
 
 
 
 
 
 
 
 
 

    

    
    

Securing Enterprise Securing Enterprise Securing Enterprise Securing Enterprise 
Web Applications at Web Applications at Web Applications at Web Applications at 
the Source:  An the Source:  An the Source:  An the Source:  An 
Application Security Application Security Application Security Application Security 
PerspectivePerspectivePerspectivePerspective    

    
    

 

Author:  Eugene Lebanidze 

eugene.lebanidze@gmail.com 

 

 



 2 

EXECUTIVE SUMMARY 

 

Purpose: 

 
This paper considers a variety of application level threats facing enterprise web 
applications and how those can be mitigated in order to promote security.  Evidence 
shows that perhaps as many as sixty percent of attacks on enterprise web applications are 
facilitated by exploitable vulnerabilities present in the source code.  In this paper we take 
the approach of examining the various threats specific to the application layer along with 
their corresponding compensating controls.  Threats specific to each of the tiers of the n-
tiered enterprise web application are discussed with focus on threat modeling.  
Compensating controls are addressed at the architecture, design, implementation and 
deployment levels.  The discussion focuses around the core security services, namely 
confidentiality, integrity, authentication, authorization, availability, non-repudiation and 
accountability.  The paper examines how these core security services are supported in the 
J2EE and .NET frameworks.  Recommendations and standards from various 
organizations are considered in this paper (e.g. OWASP, NIST, etc.)   
 
We also recognize that development and deployment of a secure enterprise web-based 
application is dependent upon the organization’s enterprise security architecture (ESA) 
framework.  Therefore, we map some elements of our discussion for security architecture 
and technology issues to the five rings of the enterprise security architecture model, 
particularly in the context of the Zachman Framework enterprise architecture (EA).  
While most of the web application security threats and mitigations discussed fall in rings 
four and five, we tie the local risk to the enterprise risk in ring one of the ESA.  In this 
discussion we draw from the NIST special publications SP800-37 (“Guide for the 
Security C&A of Federal Information Systems) [20], SP800-64 (“Security Considerations 
in the Information System Development Life Cycle”) [16], SP800-53 (“Recommended 
Security Controls for Federal Information Systems”) [15], and SP800-26 (“Security Self-
Assessment Guide for Information Technology Systems”) [14].  

 

Security Criteria: 

 
The security criteria for evaluation of web application security revolve around the core 
security services collectively known as CI4A (Confidentiality, Integrity, Authentication, 
Authorization, Availability, Accountability).  Non-repudiation is another security service 
commonly tied with accountability.  In the context of enterprise web applications, 
confidentiality is concerned with the privacy of information that passes through or is 
stored inside the web application.  Integrity ensures that the data used is free from 
deliberate or accidental modification.  Authentication addresses verification of identities.  
Authentication can also be thought of in the context of source integrity.  Authorization 
focuses on access rights to various application subsystems, functionality, and data.  
Availability, an often ignored aspect of security, is nevertheless an important metric for 
the security posture of the web application.  Many attacks that compromise application 
availability exploit coding mistakes introduced at the application source level that could 



 3 

have been easily avoided.  Non-repudiation addresses the need to prove that a certain 
action has been taken by an identity without plausible deniability.  Accountability, tied 
with non-repudiation, allows holding people accountable for their actions.   
 
There are a variety of known vulnerabilities that can be exploited in web applications to 
compromise the core security services outlined above (CI4A).  While a provision of a 
complete taxonomy of attacks would be impractical, if not impossible, especially in light 
of an ever increasing ingenuity exhibited by hackers (not to mention a growing arsenal of 
hacking tools), it makes very good sense to consider the classes of vulnerabilities that a 
web application can contain that could be exploited by attackers to compromise CI4A.  
Having those classes of vulnerabilities in mind helps structure an assessment of 
application security and more importantly helps focus security analysis across all stages 
of application development, including requirement specification, architecture, design, 
implementation, testing, etc.  One organization took the initiative to provide the top ten 
classes of vulnerabilities that plague modern enterprise web applications that have the 
greatest impact on CI4A.  The Open Web Application Security Project (OWASP) has 
recommended the top ten list of application level vulnerabilities in web applications that 
make for a very useful security criteria compliance metrics.  The top ten classes of 
vulnerabilities outlined by OWASP are:  unvalidated input, broken access control, broken 
authentication and session management, cross site scripting (XSS) flaws, buffer 
overflows, injection flaws, improper error handling, insecure storage, denial of service 
and insecure configuration management [24].  Each of these is discussed in great detail 
subsequently in this paper. 
 
We also consider the various security criteria for certification and accreditation (C&A), 
as outlined in NIST SP800-37 (“Guide for the Security C&A of Federal Information 
Systems”) as they apply to development of enterprise web-based application.  
Certification analyzes risks local to the web application, such as potential vulnerabilities 
present in the source code and the corresponding compensating controls (Rings 4-5 of the 
ESA).   On the other hand, accreditation focuses on enterprise level risks that may result 
from vulnerabilities found in a web-based enterprise application. Additional security 
criteria can be gathered from SP800-53 (“Recommended Security Controls for Federal 
Information Systems”) and SP800-26 (“Security Self-Assessment Guide for Information 
Technology Systems”).   Secure enterprise web-based applications and their supporting 
technologies should follow the recommended security controls in SP800-53. 
 

Scope and Limitations: 

 
One of the most prevalent concepts in security is the defense in depth principle.  This 
principle dictates that there should be multiple levels of protection to protect critical 
assets.  The focus of this paper is on security of enterprise web applications from the 
perspective of application security.  There are certainly other perspectives from which 
web application security could and should be evaluated.  For instance, network security 
and host security also play a critical role.  However, this paper focuses on application 
security because of the special significance that this security layer has come to play.  
Many attacks on corporate applications come form inside the network, thus rendering 



 4 

such protection mechanisms as firewalls useless.  Additionally, intrusion detection 
techniques will not work when the problem is poor input validation in the application.  
The point is that network and host security can often help fight the symptoms of the 
problem where the source of the problem is in the application source.  This paper also 
discusses the architecture, design and deployment considerations that have security 
implications. 
 
It is often suggested that security is a process and not a product.  We certainly believe 
that to be true since most secure software is the result of security aware software 
development processes where security is built in and thus software is developed with 
security in mind.  In other words, throughout the various stages of the Software 
Development Lifecycle (SDLC), software project members are responsible for 
performing security related activities and producing/consuming security artifacts in order 
to provide a more structured approach to application security.  Automation of source code 
analysis for security vulnerabilities should also be applied as part of any secure 
development process.  We are omitting the discussion of security process in this paper 
due to time constraints, but it is implied that developers who apply secure coding 
techniques that we describe in this paper when developing secure enterprise web-based 
applications should operate in the context of a secure software development process.  To 
learn more about integrating security in the SDLC please refer to the Comprehensive 
Lightweight Application Security Process (CLASP) authored by John Viega and 
available free from Secure Software (www.securesoftware.com) [11].  A secure 
development process should also incorporate C&A (NIST SP-800-37), various process 
level security controls (NIST SP-800-53) and contain various metrics for security self-
assessment described in NIST SP-800-26.  Additionally, a secure process will be part of 
the enterprise security architecture where both local risk (Rings 4-5) and enterprise risks 
(Ring 1) are mitigated.   

 

Summary of Conclusions: 

 
We conclude that J2EE and .NET platforms both have fairly comparable security models 
that provide extensive support for all of the core security services.  Throughout this 
paper, as we discuss many of the specific compensating controls, we very often come 
back and tie our discussion to the key security principles.  We cannot emphasize enough 
how critical it is for all members of the software project team to be familiar with and 
follow these principles because only solutions that comply with these principles will have 
any chance of providing true protection for the core security services.  We introduced 
threat modeling as a critical ingredient for development of secure enterprise web-based 
applications.  It is impossible to defend against the threats without first understanding 
what the threats are.  To this end we recommended identifying all resources that need 
protection (assets), documenting security assumptions, identifying attack surface as well 
as input and output attack vectors, combining these vectors into attack trees (scenarios) 
and ensuring that proper mitigations are put in place at the appropriate places.  It is also 
important to remember that development and deployment of secure web-based 
applications is contingent upon a secure development process.  While we did not provide 
a detailed discussion of secure development process in this paper due to time limitation, 



 5 

the baseline process that we mentioned is derived from CLASP.  Additionally, C&A 
should be made part of this process, in order to manage both local and enterprise risk, as 
outlined in NIST SP800-37.  In addition to a secure development process that is aware of 
the various application security issues and makes it an explicit part of the process, an 
ESA is required to support development and deployment of secure enterprise web-based 
application.  We discuss the ESA rings 1-5 and show that development and deployment 
of secure enterprise web-based application depends on the enterprise security architecture 
framework. 

 
 

          

          

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Table of Contents 

 

1.0 Web Application Security in the Enterprise...……………...………………...10 
1.1 Development of Secure Web Applications within an Enterprise Security 

Architecture Framework…………....……………………………...…………………..10  
      1.1.1  Enterprise Architecture (Zachman Framework)…………………………...10 

      1.1.2  Enterprise Security Architecture:  Rings 1-5……………………………….11 

            1.2 Web Based Enterprise Applications:  Properties and Security Implications………13 

1.3 Web Based Enterprise Applications:  N-tiered Architecture………………………..13 

1.4 Application Vulnerability Categories…………………………………………………15 

     1.4.1  Unvalidated Input……………………………………………………………. 15 

     1.4.2  Broken Access Control………………………………………………………..16 

     1.4.3  Broken Authentication and Session Management…………………………..16 

     1.4.4  Cross Site Scripting (XSS)……………………………………………………17 

     1.4.5  Buffer Overflow……………………………………………………………….17 

     1.4.6  Command Injection…………………………………………………………..18 

     1.4.7  Improper Error Handling (Exception Management)………………………18 

     1.4.8  Insecure Storage………………………………………………………………18 

     1.4.9  Denial of Service (DoS)……………………………………………………….18 

     1.4.10 Insecure Configuration Management………………………………………..19 

1.5 Key Security Principles………………………………………………………………...19 

     1.5.1  Secure the Weakest Link……………………………………………………..19 

     1.5.2  Build Defense in Depth……………………………………………………….20 

     1.5.3  Secure Failure…………………………………………………………………21 

     1.5.4  Least Privilege…………………………………………………………………21 

     1.5.5  Compartmentalize…………………………………………………………….22 

     1.5.6  Simplicity of Design…………………………………………………………...23 

     1.5.7  Privacy…………………………………………………………………………23 

     1.5.8  Be Smart about Hiding Secrets………………………………………………24 

     1.5.9  Reluctance to Trust…………………………………………………………...24 

     1.5.10 Use Proven Technologies……………………………………………………..24 

2.0 Threat Modeling………………………………………………………………...25 
2.1 Introduction to Threat Modeling……………………………………………………...25 

 2.2 Sample Threat Model: Open Source Enterprise Web Application JPetStore 4.0.....25 

      2.2.1  Overview of JPetStore 4.0…………………………………………………….26 

      2.2.2  Security Assumptions…………………………………………………………26 

      2.2.3  Protected Resources…………………………………………………………..27 

      2.2.4  Application Functionality and Data Flow Diagrams……………………….28 

      2.2.5  Threats by Application Vulnerability Category (OWASP Top Ten)…...…31 

      2.2.6  Attack Surface………………………………………………………………...32 

       2.2.6.1 Input Vectors………………………………………………………...33 

       2.2.6.2 Output Vectors………………………………………………………34 

      2.2.7  Possible Threats……………………………………………………………….34 

       2.2.7.1 Input Vector Threats………………………………………………..34 

       2.2.7.2 Output Vector Threats……………………………………………...37 

     2.2.8  Threat Trees…………………………………………………………………..38 

     2.2.9  Conclusions……………………………………………………………………38  

 2.3 Microsoft’s Approach to Threat Modeling:  STRIDE and DREAD………………...39 

     2.3.1 Identify Assets…………………………………………………………………………..41 

     2.3.2 Create an Architecture Overview……………………………………………………..41 

     2.3.3 Decompose the Application……………………………………………………………43 

     2.3.4 Identify the Threats…………………………………………………………………….47 

     2.3.5 Document the Threats………………………………………………………………….50 

     2.3.6 Rate the Threats………………………………………………………………………..51 

     2.3.7 Output…………………………………………………………………………………..53 



 7 

3.0 J2EE Security…………………………………………………………………...54 
3.1 Architecture Overview………………….……………………………………………...54 

3.2 Support for Core Security Services……………………………………………………57 

    3.2.1 Authentication…………………………………………………………………………..58 

    3.2.2 Authorization……………………………………………………………………………64 

    3.2.3   Confidentiality………………………………………………………………………….69 

    3.2.4 Integrity…………………………………………………………………………………70 

    3.2.5 Availability……………………………………………………………………………...70 

    3.2.6 Accountability…………………………………………………………………………..70 

    3.2.7 Non-Repudiation………………………………………………………………………..70 

3.3 Programmatic Compensating Controls……………………………………………….71 

    3.3.1 Programmatic Authentication in Servlets…………………………………………….71 

    3.3.2 JAAS API……………………………………………………………………………….72 

    3.3.3 SSL API…………………………………………………………………………………74 

4.0       .NET Security…………………………………………………………………...75 
4.1        Architecture Overview………...………..………….…………………………………..75 

                  4.1.1  .NET Framework Overview………………………………………………….75 

    4.1.2  Common Library Runtime (CLR)…………………………………………..77 

    4.1.3  Class Library………………………………………………………………….78 

                 4.1.4  Web Based Application Architecture……………………………………….78 

                 4.1.5  Building Web Applications with ASP.NET…………………………………80 

4.2        Support for Core Security Services……………………………………………………81 

   4.2.1  Role-Based vs. Code Access Security……………………………………...…81 

   4.2.2  Security in Managed Code……………………………………………………83 

   4.2.3  Declarative vs. Imperative Security……………………………………….…84 

   4.2.4  Security Namespaces……………………………………………………….…85 

4.3        Programmatic Compensating Controls……………………………………………….88 

                  4.3.1               Coding Secure Assemblies……………………………………………………88 

  4.3.1.1  Top Threats…………………………………………………………89 

  4.3.1.2  Privileged Code………………………………………………….….90 

  4.3.1.3  Secure Class Design…………………………………………………91 

  4.3.1.4  Strong Names………………………………………………………..92 

  4.3.1.5  Exception Management…………………………………………….93 

  4.3.1.6  File Input and Output………………………………………….…..94 

  4.3.1.7  Event Logs…………………………………………………….……95 

  4.3.1.8  Registry Access……………………………………………….…….95 

  4.3.1.9  Data Access…………………………………………………….……96 

  4.3.1.10  Interacting with Unmanaged Code…………………………….….96 

  4.3.1.11  Delegates………………………………………………………….….97 

  4.3.1.12  Serialization……………………………………………………….…97 

  4.3.1.13  Issues with Threading……………………………………………….98 

  4.3.1.14  Reflection……………………………………………………………99 

  4.3.1.15  Obfuscation…………………………………………………………100 

  4.3.1.16  Cryptography………………………………………………………100 

 4.3.2 Code Access Security………………………………………………………………….103 

 4.3.3 Building Secure ASP.NET Web Applications……………………………………….109 

  4.3.3.1  Input Validation……………………………………………………110 

  4.3.3.2  Cross Site Scripting………………………………………………..115 

  4.3.3.3  SQL Injection………………………………………………………117 

  4.3.3.4  ASP.NET Authentication…………………………………………118 

  4.3.3.5  ASP.NET Authorization……………………………………….…122 

5.0       Threats and Mitigations………………………………………………………123  
5.1     Discussion of Threat Taxonomies……………………………………………………...123 

5.2      Web Tier Threats & Mitigations…………………..………………………………..…124 

5.2.1 Poor Session Management……………….…………………………………124 



 8 

5.2.2 Parameter Manipulation……………………………………………………125 

5.2.3 Path Traversal and Path Disclosure……………………………………….126 

5.2.4 Canonicalization……………………..……………………………………...127 

5.2.5 URL Encoding…………………….…………………………………………128 
5.3      Business Logic Tier Threats & Mitigations…………………………………………..130 

5.3.1 Broken Access Control……………………………………………………...130 

5.3.2 Input Validation Problems………………………………………………….131 

5.3.3 Insecure Exception Management…………………………………………...134 

5.3.4 Insecure Use of Cryptography……………………………………………...135 

5.3.5 Insecure Default Configuration…………………………………………….137 

5.3.6 Insecure Auditing/Logging………………………………………………….138 

5.4      Persistence Tier Threats & Mitigations……………………………………………….139 

5.4.1 Insecure Storage ……………………………………………………………..139 

6.0      Analysis…………………………………………………………………………140 
           6.1 J2EE vs. .NET Security………………………………………………………………140 

                     6.1.1 JVM vs. CLR………………………………………………………………..141 

       6.1.2  J2EE Class Loader vs. .NET Code Access Security………………………142 

       6.1.3  J2EE vs. .NET Security Policy……………..………………………………143 

       6.1.4  Role-Based Security…………………………………………………………143 

       6.1.5  Programmatic and Declarative Security………..…………………………144 

                    6.1.6  Cryptography…………………………………….…………………………144     

7.0      Conclusions……………………………………………………………………..144 

Appendix A – List of Acronyms……………………………………………………...147 

Appendix B  - Annotated Glossary…………………………………………………..148 

Appendix C – References……………………………………………………………..178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

Table of Tables 

 
Table 1:  Documentation of Implementation Technologies…………………………………....43 

Table 2:   Building a Security Profile……………………………………………………………47 

Table 3:  STRIDE Threats and Countermeasures……………………………………………..48 

Table 4:  Pattern for a Generic Code Injection Attack ……………………………………….50 

Table 5:  Documenting the Threats……………………………………………………………..51 

Table 6:  Threat Rating Table…………………………………………………………………..52 

              Table 7:  DREAD Rating………………………………………………………………………...52 

 Table 8:  EJB Method Invocation Authorization Decisions…………………………………...68 

 Table 9:  .NET Code Access Permission Types………………………………………………...88 

 Table 10:  ASP.NET Facilities for Input Validation………………………………………….111 

 Table 11:  Common Regular Expressions for Input Validation……………………………..114 

 

 

 

 

 

Table of Figures 

 
Figure 1:  Securing a 3-tiered Enterprise Web Application: At the Application,   Network 

and Host Layers………………………………………………………………………………….14 

Figure 2:  Sitemap for JPetStore 4.0……………………………………………………………29 
Figure 3:  JPetStore 4.0 Application Architecture……………………………………………..30 
Figure 4:  JPetStore 4.0 Application Data Flow………………………………………………..31 
Figure 5:  Flow of Application Attack on a Web Based Enterprise Application…………….33 

Figure 6:  Threat Modeling Process Overview…………………………………………………41 
Figure 7:  Sample Application Architecture Diagram…………………………………………42 

Figure 8:  Focus of Application Decomposition Process……………………………………….43 

Figure 9:  Sample Attack Tree (Tree Representation)………………………………………...49 

Figure 10: Sample Attack Tree (Outline Representation)………………………………….…50 

Figure 11: Various Pieces of the Threat Model………………………………………………...53 

 Figure 12:  Overview of J2EE Web Application Architecture…………………………….….55 

 Figure 13:  J2EE Components, Containers and Services……………………………………...56 

Figure 14:   J2EE Four-tiered Deployment Model……………………………………………..56 

 Figure 15:  J2EE Model View Controller Architecture………………………………………..57 

 Figure 16:  J2EE Protection Domain…………………………………………………………....60 

 Figure 17:  J2EE Authentication Scenarios………………………………………………….…61 

 Figure 18:  J2EE Protection Domain:  Trusted Web Components……………………….…..63 

 Figure 19:  Sample J2EE Declarative Access Control Configuration………………………...67 

 Figure 20:  .NET Framework……………………. .....................................................................77 

 Figure 21:  .NET Client-Server Application…………………………….……………………..79 

 Figure 22:  .NET Role-Based Security……………………………………………………….…82 

 Figure 23:  .NET Code Access Security………………………………………………………...83 

Figure 24:  .NET Security Namespaces………………………………………………………...85 

 Figure 25:  .NET Top Assembly Threats……………………………………………………….89 

 Figure 26:  .NET Code Access Security Overview……………………………………………104 

 Figure 27:  Major Threats on an ASP.NET Web Application……………………………….110 

 

 

 

 



 10 

1.0 Web Application Security in the Enterprise 

 
1.1 Development of Secure Web Applications within an Enterprise Security 

Architecture Framework 

 

While most of the threats and mitigations on enterprise web-based applications that are 
discussed in this paper fall under the functional and data views of the Zachman 
Framework enterprise architecture (EA), it is important to note that security of these 
applications also largely depends on the organization’s enterprise security architecture 
(ESA) framework.  In section 1.5 we will discuss a key security principle commonly 
referred to as “defense in depth” that further suggests that a solid ESA is a necessary 
ingredient for development and deployment of secure web-based enterprise applications.  
In this section we take a closer look at the EA (Zachman Framework in particular) and 
show its role in promoting web application security.  We further discuss the five rings of 
the ESA and where the various stages of development and deployment of secure 
enterprise web-based applications fit in.  We also draw some helpful information from 
several NIST special publications, namely SP800-37 (“Guide for the Security C&A of 
Federal Information Systems), SP800-64 (“Security Considerations in the Information 
System Development Life Cycle”), SP800-53 (“Recommended Security Controls for 
Federal Information Systems”), and SP800-26 (“Security Self-Assessment Guide for 
Information Technology Systems”). 

 

1.1.1 Enterprise Architecture (Zachman Framework) 

 

The Zachman Framework model considers the six layered approach to the EA.  The 
highest level is the motivation view, followed by the time view, people view, network 
view, function view, and data view.  The extended ZF also adds a security view to the 
mix.  The motivation view focuses on the list of business goals and strategies.  This is 
important from an application security standpoint because it raises the visibility of the 
security risks posed by poorly written code.  Additionally, at a high level, a security 
awareness campaign across the organization may be required to align application security 
with the business goals and develop an improvement strategy.  This is also called the 
timing definition layer. 
 
The time view is concerned with the master schedule or list of events.  We cannot 
emphasize enough how important it is to allocate sufficient time in the schedule for 
application security review, as well as the creation of various artifacts and performance of 
certain activities associated with secure development processes.  To learn more about 
integrating application security into SDLC please refer to CLASP.  The people view 
deals with organizational charts and resource availabilities.  For instance, it is critical to 
make sure that a professional security auditor should be available as a mentor to each of 
the software project teams in order to conduct threat modeling (chapter three) as well as 
source level security reviews.   
 
The network view identifies the architecture of the network on which the enterprise web-
based application is developed and deployed.  We will discuss later in this paper that 



 11 

three layers of security protection exist:  network, host, and the application itself.  While 
various compensating controls at the network level are required, the bulk of the 
discussion in this paper focuses around the threats and mitigation at the application level.   
 
The function and data views are where we focus most of our attention in this paper.  The 
functional view deals with the various business processes performed by the application.  
It is important to note that as functional requirements are documented for the system, a 
corresponding set of security requirements should be assembled and later used in other 
parts of the development process.  Historically, the focus has been almost exclusively on 
functionalities (this is what sells after all) and not security, however, we see that the 
trends are turning around.  The data view focuses on entities and data relationship.   
 
Finally the security view of the extended Zachman Framework model defines a list of 
business assets that need protection, security approaches, as well as security services and 
mechanisms.  For instance, a threat modeling process (discussed in chapter two) will 
produce a list of business assets in need of protection.  Some possible security approaches 
may include manual security code reviews as well as usage of static analysis tools for 
automated code scanning for detection of security vulnerabilities.  Products and processes 
for application security should also be coupled with services that may include security 
awareness training, security process assessments, coding guideline review, etc. 
 
Horizontally the Zachman Framework model consists of the business model, system 
model, and the technology model.  While we focus most of our attention on the 
technology model of the secure enterprise web-based application, the other two models 
are also very important both from the “defense in depth” and from the “securing the 
weakest link” perspective.   
 

1.1.2 Enterprise Security Architecture:  Rings 1-5 

 

While EA focuses on business and reference models, ESA is primarily concerned with 
the various security technologies for the EA.  ZF provides an approximation for the ESA 
with ZF 1-5.  ZF1 considers enterprise IT security policy as a framework that is crucial 
for the enterprise security architecture, operational, physical, web security and disaster 
planning criteria.  ZF2 deals with enterprise security architecture as a framework for 
enterprise network infrastructure, integration of physical and web security guidance, as 
well as network security architecture.  ZF3 takes into account the baseline network 
infrastructure security practices.  ZF4 is concerned with certification (system level) and 
accreditation (enterprise level).  ZF5 provides the network architecture and system 
baseline security checklists.   
 
ZF 1-5 play a very important role in securing enterprise web-based applications.  For 
instance, ZF1 mandates the definition of web security guidance which is an essential step 
for communicating the best practices and policies when it comes to development and 
deployment of enterprise web-based applications.   For instance, CLASP includes some 
best practices that promote application security, with some of them mapping directly to 
ZF1, such as institution of security awareness program, monitoring of security metrics, 



 12 

identification of global security policy, etc.  ZF2 dictates integration of web security 
guidance (SP 800-64) that may include specification of operational environment, 
documenting security relevant requirements and integrating security analysis into source 
management process, among other things.  ZF3 outlines the baseline network 
infrastructure security practices that are critical for security in web applications because a 
secure web application cannot be deployed on an insecure network.  ZF4 promotes the 
C&A (SP 800-37) processes that would evaluate the risks associated with the enterprise 
web application threats on both the system and enterprise security levels.  ZF5 outlines 
the network architecture and system baseline requirements that among other things may 
include secure coding standards (SP 800-26).  CLASP provides a variety of checklists 
that would map to the ZF5 that can be used as baseline security standards. 
 
ESA focuses on the various security technologies for the EA.  These may consist of top-
down sets of identified trust modules defining network infrastructure domains and 
countermeasures/mitigations.  In this paper we focus on the application level mitigations 
to the various security threats.  Most of the time, threats can be eliminated simply by 
following secure coding guidelines.  We consider trust modules by identifying the 
various relevant trust boundaries in an enterprise web-based application and securing 
their interaction by ensuring that none of the core security services are compromised.  
ESA also helps prioritize the various risks, which is what we try to do in chapter five with 
the discussion of threats and mitigations across the various tiers of an enterprise web 
application where we suggest severities and likelihoods of exploit.  ESA helps promote 
“defense in depth” which we define later in this chapter that supports the core security 
services at many levels. 
 
Network Applications Consortium (NAC) outlines a vision for EA consisting of 
overview, governance, architecture and operations.  This helps identify ESA as part of the 
enterprise security program.  This leads us into a discussion of the five ring ESA 
architecture that differs somewhat from ZF1-5.  At the highest level (Ring 1) we have the 
overall enterprise security program whose drivers are business opportunities, business 
requirements, compliance and threats.  Program management (Ring 2) consists of 
requirements, risk management, strategy, planning, ongoing program assessment and 
education (awareness).  Governance (Ring 3) consists of principles, policies, standards, 
guidelines, procedures, enforcement and ongoing assessment.  Architecture (Ring 4) 
consists of conceptual framework, conceptual architecture, logical architecture, physical 
architecture, design and development.  Operations (Ring 5) consist of incident 
management, vulnerability management, compliance, administration and deployment.  
Much of this paper focuses on the threats and mitigations that fall within rings four and 
five, but many of the issues relevant to web application security that we have discussed 
under ZF 1-5 would also map to rings 1-3.   
 
For instance, ring one outlines security threats that can be used to derive security 
requirements (Ring 2).  Security awareness campaigns also belong in ring two that could 
raise visibility of web application security issues.  Ring three mandates policies, 
standards, and ongoing assessment, all of which are critical to web application security.  
Ongoing assessments can be used to monitor the various security metrics in order to 



 13 

control changes to the security processes.  All of the architectural, design and 
implementation issues for application security would fall under rings four and five, 
including threat modeling, automated source code analysis, etc.  An in depth discussion 
of the five ring architecture is not provided here, since we mostly focus on rings four and 
five in this paper, but as we have mentioned previously, secure enterprise web-based 
applications can only be developed and deployed in the context of the enterprise security 
architecture framework that promotes, security guidelines, policies, metrics and 
awareness.  This approach ensures the mitigations of both local and enterprise risks.  
Additionally, secure enterprise web-based applications are developed under a security 
aware software development lifecycle (e.g. CLASP) that promotes many of the same 
activities and controls that are provided by rings 1-5 and also incorporates C&A.     

 

1.2 Web Based Enterprise Applications:  Properties and Security Implications 

 
Prior to delving into the various security threats and mitigations for enterprise web 
applications, it is important to point out some of the differences between these 
applications and some of the other types of applications.  In other words, the question 
begs to be answered:  what is so special about enterprise web applications?  After all, 
there are many other types of applications, such as stand-alone host applications, 
applications for mainframe environments, traditional client-server applications, 
embedded system applications, just to name a few.  There are several properties of web 
based enterprise applications that introduce some unique security challenges.  While 
some of these properties may also be present in other types of applications, the 
combination of all of these is pretty specific to enterprise web applications.  Some of 
these properties include distributed n-tiered architecture, transparency, interoperability, 
heterogeneity, openness, scalability, failure handling, concurrency, remote access, real-
time operation, content delivery over the web, data transfer over the web and need for 
thorough input validation [2,5].   

 
Many of these properties have an impact on CI4A core security services. For instance, 
confidentiality obviously plays an important role in data transfer over the web.  
Concurrent access has important implications from the integrity perspective.  
Authentication is very important because of remote access.  Authorization can be 
compromised due to poor input validation (e.g. buffer overflows).  Finally, availability is 
an extremely important security concern in enterprise web applications and can be 
affected by concurrency, failure handling, real time operation, etc.  Since enterprise web 
applications often consist of a collection of various software components from different 
vendors, vulnerabilities in each of these components might compromise the security of 
the whole application.  Additionally, enterprise web applications are often distributed 
across heterogeneous hardware and software platforms, introducing additional security 
challenges.  The weakest link principle states that the system is only as secure as its 
weakest link and enterprise web applications have many possible places to contain weak 
links.  One of the major ones is attributable to the application layer. 

 
1.3    Web Based Enterprise Applications:  N-Tiered Architecture 

 



 14 

Most enterprise web applications utilize the n-tiered architecture that generally includes 
the web server tier, application server tier and persistence (database) tier.  There are 
various application level threats specific to each of the tiers and thus security of these 
applications should be considered in the context of the n-tiered architecture.  A detailed 
discussion of threats and mitigations across each of the tiers is offered in chapter five of 
this paper.  There are also various application level compensating controls that need to be 
provided at each tier.  Some of those controls are provided by the underlying set of 
technologies used (J2EE and .NET examples are discussed later), while others must be 
provided by the programmers, architects and designers involved in building the enterprise 
web application.  Application security must be addressed across all of the tiers and at 
multiple levels (defense in depth principle).  Following the defense in depth and securing 
the weakest link principles is crucial in development of secure enterprise web 
applications.  Figure 1 below illustrates some of the threats to a typical 3-tiered enterprise 
web application and categorizes those threats into application, network and host level.  
Network and host level threats will only be given cursory overview in this paper, while 
application level threats will be discussed in great detail.  

 

 
 

Figure 1:  Securing a 3-tiered Enterprise Web Application: At the 

Application, Network and Host Layers [10] 
 

There are several things that are important to take away from Figure 1 above.  It is 
important to understand where the compensating controls for the various threats are 
present, at the network, host or application layers.  A secure enterprise web application 
must be deployed on a secure network and reside on secure hosts.  There should never be 
a reason to justify an existing vulnerability at the application level just because the threat 
might be mitigated by some network security mechanism, as this would violate the 
defense in depth principle.  Analogously, just because the host might be configured in a 
way as to restrict the privileges of the application, does not mean that it is acceptable for 



 15 

the application to be susceptible to command injection attacks.  Configurations might 
change, or an enterprise web application might be deployed in a different environment, or 
one level of protection might be circumvented all together.  The point is that redundancy 
is instrumental to ensuring security in enterprise web applications. While some threats 
might be mitigated on multiple levels, other threats have compensating controls present 
only at the network, application or host layer.  For example, attacks exploiting poor input 
validation only have compensating controls at the application layer.  
 
There are threats on the web server tier (also called the presentation tier) that must be 
mitigated.  The fact that an attacker can access the web server remotely makes it a very 
likely target.  Additionally, the web server tier of an enterprise web based application is 
likely to become a front end of any attack on the application.  Therefore it is important to 
anticipate possible attacks on the web server and have countermeasures in place to defend 
against them.  Some common threats to the web server include profiling, denial of 
service, unauthorized access, arbitrary code execution, elevation of privileges, as well as 
viruses, worms and Trojan horses.   
 
The application server tier typically contains all of the business logic for the application.  
Some serious concerns for this tier are network eavesdropping, unauthorized access, as 
well as viruses, Trojans and worms.  A lot of problems with unauthorized access can be 
attributed to application security issues, such as exploitable buffer overflow conditions, 
command injection problems, SQL injection, etc.  We will discuss in great detail later in 
the paper the mitigations applicable at the application level.   
 
The database server tier contains the databases to which the application data is persisted.  
Some of the main threats to the database server tier include SQL injection, network 
eavesdropping, unauthorized server access and password cracking.  Most problems with 
SQL injection result from poor input validation by the application and can therefore be 
readily avoided.  Some other problems at the database server tier include insecure 
storage, where data is stored unencrypted in the database.  It is important to remember 
that data typically spends far more time in storage than it does in transit, and 
consequently protecting data during storage from the prying eyes of attackers is essential. 
 
 From the application security perspective, some of the major areas of concern at the web 
and application tiers are input validation, authentication, authorization, configuration 
management, sensitive data, session management, cryptography, parameter manipulation, 
exception management and auditing/logging.   
 

1.4 Application Vulnerability Categories 

 

This section offers a discussion on some of the most common application level 
vulnerabilities that plague web based enterprise applications.  A lot of these will be 
revisited in chapter five, but they are introduced here.  The discussion focuses around the 
OWASP top ten vulnerabilities [24].  
 

1.4.1 Unvalidated Input 



 16 

 

Unvalidated input is a fairly broad vulnerability category that has very serious 
consequences.  All web based applications need to handle input coming from a variety of 
untrusted sources (most notably the user of the application).  If the input is not validated, 
attackers can use that opportunity to attack the backend components of the applications.    
In general, validation needs to be performed each time the data crosses a trust boundary.  
Validation may be performed on the client site, but for performance purposes early.  
Client site validation should never be relied upon for security.  Validation also needs to 
happen at the web, application and database tiers.  A variety of application level attacks 
could be avoided if input validation is performed properly; those include SQL injection, 
Cross Site Scripting (XSS), buffer overflows, format string, cookie poisoning, hidden 
field manipulation, command injections, etc.  Unvalidated input could lead to 
compromise of authorization, integrity, authentication and availability security services.  
That is discussed in more detail later in the paper.  All user input in HTTP requests 
should always be aggressively validated against white lists (list of allowable input) as 
opposed to black lists (list of input that is not allowed). 
 

1.4.2 Broken Access Control 

 

Broken access control (authorization) problems result when restrictions on what 
authenticated users are allowed to do are not properly enforced.  Application 
vulnerabilities that fall in this category could allow attackers to access accounts of other 
users, view confidential information or use unauthorized functionality.  There is a variety 
of attacks that fall into this category that could allow attackers to escalate privileges.  For 
instance, reliance on hidden fields to establish identity for the purpose of access to web 
based administrative interfaces will allow an attacker unauthorized access because hidden 
fields can be easily manipulated.  Exploitation of some other vulnerability in the 
application can cause violation in access control.  For instance, crafting an attack that 
exploits a buffer overflow to modify some flag variable used for an authorization check 
could result in broken access control.  Some key access controls issues include insecure 
ids, forced browsing past access control checks (URL tampering), path traversal, file 
permissions and client side caching.   
 

1.4.3 Broken Authentication and Session Management 

 

If proper steps are not taken to protect session tokens and account credentials, such as 
passwords, keys and session cookies, attackers can use those to defeat authentication 
checks and assume identities of other users.  Authentication mechanisms can be 
circumvented if authentication credentials and tokens are not properly handled by 
credential management functions such as those to change password, retrieve forgotten 
password, account update, etc.  Session tokens need to be properly protected against 
hijacking so that attackers cannot assume identities of authenticated users simply by 
hijacking the session after the authentication has taken place.  Session tokens created 
should be strong and should be properly protected throughout the lifecycle of the session.  
Secure Sockets Layer (SSL) technology can go a long way towards creation of a secure 
session; however SSL is not properly implemented in many instances.  Additionally, 



 17 

attacks like cross site scripting can allow an attacker obtain the session tokens even if 
SSL is used.      

 

1.4.4 Cross Site Scripting (XSS) 

 

Cross site scripting attacks exploits vulnerabilities that fall in the category of poor input 
validation.  Essentially an attacker submits executable scripts as part of the input to the 
web application and those scripts are then executed on the browsers of other clients.  
Those attacks often lead to information disclosure of the end user’s session tokens, attack 
the end user’s machine or spoof content to fool the end user.  Disclosure of session 
tokens can lead to session hijacking and allow an attacker to assume a valid user’s 
identity (compromise authentication).  Spoofing content can also lead to information 
disclosure if for instance a valid user input his/her login and password information into a 
form sent to an attacker.  XSS attacks can occur at the web tier or at the application tier 
and aggressive white list input validation should be present in the application to thwart 
these attacks. There are two types of XSS attacks:  stored and reflected.  In stored XSS 
attacks, the malicious script injected by an attacker is permanently stored by the web 
application for later retrieval by the end user who requests the affected data.  Since the 
malicious script at that point arrived from a trusted server, the client executes the script.  
In reflected attacks, the malicious script is transferred to the server and then is echoed 
back to the user either in an error message, search result, or some other response to the 
end user which includes some of the data fields into which a malicious script has been 
inserted as part of the request.   
 

1.4.5 Buffer Overflow 

 

Buffer overflow attacks are possible if no proper bounds checking is performed on the 
buffer to which user input is written.  Carefully crafted input that writes data to the buffer 
past the allocated range can be used to overwrite the return pointer on the stack and point 
the program counter to a location where malicious shell code has been planted.  The 
attack code is then executed resulting in severe authorization breach on the application 
(execution of arbitrary code).   Arbitrary code can be executed on the host system with 
the same privileges as those that were granted to the web application.  Following the 
principle of least privilege could help limit the amount of damage an attacker can cause 
following a successful exploitation of the buffer overflow vulnerability.  Buffer 
overflows can be avoided by proper input validation.  Additionally, the likelihood of 
introducing buffer overflows into the application can be significantly reduced if safe 
string and memory manipulation function are used.  While execution of arbitrary code 
and taking control of the application process are the more drastic possible consequences 
of a successful exploitation of the buffer overflow vulnerability, a more frequent impact 
could be on system availability since buffer overflows will often cause system crashes.  
Besides the custom application code, components that can be vulnerable to buffer 
overflows may include CGI components, libraries, drivers and web application server 
components.  Since JAVA is generally considered a safe language in terms of bounds 
checking and thus fairly protected against buffer overflows, enterprise web applications 
built with J2EE are generally considered protected against buffer overflows.  However, 



 18 

that is not entirely the case.  Buffer overflow attacks, while more difficult and rare with 
JAVA based applications, can still take place.  An example may be a buffer overflow in 
JVM itself.  Format string attacks are a subset of buffer overflow attacks.  Buffer 
overflows are discussed in more detail in chapter five. 

 

1.4.6 Command Injections 

 

Enterprise web applications pass parameters when they access external systems, 
applications, or use local OS resources.  Whenever possible, those parameters should not 
come directly from the user and be defined as constants.  Otherwise, they should be 
rigorously validated prior to usage.  If an attacker can embed malicious commands into 
these parameters, they may be executed by the host system when the access routines are 
invoked by the application. SQL injection is a particularly common and serious type of 
injection, where SQL statements are passed to the web application and then without 
validation are passed to the routine that accesses the database with that SQL statement.  
Command injections can be used to disclose information, corrupt data and pass malicious 
code to an external system application via the web application.   

 

1.4.7 Improper Error Handling (Exception Management) 

 

Errors and exceptions occurring during the operation of the enterprise web application 
should be handled properly.  Error information that is echoed to the user in its raw form 
can cause information disclosure.  For instance, letting an attacker know the OS that the 
host machine is running, the version of the database and the database driver can allow the 
attacker to exploit existing vulnerabilities for those technologies.   Improperly managed 
exceptions can result in disruption of availability or cause security mechanisms to fail.   

 

1.4.8 Insecure Storage 

 

Data spends far more time in storage than it does in transit and must therefore be stored 
in a secure manner.  Encryption of data is not a bad idea to promote confidentiality and 
protect application data, passwords, keys, etc.  Even when encryption is used, it is not 
often used properly.  Some of the common types of mistakes make that fall into this 
category include failure to encrypt critical data, insecure storage of keys, certificates and 
passwords, improper storage of secrets in memory, poor sources of randomness, poor 
choice of cryptographic algorithms, and homegrown encryption algorithms.  While 
encryption can help protect confidentiality of stored data, hashing can be used to 
ascertain integrity.  A central point here is that as little as possible of sensitive 
information should be stored by the enterprise web applications.  For instance, it might 
make sense to ask the users to reenter their credit card number each time instead of 
persisting it.     

 

1.4.9 Denial of Service (DoS) 

 

Attackers can completely consume the resources of the web application as to make it 
impossible for other users to use the application.  Attackers can lock out legitimate users 



 19 

from their accounts.  For instance a poorly implemented “forgot password” feature will 
allow an attacker to continuously change the password for a legitimate user thus 
effectively locking that user out from their account.  DoS can result in failure of various 
components of the enterprise web application, or even the application as a whole.  Many 
coding problems can compromise the availability of the application and thus facilitate 
DoS attacks.  Some of these include usage of uninitialized variables, null pointer 
dereferences, poor concurrency management, etc.  Concurrent access in enterprise web 
applications can exacerbate the availability concerns, while load balancing techniques 
can help provide some mitigation.  In chapter five there is a discussion of various 
application level mistakes that can result in disruption of availability.  Lack of or 
improper error handling can sometimes result in crashes that might enable DoS attacks.   

 

1.4.10     Insecure Configuration Management 

 

Secure configurations at the application, network and host level are critical for provision 
of security.  In fact, most default configuration on many commercial hardware and 
software products do not provide a sufficient level of security and must be modified.  
True to the least privilege principle, configuration should always allow for the minimum 
privilege necessary.  Secure configuration is required on the web, application and 
database server.  In order to securely deploy an enterprise web based application, all 
configurations must be properly performed.  Some configuration problems can be due to 
unpatched security flaws present in the server software, improper file and directory 
permissions, error messages providing too much information, improper configuration of 
SSL certificates and encryption settings, use of default certificates, improper server 
configurations enabling directory listing and directory traversal attacks, among others.   

 

1.5 Key Security Principles 

 

This section introduces some of the guiding principles for software security.  Several of 
those have already been alluded to earlier in the paper, namely the principle of securing 
the weakest length and defense in depth.  These principles play a vital role in application 
security and should be followed across all stages of the software development lifecycle.  
These principles also have room in other security areas, including network and host 
security, and are generally derived from a broader field of engineering.  The discussion in 
this section focuses on those principles as they apply to application security.  These 
security principles are referenced in subsequent discussion [1]. 
 

1.5.1 Secure the Weakest Link 

 

This principle dictates that security in a software system is only as strong as the weakest 
link.  It is therefore critical when building software systems to build in all around strong 
security and make sure that no security holes are present.  For instance, if the data is 
transferred in the system using a strong encryption algorithm, but is stored unencrypted in 
plaintext, the attacker is more likely to try and go after the data while it is in the 
repository.  “Security practitioners often point out that security is a chain.  And just as a 
chain is only as strong as the weakest link, a software security system is only as secure as 



 20 

its weakest component” [1, p.93].  Attackers will try to compromise the weakest link of 
the software system and will use all possible techniques, including social engineering 
attacks.  For instance, the weakest link of the system could be a member of technical 
support falling prey to social engineering.  An attacker will not waste time trying to brute 
force a strong password to get into a system but look for other ways to get in instead. In 
general, cryptography (if used properly) is rarely the weakest link in the software system, 
so the attacker is much more likely to attack the endpoints:  “Let’s say the bad guy in 
question wants access to secret data being sent from point A to point B over the network 
protected with SSL.  A clever attacker will target one of the end points, try to find a flaw 
like a buffer overflow, and then look at the data before it gets encrypted, or after it gets 
decrypted” [1, p.94].  A good example of this is the notorious design flaw from a security 
standpoint in the gateway server used by wireless application protocol (WAP) to convert 
data encrypted with WTLS to SSL.  An attacker does not have to try and attack the data 
while it is encrypted, but just wait for the gateway server to decrypt the data. 
Consequently, any exploitable flaws in the gateway server software (e.g. buffer 
overflows) could be used as a way to compromise data confidentiality.  Consequently, 
encryption should be used as part of end-to-end solution and both ends should be 
properly secured. 
 
