNNERS"
	8.5. INSTALL THE NETWORK TEAMING DAEMON
	8.6. CONVERTING A BOND TO A TEAM
	8.7. SELECTING INTERFACES TO USE AS PORTS FOR A NETWORK TEAM
	8.8. SELECTING NETWORK TEAM CONFIGURATION METHODS
	8.9. CONFIGURE A NETWORK TEAM USING THE TEXT USER INTERFACE, NMTUI
	8.10. CONFIGURE A NETWORK TEAM USING THE COMMAND LINE
	8.10.1. Configure Network Teaming Using nmcli
	8.10.2. Creating a Network Team Using teamd
	8.10.3. Creating a Network Team Using ifcfg Files
	8.10.4. Add a Port to a Network Team Using iputils
	8.10.5. Listing the ports of a Team Using teamnl
	8.10.6. Configuring Options of a Team Using teamnl
	8.10.7. Add an Address to a Network Team Using iputils
	8.10.8. open an Interface to a Network Team Using iputils
	8.10.9. Viewing the Active Port Options of a Team Using teamnl
	8.10.10. Setting the Active Port Options of a Team Using teamnl

	8.11. CONTROLLING TEAMD WITH TEAMDCTL
	8.11.1. Add a Port to a Network Team
	8.11.2. Remove a Port From a Network Team
	8.11.3. Apply a Configuration to a Port in a Network Team
	8.11.4. View the Configuration of a Port in a Network Team

	8.12. VERIFYING NETWORK CONFIGURATION TEAMING FOR REDUNDANCY
	8.13. CONFIGURE TEAMD RUNNERS
	8.13.1. Configure the broadcast Runner
	8.13.2. Configure the random Runner
	8.13.3. Configure the Round-robin Runner
	8.13.4. Configure the activebackup Runner
	8.13.5. Configure the loadbalance Runner
	8.13.6. Configure the LACP (802.3ad) Runner
	8.13.7. Configure Monitoring of the Link State
	8.13.7.1. Configure Ethtool for link-state Monitoring
	8.13.7.2. Configure ARP Ping for Link-state Monitoring
	8.13.7.3. Configure IPv6 NA/NS for Link-state Monitoring

	8.13.8. Configure Port Selection Override
	8.13.9. Configure BPF-based Tx Port Selectors

	8.14. CREATING A NETWORK TEAM USING A GUI
	8.14.1. Establishing a Team Connection
	Saving Your New (or Modified) Connection and Making Further Configurations
	8.14.1.1. Configuring the Team Tab

	8.15. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 9. CONFIGURE NETWORK BRIDGING
	9.1. CONFIGURE BRIDGING USING THE TEXT USER INTERFACE, NMTUI
	9.2. USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
	9.3. USING THE COMMAND LINE INTERFACE (CLI)
	9.3.1. Check if Bridging Kernel Module is Installed
	9.3.2. Create a Network Bridge
	9.3.3. Network Bridge with Bond

	9.4. CONFIGURE NETWORK BRIDGING USING A GUI
	9.4.1. Establishing a Bridge Connection with a GUI
	Configuring the Connection Name, Auto-Connect Behavior, and Availability Settings
	9.4.1.1. Configuring the Bridge Tab

	9.5. ETHERNET BRIDGE CONFIGURATION USING IPROUTE
	9.6. ADDITIONAL RESOURCES

	CHAPTER 10. CONFIGURE 802.1Q VLAN TAGGING
	10.1. SELECTING VLAN INTERFACE CONFIGURATION METHODS
	10.2. CONFIGURE 802.1Q VLAN TAGGING USING THE TEXT USER INTERFACE, NMTUI
	10.3. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE TOOL, NMCLI
	Assigning Addresses to VLAN Interfaces

	10.4. CONFIGURE 802.1Q VLAN TAGGING USING THE COMMAND LINE
	10.4.1. Setting Up 802.1Q VLAN Tagging Using ifcfg Files
	10.4.2. Configure 802.1Q VLAN Tagging Using ip Commands

