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Abstract. Building on the work of Kocher [Koc96], we introduce the
notion of side-channel cryptanalysis: cryptanalysis using implementation
data. We discuss the notion of side-channel attacks and the vulnerabili-
ties they introduce, demonstrate side-channel attacks against three prod-
uct ciphers—timing attack against IDEA, processor-flag attack against
RC5, and Hamming weight attack against DES—and then generalize our
research to other cryptosystems.

Keywords: side channels, cryptanalysis, timing attacks, product ciphers.

1 Introduction

Any cryptographic primitive, such as a block cipher or a digital signature al-
gorithm, can be thought of in two very different ways. It can be viewed as
a mathematical object; typically, a function taking an input between 0 and
2N − 1, and providing an output between 0 and 2M − 1. Alternatively, it can be
viewed as a concrete implementation of that mathematical object. Traditionally,
cryptanalysis has been directed solely against the mathematical object, and the
resultant attacks necessarily apply to any concrete implementation. The statis-
tical attacks against block ciphers—differential [BS91,BS93] and linear [Mat93]
cryptanalysis—are example of this; these attacks will work against DES regard-
less of which implementation of DES is being attacked.

Many of these attacks are more theoretical than operational, and are some-
times called “certificational weaknesses” to indicate that they may not work
practical implementations. A known-plaintext attack that uses 240 plaintexts,
for example, would require an operational cryptanalyst to obtain just under
nine terrabytes of data (assuming a 64-bit block cipher) encrypted in a single



key. While no cryptographer would seriously recommend such an algorithm for
operational deployment, is wouldn’t be too hard to build a system that denied
an attacker access to this magnitude of plaintext.

In the last few years, new kinds of cryptanalytic attack have begun to appear
in the literature: attacks that target specific implementation details. Both timing
attacks [Koc96] and differential fault analysis [BDL97,BS97] make assumptions
about the implementation, and use additional information garnered from attack-
ing certain implementations. Failure analysis [HGS97,Bel96] assumes a one-bit
feedback from the implementation—was the message successfully decrypted—in
order to break the underlying cryptographic primitive. Related-key cryptanaly-
sis [Bih94,KSW96,KSW97] also makes assumptions about the implementation,
in this case about related keys used to encrypt different texts.

These attacks don’t necessarily generalize—a fault-analysis attack just isn’t
possible against an implementation that doesn’t permit an attacker to create
and exploit the required faults—but can be much more powerful. For example,
differential fault analysis of DES requires between 50 and 200 ciphertext blocks
(no plaintext) to recover a key [BS97].

In this paper, we consider the general class of side-channel attacks against
product ciphers. A side-channel attack occurs when an attacker is able to use
some additional information leaked from the implementation of a cryptographic
function to cryptanalyze the function. Clearly, given enough side-channel infor-
mation, it is trivial to break a cipher. An attacker who can, for example, learn
every input into every S-box in every one of DES’s rounds can trivially calculate
the key. Our research attempts to show how little side channel information is
required to break product ciphers.

In real-world systems, attackers cheat; prudent engineers of secure systems
anticipate this and adapt to it. Exploiting weaknesses in implementations—
either by monitoring some “side-channel” of information out of the mechanism
implementing the cryptographic primitive (such as timing or power consump-
tion), or by altering some internal data inside that mechanism—may feel like
cheating, but that just makes their effects more devistating.

1.1 Side Channels and Product Ciphers

Symmetric encryption is most often done with product block ciphers, such as
DES [DES81], IDEA [LMM91], and Blowfish [Sch94]. To understand why side
channels so often provide devastating attacks against product ciphers, it is nec-
essary to digress a bit into the theory of block cipher design.

A block cipher is a cipher that encrypts whole blocks of plaintext at a time;
all the abovementioned block ciphers operate on blocks of 64 bits at a time.
A product cipher (sometimes called an iterative block cipher) is a block cipher
made by iterating a fairly simple round function many times, each time with its
own key. Thus, a four-round product cipher would look like:

EK(X) = RK3(RK2(RK1(RK0(X)))),
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where K0..3 are functions of K.
Each round function, RK(), is actually a weak block cipher, in the sense

that if an attacker knows much about the plaintext (such as simple plaintext
statistics), he can quickly break the round function and recover its round key.
However, if the same attacker is faced with a sequence of random numbers, each
encrypted with the round function, he has no way to mount such an attack.