Similarly, an attacker will not try to compromise a firewall (unless there is a well known 
vulnerability in firewall software), but instead try to exploit vulnerabilities in applications 
accessible through the firewall.  Since software applications with web interfaces are often 
the weakest link, it is imperative to make sure that those are secure (hence the reason for 
writing this paper).   Usage of protocols for remote object access, such as SOAP and RMI 
should also be carefully considered because of the possible security implications.  The 
point is that with all the technologies involved in the enterprise web application, there is a 
great potential that an attacker will be able to find a hole somewhere, and that is what 
makes securing those systems such a hard problem.  It is therefore critical to be aware of 
where the weakest links in the system are and do everything possible to protect those 
until an acceptable level of security is achieved.  While 100% security is unattainable, 
what constitutes “acceptable security” depends on the business use. 
 

1.5.2 Build Defense in Depth 

 

This principle dictates that a variety of overlapping (redundant) defensive strategies is 
required so that if one defense layer is compromised another layer will be available to 
thwart an attack and prevent a full breach.  A well known design principle of 
programming language design states that  it is necessary to “have a series of defenses so 
that if an error isn’t caught by one, it will probably be caught by another” [27].  For 
instance, in the context of enterprise web applications, it is not a good idea to justify 
unencrypted data transfer between the application server and the database server by 
arguing that those servers are behind a firewall.  If an attacker finds a way to get past the 
firewall (or maybe an attack originates from inside the corporate network), a system 
should have additional security check guards.  For instance, communication between 
servers should be encrypted and data should be stored encrypted.  Additionally, 
application firewalls should be used to protect against application attacks.  However, a 



 21 

caveat about application firewalls is that they should not be used to justify vulnerabilities 
in the applications themselves.  The fact that input filtering might be available in the 
application firewall does not mean that the applications behind the firewalls do not need 
to perform input validation, as this would violate the defense in depth principle.  Having 
multi-leveled defense mechanism makes it far more difficult for an attacker to cause full 
breach of the system and makes it more possible to secure the weakest links of the 
system.   
 

1.5.3 Secure Failure 

 

While failures cannot always be prevented, the ability of the software system to handle 
failures gracefully is critical and will allow prevention of many attacks on the enterprise 
web application, including those related to denial of service and information disclosure.  
While failure is often unavoidable, security problems related to failure can be avoided.  
This principle would dictate that the raw system failure log should never be presented 
directly to the user without filtering as it can provide an attacker with a lot of useful 
information for subsequent attacks.  All errors should also be caught and handled 
appropriately as this will help prevent denial of service attacks that can exploit system 
crashes occurring due to improperly handled errors.  Exception management capabilities 
in the Java programming languages go a long way towards handling errors properly, but 
developers often neglect to make proper use of those capabilities.   
 
Attackers often need to cause the right failure, or wait for the right failure to happen to 
allow them compromise the system in some way.  Consider a situation where a client and 
server want to communicate via Java’s RMI.  A server might want to use SSL, but a 
client may not support it.  In this case a client downloads proper socket implementation 
from the server at runtime.  This can be a potentially serious security problem because the 
server has not yet authenticated itself to the client when the download occurs and thus a 
client could really be downloading malicious code from a malicious host.  In this 
situation trust is extended where it should not be.  The failure occurs when the client fails 
to establish a secure connection using default libraries, but instead establishes a 
connection using whatever software it downloads from an unauthenticated and thus 
untrusted remote host (server).  If secure failure principle was followed, the client would 
first authenticate the server using the default libraries prior agreeing to the download of 
additional SSL libraries at runtime.   
 

1.5.4 Least Privilege 

 

This principle states that users or processes should only be granted the minimum 
privilege necessary to perform the task that they are authorized to perform and that the 
access should be granted for the minimum amount of time necessary.  This means that the 
permissions governing access control should be configured in the minimalist fashion.  In 
the event that user credentials are compromised or application process is taken over by an 
attacker, the damage that can be done is limited to the rights that the user or the process 
had.  For this reason, it is not a good idea for a user to be logged into a system with 
administrative privilege or for a process to have more rights than is absolutely necessary.  



 22 

For instance, if a buffer overflow in the application is exploited to take over a process, 
arbitrary code execution will be restricted by the rights that the compromised process 
had.  If the permissions were conservative, than the damage could that an attacker can 
cause will be limited.  Additionally, if the amount of time for which the access was 
authorized is limited, an attacker will have a limited window of opportunity to cause 
damage.  The point is to not give out a full access key to your car when a valet key is 
sufficient.   
 
Programmers often make the mistake of requesting more privileges than is necessary to 
get the job done.  For instance a process may only need read access to some system 
object, but a programmer may request full access to the object to make life easier, or in 
case full access is required later.  Some insecure settings might also be a problem, where 
a default argument requests more privileges than is necessary to perform the task.  
Windows API can be an example of this where there are some calls for object access that 
grant full access if 0 is passed an argument (default).  In this case, the burden would be 
on the programmer to restrict the access. It is also important to relinquish privilege after it 
is no longer necessary, which can be a problem in Java because there is no operating 
system independent way to relinquish permissions (cannot be done programmatically).   
 
In enterprise web applications, execution of untrusted mobile code can often be 
problematic.  This code should be run in a sandboxed environment with as little privilege 
as possible.  Unfortunately, default system configurations are often insecure and the 
product vendors advertise very generous security policies because the software was 
possibly built in a way as to require more privileges than what is required.  This makes 
life easier from functionality standpoint, but is horrible for security.   
 

1.5.5 Compartmentalize 

 

The access control structure should be subdivided into units (compartments) and should 
not be “all or nothing”.  This will also make it easier to conform to the principle of least 
privilege.  This way if an attacker compromises one compartment of the system, he will 
not have access to the rest of the system.  This is similar to having multiple isolated 
chambers in a submarine, so that if one chamber overflows with water, the whole 
submarine does not sink.  Of course compartmentalization requires a more complex 
access control structure in the application.  Most operating systems do not 
compartmentalize effectively.  Since a single kernel is used, if one part is compromised, 
then the whole thing is.  Trusted operating systems are available, but they are quite 
complicated and suffer considerable performance degradation because of the overhead 
associated with increased access control granularity.  Compartmentalization can be hard 
to implement and hard to mange and thus few developers bother with following this 
principle.  Good judgment is the key when following this principle.  In the context of 
enterprise web applications, it is essential to define security roles in a way that promotes 
compartmentalization.  It might also make sense to distribute critical server side 
application modules to different machines in the event that any of them become 
compromised. 
 



 23 

1.5.6 Simplicity of Design 

 

Unnecessarily complex design and implementation can cause serious security problems.  
In general, it is a good engineering practice to build systems that do what they are 
supposed to do and nothing else in the simplest way.  Complexity will make it harder to 
evaluate the security posture of the application and will increase the likelihood of bugs.  
It is also harder to evaluate any unintended consequences of the code if it is overly 
complex.  Correct code is secure code and it is easy to show how code correctness suffers 
with increased complexity.  Density of functionality and security related bugs increases 
with code complexity and it can be shown that there is a correlation between the two.  
The point is to keep code simple which makes it easier to write and review for security.  
Complex code is also harder to maintain.   
 
It also makes sense to reuse proven software components when possible.  Software reuse 
makes sense from various perspectives including security.  If a certain component has 
been around for a while without any discovered vulnerabilities, chances are that it is safer 
to use than anything that is homegrown.  This definitely holds true for homegrown 
cryptographic algorithms which should never be used.  It is also true that the more 
functionality is introduced, the more room there is to introduce security related problems.  
It is important to understand possible security implications of all new functionality prior 
to making it part of the system.  It can be quite complex to have security related code 
throughout the whole system.  Therefore it makes sense to have a few modules which 
create entry points to the system through which all external input must pass and place 
security checks in those modules.  Special care should be taken to make sure that there is 
no way around those security check points.  Hidden ways to circumvent the checks left 
for administrator level users can be used by savvy attackers and therefore should not be 
part of the system.  It is important to keep the user in mind as well.  For instance, default 
configurations should provide more than minimal security, and it should not be overly 
complex to change the security related settings, or the users will not do it. 
 

1.5.7 Privacy 

 

The system should store as little confidential information as possible.  For instance, it 
often makes sense to not store credit card numbers since the users can enter them again.  
System designers and programmers also need to make sure to protect against information 
disclosure that could facilitate an attacker launch an attack on the application.  Even 
information disclosure about the operating system used or the version of the database 
used can help an attacker.  In fact, misinformation can even be used to fool a potential 
adversary.  The fewer the number of assets that need to be protected, the easier it will be 
to protect them.  While “one-click-shopping” experience offered by companies like EBay 
might be convenient, from a security standpoint something like this can be a nightmare 
and extremely difficult to get right.  All data should be stored securely in the database 
(encrypted).  The keys for encrypting and decrypting the data should be kept on a 
separate machine from the database.  In this scenario, if an attacker manages to 
compromise the machine where the database resides and gain access to it, he or she will 
still need to obtain the decryption key from another machine.  In enterprise web 



 24 

applications, application server software behavior can tell a skilled attacker which 
software the company runs, be it BEA Weblogic, IBM Websphere, Jakarta Tomcat, or 
anything else.  The same is true for web server behavior, be it Microsoft’s IIS, Apache, 
etc.  Even if versioning information is turned off, the behavior of the system can give a 
skilled attacker enough information.  

 

1.5.8 Be Smart About Hiding Secrets 

 

Hiding secrets is difficult and should be done appropriately.  For instance, many 
programmers make the mistake of hard coding encryption keys in the program code, 
assuming that an attacker will never have access to the source code.  This is a very bad 
assumption.  Hard coding encryption keys and other security tokens is extremely 
dangerous and should never be done.  First, an attacker might have access to the source 
code.  For instance an attacker could even be an insider.  Second, the attacker might be 
skilled in decompiling the binary to get useful information about the source code, 
including the hard coded key.  All security tokens should be stored securely in a database 
residing on a separate system.   
 

1.5.9 Reluctance to Trust 

 

Trust should be extended only after sufficient authentication and verification that trust is 
warranted.  We can go back to an example where SSL classes are downloaded by a client 
from a server before the server has authenticated itself.  All mobile code should be treated 
as suspicious before confirmed to be safe and even then should be run only in a 
sandboxed environment.  In an enterprise web application, servers should not trust clients 
by default and vice versa.  Just because both servers are inside a corporate network does 
not mean that authentication is not necessary.  Following this principle also helps with 
compartmentalization since an attacker compromising an application server will not have 
automatic access to the database server.  Social engineering attacks are a prime example 
where this principle is not followed which can have potentially disastrous consequences.  
Since trust is transitive, it is important for trusted processes to be very careful when 
invoking other processes, and should do so only if those other processes are also trusted.  
If untrusted code is invoked by a trusted process, this code will have all of the system 
privileges of the trusted code.   
 

1.5.10 Use Proven Technologies 

 

It has previously been mentioned that software reuse is a good policy that promotes 
security.  Particularly published and well reviewed components that have stood the test of 
time and scrutiny for security problems are good candidates for reuse.  While those 
components may still contain problems that are undiscovered, it is less likely to run into 
security problems with those components than with homegrown ones.  Homegrown 
cryptographic solutions should never be used since they are virtually guaranteed to be 
weaker than publicly available ones.  Same is true for various security libraries that are 
publicly available.  Proven technologies should be drawn from communities that pay 
attention to security and have procedures in place to provide rigorous reviews for 



 25 

security.  There is also something to be said for the “many eyeballs” phenomenon, that 
states that the likelihood of a problem in the piece of code goes down the more people 
have reviewed the code (although there are some infamous counterexamples to this 
principle).  
 

2.0     Threat Modeling 

 
2.1      Introduction to Threat Modeling 

 

One of the big questions that architects and designers of enterprise web applications need 
to answer is:  what are the threats on this application?  This question is very relevant, 
because after all, it is impossible to make sure that an application is secure without 
understanding the types of attacks that adversaries may attempt to launch on the system.  
The technique for formal evaluation of threats on the application is commonly called 
threat modeling.  Threat modeling process usually starts at the information gathering 
phase, proceeds to the analysis phase, and culminates with a report that can be used by 
application architects, designers, developers and security auditors to drive construction 
and verification.   
 
A typical threat model would first document all of the protected resources of the 
application, such as data and execution resources.  After all, attackers often try to get at 
those protected resources so it is imperative to know what these are.  To get to those 
resources an attacker would have to use some input or output stream flowing to or from 
the application.  The next step in threat modeling is to isolate the input and output vectors 
of the application, document the various threats as they apply to each of those input and 
output vectors and construct attack trees that combine the various input and output vector 
threats to abstract the various attack scenarios on the application being evaluated.  While 
it is impractical and probably impossible to try and document every single possible attack 
scenario on the enterprise web application, threat modeling process provides a systematic 
way of considering the threats thus reducing the chance that some are overlooked and 
pointing out some of the potential weak or problem areas that need to be given special 
attention.  Threat modeling helps comply with the principle of securing the weakest by 
facilitating in understanding of what the weak links are.  As part of threat modeling it is 
important to document all of the security related assumptions and decisions made as this 
information will help understand what affect architectural changes will have on the 
security posture of the application.  After having evaluated the threats, it should be 
documented what threats are mitigated by the architecture, design and implementation 
and how that is accomplished.  All threats that are not addressed should be clearly 
documented as well.   The threats should also be rated based on severity and potential 
impact.  Section 2.2 provides a sample threat model on the enterprise web application 
built with J2EE technologies.  Section 2.3 introduces Microsoft’s approach to threat 
modeling with focus on .NET.    
 

2.2     Sample Threat Model:  Open Source Enterprise Web Application JPetStore 

 



 26 

Since the concept of threat modeling may seem rather abstract at first glance, an example 
is provided to help the reader understand what is involved.  The threat modeling in this 
example was performed on an open source enterprise web application called JPetStore 
4.0.  This is J2EE application built on top of the Apache’s STRUTS Model View 
Controller (MVC) architecture.   It will become clear that it is important to consider the 
underlying technologies used in the enterprise web application when performing threat 
modeling.  Chapter three will evaluate these technologies in the J2EE world and chapter 
four will do the same for the .NET world.  In both cases the discussion will focus around 
the OWASP top ten application security threats as well as many others.  This example 
provides a preview into enterprise web applications built with J2EE and demonstrates 
how threat modeling can be performed on a sample application. 

 

2.2.1 Overview of JPetStore 4.0 

JPetStore 4.0 is a web application based on iBATIS open source persistence layer 
products, including the SQL Maps 2.0 and Data Access Objects 2.0 frameworks. 
JPetStore is an example of how these frameworks can be implemented in a typical J2EE 
web application. JPetStore 4.0 is built on top of the Struts Model View Controller (MVC) 
framework and uses an experimental BeanAction approach.   JPetStore uses a JSP 
presentation layer.  

This section analyzes the architecture of the JPetStore 4.0, a J2EE web application based 
on the Struts framework. The various security assumptions are documented, including 
environmental, trust and security functionality.  Protected data and execution resources of 
JPetStore are then enumerated.  Input and output vectors (attack surface) for the 
application are then described, followed by the discussion of the various threats on the 
architecture of the application through those input and output vectors, and how those 
threats can affect the protected data and execution resources of the application.  The 
section also discusses some possible mitigations to the threats, and what mitigations (if 
any) are built into the JPetStore architecture.   
 

2.2.2 Security Assumptions 

 

Environmental Assumptions 

Number Assumption Description 

E1 There are network and host security mechanisms in place, such as 

firewalls, routers, switches, intrusion detection systems, SSL, etc.  The 

focus here is on security of the web application itself.  

E2 The network hardware and software are configured to promote 

maximum security. 

 

Trust Assumptions 

Number Assumption Description 



 27 

T1  

T2  

 

Security Functionality Assumptions 

Number Assumption Description 

F1  

F2  

 

 

2.2.3 Protected Resources 

 

Data Resources 

Number Name Type Description Roles 

D1 Application 

Database 

 The data bank for JPetStore  

D2 All application 

code itself 

(particularly 

struts-config.xml 

and web.xml 

contained in the 

Web/WEB-INF 

folder) 

 Application code (at all tiers of 

the deployed application) must be 

protected from tampering 

 

D3 Customer 

accounts 

 Customer accounts store 

customer specific information.   

 

 

Privileged Execution Resources 

Number Name OS Priv Description Roles 

P1 Registry R/W/C/D Host Based:  Registry Access  

P2 File System R/W/C/D Host Based:  File System Access  

P3 Memory R/W Host Based:  Memory Access  

P4 CPU X Host Based:  CPU utilization  

P5 Cache R/W Host Based:  Cache access  

P6 Shares  Host Based:  Shared resources 

access 

 

P7 Services R/X Host Based:  Services usage  

P8 Accounts  Host Based:  Account access  

P9 Auditing R/W/C/D Host Based:  Auditing and logging  



 28 

and 

Logging 

facilities 

P10 Ports R/W Host Based:  Enabled ports  

P11 Protocols  Host Based:  Available protocols  

P12 Router  Network Based:  

P13 Firewall  Network Based:  

P14 Switch  Network Based:  

 

Users and Roles 

Number Name Description Use-Case Resources 

R1 Customer Uses JPetStore to purchase pets   

R2     

 

Supplemental Design Decisions 

Number Element Design 

S1 Data Access Use Data Access Objects (DAO) 2.0 (iBatis) 

S2 Data 

Manipulation 

Use SQL Maps 2.0 (iBatis) 

S2 Struts MVC View (JSP), Model (ActionForm), Controller 

(BeanAction) 

 

2.2.4 Application Functionality and Data Flow Diagram 

 
JPetStore does not use conventional J2EE architecture in that it utilizes reflection to 
perform business logic in servlets rather than using Entity Java Beans (EJBs).  JPetStore 
uses reflection based database mapping layer (experimental BeanAction approach) that 
has some serious implications from a security standpoint, specifically pertaining to 
parameter manipulation.  Reflection is used to access the JavaBean properties in the 
Struts-based JSP pages.  The properties are stored in struts-config.xml and the action is 
parsed directly out of the URL string. Consequently, input validation would have to be 
extensively performed in each of the public methods, or the application would be 
vulnerable to a variety of attacks, including SQL injection, XSS and command injection.  
We now provide an overview of the way that data flow takes place in JPetStore 4.0. 
 
The Pet Store application feature set will be familiar to most users of the Web. The 
customer can browse through a catalog of pets that vary by category, product type and 
individual traits. If the customer sees an item they like, they can add it to their shopping 
cart. When the customer is done shopping, they can checkout by submitting an order that 
includes payment, billing and shipping details. Before the customer can checkout, they 
must sign in or create a new account.  The customer’s account keeps track of their name, 
address and contact information. It also keeps track of profile preferences including 



 29 

favorite categories and user interface options (banners etc.) [8].  Below is a site map of 
the general flow of the application: 
 

 
Figure 2:  Sitemap for JPetStore 4.0 [8] 
 
-- JPetStore does not use Stored Procedures, nor does it embed SQL in the Java code. 
-- JPetStore does not store HTML in the database. 
-- JPetStore does not use generated code. 
-- JPetStore uses the Model View Controller presentation pattern. 
-- JPetStore was implemented using completely open-source freeware, including the 
   development tools, runtime environment and database management system. 
 
JPetStore uses the Struts Model View Controller pattern to improve the maintainability of 
the presentation layer –the layer which is often the most likely to change. The JPetStore 
persistence layer uses SQL mapped to Java classes through XML files. JPetStore 
eliminates stored procedures and eliminates the SQL from the Java source code to 
improve maintainability in the data tier [8]. The picture below shows a high level view of 
the architecture of the application. 

 



 30 

 
Figure 3:  JPetStore 4.0 Application Architecture [8] 

 
JPetStore 4.0 application uses the Model Control View (MVC) based on Struts.  Struts is 
freely available and open-source. The Struts framework played a key role in the 
design and implementation of the JPetStore presentation layer. Combined with JSP, it 
helped maintain a consistent look and feel as well as good flow control throughout the 
application. It did this while helping reduce the overall code size for JPetStore and 
improving the overall design. [8] 
 
Struts has three main components: the ActionForm (model), the JavaServer Page (view) 
and the Action (controller). Struts uses an XML descriptor file to connect these three 
components together, which helps simplify future code maintenance on the presentation 
layer –a layer prone to change. The diagram below illustrates the three main components 
and how they interact with each other. 
 



 31 

 
Figure 4:  JPetStore 4.0 Application Data Flow [8] 
 

2.2.5 Threats by Application Vulnerability Category (OWASP top ten) 

 

Number Type Description Protocol Role 

C1 Input 

Validation 

Buffer overflows; cross site 

scripting (XSS); SQL injection; 

canonicalization 

  

C2 Authentication Network eavesdropping; brute 

force attacks; dictionary attacks; 

cookie replay; credential theft 

  

C3 Authorization Elevation of privilege; disclosure of 

confidential data; data 

tampering; luring attacks 

 

  

C4 Configuration 

Management 

Unauthorized access to 

administration interfaces; 

unauthorized 

access to configuration stores; 

retrieval of clear text 

configuration data; lack of 

individual accountability; over 

privileged 

process and service accounts 

 

  



 32 

C5 Sensitive Data Access sensitive data in storage; 

network eavesdropping; data 

tampering 

 

  

C6 Session 

Management 

Session hijacking; session replay; 

man in the middle 

 

  

C7 Cryptography Poor key generation or key 

management; weak or custom 

encryption 

 

  

C8 Parameter 

Manipulation 

Query string manipulation; form 

field manipulation; cookie 

manipulation; HTTP header 

manipulation 

 

  

C9 Exception 

Management 

Information disclosure; denial of 

service 

 

  

C10 Auditing and 

Logging 

User denies performing an 

operation; attacker exploits an 

application without trace; attacker 

covers his or her tracks 

 

  

 

2.2.6 Attack Surface 

 
The diagram below shows the flow of the application attack on a Web based application.  
Only the application level threats are discussed in this document.  This document does not 
address the network and host level threats.  However, network, host and application security 
are all critical components to building and deploying a secure web application. It is also 
critical to consider the attack surface across all tiers of the application.  

 

 



 33 

 

Figure 5: Flow of Application Attack on a Web Based Enterprise Application [7] 

 

2.2.6.1 Input Vectors 

 

 

Number Type Description Protocol Role 

I1 URL query 

strings 

Pass query string parameters URL  

I2 Regular Form 

Fields 

Pass information submitted in forms HTML 

(GET) 

 

I3 Hidden Form 

Fields 

Pass information submitted in forms HTML 

(POST) 

 

I4 Java Server 

Pages 

Dynamic HTML pages HTML 

and Java 

 

I5 HTTPRequest Communication between 

client/server 

HTTP  

I6 Cookies Used to retrieve user preferences, 

etc. 

  

 

 

 

 

Fi

re

w

all 

Hardened OS 

Web Server 

App Server 

Fi

re

w

all 

D

a

t

a

b

a

L

e

g

a

c

y 

W

e

b

 

S

e

D

i

r

e

c

t

H

u

m

a

n

 

B

i

l

l

i

n

Custom Developed 

Application Code 
APPLICATION 

ATTACK 

 

 



 34 

2.2.6.2 Output Vectors 

 

Number Type Description Protocol 

O1 Java Server 

Pages 

Dynamic HTML pages HTML 

and Java 

O2 HTML Static HTML content HTML 

O3 HTTPResponse Communication between client/server HTTP 

 

2.2.7 Possible Threats (By Category) 

 

2.2.7.1  Input Vector Threats 

 

T1-<I1,I2,I3,I4,I5> 

Description SQL Injection 

Type Input Validation 

Addressed? No 

Mitigation 

Techniques 

Use input validation.  Could use stored parameterized 

procedures instead of SQL maps.  SQL maps are dangerous. 

Chosen Mitigation iBatis SQL Maps and Data Access Objects 

Effect Graphs Violation of data integrity.  Loss of data confidentiality. 

Risk  High 

 

T2-<I1,I2,I3,I4,I5> 

Description Cross Site Scripting 

Type Input Validation 

Addressed? No 

Mitigation 

Techniques 

Use input validation (white lists).  Use HTMLEncode and 

URLEncode methods.  Problem exacerbated by reliance on 

URL strings.   

Chosen Mitigation None 

Effect Graphs Execution of arbitrary code on the browsers of application 

users.   

Risk  High 

 

T3-<I1,I2,I3,I4,I5,I6> 

Description Canonicalization (similar encodings, many different ways to 

represent the same name, path, etc.) 

Type Input Validation 

Addressed? No 

Mitigation 

Techniques 

Encoding should be set properly in the Web config file using 

requestEncoding and responseEncoding 



 35 

Chosen Mitigation Decisions in JpetStore are constantly made based on the input 

passed (primarily in URL strings).   

Effect Graphs Access to privileged resources, escalation of privilege, etc. 

Risk  Moderate 

  

 

T4-<I1,I2,I3,I4,I5> 

Description Buffer/Integer Overflow 

Type Input Validation 

Addressed? No 

Mitigation 

Techniques 

Validate the size of input.  Use safe functions. 

Chosen Mitigation Not addressed 

Effect Graphs Integer overflows/Buffer overflows could results in execution 

of arbitrary code on the application server with privileges of 

the JPetStore application 

Risk  High.  Static code analysis confirmed some Integer Overflow 

problems in the code. 

 

T6-<I1,I2,I3,I4,I5> 

Description Escalation of Privilege 

Type Authorization 

Addressed? No 

Mitigation 

Techniques 

Should always use least privilege processes where possible.   

Chosen Mitigation Public/private functions are used for security, this is not 

acceptable 

Effect Graphs Access to other user accounts 

Risk  Medium 

 

T7-<I1,I2,I3,I4,I5> 

Description Disclosure of Confidential (Sensitive) Data 

Type Authorization 

Addressed? No 

Mitigation 

Techniques 

Perform checks before allowing access to sensitive data.  Use 

strong ACL.  Use encryption for sensitive data in configuration 

file. 

Chosen Mitigation Exceptions are displayed to the user as they occur.  This can 

give an attacker too much good information.  Also, all 

configuration files are plaintext. 

Effect Graphs Loss of confidentiality.  Can also lead to elevation of privilege. 

Risk  High 

 



 36 

T8-<I1, I2, I3, I4, I5> 

Description Unauthorized Access to Configuration Stores 

(Web.xml/Struts-config.xml) 

Type  Configuration Management 

Addressed? No.  All config files are plaintext.  No input validation.  Used 

excessively in BeanAction. 

Mitigation 

Techniques 

Use ACLs, keep config files outside the Web space. 

Chosen Mitigation None 

Effect Graphs Elevation of privilege, command injection, etc. 

Risk  High 

 

T9-<I1, I2, I3, I4, I5> 

Description Retrieval of cleartext Configuration Data 

Type Configuration Management/Secure Storage 

Addressed? No 

Mitigation 

Techniques 

 

Chosen Mitigation None 

Effect Graphs  

Risk  High 

 

T10-<I1, I2, I3, I4, I5, I6> 

Description Query string manipulation; form field manipulation; cookie 

manipulation; HTTP header manipulation 

Type Parameter Manipulation 

Addressed?  

Mitigation 

Techniques 

Input validation is very important.  Never trust any user input.  

Encrypt query strings.  Use Post not Get, avoid query strings 

that hold sensitive info (especially next action to perform), use 

data in secure (encrypted) session rather than query strings, 

etc. 

Chosen Mitigation The architecture of JPetStore makes it more susceptible to this 

problem than a usual J2EE application 

Effect Graphs  

Risk  High 

 

T11-<I1, I2, I3, I4, I5, I6> 

Description Information Disclosure 

Type Exception Management 

Addressed? No 

Mitigation 

Techniques 

Don’t provide raw exception output to the user. 



 37 

Chosen Mitigation  

Effect Graphs Information disclosure.  Facilitates attack. 

Risk  Medium 

 

T12-<> 

Description Denial of Service (attackers can try to crash App server) 

Type Exception Management 

Addressed? Not everywhere 

Mitigation 

Techniques 

Always properly handle exceptions.   

Chosen Mitigation  

Effect Graphs  

Risk  Medium 

 

T12-<I1, I2, I3, I4, I5> 

Description Command Injection 

Type Input Validation 

Addressed? Problem introduced by the experimental BeanAction 

approach.  Unvalidated URL strings can be used to invoke an 

action for which the user was not authorized and possibly 

inject arbitrary commands to be executed by the application 

server. 

Mitigation 

Techniques 

 

Chosen Mitigation None.  Problem introduced by chosen implementation of the 

Struts MVC architecture. 

Effect Graphs This is a very bad problem that could lead to compromise of 

the whole system through execution of arbitrary system 

commands that are injected in Java 

Risk  Very high 

 

2.2.7.2    Output Vector Threats 

Disclosure of Sensitive Information 

O1-<I1,I2,I3,I4,I5> 

Description Cross Site Scripting 

Type Input Validation 

Addressed? No 

Mitigation 

Techniques 

Use input validation (white lists).  Use HTMLEncode and 

URLEncode methods.  Problem exacerbated by reliance on 

URL strings.   

Chosen Mitigation None 



 38 

Effect Graphs Execution of arbitrary code on the browsers of application 

users.   

Risk  High 

 

O2-<I1,I2,I3,I4,I5> 

Description Disclosure of Confidential (Sensitive) Data 

Type Authorization 

Addressed? No 

Mitigation 

Techniques 

Perform checks before allowing access to sensitive data.  Use 

strong ACL.  Use encryption for sensitive data in configuration 

file. 

Chosen Mitigation Exceptions are displayed to the user as they occur.  This can 

give an attacker too much good information.  Also, all 

configuration files are plaintext. 

Effect Graphs Loss of confidentiality.  Can also lead to elevation of privilege. 

Risk  High 

 

O3-<I1, I2, I3, I4, I5, I6> 

Description Information Disclosure 

Type Exception Management 

Addressed? No 

Mitigation 

Techniques 

Don’t provide raw exception output to the user. 

Chosen Mitigation  

Effect Graphs Information disclosure.  Facilitates attack. 

Risk  Medium 

 

 

2.2.8    Threat Trees 

 

2.2.9 Conclusions 

 



 39 

This section introduced threat modeling by considering security of the JPetStore 4.0 at 
the architectural, design, as well as code level.  The main issues identified are poor input 
validation and unconventional use of BeanAction for the controller portion of the Struts 
MVC.   Poor input validation can lead to SQL injection, Cross Site Scripting and 
Canonilization attacks.  Additionally, results of automated source code analysis 
confirmed that the application is susceptible to integer overflows and exception 
management problems.  Finally, the way that MVC is implemented in this application 
can lead to escalation of privilege and possible command injections.     

 

2.3 Microsoft’s Approach to Threat Modeling:  STRIDE and DREAD 
 

Section 2.1 outlined the rationale and some of the steps involved in threat modeling.  
Section 2.2 offered the reader an example threat model for an open source enterprise web 
based application called JPetStore 4.0 written by Clinton Begin. While previous example 
focused on the J2EE world, we focus here on the .NET world.  This section offers the 
reader Microsoft’s approach to threat modeling and discusses STRIDE and DREAD.  
STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, 
and Elevation of privilege) is a technique for categorizing application threats each of 
which has corresponding countermeasures.  DREAD (Damage potential, Reproducibility, 
Exploitability, Affected users, and Discoverability) model is used by Microsoft as a way 
to help rate various security threats on the application by calculating risk associated with 
each.  That can often be more meaningful than trying to assign severities to the various 
threats since severities are harder to agree on and are more arbitrary.  The idea is to 
mitigate the security threats that have the greatest impact on the application first.  Threat 
modeling is a fairly new technique and Microsoft’s approach to threat modeling is most 
mature, comprehensive and well documented.  Most importantly, those techniques are 
followed at Microsoft in all of their product development.  The remainder of this section 
presents a detailed overview of the steps in Microsoft’s threat modeling process. 
 
Threat modeling provides a systematic methodology to identify and rate the threats that 
are likely to affect the system.  Threat modeling can be done for host and network 
security as well, but the focus in this section is on the application itself.  “By identifying 
and rating threats based on a solid understanding of the architecture and implementation 
of your application, you can address threats with appropriate countermeasures in a logical 
order, starting with the threats that present the greatest risk” [10].  Threat modeling is a 
more effective alternative (both in terms of results and cost) to indiscriminant application 
of security features without a thorough understanding of what threats each feature is 
supposed to address.  Additionally, with random approach to security it is impossible to 
know when the application has attained an acceptable level of security and what areas of 
the application are still vulnerable.  As we mentioned in section 2.1, it is impossible to 
secure the system before knowing the threats. 
 
Prior to initiating a detailed discussion of threat modeling it is important to understand 
some key terminology.  In the context of threat modeling, an asset is a resource of value, 
such as the data in the database or in the file system (system resource).  There are a 
variety of assets in an enterprise web based application, including configuration files, 



 40 

encryption/decryption keys, various security related tokens, databases, etc.  There are 
also various file system resources, such as registry, log audits, etc.  A threat is a possible 
occurrence, either malicious or accidental, that might damage or otherwise compromise 
an asset.  A vulnerability is an exploitable weakness in some area of the system that 
makes a threat possible.  Vulnerabilities can occur at the network, host or application 
levels.  An attack, otherwise known as an exploit, is a realization of a threat in which an 
action is taken by an attacker or some executable code to exploit a vulnerability and 
compromise an asset.   A countermeasure is a built in protection that addresses a threat 
and mitigates the risk. 
 
Meier offers a useful analogy that helps understand the relation between assets, threats, 
vulnerabilities, attacks and countermeasures:  “Consider a simple house analogy: an item 
of jewelry in a house is an asset and a burglar is an attacker. A door is a feature of the 
house and an open door represents a vulnerability. The burglar can exploit the open door 
to gain access to the house and steal the jewelry. In other words, the attacker exploits a 
vulnerability to gain access to an asset. The appropriate countermeasure in this case is to 
close and lock the door” [10].  It is important to remember that a threat model is a living 
thing and should evolve as time goes by.  It only makes sense since threats evolve and 
new security threats are introduced to which countermeasures must be built into the 
application.  Throughout this process, having a document in place that identifies known 
security threats and how they have been mitigated provides control over the security of 
the application. 
 
Threat modeling is not a one time only process.  Instead it should be an iterative process 
that starts during the early stages of the software development lifecycle of the application 
and continues throughout the rest of the application lifecycle.  The reasons for this are 
that it is impossible to identify all of the security threats on the first pass and the fact that 
evolution in business requirements will demand reevaluation of threats and 
countermeasures.  There are six steps involved in the threat modeling process, as 
demonstrated in the figure below.  These steps are identification of assets, creation of 
architectural overview, decomposition of the application, identification of threats, 
documentation of threats, and rating of the threats. 
 

 



 41 

 

Figure 6:  Threat Modeling Process Overview [10]  

 

2.3.1 Identify Assets 

 

Identify the assets that need to be protected. Some assets include configuration files, 
encryption/decryption keys, various security related tokens, databases, etc.  There are 
also various file system resources, such as registry, log audits, etc.  All web pages in the 
enterprise web based application and web site availability should also be considered 
assets.     

 

2.3.2 Create an Architecture Overview 

 

At this stage the function of the application is documented, including architecture and 
physical deployment configuration.  It is also important to document all of the 
technologies used by the application since there may be security threats specific to the set 
of technologies being utilized. The goal is to look at potential vulnerabilities at the 
architecture, design or implementation of the application that should be avoided.  At this 
stage, three main tasks are performed:  identification of what the application does 
(functionality), creation of an architecture diagram and identification of technologies. 
 
Identification of what the application does essentially involves the understanding of the 
business rules of the application and the data flow to and from the various assets.  It is 
helpful at this stage to document the various use cases of the application to put the 
application functionality in context.  It is also important to consider any misuse of 
business rules and consider what mechanisms exist to protect against such misuse. 
 
The next step is then to create a high-level diagram describing the composition and 
structure of the application and its subsystems as well as its physical deployment 
characteristics.  Additional supplemental diagrams might be necessary that drill down 
into the architecture at the middle-tier application server, integration with external 
systems, etc.  A sample application architecture diagram is provided below. 
 



 42 

 
 

Figure 7:  Sample Application Architecture Diagram [10] 

 

As the diagram above shows, a sample application architecture diagram would contain 
information above the various trust boundaries.  There are several trust boundaries 
illustrated in the diagram.  The important thing to remember is that authentication needs 
to take place each time that data passes through trust boundaries.  In the diagram the 
communication between the client and IIS server takes place over SSL that guarantees 
privacy and integrity, but not authenticity.  Anonymous authentication needs to take place 
at the IIS server.  Then forms authentication needs to take place again at the ASP.NET 
application server.  Finally, windows authentication needs to take place at the database 
server tier.  Each time a trust boundary is crossed re-authentication is required.  
Additionally, at each tier of the enterprise web application, different authorization needs 
to happen.  In the case of .NET framework it is authorization on NTFS permissions, 
file/URL/.NET roles and user-defined roles authorization.  Just like in the sample 
application architecture diagram above, it is essential to show the various technologies 
and security protocols used (SSL, IPSec, etc.).  To start drawing the diagram, at first a 
rough diagram should be constructed that includes the structure of the application and its 
subsystems, as well as the deployment characteristics.  The diagram can then be extended 
with details about the trust boundaries, authentication and authorization mechanisms.  
Some of those may not be come clear until the application is decomposed in the next 
step. 
 
The final step in the creation of architecture overview is to identify the various 
technologies used in the implementation of the application.  Some of the major 
frameworks for enterprise web applications include J2EE and .NET frameworks.  
Identifying specific technologies used in the solution helps focus on the technology 
specific threats that will be looked at later in the process.  This analysis will also help 
determine the appropriate mitigation strategies.  In the case of .NET, some of the likely 
technologies include ASP.NET, Web Services, Enterprise Services, Microsoft .NET 
Remoting, and ADO.NET.  In the case of J2EE, some of the likely parallel technologies 
might be Entity Java Beans (EJB), Web Services, Java RMI, JDBC, among others.  



 43 

Detailed discussion of the relevant J2EE and .NET technologies will be presented in 
chapters three and four.  The table below demonstrates a way that implementation 
technologies can be documented in the threat modeling report. 
 

Technology/Platform Implementation Details 

Microsoft SQL Server on Microsoft 
Windows Advanced Server 2000 

Includes logins, database users, user defined database roles, 
tables, stored procedures, views, constraints, and triggers. 

Microsoft .NET Framework Used for Forms authentication. 

Secure Sockets Layer (SSL) Used to encrypt HTTP traffic. 

 

Table 1:  Documentation of Implementation Technologies [10] 

 

2.3.3 Decompose the Application 

 

In this step in Microsoft’s threat modeling process an application is broken down in order 
to create a security profile for the application that is based on traditional vulnerability 
areas.  In J2EE threat modeling example presented in section 2.2 the traditional 
vulnerability areas were drawn from the OWASP top ten, but in reality, the list should be 
far more extensive.  In this stage trust boundaries, data flow, entry points, and privilege 
code is identified.  Note that some of that information, such as information about trust 
boundaries will be needed to update the architecture diagram in the previous step.  
Gaining insight into the details of the architecture and design of the application will make 
it easier to analyze security threats.  A diagram below shows the focus of the 
decomposition process. 
 

 
Figure 8:  Focus of Application Decomposition Process [10] 

 

The steps for application decomposition include identification of trust boundaries, data 
flow, entry points, privileged code and security profile documentation.  Trust boundaries 
envelope the tangible assets of the application.  The assets of the application would have 
already been identified in the first step of the threat modeling process.  Many of the assets 
will be determined by the application design.  Data flow must be analyzed across each of 
the subsystems and consideration must be given to the sources of data (i.e. whether the 
input is trusted or not).  Input authentication and authorization must be considered across 
the trust boundaries.  In addition to input, trustworthiness of any mobile code and remote 



 44 

object calls into the application must be evaluated, with consideration again given to 
authentication and authorization.  Data flows across trust boundaries through the entry 
points.  Appropriate gatekeepers must guard all entry points into trust boundaries and 
recipient entry point needs to validate all data passed across trust boundaries. In 
evaluation of trust boundaries, consideration must be given both from the code 
perspective and from the server trust relationship perspective.  Code perspective should 
consider trust on the component/module level, while server trust perspective should focus 
on whether any given server relies on an upstream server to perform authentication, 
authorization and input validation. Trusted server relationship can be tricky and so 
architects and designers should be very careful to not extend too much trust.  When in 
doubt, authentication, authorization and input validation should be performed over again. 
 
The next step in the application decomposition is to identify the data flow.  To 
accomplish this, a person performing threat modeling could start at the highest level and 
then iteratively decompose the application through analysis of the data flow between the 
individual subsystems.  Particular attention should be paid to data flow across trust 
boundaries, since authentication, authorization and input validation might be required 
when that occurs.  There are many formal design techniques that could aid with 
identification of data flow including data flow diagrams and sequence diagrams.  Data 
flow diagrams provide a graphical representation of the data flows, data stores, and the 
relationships that exist between the data sources and destinations.  Sequence diagrams 
show the chronological interaction between the various system objects and subsystems.   
 
The next step is to identify the entry points to the application by isolating the gateways 
through which data flows into the application.  Some of the data will come from user 
input, other will come from various client applications, yet additional data will come 
through integration channels with other enterprise applications.  Some data might come 
from outside the corporate network and other might come from the inside.  Regardless of 
the nature and origin of data, all data enters the application through a set of entry points.  
It is very important to be aware of all of the entry points since these will also serves as 
entry points for any attacks on the application. Both internal and external entry points 
should be well understood, including information on the kind of data that would pass 
through the entry point and the source of that data.  For each of the entry points, the types 
of mechanisms that provide authentication, authorization and input validation services 
should be determined and documented.  Some of the entry points in an enterprise web 
application might include user interfaces in web pages, service interfaces in web services, 
remote object invocation interfaces, message queues, as well as physical and platforms 
entry points like ports and sockets.  
 
Privileged code is code in the enterprise web application that performs various system 
privileged operations that require access to secure resources such as DNS servers, 
directory services, file systems, event logs, environment variables, message queues, the 
registry, sockets, printers, web services, etc.  Untrusted code should never be invoked by 
trusted code and input that is not trusted and has not been validated should never be 
passed to the trusted code routines.  As we will discuss later in more detail, command 
injection attacks are made possible because the parameters passed to the trusted code 



 45 

routines come from input that has not be properly validated.  The best strategy is to only 
use constants or trusted data for access to trusted code routines.  As part of the threat 
model, all instances where trusted code is used should be documented along with the 
parameters passed to the trusted code and any code that might be invoked by trusted 
code.   
 
Final and perhaps most important step of the application decomposition phase of threat 
modeling involves documentation of the security profile.  In this step architecture, design 
and implementation approaches are documented in terms of their ability to provide input 
validation, authentication, authorization, configuration management, auditing and 
logging, session management, cryptography, among others.  The idea is to focus on the 
common vulnerability areas and ask the right questions to determine whether the 
common threats within those vulnerability areas are mitigated by the current architecture, 
design and implementation approaches.  A sample table demonstrates the various 
questions that can be asked across each of the vulnerability categories to facilitate 
creation and documentation of the security profile.  You will notice that the vulnerability 
categories in this table correspond with the OWASP top ten. 
 
 
Category Considerations 

Input validation Is all input data validated?  

Could an attacker inject commands or malicious data into the application? 

Is data validated as it is passed between separate trust boundaries (by the recipient entry point)? 

Can data in the database be trusted? 

Authentication Are credentials secured if they are passed over the network?  

Are strong account policies used? 

Are strong passwords enforced? 

Are you using certificates? 

Are password verifiers (using one-way hashes) used for user passwords? 

Authorization What gatekeepers are used at the entry points of the application?  

How is authorization enforced at the database? 

Is a defense in depth strategy used? 

Do you fail securely and only allow access upon successful confirmation of credentials? 



 46 

Configuration 
management 

What administration interfaces does the application support?  

How are they secured? 

How is remote administration secured? 

What configuration stores are used and how are they secured? 

Sensitive data What sensitive data is handled by the application?  

How is it secured over the network and in persistent stores? 

What type of encryption is used and how are encryption keys secured? 

Session management How are session cookies generated?  

How are they secured to prevent session hijacking? 

How is persistent session state secured? 

How is session state secured as it crosses the network? 

How does the application authenticate with the session store? 

Are credentials passed over the wire and are they maintained by the application? If so, how are they 

secured? 

Cryptography What algorithms and cryptographic techniques are used?  

How long are encryption keys and how are they secured? 

Does the application put its own encryption into action? 

How often are keys recycled? 

Parameter manipulation Does the application detect tampered parameters?  

Does it validate all parameters in form fields, view state, cookie data, and HTTP headers? 

Exception management How does the application handle error conditions?  

Are exceptions ever allowed to propagate back to the client? 

Are generic error messages that do not contain exploitable information used? 

Auditing and logging Does your application audit activity across all tiers on all servers?  