	10.5. CONFIGURE 802.1Q VLAN TAGGING USING A GUI
	10.5.1. Establishing a VLAN Connection
	Saving Your New (or Modified) Connection and Making Further Configurations
	10.5.1.1. Configuring the VLAN Tab

	10.6. VLAN ON BOND AND BRIDGE USING IP COMMANDS
	10.7. VLAN ON BOND AND BRIDGE USING THE NETWORKMANAGER COMMAND LINE TOOL, NMCLI
	10.8. CONFIGURING VLAN SWITCHPORT MODE
	10.9. ADDITIONAL RESOURCES

	CHAPTER 11. CONSISTENT NETWORK DEVICE NAMING
	11.1. NAMING SCHEMES HIERARCHY
	11.2. UNDERSTANDING THE DEVICE RENAMING PROCEDURE
	11.3. UNDERSTANDING THE PREDICTABLE NETWORK INTERFACE DEVICE NAMES
	11.4. NAMING SCHEME FOR NETWORK DEVICES AVAILABLE FOR LINUX ON SYSTEM Z
	11.5. NAMING SCHEME FOR VLAN INTERFACES
	11.6. CONSISTENT NETWORK DEVICE NAMING USING BIOSDEVNAME
	11.6.1. System Requirements
	11.6.2. Enabling and Disabling the Feature

	11.7. NOTES FOR ADMINISTRATORS
	11.8. CONTROLLING THE SELECTION OF NETWORK DEVICE NAMES
	11.9. DISABLING CONSISTENT NETWORK DEVICE NAMING
	11.10. TROUBLESHOOTING NETWORK DEVICE NAMING
	11.11. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 12. CONFIGURING POLICY-BASED ROUTING TO DEFINE ALTERNATIVE ROUTES
	12.1. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT DEFAULT GATEWAY
	Prerequisites
	Procedure
	Verification Steps
	Troubleshooting Steps
	Additional Resources

	PART III. INFINIBAND AND RDMA NETWORKING
	CHAPTER 13. CONFIGURE INFINIBAND AND RDMA NETWORKS
	13.1. UNDERSTANDING INFINIBAND AND RDMA TECHNOLOGIES
	Prerequisites

	13.2. TRANSFERRING DATA USING ROCE
	Prerequisites

	13.3. CONFIGURING SOFT-ROCE
	Prerequisites
	Removing an RXE device
	Verifying Connectivity of an RXE device

	13.4. INFINIBAND AND RDMA RELATED SOFTWARE PACKAGES
	13.5. CONFIGURING THE BASE RDMA SUBSYSTEM
	13.5.1. Configuration of the rdma.conf file
	13.5.2. Usage of 70-persistent-ipoib.rules
	13.5.3. Relaxing memlock restrictions for users
	13.5.4. Configuring Mellanox cards for Ethernet operation
	13.5.5. Connecting to a Remote Linux SRP Target
	Connecting to a Remote Linux SRP Target: High-Level Overview

	13.6. CONFIGURING THE SUBNET MANAGER
	13.6.1. Determining Necessity
	13.6.2. Configuring the opensm master configuration file
	13.6.3. Configuring the opensm startup options
	13.6.4. Creating a P_Key definition
	13.6.5. Enabling opensm

	13.7. TESTING EARLY INFINIBAND RDMA OPERATION
	13.8. CONFIGURING IPOIB
	13.8.1. Understanding the role of IPoIB
	13.8.2. Understanding IPoIB communication modes
	13.8.3. Understanding IPoIB hardware addresses
	13.8.4. Understanding InfiniBand P_Key subnets
	13.8.5. Configure InfiniBand Using the Text User Interface, nmtui
	13.8.6. Configure IPoIB using the command-line tool, nmcli
	13.8.7. Configure IPoIB Using the command line
	13.8.8. Testing an RDMA network after IPoIB is configured
	13.8.9. Configure IPoIB Using a GUI
	Saving Your New (or Modified) Connection and Making Further Configurations
	13.8.9.1. Configuring the InfiniBand Tab