Nearly all attacks on product ciphers work by learning some way to distin-
guish the output of all but the last rounds from a random permutation. In a
linear attack [Mat93], a subset of bits in the input to the cipher and to the last
round don’t quite have a balanced parity; in a differential attack [BS91,BS93],
the relationship between a pair of inputs to the last round isn’t quite random.
Partitioning attacks, higher-order differential attacks, differential-linear attacks,
and related-key attacks all fit into this pattern. A strong product cipher will
have as the input to its last round a random permutation of the input to the
cipher: something an attacker can’t distinguish from a random number.

Side channel information, even a tiny fraction of a bit of it per ciphertext
output, can provide another way of distinguishing the input of the last round
from a random number. If the attacker can learn the parity of the input to
the last round, or its Hamming weight, or the carry-flag resulting from the last
round’s addition operation, then he can usually break the cipher fairly quickly.

2 Timing Attacks Against IDEA

IDEA [LMM91] is a product block cipher designed by Lai, Massey, and Murphy,
to resist all forms of cryptanalysis publicly known at that time. Except for some
special “weak-key” conditions, the full 8-round IDEA is apparently very strong
against the standard differential, linear, and related- and chosen-key attacks.
However, IDEA can be cryptanalyzed with a piece of side-channel information:
whether one of the inputs into one of the multiplications is zero.

This side channel can be obtained in several ways. Since the multiplication
is done modulo 216, a zero operand is treated as a special case. Some implemen-
tations bypass the multiplication completely and simply patch in the correct
value. Timing1, power consumption, radiation, etc., will all be different if one
input is a zero. For the rest of this discussion, we assume that this information
is received through timing measurements. However, any side channel that can
yield the same information is just as effective.

2.1 The Basic Attack

The basic mechanism used in all of these attacks is to search for one or two 16-
bit values visible to the cryptanalyst which indicate a zero input into a multiply
somewhere in the cipher.
1 This observation was borne out experimentally using the PGP 2.3 implementation

of IDEA, on a 486SX-33.
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The time taken to encrypt one block with IDEA may be broken into three
parts:

1. Operations which take approximately constant time. These may be assumed
to include all operations except the multiplications modulo 216 + 1.

2. All the multiplications except for the one being targeted. This is probably
approximately normally distributed.

3. The multiplication being targeted. If this has a zero input, it will invariably
take less time than if it has a nonzero input.

The time taken by the whole encryption process is the sum of these three
times. If the multiplication being targeted has a zero input, then the mean of
this time will be slightly lower than if the multiplication being targeted does not
have a zero input. If we can reliably detect this difference, then we can detect
whether or not the multiplication operation being targeted is getting zero inputs.

Timings can be acquired in two simple ways: Either the cryptanalyst makes
extremely precise timings of each encryption, or he measures total time to en-
crypt many similar plaintext blocks at a time. In either case, however, he must
then statistically test the hypothesis that one of these sets of times is significantly
lower than the others.

A Ciphertext-Only Attack Requiring Precise Block Encryption Tim-
ings With precise timing of each encryption, we can apparently recover the key
using ciphertext only. Our attack works as follows:

1. Record precise timings for n encryptions. Also store the resulting plaintexts.
Let T0..n−1 be the timings, and C0..n−1 be the ciphertext blocks.

2. Group the ciphertexts and timings into 216 subsets, based on the low-order
16 bits of the output.

3. Test the average times of each group against the average times of all the
groups statistically, to find whether one of the sets has (with some acceptably
high probability) a lower average than the other sets. If so, then the inputs
to the last multiply of the output transformation must have been 0 for all
inputs in that set. Solve for the last multiplicative subkey. If there is no
difference, then either we’ve chosen some parameters (i.e., n) wrong, or the
subkey is a 0.

4. Repeat steps 2-3, above, for the high-order 16 bits and the first multiplicative
subkey of the output transformation. We now have 32 bits of expanded key.