 47 

How are log files secured? 

 

Table 2: Building a Security Profile [10, 24] 

 

2.3.4 Identify the Threats 

 

At this point of the threat modeling process we have identified the application assets, 
created an architecture overview and decomposed the application.  It is now time to 
identify the threats on the enterprise web application.  Those threats will have the 
potential of compromising the assets and affecting the application.  While there are a 
variety of common threats that falls into various vulnerability categories, and those can 
be easily documented, there are others that may not be as straightforward to identify.  
Some might be very specific to the way a particular web application is architected.  For 
identifying those threats, a technique that works the best is to get the architects, 
designers, developers, testers, security professionals, system administrators and other 
personnel for a brain storming session in front of the whiteboard.  The team should be 
carefully selected and should include top people from each of the roles.  At this point 
there are two techniques that can be applied.  The first is taking a list of common threats 
grouped by network, host and application categories and applying each of those to the 
architecture of the application under evaluation.  Special focus should be given to any of 
the problem areas identified earlier in the threat modeling process.  Some threats will be 
easy to rule out if they do not apply.  The second technique and the one that we focus on 
in this discussion is STRIDE.  As previously mentioned, STRIDE considers the broad 
categories of threats, such as spoofing, tampering, repudiation, information disclosure, 
denial of service and elevation of privilege. Those areas correspond to the ways that an 
attacker might compromise the application and STRIDE helps the threat modeler to 
systematically identify those threats.  This is a goals based approach where the goals of 
an attacker are considered and the right questions are asked with regards to the 
architecture and design of the application as they relate to the threat categories identified 
by STRIDE. 
 
For each of the threat categories identified by STRIDE there are corresponding 
countermeasures that can be used to mitigate the risk.  Going through this part of the 
threat modeling process, two questions should be asked for which the answered need to 
be documented.  First question is:  Does this threat apply to my application?  Second 
question is:  Is this threat mitigated?  If so, which mitigating technique (countermeasure) 
was chosen and why?  Oftentimes a particular countermeasure chosen will depend on the 
attack itself.  A table below lists some specific threats and countermeasures across the 
STRIDE threat categories. 
 
Threat Countermeasures 

Spoofing user identity Use strong authentication.  



 48 

Do not store secrets (for example, passwords) in plaintext. 

Do not pass credentials in plaintext over the wire. 

Protect authentication cookies with Secure Sockets Layer (SSL). 

Tampering with data Use data hashing and signing.  

Use digital signatures. 

Use strong authorization. 

Use tamper-resistant protocols across communication links. 

Secure communication links with protocols that provide message integrity. 

Repudiation Create secure audit trails.  

Use digital signatures. 

Information disclosure Use strong authorization.  

Use strong encryption. 

Secure communication links with protocols that provide message confidentiality. 

Do not store secrets (for example, passwords) in plaintext. 

Denial of service Use resource and bandwidth throttling techniques.  

Validate and filter input. 

Elevation of privilege Follow the principle of least privilege and use least privileged service accounts to run 
processes and access resources. 

 

Table 3:  STRIDE Threats and Countermeasures [10] 

 

The next step is to construct attack trees and attack patterns involving the identified 
threats.  There are two reasons for doing this.  The first reason is that attack trees and 
patterns focus around attack scenarios that can be pursued by an attacker.  Each of the 
attack scenarios comprises the various security threats that were identified.  The second 
reason for doing this is that thinking about attack scenarios may help a threat modeler 
unveil additional threat that might have been previously overlooked.  While there are 
different definitions for attack trees and attack patterns, Microsoft defines these terms as 
follows: 
 



 49 

“An attack tree is a way of collecting and documenting the potential attacks on your 
system in a structured and hierarchical manner. The tree structure gives you a descriptive 
breakdown of various attacks that the attacker uses to compromise the system. By 
creating attack trees, you create a reusable representation of security issues that helps 
focus efforts. Your test team can create test plans to validate security design. Developers 
can make tradeoffs during implementation and architects or developer leads can evaluate 
the security cost of alternative approaches. 

Attack patterns are a formalized approach to capturing attack information in your 
enterprise. These patterns can help you identify common attack techniques” [MS Paper]. 

A good way to go about creating attack trees is to identify goals and sub-goals of an 
attack as well as other actions necessary for a successful attack.  An attack tree can be 
represented as a hierarchical diagram or as an outline.  The desired end result of the 
whole exercise is to have something that portrays an attack profile of the application.  
This will help in evaluation if likely security risks and guide the choice of mitigations.  
At this stage, flaws in architecture or design might become apparent and would need to 
be rectified.  Attack trees can be started by first identifying the root nodes, representing 
the ultimate goals of an attacker, and working towards the leaf nodes, representing the 
techniques and methodologies used by an attacker to achieve the goals.  Each of the leaf 
nodes might be a separate individual security threat that was previously identified.  A 
diagram representing a sample attack tree is offered below. 

 

Figure 9:  Sample Attack Tree (Tree Representation) [10] 

An approach to documenting an attack tree that takes less space and less time to create is 
the outline representation.  The outline representation of a sample attack tree is shown 
below. 

Threat #1 Attacker obtains authentication credentials by monitoring the network 

  1.1 Clear text credentials sent over the network AND 

  1.2 Attacker uses network-monitoring tools 

      1.2.1 Attacker recognizes credential data 



 50 

Figure 10:  Sample Attack Tree (Outline Representation) [10] 

Attack patterns provide a way of documenting generic attacks that may occur in many 
different contexts.  The pattern identifies the goal of the attack, preconditions, and the 
steps to perform the attack.  Unlike STRIDE, the focus represented in attack patterns is 
on attack techniques, and not the goals of the attacker.  An attack tree below illustrates a 
generic attack pattern for injection attacks.  Command and SQL injection attacks are 
specific instances of the generic injection attack. 

Pattern Code injection attacks 

Attack goals Command or code execution 

Required conditions Weak input validation  

Code from the attacker has sufficient privileges on the server. 

Attack technique 1.Identify program on target system with an input validation vulnerability.  

2.Create code to inject and run using the security context of the target application. 

3.Construct input value to insert code into the address space of the target application and force a stack 

corruption that causes application execution to jump to the injected code. 

Attack results Code from the attacker runs and performs malicious action. 

Table 4:  Pattern for a Generic Code Injection Attack [10] 

2.3.5       Document the Threats 

The next step in Microsoft’s threat modeling process is to document all of the threats that 
were identified.  Documentation also should have been performed throughout all of the 
previous stages of the process.  In order to effectively document the identified threats, a 
template should be create that encapsulates various relevant threat attributes, such as 
target, risk, attack techniques and countermeasures.  Risk attribute can be left blank for 
now.  We will discuss how to determine risk in the following section when we rate the 
threats.  A sample template for documenting the threats is presented below. 

Threat 1 

Threat Description Attacker obtains authentication credentials by monitoring the network 

Threat target Web application user authentication process 

Risk   

Attack techniques Use of network monitoring software 

Countermeasures Use SSL to provide encrypted channel 

Threat 2 

Threat Description Injection of SQL commands 



 51 

Threat target Data access component 

Risk   

Attack techniques Attacker appends SQL commands to user name, which is used to form a SQL query 

Countermeasures Use a regular expression to validate the user name, and use a stored procedure that uses parameters to 
access the database. 

Table 5:  Documenting the Threats [10] 

2.3.6 Rate the Threats 

 

The final step in the threat modeling process is to rate all of the threats that were 
identified.  That is done by evaluating potential impact of each of the threats on the 
system.  The purpose of this exercise is to help prioritize the threats.  It may be unrealistic 
to expect that under the pressures of a typical software development schedule all of the 
threats will be mitigated.  This may be impossible due to time and money constraints.  
After all, functionality has to come first.  However, having a good way to rate the threats 
based on the greatest security impact on the application as a whole will help make inform 
decisions as to what threats must be addressed first.  The formula for calculating risk is:  
RISK = PROBABILITY * DAMAGE POTENTIAL.  We can now fill in the risk 
attribute in the template documenting the attributes of each of the threats that we left 
blank in the previous section.  1-10 scale can be used to represent probability, with higher 
number meaning higher probability.  Same scale can be applied for damage potential. 
 
In order to prioritize the threats, high, medium and low ratings can be used.  Threats rated 
as high pose a significant risk to the application and should be addressed as soon as 
possible.  Medium threats need to be addressed, but are less urgent than high threats.  
Low threats should only be addressed if the schedule and cost of the project allows.  
Microsoft has also developed a more sophisticated rating system called DREAD that 
makes the impact of the security threat more explicit.  Adding additional dimensions to 
consider makes it easier for a team performing threat modeling to agree on the rating.  
DREAD model is used to calculate risk at Microsoft instead of the simplistic formula 
above.  The following questions must be asked when using DREAD to arrive at the risk 
for a particular threat: 

• Damage potential: How great is the damage if the vulnerability is exploited?  

• Reproducibility: How easy is it to reproduce the attack?  

• Exploitability: How easy is it to launch an attack?  

• Affected users: As a rough percentage, how many users are affected?  

• Discoverability: How easy is it to find the vulnerability?  

DREAD questions can be extended to meet the particular needs of the application.  There 

might be other dimensions of great importance to a particular application being 



 52 

evaluated.  A sample rating table is shown below that can be useful when prioritizing 

threats. 

 

  Rating High (3) Medium (2) Low (1) 

D Damage potential The attacker can subvert the 
security system; get full trust 
authorization; run as 
administrator; upload content. 

Leaking sensitive information Leaking trivial information 

R Reproducibility The attack can be reproduced 
every time and does not require a 
timing window. 

The attack can be reproduced, 
but only with a timing window 
and a particular race situation. 

The attack is very difficult to 
reproduce, even with knowledge 
of the security hole. 

E Exploitability A novice programmer could make 
the attack in a short time. 

A skilled programmer could 
make the attack, then repeat the 
steps. 

The attack requires an extremely 
skilled person and in-depth 
knowledge every time to exploit. 

A Affected users All users, default configuration, 
key customers 

Some users, non-default 
configuration 

Very small percentage of users, 
obscure feature; affects 
anonymous users 

D Discoverability Published information explains the 
attack. The vulnerability is found 
in the most commonly used 
feature and is very noticeable. 

The vulnerability is in a 
seldom-used part of the 
product, and only a few users 
should come across it. It would 
take some thinking to see 
malicious use. 

The bug is obscure, and it is 
unlikely that users will work out 
damage potential. 

Table 6:  Threat Rating Table [10] 

After asking the above questions, values (1-3) should be counted for each threat. The 

result can fall in the range of 5–15. Then values 12-15 are treated as High risk, 8-11 as 

Medium and 5-7 as Low.  Using the sample example we looked at earlier:  

• Attacker obtains authentication credentials by monitoring the network.  

• SQL commands injected into application. 

 

Threat D R E A D Total Rating 

Attacker obtains authentication 
credentials by monitoring the 
network. 

3 3 2 2 2 12 High 

SQL commands injected into 
application. 

3 3 3 3 2 14 High 

Table 7:  DREAD Rating [10] 

We can now complete the template documenting this threat from the previous section. 



 53 

Threat 

Description 

Attacker obtains authentication credentials by monitoring the 

network 

Threat target Web application user authentication process 

Risk rating High 

Attack techniques Use of network monitoring software 

Countermeasures Use SSL to provide encrypted channel 

 

2.3.7 Output 
 
The output of the threat modeling process is a document that has multiple audiences.  The 
audiences for this document are the various members of the software development team 
including the architects, designers, developers, testers and security auditors.  The 
document should facilitate the various project team members understand the security 
threats on the application that need to be addressed and how they should be mitigated.  
The threat modeling output document consists of the complete architecture of the 
application and a list of threats coupled with their mitigations.  Figure below defines the 
structure of the document resulting from the threat modeling process.  Section 2.1 and 
sample threat model offered in 2.2 also outlined some additional parts that can be made 
part of the output document, such as documentation of assumptions, among others. 
 

 
 

Figure 11:  Various Pieces of the Threat Model [10] 
 
 

Threat modeling process helps mitigate the risk of an attack by considering 
countermeasures to various threats.  The threats themselves are not eliminated with threat 
modeling, only the risk is managed.  Threats will exist despite of the security actions 
taken or countermeasures applied.  The goal is to identify the threats to help manage the 
risk.  Threat modeling provides an effective mechanism for managing and 
communicating security risks to all members of the software project team.  It is also 
important to remember that threat model is built as a result of an iterative process and it 
will change over time since new times of threats and attack are discovered.  Additionally, 



 54 

changing business requirements may require changes to the system which should prompt 
revisiting of the threat model.   
 

3.0      J2EE Security 

 
3.1 Architecture Overview 

 

We now introduce an architecture overview for the component technologies of Java 2 
Enterprise Edition (J2EE) used in a typical enterprise web application.  The discussion is 
focused on the technologies used across the various tiers, namely the client tier, 
presentation tier, business logic tier, and the database tier.  The discussion in this section 
presents the architectural overview of some of the J2EE technologies that will be 
instrumental for further discussion the support for core security services.   
 
The first thing to understand about J2EE which plays a very important from a security 
standpoint is that J2EE is a specification for an enterprise platform and services.  A 
variety of vendors implement the various parts of the J2EE specification.  For instance, 
Jakarta Tomcat implements the J2EE web container specification and JBoss implements 
the EJB container specification.  The point is that since a wide variety of vendors provide 
implementation to the J2EE specification, many application level vulnerabilities and 
compensating controls might in fact be specific to the independent software vendor (ISV) 
providing the implementation.  For this reason, the discussion of security in the context of 
J2EE will be vendor specific to some extent.  Additionally, while J2EE specification 
mandates certain solutions to address the core security services, the implementation of 
these solutions will be vendor specific.  While we try to keep the discussion generic 
whenever possible, when implementation level detail needs to be considered, we will be 
referring to the BEA Weblogic implementation of the J2EE application server and the 
associated services.   

Sun Microsystems offers the following description of the J2EE platform:  “The J2EE 
platform represents a single standard for implementing and deploying enterprise 
applications. The J2EE platform has been designed through an open process, engaging a 
range of enterprise computing vendors, to ensure that it meets the widest possible range 
of enterprise application requirements. As a result, the J2EE platform addresses the core 
issues that impede organizations' efforts to maintain a competitive pace in the 
information economy” [23].  

J2EE provides a distributed multi-tier application model where individual components 
can be distributed across different machines and heterogeneous platforms.  The client tier 
of the J2EE enterprise web application is comprised of thin clients (user browsers) that 
can be located inside or outside the corporate firewall.  A web application can also have 
other types of clients at the client tier, but we focus the discussion in this paper on thin 
clients.  The application server resides on the middle tier of the J2EE enterprise web 
application and is compromised of the Web and EJB containers that provide services to 
the client tier.  Web container handles the presentation layer of the application via Servlet 
and JSP technologies.  An EJB container provides lifecycle management support for 



 55 

transaction aware business components that implement all of the business logic for the 
application.  In enterprise deployments those two containers would rarely be on the same 
machine.  In fact, the components within each of these containers are likely to be 
distributed across multiple machines if for no other reason than for fault tolerance and 
load balancing purposes.  The Enterprise Information Systems (EIS) tier is the database 
or persistence tier of the J2EE based enterprise web application abstracting standardized 
access via API to variety of data stores.   Figure below summarizes a set of technologies 
used across each of the tiers of the J2EE application.   
 

 
Figure 12:  Overview of J2EE Web Application Architecture [23] 

 

The important point to understand about J2EE containers is that they are standardized 
runtime environments which provide a variety of services to the components that are 
deployed inside them.  Regardless of the vendor implementing the J2EE container, 
developers writing J2EE components can always rely on certain services to be provided.   
J2EE application server developers may and usually do choose to make additional 
features and services available to component developers, but component developers are 
always guaranteed to have available the set of services mandated by the J2EE 
specification.  Thus if component developers use only vendor independent features 
available to them by the J2EE containers, the constructed components are guaranteed to 
work on different implementations of the J2EE application server.   Some common 
services that J2EE containers provide to components include APIs that provide access to 
database (JDBC), transaction (JTA), naming and directory (JNDI), and messaging 
services (JMS). The J2EE platform also provides technologies that enable 
communication between collaborating objects hosted by different servers (RMI).  Among 
other services, security related services are provided by the J2EE containers for the 
component developers to use.  Some of those services are mandated by the J2EE 
specification and others are application server vendor specific.  Figure below presents yet 
another view of the J2EE architecture with specific emphasis on the various kinds of 
supported services and the different types of application clients. 



 56 

 

 
Figure 13:  J2EE Components, Containers and Services [23] 

 
The diagram below illustrates the multi-tiered deployment model for a web based 
enterprise J2EE application.  You will notice the each of the tiers lists an associated set of 
technologies.  Client tier can display HTML and XML pages and communicates with the 
web tier via HTTP or HTTPS.  The web tier uses servlet and JSP technologies for 
presentation layer.  Business logic tier (EJB tier) hosts all of the business logic for the 
application and may make use of container provided services such as the Java Messaging 
Service (JMS), Java Transaction API (JTA), Java Database Connectivity (JDBC), etc.  
The EIS tier hosts the databases for the enterprise web application.  J2EE security 
discussion in this paper will focus on this kind of four-tiered deployment model of the 
web based enterprise application built with J2EE. 
 

 
 

Figure 14:  J2EE Four-tiered Deployment Model [23] 

 



 57 

It is also important to mention that the data flow in a typical J2EE enterprise web 
application follows the Model View Controller (MVC) architecture.  This architecture 
attempts to uncouple the business functionality, control logic and presentation code.  A 
model represents application data and business logic dictating access and changes to the 
data.  A controller defines application behavior by ensuring that user actions result in 
proper model changes.   A view is responsible for presenting the content of a model to the 
user.  Understanding of the MVC is very important from the security perspective.  Figure 
below illustrates the inner workings of MVC. 

 
 

Figure 15:  J2EE Model View Controller Architecture [23] 

 
Much can be said about J2EE, but the goal of this section was only to provide high level 
architectural information required for subsequent discussion.  A variety of additional 
information will be provided on J2EE as it becomes necessary.  We now move on to look 
at the way that the J2EE specification addresses the core security services.    
 

3.2 Support for Core Security Services  

 

The discussion in this section focuses on the ways that confidentiality, integrity, 
authentication, authorization, availability, non-repudiation and accountability are 
addressed by the J2EE security model.  There are two security methodologies provided 
by J2EE containers, namely declarative and programmatic.  Component developer 
specifies declarative security in the XML deployment descriptor for the component, 
while programmatic security is specified from within the code (Java) for Web and EJB 
container components via the security APIs provided by J2EE.  We are going to take a 
look into the security APIs provided by J2EE and see how those can be invoked to 
support the core security services.  For the purposes of this paper, both declarative and 
programmatic security methodologies fall within the application security category.  
 



 58 

A concept of a principal is used for authentication in J2EE.  Once an entity has been 
authenticated by providing an authentication token (such as login/password) it becomes a 
principal.  A principal is an authenticated entity that has certain identity attributes 
associated with it.  Authorization (access control) in J2EE is driven by comparing the 
principal’s identity attributes to the access control rules of the resource.  The rights of the 
principal to access a resource are determined based on the permissions associated with 
the resource which are defined as part of the application’s security policy domain 
(declarative security).  It is important to remember that authentication and authorization 
are not a one time proposition.  As we discussed in chapter two, these services should be 
invoked each time data crosses a trust boundary at the appropriate entry points.    
 
An application component developer can specify the means by which an entity is 
authenticated in the system.  Authentication to the Web container can take place via 
authentication data provided by the Web client by means of HTTP basic authentication, 
digest authentication, form-based authentication, or certificate authentication.  Basic 
authentication involves using login and password combination.  Digest authentication is 
similar to basic encryption, but applies a message digest algorithm on the password prior 
to transmitting it versus base64 encoding used to transfer the password in basic 
encryption, which is far more secure and is preferable.  Form-based authentication uses a 
secure form provided by the Web container for authentication in order to log in.  Finally, 
certificate authentication uses PKI techniques, where the client uses a public key 
certificate to establish its identity and maintains its own security context. No way exists 
to authenticate to the EJB container in J2EE.  The J2EE trust model dictates that 
authentication would have already taken place by the time an action in an EJB component 
is invoked on behalf of the principal.  However, if an enterprise bean needs to access an 
external resource, authentication will need to happen again since a trust boundary will 
have to be crossed.  In that case, an enterprise bean can provide authentication data to the 
external resource directly (programmer handles it) or it can request that the container 
does this instead (container handles it).  In the latter case, authentication data to resource 
factory reference mapping for the enterprise bean must be specified in the deployment 
descriptor and that authentication data will be passed to the external resource when 
connection is obtained by the container.  Consequently, in the former case, the passing of 
authentication data to external resource is programmatic and in the latter case it is 
declarative. 

J2EE platform authorization is based on the concept of security roles where security role 
is defined as a logical grouping of users defined by an application component provider or 
assembler.  In the deployment environment, a security role is mapped to a principal by 
the deployer of the application.  A security role can use both declarative and/or 
programmatic security.  An application component provider can control access to an 

enterprise bean's methods in the EJB container by specifying the method-permission 
element in the enterprise bean's deployment descriptor (declarative security). The 

method-permission element contains a list of methods that can be accessed by a given 
security role.  If a principal is in a security role allowed access to a method, the principal 
may execute the method.   That is to say that the capability of a particular security role 

that is specified in the method-permission element drives access control.   



 59 

 

Similarly, a principal is allowed access to a Web component in the Web container only if 
the principal is in the appropriate security role. This access control is provided 

programmatically by the developer via EJBContext.isCallerInRole or 

HttpServletRequest.isRemoteUserInRole methods. 

3.2.1 Authentication: 

When calls are made from the various application components of the J2EE application, 
those components usually act on behalf of some user.  That is the execution of some web 
or EJB component is prompted by some user action.  In that case, the component is said 
to impersonate the user thus its identity might be related to that of the user.  On the other 
hand, an application component may call another application component with an identity 
that is its own, unrelated to the user.  The point is that in authentication among 
application components is sometimes associated with the security role and the security 
context.   

There are often two phases to authentication in J2EE applications:  establishment of 
authentication context and authentication of caller or calling identities.  Authentication 
context is established in a service-independent fashion, utilizing knowledge of some 
secret.  Authentication context encapsulates the identity and is able to provide proofs of 
identity, otherwise known as authenticators.  One can think of the authentication context 
as an underlying authentication interface for authentication services that can be used after 
having been instantiated with a specific identity.  The authentication context can now be 
used for authentication of caller or calling identities.  Controlling access to the 
authentication context (i.e. the ability to authenticate an associated identity) forms the 
foundation for the authentication scheme.  Some of the ways to control access to the 
authentication context are allowing the process to inherit access to the authentication 
context once the initial authentication is performed by the user, related or trusted 
components (such as those which are part of the same application) can be granted access 
to the authentication context once a component is authenticated, and the caller may 
delegate its authentication context to the called component in cases where the component  
being called is expected to impersonate the component that called it. 

Communication some between some J2EE components may take place without requiring 
authentication.  This may happen for instance when the two components are part of the 
same protection domain, meaning that they are known to trust each other.  A single trust 
boundary envelops the J2EE protected domain.  Special care needs to be taken to 
ascertain that trust is not being overextended when relying on protection domains.  When 
communication occurs between two components that are members of the same protection 
domain, no authentication is required, thus no constraints are placed on the identity 
associated with the call.  The caller component in this case may propagate the caller’s 
identity to the called component or select an identity based on its knowledge of the 
authorization constraints that are in place in the called component.    That also means that 
entities extending trust universally (e.g. some web components) should never belong to 



 60 

any protection domains.  A J2EE container is responsible for providing the boundaries 
between external callers and components inside the container.  Boundaries of protection 
domains do not necessarily align with container boundaries.  That is two components that 
belong to different containers may be part of the same protected domain.  While 
containers enforce the boundaries, various implementations may support protection 
domain boundaries that span containers.  Containers are not necessarily required to host 
components belonging to different protection domains, but various container 
implementations may choose to provide support for that.  Figure below illustrates a 
typical J2EE protection domain. 

 

Figure 16:  J2EE Protection Domain [23] 

In component to component communication, in the case of inbound calls to the 
component, a container provides the called component with the credential of the calling 
component that allows the called component to get an authentic representation of the 
callers’ identity.  The credential can be a X.509 certificate, kerberos service ticket, etc.  
For outbound calls, the container of the calling component provides the credentials of that 
component so that they can be used by the container hosting the called component to 
establish the caller’s identity as described above.  The critical point is that J2EE 
containers provide bi-directional authentication capabilities that can be used to enforce 
the protection domain boundaries.  Application developers need to understand how 
containers handle authentication and protection domains in order to make sure that trust 
is never overextended and where additional programmatic authentication is warranted.  If 
it is unacceptable to rely on inter-container trust model, programmers may have to write 
authentication related code to overwrite the default behavior.  If no valid identity proof is 
presented to the called component by the caller component, and the two components are 
not part of the same protection domain, the call should be rejected.  Figure below 
illustrates J2EE authentication for two user scenarios:  authenticated and unauthenticated 
users.   



 61 

 

Figure 17:  J2EE Authentication Scenarios [23] 

As shown in the figure above, a calling component invoked by the user utilizes the user’s 
authentication context to prove the user’s identity to an intermediate component.  If the 
identity is then propagated to the server and since no authentication tokens were 
provided, it will be accepted only if the two components reside in the same protection 
domain.  On the other hand, if delegation rather than propagation occurs, access to 
authentication context is granted, allowing the intermediate caller to impersonate the user 
for all future calls.  That means that propagation should only be used when all of the calls 
in the call chain originating from the user are part of the same protection domain.  
Delegation and impersonation should be used when authentication might be required over 
and over again.  The figure also shows usage scenario for unauthenticated users utilizing 
anonymous credentials and propagation.  A component that accepts anonymous 
credentials should not be part of any protection domain. 

We already described earlier in this section some of the authentication mechanisms 
supported by J2EE Web containers.  These include HTTP basic authentication, digest 
authentication, form-based authentication, or certificate authentication.  The type of 
authentication to use can be specified declaratively via an XML deployment descriptor.   
Another type of authentication that makes use of certificate authentication is called 
mutual authentication.  In mutual authentication, X.509 certificates are used by the client 
and the server to establish identity.  SSL is used in mutual authentication to secure the 
communication channel.  There is also support for hybrid authentication schemes 



 62 

involving HTTP basic authentication, form-based authentication, or HTTP digest 
authentication over SSL.   

The type of authentication mechanism to use can be configured declaratively via the 
login-config element of the Web component deployment descriptor (Web.xml file).  
Below are a few examples of the ways that various authentication mechanisms can be 
specified in the Web.xml file. 

HTTP Basic/Digest Authentication Configuration: 

 
<web-app> 
 <login-config> 
  <auth-method>BASIC|DIGEST</auth-method> 
  <realm-name>jpets</realm-name> 
 </login-config> 
</web-app> 

 

Form-Based Authentication Configuration: 

 
<web-app> 
 <login-config> 
  <auth-method>FORM</auth-method> 
  <form-login-config> 
   <form-login-page>login.jsp</form-login-page> 
   <form-error-page>error.jsp</form-error-page> 
  </form-login-config> 
 </login-config> 
</web-app> 

 

Client Certificate Authentication Configuration: 

 
<web-app> 
 <login-config> 
  <auth-method>CLIENT-CERT</auth-method> 
 </login-config> 
</web-app> 

 
In order to protect the confidentiality of authentication tokens transmitted across insecure 
channels, authentication configurations above can be coupled with SSL-protected 
session.  For instance HTTP basic authentication can be configured to happen over SSL 
as shown below.  Same can be done for form-based authentication. 
 
<web-app> 
 <security-constraint> 
  ... 
  <user-data-constraint> 
   <transport-guarantee>CONFIDENTIAL</transport-guarantee> 
  </user-data-constraint> 
 </security-constraint> 
</web-app> 
 



 63 

Setting the value of <transport-guarantee> tag to CONFIDENTIAL tells the J2EE Web 
container to use an SSL protected session for transmission of authentication tokens such 
as passwords.  
  
Many deployments of enterprise web based applications built with J2EE do not provide 
separate authentication at the EJB tier components, and instead use protected domains 
that incorporate trusted Web components that are relied upon by the EJB components to 
have performed authentication.  In this case, a protection domain spans J2EE containers, 
namely the Web and EJB containers.  In that configuration a Web container is used to 
enforce protection domain boundaries for Web components and the enterprise beans 
called from those components.  A diagram demonstrating this approach is shown below. 
 

 
Figure 18:  J2EE Protection Domains:  Trusted Web Components [23] 

 

The method for authentication in EJB components described above is less than ideal from 
a security standpoint.  Having a protection domain that spans containers can be very 
tricky especially when some of the components in that protection domain are web 
components that may be externally accessible.  Even if those components are trusted and 
coded properly (which is a big if), a compromise of one of the web components might 
make this trust misplaced if compartmentalization is not properly implemented.  
Additionally, web components will tend to be distributed across multiple machines, thus 
increasing a level of complexity.  Additionally, the principle of defense in depth is 
violated in this scenario.  In short, it would be far better if J2EE specification allowed for 
authentication to be performed at the EJB container level, because in general, data 
transferred from the middle tier to the business logic tier crosses a trust boundary and 
must thus be re-authenticated.  At a minimum, unprotected Web components should 
never be able to call protected EJB components.  Trusted Web components must be 
invoked first prior to calling protected EJB resources.  Developers must make sure that 
protection mechanisms for access control cannot be circumvented when access to an EJB 
resource occurs in a Web component.  Due to the J2EE specification, a lot of 
authentication in this case cannot be declarative and must be programmatic, introducing a 
greater risk factor.   
 
As described earlier in this section, authentication at enterprise information systems layer 
is supported by J2EE via two primary mechanisms:  container-managed resource 
manager sign-on and application-managed resource manager sign-on.  In the former 
scheme, the calling container can be configured to manage the authentication to the 



 64 

resource for the calling component.  This is the declarative approach.  In the latter case, 
the components themselves manage caller identity and provide appropriate authenticators 
to the external resources at the EIS tier.  This is the programmatic approach.   
 
Container-managed resource manager sign-on uses a resource-ref element declared in the 
component’s deployment descriptor that enumerates the resources used by the 
component. It is the responsibility of the component developer to provide this 
information in the deployment descriptor for all of the external resources being accessed.   
The sub-element res-auth specifies the type of sign on authentication.  From inside the 
components, EJBContext.getCallerPrincipal and HttpServletRequest.getUserPrincipal 
methods can be invoked to obtain the identity of their caller.  The component can then 
create a mapping between the caller identity to a new identity (or authentication secret) as 
required by a target resource being accessed at the EIS tier.  The principal mapping is 
entirely performed by the container in container-managed resource manager sign-on 
scheme. In application-managed resource manager sign-on, the principal mapping is 
performed in the component itself, thus placing more responsibility on the programmer. 
 

3.2.2 Authorization: 

 

We already briefly discussed J2EE support for authorization services earlier in this 
section.  Authorization, otherwise referred to as access control, is used to determine what 
resources should be accessible to authenticated users and what rights to should those 
users have while interacting with these resources.  Only authentic caller identities are 
granted access to various J2EE components.  Java 2 Standard Edition (J2SE) platform 
provides some mechanisms used to control access to code based on identity properties 
(e.g. the location and signer of the calling code).  J2EE platform, which is built on top of 
J2SE, requires additional mechanisms for access control, where access to components 
must be limited based on who is using the calling code.  As discussed in the 
authentication section, the caller may propagate the identity of its caller, select an 
arbitrary identity, or make an anonymous call. 
 
A credential must be available to the called component that contains information 
describing the caller through its identity attributes.  For anonymous calls, anonymous 
credentials are used.  The access decision is made when comparing the caller’s identity 
attributes with those required to access the called component.  Like with authentication, a 
J2EE container serves as an authorization boundary between the components it contains 
and the callers to those components.  An authorization boundary exists inside the 
authentication boundary of the container because it only makes sense to consider 
authorization after successful authentication.  For all inbound calls, the security attributes 
in the caller’s credentials must be compared with access control rules for the called 
component by the container.  If the access control rules are satisfied, then the call is 
permitted.  Otherwise, the call is rejected.  Access control in J2EE is defined through 
permissions.  For each resource, permissions enumerate who can perform various 
operations on the resource.  Application deployer must configure a mapping between 
permission model of the application to the capabilities of the users in the operational 



 65 

environment.  As with authentication, there are two types of authorization in J2EE:  
declarative and programmatic.  We now describe both of these types. 
 

The deployment descriptor of the application facilitates the mapping of application 
component capabilities to the capabilities of users in the corporate environment.  This 
declarative approach to access control allows for container-enforced access control rules.  
The deployment descriptor defines security roles and associates them with components to 
define the privileges required to be granted permission to access components.  “The 
deployment descriptor defines logical privileges called security roles and associates them 
with components to define the privileges required to be granted permission to access 
components. The deployer assigns these logical privileges to specific callers to establish 
the capabilities of users in the runtime environment. Callers are assigned logical 
privileges based on the values of their security attributes. For example, a deployer might 
map a security role to a security group in the operational environment such that any caller 
whose security attributes indicate that it is a member of the group would be assigned the 
privilege represented by the role. As another example, a deployer might map a security 
role to a list containing one or more principal identities in the operational environment 
such that a caller authenticated as one of these identities would be assigned the privilege 
represented by the role” [23].   

At the EJB tier, access permission to a method is granted by the container only to callers 
that have at least one of the privileges associated with the method.  At the Web tier, the 
Web container protects access to resources via security roles.  For instance, a URL 
pattern and associated HTTP methods, such as GET, have associated permissions with 
them with which security roles must be compared.  Web and EJB containers enforce 
authorization in similar ways.  When a resource does not have an associated security role 
explicitly defined, access is granted to all who request the resource.  In this declarative 
approach to authorization, the access control policy is specified at deployment time.  The 
flexibility of this approach allows modifying the access control policy at any point.  
Privileges required to access components can be modified and refined.  Additionally, the 
mapping between security attributes presenting by callers and container permissions can 
be defined.  Those mappings are application specific and not container specific.  That 
means that if a given container contains components from multiple applications, the 
privileges mapping may be different for each of the components, depending on what 
application it is associated with.   

There may be situations when a finer grained access control may be required at the 
component level.  For instance that may be the case if access control decision is based on 
the logic or state of the component.  In this situation, access control decisions might be 
performed programmatically.  A component can use two methods, 
EJBContext.isCallerInRole for entity java beans and HttpServletRequest.isUserInRole 
for web components allow for a finer-grained access control capability that may take into 
account factors such as parameters of the call, internal state of the component, time of 
call, etc.  “The programmer of a component that calls one of these functions must declare 
the complete set of distinct roleName values used in all of its calls. These declarations 



 66 

appear in the deployment descriptor as security-role-ref elements. Each security-role-ref 
element links a privilege name embedded in the application as a roleName to a security 
role. It is ultimately the deployer who establishes the link between the privilege names 
embedded in the application and the security roles defined in the deployment descriptor. 
The link between privilege names and security roles may differ for components in the 
same application” [23]. 

Declarative access control policy provides more flexibility after the application has been 
written, is transparent and easy to comprehend.  On the other hand, programmatic access 
control policy is not flexible after the application has been written, can only be 
completely understood by developers and requires changes to the code if it is to be 
modified or refined.  A typical enterprise web based application built with J2EE 
technologies is likely to include a combination of declarative and programmatic access 
control policy.  From the application security perspective, mistakes can be made in either 
one of the scenarios.  In next section we describe some of the specifics of each technique. 

It is important to make sure that access to resources is protected by the access control 
policy across all paths (component methods) that this access can take place.  This goes 
back to the principle of securing the weakest link.  Especially in cases with programmatic 
access control, it might make sense to have a few dedicated routines performing access to 
shared resources so that authorization code can be concentrated in as few places as 
possible.  This is also referred to as encapsulation of access control with access 
components implementing an authorization barrier.  The point is to be absolutely sure 
that authorization checks cannot be circumvented. 

In order to control access declaratively to a Web resource, a security-constraint element 
with an auth-constraint sub-element needs to be specified in the Web deployment 
descriptor.  The example below specifies that the URL with the pattern 
/control/placeorder can only be accessed by users acting in the role of customer.  Thus the 
authorization constraint for web resource called placeorder is specified: 

<security-constraint> 
 <web-resource-collection> 
  <web-resource-name>placeorder</web-resource-name> 
  <url-pattern>/control/placeorder</url-pattern> 
  <http-method>POST</http-method> 
  <http-method>GET</http-method> 
 </web-resource-collection> 
 <auth-constraint> 
  <role-name>customer</role-name> 
 </auth-constraint> 
</security-constraint> 
 

In order to control access declaratively to an EJB resource, a method-permission element 
can be specified in the deployment descriptor that would specify the methods of the 
remote and home interface that each security role is allowed to invoke.  When the 
security roles required to access an enterprise bean are assigned only to authenticated 



 67 

users, then the bean in question is protected.  An example of an enterprise bean 
authorization configuration is shown below: 
 
<method-permission> 
 <role-name>admin</role-name> 
  <method> 
   <ejb-name>TheOrder</ejb-name> 
   <method-name>*</method-name> 
  </method> 
</method-permission> 
 
<method-permission> 
 <role-name>customer</role-name> 
 <method> 
  <ejb-name>TheOrder</ejb-name>  
  <method-name>getDetails</method-name>  
 </method>  
 <method> 
 ... 
</method-permission> 

 
Some resources may be unprotected and access to those resources may be permitted 
anonymously to users that have not been authenticated.  Unprotected access to  
Web tier component can be enabled by leaving out an authentication rule.  Unprotected 
access to an EJB component can be enabled by creating a mapping between at least one 
role allowed access to that resource and a universal set of users regardless of 
authentication. 
 
An example below demonstrates how each application and each component within the 
application can specify individual authorization requirements.  There are many reasons 
for which granular access control may be required and desirable.  The example 
application below contains two enterprise beans, EJB 1 and EJB2, each with only one 
method.  Each of the methods calls isCallerInRole where the role name is MANAGER.  
The deployment descriptor also specifies the security-role-ref element for the 
isCallerInRole in the enterprise beans.  The security-role-ref for EJB1 links MANAGER 
to the role bad-managers and security-role-ref for EJB2 links MANAGER to the role 
bad-managers.  The deployment descriptor also defines two method-permission elements 
that establish that the role employees can access all methods of EJB1 and that the role 
employees can also access all methods for EJB2.  The deployment descriptor contains 
three security-role elements, namely employees, good-managers, and bad managers.  
User 1 is assigned to roles employees and good-managers and User 2 is assigned to roles 
employees and bad-managers.  The second application only has one enterprise bean, 
EJB3, with only one method that also calls isCallerInRole with MANAGER as the role 
name.  The deployment descriptor for the second application also contains security-role-
ref elements to link MANAGER to the role good-managers.  Method-permission element 
is defined to specify that the role employees can access all of the EJB3 methods.  The 
deployment descriptor has two role elements, namely employees and good-managers.  
User 2 is assigned to roles employees and good-managers. 
 



 68 

 

Figure 19:  Sample J2EE Declarative Access Control Configuration [23] 

Given the security mappings above, the table below demonstrates the access control 
decisions when various users (User 1, User 2 or User 3) invoke the various enterprise 
bean methods (EJB 1 method, EJB 2 method, EJB 3 method). 

Authorization Decisions  

Call Call Dispatched? isCallerInRole? 

User 1 - EJB 1 yes true 

User 1 - EJB 2 yes false 

User 1 - EJB 3 no never called 

User 2 - EJB 1 yes false 

User 2 - EJB 2 yes true 

User 2 - EJB 3 yes true 

 

Table 8:  EJB Method Invocation Authorization Decisions [23] 

  



 69 

3.2.3 Confidentiality: 

 

As we previously mentioned, the value of <transport-guarantee> element to 
CONFIDENTIAL in the deployment descriptor tells the J2EE Web container to use an 
SSL protected session for transmission of authentication tokens such as passwords.  
Asymmetric (PKI with X.509 certificates) is used to distribute the shared symmetric key 
which is subsequently used for encryption.  The J2EE specification recommends limiting 
cryptography usage to places where it is only absolutely necessary due to performance 
reasons.  Most confidentiality issues are addressed at the deployment and not 
development time for the application when the deployer configures containers to apply 
confidentiality mechanisms to make sure that sensitive information is not disclosed to 
third parties.  It is the responsibility of application assembler to provide the application 
deployer with the information on which method calls on which components feature 
parameters or return values that should be protected for confidentiality. The deployer 
than configures confidentiality in a way as to protect the method calls identified by the 
assembler will traverse open or insecure networks.  In all instances where proper 
encryption is not used when appropriate, the calls should be rejected.   From this we can 
gather that application of confidentiality mechanisms is very scarce and when required, 
very granular, in order to minimize the impact on performance.  Nevertheless, precisely 
because the application of confidentiality is so conservative, it is more important than 
ever to be very careful.  The application deployer needs to get complete and accurate 
information from the application assembler and then must configure the deployment 
descriptor appropriately.    
 
Web resources have some special confidentiality requirements that must be addressed by 
application developers.  For instance, it is important to be careful with properties of 
HTTP methods, especially with the consequences these properties have when a link is 
followed from one Web resource to another.  When resources contain links to other 
resources, the nature of the links determines the ways in which protection context of the 
current resource determines the protection of requests made to the linked resources.  With 
absolute links (beginning with https:// or http://) the protection context of the current 
resource is ignored, and the new resource will be accessed based on the protection 
context of the new URL.  For URLs beginning with https://, a protected transport (usually 
via SSL) will be created with the server prior to sending the request.  Conversely, for 
URLs beginning with http://, the request is sent over insecure transport.  For relative 
links, the HTTP client container protects access to the linked resource based on the 
protection context of the current resource.  An application developer should be aware of 
the link properties when linked requests must carry confidential data back to the server.  
In that case, a secure absolute link should be used (via https://).  The downside of that 
approach is that it will have the effect of constraining the application to a very specific 
naming environment.  Another approach would fall in the hands of application deployer 
who could configure the application so that in places where confidential interaction is 
required from one resource to another, both of those resources are deployed with 
confidential transport (by setting the <transport-guarantee> element to 
CONFIDENTIAL).       
 



 70 

It is important to realize that many confidentiality issues will be addressed through 
network and not application security.  In addition to performing the steps outlined above, 
an application deployer should also verify that all data is stored securely.  All sensitive 
data should be stored encrypted.  Things like passwords should be stored as hashes.   
 

3.2.4 Integrity: 

 

As we have already seen, a J2EE container serves as an authentication boundary between 
callers and the components it contains.  The information flow to the component may be 
bi-directional (input or/and output).  It is the responsibility of application deployer to 
configure containers via deployment descriptors in a way that would protect the 
interactions between components.  Containers must be configured to implement integrity 
mechanisms when the call traverses open or insecure networks or in cases when calls are 
made between two components that do not trust each other (belong to different protection 
domains).  Integrity checks must make it impossible for messages (method calls) to be 
used more than once.  A container must compute and attach a message signature to the 
call request, and verify the association between the call response and the message 
signature attach to the call response.  The called container verifies the association 
between the call request and the attached message signature, and then computes and 
attaches a message signature to the call response.  This is all accomplished via hashing 
algorithms to create message digests.  Timestamps can be attached to messages to make 
sure that they cannot be reused.  All of the details are taken care of by the container.  If 
the integrity check fails, the call should be abandoned and the caller notified of the 
failure. 

 

3.2.5 Availability: 

 

Availability disruption can occur as a side effect of some other problems within a web 
based enterprise application, such as poor exception management, buffer overflows, 
command injection, and other coding mistakes.  There are no specific services to address 
the availability of the application.  When an application is deployed however, 
components should be distributed to promote fault-tolerance and load balancing as that 
would help mitigate some of the security risks associated with availability (e.g. denial of 
service attacks). 

 

3.2.6 Non-Repudiation: 

 

As we mentioned in the discussion in integrity, the basic mechanism for ensuring non-
repudiation is signing.  Integrity and non-repudiation is addressed via cryptographic 
techniques.  Those techniques mostly make use of various hashing algorithms.  It is 
important to choose a hashing algorithm that is widely believed to be strong.  

 

3.2.7 Accountability: 

 

Keeping a record of security-related events that contain information on who has been 
granted access to what resources is an important tool for promoting accountability.  These 



 71 

records can also be vital for recovery once a system has been breached and can also be 
used for intrusion detection purposes.  They can also help track hackers down.  Any good 
hacker will try to delete or modify all records of his or her activities and thus it is 
extremely important to keep those records secure and tamperproof.  The deployer of the 
application should associate each of the container constraints for component interaction 
with a logging mechanism.  The container can then audit one of the following events:  all 
evaluations where the constraint was satisfied, all evaluations where the constraint was 
not satisfied, all evaluations regardless of the outcome and no evaluations.  All changes to 
audit logs should also be audited.  With J2EE responsibility for auditing and logging is 
shifted from developers to deployers of the application.   

