
SQL Handbooks

SQL Server Concurrency
Locking, Blocking and Row Versioning

By Kalen Delaney

SQL Server Concurrency

Locking, Blocking and Row Versioning

By Kalen Delaney

First published by Simple Talk Publishing July 2012

Copyright Kalen Delaney 2012

ISBN - 978-1-906434-90-8

The right of Kalen Delaney to be identified as the author of this work has been asserted by her in accordance

with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than which it

is published and without a similar condition including this condition being imposed on the subsequent

publisher.

Edited by Tony Davis

Technical Review by Benjamin Nevarez

Cover Image by Andy Martin

Typeset by Peter Woodhouse & Gower Associates

Table of Contents
Introduction_ ___ 8

Chapter 1: Concurrency and Transactions___________________ 13
Pessimistic Versus Optimistic Concurrency_ _______________________________14
Transactions_ ___ 15

Transaction properties_ __ 16
Transaction scope_ __ 17
Transaction isolation___ 19

The Lost Update Problem_ __ 37
Summary_ __39

Chapter 2: Locking Basics_ ______________________________ 40
Locking Overview___ 40

Lock resources__ 41
Lock modes_ ___43
Lock duration_ __ 46
Lock ownership___47
Locking metadata_ __48

Locking Examples__54
Example 1: SELECT with READ COMMITTED isolation level_ ______________ 55
Example 2: SELECT with REPEATABLE READ isolation level________________56
Example 3: SELECT with SERIALIZABLE isolation level_ ___________________ 57
Example 4: Update with READ COMMITTED isolation level_ _______________59
Example 5: Update with SERIALIZABLE isolation level (with an index)_ ______ 60
Example 6: Update with SERIALIZABLE isolation level not using an index_ ____ 61
Example 7: Creating a table__62
Example 8: RID locks__ 64

Summary_ __65

Chapter 3: Advanced Locking Concepts_ __________________ 66
Lock Compatibility___67

Lock Mode Conversion___ 69
Special Intent Locks_ ___72

Shared intent exclusive (SIX)___ 75
Update intent exclusive (UIX)__76
Shared intent update (SIU)_ ___76

Key-Range Locks___76
RangeS-S
(shared key-range and shared resource lock)_ ____________________________ 80
RangeS-U
(shared key-range and update resource lock)______________________________82
RangeX-X
(exclusive key-range and exclusive resource lock)_ _________________________82
RangeI-N
(insert key-range and no resource lock)_ _________________________________ 83
Conversion key-range locks_ __84

Lock Escalation___ 84
Escalation based on SQL Server instance resource usage_ ___________________85
Escalation based on number of locks held by a single statement_ ____________ 86

Other Types of Locks_ ___ 88
Latches__88
Compile locks_ __ 89

Non-Lock-Related Causes of Blocking_____________________________________91
Summary_ __91

Chapter 4: Controlling Locking___________________________ 92
Controlling Concurrency and Locking Via the Isolation Level_________________93
Setting a Lock Timeout_ ___ 94
Locking Hints_ ___ 96
Sharing Locks Across Connections______________________________________ 100

Bound connections in action_ __ 102
Bound connection metadata__ 105

User-Defined Locks__ 105
Summary_ ___108

Chapter 5: Troubleshooting Pessimistic Concurrency_ ______ 109
Troubleshooting Locking___ 110

Detecting lock escalation_ ___ 110
Resolving lock escalation___ 112
Controlling escalation___ 112

Troubleshooting Blocking__ 115
Detecting blocking problems_ __ 116
Finding the cause of blocking___ 123
Resolving blocking problems__ 126

Troubleshooting Deadlocking___ 131
Types of deadlock_ ___ 131
Automatic deadlock detection_ _______________________________________ 134
Finding the cause of deadlocks__ 135
Minimizing deadlocks___ 141

Summary_ ___ 142

Chapter 6: Optimistic Concurrency_ ______________________143
Overview of Row Versioning_ ___144
How Row Versioning Works_ ___146
Snapshot-based Isolation Levels___148

Enabling snapshot-based isolation_____________________________________ 148
Working with RCSI_ __ 152
Working with SI__ 153
Viewing database state_ ___ 155
Update conflicts__ 158
Summary of snapshot-based isolation levels_ ____________________________ 161

The Version Store_ __ 165
Management of the version store______________________________________ 168
Snapshot transaction metadata__ 169

Choosing a Concurrency Model_ __ 176
Final Recommendations_ __179

vii

About the Author

Kalen Delaney has been working with SQL Server for 25 years, and provides performance
consulting services as well as advanced SQL Server training to clients around the world,
using her own custom-developed curriculum. She has been a SQL Server MVP since 1993
and has been writing about SQL Server for almost as long. Kalen has spoken at dozens
of technical conferences, including every US PASS conference since the organization's
founding in 1999. Kalen is a contributing editor and columnist for SQL Server Magazine
and the author or co-author of several of the most deeply technical books on SQL Server,
including SQL Server 2008 Internals and the upcoming SQL Server 2012 Internals, both
from Microsoft Press. Kalen blogs at www.sqlblog.com and her personal website and
schedule can be found at www.SQLServerInternals.com.

About the Technical Reviewer

Benjamin Nevarez is a database professional based in Los Angeles, California. He has
more than 15 years' experience with relational databases, and has been working with
SQL Server since version 6.5. Benjamin has been the technical editor of the previous
books by Kalen Delaney, including SQL Server 2008 Internals, and is the author of the
book, Inside the SQL Server Query Optimizer. He holds a Master's Degree in Computing
Science and has been a speaker at several technology conferences, including the PASS
Community Summit. Benjamin's blog is at http://benjaminnevarez.com, and he can be
reached at benjaminnevarez@yahoo.comail.

http://www.sqlblog.com
http://www.SQLServerInternals.com
http://benjaminnevarez.com
mailto:benjaminnevarez@yahoo.comail

8

Introduction

We can define concurrency as the ability of multiple sessions to access or change shared
data, at the same time. The greater the number of concurrent processes that can be active
without interfering with each other, the greater the concurrency of the database system
and the more scalable the system will be.

Concurrency is reduced when a session that is changing data prevents other processes
from reading that data, or when a session that is reading data prevents other sessions
from changing that data. I'll use the terms reading or accessing to describe the impact of
using the SELECT statement on our data. Concurrency is also affected when multiple
sessions attempt to change the same data simultaneously and they cannot all succeed
without sacrificing data consistency. I'll use the terms modifying, changing or writing to
describe the impact of using the INSERT, UPDATE or DELETE statements on our data.

In general, database systems can take two approaches to managing concurrent data
access: pessimistic or optimistic. Prior to SQL Server 2005, pessimistic concurrency was
the only available model. SQL Server 2005 and later versions support both models, but
pessimistic concurrency is still the default and is the recommended model until you have
thoroughly tested optimistic concurrency and verified that the extra costs are worthwhile.

This book will examine the details of both concurrency models and explain what factors
we must consider when comparing the relative costs on our systems. We'll also discuss
concurrency concepts, such as transactions and isolation levels, that we must understand,
no matter which concurrency model we're using.

9

Intended Audience

This book is for anyone using SQL Server as a programmer, an administrator, or even a
user, who wants to understand how SQL Server manages multiple sessions, and what
causes excessive blocking. It is also for those SQL Server professionals who need to know
how to troubleshoot and solve blocking and deadlocking problems, and those who need
to be able to compare the costs of SQL Server's two concurrency models to make the best
choice for their systems and applications.

Prerequisites

This book does not assume that you're a SQL Server expert, but I do expect that you have
basic technical competency and some familiarity with SQL Server. It will help if you are
relatively fluent with basic SQL statements, so that you can understand simple SELECT
statements, which will sometimes include JOIN operations, as well as INSERT, UPDATE
and DELETE statements.

You should have access to a SQL Server 2008 installation, even if it is the Evaluation
edition available free from Microsoft. I tested all of the code examples on SQL Server
2008, though most should work on later editions, as well as on SQL Server 2005.

My examples were all created using SQL Server Management Studio (SSMS), and
formatted automatically using Red Gate's SQL Prompt tool. The latter is an optional tool,
but the former is not, and I assume in the book that you know how to enter and execute
queries. We will also occasionally use the SQL Server Profiler tool.

10

Basic Terms

Let's start with a few very basic definitions as they apply to SQL Server. I'll introduce
more terms, as necessary, throughout the book.

•	 A session is a single connection to SQL Server, identified by a unique SessionID
value. It is initiated through an application when the open method is used on a
connection object or through a tool like SSMS when the File | Connect menu item is
selected. Even though multiple sessions may originate from the same application (and
many query windows opened by the same user using the same SSMS instance), as far as
SQL Server is concerned, these are all completely separate SQL Server sessions.

•	 Locking occurs when a SQL Server session takes "ownership" of a resource by
acquiring a lock, prior to performing a particular action on that resource, such as
reading or updating. Locking will stay in effect until SQL Server releases the locks.
Note that locking itself is not a problem; it has very little measurable impact on any
aspect of our systems, including performance, except when it results in blocking or
deadlocking, or when we are performing excessive monitoring of our system locks.

•	 Blocking occurs when at least two sessions desire concurrent access to the same
resource. One session acquires a lock on the resource, in order to perform some action,
and so renders that resource temporarily unavailable to other sessions. As a result,
other sessions requiring the same resource are temporarily blocked. Typically, the
blocked sessions will gain control of the resource after the blocking session releases the
locks, so that access to the resource is serialized. Note that not all concurrent access
will cause blocking; it is dependent on the operations being performed by the sessions,
which determines the type of locks that are acquired.

•	 A deadlock occurs when two sessions mutually block each other. Neither one can
release the resources it holds until it acquires a lock on the resource the other session
holds. A deadlock can also involve more than two sessions, trapped in a circular chain
of dependencies. For example, session A may hold a resource that session B wants, and
in turn session A is waiting for session C to release a resource. Session B may also hold

11

a resource that session C wants. So session A is blocking B and is blocked by C, session
B is blocking C and is blocked by A, and session C is blocking A and is blocked by B.
None of the three sessions can proceed.

•	 Pressure is a term used to indicate a state where competition for access to a certain
resource is causing performance issues. In a database with well-designed tables and
queries, SQL Server acquires and releases locks quickly and any blocking is fleeting,
and undetectable by the end-user. However, in certain circumstances, such as when
long-running transactions hold locks on a resource for a long time, or where a very
high number of sessions all require access to the same shared resource, blocking
issues can escalate to the point where one session that is blocked, in turn blocks
other sessions, which in turn block others. As the "queue" of blocked sessions
grows longer, so the load on the system increases and more and more users start
to experience unacceptable delays. In such cases, then we say that the resource is
experiencing pressure.

The Hands-On Exercises

This book will provide the reader with scripts for hands-on exercises, shown as listings, to
explore locking details and multi-user behavior. The exercises will also illustrate some of
the methods for troubleshooting problems with blocking, deadlocking and other types of
conflicts. You can download these scripts from the following URL:
www.simple-talk.com/RedGateBooks/KalenDelaney/SQLServerConcurrency_
Code.zip.

Most of my examples will be based on the readily available AdventureWorks database,
which you can download from Microsoft's codeplex site at:
http://msftdbprodsamples.codeplex.com/.

http://www.simple-talk.com/RedGateBooks/KalenDelaney/SQLServerConcurrency_Code.zip
http://www.simple-talk.com/RedGateBooks/KalenDelaney/SQLServerConcurrency_Code.zip
http://msftdbprodsamples.codeplex.com/

12

You can run the file AdventureWorksDB.msi to copy the data and log files to your hard
drive and then, using SQL Server Management Studio, you can attach the files to create
the AdventureWorks database on your preferred SQL Server instance. When necessary,
I will provide scripts to create slightly larger tables, or new tables with particular
properties that can demonstrate a behavior under discussion. I will be able to explain, and
you will be able to experience, the concurrency behavior issues by establishing multiple
connections through SSMS's query windows.

13

Chapter 1: Concurrency and
Transactions

When using either the pessimistic or optimistic concurrency model, a conflict can occur
if multiple sessions are "competing" to modify the same data at the same time. In such
situations, several resource contention and data integrity issues can arise, such as:

•	 Preventable read phenomena – The ANSI (American National Standards Institute)
SQL Standard defines three phenomena (dirty reads, non-repeatable reads and
phantom reads), which can be allowed or prevented, depending on the ANSI-standard
transaction isolation level in use: READ UNCOMMITTED, READ COMMITTED (the
default), REPEATABLE READ, or SERIALIZABLE

•	 Lost updates – One session accidentally overwrites modifications performed
by another

•	 Excessive blocking – A "queue" of blocked processes forms, causing pressure on the
resource and unacceptable delays to end-users

•	 Deadlocks – Mutual blocking between sessions such that further progress is impos-
sible. SQL Server will choose one of the deadlocked sessions as the "victim," roll it back,
and issue a 1205 error message to the affected client.

In this chapter, we'll review and demonstrate the four standard transaction isolation
levels and the associated read phenomena, which are dirty reads, non-repeatable reads,
and phantom reads.

We'll also consider the each of the concurrency models, pessimistic and optimistic, and
discuss, anecdotally, how we might use either technique to prevent lost updates. The
pessimistic approach uses locks to block subsequent sessions from modifying a resource
until the current session has completed its work. In the optimistic approach, we raise and
handle an error, should conflict occur.

14

Chapter 1: Concurrency and Transactions

There will be a detailed discussion of resource contention issues, namely blocking
and deadlocks, in Chapter 5. However, it's worth noting here that if your solution to
preventing read phenomena is to use a more restrictive isolation level, or you adopt a
pessimistic approach to preventing lost updates, then you increase the risk that your
databases will suffer from these contention issues.

Pessimistic Versus Optimistic Concurrency

The degree to which any given instance of SQL Server can support concurrent data access
depends on the concurrency model used by SQL Server and, to some extent, on the appli-
cation logic employed by the programmer.

By default, SQL Server adopts a pessimistic approach to concurrency; it assumes that
enough concurrent data modification operations are in the system such that problems
will occur, and will lead to data integrity issues unless it takes measures to prevent them.
Pessimistic concurrency avoids conflicts by acquiring locks while reading data, so no
other sessions can modify that data. It also acquires locks while modifying data, so no
other sessions can access that data for either reading or modifying. In other words, in a
pessimistic concurrency environment, readers block writers and writers block readers.

SQL Server mediates potential problems between competing transactions by imple-
menting a specified transaction isolation level (see the later section on Transaction
isolation levels for full details). Each of the three commonly used ANSI-standard isolation
levels (READ COMMITTED, REPEATABLE READ and SERIALIZABLE) is implemented
by SQL Server in a pessimistic fashion, in that locks are acquired to prevent problems.
For example, under the READ COMMITTED transaction isolation level (the default level),
SQL Server will acquire shared and exclusive locks to prevent "interference" between
concurrent transactions. When one of the more restrictive, standard isolation levels is
used (REPEATABLE READ or SERIALIZABLE), SQL Server will acquire and hold locks for
longer durations, in order to further minimize or eliminate the degree of possible inter-
ference. The downside here, of course, is that sessions hold locks for longer durations, so
there will be an accompanying reduction in concurrency as lock-holding sessions block

15

Chapter 1: Concurrency and Transactions

more and more lock-requesting sessions from accessing their required data. We'll see all
the details of pessimistic concurrency, including information about the duration of locks
in the various standard isolation levels, in Chapters 2–5.

Optimistic concurrency, by contrast, assumes that there are sufficiently few conflicting
data modification operations in the system that any single transaction is unlikely to
modify data that another transaction is modifying. The default behavior of optimistic
concurrency is to use a technology called row versioning, available in SQL Server via one
of the relatively new snapshot-based isolation levels, introduced in SQL Server 2005.
When using one of the snapshot-based isolation levels, SQL Server maintains a time-
stamped version store in the tempdb database, containing all the previously committed
versions of any data rows since the beginning of the oldest open transaction.

If a transaction encounters an exclusive lock on data it needs to read, rather than wait
till the lock is released it simply retrieves, from the version store, the version of the rows
consistent with either when the current statement (READ_COMMITTED_SNAPSHOT
mode) or transaction (SNAPSHOT mode) started. Under the snapshot-based isolation
levels, SELECT operations do not acquire shared locks; instead, they simply read the
required row versions, consistent with the time the query or transaction started, from the
version store, and thus do not block modification operations.

Writers can and will block writers, however, and this is what can cause conflicts. We'll
discuss the snapshot-based isolation levels in more detail in Chapter 6.

Transactions

Regardless of which concurrency model is in use, pessimistic or optimistic, we need to
understand transaction management and isolation levels. On any multi-user system, the
topics of transaction management and concurrency are closely related, and before we
discuss the details of SQL Server's concurrency management, we need to briefly review
the various methods that SQL Server can use to manage transactions, and the options
that a developer has for changing how transactions are managed.

16

Chapter 1: Concurrency and Transactions

Transaction properties

The simplest definition of a transaction is that it is a single unit of work; a task or set
of tasks that together form an "all-or-nothing" operation. If some event interrupts a
transaction in the middle, so that not all of it was completed, the system should treat the
transaction as if it never occurred at all. Transactions can apply to other kinds of systems
besides databases, but since this is a database-specific book, we'll be concerned only with
database transactions. A transaction can be short, like changing the price of one book
in the inventory, or long, like updating the quantity sold of every inventory item at the
beginning of an accounting period.

Transactions have four basic properties, called the ACID properties, which guarantee the
validity of the data after the completion of any transaction.

•	 Atomicity – A transaction is treated as a single unit of work. Either it completes
entirely, or the system has no "memory" of it happening at all. This applies to
transactions of any size, whether two rows are being inserted, or 10 million rows
are being updated.

•	 Consistency – A transaction will leave data in a meaningful state when it completes. In
a relational database, all constraints will be applied to the transaction's modifications
to maintain data integrity. Internal data structures, such as the trees and linked lists
used for maintaining indexes, will be correct at the end of a transaction. A transaction
cannot leave data in a state that violates uniqueness or referential integrity.

•	 Isolation – The changes that one transaction makes should not interfere with the
changes that another transaction makes; each transaction should be executed as if it
were the only work that the database system was performing.

•	 Durability – Once a transaction completes, its effects are permanent and recoverable.
If the system shuts down, either intentionally or because of a system crash, any time
after a transaction was completed (or committed) then, when the system starts again,
the changes made by completed transactions are available.

17

Chapter 1: Concurrency and Transactions

SQL Server can guarantee the ACID properties because of the way it acquires and
manages locks. However, by default, SQL Server guarantees only three out of the four:
atomicity, consistency and durability. If we need SQL Server to guarantee isolation, we'll
need to request a higher isolation level than the default (discussed further in Chapter 2).

Transaction scope

SQL Server supports several different ways to define the beginning and end of a
transaction. Two methods are available by default, and two are only available under
specific conditions.

The default types of transactions are auto-commit transactions and explicit transactions.

An auto-commit transaction is any single data modification operation. In other words,
any INSERT, UPDATE or DELETE statement (as well as others, such as MERGE and BULK
INSERT), by itself, is automatically a transaction. If we modify one row, or one million
rows, in a single UPDATE statement, SQL Server will consider the UPDATE operation to
be an atomic operation, and will modify either all the rows or none of the rows. If there
is a server failure in the middle of the modification operation then, when SQL Server
recovers, it will be as if no modifications ever happened. With an auto-commit trans-
action, there is no way to force a rollback, manually. A transaction rollback will only occur
when there is a system failure.

An explicit transaction uses the BEGIN TRANSACTION (or BEGIN TRAN) statement to
indicate the beginning of the transaction, and either a COMMIT TRANSACTION or a
ROLLBACK TRANSACTION statement to indicate the end. In between, the transaction can
include any number of statements.

18

Chapter 1: Concurrency and Transactions

Typically, our code will include some sort of test to determine whether the transaction
should be committed or rolled back. Since the book's intent is not to provide a complete
treatise on transaction management, we won't go into further details here. In the context
of locking and blocking, we only need to know when a transaction is considered finished.

The non-default types of transactions are implicit transactions and batch-scoped
transactions.

For implicit transactions, a session must be in implicit transaction mode, invoked with a
SET option: SET IMPLICIT_TRANSACTIONS ON. In implicit transaction mode, the start
of any transaction is implied. In other words, any data manipulation language (DML)
statement (such as INSERT, UPDATE, DELETE and even SELECT) will automatically start a
transaction. In addition, quite a few other statements will start a transaction; check SQL
Server's Books Online, at http://msdn.microsoft.com/en-us/library/ms187807.aspx,
for the complete list. Although, in this mode, the start of the transaction is implied, the
end of the transaction must be explicit, and the transaction is not finished until we issue
either a ROLLBACK TRAN or COMMIT TRAN. This mode is mainly for use by developers
who have come to SQL Server from other database management systems, such as Oracle
or DB2, which deal with transactions in a different way. However, I strongly recommend
that you get used to working with SQL Server's default transaction management options
because all the documentation and all books and magazine articles about SQL Server
assume you are using that mode. If you must use implicit transaction mode for compat-
ibility with other systems or applications, you'll probably be better off not mixing and
matching the two modes, but rather having all your sessions and all your transactions
using implicit transaction mode.

Introduced in SQL Server 2005, we invoke batch-scoped transactions by requesting
the option Multiple Active Result Sets (or MARS) in the client connection string. In
those connections, SQL Server will roll back any batch that includes a BEGIN TRAN but
does not include a COMMIT TRAN. The purpose of MARS is to avoid a problem called
"application deadlock," which we'll discuss in Chapter 4, in the section on sharing locks
across connections.

http://msdn.microsoft.com/en-us/library/ms187807.aspx

19

Chapter 1: Concurrency and Transactions

Transaction isolation

Every transaction runs in one particular transaction isolation level, which determines
how sensitive your application is to changes made by other users' transactions, and
how long SQL Server must hold locks to protect against these changes. The ANSI SQL
standard defines four levels of isolation for transactions. SQL Server supports all four
of these levels, listed in order of increasing restrictiveness, in terms of the read
phenomena permitted:

•	 READ UNCOMMITTED – allows dirty reads, non-repeatable reads and phantom reads

•	 READ COMMITTED – prevents dirty reads, allows non-repeatable reads and
phantom reads

•	 REPEATABLE READ – prevents dirty reads and non-repeatable reads but
allows phantom reads

•	 SERIALIZABLE – prevents all read phenomena.

With the exception of READ UNCOMMITTED, each of these isolations levels is pessimistic
in nature. In other words, when transactions are operating in one of these modes, SQL
Server will acquire shared and exclusive locks in order to prevent data being read that
is currently being modified by another transaction, and to prevent other transactions
modifying data that is currently being read. In addition, SQL Server 2005 (and later) offers
a new optimistic isolation level, called SNAPSHOT isolation, plus an optimistic alternative
to READ COMMITTED isolation (READ_COMMITTED_SNAPSHOT), both of which can
ensure consistent results without the need to acquire shared locks, and so can enhance
concurrency. We'll discuss the snapshot-based isolation levels in more detail in Chapter 6.

20

Chapter 1: Concurrency and Transactions

Controlling the isolation level

SQL Server's default isolation level is READ COMMITTED, but an application can override
this setting by using the following SET command:

SET TRANSACTION ISOLATION LEVEL
 [READ UNCOMMITTED | READ COMMITTED | REPEATABLE
 READ | SNAPSHOT | SERIALIZABLE]

The SET command will control the isolation level for all queries submitted over the
current connection, until the isolation level is changed, or the connection is terminated.
In other words, every time an application makes a new connection (or we open a new
query editor window in SSMS), it starts a new session in the SQL Server instance, and
any transactions within that new session will use the READ COMMITTED isolation level,
by default.

You may be wondering if there is a way to change SQL Server's isolation level server-wide,
so that, by default, every connection uses an isolation level other than READ COMMITTED.
The answer is no; the isolation level must be set at the connection level, or within a query.
We can control the isolation level for individual queries by using Lock Hints, covered
later in the book, in Chapter 4.

Preventable read phenomena

The easiest way to define the differences between the various ANSI isolation levels is to
describe the set of behaviors that are either permitted or forbidden, depending on which
isolation level is in use. The three behaviors, also called "preventable read phenomena,"
are:

•	 Dirty reads

•	 Non-repeatable reads

•	 Phantom reads.

21

Chapter 1: Concurrency and Transactions

Dirty reads

This behavior occurs when a transaction reads uncommitted data. If one transaction
has changed data but not committed the change, and another transaction is allowed to
read that changed data, then there is a strong possibility that the data will be read in an
inconsistent state.

For example, consider a stock management application for a factory that receives and
distributes SuperWidgets. A number of sales clerks log deliveries and shipments, updating
the SuperWidgets inventory item, as appropriate.

Currently, there are only 25 widgets in the stock inventory database, but a new shipment
of 50 widgets is just in, so Clerk A starts a transaction and issues an UPDATE to reflect a
new stock level of 75. At that point, a Clerk B receives an order for 60 widgets and checks
the inventory. If Clerk B's transaction permits dirty reads, Clerk B would see 75 widgets
and so could authorize the sale, for next-day delivery to a customer. Meanwhile, just as
Clerk A prepares to confirm the stock update transaction, he receives a message that
a fault has been detected with the batch of widgets, and that they need to be returned
to the manufacturer. As a result, he cancels (rolls back) the transaction; Clerk A has
authorized an order that the company cannot fulfill, due to insufficient stock.

By default, SQL Server does not allow dirty reads. Keep in mind that the transaction
updating the data has no control over whether or not another transaction can read its
data before it's committed. The decision regarding whether or not to read "dirty" data lies
entirely in the hands of the reading transaction.

Non-repeatable reads

This behavior is also called inconsistent analysis. A read is non-repeatable if a query
might get different values when reading the same data in two separate reads within the
same transaction. This can happen when a separate transaction updates the same data,
after the first read but before the second read.

22

Chapter 1: Concurrency and Transactions

In the receiving room example, suppose that a manager comes in to do a spot check of
the current inventory. She walks up to each clerk, asking the total number of widgets
received that day, and adding the numbers on her calculator. When she's done, she wants
to double-check the result, so she goes back to the first clerk. However, if Clerk A received
more widgets between the manager's first and second inquiries, the total will be different
each time and the reads are non-repeatable.

Phantom reads

This behavior occurs when membership in a set changes. It can happen only when a
query with a predicate, such as WHERE count_of_widgets < 10, is involved. A phantom
occurs if two SELECT operations using the same predicate in the same transaction return
a different number of rows. For example, let's say that our manager is still doing spot
checks of inventory. This time, she goes around the receiving room and notes which
clerks have fewer than ten widgets. After she completes the list, she goes back around to
offer advice to everyone with a low total. However, imagine that during her first walk-
through the manager failed to include in her list a clerk who had just returned from a
break, and had fewer than ten widgets. This additional clerk (or row) is a phantom.

Transaction isolation levels

We can allow or prevent these read phenomena by adjusting the transaction isolation
level within the SQL Server connection. Remember that the default isolation level, if
none is specified, is READ COMMITTED.

Table 1-1 summarizes which of the potentially undesirable behaviors are possible at
each isolation level, and whether the isolation level uses pessimistic or optimistic
concurrency. The ANSI SQL Committee has defined four isolation levels for the SQL
language. Microsoft SQL Server supports all four, and added a fifth, SNAPSHOT isolation,
in SQL Server 2005.

23

Chapter 1: Concurrency and Transactions

Transaction Isolation
Level

Behaviors Allowed
Concurrency
Model

Dirty Read
Non-repeatable
Read

Phantoms

READ UNCOMMITTED Yes Yes Yes Pessimistic

READ COMMITTED

(default for SQL Server)

No Yes Yes Pessimistic

No Yes Yes Optimistic

REPEATABLE READ No No Yes Pessimistic

SNAPSHOT No No No Optimistic

SERIALIZABLE No No No Pessimistic

Table 1-1:	 Which isolation levels permit which behaviors?

Note that, in SQL Server 2005 and later, there is both a pessimistic and an optimistic
implementation of the default isolation level, READ COMMITTED. By default, transac-
tions against a SQL Server database will use the pessimistic form of READ COMMITTED
isolation, acquiring locks to prevent the read phenomena discussed previously. However,
if we enable the READ_COMMITTED_SNAPSHOT option for that database then, by default,
transactions will use the optimistic form of READ COMMITTED isolation, preventing
read phenomena without the need for locking, via use of the tempdb version store. The
difference between the two variations of READ_COMMITTED will become clearer after we
discuss how SQL Server controls each of these concurrency models.

To see the behavior in each ANSI isolation level, we'll look at some example code.
First, create a table called IsolationTest in a database called IsolationDB and
populate the table with a few rows, by running the code in Listing 1-1. I'll refer to the
IsolationTest table in examples for each of the four ANSI isolation levels. The fifth
isolation level, SNAPSHOT, will be covered in Chapter 6, where we discuss the details of
optimistic concurrency.

24

Chapter 1: Concurrency and Transactions

Unless stated otherwise, you can run all the code using a Query Window in
SQL Server Management Studio.

-- Create a database and table for testing the isolation levels
USE master
GO
IF EXISTS (SELECT 1
 FROM sys.databases
 WHERE name = 'IsolationDB')
 DROP DATABASE IsolationDB ;
GO
CREATE DATABASE IsolationDB ;
GO
USE IsolationDB ;
GO
CREATE TABLE IsolationTest
 (
 col1 INT PRIMARY KEY ,
 col2 VARCHAR(20)
) ;
GO
INSERT INTO IsolationTest
VALUES (10, 'The first row') ;
INSERT INTO IsolationTest
VALUES (20, 'The second row') ;
INSERT INTO IsolationTest
VALUES (30, 'The third row') ;
INSERT INTO IsolationTest
VALUES (40, 'The fourth row') ;
INSERT INTO IsolationTest
VALUES (50, 'The fifth row') ;
GO

Listing 1-1:	 Create a database and table for running the isolation level exercises.