5. We now attack the second additive subkey in the output transformation. For
each possible value of this subkey, we look at which ciphertexts lead us to a
zero value going into the first multiplication of the last round’s MA box. For
one of these subkey guesses, the average timing should be less than for all the
other subkey guesses. This reveals the right subkey. If there is no difference,
then either we’ve chosen some parameters wrong, or the first subkey in the
MA-box is zero. We have now recovered 48 bits of expanded key.
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6. We now attack the first additive subkey in the output transformation, and
the first subkey in the MA-box. We do this as follows:
(a) Break the ciphertexts and timings up into 216 subsets based on the value

of the leftmost (first) input to the MA-box.
(b) For each possible subkey value for the first additive subkey of the output

transformation, break each subset up into 216 sub-subsets, based on what
the value of the second MA-box input would be if this were the right
subkey.

(c) For the right subkey, each subset will have one sub-subset which has a
smaller timing value than all the other sub-subsets in that subset. We
have now found 64 bits of subkey.

(d) We now choose any three of these sub-subsets, and use them to solve
for the first multiplicative subkey of the MA-box. We have now found
80 bits of subkey, and can brute-force the remaining 48. (There are also
ways to continue this attack.)

This kind of attack might be practical for recovering the key from a tamper-
resistant box which always encrypts under the same IDEA key. The cryptanalyst
does not need to know anything about the plaintext for this attack, but must
always know precisely when the encryption started and when it ended. Chaining
modes have no real impact on this attack.

2.2 An Adaptive Chosen Plaintext Timing Attack

An attack very similar to the one described above is possible, even if the crypt-
analyst doesn’t have the ability to measure each encryption time precisely. In
this case, we require the ability to choose plaintext batches to send through the
encryption algorithm, along with the ability to time these batches.

The attack works as follows:

1. Choose 216 batches of plaintexts large enough that changing the input of an
average of one multiply instruction per encryption to zero will be detectable
in the timing, with high probability. (We need to specify numbers for the
timing statistics here before we can know how many plaintexts must be in
each batch.) Every plaintext has the same X0. Each batch of plaintexts has
the same X2.

2. Determine the time required for each batch to be encrypted.
3. The batch that took the least time to encrypt indicates one equation involv-

ing some key material:

(X0 � Z0) = (X2 � Z2)

4. Generate another set of 216 plaintexts to be encrypted, this time using a
different value for X0, X∗0 . Follow the steps above, to get a second equation:

(X∗0 � Z0) = (X2 � Z2)
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In most cases, this should allow the cryptanalyst to recover the two key
values Z0 and Z2. (If Z4 = 0, then this attack will simply not work—there
won’t be a significant difference in the times.)

5. Generate another set of 216 batches of plaintexts, this time holding (A)
constant by use of fixed values for X0 and X2, and also holding X3 constant.
For each different batch, X1 must take on a different value.

2.3 Generalizations

We detailed this attack assuming that the cryptanalyst was able to determine
when a multiply by zero occurred by watching the relative encryption time. This
is not the only side channel that can yield this information; radiation and power
consumption can also leak this multiply-by-zero condition. Moreover, radiation
and power consumption can generally determine the exact round where the
multiplication by zero occurred, greatly simplifying the attack.

3 A Processor-Flag Attack Against RC5

There may be cases when we can learn the internal flags states of processors.
For example, we may be able to determine the state of the carry flag after each
half-round of RC5. Recall that an RC5 round looks like

Ri = (Ri−1 ⊕ Li−1)�Li−1 + S2i−1
Li = (Li−1 ⊕Ri)�Ri + S2i

where Si denote the round subkeys, (L0, R0) is the original plaintext, and
(Lr, Rr) is the output of the last round. There is one final transformation

Rr+1 = (Rr ⊕ L4)�Lr + S2r+1
Lr+1 = Lr

before we obtain the resulting ciphertext (Lr+1, Rr+1) (this last transformation
makes the encryption and decryption processes identical).

RC5 is a variable-width cipher usually the width is set so that Ri (resp. Li)
fits into one register. Therefore the addition performed may cause the carry flag
to be set and we denote C2i−1 (resp. C2i) the value of the carry flags after the
addition computing Ri (resp. Li).