 

3.3 Programmatic Compensating Controls 

 

As section 3.2 demonstrated, much of the J2EE security model and support for core 
security services is addressed through declarative security mechanisms many of which 
are configured by the application deployer and not application component developer.  
However, there are places where application developers of J2EE components will use 
programmatic security to support the core security services.  In this section we discuss 
the various programmatic compensating controls.  For coding examples that depend on 
the implementation, we focus the discussion on BEA Weblogic 8.1 implementation of the 
J2EE application server.   BEA Weblogic 8.1 implements both the Web and EJB 
containers of J2EE.  It also includes the implementation for all of the standard J2EE 
services.  The discussion in this section focuses around the various J2EE security APIs, 
namely Java Authentication and Authorization Service (JAAS) API, SSL API and some 
other Java security APIs.  We provide code samples for some of the programmatic 
security features utilizing the above mentioned security APIs.  J2EE developers 
responsible for building security into enterprise web applications need to understand the 
nuts and bolts of how to use the various security APIs correctly.  
 

3.3.1 Programmatic Authentication in Servlets 

 
As we described earlier in the paper, there are instances where programmatic 
authentication may be appropriate.  Weblogic application server provides a 
weblogic.servlet.security.ServletAuthentication API to provide programmatic 
authentication available to servlet applications.  Recall that servlet components run in the 
J2EE Web container.   With this API, servlet code can be written to authenticate users, 
log users, and associate users with the current session in order to register the user in the 
active security realm.  Authentication can be performed using the 
SimpleCallbackHandler class or URLCallbackHandler class [19].  The two code 
examples included below show how to provide programmatic authentication: 
 
With weblogic.security.SimpleCallbackHandler: 

 
CallbackHandler handler = new SimpleCallbackHandler(username, password); 
Subject mySubject = weblogic.security.services.Authentication.login(handler); 
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request); 

 



 72 

With weblogic.security.URLCallbackHandler: 

 
CallbackHandler handler = new URLCallbackHandler(username, password); 
Subject mySubject = weblogic.security.services.Authentication.login(handler); 
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request); 

 

In both cases request is an httpservletrequest object.  As you may note, the code itself is 
very simple, with all of the authentication logic encapsulated from the programmer.  All 
that a servlet programmer has to do is create a handler that contains the username and 
password information.  Then weblogic.security.services.Authentication.login 
authentication service is invoked and the handler is passed to it.  If authentication is 
successful, the authenticated user is associated with the current session using the 
weblogic.servlet.security.ServletAuthentication.runAs method [19]. 
 

3.3.2 JAAS API 

 

J2EE client applications may use JAAS to provide authentication and authorization 
services.  Some of the standard Java APIs to develop JAAS client applications include 
javax.naming, javax.security.auth, javax.security.auth.Callback, javax.security.auth.login, 
and javax.security.auth.SPI. Some JAAS security APIs specific to Weblogic 8.1 are 
weblogic.security, weblogic.security.auth, and weblogic.security.auth.Callback.  The 
letter “x” after package name “java” (i.e. javax) stands for java extension, implying that 
JAAS API is an extension to the Java platform.  If a J2EE application client needs to 
communicate with application servers that are not implemented via Weblogic, security 
APIs specific to Weblogic should not be used.  In that case using those APIs would 
impact portability.     
 
A client authenticated to the J2EE WebLogic application server with JAAS may be an 
application, applet, Enterprise Java Bean (EJB) or a servlet.  JAAS is a standard 
extension to the Java Software Development Kit 1.4.1.  JAAS allows enforcement of 
access control based on user identity.  WebLogic application server uses only 
authentication capabilities of JAAS to support LoginContext and LoginModule 
functionalities.  The WebLogic LoginModule 
weblogic.security.auth.login.UsernamePasswordLoginModule supports client user name 
and password authentication.  For client certificate authentication, mutual SSL 
authentication should be used (provided by JNDI authentication).   
 
JAAS can be used for external or internal authentication.  Thus developers of custom 
authentication providers in J2EE applications, as well as developers for remote J2EE 
application clients may potentially need to understand JAAS.  Users of Web browser 
clients or J2EE application component developers do not need to use JAAS.  A typical 
JAAS authentication client application would include a Java client, LoginModule, 
Callbackhandler, configuration file, action file and a build script.   
 
The key point to take away from this is that when weblogic.security.Security.runAs() 
method is executed, it associates the specified Subject with the permission of the current 
thread.  After that the action is executed.  If the Subject represents a non-privileged user, 



 73 

the default of the JVM will be used.  Consequently, it is crucial to specify the correct 
Subject in the runAs() method.  There are several options available to developers there.  
One is to implement wrapper code shown below. 
 
Creating a wrapper for runAs() method: 
 
import java.security.PrivilegedAction; 
import javax.security.auth.Subject; 
import weblogic.security.Security; 
public class client 
{ 
public static void main(String[] args) 
{ 
Security.runAs(new Subject(), 
new PrivilegedAction() { 
public Object run() { 
// 
//If implementing in client code, main() goes here. 
// 
return null; 
} 
}); 
} 
} 
 

The discussion of various other methods for specifying the correct subject is omitted for 
the sake of brevity.  There are eight steps to writing a client application using JAAS 
authentication in WebLogic J2EE application server.  The first step is to implement 
LoginModule classes for each type of the desired authentication mechanisms.  The 
second step is to implement the CallbackHandler class that will be used by the 
LoginModule to communicate with the user in order to obtain user name, password and 
URL.  The third step is to write a configuration file that would specify which 
LoginModule classes would be used by the WebLogic Server for authentication and 
which should be invoked.  The fourth step is to write code in the Java client to instantiate 
a LoginContext.  The LoginContext uses the configuration file (sample_jaas.config) to 
load the default LoginModule configured for WebLogic Server.  In step five, the login() 
method of the LoginContext instance is invoked.  The login() method is used to invoke 
all of the LoginModules that have been loaded.  Each LoginModule tries to authenticate 
the subject and the LoginContext throws a LoginException in the event that the login 
conditions specified in the configuration file are not met.  In step six, Java client code is 
written to retrieve the authenticated Subject from the LoginContext instance and call the 
action as the Subject. When successful authentication of the Subject takes place, access 
controls can be placed upon that Subject by invoking the 
weblogic.security.Security.runAs() method, as was previously discussed. In step seven, 
code is written to execute an action if the Subject has the required privileges.  Finally, 
step eight, a very important step, where the logout() method is invoked on the 
LoginContext instance.  The logout() method closes the user’s session and clears the 
Subject.  It is very important for developers to follow all of these eight steps and do so 
properly in order for JAAS to be effective [19].   
 



 74 

3.3.3 SSL API 

 

Java Secure Sockets Extension (JSSE) provides support for SSL and TLS protocols by 
making them programmatically available.  WebLogic implementation of JSSE also 
provides support for JCE Cryptographic Service Providers.  HTTPS port is used for SSL 
protected sessions.  SSL encrypts the data transmitted between the client and the server 
ensuring confidentiality of the username and password.  SSL scheme uses certificates and 
thus requires certificate authentication not supported by JAAS.  As the result, when SSL 
is used, an alternate authentication scheme must be used, one that supports certificates, 
namely Java Naming Directory Interface (JNDI) authentication.  For client certificate 
authentication, a two-way SSL authentication scheme is used that is also referred to as 
mutual authentication.  A common problem organizations have implementing SSL is 
failing to perform authentication properly.  The result is secure communication with a 
remote host that has not been properly authenticated.  It is thus critical to follow all of 
necessary steps to perform authentication correctly.  A code example below demonstrates 
how one-way SSL authentication should be performed using JNDI authentication. 
 
One-Way SSL Authentication: 
 
Hashtable env = new Hashtable(); 
env.put(Context.INITIAL_CONTEXT_FACTORY, 
"weblogic.jndi.WLInitialContextFactory"); 
env.put(Context.PROVIDER_URL, “t3s://weblogic:7002”); 
env.put(Context.SECURITY_PRINCIPAL, “javaclient”); 
env.put(Context.SECURITY_CREDENTIALS, “javaclientpassword”); 
ctx = new InitialContext(env); 
 

SSL client application typically has several components.  A java client initializes an 
SSLContextwith client identity, a HostnameVerifierJSSE, a TrustManagerJSSE, and a 
HandshakeCompletedListener.  It then creates a keystore and retrieves the private key 
and certificate chain.  An SSLSocketFactory is then used.  Finally, HTTPS is used to 
connect to a JSP served by an instance of the application server.  Another component is 
the HostnameVerifier that provides a callback mechanism so that developers can supply a 
policy for handling situations where the host is being connected to the server name from 
the certificate Subject Distinguished Name.  A HandshakeCompletedListener defines 
how SSL client receives messages about the termination of an SSL handshake on a 
particular SSL connection.  The number of times an SSL handshake can take place on a 
particular SSL connection is also defined.  A TrustManager builds a certificate path to a 
trusted root and returns true if the certificate is valid.  A build script compiles all of the 
files required and deploys them [19].   
 
Two-way SSL authentication can be used if a mechanism is needed for the two parties to 
mutually authenticate each other.  For instance, two servers may need to communicate to 
each other securely and may utilize two-way SSL authentication.  This allows to have a 
dependable and secure communication.  Typically mutual authentication is used in client-
server environments, but it may also be used in server-server communication.  An 
example below demonstrates establishment of a secure connection between two 
Weblogic server instances: 



 75 

Two-Way SSL Authenticaiton Between Server Instances: 
 
FileInputStream [] f = new FileInputStream[3]; 
f[0]= new FileInputStream(“demokey.pem”); 
f[1]= new FileInputStream(“democert.pem”); 
f[2]= new FileInputStream(“ca.pem”); 
Environment e = new Environment (); 
e.setProviderURL(“t3s://server2.weblogic.com:443”); 
e.setSSLClientCertificate(f); 
e.setSSLServerName(“server2.weblogic.com”); 
e.setSSLRootCAFingerprints(“ac45e2d1ce492252acc27ee5c345ef26”); 
e.setInitialContextFactory 
(“weblogic.jndi.WLInitialContextFactory”); 
Context ctx = new InitialContext(e.getProperties()) 
 

There are many steps to implementing SSL properly and developers should be aware of 
those.  Misusing SSL could render it useless.  There are too many detailed nuances to 
discuss all of them in this paper.  Application component developers in charge of 
programmatic security need to have deep understanding of underlying technology and 
how to properly use it. 
 

4.0      .NET Security 

 
4.1       Architecture Overview 

 

We now introduce an architecture overview for the component technologies of 
Microsoft’s .NET framework used in a typical enterprise web application.  The 
discussion is focused on the technologies used across the various tiers, namely the client 
tier, presentation tier, business logic tier, and the database tier.  The discussion in this 
section presents the architectural overview of some of the .NET technologies that will be 
instrumental for further discussion the support for core security services.  The discussion 
of .NET will focus somewhat on ASP.NET since that technology in particular is most 
widely used for development of web based enterprise applications.  .NET and J2EE are 
two major competing frameworks for development of enterprise applications.  As we 
proceed through the discussion in this chapter we will compare and contrast the solutions 
offered by J2EE and .NET, specifically relating to support for the core security services.   
 

4.1.1 .NET Framework Overview 

 

Prior to diving into ASP.NET, a .NET technology used to build enterprise web based 
applications, it is helpful to first briefly introduce the .NET Framework that is the 
foundation for all the .NET technologies.  The purpose of the .NET Framework is to 
provide support for building and running the next generation of applications and XML 
Web Services.  Here are some of the objectives of the .NET Framework according to the 
.NET Framework Developer’s Guide [28]: 
 



 76 

• To provide a consistent object-oriented programming environment whether object   

code is stored and executed locally, executed locally but Internet-distributed, or 

executed remotely.  

• To provide a code-execution environment that minimizes software deployment 

and versioning conflicts.  

• To provide a code-execution environment that promotes safe execution of code, 

including code created by an unknown or semi-trusted third party.  

• To provide a code-execution environment that eliminates the performance 

problems of scripted or interpreted environments.  

• To make the developer experience consistent across widely varying types of 

applications, such as Windows-based applications and Web-based applications.  

• To build all communication on industry standards to ensure that code based on the 

.NET Framework can integrate with any other code.  

 
Note bullet three that sets as one of the objectives for the .NET Framework provision of a 
code-execution environment that facilitates safe execution of code even if the code is 
unknown and not trusted.  This is Microsoft’s recognition of the wide use of mobile code 
in distributed applications and an attempt to provide secure sandbox environments for 
execution of that code.  We will come back to this point later on in the discussion. 
 
The .NET Framework consists of two main components, namely the common language 
runtime (CLR) and the .NET Framework class library.  CLR forms the foundation for the 
.NET Framework that promotes the principle of managed code.  CLR manages code at 
execution time providing such services as memory management, thread management, 
remoting support, enforcement of strict type safety and support for code accuracy from a 
robustness and security standpoint.  Code targeting the CLR is referred to as managed 
code, as opposed to unmanaged code, which does not target the CLR.  Microsoft’s .NET 
promotes the usage of managed code.  The other main component of the .NET 
Framework is the class library, a “comprehensive, object-oriented collection of reusable 
types that you can use to develop applications ranging from traditional command-line or 
graphical user interface applications to applications based on the latest innovations 
provided by ASP.NET” [28].  The basic concept behind the common library is to 
promote reuse that would greatly facilitate and speed up development of reliable 
applications. 
 
.NET Framework allows development of applications that use a combination of managed 
and unmanaged code.  For instance, .NET Framework may be hosted by unmanaged 
components that can load the CLR into their processes and initiate the execution of 
managed code.  This facilitates integration and allows usage of both managed and 
unmanaged code capabilities.  ASP.NET uses CLR to provide scalable, server-side 



 77 

environment for managed code.  CLR in ASP.NET is also used to enable XML Web 
services.  Internet Explorer (IE) is an unmanaged application that hosts CLR as a MIME 
type extension.  This enables IE to host embedded managed components such as HTML 
form controls.  This also facilitates usage of managed mobile code that draws heavily 
from the least privilege principle to provide semi-trusted (sandboxed) execution and 
isolated file storage.  The diagram below shows how CLR and the common language 
enable applications and systems.  It also shows where managed code fits in. 
 

 
 
 

Figure 20:  .NET Framework [28] 

 

4.1.2 Common Library Runtime (CLR) 

 

As we mentioned in the last section, the .NET common language runtime component 
manages memory, thread execution, code execution, code safety verification, compilation 
and various other system services for managed code running on it.  The figure above 
reveals that ASP.NET uses Active Server Pages (ASP) technology that leverages CLR 
running on top of the Internet Information Services (ISS) Server.  Factors such as code 
origin are used to assign a degree of trust to a managed component for the purposes of 
security.  This means that security related decisions are made on per component basis, 
potentially restricting access to file-access operations, registry access-operations, etc.  In 
the J2EE world that is analogous to declarative security that can be used to defined 
authorization on a component basis.  Various components within the same application 
can have permissions that differ. 
 



 78 

CLR enforces code access security.  For instance, a managed component embedded in the 
web browser and providing GUI features can be guaranteed to not have access to the 
backend systems.  Common language runtime also enforces code robustness through 
support for strict type-and-code-verification infrastructure known as the common type 
system (CTS).  These robustness checks can also increase the overall security posture of 
the code.  CTS guarantees that managed code is self describing and can take in the 
various managed types and instances that can then also be strictly enforced.   
 
CLR addresses the problems associated with memory leaks and invalid memory 
references through handling of object layout, managing references to objects and freeing 
them when they cease being used.  This is equivalent to the garbage collection services 
provided by the Java Virtual Machine.  By taking the burden of cleanup away from the 
programmer, the chance of security issues related to memory management significantly 
decreases.  CLR promotes interoperability and increase in productivity by allowing 
developers to write programs in any of the supported languages and still take advantage 
of CLR, the class library, and components written in other languages by other developers.  
Various compilers can target the CLR and make use of the various .NET Framework 
features to the existing code, thus migrating the migration process for existing 
applications.  CLR also allows interoperability with existing technologies such as COM 
components and DLLs.  CLR is geared towards performance and thus managed code is 
not interpreted.  Just in time (JIT) compiling allows the managed code to run in the native 
machine language of the system on which it is executing.  As this happens, memory 
manager performs memory defragmentation and attempts to increase spatial locality to 
further increase performance.  Common language runtime can be hosted by Microsoft 
SQL Server and Internet Information Services Server.  Thus the business logic and the 
database tiers can both make use of the common runtime library features. [28] 
 

4.1.3 Class Library 

 

The class library of the .NET Framework provides a collection of reusable types that 
work with the common language runtime.  The class library is object oriented, thus types 
defined in the class library can be extended by managed code.  Third-party components 
integrate seamlessly with the classes in the .NET framework.  Classes collection in the 
.NET Framework includes a set of interfaces that can be implemented in the custom 
classes.  This is similar to the interfaces provided by the various J2EE services that can 
be implemented by application component developers.  .NET Framework types facilitate 
string management, data collection, database connectivity, and file access.  The services 
supported by the .NET framework include console application, Windows GUI 
applications, ASP.NET applications, XML Web services and Windows services.  For 
instances, .NET Framework Web Forms classes can be used in an ASP.NET enterprise 
web based application.   
 

4.1.4 Web Based Application Architecture 

 

Managed client-server applications are implemented using runtime hosts in .NET.  
Unmanaged application can host the CLR.  This way all of the features of CLR and the 



 79 

class library can be harvested while providing performance, scalability and 
interoperability of the host server.  A figure below shows a possible deployment model 
for a web based .NET application.   
 
 

 
 

Figure 21:  .NET Client-Server Application [28] 

 

The diagram above shows that the .NET Enterprise Server hosts the runtime and the 
managed code.  This is somewhat similar to the J2EE application server.  Unlike J2EE 
however, the presentation logic and services are run on separate servers with ASP.NET 
Web Forms and ASP.NET XML Web Services respectively.  ASP.NET is the underlying 
hosting environment that allows developers to use the .NET Framework to target Web-
based applications.  “ASP.NET is more than just a runtime host; it is a complete 
architecture for developing Web sites and Internet-distributed objects using managed 
code.  Both Web Forms and XML Web services use IIS and ASP.NET as the publishing 
mechanism for applications, and both have a collection of supporting classes in the .NET 
Framework” [28]. 
 
ASP.NET builds on the ASP technology, but offers significant improvement with Web 
Forms, CLR and the class library.  Web Forms pages can be developed in any language 
that supports the .NET Framework.  Web Forms pages are the managed version of what 
used to be unmanaged ASP pages.  However, Web Forms pages can take advantage of 
the runtime, while ASP pages are scripted and interpreted.  ASP.NET pages are faster, 
have increased functionality and are easier to develop compared to unmanaged ASP 
pages because they make use of the common language runtime.   
 
.NET framework also provides support for XML Web Services that support distributed 
Business to Business (B2B) communication.  .NET Framework also provides a collection 
of classes and tools to facilitate implementation and usage of the XML Web Services 
applications, built on standards such as SOAP (a protocol for RPC), XML and WSDL 
(Web Services Description Language).  Support for these standards provides 
interoperability for the .NET Framework.   
 
A possible .NET usage scenario might involve querying XML web service, parsing its 
WSDL description, and producing C# or Visual Basic (VB) source code that an 
application can use to become a client of the XML Web service.  Classes in the source 
code can be derived from classes in the class library to handle the communication using 
SOAP and XML parsing.  If an XML Web service is developed and published, the .NET 



 80 

Framework provides classes that follow the various communication standards like SOAP, 
WSDL and XML.  This allows developers to focus on providing the logic in the service 
without having to worry about communications infrastructure.  This is very much 
analogous to what is happening in J2EE.  However, in terms of performance, .NET 
provides superior results.  For instance, when publishing an XML service, the service will 
run with the speed of native machine language and make use of IIS scalable 
communication.   
 

4.1.5 Building Web Applications with ASP.NET 

 

Now that we have some understanding of the .NET Framework we can talk about the 
Microsoft technology that makes use of the .NET Framework capabilities and enables 
development of web based applications.  That technology is ASP.NET.  ASP.NET is the 
next version of Microsoft’s Active Server Pages (ASP) technology.  ASP.NET builds on 
ASP to provide additional services necessary to build enterprise web-based applications.  
To draw an analogy with the J2EE world, ASP may be loosely analogous to JSP, and 
ASP.NET in itself is analogous to the Web container of the J2EE application that 
implements both JSP and Servlets, as well as provides the various services, such as JMS, 
JTA, etc.  Existing ASP applications can have ASP.NET functionality added into them in 
order to increase stability, scalability and functionality.  ASP.NET code can be compiled 
and is based on the .NET Framework.  Consequently, due to the common language 
runtime, code written in other languages based on the .NET Framework, such as Visual 
Basic .NET, C# .NET, and Jscript .NET is readily compatible with ASP.NET 
applications.    Additionally, since ASP.NET is based on the .NET Framework, advantage 
can be taken of managed common language runtime environment, type safety, 
inheritance, and other features.  One of the reasons that this is important from the security 
standpoint is that this means that enterprise web-based application built with ASP.NET 
can take advantage of all the security features of the .NET Framework.   
 
Some of the important technologies available to programmers that are bundled under 
ASP.NET are Web Forms and XML Web Services.  Web Forms enhance simple HTML 
based forms by facilitating construction of powerful forms-based Web pages.  ASP.NET 
server controls can be used to create common UI elements that can be programmed for 
common tasks.  These controls promote reusability by allowing a speedy construction of 
Web Form pages from reusable built-in or custom components. Reuse is very important 
from application security standpoint because it makes the introduction of bugs less likely.  
XML Web Services functionality allows a way to access server functionality in a remote 
manner.  J2EE also provides support for web services.   Support for remote access in 
J2EE is also provided by the Remote Method Invocation (RMI) technology.   XML Web 
services allow exposure of programmatic interfaces to the enterprise web application data 
thus allowing the client to obtain and manipulate the data obtained from the enterprise 
web based application.  XML Web services facilitate the exchange of data in client-server 
or server-server environments via XML messages and HTTP.  Since Web Services are 
technology and calling convention independent, they can be provided and consumed by 
applications written in any language, using any component model, and running on any 
operating system that supports access to XML Web services.   



 81 

ASP.NET adds object orientation and structure to the ASP technology.  Thus, ASP.NET 
is not backwards compatible with ASP, and applications written with ASP will not work 
without changes under ASP.NET.  If an existing ASP application makes use of embedded 
VB Script, changes will have to be made to the script due to extensive changes to Visual 
Basic .NET.  ASP.NET provides database access through ADO.NET (analogous to JDBC 
in J2EE).  ASP.NET developers can write logic that runs at the application level by 
writing code in the Global.asax text file or in a compiled class deployed as an assembly.  
Some of the logic that can be included is in the form of application-level events, but can 
be extended to meet the special need of the Web application.  This is somewhat 
equivalent to declarative programming capabilities in J2EE that are supported by the 
container.   
 
ASP.NET also provides application and session-state facilities that are also compatible 
with the .NET framework.  Analogously, J2EE Web container provides session support.  
J2EE also provides session support through stateless session bean components running in 
the EJB container. To interact with request and response services of the IIS Web server 
IHttpHandler interface can be implemented.  To include custom events that participate in 
every request made to the application server, IHttpModule can be implemented.  
HTTPRequest, HTTPRequest, and listeners are equivalent technologies in the J2EE 
world. 
 
Since ASP.NET is built on top of the .NET Framework, it can also take some of the 
performance advantages of the .NET Framework and the common language runtime.  
ASP.NET applications are compiled, rather than interpreted (at run time), that allows 
early binding, strong typing, and just-in-time (JIT) compilation to native code.  This has 
both security and performance advantages.  ASP.NET is modular which allows 
developers to remove irrelevant modules to the developed application.  ASP.NET also 
provides cashing services that can be either built-in or provided via caching APIs.  
ASP.NET also comes with performance counters that allow monitoring of the application 
to collect various metrics.  
 
The .NET Framework and ASP.NET provide default authorization and authentication 
schemes for enterprise Web applications that can easily be removed, added to and 
replaced by other schemes.  We will discuss the ways in which ASP.NET supports the 
core security services in the subsequent section.  ASP.NET configurations are stored in 
XML files that are analogous to XML deployment descriptors in J2EE.  Configurations 
can be customized to meet the needs of the application.  Much of security in J2EE is 
declarative security, specified in deployment descriptors.  We will see how this is done 
with ASP.NET.  IIS 6.0 uses a new process model, referred to as the worker process 
isolation mode, which enhances security by promoting compartmentalization.     
 

4.2 Support for Core Security Services 

 

4.2.1 Role-Based vs. Code Access Security 

 



 82 

Before we look at the various ways in which web-based enterprise applications built with 
ASP.NET with the .NET Framework foundation support the core security services across 
the various application tiers, we first introduce the .NET security model.  .NET 
Framework provides two kinds of security:  role-based security and code access security.  
As a synopsis, role-based security controls user access to application resources and 
operation, whereas code access security controls code access to various resources and 
privileged operations.  These two kinds of security are complementary forms of security 
that are available to .NET Framework applications.  User security focuses around the 
identity and the capabilities of the user, while code access security focuses around the 
source and author of the code and the associated permissions.  Code security requires 
authorizing the rights of the code to access the file system, registry, network, directory 
services and directory services.  The main distinction here is user capabilities vs. code 
permissions.  
 
Role-based security in the .NET Framework enables a Web application to make security 
decisions that depend on the identity of the application user.   These roles may be 
Windows groups, enterprise roles, etc.  Principal objects passed to Web applications as 
part of the request would contain the identity of the authenticated user.  The diagram 
below illustrates a common usage model for role-based security in a web application built 
with .NET. 
 

 
Figure 22:  .NET Role-Based Security [10] 

 

On the other hand, code access security performs authorization when code attempts to 
access the file system, registry, network or perform privileged operations, like calling 
unmanaged code or using reflection.  Code access security provides an additional level of 
granularity by enabling to set permissions on a piece of code.  Among other things, this 
approach can help enforce the principle of compartmentalization and help reduce the 
amount of damage if part of the system (i.e. some system process) is compromised.  
Analogously, we saw that with J2EE components permissions are specified via 
deployment descriptors and enforced by the container.  There are some very important 
differences however between J2EE and .NET security model that will become apparent 



 83 

as we proceed with the discussion.  The diagram below demonstrates the usage of code 
access security in .NET Web applications. 
 

 
Figure 23:  .NET Code Access Security [10] 

 
In the context of code access security, authentication of code is based a variety of 
information about the code, such as its strong name, publisher, installation directory, etc.  
Authorization is based on the code access permissions that are specified by the security 
policy.   
 
4.2.2 Security in Managed Code  

 

In next section we will discuss some of the programmatic security issues that ASP.NET 
developers need to be concerned about, while at this point we focus on the .NET security 
model and the general support for core security services.  Managed code is perhaps one 
of the single most important contributors to .NET security.  Assemblies in .NET 
Framework (J2EE components and .NET assemblies mean roughly the same thing) are 
built with managed code.  C#.NET and Visual Basic.NET (that are often used to 
implement much of the business logic in ASP.NET enterprise web application) are 
compiled to Microsoft intermediate language (MSIL) instructions, contained in Microsoft 
Windows .dll or .exe files. When an assembly is loaded and the requested method is 
called, the MSIL instructions of the method are compiled by the just-in-time (JIT) 
compiler into native machine instructions that are then executed.  If a method is never 
called, it is never compiled.  Intermediate language and run-time environment that are 
enabled by the common language runtime give assembly developers several security 
advantages.  First, there is file format and metadata validation.  The CLR ensures the 
validity of the MSIL file format and that addresses do not point outside the boundaries of 
the MSIL file.  The CLR verifies the integrity of the metadata contained in the assembly.  
Second, type safety of MSIL code is verified at just-in-time compilation.  This 
verification can prevent bad pointer manipulation, validate type conversions, check array 
bounds, etc.  The result is practical elimination of buffer overflow problems in managed 
code, although developers still need to be careful with any unmanaged code that might be 
called.  This is a great security feature since buffer overflows represent one of the most 
dangerous types of security vulnerabilities in the application.  Furthermore, integrity 



 84 

checks take place in managed code for strong named assemblies to ensure that the code 
has not been altered in any way since it was built and signed.  That is accomplished via 
digital signatures.  Therefore attackers cannot alter MSIL instructions and as those 
alterations would be detected.  Finally, managed code allows for code access security.  
CLR provides a virtual execution environment that enables performing additional 
security checks at runtime.  Some of these checks involve run-time enforcement of code 
access permissions for the purposes of security decisions based on the identity of the 
calling code. [10] 
 

 4.2.3 Declarative vs. Imperative Security 

 

Declarative security in .NET is a different concept from declarative security in J2EE.  In 
the .NET world, through declarative security, developers can specify which users should 
have access to a class or a method.  This is accomplished through adding a special 
attribute to the class or method definition called PrincipalPermissionAttribute.  An 
attribute defined at a class level will apply to all the methods unless it is overridden in a 
method.  On the other hand, imperative security can be used to provide a higher level of 
granularity when it becomes necessary.  With imperative security, 
System.Security.Permissions.PrincipalPermission objects are used to create a 
PrincipalPermission object that has a blank user name along with a specified role name 
that then calls the Demand method.  The CLR then interrogates the current Principal 
object associated with the current thread in order to check whether the related identity is a 
member of the specified role.  If that is not the case, access is denied and 
SecurityException is thrown.     Consequently, imperative security allows for finer 
grained access control than what can be achieved with declarative security.   
 
Declarative and imperative security can be used with both role-based security and code 
access security in the .NET Framework.  For the most part declarative security will be 
used, but imperative security has important applications, for instance when a security 
decision is based upon some variable value only available at runtime.  Declarative 
security allows system administrator or assembly consumer to have a clear picture of 
what security permissions particular classes and methods have.  Consequently, the right 
access security policy can be configured to accommodate those permissions.  Declarative 
security also provides better performance because the checks are evaluated only once at 
load time, and not each time at run time (which is the case with imperative security).  
With declarative security, permissions on security attributes are checked before running 
any other code, thus eliminating any potential bugs that might have resulted from late 
enforcement of permissions.  Finally, declarative checks can be applied to all class 
members, while imperative checks apply only to the routine being called.  On the other 
hand, imperative security has the advantage of allowing dynamic changes to permissions 
based values only available at run time.  Additionally, imperative security allows more 
granular authorization mechanisms by placing conditional logic in code.  Declarative and 
imperative security in .NET loosely maps to declarative and programmatic security in 
J2EE.  Developers are less likely to make mistakes with declarative security, since much 
detail is hidden from them, while bugs with imperative security are more likely.  For 
instance, authorization checks in the code can be susceptible to race condition problems 



 85 

in multi-threaded environments which might enable a window of vulnerability for an 
attacker to circumvent the checks. 
 

4.2.4 Security Namespaces 

 

.NET Framework also supports the concept of security namespaces.  Developers who 
program secure web applications in ASP.NET need to make use of these namespaces.  
Some of the .NET Framework security namespaces include System.Security, 
System.Web.Security, System.Security.Cryptography, System.Security.Principal, 
System.Security.Policy and System.Security.Permissions.  A diagram illustrating each of 
the .NET security namespaces is provided below.     
 

 
 

Figure 24:  .NET Security Namespaces [10] 

 

.NET Framework namespaces are loosely analogous to the various security APIs in J2EE. 
In order to build secure web based enterprise applications with ASP.NET, developers 
need to be aware of the various services provided through the security namespaces and 
how to use them properly.   
 
System.Security namespace contains the CodeAccessPermission base class that can be 
extended to derive all of the other code access permission types.  This class obviously 
plays a critical role in .NET code-access security that we have previously discussed.  
Most often, specific permission types (derived from the base permission class) are used 
that represent the rights of code to have access to specific types of resources or perform 
various privileged operations.  For instance, FileIOPermission may represent the rights of 
the code to perform file input and/or output.  This particular security namespace also 
contains some classes that encapsulate permission sets, such as Permission Set and 
NamedPermissionSet.  These permission sets encapsulate some common types widely 
used when building secure Web applications.  SecurityException is an example of such a 
type and it is used to represent security errors.  AllowPartiallyTrustedCallersAttribute is 
another commonly used type.  This type is an assembly-level attribute used in strong 
named assemblies that provide support for partial trust callers.  Without having this 



 86 

attribute, a strong named assembly could only be invoked by fully trusted users who have 
full and not restricted permissions.  System.security .NET namespaces provides some key 
code-level authorization capabilities of which .NET web application developers should 
be aware.   
 
System.Web.Security .NET namespace contains additional classes that can be used to 
build in Web application security programmatically, namely authentication and 
authorization services.  Whereas System.Security namespace provides code-access 
authorization to system resources (e.g. files, registries), System.Web.Security provides 
authentication and authorization services to protect web application resources.  
Authentication and authorization is supported for windows, forms, URLs and files, etc.  
For instance, URL authorization is provided by the UrlAuthorizationModule and file 
authorization is provided through FileAuthorizationModule classes.  There are several 
types that belong to this namespaces that are commonly used in Web applications.  
FormsAuthentication type provides static methods to assist with Forms authentication, as 
well as authentication ticket manipulation.  FormsIdentity type encapsulates the identity 
of the user that has been authenticated by the Forms authentication.  Since Microsoft 
Passport authentication service has been introduced, PassportIdentity can be used to 
encapsulate the user identity that has been authenticated through Passport authentication.  
System.Web.Security namespace provides extensive support for authentication services 
in .NET web applications. 
 
System.Security.Cryptography namespace provides a .NET web application developer 
with types that can be used to perform encryption, decryption, hashing, and random 
number generation.  Managed code provides a variety of encryption algorithms, while 
others are offered by types in this namespace that provide wrappers for cryptographic 
functionality of the Microsoft Win32-based CryptoAPI.  System.Security.Cryptography 
namespace provides tools for the developer to implement confidentiality services. 
 
System.Security.Principal security namespace provides types that support .NET role-
based security.  These types can be used to restrict which users can access classes and 
class members.  IPrincipal and IIdentity interfaces are provided by this namespace.  Some 
of the commonly used types from this namespace in Web applications are 
GenericPrincipal, GenericIdentity, WindowsPrincipal and WindowsIdentity.  
GenericPrincipal and GenericIdentity enable the developer to define custom roles and 
identities.  They may be used with custom authentication mechanisms.  
WindowsPrincipal and WindowsIdentity types represent users authenticated with 
Windows authentication along with the associated Windows role list of the user.   
 
System.Security.Policy namespace contains types that may be useful to implement the 
policy of the system as it pertains to code access security.  This namespace contains types 
to represent code groups, membership conditions, policy levels, and evidence.   
 
System.Security.Permissions .NET namespace contains most of the permission types that 
are used to encapsulate the rights of code to have access to various resources as well as 



 87 

perform operations that are privileged.  The table below lists the permission types 
available in the System.Security.Permissions namespace. 
 
 

 

 



 88 

Table 9:  .NET Code Access Permission Types [10] 

 

The SecurityPermission class from the table above specifies the rights of code to perform 
privileged operations, assert code access permissions, call unmanaged code, use 
reflection, control policy and evidence, etc.  The Flags property of the 
SecurityPermission class determines the specific rights of the code.  The Flags property 
can contain any of the values defined in the SecurtyPermissionFlags enumerated type.  
SecurityPermission class Flag property value of 
SecurityPermissionFlags.UnmanagedCode would indicate that given code has the right to 
invoke unmanaged code.   
 
Developers of enterprise web based applications need to be very familiar with .NET 
security namespaces, as well as classes and types that they contain in order to be effective 
in building secure web application that provide support across all of the core security 
services.  In this section we discussed role based security, code access security and 
managed code security concepts.  We also discussed some ways to support the core 
security services in .NET applications through security namespaces and other 
mechanisms.  We also saw that code access security provides a finer level of access 
granularity that can be used to support the compartmentalization principle.  Next section 
builds on some of these principles to provide some examples of specific programming 
constructs that ASP.NET developers can make use of in order to build support for 
security into the enterprise web based applications [10]. 

 

4.3       Programmatic Compensating Controls   

 

In this section we discuss some of the programmatic details of security in ASP.NET 
applications.  We build on the information from the previous section and provide specific 
code examples of the ways developers can programmatically provide authentication, 
authorization, confidentiality and other core security services.  The focus is on code 
access security and on building of secure .NET assemblies (analogous to J2EE 
components).  One of the things to note about .NET is that it is very conservative with 
regards to the number of lines of code that the developer has to write to perform any task 
(including security related tasks), compared to J2EE for instance, and so less code 
decreases the probability of introducing bugs (security or others). 
 

4.3.1 Coding Secure Assemblies    
 

Assemblies are the units of deployment, version control, reuse and code access security 
in the .NET Framework. Consequently, secure design and implementation of assemblies 
is absolutely critical for .NET security.  The goal of this section is to consider ways in 
which secure assemblies can be constructed.  Some vulnerabilities in .NET are eliminated 
through the use of managed code and the CLR.  For instance, buffer overflows in 
managed code are eliminated through the use of type safe verification.  However, if 
unmanaged code is invoked by managed code, then buffer overflow problems may still 
occur. In this section we examine how to perform file I/O, registry access, data access, 
and other tasks in a secure manner. 
 



 89 

4.3.1.1      Top Threats 

 
Some of the main threats facing .NET assemblies are unauthorized access/privilege 
elevation, code injection, information disclosure and tampering.  A diagram below 
illustrates these main threats.  As we have described in the threat modeling chapter, 
understanding what the main threats are helps focus attention during development 
towards provision of mitigations for the threats.  Usually threats exist because an attacker 
can exploit existing vulnerabilities.  The goal of the developer is to code securely in a 
way as to not introduce vulnerabilities into the application, thus mitigating the threats. 
 

 
  

Figure 25:  .NET Top Assembly Threats [10] 

 

Unauthorized access, a condition that can often lead to privilege escalation, is manifested 
if an unauthorized user or unauthorized code calls an assembly and executes privileged 
operations that access restricted resources.  Some vulnerabilities that can lead to 
unauthorized access and/or privilege elevation include weak or missing role-based 
authorization, exposure of internal types and type members, insecure implementation of 
code access security checks or non-sealed (non-final in Java talk) and unrestricted base 
classes that can be extended by untrusted code.  Attackers may attempt to exploit these 
vulnerabilities through a luring attack where malicious code performs access to the 
assembly through an intermediary assembly that is trusted in order to bypass 
authorization mechanisms.  An attacker can also use malicious code that bypasses access 
controls by calling classes that are not part of the assembly’s public API.  To counter the 
above mentioned threats, role-based authorization can be used to provide access control 
checks on all the public classes and class methods, type and member visibility can be 
restricted in order to minimize publicly accessible code, privileged code can be 
sandboxed to ascertain that calling code is authorized and meets required permission 
demands and make all classes that should not be extended final (sealed) or alternatively 
limit inheritance capabilities with code access security. 
 
Code injections problems arise when an attacker is able to execute arbitrary code with the 
same permissions as those granted to the assembly process itself.  This can be even a 
bigger risk if assembly code is called by unmanaged code and if the assembly process has 



 90 

root privileges.  This is where least privilege can definitely help.  At the assembly level, 
some common types of attacks using code injection are buffer overflows and running 
untrusted code.  Buffer overflows are not really an issue in .NET unless unmanaged code 
is called.  Some of the ways to counteract the code injection threats include validation of 
input parameters, validation of data passed to unmanaged code, not running untrusted 
code and using the least privilege principle.   
 
Information disclosure can take place if an assembly leaks confidential data, like 
excessive exception details and unencrypted sensitive information to users (whether 
malicious or legitimate).  Intellectual property threat also exists because MSIL code is 
easier to reverse engineer into source code than binary machine code.  This also means 
that if the source code can be obtained through reverse engineering by an attacker, an 
attacker may be able to find more readily exploitable vulnerabilities in the application.  
Some vulnerabilities leading to information disclosure are bad exception handling and 
hard-coded secrets in the source code, such as passwords.  Attackers may attempt to 
cause errors by passing bad input to the assembly thus causing possible availability 
problems and potentially information disclosure in the event of bad exception 
management.  Information disclosure can then facilitate launch of additional attacks on 
the application.  Some of the ways to avoid these vulnerabilities include good input 
validation, systematic exception handling that returns generic errors to the client, not 
storing secrets in code and obfuscation tools that confuse decompilers when those attempt 
to reverse engineer.   
 
Tampering issues, also known as integrity problems, arise if an assembly is changed 
through alterations made to the MSIL instructions.  Recall that MSIL is the intermediate 
representation of .NET Framework source.  Mechanisms are available to protect against 
tampering, but those rely on strong name signatures.  In the absence of a strong name 
signature, tampering may not be detected.  Common ways that tampering may be used in 
an attack include either direct manipulation of MSIL instructions or reverse engineering 
of MSIL instructions.  Tampering threat can be countered through usage of strong names 
to sign the assembly with a private key.    When loading a signed assembly, the CLR will 
detect if the assembly has been altered in any way and will only proceed if no 
modifications have been made [10]. 
 

4.3.1.2     Privileged Code 

 
When designing secure assemblies it is also important to identify privileged code since 
privileged code has an important impact on code access security.  Privileged code is 
managed code that has access to various secured resources and can perform privileged 
operations such as calling unmanaged code.  Privileged code must be granted elevated 
permissions by the code access security policy to fulfill its functions.  Application 
designers need to pay special attention when defining interactions with privileged code.  
Privileged code provides access to privileged resources that require code access security 
permissions.  These resources may include the file system, databases, registry, event logs, 
Web services, sockets, DNS, database, directory services, environment variables, among 
others.  We will look in more detail later in this section at the various ways to provide 



 91 

secure access to the privileged resources.  Privileged code also performs privileged 
operations that also require code access security permissions.  These privileged 
operations may include calling unmanaged code, serialization, usage of reflection, 
creation and control over application domains, creation of Principal objects, and making 
changes to the security policy.  Identifying privileged code is the first step to defining 
secure interactions between privileged code and other code so to not let an attacker 
perform any operations or access any resources in a manner that would constitute a 
privilege elevation.  A threat modeling process should identify privileged code and the 
compensating controls will be found at the architecture, design and implementation 
stages.  
 

4.3.1.3     Secure Class Design 

 

Secure assembly design should take into consideration such factors as privileged code, 
trust level of target environment, public interfaces, etc.  These issues should be ironed out 
at design time, although developers often become de facto designers of the application as 
well and should therefore be aware of the secure design principles.  Another important 
thing to get right is the security in class design for which developers are responsible.  In 
general, both with assembly and class design the aim should be to reduce the attack 
surface on the application.  The attack surface would have been identified as part of the 
threat model.  Classes that are built with security in mind would follow proper object-
oriented design principles, prevent inheritance where it should not be allowed, restrict 
who and what code can call them.  Microsoft provides the following recommendation for 
secure class design:  restrict class and member visibility, seal non base classes, restrict 
which users can call the code, expose fields using properties.  All of these 
recommendations make good sense from the object-oriented design perspective but are 
also very important for security.  The same set of recommendations roughly holds true 
for Java classes used with J2EE as well. 
 
The visibility of the class and the member methods that it contains should be restricted 
appropriately.  For instance, class members need to be public only if they are part of 
assembly’s public interface.  Public classes are the only ones accessible from outside the 
assembly so it is desirable to have as few of them as possible to minimize the attack 
surface.  Private class members are preferred for the most part and should be the default.  
Private classes pose the lowest security risk.  Protected class members should be created 
only if the class member needs to be accessible to derived classes.  Internal access 
modified should be used only if class members need to be accessible to other classes 
from the same assembly.  If the class is not intended to be a base class, it should be sealed 
in order to prevent inheritance.  An example below illustrates how this can be done. 
 
public sealed class NobodyDerivesFromMe 
{} 

 
Furthermore, it is possible to restrict which users can call the code.  Declarative principal 
permissions can be used to control which users have access to the class or its members.  
This can be specified at the class level or at the level of individual class methods.  In the 
example below, only members of the Windows group can access the Orders class.   



 92 

 
[PrincipalPermission(SecurityAction.Demand, 
Role=@"DomainName\WindowsGroup")] 
public sealed class Orders() 
{ 
} 

 
As a general principle in object oriented programming, fields should be exposed via 
properties.  Typically getter and setter methods are provided for each of the private class 
data members.  This is important from security standpoint because it allows the developer 
to add logic for input validation or permission checks inside those methods.    An 
example of this is demonstrated in the code snippet below. 
 
public sealed class MyClass 
{ 
private string field; // field is private 
// Only members of the specified group are able to 
// access this public property 
[PrincipalPermission(SecurityAction.Demand, 
Role=@"DomainName\WindowsGroup")] 
public string Field 
{ 
get { 
return field; 
} 
} 
} 
 

4.3.1.4     Strong Names 

 

We have already alluded several times throughout this paper to strong names in .NET 
Framework and said that they can be used to ensure integrity.  An assembly strong name 
is compromised of a text name, a version number, culture (optional), public key, and a 
digital signature.  Machine.config can be used to reference the various constituents of the 
strong name.  The example below demonstrates how System.Web assembly can be 
referenced in Machine.config. 
 