25

Chapter 1: Concurrency and Transactions

READ UNCOMMITTED

READ UNCOMMITTED isolation level allows a transaction to read any data currently on
a data or index page, regardless of whether or not the transaction that wrote that data
has been committed. For example, although another user might have a transaction in
progress that performs data modifications, and that transaction is holding exclusive locks
on the data, a transaction using the READ UNCOMMITTED isolation level can read the data
anyway (a dirty read), and possibly take further actions based on the values read.

The potential problem with dirty reads is that the user who started the modification
transaction might then decide to roll it back so, logically, those changes never occurred.
If we act based on a data value that essentially never existed, then that decision or action
might not be valid.

Let's see how the READ UNCOMMITTED isolation level behaves. In Listing 1-2, run Step 1
to begin a transaction (without committing it) and then open a new query window to run
Step 2. Use the IsolationDB database for each connection.

-- Step 1:
-- Start a transaction but don't commit it
USE IsolationDB ;
GO
BEGIN TRAN
UPDATE IsolationTest
SET col2 = 'New Value' ;
--<EXECUTE>

-- Step 2:
-- Start a new connection and change your isolation level
USE IsolationDB ;
GO
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ;
SELECT *
FROM IsolationTest ;
--<EXECUTE>

26

Chapter 1: Concurrency and Transactions

-- Step 3:
-- Return to the connection from Step 1 and issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

-- Step 4:
-- Rerun the SELECT statement in the connection from Step 2
SELECT *
FROM IsolationTest ;
-- <EXECUTE>

Listing 1-2:	 Hands-on exercise – READ UNCOMMITTED isolation level.

In the results returned from the query in Step 2, notice that all the values in col2 are
the string 'New Value', even though the transaction in the first connection has not yet
committed. In fact, the transaction might never commit. If we take some action, based on
an understanding that all the values are the same, we could regret it if the changes turned
out not to be permanent. Back in the first connection, roll back the transaction, as shown
in Step 3.

For Step 4, rerun the SELECT statement in the second connection to see that all the
values in col2 have reverted to their original values. If you're following along with these
examples, make sure you close all your connections before proceeding, so that we're sure
that SQL Server will release any outstanding locks.

The potential for reading dirty is far from the only problem that can arise when using
READ UNCOMMITTED isolation level. If a query running under READ UNCOMMITTED
isolation level performs a scan of a table (or is scanning a range of data within a table),
it is possible that a separate transaction could update a row of data, causing that row to
move to a new location. If the scan started before the update and read the initial version
of the row, the row might move to a page not yet read, and the query could end up
reading it again, later on in the same scan. Therefore, the query would read the same
data multiple times.

27

Chapter 1: Concurrency and Transactions

Alternatively, a row that has not yet been read might be updated, and moved to a page in
the table already read, so that the scan would never read the row at all, and completely
miss some data.

For these reasons, I strongly ecommend that you don't make extensive use of READ
UNCOMMITTED isolation level within application code. This includes using the NOLOCK
hint, which invokes READ UNCOMMITTED for a single table in a single query. We'll look at
hints in more detail in Chapter 4.

READ COMMITTED

READ COMMITTED is SQL Server's default isolation level. It ensures that an operation will
never read data another transaction has changed but not committed. However, because
SQL Server holds locks for SELECT operations for only a short time, if a transaction
running with READ COMMITTED isolation re-reads data, that data might have changed, or
new rows might appear that meet the criteria of the original query.

So READ COMMITTED behavior has two aspects. Firstly, it prevents dirty reads but,
secondly, it still allows non-repeatable reads and phantom reads.

To see the first aspect, we can simply repeat the previous example, but with the second
connection using the default READ COMMITTED isolation level, rather than READ
UNCOMMITTED, as shown by Steps 1 through 4, in Listing 1-3. The second connection
blocks on its SELECT statement; it can't read the changes the first connection has made
but not yet committed (or rolled back). Once we roll back the transaction, in Step 3, the
query in Step 2 completes and returns the original data.

28

Chapter 1: Concurrency and Transactions

-- Step 1:
-- Start a transaction but don't commit it
USE IsolationDB ;
GO
BEGIN TRAN
UPDATE IsolationTest
SET col2 = 'New Value' ;
--<EXECUTE>

-- Step 2:
-- Start a new connection and change your isolation level
USE IsolationDB ;
GO
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
SELECT *
FROM IsolationTest ;
--<EXECUTE>
-- You should notice that the process blocks, and returns
-- no data or messages!

-- To finish up, perform the following two steps:
-- Step 3:
-- Return to the connection from Step 1 and issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

-- Step 4:
-- Rerun the SELECT statement in the connection from Step 2
SELECT *
FROM IsolationTest ;
-- <EXECUTE>
-- Verify that the data is available

Listing 1-3:	 A SELECT statement blocking with READ COMMITTED isolation level.

To see the second aspect of READ COMMITTED behavior (specifically, non-repeatable
reads), close all the connections from the previous example, and open two new connec-
tions, using IsolationDB again. Listing 1-4 shows the code. In the first connection, Step
1 will make sure the isolation level is the default READ COMMITTED, and then it will start a
transaction that reads data from the IsolationTest table to compute an average.

29

Chapter 1: Concurrency and Transactions

In the second connection, Step 2 will UPDATE the table. Assuming that the query in Step 1
has finished processing, the UPDATE will succeed, even though the first connection is still
inside a transaction. Note that the UPDATE is an auto-commit transaction and so SQL
Server will commit the UPDATE and release the locks as soon as it completes.

In Step 3, return to the first connection and run the same SELECT statement. The average
value is now different and we have a non-repeatable read. The default READ COMMITTED
isolation level prevents other connections from reading data being modified, but only
prevents other connections from changing data being read, while the read operation is in
progress. Once it is complete, other transactions can change the data, even if the reading
transaction is still open. As a result, there is no guarantee that we'll see the same data if
we rerun the SELECT within the transaction.

-- Step 1:
-- Read data in the default isolation level
USE IsolationDB
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRAN
SELECT AVG(col1)
FROM IsolationTest ;
--<EXECUTE>

-- Step 2:
-- In a new connection, update the table:
USE IsolationDB ;
UPDATE IsolationTest
SET col1 = 500
WHERE col1 = 50 ;
--<EXECUTE>

-- Step 3:
-- Go back to the first connection and
-- run the same SELECT statement:
SELECT AVG(col1)
FROM IsolationTest ;
--<EXECUTE>

30

Chapter 1: Concurrency and Transactions

-- Step 4:
-- issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

Listing 1-4:	 READ COMMITTED isolation level allows data to be changed by other connections.

The isolation level READ COMMITTED guarantees only that a transaction will not read
uncommitted data. However, the ANSI SQL specification does not specify any particular
mechanism that a database system should use to implement READ COMMITTED isolation,
and so prevent dirty reads.

As of SQL Server 2005, SQL Server provides two different ways of preventing a trans-
action from reading dirty data in the READ COMMITTED isolation level. The default
method we have just seen, using pessimistic concurrency, locks the data modified inside
a transaction, and the locks keep other processes from accessing that data. It also takes
shared locks for short periods to prevent data being modified while it is being read.

In SQL Server 2005, the alternative form of READ COMMITTED, called READ_
COMMITTED_SNAPSHOT, uses optimistic concurrency. As one would expect, its behavior
is the same as the default in terms of the read phenomena, i.e. it prevents dirty reads,
but allows non-repeatable reads and phantom reads. However, this optimistic imple-
mentation of the READ COMMITTED level prevents dirty reads, without blocking other
transactions.

There is a whole chapter on optimistic concurrency later in the book, but let's see a quick
example of how SQL Server can use this completely different method to enforce READ
COMMITTED isolation.

The only change we need to make is at the database level, turning on the READ_
COMMITTED_SNAPSHOT database option. Other than that, listing 1-5 is the same script as
Listing 1-3.

31

Chapter 1: Concurrency and Transactions

-- Step 1:
-- First close all other connections to make sure no one is using
-- the IsolationDB datatabase

-- Step 2:
-- Change the database option to enable "read committed snapshot"
ALTER DATABASE IsolationDB SET READ_COMMITTED_SNAPSHOT ON ;
--<EXECUTE>

-- Step 3:
-- Start a transaction but don't commit it
USE IsolationDB ;
GO
BEGIN TRAN
UPDATE IsolationTest
SET col2 = 'New Value' ;
--<EXECUTE>

-- Step 4:
-- Start a new connection and change your isolation level
USE IsolationDB ;
GO
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
SELECT *
FROM IsolationTest ;
--<EXECUTE>
-- You should notice that the second connection is not blocked, but
-- it does not return the changed data. The results you get are the
-- original committed data, before the UPDATE in Step 3 was performed
-- no data or messages!

-- To finish up, perform the following steps:
-- Step 5:
-- Return to the connection from Step 1 and issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

-- Step 6:
-- Now close all other connections to make sure no one is using
-- the IsolationDB datatabase

32

Chapter 1: Concurrency and Transactions

-- Step 7:
-- Change the database option to disable "read committed snapshot"
ALTER DATABASE IsolationDB SET READ_COMMITTED_SNAPSHOT OFF ;
--<EXECUTE>

Listing 1-5:	 The SELECT statement doesn't block when the database is using

READ COMMITTED SNAPSHOT isolation or RCSI.

Chapter 6, Optimistic Concurrency, will explain exactly how we are able to see the previous
values of the data without any blocking.

REPEATABLE READ

The REPEATABLE READ isolation level adds to the properties of READ COMMITTED by
ensuring that if a transaction re-reads data, or if a query is reissued within the same trans-
action, then the same data will be returned. In other words, issuing the same query twice
within a transaction won't pick up any changes to data values that were made by another
transaction. A second transaction cannot modify the data that a first transaction has read,
as long as that first transaction has not yet committed or rolled back.

To see REPEATABLE READ behavior, close all the connections to the IsolationDB
database, and open two new ones. Steps 1 through 3 in Listing 1-6 will issue the same two
queries as in Listing 1-4, but this time, the first connection will set the isolation level to
REPEATABLE READ in Step 1.

In Step 2, the second connection will have to use a slightly different UPDATE statement,
because the value of 50 for col1 no longer exists. This UPDATE will block when it tries to
modify the IsolationTest table. In Step 3, the first connection will get the same result
when it reissues its original SELECT.

33

Chapter 1: Concurrency and Transactions

-- Step 1:
-- Read data in the Repeatable Read isolation level
USE IsolationDB ;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ ;
BEGIN TRAN
SELECT AVG(col1)
FROM IsolationTest ;
--<EXECUTE>

-- Step 2:
-- In the second connection, update the table:
USE IsolationDB ;
UPDATE IsolationTest
SET col1 = 5000
WHERE col1 = 500 ;
--<EXECUTE>
-- You should notice that the UPDATE process blocks,
-- and returns no data or messages

-- Step 3:
-- Go back to the first connection and
-- run the same SELECT statement:
SELECT AVG(col1)
FROM IsolationTest ;
--<EXECUTE>

-- Step 4:
-- issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

Listing 1-6:	 REPEATABLE READ isolation level doesn't allow another process to update

values the first one has read.

Preventing non-repeatable reads, or allowing the first connection to make sure it will
reread the same data, is a desirable safeguard, but it comes at a price. The cost of this
extra safeguard is that SQL Server holds all the shared locks in a transaction until the
completion (COMMIT or ROLLBACK) of the transaction.

However, REPEATABLE READ isolation doesn't prevent all possible read phenomena.
It protects only the data that has already been read. Listing 1-7 demonstrates what
this protection means. Close all connections, and open two new ones connecting to

34

Chapter 1: Concurrency and Transactions

IsolationDB. In the first connection, start a transaction in REPEATABLE READ
isolation level and look for all rows that meet a certain condition, as shown in Step 1.

In the second connection, Step 2 will insert a new row. Now go back to the first
connection, and re-execute the SELECT in Step 3.

-- Close all connections and open two new ones

-- Step 1:
USE IsolationDB ;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRAN
SELECT *
FROM IsolationTest
WHERE col1 BETWEEN 20 AND 40
--<EXECUTE>

-- Step 2:
-- In the second connection, insert new data
USE IsolationDB ;
INSERT INTO IsolationTest
VALUES (25, 'New Row') ;
--<EXECUTE>

-- Step 3:
-- Go back to the first connection and rerun the SELECT
SELECT *
FROM IsolationTest
WHERE col1 BETWEEN 20 AND 40 ;
--<EXECUTE>-- Notice one additional row

-- Step 4:
-- issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

Listing 1-7:	 REPEATABLE READ isolation level does allow new rows to be inserted

that satisfy the query condition.

Upon the second execution of the same SELECT statement, the new row appears, called
a phantom. The row didn't even exist the first time we ran the SELECT statement, so it
wasn't locked. We can prevent phantoms with the SERIALIZABLE isolation level.

35

Chapter 1: Concurrency and Transactions

SERIALIZABLE

The SERIALIZABLE isolation level ensures that, if a query is reissued, no data will have
changed and no new rows will appear. In other words, we won't see phantoms if the same
query is issued twice within a transaction. In Listing 1-8, we rerun the example from
Listing 1-7, inserting a row with a col1 value of 35, but this time setting the isolation level
to SERIALIZABLE in the first connection. The second connection will block when we try
to do the INSERT, and the first connection will read exactly the same rows each time.

-- Open two new connections

-- Step 1:
-- In the first connection, start a transaction
USE IsolationDB ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
BEGIN TRAN
SELECT *
FROM IsolationTest
WHERE col1 BETWEEN 20 AND 40 ;
--<EXECUTE>

-- Step 2:
-- In the second connection, insert new data
USE IsolationDB
INSERT INTO IsolationTest
VALUES (35, 'Another New Row') ;
-- Notice that the INSERT will block
--<EXECUTE>

-- Step 3:
-- Go back to the first connection and rerun the SELECT
SELECT *
FROM IsolationTest
WHERE col1 BETWEEN 20 AND 40 ;
--<EXECUTE>
-- Notice no new rows

36

Chapter 1: Concurrency and Transactions

-- Step 4:
-- issue a ROLLBACK
ROLLBACK TRANSACTION ;
--<EXECUTE>

Listing 1-8:	 SERIALIZABLE isolation level does not allow insertion of a new row.

Again, we pay a price to prevent phantoms. In addition to locking all the data has been
read, enforcing the SERIALIZABLE isolation level, and so preventing phantoms, requires
that SQL Server also lock data that doesn't exist (see the Key-range Locks section in
Chapter 3). The SERIALIZABLE level gets its name from the fact that running multiple
SERIALIZABLE transactions at the same time is the equivalent of running them one at a
time – that is, serially.

SNAPSHOT
There is an entirely new isolation level, introduced in SQL Server 2005 called SNAPSHOT
isolation. The only implementation of snapshot isolation uses optimistic concurrency, so
we'll save the discussion of this level until the Chapter 6, on optimistic concurrency.

Selecting the right isolation level

Having examined all the ANSI isolation levels, you might want to go back and
re-examine Table 1-1.

While preventing blocking, by selecting the READ UNCOMMITTED level, might seem
attractive from a concurrency perspective, the price to pay is the prospect of reading
incorrect data. At the same time, while preventing all read phenomena, and so guaran-
teeing more consistent data, is a "good thing," be aware of the tradeoffs in setting your
isolation level too high, which is the added cost of acquiring and managing locks, and
blocking other processes while those locks are held.

The optimistic isolation levels reduce the amount of blocking, but they do not eliminate
it. In addition, they have costs and caveats of their own, which we'll explore in Chapter 6.

37

Chapter 1: Concurrency and Transactions

The Lost Update Problem

A lost update occurs when the results of one update overwrites the effects of another
update, such that it's as if the first update never happened. None of the transaction
isolation levels will permit lost updates; in other words, it's impossible for two transac-
tions to update the same data, simultaneously, in such a way that the effect of one of the
transactions is lost.

However, as an addendum to this, it's worth noting that transaction isolation levels only
prevent conflict between transactions that overlap in time. There are circumstances,
usually involving data querying for subsequent updates, via an end-user form, where
transactions don't overlap in time, from the database's perspective, and so, from the
end-users perspective, the effects of one transaction can be overwritten by another and so
are "lost."

Consider the situation below, which is a classic example of the lost update problem.

Clerks at locations all over the city operate a ticket-selling application. Customer1 at Location1 asks to see

all the available seats for Friday night's big show, and so Clerk1 reads the relevant data into the booking

form. While Customer1 is debating the pros and cons of taking seat 1A or 1Z, Customer2, at Location2, also

asks to see the available seats for Friday and so Clerk2 reads in the same data. Until Customer1 confirms a

choice, both Seats 1A and 1Z appear as available to Customer2; she makes a quick choice and Clerk2 issues the

appropriate update, selling Seat 1A to Customer2. However, Clerk1's form, if concurrency is poorly managed,

may still reflect that Seat 1A is available, and so Clerk1 could issue a subsequent update, selling Seat 1A to

Customer1. In effect, Clerk2's update has been lost and Customer1 will own Seat 1A, but both customers will

turn up at the event expecting to sit there.

There are many variations on this recipe for lost updates, with the central ingredient
being that an application first reads data and then, at some later point, updates it.
Generally, lost updates will only occur in a system that does not manage concurrency
properly, and it can be considered an application bug. In our example, it's clear that
the application needs to check that the data has not changed between querying it and
updating it.

38

Chapter 1: Concurrency and Transactions

We can avoid lost updates in SQL Server using either a pessimistic or an optimistic
approach to concurrency. The difference between these two concurrency models lies in
whether update conflicts can be avoided before they occur, or can be dealt with in some
manner as they occur. We'll provide here only a high-level overview of the two different
approaches, and discuss, anecdotally, how each might prevent lost updates.

Pessimistic concurrency avoids conflicts by acquiring locks on data that is being read, so
no other processes can modify that data. It also acquires locks on data being modified, so
no other processes can access that data for either reading or modifying. In other words,
readers block writers and writers block readers in a pessimistic concurrency environment.
If pessimistic concurrency were implemented correctly in the ticket-selling application,
the first clerk or customer to look at the data would cause the data to be locked, and
the second clerk or customer could not even see what was available until the first one
had made their decision (no matter how long it took.). However, this may require us,
as programmers, to "reinforce" SQL Server's pessimistic concurrency model via use, for
example, of locking hints (see Chapter 4).

A programmer will need to enforce optimistic concurrency by the use of intelligent
programming techniques. For example, when querying data into a form, for subsequent
modification, the application logic should store the original values and then check them
against the values that exist at the point the modification is issued. If they are different,
logic must exist to resolve this conflict and/or handle any error raised. If optimistic
concurrency were used in the examples above, when the second clerk or customer tried
to run an update, the system would generate an error message that a conflict had been
detected and the second update would fail. SQL Server would send an error message to
the client application, but it would be up to the application to respond to that error.

39

Chapter 1: Concurrency and Transactions

Summary

This chapter described what a transaction is and how SQL Server manages your transac-
tions. It also described three behaviors that can occur within transactions that we might
want to avoid: dirty reads, non-repeatable reads, and phantoms. Finally, it described the
ANSI-standard isolation levels available to applications that allow us to control which of
these behaviors we want to allow, and which we want to avoid.

Both pessimistic and optimistic concurrency can encounter problems with excessive
blocking. Blocking problems are one of the greatest causes of application performance
issues in client/server applications, including web-based applications. Much of the
source of the problems is due to the fact that application developers do not understand
how SQL Server concurrency management works, and when locking can lead to serious
blocking problems. The remainder of this book will remedy that situation by describing
the internal details and mechanisms of SQL Server's concurrency management. The next
chapter starts the discussion with details of SQL Server's locking mechanisms, and of how
SQL Server uses locking to implement the isolation levels, when using the pessimistic
concurrency model.

40

Chapter 2: Locking Basics

Locking is the activity that occurs when a SQL Server session takes "ownership" of a
resource prior to performing a particular action on that resource, such as reading or
updating it. Keep in mind that locking is just a logical concept, designed to help support
the ACID properties of our transactions, so that our data stays consistent. If SQL Server
acquired no locks, it could still perform all the actions specified by commands in the SQL
language. However, for anyone who cares about data consistency, locks are a good and
necessary database mechanism.

However, because locks are a logical concept, not based on physical requirements within
the database system, the designers of any relational database system have a lot of flexi-
bility with regard to exactly how to implement locking, and the impact it will have on
resource usage within the system.

For the most part, SQL Server makes all locking decisions internally and will usually
make the best choices. A good developer or administrator will understand how SQL
Server applies and manages locks, but will rarely need to "overrule" SQL Server's choices.
Nevertheless, in the rare instances where you may need to exert a measure of control
over some aspect of SQL Server locking, there are ways to do that, which we'll discuss
in a later chapter.

Locking Overview

Locking is an essential mechanism for allowing multiple users to access and operate on
data in a way that avoids inconsistencies in that data. However, it does mean that, when
we write SQL code, we must be aware that it's likely that locks will be acquired, in the
database, as part of its execution. If we write code in such a way that it forces SQL Server
to acquire a very large number of locks, or to hold them for unnecessarily long periods,

41

Chapter 2: Locking Basics

then this will cause resource contention in the database, other users' transactions will be
blocked from accessing the data they need, and the performance of these blocked transac-
tions will be affected.

In the same way, as the ANSI transaction isolation level becomes more restrictive in terms
of the permitted read phenomena, so SQL Server will adopt a more "aggressive" locking
policy to prevent interference between transactions, and so the likelihood of blocking,
and even deadlocking, increases. All of this means that, as database developers and DBAs,
we need at least a basic understanding of how locking works in the SQL Server database
engine, and how to investigate any blocking-related issues that might arise. In this
section, we'll review the following fundamental aspects of this locking mechanism:

•	 The unit of data locked (lock resource) – such as row, page, or table

•	 The type of locks acquired (lock mode) – shared, exclusive, update, and so on

•	 The duration of the lock – how long the lock is held

•	 Lock ownership – the "scope" of the lock (most locks are transaction scoped)

•	 Lock metadata – how to review current locking using the Dynamic Management
View (DMV) called sys.dm_tran_locks.

Lock resources

SQL Server can lock user data resources at the row, page, or table level. In general, SQL
Server will attempt to acquire row-level locks, to allow the highest degree of concurrency.
However, as we'll see later, there are conditions that could cause SQL Server to acquire
locks on larger units of data either initially, or through a process of "lock escalation."

When SQL Server locks a row in an index, it refers to it, and displays it, as a KEY lock,
but keep in mind that SQL Server locks the entire index row, not just the key column.
In some circumstances, SQL Server can also lock ranges of index rows. Locks on rows
in a heap table (one without a clustered index) appear as RID (Row ID) locks in the
sys.dm_tran_locks view.

42

Chapter 2: Locking Basics

SQL Server supports two kinds of KEY locks, depending on the isolation level of the
current transaction. If the isolation level is READ COMMITTED or REPEATABLE READ,
SQL Server attempts to lock the index rows it accesses while processing the query. If the
table has a clustered index, then the data rows are at the leaf level of the index, and so
row locks for any data in a table with a clustered index will always appear as KEY locks. If
the table is a heap, SQL Server might acquire KEY locks for the non-clustered index rows
and RID locks for the data rows.

If the isolation level is SERIALIZABLE, we have a special situation, as SQL Server needs
to prevent phantom reads. If a query scans a range of data within a transaction, SQL
Server needs to lock enough of the table to ensure that another transaction cannot insert
a new value into the range being scanned, which would then appear as a phantom if the
query was reissued. For this, it employs key-range locks (still referred to as KEY locks in
the metadata, based on the locked resource).

For example, suppose we have an index on the lastname column in the Employees
table. A transaction, shown in Listing 2-1, is running under the SERIALIZABLE isolation
level, and reads a range of rows in the Employees table.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRAN
SELECT *
FROM Employees
WHERE LastName BETWEEN 'MacDougal' AND 'McDougall'

Listing 2-1:	 A transaction performing a range search under SERIALIZABLE isolation.

In addition to disallowing any changes to the data retrieved by this query, SQL Server
needs to make sure that no other process can insert a new row for which the LastName
value falls in the specified range. For example, no one should be able to insert a row
with McDonald, but a row with Mabry would be fine. So here's what SQL Server does:
if MacAndrews, MacWorter, and McKenna are sequential leaf-level index key values in
the index on LastName, the index rows with MacWorter and McKenna each acquire a
key-range lock.

43

Chapter 2: Locking Basics

A key-range lock implies a locked range of index rows including all values greater than the
value of the index key that precedes the locked row, and ends with the locked row.

In this example, we'd have one key-range lock that starts with MacAndrews and ends
with MacWorter and another key-range lock that starts with MacWorter and ends with
McKenna. These two key-range locks encompass all the values that might satisfy the
WHERE clause in the query in Listing 2-1; no transaction could insert data that would fall
within this range. To be precise, based on the two values which I've indicated should have
a key-range lock, we would say rows that meet either of the two conditions below would
not be allowed to be inserted:

new_key_value>'MacAndrews' AND new_key_value<= 'MacWorter'
new_key_value>'MacWorter' AND new_key_value<= 'McKenna'

These two key-range locks prevent a transaction from inserting MacOwen or McBride,
which are in the range that the WHERE clause specifies. However, they also prevent
insertion of MacBryde, even though MacBryde is not in the specified range. Key-range
locks are not perfect, but they do give much greater concurrency than locking a whole
page or the entire table, which were the only possibilities in versions of SQL Server prior
to SQL Server 7.

Note that if there is no index on the column specifying the range (in this case,
LastName), SQL Server would acquire row or page locks, even in recent versions.

Lock modes

SQL Server uses several types of locks, referred to as lock modes. These include shared
locks, exclusive locks, and update locks, used to achieve the four required ANSI modes of
transaction isolation. The lock mode specifies how restrictive the lock is and what other
actions are possible while the lock is held.

44

Chapter 2: Locking Basics

Shared locks

By default, SQL Server acquires shared (S) locks automatically when it reads data. A table,
page, or individual row of a table or index can hold an S lock. In addition, to support
SERIALIZABLE transaction isolation, SQL Server can place S locks on a range of index
rows. As the name implies, many processes can hold S locks on the same data, but no
process can acquire an exclusive lock on data that has an S lock on it (unless the process
requesting the exclusive lock is the same process holding the S lock, and no other process
has an S lock on the data).

Usually, SQL Server releases S locks as soon as it has finished reading the data. However,
use of a higher transaction isolation level, either REPEATABLE READ or SERIALIZABLE,
changes this behavior, so that SQL Server holds S locks until the end of the transaction.
In the sys.dm_tran_locks view, a request_mode of 'S' indicates a shared lock.

Exclusive locks

SQL Server automatically acquires exclusive (X) locks on data in order to modify that
data, during an INSERT, UPDATE, or DELETE operation. Only one transaction at a time
can hold an X lock on a particular data resource, and X locks remain until the end of the
transaction. The changed data is usually unavailable to any other process until the trans-
action holding the lock either commits or rolls back. However, if a transaction uses the
READ UNCOMMITTED transaction isolation level, it can read data exclusively locked by
another transaction. In the sys.dm_tran_locks view, a request_mode of 'X' indicates
an exclusive lock.

45

Chapter 2: Locking Basics

Update locks

Update (U) locks are not really a separate kind of lock, but rather a hybrid of S and X
locks. A transaction acquires a U lock when SQL Server executes a data modification
operation, but first needs to perform a search to find the resource (for example, the row
of data) to modify.

SQL Server doesn't need to place an X lock on the row until it is ready to perform the
modification, but it does need to apply some sort of lock as it searches, to protect that
same data from modification by another transaction in the time between finding the
data and modifying it. Therefore, SQL Server places a U lock on the row, checks the row
and, if it meets the criteria, converts it to an X lock.

As SQL Server is searching for the data, it could acquire an S lock on each row it encoun-
tered and then determine whether it had found the data it needed. However, there are
potential problems with this approach. A situation could occur where two transactions
were both searching for the same row to modify (for example, the same customer row in
the Customers table), using different access paths, and they could both reach the desired
resource at the same time. Each transaction could acquire an S lock on that row, but then
each transaction would attempt to convert this lock to an X lock in order to perform the
modification, but the S lock held by one transaction prevents the other from doing so. At
this point, we have a deadlock since neither transaction can proceed (we cover deadlocks
in more detail in Chapter 5).

In order or avoid such deadlocks, if a transaction begins a search operation with the
intention of eventually modifying data, then SQL Server acquires U locks until it finds the
data to modify. U locks are compatible with S locks, but are incompatible with X locks or
other U locks. So if two transactions were searching for the same resource, each with the
intention of modifying it, then the first one to reach it would acquire a U lock, and then
the second one would be blocked until the first was finished. Since the second transaction
was blocked, the first is free to convert its U lock to an X lock, make the data modification
and release its locks. Then the second transaction could make its change. In the
sys.dm_tran_locks view, a request_mode of 'U' indicates an update lock.

46

Chapter 2: Locking Basics

Intent locks

Intent locks do not represent a distinct mode of locking. The term "intent" is a qualifier
to the modes just discussed. In other words, you can have intent shared (IS) locks, intent
exclusive locks (IX), and even intent update locks (IU), indicated in the request_mode
column of the sys.dm_tran_locks view by IS, IX and IU, respectively.

As we've discussed, SQL Server can acquire locks at different levels of granularity (i.e.,
at the row, page, or table level), and so needs some mechanism that signals whether a
component of a resource is already locked. For example, if one transaction attempts to
lock a table, SQL Server must be able to determine whether it has already locked a row or
a page of that table. Intent locks serve that purpose. Whenever a transaction acquires a
lock at a lower level of granularity, it also acquires higher-level intent locks for the same
object. For example, a transaction that holds an X lock on a row in the Customers table
will also hold IX locks on both the page containing that row, and the Customers table.
These Intent locks will prevent another transaction from locking the entire Customers
table (acquiring an X lock on the table).

We'll cover in more detail which lock modes are compatible and incompatible in the
section on lock compatibility, in Chapter 3.