We will show that with high probability, an attacker can reconstruct S2r+1
given several ciphertext pairs (Lr+1,j , Rr+1,j) and the corresponding carry flags
C2r−1,j . Once an attacker determines S2r+1, they can strip off the last half round
and reapply our attack (reversing left and right).

As we will see in the next sections, each of the two possible values of msb(SK2r−1)1
lead to exactly one value of SK2r+1. Hence an attacker could simply guess the
most significant bit of SK2i−1 for all i ≤ r, solve for each of the subkeys, and
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perform a few trial decryptions. If r is small (say 32), this is certainly feasible.
However, in the event that r is too big, we must attempt to find msb(SK2r−1)1
by other means. The next section gives an algorithm for doing exactly that.

3.1 Determining msb(SK2r−1)1

Determining the most significant bit of SK2r−1 is rather simple. Consider three
ciphertext pairs (Lr+1,j , Rr+1,j), j = 1, 2, 3 and their corresponding carry flags
C2r−1,j . Then we simply take the most significant bit of SK2r−1 to be the
majority value of the carry flags C2r−1,j . The analysis which shows that three
pairs suffices follows.

First we must consider a simplified experiment. Let K be a randomly chosen
n-bit value and consider the experiment in which we repeatedly chose a random
n-bit value A and determine the value C of the carry flag for A+K. Then

P [C = 1|K = X] = P [A+X ≥ 2n] = X/2n.

Furthermore, we can generalize this where we only consider the l most significant
bits of K. Then

P [C = 1|msb(K)l = X] =
2n−l−1∑
i=0

P [C = 1|K = X · 2n−l + i] · P [ lsb(K)n−l = i]

=
2n−l−1∑
i=0

X · 2n−l + i

22n−l

= X2−l + 2−l−1 − 2−n−1.

Therefore, in order to estimate msb(K)l we simply need to perform sufficiently
many trials so the X such that

µ′ − t(X2−l + 2−l−1 − 2−n−1)

is minimal satisfies msb(K)l = X with high probability, where µ′ is the observed
number of carries and t is the number of trials. Let pl(X) denote the probability
of a carry when msb(K)l = X. Then

pl(X) = X2−l + 2−l−1 − 2−n−1

To approximate the number of trials, we assume that the distribution of µ′

is normal. After t trials with µ′ observed carries, we have

P
[
tpl(X)− 3

√
tpl(X)(1− pl(X)) < µ′ < tpl(X) + 3

√
tpl(X)(1− pl(X))

]
≈ 0.997.

Hence we want to choose t such that

pl(X)− pl(X − 1) > 3/2
√
pl(X)(1− pl(X))/t
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for all X > 1. This gives

pl(X)− pl(X − 1) > 3/2
√
pl(X)(1− pl(X))/t⇔ 2−l > 3/2

√
pl(X)(1− pl(X))/t

⇔ 2−2l > (9/4)pl(X)(1− pl(X))/t
⇔ t > 22l−29pl(X)(1− pl(X))

which will be roughly maximal when X = 2l−1 and hence

t > 22l−29pl(2l−1)(1− pl(2l−1))
= 22l−29(2−2 − 2−2l−2 + 2−l−n−1 − 2−2n−2)
= 9(22l−4 − 2−4 + 2l−n−3 − 22l−2n−4).

We are interested in the case where l = 1 and hence need

t > 9(2−2 − 2−4 + 2−n−2 − 2−2n−2)

pairs. For n = 32 this gives t ≈ 1.69. Therefore we can take three ciphertext
pairs and let msb(SK2r−1)1 be the majority value of the carry flags C2r−1,j .

3.2 Determining lsb(SK2r+1)1

Once we have determined the most significant bit of SK2r−1, we can use it
to determine the least significant bit of SK2r+1. The algorithm is rather sim-
ple: we choose plaintext/ciphertext pairs (Lr+1,j , Rr+1,j) such that Lr+1,j ≡ 1
(mod 32) and C2r−1 6= msb(SK2r−1)1.