<add assembly="System.Web, Version=1.0.5000.0, Culture=neutral, 
PublicKeyToken=b03f5f7f11d50a3a" /> 

 
Ideally, all assemblies should be given strong names.  Strong names make sure that 
partially trusted code cannot call the assembly, the assembly can be shared among 
multiple applications and that strong names are used as security evidence.  Public key 
portion of the strong name provides cryptographically strong evidence for code access 
security.  Cryptographically strong evidence can also contain Authenticode signature and 
an assembly’s cash.  Authenticode signatures can be used if X.509 certificate was used to 
sign an assembly.  Authenticode is not loaded by the ASP.NET host and thus not used 
with ASP.NET applications.   
 



 93 

Application developers constructing assemblies should delay sign the code.  This is a 
process of placing the public key (part of the strong name) in the assembly that can later 
be used as evidence to the code access security policy.  A private key, that is securely 
stored in a central location, is used to sign the assembly and create its digital signature.  
Few trusted people have access to the private key.  A single public key representing 
organization developing the software can be used by all of the developers.  This is really 
important from the integrity standpoint hence all assemblies should be signed.  
 

4.3.1.5      Exception Management 

 

Poor exception management can lead to information disclosure which may help 
malicious hackers to compromise the application.  Additionally, poor exception 
management can also result in availability issues by allowing an attacker to launch a 
denial or service attack.  In short, all exceptions should be caught and handled properly.  
Microsoft provides several recommendations for proper exception management:  use 
structured exception handling, do not log sensitive data, do not reveal system or sensitive 
application information, consider exception filter issues and consider an exception 
management framework.   
 
Structured exception management in Visual C# and Visual Basic .NET does not differ 
from Java.  In all of these languages, try / catch and finally constructs are used.  It is 
important to remember to be very granular by catching specific exceptions rather than 
trying to lump them all into one by catching a generic exception.  Structure exception 
handling guarantees that the system is always in a consistent state.  The code snippet 
below demonstrates a structured approach to exception handling: 
 
try 
{ 
// Code that could throw an exception 
} 
catch (SomeExceptionType ex) 
{ 
// Code to handle the exception and log details to aid 
// problem diagnosis 
} 
finally 
{ 
// This code is always run, regardless of whether or not 
// an exception occurred. Place clean up code in finally 
// blocks to ensure that resources are closed and/or released. 
} 
 

Exceptions tend to contain a lot of detailed information that could help an attacker 
compromise the system.  Consequently, care should be taken when logging exception 
data and sensitive data should not be logged. The raw output of an exception should 
never propagate directly to the client (or go outside the application trust boundary for that 
matter) as it provides too much useful information. Some of these details may include 
operating system, .NET Framework version numbers, method names, computer names, 
SQL command statements, connection strings, along with other details.  The information 



 94 

may be very useful to an attacker.  For instance, knowing what version of the operating 
system is used, an attacker may exploit a known vulnerability for that operating system.   
Instead, generic messages about an exception should be returned to the client where 
appropriate.  A lot of the time exception handling might make the exception transparent 
to the client, in which case nothing may be returned.  In general, an exception 
management framework can ensure that all exceptions are properly detected, logged and 
processed in a way that avoids both information disclosure and availability issues [10].   
 

4.3.1.6     File Input and Output 

 

Developers should be aware of how to properly interact with the file system and avoid 
the common pitfalls.  For instance, security decisions should not be based on input file 
names because of the many ways in which a single file name can be represented.  This 
problem is also known as canonicalization.  If the code needs to access a file by using a 
file name supplied by a user, developers must make sure that an assembly cannot be used 
by a hacker to get access to or overwrite sensitive data.  Microsoft provides the following 
recommendations for performing input/output interactions with the file system securely:  
avoid untrusted input for file names, do not trust environment variables, validate input 
filenames and constraint file I/O within your application’s context.   
 
To avoid the possibility of granting an attacker access to arbitrary system files, code 
should not be written that accepts a file or path input from the caller.  Instead, fixed file 
names and paths should be used when performing input and output.  Wherever possible, 
absolute file paths should be used rather than constructing file paths through values of the 
environment variables, because it is not always possible to guarantee the value of the 
environment variable.  If input file names absolutely have to be passed by the caller, 
extensive validation should be performed by the process to determine validity.  For 
instance, the code should check to make sure that the file system names are valid and 
check that the location is valid, as defined by the application context.  
System.IO.Path.GetFullPath method should be used to validate the path and file names 
passed by the caller.  An example of how this can be accomplished is provided below. 
 
using System.IO; 
public static string ReadFile(string filename) 
{ 
// Obtain a canonicalized and valid filename 
string name = Path.GetFullPath(filename); 
// Now open the file 
} 

 
The GetFullPath method used in the code snippet above checks that the file name does 
not contain invalid characters (as defined in Path.InvalidPathChars), checks that the file 
name represents an actual file and not some other resource, checks for the length of the 
path to make sure that it is not too long, removes redundant characters and rejects file 
names that conform to the //?/ format.  This takes some of the burden of writing custom 
validation logic away from the programmer, thus reducing the risk of canonicalization 
problems.  Following validation of the file system file name, assembly code must validate 
that the location of the file is valid in the application context.  For instance, it is necessary 



 95 

to verify that the location is within the directory hierarchy for the application and that 
code cannot gain access to arbitrary files on the file system [10].   
 

4.3.1.7     Event Logs 

 

Most enterprise web based application will use event logging in some shape or form and 
it is very important to ascertain that this is done securely.  The fundamental threats to 
event logs involve tampering with the log, information disclosure of sensitive information 
stored in the log and log deletions in order to erase tracks.  While some event log 
protection is provided by the security features in the Windows operating system, 
developers must ensure that event logging code cannot be used by an attacker to gain 
unauthorized access to the event log.  
 
The first axiom of logging should be to not log sensitive data.  We have already 
mentioned this in the secure exception management section.  Additionally, if 
EventLog.WriteEvent is used, existing records cannot be read or deleted.  This leads us 
back to the principle of least privilege.  Do not give more privileges to the code updating 
the event logs than is absolutely necessary and grant those privileges for the shortest 
amount of time necessary.  This can be accomplished by specifying EventLogPermission 
by way of code access security.  A threat that should be addressed is preventing an 
attacker from invoking the code that does event logging so many times that would cause 
overwrite in previous log entries.  An attacker can try and to this in an attempt to cover 
his tracks for example.  A way to deal with that may be to use an alert mechanism that 
would signal the problem as soon as the event log approached a limit.   
 

4.3.1.8     Registry Access 

 

Developers often use the system registry as a place to provide secure storage to sensitive 
application configuration data.  Configuration data can be stored under the local machine 
key (HKEY_LOCAL_MACHINE) or under the user key of the current user 
(HKEY_CURRENT_USER).  For security, all data should be encrypted prior to being 
placed in the registry. 
 
If configuration data is stored under HKEY_LOCAL_MACHINE then any process 
running on the local machine can possibly have access to the data.  A restrictive access 
control list (ACL) should be used (applied to the specific registry key) to restrict access 
to the configuration data to the administrator and the specific process (or thread) that 
needs to be given access to the configuration data.  If the configuration data is stored 
under HKEY_CURRENT_USER, an ACL does not need to be configured because the 
access to the configuration data is automatically restricted based on process identity.  It is 
also important for developers to be aware of the ways to read securely from the registry.  
Code snippet below demonstrates how to read an encrypted database connection string 
from the HKEY_CURRENT_USER key using the Microsoft.Win32.Registry class. 
 
using Microsoft.Win32; 
public static string GetEncryptedConnectionString() 
{ 



 96 

return (string)Registry. 
CurrentUser.  
OpenSubKey(@"SOFTWARE\YourApp"). 
GetValue("connectionString"); 
} 

 

4.3.1.9     Data Access 

 

When writing code that performs database access developers need to be aware of the 
ways to manage database connection strings securely and to validate SQL statements in 
order to prevent SQL injection attacks.  Developers must also be aware of the ADO.NET 
permission requirements.  We will come back to this topic later on in the paper. 
 

4.3.1.10     Interacting with Unmanaged Code 

 

It is possible that a .NET assembly developer will need to interact with code that predated 
the .NET Framework and therefore constitutes unmanaged code.  Unmanaged code of 
course does not provide all of the safe guards of managed code, so special care should be 
taken to ensure secure interaction.  When unmanaged code is called, it is important to 
have the managed code validate each parameter passed to the unmanaged API in order to 
protect against possible buffer overflows.  It is also important to be careful when dealing 
with output parameters passed back from the unmanaged API.  As a matter of good 
practice, calls made to unmanaged code within an assembly should be isolated in a 
separate wrapper in order to allow sandboxing of highly privileged code and isolate code 
access security permission requirements to a specific assembly.  Microsoft provides the 
following recommendations for secure interaction with unmanaged API calls:  validate 
input and output string parameters, validate array bounds, check file path lengths, 
compile unmanaged code with the /GS switch and inspect unmanaged code for insecure 
APIs.   
 
In order to reduce the risk of buffer overflows, string parameters passed to unmanaged 
APIs should be thoroughly validated.  The lengths of input strings passed as parameters 
to the unmanaged API from inside the assembly wrapper should be validated against 
expected lengths by the formal arguments in the unmanaged code APIs.   In some cases 
(where a formal argument is a character pointer for instance), it may not be known what 
the safe length of the input string is without having access to the source code.  This is 
demonstrated by the code snippet below.   
 
void SomeFunction( char *pszInput ) 
{ 
char szBuffer[10]; 
// Look out, no length checks. Input is copied straight into the buffer 
// Check length or use strncpy 
strcpy(szBuffer, pszInput); 
. . . 
} 

 
 



 97 

In the example above, an assembly developer would need to have access to the 
unmanaged source code to know that he should not pass a string longer than ten 
characters to SomeFunction method because otherwise a buffer overflow would occur in 
buffer szBuffer as the consequence of strcpy operation.  This can also be tied in with the 
recommendation for inspection of unmanaged code for insecure APIs.  For instance, in 
this example, the use of strcpy is insecure. strncpy should be used instead because it 
allows specifying the maximum number of bytes to copy.  If the source code cannot be 
examined (if the developer’s organization does not own it for instance), then an assembly 
developer should manually test the API by trying to pass inputs of varying length to the 
method and observing what happens to the stack in memory.  If StringBuilder is used to 
receive strings from the unmanaged API, the code should make sure that the string can 
hold the longest possible value that can come from the unmanaged API. 
 
All array bounds should be validated for index out of bounds conditions.  If an input to 
unmanaged API is an array, an assembly coder should ensure that the array does not 
contain more information than the size with which it has been allocated.  In the event that 
an unmanaged API accepts a file path, the wrapper in the assembly should verify that the 
path length does not exceed 260 characters (MAX_PATH constant).  If the developer 
owns the unmanaged code, it should be compiled using the /GS switch in order to enable 
checks to detect buffer overflows.  Unmanaged code should also be examined for 
insecure APIs, such as strcpy for instance.  If unmanaged code is owned by the 
organization, all insecure APIs should be replaced by their safe alternatives (e.g. strncpy 
instead of strcpy).   
 

4.3.1.11     Delegates 

 

In .NET delegates are managed code equivalents of type safe function pointers and are 
used by the .NET Framework as a way to support events by maintaining a reference to a 
method that gets called when the delegate is invoked.  Since events may have multiple 
methods registered as event handlers, all of the event handlers get called when the event 
happens.  The key point to remember about delegates is not to accept them from 
untrusted sources.  If a delegate or an event is publicly exposed by the assembly, any 
code can associate a method with the delegate.  In this case, there is no way of knowing 
what that code does.  The security axiom here is not to accept delegates from untrusted 
sources.  If the assembly is strong named, only full trust callers can pass a delegate to the 
assembly (unless AllowPartiallyTrustedCallersAttribute is specified).  In the event that 
partially trusted callers are allowed, a delegate could also get passed by malicious code.   
 

4.3.1.12     Serialization: 

 

The concept of serialization is used in both .NET and J2EE.  Every class that needs to be 
marshaled by value between application domains, processes or computers needs to 
implement a serializable interface.  In .NET, serialization support for a class is required if 
it needs to be marshaled by value across a .NET remoting boundary or if it needs to be 
persisted in the object state to create a flat data stream.  In .NET, classes can be serialized 
only if they are marked with SerializableAttribute of if they derive from ISerializable. 



 98 

The things that assembly developers who write serializable classes need to remember are 
to not serialize sensitive data and to validate serialized data streams.   
 
As a general rule, classes that contain sensitive data should not be serialized.  If they need 
to be serialized, however, it is important to not serialize the fields containing sensitive 
data.  To accomplish this, ISerializable interface can be implemented to control 
serialization behavior or alternatively the fields containing sensitive data that should not 
be serialized can be tagged with the [NonSerialized] attribute.  A code example of how 
this can be done is shown below. 
 
[Serializable] 
public class Employee { 
// OK for name to be serialized 
private string name; 
// Prevent salary being serialized 
[NonSerialized] private double annualSalary; 
. . . 
} 

 
If sensitive data items must be serialized, it is possible to encrypt them first.  The 
drawback of this approach is that the code de-serializing the object would then need to 
have the decryption key.  
 
As object instances are created from serialized data streams (de-serialization), developers 
should make sure to check that the streams contain valid data in order to detect possibly 
malicious data being injected into the object.  The code below shows how to validate 
each field as it is being de-serialized. 
 
public void DeserializationMethod(SerializationInfo info, StreamingContext cntx) 
{ 
string someData = info.GetString("someName"); 
// Use input validation techniques to validate this data 
} 
 

If partial trust callers are supported, then malicious code might pass a serialized data 
stream or malicious code may attempt to serialize some data on the assembly object.  
Additional checks are required there that we will cover later in this paper. 
 

4.3.1.13     Issues with Threading 

 

Multi-threaded applications are often subject to race conditions that can result in security 
vulnerabilities, application crashes, and other problems related to timing.  Developers of 
multi-threaded assemblies should follow the following recommendations:  not caching 
the results of security checks, considering impersonation tokens, synchronizing static 
class constructors and synchronizing dispose methods.   
 
It is not a good idea for multi-threaded code to cache the results of security checks 
because the code may be vulnerable, as demonstrated by the example below. 
 



 99 

public void AccessSecureResource() 
{ 
_callerOK = PerformSecurityDemand(); 
OpenAndWorkWithResource(); 
_callerOK = false; 
} 
private void OpenAndWorkWithResource() 
{ 
if (_callerOK) 
PerformTrustedOperation(); 
else 
{ 
PerformSecurityDemand(); 
PerformTrustedOperation(); 
} 
} 
 

If OpenAndWorkWithResource can be invoked by a separate thread on the same object, 
it is possible that the second thread would omit the security demand checks because it 
may see_callerOK=true set by the first thread.  This is a classic Time of Check Time of 
Use (TOCTOU) problem where a race condition leaves a window of vulnerability which 
can lead in this case to circumvention of security checks.  This situation may be resolved 
by not caching security checks or by providing locking mechanisms to enforce the critical 
section. 
 
When a new thread is created, it takes on the security context defined by the process level 
token.  If a parent thread is impersonating while it creates a new thread, the 
impersonation token is not passed to the new thread.  If static class constructors are used, 
the code should ensure through synchronization that they are not susceptible to race 
conditions to avoid potential vulnerabilities.  To avoid issues with freeing a resource 
more than once, Dispose implementations should be synchronized in multi-threaded 
environments.  The example below is susceptible to this kind of problem. 
 
void Dispose() 
{ 
if (null != _theObject) 
{ 
ReleaseResources(_theObject); 
_theObject = null; 
} 
} 

 
In the example above, the second thread may evaluate the conditional statement before 
the first thread has set _theObject to null, thus resulting in freeing a resource twice.  This 
can create various security vulnerabilities, depending on how ReleaseResources is 
implemented.  A solution to this issue would be to synchronize the Dispose method.   
 

4.3.1.14     Reflection 

 

Reflection is another is a concept applicable to both J2EE and .NET.  Reflection allows 
dynamic loading of assemblies, discovery of information about types, and execution of 



 100 

code.  De-serialization is typically supported through the use of reflection.  Reflection is 
also critical in .NET remoting.  Reflection also allows to obtain a reference to an object 
and invoke get/set methods on its private members.  Developers should make sure that 
when using reflection to reflect on other types only trusted code can call the assembly.  
Code access security permission checks should be used to authorize the calling code.  If 
assemblies are loaded dynamically, through use of System.Reflection.Assembly.Load, 
for instance, assembly or type names should not be used if they were passed from 
untrusted sources.  Particularly when the caller has a lower trust level than the assembly 
generating the code, developers should ensure that if the assembly dynamically generates 
code to perform operations for the caller that the caller has no way to affect the code that 
is being generated.  In the event that code generation relies on the input passed by the 
caller, assembly developers should make sure to validate input strings used as a string 
literal in the code being generated and escape quotation mark characters to ensure that the 
caller cannot break out of the literal in order to inject code.  There should be no way for 
the caller to influence code generation or security vulnerabilities are likely. 
 

4.3.1.15     Obfuscation 

 

We already mentioned that it is fairly easy to use a decompiler tool on MSIL code of the 
assembly.  This can result in loss of intellectual property since source code can easily be 
recovered.  An obfuscation tool can be used to make this decompilation extremely 
difficult.  In general, security solutions should not rely on obscurity, which is precisely 
what code obfuscation is.  However, obfuscation is fairly successful against threats 
related to reverse engineering.  Obfuscation tools tend to obscure code paths, change the 
names of internal member variables and encrypt strings.  This has the affect of making it 
harder for an attacker attempting to reverse engineer MSIL to crack the security logic, 
understand the code, and search for specific strings in order to identify key sensitive 
logic.  Obfuscation tools also introduce extra instructions into MSIL code, not part of the 
original assembly code, that does not do anything but makes it very confusing to perform 
reverse engineering.   
 

4.3.1.16     Cryptography 

 

Cryptography is vital to security for obvious reasons.  Encryption can be used to protect 
data confidentiality, hashing can be used to protect integrity by making it possible to 
detect tampering, and digital signatures can be used for authentication.  Cryptography is 
typically used to protect data in transit or in storage.  The two biggest mistakes that 
developers can make related to cryptography are:  using homegrown cryptographic 
solutions and not properly securing encryption keys.  Developers need to pay special 
attention to the following issues in order for cryptography to be effective:  using 
cryptographic services provided by the platform, secure key generation, secure key 
storage, secure key exchange, and secure key maintenance.   
 
It is never a good idea for developers to use custom security solutions since they are 
almost guaranteed to be weaker than the industry standard.  Instead, managed code 
developers should use algorithms provided by the System.Security.Cryptography 



 101 

namespace for encryption, decryption, hashing, random number generation, and digital 
signatures.  We have already previously discussed the System.Security.Cryptography 
namespace.  Many of the types in this namespace actually wrap around the CryptoAPI 
provided by the operated system.   
 
During the key generation phase, developers must make sure that the keys generated are 
truly random, that PasswordDeriveBytes is used for password encryption and that the key 
sizes are sufficiently large.  For programmatic generation of encryption keys, 
RNGCryptoServiceProvicer should be used for key creation and initialization vectors.  
Random class should never be used because it does not provide sufficient entropy and 
produces a reliably identical stream of random numbers for a given seed.  Thus with the 
same seed, the random number stream is known when using the Random class.  On the 
other hand, RNGCryptoServiceProvider creates cryptographically strong random 
numbers that are FIPS-140 compliant.  The code below demonstrates how secure keys 
can be generated with RNGCryptoServiceProvider. 
 
using System.Security.Cryptography; 
. . . 
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider(); 
byte[] key = new byte[keySize]; 
rng.GetBytes(key); 

 
System.Security.Cryptography.DeriveByte namespace can be used to encrypt data that is 
based on a password that the user supplies.  This can be accomplished via 
PasswordDeriveBytes methods.  The reason that we need to have a separate way to 
encrypt data on user supplied input (like password) is because user input does not tend to 
be truly random and will not have the same level of randomness as a key generated with 
RNGCryptoServiceProvider.  In order to perform decryption, the user would have to 
provide the same password as that which was used to encrypt.  For password 
authentication, a password verifier may be stored as a hash value with a salt value.  
PasswordDeriveBytes takes in password, salt, encryption algorithm, hashing algorithm, 
key size in bits, and initialization vector data (if symmetric key algorithm is used) as 
arguments.  After the key is used to encrypt the data, it should be cleared from memory, 
but salt and initialization vector should be stored securely, since they are needed for 
decryption.   
 
Large keys are preferable to small keys since security is in the key.  When generating 
encryption keys or key pairs, the largest possible key size should be used that a given 
algorithm would accommodate.  Sometimes smaller key sizes may be necessary for 
different reasons (such as performance for instance), so the key size may be a judgment 
call made by the application designer or the developer.  Larger keys do not enhance the 
security of the algorithm itself, but increase the amount of time it would take to perform a 
brute force attack on the key.  The code snippet below demonstrates a way in which the 
largest supported key size for a given encryption algorithm can be found. 
 
private int GetLargestSymKeySize(SymmetricAlgorithm symAlg) 
{ 
KeySizes[] sizes = symAlg.LegalKeySizes; 



 102 

return sizes[sizes.Length].MaxSize; 
} 
private int GetLargestAsymKeySize(AsymmetricAlgorithm asymAlg) 
{ 
KeySizes[] sizes = asymAlg.LegalKeySizes; 
return sizes[sizes.Length].MaxSize; 
} 

 
Ideally key management should be performed by a platform provided solution and not 
programmatically as part of the application.  However, when encryption keys need to be 
stored, it is imperative to do so securely by storing then in a secure location.  Microsoft 
recommends using DPAPI, a native encryption/decryption feature provided by Microsoft, 
Windows 2000 for key management.  With DPAPI, the encryption key is managed by the 
operating system because it is created from the password that is associated with the 
process account calling the DPAPI functions.  Encryption with DPAPI can be performed 
using a user key or a machine key. User key is the default, meaning that only a threat that 
runs under the security context of the user account that encrypted the data can decrypt the 
data.  Alternatively, DPAPI can use the machine key.  This can be accomplished by 
passing the CRYPOPROTECT_LOCAL_MACHINE flaw to the CryptProtectData API 
and then any user on the current machine can decrypt the data.  The user key option 
requires a loaded user profile in the account used to perform the encryption.  This 
somewhat limits portability, and so machine key should be used where portability is 
required.  If machine key option is used, an ACL is required to secure the encrypted data.  
An optional entropy value can be passed to DPAPI if added security is desired.  Of 
course then the entropy value has to also be managed.  Alternatively, machine key can be 
used without an entropy value and then code access security can be used to validate users 
and code prior to calling the DPAPI code. 
 
An axiom of key management states that keys should never be stored in code.  Hard 
coded keys in the compiled assembly (MSIL) can be easily disassembled which would 
eliminate any benefits provided by cryptography.  Additionally, access to stored keys 
should obviously be limited.  Appropriate ACLs should be used to limit access to the key 
when keys are stored in a persistent storage to be used as the application is running.  
Access to the key should only be allowed to Administrators, SYSTEM, and the identity 
of the code at runtime (e.g. ASPNET identity). When backing up keys, they should be 
encrypted with DPAPI or a strong password and placed on removable media. 
 
Key exchange is traditionally a hard problem to solve in any cryptosystem.  The most 
widely used solution is usage of PKI to distribute symmetric keys.  A symmetric key that 
needs to be exchanged is encrypted with the other party’s public key that is obtained from 
a certificate that is valid.  Valid certificates are not outdated, contain verifiable signatures 
along the certificate chain, are of correct type, verified up to a trusted certificate 
authority, and are no in the Certificate Revocation List (CLR) of the issuer.  If an 
enterprise web application needs to engage in key exchange, assembly code must perform 
all of the above steps in order to perform secure key exchange.  Sometimes it is hard for 
developers to remember to get all of the steps right, particularly since developers are 
usually not security professionals.  A common problem is with the use of SSL, where 



 103 

proper authentication is not performed prior to communication.  The net effect is secure 
communication with unauthenticated party. 
 
 Finally, keys must be securely maintained, which usually involves replacing the keys 
periodically and protecting exported private keys.  Using the same key for a prolonged 
period of time is not a good strategy.  It is also possible for keys to become compromised, 
either through theft, loss, or other methods.  If the private key is compromised that is 
used for key exchange, users of the public key should be immediately notified that the 
key has been compromised.  All documents digitally signed with the compromised 
private key need to be re-signed.  If the private key that is used for certificate is 
compromised, the CA should be notified so that the certificate can be place on the CRL 
and key storage should be reevaluated.  Exported private keys should be protected.  
PasswordDeriveBytes can be used to securely export RSA or DSA private keys.  
ToXmlString method in RSA and DSA classes can be used to export the public or private 
key (or both) from the key container, but it exports the keys in plain text.  In order to 
export a private key securely, the key should be encrypted with PasswordDeriveBytes 
after exporting the key.  The code snippet below shows how to use PasswordDeriveBytes 
to generate a symmetric key securely. 
 
PasswordDeriveBytes deriver = new PasswordDeriveBytes(<strong password>, null); 
byte[] ivZeros = new byte[8];//This is not actually used but is currently 
required. 
//Derive key from the password 
byte[] pbeKey = deriver.CryptDeriveKey("TripleDES", "SHA1", 192, ivZeros); 

    

4.3.2     Code Access Security 

 

A few additional points of interest on .NET Framework code access security are offered 
in this section to add to what we have already discussed previously in this paper.  As a 
summary, code access security in .NET is used to constraint code access to system 
resources and privileged operations.  Code access security is solely concerned with code 
level authorization, independent of the user calling the code and the various 
authentication issues.  Code access security is applied to restrict what the code can do, 
restrict who can call the code through use of the public key part of the assembly’s strong 
name, and to identify code through use of strong names or hashes.  The focus in this 
section is on specific things that developers should be aware of when dealing with .NET 
code access security.  A diagram below is helpful for understanding how code access 
security works.  
 



 104 

 
 

Figure 26:  .NET Code Access Security Overview [10] 

 
It is important to not that all of the .NET Framework classes that access resources or 
perform privileged operations need to contain appropriate permission demands.  For 
instance, FileStream class demands the FileIOPermission and the Registry class demands 
the RegistryPermission.  Web services and HTTP internet resources demand 
WebPermission. 
 
Assemblies that have strong names cannot be called by partial trust assemblies by default 
because the default demand for calls is that of full trust.  However, this default can be 
overwritten by specifying as follows:  [assembly:  
AllowPartiallyTrustedCallersAttribute()].  This ensures that developers do not 
inadvertently allow partial trust and leave an assembly exposed to malicious code.  As a 
general security principle, the use of partial trust code should be limited.  Only use it 
when absolutely necessary and scrutinize the code that allows partial trust for any 
security problems.  It is not uncommon for enterprise web applications to extend trust to 
partial trust users and it should be done very carefully.   
 
The threat modeling of the application should identify a list of all resources accessed by 
the application and all of the privileged operations performed by the code.  Since 
permission requirements are configured at deployment time, developers can provide 
assembly level declarative security attributes that specify minimum permission 
requirements necessary for their code.  These would be place in Assemblyinfo.cs or 
Assemblyinfo.vb files.  Requesting minimum permissions helps enforce least privilege 
principle. To accomplish this task, Security.Action.RequestMinimum method can be used 
with declarative permission attributes.  A code snippet below demonstrates how to 



 105 

request minimum permissions for code that that needs to access the registry, but only 
needs to retrieve configuration data from a specific key and nothing else, 
 
[assembly: RegistryPermissionAttribute( 
SecurityAction.RequestMinimum, 
Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\YourApp")] 

 
Even if an assembly known to run in a full trust environment, specification of minimum 
required security permissions is a good practice.  If SecurityAction.RequestOptional 
method is used, then only the permissions requested through RequestMinimum and 
RequestOptional will be granted and no others, even if otherwise more permissions 
would have been granted to the assembly.  SecurityAction.RequestRefuse can be used to 
explicitly disallow certain permissions to the assembly code.  A code snippet below 
demonstrates how to explicitly disallow invocation of unmanaged code. 
 
[assembly: SecurityPermissionAttribute(SecurityAction.RequestRefuse, 
UnmanagedCode=true)] 

 
Threat modeling process, architecture and design of the applications should provide 
developers with a complete understanding of permissions that their code requires.  
Developers should then request only the minimum permissions required and explicitly 
disallow all other permission.  For instance, a way to do this would be to use the 
RequestMinimum attribute and an empty RequestOptional attribute. 
 
For authorization purposes, it is important to restrict what code can call the assembly 
code.  Explicit code access permission demands can be used to ensure that the code 
calling an assembly has the necessary permissions to access the resource or perform a 
privileged operation exposed by an assembly.  As an alternative, identity permissions can 
be used to restrict the calling code based on identity evidence (e.g. public key derived 
from the strong name).  This will only work for strong named assemblies.   
 
Developers need to know how to restrict which code can call their code.  Public methods 
can be called by any code and so restrictions are needed there.  An example below 
demonstrates use of code access security identity permission demand to provide the 
restriction.  A specified public key is required in order to gain access to the method. 
 
public sealed class Utility 
{ 
// Although SomeOperation() is a public method, the following 
// permission demand means that it can only be called by assemblies 
// with the specified public key. 
[StrongNameIdentityPermission(SecurityAction.LinkDemand, 
PublicKey="00240000048...97e85d098615")] 
public static void SomeOperation() {} 
} 

 
To restrict unforeseen insecure extension of base classes, inheritance should be restricted 
unless it needs to be allowed.    This can be done with an inheritance demand and a 
StrongNameIdentityPermission.  An example of how this can be done is provided below.  



 106 

This would prevent inheritance of the base class from any assembly that is not signed 
with the private key that corresponds to the public key in the demand. 
 
// The following inheritance demand ensures that only code within the 
// assembly with the specified public key (part of the assembly's strong 
// name can sub class SomeRestrictedClass 
[StrongNameIdentityPermission(SecurityAction.InheritanceDemand, 
PublicKey="00240000048...97e85d098615")] 
public class SomeRestrictedClass 
{ 
} 

 
Web applications often use data caching for performance reasons and cached data should 
be protected.   If the data is cached, the same permission demands should be applied 
when accessing cached data as those that were used originally in order to ensure that the 
calling code is authorized to access the resource.  For instance, if data was read from a 
file, and then cached, a FileIOPermission demand should be used when accessing the 
cached data.  A code sample demonstrating how this can be done is shown below. 
 
// The following demand assumes the cached data was originally retrieved from 
// C:\SomeDir\SomeFile.dat 
new FileIOPermission(FileIOPermissionAccess.Read, 
@"C:\SomeDir\SomeFile.dat").Demand(); 
// Now access the cache and return the data to the caller 

 
Custom resources should be protected with custom permissions.  In other words, if a 
resource is exposed through say unmanaged code, the wrapper code that accesses 
unmanaged code should be sandboxed and custom permission demanded to authorize the 
calling code.  Full trust users would get the permission by default if the permission type 
of the custom permission implements the IUnrestrictedPermission interface.  Partial trust 
users would have to be explicitly granted the permission ensuring that untrusted code 
cannot call the assembly and access the exposed custom resources.  
UnmanagedCodePermission should never be used because that would allow all users to 
call the exposed unmanaged code resources.   
 
Enterprise web application often use directory services (e.g. LDAP).  By default, code 
using classes from System.DirectoryServices namespace to access directory services is 
granted full trust.  However, DirectoryServicesPermission can be used to constraint the 
type of access and the particular directory services that the code can access.  To constrain 
a directory service access, DirectoryServicesPermissionAttribute can be used along with 
SecurityAction.PermitOnly.  This guarantees that the code can only connect to a specific 
LDAP path and can only perform an action of browsing the directory.  A code sample to 
accomplish this is shown below. 
 
[DirectoryServicesPermissionAttribute(SecurityAction.PermitOnly, 
Path="LDAP://rootDSE", 
PermissionAccess=DirectoryServicesPermissionAccess.Browse)] 
public static string GetNamingContext(string ldapPath) 
{ 
DirectorySearcher dsSearcher = new DirectorySearcher(ldapPath); 



 107 

dsSearcher.PropertiesToLoad.Add("defaultNamingContext"); 
dsSearcher.Filter = ""; 
SearchResult result = dsSearcher.FindOne(); 
return (string)result.Properties["adsPath"][0]; 
} 

 
In order to document the permission requirements for directory services access, 
DirectorySericesPermissionAttribute can be used with SecurityAction.RequestMinimum.  
This way, the assembly will not load unless sufficient permissions for directory services 
access are available.  This can be done as shown below. 
 
[assembly: DirectoryServicesPermissionAttribute(SecurityAction.RequestMinimum, 
Path="LDAP://rootDSE", 
PermissionAccess=DirectoryServicesPermissionAccess.Browse)] 
 

Assembly code may also need to read or write environment variables using the 
System.Environment class and must be granted EnvrionmentPermission.  The permission 
type is used to constrain access to environment variables with specific names.The code 
below demonstrates how to constrain access to environment variables. 
 
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="username")] 
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="userdomain")] 
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="temp")] 
public static string GetVariable(string name) 
{ 
return Environment.GetEnvironmentVariable(name); 
} 

 
Permissions required for environment variable access can be specified in the assembly’s 
deployment descriptor as follows: 
 
[assembly: EnvironmentPermissionAttribute(SecurityAction.RequestMinimum, 
Read="username"), 
EnvironmentPermissionAttribute(SecurityAction.RequestMinimum, 
Read="userdomain"), 
EnvironmentPermissionAttribute(SecurityAction.RequestMinimum, 
Read="temp")] 
 

Enterprise web applications would often use web services.  Web services require the 
WebPermission from the code access security policy.  WebPermission can be used to 
constraing access to any HTTP Internet based resources, something of great importance 
for a web application.  The sample below demonstrates how to constrain web service 
connections.  This code ensure that the PlaceOrder method and any method called by it 
can only invoke Web services on the http://somehost site.   
 
[WebPermissionAttribute(SecurityAction.PermitOnly, 
ConnectPattern=@"http://somehost/.*")] 
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="USERNAME")] 
public static void PlaceOrder(XmlDocument order) 
{ 
PurchaseService.Order svc = new PurchaseService.Order(); 



 108 

// Web service uses Windows authentication 
svc.Credentials = System.Net.CredentialCache.DefaultCredentials; 
svc.PlaceOrder(order); 
} 

 
ConnectPattern property of the WebPermissionAttribute takes a regular expression that 
matches the range of addresses to which a connection is allowed.  An example below 
demonstrates how the Connect attribute can be used to explicitly restrict connections to a 
particular Web service (order.asmx in this case). 
 
[WebPermissionAttribute(SecurityAction.PermitOnly, 
Connect=@"http://somehost/order.asmx")] 

 
ADO.NET data access to SQL Server data supports partial trust callers.  Most other data 
providers, such as Oracle and ODBC providers require full trust callers.  To connect to 
SQL Server data access requires the SqlclientPermission.  This permission can be used to 
restrict the allowed range for name/value pairs in the connection string passed to the 
SqlConnection object.  The code sample below also demonstrates how to perform a check 
to ensure  that blank passwords cannot be used in a connection string.  The code throws a 
SecurityException when a blank password is encountered. 
 
[SqlClientPermissionAttribute(SecurityAction.PermitOnly, 
AllowBlankPassword=false)] 
public static int CheckProductStockLevel(string productCode) 
{ 
// Retrieve the connection string from the registry 
string connectionString = GetConnectionString(); 
. . . 
} 

 
It is important to control access to sockets in a web based enterprise application.  Sockets 
in .NET may be used directly by the code through the System.Net.Sockets.Socket class 
and must be granted a SocketPermission.  If the code uses DNS to map host names to IP 
address, a DnsPermission is also required.  SocketPermission can be used to restrict 
access to certain ports on specified hosts.  It is possible to specifywhether the socket is 
inbound or outbound.  Transport protocol can also be specified (e.g. TCP, UDP).  To 
constrain code so that it only uses sockets in a way that is determined by the application’s 
security policy, a SocketPermissionAttribute can be used with the 
SecurityAction.PermitOnly.  The code below shows how to connect only to a specific 
port on a specific host using the TCP protocol.  Since Dns.Resolve is called by the code 
to resolve a host name, the DnsPermission is needed. 
 
[SocketPermissionAttribute(SecurityAction.PermitOnly, 
Access="Connect", 
Host="hostname", 
Port="80", 
Transport="Tcp")] 
[DnsPermissionAttribute(SecurityAction.PermitOnly, Unrestricted=true)] 
public string MakeRequest(string hostname, string message) 
{ 



 109 

Socket socket = null; 
IPAddress serverAddress = null; 
IPEndPoint serverEndPoint = null; 
byte[] sendBytes = null, bytesReceived = null; 
int bytesReceivedSize = -1, readSize = 4096; 
serverAddress = Dns.Resolve(hostname).AddressList[0]; 
serverEndPoint = new IPEndPoint(serverAddress, 80); 
socket = new Socket(AddressFamily.InterNetwork, 
SocketType.Stream, ProtocolType.Tcp); 
bytesReceived = new byte[readSize]; 
sendBytes = Encoding.ASCII.GetBytes(message); 
socket.Connect(serverEndPoint); 
socket.Send(sendBytes); 
bytesReceivedSize = socket.Receive(bytesReceived, readSize, 0); 
socket.Close(); 
if(-1 != bytesReceivedSize) 
{ 
return Encoding.ASCII.GetString(bytesReceived, 0, bytesReceivedSize); 
} 
return ""; 
} 

 
Requirements for socket permissions can be specified by using an assembly level 
SocketPermissionAttribute and a DnsPermissionAttribute with 
SecurityAction.RequestMinimum (to specify minimum required permissions).  This is 
demonstrated by the code below. 
 
[assembly: SocketPermissionAttribute(SecurityAction.RequestMinimum, 
Access="Connect", 
Host="hostname", 
Port="80", 
Transport="Tcp") 
DnsPermissionAttribute(SecurityAction.PermitOnly, Unrestricted=true)] 
 

In this section we have considered some of the nuts and bolts of .NET code access 
security and how it can be applied to constrain code access to various resources.  We now 
shift gears and discuss some of the specific threats on enterprise web applications 
developed with ASP.NET, the vulnerabilities in the code that those threats exploit, and 
how they can be programmatically mitigated. 
 

4.3.3     Building Secure ASP.NET Web Applications 

 

 Now that we have covered many of the fundamentals of the .NET Framework security 
we are ready to consider the various threats on web applications built with ASP.NET, the 
vulnerabilities those threats attempt to exploit, as well as programmatic compensating 
controls.   An exhaustive list of threats and mitigations will not be provided here.  
Instead, we will focus on some of the more important threats and see how they can be 
mitigated.  More complete descriptions of various web application threats and mitigations 
across the different application tiers can be found in the next chapter.  The discussion in 
this section is geared more towards the threats and mitigations at the Web tier, since it is 
the front line for attackers. 



 110 

If this section had to be summarized in three words, these words would be:  perform input 
validation!  Many attacks rely on malicious input being passed to the application as part 
of the HTTP request in hopes of forcing an application to perform unauthorized 
operations or disrupt availability.  Consequently, careful input validation is a must and it 
helps mitigate many threats facing web applications, including cross site scripting, SQL 
injection, code injection, etc.  Some of the top threats include code injection, session 
hijacking, identity spoofing, parameter manipulation, network eavesdropping and 
information disclosure.  The diagram below illustrates these major threats on ASP.NET 
(as well as J2EE) web applications [10]. 
 

 
 

 

Figure 27:  Major threats on an ASP.NET Web Application [10] 

 

4.3.3.1     Input Validation 

 

Since so many problems are the result of poor input validation, some ASP.NET 
programming techniques are provided here that would help developers to write secure 
input validation routines.  The first step should be to validate input by performing type, 
length, format and range checks.  Validation should be performed against a white list of 
allowed input, rather than a black list of prohibited input.  The table below summarizes 
.NET classes that facilitate performing type, length, format and range checks. 
 



 111 

 
 

Table 10:  ASP.NET Facilities for Input Validation [10] 

 

Regular expressions are an effective mechanism for restricting the range of valid 
characters, stripping unwanted characters and performing length and format checks.  In 
order to restrict the input, regular expressions can be constructed that the input must 
match. For that purpose, RegularExpressionValidator control and the Regex class are 
available from the System.Text.RegularExpressions namespace.  Web form input fields 
can be validated with the RegularExpressionValidator control.  If HTML controls are 
used with no runat=”server” property, then the Regex class is used either on the page 
class or in a validation helper method [10]. 
 
Regular expressions can be used to validate string fields containing names, addresses, 
social security numbers, etc.  In order to do that, first an acceptable range of input 
characters is defined.  Then formatting rules are applied.  Patterns can be based on phone 
numbers, ZIP codes, SSN.  Then all the lengths are checked. A code sample below uses 
RegularExpressionValidator control to validate a name field. 
 
<form id="WebForm" method="post" runat="server"> 
<asp:TextBox id="txtName" runat="server"></asp:TextBox> 
<asp:RegularExpressionValidator id="nameRegex"runat="server" 
ControlToValidate="txtName" 
ValidationExpression="[a-zA-Z'.`-´\s]{1,40}" 
ErrorMessage="Invalid name"> 
</asp:regularexpressionvalidator> 
</form> 

 
Another example illustrates how Web form fields accepting social security numbers can 
be validated. 
 
<form id="WebForm" method="post" runat="server"> 
<asp:TextBox id="txtSSN" runat="server"></asp:TextBox> 
<asp:RegularExpressionValidator id="ssnRegex" runat="server" 
ErrorMessage="Invalid social security number" 
ValidationExpression="\d{3}-\d{2}-\d{4}" 
ControlToValidate="txtSSN"> 
</asp:RegularExpressionValidator> 
</form> 



 112 

Alternatively, System.Text.RegularExpression.Regex class can be used in the code if 
server controls are not used. 
 
if (!Regex.IsMatch(txtSSN.Text, @"\d{3}-\d{2}-\d{4}")) 
{ 
// Invalid Social Security Number 
} 

 
You will notice that in the core of these checks are regular expressions.  Regular 
expressions are extremely important from the input validation perspective, and a 
developer writing input validation logic must be proficient with regular expressions. 
 
Date fields that have equivalent .NET Framework types can make use of the .NET 
Framework type system.  An input value for date can be converted to a variable of type 
System.DateTime and handle any format exceptions.  A code sample to accomplish this 
is provided below. 
 
try 
{ 
DateTime dt = DateTime.Parse(txtDate.Text).Date; 
} 
// If the type conversion fails, a FormatException is thrown 
catch( FormatException ex ) 
{ 
// Return invalid date message to caller 
} 

 
A sanity range check can also be performed on a data field: 
 
// Exception handling is omitted for brevity 
DateTime dt = DateTime.Parse(txtDate.Text).Date; 
// The date must be today or earlier 
if ( dt > DateTime.Now.Date ) 
throw new ArgumentException("Date must be in the past"); 
 

Numeric data can be validated by converting a string input to an integer form and usring 
Int32.Parse or Convert.ToIn32 and handling a FormatException that might occur with 
invalid numeric data types: 
 
try 
{ 
int i = Int32.Parse(txtAge.Text); 
. . . 
} 
catch( FormatException) 
{ 
. . . 
} 
 

In the above example, if txtAge.Text is not a numeric entry and cannot be parsed as an 
integer, a FormatException will be thrown.   



 113 

It may be necessary for code to perform validation to ensure that input data falls within a 
certain concrete range.  The code snippet below shows how Regex class can be used to 
perform the range check. 
 
try 
{ 
// The conversion will raise an exception if not valid. 
int i = Convert.ToInt32(sInput); 
if ((0 <= i && i <= 255) == true) 
{ 
// data is valid, use the number 
} 
} 
catch( FormatException ) 
{ 
. . . 
} 
 

Input needs to be sanitized sometimes.  This ensures that even if input was originally 
malicious, it will be made safe.  What this essentially entails is replacing all of the 
“dangerous” characters.  This enforces the defense in depth principle in the event that a 
regular expression validation is not sufficient.  The sanitizer code below strips out 
possibly dangerous characters that include <, >, \, “, ‘, ; ,  ( ), &.   
 
private string SanitizeInput(string input) 
{ 
Regex badCharReplace = new Regex(@"([<>""'%;()&])"); 
string goodChars = badCharReplace.Replace(input, ""); 
return goodChars; 
} 

 
It is also critical to validate HTML controls.  ASP.NET validator controls cannot be used 
if server controls are not used.  In the case of HTML controls, the content must be 
validated with regular expression in the Page_Load event handler (when the page first 
loads).  This is demonstrated by the code below. 
 
using System.Text.RegularExpressions; 
. . . 
private void Page_Load(object sender, System.EventArgs e) 
{ 
// Note that IsPostBack applies only for 
// server forms (with runat="server") 
if ( Request.RequestType == "POST" ) // non-server forms 
{ 
// Validate the supplied email address 
if( !Regex.Match(Request.Form["email"], 
@"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*", 
RegexOptions.None).Success) 
{ 
// Invalid email address 
} 
// Validate the supplied name 
if ( !RegEx.Match(Request.Form["name"], 



 114 

@"[A-Za-z'\- ]", 
RegexOptions.None).Success) 
{ 
// Invalid name 
} 
} 
} 

 
All input used for data access should be thoroughly validated, primarily in order to avoid 
SQL injection attacks which can happen if dynamic queries are generated based on user 
input without first thoroughly validating the user input.  An attacker can then possibly 
inject malicious SQL commands that will be executed by the database.  To validate input 
used for dynamic query construction regular expressions should be used to restrict input.  
For defense in depth the input should also be sanitized.  Additionally, whenever possible, 
it is a good idea to use stored procedure for data access in order to make sure that type 
and length checks are performed on the data prior to it being used in SQL queries.  The 
table below lists a common list of useful regular expressions that developers should use 
for input validation. 
 