Lock duration

The length of time that SQL Server holds a lock depends primarily on the mode of the
lock and the transaction isolation level that is in effect. READ COMMITTED is SQL Server's
default isolation level. At this level, SQL Server releases S locks as soon as it has read and
processed the locked data. It holds an X lock until the end of the transaction, whether the
transaction is committed or rolled back. It holds a U lock until the end of the transaction,
unless it promoted the U lock to an X lock, in which case the X lock, as with all X locks,
remains for the duration of the transaction.

47

Chapter 2: Locking Basics

If the transaction isolation level is REPEATABLE READ or SERIALIZABLE, S locks have
the same duration as X locks. That is, SQL Server does not release them until the trans-
action is over.

In addition to changing the transaction isolation level, we can control the lock duration
by using lock hints. We'll see details about lock hints in Chapter 4.

Lock ownership

We can think of lock ownership as the scope of the lock, and it can affect lock duration.
There are three default values for the lock owner, and two additional types of lock
ownership that must be explicitly requested. We can observe lock ownership values in the
request_owner_type column of the sys.dm_tran_locks DMV. The default lock
owner values are below.

•	 TRANSACTION – Most of the locks discussed in this book are transaction-owned locks.
Most of the locks that are involved in blocking and troubleshooting are transaction-
owned locks. The duration of transaction-owned locks is as discussed in the previous
section.

•	 SHARED_TRANSACTION_WORKSPACE – Every connection in any database (other than
master or tempdb) acquires a lock with this owner by. By observing these locks, SQL
Server can tell when a database is in use. SHARED_TRANSACTION_WORKSPACE locks
are held as long as a connection is using a database.

•	 EXCLUSIVE_TRANSACTION_WORKSPACE – SQL Server acquires a lock with this
owner whenever it needs exclusive access to the database. This includes activities
such as dropping the database, restoring the database, or changing certain database
properties, such as the READ_ONLY status. A connection cannot acquire a lock with
an owner of EXCLUSIVE_TRANSACTION_WORKSPACE if any other connections have a
lock owned by a SHARED_TRANSACTION_WORKSPACE and, in such cases, SQL Server
generates an error message. SQL Server will hold a lock with this owner until the
operation needing this lock (dropping, restoring or changing status) is completed.

48

Chapter 2: Locking Basics

The purpose of the SHARED_TRANSACTION_WORKSPACE lock owner is to prevent
SQL Server from acquiring EXCLUSIVE_TRANSACTION_WORKSPACE locks, that is, to
prevent a process from dropping, restoring, or changing readability status for a database,
while the database is in use. The reason SQL Server does not acquire these locks for the
master and tempdb databases is that these databases cannot be dropped, or have their
readability status changed. In addition, we never restore tempdb, and to restore the
master database, we must start the entire server in single-user mode so, again,
SHARED_TRANSACTION_WORKSPACE locks are unnecessary.

The additional lock owner values are CURSOR and SESSION. We can request the former
in a cursor declaration, but we will not discuss this topic further in this book. A SESSION
lock is available only through user-defined locks, created with the sp_getapplock
stored procedure, as will be discussed in Chapter 4.

Locking metadata

The best source of current lock information is the previously referenced sys.dm_tran_
locks DMV. This view replaces the sp_lock procedure, although sp_lock is still
available. Although calling a procedure might require less typing than querying the sys.
dm_tran_locks view, the latter is much more flexible. Not only are there many more
columns of information, providing details about our locks, but as a view, sys.dm_tran_
locks can be queried to select just the columns we want, or only the rows that meet our
criteria. We can join sys.dm_tran_locks to other views to get aggregate (summary)
information on how many locks of each kind SQL Server holds.

Keep in mind that the DMVs are not based on a real table, because the data they
expose isn't really stored in a SQL Server table, and is never written to disk. The data
is materialized when queried from data available in internal structures maintained by
the SQL Server process.

49

Chapter 2: Locking Basics

Another way to watch locking activity is with SQL Server Management Studio's
Activity Monitor, in the section called Resource Waits but, on a very busy system,
the performance of the graphical interface can be less than ideal. All the exercises
demonstrating locking behavior will use SQL Server Management Studio's query
window and most of the examples will select from the sys.dm_tran_locks view.

The sys.dm_tran_locks view has one row for each lock granted to any session, and
one row for each requested lock for which a session is waiting. Each row contains (among
other things) the session_id of the session holding or waiting for the lock, the lock
mode, the lock resource, and the status (granted or waiting). On receiving a new lock
request, SQL Server's Lock Manager will examine the contents of sys.dm_tran_locks
to see if another session already holds, or is waiting for, a lock on the same resource, in
an incompatible lock mode. If there is an incompatible lock listed in the sys.dm_tran_
locks view, the new lock will be added with a status of WAIT; otherwise, the lock will be
granted to the session.

Almost all of the columns in sys.dm_tran_locks start with one of two prefixes.
In general, the columns whose names begin with resource_ describe the resource
holding the lock or the resource on which the lock is requested. Two rows in the
sys.dm_tran_locks view indicate lock requests on the same resource only if all
the resource_ columns are the same.

The columns whose names begin with request_ describe the requesting session, along
with the mode of lock requested, and so on.

Resource columns

Six of the columns in sys.dm_tran_locks have the resource_ prefix, and of these
resource_type and resource_description are probably the most useful, providing
the target resource for the requested lock (key, page, and so on) and the identity of the
actual resource locked.

50

Chapter 2: Locking Basics

There is also a column called resource_database_id whose meaning should be
obvious, so I won't include it in the subsequent discussion. I will mention, however,
that this column returns a numerical value, and we have to translate that number to a
database name, using the conversion: SELECT db_name(<resource_database_id>).

Table 2-1 shows many of the possible values for resource_type, as well as describing
the information returned in the corresponding resource_description column.

Resource_Type Resource_Description Example

DATABASE
None; the database is always indicated in the
resource_database_ID column for every
locked resource.

OBJECT

The object ID (which can be any database
object, not necessarily a table) is reported in
the resource_associated_entity_id
column.

69575286

HOBT
(a partition of a
table or index)

None; the partition_id is reported in
the resource_associated_entity_id
column.

EXTENT File number:page number of the first page of
the extent.

1:96

PAGE File number:page number of the actual table or
index page.

1:104

KEY
(a row of an
index, either
clustered or
non-clustered)

A hashed value derived from all the key com-
ponents and the locator. For a non-clustered
index on a heap, where columns c1 and c2 are
indexed, the hash will contain contributions
from c1, c2, and the RID.

ac0001a10a00

51

Chapter 2: Locking Basics

Resource_Type Resource_Description Example

RID
(a row in a heap)

File number:pagenumber:slot number of the
actual row.

1:161:3

APPLICATION

A concatenation of the database principal with
access to this lock, the first 32 characters of
the name given to the lock, and a hashed value
derived from the full name given to the lock.

0:[ProcLock]:(8e14701f)

Table 2-1:	 Many of the possible values for resource_type in sys.dm_tran_locks.

Note that key locks and key-range locks both use KEY as the resource description because
key range is considered a mode of locking, not a locking resource. However, in the output
from the sys.dm_tran_locks view, we can distinguish between these types of locks by
the value in the request_mode column.

For locked resources that are part of a larger entity, the resource_associated_
entity_id column in sys.dm_tran_locks displays the ID of that associated entity in
the database.

The value in this column depends on the resource type:

•	 ObjectID – The value given in this column for OBJECT resources

•	 PartitionID – The value provided for resource types PAGE, KEY, RID, and HOBT
(note that HOBT is just another way of referring to one partition of a table or index)

•	 AllocationUnitID – Given for ALLOCATION_UNIT resources.

Of course, for some resources, such as DATABASE and EXTENT, there is no
resource_associated_entity_id.

52

Chapter 2: Locking Basics

In our queries, we can "decode" the identity of the associated entities on which locks are
requested or held, in the current database, by joining sys.dm_tran_locks to sys.
partitions. Listing 2-2 shows how to do this, and wraps the SELECT into a view, called
DBlocks, so that we can reuse it throughout the book.

IF EXISTS (SELECT 1
 FROM sys.views
 WHERE name = 'DBlocks')
 DROP VIEW DBlocks ;
GO
CREATE VIEW DBlocks AS
SELECT request_session_id AS spid ,
 DB_NAME(resource_database_id) AS dbname ,
 CASE WHEN resource_type = 'OBJECT'
 THEN OBJECT_NAME(resource_associated_entity_id)
 WHEN resource_associated_entity_id = 0 THEN 'n/a'
 ELSE OBJECT_NAME(p.object_id)
 END AS entity_name ,
 index_id ,
 resource_type AS resource ,
 resource_description AS description ,
 request_mode AS mode ,
 request_status AS status
FROM sys.dm_tran_locks t
 LEFT JOIN sys.partitions p
 ON p.partition_id = t.resource_associated_entity_id
WHERE resource_database_id = DB_ID()
 AND resource_type <> 'DATABASE' ;

Listing 2-2:	 Creation of the DBlocks view to display locks in the current database.

For OBJECT resources, we apply the object_name function to the resource_
associated_entity_id column. For PAGE, KEY, and RID resources, we use the
object_name function, with the ObjectID from the sys.partitions view. There
is no simple function to convert a HOBT ID value to an object name; we have to select
from the sys.partitions view. For other resources for which there is no resource_
associated_entity_id, the code just returns n/a.

53

Chapter 2: Locking Basics

The object_name function applies only to the current database, so the WHERE clause
filters to return only lock information for resources in the current database. The organi-
zation of the output reflects the information returned by the sp_lockprocedure, but
we can add any additional filters or columns, as required. We'll use this view in many
examples later in this book.

Request columns

There are 13 columns in sys.dm_tran_locks used to identify information about the
request for the lock, but two of them are documented as being for informational purposes
only, not supported. Another two are only useful for DTC transactions or transactions
using the MARS protocol, we won't discuss them further. Below is a list of the other nine
with a basic explanation of their meaning.

•	 request_mode – This is the lock mode discussed earlier, and indicates whether the
granted or requested lock is shared (S), exclusive (X), intent shared (IX), update (U),
and so on. Key-range locks, used for SERIALIZABLE isolation, appear as RangeS-U,
RangeS-S and so on (see Chapter 3). For granted requests, this is the granted mode;
for waiting requests, this is the mode being requested.

•	 request_type – In SQL Server 2008, the only type of resource request tracked
in sys.dm_tran_locks is for a LOCK. Future versions will include other types of
resources that can be requested.

•	 request_status – Status can be one of three values: GRANT, CONVERT, or WAIT. A
status of CONVERT indicates that the requestor has already been granted a request for
the same resource in a different mode and is currently waiting for an upgrade (convert)
from the current lock mode to be granted. (For example, SQL Server can convert a
U lock to X.) A status of WAIT indicates that the requestor does not currently hold a
granted request on the resource.

•	 request_session_id – This value is the ID of the session that has requested the
lock. The owning session ID can change for distributed (DTC) and bound transactions.

54

Chapter 2: Locking Basics

•	 request_reference_count – This value is a rough count of the number of times
the same requestor has requested this resource, and applies only to resources that are
not automatically released at the end of a transaction.

•	 request_exec_context_id – This value is the execution context ID of the
process that currently owns this request. A value greater than 0 indicates that this is a
sub-thread used to execute a parallel query.

•	 request_owner_type – This value refers to the owner discussed earlier,
which indicates the scope of the lock. The five possible values are: TRANSACTION,
SHARED_TRANSACTION_WORKSPACE, EXCLUSIVE_TRANSACTION_WORKSPACE,
CURSOR and SESSION.

•	 request_owner_id – This value is currently used only for requests with an owner
of TRANSACTION, and the owner ID is the transaction ID. This column can be joined
with the transaction_id column in the sys.dm_tran_active_transactions
view.

•	 lock_owner_address – This value is the memory address of the internal data
structure that is used to track this request. This column can be joined with the
resource_address column in sys.dm_os_waiting_tasks if this request is
in the WAIT or CONVERT state.

Locking Examples

The following examples show what many of the lock types and lock resources look like
when reported using the DBlocks view from Listing 2-2. The more familiar we are
with querying the locking metadata and studying the output, the better we'll be able to
troubleshoot any blocking problems that may arise.

55

Chapter 2: Locking Basics

Example 1: SELECT with READ COMMITTED
isolation level

The script in Listing 2-3 begins a READ COMMITTED transaction, queries the
Production.Product table, and then immediately interrogates our DBlocks view.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRAN
SELECT *
FROM Production.Product
WHERE Name = 'Reflector' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid ;
COMMIT TRAN

Listing 2-3:	 A simple SELECT in READ COMMITTED isolation level.

There are no locks on the data in the Production.Product table because the batch
was doing only SELECT operations, and so acquired only S locks. By default, SQL Server
releases S locks as soon as it has finished reading the data so, by the time we execute
the SELECT from the view, SQL Server no longer holds the locks. As such, the results in
Figure 2-1 show only an OBJECT lock on the view (there is also a DATABASE lock on the
AdventureWorks database, but the DBlocks view filtered out database locks).

Figure 2-1:	 Locks held during simple SELECT in READ COMMITTED isolation level.

56

Chapter 2: Locking Basics

Example 2: SELECT with REPEATABLE READ
isolation level

In Listing 2-4, we run another query against Production.Product, as part of a
REPEATABLE READ transaction. This time, we filter out the lock on the view so that we
can focus just on the data locks.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ ;
BEGIN TRAN
SELECT *
FROM Production.Product
WHERE Name LIKE 'Racing Socks%' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'Product' ;
COMMIT TRAN

Listing 2-4:	 A simple SELECT in REPEATABLE READ isolation level.

This time, because the transaction isolation level is REPEATABLE READ, SQL Server holds
the S locks until the transaction is finished and so we can see them in our results. The
Production.Product table has a clustered index, so the rows of data are all index rows
in the leaf level. As such, Figure 2-2 shows that the locks on the two individual data rows
returned are KEY locks. The table also has a non-clustered index on the Name column
and we can see two KEY locks at the leaf level of this non-clustered index, used to find the
relevant rows.

We can distinguish the clustered and non-clustered indexes by the value in the Index_
ID column: the data rows have an Index_id value of 1, and the non-clustered index rows
have an Index_ID value of 3 (the index_id value for non-clustered indexes can be any
number between 2 and 999).

57

Chapter 2: Locking Basics

Note that all these index rows have S locks, and the data and index pages, as well as the
table itself, have IS locks.

Figure 2-2:	 Locks held during simple SELECT in REPEATABLE READ isolation level.

Example 3: SELECT with SERIALIZABLE isolation
level

Listing 2-5 repeats the previous example, except with the use of the SERIALIZABLE
transaction isolation level.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
BEGIN TRAN
SELECT *
FROM Production.Product
WHERE Name LIKE 'Racing Socks%' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'Product' ;
COMMIT TRAN

Listing 2-5:	 A simple SELECT in SERIALIZABLE isolation level.

58

Chapter 2: Locking Basics

The locks held with the SERIALIZABLE isolation level are almost identical to those
held with the REPEATABLE READ isolation level. As such, the results, shown in Figure
2-3 show many similarities to the previous results, in the form of the S-mode KEY locks
on the rows in the clustered index, and in the IS locks on the parent pages and object.
However, the primary difference is the number and mode of the locks on the rows in the
non-clustered index.

Figure 2-3:	 Locks held during simple SELECT in SERIALIZABLE isolation level.

The two-part mode RangeS-S indicates a key-range lock in addition to the lock on the
key itself. The first part (RangeS) is the lock on the range of keys between and including
the key holding the lock and the previous key in the index. The key-range locks prevent
other transactions from inserting any new rows into the table that meet the condition of
this query; that is, it's not possible to insert any new rows with a product name starting
with Racing Socks. The key-range locks are held on ranges in the non-clustered index
on Name (Index_id = 3) because that is the index used to find the qualifying rows.

The two Racing Socks rows are Racing Socks, L and Racing Socks, M. There are
three KEY locks in the non-clustered index because SQL Server must lock three different
ranges of data, as follows:

•	 the range from the key preceding the first Racing Socks row in the index (which is
Pinch Bolt) up to the first Racing Socks row (Racing Socks, L)

59

Chapter 2: Locking Basics

•	 the range between the two rows starting with Racing Socks

•	 The range from the second Racing Socks row (Racing Socks, M) to the next key in
the index (Rear Brakes).

So, in fact, while this transaction is in progress no other transaction could insert rows
anywhere between Pinch Bolt and Rear Brakes. For example, we could not insert a
product with the name Port Key or Racing Tights.

Example 4: Update with READ COMMITTED
isolation level

In this example, we move on to an UPDATE operation, running under the default READ
COMMITTED isolation level (the default), as shown in Listing 2-6.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRAN
UPDATE Production.Product
SET ListPrice = ListPrice * 0.6
WHERE Name LIKE 'Racing Socks%' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'Product' ;
COMMIT TRAN

Listing 2-6:	 A simple UPDATE in READ COMMITTED isolation level.

Figure 2-4 shows that the two rows in the leaf level of the clustered index are locked with
X locks. The page and the table are then locked with IX locks.

60

Chapter 2: Locking Basics

Figure 2-4:	 Locks held during a simple UPDATE in READ COMMITTED isolation level.

As discussed earlier, SQL Server acquires U locks while it looks for the rows to update.
However, SQL Server escalates these to X locks upon performing the actual update and,
by the time we look at the DBlocks view, the U locks are gone. Unless we force U locks
with a query hint, we might never see them in the lock report from DBlocks, or by direct
inspection of sys.dm_tran_locks.

Example 5: Update with SERIALIZABLE isolation
level (with an index)

In this example, we rerun the same UPDATE as for Example 4, but using the
SERIALIZABLE isolation level, as shown in Listing 2-7.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
BEGIN TRAN
UPDATE Production.Product
SET ListPrice = ListPrice * 0.6
WHERE Name LIKE 'Racing Socks%' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'Product' ;
COMMIT TRAN

Listing 2-7:	 A simple UPDATE in SERIALIZABLE isolation level, using an index.

61

Chapter 2: Locking Basics

Again, notice that the key-range locks are on the non-clustered index, used to find the
relevant rows. The range interval itself needs only an S lock to prevent insertions, but
the searched keys have U locks, ensuring that no other process can attempt to UPDATE
them. The keys in the table itself (index_id = 1) obtain the X lock when the actual
modification is made.

Figure 2-5:	 Locks held during a simple UPDATE in SERIALIZABLE isolation level, using an index.

Example 6: Update with SERIALIZABLE isolation
level not using an index
Now let's look at another UPDATE operation with the SERIALIZABLE isolation level, but
there is no useful index for the search, as shown in Listing 2-8.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ;
BEGIN TRAN
UPDATE Production.Product
SET ListPrice = ListPrice * 0.6
WHERE Color = 'White' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'Product' ;
COMMIT TRAN

Listing 2-8:	 A simple UPDATE in SERIALIZABLE isolation level, not using an index.

62

Chapter 2: Locking Basics

The locks in Figure 2-6 are similar to those in Figure 2-5 except that all the locks are on
the table itself (Index_Id = 1).

Figure 2-6:	 Some of the locks held during a simple UPDATE in SERIALIZABLE isolation level,

not using an index.

As there was no useful index, a clustered index scan on the entire table was required,
and so all keys initially received the RangeS-U lock; when four rows were eventually
modified, the locks on those keys escalated to the RangeX-X lock. We can see two of
the RangeX-X locks, and a few of the RangeS-U locks. The complete output has 501
RangeS-U locks, as well as IU locks on several pages, IX locks on two pages, and an IX
lock on the table.

Example 7: Creating a table

Let's now investigate locking behavior as we create a new table, as part of transaction
using READ COMMITTED transaction isolation.

63

Chapter 2: Locking Basics

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED ;
BEGIN TRAN
SELECT *
INTO newProducts
FROM Production.Product
WHERE ListPrice BETWEEN 1 AND 10 ;
SELECT *
FROM DBlocks
WHERE spid = @@spid ;
COMMIT TRAN

Listing 2-9:	 Creating a new table using SELECT…INTO.

Figure 2-7 shows that SQL Server acquired very few of these locks on elements of the
newProducts table. In the entity_name column, note that most of the objects are
undocumented, and normally invisible, system table names. When creating the new table,
SQL Server acquires locks on six different system tables to record information about
this new table. In addition, notice the schema modification (Sch-M) locks which we'll be
discussing in the section on lock compatibility, in Chapter 3.

Figure 2-7:	 Some of the locks held during a table creation using SELECT…INTO.

64

Chapter 2: Locking Basics

Example 8: RID locks

Our last example will look at the locks held when there is no clustered index on the table
and a transaction updates the data rows, as shown in Listing 2-10.

USE AdventureWorks ;
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRAN
UPDATE newProducts
SET ListPrice = 5.99
WHERE Name = 'Road Bottle Cage' ;
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'newProducts' ;
COMMIT TRAN

Listing 2-10:	 Updating rows in a heap.

There are no indexes on the newProducts table, so the lock on the actual row meeting
our criterion is an X lock on the row (RID). For RID locks, the description actually reports
the specific row in the form File Number:Page number:Slot number. As expected, SQL
Server takes IX locks on the page and the table.

Figure 2-8:	 Locks held when updating rows in a heap.

65

Chapter 2: Locking Basics

Summary

In this chapter, we looked at the basics of SQL Server's default locking behavior; the types
of locks that SQL Server can acquire, the granularity of the lock, and the duration of the
locks. We saw how the locking behavior changes, depending on the transaction isolation
level, in order to enforce the behaviors required by the definition of the isolation level.
Finally, we looked at multiple examples of locking in various transactions, and examined
the locks acquired using SQL Server's lock metadata.

66

Chapter 3: Advanced Locking
Concepts

A session wishing to access a particular resource may be blocked, and forced to wait, if the
required resource is unavailable. By far the most common type of resource to have to wait
for is a lock. In other words, another session already holds a lock on the required resource,
with which the requested lock is incompatible, so forcing the requesting sessions to wait
until the holding session releases the lock.

The previous chapter briefly introduced the various modes of lock that SQL Server can
acquire, including shared (S) locks, exclusive (X) locks, and update (U) locks. Here, we'll
take a deeper look at how and when SQL Server acquires these, and other "specialized"
types of locks, on various resources, covering concepts such as:

•	 lock compatibility – which lock types are compatible, and so can exist simultaneously
on the same resource, and which are incompatible, and so will lead to blocking

•	 lock mode conversion – how SQL Server converts lock modes in response to the
operations being performed by a given transaction, in order to ensure enforcement
of the ACID transaction properties

•	 special intent locks – acquired when a non-intent lock is requested on a resource on
which either an IX or an IU lock is already held

•	 key-range locks – introduced in Chapter 2 as a type of lock acquired in
SERIALIZABLE isolation level when scanning or modifying a range of data;
here, we take a closer look at the four most common modes of key-range lock.

Where a choice exists, SQL Server will always acquire locks at the lowest level of granu-
larity (e.g. on a row rather than a page), but there are times when it may opt to escalate
the locks for a given session, on a specific resource, to the table level. We'll examine the
circumstances in which this might happen, and how we might exert some control over it.

67

Chapter 3: Advanced Locking Concepts

Finally, we end the chapter with some "lesser-known" lock types that can occasionally
rear their heads and cause unexpected blocking issues, namely, latches and compile locks.

Lock Compatibility

If a session requests a lock, SQL Server inspects the locks currently held (which we can
see in the sys.dm_tran_locks view) to see if another session holds a lock on the exact
same resource. SQL Server performs a check for lock compatibility only if it already
holds locks on the requested resource. Internally, SQL Server maintains a list of which
lock types are compatible with other types, and if existing and requested lock types are
compatible, SQL Server grants the requested lock. If the requested lock is of a type that
is incompatible, SQL Server gives the requested lock a status of 'WAIT'. SQL Server Books
Online provides a lock compatibility matrix, which I have reproduced in Table 3-1.

Requested lock mode
Existing granted lock mode

IS S U IX X

Intent shared (IS) Yes Yes Yes Yes No

Shared (S) Yes Yes Yes No No

Update (U) Yes Yes No No No

Intent exclusive (IX) Yes No No Yes No

Exclusive (X) No No No No No

Table 3-1:	 Lock compatibility matrix.

68

Chapter 3: Advanced Locking Concepts

To determine the compatibility, find the existing lock along the top and look down that
column. Find the requested lock type along the left and look across that row. The place
where the row and column meet reveals the compatibility.

For example, suppose Session1 has an exclusive lock on a row in TableA. Can
Session2 get an exclusive lock on another row in TableA? Session1 has an X lock
on a row, but Session2 is not trying to lock the same row, so there will be no conflict
there. Remember, though, that when Session1 gets an X lock on the row in TableA,
it will also get an intent exclusive lock (IX) on the page containing the row, and on the
table containing the row, which is TableA. There is no existing lock on the row that
Session2 wants, so Session2 can get the X lock on the row, the IX lock on the page
and an IX lock on TableA. Notice, in the lock compatibility chart above, that IX locks
are compatible with other IX locks, and hopefully this example explains why that is a
good thing.

Now suppose Session3 wants an exclusive lock on the same row that Session1 is
locking. SQL Server actually attempts to acquire the higher-level locks first. So Session3
will be able to get the IX lock on TableA and the IX lock on the page, but it will not be
able to get the lock on the row, because Session1 already has an X lock on the row, and
in the lock compatibility matrix, X locks are incompatible with X locks.

In addition to the compatibilities indicated in the lock compatibility matrix, three more
lock modes have compatibility issues of which we should be aware.

•	 Sch-S: schema stability lock
SQL Server acquires a Sch-S lock whenever it is compiling and optimizing a query.
Sch-S locks are the most compatible of all the lock modes, and do not block on any
transactional locks, including X locks. It's perfectly fine for one session to be modifying
data in a table while SQL Server is optimizing a query for another session that is
accessing that table. The only lock mode that will block Sch-S locks is Sch-M,
described next.

69

Chapter 3: Advanced Locking Concepts

•	 Sch-M: schema modification lock
SQL Server acquires a Sch-M lock when performing certain DDL operations that
change a table's definition (its schema). These operations include adding and dropping
columns from the table, or changing a column's data type. Sch-M locks are the least
compatible lock mode and a request for every other mode will block on a Sch-M lock,
and vice versa; a session cannot get a Sch-M lock if any other session has any other lock
on the table. In other words, when a session is making a schema change to a table, no
other sessions can do anything with the table.

•	 BU: bulk update lock
SQL Server acquires a BU lock on a table only if a session explicitly requests one,
during a bulk insert operation into the table. With the BULK INSERT command we
can specify a BU lock, using the TABLOCK hint, and with the bcp utility we can use
the –h "TABLOCK" option. We can specify that SQL Server take BU locks, by default,
for a particular table, during bulk updates, via use of the sp_tableoption system
stored procedure, with the table lock on bulk load option enabled. BU locks
allow multiple threads to load data into the same table concurrently, and they are only
compatible with other BU locks and with Sch-S locks. Bulk load operations that do not
request the BU lock use normal row-level X locks, as the new rows are added.

Lock Mode Conversion

The lock mode is determined primarily by the operation being performed. S locks
are acquired when reading (selecting) data, and X locks are acquired when writing (or
modifying) data. X locks will never change to S locks, but an S lock could change to an X
lock, if a new operation is performed on the same resource, in the same transaction.

70

Chapter 3: Advanced Locking Concepts

We can run the script in Listing 3-1 to see this transformation, from S to X lock, in action.

USE AdventureWorks;
-- Create a new table
IF OBJECTPROPERTY(OBJECT_ID('NewOrders'), 'IsUserTable') = 1
 DROP TABLE NewOrders;
GO
SELECT *
INTO NewOrders
FROM Sales.SalesOrderHeader;
GO
CREATE UNIQUE INDEX NewOrder_index ON NewOrders(SalesOrderID);
GO

-- Change isolation level and start transaction
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRAN

-- SELECT data and examine the locks
SELECT *
FROM NewOrders
WHERE SalesOrderID = 55555;

SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';

-- UPDATE data and examine the locks
UPDATE NewOrders
SET SalesPersonID = 277
WHERE SalesOrderID = 55555;

SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';

ROLLBACK TRAN

Listing 3-1:	 Lock conversion from S to X.

71

Chapter 3: Advanced Locking Concepts

The code in Listing 3-1 will drop the NewOrders table if it already exists, then re-create it
and build a non-clustered index on the SalesOrderID column. It then sets the isolation
level to REPEATABLE READ in order that SQL Server holds S locks until the end of the
transaction rather than just the end of the current statement, as is the case in the default
READ COMMITTED level.

The code then opens a REPEATABLE READ transaction and selects one row from
the NewOrders table. When querying our DBlocks view (see Chapter 2), we see an
S lock on a RID in the database. This is the RID for the row that was selected, with
SalesOrderID = 55555. Also, note that an S lock is held for a key in the non-clustered
index. There are also IS locks for the page in the table that contains the selected row, and
for the page in the index that contains the key for the selected row as well as an IS lock on
the table itself.

After we update the row, we query the DBlocks view again, and this time there are
different locks on the same resources. The same RID now has an X lock, and the page
in the table, and the table itself, both have IX locks. The key in the index has a U lock.
SQL Server acquired the U lock while searching for the row to update, and this is
necessary because, until the modification to the data row happens, SQL Server doesn't
know whether the modification will also require a change to the index. The page in
the index containing the key has an IU lock. Figure 3-1 shows the results, revealing all
these locks.

72

Chapter 3: Advanced Locking Concepts

Figure 3-1:	 Locks acquired by a SELECT and then UPDATE in the same transaction.

Special Intent Locks

As described earlier, when discussing different lock modes, SQL Server acquires an
intent lock on a high-level resource when it holds a lock on a component of that resource.
In Listing 3-1, we saw that when SQL Server holds an S lock on a row, then it also holds
IS locks on the page and the table containing that row. SQL Server acquires an IU lock
on an index page, when the component (a key) of that index had a U lock. In addition to
the IS, IX, and IU locks we saw in Listing 3-1, there are three more types of intent locks
that can be considered conversion locks. SQL Server will acquire these types of lock
when a non-intent lock is requested on a resource on which either an IX or an IU lock is
already held.