The former condition ensures that if we know the most significant bit of
Rr,j , then we will know the least significant bit of Rr+1,j � S2r+1. The latter
condition ensures that we know the most significant bit of Rr,j . After all, if
msb(SK2r−1)1 = 1 and C2r−1 = 0 we know that msb(Rr,j)1 = 1. Similarly, if
msb(SK2r−1)1 = 0 and C2r−1 = 1 we know that msb(Rr,j)1 = 0. Hence

msb(Rr,j)1 = msb(SK2r−1)1. (1)

From the above and the formula for computing Rr+1,j it is easy to see that

lsb(Rr+1,j � S2r+1)1 = msb(Rr,j)1 ⊕ msb(Lr,j)1

or

lsb(S2r+1)1 = ( msb(SK2r−1)1 ⊕ msb(Lr+1,j)1)� lsb(Rr+1,j)1.

Note that we only need one ciphertext pair to determine lsb(SK2r+1)1.
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3.3 Determining Remaining Bits of SK2r+1

Determining the remaining bits of SK2r+1 comes from generalizing the attack of
the previous section. Here we assume that we know the j least significant bits of
SK2r+1 and wish to determine the j+1st bit. Again we choose a ciphertext pair
(Lr+1, Rr+1) such that C2r−1 6= msb(SK2r−1)1. However, this time we choose
the pair so that Lr+1 ≡ j + 1 (mod 32).

The former condition ensures that we know the most significant bit of Rr
by the same argument as in the previous section. The latter condition ensures
that we know the j + 1st bit of Rr+1 � S2r+1. Since we know lsb(S2r+1)j , we
can compute lsb(Rr+1 � S2r+1)j . However, we also know the j + 1st bit of the
difference as it is a function of Rr+1 � lsb(S2r+1)j , msb(Rr)1 and msb(Lr)1.
Hence

lsb((Rr ⊕ Lr)�Lr )j = lsb(Rr+1)j � lsb(S2r+1)j
⇒ lsb(S2r+1)j+1 = lsb(Rr+1)j+1 � ( lsb((Rr ⊕ Lr)�Lr )j

� 2j · ( msb(Rr)1 ⊕ msb(Lr)1))

Of course Lr = Lr+1 so this formula allows us to determine the j + 1st bit of
S2r+1 directly.

Repeatedly applying this algorithm for j = 2, . . . , 32 we recover the remaining
bits of S2r+1.

3.4 Adaptive Chosen-Plaintext Attack

We can recover S1 much more directly using a chosen-plaintext attack which
requires n chosen texts. Once we determine S1 we can peel off the first half-
round and repeat the attack for the remaining subkeys.

The attack is a very simple binary search on S1. The crucial observation is
that C1 = 1 iff (R0 ⊕ L0)�L0 � S1 ≥ 2n. If we let L0 = 0, this simplifies to
R0 � S1 ≥ 2n. Therefore we perform a simple binary search on 2n � S1: C1 = 1
iff R0 > 2n � S1.

3.5 Generalizations

This is not the only side channel that can be used to cryptanalyze RC5; other
side-channel information can also be used to break the cipher. For example,
the timing may be different depending on the number of bits rotated. This
information can be used to recover the RC5 key [Koc98]. Or the power consumed
by the rotate mechanism might be different depending on the Hamming weight
of the bits rotated.
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4 A Hamming-Weight Attack Against DES

Next we introduce Hamming-weight cryptanalysis. This assumes we have a side
channel that gives information on the Hamming weight of intermediate encryp-
tion values. We claim that this model is not implausible: for instance, in some
hardware implementations total power consumption is correlated to the total
Hamming weight of all intermediate values, and in software timing data may
leak information about the Hamming weight of internal variables when certain
operations (e.g. integer multiplication) are used.

We show here that Hamming weight side channels can enable powerful ciphertext-
only attacks in many cases. We will concentrate throughout on cryptanalysis of
DES for concreteness, but it should become clear that these attacks will apply
directly to any product cipher.

Let’s start first with a very simple scenario. Assume that we are provided
with a side channel that discloses the Hamming weight of the block after 15
rounds of encryption (i.e. the input to the 16th and final round). Then attacks
to recover the last-round subkey abound. For instance, we could simply guess
the 48-bit last-round subkey, and verify correct guesses on a few known cipher-
texts. This attack will require about 48/ log2

√
32π ≈ 15 ciphertexts and offline

work equivalent to 244 trial encryptions; the computational complexity could be
reduced to about 222 with meet-in-the-middle techniques.