 
 

Table 11:  Common Regular Expressions for Input Validation [10] 

 

Developers armed with knowledge of the various ways to perform input validation and 
skills working with regular expressions are in position to mitigate (and virtually 
eliminate) application vulnerabilities that may cause buffer overflows, cross site 
scripting, SQL injection and code injection problems.   
 



 115 

4.3.3.2     Cross Site Scripting 

 
Cross site scripting (XSS) attacks are able to exploit vulnerabilities due to lack of proper 
input validation that allow injection of client-side script code.  The code is sent to the 
application users and since it is downloaded from a trusted site it gets executed by the 
user’s browser.  Consequently, security zone restrictions in the browser provide no 
defense against cross site scripting.  A severe case of XSS allows an attacker to steal the 
user’s credentials which subsequently allows an attacker to spoof an identity of a 
legitimate user.    This can be possible when an attacker creates a script that retrieves an 
authentication cookie used for authentication to a trusted site and then posts the cookie to 
some external Web site known to the attacker.  An attacker then sends the malicious 
script to the server, the script eventually gets sent to a client, the script is executed by the 
client browser, an authentication cookie gets stolen and posted to the attacker’s web site, 
and thus allowing an attacker to spoof the legitimate user’s identity and gain illegal 
access to a trusted site.  The common defenses against cross site scripting attacks are 
input validation and output encoding. 
 
The first defense against cross site scripting is input validation as we have already 
discussed.  All input entering the application from outside the application’s trust 
boundary should be validated for type, length, format (via regular expressions) and range.  
A simple defense against cross site scripting is to encode all server output to a Web site 
that contains text to make sure that it does not contain any HTML special characters (i.e. 
<, > and &).  This can be accomplished with HttpUtility.HtmlEncode method that 
replaces < with &lt, > with &gt, and & with &quot.  Analogously, URL strings can be 
encoded with HttpUtility.UrlEncode.  This will ensure that no special characters are 
passed to the client that prompt the browser to execute a script. An example of how to use 
HtmlEncode method is shown below: 
 
Response.Write(HttpUtility.HtmlEncode(Request.Form[“name”])); 

 
In ASP.NET data-bound Web controls do not encode output (with the exception of 
TextBox control when the TextMode property is set to MultiLine).  Consequently, any 
control bound to data that contains malicious XSS code will result in the malicious script 
execution on the client.  As the result, when in doubt, encoding should always be 
performed before passing the data to the Web controls.  Additionally, free format input 
should always be sanitized.  If a Web page contains a free-format text box that allows a 
comments fields designed to allow safe HTML elements like <b> and <i>, it can be 
handled properly with first using HtmlEncode and then selectively removing the 
encoding in places where special characters should be permitted.  An example of this is 
shown below. 
 
StringBuilder sb = new StringBuilder( HttpUtility.HtmlEncode(userInput) ) ; 
sb.Replace("&lt;b&gt;", "<b>"); 
sb.Replace("&lt;/b&gt;", "</b>"); 
sb.Replace("&lt;i&gt;", "<i>"); 
sb.Replace("&lt;/i&gt;", "</i>"); 
Response.Write(sb.ToString()); 

   



 116 

There are also a few additional ways to defend against XSS attacks in ASP.NET that are 
worth mentioning.  One option is to set correct character encoding.  Constraining the 
ways in which input data is represented is critical towards restricting what data is valid on 
the Web pages of the application.  In ASP.NET, it is possible to specify the allowed 
character set either at the page level or at the application level.  The default encoding is 
ISO-8859-1 character encoding.  In order to set the character encoding at the page level, 
two mechanisms can be applied.  Both are shown below. 
 

1) <meta http-equiv=”Content Type” content=”text/html; charset=ISO-8859-1” /> 
2) < @ Page ResponseEncoding=”ISO-8859-1” %> 

 
Alternatively, character encoding can also be specified in the Web.config file, affecting 
the whole application.  This is shown below. 
 
<configuration> 
 <system.web> 

<globalization requestEncoding=”ISO-8859-1” 
responseEncoding=”ISO-8859-1” /> 

            </system.web> 
</configuration> 
 
The latter approach has the benefit of consistently guaranteeing proper encoding for all 
text sent via request and response communications between the application server and the 
client, thus reducing the chance of a cross site scripting attack. 
  
Another way to defend against XSS attacks is to use regular expressions to validate 
Unicode characters.  This can be done with the code shown below. 
 
using System.Text.RegularExpressions; 
. . . 
private void Page_Load(object sender, System.EventArgs e) 
{ 
// Name must contain between 1 and 40 alphanumeric characters 
// together with (optionally) special characters '`´ for names such 
// as D'Angelo 
if (!Regex.IsMatch(Request.Form["name"], @"^[\p{L}\p{Zs}\p{Lu}\p{Ll}]{1,40}$")) 
throw new ArgumentException("Invalid name parameter"); 
// Use individual regular expressions to validate other parameters 
. . . 
} 

  
Additionally, ASP.NET validateRequest option may be used (available in .NET 
Framework 1.1) which is set on the <page> element in the Machine.config file.  This has 
the effect of telling ASP.NET to examine all data received from the browser to detect 
input that may be malicious, such as input containing <script> elements, various special 
characters (<, >, &), etc.  This allows ASP.NET to examine all input received from 
HTML form fields, cookies, and query strings.   
 



 117 

4.3.3.3     SQL Injection 

 

We have already touched on SQL injection issues in this paper and we provide a little 
more detail on the topic in this section.  SQL injection attacks can takes place when input 
to the application is used to construct dynamic SQL statements that access the database.  
SQL injection attacks can also occur if code uses stored procedures that are passed strings 
containing unfiltered input from the user.  SQL injections can have the effect of allowing 
attackers to execute commands in the database and can become even a bigger issue if a 
process performing database access has excessive privileges.  SQL injections can be 
mitigated by constraining input and using type safe SQL parameters. 
 
Input should be constrained for type, length, format (via regular expressions) and range.  
If the input comes from a trusted source that has performed input validation, it may not 
be necessary to validate the input again (although defense in depth principle would 
recommend that you do so anyway).  On the other hand, if the input is from an untrusted 
source, proper validation on the input should be performed prior to using that input to in 
SQL statement construction.   
 
The Parameters collection in SQL can be used for input validation where input is treated 
as a literal value and SQL does not treat it as executable code.  Parameters collection in 
SQL can be used to perform type checking and length validation which also helps enforce 
type and length checks.  Values outside the valid ranges will trigger an exception.  Stored 
procedure should be used where possible and they should be called with Parameters 
collection.  The code below demonstrates how to use the Parameters collection with 
stored procedures.  By themselves, stored procedures may be susceptible to SQL 
injections if they are passed unfiltered input, but coupled with usage of Parameters 
collection, the problem goes away. 
 
SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", conn); 
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure; 
SqlParameter parm = myCommand.SelectCommand.Parameters.Add( 
"@au_id", SqlDbType.VarChar, 11); 
parm.Value = Login.Text; 

 
In the case dynamic SQL, where stored procedures cannot be used, Parameters collection 
should still be used.  An example of that is shown below. 
 
SqlDataAdapter myCommand = new SqlDataAdapter( 
"SELECT au_lname, au_fname FROM Authors WHERE au_id = @au_id", conn); 
SqlParameter parm = myCommand.SelectCommand.Parameters.Add("@au_id", 
SqlDbType.VarChar, 11); 
parm.Value = Login.Text; 
 

It is important to note that Parameters collection can also be used when concatenating 
several SQL statements to send a batch of statements to the server at one time.  In this 
case, the names of the parameters should not be repeated. 
 



 118 

Filter routines can be added to protect against SQL injection by replace all “unsafe” 
characters in the input that have a special meaning to SQL (e.g. a single apostrophe 
character).  A way to do this is shown below. 
 
private string SafeSqlLiteral(string inputSQL) 
{ 
return inputSQL.Replace("'", "''"); 
} 

 
However, a skillful attacker could use ASCII hexadecimal characters to bypass these 
checks, so the use of these filtering routines alone is not sufficient.   
 

4.3.3.4     ASP.NET Authentication 
 
One type of authentication is Form authentication, but it can often be susceptible to 
compromise through session hijacking and cookie replay attacks.  It is also necessary to 
protect against SQL injection attacks when constructing dynamic database queries using 
the credentials supplied by the user.  We will discuss SQL injection in more detail later 
on in this paper.  It is also critical to enforce strong passwords and follow the principles 
of secure storage in order to ensure that authentication service is not compromised.  The 
code below demonstrates how to configure Forms authentication properly in the 
Web.config. 
 
<forms loginUrl="Restricted\login.aspx" Login page in an SSL protected folder 
protection="All" Privacy and integrity 
requireSSL="true" Prevents cookie being sent over http 
timeout="10" Limited session lifetime 
name="AppNameCookie" Unique per-application name 
path="/FormsAuth" and path 
slidingExpiration="true" > Sliding session lifetime 
</forms> 

 
In order to achieve secure Forms authentication with ASP.NET, Microsoft recommends 
the following solutions:  partitioning the Web site, security restricted pages with SSL, 
using URL authorization, securing authentication cookies, using absolute URLs for 
navigation and using secure credential management. 
 
Web site partitioning is a simple principle that ties in with the principle of 
compartmentalization.  Basically it means that secure pages that require authenticated 
access should be placed in a different subdirectory from pages that may be accessed 
anonymously.   
 
SSL should be used to protect the logon credentials sent from the login form to the server 
and to send the authentication cookie on subsequent requests to the server.  This can be 
done by configuring the secure folders in the Internet Information Server to require SSL 
by setting AccessSSL=true attribute for the folder in the IIS metabase.  HTTPS must be 
used the request URL to request pages in the secured folders.  Additionally, server 
certificate must be installed on the Web server in order to use SSL.   



 119 

 
URL authorization should also be used in order to ensure secure Forms authentication.  
To allow anonymous access to public pages, the following code can be used (in 
Web.config file). 
 
<system.web> 
<!-- The virtual directory root folder contains general pages. 
Unauthenticated users can view them and they do not need 
to be secured with SSL. --> 
<authorization> 
<allow users="*" /> 
</authorization> 
</system.web> 
 

 To deny access to unauthenticated users and mandate a redirect to the login page , the 
following code can be added to Web.config file. 
 
<!-- The restricted folder is for authenticated and SSL access only. --> 
<location path="Secure" > 
<system.web> 
<authorization> 
<deny users="?" /> 
</authorization> 
</system.web> 
</location> 

 
It is very critical to be able to protect the authentication cookie because this is the token 
granted to the user after successful authentication and must be protected from being used 
in session hijacking or cookie replay attacks.  Authentication cookies should only be 
passed over SSL connections using the HTTPS protocol.  The cookie should also be 
encrypted before sending it to the client and the period for which the cookie is valid 
should be limited.  Microsoft provides the following recommendations for protecting 
authentication cookies:  restrict the authentication cookie to HTTPS connections, encrypt 
the cookie, limit cookie lifetime, use a fixed expiration period, do not persist 
authentication cookies, keep authentication and personalization cookies separate, and use 
distinct cookie names and paths.   
 
The secure property of the cookie should be set to ensure that the cookie is sent by the 
browser only to a secure server page requested via HTTPS URL.  This can be 
accomplished by setting requireSSL=”true” on the <forms> element as shown below. 
 
<forms loginURL=”Secure\Login.aspx” requireSSL=”true” . . . /> 

 
Alternatively, the secure property can also be set manually in the 
Application_EndRequest event handler in Global.asax file which would enforce this 
property across the entire web application. 
 
protected void Application_EndRequest(Object sender, EventArgs e) 
{ 
string authCookie = FormsAuthentication.FormsCookieName; 



 120 

foreach (string sCookie in Response.Cookies) 
{ 
if (sCookie.Equals(authCookie)) 
{ 
// Set the cookie to be secure. Browsers will send the cookie 
// only to pages requested with https 
Response.Cookies[sCookie].Secure = true; 
} 
} 
} 
 

Even though SSL is used, for additional protection it is a good idea to encrypt the cookie. 
In order to private privacy and integrity for the cookie, the protection attribute on the 
<forms> element should be set to “All”, as shown below. 
<forms protection=”All” … /> 
 

In the event that cookie becomes stolen, it is a good idea to have a limit on the cookie 
lifetime to minimize the window of vulnerability.  This goes back to the principle of least 
privilege, where minimum privilege should be granted for the minimum period of time. 
For instance, the code below shows how to set the cookie timeout for 10 minutes. 
 
<forms timeout=”10” … /> 
 

As an alternative, it is also possible to use fixed expiration periods by setting 
slidingExpiration=”false” attribute on the <forms> element page to fix the cookie 
expiration instead of having to reset the timeout period after each Web request.  
 
Cookies should not be persisted since they are stored in the user’s profile and can get 
stolen if an attacker finds a way to compromise the user’s machine.  A non-persistent 
cookie can be specified when creating the FormsAuthenticationTicket as shown below. 
 
FormsAuthenticationTicket ticket = 
new FormsAuthenticationTicket( 
1, // version 
Context.User.Identity.Name, // user name 
DateTime.Now, // issue time 
DateTime.Now.AddMinutes(15), // expires every 15 mins 

false, // do not persist the cookie 

roleStr ); // user roles 

 
Authentication and personalization cookies should be kept separately because they 
require different levels of protection.  A stolen personalization cookie will reveal to the 
attacker user preferences and non sensitive information, whereas stolen authentication 
cookie will allow an attacker to impersonate a legitimate user and access the application. 
 
Distinct names and paths for authentication cookies should be used and specified on the 
<forms> element.  This helps address issues associated with hosting multiple applications 
on the same server where a user is authenticated in one application and could make 
request to another application and access the requested page directly, without going 
through authentication on the logon page.   



 121 

 
Absolute URLs should be used for navigation because relative paths are open to an issue 
where navigations between public and restricted areas of the application occur since 
redirects use the protocol (whether HTTPS or HTTP) of the current page, and not the 
target page. This problem is eliminated when using absolute paths.    Code below shows 
how to redirect to the secure login page using absolute paths. 
 
private void btnLogon_Click( object sender, System.EventArgs e ) 
{ 
// Form an absolute path using the server name and v-dir name 
string serverName = 
HttpUtility.UrlEncode(Request.ServerVariables["SERVER_NAME"]); 
string vdirName = Request.ApplicationPath; 
Response.Redirect("https://" + serverName + vdirName + 
"/Restricted/Login.aspx"); 
} 
 

Credential management should always be applied securely which generally means using 
one-way hashes for passwords, using strong passwords and preventing SQL injection.  
Secure credential management helps reduce the risk of brute force password attacks, 
dictionary attacks, and SQL injection attacks.  
 
Instead of storing the actual passwords in the database, or even storing encrypted 
passwords, a better way is to store one-way password hashes with an added random salt 
value.  Adding the salt value helps reduce the risk of brute force attacks (e.g. dictionary 
attacks).  Using one-way hashes has several important properties.  For once, it means that 
even if an attacker where to get access to the database storing password one-way hashes, 
he or she would not be able to login to the system using the user password since it would 
be extremely difficult to calculate the original password that hashed to the stored value 
(all good one-way hash functions have this property).  When validation needs to happen, 
user’s password is obtained, combined with the salt (that needs to be stored), the hash 
value gets recalculated and gets compared with the value stored in the database.   
 
It is also imperative to use strong passwords that are resistant to dictionary attacks.  
Passwords should be of appropriate length and have a variety of numbers and characters 
in them.  Ideally they should be generated with a good cryptographic pseudo random 
number generator.  A weak password could compromise the effectiveness of the whole 
authentication system and thus the application.  Regular expressions can be used to 
ensure that passwords comply with the strong password requirements.  An example of 
how this can be done is provided below. 
 
private bool IsStrongPassword( string password ) 
{ 
return Regex.IsMatch(password, @"^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,10}$"); 
} 
 

Since user supplied credentials in Forms authentication is used in queries to the database 
there is a possibility of a SQL injection attack.  In order to reduce that risk, all user input 
can be thoroughly validated with regular expression to ensure that they do not include 



 122 

any SQL characters, parameterized stored procedures can be used to access the database, 
and login to the database should run in a restricted and least privileged process to limit 
the amount of damage that can be done in the event of a successful SQL injection attack.   
 

4.3.3.5     ASP.NET Authorization 

 

We already discussed extensively authorization with code access security.  Now we make 
a few points about authorization in the context of ASP.NET enterprise web applications.  
Authorization can be used as an access control mechanism to directories, individual Web 
pages, page classes, and methods.  Authorization logic can be included in code of the 
invoked method.  Microsoft provides several recommendation for authorization in 
ASP.NET:  use URL authorization for page and directory access control, use file 
authorization with Windows authentication, use principal demands on classes and 
methods, and use explicit role checks for fine-grained authorization.   
 
For page and directory level access control, URL authorization can be used.  URL 
authorization can be configured by the <authorization> element in the Web.config file.  
Access to specific files or directories can be restricted via <location> element nested 
inside the <authorization> element. 
 
File authorization should be used with Windows authentication since ASP.NET is 
configured for Windows authentication via FileAuthorizationModule that checks all 
requests for ASP.NET file types including page files (.aspx), user controls (.ascx), etc.  
FileAuthorizationModule can be configured via setting appropriate Windows ACLs on 
the files associated with ASP.NET. 
 
Principal demands should be used on classes and methods that allow making an 
authorization decision based on the identity and role membership of the caller (part of 
role-based security in the .NET Framework).  The identity of the caller and the caller’s 
role membership are maintained by the principal object that is associated with the current 
Web request.  Access controls on classes and methods can be provided as shown below. 
 
// Declarative syntax 
[PrincipalPermission(SecurityAction.Demand, 
Role=@"DomainName\WindowsGroup")] 
public void SomeRestrictedMethod() 
{ 
} 

 
Explicit role checks should be used for fine grained authorization.  If additional checks 
inside a method are required to make authorization decisions, either imperative principal 
permission demands or explicit role checks using IPrincipal.IsInRole should be used.  
This makes use of runtime variables to allow a more granular authorization decision.  An 
example below shows how an imperative principal permission demand can be used to 
allow a fine grained authorization. 
 
// Imperative syntax 
public void SomeRestrictedMethod() 



 123 

{ 
// Only callers that are members of the specified Windows group 
// are allowed access 
PrincipalPermission permCheck = new PrincipalPermission( 
null, @"DomainName\WindowsGroup"); 
permCheck.Demand(); 
// Some restricted operations (omitted) 
} 

 
We now move on to categories of the various threats and mitigations that occur at each of 
the tiers of an enterprise web based application.  Armed with understanding of J2EE and 
.NET security we can draw from both for examples on how the threats are addressed.   
 

5.0 Threats and Mitigations 
 

5.1 Discussion of Threat Taxonomies 

 

There are a lot of threats facing enterprise web-based applications today that have a 
potential to disrupt the core security services, namely confidentiality, authentication, 
authorization, integrity, availability, accountability and non-repudiation.  In order to 
establish compensating controls to counteract these threats, a structured approach is 
needed for thinking about these threats.  In chapter two we have discussed the threat 
modeling process that attempts to enumerate the various threats facing an application and 
to consider how these threats can be mitigated.  This chapter is designed to aid a threat 
modeler of an enterprise web-based application to systematically evaluate these threats.  
This chapter also helps architects, designers and developers of enterprise web-based 
applications to understand what compensating controls are appropriate at each stage 
across each of the tiers of the application. 
 
An enterprise web-based application is a multi-tiered application.  Since trust boundaries 
are often drawn between the various tiers, we find it useful to consider the various threats 
across each of the tiers.  This has the effect of enabling a more systematic and structured 
approach to threat modeling and also makes it clearer where the required compensating 
controls must be put in place in order to counteract the threats.   In this chapter we look at 
the threats across the web, application and persistence tiers.  The focus is on the OWASP 
top ten web application vulnerabilities, but we also consider additional categories of 
vulnerabilities [24].  For specific examples on possible mitigations we draw from the 
discussions in chapter three and four, J2EE and .NET security, respectively.   
 
When we talk about each threat, at each of the tiers, we structure our discussion as 
follows.   

• Overview 

• Consequences 

• Discussion 

• Severity 

• Likelihood of Exploit 

• Mitigation 



 124 

 
Threats on an enterprise web-based applications attempt to exploit a vulnerability or 
multiple vulnerabilities that may exist in the architecture, design or implementation of the 
application.  At times, a problem may exist at many levels.  In this chapter we look at the 
categories of application vulnerabilities that when exploited, lead to manifestation of the 
threats that in turn lead to a compromise of one or more of the core security services [11].   
 
It should be noted that it may not always be a clear cut decision as to where a particular 
threat should be mitigated.  Consequently, as we separate the threats across the various 
tiers, a reader should keep in mind that it might be possible to provide compensating 
controls for these threats at a different tier.  Where the compensating controls are also 
depends on the particular design paradigm that is chosen for the application.  We 
generally consider the presentation logic of the application to be at the web tier, the core 
functionality of the application to be at the business logic tier, and the databases for the 
application to be at the persistence tier.  Outlining a complete list of all known 
application threats is beyond the scope of this chapter.  We focus on the major categories 
of threats for enterprise web-based applications that also map to the OWASP top ten. 
 

5.2 Web Tier Threats and Mitigations 

 

The following threats are discussed for the Web tier of an enterprise web-based 
application: 
 

• Poor Session Management 

• Parameter Manipulation 

• Path Traversal and Path Disclosure 

• Canonicalization 

• URL Encoding 
 

5.2.1 Poor Session Management 

 

Overview: 

 

If proper steps are not taken to protect session tokens and account credentials, such as 
passwords, keys and session cookies, attackers can use those to defeat authentication 
checks and assume identities of other users.  Authentication mechanisms can be 
circumvented if authentication credentials and tokens are not properly handled by 
credential management functions such as those to change password, retrieve forgotten 
password, account update, etc.  Session tokens need to be properly protected against 
hijacking so that attackers cannot assume identities of authenticated users simply by 
hijacking the session after the authentication has taken place.  Session tokens created 
should be strong and should be properly protected throughout the lifecycle of the session.  
Secure Sockets Layer (SSL) technology can go a long way towards creation of a secure 
session; however SSL is not properly implemented in many instances.  Additionally, 
attacks like cross site scripting can allow an attacker obtain the session tokens even if 
SSL is used [10, 18, 24].      



 125 

 

Consequences: 

 

Poor session management results in the authentication service being compromised which 
allows an attacker to defeat authentication checks and assume an identity of a legitimate 
user.  This invariably leads to violations of confidentiality, integrity, authorization, 
accountability and non-repudiation, essentially all the other security services. 
 

Discussion: 

 

Since HTTP is a stateless protocol, it is necessary to manage session tokens that are 
granted to a user who successfully completed proper authentication.  These tokens may 
come in the form of cookies, static URL’s, dynamic URLs.  However, the most common 
session token is a cookie.  There are four types of cookies, Persistent/Secure, 
Persistent/Non-Secure, Non-Persistent/Secure and Non-Persistent/Non-Secure.  Persistent 
cookies are stored on the hardware of the client and are valid until the expiration date.  
Non-Persistent cookies are stored in RAM on the client and are valid until the browser is 
closed or until it is explicitly expired by a log-off mechanism.  Secure cookies can only 
be transmitted over the HTTPS protocol used for SSL, while non-secure cookies can be 
transmitted over HTTPS or HTTP.  Secure cookies (encrypted) are only secure during 
transmission, but not at the end user machine.  Whenever SSL is used, secure cookies are 
required.  Breakdown in authentication can occur if session cookies are stolen, if weak 
passwords are brute forced or if SSL is not properly implemented because some critical 
authentication steps are skipped.  Also, if the client machine becomes compromised by an 
attacker, then the attacker would gain access to the application [10, 18, 24].   
 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 

SSL should be used and be properly implemented.  All session cookies should be 
encrypted.  Passwords should be cryptographically strong.  Session tokens should 
periodically expire.   Re-authentication should be required for all significant system 
actions, at which point authentication tokens can be reissued upon successful 
authentication. 

 

5.2.2 Parameter Manipulation 

 

Overview: 

 



 126 

Parameter manipulation attacks involve modification of data sent by the client to the 
server in a way that compromises one or more security services.  Common problems 
involve attackers being able to modify session tokens, values stored in cookies, form 
fields, URL Query Strings and HTTP headers.  Cryptography does not solve the 
parameter manipulation problem because it protects data while in transit, whereas 
parameter manipulation changes the data at the end points.   
 

Consequences: 

 

Parameter manipulation can have serious effects on the web application in terms of 
compromising authorization, authentication, confidentiality and integrity.   
 

Discussion: 

 

It is often easy to change session cookies.  HTTP headers can be manipulated by 
changing the Referer field which may be used by the server to make authentication and 
authorization based decisions.  HTML forms using hidden fields to hide authentication or 
authorization tokens will make it very easy for an attacker to compromise the web 
application.  URL manipulation involves changing the URL address in an attempt to gain 
access to areas of the application for which the user is not authorized.     

 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 

Never use hidden form fields for authentication or authorization, applies to both POST 
and GETS submission.  Cookies should be encrypted and hashes maintained in order to 
prevent tampering.    Never use URLs as a basis for granting access.   

 

 

5.2.3 Path Traversal and Path Disclosure 

 

Overview: 

 

File system of the web server is often used in the presentation tier in order to provide 
temporary or possibly even permanent storage to information like image files, HTML 
files, CGI scripts, etc.  The usual virtual root directory on the web server is WWW-
ROOT and it can be accessed by the clients.  In case where an application does not check 
and deal with meta characters that are used to specify paths, it is possible that an attacker 
can construct a malicious request that would disclose information about the physical file 



 127 

locations (e.g. /etc/password).  This attack is often used in conjunction with other attacks. 
such as direct SQL or command injections by disclosing information about physical 
location [11]. 
 

Consequences: 

 

This is primarily an information disclosure problem that provides very important 
information that can greatly facilitate other types of attacks that may compromise various 
core security services.  For instance, if a command injection attack is facilitated by the 
path disclosure attack, failures in authorization and integrity are likely.   
 

Discussion: 

 

This is primarily an input validation issue and can be resolved by using white lists, 
regular expression filters and safe replacement functions. We rate this issue with medium 
severity because it does not lead to a compromise of a core security service by itself.  The 
information disclosed through this attack may facilitate other attack, like command or 
SQL injection, but another relevant vulnerability must be present in order for that to 
occur. 

 

Severity: 

 

Medium 

 

Likelihood of Exploit: 

 

Medium 
 

Mitigation: 

 

Path normalization functions provided by the implementation language can be used.  
Always compare input against a white list.  Remove strings of the form “../” as well as 
unicode representations of these strings.  This is fundamentally an input validation issue.  
When we discussed .NET, we offered an extensive guidance on the various ways in 
which input validation can be performed. 

 

5.2.4 Canonicalization 

 

Overview: 

 

Canonicalization problems occur because of the way that data is converted between 
forms.  The term canonical means the simplest or standard form of something, and thus 
canonicalization is the process of converting data in one representation to its simplest 
form.  In Web applications, many canonicalization problems are with URL encoding to 
IP address translation.  A potentially exploitable condition may arise when security 
decisions are based on canonical forms of data.     



 128 

 

Consequences: 

 

Canonicalization issues may result in authentication, authorization and integrity services 
being compromised.  It is a very serious problem that must be taken into account during 
the implementation. 
 

Discussion: 

 

Attackers will often try to defeat the input validation filters by encoding their input 
containing illegal characters with Unicode.  Since there are a variety of encoding 
mechanisms, it may be difficult for application developers to check for them all.  That is 
why it is important to perform input validation against a white list of allowable characters 
and not a black list [18]. 
 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 

A canonical form should be selected to which all user input should be canonicalized prior 
to making any authorization decisions based on the input.  Security checks should be 
performed after UTF-8 deciding is completed and the program should check that the 
UTF-8 encoding is a valid canonical encoding for the represented symbol.  

 

5.2.5 URL Encoding 

 

Overview: 

 

Similar to canonicalization, URL encoding attack involves placing malicious input that 
has been encoded in the URL that is then parsed by the server.  Generally, the range of 
allowed characters for URLs and URIs is restricted to a subset of the US-ASCII character 
set.  However, the data used by a web application is usually not restricted and can include 
any existing character set or binary data.  Earlier versions of HTML 4.0 specification 
expanded to permit any character in the Unicode character set.  URL-encoding a 
character can be performed by taking the character’s 8-bit hexadecimal code and putting 
a “%” in front of it.  An attacker may choose to encode malicious characters that would 
have been otherwise caught by an input validation filter.  Since URL-encoding allows 
practically any data to be passed to the server via URLs, the server side code of a web 
application needs to make sure that no malicious input is allowed. 
 



 129 

Consequences: 

 

Accepting malicious input encoded in URLs can lead to serious problems including 
violations in authorization and integrity.   
 

Discussion: 

 

URL encoding may be used to facilitate both cross site scripting and SQL injection 
attacks.  An example of this is shown below. 
 
Cross Site Scripting Example: 
 
Malicious script (in PHP) that an attacker intends to send to the server: 
 
echo $HTTP_GET_VARS["mydata"]; 
 

This is how an attacker can encode the above script in the URL: 
 
http://www.myserver.c0m/script.php?mydata=%3cscript%20src=%22http%3a%2f%2fwww.yourserver. 
 

Here is the HTML that will be generated by the server: 
 

<script src="http://www.yourserver.com/badscript.js"></script> 

 

SQL Injection Example: 
 
Here is an original database SQL query: 
 
sql = "SELECT lname, fname, phone FROM usertable WHERE lname=’" & Request. 
QueryString("lname") & "’;" 

 
Here is the HTTP request that has been URL encoded by an attacker: 
 
http://www.myserver.c0m/search.asp?lname=smith%27%3bupdate%20usertable%20set%20passwd%-%00 
 

Here is the SQL query that actually gets executed after the parameters of the query are 
taken from the URL: 
 
SELECT lname, fname, phone FROM usertable WHERE lname=’smith’;update usertable 

set 

 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 



 130 

Mitigation: 

 

Proper input validation is necessary and white lists should be used.  Since this is partially 
a canonicalization problem, all user input should be canonicalized into the chosen form 
before performing any authorization decisions all using the input in any way.   

 

5.3 Business Logic Tier Threats and Mitigations 

 

The following threats are discussed for the Business Logic tier of an enterprise web-
based application [10,18, 24]: 
 

• Broken Access Control 

• Input Validation Problems 
- Buffer Overflow 
- Cross Site Scripting (XSS) 
- SQL Injection 
- Command Injection 

• Insecure Exception Management 

• Insecure Use of Cryptography 

• Insecure Default Configuration 

• Insecure Auditing/Logging 
 

5.3.1 Broken Access Control 

 

Overview: 

 

Broken access control (authorization) problems result when restrictions on what 
authenticated users are allowed to do are not properly enforced.  Application 
vulnerabilities that fall in this category could allow attackers to access accounts of other 
users, view confidential information or use unauthorized functionality.  There is a variety 
of attacks that fall into this category that could allow attackers to escalate privileges.  For 
instance, reliance on hidden fields to establish identity for the purpose of access to web 
based administrative interfaces will allow an attacker unauthorized access because hidden 
fields can be easily manipulated.  Exploitation of some other vulnerability in the 
application can cause violation in access control.  For instance, crafting an attack that 
exploits a buffer overflow to modify some flag variable used for an authorization check 
could result in broken access control.  Some key access controls issues include insecure 
ids, forced browsing past access control checks (URL tampering), path traversal, file 
permissions and client side caching.   

 

Consequences: 

 

Application vulnerabilities that fall into this category could compromise authentication, 
authorization and confidentiality core security services. 
 

Discussion: 



 131 

 

Most problems that result in the failure of an authentication service will also lead to 
broken access control.  For instance, reliance on hidden fields to establish identity may 
lead to unauthorized access because they are easily manipulated. Vulnerabilities that 
allow escalation of privilege also belong to this category.  These may be buffer overflow, 
command injection, and SQL injection vulnerabilities since all of them give an attacker 
elevated level of access to the application and the host machine.  We have seen in J2EE 
and .NET that there are fundamentally two types of access control:  role-based access 
control (RBAC) and code-based access control.  With role-based access control, an 
authorization decision is based on the identity of the caller, whereas with code-based 
access control it is based on the calling code.  There are also two fundamental ways to 
enforce access control:  declarative and programmatic.  Declarative access control is 
managed by the container (J2EE) or the CLR (.NET), whereas programmatic access 
control is implemented as a series of checks in the application code.  Programmers need 
to be careful when writing code to ascertain that they are not introducing vulnerabilities 
that could lead to elevation of privilege (e.g.  SQL injection, buffer overflow, command 
injection, format string, etc.).  Additionally, the least privilege and compartmentalization 
principles should always be followed.  Privileges should be released when appropriate 
and no covert channels should be allowed. 
 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 

It is a good idea to try and reduce the amount of custom authorization logic that has to be 
written and instead rely on the authorization services provided by environment.  Since 
most code written for enterprise web-based applications is managed code, it is a good 
idea to make use of the declarative authorization features that can be specified in a 
descriptor file and enforced by the managed environment itself.  We have already 
discussed how both .NET and J2EE provide declarative authorization capabilities that can 
be enforced by the container.  In general, if programmers have to write less custom code, 
there is less of an opportunity for them to introduce security bugs. That is true for 
authorization code in charge of access control and also true of other code. 

 

5.3.2 Input Validation Problems 

 

Overview: 

 

Unvalidated input is a fairly broad vulnerability category that has very serious 
consequences.  All web based applications need to handle input coming from a variety of 



 132 

untrusted sources (most notably the user of the application).  If the input is not validated, 
attackers can use that opportunity to attack the backend components of the applications.    
In general, validation needs to be performed each time the data crosses a trust boundary.  
Validation may be performed on the client site, but for performance purposes early.  
Client site validation should never be relied upon for security.  Validation also needs to 
happen at the web, application and database tiers.  A variety of application level attacks 
could be avoided if input validation is performed properly; those include SQL injection, 
Cross Site Scripting (XSS), buffer overflows, format string, cookie poisoning, hidden 
field manipulation, command injections, etc.  Unvalidated input could lead to 
compromise of authorization, integrity, authentication and availability security services.  
That is discussed in more detail later in the paper.  All user input in HTTP requests 
should always be aggressively validated against white lists (list of allowable input) as 
opposed to black lists (list of input that is not allowed) [10,18,24]. 

 

Consequences: 

 

Poor input validation can result in a compromise most security services, namely 
authorization, integrity and availability. 
 

Discussion: 

 

Buffer overflows are a classic example of poor input validation.  The reason for this 
vulnerability is that some programming languages allow the input placed in a buffer to 
overflow past the allocated range for the buffer into adjacent areas of memory.  For 
example, if a buffer overflow occurs on a stack and the overflow can reach a function 
return pointer, an attacker who carefully crafts a buffer overflow may overwrite the return 
pointer with his own value that will make the program to jump to the area where an 
attacker has injected some attack code and start executing it.  There are two main kinds of 
buffer overflows, stack based and heap based.  Both kinds are extremely dangerous 
because they cause availability problems (in the best case) and cause authorization 
failures (in the worst case) which can then lead to other problems.  Languages like C are 
particularly prone to buffer overflows because it contains many inherently insecure 
functions.  Luckily, buffer overflows are not a tremendous problem for enterprise web-
based application since both J2EE and .NET provide automatic type checking that make 
buffer overflows very unlikely.  However, application developers of enterprise web based 
applications still need to be very careful when dealing when providing integrations with 
legacy code. 
 
Cross site scripting attacks exploits vulnerabilities that fall in the category of poor input 
validation.  Essentially an attacker submits executable scripts as part of the input to the 
web application and those scripts are then executed on the browsers of other clients.  
Those attacks often lead to information disclosure of the end user’s session tokens, attack 
the end user’s machine or spoof content to fool the end user.  Disclosure of session 
tokens can lead to session hijacking and allow an attacker to assume a valid user’s 
identity (compromise authentication).  Spoofing content can also lead to information 
disclosure if for instance a valid user input his/her login and password information into a 



 133 

form sent to an attacker.  XSS attacks can occur at the web tier or at the application tier 
and aggressive white list input validation should be present in the application to thwart 
these attacks. There are two types of XSS attacks:  stored and reflected.  In stored XSS 
attacks, the malicious script injected by an attacker is permanently stored by the web 
application for later retrieval by the end user who requests the affected data.  Since the 
malicious script at that point arrived from a trusted server, the client executes the script.  
In reflected attacks, the malicious script is transferred to the server and then is echoed 
back to the user either in an error message, search result, or some other response to the 
end user which includes some of the data fields into which a malicious script has been 
inserted as part of the request.   
 
All input used for data access should be thoroughly validated, primarily in order to avoid 
SQL injection attacks which can happen if dynamic queries are generated based on user 
input without first thoroughly validating the user input.  An attacker can then possibly 
inject malicious SQL commands that will be executed by the database.  To validate input 
used for dynamic query construction regular expressions should be used to restrict input.  
For defense in depth the input should also be sanitized.  Additionally, whenever possible, 
it is a good idea to use stored procedure for data access in order to make sure that type 
and length checks are performed on the data prior to it being used in SQL queries. 
 
Enterprise web applications pass parameters when they access external systems, 
applications, or use local OS resources.  Whenever possible, those parameters should not 
come directly from the user and be defined as constants.  Otherwise, they should be 
rigorously validated prior to usage.  If an attacker can embed malicious commands into 
these parameters, they may be executed by the host system when the access routines are 
invoked by the application. SQL injection is a particularly common and serious type of 
injection, where SQL statements are passed to the web application and then without 
validation are passed to the routine that accesses the database with that SQL statement.  
Command injections can be used to disclose information, corrupt data and pass malicious 
code to an external system application via the web application [10,18,24].   

 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 

The answer to all of these problems is to perform input validation properly.  This can be 
accomplished by validating against white list of allowable input, as opposed to a black 
list of invalid input.  Correct regular expressions should be used to validate input and 
character replacement functions to make the input safe should be applied for defense in 
depth.  Additionally, encoded characters should be given special attention because 



 134 

attackers will try to encode input in order to fool the validation checks.  This will also 
help prevent canonicalization problems that we have previously discussed. 

 

5.3.3 Insecure Exception Management 

 

Overview: 

 

Errors and exceptions occurring during the operation of the enterprise web application 
should be handled properly.  Error information that is echoed to the user in its raw form 
can cause information disclosure.  For instance, letting an attacker know the OS that the 
host machine is running, the version of the database and the database driver can allow the 
attacker to exploit existing vulnerabilities for those technologies.   Improperly managed 
exceptions can result in disruption of availability or cause security mechanisms to fail.   

 

Consequences: 

 

Improper error handling and exception management can lead to information disclosure 
problems that can facilitate other types of attacks.   Availability service might also be 
compromised. 
 

Discussion: 

 

Poor exception management can lead to information disclosure which may help 
malicious hackers to compromise the application.  Additionally, poor exception 
management can also result in availability issues by allowing an attacker to launch a 
denial or service attack.  In short, all exceptions should be caught and handled properly.  
Microsoft provides several recommendations for proper exception management:  use 
structured exception handling, do not log sensitive data, do not reveal system or sensitive 
application information, consider exception filter issues and consider an exception 
management framework.   
 
Structured exception management in Visual C# and Visual Basic .NET does not differ 
from Java.  In all of these languages, try / catch and finally constructs are used.  It is 
important to remember to be very granular by catching specific exceptions rather than 
trying to lump them all into one by catching a generic exception.  Structure exception 
handling guarantees that the system is always in a consistent state.  The code snippet 
below demonstrates a structured approach to exception handling: 
 
try 
{ 
// Code that could throw an exception 
} 
catch (SomeExceptionType ex) 
{ 
// Code to handle the exception and log details to aid 
// problem diagnosis 
} 
finally 



 135 

{ 
// This code is always run, regardless of whether or not 
// an exception occurred. Place clean up code in finally 
// blocks to ensure that resources are closed and/or released. 
} 
 

Exceptions tend to contain a lot of detailed information that could help an attacker 
compromise the system.  Consequently, care should be taken when logging exception 
data and sensitive data should not be logged. The raw output of an exception should 
never propagate directly to the client (or go outside the application trust boundary for that 
matter) as it provides too much useful information. Some of these details may include 
operating system, .NET Framework version numbers, method names, computer names, 
SQL command statements, connection strings, along with other details.  The information 
may be very useful to an attacker.  For instance, knowing what version of the operating 
system is used, an attacker may exploit a known vulnerability for that operating system.   
Instead, generic messages about an exception should be returned to the client where 
appropriate.  A lot of the time exception handling might make the exception transparent 
to the client, in which case nothing may be returned.  In general, an exception 
management framework can ensure that all exceptions are properly detected, logged and 
processed in a way that avoids both information disclosure and availability issues.   

 

Severity: 

 

Medium 
 

Likelihood of Exploit: 

 

Medium 
 

Mitigation: 

 

Programmers should make sure that all potential problems are caught and properly 
handled.  As we have discussed, there are very good facilities available in both J2EE and 
.NET platforms for exception management. 

 

5.3.4 Insecure Use of Cryptography 

 

Overview: 

 

Cryptography is vital to security for obvious reasons.  Encryption can be used to protect 
data confidentiality, hashing can be used to protect integrity by making it possible to 
detect tampering, and digital signatures can be used for authentication.  Cryptography is 
typically used to protect data in transit or in storage.  The two biggest mistakes that 
developers can make related to cryptography are:  using homegrown cryptographic 
solutions and not properly securing encryption keys.  Developers need to pay special 
attention to the following issues in order for cryptography to be effective:  using 



 136 

cryptographic services provided by the platform, secure key generation, secure key 
storage, secure key exchange, and secure key maintenance.   

 

Consequences: 

 

Since cryptography often supports confidentiality, integrity and authentication, insecure 
use of cryptography could compromise these services. 

 

Discussion: 

 

Attackers will try to compromise the weakest link of the software system and will use all 
possible techniques, including social engineering attacks.  For instance, the weakest link 
of the system could be a member of technical support falling prey to social engineering.  
An attacker will not waste time trying to brute force a strong password to get into a 
system but look for other ways to get in instead. In general, cryptography (if used 
properly) is rarely the weakest link in the software system, so the attacker is much more 
likely to attack the endpoints.  A good example of this is the notorious design flaw from a 
security standpoint in the gateway server used by wireless application protocol (WAP) to 
convert data encrypted with WTLS to SSL.  An attacker does not have to try and attack 
the data while it is encrypted, but just wait for the gateway server to decrypt the data. 
Consequently, any exploitable flaws in the gateway server software (e.g. buffer 
overflows) could be used as a way to compromise data confidentiality.  Consequently, 
encryption should be used as part of end-to-end solution and both ends should be 
properly secured. 
 
SSL is often an example of insecure use of cryptography, where they are used as a drop 
in for standard sockets where some critical authentication steps are skipped.  A server 
might want to use SSL, but a client may not support it.  In this case a client downloads 
proper socket implementation from the server at runtime.  This can be a potentially 
serious security problem because the server has not yet authenticated itself to the client 
when the download occurs and thus a client could really be downloading malicious code 
from a malicious host.  In this situation trust is extended where it should not be.  The 
failure occurs when the client fails to establish a secure connection using default libraries, 
but instead establishes a connection using whatever software it downloads from an 
unauthenticated and thus untrusted remote host (server).  If secure failure principle was 
followed, the client would first authenticate the server using the default libraries prior 
agreeing to the download of additional SSL libraries at runtime [10, 18, 24].   
 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

High 
 



 137 

Mitigation: 

 

The various available cryptographic APIs to support the core security services were 
already discussed for both J2EE and .NET.  Developers need to be aware of the available 
APIs, when to use them and how to use them properly.  Most importantly, it is important 
to know the limitations of each cryptographic scheme -- never use custom or insecure 
cryptographic algorithms and use strong keys.   

 

5.3.5 Insecure Default Configuration 

 

Overview: 

 

Most default configurations on many commercial hardware and software products do not 
provide a sufficient level of security and must be modified.  True to the least privilege 
principle, configuration should always allow for the minimum privilege necessary.  
Secure configuration is required on the web, application and database server.  In order to 
securely deploy an enterprise web based application, all configurations must be properly 
performed.  Some configuration problems can be due to unpatched security flaws present 
in the server software, improper file and directory permissions, error messages providing 
too much information, improper configuration of SSL certificates and encryption settings, 
use of default certificates, improper server configurations enabling directory listing and 
directory traversal attacks, among others.   