73

Chapter 3: Advanced Locking Concepts

Note that these three types of locks will only occur when SQL Server acquires both an
intent and a non-intent lock on the same resource. If two intent locks are requested, the
stronger one will always replace the weaker one. For example, if a page had an IU lock and
then an IX lock was requested, the IX lock would simply replace the IU lock.

Listing 3-2 shows a script, similar to the one in Listing 3-1, which will demonstrate the
acquisition of each of these special intent locks. Take a look now, and execute the relevant
step as we work through each of the three types.

USE AdventureWorks;
--Step 1: Create a new table and set the isolation level
IF OBJECTPROPERTY(OBJECT_ID('NewOrders'), 'IsUserTable') = 1
 DROP TABLE NewOrders;
GO
SELECT *
INTO NewOrders
FROM Sales.SalesOrderHeader;
GO
CREATE UNIQUE INDEX NewOrder_index ON NewOrders(SalesOrderID);
GO
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
GO

-- Step 2: Generate an SIX lock
BEGIN TRAN
UPDATE dbo.NewOrders
SET ShipDate = ShipDate + 1
WHERE SalesOrderID = 55555;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
SELECT *
FROM dbo.NewOrders WITH (TABLOCK, REPEATABLEREAD)
WHERE SalesOrderID = 55555;
GO
SELECT *
FROM DBlocks

74

Chapter 3: Advanced Locking Concepts

WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN
GO

-- Step 3: Generate an UIX lock
BEGIN TRAN
UPDATE dbo.NewOrders
SET ShipDate = ShipDate + 1
WHERE SalesOrderID = 55555;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
SELECT *
FROM dbo.NewOrders WITH (PAGLOCK, UPDLOCK)
WHERE SalesOrderID = 55555;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN
GO

-- Step 4: Generate an SIU lock
BEGIN TRAN
UPDATE dbo.NewOrders
SET ShipDate = ShipDate + 1
WHERE SalesOrderID = 55555;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
SELECT *
FROM dbo.NewOrders WITH (PAGLOCK, REPEATABLEREAD)
WHERE SalesOrderID = 55555;
GO

75

Chapter 3: Advanced Locking Concepts

SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN
GO

Listing 3-2:	 Generating special intent locks.

Execute Step 1 in Listing 3-2 now, so that we start with a clean table.

Shared intent exclusive (SIX)

When SQL Server has one or more rows locked with X locks, the pages and the table
that contains the rows will acquire IX locks. When the same transaction performs an
operation that requires an S lock, SQL Server will acquire a SIX lock on the table.

Step 2 in Listing 3-2 starts with the UPDATE statement, which will acquire an X lock on
the updated row, and IX locks on the page and the table containing the row. The subse-
quent query against the NewOrders table, in the same transaction, will obtain an S lock
on the table and hold it to the end of the transaction, thanks to the REPEATABLE READ
hint. The query against the DBlocks view reveals that SQL Server has acquired an SIX
lock on the table.

Note that, even though the SELECT statement on the NewOrders table is accessing every
row in that table, the default is for SQL Server to acquire individual row locks. For the
sake of greater concurrency, SQL Server will not automatically escalate row locks into
table locks until a very large number of locks are acquired, at which point the overhead of
maintaining all those locks outweighs the concurrency benefits. The escalation point is
when SQL Server is using about 3% of its memory for keeping track of all its locks.

76

Chapter 3: Advanced Locking Concepts

At that time, SQL Server will try to escalate multiple table locks on the same table into a
single table lock, but if other resources (rows or pages) in the table are locked by another
session, the escalation will not take place. In that case, SQL Server will continue to use
row locks, and possibly acquire more row locks. We'll discuss lock escalation in more
detail very shortly.

Update intent exclusive (UIX)
SQL Server never acquires U locks at the table level, so the only way to get a U lock and an
IX lock together is on a page. Step 3 in Listing 3-2 illustrates this behavior. We execute the
UPDATE statement first and, because a row is updated, that row gets an X lock, and the
page and table acquire IX locks. When the subsequent SELECT is run, with hints forcing
U locks on the pages accessed, the U lock on the page combines with the previous IX lock
on the page, to give a UIX lock.

Shared intent update (SIU)
SQL Server holds IU locks only at the page level; the corresponding table will have an IX
lock. To see an SIU lock, we can run a query that acquires a U lock on a row, so it will also
acquire an IU lock on the page. If, in the same transaction, we then acquire an S lock on
the page, the result will be an SIU lock. Step 4 in Listing 3-2 shows this behavior.

Key-Range Locks

We briefly discussed key-range locks in Chapter 2, when considering lock resources
and SERIALIZABLE isolation level. If the isolation level is SERIALIZABLE and a query
scans a range of data within a transaction, SQL Server needs to lock enough of the table
to ensure that another transaction cannot insert a new value into the range currently
being scanned, because if we reissued the same query that value would then appear as
a phantom.

77

Chapter 3: Advanced Locking Concepts

A key-range lock is associated with a specific index key, but includes the range of possible
values less than or equal to the key with which the lock is associated, and greater than the
previous key in the index leaf level. Another way to say it would be that a key-range lock
spans the range between two keys, and includes the key at the end, but not the key at
the beginning. For example, if an index leaf level included the sequential values "James"
and "Jones," a key-range lock on "Jones" would lock out all key values greater than
"James" and less than or equal to "Jones."

Key-range locks appear in the request_mode column the sys.dm_tran_locks view
(or our DBlocks view) as a two-part name. The first part of the name indicates the lock
on the range (the interval between the two key values), and the second part indicates the
lock on the key at the upper end of the range.

SQL Server can hold nine different key-range lock modes, and can only acquire these
modes when a transaction is using SERIALIZABLE isolation level. However, there are
only four frequently observed key-range lock modes. The others are conversion locks,
obtained only when SQL Server converts from another lock mode, and are usually so
transient that it is difficult to detect them using the tools we have.

We'll focus on the four, more frequently observed key-range lock modes here, and will
use the script in Listing 3-3 to generate each of them. Again, take a look at the script,
and execute the relevant step in each of the subsequent four sections. Start now, by
executing Step 1, to start with a clean table and set the transaction isolation level to
SERIALIZABLE.

USE AdventureWorks;
--Step 1: Create a new table and set the isolation level
IF OBJECTPROPERTY(OBJECT_ID('NewOrders'), 'IsUserTable') = 1
 DROP TABLE NewOrders;
GO
SELECT *
INTO NewOrders
FROM Sales.SalesOrderHeader;
GO

78

Chapter 3: Advanced Locking Concepts

CREATE UNIQUE INDEX NewOrder_index ON NewOrders(SalesOrderID);
GO
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
GO

-- Step 2: Generate RangeS-S locks
BEGIN TRAN
SELECT *
FROM dbo.NewOrders
WHERE SalesOrderID BETWEEN 55555 AND 55557;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN
GO

-- Step 3: Generate RangeS-U locks

BEGIN TRAN
UPDATE dbo.NewOrders
SET ShipDate = ShipDate + 1
WHERE SalesOrderID BETWEEN 55555 AND 55557;
GO
SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN

-- STEP 4: Generate RangeX-X locks
-- We need a clustered index to see these locks
CREATE UNIQUE CLUSTERED INDEX NewOrder_index ON NewOrders(SalesOrderID)
WITH DROP_EXISTING;
GO
BEGIN TRAN
UPDATE dbo.NewOrders
SET ShipDate = ShipDate + 1
WHERE SalesOrderID BETWEEN 55555 AND 55557;
GO

79

Chapter 3: Advanced Locking Concepts

SELECT *
FROM DBlocks
WHERE spid = @@spid
 AND entity_name = 'NewOrders';
GO
ROLLBACK TRAN

-- STEP 5: Generate RangeI-N locks

-- First delete a row so that there is a gap in the
-- range for insertion
DELETE FROM NewOrders
WHERE SalesOrderID = 55556;

-- Now select a range of rows
BEGIN TRAN
SELECT *
FROM NewOrders
WHERE SalesOrderID BETWEEN 55555 AND 55557;

-- On another connection, try to insert a row into the locked range

-- SET IDENTITY_INSERT NewOrders ON;
-- GO

-- INSERT INTO NewOrders
-- (SalesOrderID
-- ,RevisionNumber
-- ,OrderDate
-- ,DueDate
-- ,ShipDate
-- ,Status
-- ,OnlineOrderFlag
-- ,SalesOrderNumber
-- ,PurchaseOrderNumber
-- ,AccountNumber
-- ,CustomerID
-- ,ContactID
-- ,SalesPersonID
-- ,TerritoryID
-- ,BillToAddressID
-- ,ShipToAddressID
-- ,ShipMethodID
-- ,CreditCardID

80

Chapter 3: Advanced Locking Concepts

-- ,CreditCardApprovalCode
-- ,CurrencyRateID
-- ,SubTotal
-- ,TaxAmt
-- ,Freight
-- ,TotalDue
-- ,Comment
-- ,rowguid
-- ,ModifiedDate)
-- SELECT
-- 55556,3,getdate(),getdate() +14,
-- getdate() +7 ,5 ,0 ,'SO55556',
-- 'PO18444174099' ,'10-4020-000646',
-- 514,99,283 ,1,876,
-- 876 ,5,806,'95555Vi4081',NULL,3400,272 ,14.99,
-- 3686.99 ,NULL ,newid() ,getdate()
--GO

SELECT *
FROM DBlocks
WHERE entity_name = 'NewOrders';
GO

ROLLBACK TRAN

-- STEP 6: Reset the isolation level
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
GO

Listing 3-3:	 Generating key-range locks.

RangeS-S
(shared key-range and shared resource lock)

When transactions are running in SERIALIZABLE isolation level, SQL Server will hold
onto individual shared key locks on the selected data, and if an index is used to access the
data, it will hold onto shared key-range locks on the intervals between index keys.

81

Chapter 3: Advanced Locking Concepts

Step 2 of Listing 3-3 shows a query, running as a SERIALIZABLE transaction, which
requests a range of orders from the NewOrders table, based on SalesOrderID, and
demonstrates the acquisition of key-range S-S (RangeS-S) locks. The results from the
DBlocks view shows that SQL Server acquired four RangeS-S locks on KEY resources
and that the SELECT statement returns three rows. It is normal to see one more
key-range lock than the number of rows affected, because the ranges are open at the
lower-valued end.

To understand what ranges will need to be locked, in order to prevent phantom-row
insertion, we need to think about how SQL Server will try to store any newly-inserted
values, and remember that a range lock prevents SQL Server from inserting a new row
into the locked range.

Since the SalesOrderID column has an index, the rows will be stored in order of the
SalesOrderID. The key-range locks will have to include the range from the key just
prior to the first one selected up to and including the first key, so that the first key itself
cannot be modified. The key-range locks will also have to include a range starting just
after the highest-valued key selected up to the next key in the index, so that no values
equal to the highest key selected can be inserted.

In Step 2 of Listing 3-3, the keys selected are the three consecutive values from
55555 to 55557. The four key-range locks, indicated by the four RangeS-S locks in
DBlocks view, cover:

•	 the range starting just after the key 55554 up to and including the key 55555

•	 the range starting just after the key 55555 up to and including the key 55556

•	 the range starting just after the key 55556 up to and including the key 55557

•	 the range starting just after the key 55557 up to and including the key 55558.

82

Chapter 3: Advanced Locking Concepts

If an index is not used to retrieve the rows, and the table is a heap, there can't be range
locks, because range locks are always ranges of keys. If operating in SERIALIZABLE
isolation level and no useful index is found, for the range specified in the search clause (in
this case, the search clause is WHERE SalesOrderID BETWEEN 55555 and 55557), SQL
Server will usually just resort to locking the entire table.

RangeS-U
(shared key-range and update resource lock)

If a non-clustered index is used to locate and update rows in a heap, while in
SERIALIZABLE isolation level, and if the column being updated is not the indexed
column used for access, the SQL Server will acquire a lock of Type RangeS-U. This
means that there is an S lock on the range between the index keys, but the index key
itself has a U lock. The rows in the heap will have the expected X lock on the RID.
Run Step 3 in Listing 3-3 to observe these locks.

RangeX-X
(exclusive key-range and exclusive resource lock)

If updating rows in an index while in SERIALIZABLE isolation level, the session
will acquire exclusive key-range locks. Step 4 in Listing 3-3, which demonstrates the
acquisition of these RangeX-X locks, starts by converting the non-clustered index
on SalesOrderID to a clustered index, and then updates the same range of rows
as previous.

In order to observe RangeX-X locks, the updated rows must be index keys, which is true
in Step 4 when the table has a clustered index, and would also occur when updating one
of the key columns of a non-clustered index.

83

Chapter 3: Advanced Locking Concepts

RangeI-N
(insert key-range and no resource lock)

This kind of lock indicates an exclusive lock to prevent inserts on the range between
keys and no lock on the keys themselves. The lock on the range is a special type, I, which
only occurs as part of a key-range lock, and since there is no existing resource to lock, the
second part of the name is N (for Null).

SQL Server acquires RangeI-N locks when it attempts to insert values into the range
between keys in SERIALIZABLE isolation level. We don't often see this type of lock
because it is typically transient, held only until the correct location for insertion is found,
and then escalated into an X lock. However, if one transaction scans a range of data
using the SERIALIZABLE isolation level and then another transaction tries to INSERT
into that range, the second transaction will have a lock request in a WAIT state, with the
RangeI-N mode.

We can observe this behavior by running Step 5 of Listing 3-3, on two separate connec-
tions. In the original connection, we first DELETE a row in the range we will be scanning
so that there is room for an INSERT. We then begin a transaction and select from a
range of rows, but without committing or rolling back the transaction. Opening a new
connection, we attempt to INSERT a new row with same key as the row that we just
deleted. This insert blocks because the transaction on the first connection is still open
and has the range locked. Return to the original connection, and run the query against
the DBlocks view, to reveal that the second connection has a lock request in a WAIT state
with the RangeI-N mode.

84

Chapter 3: Advanced Locking Concepts

Conversion key-range locks

In addition to the four key-range lock types described in the previous sections, a few
additional types, called Conversion key-range locks, need just a brief mention. SQL
Server acquires these locks when a key-range lock overlaps another lock, as shown in
Table 3-2.

If one session initially acquires the type of lock in the Lock 1 column and then, while still
holding that first lock, it acquires the lock in the Lock 2 column, the resulting lock is the
one shown in the Conversion Lock column.

Lock 1 Lock 2 Conversion Lock

S RangeI-N RangeI-S

U RangeI-N RangeI-U

X RangeI-N RangeI-X

RangeI-N RangeS-S RangeX-S

RangeI-N RangeS-U RangeX-U

Table 3-2:	 Types of conversion key-range locks.

Lock Escalation

By default, SQL Server will acquire the finest-grain lock possible, in order to attain the
greatest concurrency. In most cases, this means SQL Server will acquire row (RID or
KEY) locks. SQL Server can acquire hundreds or thousands of individual locks on data
in a single table without causing any problems. In some cases, however, if SQL Server
determines that a query will access a range of rows within a clustered index, it may

85

Chapter 3: Advanced Locking Concepts

instead acquire page locks. After all, if every row on a page is going to be accessed, it's
easier to manage a single page lock than dozens, or hundreds, of row locks. In other cases,
primarily when there is no usable index to help process a query, SQL Server may lock an
entire table right at the beginning of processing a query.

As we'll see in the next chapter, Controlling Locking, we can force SQL Server to change
the default granularity of its locks with hints or index options. SQL Server can escalate
locks based on total SQL Server instance resource usage, or on the number of locks
acquired by one statement.

Escalation based on SQL Server instance resource
usage

In some cases, acquiring individual locks on rows may end up consuming too much of
SQL Server's memory. Although the memory required for each lock is quite small (about
96 bytes per lock), this still adds up to a sizeable portion of the total available memory,
when thousands of locks are acquired. When SQL Server ends up using more than 24% of
its buffer pool (excluding AWE memory) to keep track of locks acquired and lock requests
waiting, it will choose any session holding locks and escalate its fine-grained (row or page)
locks into a table lock.

Alternatively, we can specify that we want server-wide lock escalation to be triggered
based on the total number of locks held by all sessions on the instance. If we change
the value of the LOCKS configuration option to something other than the default value
of zero, SQL Server will start choosing sessions to have their locks escalated as soon
as it has acquired 40% of that configured total number of locks. For example, if we
configure LOCKS to be 10,000, then escalation will start as soon as there are 4,000
locks held or requested.

86

Chapter 3: Advanced Locking Concepts

When the instance-wide escalation is triggered by crossing the memory threshold or by
acquiring too many locks, we have no control over which sessions will have their locks
escalated to table locks, and should just consider it a random selection.

In addition, as long as the memory use remains over the instance-wide threshold, for
every 1,250 new locks, SQL Server will again start escalating fine-grained locks into
table locks.

Escalation based on number of locks held by a
single statement

In addition to escalating locks when an instance-wide threshold is crossed, SQL Server
will also escalate locks when any individual session acquires more than 5,000 locks in a
single statement. In this case, there is no randomness in choosing which session will get
its locks escalated; it is the session that acquired the locks.

Listing 3-4 demonstrates this escalation behavior in the AdventureWorks database.
First, we start a transaction and perform two UPDATE statements. Together, the two
statements acquire more than 5,000 locks, but neither one, individually, acquires that
many. Lock escalation does not occur, and the DBlocks query should reveal that the
number of X locks held by the connection is 6,342.

In the second transaction, we update the same 6,342 rows in a single statement. In this
case, the DBlocks query reveals that the total number of locks held, right before the end
of the transaction, is only one (a table lock).

87

Chapter 3: Advanced Locking Concepts

USE AdventureWorks;

-- reset the isolation level
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
GO
-- First show that if no one statement gets more than 5000 locks
-- there will be no escalation
BEGIN TRAN
UPDATE Sales.SalesOrderHeader
SET DueDate = DueDate + 1
WHERE SalesOrderID < 46000;

UPDATE Sales.SalesOrderHeader
SET DueDate = DueDate + 1
WHERE SalesOrderID BETWEEN 46000 AND 50000;

SELECT *
FROM DBlocks
WHERE mode = 'X'
 AND spid = @@spid;
-- 6342 total locks
ROLLBACK TRAN;
GO
BEGIN TRAN
-- Now show that if the same total number of locks are acquired in a
-- single statement, we will get escalation and the sys.dm_tran_locks
-- query will only show 1 lock
UPDATE Sales.SalesOrderHeader
SET DueDate = DueDate + 1
WHERE SalesOrderID <= 50000;

SELECT *
FROM DBlocks
WHERE mode = 'X'
 AND spid = @@spid;
-- 1 lock
ROLLBACK TRAN;
GO

Listing 3-4:	 Lock escalation based on number of rows.

88

Chapter 3: Advanced Locking Concepts

Other Types of Locks

The types of lock discussed previously in this chapter and in Chapter 2, represent
the types of locks we'll encounter most frequently when investigating locking and
blocking activity in SQL Server. However, two other types of locks can sometimes cause
unexpected blocking problems, so we must cover them briefly.

Latches

Latches are similar to locks, but they are applied at the physical level, and are not
as "expensive" to maintain and manage as locks, because latches use fewer system
resources and their duration is usually quite short. Latches and locks seem very
similar because both of them can show up as the last_wait_type column in the
sys.dm_exec_requests view, which we'll discuss in Chapter 5, on troubleshooting
concurrency problems. SQL Trace and Windows Performance Monitor have dozens of
counters for monitoring latches, which look very similar to the counters for monitoring
locks. Like locks, latches can be shared or exclusive, and can be granted or in a wait state.

However, latches do not show up in the sys.dm_tran_locks view. Latches are used to
protect an internal structure for brief periods while it is being read or modified, not to
ensure correct transaction behavior. Both the data page itself and the buffer that the data
is occupying are protected by latches.

Another way of considering the difference between a lock and a latch is that a lock is
something we need to protect data integrity, for example to make sure that another trans-
action does not update data that your transaction is examining; there is nothing inside
SQL Server to prevent this kind of change. SQL Server doesn't "care" if another trans-
action changes data your transaction is examining, so we need to use the proper isolation
level and transaction control mechanisms to make sure the data is locked appropriately.
On the other hand, latches are something that SQL Server needs, to protect the physical
structure of the data. If a session were to try to update a page while SQL Server was

89

Chapter 3: Advanced Locking Concepts

reading or writing that page to disk, the page could become corrupted. Latches prevent
this kind of violation of the data. Latches protect the physical integrity of the data; locks
protect its logical integrity.

We can exert very little influence on how and when SQL Server acquires or holds latches,
and usually they are so transient as to be barely noticeable. Typically, SQL Server will
acquire a latch while it is reading data pages into cache but, as soon as the pages are read,
locks are acquired and the latch is released. Latches are not transaction based, which is
one of the factors that makes them so transient.

Latching is very rarely a cause for concern but you may come across Errors 844 and 845,
which both indicate that a timeout occurred while waiting for a latch on a buffer. These
errors are almost always caused by problems at the hardware level, including suboptimal
I/O systems incapable of meeting the demand being placed on them, misconfiguration
of the SQL Server system, or bad index design, leading to SQL Server having to perform
many times more read operations than is necessary.

Compile locks

In SQL Server 2008, only one copy of a compiled stored procedure plan is generally in
cache at any given time. In order to make sure there aren't multiple copies, certain parts
of the SQL Server compilation process must be serialized so that only one session at a
time can be compiling a particular routine. This discussion is also relevant to triggers and
some types of user-defined functions.

Compile locks are acquired during the parts of the compilation process that must be
serialized. Usually SQL Server holds the locks for a very short period but, in some cases,
when many sessions are trying to execute the same procedure simultaneously, and if the
procedure is not schema-qualified when called, we may end up with noticeable concur-
rency problems due to compile locks.

90

Chapter 3: Advanced Locking Concepts

Although SQL Server needs to take compile locks any time it needs to recompile a
procedure, if it needs to recompile a procedure every time it runs, the situation is much
worse, and this will happen when users execute a procedure without qualifying the
procedure with the schema name.

For example, assume we have a stored procedure called MyProc that is stored in the dbo
schema, but is executed by a user, Sue, who has a default schema of sue_schema. If Sue
invokes the procedure with EXEC MyProc, SQL Server will, on the first execution, fail to
find the object in cache. Even if there is a plan for MyProc in cache, SQL Server does not
know this is the right plan to use unless it can verify whether there is another routine
called MyProc in sue_schema. SQL Server acquires an exclusive compile lock on the
procedure and prepares to compile the procedure, which would include resolving the
object name to an object ID. Once SQL Server has this object ID, it can then definitely
determine whether there really is a valid plan for the requested procedure. If there is a
usable plan in cache, SQL Server can use that plan and does not actually need to compile
the requested procedure. However, because of the lack of schema-qualification, SQL
Server had to perform a second cache lookup and acquire an exclusive compile lock
before determining that it could reuse the existing cached execution plan.

Acquiring the lock and performing the necessary system table lookups can introduce a
delay that is sufficient for the compile locks to lead to blocking. While the duration of the
blocking is usually not very long, per session, if there are many sessions invoking the same
procedure, without owner-qualifying it, then as soon as one compilation finishes, another
session takes over the role of head blocker for a few seconds or less, and so forth, causing
a situation called rolling blocking.

In the sys.dm_exec_requests DMV, these compile locks can be identified by the
occurrence of a blocked session with a last_wait_type value of LCK_M_X (indicating
an X lock, and the string [[COMPILE]] appearing after the resource ID. The blocker
session may also show LCK_M_X as its last_wait_type, but it will have a status of
RUNNABLE whereas the blocked session will have a status of SLEEPING.

91

Chapter 3: Advanced Locking Concepts

The wait_resource value will look as if it is referencing a table because it will show
the keyword TAB, but the object ID reported is actually the object ID of a routine (a
procedure, a trigger, or a function).

Fortunately, this type of blocking has a very easy fix; if you always schema qualify your
stored procedure names, this problem is greatly reduced.

Non-Lock-Related Causes of Blocking

As noted earlier, by far the most common type of resource for which a session may
have to wait is a lock. However, SQL Server must also wait for memory resources to
be available for certain kinds of queries, especially queries requiring hashing or sorting
which require special worktables during execution. In some cases, SQL Server may have
to wait for network resources to be available, especially when executing queries on a
linked server. Since SQL Server guarantees that it will write to the transaction log on disk
the log records for all committed transactions, a session that has just finished a trans-
action may need to wait if the log reader is not fast enough, or disk writing is too slow.

Later, in Chapter 5, we'll discuss some of the types of waits indicated in the sys.dm_
exec_requests view in more detail, and encounter a few more types of resources that
may cause a session to have to wait.

Summary

In this chapter, we looked some more advanced locking topics, including lock mode
conversion, when SQL Server acquires additional locks on data that is already locked. We
covered the special lock mode called key-range locks that can be held on ranges of index
keys when running queries under SERIALIZABLE isolation level. We looked at when,
and how, SQL Server will escalate locks on smaller resources into table or partition locks.
Finally, we explored latches and compile locks.

92

Chapter 4: Controlling Locking

As has been noted throughout this book, it is best, wherever possible, to let SQL Server
decide on the locking strategies that work best with our applications. As long as these
applications are designed well, the locks acquired by default will be the ones necessary
to safeguard data integrity during concurrent access, according to the established trans-
action isolation level, and will rarely cause severe blocking.

Of course, not all applications have an "ideal" design, and SQL Server doesn't always
make the right choices, so in rare cases we may need to override SQL Server's default
locking behavior. Generally, this will be because the application behavior leads us to
doubt that SQL Server made the right choice, so we want to force SQL Server to do
something different, just to see what happens. In many such situations, it will turn out
that SQL Server actually did make the best choice, but there may be times where the
forced behavior is optimal.

In this chapter, we discuss several different mechanisms for changing the way that
SQL Server acquires and manages locks.

•	 Changing the transaction isolation level (the most common method).

•	 Changing the lock timeout period so that a transaction either skips past the locked
rows, or rolls back.

•	 Using lock hints in SQL statements to control lock granularity, or specify custom
behavior on encountering locked rows.

•	 Using bound connections to allow multiple connections to share the same locks.

•	 Using application locks to extend the resources that can be locked.

93

Chapter 4: Controlling Locking

Controlling Concurrency and Locking Via the
Isolation Level

We discussed isolation levels in detail in Chapter 1, along with code examples that
explored the SET options for controlling the isolation level. Here, we'll review the impli-
cations of each level in terms of the locking strategy implemented by SQL Server. We set
the isolation level for the current connection with the following command:

SET TRANSACTION ISOLATION LEVEL <level_specifier>

Where the <level_specifier> can be one of the five values below.

•	 READ UNCOMMITTED – A transaction operating in READ UNCOMMITTED isolation level
takes no locks while performing SELECT operations so it cannot block on locks held by
other transactions.

•	 READ COMMITTED – The default isolation level, in which SQL Server holds shared
locks only until the data has been read, and holds exclusive locks until the end of the
transaction.

•	 REPEATABLE READ – A transaction operating in REPEATABLE READ isolation level
keeps shared locks and exclusive locks until the end of the transaction.

•	 SERIALIZABLE – The most restrictive isolation level, SERIALIZABLE adopts a special
locking mechanism, using key-range locks, and holds all locks until the end of the
transaction, so that users can't insert new rows into those ranges.

•	 SNAPSHOT – Has the outward appearance of SERIALIZABLE, but operates under
a completely different concurrency model, optimistic concurrency, which we'll be
discussing in Chapter 6.

Remember that increasing the transaction isolation level comes at a cost. Although
we can guarantee predictable behavior by keeping data locked for the duration of the
transaction, other transactions will block and system throughput can decrease.

94

Chapter 4: Controlling Locking

The big downside of choosing the less restrictive READ UNCOMMITTED level, to remove
locking, is the possibility of reading data that has not yet been committed, and that
might, therefore, later be rolled back by a transaction. However, this is far from the only
problem that can occur when using the READ UNCOMMITTED isolation level. When using
it, SQL Server takes no locks during SELECT operations so, if one session is scanning a
table while another is updating it, the scanning session might end up reading the same
row twice, or it might completely miss some rows. It is even possible to get incorrect
results when performing table aggregates under READ UNCOMMITTED isolation.

Many people choose READ UNCOMMITTED to get faster response times, as will happen
when SQL Server doesn't have to wait for a lock, but the tradeoff is frequently
correctness. Do we want our data fast and possibly incorrect, or correct but
possibly slower?

All SET options, including those for changing the transaction isolation level, remain
in effect for the entire session and apply to all batches and transactions executed in
that session. If a batch calls a stored procedure or trigger and that object issues a SET
command then, when the object’s execution completes, the option value reverts to the
one originally set for the session. To control locking at a more granular level, we can use a
locking hint to apply any of the transaction isolation levels to any or all tables in a query.
We'll discuss locking hints shortly.

Setting a Lock Timeout

By default, SQL Server operates as though any session will eventually release any locked
data and will continue to wait until it is, regardless of how long that might be. There may
be times when, for certain connections, we wish to limit the length of time SQL Server
should wait for a session to release a lock. This may happen in a system in which there are
multiple reports or processing operations, but no particular sequence in which they must
execute. If one of the activities is blocked, we may just choose to have SQL Server proceed
to the next one.

95

Chapter 4: Controlling Locking

In SQL Server 6.5 and earlier versions, there was no way to tell SQL Server to stop
waiting for a lock. There was an option to set a connection timeout setting through
many client interfaces and tools, including ODBC and the ISQL/W tool (a precursor to
SQL Server Management Studio), but a connection timeout setting merely tells the client
to cancel the query, if SQL Server hasn't returned results in a specified amount of time.
The client doesn't know why the results haven't come back. The cause might be a lock, or
network problems, or it might be a long-running query that takes more than the set value
to finish executing.