	13.8.10. Additional Resources
	Installed Documentation
	Online Documentation

	PART IV. SERVERS
	CHAPTER 14. DHCP SERVERS
	14.1. WHY USE DHCP?
	14.2. CONFIGURING A DHCP SERVER
	14.2.1. Configuration File
	14.2.2. Lease Database
	14.2.3. Starting and Stopping the Server

	14.3. DHCP RELAY AGENT
	14.3.1. Configure dhcrelay as a DHCPv4 and BOOTP relay agent
	14.3.2. Configure dhcrelay as a DHCPv6 relay agent

	14.4. CONFIGURING A MULTIHOMED DHCP SERVER
	14.4.1. Host Configuration

	14.5. DHCP FOR IPV6 (DHCPV6)
	14.6. CONFIGURING THE RADVD DAEMON FOR IPV6 ROUTERS
	14.7. COMPARISON OF DHCPV6 TO RADVD
	Manually
	Using the radvd Daemon
	Using the DHCPv6 Server

	14.8. ADDITIONAL RESOURCES

	CHAPTER 15. DNS SERVERS
	15.1. INTRODUCTION TO DNS
	15.1.1. Name server Zones
	15.1.2. Name server Types
	15.1.3. BIND as a Name server

	15.2. BIND
	15.2.1. Empty Zones
	15.2.2. Configuring the named Service
	15.2.2.1. Installing BIND in a chroot Environment
	15.2.2.2. Common Statement Types
	15.2.2.3. Other Statement Types
	15.2.2.4. Comment Tags

	15.2.3. Editing Zone Files
	15.2.3.1. Common Directives
	15.2.3.2. Common Resource Records
	15.2.3.3. Comment Tags
	15.2.3.4. Example Usage

	15.2.4. Using the rndc Utility
	15.2.4.1. Configuring the Utility
	15.2.4.2. Checking the Service Status
	15.2.4.3. Reloading the Configuration and Zones
	15.2.4.4. Updating Zone Keys
	15.2.4.5. Enabling the DNSSEC Validation
	15.2.4.6. Enabling the Query Logging

	15.2.5. Using the dig Utility
	15.2.5.1. Looking Up a Nameserver
	15.2.5.2. Looking Up an IP Address
	15.2.5.3. Looking Up a Host Name

	15.2.6. Advanced Features of BIND
	15.2.6.1. Multiple Views
	15.2.6.2. Incremental Zone Transfers (IXFR)
	15.2.6.3. Transaction SIGnatures (TSIG)
	15.2.6.4. DNS Security Extensions (DNSSEC)
	15.2.6.5. Internet Protocol version 6 (IPv6)

	15.2.7. Common Mistakes to Avoid
	15.2.8. Additional Resources
	15.2.8.1. Installed Documentation
	15.2.8.2. Online Resources

	CHAPTER 16. CONFIGURING THE SQUID CACHING PROXY SERVER
	16.1. SETTING UP SQUID AS A CACHING PROXY WITHOUT AUTHENTICATION
	Prerequisites
	Procedure
	Verification Steps

	16.2. SETTING UP SQUID AS A CACHING PROXY WITH LDAP AUTHENTICATION
	Prerequisites
	Procedure
	Verification Steps
	Troubleshooting Steps

	16.3. SETTING UP SQUID AS A CACHING PROXY WITH KERBEROS AUTHENTICATION
	Prerequisites
	Procedure
	Verification Steps
	Troubleshooting Steps

	16.4. CONFIGURING A DOMAIN BLACKLIST IN SQUID
	Prerequisites
	Procedure

	16.5. CONFIGURING THE SQUID SERVICE TO LISTEN ON A SPECIFIC PORT OR IP ADDRESS
	Prerequisites
	Procedure

	16.6. ADDITIONAL RESOURCES

	APPENDIX A. RED HAT CUSTOMER PORTAL LABS RELEVANT TO NETWORKING
	BRIDGE CONFIGURATION
	NETWORK BONDING HELPER
	PACKET CAPTURE SYNTAX GENERATOR

	APPENDIX B. REVISION HISTORY
	B.1. ACKNOWLEDGMENTS

	INDEX