 

Consequences: 

 

Insecure default configuration often has an impact on authentication, authorization and 
confidentiality.  However, other security services can also be compromised.   
 

Discussion: 

 

Since default configurations are often not changed, insecure default configurations will 
increase the likelihood of vulnerabilities.  Application developers need to be aware of 
what the defaults are and configure them properly to match the desired level of security. 
 

Severity: 

 

Medium 
 

Likelihood of Exploit: 

 

High 
 

Mitigation: 

 



 138 

Software and platform vendors should do their part by providing more secure default 
configurations and making it simple to configure different settings.  Application 
developers need to be aware of the default configuration and change it appropriately. 

 

5.3.6 Insecure Auditing/Logging 

 

Overview: 

 

Most enterprise web based application will use event logging in some shape or form and 
it is very important to ascertain that this is done securely.  The fundamental threats to 
event logs involve tampering with the log, information disclosure of sensitive information 
stored in the log and log deletions in order to erase tracks.  While some event log 
protection is provided by the security features in the Windows operating system, 
developers must ensure that event logging code cannot be used by an attacker to gain 
unauthorized access to the event log.  
 

Consequences: 

 

Compromised logs will compromise non-repudiation and accountability services.   
 

Discussion: 

 

The first axiom of logging should be to not log sensitive data.  We have already 
mentioned this in the secure exception management section.  For example, with .NET, if 
EventLog.WriteEvent is used, existing records cannot be read or deleted.  This leads us 
back to the principle of least privilege.  Do not give more privileges to the code updating 
the event logs than is absolutely necessary and grant those privileges for the shortest 
amount of time necessary.  This can be accomplished by specifying EventLogPermission 
by way of code access security.  A threat that should be addressed is preventing an 
attacker from invoking the code that does event logging so many times that would cause 
overwrite in previous log entries.  An attacker can try and to this in an attempt to cover 
his tracks for example.  A way to deal with that may be to use an alert mechanism that 
would signal the problem as soon as the event log approached a limit.   
 
Keeping a record of security-related events that contain information on who has been 
granted access to what resources is an important tool for promoting accountability.  These 
records can also be vital for recovery once a system has been breached and can also be 
used for intrusion detection purposes.  They can also help track hackers down.  Any good 
hacker will try to delete or modify all records of his or her activities and thus it is 
extremely important to keep those records secure and tamperproof.  The deployer of the 
application should associate each of the container constraints for component interaction 
with a logging mechanism.  The container can then audit one of the following events:  all 
evaluations where the constraint was satisfied, all evaluations where the constraint was 
not satisfied, all evaluations regardless of the outcome and no evaluations.  All changes to 
audit logs should also be audited.  With J2EE responsibility for auditing and logging is 
shifted from developers to deployers of the application [10, 18, 24].   



 139 

Severity: 

 

Medium 
 

Likelihood of Exploit: 

 

Medium 
 

Mitigation: 

 

Encryption should be used to protect system logs.  Mechanisms should be provided to 
detect when logging reaches allocated limit in order to mitigate the risk of logs being 
overwritten.  Additionally, sensitive information should not be logged.   
 
5.4 Persistence Tier Threats and Mitigations .   
 
The following threats are discussed for the Persistence tier of an enterprise web-based 
application: 
 

• Insecure Storage 
 

5.4.1 Insecure Storage 

 

Overview: 

 

Data spends far more time in storage than it does in transit and must therefore be stored 
in a secure manner.  Encryption of data is not a bad idea to promote confidentiality and 
protect application data, passwords, keys, etc.  Even when encryption is used, it is not 
often used properly.  Some of the common types of mistakes make that fall into this 
category include failure to encrypt critical data, insecure storage of keys, certificates and 
passwords, improper storage of secrets in memory, poor sources of randomness, poor 
choice of cryptographic algorithms, and homegrown encryption algorithms.  While 
encryption can help protect confidentiality of stored data, hashing can be used to 
ascertain integrity.  A central point here is that as little as possible of sensitive 
information should be stored by the enterprise web applications.  For instance, it might 
make sense to ask the users to reenter their credit card number each time instead of 
persisting it.     

 

Consequences: 

 

Insecure storage may result in compromise of the confidentiality security service. 
 

Discussion: 

 

It is important to remember that data typically spends far more time in storage than it 
does in transit, and consequently protecting data during storage from the prying eyes of 



 140 

attackers is essential.  In some cases, only hashes of data should stored, like with 
passwords for instance.  Additionally, some data should not be stored at all.  An 
intelligent strategy for data storage is essential.   

 

Severity: 

 

High 
 

Likelihood of Exploit: 

 

Medium 
 

Mitigation: 

 

Data should be encrypted using strong cryptographic algorithms and strong keys.  
Passwords should be hashed.  If data does not have to be stored, it should not be stored.   

 

6.0 Analysis 

 
The primary goal of this paper has been to identify secure coding practices and constructs 
that remediate application level vulnerabilities which could, if went unmitigated, result in 
realization of a variety of threats on enterprise web-based applications.  As a way of 
conducting that discussion, we specifically talked about J2EE and .NET platforms for 
enterprise web application development.   While some issues discussed where specific to 
these frameworks, most of the application security concepts which we have covered 
actually have a broad application that would transcend beyond these particular 
technologies.    For instance, principles of compartmentalization and least privilege are 
not tied to any particular implementation.   
 
We have seen the various compensating controls in J2EE and .NET that support the core 
security services and ensure that they are not compromised by the various threats.  We 
have also discussed how developers need to use various security features that are 
provided by J2EE and .NET appropriately and looked at certain secure coding guidelines 
required in order to avoid potentially costly pitfalls.  Throughout chapters three and four 
we pointed out some of the differences and similarities between J2EE and .NET security 
models and APIs that are available to programmers.  We summarize some of this 
discussion in this section, highlight the key similarities and differences between these two 
frameworks, and illuminate on some key strengths and weaknesses of each.  The 
intention here is not to suggest to the reader that one framework may be more secure than 
the other, but rather point out the unique security features of each that are important to 
understand when building secure enterprise web-based applications. 
 

6.1 J2EE vs. .NET Security 

 

We have discussed the various security features of both J2EE and .NET security models 
and how they help protect the core security services.  Additionally, we covered some of 



 141 

the specific secure programming practices that developers of enterprise web-based 
applications should follow in order to promote security.  For the most part, the 
programming guidelines have been similar, but the details were different.  For instance, 
we discussed that good input validation against a white list of allowed input is the key to 
success.  However, the actual mechanisms by which programmers can provide input 
validation in J2EE and .NET differ slightly (although similar).  We now compare and 
contrast some of the security features of J2EE and .NET that support core security 
services.  Some of the points we discuss are:  Java Virtual Machine (JVM) vs. CLR 
(Common Language Runtime) security, J2EE class loader security vs. .NET code access 
security, J2EE vs. .NET security policy, cryptography.  We also discuss role-based 
security in both J2EE and .NET.  Special attention is also given to programmatic and 
declarative security.    
 

6.1.1 JVM vs. CLR 

 

JVM is responsible for executing an intermediate representation of the Java program 
classes (i.e. bytecode) on the machine on which it is resides.  JVM also plays an essential 
security role in Java and consequently J2EE security.  For instance, “the JVM provides a 
secure runtime environment by managing memory, providing isolation between 
executing components in different namespaces, array bounds checking, etc.”  [29]. JVM 
memory management and array bounds checking protects Java against the single gravest 
vulnerability category that plagues C and C++ applications, that is buffer overflows.  This 
greatly supports authorization, confidentiality, integrity, and other security services.  
Since JVM allocates the various memory areas dynamically, it is very difficult for an 
attacker to figure out where to insert malicious code in a way that would change the flow 
of program execution.  Beyond that, bounds checking on arrays, by preventing 
unreferenced memory accesses, leave an attacker looking for other, far more complex and 
rare, ways to inject malicious code.   Additionally, memory management (such as 
garbage collection facilities) improve functional system stability and also protect J2EE 
applications against a wide variety of problems related to poor memory management, 
including availability issues that may otherwise lead to denial of service attacks. JVM 
also provides isolation between executing component, enforcing the principle of 
compartmentalization.  
 
Additionally, JVM contains a class file verifier that examines classes for basic class file 
structure when loading.  This protection mechanism is necessary to ensure that any 
malicious bytecode inserted by an attacker is detected.  Several passes are used by JVM 
to inspect the bytecode, first for physical attributes (size, some magic number and length 
of attributes), then for attribute correctness in field and method references, and then for 
valid instruction parsing for each method.  
 
The CLR in .NET serves a very similar security purpose to JVM in J2EE.  CLR provides 
a secure execution environment through managed code and code access security.  
Analogous to JVM, the CLR is used to run the intermediate representation (e.g. 
intermediate language (IL)) of the .NET program code.    CLR provides type checking 
facilities through Common Type Specification (CTS) that essentially make it impossible 



 142 

for buffer overflows to occur in managed code.  Consequently, both J2EE and .NET 
runtime environments provide defense in depth against buffer overflow problems.  Code 
access security determines the level of trust assigned to a particular piece of code and it 
allows for fine grained access control.  There is similar support for this in J2EE through 
the class loader architecture [29].   
 
 Both J2EE and .NET may get into serious trouble when it comes to security when 
outside code needs to be called.  For instance, in .NET, if a piece of code needs to be 
called that is not managed code (e.g. code in a unsupported programming language) then 
this code will not be able to take advantage of any of the security features of the CLR and 
thus it will be more difficult to keep it secure from things like buffer overflows and other 
problems.  Analogously, if J2EE needs to work with code written in a language like C or 
C++,  it will be open to similar problems since non of the JVM security features will be 
useful.  Additionally, it will not be possible to apply finer grained access control to 
outside code, and it will always have to be treated as untrusted. 
 

6.1.2 J2EE Class Loader vs. .NET Code Access Security 

 

J2EE class loader architecture helps provide some of the fine grained authorization 
capabilities that allow execution of partially trusted code.  There are two types of class 
loaders in J2EE:  primordial class loader and object class loader.  Primordial class loader 
is part of the JVM and it bootstraps the JVM by loading the base classes.  On the other 
hand, object class loader is used to load the classes requested by the application.  Without 
going into the specifics here, it suffices to say that primordial class loader in the JVM 
ensures that all classes loaded by the object class loader are properly authorized and that 
untrusted code cannot be made to replace the trusted code (base classes).  “The loading of 
class loaders describes a tree structure with primordial class loader at the root and classes 
as the leaf nodes” [29].  Class loaders prevent class spoofing by passing requests back up 
the tree, through the parent class loader, until the class loader that loaded the requested 
class is reached.  This is similar to tracing a certificate used in PKI to a trusted CA.  Class 
loaders support additional security through managing the security namespaces, where a 
particular class loader may only reference other classes that are part of the same 
namespace (i.e.  loaded by the same class loader or its parents).   
 
Code access security is enabled in .NET through usage of evidence-based security and 
permissions.  While we have already discussed both of these in far more detail in chapter 
four of the paper, we briefly touch on them here for the sake of discussion.  Analogously 
to JVM, the CLR inflicts certain checks on .NET assemblies to ascertain to what degree 
they can be trusted and what code they can access.  Evidence-based security uses two 
main criteria in the assembly querying:  where did the code originate and who created the 
assembly.  Digital certificate signed by the assembly publisher or a strong assembly name 
comprised of the unique identifier, text name, digital signature and a public key, can 
serve as evidence-based security tokens.  For the purpose of determining who created the 
assembly, assembly’s metadata is used that includes information on types, relationships 
with other assemblies, security permissions requested and assembly description.  
Metadata is examined by the CLR at various stages.  The verifier module in the CLR 



 143 

ensures that IL types are correct before compiling IL to the native code and that assembly 
metadata is valid.  The CLR further examines the metadata to establish the identity of the 
assembly and the permissions granted to the assembly based on the security policy [29]. 
 
Permissions inside the CLR define the rights of a piece of code to access a particular 
resource or perform a particular operation.  An assembly will not be given greater 
permission than what is allowed by the security policy, but may be given lesser 
permission (in line with the least privilege principle).  The assembly requests certain 
permissions at runtime, which are either granted or denied by the CLR.  The CLR 
performs a “stack walk” to determine whether the given assembly has the necessary 
permissions to be granted access to the requested resource.   
 

6.1.3 J2EE vs. .NET Security Policy 

 
The basis for code access permissions, in both J2EE and .NET is the underlying security 
policy.  In J2EE, the access controller makes the permissions decisions based on the 
security policy.  The CLR resolves permission decisions by querying the access 
controller about the security policy as it relates to the particular permission of the 
assembly being evaluated.  As we previously discussed, according to J2EE security 
policy, permission sets are grouped in J2EE into protection domains associated with the 
various code sources. Groups of permissions are associated with groups of classes and 
classes are grouped by origin [29].  Signed Java code is assigned  permissions in 
accordance with the system policies as applied to the protection domain from which the 
code originates.  It should be noted that the default configuration is not necessarily 
secure, since by default, Java applications are not associated with any permission domain, 
and thus have full access to system resources. 
 
Analogously, .NET security policy is managed by the Code Access Security Policy Tool.  
The CLR uses the information in the security policy to determine at run-time the 
permissions that the assembly has.  This is done after the assembly is identified through 
evidence-based security techniques that we have described.  Similarly to J2EE protection 
domains that are assigned certain permissions, the security policy in .NET groups the 
categories based on the assembly evidence information, such as the zone from which the 
code is loaded.  There are certain permissions associated with each of the zones, 
however, individual assemblies may have finer grained permissions.  In this way, .NET 
security zones allow for more flexibility than J2EE protection domains, where all of the 
components in the protection domain have the same permissions. 
 

6.1.4 Role-Based Security 

 

In addition to code access security, both J2EE and .NET provide support for role-based 
security, where access control decisions to resources and operations are made based on 
the role of the individual on whose behalf the permission is requested.   .NET defines 
various membership roles for the application.  .NET uses role-based security for 
authenticating and authorizing individual users.  When a user is identified, his 
authenticated identity and role membership (e.g. John Smith, CFO) becomes a principal.  



 144 

Principals can be members of one or more roles (e.g. John Smith, CFO, Executive).  The 
access control decision is similar to that for code access security, with the exception that 
the permission structure now depends on and is managed through the PrincipalPermission 
object [29].  J2EE also supports role-based security through a concept of a principal (an 
authenticated and authorized identity) that has certain permissions.  In J2EE, the 
principals are often specified declaratively (via container’s deployment descriptors) and 
may be accessed programmatically in order to check for permissions.   
 

6.1.5 Programmatic and Declarative Security 

 

Both J2EE and .NET support programmatic security, where developers can program 
security checks in the code.  This makes it critical for developers to be aware of the 
proper ways to make use of the various security APIs and features provided by these 
platforms.  Developers be may make use of code access security, role-based security, 
cryptography functionality, and other security related functionality in a programmatic 
manner.      J2EE also makes extensive use of declarative security that is specified via 
XML deployment descriptors and is handled by the container.  The deployment 
descriptors may be specified at deployment time.  Additionally, declarative security 
places fewer burdens on the programmer, thus reducing the risk of insecure 
programming.  For instances, security roles and permissions can be specified through 
deployment descriptors.  .NET does not provide an equivalent mechanism for declarative 
security. 
 

6.1.6 Cryptography 

 

Both J2EE and .NET provide adequate cryptographic functionality, that when used 
properly, will support the core security services, including confidentiality, integrity, etc.  
.NET base classes provide support for encryption, key generation and HMAC through a 
variety of accepted cryptographic algorithms.  .NET framework also provides tools for 
certificate management and manipulation.  For instance, X.509 certificates can be created 
and managed.  We have discussed some of the cryptographic APIs available in J2EE 
including JCE and JAAS.  J2EE also contains APIs that contain SSL and TLS 
functionality that developers may use. 
 

7.0      Conclusions 

 
From the analysis above it is apparent that J2EE and .NET platforms both have fairly 
comparable security models that provide extensive support for all of the core security 
services.  The decision to use one over the other is probably not going to be security 
driven.  The discussion of how to choose one over the other for a particular development 
project is outside the scope of this paper.  The important thing to take away from this is 
that both J2EE and .NET require a developer to make use of various security features via 
programmatic methods.  Failure to use those feature properly could undermine all built in 
security functionality and offer no more than a false sense of security.  The focus of this 
paper has been to demonstrate how to program enterprise web-applications securely 
using J2EE and .NET technologies.  While network and host security were given some 



 145 

consideration in this paper, the main emphasis has been on application security, as it is 
the most immature and is in need of many improvements help at this point. 
 
We took a broader approach to application security in this paper than just looking at 
specific examples of how the core security services are supported in J2EE and .NET.  For 
instance, we first tried to understand what an enterprise web-based application really is 
what makes it different from other applications, and what are some of the unique security 
requirements for these applications.  That led us to consider the various application 
vulnerabilities that constitute the major risk areas.  That discussion was driven by the 
OWASP top ten list.  We then talked about the key security principles, such as least 
privilege and compartmentalization that need to be followed in all stages of enterprise 
web-application development and deployment because of the critical role that they plan 
in security.  Throughout this paper, as we discussed many of the specific compensating 
controls, we very often came back and tied our discussion to the key security principles.  
We cannot emphasize enough how critical it is for all members of the software project 
team to be familiar with and follow these principles because only solutions that comply 
with these principles will have any chance of providing true protection for the core 
security services. 
 
We introduced threat modeling as a critical ingredient for development of secure 
enterprise web-based applications.  It is impossible to defend against the threats without 
first understanding what the threats are.  To this end we recommended identifying all 
resources that need protection (assets), documenting security assumptions, identifying 
attack surface as well as input and output attack vectors, combining these vectors into 
attack trees (scenarios) and ensuring that proper mitigations are put in place at the 
appropriate places.  We also suggested that defense in depth is a useful strategy.   We 
looked at a sample threat model for a J2EE application (JPetStore 4.0) and then 
considered the threat modeling technique employed by Microsoft that uses STRIDE and 
DREAD.  The chapter on threat modeling is a critical chapter in this paper, because 
without a solid threat model, it is not possible to build secure systems. 
 
The threats and mitigations for enterprise web-based applications were considered 
systematically across the various tiers of the application.  This view also helps better 
understand where the compensating controls must be placed.  For each of the 
vulnerability categories we provided a detailed discussion, mitigation strategies with 
examples, as well as likelihood of exploit and severity.  The goal of that discussion was 
to give a reader a more in depth view of the main areas of concern in enterprise web-
based applications, the insecure programming pitfalls that allow for exploitation, and the 
ways to correct these problems.  A threat model for an enterprise web-based application 
will include much of the information provided in chapter five of this paper, but will have 
a more complete coverage and follow the strategies outlined in chapter two. 
 
It is also important to remember that development and deployment of secure web-based 
applications is contingent upon a secure development process.  While we did not provide 
a detailed discussion of secure development process in this paper due to time limitation, 
the baseline process that we mentioned is derived from CLASP.  Additionally, C&A 



 146 

should be made part of this process, in order to manage both local and enterprise risk, as 
outlined in NIST SP800-37.  In addition to a secure development process that is aware of 
the various application security issues and makes it an explicit part of the process, an 
ESA is required to support development and deployment of secure enterprise web-based 
application.  We discussed the ESA rings 1-5 that is part of the EA, such as the Zachman 
Framework.  While most of the issues in this paper fall in rings 4 and 5, we showed how 
many of the CLASP activities actually map to rings 1-3.  In general, an entire 
organization needs to get behind security with security awareness programs, monitoring 
of security metrics, setting of security policies, and other initiatives, in order to attain 
measurable and repeatable improvements in security of enterprise web-based 
applications.  It is time to stop applying bandage treatments for security problem 
symptoms and instead focus on eliminating security problems at the source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 147 

Appendix A – List of Acronyms 

 

 
ACL – Access Control List 
 
API – Application Programming Interface 
 
DREAD - Damage, Reproducibility, Exploitability, Affected users, Discoverability 
 
DSA – Digital Signature Algorithm 
 
ebXML – Electronic Business Extensible Markup Language 
 
EJB – Entity Java Bean 
 
HMAC – Hashing and Message Authentication 
 
JAAS – Java Authentication & Authorization API 
 
PKI – Public Key Infrastructure 
 
RBAC – Role Based Access Control 
 
RNG – Random Number Generator 
 
RSA – Rivest, Shamir and Adleman 
 
SAML – Security Assertions Markup Language 
 
SOAP – Simple Object Access Protocol  
 
SQL – Structured Query Language 
 
SSL – Secure Sockets Layer 
 
STRIDE - Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,  

     Elevation of privilege 
 
TLS – Transport Layer Security 
 
WSDL – Web Service Definition Language 
 
WTLS – Wireless Transport Level Security 
 
XSS – Cross Site Scripting 
 



 148 

Appendix B – Annotated Glossary 

 
 Access Control List: 

 

The access control list (ACL) is a concept in computer security, used to enforce privilege 
separation. It is a means of determining the appropriate access rights to a given object 
given certain aspects of the user process that is requesting them, principally the process's 
user identity. The list is a data structure, usually a table, containing entries that specify 
individual user or group rights to specific system objects, such as a program, a process, or 
a file.  
 
 Each accessible object contains an identifier to its ACL. The privileges or permissions 
determine specific access rights, such as whether a user can read from, write to or execute 
an object. In some implementations an Access Control Entry (ACE) can control whether 
or not a user, or group of users, may alter the ACL on an object. 
 
ACL implementations can be quite complex. ACLs can apply to objects, directories and 
other containers, and for the objects and the containers created within this container. 
ACLs cannot implement all of the security measures that one might wish to have on all 
systems, and a fine-grained capability-based operating system may be a better approach, 
with the authority transferred from the objects being accessed to the objects seeking 
access — allowing for much finer-grained control. 
 
In networking, the term Access Control List (ACL) refers to a list of the computing 
services available on a server, each with a list of hosts permitted to use the service. 
On a router an access list specifies which addresses are allowed to access services. 
Access lists are used to control both inbound and outbound traffic on a router.1 
 
ACL can be used as a basis to implement code access security for enterprise web based 
applications.  For the most part, the implementation of the ACL is supported by the 
operating system.  There are a variety of possible implementations for access control 
lists. 

 

Attack Vectors & Trees: 

 

An attack vector is a path or means by which a hacker can gain access to a computer or 
network server in order to deliver a payload or malicious outcome. Attack vectors enable 
hackers to exploit system vulnerabilities, including the human element.  
Attack vectors include viruses, e-mail attachments, Web pages, pop-up windows, instant 
messages, chat rooms, and deception. All of these methods involve programming (or, in a 
few cases, hardware), except deception, in which a human operator is fooled into 
removing or weakening system defenses.  
 

                                                 
1 http://en.wikipedia.org/wiki/Access_control_list 



 149 

To some extent, firewalls and anti-virus software can block attack vectors. But no 
protection method is totally attack-proof. A defense method that is effective today may 
not remain so for long, because hackers are constantly updating attack vectors, and 
seeking new ones, in their quest to gain unauthorized access to computers and servers.  
The most common malicious payloads are viruses (which can function as their own 
attack vectors), Trojan horses, worms, and spy ware. If an attack vector is thought of as a 
guided missile, its payload can be compared to the warhead in the tip of the missile. 
Identification of attack vectors through the various program entry points is an essential 
step of the threat modeling process. 2 
 
An attack tree is a way of collecting and documenting the potential attacks on your 
system in a structured and hierarchical manner. The tree structure gives a descriptive 
breakdown of various attacks that the attacker uses to compromise the system.  Attack 
trees represent a reusable representation of security issues that helps focus efforts.  Test 
teams can create test plans to validate security design. Developers can make tradeoffs 
during implementation and architects or developer leads can evaluate the security cost of 
alternative approaches.  Attack patterns are a formalized approach to capturing attack 
information in your enterprise. These patterns can help identify common attack 
techniques. 3 
 
A good way to go about creating attack trees is to identify goals and sub-goals of an 
attack as well as other actions necessary for a successful attack.  An attack tree can be 
represented as a hierarchical diagram or as an outline.  The desired end result of the 
whole exercise is to have something that portrays an attack profile of the application.  
This will help in evaluation if likely security risks and guide the choice of mitigations.  
At this stage, flaws in architecture or design might become apparent and would need to 
be rectified.  Attack trees can be started by first identifying the root nodes, representing 
the ultimate goals of an attacker, and working towards the leaf nodes, representing the 
techniques and methodologies used by an attacker to achieve the goals.  Each of the leaf 
nodes might be a separate individual security threat that was previously identified. 
 

Buffer Overflow: 

 

Buffer overflow attacks are possible if no proper bounds checking is performed on the 
buffer to which user input is written.  Carefully crafted input that writes data to the buffer 
past the allocated range can be used to overwrite the return pointer on the stack and point 
the program counter to a location where malicious shell code has been planted.  The 
attack code is then executed resulting in severe authorization breach on the application 
(execution of arbitrary code).   Arbitrary code can be executed on the host system with 
the same privileges as those that were granted to the web application.  Following the 
principle of least privilege could help limit the amount of damage an attacker can cause 
following a successful exploitation of the buffer overflow vulnerability.  Buffer 
overflows can be avoided by proper input validation.  Additionally, the likelihood of 
introducing buffer overflows into the application can be significantly reduced if safe 

                                                 
2 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci1005812,00.html 
3 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/threatcounter.asp 



 150 

string and memory manipulation function are used.  While execution of arbitrary code 
and taking control of the application process are the more drastic possible consequences 
of a successful exploitation of the buffer overflow vulnerability, a more frequent impact 
could be on system availability since buffer overflows will often cause system crashes.  
Besides the custom application code, components that can be vulnerable to buffer 
overflows may include CGI components, libraries, drivers and web application server 
components.  Since JAVA is generally considered a safe language in terms of bounds 
checking and thus fairly protected against buffer overflows, enterprise web applications 
built with J2EE are generally considered protected against buffer overflows.  However, 
that is not entirely the case.  Buffer overflow attacks, while more difficult and rare with 
JAVA based applications, can still take place.  An example may be a buffer overflow in 
JVM itself.  Format string attacks are a subset of buffer overflow attacks.  
 
Buffer overflows are a classic example of poor input validation.  The reason for this 
vulnerability is that some programming languages allow the input placed in a buffer to 
overflow past the allocated range for the buffer into adjacent areas of memory.  For 
example, if a buffer overflow occurs on a stack and the overflow can reach a function 
return pointer, an attacker who carefully crafts a buffer overflow may overwrite the return 
pointer with his own value that will make the program to jump to the area where an 
attacker has injected some attack code and start executing it.  There are two main kinds of 
buffer overflows, stack based and heap based.  Both kinds are extremely dangerous 
because they cause availability problems (in the best case) and cause authorization 
failures (in the worst case) which can then lead to other problems.  Languages like C are 
particularly prone to buffer overflows because it contains many inherently insecure 
functions.  Luckily, buffer overflows are not a tremendous problem for enterprise web-
based application since both J2EE and .NET provide automatic type checking that make 
buffer overflows very unlikely.  However, application developers of enterprise web based 
applications still need to be very careful when dealing when providing integrations with 
legacy code. 
  

Role Based Access Control: 

 

Role Based Access Control (RBAC) is a system of controlling which users have access to 
resources based on the role of the user. Access rights are grouped by role name, and 
access to resources is restricted to users who have been authorized to assume the 
associated role. For example, if a RBAC system were used in a hospital, each person that 
is allowed access to the hospital's network has a predefined role (doctor, nurse, lab 
technician, administrator, etc.). If someone is defined as having the role of doctor, than 
that user can access only resources on the network that the role of doctor has been 
allowed access to. Each user is assigned one or more roles, and each role is assigned one 
or more privileges to users in that role. 4 
 
Both J2EE and .NET have mechanisms for enforcing RBAC in order to provide 
authorization services to users of enterprise web-based applications. In J2EE and .NET 
that there are fundamentally two types of access control:  role-based access control 

                                                 
4 http://www.webopedia.com/TERM/R/RBAC.html 



 151 

(RBAC) and code-based access control.  With role-based access control, an authorization 
decision is based on the identity of the caller, whereas with code-based access control it is 
based on the calling code.  There are also two fundamental ways to enforce access 
control:  declarative and programmatic.  Declarative access control is managed by the 
container (J2EE) or the CLR (.NET), whereas programmatic access control is 
implemented as a series of checks in the application code.   
 

 Command Injection: 

 

Enterprise web applications pass parameters when they access external systems, 
applications, or use local OS resources.  Whenever possible, those parameters should not 
come directly from the user and be defined as constants.  Otherwise, they should be 
rigorously validated prior to usage.  If an attacker can embed malicious commands into 
these parameters, they may be executed by the host system when the access routines are 
invoked by the application. SQL injection is a particularly common and serious type of 
injection, where SQL statements are passed to the web application and then without 
validation are passed to the routine that accesses the database with that SQL statement.  
Command injections can be used to disclose information, corrupt data and pass malicious 
code to an external system application via the web application.   
 
Untrusted code should never be invoked by trusted code and input that is not trusted and 
has not been validated should never be passed to the trusted code routines.  Command 
injection attacks are made possible because the parameters passed to the trusted code 
routines come from input that has not be properly validated.  The best strategy is to only 
use constants or trusted data for access to trusted code routines.  As part of the threat 
model, all instances where trusted code is used should be documented along with the 
parameters passed to the trusted code and any code that might be invoked by trusted 
code.   
 
Injection flaws allow attackers to relay malicious code through a web application to 
another system. These attacks include calls to the operating system via system calls, the 
use of external programs via shell commands, as well as calls to backend databases via 
SQL (i.e., SQL injection). Whole scripts written in perl, python, and other languages can 
be injected into poorly designed web applications and executed. Any time a web 
application uses an interpreter of any type there is a danger of an injection attack. 
Many web applications use operating system features and external programs to perform 
their functions. Sendmail is probably the most frequently invoked external program, but 
many other programs are used as well. When a web application passes information from 
an HTTP request through as part of an external request, it must be carefully scrubbed. 
Otherwise, the attacker can inject special (meta) characters, malicious commands, or 
command modifiers into the information and the web application will blindly pass these 
on to the external system for execution. 5 

 

 

 

                                                 
5 http://www.owasp.org/documentation/topten/a6.html 



 152 

 DREAD: 

 

DREAD is Mirosoft’s approach to ratings of risks at the application level. A proper rating 
can help identify next steps for risk mitigation and also facilitate in prioritizing 
remediation. The final step in the threat modeling process is to rate all of the threats that 
were identified.  That is done by evaluating potential impact of each of the threats on the 
system.  The purpose of this exercise is to help prioritize the threats.  It may be unrealistic 
to expect that under the pressures of a typical software development schedule all of the 
threats will be mitigated.  This may be impossible due to time and money constraints.  
After all, functionality has to come first.  However, having a good way to rate the threats 
based on the greatest security impact on the application as a whole will help make inform 
decisions as to what threats must be addressed first.  The formula for calculating risk is:  
RISK = PROBABILITY * DAMAGE POTENTIAL.  . 
 
In order to prioritize the threats, high, medium and low ratings can be used.  Threats rated 
as high pose a significant risk to the application and should be addressed as soon as 
possible.  Medium threats need to be addressed, but are less urgent than high threats.  
Low threats should only be addressed if the schedule and cost of the project allows.  
Microsoft has also developed a more sophisticated rating system called DREAD that 
makes the impact of the security threat more explicit.  Adding additional dimensions to 
consider makes it easier for a team performing threat modeling to agree on the rating.  
DREAD model is used to calculate risk at Microsoft instead of the simplistic formula 
above.  The following questions must be asked when using DREAD to arrive at the risk 
for a particular threat: 

• Damage potential: How great is the damage if the vulnerability is exploited?  

• Reproducibility: How easy is it to reproduce the attack?  

• Exploitability: How easy is it to launch an attack?  

• Affected users: As a rough percentage, how many users are affected?  

• Discoverability: How easy is it to find the vulnerability?  

DREAD questions can be extended to meet the particular needs of the application.  There 

might be other dimensions of great importance to a particular application being 

evaluated.  A sample rating table is shown below that can be useful when prioritizing 

threats. 

 

  Rating High (3) Medium (2) Low (1) 

D Damage potential The attacker can subvert the 
security system; get full trust 
authorization; run as 
administrator; upload content. 

Leaking sensitive information Leaking trivial information 



 153 

R Reproducibility The attack can be reproduced 
every time and does not require a 
timing window. 

The attack can be reproduced, 
but only with a timing window 
and a particular race situation. 

The attack is very difficult to 
reproduce, even with knowledge 
of the security hole. 

E Exploitability A novice programmer could make 
the attack in a short time. 

A skilled programmer could 
make the attack, then repeat the 
steps. 

The attack requires an extremely 
skilled person and in-depth 
knowledge every time to exploit. 

A Affected users All users, default configuration, 
key customers 

Some users, non-default 
configuration 

Very small percentage of users, 
obscure feature; affects 
anonymous users 

D Discoverability Published information explains the 
attack. The vulnerability is found 
in the most commonly used 
feature and is very noticeable. 

The vulnerability is in a 
seldom-used part of the 
product, and only a few users 
should come across it. It would 
take some thinking to see 
malicious use. 

The bug is obscure, and it is 
unlikely that users will work out 
damage potential. 

 

 

DSA: 

 

Digital Signature Algorithm (DSA) is a public-key method based on the discrete log 
problem. The Digital Signature Algorithm is mandated by the Federal Information 
Processing Standard FIPS 186. This is a public key system, but unlike RSA it can only be 
used for making signatures.  It is a public key algorithm that is used as part of the Digital 
Signature Standard (DSS). DSA was developed by the U.S. National Security Agency to 
generate a digital signature for the authentication of electronic documents. It cannot be 
used for encryption, only for digital signatures. The algorithm produces a pair of large 
numbers that enable the authentication of the signatory, and consequently, the integrity of 
the data attached. DSA is used both in generating and verifying digital signatures. 6 

The DSS standard specifies a Digital Signature Algorithm (DSA) appropriate for 
applications requiring a digital rather than written signature. The DSA digital signature is 
a pair of large numbers represented in a computer as strings of binary digits. The digital 
signature is computed using a set of rules (i.e., the DSA) and a set of parameters such that 
the identity of the signatory and integrity of the data can be verified. The DSA provides 
the capability to generate and verify signatures. Signature generation makes use of a 
private key to generate a digital signature. Signature verification makes use of a public 
key which corresponds to, but is not the same as, the private key. Each user possesses a 
private and public key pair. Public keys are assumed to be known to the public in general. 
Private keys are never shared. Anyone can verify the signature of a user by employing 
that user's public key. Signature generation can be performed only by the possessor of the 
user's private key.  
 
A hash function is used in the signature generation process to obtain a condensed version 
of data, called a message digest. The message digest is then input to the DSA to generate 
the digital signature. The digital signature is sent to the intended verifier along with the 
signed data. The verifier of the message and signature verifies the signature by using the 
sender's public key. The same hash function must also be used in the verification process. 
The hash function is specified in a separate standard, the Secure Hash Standard (SHS), 

                                                 
6 http://www.auditmypc.com/acronym/DSA.asp 



 154 

FIPS 180. Similar procedures may be used to generate and verify signatures for stored as 
well as transmitted data. 7 

 
Figure: Using the SHA with the DSA 

8 
 

Dynamic Security Analysis: 

 

Dynamic analysis is any software analysis that involves actually running the software. 
Dynamic analysis tools provide a way for security professionals to test, before 
deployment, an application for vulnerabilities associated with the operation of the 
application, and to get a quick overview of the application’s overall security posture. 
Dynamic analysis is frequently used to assess web-based applications for known 
vulnerabilities associated with a given operating environment or platform. The 
downside to dynamic analysis tools is that they inject analysis late in the development 
cycle, when the cost of fixing vulnerabilities is higher; and that they require a fully 
functioning and staged application, raising the tools’ total cost of ownership.  Another 
issue with dynamic analysis is that it essentially treats the system as a black box, making 
it difficult to confirm that the coverage was thorough and also difficult to point to the 
specific problem for the purposes of remediation.  Additionally, the code has to run in 
order for it to be analyzed by the dynamic analysis tools.  That means that if any 
“dormant” pieces of code are present in the application that only runs some of the time, 
that code might be missed by the dynamic analyzer.   
 
Dynamic analysis “exercises” an application for vulnerabilities likely to be caused by 
real-life operational use, including security problems introduced by users, configuration 
changes in databases and servers as applications move into production, and so on. 

                                                 
7 http://www.itl.nist.gov/fipspubs/fip186.htm 
8 http://www.itl.nist.gov/fipspubs/fip186.htm 



 155 

Dynamic analysis lets you test “what you know”: your assumptions about how an 
application is likely to respond under known operating conditions.  Dynamic analysis 
treats code like a black box. In a process known as red-teaming, QA and testing staff use 
simple metrics to see if an exploit is likely. Dynamic analysis generates a set of inputs to 
an application and tries to induce conditions not anticipated by the software developer. It 
then examines the responses, looking for a match that would suggest the presence of 
vulnerability. Today’s dynamic testing tools automate this process.  For example, a tester 
might feed a long string of characters into an application. If the application “crashes,” the 
crash suggests a problem with buffer overflow (a common vulnerability). 
 
Dynamic analysis is most useful for analyzing applications in production. Dynamic 
analysis can find new vulnerabilities introduced by the operational environment, such as 
vulnerabilities created by the misconfiguration of the production host; or related tools and 
libraries that may cause otherwise secure code to develop security problems. 
For example, dynamic analysis could detect that an enterprise application was built using 
a database and that the developer had erroneously left the default database accounts and 
passwords intact.  On the plus side, dynamic analysis with today’s tools is fast and 
relatively inexpensive. It requires little skill; it can be used by QA professionals, testers 
and other non-developers. Its output is more readily understandable by non-developers 
and can provide easily understandable metrics for senior management. On the minus side, 
dynamic analysis lacks specificity and depth, limiting its usefulness to software 
development project teams. For example: although the application’s reaction to a long 
string of characters does indicate that a buffer-overflow vulnerability is likely, this 
finding is not definitive – it could just as likely be an input validation problem. The 
developer must figure it out.  Because dynamic analysis tests an application as a black 
box, it’s nearly impossible to test all conditions, only the conditions testers can subject 
the code to; as a result, current automated dynamic analysis tools test only the most 
feasible conditions.  Current dynamic analysis tools are also designed mostly for web 
applications, limiting their use across a broader application portfolio or code base. 
Dynamic analysis is relatively superficial – similar to an Easter Egg hunt, in that a 
developer who needs to remediate the vulnerability is given information about the 
vulnerability but not its location in the code base. The output from dynamic analysis thus 
has little context and is not easily actionable, requiring considerable interpretation to 
translate the results into what exactly needs to be fixed in the code.  In real-world 
development environments, it may not even be clear how risky each vulnerability is or 
which developer “owns” which vulnerability. This lack of context can introduce or 
exacerbate organizational friction, because one group is analyzing another group’s work 
in an over-the-wall fashion.  Dynamic analysis is generally not cost-effective to integrate 
into the development cycle, primarily because of the cost of preparing for analysis. It 
requires the project team to build a running version of the full application for testing and 
then stage the application in its target operating environment (including configuring 
servers, networks, etc.). This makes the total cost of ownership (TCO) of dynamic 
analysis tools very high. 
 
Dynamic analysis also has little residual value beyond basic analysis, because its results 
lack specificity and context. So it doesn’t contribute to knowledge transfer or the 



 156 

improvement of coding practices.  The table below compares the capabilities of dynamic 
analysis tools and static analysis tools for security (please see definition of static analysis 
below).  9 
 

 
 

Figure:  Dynamic vs. Static Security Analysis Tools  10 

 

 FIPS-140: 

 

Federal Information Processing Standard 140-2 (FIPS 140-2) is entitled "Security 
Requirements for Cryptographic Modules." It’s a standard that describes government 
requirements that hardware and software products should meet for Sensitive but 
Unclassified (SBU) use. The standard was published by the National Institute of 
Standards and Technology (NIST), has been adopted by the Canadian government’s 
Communications Security Establishment (CSE), and is being adopted by the financial 
community through the American National Standards Institute (ANSI).  
 
The [FIPS 140-2] standard specifies the security requirements that are to be satisfied by a 
cryptographic module utilized within a security system protecting unclassified 
information within computer and telecommunication systems (including voice systems). 
The standard provides four increasing, qualitative levels of security: Level 1, Level 2, 

                                                 
9 “Risk in the Balance:  Static Analysis vs. Dynamic Analysis” Secure Software Inc., 2004.  Available 
from:  www.securesoftware.com 
10 “Risk in the Balance:  Static Analysis vs. Dynamic Analysis” Secure Software Inc., 2004.  Available 
from:  www.securesoftware.com 
 



 157 

Level 3, and Level 4. These levels are intended to cover the wide range of potential 
applications and environments in which cryptographic modules may be employed. The 
security requirements cover areas related to the secure design and implementation of a 
cryptographic module. These areas include basic design and documentation, module 
interfaces, authorized roles and services, physical security, software security, operating 
system security, key management, cryptographic algorithms, electromagnetic 
interference/ electromagnetic compatibility (EMI/EMC), and self-testing. 
 
FIPS 140-2 is actually the third version of the FIPS 140 standard. NIST reviews the FIPS 
140 standard every five years to determine if further updates are needed. At this time, 
NIST only accepts applications for FIPS 140-2 certificates. However, any product 
previously evaluated for FIPS 140-1 can still be purchased by the federal government 
today. It is important to note that the FIPS 140-1 or 140-2 certificate applies only to that 
version of the product that was submitted for validation, and all product updates are 
subject to re-evaluation against the current version of the standard. 11 
 
The security requirements for cryptographic key management encompass the entire 
lifecycle of cryptographic keys, cryptographic key components, and critical security 
primaries (CSPs) employed by the cryptographic module. Key management includes 
random number and key generation, key establishment, key distribution, key 
entry/output, key storage, and key zeroization. A cryptographic module may also employ 
the key management mechanisms of another cryptographic module. Encrypted 
cryptographic keys and CSPs refer to keys and CSPs that are encrypted using an 
Approved algorithm or Approved security function. Cryptographic keys and CSPs 
encrypted using a non-Approved algorithm or proprietary algorithm or method are 
considered in plaintext form, within the scope of this standard.  Secret keys, private keys, 
and CSPs shall be protected within the cryptographic module from unauthorized 
disclosure, modification, and substitution. Public keys shall be protected within the 
cryptographic module against unauthorized modification and substitution.  
Documentation shall specify all cryptographic keys, cryptographic key components, and 
CSPs employed by a cryptographic module. 12 
 

JAAS: 

 
The Java Authentication and Authorization Service (JAAS) is a set of APIs that can be 
used for two purposes: For authentication of users, to reliably and securely determine 
who is currently executing Java code, regardless of whether the code is running as an 
application, an applet, a bean, or a servlet; and For authorization of users, to determine 
reliably and securely who is currently executing Java code, regardless of whether the 
code is running as an application, an applet, a bean, or a servlet; and JAAS authentication 
is performed in a pluggable fashion. This permits Java applications to remain 
independent from underlying authentication technologies. New or updated technologies 
can be plugged in without requiring modifications to the application itself. JAAS 
authorization extends the existing Java security architecture that uses a security policy to 

                                                 
11 http://www.corsec.com/fips_faq.php 
12 http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf 



 158 

specify what access rights are granted to executing code. That architecture, as introduced 
in the Java 2 platform, was code-centric. That is, the permissions were granted based on 
code characteristics: where the code was coming from and whether it was digitally signed 
and if so by whom. With the integration of JAAS into the Java 2 SDK, the 
java.security.Policy API handles Principal-based queries, and the default policy 
implementation supports Principal-based grant entries. Thus, access control can now be 
based not just on what code is running, but also on who is running it.  13 

 

J2EE client applications may use JAAS to provide authentication and authorization 
services.  Some of the standard Java APIs to develop JAAS client applications include 
javax.naming, javax.security.auth, javax.security.auth.Callback, javax.security.auth.login, 
and javax.security.auth.SPI. Some JAAS security APIs specific to Weblogic 8.1 are 
weblogic.security, weblogic.security.auth, and weblogic.security.auth.Callback.  The 
letter “x” after package name “java” (i.e. javax) stands for java extension, implying that 
JAAS API is an extension to the Java platform.  If a J2EE application client needs to 
communicate with application servers that are not implemented via Weblogic, security 
APIs specific to Weblogic should not be used.  In that case using those APIs would 
impact portability.     
 