The option SET LOCK_TIMEOUT tells SQL Server not to wait more than a specified
number of milliseconds for a session to release a lock. Setting LOCK_TIMEOUT to
zero means that SQL Server won't wait at all if it finds any locked data. Setting LOCK_
TIMEOUT to -1 returns it to the default behavior of waiting indefinitely. We can check the
current value by examining the parameterless function @@lock_timeout.

The LOCK_TIMEOUT setting might sound like just what you've been waiting for, but use
it with extreme caution. If a session stays blocked for longer than the LOCK_TIMEOUT
setting, SQL Server generates a lock timeout error. This error doesn't automatically roll
back a transaction. Therefore, when SQL Server reaches its lock timeout value, it stops
trying to modify rows in the current table and moves on to the next statement. Instead of
the transaction being an atomic, all-or-nothing operation, we might be left with part of
the transaction incompletely executed.

If the required behavior is that specific queries don't wait at all on encountering a lock,
an alternative to the LOCK_TIMEOUT setting, which applies to the entire session, is to use
the NOWAIT hint. This hint sets a lock timeout of 0 for a single table in a single statement.
We'll take a look at an example of the LOCK_TIMEOUT setting in action in the next
section, where we compare its behavior to some hints.

96

Chapter 4: Controlling Locking

If the transaction must be all or nothing, we can add TRY/CATCH error handling and
include a specific test for Error 1222, which would then perform a ROLLBACK TRANS-
ACTION on encountering the error. Alternatively, we could use the SET option SET
XACT_ABORT ON, which instructs SQL Server to roll back the transaction any time any
error occurs. This means that if Error 1222 occurs, SQL Server will roll back the trans-
action automatically. However, bear in mind that any other error, such as trying to insert
a duplicate value into a unique index, will also cause the entire transaction to roll back.
This might not always be what we want.

Locking Hints

Locking hints in SQL Server fall into the general category of table hints, because they are
specified in the FROM clause, after the name of the table to which they should be applied.
Table hints apply to one table; if we want to apply the same hint to all tables, we must
specify the hint after each table name. There is no way for a single hint to control locking
behavior on every table in a query. To change the locking behavior on all tables, for a
specified session, we must change the isolation level setting.

The problem with the term "hint" is that it makes it sound like merely a suggestion.
However, except in cases where the hint makes no sense and is ignored, and a very few
cases where an error message is generated because a non-existent object was referenced,
a hint acts more like a directive; SQL Server will use the locking strategy specified by that
hint.

The SQL Server 2008 documentation lists 15 table hints that control locking or SQL
Server's response to locked data.

HOLDLOCK NOLOCK NOWAIT PAGLOCK

READCOMMITTED READCOMMITTEDLOCK READPAST READUNCOMMITTED

REPEATABLEREAD ROWLOCK SERIALIZABLE TABLOCK

TABLOCKX UPDLOCK XLOCK

97

Chapter 4: Controlling Locking

The HOLDLOCK hint is available for backward compatibility only and is equivalent to the
SERIALIZABLE hint. NOLOCK is equivalent to the preferred hint, READUNCOMMITTED.
The four hints READUNCOMMITTED, READCOMMITTED, REPEATABLEREAD, and
SERIALIZABLE mimic the behavior of the four ANSI isolation levels, but apply only
to one table in one query. Four hints control the unit of locking: ROWLOCK, PAGLOCK,
TABLOCK, and TABLOCKX.

The UPDLOCK and XLOCK hints control the type of lock, but not the unit of locking. We
saw UPDLOCK in the last chapter when illustrating special intent locks, and we'll see it
again in the next chapter as a way to help avoid conflicts under SNAPSHOT isolation. The
XLOCK hint can help ensure that no other connection can access the locked resource, and
that SQL Server holds the lock until the end of the transaction.

The READPAST hint is a special kind of hint; it doesn't control the type of lock or the unit
of locking, but instead lets a transaction skip locked rows, rather than be blocked. If one
connection has one or more rows locked, then if a transaction in another connection,
running with the READPAST hint, attempts to read the locked data, if will ignore any
locked rows and move to the next unlocked row. If the "blocking" connection holds
page locks, or a table lock, then SQL Server ignores the READPAST hint and the second
connection will be blocked. This hint can be useful in a work queue where a clerk needs
to retrieve an order to process, but it doesn't matter exactly which one. The READPAST
hint allows SQL Server to retrieve the first unlocked row it finds.

The NOLOCK and READPAST hints, as well as the SET LOCK_TIMEOUT setting, allow us to
specify what SQL Server does when it finds itself blocked from accessing the data it needs.
It is important to understand the differences between these three options, and the code in
Listing 4-1 compares them.

98

Chapter 4: Controlling Locking

-- Three ways to get around locked data
-- Make sure all existing connections are closed first
-- Open a new connection and execute the following batch:

-- Connection 1:
USE AdventureWorks;
SELECT SalesOrderID ,
 DueDate ,
 CustomerID ,
 TotalDue
FROM Sales.SalesOrderHeader
WHERE CustomerID = 26;
GO

-- This will show you the 3 rows in the SalesOrderHeader table
-- with the CustomerID value of 26

-- Now in the same connection, execute this batch:
BEGIN TRAN
UPDATE Sales.SalesOrderHeader
SET DueDate = '1/1/2200'
WHERE SalesOrderID = 45578;
GO

-- Do not terminate this transaction!

-- On another connection, execute the following:

-- Connection 2
USE AdventureWorks;
SELECT SalesOrderID ,
 DueDate ,
 CustomerID ,
 TotalDue
FROM Sales.SalesOrderHeader WITH (NOLOCK)
WHERE CustomerID = 26;
GO

-- Note that with the NOLOCK hint, you'll see the new
-- much later date, even though the change
-- hasn't been committed

99

Chapter 4: Controlling Locking

-- On another connection, execute the following:

-- Connection 3
USE AdventureWorks;
SELECT SalesOrderID ,
 DueDate ,
 CustomerID ,
 TotalDue
FROM Sales.SalesOrderHeader WITH (READPAST)
WHERE CustomerID = 26
GO

-- Note that with the READPAST hint, we will skip over
-- the one locked row, only see two rows returned

-- On another connection, execute the following:

-- Connection 4
USE AdventureWorks;
SET LOCK_TIMEOUT 5000;
GO
SELECT *
FROM Sales.SalesOrderHeader
WHERE CustomerID = 26;
GO

-- The lock timeout has been set to 5 seconds. This
-- batch will wait 5 seconds and then return error 1222.
-- It will never return any rows.

-- Return to Connection 1:
ROLLBACK TRANSACTION;
GO

Listing 4-1:	 Controlling the effects of locking using lock hints and a lock timeout.

100

Chapter 4: Controlling Locking

Sharing Locks Across Connections

So far in this chapter we've considered several ways in which, for a given session,
table, or connection, a user can opt to allow a transaction to continue reading data
regardless of what locks other transactions many hold on that data. We can set the
isolation level to READ UNCOMMITTED, or use the NOLOCK hint, to read whatever data
value currently exists, even if it's uncommitted; or we can use the READPAST hint, or
SET LOCK_TIMEOUT, to "skip past" locked rows (or to roll back on encountering locked
rows, in the latter case). In such cases, the lock-holding session has no say in whether
or not other sessions can have access to its locked data; the requesting session simply
demands access to the data, "no matter what."

Occasionally, however, it is useful to have the holding session issue an "entry pass" that
will let only certain other sessions, such as those arising from the same application, access
the data it has locked. This is the basic idea behind the "bound connections" feature.
Bound connections allow sessions to share locks and help prevent a situation called
"application deadlock," which is described in the following paragraphs.

A SQL Server session that is holding locks on a resource does not lock itself from
the resource; only other sessions are denied access. However, if a single application
process actually initiates two separate sessions in SQL Server to perform its work, then
SQL Server will treat them as two completely separate processes; if one of them requests
a lock that is incompatible with locks already held by the other, then blocking will occur.

In fact, it's possible to encounter a situation called an "application deadlock," which is
not detected by SQL Server as a deadlock. An application opens one connection and
starts reading data, retrieving it from SQL Server one row at a time. When it finds a row
of interest, it uses another connection to submit an UPDATE request to SQL Server. The
UPDATE is likely to block, because the first connection's SQL Server session may still be
holding a shared lock on the row.

101

Chapter 4: Controlling Locking

SQL Server will not release the shared lock until the application moves on and reads more
rows through the first connection. However, the application cannot move on until the
UPDATE in the second connection completes. Therefore, at the application layer, the first
connection is waiting for the second to complete its work; at the SQL Server layer, the
second session with the UPDATE is waiting for the lock held by the first session, reading
the data.

SQL Server will not detect the preceding situation as deadlock, because it is only aware of
what is going on at the SQL Server layer, not at the application layer, which is managing
the two connections.

One solution is to allow two or more different connections to share a lock space, by
request, and so not lock each other out; by default, no sharing of the "lock space" occurs
between connections, even if they belong to the same user and the same application. This
capability is known as bound connections. With bound connections, the first connection
asks SQL Server to give out a bind token, which it passes to the application (using a
client-side global variable, shared memory, or another method) for use in subsequent
connections. The bind token acts as a "magic cookie" so that other connections can share
the lock space of the original connection blocking any connection to which it is bound.
These bind tokens are managed by using the two system stored procedures
sp_getbindtoken and sp_bindsession.

In older versions of SQL Server, bound connections were especially useful when writing
an extended stored procedure (a function written in your own DLL) that needed to call
back into the database to do some work. Without a bound connection, the extended
stored procedure could collide with the locks of its own calling process. In more recent
versions of SQL Server, stored procedures written using CLR are more secure, scalable,
and stable than extended stored procedures. CLR-stored procedures use the SqlContext
object to join the context of the calling session, not sp_bindsession.

102

Chapter 4: Controlling Locking

We can use bound connections to develop multi-tier applications in which two separate
programs must perform work as a single business operation in a single transaction. When
using bound connections, the sessions used by each program will share the same locks
and so we must write the programs involved carefully to coordinate their access to the
data, and avoid trying to modify the same data at the same time.

When multiple processes share a lock space and a transaction space by using bound
connections, a COMMIT or ROLLBACK affects all the participating connections. However,
each session has its own isolation level, and using SET TRANSACTION ISOLATION LEVEL
in one session does not affect the isolation level of any other session bound to it.

Bound connections in action

Listing 4-2 shows an example of creating bound connections between two different
connections in SQL Server Management Studio. A bind token can only be acquired inside
an explicit transaction. Since we don't have a controlling application to declare and store
the bind token in an application variable, we have to actually copy it from one query
window and paste it into a second.

-- Make sure all existing connections are closed first
-- Open a new connection and execute the following batch:

-- Connection 1:
USE AdventureWorks;
DECLARE @token VARCHAR(255);
BEGIN TRAN
EXEC sp_getbindtoken @token OUTPUT;
SELECT @token;
GO

-- This should return something like the following:
-- -----------dPe---5---.?j0U<_WP?1HMK-3/D8;@

-- Use your mouse to select the complete token
-- string that was returned from the last SELECT statement.

103

Chapter 4: Controlling Locking

-- Open a second Query window, and execute the
-- following: (Be sure and paste in whatever bind token
-- string you received; do not just use the one printed
-- here.)

-- Connection 2:
EXEC sp_bindsession 'dPe---5---.?j0U<_WP?1HMK-3/D8;@1';
GO

Listing 4-2:	 Creating bound connections.

Normally, we wouldn't have to look at the messy token string; the application would
just store it and pass it on. However, for this quick example using a query window, it's
necessary to see the value.

Once the sp_bindsession is executed in the second window, the two sessions are
bound together. Any data locked in the first session is accessible by the second; a trans-
action started by the first can be rolled back by the second.

Listing 4-3 is the continuation of Listing 4-2 and shows that we can now go back to the
first query window and execute a command that locks some data. Remember that we
have already begun a transaction in order to call sp_getbindtoken.

-- Go back to the first query window, where we are already
-- in a transaction

-- Connection 1:
-- Execute the following batch:

UPDATE Sales.SalesOrderHeader
SET DueDate = '1/1/2200'
WHERE CustomerID = 26;
GO

-- This should exclusively lock every row in the table for CustomerID 26
-- Now go to the second query window and select from the locked table:

104

Chapter 4: Controlling Locking

-- Execute this batch in the second query window:

-- Connection 2:
SELECT *
FROM Sales.SalesOrderHeader
WHERE CustomerID = 26;
GO
ROLLBACK TRAN;
GO

-- Return to the original query window, where you
-- started the transaction, and attempt to execute:

-- Connection 1:
ROLLBACK TRANSACTION;
GO

-- You should get an error message saying there is no
-- corresponding BEGIN TRANSACTION statement.

Listing 4-3:	 Observing the behavior of bound connections.

In the second query window, we should be able to see future DueDate values, just as if
it were part of the same connection performing the UPDATE. Besides sharing lock space,
the bound connections also share transaction space. When we execute a ROLLBACK TRAN
in the second session, we cannot then roll back the transaction in the first session. If we
issued a ROLLBACK TRAN in the first session, we would see the message below.

The transaction active in this session has been committed or aborted by another
session
Server: Msg 3903, Level 16, State 1, Line 1
The ROLLBACK TRANSACTION request has no corresponding BEGIN TRANSACTION
The transaction active in this session has been committed or aborted by another
session.

105

Chapter 4: Controlling Locking

Bound connection metadata
SQL Server keeps track of bound connections in the system view sys.dm_tran_
session_transactions. If the code in Listing 4-4 is run before any ROLLBACK
operations, in either of the connections involved in our bound sessions, we should get
results similar to those shown in Figure 4-1. We can see that two different sessions
share the same transaction_id value. The session with the is_local value of 1 is
the initiating session, and the one with the is_bound value of 1 is the session that bound
itself to the initiator.

SELECT session_id ,
 transaction_id ,
 is_local ,
 is_bound
FROM sys.dm_tran_session_transactions
GO

Listing 4-4:	 Query to provide information about open transactions.

Figure 4-1:	 Results in sys.dm_tran_ssession_transactions

showing 51 and 56 as bound connections.

User-Defined Locks

The method used by SQL Server to store information about locking, and to check for
incompatible locks, is very straightforward and extensible. Remember that the SQL
Server lock manager knows nothing about the object it is locking. It works only with
strings representing the resource, without knowing the actual structure of that resource.
If two sessions are trying to obtain incompatible locks on the same resource, blocking
will occur.

106

Chapter 4: Controlling Locking

If the SQL Server engineers were to decide to allow us to lock individual columns as
well as rows, pages, and tables, they could simply decide on an internal code number
for column locks, and then we could add that to the list of resources visible in the
resource_type column in sys.dm_tran_locks.

However, instead of adding new lock resources, SQL Server lets us extend the resources
that can be locked, using application locks. To define an application lock, we specify
a name for the resource to be locked, a mode, an owner, and a timeout. We can take
advantage of the supplied mechanisms for detecting blocking situations, and we can
choose to lock anything we like.

Two resources are considered to be the same resource, and are subject to blocking, if
they have the same name and the same owner in the same database. Remember that
by "lock owner" we mean the session, the transaction, or the cursor. For a user-defined
application lock, the only possible owners are a transaction or a session. SQL Server can
grant two requests for locks on the same resource if the modes of the locks requested are
compatible. SQL Server checks the locks for compatibility using the same compatibility
matrix used for SQL Server supplied locks.

For example, suppose we have a stored procedure, MySpecialProc, which only one user
at a time should execute. By incorporating an application lock into MySpecialProc,
we can ensure that, when a session is using that procedure, it is "locked," and any other
session requesting to execute it will be blocked. The application lock is acquired by
calling the sp_getapplock system stored procedure, which will be the first action
performed by MySpecialProc. When the procedure has finished executing, we can use
sp_releaseapplock to release the lock. Until this happens, or until the session termi-
nates, no other session can execute this procedure as long as every session follows the
protocol and uses sp_getapplock to request rights to the procedure before trying to
execute it.

Listing 4-5 demonstrates how a procedure could incorporate an application lock to
ensure that only one session at a time can execute it.

107

Chapter 4: Controlling Locking

USE AdventureWorks;
GO
CREATE PROC MySpecialProc
AS
 DECLARE @err AS INT;
 EXEC @err = sp_getapplock 'ProcLock', 'Exclusive', 'session', 0;
 IF @err <> 0
 BEGIN
 RAISERROR('Could not acquire lock on MySpecialProc.', 16, 1);
 RETURN @err;
 END;

 PRINT 'MySpecialProc is running...';
-- Body of procedure would go here
-- The WAITFOR simulates the procedure execution and allows you
-- to observe the APPLICATION lock from another connection
 WAITFOR DELAY '00:00:10';
 EXEC sp_releaseapplock 'ProcLock', 'session';
 RETURN;
GO

Listing 4-5:	 Creating a procedure that uses an application lock.

SQL Server doesn't know what the resource ProcLock means. It just adds a row to the
sys.dm_tran_locks view, which is used to compare against other requested locks. An
application lock, when we query sys.dm_tran_locks, will have a resource_type
value of APPLICATION.

The resource name used in these procedures can be any identifier up to 255 characters
long. However, only the first 32 characters will be visible when examining locks in sys.
dm_tran_locks. The possible modes of the lock, which is used to check compatibility
with other requests for this same resource, are shared, update, exclusive, intent exclusive,
and intent shared. There is no default; we must specify a mode. The possible values for
lock owner, the third parameter, are transaction (the default) or session. SQL Server
must acquire a lock with an owner of TRANSACTION within a user-defined transaction,
and will automatically release it at the end of the transaction without any need to call
sp_releaseapplock. SQL Server will release a lock with an owner of SESSION
automatically only when the session disconnects.

108

Chapter 4: Controlling Locking

Summary

In this chapter, we looked at various techniques you can use to control SQL Server's
locking behavior, for special cases where the default behavior is less than ideal. We looked
at a session setting to control a lock timeout period and then looked at various locking
hints that control locking for a single table in a single statement. We explored a technique
that allows two connections to share the same locks, which can help the problem of
application deadlock. Finally, we saw an example of a technique that allows us to create
our own "application locks," in cases where we need to control access to certain opera-
tions within our applications.

109

Chapter 5: Troubleshooting
Pessimistic Concurrency

Although troubleshooting techniques haven't been our prime focus until now, we've
already seen the number one troubleshooting tool when faced with locking and blocking,
namely the sys.dm_tran_locks DMV. We've also used my DBlocks view, built on top
of sys.dm_tran_locks, which provides a custom subset of the information that is most
often useful when dealing with these problems.

In this chapter, we'll take a much deeper look at troubleshooting techniques for
the locking and blocking issues that occur most often when working under the pessi-
mistic concurrency model. In doing so, we'll be using the available metadata from
sys.dm_tran_locks as well as several other tools.

As discussed in Chapter 1, each of the three commonly used, ANSI-standard, isolation
levels (READ COMMITTED, REPEATABLE READ and SERIALIZABLE) are implemented
by SQL Server in a pessimistic fashion. In other words, SQL Server controls access to a
shared resource by acquiring locks on that resource, which ensure that readers of the
resource block writers and writers block readers (as well as other writers). In most cases,
locking will cause no problems but there are times, when user connections appear to
"hang" and business processes that normally take seconds to execute are suddenly taking
minutes or more. This is when we need to leap into action and investigate possible
concurrency issues, such as:

•	 excessive locking – an excessive number of locks can lead to memory-related issues
and often leads to lock escalation

•	 blocking – if sessions are blocked for extended periods of time it can lead to
frustratingly slow query execution times

•	 deadlocking – one session is waiting for a second session to release a resource, and
vice versa. Neither can proceed.

110

Chapter 5: Troubleshooting Pessimistic Concurrency

We'll discuss how to investigate and resolve each of these issues in this chapter. In the
next chapter, we'll move on to consider the optimistic concurrency model, along with
concurrency issues that are most associated with that model, namely contention on the
tempdb database, and update conflicts.

Troubleshooting Locking

SQL Server locks resources to ensure the logical consistency of the database, during
concurrent access of those shared database resources. Locking in SQL Server does not
physically affect a data resource such as a row, page, table, or index: it is more like a reser-
vation system that all tasks respect when they want access to some resource within the
database. Excessive numbers of locks, or locks of very long duration, can lead to blocking
and other problems, and we'll discuss these issues later in the chapter. However, in cases
where session activity forces SQL Server to acquire and manage a high number of locks,
this in itself can present some issues. Tracking the details of each lock request, whether in
a GRANT or a WAIT state, requires memory; too many locks can mean SQL Server needs
too much memory just for locking. Alternatively, as we saw in Chapter 3, SQL Server can
choose to escalate multiple smaller grained locks to a table lock.

Detecting lock escalation

Chapter 3 described lock escalation, and the conditions under which it can occur, either
because an instance-wide "lock memory" or "lock number" threshold is passed, or because
a single statement acquires more than the maximum permitted number of locks.

Often, SQL Server will lock individual rows in a table, and this is especially true if
updates and deletes affect a smaller number of rows. However, there are times, such
as when performing mass updates, when SQL Server may choose to escalate row locks
or page locks to a single table lock, in order to achieve a more optimal use of lock
memory resources.

111

Chapter 5: Troubleshooting Pessimistic Concurrency

If a whole table is locked, rather than just individual rows, then this may cause blocking
and reduce concurrency, so we need a way to detect it when it occurs, and take remedial
action. There are a couple of ways to detect lock escalation. The easiest way is to use the
Lock:Escalation event class in SQL Trace/Profiler. When lock escalation occurs, the
event will fire. However, a single lock escalation event in the database, on a particular
table, may cause the Lock:Escalation trace event to fire multiple times, so it's
important to be able to relate multiple rows in the trace file to the same lock escalation
event. Therefore, in addition to the default columns for the Lock:Escalation event
class, which provide the basic information, it is also useful to include in the trace columns
such as TransactionID, DatabaseID, DatabaseName, and ObjectID, in order to be
able to tie each row in the trace to a particular TransactionID and to a particular object
(that is, a table).

We can use the sys.dm_tran_locks view to detect table locks at a given point in time
and so, by inference, decide whether lock escalation may be occurring, prior to a full
investigation with Profiler. For example, if we expect that an application would rarely
require a shared or exclusive lock on a table, then the presence of these locks implies lock
escalation. Listing 5-1 shows an example.

SELECT request_session_id ,
 resource_type ,
 DB_NAME(resource_database_id) AS DatabaseName ,
 OBJECT_NAME(resource_associated_entity_id) AS TableName ,
 request_mode ,
 request_type ,
 request_status
FROM sys.dm_tran_locks AS L
 JOIN sys.all_objects AS A ON L.resource_associated_entity_id = A.object_id
WHERE request_type = 'LOCK'
 AND request_status = 'GRANT'
 AND request_mode IN ('X', 'S')
 AND A.type = 'U'
 AND resource_type = 'OBJECT'
 AND L.resource_database_id = DB_ID();

Listing 5-1:	 Query to detect non-intent table locks.

112

Chapter 5: Troubleshooting Pessimistic Concurrency

Listing 5-1 references the sys.all_objects catalog view, so the information returned
is scoped to the target database for the query. The sys.dm_tran_locks view does not
return details about the object locked, so it offers no way to tell directly whether the
object is actually a table. Consequently, we have to join with something in the database
that will return that information, and in this case sys.all_objects contains the object
type ('U' indicates a user table), and the OBJECT_NAME function can return the name
of the table. However, both the sys.all_objects view and the OBJECT_NAME function
will only return information from the current database. For this reason, the last condition
in the query restricts the returned rows to those resources in the current database.

Resolving lock escalation

If escalation has actually caused blocking problems, the best solution is usually to try
to tune queries, ensuring that appropriate indexes are used and as few pages as possible
need to be accessed, and as few locks as possible need to be acquired. In addition, a best
practice is always to keep transactions as short as possible, so that SQL Server doesn't
acquire and hold any non-essential locks.

In addition, it is a best practice to reduce the batch sizes of mass inserts, updates, or
deletes such that we prevent unwanted lock escalation. For a mass update, for example,
we can limit each batch to a certain number of rows, or to a maximum of 5,000 locks.
It's important to test this to try to find the maximum number of rows-per-batch that will
prevent escalation. SQL Server can detect that a query will be iterating through the table
and may escalate the locks anyway.

Controlling escalation

There are occasions where we may wish to prevent escalation altogether, for a certain
table. If the table must be available at all times by as many sessions as possible, because
of key lookup data it contains, it can impact an entire application if one session is able to
lock the entire table.

113

Chapter 5: Troubleshooting Pessimistic Concurrency

Using ALTER TABLE SET LOCK_ESCALATION (SQL Server
2008 and later)

Locks never escalate from row to page, but they can escalate from row to
table or from page to table. As of SQL Server 2008, locks can also escalate
to a partition, or we can disable escalation for a table, but only if we use the
ALTER TABLE SET LOCK_ESCALATION option:

ALTER TABLE <table_name> SET (LOCK_ESCALATION = [TABLE | AUTO | DISABLE);

The three possible values for the LOCK_ESCALATION option, specified after the name
of the table, are shown below.

•	 TABLE – The default value, indicating that when one of the escalation thresholds
described previously is crossed, and this table is chosen for escalation, the escalation
will be to lock the entire table.

•	 AUTO – This indicates that if the table is partitioned, and a single statement updates
more than 5,000 rows in a single partition, the row locks will be escalated to a partition
lock. Once SQL Server has acquired partition locks, it will never escalate to table locks.

•	 DISABLE – This disallows escalation for this table, no matter how many locks SQL
Server acquires. Note that this does not mean that SQL Server will never acquire
table-level locks for this table. In some cases, SQL Server will acquire table locks as
query processing starts and this is not considered escalation. Be careful when disabling
escalation for a huge table, as this would mean SQL Server is forced to keep potentially
tens of thousands (or more!) page locks, which will require a substantial amount
of memory.

114

Chapter 5: Troubleshooting Pessimistic Concurrency

Using intent locks

Pre-SQL Server 2008, there is still a trick we can use to prevent escalation on a single
table, and that is to force SQL Server to acquire an intent lock without actually locking
any rows.

Once one transaction has an intent lock, another transaction cannot escalate its locks
to a table lock. For example, suppose we want to prevent lock escalation on the Sales.
SalesOrderDetail table in the sample database AdventureWorks2008. The query
in Listing 5-2 will prevent lock escalation on the Sales.SalesOrderDetail table for
one hour.

BEGIN TRAN
SELECT *
FROM Sales.SalesOrderDetail WITH (UPDLOCK, HOLDLOCK)
WHERE 1 = 0;
WAITFOR DELAY '1:00:00'
COMMIT

Listing 5-2:	 Forcing SQL Server to acquire an intent lock to prevent lock escalation.

In SQL Profiler, we will still see Lock:Escalation events when the escalations are
attempted, but by inspecting sys.dm_tran_locks, we can verify that only row locks
are taken by the transaction.

Unfortunately, this technique could require keeping a transaction open indefinitely on
the table (in those cases where a set time limit, such as the one hour used in Listing 5.2,
may not be sufficient), even though no rows are locked. In addition, if that table has
triggers or foreign keys referencing other tables, SQL Server may still escalate locks on the
referenced tables, so preventing lock escalation on a single table may not be as simple as
we might wish.

115

Chapter 5: Troubleshooting Pessimistic Concurrency

Using trace flags 1211 and 1224

In general, lock escalation does not cause immediate blocking problems. In fact,
escalation cannot occur if it would cause an immediate conflict, as when another process
has a lock on another row or page of the same resource. SQL Server will attempt to
escalate a lock when it reaches any of the thresholds, but if there is a conflict, it will
continue to acquire the individual locks, and keep trying to escalate the locks.

SQL Server provides two trace flags that can control lock escalation for an entire
SQL Server instance.

•	 Trace flag 1224 disables escalation due to exceeding the upper limit on the number of
locks acquired for a statement, but escalation can still occur if the amount of memory
used for locks exceeds the threshold.

•	 Trace flag 1211 disables escalation in all cases. Be very careful if considering turning
this trace flag on, as SQL Server could end up acquiring an enormous number of locks.

Troubleshooting Blocking

Blocking is usually the most troublesome issue that arises when dealing with a
multi-user system. In fact, blocking doesn't just happen when tasks have conflicting
requests for locks; it can also happen when there is contention on other resources, such
as memory, I/O, or processor resources. However, due to the space limitations of this
book, we'll only discuss blocking that occurs when one session requests a lock that is
incompatible with one already held on the resource by another session. Please refer to
Chapter 3, Table 3-1, to review the lock compatibility matrix, if you need a reminder of
what locks are mutually compatible.

116

Chapter 5: Troubleshooting Pessimistic Concurrency

Detecting blocking problems

Brief periods of blocking may be normal in an active SQL Server system, depending upon
the type of workload. However, when processes are blocked for extended periods of time,
it can appear to end-users as if queries are running much more slowly.

We can have the best tuned queries in the world, but if they can't get the data they need
because it is locked, it will appear as if the queries are very slow. Blocking may also be
problematic when contention causes the overall throughput of the system to suffer
because the blockers are preventing other tasks from completing in a timely manner.

SQL Server provides multiple tools for detecting lock-based blocking problems. In
addition to metadata tools such as specific lock-related DMVs, there are counters
available through PerfMon, and several tools, such as the SQLDiag utility, built on top of
the DMVs and PerfMon counters.

We'll start at a high level, looking at ways to quickly detect whether or not blocking is a
problem in a system, and then proceed to finding out what is causing the blocking, and
resolving the problems.

PerfMon counters

We can use Performance Monitor (PerfMon) to determine, at a glance, whether locks
being acquired on a SQL Server instance are causing blocking. The Processes blocked
counter in the SQLServer:General Statistics object will show the number of
blocked processes. We can then add counters such as the Lock Waits counter from the
SQLServer:Wait Statistics object to determine the number of locks being held, and
the duration of the locks. The Perfmon counters provide summary information only; that
is, they allow us to determine whether or excessive blocking is a problem, but they don't
tell us which processes are blocked or which processes are blocking.