For reasons that will become clear later, we wish to describe a different
statistical attack which uses the Hamming weight of the input to the last round.
Let (R,L ⊕ F (L)) be the last-round input corresponding to the ith ciphertext
(L,R) where F (L) is the output of the Feistel F function under the last-round
subkey. We write W = wtF (L) for the Hamming weight of the output of the
last-round Feistel function; W is easily determined from the side channel. Also,
we write S for the Hamming weight of the 4-bit output of the first S-box in
the computation of F (L), and N for the total Hamming weight of the other
S-box outputs, so that W = S + N . Then guessing the 6 key bits entering the
first S-box (in the 16th round) gives us S if the guess was correct, or (say) T
otherwise (where T is a random variable with the same distribution as S, but T
is independent of S). The core idea of the statistical attack is that S is strongly
correlated with the known values W = S + N , but T is not, so we can detect
correct guesses at those 6 key bits by the statistically-significant correlation that
results.

The statistical attack thus proceeds as follows. Suppose we have n cipher-
texts where the side channel discloses W [1], . . . ,W [n]. Guess the 6 key bits
k entering the first S-box and compute the Hamming weight of that S-box’s
output, calling it (say) Uk[1], . . . , Uk[n]. Calculate a measure of correlation2

ck =
∑n
i=1 Uk[i]W [i]/n, which is an estimate at the expected value EUkW of

Uk ·W . When k is correct, we get Uk[i] = S[i], and thus ck is an estimate of
2 It is in fact equivalent in power to calculating the observed correlation coefficient ρ,

or the covariance for that matter.
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ESW = ES(S + N) = ES2 + ES EN ; when k is false, ck is an estimate of
ETW = (ES)2 + ES EN . Therefore, the counter ck is expected to be notice-
ably larger when k is correct. If n is sufficiently large, we should be able to pick
out the correct value of k from the largest of the 64 counters.

Of course, once we have determined the correct values of the 6 key bits
entering the first S-box, we can repeat the attack for each of the other S-boxes
in turn, until we have recovered the entire last-round subkey. In practice one
could make do with significantly fewer ciphertexts by treating several S-boxes
at once; here we focus on giving the essence of the central ideas of the attack,
with an eye towards applying them to a wider class of Hamming-weight-based
side channels.

We now analyze the complexity of this algorithm. The random variables S, T
are independent symmetric binomial random variables with mean 2; also N is
a symmetric binomial with mean 14. We see that E (SW − TW ) = ES2 −
(ES)2 = 1. Also, a bit of computation shows that Var (SW − TW ) = 232.
Letting k be a (generic) incorrect guess and K be the correct guess, we see that
cK − ck will be approximately Gaussian with mean 1 and standard deviation
23/
√
n when n is not too small. We expect success when cK is larger than all

the incorrect ck counter values, and we can roughly estimate the probability of
this as Prob(cK > ck)63 = Φ(

√
n/23)63. Therefore, with n = (3 · 23)2 ≈ 4800

ciphertexts, we expect to succeed with probability about (1− .0013)63 ≈ .92.
To recap, we have expressed the known Hamming weight W as a sum W =

S+N of “signal” S and “noise” N . Each guess at the 6 key bits entering the first
S-box gives us a list of candidate observations for S. This reduces the problem
of recognizing correct guesses to the problem of filtering out the noise from a
noisy signal; this, in turn, is made possible because S is strongly correlated with
S +N .

This technique can be generalized to scenarios with just about any Hamming-
weight-based side channel imaginable.

For instance, imagine a side channel which gives us W , the total weight of all
of the DES F function outputs summed over all 16 rounds. This is a good deal
more plausible than our previous model, where we obtained the Hamming weight
of only the last-round F function output; however, it may not be immediately
obvious how to use such a side channel to break DES. We note that the statistical
techniques developed above will apply immediately. As before, we let S stand for
the total Hamming weight of the output of the first S-box in the last round. The
total weight W can be expressed as W = S +N , where N is a sum of 127 other
S-box outputs. Thus N can be treated as a symmetric binomial random variable
of mean 254 which is independent of S. The attack proceeds as before, though
we will of course need significantly more known ciphertexts. We estimate that
n = 220 known ciphertexts and offline work comparable to 219 trial encryptions
suffices to recover the entire DES key with very high probability. This figure could
be reduced to about 218 known ciphertexts and 237 offline work by simultaneously
guessing 24 key bits entering 4 S-boxes.