A client authenticated to the J2EE WebLogic application server with JAAS may be an 
application, applet, Enterprise Java Bean (EJB) or a servlet.  JAAS is a standard 
extension to the Java Software Development Kit 1.4.1.  JAAS allows enforcement of 
access control based on user identity.  WebLogic application server uses only 
authentication capabilities of JAAS to support LoginContext and LoginModule 
functionalities.  The WebLogic LoginModule 
weblogic.security.auth.login.UsernamePasswordLoginModule supports client user name 
and password authentication.  For client certificate authentication, mutual SSL 
authentication should be used (provided by JNDI authentication).   
 
JAAS can be used for external or internal authentication.  Thus developers of custom 
authentication providers in J2EE applications, as well as developers for remote J2EE 
application clients may potentially need to understand JAAS.  Users of Web browser 
clients or J2EE application component developers do not need to use JAAS.  A typical 
JAAS authentication client application would include a Java client, LoginModule, 
Callbackhandler, configuration file, action file and a build script.   
 
The key point to take away from this is that when weblogic.security.Security.runAs() 
method is executed, it associates the specified Subject with the permission of the current 
thread.  After that the action is executed.  If the Subject represents a non-priveleged user, 
the default of the JVM will be used.  Consequently, it is crucial to specify the correct 
Subject in the runAs() method.  There are several options available to developers there.  
One is to implement wrapper code shown below. 
 
Creating a wrapper for runAs() method: 
 

                                                 
13 http://java.sun.com/products/jaas/overview.html 



 159 

import java.security.PrivilegedAction; 
import javax.security.auth.Subject; 
import weblogic.security.Security; 
public class client 
{ 
public static void main(String[] args) 
{ 
Security.runAs(new Subject(), 
new PrivilegedAction() { 
public Object run() { 
// 
//If implementing in client code, main() goes here. 
// 
return null; 
} 
}); 
} 
} 
 

The discussion of various other methods for specifying the correct subject is omitted for 
the sake of brevity.  There are eight steps to writing a client application using JAAS 
authentication in WebLogic J2EE application server.  The first step is to implement 
LoginModule classes for each type of the desired authentication mechanisms.  The 
second step is to implement the CallbackHandler class that will be used by the 
LoginModule to communicate with the user in order to obtain user name, password and 
URL.  The third step is to write a configuration file that would specify which 
LoginModule classes would be used by the WebLogic Server for authentication and 
which should be invoked.  The fourth step is to write code in the Java client to instantiate 
a LoginContext.  The LoginContext uses the configuration file (sample_jaas.config) to 
load the default LoginModule configured for WebLogic Server.  In step five, the login() 
method of the LoginContext instance is invoked.  The login() method is used to invoke 
all of the LoginModules that have been loaded.  Each LoginModule tries to authenticate 
the subject and the LoginContext throws a LoginException in the event that the login 
conditions specified in the configuration file are not met.  In step six, Java client code is 
written to retrieve the authenticated Subject from the LoginContext instance and call the 
action as the Subject. When successful authentication of the Subject takes place, access 
controls can be placed upon that Subject by invoking the 
eblogic.security.Security.runAs() method, as was previously discussed. In step seven, 
code is written to execute an action if the Subject has the required privileges.  Finally, 
step eight, a very important step, where the logout() method is invoked on the 
LoginContext instance.  The logout() method closes the user’s session and clears the 
Subject.  It is very important for developers to follow all of these eight steps and do so 
properly in order for JAAS to be effective.   

 



 

 Kerberos: 

 

Kerberos is a secure method for authenticating a request for a service in a computer 
network. Kerberos was developed in the Athena Project at the Massachusetts Institute of 
Technology (MIT). Kerberos lets a user request an encrypted "ticket" from an 
authentication process that can then be used to request a particular service from a server. 
The user's password does not have to pass through the network. A version of Kerberos 
(client and server) can be downloaded from MIT or you can buy a commercial version.  1 
 
The core of a Kerberos architecture is the KDC (Key Distribution Server). The KDC 
stores authentication information and uses it to securely authenticate users and services. 
This authentication is called secure because it does not occur in plaintext, does not rely 
on authentication by the host operating system, does not base trust on IP addresses  
Does not require physical security of the network hosts, The KDC acts as a trusted third 
party in performing these authentication services.  Due to the critical function of the 
KDC, multiple KDC's are normally utilized. Each KDC stores a database of users, 
servers, and secret keys. Kerberos clients are normal network applications which have 
been modified to use Kerberos for authentication. In Kerberos slang, they have been 
Kerberized.  2  The logical diagram for Kerberos is shown below: 
 

 
Figure:  Kerberos Logical Diagram  3 

 
In the first step of Kerberos, a W2K Client asks KDC for a ticket granting ticket (TGT).  
The KDC then forwards a TGT back to the W2K client who can use it to obtain a service 
ticket via a service request from the W2K KDC.  Now the W2K client can communicate 
with both UNIX resources and W2K resources. 

 

 Code Access Security: 

 

Code access security allows code to be trusted to varying degrees depending on where the 
code originates and on other aspects of the code's identity. Code access security also 
enforces the varying levels of trust on code, which minimizes the amount of code that 
must be fully trusted in order to run. Using code access security can reduce the likelihood 
that the code can be misused by malicious or error-filled code. It can reduce liability 

                                                 
1 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212437,00.html 
2 http://www.tech-faq.com/kerberos.shtml 
3 http://www.colorado.edu/its/windows2000/itsresources/kerbprop.pdf 



 161 

because it is possible to specify the set of operations in the code that should be allowed to 
perform as well as the operations that the code should never be allowed to perform. Code 
access security can also help minimize the damage that can result from security 
vulnerabilities in the code.1   
 
Code access security is a mechanism that helps limit the access code has to protected 
resources and operations. In the .NET Framework, code access security performs the 
following functions:  
 

• Defines permissions and permission sets that represent the right to access various 
system resources.  

 

• Enables administrators to configure security policy by associating sets of 
permissions with groups of code (code groups).  

 

• Enables code to request the permissions it requires in order to run, as well as the 
permissions that would be useful to have, and specifies which permissions the 
code must never have.  

 

• Grants permissions to each assembly that is loaded, based on the permissions 
requested by the code and on the operations permitted by security policy.  

 

• Enables code to demand that its callers have specific permissions.  
 

• Enables code to demand that its callers possess a digital signature, thus allowing 
only callers from a particular organization or site to call the protected code.  

 

• Enforces restrictions on code at run time by comparing the granted permissions of 
every caller on the call stack to the permissions that callers must have.  

 
To determine whether code is authorized to access a resource or perform an operation, 
the runtime's security system walks the call stack, comparing the granted permissions of 
each caller to the permission being demanded. If any caller in the call stack does not have 
the demanded permission, a security exception is thrown and access is refused. The stack 
walk is designed to help prevent luring attacks, in which less-trusted code calls highly 
trusted code and uses it to perform unauthorized actions. Demanding permissions of all 
callers at run time affects performance, but it is essential to help protect code from luring 
attacks by less-trusted code. To optimize performance, you can have your code perform 
fewer stack walks; however, you must be sure that you do not expose a security weakness 
whenever you do this. 
 
The stack walk in the figure below results from method in assembly A4 requesting that 
its callers have permission P. 

                                                 
1 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconcodeaccesssecurity.asp 
 



 162 

 
 

Figure:  Stack Walk (Method in A4 Demands Permission P from Callers) 
1
 

 
In one typical use of code access security, an application downloads a control from a 
local intranet host Web site directly to the client so that the user can enter data. The 
control is built using an installed class library. The following are some of the ways code 
access security might be used in this scenario:  
 

• Before load time, an administrator can configure security policy to specify that 
code be given special authority (more permission than local internet code would 
usually receive) if it has a particular digital signature. By default, the predefined 
LocalIntranet named permission set is associated with all code that is 
downloaded from the local intranet.  

 

• At load time, the runtime grants the control no more permissions than those 
associated with the LocalIntranet named permission set, unless the control has a 
trusted signature. In that case, it is granted the permissions associated with the 
LocalIntranet permission set and potentially some additional permissions 
because of its trusted signature.  

 

• At run time, whenever a caller (in this case the hosted control) accesses a library 
that exposes protected resources or a library that calls unmanaged code, the 
library makes a security demand, which causes the permissions of its callers to be 
checked for the appropriate permission grants. These security checks help prevent 
the control from performing unauthorized actions on the client's computers. 2 

 
.NET Framework provides two kinds of security:  role-based security and code access 
security.  As a synopsis, role-based security controls user access to application resources 
and operation, whereas code access security controls code access to various resources and 
privileged operations.  These two kinds of security are complementary forms of security 

                                                 
1 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconintroductiontocodeaccesssecurity.asp 
 
2 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconintroductiontocodeaccesssecurity.asp 



 163 

that are available to .NET Framework applications.  User security focuses around the 
identity and the capabilities of the user, while code access security focuses around the 
source and author of the code and the associated permissions.  Code security requires 
authorizing the rights of the code to access the file system, registry, network, directory 
services and directory services.  The main distinction here is user capabilities vs. code 
permissions.  
 

 PKI: 

 

Public-key infrastructure (PKI) is the combination of software, encryption technologies, 
and services that enables enterprises to protect the security of their communications and 
business transactions on the Internet.   PKIs integrate digital certificates, public-key 
cryptography, and certificate authorities into a total, enterprise-wide network security 
architecture. A typical enterprise's PKI encompasses the issuance of digital certificates to 
individual users and servers; end-user enrollment software; integration with corporate 
certificate directories; tools for managing, renewing, and revoking certificates; and 
related services and support.1 
 
A PKI enables users of a basically unsecured public network such as the Internet to 
securely and privately exchange data and money through the use of a public and a private 
cryptographic key pair that is obtained and shared through a trusted authority. The public 
key infrastructure provides for a digital certificate that can identify an individual or an 
organization and directory services that can store and, when necessary, revoke the 
certificates.  
 
The public key infrastructure assumes the use of public key cryptography, which is the 
most common method on the Internet for authenticating a message sender or encrypting a 
message. Traditional cryptography has usually involved the creation and sharing of a 
secret key for the encryption and decryption of messages. This secret or private key 
system has the significant flaw that if the key is discovered or intercepted by someone 
else, messages can easily be decrypted. For this reason, public key cryptography and the 
public key infrastructure is the preferred approach on the Internet. (The private key 
system is sometimes known as symmetric cryptography and the public key system as 
asymmetric cryptography.)  

A public key infrastructure consists of:  

• A certificate authority (CA) that issues and verifies digital certificate. A certificate 
includes the public key or information about the public key  

• A registration authority (RA) that acts as the verifier for the certificate authority 
before a digital certificate is issued to a requestor  

• One or more directories where the certificates (with their public keys) are held  
• A certificate management system 

                                                 
1 http://verisign.netscape.com/security/pki/understanding.html 



 164 

In public key cryptography, a public and private key are created simultaneously using the 
same algorithm (e.g. RSA) by a certificate authority (CA). The private key is given only 
to the requesting party and the public key is made publicly available (as part of a digital 
certificate) in a directory that all parties can access. The private key is never shared with 
anyone or sent across the Internet.1 

 

 RSA: 

 

A public-key cryptosystem for both encryption and authentication, invented in 1977 by 
Ron Rivest, Adi Shamir, and Leonard Adleman.  Its name comes from their initials.   The 
RSA algorithm works as follows: take two large prime numbers, p and q, and find their 
product n = pq; n is called   the modulus.  Choose a number, e, less than n and relatively   
prime to (p-1)(q-1), and find its inverse, d, mod (p-1)(q-1),   which means that ed = 1 
mod (p-1)(q-1); e and d are called the   public and private exponents, respectively.  The 
public key is   the pair (n,e); the private key is d.  The factors p and q must be kept secret, 
or destroyed.  It is difficult (presumably) to obtain the private key d from the public key   
(n,e).  If one could factor n into p and q, however, then one could obtain the private key 
d.  Thus the entire security of RSA depends on the difficulty of factoring; an easy method 
for factoring products of large prime numbers would break RSA. 2 RSA is the most 
popular algorithm in use to support the PKI.   
 
The private key is used to decrypt text that has been encrypted with the public key. Thus, 
if Bob sends Alice a message, Bob can find out Alice’s public key (but not Alice’s 
private key) from Alice’s certificate provided by the certificate authority (CA) and 
encrypt a message to Alice using her public key. When Alice receives it, she decrypts it 
with her private key. In addition to encrypting messages (which ensures privacy), Bob 
can authenticate himself to Alice (so Alice knows that it is really Bob who sent the 
message) by using his private key to sign the message. When Alice receives it, she can 
use Bob’s public key to decrypt it.3 
 

To do this Use whose Kind of key 

Send an encrypted message Use the receiver's Public key 

Send an encrypted signature Use the sender's Private key 

Decrypt an encrypted message Use the receiver's Private key 

Decrypt an encrypted signature (and authenticate the sender) Use the sender's Public key 

 

                                                 
1 http://whatis.techtarget.com/definition/0,289893,sid9_gci214299,00.html 
2 http://dict.die.net/rsa%20encryption/ 
3 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214273,00.html 



 165 

Figure:  Public/Private Key Usage 1 

 Salt Value: 

 

In order to make encrypted data (e.g. passwords) more resistant to attacks known as 
dictionary attacks that fall in the general category of “chosen plaintext” attacks, a salt 
value may often be “mixed” with the plaintext before it is encrypted.  Some 
transformation function may use a salt value (random string of bits) to transform the 
plaintext into some intermediate form before it is encrypted.  This makes it substantially 
harder for an attacker, who does not know the salt value, to launch a “chosen plaintext” 
or a dictionary attack. 
 
Salt values are often used to protect system passwords.  When a user picks a system 
password, it is first mixed with the salt value, then hashed, and only then stored in the 
database.  Salt value must also be stored securely.  Subsequently, when a user attempts to 
log into the system, his supplied password is again mixed with the salt value, hashed, and 
the value compared with that stored in the database.  If the two hashes match, then 
authentication is successful.  If an attacker were to compromise that database storing all 
of the hashed password values, it would be more difficult for the attacker to get the 
plaintext password value that hashed to the stored hash value because the randomness of 
the password would have been increased by the salt value.  In other words, salt value is 
just a way to increase the randomness of the plaintext.  In the case with passwords, if the 
original password is generated in a random fashion, as opposed to being picked by a user, 
then the salt value is not necessary.   
 
Salt values may also be often used with encryption.  Since the data encrypted is not 
random most of the time, salt values can be used to increase the randomness of that data 
and make it more resistant to “chosen plaintext” attacks.  Salt values may also be used as 
a collision control mechanisms for hashing. 
 

 SAML: 

 

SAML (Security Assertion Markup Language) is an Extensible Markup Language 
(XML) standard that allows a user to log on once for affiliated but separate Web sites. 
SAML is designed for business-to-business (B2B) and business-to-consumer (B2C) 
transactions. SAML specifies three components: assertions, protocol, and binding. There 
are three assertions: authentication, attribute, and authorization. Authentication assertion 
validates the user's identity. Attribute assertion contains specific information about the 
user. And authorization assertion identifies what the user is authorized to do.  
Protocol defines how SAML asks for and receives assertions. Binding defines how 
SAML message exchanges are mapped to Simple Object Access Protocol (SOAP) 
exchanges. SAML works with multiple protocols including Hypertext Transfer Protocol 
(HTTP), Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP) and also 
supports SOAP, BizTalk, and Electronic Business XML (ebXML). The Organization for 

                                                 
1 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214273,00.html 



 166 

the Advancement of Structured Information Standards (OASIS) is the standards group for 
SAML.1  The diagram below illustrates how SAML works. 
 

 
 

Figure:  SAML – How it works
2
 

 
The four steps in the diagram above are:3 
 

1)  End user's browser accesses authentication server, and authentication server 
asks for user ID and password. 

 
2)  End user enters ID and password. Authentication server checks with LDAP 
directory and then authenticates end user. 

 
3)  End user requests a resource from destination/Web services server. 
Authentication server opens a session with destination server. 

 
4)  Authentication server sends uniform resource identifier (URI) to end user. End 
user browser is redirected to URI, which connects end user to Web service. 

 

SOAP: 

 

SOAP (Simple Object Access Protocol) is a way for a program running in one kind of 
operating system (such as Windows 2000) to communicate with a program in the same or 
another kind of an operating system (such as Linux) by using the World Wide Web's 
Hypertext Transfer Protocol (HTTP) and its Extensible Markup Language (XML) as the 
mechanisms for information exchange. Since Web protocols are installed and available 
for use by all major operating system platforms, HTTP and XML provide an already at-
hand solution to the problem of how programs running under different operating systems 
in a network can communicate with each other. SOAP specifies exactly how to encode an 
HTTP header and an XML file so that a program in one computer can call a program in 
another computer and pass it information. It also specifies how the called program can 
return a response.  

                                                 
1 http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci839675,00.html 
2 http://www.nwfusion.com/details/539.html 
3 http://www.nwfusion.com/details/539.html 



 167 

SOAP was developed by Microsoft, DevelopMentor, and Userland Software and has 
been proposed as a standard interface to the Internet Engineering Task Force (IETF). It is 
somewhat similar to the Internet Inter-ORB Protocol (IIOP), a protocol that is part of the 
Common Object Request Broker Architecture (CORBA). Sun Microsystems' Remote 
Method Invocation (RMI) is a similar client/server interprogram protocol between 
programs written in Java. An advantage of SOAP is that program calls are much more 
likely to get through firewall servers that screen out requests other than those for known 
applications (through the designated port mechanism). Since HTTP requests are usually 
allowed through firewalls, programs using SOAP to communicate can be sure that they 
can communicate with programs anywhere.1 

 

 SQL Injection: 

 

SQL injection is a particularly common and serious type of injection, where SQL 
statements are passed to the web application and then without validation are passed to the 
routine that accesses the database with that SQL statement.  All input used for data access 
should be thoroughly validated, primarily in order to avoid SQL injection attacks which 
can happen if dynamic queries are generated based on user input without first thoroughly 
validating the user input.  An attacker can then possibly inject malicious SQL commands 
that will be executed by the database.  To validate input used for dynamic query 
construction regular expressions should be used to restrict input.  For defense in depth the 
input should also be sanitized.  Additionally, whenever possible, it is a good idea to use 
stored procedure for data access in order to make sure that type and length checks are 
performed on the data prior to it being used in SQL queries.  The table below lists a 
common list of useful regular expressions that developers should use for input validation. 
 

                                                 
1 http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214295,00.html?Offer=SEcpwslg25 



 168 

 
 

Table 11:  Common Regular Expressions for Input Validation 

 

Developers armed with knowledge of the various ways to perform input validation and 
skills working with regular expressions are in position to mitigate (and virtually 
eliminate) application vulnerabilities that may cause buffer overflows, cross site 
scripting, SQL injection and code injection problems.   
 
Some code examples from ASP.NET are offered below for mitigating the SQL injection 
risks.  SQL injection attacks can takes place when input to the application is used to 
construct dynamic SQL statements that access the database.  SQL injection attacks can 
also occur if code uses stored procedures that are passed strings containing unfiltered 
input from the user.  SQL injections can have the effect of allowing attackers to execute 
commands in the database and can become even a bigger issue if a process performing 
database access has excessive privileges.  SQL injections can be mitigated by 
constraining input and using type safe SQL parameters. 
 
Input should be constrained for type, length, format (via regular expressions) and range.  
If the input comes from a trusted source that has performed input validation, it may not 
be necessary to validate the input again (although defense in depth principle would 
recommend that you do so anyway).  On the other hand, if the input is from an untrusted 
source, proper validation on the input should be performed prior to using that input to in 
SQL statement construction.   
 



 169 

The Parameters collection in SQL can be used for input validation where input is treated 
as a literal value and SQL does not treat it as executable code.  Parameters collection in 
SQL can be used to perform type checking and length validation which also helps enforce 
type and length checks.  Values outside the valid ranges will trigger an exception.  Stored 
procedure should be used where possible and they should be called with Parameters 
collection.  The code below demonstrates how to use the Parameters collection with 
stored procedures.  By themselves, stored procedures may be susceptible to SQL 
injections if they are passed unfiltered input, but coupled with usage of Parameters 
collection, the problem goes away. 
 
SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", conn); 
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure; 
SqlParameter parm = myCommand.SelectCommand.Parameters.Add( 
"@au_id", SqlDbType.VarChar, 11); 
parm.Value = Login.Text; 

 
In the case dynamic SQL, where stored procedures cannot be used, Parameters collection 
should still be used.  An example of that is shown below. 
 
SqlDataAdapter myCommand = new SqlDataAdapter( 
"SELECT au_lname, au_fname FROM Authors WHERE au_id = @au_id", conn); 
SqlParameter parm = myCommand.SelectCommand.Parameters.Add("@au_id", 
SqlDbType.VarChar, 11); 
parm.Value = Login.Text; 
 

It is important to note that Parameters collection can also be used when concatenating 
several SQL statements to send a batch of statements to the server at one time.  In this 
case, the names of the parameters should not be repeated. 
 
Filter routines can be added to protect against SQL injection by replace all “unsafe” 
characters in the input that have a special meaning to SQL (e.g. a single apostrophe 
character).  A way to do this is shown below. 
 
private string SafeSqlLiteral(string inputSQL) 
{ 
return inputSQL.Replace("'", "''"); 
} 

 
However, a skillful attacker could use ASCII hexadecimal characters to bypass these 
checks, so the use of these filtering routines alone is not sufficient.   
 

SSL: 

 

The Secure Sockets Layer (SSL) is a commonly-used protocol for managing the security 
of a message transmission on the Internet. SSL has recently been succeeded by Transport 
Layer Security (TLS), which is based on SSL. SSL uses a program layer located between 
the Internet's Hypertext Transfer Protocol (HTTP) and Transport Control Protocol (TCP) 
layers. SSL is included as part of both the Microsoft and Netscape browsers and most 
Web server products. Developed by Netscape, SSL also gained the support of Microsoft 



 170 

and other Internet client/server developers as well and became the de facto standard until 
evolving into Transport Layer Security. The "sockets" part of the term refers to the 
sockets method of passing data back and forth between a client and a server program in a 
network or between program layers in the same computer. SSL uses the public-and-
private key encryption system from RSA, which also includes the use of a digital 
certificate.  
 
TLS and SSL are an integral part of most Web browsers (clients) and Web servers. If a 
Web site is on a server that supports SSL, SSL can be enabled and specific Web pages 
can be identified as requiring SSL access. Any Web server can be enabled by using 
Netscape's SSLRef program library which can be downloaded for noncommercial use or 
licensed for commercial use. TLS and SSL are not interoperable. However, a message 
sent with TLS can be handled by a client that handles SSL but not TLS.1  
 
Many programming languages provide APIs that give programmers access to SSL 
functionality.  Java Secure Sockets Extension (JSSE) provides support for SSL and TLS 
protocols by making them programmatically available.  WebLogic implementation of 
JSSE also provides support for JCE Cryptographic Service Providers.  HTTPS port is 
used for SSL protected sessions.  SSL encrypts the data transmitted between the client 
and the server ensuring confidentiality of the username and password.  SSL scheme uses 
certificates and thus requires certificate authentication not supported by JAAS.  As the 
result, when SSL is used, an alternate authentication scheme must be used, one that 
supports certificates, namely Java Naming Directory Interface (JNDI) authentication.  For 
client certificate authentication, a two-way SSL authentication scheme is used that is also 
referred to as mutual authentication.  A common problem organizations have 
implementing SSL is failing to perform authentication properly.  The result is secure 
communication with a remote host that has not been properly authenticated.  It is thus 
critical to follow all of necessary steps to perform authentication correctly.  A code 
example below demonstrates how one-way SSL authentication should be performed 
using JNDI authentication. 
 
One-Way SSL Authentication: 
 
Hashtable env = new Hashtable(); 
env.put(Context.INITIAL_CONTEXT_FACTORY, 
"weblogic.jndi.WLInitialContextFactory"); 
env.put(Context.PROVIDER_URL, “t3s://weblogic:7002”); 
env.put(Context.SECURITY_PRINCIPAL, “javaclient”); 
env.put(Context.SECURITY_CREDENTIALS, “javaclientpassword”); 
ctx = new InitialContext(env); 
 

SSL client application typically has several components.  A java client initializes an 
SSLContextwith client identity, a HostnameVerifierJSSE, a TrustManagerJSSE, and a 
HandshakeCompletedListener.  It then creates a key store and retrieves the private key 
and certificate chain.  An SSLSocketFactory is then used.  Finally, HTTPS is used to 
connect to a JSP served by an instance of the application server.  Another component is 

                                                 
1 http://whatis.techtarget.com/definition/0,289893,sid9_gci343029,00.html 



 171 

the HostnameVerifier that provides a callback mechanism so that developers can supply a 
policy for handling situations where the host is being connected to the server name from 
the certificate Subject Distinguished Name.  A HandshakeCompletedListener defines 
how SSL client receives messages about the termination of an SSL handshake on a 
particular SSL connection.  The number of times an SSL handshake can take place on a 
particular SSL connection is also defined.  A TrustManager builds a certificate path to a 
trusted root and returns true if the certificate is valid.  A build script compiles all of the 
files required and deploys them.   
 
Two-way SSL authentication can be used if a mechanism is needed for the two parties to 
mutually authenticate each other.  For instance, two servers may need to communicate to 
each other securely and may utilize two-way SSL authentication.  This allows to have a 
dependable and secure communication.  Typically mutual authentication is used in client-
server environments, but it may also be used in server-server communication.  An 
example below demonstrates establishment of a secure connection between two 
Weblogic server instances: 
 
Two-Way SSL Authentication Between Server Instances: 
 
FileInputStream [] f = new FileInputStream[3]; 
f[0]= new FileInputStream(“demokey.pem”); 
f[1]= new FileInputStream(“democert.pem”); 
f[2]= new FileInputStream(“ca.pem”); 
Environment e = new Environment (); 
e.setProviderURL(“t3s://server2.weblogic.com:443”); 
e.setSSLClientCertificate(f); 
e.setSSLServerName(“server2.weblogic.com”); 
e.setSSLRootCAFingerprints(“ac45e2d1ce492252acc27ee5c345ef26”); 
e.setInitialContextFactory 
(“weblogic.jndi.WLInitialContextFactory”); 
Context ctx = new InitialContext(e.getProperties()) 
 

There are many steps to implementing SSL properly and developers should be aware of 
those.  Misusing SSL could render it useless.  There are too many detailed nuances to 
discuss all of them in this paper.  Application component developers in charge of 
programmatic security need to have deep understanding of underlying technology and 
how to properly use it. 
 

Static Security Analysis: 
 

Static analysis is any software analysis that involves analyzing the software without 
executing it.  Because static analysis entails analyzing source code, it enables application 
project teams to get a comprehensive assessment of an application’s functionality earlier 
in the development cycle, when the cost of fixing vulnerabilities is much less. Only static 
analysis can provide the level of assurance required for business-critical proprietary 
applications. Vulnerabilities in these applications are typically unknown, unexamined by 
the global security community, and unprotected by operational vulnerability scanning 
methods. The downside to static analysis of security vulnerabilities has been the lack of 
enterprise-class tools, making the approach too costly and complex to use broadly. 



 172 

 
Whereas dynamic analysis looks for circumstantial evidence, static analysis looks for 
facts.  Static analysis tools enable deep structural analysis of code and its intended 
behavior, such as data flow, function calls, and loop-and-branch analysis. In effect, static 
analysis lets you test “what you don’t know,” or the possible root cause of misbehaving 
code, by comparing code against a database of known vulnerabilities.  On the plus side, 
static analysis provides concrete results that identify vulnerabilities, their source in the 
code base, and their potential outcomes. Because static analysis works on source code 
and can test code without running a fully staged version of an application, it can be used 
more interactively by project teams as part of their daily workflow. Project teams can 
thus identify problems and fix them earlier in the software development cycle, when they 
are much less expensive to fix. The total cost of ownership of automated static analysis 
tools is low, because they don’t require staging a functional version of the application. 
By identifying and prioritizing vulnerabilities during the development cycle, static 
analysis also reduces the cost of identifying and fixing security vulnerabilities. (The cost 
of handling a security vulnerability includes the labor and management effort required to 
identify, test, remediate, track and document a vulnerability throughout the development 
cycle.) Vulnerabilities can be corrected by a few keystrokes by a developer, instead of by 
a multi-step, multi-person process.  Static analysis also strengthens “defense-in-depth” 
strategies by providing detailed information about an application’s possible failure points. 
Project teams can then classify and prioritize vulnerabilities based on level of current 
threat. As hackers develop different exploit techniques that have a greater percentage of 
completion against an application, developers can respond more quickly because 
vulnerabilities have been classified and thoroughly documented.  Static analysis also 
provides improved return on investment (ROI), by providing value beyond analysis.  The 
in-depth information provided by the static analysis can be used to identify patterns 
indicative of skills discrepancies or bad coding habits, enabling these to be corrected 
through training.  On the minus side, static analysis traditionally hasn’t been able to test 
for vulnerabilities introduced or exacerbated by the operating environment. In addition, 
static analysis has required significant security expertise to perform it and interpret the 
results, making it too expensive to use extensively in the development cycle. Also, first-
generation automated static-analysis tools typically have lacked the analytical rigor and 
context to analyze security problems reliably and accurately, and they haven’t been able 
to scale beyond code sections to entire applications. However, a new generation of 
automated, enterprise-class solutions is overcoming many of the traditional disadvantages 
of static analysis – providing enhanced simplicity, usability, specificity, reliability and 
scalability for managing security vulnerabilities.  1 
 

 STRIDE: 

 

Microsoft has developed a STRIDE model for categorizing software threats that can be 
used to drive the threat modeling process. The summary of the model is offered in the 
table below: 
 

                                                 
1 “Risk in the Balance:  Static Analysis vs. Dynamic Analysis” Secure Software Inc., 2004.  Available 
from:  www.securesoftware.com 



 173 

Term Definition 
Spoofing identity Illegally obtaining access and use of another person's 

authentication information, such as a user name or password. 
Tampering with data The malicious modification of data. 
Repudiation Associated with users who deny performing an action, yet 

there is no way to prove otherwise. (Non-repudiation refers 
to the ability of a system to counter repudiation threats, and 
includes techniques such as signing for a received parcel so 
that the signed receipt can be used as evidence.) 

Information disclosure The exposure of information to individuals who are not 
supposed to have access to it, such as accessing files without 
having the appropriate rights. 

Denial of service An explicit attempt to prevent legitimate users from using a 
service or system. 

Elevation of privilege Where an unprivileged user gains privileged access. An 
example of privilege elevation would be an unprivileged 
user who contrives a way to be added to the Administrators 
group. 

 

Figure:  STRIDE Model
1
 

 Threat Modeling: 

 

One of the big questions that architects and designers of enterprise web applications need 
to answer is:  what are the threats on this application?  This question is very relevant, 
because after all, it is impossible to make sure that an application is secure without 
understanding the types of attacks that adversaries may attempt to launch on the system.  
The technique for formal evaluation of threats on the application is commonly called 
threat modeling.  Threat modeling process usually starts at the information gathering 
phase, proceeds to the analysis phase, and culminates with a report that can be used by 
application architects, designers, developers and security auditors to drive construction 
and verification.   
 
A typical threat model would first document all of the protected resources of the 
application, such as data and execution resources.  After all, attackers often try to get at 
those protected resources so it is imperative to know what these are.  To get to those 
resources an attacker would have to use some input or output stream flowing to or from 
the application.  The next step in threat modeling is to isolate the input and output vectors 
of the application, document the various threats as they apply to each of those input and 
output vectors and construct attack trees that combine the various input and output vector 
threats to abstract the various attack scenarios on the application being evaluated.  While 
it is impractical and probably impossible to try and document every single possible attack 
scenario on the enterprise web application, threat modeling process provides a systematic 
way of considering the threats thus reducing the chance that some are overlooked and 
pointing out some of the potential weak or problem areas that need to be given special 
attention.  Threat modeling helps comply with the principle of securing the weakest by 

                                                 
1 http://msmvps.com/secure/archive/2004/06/22/8728.aspx 



 174 

facilitating in understanding of what the weak links are.  As part of threat modeling it is 
important to document all of the security related assumptions and decisions made as this 
information will help understand what affect architectural changes will have on the 
security posture of the application.  After having evaluated the threats, it should be 
documented what threats are mitigated by the architecture, design and implementation 
and how that is accomplished.  All threats that are not addressed should be clearly 
documented as well.   The threats should also be rated based on severity and potential 
impact.  Microsoft’s approach to thereat modeling focuses on the STRIDE model.    

 

 TLS: 

 

Transport Layer Security (TLS) is a protocol that ensures privacy between 
communicating applications and their users on the Internet. When a server and client 
communicate, TLS ensures that no third party may eavesdrop or tamper with any 
message. TLS is the successor to the Secure Sockets Layer (SSL). TLS is composed of 
two layers: the TLS Record Protocol and the TLS Handshake Protocol. The TLS Record 
Protocol provides connection security with some encryption method such as the Data 
Encryption Standard (DES). The TLS Record Protocol can also be used without 
encryption. The TLS Handshake Protocol allows the server and client to authenticate 
each other and to negotiate an encryption algorithm and cryptographic keys before data is 
exchanged. The TLS protocol is based on Netscape's SSL 3.0 protocol; however, TLS 
and SSL are not interoperable. The TLS protocol does contain a mechanism that allows 
TLS implementation to back down to SSL 3.0. The most recent browser versions support 
TLS. The TLS Working Group, established in 1996, continues to work on the TLS 
protocol and related applications.1 

 

 Web Services: 

 

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in 
a manner prescribed by its description using SOAP-messages, typically conveyed using 
HTTP with an XML serialization in conjunction with other Web-related standards.2  
 
Web services (sometimes called application services) are services (usually including 
some combination of programming and data, but possibly including human resources as 
well) that are made available from a business's Web server for Web users or other Web-
connected programs. Providers of Web services are generally known as application 
service providers. Web services range from such major services as storage management 
and customer relationship management (CRM) down to much more limited services such 
as the furnishing of a stock quote and the checking of bids for an auction item. The 
accelerating creation and availability of these services is a major Web trend.  
Users can access some Web services through a peer-to-peer arrangement rather than by 
going to a central server. Some services can communicate with other services and this 

                                                 
1 http://searchsecurity.techtarget.com/gDefinition/0,294236,sid14_gci557332,00.html 
2 http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/ 



 175 

exchange of procedures and data is generally enabled by a class of software known as 
middleware. Services previously possible only with the older standardized service known 
as Electronic Data Interchange (EDI) increasingly are likely to become Web services. 
Besides the standardization and wide availability to users and businesses of the Internet 
itself, Web services are also increasingly enabled by the use of the Extensible Markup 
Language (XML) as a means of standardizing data formats and exchanging data. XML is 
the foundation for the Web Services Description Language (WSDL).  
As Web services proliferate, concerns include the overall demands on network bandwidth 
and, for any particular service, the effect on performance as demands for that service rise. 
A number of new products have emerged that enable software developers to create or 
modify existing applications that can be "published" (made known and potentially 
accessible) as Web services.1 
 

 WSDL: 

 

The Web Services Description Language (WSDL) is an XML-based language used to 
describe the services a business offers and to provide a way for individuals and other 
businesses to access those services electronically. WSDL is the cornerstone of the 
Universal Description, Discovery, and Integration (UDDI) initiative spearheaded by 
Microsoft, IBM, and Ariba. UDDI is an XML-based registry for businesses worldwide, 
which enables businesses to list themselves and their services on the Internet. WSDL is 
the language used to do this. WSDL is derived from Microsoft's Simple Object Access 
Protocol (SOAP) and IBM's Network Accessible Service Specification Language 
(NASSL). WSDL replaces both NASSL and SOAP as the means of expressing business 
services in the UDDI registry.2 
 
As communications protocols and message formats are standardized in the web 
community, it becomes increasingly possible and important to be able to describe the 
communications in some structured way. WSDL addresses this need by defining an XML 
grammar for describing network services as collections of communication endpoints 
capable of exchanging messages. WSDL service definitions provide documentation for 
distributed systems and serve as a recipe for automating the details involved in 
applications communication.  
 
A WSDL document defines services as collections of network endpoints, or ports. In 
WSDL, the abstract definition of endpoints and messages is separated from their concrete 
network deployment or data format bindings. This allows the reuse of abstract 
definitions: messages, which are abstract descriptions of the data being exchanged, and 
port types which are abstract collections of operations. The concrete protocol and data 
format specifications for a particular port type constitutes a reusable binding. A port is 
defined by associating a network address with a reusable binding, and a collection of 
ports define a service. Hence, a WSDL document uses the following elements in the 
definition of network services: 
 

                                                 
1 http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci750567,00.html 
2 http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci521683,00.html 



 176 

Types– a container for data type definitions using some type system (such as XSD).  
 
Message– an abstract, typed definition of the data being communicated.  
 
Operation– an abstract description of an action supported by the service.  
 
Port Type–an abstract set of operations supported by one or more endpoints.  
 
Binding– a concrete protocol and data format specification for a particular port type.  
 
Port– a single endpoint defined as a combination of a binding and a network address.  
 
Service– a collection of related endpoints.  
 
It is important to observe that WSDL does not introduce a new type definition language. 
WSDL recognizes the need for rich type systems for describing message formats, and 
supports the XML Schemas specification (XSD) as its canonical type system. However, 
since it is unreasonable to expect a single type system grammar to be used to describe all 
message formats present and future, WSDL allows using other type definition languages 
via extensibility. 
 
In addition, WSDL defines a common binding mechanism. This is used to attach a 
specific protocol or data format or structure to an abstract message, operation, or 
endpoint. It allows the reuse of abstract definitions.  
In addition to the core service definition framework, this specification introduces specific 
binding extensions for the following protocols and message formats: 
SOAP 1.1, HTTP GET / POST and MIME. 
   
Although defined within this document, the above language extensions are layered on top 
of the core service definition framework. Nothing precludes the use of other binding 
extensions with WSDL.1 
 

X509 Certificate: 

 

A public-key certificate binds a public-key value to a set of information that identifies the 
entity (such as person, organization, account, or site) associated with use of the 
corresponding private key (this entity is known as the "subject" of 
the certificate).  A certificate is used by a "certificate user" or "relying party" that needs 
to use, and rely upon the accuracy of, the   public key distributed via that certificate (a 
certificate user is typically an entity that is verifying a digital signature from the 
certificate's subject or an entity sending encrypted data to the subject).  The degree to 
which a certificate user can trust the binding embodied in a certificate depends on several 
factors. These factors include the practices followed by the certification authority 
(CA) in authenticating the subject; the CA's operating policy, procedures, and security 
controls; the subject's obligations (for example, in protecting the private key); and the 

                                                 
1 http://www.w3.org/TR/wsdl#_introduction 



 177 

stated undertakings and legal obligations of the CA (for example, warranties and 
limitations on liability). 
 
A X.509 certificate may contain a field declaring that one 
or more specific certificate policies applies to that certificate.  According to X.509, a 
certificate policy is "a named set of rules that indicates the applicability of a certificate to 
a particular community and/or class of application with common security 
requirements." A certificate policy may be used by a certificate user to help in deciding 
whether a certificate and the binding therein, are sufficiently trustworthy for a particular 
application.  X.509 certificates are widely used as part of PKI.1 
 

Cross Site Scripting (XSS): 

 

Cross site scripting attacks exploits vulnerabilities that fall in the category of poor input 
validation.  Essentially an attacker submits executable scripts as part of the input to the 
web application and those scripts are then executed on the browsers of other clients.  
Those attacks often lead to information disclosure of the end user’s session tokens, attack 
the end user’s machine or spoof content to fool the end user.  Disclosure of session 
tokens can lead to session hijacking and allow an attacker to assume a valid user’s 
identity (compromise authentication).  Spoofing content can also lead to information 
disclosure if for instance a valid user input his/her login and password information into a 
form sent to an attacker.  XSS attacks can occur at the web tier or at the application tier 
and aggressive white list input validation should be present in the application to thwart 
these attacks. There are two types of XSS attacks:  stored and reflected.  In stored XSS 
attacks, the malicious script injected by an attacker is permanently stored by the web 
application for later retrieval by the end user who requests the affected data.  Since the 
malicious script at that point arrived from a trusted server, the client executes the script.  
In reflected attacks, the malicious script is transferred to the server and then is echoed 
back to the user either in an error message, search result, or some other response to the 
end user which includes some of the data fields into which a malicious script has been 
inserted as part of the request.   

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 http://www.faqs.org/rfcs/rfc2527.html 



 178 

Appendix C – References 

 
[1] Viega, J., McGraw, G. (2002).  “Building Secure Software.”  Addison-Wesley, 

New York, NY. 
 
[2] Coulouris, G., Dollimore, J., Kindberg, T. (2001).  “Distributed Systems Concepts 

and Design.”  Addison-Wesley, 3rd edition, New York, NY. 
 
[3] Pfleeger, C. (1997).  “Security in Computing.”  Prentice Hall PTR, 2nd edition, 

Upper Saddle River, NJ. 
 
[4] Asbury, S., Weinter, S. (1999).  “Developing Java Enterprise Applications.”  

Wiley Computer Publishing, New York, NY. 
 
[5] Conklin, W., White, G., Cothren, C. (2004).  “Principles of Computer Security.”  

McGraw Hill Technology Education, Burr Ridge, IL. 
 
[6] Viega, J., Messier, M. (2003).  “Secure Programming Cookbook.”  O’Reilly, First 

Edition, Sebastopol, CA. 
 
[7] Williams, Jeff.  “How to Attack the J2EE platform,” JavaOne Sun’s Worldwide 

Java Developers Conference, 2004. 
 
[8] Begin, Clinton.  “Implementing the Microsoft .NET Pet Shop using Java,” 

www.iBatis.com, 2002. 
  
[9] The Middleware Company Case Study Team, “J2EE and .NET (Reloaded) Yet 

Another Performance Case Study,” The Middleware Company Performance Case 
Study, 2003. 

 
[10] Meier, J.D. (2003).  “Improving Web Application Security:  Threats and 

Countermeasures,” Microsoft Corporation, Redmond, WA.  (at:  
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/threatcounter.asp) 

 
[11]  Viega, J. (2005).  “CLASP Reference Guide.”  Secure Software Inc., McLean, 

VA. 
 
[12]  Lipner, S. “The Trustworthy Computing Security Development Lifecycle,”  

Microsoft Corporation, Redmond, WA.   
(at:  http://msdn.microsoft.com/security/default.aspx?pull=/library/en-us/dnsecure/html/sdl.asp)   

 
[13] DeLooze, L. (2004).  “Applying Security to an Enterprise using the Zachman 

Framework,”  (at:  http://www.securitydocs.com/library/2129)  
 
[14] Swanson, M. (2001).  “Security Self-Assessment Guide for Information 

Technology Systems,” NIST SP800-26. 



 179 

 
[15] Ross, R. (2005).  “Recommended Security Controls for Federal Information 

Systems,” NIST SP800-53. 
 
[16] Grance, T. (2004).  “Security Considerations in the Information System 

Development Life Cycle,” NIST SP800-64. 
 
[17] “Business-Centric Methodology for Enterprise Agility and Interoperability,” 

Oasis, 2003. 
 
[18] Curphey, M. “A Guide to Building Secure Web Applications,” OWASP.  (at:  

http://www.cgisecurity.com/owasp/html/) 
 
[19] “BEA Weblogic Server:  Programming Weblogic Security,” BEA Systems Inc., 

2004.  (at: http://e-docs.bea.com/wls/docs81/pdf/security.pdf) 

 

[20] Ross, R. (2004).  “Guide for the Security Certification and Accreditation of 
Federal Information Systems,” NIST SP800-37. 

 
[21] Lyons, B.  “The Platform Wars:  .NET vs. J2EE,”  Number Six Software, Inc.  (at:  

http://www.numbersix.com/v4/csdi/resources.html) 
 
[22] Watkins, D. (2002).  “An Overview of Security in the .NET Framework,”  

Microsoft Corporation, Redmond, WA.   
 
[23] “J2EE BluePrints,”  (at:  

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/apmTOC.html) 
 

[24] “OWASP Top Ten,” OWASP. (at: http://www.owasp.org/documentation/topten.html) 
 
[25] “Secure Coding Guidelines for the .NET Framework,”  Microsoft Corporation, 

Redmond, WA, 2002.  (at:  http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnnetsec/html/seccodeguide.asp) 
 
[26] BEA Product Documentation, “Securing Web Applications,” BEA Systems.  (at:  

http://e-docs.bea.com/wls/docs81/security/thin_client.html) 
 
[27] MacLennan, B. (1987).  “Principles of Programming Languages.”  Holt, Rinehart 

and Winston. 
 
[28] .NET Framework Developer’s Guide, “Overview of the .NET Framework,” 

MSDN, Microsoft Corporation, Redmond, WA.  (at:  

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/threatcounter.asp)  
 
[29] Mulcahy, G. “J2EE and .NET Security,” CGI Security, 2002.  (at:  

http://www.cgisecurity.com/lib/J2EEandDotNetsecurityByGerMulcahy.pdf) 
   



 180 

     
     
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 181 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 
 
 
 
 
  

 

        

  

 
 
 
 
 
 
  

 
 
 
 
  

 

 



 182 

 

 

 

 

 

 

 

 

 

 