117

Chapter 5: Troubleshooting Pessimistic Concurrency

DMVs

The sys.dm_os_waiting_tasks DMV returns a formatted list of all currently
waiting tasks, along with the blocking task, if it is known. Table 5-1 has been adapted
from SQL Server Books Online and summarizes the columns returned from
sys.dm_os_waiting_tasks.

Column Description

waiting_task_address
The waiting task's memory address, which allows us to
distinguish multiple tasks within a session.

session_id Can be used to join with sys.dm_exec_requests.

exec_context_id
Execution context id of the waiting task: 0 is the main or
parent thread.

wait_duration_ms The wait duration in milliseconds.

wait_type The wait type of the current waiting task.

resource_address

Memory address of the resource for which the task is
waiting. Use it to join with sys.dm_tran_locks on
lock_owner_address.

blocking_task_address The blocking task's memory address, if available.

blocking_session_id
Blocker's session id, if available. Negative integers -2, -3, -4
have special meaning and are explained below.

blocking_exec_context_id Execution context id of the blocking task.

resource_description
Textual description of the resource on which the task
is waiting.

Table 5-1:	 Columns available in sys.dm_os_waiting_tasks.

118

Chapter 5: Troubleshooting Pessimistic Concurrency

Note that sys.dm_os_waiting_tasks returns information at the task level, as opposed
to the session level. If a query is running in parallel, and one of its threads is blocking or
being blocked, sys.dm_os_waiting_tasks will reveal which thread (or task) is actually
involved in the blocking.

There are some conditions where the blocking_session_id may not refer to an
actual session_id value. As mentioned in the SQL Server Books Online discussion of
sys.dm_os_waiting_tasks, sometimes the value of blocking_session_id may be
NULL because there is no blocking session, or SQL Server cannot identify the blocking
session. When inspecting lock-based blocking on a multi-user system, this should not be
very common. However, SQL Server will sometimes report the blocking_session_id
as a negative number. There are three possible codes for when the session_id might
be negative.

•	 -2 – The locked resource is owned by an orphaned distributed transaction.

•	 -3 – The locked resource is owned by a deferred recovery transaction.

•	 -4 – For a latch wait, internal latch state transitions prevent identification of
 the session id.

Another nice feature is that sys.dm_os_waiting_tasks returns the duration of the
wait, so that we can add filters to return only those rows relating to waits of a duration
that is long enough to be of concern, i.e. the most likely causes of problematic blocking.
For example, the query in Listing 5-3 will show only those waits that have been occurring
for more than five seconds. The sys.dm_os_waiting_tasks view returns rows for
system processes that are not actually waiting on a specific session, so I have also filtered
the output to return only those waits where there actually is a blocking session.

In one session, we open a transaction and perform an UPDATE on the
SalesOrderDetail table in the AdventureWorks database. In a second
session, we attempt to read rows that we know are locked, hence causing blocking.
In a third session, we investigate the blocking by querying sys.dm_os_waiting_tasks.

119

Chapter 5: Troubleshooting Pessimistic Concurrency

USE AdventureWorks
GO
-- Connection 1
BEGIN TRAN
UPDATE Sales.SalesOrderDetail
SET OrderQty = OrderQty + 1
WHERE SalesOrderID = 51100
 AND SalesOrderDetailID = 35974;
-- do not commit this transaction yet

-- Connection 2
SELECT *
FROM Sales.SalesOrderDetail
WHERE SalesOrderID = 51100
 AND SalesOrderDetailID = 35974;
-- this query will block

-- Connection 3
SELECT W.session_id AS waiting_session_id ,
 W.waiting_task_address ,
 W.wait_duration_ms ,
 W.wait_type ,
 W.blocking_session_id ,
 W.resource_description
FROM sys.dm_os_waiting_tasks AS W
WHERE W.wait_duration_ms > 5000
 AND blocking_session_id IS NOT NULL;

Listing 5-3:	 Examine the sys.dm_os_waiting_tasks DMV.

When reviewing the results, notice that the resource_description column contains a
concatenated set of strings with information about the blocking session. In our example,
the query in the second session is blocked on a row in the Sales.SalesOrderDetail
table of the AdventureWorks database, and the resource_description column
contains the information below, concatenated into a single string.

120

Chapter 5: Troubleshooting Pessimistic Concurrency

•	keylock

•	hobtid=72057594080854016

•	dbid=5

•	id=lock800e0f80

•	mode=X

•	associatedObjectId=72057594080854016

This information tells us that the type of lock is a key lock, the database id is 5, and
the blocking session has an exclusive lock granted. The sys.dm_os_waiting_tasks
DMV will report all waiting tasks, whether they are waiting for locks or not. Some of the
waiting may have more to do with I/O or memory contention.

To refine our focus to just lock-based blocking we can use the sys.dm_tran_locks
DMV, which returns information about all locks, not just the ones involved with blocking.
This view returns a large number of columns and can potentially return thousands, or
tens of thousands, of rows. The query in Listing 5-4 returns a subset of the columns and
shows all of the locks that are in a WAIT state.

SELECT L.resource_type ,
 DB_NAME(L.resource_database_id) AS DatabaseName ,
 L.resource_associated_entity_id ,
 L.request_session_id ,
 L.request_mode ,
 L.request_status
FROM sys.dm_tran_locks AS L
WHERE L.request_status = 'WAIT'
ORDER BY DatabaseName ,
 L.request_session_id ASC;

Listing 5-4:	 Query to return all locks in a WAIT state.

121

Chapter 5: Troubleshooting Pessimistic Concurrency

It might be more convenient to see just the waiting locks and the granted locks on which
they are waiting. When a requested lock is waiting, it will be waiting on the same resource
that the blocking process has already locked. The sys.dm_tran_locks DMV uses both
the resource_associated_entity_id along with the resource_description to
identify the locked resource, so we use those columns to join the view with itself and just
return rows for the blocked and blocking locks, as shown in Listing 5-5.

SELECT L1.resource_type ,
 DB_NAME(L1.resource_database_id) AS DatabaseName ,
 L1.resource_associated_entity_id ,
 L1.request_session_id ,
 L1.request_mode ,
 L1.request_status
FROM sys.dm_tran_locks AS L1
 JOIN sys.dm_tran_locks AS L2
 ON L1.resource_associated_entity_id =
 L2.resource_associated_entity_id
 AND L1.request_status <> L2.request_status
 AND (L1.resource_description = L2.resource_description
 OR (L1.resource_description IS NULL
 AND L2.resource_description IS NULL
)
)
ORDER BY L1.request_status ASC;

Listing 5-5:	 Query to return all locks in a WAIT state and the locks on which they are waiting.

In Listing 5-5, we join the sys.dm_tran_locks view to itself, and return all locks that
have a different request status (picking out GRANT and WAIT status values), but the same
resource_associated_entity_id (for example, the same table), and the same
resource_description, or where resource_description is NULL in each case (to
cover cases in which there is no resource_description).

Figure 5-1 shows my results (assuming the blocking from Listing 5-2 is still in effect).

122

Chapter 5: Troubleshooting Pessimistic Concurrency

Figure 5-1:	 Output showing the waiting lock and the lock for which it is waiting.

Listing 5-5 returns only the ID for the resource_associated_entity_id. Listing
5-6 takes this a step further and decodes the resource_associated_entity_id
by looking it up in the sys.partitions catalog view. The subquery passes the found
object_id value to the OBJECT_NAME function. However, because the sys.parti-
tions catalog view reports data per database, the inner CASE expression limits the
subquery to returning values for just the current database, when the resource_
associated_entity_id is not DATABASE or OBJECT. We will have to run this query in
each database in question to get all the object names.

USE AdventureWorks
GO
SELECT L1.resource_type ,
 DB_NAME(L1.resource_database_id) AS DatabaseName ,
 CASE L1.resource_type
 WHEN 'OBJECT'
 THEN OBJECT_NAME(L1.resource_associated_entity_id,
 L1.resource_database_id)
 WHEN 'DATABASE' THEN 'DATABASE'
 ELSE CASE WHEN L1.resource_database_id = DB_ID()
 THEN (SELECT OBJECT_NAME(object_id,
 L1.resource_database_id)
 FROM sys.partitions
 WHERE hobt_id =
 L1.resource_associated_entity_id
)
 ELSE NULL
 END
 END AS ObjectName ,
 L1.resource_description ,
 L1.request_session_id ,
 L1.request_mode ,
 L1.request_status

123

Chapter 5: Troubleshooting Pessimistic Concurrency

FROM sys.dm_tran_locks AS L1
 JOIN sys.dm_tran_locks AS L2
 ON L1.resource_associated_entity_id =
 L2.resource_associated_entity_id
WHERE L1.request_status <> L2.request_status
 AND (L1.resource_description = L2.resource_description
 OR (L1.resource_description IS NULL
 AND L2.resource_description IS NULL
)
)
ORDER BY L1.resource_database_id ,
 L1.resource_associated_entity_id ,
 L1.request_status ASC;

Listing 5-6:	 Query to return all locks in a WAIT state and the locks they are waiting on, including data-

base and object names.

Note that the sys.dm_tran_locks DMV contains database id, resource type, and
locking information that is not available from the sys.dm_os_waiting_tasks DMV.
On the other hand, the sys.dm_tran_locks DMV does not return the length of time
the blocking has been occurring. To get all this information from a single query, we can
join the two DMVs together, as we'll see in the next section.

Finding the cause of blocking

Whenever sessions compete for locked resources, we may observe lock-based blocking. It
is not always enough just to know the objects that are locked, but it can sometimes point
us in the right direction. To get to the root of the blocking problem, however, we will
most likely need to know the queries involved. Having identified the session_id of a
blocked or blocking session, there is other metadata available to help us determine which
query the blocking session is currently executing.

124

Chapter 5: Troubleshooting Pessimistic Concurrency

The Blocked Process Report

SQL Server provides an XML report called the Blocked Process Report that we can
generate by running SQL Trace and electing to see the event in the Errors and Warnings
category. In addition, we must previously have configured the option called Blocked
Process Threshold to a number of seconds greater than 0. Having taken both these steps,
every time a process is blocked for longer than the configured number of seconds, the
trace will capture an event that contains an XML report in the TextData column. This
report will show the query text for both the blocking and the blocked processes. This is
by far the most straightforward method of finding the queries, but it may not always be
convenient to use SQL Trace.

Getting the query text from the DMVs

In cases where we can't use SQL Trace, we can use the tools that SQL Trace uses behind
the scenes, namely the the sys.dm_os_waiting_tasks and sys.dm_tran_locks
DMVs and, with a little extra work, extract the relevant queries.

We'll create this query in two steps. First, we'll join the two DMVs to get the best infor-
mation from each. Then we'll add subqueries to extract the query text.

In Listing 5-7, we can join the DMVs on the waiting task's resource_address from
sys.dm_os_waiting_tasks, and the lock_owner_address in sys.dm_tran_locks.

SELECT T.session_id AS waiting_session_id ,
 DB_NAME(L.resource_database_id) AS DatabaseName ,
 T.wait_duration_ms / 60000. AS Duration_in_minutes ,
 T.waiting_task_address ,
 L.request_mode ,
 L.resource_type ,
 L.resource_associated_entity_id ,
 L.resource_description AS lock_resource_description ,
 T.wait_type ,
 T.blocking_session_id ,
 T.resource_description AS blocking_resource_description

125

Chapter 5: Troubleshooting Pessimistic Concurrency

FROM sys.dm_os_waiting_tasks AS T
 JOIN sys.dm_tran_locks AS L ON T.resource_address = L.lock_owner_address
WHERE T.wait_duration_ms > 5000
 AND T.session_id > 50;

Listing 5-7:	 Joining the sys.dm_os_waiting_tasks and sys.dm_tran_locks DMVs.

In Listing 5-7, the results are paired, using sys.dm_os_waiting_tasks as the
base table: the waiting session is listed with its task information, and then the
locking information for the waiting task from sys.dm_tran_locks is added.
The last columns contain information about the blocking session, again from
sys.dm_os_waiting_tasks.

Now we can go to the second step and get the actual query text for each session.
We can add a subquery that joins the sys.dm_exec_requests DMV and the
sys.dm_exec_sql_text() function, and correlates that join back to the waiting
task's session_id, to give us the query text. The complete query is shown in Listing 5-8.

SELECT T.session_id AS waiting_session_id ,
 DB_NAME(L.resource_database_id) AS DatabaseName ,
 T.wait_duration_ms / 60000. AS duration_in_minutes ,
 T.waiting_task_address ,
 L.request_mode ,
 (SELECT SUBSTRING(Q.text, (R.statement_start_offset / 2) + 1,
 ((CASE R.statement_end_offset
 WHEN -1 THEN DATALENGTH(Q.text)
 ELSE R.statement_end_offset
 END - R.statement_start_offset) / 2) + 1)
 FROM sys.dm_exec_requests AS R
 CROSS APPLY sys.dm_exec_sql_text(R.sql_handle) AS Q
 WHERE R.session_id = L.request_session_id
) AS waiting_query_text ,
 L.resource_type ,
 L.resource_associated_entity_id ,
 T.wait_type ,
 T.blocking_session_id ,
 T.resource_description AS blocking_resource_description ,

126

Chapter 5: Troubleshooting Pessimistic Concurrency

 CASE WHEN T.blocking_session_id > 0
 THEN (SELECT ST2.text
 FROM sys.sysprocesses AS P
 CROSS APPLY
 sys.dm_exec_sql_text(P.sql_handle) AS ST2
 WHERE P.spid = T.blocking_session_id
)
 ELSE NULL
 END AS blocking_query_text
FROM sys.dm_os_waiting_tasks AS T
 JOIN sys.dm_tran_locks AS L
 ON T.resource_address = L.lock_owner_address
WHERE T.wait_duration_ms > 5000
 AND T.session_id > 50;

Listing 5-8:	 Query to return the blocked processes and the queries they are running.

For more details on how the sys.dm_exec_query_text function is used, please
see the description of that function in the Books Online.

Resolving blocking problems

Once we know the queries involved, the locked resource, and the type of locks involved,
we can address the issue of how to resolve the blocking. As discussed previously, lock-
based blocking problems may be caused by writers blocking writers, readers blocking
writers, or writers blocking readers. Each type of blocking has its own potential solutions.

Killing a session

The easiest way to resolve a blocking situation is to kill one of the sessions, using the
KILL command. Sometimes this is the best solution in an emergency, or for terminating
an ad hoc query that really should not even be running on a production system. In
some cases, however, killing one of the sessions might cause unexpected harm to the
applications accessing the database. If a particular blocking process is a long-running

127

Chapter 5: Troubleshooting Pessimistic Concurrency

UPDATE or DELETE operation, then killing the session will cause a transaction rollback
and the locks will not be released, nor the blocking problem resolved, until the rollback is
finished, which will not usually happen immediately. In such cases, we may need to look
for a better solution, by trying to find and fix the root cause of the blocking.

Resolving writer/writer blocking

There are not a lot of options for resolving writer/writer blocking in SQL Server because
exclusive locks are always required by sessions that are modifying data. When two
sessions both need to change the same data, and therefore both sessions need to acquire
exclusive locks on the same resource, we may need to rewrite the transactions, or change
the way that we run them, if we want to avoid the blocking problems. We can consider
the options below.

Make data modification transactions shorter

One of the most effective methods for resolving problems with writers blocking writers is
to make transactions shorter, where possible by including in each transaction only those
statements that absolutely must succeed or fail as a unit. When a transaction causes SQL
Server to acquire exclusive locks, it holds them until the transaction ends. Therefore, by
reducing the duration of the transaction, we also reduce the time that the exclusive locks
are required.

Reduce the number of locks taken by writers

Earlier, we discussed how reducing the batch sizes of bulk modifications processes could
eliminate lock escalation, and the same technique can help reduce blocking. We might
also try to separate the contending writers by running them at different scheduled times,
such as moving bulk load operations to a period with low system usage.

128

Chapter 5: Troubleshooting Pessimistic Concurrency

Resolving reader/writer blocking

There are more options available to us for resolving reader/writer blocking in SQL Server,
primarily because we can adjust the isolation level of the transactions involved, in order
to reduce the number of shared locks required by readers (or simply stop shared locks
being taken by readers). We can consider the following options.

Lower the isolation level to READ UNCOMMITTED

Prior to SQL Server 2005, one of the most common methods of resolving reader/writer
blocking was to lower the isolation level, either by setting the reader's isolation level
to READ UNCOMMITTED or placing a NOLOCK hint on the reader's query. As a result,
SQL Server won't acquire shared locks for SELECT statements.

This will remove blocking issues but there are significant risks attached to the method.
First of all, the lack of shared locks means that SELECT statements can, and will, read
uncommitted data. In a system where few if any transactions are ever rolled back, that
may mean the risk is very low. However, a query might read a newly-inserted row from a
header table but not see any of the detail table rows that have not yet been inserted. For
critical queries that must return accurate aggregations or calculations based on consistent
committed data, reading uncommitted data will not be acceptable.

In addition, there is a small risk that a SELECT statement using a NOLOCK hint, or READ
UNCOMMITTED isolation level, can fail. This can occur if SQL Server attempts to read
a page that has been deleted, but where the DELETE operation is not complete and
committed. The page might be accessible using the NOLOCK hint, but may lack the proper
links to continue traversing the linked list and finish reading the required pages.

When this occurs, we'll see Error 601, and the query will abort. The text of Error 601
is: Could not continue scan with NOLOCK due to data movement.

129

Chapter 5: Troubleshooting Pessimistic Concurrency

It is not common to see this error, but if an application uses NOLOCK hints for
READ UNCOMMITTED, it should test for this error and resubmit the query if it occurs.
However, that's not the only possible problem with NOLOCK. It is possible for SELECT
statements using the NOLOCK hint or READ UNCOMMITTED isolation level to skip rows
resulting from page splits that occurred while the SELECT was under way. This can occur
when SQL Server chooses an allocation scan to scan a table for a SELECT statement,
and page splits occur that put new pages into an earlier part of the allocation map. The
SELECT statement only reads the allocation table forward, and will therefore miss such
pages. Conversely, the SELECT statement may read rows twice due to page splits, if a page
that has already been read is split, and the new page is added into a part of the allocation
map that hasn't yet been read.

Check for the correct isolation level

It's possible that some transactions will be using a more restrictive isolation level,
REPEATABLE READ or SERIALIZABLE, when it is unnecessary. In some cases, developers
may accidentally use one of these isolation levels when they do not really need it.

Lowering these isolation levels to the default READ COMMITTED will allow SQL Server
to keep shared locks for a shorter time, releasing them before the transaction ends. The
Blocked Process Report XML output file's isolation-level column reports the isolation
level of each transaction. Range locks involved in the blocking indicate the transaction is
using the SERIALIZABLE isolation level.

Use one of the snapshot-based isolation levels

As of SQL Server 2005, we can avoid the problems associated with reading uncommitted
data by using one of the snapshot-based isolation levels. By far the easiest and most direct
method is to change the way the default READ COMMITTED isolation level works, by
setting READ_COMMITTED_SNAPSHOT ON for the target database.

130

Chapter 5: Troubleshooting Pessimistic Concurrency

This changes the way SELECT statements read committed data; instead of blocking
when encountering an exclusive lock, they read prior versions of any data that has been
changed. This option is not without its costs, and we'll cover details of how the snapshot-
based isolation levels work in the next chapter.

Separate readers from writers

For longer-term solutions, we may want to consider separating any problematic reader
queries (often long-running reports) from the writer queries. Sometimes this is called
"separating reads from writes," but that phrase is an oversimplification because often only
a subset of all the reader queries can be redirected to a read-only copy of the database.

Often, even in the most active OLTP databases, read activity greatly exceeds write
activity. A majority of those reads may be able to read the data from another server
or database. Creating a reporting server separate from the main server, and fed data
by transactional replication (for example), may allow us to offload many of the
problematic reader queries. Unfortunately those same queries may attempt to lock
the same data that replication stored procedures are updating, so we may still need
to apply READ_COMMITTED_SNAPSHOT to the subscriber database in order to eliminate
the contention.

Another method for separating readers from writers would be to create a database
snapshot of the current database on the SQL Server instance, a snapshot that has
data current as of a specified time. The SELECT statements run against a database
snapshot (which is read-only) will not acquire as many shared locks as they would on
a read-write database.

Sometimes the most problematic reader queries are also those that need up-to-the-
second data, so it's not possible to separate the conflicting readers from the writers. In
that case, one of the snapshot-based isolation levels may be the best option.

131

Chapter 5: Troubleshooting Pessimistic Concurrency

Troubleshooting Deadlocking

A deadlock occurs when two sessions are each waiting for a resource that the other
session has locked, and neither one can continue because the other is preventing it
from gaining access to the required resource. A true deadlock is a Catch-22 in which,
without intervention, neither session can ever make progress. When a deadlock occurs,
SQL Server intervenes automatically. In this section, I'll refer mainly to deadlocks
acquired due to conflicting locks, although deadlocks can also be detected on worker
threads, memory, parallel query resources, and MARS resources.

Note that a simple wait for a lock is not a deadlock. When the process that's holding the
lock completes, the waiting process gets the lock. Lock waits are normal, expected, and
necessary in multi-user systems.

Types of deadlock

In SQL Server, two main types of deadlock can occur: a cycle deadlock and a conversion
deadlock. Figure 5-2, taken from the SQL Server Books Online, shows an example of a
cycle deadlock. Transaction 1 starts, acquires an exclusive table lock on the Supplier
table, and requests an exclusive table lock on the Part table. Simultaneously, Transaction
2 starts, acquires an exclusive lock on the Part table, and requests an exclusive lock on
the Supplier table. The two transactions become deadlocked – caught in a "deadly
embrace." Each transaction holds a resource needed by the other process. Neither can
proceed and, without intervention, both would be stuck in deadlock forever.

132

Chapter 5: Troubleshooting Pessimistic Concurrency

Figure 5-2:	 A cycle deadlock.

We can generate a cycle deadlock using SQL Server Management Studio, and the
script in Listing 5-9. We'll use the Production.Product table instead of Part, and
Purchasing.PurchaseOrderDetail table instead of Supplier.

USE AdventureWorks
-- On one connection, start Transaction 1:
BEGIN TRAN
UPDATE Purchasing.PurchaseOrderDetail
SET OrderQty = OrderQty + 200
WHERE ProductID = 922
 AND PurchaseOrderID = 499;
GO

-- Open a second connection, and start Transaction 2:
BEGIN TRAN
UPDATE Production.Product
SET ListPrice = ListPrice * 0.9
WHERE ProductID = 922;
GO

-- Go back to the first connection, and execute this update statement:
UPDATE Production.Product
SET ListPrice = ListPrice * 1.1
WHERE ProductID = 922;
GO
-- At this point, this first connection should block.
-- It is not deadlocked yet, however. It is waiting for a lock
-- on the Production.Product table, and there is no reason
-- to suspect that it won't eventually get that lock.

133

Chapter 5: Troubleshooting Pessimistic Concurrency

-- Now go back to the second connection,
-- and execute this update statement:
UPDATE Purchasing.PurchaseOrderDetail
SET OrderQty = OrderQty - 200
WHERE ProductID = 922
 AND PurchaseOrderID = 499;
GO
-- At this point a deadlock occurs.

Listing 5-9:	 Generating a cycle deadlock.

The first connection will never get its requested lock on the Production.Product table
because the second connection will not give it up until it gets a lock on the Purchasing.
PurchaseOrderDetail table. Because the first connection already has the lock on the
Purchasing.PurchaseOrderDetail able, we have a deadlock. One of the processes
will receive the following error message. (Of course, the actual process ID reported will
probably be different.)

Msg 1205, Level 13, State 51, Line 1
Transaction (Process ID 57) was deadlocked on lock resources with another process
and has been chosen as the deadlock victim. Rerun the transaction.

Figure 5-3 shows an example of a conversion deadlock. Process A and Process B both
hold a shared lock on the same page. Each process wants to convert its shared lock to an
exclusive lock but cannot do so because of the other process's lock. Again, intervention
is required.

134

Chapter 5: Troubleshooting Pessimistic Concurrency

Figure 5-3:	 A conversion deadlock.

Automatic deadlock detection

SQL Server automatically detects deadlocks and intervenes through the lock manager,
which provides deadlock detection for locks. A separate thread, called LOCK_MONITOR
checks the system for deadlocks every 5 seconds. As deadlocks occur, the deadlock
detection interval is reduced and can go as low as 100 milliseconds. In fact, rather than
wait for the next deadlock detection interval, the first few lock requests that cannot be
satisfied, after a deadlock has been detected, will immediately trigger a deadlock search.
If the deadlock frequency declines, the interval reverts to every 5 seconds.

This LOCK_MONITOR thread checks for deadlocks by inspecting the list of waiting locks
for any cycles, which indicate a circular relationship between processes holding locks and
processes waiting for locks. SQL Server attempts to choose, as the deadlock victim, the
process that would be least expensive to roll back, considering the amount of work the

135

Chapter 5: Troubleshooting Pessimistic Concurrency

process has already done. That process is killed and is sent error message 1205. The
transaction is rolled back, meaning all its locks are released, so other processes involved
in the deadlock can proceed. However, certain operations are marked as "golden," or
unkillable, and cannot be chosen as the deadlock victim. For example, a transaction in the
process of being rolled back cannot be chosen as a deadlock victim because the changes
being rolled back could be left in an indeterminate state, causing data corruption.

Using the SET DEADLOCK_PRIORITY statement, we can determine the priority given to
a process should it be involved in a deadlock; the higher the priority, the less likely it is to
be chosen as the victim. There are 21 different priority levels, from –10 to 10. The value
LOW is equivalent to –5, NORMAL is 0, and HIGH is 5. If the sessions have different deadlock
priorities, the session with the lowest deadlock priority is chosen as the deadlock victim.
If both sessions have set the same deadlock priority, SQL Server selects as victim the
session that is less expensive to roll back.

Finding the cause of deadlocks

As well as automatically detecting that a deadlock has occurred, SQL Server will also
make available data to indicate the processes and queries involved in the deadlock, so that
we can determine exactly why the deadlock happened.

To determine the cause of a deadlock, we need to know the resources involved and the
types of locks acquired and requested. For this kind of information, SQL Server provides
Trace Flag 1222 (this flag supersedes 1204, which was frequently used in earlier versions
of SQL Server.) With this flag enabled, SQL Server will provide output in the form of a
deadlock graph, showing the executing statements for each session, at the time of the
deadlock; these are the statements that were blocked and so formed the conflict or cycle
that led to the deadlock.

136

Chapter 5: Troubleshooting Pessimistic Concurrency

To form a complete picture of what caused the deadlock, we also need to know
which statements originally acquired the locks that are blocking the later statements.
SQL Server does not automatically maintain a complete record of the history of all the
statements executed by each process, so this information is not available through Trace
Flag 1222. In order to find out the statements that took the initial locks on the resources
that form the base of the conflict, we must run a SQL Trace that captures the history for
each of the processes involved in the deadlock.

When we enable Trace Flag 1222, the output is sent to the SQL Server error log. We can
use the SQL Server Management Studio Log Viewer to view the information, but the
output is sorted starting with the most recent event, so it's basically upside down. The
best way to read the 1222 output is to copy the error log somewhere else and then read
it using a simple text viewer, such as Notepad. We can then trim out extraneous infor-
mation, as well as time and date information, to isolate the output to only what relates to
the deadlock we are investigating.

The 1222 output is in an XML-like format but does not comply with any XSD schema,
so it cannot be read using a utility like XML Notepad. We can divide the Trace Flag 1222
XML output into three sections: the deadlock victim, the participant processes, and the
resources. Let's look at some 1222 output, generated when the deadlock generated from
Listing 5-9 occurs, after enabling Trace Flag 1222 as shown in Listing 5-10.

DBCC TRACEON(1222, -1);
GO

Listing 5-10:	 Enabling Trace Flag 1222.

There is a great deal of information returned, much of which looks very cryptic, so we'll
just focus on the critical pieces.

137

Chapter 5: Troubleshooting Pessimistic Concurrency

Deadlock victim

The first section of the 1222 output identifies the victim of the deadlock by using an
internal process name. This is useful when relating other information in the trace flag
output, and determining what information is connected to the victim.

deadlock-list
 deadlock victim= process593048

Processes

The next section identifies the victim and survivor processes and contains the most
voluminous information. In our example, the first process listed is the victim, which
you can tell by the process id, but it might just as well have been the other process
(i.e. the first process might be the survivor, not the victim).

 process-list
 process id=process593048 taskpriority=0 logused=248 waitresource=KEY:
13:72057594045661184 (3e75cd3a78e7) waittime=4091 ownerId=7381
transactionname=user_transaction lasttranstarted=2012-05-14T16:27:27.520
XDES=0x8414d950 lockMode=U schedulerid=3 kpid=7696 status=suspended spid=52
sbid=0 ecid=0 priority=0 trancount=2 lastbatchstarted=2012-05-14T16:27:57.300
lastbatchcompleted=2012-05-14T16:27:27.520 clientapp=Microsoft SQL Server
Management Studio - Query hostname=TENAR hostpid=9148 loginname=TENAR\Kalen
isolationlevel=read committed (2) xactid=7381 currentdb=13 lockTimeout=4294967295
clientoption1=671090784 clientoption2=390200
 executionStack
 frame procname=adhoc line=1 sqlhandle=0x020000004fbb092c29dceca676884294
df83a6c4d191eec8
 (@1 int,@2 smallint,@3 smallint)UPDATE [Purchasing].[PurchaseOrderDetail] set
[OrderQty] = [OrderQty]-@1 WHERE [ProductID]=@2 AND [PurchaseOrderID]=@3
 frame procname=adhoc line=1 sqlhandle=0x02000000a63fcb0cdeaa5cafca251aa1
518ff286a8a78917
 UPDATE Purchasing.PurchaseOrderDetail
 SET OrderQty = OrderQty - 200
 WHERE ProductID = 922
 AND PurchaseOrderID = 499;

138

Chapter 5: Troubleshooting Pessimistic Concurrency

 inputbuf
 UPDATE Purchasing.PurchaseOrderDetail
 SET OrderQty = OrderQty - 200
 WHERE ProductID = 922
 AND PurchaseOrderID = 499;

For the first process, process593048, there is a wealth of information, some of which
you would expect, such as the wait resource, database id, the spid number, and the input
buffer containing the statement executed which was blocked. However, we also get infor-
mation about the transaction isolation level and the sqlhandle of the command that
actually acquired the resource.