11



In some environments, we may not be able to obtain the total Hamming
weight of all the F function outputs, but we may be able to obtain a “noisy”
version of it. (As an example, imagine a hardware implementation where the
power consumption reveals the total Hamming weight of all intermediate values
computed during a single DES encryption, or even something correlated to this
weight. This would yield a side channel which is correlated to the total Hamming
weight of all F function outputs.) In these situations, it is clear that we can filter
out the noise as before: the same statistical technique still works, though more
ciphertexts will be needed to compensate for the stronger “noise” contribution
to the side channel value.

So far we have concentrated on ciphertext-only attacks. In fact, by symmetry,
one can just as easily apply the attacks to scenarios where only the plaintext
is known, and not the ciphertext! We are not aware of any other cryptanalytic
technique where this is possible.

In summary, we see that even a side channel which is only mildly correlated
to values of interest (such as the input to the last round) can be used to mount a
powerful statistical attack against just about any product cipher. These attacks
require only known-ciphertexts, and so should be quite practical to mount in
practice. This shows that cryptosystem implementors must take great care to
avoid even the slightest correlation between observable outputs and internal
values.

5 Conclusions and Further Directions

The purpose of this paper was to demonstrate the power of side-channel crypt-
analysis against product ciphers. Our attacks are by no means exhaustive; the
algorithms discussed have other possible side channels and other attacks are
possible given other side channel information. And other product ciphers are
vulnerable to similar attacks. We believe attacks based on cache hit ratio in
large S-box ciphers like Blowfish [Sch94], CAST [Ada97], and Khufu [Mer91] are
possible.

Stream ciphers with irregular clocking features can be especially vulnerable
to side-channel attacks. A5 [XHW94], PIKE [And95], Gollman cascades [CG88],
shrinking and self-shrinking generators [CKM94,MS94], and any of the fam-
ily of alternating stop-and-go generators [Sch96] are easily breakable if an at-
tacker knows how many LFSRs clocked for each output. Implementations of
RC4 [Sch96] that have different side-channel characteristics when i = j are also
vulnerable.

Public-key algorithms are vulnerable. Kocher showed how to mount at tim-
ing attack against several public-key algorithms [Koc96]. These results can be
generalized to any primitive that uses multiplication modulo large numbers for
security, e.g. stream ciphers like Blum-Blum-Shub [BBS86] and hash functions
like IBC Hash.
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The open questions lead in two different directions: how to obtain more
detailed side-channel information, and how little side-channel information is re-
quired to break a cryptographic primitive. With regards to the former, we leave
that to the electronic engineers. We have collected side-channel information using
both timing and power channels, and have often been surprised by how easy it
is. We can only speculate how much more information a well-equipped hardware
laboratory can collect.

As to the second question, the surprising result from this research is that the
amount of side-channel information necessary to break a product cipher is very
small. Ciphers have not been designed with side channels in mind; hence, they
are often very vulnerable to analysis using them.

It is our belief that most operational cryptanalysis makes use of side-channel
information. Sound as a side-channel—listening to the rotation of electrome-
chanical rotor machines—was alluded to in Kahn [Kah67]. Van Eck radiation—
another side channel—has been demonstrated as a way to get plaintext [vEc85].
And Peter Wright discussed data leaking onto a transmission line as a side chan-
nel used to break a French cryptographic device [Wri87].

Using side channels to break cryptographic primitives is such a powerful no-
tion that it is reasonable to expect intelligence organizations to have built on the
successes alluded to in the previous paragraph. By continuing to research both
the collection of side-channel data and the vulnerabilities to specific primitives
to side-channel data, it is our hope that we can begin to build mathematical
algorithms that are more resistant to side-channel cryptanalysis as well as im-
plementations that leak less side-channel data.
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