The next process listed has a somewhat similar output.

 process-list
 process id=process5934c8 taskpriority=0 logused=2176 waitresource=KEY:
13:72057594044678144 (bd095ec17235) waittime=17491 ownerId=7180
transactionname=user_transaction lasttranstarted=2012-05-14T16:27:17.970
XDES=0x844f7950 lockMode=X schedulerid=3 kpid=3528 status=suspended spid=55
sbid=0 ecid=0 priority=0 trancount=2 lastbatchstarted=2012-05-14T16:27:43.907
lastbatchcompleted=2012-05-14T16:27:17.970 clientapp=Microsoft SQL Server
Management Studio - Query hostname=TENAR hostpid=9148 loginname=TENAR\Kalen
isolationlevel=read committed (2) xactid=7180 currentdb=13 lockTimeout=4294967295
clientoption1=671090784 clientoption2=390200
 executionStack
 frame procname=adhoc line=1 stmtstart=58 sqlhandle=0x0200000040756627d05
81021091c2bcb38bd70b4892954f4
 UPDATE [Production].[Product] set [ListPrice] = [ListPrice]*@1 WHERE
[ProductID]=@2
 frame procname=adhoc line=1 sqlhandle=0x02000000288f20321de34ef8cb5d031c
b9a00cb157ae7069
 UPDATE Production.Product
 SET ListPrice = ListPrice * 0.9
 WHERE ProductID = 922;
 inputbuf
 UPDATE Production.Product
 SET ListPrice = ListPrice * 0.9
 WHERE ProductID = 922;

139

Chapter 5: Troubleshooting Pessimistic Concurrency

Deadlocked resources

Lastly, the 1222 output lists the resources involved in the deadlock. This is the most
readable portion of the output, and probably where it's best to focus.

 resource-list
 keylock hobtid=72057594045661184 dbid=13 objectname=AdventureWorks.
Purchasing.PurchaseOrderDetail indexname=PK_PurchaseOrderDetail_PurchaseOrderID_
PurchaseOrderDetailID id=lock8010c780 mode=X associatedObjectId=72057594045661184
 owner-list
 owner id=process5934c8 mode=X
 waiter-list
 waiter id=process593048 mode=U requestType=wait

 keylock hobtid=72057594044678144 dbid=13 objectname=AdventureWorks.
Production.Product indexname=PK_Product_ProductID id=lock82d75f00 mode=X associate
dObjectId=72057594044678144
 owner-list
 owner id=process593048 mode=X
 waiter-list
 waiter id=process5934c8 mode=X requestType=wait

In this case, if we know the structure of our tables, we would know that both indexes
(PK_PurchaseOrderDetail_PurchaseOrderID_PurchaseOrderDetailID and
PK_Product_ProductID) are clustered primary keys, so we know that a key lock refers
to a row of the table. At a glance, you can tell that one process had an exclusive lock on
a row in the AdventureWorks.Purchasing.PurchaseOrderDetail table, and the
other process was waiting to get an update lock. At the same time, the other process had
an exclusive lock on a row in the AdventureWorks.Production.Product table, and
the first process is waiting to get an exclusive lock on it.

Table 5-2 summarizes the output from the deadlock graphs, which then exposes most of
the causes of the deadlock.

140

Chapter 5: Troubleshooting Pessimistic Concurrency

Output Victim Survivor

Process id process593048 process5934c8

Database AdventureWorks AdventureWorks

Resource
Type

keylock keylock

Resources

AdventureWorks.Purchasing.Purcha-

seOrderDetail.PK_PurchaseOrderDe-

tail_PurchaseOrderID_PurchaseOr-

derDetailID

AdventureWorks.Pro-

duction.Product.

PK_Product_ProductID

Lock
Granted

X X

Lock
Requested

U X

Last
Command

UPDATE Purchasing.PurchaseOrderDe-

tail

SET OrderQty = OrderQty - 200

WHERE ProductID = 922

 AND PurchaseOrderID = 499;

UPDATE Production.Product

SET ListPrice = ListPrice

* 0.9

WHERE ProductID= 922;

Table 5-2:	 A sample summary of the Trace Flag 1222 output.

Once we know the resources and the statements that conflicted on them, we often have
enough information to diagnose and resolve the deadlock. In some cases, we may need to
dig deeper to find out what statements acquired the locks on the resources to begin with,
which will require running SQL Trace to get a full history for each transaction.

Note, again, that the output of Trace Flag 1222 in the SQL Server error log can be
voluminous. It can help to recycle the error log (using the system stored procedure
sp_cycle_errorlog) periodically and then save the error logs elsewhere, in order to
isolate the deadlocks to be analyzed.

141

Chapter 5: Troubleshooting Pessimistic Concurrency

Minimizing deadlocks

Be aware that it is rarely possible to guarantee that deadlocks will never occur. Tuning
for deadlocks primarily involves minimizing the likelihood of their occurrence. Most of
the techniques for minimizing the occurrence of deadlocks are similar to the general
techniques for minimizing blocking problems. However, there is one technique that
is only applicable to avoiding deadlock situations. In the example in Figure 5-2, the
cycle deadlock could have been avoided if the transactions had decided on a protocol
beforehand – for example, if they had decided to always access the Product table first
and the PurchaseOrderDetail table second. Then one of the transactions would get
the initial exclusive (X) lock on the table first, and the other would wait for the lock to be
released. One process waiting for a lock is normal and natural. Remember, waiting for a
lock, even for a prolonged period, is not the same thing as a deadlock.

Always try to have a standard protocol for the order in which transactions access tables.
If we know that a transaction might need to update the row after reading it, it should
initially request an update (U) lock, not a shared (S) lock. If both transactions request a U
lock, rather than a S lock, the transaction that is granted a U lock is assured that the lock
can later be promoted to an X lock. The other transaction requesting a U lock has to wait.
The use of a U lock serializes the requests for an X lock. Other transactions needing only
to read the data can still get their S locks and read. The holder of the U lock is guaranteed
an X lock, so the deadlock is avoided.

Although we cannot, generally speaking, avoid deadlocks completely, the impact on
any users involved, and on the rest of the system, should be minimal if our applications
handle deadlocks appropriately. Appropriate handling implies that when an Error 1205
occurs, the application resubmits the batch, which will most likely succeed on a second
try. Once one session is killed, its transaction is aborted, and its locks are released, and
the other session involved in the deadlock can finish its work and release its locks, so the
environment will not be conducive to another deadlock.

142

Chapter 5: Troubleshooting Pessimistic Concurrency

Summary

In this chapter, we looked at various techniques for troubleshooting problems with
SQL Server locking and blocking, focusing on the metadata available to track down the
resources involved in a blocking situation. We also examined some uses for Performance
Monitor and SQL Server trace flags. In addition to illustrating methods for tracking
down the source of the blocking problems, we also discussed possible steps to resolve the
problem, or to avoid the problems in the first place.

143

Chapter 6: Optimistic Concurrency

Throughout this book, we've focused mostly on the mechanisms of the pessimistic
concurrency model, whereby SQL Server relies exclusively on locking to enforce the
ACID-compliance of its transactions. In other words, in a pessimistic concurrency
environment, locks are acquired in order to avoid read phenomena such as dirty reads,
non-repeatable reads and phantom reads, depending on the required ANSI isolation level
and, as a result, readers block writers and writers block readers.

However, the ANSI SQL definitions of each of the transaction isolation levels specify
only which of the behaviors each level allows, not how to implement each isolation
level. Under the optimistic concurrency model, enabled via snapshot-based isolation,
SQL Server can prevent some or all of these read phenomena (depending on the mode
of snapshot-based isolation in use) without the need to acquire locks, therefore greatly
reducing blocking in the database.

In order to achieve this, optimistic concurrency uses a row versioning technique,
whereby SQL Server stores in tempdb copies (versions) of all the previously committed
versions of any data rows, since the beginning of the oldest open transaction (i.e. it keeps
those copies as long as there are any transactions that might need to access them). The
space in tempdb used to store previous versions of changed rows is the version store.
When using this row versioning, readers do not block writers, and writers do not block
readers (though writers do still take locks and will block other writers).

In this chapter, we'll discuss:

•	 row versioning and how it works

•	 snapshot-based isolation, the new modes of operation it introduces, snapshot isolation
(SI) and read committed snapshot isolation (RCSI), and how they work

•	 the potential for update conflicts in SI mode

•	 monitoring and managing the version store – especially disk space usage.

144

Chapter 6: Optimistic Concurrency

Some people consider optimistic concurrency to be the ultimate troubleshooting
technique to avoid most, though not all, blocking problems. While it's true that optimistic
concurrency greatly reduces SQL Server's dependence on the use of locks to enforce
ACID-compliance for its transactions, it does bring with it a whole new set of trouble-
shooting techniques, and a few problematic issues. As such, I prefer to view it as simply an
alternative way to handle concurrent database access.

Overview of Row Versioning

Before optimistic concurrency was introduced in SQL Server 2005, the only way
to reduce blocking, and increase concurrency (without rewriting code) was to use
READ UNCOMMITTED isolation, whereby readers are allowed to perform dirty reads
(reading whatever data is there at the time, regardless of whether it's currently being
updated) and so aren't blocked by writers. The downsides to this are clear and we've
discussed them previously. If our results must always be based on committed data, we
need to be willing to wait for changes to be committed.

With SQL Server 2005 and later, we have a better, optimistic alternative. In fact, two
better options, in the form of the two flavors of snapshot-based isolation: snapshot
isolation and a non-blocking flavor of READ COMMITTED isolation called "read
committed snapshot isolation."

These snapshot-based isolation levels rely on row versioning, rather than locking, to
prevent read phenomena. Row versioning works, as we'll discuss in more detail in the
next section, by making any transaction that changes data store the old row versions in an
area of tempdb called the version store. By keeping the old versions of the data around,
a "snapshot" of the database (or a part of the database) can be constructed from these old
versions. The term "snapshot" refers to the set of rows that are valid for the point in time
of the operation being performed.

145

Chapter 6: Optimistic Concurrency

RCSI prevents dirty reads without the need for transactions to acquire shared locks when
reading data. Instead of blocking when unable to acquire a shared lock, if a required
database page is being modified, the reader retrieves, from the version store, the previ-
ously committed values of the set of rows it needs. In this case, it retrieves a snapshot
of the data as it existed at the time the current statement started. RSCI does not prevent
non-repeatable reads or phantoms.

Use of SI prevents dirty reads, non-repeatable reads, and phantom reads, again without
the need for reading transactions to acquire locks; the readers simply retrieve a snapshot
of the data, as it existed at the time the current transaction started.

This is the big difference between optimistic and pessimistic concurrency: with the
former, writers and readers will not block each other. In other words, using locking
terminology, a session requesting an exclusive lock will not block when another session is
reading data in the requested resource and, conversely, a session trying to read data will
not block when the requested resource currently has an exclusive lock.

In this way, system concurrency is increased. Note, however, that SQL Server still
acquires locks during data modification operations, so writers will still block writers, and
everything we've discussed previously about lock types, lock modes, and lock duration is
still relevant to optimistic concurrency and row versioning.

In order for the row versioning mechanism to work correctly, SQL Server must keep old
versions of any row that a transaction updates or deletes. If multiple updates are made to
the same row, then multiple older versions of the row might need to be maintained, and
these multiple older versions must be maintained for as long as there are any transactions
that might need to access them. For these reasons, we often refer to row versioning as
multi-version concurrency control.

As you can imagine, to support the storing of multiple older versions of rows in the
version store may require a lot of additional disk space in the tempdb database. Just as all
databases in a SQL Server instance share the tempdb database, all databases that use row
versioning share the same space in the version store.

146

Chapter 6: Optimistic Concurrency

In addition, we cannot set a maximum or minimum size for the version store; all space
in the tempdb database is available for use by any process, in any database that needs
tempdb space, for any reason, be it for user-defined temporary tables, system worktables,
or the version store.

How Row Versioning Works

When we update a row in a table or index, the new row is marked with a value called the
transaction sequence number (XSN) of the transaction that is doing the update. The XSN
is a monotonically increasing number, which is unique within each SQL Server database.
When updating a row, the previous version of the row is stored in the version store, and
the new version of the row contains a pointer to the old version of the row in the version
store. The new row also stores the XSN value, reflecting the time the row was modified.

Each old version of a row in the version store might, in turn, contain a pointer to an
even older version of the same row. All the old versions of a particular row are chained
together in a linked list, and SQL Server might need to follow several pointers in a list to
reach the right version. The version store must retain versioned rows for as long as there
are operations that might require them. As long as a transaction is open, all versions of
rows that have been modified by that transaction must be kept in the version store, and
version of rows read by a statement (RCSI) or transaction (SI) must be kept in the version
store as long as that statement or transaction is open. In addition, the version store must
also retain versions of rows modified by now-completed transactions if there are any
older versions of the same rows.

In Figure 6-1, Transaction T3 generates the current version of the row, and it is stored in
the normal data page. The previous versions of the row, generated by Transaction T2 and
Transaction Tx, are stored in pages in the version store (in tempdb).

147

Chapter 6: Optimistic Concurrency

Figure 6-1:	 Versions of a row.

Before switching to a row-versioning-based isolation level, for reduced blocking and
improved concurrency, we must carefully consider the tradeoffs. In addition to requiring
extra management to monitor the increased use of tempdb for the version store,
versioning slows the performance of UPDATE operations, due to the extra work involved
in maintaining old versions. The same applies, to a much lesser extent, for DELETE
operations, since the version store must maintain at most one older version of the
deleted row.

Be aware that data modification operations will bear this cost, even if there are no current
readers of the data. Once we configure a database to use one of the snapshot-based
isolation levels, every UPDATE and DELETE operation will create a version. Any readers
using row versioning will incur the extra cost of traversing the pointers to find the
appropriate version of the requested row.

In addition, remember that the optimistic concurrency model of SI assumes (optimisti-
cally) that not many update conflicts will occur. As such, it may not be suited to cases
where we expect many concurrent updates to the same rows.

148

Chapter 6: Optimistic Concurrency

Under snapshot-based isolation, writers don't block readers, but simultaneous writers are
still not allowed. In the default pessimistic model, the first writer will block all subsequent
writers but, using SNAPSHOT isolation, subsequent writers could receive error messages
regarding update conflicts, and the application would need to resubmit the original
request. For reasons that we'll discuss in a later section, these update conflicts will occur
only when using SI, not with the enhanced read committed snapshot isolation level.

Snapshot-based Isolation Levels

As noted previously, SQL Server provides two types of snapshot-based isolation, both of
which use row versioning to maintain the snapshot (the set of rows valid for the point in
time the operation was performed):

•	 read committed snapshot isolation (RCSI) – queries return committed data as of the
beginning of the current statement

•	 snapshot isolation (SI) – queries return committed data as of the beginning of the
current transaction.

Enabling snapshot-based isolation

Let's first see how to enable each flavor, and then we'll examine how each one works.

Enabling RCSI

We enable and disable the first type, RCSI, with the ALTER DATABASE command, as
shown in Listing 6-1.

149

Chapter 6: Optimistic Concurrency

ALTER DATABASE AdventureWorks
SET READ_COMMITTED_SNAPSHOT ON

Listing 6-1:	 Enabling RCSI in the AdventureWorks database.

Once such a command has completed, no further changes are required, and RCSI will be
the default isolation level for that database. Any transaction that would have operated
under the default READ COMMITTED isolation will run under RCSI. Of course, we can
change a connection to operate in another isolation level besides READ COMMITTED, but
any READ COMMITTED transactions will operate using RCSI.

Ironically, for an isolation level intended to help avoid blocking, the ALTER DATABASE
command in Listing 6-1 will block if there are any connections in the database other than
the one issuing the command. Until the change is successful, the database continues to
operate as if it is not in RCSI mode.

We can avoid the blocking by specifying a TERMINATION clause for the ALTER command,
as shown in Listing 6-2.

ALTER DATABASE AdventureWorks
SET READ_COMMITTED_SNAPSHOT ON WITH NO_WAIT

Listing 6-2:	 Enabling RCSI in the AdventureWorks database without blocking.

If there are any users in the database, rather than block, Listing 6-2 will fail with the
following error:

Msg 5011, Level 14, State 5, Line 1
User does not have permission to alter database 'AdventureWorks', the database
does not exist, or the database is not in a state that allows access checks.
Msg 5069, Level 16, State 1, Line 1
ALTER DATABASE statement failed.

150

Chapter 6: Optimistic Concurrency

Alternatively, we could specify one of the ROLLBACK termination options, to kill any
current database connections. For full details on the various termination options, please
see the ALTER DATABASE command in Books Online.

Enabling SI

We must enable the second type of snapshot-based isolation, SI, in two places. First,
we must enable it at the database level, just as for RCSI, using an ALTER DATABASE
command such as that showing in Listing 6-3.

ALTER DATABASE AdventureWorks
SET ALLOW_SNAPSHOT_ISOLATION ON;

Listing 6-3:	 Enabling SI in the AdventureWorks database.

It must also be set at the session level, just as for any of the non-default ANSI levels, using
SET TRANSACTION ISOLATION LEVEL SNAPSHOT.

When altering the database to allow SI, the presence of other connections will not
necessarily block the command in Listing 6-3 but the presence of any active (i.e. data-
modifying) transactions in the database, will block the ALTER DATABASE command.
However, this does not mean that there is no effect until the statement completes.
Changing the database to allow full SI can be a deferred operation. The database can
actually be in one of four states with regard to ALLOW_SNAPSHOT_ISOLATION. It can be
ON or OFF, but it can also be IN_TRANSITION_TO_ON or IN_TRANSITION_TO_OFF.

When we ALTER a database to ALLOW_SNAPSHOT_ISOLATION, SQL Server waits for the
completion of all currently active transactions and in the meantime the database status is
set to IN_TRANSITION_TO_ON. At this point, any new UPDATE or DELETE transactions
will start generating versions in the version store.

151

Chapter 6: Optimistic Concurrency

During the transition period, we can open a new session, and execute the SET
TRANSACTION ISOLATION LEVEL SNAPSHOT command successfully, but no new
SNAPSHOT transactions can actually start until the transactions that were active when
we issued the ALTER DATABASE are complete. This is because any data modification
transactions that were already running at that time will not be storing row versions, as
the data is changed, so any new SI transactions would have no committed versions of the
data to read.

If we try to SELECT data in a SI session, while the database is still in a transition state, we
see the following error message:

Msg 3956, Level 16, State 1, Line 1
Snapshot isolation transaction failed to start in database 'AdventureWorks'
because the ALTER DATABASE command which enables snapshot isolation for this
database has not finished yet. The database is in transition to pending ON state.
You must wait until the ALTER DATABASE Command completes successfully.

As soon as all transactions have finished that were active when the ALTER command
began, the ALTER can finish and the state change will be complete. The database will now
be in the state ALLOW_SNAPSHOT_ISOLATION.

Taking the database out of ALLOW_SNAPSHOT_ISOLATION mode is similar and, again,
there is a transition phase.

•	 SQL Server waits for the completion of all active transactions, and the database status
is set to IN_TRANSITION_TO_OFF.

•	 New snapshot transactions cannot start.

•	 Existing snapshot transactions still execute snapshot scans, reading from the
version store.

•	 New transactions continue generating versions.

152

Chapter 6: Optimistic Concurrency

Working with RCSI

RCSI is a statement-level snapshot isolation, which means any queries will see the
most recent committed values as of the beginning of the statement (as opposed to the
beginning of the transaction). Remember that RCSI is just a non-locking variation of
READ COMMITTED isolation, so there is no guarantee that read operations are repeatable.

The best way to understand what this means is to see it in action. Example 6-1 shows
two transactions running in the AdventureWorks database, which has been enabled for
RCSI. Before either transaction starts running, the ListPrice value of Product 922
is 3.99.

Time Transaction 1 Transaction 2

1 BEGIN TRAN
UPDATE Production.Product
SET ListPrice = 10.00
WHERE ProductID = 922;

BEGIN TRAN

2 SELECT ListPrice
FROM Production.Product
WHERE ProductID = 922;
-- SQL Server returns 3.99

3 COMMIT TRAN SELECT ListPrice
FROM Production.Product
WHERE ProductID = 922;
-- SQL Server returns 10.00

4 COMMIT TRAN

Example 6-1:	 A SELECT running in RCSI.

153

Chapter 6: Optimistic Concurrency

We should note that at Time = 2, the change made by Transaction 1 is still uncommitted,
so it still holds a lock on the row for ProductID = 922. However, Transaction 2 will not
block on that lock; it will have access to an old version of the row with a last committed
ListPrice value of 3.99. After Transaction 1 has committed and released its lock,
Transaction 2 will see the new value of the ListPrice.

Again, keep in mind that RCSI is just a variation of the default isolation level READ
COMMITTED. The same behaviors, indicated back in Table 1-1, are allowed and disallowed.
In READ COMMITTED isolation, the only guarantee is that we won't read dirty (uncom-
mitted) data. With pessimistic concurrency, SQL Server prevents us from reading the dirty
data by locking it, and preventing other processes from reading that data, until the trans-
action commits or rolls back, and the data is no longer dirty. With optimistic concurrency,
SQL Server prevents us from reading the dirty data by providing us with older versions of
the data that were committed.

The biggest benefit of RCSI is that we can introduce greater concurrency because readers
do not block writers and writers do not block readers. Don't forget that writers do still
block writers, because the normal locking behavior applies to all UPDATE, DELETE, and
INSERT operations. No SET options are required for any session to take advantage of
RCSI, so we can reduce the concurrency impact of blocking and deadlocking without any
change in our applications.

Working with SI

SI offers a transactionally consistent view of the data. Any data read will be the most
recent committed version, as of the beginning of the transaction, rather than the
statement. This prevents, not only dirty reads, but also non-repeatable reads and
phantom reads. A key point to keep in mind is that the transaction does not start at the
BEGIN TRAN statement; for the purposes of SI, a transaction starts the first time the
transaction accesses any data in the database.

154

Chapter 6: Optimistic Concurrency

As an example of SI, let's revisit our example from the RCSI section, and see
how the behavior differs. If you're going to run this example, make sure you set
READ_COMMITTED_SNAPSHOT to OFF for the database. Example 6-2 shows two
transactions running in the AdventureWorks database, which has been enabled for
SI by setting ALLOW_SNAPSHOT_ISOLATION to ON. Before either transaction starts
running, the ListPrice value of Product 923 is 4.99.

Even though Transaction 1 has committed, Transaction 2 continues to return the initial
value it read of 4.99, until Transaction 2 completes. Only after Transaction 2 is done, will
the connection read a new value for ListPrice.

Time Transaction 1 Transaction 2

1 BEGIN TRAN

2 UPDATE Production.Product
SET ListPrice = 10.00
WHERE ProductID = 923;

SET TRANSACTION ISOLATION
LEVEL SNAPSHOT

3 BEGIN TRAN

4 SELECT ListPrice
FROM Production.Product
WHERE ProductID = 923;
-- SQL Server returns 4.99
-- beginning of the
-- transaction

5 COMMIT TRAN

155

Chapter 6: Optimistic Concurrency

Time Transaction 1 Transaction 2

6 SELECT ListPrice
FROM Production.Product
WHERE ProductID = 923;
-- SQL Server returns 4.99

-- Return the committed value
-- as of the beginning of the
-- transaction

7 COMMIT TRAN

8 SELECT ListPrice
FROM Production.Product
WHERE ProductID = 923;
-- SQL Server returns 10.00

Example 6-2:	 A SELECT running in a SNAPSHOT transaction.

Viewing database state

We can enable a database for SI and/or RCSI but enabling one does not automatically
enable or disable the other. We enable or disable each one individually using separate
ALTER DATABASE commands.

The catalog view sys.databases contains several columns that report on the
snapshot isolation state of a database. The column snapshot_isolation_state
has possible values of 0 to 4, indicating each of the four possible SI states, and the
snapshot_isolation_state_desc column spells out the state. Table 6-1
summarizes what each state means.

156

Chapter 6: Optimistic Concurrency

Snapshot Isolation State Description

OFF

SI is disabled in the database. In other words, transactions in
snapshot isolation are not allowed. Database versioning state
is initially set to OFF during recovery. If versioning is enabled,
versioning state is set to ON after recovery.

IN_TRANSITION_TO_ON

The database is in the process of enabling SI. It waits for the
completion of all update transactions that were active when the
ALTER DATABASE command was issued. New update transac-
tions in this database start paying the cost of versioning by
generating row versions. Transactions under snapshot isolation
cannot start.

ON

SI is enabled. New snapshot transactions can start in this
database. Existing snapshot transactions (in another snapshot-
enabled database) that start before versioning state is turned
ON cannot do a snapshot scan in this database because the
snapshot those transactions are interested in is not properly
generated by the update transactions.

IN_TRANSITION_TO_OFF

The database is in the process of disabling the SI state and
is unable to start new snapshot transactions. Update transac-
tions still pay the cost of versioning in this database.
Existing snapshot transactions can still do snapshot scans.
IN_TRANSITION_TO_OFF does not become OFF until all
existing transactions finish.

Table 6-1:	 Possible values for database option ALLOW_SNAPSHOT_ISOLATION.

The is_read_committed_snapshot_on column has a value of 0 or 1. Table 6-2
summarizes what each state means.

157

Chapter 6: Optimistic Concurrency

READ_COMMITTED_SNAPSHOT

State Description

0

READ_COMMITTED_SNAPSHOT is disabled.

Database versioning state is initially set to 0 during
recovery. If READ_COMMITTED_SNAPSHOT was
enabled in the database being recovered, after recovery
the READ_COMMITTED_SNAPSHOT state is set to 1.

1

READ_COMMITTED_SNAPSHOT is enabled. Any query
with READ COMMITTED isolation will execute in the
non-blocking mode.

Table 6-2:	 Possible values for the database option READ_COMMITTED_SNAPSHOT.

We can see the values of each of these snapshot states for all our databases with the query
in Listing 6-4.

SELECT name ,
 snapshot_isolation_state_desc ,
 is_read_committed_snapshot_on ,
 *
FROM sys.databases

Listing 6-4:	 Determining snapshot setting for all databases.

158

Chapter 6: Optimistic Concurrency

Update conflicts

One crucial difference between the two optimistic concurrency levels is that SI can
potentially result in update conflicts when a process (such as a transaction that first reads
data and then tries to update it) sees the same data for the duration of its transaction and
is not blocked even though another process is changing the same data.

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION
LEVEL SNAPSHOT

2 BEGIN TRAN

3 SELECT Quantity
FROM
Production.ProductInventory
WHERE ProductID = 872;
-- SQL Server returns 324
-- This is the beginning of
-- the transaction

4 BEGIN TRAN
UPDATE
Production.ProductInventory
SET Quantity=Quantity + 200
WHERE ProductID = 872;
-- Quantity is now 524

5 UPDATE
Production.ProductInventory
SET Quantity=Quantity + 300
WHERE ProductID = 872;
-- Process will block

159

Chapter 6: Optimistic Concurrency

Time Transaction 1 Transaction 2

6 COMMIT TRAN

7 -- Process will receive Error 3960

Example 6-3:	 An update conflict in snapshot isolation.

Example 6-3 illustrates two transactions attempting to update the Quantity value of
the same row in the ProductInventory table in the AdventureWorks database. Two
clerks receive shipments of a product with ProductID 872, and attempt to update their
inventory. The AdventureWorks database has ALLOW_SNAPSHOT_ISOLATION set to
ON, and before either transaction starts, the Quantity value of Product 872 is 324.

The conflict happens because Transaction 2 started when the Quantity value was 324.
When Transaction 1 updated that value, SQL Server saved the row version with a value
of 324 in the version store. Transaction 2 will continue to read that row for the duration
of the transaction. If SQL Server allowed both UPDATE operations to succeed, we would
have a classic lost update situation. Transaction 1 added 200 to the quantity, and then
Transaction 2 would add 300 to the original value and save that. The 200 added by
Transaction 1 would be completely lost. SQL Server will not allow that.

When Transaction 2 first tries to do the UPDATE, it doesn't get an error immediately;
it is simply blocked. Transaction 1 has an exclusive lock on the row, so when
Transaction 2 attempts to get an exclusive lock, it is blocked. If Transaction 1 had rolled
back its transaction, Transaction 2 would have been able to complete its UPDATE.

160

Chapter 6: Optimistic Concurrency

However, Transaction 1 committed, so SQL Server detects a conflict and generates the
following error:

Msg 3960, Level 16, State 2, Line 1
Snapshot isolation transaction aborted due to update conflict. You cannot use
snapshot isolation to access table 'Production.ProductInventory' directly or
indirectly in database 'AdventureWorks' to update, delete, or insert the row that
has been modified or deleted by another transaction. Retry the transaction or
change the isolation level for the update/delete statement.

Conflicts are possible only with SI (and not with RCSI) because SI is transaction based,
not statement based. If we executed the example in Example 6-3 in a RCSI-enabled
database, the UPDATE statement executed by Transaction 2 would not use the old value of
the data. It would be blocked when trying to read the current Quantity and then, when
Transaction 1 finished, it would read the new updated Quantity as the current value
and add 300 to that. Neither update would be lost.

When working in SI, be aware that conflicts can happen. We can minimize their
likelihood but, as with deadlocks, there is no guarantee that conflicts will never happen.
We must write applications to handle conflicts appropriately, and not assume that the
UPDATE has succeeded. If conflicts occur occasionally, consider it part of the price to pay
for use of SI. If they occur too often, you might need to take extra steps.

If update conflicts are proving to be a problem, consider carefully whether SI is necessary
for that database. If it is, determine whether the statement-based RCSI might offer the
required behavior without the cost of detecting and dealing with conflicts.

If full SI really is required, then you might consider using the UPDLOCK query hint to
prevent the conflicts. In our example, Transaction 2 could use UPDLOCK on its initial
SELECT as shown in Listing 6-5.

161

Chapter 6: Optimistic Concurrency

SELECT Quantity
FROM Production.ProductInventory WITH (UPDLOCK)
WHERE ProductID = 872;

Listing 6-5:	 Using UPDLOCK to prevent update conflicts in SI.

The UPDLOCK hint will force SQL Server to acquire UPDATE locks for Transaction 2, on
the selected row. When Transaction 1 then tries to update that row, it will block. It is not
using SI, so it will not be able to see the previous value of Quantity. Transaction 2 can
perform its UPDATE because Transaction 1 is blocked, and it will commit. Transaction 1
can then perform its UPDATE on the new value of Quantity, and neither UPDATE will
be lost.

Summary of snapshot-based isolation levels

SI and RCSI are similar, in the sense that they are based on versioning of rows
in a database. However, there are some key differences in how we enable these
options from an administration perspective, and in how they affect our applications.
We've discussed many of these differences already but, for completeness, Table 6-3
lists both the similarities and the differences between the two types of snapshot-
based isolation.

SNAPSHOT READ COMMITTED SNAPSHOT

The database must be configured to allow
SI, and the session must issue the command
SET TRANSACTION ISOLATION LEVEL
SNAPSHOT.

The database must be configured to use RCSI,
and sessions must use the default isolation
level. No code changes are required.

162

Chapter 6: Optimistic Concurrency

SNAPSHOT READ COMMITTED SNAPSHOT

Enabling SI for a database is an online opera-
tion. It allows the DBA to turn on versioning
for one particular application, such as big
reporting snapshot transactions, and turn off
versioning after the reporting transaction has
started to prevent new snapshot transactions
from starting.

Turning on SI state in an existing database
is synchronous. When the ALTER
DATABASE command is given, control
does not return to the DBA until all exist-
ing update transactions that need to create
versions in the current database finish. At
this time, ALLOW_SNAPSHOT_ISOLATION
is changed to ON. Only then can users start a
snapshot transaction in that database.
Turning off SI is also synchronous.

Enabling RCSI for a database requires an X lock
on the database. All users must be kicked out of
a database to enable this option.

There are no restrictions on active sessions
in the database when this database option
is enabled.

There should be no other sessions active in the
database when you enable this option.

If an application runs a snapshot transaction
that accesses tables from two databases,
the DBA must turn on ALLOW_SNAPSHOT_
ISOLATION in both databases before the
application starts a snapshot transaction.

RCSI is really a table-level option, so the table
from each database can have its own individual
setting. One table might get its data from the
version store, and the other table will be read-
ing only the current versions of the data. There
is no requirement that both databases must
have the RCSI option enabled.

163

Chapter 6: Optimistic Concurrency

SNAPSHOT READ COMMITTED SNAPSHOT

The IN_TRANSITION versioning states do
not persist. Only the ON and OFF states are
remembered on disk.

There are no IN_TRANSITION states here.
Only ON and OFF states persist.

When a database is recovered after a server
crash, shut down, restored, attached, or
made ONLINE, all versioning history for that
database is lost. If database versioning state is
ON, we can allow new snapshot transactions
to access the database, but we must prevent
previous snapshot transactions from access-
ing the database. Those previous transactions
are interested in a point in time before the
database recovers.

N/A. This is an object-level option; it is not at
the transaction level.

If the database is in the IN_TRANSITION_
TO_ON state, ALTER DATABASE SET ALLOW_
SNAPSHOT_ISOLATION OFF will wait for
about 6 seconds and might fail if the database
state is still in the IN_TRANSITION_TO_ON
state. The DBA can retry the command after
the database state changes to ON. This is
because changing the database versioning
state requires a U lock on the database, which
is compatible with regular users of the data-
base who get an S lock but not compatible
with another DBA who already has a U lock
to change the state of the database.

N/A. This option can be enabled only when
there is no other active session in the database.

164

Chapter 6: Optimistic Concurrency

SNAPSHOT READ COMMITTED SNAPSHOT

For read-only databases, versioning is
automatically enabled. You still can use
ALTER DATABASE SET ALLOW_SNAPSHOT_
ISOLATION ON for a read-only database.
If the database is made read-write later,
versioning for the database is still enabled.

Similar.

If there are long-running transactions, a DBA
might need to wait a long time before the
versioning state change can finish. A DBA can
cancel the wait, and versioning state will be
rolled back and set to the previous one.

N/A.

You cannot use ALTER DATABASE to change
database versioning state inside a user
transaction.

Similar.

You can change the versioning state of
tempdb. The versioning state of tempdb
is preserved when SQL Server restarts,
although the content of tempdb is not
preserved.

You cannot turn this option ON
for tempdb.

You can change the versioning state of the
master database.

You cannot change this option for the
master database.

You can change the versioning state of
model. If versioning is enabled for model,
every new database created will have version-
ing enabled as well. However, the versioning
state of tempdb is not automatically enabled
if you enable versioning for model.

Similar, except that there are no implications
for tempdb.

165

Chapter 6: Optimistic Concurrency

SNAPSHOT READ COMMITTED SNAPSHOT

You can turn this option ON for msdb.

You cannot turn on this option ON for msdb
because this can potentially break the appli-
cations built on msdb that rely on blocking
behavior of READ COMMITTED isolation.

A query in an SI transaction sees data that
was committed before the start of the trans-
action, and each statement in the transaction
sees the same set of committed changes.

A statement running in RCSI sees everything
committed before the start of the statement.
Each new statement in the transaction picks
up the most recent committed changes.

SI can result in update conflicts that might
cause a rollback or abort the transaction.

There is no possibility of update conflicts.

Table 6-3:	 SNAPSHOT vs. READ COMMITTED SNAPSHOT isolation.

The Version Store

As soon as we enable a SQL Server database for ALLOW_SNAPSHOT_ISOLATION or
READ_COMMITTED_SNAPSHOT, all UPDATE and DELETE operations start generating
versions of the previously committed rows, and they store those row versions in the
version store, on data pages in tempdb. SQL Server must retain version rows in the
version store only as long as there are snapshot transactions and queries that might need
them. SQL Server provides several DMVs that contain information about active snapshot
transactions and the version store. We won't cover all the details of all of those DMVs, but
we'll look at some of the crucial ones that can help us determine how much use is being
made of the version store, and what snapshot transactions might be affecting the versions
that need to be kept available.

166

Chapter 6: Optimistic Concurrency

The first DMV we'll look at, sys.dm_tran_version_store, contains information
about the actual rows in the version store. Run the code in Listing 6-6 to make a copy
of the Production.Product table, and then turn on ALLOW_SNAPSHOT_ISOLATION
in the AdventureWorks database. Finally, verify that the option is ON and that there
are currently no rows in the version store. Remember to close any active transactions
currently using AdventureWorks.

USE AdventureWorks;
IF EXISTS (SELECT 1
 FROM sys.tables
 WHERE name = 'NewProduct')
 DROP TABLE NewProduct;
GO
SELECT *
INTO NewProduct
FROM Production.Product;
GO
ALTER DATABASE ADVENTUREWORKS SET ALLOW_SNAPSHOT_ISOLATION ON;
GO
SELECT name ,
 snapshot_isolation_state_desc ,
 is_read_committed_snapshot_on
FROM sys.databases
WHERE name = 'AdventureWorks';
GO
SELECT COUNT(*)
FROM sys.dm_tran_version_store
GO

Listing 6-6:	 Enabling a database for SNAPSHOT isolation.

Having verified that ALLOW_SNAPSHOT_ISOLATION is ON (and making sure
READ_COMMITTED_SNAPSHOT is OFF) and there are no rows in the version store,
we can proceed. Listing 6-7 runs a simple UPDATE statement on the NewProduct table
and then re-examines the version store. What we should see is that, as soon as we enable
ALLOW_SNAPSHOT_ISOLATION, SQL Server starts storing row versions, even if there are
no snapshot transactions that need to read those versions.

167

Chapter 6: Optimistic Concurrency

UPDATE NewProduct
SET ListPrice = ListPrice * 1.1;
GO
SELECT COUNT(*)
FROM sys.dm_tran_version_store;
GO

Listing 6-7:	 Checking the version store after an update of data in an SI-enabled database.

We should now see 504 rows in the version store, because there are 504 rows in the
NewProduct table. SQL Server writes to tempdb the previous version of each row, prior
to the update.

Snapshot-based isolation and heavily updated databases

SQL Server starts generating versions in tempdb as soon as we enable a database for one of the snap-

shot-based isolation levels. In a heavily updated database, this can affect the behavior of other queries

that use tempdb, as well as the server itself.

The version store maintains a linked list of previously committed versions of each row in
the database. The current row points to the next older row, which can point to an older
row, and so on. The end of the list is the oldest version of that particular row. To support
row versioning, a row needs 14 additional bytes of overhead information: 8 bytes are for
the pointer to the previous version of the row, and 6 bytes are to keep track of the XSN
representing the time the row was modified. If a database is in a snapshot-based isolation
level, all changes to both data and index rows must be versioned. A snapshot query
traversing an index still needs access to index rows pointing to the older (versioned) rows.
Therefore, in the index levels, we might have old values, as ghosts, existing simultane-
ously with the new value, and the indexes can require more storage space.

SQL Server will remove the extra 14 bytes of versioning information if we change the
database to a non-snapshot isolation level. Having changed the database option, each
time we update a row containing versioning information, SQL Server removes the
versioning bytes.

168

Chapter 6: Optimistic Concurrency

Management of the version store

SQL Server manages the version store size automatically, and maintains a cleanup
thread to make sure it does not keep versioned rows around longer than needed. For
queries running under SI, the version store retains the row versions until the transaction
that modified the data completes and the transactions containing any statements that
reference the modified data complete. For SELECT statements running under RCSI, a
particular row version is no longer required, and is removed, once the SELECT statement
has executed.

SQL Server performs the regular cleanup function as a background process, which
runs every minute and reclaims all reusable space from the version store. If tempdb
actually runs out of free space, SQL Server calls the cleanup function and will increase
the size of the files, assuming we configured the files for auto-grow. If the disk gets so
full that the files cannot grow, SQL Server will stop generating versions. If that happens,
any snapshot query that needs to read a version that was not generated due to space
constraints will fail.

Although a full discussion of monitoring and troubleshooting the tempdb and the
version store is beyond the scope of this book, note that more than a dozen perfor-
mance counters can help, including counters to keep track of transactions that use
row versioning. The counters below are contained in the SQLServer:Transactions
performance object. SQL Server Books Online provides additional details and
additional counters.

•	 Free space in tempdb – This counter monitors the amount of free space in the
tempdb database. We can track this value to detect when tempdb is running out of
space, which might lead to problems keeping all the necessary version rows.

•	 Version store size – This counter monitors the size in KB of the version store.
Monitoring this counter can help determine a useful estimate of the additional space
you might need for tempdb.

169

Chapter 6: Optimistic Concurrency

•	 Version generation rate and version cleanup rate – These counters monitor the rate at
which space is acquired and released from the version store, in KB per second.

•	 Update conflict ratio – This counter monitors the ratio of update snapshot transac-
tions that have update conflicts. It is the ratio of the number of conflicts compared to
the total number of update snapshot transactions.

•	 Longest transaction running time – This counter monitors the longest running
time in seconds of any transaction using row versioning. It can be used to determine
whether any transaction is running for an unreasonable amount of time, as well as
helping us to determine the maximum size needed in tempdb for the version store.

•	 Snapshot transactions – This counter monitors the total number of active snapshot
transactions.

Snapshot transaction metadata

Besides sys.dm_tran_version_store, two other important DMVs for observing
snapshot transaction behavior are sys.dm_tran_transactions_snapshot, and
sys.dm_tran_active_snapshot_database_transactions.

All three of these views contain a column called transaction_sequence_num, which
is the XSN discussed earlier. Each transaction is assigned a monotonically increasing
XSN value when it starts a snapshot read, or when it writes data in a snapshot-enabled
database. The XSN is reset to 0 when SQL Server is restarted. Transactions that do not
generate version rows and do not use snapshot scans will not receive a XSN.

Another column, transaction_id, is also used in some of the snapshot transaction
metadata. A transaction ID is a unique identification number assigned to the transaction.
It is used primarily to identify the transaction in locking operations. However, it can also
help us to identify which transactions are involved in snapshot operations. The trans-
action ID value is incremented for every transaction across the whole server, including

170

Chapter 6: Optimistic Concurrency

internal system transactions so, regardless of whether or not that transaction is involved
in any snapshot operations, the current transaction ID value is usually much larger than
the current XSN.

We can check current transaction number information using the view
sys.dm_tran_current_transaction, which returns a single row containing
the columns below.

•	 transaction_id – Displays the transaction ID of the current transaction. When
selecting from the view inside a user-defined transaction, we should continue to see
the same transaction_id every time we select from the view. When running a
SELECT from sys.dm_tran_current_transaction outside of a transaction, the
SELECT itself will generate a new transaction_id value and a different value will be
seen every time the same SELECT is executed, even in the same connection.

•	 transaction_sequence_num – The XSN of the current transaction, if it has one.
Otherwise, this column returns 0.

•	 transaction_is_snapshot – Value is 1 if the current transaction was started under
SNAPSHOT isolation; otherwise, it is 0. That is, this column will be 1 if the current
session has explicitly issued SET TRANSACTION ISOLATION LEVEL SNAPSHOT.

•	 first_snapshot_sequence_num – When the current transaction started, it took a
snapshot of all active transactions, and this value is the lowest XSN of the transactions
in the snapshot.

•	 last_transaction_sequence_num – The most recent XSN generated by
the system.

•	 first_useful_sequence_num – The upper bound (i.e. oldest) XSN of a transaction
that is storing row versions. SQL Server need not retain in the version store any rows
with an XSN less than this value.

171

Chapter 6: Optimistic Concurrency

In order to demonstrate how the values in the snapshot metadata are updated, we'll
create a simple versioning scenario, as shown in Listing 6-8a. It will not provide a
complete overview, but it will allow you to start exploring the versioning metadata
for your own queries. The example uses the AdventureWorks database, which has
ALLOW_SNAPSHOT_ISOLATION set to ON.

-- This is Connection 1
USE AdventureWorks;
GO
IF EXISTS (SELECT 1
 FROM sys.tables
 WHERE name = 't1')
 DROP TABLE t1;
GO
CREATE TABLE t1
 (
 col1 INT PRIMARY KEY ,
 col2 INT
);
GO
INSERT INTO t1
VALUES (1, 10),
 (2, 20),
 (3, 30);
GO
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
GO
BEGIN TRAN
SELECT *
FROM t1;
GO
SELECT *
FROM sys.dm_tran_current_transaction;
SELECT *
FROM sys.dm_tran_version_store;
SELECT *
FROM sys.dm_tran_transactions_snapshot;

-- The transaction is NOT committed or rolled back

Listing 6-8a:	 Examining metadata within a snapshot transaction.

172

Chapter 6: Optimistic Concurrency

The sys.dm_tran_current_transaction view should show something like this: the
current transaction does have an XSN, and the transaction is a snapshot transaction. Also
note that the first_useful_sequence_num value is the same as this transaction's
XSN because currently there are no other valid snapshot transactions. Let's refer to this
transaction's XSN as XSN1.

The version store should be empty (unless you've done other snapshot tests within
the last minute). Also, sys.dm_tran_transactions_snapshot should be empty,
indicating that there were no snapshot transactions that started while other transactions
were still in progress.

Listing 6-8b starts a new connection (Connection 2), runs an UPDATE, and examines some
of the metadata for the current transaction.

-- This is Connection 2:
BEGIN TRAN
GO
UPDATE t1
SET col2 = 100
WHERE col1 = 1
SELECT *
FROM sys.dm_tran_current_transaction;
GO

Listing 6-8b:	 Start an UPDATE, running concurrently with the SNAPSHOT transaction from

Listing 6-8a, and examine the metadata.

Note that, although this second transaction has an XSN because it will generate versions,
it is not running in SI, so the transaction_is_snapshot value is 0. We'll refer to this
transaction's XSN as XSN2.

Listing 6-8c starts our third transaction (our second SNAPSHOT transaction), in
Connection 3, to perform another SELECT (don't worry, this is the last one and we won't
be keeping it around.) It will be almost identical to the first SELECT, but there will be an
important difference in the metadata results.

173

Chapter 6: Optimistic Concurrency

-- This is Connection 3:
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
GO
BEGIN TRAN
SELECT *
FROM t1;
GO
SELECT *
FROM sys.dm_tran_current_transaction;
SELECT *
FROM sys.dm_tran_transactions_snapshot;
GO

Listing 6-8c:	 Examining metadata when a second SNAPSHOT transaction is running.

In the sys.dm_tran_current_transaction view, we'll see a new XSN for this
transaction (XSN3), and that the value for first_snapshot_sequence_num and
first_useful_sequence_num are both the same as XSN1. The query against the
sys.dm_tran_transactions_snapshot view reveals that this transaction with XSN3
has two rows, indicating the two transactions that were active when this one started.
Both XSN1 and XSN2 show up in the snapshot_sequence_num column.

We can now either COMMIT or ROLLBACK this transaction in Connection 3, and then
close the connection. Having done so, go back to Connection 2, where we started the
UPDATE, and COMMIT it. Now, go back to the first SELECT transaction in Connection 1
and rerun the SELECT statement (SELECT * FROM t1;), staying in the same
transaction.

Even though the UPDATE in Connection 2 has committed, we will still see the original
data values because we are running a SNAPSHOT transaction. We can examine the
sys.dm_tran_active_snapshot_database_transactions view with the query
in Listing 6-9.

174

Chapter 6: Optimistic Concurrency

SELECT transaction_sequence_num ,
 commit_sequence_num ,
 is_snapshot ,
 session_id ,
 first_snapshot_sequence_num ,
 max_version_chain_traversed ,
 elapsed_time_seconds
FROM sys.dm_tran_active_snapshot_database_transactions

Listing 6-9:	 Examining sys.dm_tran_active_snapshot_database_transactions.

The output is omitted, as it is too wide for the page, but there are many interesting
columns returned. In particular, the transaction_sequence_num column contains
XSN1, which is the XSN for the current connection. We could actually run this query
from any connection; it shows all active snapshot transactions in the SQL Server instance
and, because it includes the session_id, we can join it to sys.dm_exec_sessions to
get information about the connection that is running the transaction, as shown in
Listing 6-10.

SELECT transaction_sequence_num ,
 commit_sequence_num ,
 is_snapshot ,
 t.session_id ,
 first_snapshot_sequence_num ,
 max_version_chain_traversed ,
 elapsed_time_seconds ,
 host_name ,
 login_name ,
 transaction_isolation_level
FROM sys.dm_tran_active_snapshot_database_transactions t
 JOIN sys.dm_exec_sessions s ON t.session_id = s.session_id

Listing 6-10:	 Query to return information about active snapshot transactions and the

sessions running those transactions.

175

Chapter 6: Optimistic Concurrency

Another column of note is max_version_chain_traversed. Although now its value
should be 1, we can change that. Go back to Connection 2, in Listing 6-8b, and run the
UPDATE statement shown in Listing 6-11 and then examine the version store to see the
rows being added. Note that we use BEGIN TRAN and COMMIT TRAN for the UPDATE,
even though they are not necessary for a single statement transaction, to make it clear
that this transaction is complete.

BEGIN TRAN
UPDATE t1
SET col2 = 300
WHERE col1 = 1
COMMIT TRAN;

SELECT *
FROM sys.dm_tran_version_store;

Listing 6-11:	 Querying the version store after a second UPDATE.

Return to Connection 1, run the same SELECT inside the original transaction and look
again at the max_version_chain_traversed column in sys.dm_tran_active_
snapshot_database_transactions. You should see that the number keeps growing.
Repeated UPDATE operations, either in Connection 2 or in a new connection, will cause
the max_version_chain_traversed value to keep increasing, as long as Connection
1 stays in the same transaction. Keep this in mind as an added cost of using snapshot
isolation. As we perform more updates on data needed by snapshot transactions, our
read operations will take longer because SQL Server will have to traverse a longer version
chain to get the data needed by our transactions.

This is just the tip of the iceberg regarding how we can use the snapshot and transaction
metadata to examine the behavior of our snapshot transactions.

176

Chapter 6: Optimistic Concurrency

Choosing a Concurrency Model

Pessimistic concurrency is the default in SQL Server 2005 and was the only choice in
all earlier versions of SQL Server. Transactional behavior is guaranteed by locking, at
the cost of greater blocking. When accessing the same data resources, readers can block
writers and writers can block readers.

SQL Server was designed and built, initially, to use pessimistic concurrency. Therefore,
we should consider using that model unless we can verify that optimistic concurrency
really will work better for our applications. If we have an application where the cost of
blocking is becoming excessive, and where many of the operations need to be performed
in READ UNCOMMITTED isolation, optimistic concurrency is definitely worth considering.

Warning: The NOLOCK hint and RCSI

If application code invokes READ UNCOMMITTED isolation by using the NOLOCK hint (or the equivalent

READUNCOMMITTED hint), changing the database to RCSI will have no effect. The NOLOCK hint will

override the database setting, and SQL Server will continue to read the uncommitted (dirty) data. The

only solution is to update the code to remove the hints.

In most situations, RCSI is recommended over SI for several reasons.

•	 RCSI consumes less tempdb space than SI.

•	 RCSI works with distributed transactions; SI does not.

•	 RCSI does not produce update conflicts.

•	 RCSI does not require any change in your applications. All that is needed is one change
to the database options. Any of your applications written using the default READ
COMMITTED isolation level will automatically use RCSI after making the change at the
database level.

177

Chapter 6: Optimistic Concurrency

Use of SI can be considered in the following situations:

•	 The probability is low that any transactions will have to be rolled back because of
an update conflict.

•	 Reports, based on long-running, multi-statement queries, need to be generated with
point-in-time consistency. Snapshot isolation provides the benefit of repeatable reads
without being blocked by concurrent modification operations.

Optimistic concurrency does have benefits, but also be aware of the costs. To summarize
the benefits:

•	 SELECT operations do not acquire shared locks, so readers and writers will not block
each other.

•	 All SELECT operations will retrieve a consistent snapshot of the data.

•	 The total number of locks needed is greatly reduced compared to pessimistic
concurrency, so less system overhead is used.

•	 SQL Server will need to perform fewer lock escalations.

•	 Deadlocks will be less likely to occur.

When weighing concurrency options, we must consider the cost of the snapshot-based
isolation levels.

•	 SELECT performance can be negatively affected when long-version chains must be
scanned. The older the snapshot, the more time it will take to access the required row
in an SI transaction.

•	 Row versioning requires additional resources in tempdb.

•	 Whenever either of the snapshot-based isolation levels is enabled for a database,
UPDATE and DELETE operations must generate row versions. In general, INSERT
operations do not generate row versions, but there are some cases where they might.

178

Chapter 6: Optimistic Concurrency

In particular, if we insert a row into a table with a unique index, then if there is an
older version of the row with the same key value as the new row, and that old row still
exists as a ghost, our new row will generate a version.

•	 Row versioning information increases the size of every affected row by 14 bytes.

•	 UPDATE performance might be slower due to the work involved in maintaining the
row versions.

•	 If SQL Server detects a conflict, it may roll back an UPDATE operation that is
using SI. We must program our applications to deal with any conflicts that occur.

•	 Carefully manage the space in tempdb. If there are very long-running transactions,
SQL Server must retain in tempdb all the versions generated by UPDATE transactions
during that time. If tempdb runs out of space, UPDATE operations won't fail, but
SELECT operations that need to read versioned data might fail.

To maintain a production system using either of the snapshot-based isolation levels, be
sure to allocate enough disk space for tempdb so that there is always at least 10 percent
free space. If the free space falls below this threshold, system performance may suffer
because SQL Server will expend more resources trying to reclaim space in the version
store. The formula below provides a rough estimate of the size required by the
version store.

[size of common version store] = 2 * [version store data generated per minute]

* [longest running time (minutes) of the transaction]

For long-running transactions, it might be useful to monitor the generation and cleanup
rate using Performance Monitor, to estimate the maximum size needed.

179

Chapter 6: Optimistic Concurrency

Final Recommendations

Understand SQL Server's default behavior for managing concurrency.
Although I presented a number of different ways that we could override this default,
98% of the time it's best to let SQL Server handle the concurrency management. Having
decided to use either pessimistic or optimistic concurrency, we should let SQL Server take
it from there. This is probably the single most important thing we can do to troubleshoot
concurrency problems.

Make sure your application developers know something about how SQL Server
manages transactions.
Many blocking problems are the result of an application starting a transaction and then
not processing the data quickly (e.g. due to reading the rows one at a time from the
results) in order to terminate the transaction.

Understand the difference between blocking and waiting.
A process may be waiting for many things besides locks, and not every process holding
onto locks is blocking another process. Get very familiar with the contents of the
sys.dm_exec_requests and sys.tran_tran_locks views.

Understand the difference between blocking and deadlocking.
Although deadlocking usually sounds like a much more serious situation, because SQL
Server handles it automatically, in most cases it has much less impact on total system
throughput than blocking. If an application is coded to check for deadlock error message
1205 and respond appropriately, you may never experience any system problems from
an occasional deadlock. However, make it a regular habit to monitor the number of
deadlocks occurring, so you're aware when something changes.

180

Chapter 6: Optimistic Concurrency

Finally, practice using the monitoring tools even when you don't think you're
having problems.

•	 Get used to watching the deadlock rate and average lock wait time using
Performance Monitor.

•	 Check your error logs to see if any handled, unnoticed deadlocks have occurred
(assuming you have Trace Flag 1222 enabled).

•	 Periodically look at sys.dm_tran_locks or run one of the blocking-report
queries presented, just to see what is happening on your system.

The more we know of how our system behaves when things are going well, the quicker
we'll spot problems, track them down and resolve them.

About Red Gate
You know those annoying jobs that spoil your day
whenever they come up?

Writing out scripts to update your production database,
or trawling through code to see why it’s running so slow.

Red Gate makes tools to fix those problems for you.
Many of our tools are now industry standards. In fact,
at the last count, we had over 650,000 users.

But we try to go beyond that. We want to support you
and the rest of the SQL Server and .NET communities in
any way we can.

First, we publish a library of free books on .NET and
SQL Server. You’re reading one of them now. You can
get dozens more from www.red-gate.com/books

Second, we commission and edit rigorously accurate articles from experts on the
front line of application and database development. We publish them in our online
journal Simple Talk, which is read by millions of technology professionals each year.

On SQL Server Central, we host the largest SQL Server community
in the world. As well as lively forums, it puts out a daily dose of
distilled SQL Server know-how through its newsletter, which now
has nearly a million subscribers (and counting).

Third, we organize and sponsor events (about 50,000 of you
came to them last year), including SQL in the City, a free event
for SQL Server users in the US and Europe.

So, if you want more free books and articles, or to get
sponsorship, or to try some tools that make your life easier,

then head over to www.red-gate.com

	_GoBack
	Introduction
	Chapter 1: Concurrency and Transactions
	Pessimistic Versus Optimistic Concurrency
	Transactions
	Transaction properties
	Transaction scope
	Transaction isolation

	The Lost Update Problem
	Summary

	Chapter 2: Locking Basics
	Locking Overview
	Lock resources
	Lock modes
	Lock duration
	Lock ownership
	Locking metadata

	Locking Examples
	Example 1: SELECT with READ COMMITTED isolation level
	Example 2: SELECT with REPEATABLE READ isolation level
	Example 3: SELECT with SERIALIZABLE isolation level
	Example 4: Update with READ COMMITTED isolation level
	Example 5: Update with SERIALIZABLE isolation level (with an index)
	Example 6: Update with SERIALIZABLE isolation level not using an index
	Example 7: Creating a table
	Example 8: RID locks

	Summary

	Chapter 3: Advanced Locking Concepts
	Lock Compatibility
	Lock Mode Conversion
	Special Intent Locks
	Shared intent exclusive (SIX)
	Update intent exclusive (UIX)
	Shared intent update (SIU)

	Key-Range Locks
	RangeS-S
(shared key-range and shared resource lock)
	RangeS-U
(shared key-range and update resource lock)
	RangeX-X
(exclusive key-range and exclusive resource lock)
	RangeI-N
(insert key-range and no resource lock)
	Conversion key-range locks

	Lock Escalation
	Escalation based on SQL Server instance resource usage
	Escalation based on number of locks held by a single statement

	Other Types of Locks
	Latches
	Compile locks

	Non-Lock-Related Causes of Blocking
	Summary

	Chapter 4: Controlling Locking
	Controlling Concurrency and Locking Via the Isolation Level
	Setting a Lock Timeout
	Locking Hints
	Sharing Locks Across Connections
	Bound connections in action
	Bound connection metadata

	User-Defined Locks
	Summary

	Chapter 5: Troubleshooting Pessimistic Concurrency
	Troubleshooting Locking
	Detecting lock escalation
	Resolving lock escalation
	Controlling escalation

	Troubleshooting Blocking
	Detecting blocking problems
	Finding the cause of blocking
	Resolving blocking problems

	Troubleshooting Deadlocking
	Types of deadlock
	Automatic deadlock detection
	Finding the cause of deadlocks
	Minimizing deadlocks

	Summary

	Chapter 6: Optimistic Concurrency
	Overview of Row Versioning
	How Row Versioning Works
	Snapshot-based Isolation Levels
	Enabling snapshot-based isolation
	Working with RCSI
	Working with SI
	Viewing database state
	Update conflicts
	Summary of snapshot-based isolation levels

	The Version Store
	Management of the version store
	Snapshot transaction metadata

	Choosing a Concurrency Model
	Final Recommendations

	_GoBack
	601
	OLE_LINK3
	_GoBack
	_GoBack
	_GoBack
	_GoBack

